perf/x86: Fix cmpxchg() usage in amd_put_event_constraints()
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
cdd6c482 36#include <linux/perf_event.h>
6fb2915d 37#include <linux/ftrace_event.h>
3c502e7a 38#include <linux/hw_breakpoint.h>
0793a61d 39
76369139
FW
40#include "internal.h"
41
4e193bd4
TB
42#include <asm/irq_regs.h>
43
fe4b04fa 44struct remote_function_call {
e7e7ee2e
IM
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
fe4b04fa
PZ
49};
50
51static void remote_function(void *data)
52{
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63}
64
65/**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78static int
79task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80{
81 struct remote_function_call data = {
e7e7ee2e
IM
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92}
93
94/**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115}
116
e5d1367f
SE
117#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
bce38cd5
SE
121/*
122 * branch priv levels that need permission checks
123 */
124#define PERF_SAMPLE_BRANCH_PERM_PLM \
125 (PERF_SAMPLE_BRANCH_KERNEL |\
126 PERF_SAMPLE_BRANCH_HV)
127
0b3fcf17
SE
128enum event_type_t {
129 EVENT_FLEXIBLE = 0x1,
130 EVENT_PINNED = 0x2,
131 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
132};
133
e5d1367f
SE
134/*
135 * perf_sched_events : >0 events exist
136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
137 */
c5905afb 138struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 139static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 140static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 141
cdd6c482
IM
142static atomic_t nr_mmap_events __read_mostly;
143static atomic_t nr_comm_events __read_mostly;
144static atomic_t nr_task_events __read_mostly;
9ee318a7 145
108b02cf
PZ
146static LIST_HEAD(pmus);
147static DEFINE_MUTEX(pmus_lock);
148static struct srcu_struct pmus_srcu;
149
0764771d 150/*
cdd6c482 151 * perf event paranoia level:
0fbdea19
IM
152 * -1 - not paranoid at all
153 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 154 * 1 - disallow cpu events for unpriv
0fbdea19 155 * 2 - disallow kernel profiling for unpriv
0764771d 156 */
cdd6c482 157int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 158
20443384
FW
159/* Minimum for 512 kiB + 1 user control page */
160int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
161
162/*
cdd6c482 163 * max perf event sample rate
df58ab24 164 */
163ec435
PZ
165#define DEFAULT_MAX_SAMPLE_RATE 100000
166int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
167static int max_samples_per_tick __read_mostly =
168 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
169
170int perf_proc_update_handler(struct ctl_table *table, int write,
171 void __user *buffer, size_t *lenp,
172 loff_t *ppos)
173{
174 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
175
176 if (ret || !write)
177 return ret;
178
179 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
180
181 return 0;
182}
1ccd1549 183
cdd6c482 184static atomic64_t perf_event_id;
a96bbc16 185
0b3fcf17
SE
186static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
187 enum event_type_t event_type);
188
189static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
190 enum event_type_t event_type,
191 struct task_struct *task);
192
193static void update_context_time(struct perf_event_context *ctx);
194static u64 perf_event_time(struct perf_event *event);
0b3fcf17 195
10c6db11
PZ
196static void ring_buffer_attach(struct perf_event *event,
197 struct ring_buffer *rb);
198
cdd6c482 199void __weak perf_event_print_debug(void) { }
0793a61d 200
84c79910 201extern __weak const char *perf_pmu_name(void)
0793a61d 202{
84c79910 203 return "pmu";
0793a61d
TG
204}
205
0b3fcf17
SE
206static inline u64 perf_clock(void)
207{
208 return local_clock();
209}
210
e5d1367f
SE
211static inline struct perf_cpu_context *
212__get_cpu_context(struct perf_event_context *ctx)
213{
214 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
215}
216
facc4307
PZ
217static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
219{
220 raw_spin_lock(&cpuctx->ctx.lock);
221 if (ctx)
222 raw_spin_lock(&ctx->lock);
223}
224
225static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
226 struct perf_event_context *ctx)
227{
228 if (ctx)
229 raw_spin_unlock(&ctx->lock);
230 raw_spin_unlock(&cpuctx->ctx.lock);
231}
232
e5d1367f
SE
233#ifdef CONFIG_CGROUP_PERF
234
3f7cce3c
SE
235/*
236 * Must ensure cgroup is pinned (css_get) before calling
237 * this function. In other words, we cannot call this function
238 * if there is no cgroup event for the current CPU context.
239 */
e5d1367f
SE
240static inline struct perf_cgroup *
241perf_cgroup_from_task(struct task_struct *task)
242{
243 return container_of(task_subsys_state(task, perf_subsys_id),
244 struct perf_cgroup, css);
245}
246
247static inline bool
248perf_cgroup_match(struct perf_event *event)
249{
250 struct perf_event_context *ctx = event->ctx;
251 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
252
253 return !event->cgrp || event->cgrp == cpuctx->cgrp;
254}
255
256static inline void perf_get_cgroup(struct perf_event *event)
257{
258 css_get(&event->cgrp->css);
259}
260
261static inline void perf_put_cgroup(struct perf_event *event)
262{
263 css_put(&event->cgrp->css);
264}
265
266static inline void perf_detach_cgroup(struct perf_event *event)
267{
268 perf_put_cgroup(event);
269 event->cgrp = NULL;
270}
271
272static inline int is_cgroup_event(struct perf_event *event)
273{
274 return event->cgrp != NULL;
275}
276
277static inline u64 perf_cgroup_event_time(struct perf_event *event)
278{
279 struct perf_cgroup_info *t;
280
281 t = per_cpu_ptr(event->cgrp->info, event->cpu);
282 return t->time;
283}
284
285static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
286{
287 struct perf_cgroup_info *info;
288 u64 now;
289
290 now = perf_clock();
291
292 info = this_cpu_ptr(cgrp->info);
293
294 info->time += now - info->timestamp;
295 info->timestamp = now;
296}
297
298static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
299{
300 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
301 if (cgrp_out)
302 __update_cgrp_time(cgrp_out);
303}
304
305static inline void update_cgrp_time_from_event(struct perf_event *event)
306{
3f7cce3c
SE
307 struct perf_cgroup *cgrp;
308
e5d1367f 309 /*
3f7cce3c
SE
310 * ensure we access cgroup data only when needed and
311 * when we know the cgroup is pinned (css_get)
e5d1367f 312 */
3f7cce3c 313 if (!is_cgroup_event(event))
e5d1367f
SE
314 return;
315
3f7cce3c
SE
316 cgrp = perf_cgroup_from_task(current);
317 /*
318 * Do not update time when cgroup is not active
319 */
320 if (cgrp == event->cgrp)
321 __update_cgrp_time(event->cgrp);
e5d1367f
SE
322}
323
324static inline void
3f7cce3c
SE
325perf_cgroup_set_timestamp(struct task_struct *task,
326 struct perf_event_context *ctx)
e5d1367f
SE
327{
328 struct perf_cgroup *cgrp;
329 struct perf_cgroup_info *info;
330
3f7cce3c
SE
331 /*
332 * ctx->lock held by caller
333 * ensure we do not access cgroup data
334 * unless we have the cgroup pinned (css_get)
335 */
336 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
337 return;
338
339 cgrp = perf_cgroup_from_task(task);
340 info = this_cpu_ptr(cgrp->info);
3f7cce3c 341 info->timestamp = ctx->timestamp;
e5d1367f
SE
342}
343
344#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
345#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
346
347/*
348 * reschedule events based on the cgroup constraint of task.
349 *
350 * mode SWOUT : schedule out everything
351 * mode SWIN : schedule in based on cgroup for next
352 */
353void perf_cgroup_switch(struct task_struct *task, int mode)
354{
355 struct perf_cpu_context *cpuctx;
356 struct pmu *pmu;
357 unsigned long flags;
358
359 /*
360 * disable interrupts to avoid geting nr_cgroup
361 * changes via __perf_event_disable(). Also
362 * avoids preemption.
363 */
364 local_irq_save(flags);
365
366 /*
367 * we reschedule only in the presence of cgroup
368 * constrained events.
369 */
370 rcu_read_lock();
371
372 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f
SE
373 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
374
e5d1367f
SE
375 /*
376 * perf_cgroup_events says at least one
377 * context on this CPU has cgroup events.
378 *
379 * ctx->nr_cgroups reports the number of cgroup
380 * events for a context.
381 */
382 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
383 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
384 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
385
386 if (mode & PERF_CGROUP_SWOUT) {
387 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
388 /*
389 * must not be done before ctxswout due
390 * to event_filter_match() in event_sched_out()
391 */
392 cpuctx->cgrp = NULL;
393 }
394
395 if (mode & PERF_CGROUP_SWIN) {
e566b76e 396 WARN_ON_ONCE(cpuctx->cgrp);
e5d1367f
SE
397 /* set cgrp before ctxsw in to
398 * allow event_filter_match() to not
399 * have to pass task around
400 */
401 cpuctx->cgrp = perf_cgroup_from_task(task);
402 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
403 }
facc4307
PZ
404 perf_pmu_enable(cpuctx->ctx.pmu);
405 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 406 }
e5d1367f
SE
407 }
408
409 rcu_read_unlock();
410
411 local_irq_restore(flags);
412}
413
a8d757ef
SE
414static inline void perf_cgroup_sched_out(struct task_struct *task,
415 struct task_struct *next)
e5d1367f 416{
a8d757ef
SE
417 struct perf_cgroup *cgrp1;
418 struct perf_cgroup *cgrp2 = NULL;
419
420 /*
421 * we come here when we know perf_cgroup_events > 0
422 */
423 cgrp1 = perf_cgroup_from_task(task);
424
425 /*
426 * next is NULL when called from perf_event_enable_on_exec()
427 * that will systematically cause a cgroup_switch()
428 */
429 if (next)
430 cgrp2 = perf_cgroup_from_task(next);
431
432 /*
433 * only schedule out current cgroup events if we know
434 * that we are switching to a different cgroup. Otherwise,
435 * do no touch the cgroup events.
436 */
437 if (cgrp1 != cgrp2)
438 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
439}
440
a8d757ef
SE
441static inline void perf_cgroup_sched_in(struct task_struct *prev,
442 struct task_struct *task)
e5d1367f 443{
a8d757ef
SE
444 struct perf_cgroup *cgrp1;
445 struct perf_cgroup *cgrp2 = NULL;
446
447 /*
448 * we come here when we know perf_cgroup_events > 0
449 */
450 cgrp1 = perf_cgroup_from_task(task);
451
452 /* prev can never be NULL */
453 cgrp2 = perf_cgroup_from_task(prev);
454
455 /*
456 * only need to schedule in cgroup events if we are changing
457 * cgroup during ctxsw. Cgroup events were not scheduled
458 * out of ctxsw out if that was not the case.
459 */
460 if (cgrp1 != cgrp2)
461 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
462}
463
464static inline int perf_cgroup_connect(int fd, struct perf_event *event,
465 struct perf_event_attr *attr,
466 struct perf_event *group_leader)
467{
468 struct perf_cgroup *cgrp;
469 struct cgroup_subsys_state *css;
470 struct file *file;
471 int ret = 0, fput_needed;
472
473 file = fget_light(fd, &fput_needed);
474 if (!file)
475 return -EBADF;
476
477 css = cgroup_css_from_dir(file, perf_subsys_id);
3db272c0
LZ
478 if (IS_ERR(css)) {
479 ret = PTR_ERR(css);
480 goto out;
481 }
e5d1367f
SE
482
483 cgrp = container_of(css, struct perf_cgroup, css);
484 event->cgrp = cgrp;
485
f75e18cb
LZ
486 /* must be done before we fput() the file */
487 perf_get_cgroup(event);
488
e5d1367f
SE
489 /*
490 * all events in a group must monitor
491 * the same cgroup because a task belongs
492 * to only one perf cgroup at a time
493 */
494 if (group_leader && group_leader->cgrp != cgrp) {
495 perf_detach_cgroup(event);
496 ret = -EINVAL;
e5d1367f 497 }
3db272c0 498out:
e5d1367f
SE
499 fput_light(file, fput_needed);
500 return ret;
501}
502
503static inline void
504perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
505{
506 struct perf_cgroup_info *t;
507 t = per_cpu_ptr(event->cgrp->info, event->cpu);
508 event->shadow_ctx_time = now - t->timestamp;
509}
510
511static inline void
512perf_cgroup_defer_enabled(struct perf_event *event)
513{
514 /*
515 * when the current task's perf cgroup does not match
516 * the event's, we need to remember to call the
517 * perf_mark_enable() function the first time a task with
518 * a matching perf cgroup is scheduled in.
519 */
520 if (is_cgroup_event(event) && !perf_cgroup_match(event))
521 event->cgrp_defer_enabled = 1;
522}
523
524static inline void
525perf_cgroup_mark_enabled(struct perf_event *event,
526 struct perf_event_context *ctx)
527{
528 struct perf_event *sub;
529 u64 tstamp = perf_event_time(event);
530
531 if (!event->cgrp_defer_enabled)
532 return;
533
534 event->cgrp_defer_enabled = 0;
535
536 event->tstamp_enabled = tstamp - event->total_time_enabled;
537 list_for_each_entry(sub, &event->sibling_list, group_entry) {
538 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
539 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
540 sub->cgrp_defer_enabled = 0;
541 }
542 }
543}
544#else /* !CONFIG_CGROUP_PERF */
545
546static inline bool
547perf_cgroup_match(struct perf_event *event)
548{
549 return true;
550}
551
552static inline void perf_detach_cgroup(struct perf_event *event)
553{}
554
555static inline int is_cgroup_event(struct perf_event *event)
556{
557 return 0;
558}
559
560static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
561{
562 return 0;
563}
564
565static inline void update_cgrp_time_from_event(struct perf_event *event)
566{
567}
568
569static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
570{
571}
572
a8d757ef
SE
573static inline void perf_cgroup_sched_out(struct task_struct *task,
574 struct task_struct *next)
e5d1367f
SE
575{
576}
577
a8d757ef
SE
578static inline void perf_cgroup_sched_in(struct task_struct *prev,
579 struct task_struct *task)
e5d1367f
SE
580{
581}
582
583static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
586{
587 return -EINVAL;
588}
589
590static inline void
3f7cce3c
SE
591perf_cgroup_set_timestamp(struct task_struct *task,
592 struct perf_event_context *ctx)
e5d1367f
SE
593{
594}
595
596void
597perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
598{
599}
600
601static inline void
602perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
603{
604}
605
606static inline u64 perf_cgroup_event_time(struct perf_event *event)
607{
608 return 0;
609}
610
611static inline void
612perf_cgroup_defer_enabled(struct perf_event *event)
613{
614}
615
616static inline void
617perf_cgroup_mark_enabled(struct perf_event *event,
618 struct perf_event_context *ctx)
619{
620}
621#endif
622
33696fc0 623void perf_pmu_disable(struct pmu *pmu)
9e35ad38 624{
33696fc0
PZ
625 int *count = this_cpu_ptr(pmu->pmu_disable_count);
626 if (!(*count)++)
627 pmu->pmu_disable(pmu);
9e35ad38 628}
9e35ad38 629
33696fc0 630void perf_pmu_enable(struct pmu *pmu)
9e35ad38 631{
33696fc0
PZ
632 int *count = this_cpu_ptr(pmu->pmu_disable_count);
633 if (!--(*count))
634 pmu->pmu_enable(pmu);
9e35ad38 635}
9e35ad38 636
e9d2b064
PZ
637static DEFINE_PER_CPU(struct list_head, rotation_list);
638
639/*
640 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
641 * because they're strictly cpu affine and rotate_start is called with IRQs
642 * disabled, while rotate_context is called from IRQ context.
643 */
108b02cf 644static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 645{
108b02cf 646 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 647 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 648
e9d2b064 649 WARN_ON(!irqs_disabled());
b5ab4cd5 650
e9d2b064
PZ
651 if (list_empty(&cpuctx->rotation_list))
652 list_add(&cpuctx->rotation_list, head);
9e35ad38 653}
9e35ad38 654
cdd6c482 655static void get_ctx(struct perf_event_context *ctx)
a63eaf34 656{
e5289d4a 657 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
658}
659
cdd6c482 660static void put_ctx(struct perf_event_context *ctx)
a63eaf34 661{
564c2b21
PM
662 if (atomic_dec_and_test(&ctx->refcount)) {
663 if (ctx->parent_ctx)
664 put_ctx(ctx->parent_ctx);
c93f7669
PM
665 if (ctx->task)
666 put_task_struct(ctx->task);
cb796ff3 667 kfree_rcu(ctx, rcu_head);
564c2b21 668 }
a63eaf34
PM
669}
670
cdd6c482 671static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
672{
673 if (ctx->parent_ctx) {
674 put_ctx(ctx->parent_ctx);
675 ctx->parent_ctx = NULL;
676 }
677}
678
6844c09d
ACM
679static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
680{
681 /*
682 * only top level events have the pid namespace they were created in
683 */
684 if (event->parent)
685 event = event->parent;
686
687 return task_tgid_nr_ns(p, event->ns);
688}
689
690static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
691{
692 /*
693 * only top level events have the pid namespace they were created in
694 */
695 if (event->parent)
696 event = event->parent;
697
698 return task_pid_nr_ns(p, event->ns);
699}
700
7f453c24 701/*
cdd6c482 702 * If we inherit events we want to return the parent event id
7f453c24
PZ
703 * to userspace.
704 */
cdd6c482 705static u64 primary_event_id(struct perf_event *event)
7f453c24 706{
cdd6c482 707 u64 id = event->id;
7f453c24 708
cdd6c482
IM
709 if (event->parent)
710 id = event->parent->id;
7f453c24
PZ
711
712 return id;
713}
714
25346b93 715/*
cdd6c482 716 * Get the perf_event_context for a task and lock it.
25346b93
PM
717 * This has to cope with with the fact that until it is locked,
718 * the context could get moved to another task.
719 */
cdd6c482 720static struct perf_event_context *
8dc85d54 721perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 722{
cdd6c482 723 struct perf_event_context *ctx;
25346b93
PM
724
725 rcu_read_lock();
9ed6060d 726retry:
8dc85d54 727 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
728 if (ctx) {
729 /*
730 * If this context is a clone of another, it might
731 * get swapped for another underneath us by
cdd6c482 732 * perf_event_task_sched_out, though the
25346b93
PM
733 * rcu_read_lock() protects us from any context
734 * getting freed. Lock the context and check if it
735 * got swapped before we could get the lock, and retry
736 * if so. If we locked the right context, then it
737 * can't get swapped on us any more.
738 */
e625cce1 739 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 740 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 741 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
25346b93
PM
742 goto retry;
743 }
b49a9e7e
PZ
744
745 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 746 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
747 ctx = NULL;
748 }
25346b93
PM
749 }
750 rcu_read_unlock();
751 return ctx;
752}
753
754/*
755 * Get the context for a task and increment its pin_count so it
756 * can't get swapped to another task. This also increments its
757 * reference count so that the context can't get freed.
758 */
8dc85d54
PZ
759static struct perf_event_context *
760perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 761{
cdd6c482 762 struct perf_event_context *ctx;
25346b93
PM
763 unsigned long flags;
764
8dc85d54 765 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
766 if (ctx) {
767 ++ctx->pin_count;
e625cce1 768 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
769 }
770 return ctx;
771}
772
cdd6c482 773static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
774{
775 unsigned long flags;
776
e625cce1 777 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 778 --ctx->pin_count;
e625cce1 779 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
780}
781
f67218c3
PZ
782/*
783 * Update the record of the current time in a context.
784 */
785static void update_context_time(struct perf_event_context *ctx)
786{
787 u64 now = perf_clock();
788
789 ctx->time += now - ctx->timestamp;
790 ctx->timestamp = now;
791}
792
4158755d
SE
793static u64 perf_event_time(struct perf_event *event)
794{
795 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
796
797 if (is_cgroup_event(event))
798 return perf_cgroup_event_time(event);
799
4158755d
SE
800 return ctx ? ctx->time : 0;
801}
802
f67218c3
PZ
803/*
804 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 805 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
806 */
807static void update_event_times(struct perf_event *event)
808{
809 struct perf_event_context *ctx = event->ctx;
810 u64 run_end;
811
812 if (event->state < PERF_EVENT_STATE_INACTIVE ||
813 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
814 return;
e5d1367f
SE
815 /*
816 * in cgroup mode, time_enabled represents
817 * the time the event was enabled AND active
818 * tasks were in the monitored cgroup. This is
819 * independent of the activity of the context as
820 * there may be a mix of cgroup and non-cgroup events.
821 *
822 * That is why we treat cgroup events differently
823 * here.
824 */
825 if (is_cgroup_event(event))
46cd6a7f 826 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
827 else if (ctx->is_active)
828 run_end = ctx->time;
acd1d7c1
PZ
829 else
830 run_end = event->tstamp_stopped;
831
832 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
833
834 if (event->state == PERF_EVENT_STATE_INACTIVE)
835 run_end = event->tstamp_stopped;
836 else
4158755d 837 run_end = perf_event_time(event);
f67218c3
PZ
838
839 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 840
f67218c3
PZ
841}
842
96c21a46
PZ
843/*
844 * Update total_time_enabled and total_time_running for all events in a group.
845 */
846static void update_group_times(struct perf_event *leader)
847{
848 struct perf_event *event;
849
850 update_event_times(leader);
851 list_for_each_entry(event, &leader->sibling_list, group_entry)
852 update_event_times(event);
853}
854
889ff015
FW
855static struct list_head *
856ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
857{
858 if (event->attr.pinned)
859 return &ctx->pinned_groups;
860 else
861 return &ctx->flexible_groups;
862}
863
fccc714b 864/*
cdd6c482 865 * Add a event from the lists for its context.
fccc714b
PZ
866 * Must be called with ctx->mutex and ctx->lock held.
867 */
04289bb9 868static void
cdd6c482 869list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 870{
8a49542c
PZ
871 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
872 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
873
874 /*
8a49542c
PZ
875 * If we're a stand alone event or group leader, we go to the context
876 * list, group events are kept attached to the group so that
877 * perf_group_detach can, at all times, locate all siblings.
04289bb9 878 */
8a49542c 879 if (event->group_leader == event) {
889ff015
FW
880 struct list_head *list;
881
d6f962b5
FW
882 if (is_software_event(event))
883 event->group_flags |= PERF_GROUP_SOFTWARE;
884
889ff015
FW
885 list = ctx_group_list(event, ctx);
886 list_add_tail(&event->group_entry, list);
5c148194 887 }
592903cd 888
08309379 889 if (is_cgroup_event(event))
e5d1367f 890 ctx->nr_cgroups++;
e5d1367f 891
d010b332
SE
892 if (has_branch_stack(event))
893 ctx->nr_branch_stack++;
894
cdd6c482 895 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 896 if (!ctx->nr_events)
108b02cf 897 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
898 ctx->nr_events++;
899 if (event->attr.inherit_stat)
bfbd3381 900 ctx->nr_stat++;
04289bb9
IM
901}
902
c320c7b7
ACM
903/*
904 * Called at perf_event creation and when events are attached/detached from a
905 * group.
906 */
907static void perf_event__read_size(struct perf_event *event)
908{
909 int entry = sizeof(u64); /* value */
910 int size = 0;
911 int nr = 1;
912
913 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
914 size += sizeof(u64);
915
916 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
917 size += sizeof(u64);
918
919 if (event->attr.read_format & PERF_FORMAT_ID)
920 entry += sizeof(u64);
921
922 if (event->attr.read_format & PERF_FORMAT_GROUP) {
923 nr += event->group_leader->nr_siblings;
924 size += sizeof(u64);
925 }
926
927 size += entry * nr;
928 event->read_size = size;
929}
930
931static void perf_event__header_size(struct perf_event *event)
932{
933 struct perf_sample_data *data;
934 u64 sample_type = event->attr.sample_type;
935 u16 size = 0;
936
937 perf_event__read_size(event);
938
939 if (sample_type & PERF_SAMPLE_IP)
940 size += sizeof(data->ip);
941
6844c09d
ACM
942 if (sample_type & PERF_SAMPLE_ADDR)
943 size += sizeof(data->addr);
944
945 if (sample_type & PERF_SAMPLE_PERIOD)
946 size += sizeof(data->period);
947
948 if (sample_type & PERF_SAMPLE_READ)
949 size += event->read_size;
950
951 event->header_size = size;
952}
953
954static void perf_event__id_header_size(struct perf_event *event)
955{
956 struct perf_sample_data *data;
957 u64 sample_type = event->attr.sample_type;
958 u16 size = 0;
959
c320c7b7
ACM
960 if (sample_type & PERF_SAMPLE_TID)
961 size += sizeof(data->tid_entry);
962
963 if (sample_type & PERF_SAMPLE_TIME)
964 size += sizeof(data->time);
965
c320c7b7
ACM
966 if (sample_type & PERF_SAMPLE_ID)
967 size += sizeof(data->id);
968
969 if (sample_type & PERF_SAMPLE_STREAM_ID)
970 size += sizeof(data->stream_id);
971
972 if (sample_type & PERF_SAMPLE_CPU)
973 size += sizeof(data->cpu_entry);
974
6844c09d 975 event->id_header_size = size;
c320c7b7
ACM
976}
977
8a49542c
PZ
978static void perf_group_attach(struct perf_event *event)
979{
c320c7b7 980 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 981
74c3337c
PZ
982 /*
983 * We can have double attach due to group movement in perf_event_open.
984 */
985 if (event->attach_state & PERF_ATTACH_GROUP)
986 return;
987
8a49542c
PZ
988 event->attach_state |= PERF_ATTACH_GROUP;
989
990 if (group_leader == event)
991 return;
992
993 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
994 !is_software_event(event))
995 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
996
997 list_add_tail(&event->group_entry, &group_leader->sibling_list);
998 group_leader->nr_siblings++;
c320c7b7
ACM
999
1000 perf_event__header_size(group_leader);
1001
1002 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1003 perf_event__header_size(pos);
8a49542c
PZ
1004}
1005
a63eaf34 1006/*
cdd6c482 1007 * Remove a event from the lists for its context.
fccc714b 1008 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1009 */
04289bb9 1010static void
cdd6c482 1011list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1012{
68cacd29 1013 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1014 /*
1015 * We can have double detach due to exit/hot-unplug + close.
1016 */
1017 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1018 return;
8a49542c
PZ
1019
1020 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1021
68cacd29 1022 if (is_cgroup_event(event)) {
e5d1367f 1023 ctx->nr_cgroups--;
68cacd29
SE
1024 cpuctx = __get_cpu_context(ctx);
1025 /*
1026 * if there are no more cgroup events
1027 * then cler cgrp to avoid stale pointer
1028 * in update_cgrp_time_from_cpuctx()
1029 */
1030 if (!ctx->nr_cgroups)
1031 cpuctx->cgrp = NULL;
1032 }
e5d1367f 1033
d010b332
SE
1034 if (has_branch_stack(event))
1035 ctx->nr_branch_stack--;
1036
cdd6c482
IM
1037 ctx->nr_events--;
1038 if (event->attr.inherit_stat)
bfbd3381 1039 ctx->nr_stat--;
8bc20959 1040
cdd6c482 1041 list_del_rcu(&event->event_entry);
04289bb9 1042
8a49542c
PZ
1043 if (event->group_leader == event)
1044 list_del_init(&event->group_entry);
5c148194 1045
96c21a46 1046 update_group_times(event);
b2e74a26
SE
1047
1048 /*
1049 * If event was in error state, then keep it
1050 * that way, otherwise bogus counts will be
1051 * returned on read(). The only way to get out
1052 * of error state is by explicit re-enabling
1053 * of the event
1054 */
1055 if (event->state > PERF_EVENT_STATE_OFF)
1056 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1057}
1058
8a49542c 1059static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1060{
1061 struct perf_event *sibling, *tmp;
8a49542c
PZ
1062 struct list_head *list = NULL;
1063
1064 /*
1065 * We can have double detach due to exit/hot-unplug + close.
1066 */
1067 if (!(event->attach_state & PERF_ATTACH_GROUP))
1068 return;
1069
1070 event->attach_state &= ~PERF_ATTACH_GROUP;
1071
1072 /*
1073 * If this is a sibling, remove it from its group.
1074 */
1075 if (event->group_leader != event) {
1076 list_del_init(&event->group_entry);
1077 event->group_leader->nr_siblings--;
c320c7b7 1078 goto out;
8a49542c
PZ
1079 }
1080
1081 if (!list_empty(&event->group_entry))
1082 list = &event->group_entry;
2e2af50b 1083
04289bb9 1084 /*
cdd6c482
IM
1085 * If this was a group event with sibling events then
1086 * upgrade the siblings to singleton events by adding them
8a49542c 1087 * to whatever list we are on.
04289bb9 1088 */
cdd6c482 1089 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1090 if (list)
1091 list_move_tail(&sibling->group_entry, list);
04289bb9 1092 sibling->group_leader = sibling;
d6f962b5
FW
1093
1094 /* Inherit group flags from the previous leader */
1095 sibling->group_flags = event->group_flags;
04289bb9 1096 }
c320c7b7
ACM
1097
1098out:
1099 perf_event__header_size(event->group_leader);
1100
1101 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1102 perf_event__header_size(tmp);
04289bb9
IM
1103}
1104
fa66f07a
SE
1105static inline int
1106event_filter_match(struct perf_event *event)
1107{
e5d1367f
SE
1108 return (event->cpu == -1 || event->cpu == smp_processor_id())
1109 && perf_cgroup_match(event);
fa66f07a
SE
1110}
1111
9ffcfa6f
SE
1112static void
1113event_sched_out(struct perf_event *event,
3b6f9e5c 1114 struct perf_cpu_context *cpuctx,
cdd6c482 1115 struct perf_event_context *ctx)
3b6f9e5c 1116{
4158755d 1117 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1118 u64 delta;
1119 /*
1120 * An event which could not be activated because of
1121 * filter mismatch still needs to have its timings
1122 * maintained, otherwise bogus information is return
1123 * via read() for time_enabled, time_running:
1124 */
1125 if (event->state == PERF_EVENT_STATE_INACTIVE
1126 && !event_filter_match(event)) {
e5d1367f 1127 delta = tstamp - event->tstamp_stopped;
fa66f07a 1128 event->tstamp_running += delta;
4158755d 1129 event->tstamp_stopped = tstamp;
fa66f07a
SE
1130 }
1131
cdd6c482 1132 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1133 return;
3b6f9e5c 1134
cdd6c482
IM
1135 event->state = PERF_EVENT_STATE_INACTIVE;
1136 if (event->pending_disable) {
1137 event->pending_disable = 0;
1138 event->state = PERF_EVENT_STATE_OFF;
970892a9 1139 }
4158755d 1140 event->tstamp_stopped = tstamp;
a4eaf7f1 1141 event->pmu->del(event, 0);
cdd6c482 1142 event->oncpu = -1;
3b6f9e5c 1143
cdd6c482 1144 if (!is_software_event(event))
3b6f9e5c
PM
1145 cpuctx->active_oncpu--;
1146 ctx->nr_active--;
0f5a2601
PZ
1147 if (event->attr.freq && event->attr.sample_freq)
1148 ctx->nr_freq--;
cdd6c482 1149 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1150 cpuctx->exclusive = 0;
1151}
1152
d859e29f 1153static void
cdd6c482 1154group_sched_out(struct perf_event *group_event,
d859e29f 1155 struct perf_cpu_context *cpuctx,
cdd6c482 1156 struct perf_event_context *ctx)
d859e29f 1157{
cdd6c482 1158 struct perf_event *event;
fa66f07a 1159 int state = group_event->state;
d859e29f 1160
cdd6c482 1161 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1162
1163 /*
1164 * Schedule out siblings (if any):
1165 */
cdd6c482
IM
1166 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1167 event_sched_out(event, cpuctx, ctx);
d859e29f 1168
fa66f07a 1169 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1170 cpuctx->exclusive = 0;
1171}
1172
0793a61d 1173/*
cdd6c482 1174 * Cross CPU call to remove a performance event
0793a61d 1175 *
cdd6c482 1176 * We disable the event on the hardware level first. After that we
0793a61d
TG
1177 * remove it from the context list.
1178 */
fe4b04fa 1179static int __perf_remove_from_context(void *info)
0793a61d 1180{
cdd6c482
IM
1181 struct perf_event *event = info;
1182 struct perf_event_context *ctx = event->ctx;
108b02cf 1183 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1184
e625cce1 1185 raw_spin_lock(&ctx->lock);
cdd6c482 1186 event_sched_out(event, cpuctx, ctx);
cdd6c482 1187 list_del_event(event, ctx);
64ce3126
PZ
1188 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1189 ctx->is_active = 0;
1190 cpuctx->task_ctx = NULL;
1191 }
e625cce1 1192 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1193
1194 return 0;
0793a61d
TG
1195}
1196
1197
1198/*
cdd6c482 1199 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1200 *
cdd6c482 1201 * CPU events are removed with a smp call. For task events we only
0793a61d 1202 * call when the task is on a CPU.
c93f7669 1203 *
cdd6c482
IM
1204 * If event->ctx is a cloned context, callers must make sure that
1205 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1206 * remains valid. This is OK when called from perf_release since
1207 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1208 * When called from perf_event_exit_task, it's OK because the
c93f7669 1209 * context has been detached from its task.
0793a61d 1210 */
fe4b04fa 1211static void perf_remove_from_context(struct perf_event *event)
0793a61d 1212{
cdd6c482 1213 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1214 struct task_struct *task = ctx->task;
1215
fe4b04fa
PZ
1216 lockdep_assert_held(&ctx->mutex);
1217
0793a61d
TG
1218 if (!task) {
1219 /*
cdd6c482 1220 * Per cpu events are removed via an smp call and
af901ca1 1221 * the removal is always successful.
0793a61d 1222 */
fe4b04fa 1223 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1224 return;
1225 }
1226
1227retry:
fe4b04fa
PZ
1228 if (!task_function_call(task, __perf_remove_from_context, event))
1229 return;
0793a61d 1230
e625cce1 1231 raw_spin_lock_irq(&ctx->lock);
0793a61d 1232 /*
fe4b04fa
PZ
1233 * If we failed to find a running task, but find the context active now
1234 * that we've acquired the ctx->lock, retry.
0793a61d 1235 */
fe4b04fa 1236 if (ctx->is_active) {
e625cce1 1237 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1238 goto retry;
1239 }
1240
1241 /*
fe4b04fa
PZ
1242 * Since the task isn't running, its safe to remove the event, us
1243 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1244 */
fe4b04fa 1245 list_del_event(event, ctx);
e625cce1 1246 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1247}
1248
d859e29f 1249/*
cdd6c482 1250 * Cross CPU call to disable a performance event
d859e29f 1251 */
fe4b04fa 1252static int __perf_event_disable(void *info)
d859e29f 1253{
cdd6c482 1254 struct perf_event *event = info;
cdd6c482 1255 struct perf_event_context *ctx = event->ctx;
108b02cf 1256 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1257
1258 /*
cdd6c482
IM
1259 * If this is a per-task event, need to check whether this
1260 * event's task is the current task on this cpu.
fe4b04fa
PZ
1261 *
1262 * Can trigger due to concurrent perf_event_context_sched_out()
1263 * flipping contexts around.
d859e29f 1264 */
665c2142 1265 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1266 return -EINVAL;
d859e29f 1267
e625cce1 1268 raw_spin_lock(&ctx->lock);
d859e29f
PM
1269
1270 /*
cdd6c482 1271 * If the event is on, turn it off.
d859e29f
PM
1272 * If it is in error state, leave it in error state.
1273 */
cdd6c482 1274 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1275 update_context_time(ctx);
e5d1367f 1276 update_cgrp_time_from_event(event);
cdd6c482
IM
1277 update_group_times(event);
1278 if (event == event->group_leader)
1279 group_sched_out(event, cpuctx, ctx);
d859e29f 1280 else
cdd6c482
IM
1281 event_sched_out(event, cpuctx, ctx);
1282 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1283 }
1284
e625cce1 1285 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1286
1287 return 0;
d859e29f
PM
1288}
1289
1290/*
cdd6c482 1291 * Disable a event.
c93f7669 1292 *
cdd6c482
IM
1293 * If event->ctx is a cloned context, callers must make sure that
1294 * every task struct that event->ctx->task could possibly point to
c93f7669 1295 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1296 * perf_event_for_each_child or perf_event_for_each because they
1297 * hold the top-level event's child_mutex, so any descendant that
1298 * goes to exit will block in sync_child_event.
1299 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1300 * is the current context on this CPU and preemption is disabled,
cdd6c482 1301 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1302 */
44234adc 1303void perf_event_disable(struct perf_event *event)
d859e29f 1304{
cdd6c482 1305 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1306 struct task_struct *task = ctx->task;
1307
1308 if (!task) {
1309 /*
cdd6c482 1310 * Disable the event on the cpu that it's on
d859e29f 1311 */
fe4b04fa 1312 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1313 return;
1314 }
1315
9ed6060d 1316retry:
fe4b04fa
PZ
1317 if (!task_function_call(task, __perf_event_disable, event))
1318 return;
d859e29f 1319
e625cce1 1320 raw_spin_lock_irq(&ctx->lock);
d859e29f 1321 /*
cdd6c482 1322 * If the event is still active, we need to retry the cross-call.
d859e29f 1323 */
cdd6c482 1324 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1325 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1326 /*
1327 * Reload the task pointer, it might have been changed by
1328 * a concurrent perf_event_context_sched_out().
1329 */
1330 task = ctx->task;
d859e29f
PM
1331 goto retry;
1332 }
1333
1334 /*
1335 * Since we have the lock this context can't be scheduled
1336 * in, so we can change the state safely.
1337 */
cdd6c482
IM
1338 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1339 update_group_times(event);
1340 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1341 }
e625cce1 1342 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1343}
dcfce4a0 1344EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1345
e5d1367f
SE
1346static void perf_set_shadow_time(struct perf_event *event,
1347 struct perf_event_context *ctx,
1348 u64 tstamp)
1349{
1350 /*
1351 * use the correct time source for the time snapshot
1352 *
1353 * We could get by without this by leveraging the
1354 * fact that to get to this function, the caller
1355 * has most likely already called update_context_time()
1356 * and update_cgrp_time_xx() and thus both timestamp
1357 * are identical (or very close). Given that tstamp is,
1358 * already adjusted for cgroup, we could say that:
1359 * tstamp - ctx->timestamp
1360 * is equivalent to
1361 * tstamp - cgrp->timestamp.
1362 *
1363 * Then, in perf_output_read(), the calculation would
1364 * work with no changes because:
1365 * - event is guaranteed scheduled in
1366 * - no scheduled out in between
1367 * - thus the timestamp would be the same
1368 *
1369 * But this is a bit hairy.
1370 *
1371 * So instead, we have an explicit cgroup call to remain
1372 * within the time time source all along. We believe it
1373 * is cleaner and simpler to understand.
1374 */
1375 if (is_cgroup_event(event))
1376 perf_cgroup_set_shadow_time(event, tstamp);
1377 else
1378 event->shadow_ctx_time = tstamp - ctx->timestamp;
1379}
1380
4fe757dd
PZ
1381#define MAX_INTERRUPTS (~0ULL)
1382
1383static void perf_log_throttle(struct perf_event *event, int enable);
1384
235c7fc7 1385static int
9ffcfa6f 1386event_sched_in(struct perf_event *event,
235c7fc7 1387 struct perf_cpu_context *cpuctx,
6e37738a 1388 struct perf_event_context *ctx)
235c7fc7 1389{
4158755d
SE
1390 u64 tstamp = perf_event_time(event);
1391
cdd6c482 1392 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1393 return 0;
1394
cdd6c482 1395 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1396 event->oncpu = smp_processor_id();
4fe757dd
PZ
1397
1398 /*
1399 * Unthrottle events, since we scheduled we might have missed several
1400 * ticks already, also for a heavily scheduling task there is little
1401 * guarantee it'll get a tick in a timely manner.
1402 */
1403 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1404 perf_log_throttle(event, 1);
1405 event->hw.interrupts = 0;
1406 }
1407
235c7fc7
IM
1408 /*
1409 * The new state must be visible before we turn it on in the hardware:
1410 */
1411 smp_wmb();
1412
a4eaf7f1 1413 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1414 event->state = PERF_EVENT_STATE_INACTIVE;
1415 event->oncpu = -1;
235c7fc7
IM
1416 return -EAGAIN;
1417 }
1418
4158755d 1419 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1420
e5d1367f 1421 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1422
cdd6c482 1423 if (!is_software_event(event))
3b6f9e5c 1424 cpuctx->active_oncpu++;
235c7fc7 1425 ctx->nr_active++;
0f5a2601
PZ
1426 if (event->attr.freq && event->attr.sample_freq)
1427 ctx->nr_freq++;
235c7fc7 1428
cdd6c482 1429 if (event->attr.exclusive)
3b6f9e5c
PM
1430 cpuctx->exclusive = 1;
1431
235c7fc7
IM
1432 return 0;
1433}
1434
6751b71e 1435static int
cdd6c482 1436group_sched_in(struct perf_event *group_event,
6751b71e 1437 struct perf_cpu_context *cpuctx,
6e37738a 1438 struct perf_event_context *ctx)
6751b71e 1439{
6bde9b6c 1440 struct perf_event *event, *partial_group = NULL;
51b0fe39 1441 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1442 u64 now = ctx->time;
1443 bool simulate = false;
6751b71e 1444
cdd6c482 1445 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1446 return 0;
1447
ad5133b7 1448 pmu->start_txn(pmu);
6bde9b6c 1449
9ffcfa6f 1450 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1451 pmu->cancel_txn(pmu);
6751b71e 1452 return -EAGAIN;
90151c35 1453 }
6751b71e
PM
1454
1455 /*
1456 * Schedule in siblings as one group (if any):
1457 */
cdd6c482 1458 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1459 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1460 partial_group = event;
6751b71e
PM
1461 goto group_error;
1462 }
1463 }
1464
9ffcfa6f 1465 if (!pmu->commit_txn(pmu))
6e85158c 1466 return 0;
9ffcfa6f 1467
6751b71e
PM
1468group_error:
1469 /*
1470 * Groups can be scheduled in as one unit only, so undo any
1471 * partial group before returning:
d7842da4
SE
1472 * The events up to the failed event are scheduled out normally,
1473 * tstamp_stopped will be updated.
1474 *
1475 * The failed events and the remaining siblings need to have
1476 * their timings updated as if they had gone thru event_sched_in()
1477 * and event_sched_out(). This is required to get consistent timings
1478 * across the group. This also takes care of the case where the group
1479 * could never be scheduled by ensuring tstamp_stopped is set to mark
1480 * the time the event was actually stopped, such that time delta
1481 * calculation in update_event_times() is correct.
6751b71e 1482 */
cdd6c482
IM
1483 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1484 if (event == partial_group)
d7842da4
SE
1485 simulate = true;
1486
1487 if (simulate) {
1488 event->tstamp_running += now - event->tstamp_stopped;
1489 event->tstamp_stopped = now;
1490 } else {
1491 event_sched_out(event, cpuctx, ctx);
1492 }
6751b71e 1493 }
9ffcfa6f 1494 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1495
ad5133b7 1496 pmu->cancel_txn(pmu);
90151c35 1497
6751b71e
PM
1498 return -EAGAIN;
1499}
1500
3b6f9e5c 1501/*
cdd6c482 1502 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1503 */
cdd6c482 1504static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1505 struct perf_cpu_context *cpuctx,
1506 int can_add_hw)
1507{
1508 /*
cdd6c482 1509 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1510 */
d6f962b5 1511 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1512 return 1;
1513 /*
1514 * If an exclusive group is already on, no other hardware
cdd6c482 1515 * events can go on.
3b6f9e5c
PM
1516 */
1517 if (cpuctx->exclusive)
1518 return 0;
1519 /*
1520 * If this group is exclusive and there are already
cdd6c482 1521 * events on the CPU, it can't go on.
3b6f9e5c 1522 */
cdd6c482 1523 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1524 return 0;
1525 /*
1526 * Otherwise, try to add it if all previous groups were able
1527 * to go on.
1528 */
1529 return can_add_hw;
1530}
1531
cdd6c482
IM
1532static void add_event_to_ctx(struct perf_event *event,
1533 struct perf_event_context *ctx)
53cfbf59 1534{
4158755d
SE
1535 u64 tstamp = perf_event_time(event);
1536
cdd6c482 1537 list_add_event(event, ctx);
8a49542c 1538 perf_group_attach(event);
4158755d
SE
1539 event->tstamp_enabled = tstamp;
1540 event->tstamp_running = tstamp;
1541 event->tstamp_stopped = tstamp;
53cfbf59
PM
1542}
1543
2c29ef0f
PZ
1544static void task_ctx_sched_out(struct perf_event_context *ctx);
1545static void
1546ctx_sched_in(struct perf_event_context *ctx,
1547 struct perf_cpu_context *cpuctx,
1548 enum event_type_t event_type,
1549 struct task_struct *task);
fe4b04fa 1550
dce5855b
PZ
1551static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1552 struct perf_event_context *ctx,
1553 struct task_struct *task)
1554{
1555 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1556 if (ctx)
1557 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1558 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1559 if (ctx)
1560 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1561}
1562
0793a61d 1563/*
cdd6c482 1564 * Cross CPU call to install and enable a performance event
682076ae
PZ
1565 *
1566 * Must be called with ctx->mutex held
0793a61d 1567 */
fe4b04fa 1568static int __perf_install_in_context(void *info)
0793a61d 1569{
cdd6c482
IM
1570 struct perf_event *event = info;
1571 struct perf_event_context *ctx = event->ctx;
108b02cf 1572 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1573 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1574 struct task_struct *task = current;
1575
b58f6b0d 1576 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1577 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1578
1579 /*
2c29ef0f 1580 * If there was an active task_ctx schedule it out.
0793a61d 1581 */
b58f6b0d 1582 if (task_ctx)
2c29ef0f 1583 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1584
1585 /*
1586 * If the context we're installing events in is not the
1587 * active task_ctx, flip them.
1588 */
1589 if (ctx->task && task_ctx != ctx) {
1590 if (task_ctx)
1591 raw_spin_unlock(&task_ctx->lock);
1592 raw_spin_lock(&ctx->lock);
1593 task_ctx = ctx;
1594 }
1595
1596 if (task_ctx) {
1597 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1598 task = task_ctx->task;
1599 }
b58f6b0d 1600
2c29ef0f 1601 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1602
4af4998b 1603 update_context_time(ctx);
e5d1367f
SE
1604 /*
1605 * update cgrp time only if current cgrp
1606 * matches event->cgrp. Must be done before
1607 * calling add_event_to_ctx()
1608 */
1609 update_cgrp_time_from_event(event);
0793a61d 1610
cdd6c482 1611 add_event_to_ctx(event, ctx);
0793a61d 1612
d859e29f 1613 /*
2c29ef0f 1614 * Schedule everything back in
d859e29f 1615 */
dce5855b 1616 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1617
1618 perf_pmu_enable(cpuctx->ctx.pmu);
1619 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1620
1621 return 0;
0793a61d
TG
1622}
1623
1624/*
cdd6c482 1625 * Attach a performance event to a context
0793a61d 1626 *
cdd6c482
IM
1627 * First we add the event to the list with the hardware enable bit
1628 * in event->hw_config cleared.
0793a61d 1629 *
cdd6c482 1630 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1631 * call to enable it in the task context. The task might have been
1632 * scheduled away, but we check this in the smp call again.
1633 */
1634static void
cdd6c482
IM
1635perf_install_in_context(struct perf_event_context *ctx,
1636 struct perf_event *event,
0793a61d
TG
1637 int cpu)
1638{
1639 struct task_struct *task = ctx->task;
1640
fe4b04fa
PZ
1641 lockdep_assert_held(&ctx->mutex);
1642
c3f00c70
PZ
1643 event->ctx = ctx;
1644
0793a61d
TG
1645 if (!task) {
1646 /*
cdd6c482 1647 * Per cpu events are installed via an smp call and
af901ca1 1648 * the install is always successful.
0793a61d 1649 */
fe4b04fa 1650 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1651 return;
1652 }
1653
0793a61d 1654retry:
fe4b04fa
PZ
1655 if (!task_function_call(task, __perf_install_in_context, event))
1656 return;
0793a61d 1657
e625cce1 1658 raw_spin_lock_irq(&ctx->lock);
0793a61d 1659 /*
fe4b04fa
PZ
1660 * If we failed to find a running task, but find the context active now
1661 * that we've acquired the ctx->lock, retry.
0793a61d 1662 */
fe4b04fa 1663 if (ctx->is_active) {
e625cce1 1664 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1665 goto retry;
1666 }
1667
1668 /*
fe4b04fa
PZ
1669 * Since the task isn't running, its safe to add the event, us holding
1670 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1671 */
fe4b04fa 1672 add_event_to_ctx(event, ctx);
e625cce1 1673 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1674}
1675
fa289bec 1676/*
cdd6c482 1677 * Put a event into inactive state and update time fields.
fa289bec
PM
1678 * Enabling the leader of a group effectively enables all
1679 * the group members that aren't explicitly disabled, so we
1680 * have to update their ->tstamp_enabled also.
1681 * Note: this works for group members as well as group leaders
1682 * since the non-leader members' sibling_lists will be empty.
1683 */
1d9b482e 1684static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1685{
cdd6c482 1686 struct perf_event *sub;
4158755d 1687 u64 tstamp = perf_event_time(event);
fa289bec 1688
cdd6c482 1689 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1690 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1691 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1692 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1693 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1694 }
fa289bec
PM
1695}
1696
d859e29f 1697/*
cdd6c482 1698 * Cross CPU call to enable a performance event
d859e29f 1699 */
fe4b04fa 1700static int __perf_event_enable(void *info)
04289bb9 1701{
cdd6c482 1702 struct perf_event *event = info;
cdd6c482
IM
1703 struct perf_event_context *ctx = event->ctx;
1704 struct perf_event *leader = event->group_leader;
108b02cf 1705 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1706 int err;
04289bb9 1707
fe4b04fa
PZ
1708 if (WARN_ON_ONCE(!ctx->is_active))
1709 return -EINVAL;
3cbed429 1710
e625cce1 1711 raw_spin_lock(&ctx->lock);
4af4998b 1712 update_context_time(ctx);
d859e29f 1713
cdd6c482 1714 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1715 goto unlock;
e5d1367f
SE
1716
1717 /*
1718 * set current task's cgroup time reference point
1719 */
3f7cce3c 1720 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1721
1d9b482e 1722 __perf_event_mark_enabled(event);
04289bb9 1723
e5d1367f
SE
1724 if (!event_filter_match(event)) {
1725 if (is_cgroup_event(event))
1726 perf_cgroup_defer_enabled(event);
f4c4176f 1727 goto unlock;
e5d1367f 1728 }
f4c4176f 1729
04289bb9 1730 /*
cdd6c482 1731 * If the event is in a group and isn't the group leader,
d859e29f 1732 * then don't put it on unless the group is on.
04289bb9 1733 */
cdd6c482 1734 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 1735 goto unlock;
3b6f9e5c 1736
cdd6c482 1737 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 1738 err = -EEXIST;
e758a33d 1739 } else {
cdd6c482 1740 if (event == leader)
6e37738a 1741 err = group_sched_in(event, cpuctx, ctx);
e758a33d 1742 else
6e37738a 1743 err = event_sched_in(event, cpuctx, ctx);
e758a33d 1744 }
d859e29f
PM
1745
1746 if (err) {
1747 /*
cdd6c482 1748 * If this event can't go on and it's part of a
d859e29f
PM
1749 * group, then the whole group has to come off.
1750 */
cdd6c482 1751 if (leader != event)
d859e29f 1752 group_sched_out(leader, cpuctx, ctx);
0d48696f 1753 if (leader->attr.pinned) {
53cfbf59 1754 update_group_times(leader);
cdd6c482 1755 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 1756 }
d859e29f
PM
1757 }
1758
9ed6060d 1759unlock:
e625cce1 1760 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1761
1762 return 0;
d859e29f
PM
1763}
1764
1765/*
cdd6c482 1766 * Enable a event.
c93f7669 1767 *
cdd6c482
IM
1768 * If event->ctx is a cloned context, callers must make sure that
1769 * every task struct that event->ctx->task could possibly point to
c93f7669 1770 * remains valid. This condition is satisfied when called through
cdd6c482
IM
1771 * perf_event_for_each_child or perf_event_for_each as described
1772 * for perf_event_disable.
d859e29f 1773 */
44234adc 1774void perf_event_enable(struct perf_event *event)
d859e29f 1775{
cdd6c482 1776 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1777 struct task_struct *task = ctx->task;
1778
1779 if (!task) {
1780 /*
cdd6c482 1781 * Enable the event on the cpu that it's on
d859e29f 1782 */
fe4b04fa 1783 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
1784 return;
1785 }
1786
e625cce1 1787 raw_spin_lock_irq(&ctx->lock);
cdd6c482 1788 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
1789 goto out;
1790
1791 /*
cdd6c482
IM
1792 * If the event is in error state, clear that first.
1793 * That way, if we see the event in error state below, we
d859e29f
PM
1794 * know that it has gone back into error state, as distinct
1795 * from the task having been scheduled away before the
1796 * cross-call arrived.
1797 */
cdd6c482
IM
1798 if (event->state == PERF_EVENT_STATE_ERROR)
1799 event->state = PERF_EVENT_STATE_OFF;
d859e29f 1800
9ed6060d 1801retry:
fe4b04fa 1802 if (!ctx->is_active) {
1d9b482e 1803 __perf_event_mark_enabled(event);
fe4b04fa
PZ
1804 goto out;
1805 }
1806
e625cce1 1807 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1808
1809 if (!task_function_call(task, __perf_event_enable, event))
1810 return;
d859e29f 1811
e625cce1 1812 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
1813
1814 /*
cdd6c482 1815 * If the context is active and the event is still off,
d859e29f
PM
1816 * we need to retry the cross-call.
1817 */
fe4b04fa
PZ
1818 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1819 /*
1820 * task could have been flipped by a concurrent
1821 * perf_event_context_sched_out()
1822 */
1823 task = ctx->task;
d859e29f 1824 goto retry;
fe4b04fa 1825 }
fa289bec 1826
9ed6060d 1827out:
e625cce1 1828 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1829}
dcfce4a0 1830EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 1831
26ca5c11 1832int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 1833{
2023b359 1834 /*
cdd6c482 1835 * not supported on inherited events
2023b359 1836 */
2e939d1d 1837 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
1838 return -EINVAL;
1839
cdd6c482
IM
1840 atomic_add(refresh, &event->event_limit);
1841 perf_event_enable(event);
2023b359
PZ
1842
1843 return 0;
79f14641 1844}
26ca5c11 1845EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 1846
5b0311e1
FW
1847static void ctx_sched_out(struct perf_event_context *ctx,
1848 struct perf_cpu_context *cpuctx,
1849 enum event_type_t event_type)
235c7fc7 1850{
cdd6c482 1851 struct perf_event *event;
db24d33e 1852 int is_active = ctx->is_active;
235c7fc7 1853
db24d33e 1854 ctx->is_active &= ~event_type;
cdd6c482 1855 if (likely(!ctx->nr_events))
facc4307
PZ
1856 return;
1857
4af4998b 1858 update_context_time(ctx);
e5d1367f 1859 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 1860 if (!ctx->nr_active)
facc4307 1861 return;
5b0311e1 1862
075e0b00 1863 perf_pmu_disable(ctx->pmu);
db24d33e 1864 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
1865 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1866 group_sched_out(event, cpuctx, ctx);
9ed6060d 1867 }
889ff015 1868
db24d33e 1869 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 1870 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 1871 group_sched_out(event, cpuctx, ctx);
9ed6060d 1872 }
1b9a644f 1873 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
1874}
1875
564c2b21
PM
1876/*
1877 * Test whether two contexts are equivalent, i.e. whether they
1878 * have both been cloned from the same version of the same context
cdd6c482
IM
1879 * and they both have the same number of enabled events.
1880 * If the number of enabled events is the same, then the set
1881 * of enabled events should be the same, because these are both
1882 * inherited contexts, therefore we can't access individual events
564c2b21 1883 * in them directly with an fd; we can only enable/disable all
cdd6c482 1884 * events via prctl, or enable/disable all events in a family
564c2b21
PM
1885 * via ioctl, which will have the same effect on both contexts.
1886 */
cdd6c482
IM
1887static int context_equiv(struct perf_event_context *ctx1,
1888 struct perf_event_context *ctx2)
564c2b21
PM
1889{
1890 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 1891 && ctx1->parent_gen == ctx2->parent_gen
25346b93 1892 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
1893}
1894
cdd6c482
IM
1895static void __perf_event_sync_stat(struct perf_event *event,
1896 struct perf_event *next_event)
bfbd3381
PZ
1897{
1898 u64 value;
1899
cdd6c482 1900 if (!event->attr.inherit_stat)
bfbd3381
PZ
1901 return;
1902
1903 /*
cdd6c482 1904 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
1905 * because we're in the middle of a context switch and have IRQs
1906 * disabled, which upsets smp_call_function_single(), however
cdd6c482 1907 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
1908 * don't need to use it.
1909 */
cdd6c482
IM
1910 switch (event->state) {
1911 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
1912 event->pmu->read(event);
1913 /* fall-through */
bfbd3381 1914
cdd6c482
IM
1915 case PERF_EVENT_STATE_INACTIVE:
1916 update_event_times(event);
bfbd3381
PZ
1917 break;
1918
1919 default:
1920 break;
1921 }
1922
1923 /*
cdd6c482 1924 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
1925 * values when we flip the contexts.
1926 */
e7850595
PZ
1927 value = local64_read(&next_event->count);
1928 value = local64_xchg(&event->count, value);
1929 local64_set(&next_event->count, value);
bfbd3381 1930
cdd6c482
IM
1931 swap(event->total_time_enabled, next_event->total_time_enabled);
1932 swap(event->total_time_running, next_event->total_time_running);
19d2e755 1933
bfbd3381 1934 /*
19d2e755 1935 * Since we swizzled the values, update the user visible data too.
bfbd3381 1936 */
cdd6c482
IM
1937 perf_event_update_userpage(event);
1938 perf_event_update_userpage(next_event);
bfbd3381
PZ
1939}
1940
1941#define list_next_entry(pos, member) \
1942 list_entry(pos->member.next, typeof(*pos), member)
1943
cdd6c482
IM
1944static void perf_event_sync_stat(struct perf_event_context *ctx,
1945 struct perf_event_context *next_ctx)
bfbd3381 1946{
cdd6c482 1947 struct perf_event *event, *next_event;
bfbd3381
PZ
1948
1949 if (!ctx->nr_stat)
1950 return;
1951
02ffdbc8
PZ
1952 update_context_time(ctx);
1953
cdd6c482
IM
1954 event = list_first_entry(&ctx->event_list,
1955 struct perf_event, event_entry);
bfbd3381 1956
cdd6c482
IM
1957 next_event = list_first_entry(&next_ctx->event_list,
1958 struct perf_event, event_entry);
bfbd3381 1959
cdd6c482
IM
1960 while (&event->event_entry != &ctx->event_list &&
1961 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 1962
cdd6c482 1963 __perf_event_sync_stat(event, next_event);
bfbd3381 1964
cdd6c482
IM
1965 event = list_next_entry(event, event_entry);
1966 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
1967 }
1968}
1969
fe4b04fa
PZ
1970static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1971 struct task_struct *next)
0793a61d 1972{
8dc85d54 1973 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
1974 struct perf_event_context *next_ctx;
1975 struct perf_event_context *parent;
108b02cf 1976 struct perf_cpu_context *cpuctx;
c93f7669 1977 int do_switch = 1;
0793a61d 1978
108b02cf
PZ
1979 if (likely(!ctx))
1980 return;
10989fb2 1981
108b02cf
PZ
1982 cpuctx = __get_cpu_context(ctx);
1983 if (!cpuctx->task_ctx)
0793a61d
TG
1984 return;
1985
c93f7669
PM
1986 rcu_read_lock();
1987 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 1988 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
1989 if (parent && next_ctx &&
1990 rcu_dereference(next_ctx->parent_ctx) == parent) {
1991 /*
1992 * Looks like the two contexts are clones, so we might be
1993 * able to optimize the context switch. We lock both
1994 * contexts and check that they are clones under the
1995 * lock (including re-checking that neither has been
1996 * uncloned in the meantime). It doesn't matter which
1997 * order we take the locks because no other cpu could
1998 * be trying to lock both of these tasks.
1999 */
e625cce1
TG
2000 raw_spin_lock(&ctx->lock);
2001 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2002 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2003 /*
2004 * XXX do we need a memory barrier of sorts
cdd6c482 2005 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2006 */
8dc85d54
PZ
2007 task->perf_event_ctxp[ctxn] = next_ctx;
2008 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2009 ctx->task = next;
2010 next_ctx->task = task;
2011 do_switch = 0;
bfbd3381 2012
cdd6c482 2013 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2014 }
e625cce1
TG
2015 raw_spin_unlock(&next_ctx->lock);
2016 raw_spin_unlock(&ctx->lock);
564c2b21 2017 }
c93f7669 2018 rcu_read_unlock();
564c2b21 2019
c93f7669 2020 if (do_switch) {
facc4307 2021 raw_spin_lock(&ctx->lock);
5b0311e1 2022 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2023 cpuctx->task_ctx = NULL;
facc4307 2024 raw_spin_unlock(&ctx->lock);
c93f7669 2025 }
0793a61d
TG
2026}
2027
8dc85d54
PZ
2028#define for_each_task_context_nr(ctxn) \
2029 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2030
2031/*
2032 * Called from scheduler to remove the events of the current task,
2033 * with interrupts disabled.
2034 *
2035 * We stop each event and update the event value in event->count.
2036 *
2037 * This does not protect us against NMI, but disable()
2038 * sets the disabled bit in the control field of event _before_
2039 * accessing the event control register. If a NMI hits, then it will
2040 * not restart the event.
2041 */
82cd6def
PZ
2042void __perf_event_task_sched_out(struct task_struct *task,
2043 struct task_struct *next)
8dc85d54
PZ
2044{
2045 int ctxn;
2046
8dc85d54
PZ
2047 for_each_task_context_nr(ctxn)
2048 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2049
2050 /*
2051 * if cgroup events exist on this CPU, then we need
2052 * to check if we have to switch out PMU state.
2053 * cgroup event are system-wide mode only
2054 */
2055 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2056 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2057}
2058
04dc2dbb 2059static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2060{
108b02cf 2061 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2062
a63eaf34
PM
2063 if (!cpuctx->task_ctx)
2064 return;
012b84da
IM
2065
2066 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2067 return;
2068
04dc2dbb 2069 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2070 cpuctx->task_ctx = NULL;
2071}
2072
5b0311e1
FW
2073/*
2074 * Called with IRQs disabled
2075 */
2076static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2077 enum event_type_t event_type)
2078{
2079 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2080}
2081
235c7fc7 2082static void
5b0311e1 2083ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2084 struct perf_cpu_context *cpuctx)
0793a61d 2085{
cdd6c482 2086 struct perf_event *event;
0793a61d 2087
889ff015
FW
2088 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2089 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2090 continue;
5632ab12 2091 if (!event_filter_match(event))
3b6f9e5c
PM
2092 continue;
2093
e5d1367f
SE
2094 /* may need to reset tstamp_enabled */
2095 if (is_cgroup_event(event))
2096 perf_cgroup_mark_enabled(event, ctx);
2097
8c9ed8e1 2098 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2099 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2100
2101 /*
2102 * If this pinned group hasn't been scheduled,
2103 * put it in error state.
2104 */
cdd6c482
IM
2105 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2106 update_group_times(event);
2107 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2108 }
3b6f9e5c 2109 }
5b0311e1
FW
2110}
2111
2112static void
2113ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2114 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2115{
2116 struct perf_event *event;
2117 int can_add_hw = 1;
3b6f9e5c 2118
889ff015
FW
2119 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2120 /* Ignore events in OFF or ERROR state */
2121 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2122 continue;
04289bb9
IM
2123 /*
2124 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2125 * of events:
04289bb9 2126 */
5632ab12 2127 if (!event_filter_match(event))
0793a61d
TG
2128 continue;
2129
e5d1367f
SE
2130 /* may need to reset tstamp_enabled */
2131 if (is_cgroup_event(event))
2132 perf_cgroup_mark_enabled(event, ctx);
2133
9ed6060d 2134 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2135 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2136 can_add_hw = 0;
9ed6060d 2137 }
0793a61d 2138 }
5b0311e1
FW
2139}
2140
2141static void
2142ctx_sched_in(struct perf_event_context *ctx,
2143 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2144 enum event_type_t event_type,
2145 struct task_struct *task)
5b0311e1 2146{
e5d1367f 2147 u64 now;
db24d33e 2148 int is_active = ctx->is_active;
e5d1367f 2149
db24d33e 2150 ctx->is_active |= event_type;
5b0311e1 2151 if (likely(!ctx->nr_events))
facc4307 2152 return;
5b0311e1 2153
e5d1367f
SE
2154 now = perf_clock();
2155 ctx->timestamp = now;
3f7cce3c 2156 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2157 /*
2158 * First go through the list and put on any pinned groups
2159 * in order to give them the best chance of going on.
2160 */
db24d33e 2161 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2162 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2163
2164 /* Then walk through the lower prio flexible groups */
db24d33e 2165 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2166 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2167}
2168
329c0e01 2169static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2170 enum event_type_t event_type,
2171 struct task_struct *task)
329c0e01
FW
2172{
2173 struct perf_event_context *ctx = &cpuctx->ctx;
2174
e5d1367f 2175 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2176}
2177
e5d1367f
SE
2178static void perf_event_context_sched_in(struct perf_event_context *ctx,
2179 struct task_struct *task)
235c7fc7 2180{
108b02cf 2181 struct perf_cpu_context *cpuctx;
235c7fc7 2182
108b02cf 2183 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2184 if (cpuctx->task_ctx == ctx)
2185 return;
2186
facc4307 2187 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2188 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2189 /*
2190 * We want to keep the following priority order:
2191 * cpu pinned (that don't need to move), task pinned,
2192 * cpu flexible, task flexible.
2193 */
2194 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2195
1d5f003f
GN
2196 if (ctx->nr_events)
2197 cpuctx->task_ctx = ctx;
9b33fa6b 2198
86b47c25
GN
2199 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2200
facc4307
PZ
2201 perf_pmu_enable(ctx->pmu);
2202 perf_ctx_unlock(cpuctx, ctx);
2203
b5ab4cd5
PZ
2204 /*
2205 * Since these rotations are per-cpu, we need to ensure the
2206 * cpu-context we got scheduled on is actually rotating.
2207 */
108b02cf 2208 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2209}
2210
d010b332
SE
2211/*
2212 * When sampling the branck stack in system-wide, it may be necessary
2213 * to flush the stack on context switch. This happens when the branch
2214 * stack does not tag its entries with the pid of the current task.
2215 * Otherwise it becomes impossible to associate a branch entry with a
2216 * task. This ambiguity is more likely to appear when the branch stack
2217 * supports priv level filtering and the user sets it to monitor only
2218 * at the user level (which could be a useful measurement in system-wide
2219 * mode). In that case, the risk is high of having a branch stack with
2220 * branch from multiple tasks. Flushing may mean dropping the existing
2221 * entries or stashing them somewhere in the PMU specific code layer.
2222 *
2223 * This function provides the context switch callback to the lower code
2224 * layer. It is invoked ONLY when there is at least one system-wide context
2225 * with at least one active event using taken branch sampling.
2226 */
2227static void perf_branch_stack_sched_in(struct task_struct *prev,
2228 struct task_struct *task)
2229{
2230 struct perf_cpu_context *cpuctx;
2231 struct pmu *pmu;
2232 unsigned long flags;
2233
2234 /* no need to flush branch stack if not changing task */
2235 if (prev == task)
2236 return;
2237
2238 local_irq_save(flags);
2239
2240 rcu_read_lock();
2241
2242 list_for_each_entry_rcu(pmu, &pmus, entry) {
2243 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2244
2245 /*
2246 * check if the context has at least one
2247 * event using PERF_SAMPLE_BRANCH_STACK
2248 */
2249 if (cpuctx->ctx.nr_branch_stack > 0
2250 && pmu->flush_branch_stack) {
2251
2252 pmu = cpuctx->ctx.pmu;
2253
2254 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2255
2256 perf_pmu_disable(pmu);
2257
2258 pmu->flush_branch_stack();
2259
2260 perf_pmu_enable(pmu);
2261
2262 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2263 }
2264 }
2265
2266 rcu_read_unlock();
2267
2268 local_irq_restore(flags);
2269}
2270
8dc85d54
PZ
2271/*
2272 * Called from scheduler to add the events of the current task
2273 * with interrupts disabled.
2274 *
2275 * We restore the event value and then enable it.
2276 *
2277 * This does not protect us against NMI, but enable()
2278 * sets the enabled bit in the control field of event _before_
2279 * accessing the event control register. If a NMI hits, then it will
2280 * keep the event running.
2281 */
a8d757ef
SE
2282void __perf_event_task_sched_in(struct task_struct *prev,
2283 struct task_struct *task)
8dc85d54
PZ
2284{
2285 struct perf_event_context *ctx;
2286 int ctxn;
2287
2288 for_each_task_context_nr(ctxn) {
2289 ctx = task->perf_event_ctxp[ctxn];
2290 if (likely(!ctx))
2291 continue;
2292
e5d1367f 2293 perf_event_context_sched_in(ctx, task);
8dc85d54 2294 }
e5d1367f
SE
2295 /*
2296 * if cgroup events exist on this CPU, then we need
2297 * to check if we have to switch in PMU state.
2298 * cgroup event are system-wide mode only
2299 */
2300 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2301 perf_cgroup_sched_in(prev, task);
d010b332
SE
2302
2303 /* check for system-wide branch_stack events */
2304 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2305 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2306}
2307
abd50713
PZ
2308static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2309{
2310 u64 frequency = event->attr.sample_freq;
2311 u64 sec = NSEC_PER_SEC;
2312 u64 divisor, dividend;
2313
2314 int count_fls, nsec_fls, frequency_fls, sec_fls;
2315
2316 count_fls = fls64(count);
2317 nsec_fls = fls64(nsec);
2318 frequency_fls = fls64(frequency);
2319 sec_fls = 30;
2320
2321 /*
2322 * We got @count in @nsec, with a target of sample_freq HZ
2323 * the target period becomes:
2324 *
2325 * @count * 10^9
2326 * period = -------------------
2327 * @nsec * sample_freq
2328 *
2329 */
2330
2331 /*
2332 * Reduce accuracy by one bit such that @a and @b converge
2333 * to a similar magnitude.
2334 */
fe4b04fa 2335#define REDUCE_FLS(a, b) \
abd50713
PZ
2336do { \
2337 if (a##_fls > b##_fls) { \
2338 a >>= 1; \
2339 a##_fls--; \
2340 } else { \
2341 b >>= 1; \
2342 b##_fls--; \
2343 } \
2344} while (0)
2345
2346 /*
2347 * Reduce accuracy until either term fits in a u64, then proceed with
2348 * the other, so that finally we can do a u64/u64 division.
2349 */
2350 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2351 REDUCE_FLS(nsec, frequency);
2352 REDUCE_FLS(sec, count);
2353 }
2354
2355 if (count_fls + sec_fls > 64) {
2356 divisor = nsec * frequency;
2357
2358 while (count_fls + sec_fls > 64) {
2359 REDUCE_FLS(count, sec);
2360 divisor >>= 1;
2361 }
2362
2363 dividend = count * sec;
2364 } else {
2365 dividend = count * sec;
2366
2367 while (nsec_fls + frequency_fls > 64) {
2368 REDUCE_FLS(nsec, frequency);
2369 dividend >>= 1;
2370 }
2371
2372 divisor = nsec * frequency;
2373 }
2374
f6ab91ad
PZ
2375 if (!divisor)
2376 return dividend;
2377
abd50713
PZ
2378 return div64_u64(dividend, divisor);
2379}
2380
e050e3f0
SE
2381static DEFINE_PER_CPU(int, perf_throttled_count);
2382static DEFINE_PER_CPU(u64, perf_throttled_seq);
2383
f39d47ff 2384static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2385{
cdd6c482 2386 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2387 s64 period, sample_period;
bd2b5b12
PZ
2388 s64 delta;
2389
abd50713 2390 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2391
2392 delta = (s64)(period - hwc->sample_period);
2393 delta = (delta + 7) / 8; /* low pass filter */
2394
2395 sample_period = hwc->sample_period + delta;
2396
2397 if (!sample_period)
2398 sample_period = 1;
2399
bd2b5b12 2400 hwc->sample_period = sample_period;
abd50713 2401
e7850595 2402 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2403 if (disable)
2404 event->pmu->stop(event, PERF_EF_UPDATE);
2405
e7850595 2406 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2407
2408 if (disable)
2409 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2410 }
bd2b5b12
PZ
2411}
2412
e050e3f0
SE
2413/*
2414 * combine freq adjustment with unthrottling to avoid two passes over the
2415 * events. At the same time, make sure, having freq events does not change
2416 * the rate of unthrottling as that would introduce bias.
2417 */
2418static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2419 int needs_unthr)
60db5e09 2420{
cdd6c482
IM
2421 struct perf_event *event;
2422 struct hw_perf_event *hwc;
e050e3f0 2423 u64 now, period = TICK_NSEC;
abd50713 2424 s64 delta;
60db5e09 2425
e050e3f0
SE
2426 /*
2427 * only need to iterate over all events iff:
2428 * - context have events in frequency mode (needs freq adjust)
2429 * - there are events to unthrottle on this cpu
2430 */
2431 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2432 return;
2433
e050e3f0 2434 raw_spin_lock(&ctx->lock);
f39d47ff 2435 perf_pmu_disable(ctx->pmu);
e050e3f0 2436
03541f8b 2437 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2438 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2439 continue;
2440
5632ab12 2441 if (!event_filter_match(event))
5d27c23d
PZ
2442 continue;
2443
cdd6c482 2444 hwc = &event->hw;
6a24ed6c 2445
e050e3f0
SE
2446 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2447 hwc->interrupts = 0;
cdd6c482 2448 perf_log_throttle(event, 1);
a4eaf7f1 2449 event->pmu->start(event, 0);
a78ac325
PZ
2450 }
2451
cdd6c482 2452 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2453 continue;
2454
e050e3f0
SE
2455 /*
2456 * stop the event and update event->count
2457 */
2458 event->pmu->stop(event, PERF_EF_UPDATE);
2459
e7850595 2460 now = local64_read(&event->count);
abd50713
PZ
2461 delta = now - hwc->freq_count_stamp;
2462 hwc->freq_count_stamp = now;
60db5e09 2463
e050e3f0
SE
2464 /*
2465 * restart the event
2466 * reload only if value has changed
f39d47ff
SE
2467 * we have stopped the event so tell that
2468 * to perf_adjust_period() to avoid stopping it
2469 * twice.
e050e3f0 2470 */
abd50713 2471 if (delta > 0)
f39d47ff 2472 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2473
2474 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2475 }
e050e3f0 2476
f39d47ff 2477 perf_pmu_enable(ctx->pmu);
e050e3f0 2478 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2479}
2480
235c7fc7 2481/*
cdd6c482 2482 * Round-robin a context's events:
235c7fc7 2483 */
cdd6c482 2484static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2485{
dddd3379
TG
2486 /*
2487 * Rotate the first entry last of non-pinned groups. Rotation might be
2488 * disabled by the inheritance code.
2489 */
2490 if (!ctx->rotate_disable)
2491 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2492}
2493
b5ab4cd5 2494/*
e9d2b064
PZ
2495 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2496 * because they're strictly cpu affine and rotate_start is called with IRQs
2497 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2498 */
e9d2b064 2499static void perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2500{
8dc85d54 2501 struct perf_event_context *ctx = NULL;
e050e3f0 2502 int rotate = 0, remove = 1;
7fc23a53 2503
b5ab4cd5 2504 if (cpuctx->ctx.nr_events) {
e9d2b064 2505 remove = 0;
b5ab4cd5
PZ
2506 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2507 rotate = 1;
2508 }
235c7fc7 2509
8dc85d54 2510 ctx = cpuctx->task_ctx;
b5ab4cd5 2511 if (ctx && ctx->nr_events) {
e9d2b064 2512 remove = 0;
b5ab4cd5
PZ
2513 if (ctx->nr_events != ctx->nr_active)
2514 rotate = 1;
2515 }
9717e6cd 2516
e050e3f0 2517 if (!rotate)
0f5a2601
PZ
2518 goto done;
2519
facc4307 2520 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2521 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2522
e050e3f0
SE
2523 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2524 if (ctx)
2525 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2526
e050e3f0
SE
2527 rotate_ctx(&cpuctx->ctx);
2528 if (ctx)
2529 rotate_ctx(ctx);
235c7fc7 2530
e050e3f0 2531 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2532
0f5a2601
PZ
2533 perf_pmu_enable(cpuctx->ctx.pmu);
2534 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2535done:
e9d2b064
PZ
2536 if (remove)
2537 list_del_init(&cpuctx->rotation_list);
e9d2b064
PZ
2538}
2539
2540void perf_event_task_tick(void)
2541{
2542 struct list_head *head = &__get_cpu_var(rotation_list);
2543 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2544 struct perf_event_context *ctx;
2545 int throttled;
b5ab4cd5 2546
e9d2b064
PZ
2547 WARN_ON(!irqs_disabled());
2548
e050e3f0
SE
2549 __this_cpu_inc(perf_throttled_seq);
2550 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2551
e9d2b064 2552 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2553 ctx = &cpuctx->ctx;
2554 perf_adjust_freq_unthr_context(ctx, throttled);
2555
2556 ctx = cpuctx->task_ctx;
2557 if (ctx)
2558 perf_adjust_freq_unthr_context(ctx, throttled);
2559
e9d2b064
PZ
2560 if (cpuctx->jiffies_interval == 1 ||
2561 !(jiffies % cpuctx->jiffies_interval))
2562 perf_rotate_context(cpuctx);
2563 }
0793a61d
TG
2564}
2565
889ff015
FW
2566static int event_enable_on_exec(struct perf_event *event,
2567 struct perf_event_context *ctx)
2568{
2569 if (!event->attr.enable_on_exec)
2570 return 0;
2571
2572 event->attr.enable_on_exec = 0;
2573 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2574 return 0;
2575
1d9b482e 2576 __perf_event_mark_enabled(event);
889ff015
FW
2577
2578 return 1;
2579}
2580
57e7986e 2581/*
cdd6c482 2582 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2583 * This expects task == current.
2584 */
8dc85d54 2585static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2586{
cdd6c482 2587 struct perf_event *event;
57e7986e
PM
2588 unsigned long flags;
2589 int enabled = 0;
889ff015 2590 int ret;
57e7986e
PM
2591
2592 local_irq_save(flags);
cdd6c482 2593 if (!ctx || !ctx->nr_events)
57e7986e
PM
2594 goto out;
2595
e566b76e
SE
2596 /*
2597 * We must ctxsw out cgroup events to avoid conflict
2598 * when invoking perf_task_event_sched_in() later on
2599 * in this function. Otherwise we end up trying to
2600 * ctxswin cgroup events which are already scheduled
2601 * in.
2602 */
a8d757ef 2603 perf_cgroup_sched_out(current, NULL);
57e7986e 2604
e625cce1 2605 raw_spin_lock(&ctx->lock);
04dc2dbb 2606 task_ctx_sched_out(ctx);
57e7986e 2607
b79387ef 2608 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2609 ret = event_enable_on_exec(event, ctx);
2610 if (ret)
2611 enabled = 1;
57e7986e
PM
2612 }
2613
2614 /*
cdd6c482 2615 * Unclone this context if we enabled any event.
57e7986e 2616 */
71a851b4
PZ
2617 if (enabled)
2618 unclone_ctx(ctx);
57e7986e 2619
e625cce1 2620 raw_spin_unlock(&ctx->lock);
57e7986e 2621
e566b76e
SE
2622 /*
2623 * Also calls ctxswin for cgroup events, if any:
2624 */
e5d1367f 2625 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2626out:
57e7986e
PM
2627 local_irq_restore(flags);
2628}
2629
0793a61d 2630/*
cdd6c482 2631 * Cross CPU call to read the hardware event
0793a61d 2632 */
cdd6c482 2633static void __perf_event_read(void *info)
0793a61d 2634{
cdd6c482
IM
2635 struct perf_event *event = info;
2636 struct perf_event_context *ctx = event->ctx;
108b02cf 2637 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2638
e1ac3614
PM
2639 /*
2640 * If this is a task context, we need to check whether it is
2641 * the current task context of this cpu. If not it has been
2642 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2643 * event->count would have been updated to a recent sample
2644 * when the event was scheduled out.
e1ac3614
PM
2645 */
2646 if (ctx->task && cpuctx->task_ctx != ctx)
2647 return;
2648
e625cce1 2649 raw_spin_lock(&ctx->lock);
e5d1367f 2650 if (ctx->is_active) {
542e72fc 2651 update_context_time(ctx);
e5d1367f
SE
2652 update_cgrp_time_from_event(event);
2653 }
cdd6c482 2654 update_event_times(event);
542e72fc
PZ
2655 if (event->state == PERF_EVENT_STATE_ACTIVE)
2656 event->pmu->read(event);
e625cce1 2657 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2658}
2659
b5e58793
PZ
2660static inline u64 perf_event_count(struct perf_event *event)
2661{
e7850595 2662 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2663}
2664
cdd6c482 2665static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2666{
2667 /*
cdd6c482
IM
2668 * If event is enabled and currently active on a CPU, update the
2669 * value in the event structure:
0793a61d 2670 */
cdd6c482
IM
2671 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2672 smp_call_function_single(event->oncpu,
2673 __perf_event_read, event, 1);
2674 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2675 struct perf_event_context *ctx = event->ctx;
2676 unsigned long flags;
2677
e625cce1 2678 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2679 /*
2680 * may read while context is not active
2681 * (e.g., thread is blocked), in that case
2682 * we cannot update context time
2683 */
e5d1367f 2684 if (ctx->is_active) {
c530ccd9 2685 update_context_time(ctx);
e5d1367f
SE
2686 update_cgrp_time_from_event(event);
2687 }
cdd6c482 2688 update_event_times(event);
e625cce1 2689 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2690 }
2691
b5e58793 2692 return perf_event_count(event);
0793a61d
TG
2693}
2694
a63eaf34 2695/*
cdd6c482 2696 * Initialize the perf_event context in a task_struct:
a63eaf34 2697 */
eb184479 2698static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2699{
e625cce1 2700 raw_spin_lock_init(&ctx->lock);
a63eaf34 2701 mutex_init(&ctx->mutex);
889ff015
FW
2702 INIT_LIST_HEAD(&ctx->pinned_groups);
2703 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2704 INIT_LIST_HEAD(&ctx->event_list);
2705 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2706}
2707
2708static struct perf_event_context *
2709alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2710{
2711 struct perf_event_context *ctx;
2712
2713 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2714 if (!ctx)
2715 return NULL;
2716
2717 __perf_event_init_context(ctx);
2718 if (task) {
2719 ctx->task = task;
2720 get_task_struct(task);
0793a61d 2721 }
eb184479
PZ
2722 ctx->pmu = pmu;
2723
2724 return ctx;
a63eaf34
PM
2725}
2726
2ebd4ffb
MH
2727static struct task_struct *
2728find_lively_task_by_vpid(pid_t vpid)
2729{
2730 struct task_struct *task;
2731 int err;
0793a61d
TG
2732
2733 rcu_read_lock();
2ebd4ffb 2734 if (!vpid)
0793a61d
TG
2735 task = current;
2736 else
2ebd4ffb 2737 task = find_task_by_vpid(vpid);
0793a61d
TG
2738 if (task)
2739 get_task_struct(task);
2740 rcu_read_unlock();
2741
2742 if (!task)
2743 return ERR_PTR(-ESRCH);
2744
0793a61d 2745 /* Reuse ptrace permission checks for now. */
c93f7669
PM
2746 err = -EACCES;
2747 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2748 goto errout;
2749
2ebd4ffb
MH
2750 return task;
2751errout:
2752 put_task_struct(task);
2753 return ERR_PTR(err);
2754
2755}
2756
fe4b04fa
PZ
2757/*
2758 * Returns a matching context with refcount and pincount.
2759 */
108b02cf 2760static struct perf_event_context *
38a81da2 2761find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 2762{
cdd6c482 2763 struct perf_event_context *ctx;
22a4f650 2764 struct perf_cpu_context *cpuctx;
25346b93 2765 unsigned long flags;
8dc85d54 2766 int ctxn, err;
0793a61d 2767
22a4ec72 2768 if (!task) {
cdd6c482 2769 /* Must be root to operate on a CPU event: */
0764771d 2770 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
2771 return ERR_PTR(-EACCES);
2772
0793a61d 2773 /*
cdd6c482 2774 * We could be clever and allow to attach a event to an
0793a61d
TG
2775 * offline CPU and activate it when the CPU comes up, but
2776 * that's for later.
2777 */
f6325e30 2778 if (!cpu_online(cpu))
0793a61d
TG
2779 return ERR_PTR(-ENODEV);
2780
108b02cf 2781 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 2782 ctx = &cpuctx->ctx;
c93f7669 2783 get_ctx(ctx);
fe4b04fa 2784 ++ctx->pin_count;
0793a61d 2785
0793a61d
TG
2786 return ctx;
2787 }
2788
8dc85d54
PZ
2789 err = -EINVAL;
2790 ctxn = pmu->task_ctx_nr;
2791 if (ctxn < 0)
2792 goto errout;
2793
9ed6060d 2794retry:
8dc85d54 2795 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 2796 if (ctx) {
71a851b4 2797 unclone_ctx(ctx);
fe4b04fa 2798 ++ctx->pin_count;
e625cce1 2799 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 2800 } else {
eb184479 2801 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
2802 err = -ENOMEM;
2803 if (!ctx)
2804 goto errout;
eb184479 2805
dbe08d82
ON
2806 err = 0;
2807 mutex_lock(&task->perf_event_mutex);
2808 /*
2809 * If it has already passed perf_event_exit_task().
2810 * we must see PF_EXITING, it takes this mutex too.
2811 */
2812 if (task->flags & PF_EXITING)
2813 err = -ESRCH;
2814 else if (task->perf_event_ctxp[ctxn])
2815 err = -EAGAIN;
fe4b04fa 2816 else {
9137fb28 2817 get_ctx(ctx);
fe4b04fa 2818 ++ctx->pin_count;
dbe08d82 2819 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 2820 }
dbe08d82
ON
2821 mutex_unlock(&task->perf_event_mutex);
2822
2823 if (unlikely(err)) {
9137fb28 2824 put_ctx(ctx);
dbe08d82
ON
2825
2826 if (err == -EAGAIN)
2827 goto retry;
2828 goto errout;
a63eaf34
PM
2829 }
2830 }
2831
0793a61d 2832 return ctx;
c93f7669 2833
9ed6060d 2834errout:
c93f7669 2835 return ERR_PTR(err);
0793a61d
TG
2836}
2837
6fb2915d
LZ
2838static void perf_event_free_filter(struct perf_event *event);
2839
cdd6c482 2840static void free_event_rcu(struct rcu_head *head)
592903cd 2841{
cdd6c482 2842 struct perf_event *event;
592903cd 2843
cdd6c482
IM
2844 event = container_of(head, struct perf_event, rcu_head);
2845 if (event->ns)
2846 put_pid_ns(event->ns);
6fb2915d 2847 perf_event_free_filter(event);
cdd6c482 2848 kfree(event);
592903cd
PZ
2849}
2850
76369139 2851static void ring_buffer_put(struct ring_buffer *rb);
925d519a 2852
cdd6c482 2853static void free_event(struct perf_event *event)
f1600952 2854{
e360adbe 2855 irq_work_sync(&event->pending);
925d519a 2856
cdd6c482 2857 if (!event->parent) {
82cd6def 2858 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 2859 static_key_slow_dec_deferred(&perf_sched_events);
3af9e859 2860 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
2861 atomic_dec(&nr_mmap_events);
2862 if (event->attr.comm)
2863 atomic_dec(&nr_comm_events);
2864 if (event->attr.task)
2865 atomic_dec(&nr_task_events);
927c7a9e
FW
2866 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2867 put_callchain_buffers();
08309379
PZ
2868 if (is_cgroup_event(event)) {
2869 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 2870 static_key_slow_dec_deferred(&perf_sched_events);
08309379 2871 }
d010b332
SE
2872
2873 if (has_branch_stack(event)) {
2874 static_key_slow_dec_deferred(&perf_sched_events);
2875 /* is system-wide event */
2876 if (!(event->attach_state & PERF_ATTACH_TASK))
2877 atomic_dec(&per_cpu(perf_branch_stack_events,
2878 event->cpu));
2879 }
f344011c 2880 }
9ee318a7 2881
76369139
FW
2882 if (event->rb) {
2883 ring_buffer_put(event->rb);
2884 event->rb = NULL;
a4be7c27
PZ
2885 }
2886
e5d1367f
SE
2887 if (is_cgroup_event(event))
2888 perf_detach_cgroup(event);
2889
cdd6c482
IM
2890 if (event->destroy)
2891 event->destroy(event);
e077df4f 2892
0c67b408
PZ
2893 if (event->ctx)
2894 put_ctx(event->ctx);
2895
cdd6c482 2896 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
2897}
2898
a66a3052 2899int perf_event_release_kernel(struct perf_event *event)
0793a61d 2900{
cdd6c482 2901 struct perf_event_context *ctx = event->ctx;
0793a61d 2902
ad3a37de 2903 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
2904 /*
2905 * There are two ways this annotation is useful:
2906 *
2907 * 1) there is a lock recursion from perf_event_exit_task
2908 * see the comment there.
2909 *
2910 * 2) there is a lock-inversion with mmap_sem through
2911 * perf_event_read_group(), which takes faults while
2912 * holding ctx->mutex, however this is called after
2913 * the last filedesc died, so there is no possibility
2914 * to trigger the AB-BA case.
2915 */
2916 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 2917 raw_spin_lock_irq(&ctx->lock);
8a49542c 2918 perf_group_detach(event);
050735b0 2919 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 2920 perf_remove_from_context(event);
d859e29f 2921 mutex_unlock(&ctx->mutex);
0793a61d 2922
cdd6c482 2923 free_event(event);
0793a61d
TG
2924
2925 return 0;
2926}
a66a3052 2927EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 2928
a66a3052
PZ
2929/*
2930 * Called when the last reference to the file is gone.
2931 */
2932static int perf_release(struct inode *inode, struct file *file)
fb0459d7 2933{
a66a3052 2934 struct perf_event *event = file->private_data;
8882135b 2935 struct task_struct *owner;
fb0459d7 2936
a66a3052 2937 file->private_data = NULL;
fb0459d7 2938
8882135b
PZ
2939 rcu_read_lock();
2940 owner = ACCESS_ONCE(event->owner);
2941 /*
2942 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2943 * !owner it means the list deletion is complete and we can indeed
2944 * free this event, otherwise we need to serialize on
2945 * owner->perf_event_mutex.
2946 */
2947 smp_read_barrier_depends();
2948 if (owner) {
2949 /*
2950 * Since delayed_put_task_struct() also drops the last
2951 * task reference we can safely take a new reference
2952 * while holding the rcu_read_lock().
2953 */
2954 get_task_struct(owner);
2955 }
2956 rcu_read_unlock();
2957
2958 if (owner) {
2959 mutex_lock(&owner->perf_event_mutex);
2960 /*
2961 * We have to re-check the event->owner field, if it is cleared
2962 * we raced with perf_event_exit_task(), acquiring the mutex
2963 * ensured they're done, and we can proceed with freeing the
2964 * event.
2965 */
2966 if (event->owner)
2967 list_del_init(&event->owner_entry);
2968 mutex_unlock(&owner->perf_event_mutex);
2969 put_task_struct(owner);
2970 }
2971
a66a3052 2972 return perf_event_release_kernel(event);
fb0459d7 2973}
fb0459d7 2974
59ed446f 2975u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 2976{
cdd6c482 2977 struct perf_event *child;
e53c0994
PZ
2978 u64 total = 0;
2979
59ed446f
PZ
2980 *enabled = 0;
2981 *running = 0;
2982
6f10581a 2983 mutex_lock(&event->child_mutex);
cdd6c482 2984 total += perf_event_read(event);
59ed446f
PZ
2985 *enabled += event->total_time_enabled +
2986 atomic64_read(&event->child_total_time_enabled);
2987 *running += event->total_time_running +
2988 atomic64_read(&event->child_total_time_running);
2989
2990 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 2991 total += perf_event_read(child);
59ed446f
PZ
2992 *enabled += child->total_time_enabled;
2993 *running += child->total_time_running;
2994 }
6f10581a 2995 mutex_unlock(&event->child_mutex);
e53c0994
PZ
2996
2997 return total;
2998}
fb0459d7 2999EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3000
cdd6c482 3001static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3002 u64 read_format, char __user *buf)
3003{
cdd6c482 3004 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3005 int n = 0, size = 0, ret = -EFAULT;
3006 struct perf_event_context *ctx = leader->ctx;
abf4868b 3007 u64 values[5];
59ed446f 3008 u64 count, enabled, running;
abf4868b 3009
6f10581a 3010 mutex_lock(&ctx->mutex);
59ed446f 3011 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3012
3013 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3014 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3015 values[n++] = enabled;
3016 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3017 values[n++] = running;
abf4868b
PZ
3018 values[n++] = count;
3019 if (read_format & PERF_FORMAT_ID)
3020 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3021
3022 size = n * sizeof(u64);
3023
3024 if (copy_to_user(buf, values, size))
6f10581a 3025 goto unlock;
3dab77fb 3026
6f10581a 3027 ret = size;
3dab77fb 3028
65abc865 3029 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3030 n = 0;
3dab77fb 3031
59ed446f 3032 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3033 if (read_format & PERF_FORMAT_ID)
3034 values[n++] = primary_event_id(sub);
3035
3036 size = n * sizeof(u64);
3037
184d3da8 3038 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3039 ret = -EFAULT;
3040 goto unlock;
3041 }
abf4868b
PZ
3042
3043 ret += size;
3dab77fb 3044 }
6f10581a
PZ
3045unlock:
3046 mutex_unlock(&ctx->mutex);
3dab77fb 3047
abf4868b 3048 return ret;
3dab77fb
PZ
3049}
3050
cdd6c482 3051static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3052 u64 read_format, char __user *buf)
3053{
59ed446f 3054 u64 enabled, running;
3dab77fb
PZ
3055 u64 values[4];
3056 int n = 0;
3057
59ed446f
PZ
3058 values[n++] = perf_event_read_value(event, &enabled, &running);
3059 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3060 values[n++] = enabled;
3061 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3062 values[n++] = running;
3dab77fb 3063 if (read_format & PERF_FORMAT_ID)
cdd6c482 3064 values[n++] = primary_event_id(event);
3dab77fb
PZ
3065
3066 if (copy_to_user(buf, values, n * sizeof(u64)))
3067 return -EFAULT;
3068
3069 return n * sizeof(u64);
3070}
3071
0793a61d 3072/*
cdd6c482 3073 * Read the performance event - simple non blocking version for now
0793a61d
TG
3074 */
3075static ssize_t
cdd6c482 3076perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3077{
cdd6c482 3078 u64 read_format = event->attr.read_format;
3dab77fb 3079 int ret;
0793a61d 3080
3b6f9e5c 3081 /*
cdd6c482 3082 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3083 * error state (i.e. because it was pinned but it couldn't be
3084 * scheduled on to the CPU at some point).
3085 */
cdd6c482 3086 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3087 return 0;
3088
c320c7b7 3089 if (count < event->read_size)
3dab77fb
PZ
3090 return -ENOSPC;
3091
cdd6c482 3092 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3093 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3094 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3095 else
cdd6c482 3096 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3097
3dab77fb 3098 return ret;
0793a61d
TG
3099}
3100
0793a61d
TG
3101static ssize_t
3102perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3103{
cdd6c482 3104 struct perf_event *event = file->private_data;
0793a61d 3105
cdd6c482 3106 return perf_read_hw(event, buf, count);
0793a61d
TG
3107}
3108
3109static unsigned int perf_poll(struct file *file, poll_table *wait)
3110{
cdd6c482 3111 struct perf_event *event = file->private_data;
76369139 3112 struct ring_buffer *rb;
c33a0bc4 3113 unsigned int events = POLL_HUP;
c7138f37 3114
10c6db11
PZ
3115 /*
3116 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3117 * grabs the rb reference but perf_event_set_output() overrides it.
3118 * Here is the timeline for two threads T1, T2:
3119 * t0: T1, rb = rcu_dereference(event->rb)
3120 * t1: T2, old_rb = event->rb
3121 * t2: T2, event->rb = new rb
3122 * t3: T2, ring_buffer_detach(old_rb)
3123 * t4: T1, ring_buffer_attach(rb1)
3124 * t5: T1, poll_wait(event->waitq)
3125 *
3126 * To avoid this problem, we grab mmap_mutex in perf_poll()
3127 * thereby ensuring that the assignment of the new ring buffer
3128 * and the detachment of the old buffer appear atomic to perf_poll()
3129 */
3130 mutex_lock(&event->mmap_mutex);
3131
c7138f37 3132 rcu_read_lock();
76369139 3133 rb = rcu_dereference(event->rb);
10c6db11
PZ
3134 if (rb) {
3135 ring_buffer_attach(event, rb);
76369139 3136 events = atomic_xchg(&rb->poll, 0);
10c6db11 3137 }
c7138f37 3138 rcu_read_unlock();
0793a61d 3139
10c6db11
PZ
3140 mutex_unlock(&event->mmap_mutex);
3141
cdd6c482 3142 poll_wait(file, &event->waitq, wait);
0793a61d 3143
0793a61d
TG
3144 return events;
3145}
3146
cdd6c482 3147static void perf_event_reset(struct perf_event *event)
6de6a7b9 3148{
cdd6c482 3149 (void)perf_event_read(event);
e7850595 3150 local64_set(&event->count, 0);
cdd6c482 3151 perf_event_update_userpage(event);
3df5edad
PZ
3152}
3153
c93f7669 3154/*
cdd6c482
IM
3155 * Holding the top-level event's child_mutex means that any
3156 * descendant process that has inherited this event will block
3157 * in sync_child_event if it goes to exit, thus satisfying the
3158 * task existence requirements of perf_event_enable/disable.
c93f7669 3159 */
cdd6c482
IM
3160static void perf_event_for_each_child(struct perf_event *event,
3161 void (*func)(struct perf_event *))
3df5edad 3162{
cdd6c482 3163 struct perf_event *child;
3df5edad 3164
cdd6c482
IM
3165 WARN_ON_ONCE(event->ctx->parent_ctx);
3166 mutex_lock(&event->child_mutex);
3167 func(event);
3168 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3169 func(child);
cdd6c482 3170 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3171}
3172
cdd6c482
IM
3173static void perf_event_for_each(struct perf_event *event,
3174 void (*func)(struct perf_event *))
3df5edad 3175{
cdd6c482
IM
3176 struct perf_event_context *ctx = event->ctx;
3177 struct perf_event *sibling;
3df5edad 3178
75f937f2
PZ
3179 WARN_ON_ONCE(ctx->parent_ctx);
3180 mutex_lock(&ctx->mutex);
cdd6c482 3181 event = event->group_leader;
75f937f2 3182
cdd6c482
IM
3183 perf_event_for_each_child(event, func);
3184 func(event);
3185 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3186 perf_event_for_each_child(event, func);
75f937f2 3187 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3188}
3189
cdd6c482 3190static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3191{
cdd6c482 3192 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3193 int ret = 0;
3194 u64 value;
3195
6c7e550f 3196 if (!is_sampling_event(event))
08247e31
PZ
3197 return -EINVAL;
3198
ad0cf347 3199 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3200 return -EFAULT;
3201
3202 if (!value)
3203 return -EINVAL;
3204
e625cce1 3205 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3206 if (event->attr.freq) {
3207 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3208 ret = -EINVAL;
3209 goto unlock;
3210 }
3211
cdd6c482 3212 event->attr.sample_freq = value;
08247e31 3213 } else {
cdd6c482
IM
3214 event->attr.sample_period = value;
3215 event->hw.sample_period = value;
08247e31
PZ
3216 }
3217unlock:
e625cce1 3218 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3219
3220 return ret;
3221}
3222
ac9721f3
PZ
3223static const struct file_operations perf_fops;
3224
3225static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3226{
3227 struct file *file;
3228
3229 file = fget_light(fd, fput_needed);
3230 if (!file)
3231 return ERR_PTR(-EBADF);
3232
3233 if (file->f_op != &perf_fops) {
3234 fput_light(file, *fput_needed);
3235 *fput_needed = 0;
3236 return ERR_PTR(-EBADF);
3237 }
3238
3239 return file->private_data;
3240}
3241
3242static int perf_event_set_output(struct perf_event *event,
3243 struct perf_event *output_event);
6fb2915d 3244static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3245
d859e29f
PM
3246static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3247{
cdd6c482
IM
3248 struct perf_event *event = file->private_data;
3249 void (*func)(struct perf_event *);
3df5edad 3250 u32 flags = arg;
d859e29f
PM
3251
3252 switch (cmd) {
cdd6c482
IM
3253 case PERF_EVENT_IOC_ENABLE:
3254 func = perf_event_enable;
d859e29f 3255 break;
cdd6c482
IM
3256 case PERF_EVENT_IOC_DISABLE:
3257 func = perf_event_disable;
79f14641 3258 break;
cdd6c482
IM
3259 case PERF_EVENT_IOC_RESET:
3260 func = perf_event_reset;
6de6a7b9 3261 break;
3df5edad 3262
cdd6c482
IM
3263 case PERF_EVENT_IOC_REFRESH:
3264 return perf_event_refresh(event, arg);
08247e31 3265
cdd6c482
IM
3266 case PERF_EVENT_IOC_PERIOD:
3267 return perf_event_period(event, (u64 __user *)arg);
08247e31 3268
cdd6c482 3269 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3
PZ
3270 {
3271 struct perf_event *output_event = NULL;
3272 int fput_needed = 0;
3273 int ret;
3274
3275 if (arg != -1) {
3276 output_event = perf_fget_light(arg, &fput_needed);
3277 if (IS_ERR(output_event))
3278 return PTR_ERR(output_event);
3279 }
3280
3281 ret = perf_event_set_output(event, output_event);
3282 if (output_event)
3283 fput_light(output_event->filp, fput_needed);
3284
3285 return ret;
3286 }
a4be7c27 3287
6fb2915d
LZ
3288 case PERF_EVENT_IOC_SET_FILTER:
3289 return perf_event_set_filter(event, (void __user *)arg);
3290
d859e29f 3291 default:
3df5edad 3292 return -ENOTTY;
d859e29f 3293 }
3df5edad
PZ
3294
3295 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3296 perf_event_for_each(event, func);
3df5edad 3297 else
cdd6c482 3298 perf_event_for_each_child(event, func);
3df5edad
PZ
3299
3300 return 0;
d859e29f
PM
3301}
3302
cdd6c482 3303int perf_event_task_enable(void)
771d7cde 3304{
cdd6c482 3305 struct perf_event *event;
771d7cde 3306
cdd6c482
IM
3307 mutex_lock(&current->perf_event_mutex);
3308 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3309 perf_event_for_each_child(event, perf_event_enable);
3310 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3311
3312 return 0;
3313}
3314
cdd6c482 3315int perf_event_task_disable(void)
771d7cde 3316{
cdd6c482 3317 struct perf_event *event;
771d7cde 3318
cdd6c482
IM
3319 mutex_lock(&current->perf_event_mutex);
3320 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3321 perf_event_for_each_child(event, perf_event_disable);
3322 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3323
3324 return 0;
3325}
3326
cdd6c482 3327static int perf_event_index(struct perf_event *event)
194002b2 3328{
a4eaf7f1
PZ
3329 if (event->hw.state & PERF_HES_STOPPED)
3330 return 0;
3331
cdd6c482 3332 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3333 return 0;
3334
35edc2a5 3335 return event->pmu->event_idx(event);
194002b2
PZ
3336}
3337
c4794295 3338static void calc_timer_values(struct perf_event *event,
e3f3541c 3339 u64 *now,
7f310a5d
EM
3340 u64 *enabled,
3341 u64 *running)
c4794295 3342{
e3f3541c 3343 u64 ctx_time;
c4794295 3344
e3f3541c
PZ
3345 *now = perf_clock();
3346 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3347 *enabled = ctx_time - event->tstamp_enabled;
3348 *running = ctx_time - event->tstamp_running;
3349}
3350
c7206205 3351void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3352{
3353}
3354
38ff667b
PZ
3355/*
3356 * Callers need to ensure there can be no nesting of this function, otherwise
3357 * the seqlock logic goes bad. We can not serialize this because the arch
3358 * code calls this from NMI context.
3359 */
cdd6c482 3360void perf_event_update_userpage(struct perf_event *event)
37d81828 3361{
cdd6c482 3362 struct perf_event_mmap_page *userpg;
76369139 3363 struct ring_buffer *rb;
e3f3541c 3364 u64 enabled, running, now;
38ff667b
PZ
3365
3366 rcu_read_lock();
0d641208
EM
3367 /*
3368 * compute total_time_enabled, total_time_running
3369 * based on snapshot values taken when the event
3370 * was last scheduled in.
3371 *
3372 * we cannot simply called update_context_time()
3373 * because of locking issue as we can be called in
3374 * NMI context
3375 */
e3f3541c 3376 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3377 rb = rcu_dereference(event->rb);
3378 if (!rb)
38ff667b
PZ
3379 goto unlock;
3380
76369139 3381 userpg = rb->user_page;
37d81828 3382
7b732a75
PZ
3383 /*
3384 * Disable preemption so as to not let the corresponding user-space
3385 * spin too long if we get preempted.
3386 */
3387 preempt_disable();
37d81828 3388 ++userpg->lock;
92f22a38 3389 barrier();
cdd6c482 3390 userpg->index = perf_event_index(event);
b5e58793 3391 userpg->offset = perf_event_count(event);
365a4038 3392 if (userpg->index)
e7850595 3393 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3394
0d641208 3395 userpg->time_enabled = enabled +
cdd6c482 3396 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3397
0d641208 3398 userpg->time_running = running +
cdd6c482 3399 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3400
c7206205 3401 arch_perf_update_userpage(userpg, now);
e3f3541c 3402
92f22a38 3403 barrier();
37d81828 3404 ++userpg->lock;
7b732a75 3405 preempt_enable();
38ff667b 3406unlock:
7b732a75 3407 rcu_read_unlock();
37d81828
PM
3408}
3409
906010b2
PZ
3410static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3411{
3412 struct perf_event *event = vma->vm_file->private_data;
76369139 3413 struct ring_buffer *rb;
906010b2
PZ
3414 int ret = VM_FAULT_SIGBUS;
3415
3416 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3417 if (vmf->pgoff == 0)
3418 ret = 0;
3419 return ret;
3420 }
3421
3422 rcu_read_lock();
76369139
FW
3423 rb = rcu_dereference(event->rb);
3424 if (!rb)
906010b2
PZ
3425 goto unlock;
3426
3427 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3428 goto unlock;
3429
76369139 3430 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3431 if (!vmf->page)
3432 goto unlock;
3433
3434 get_page(vmf->page);
3435 vmf->page->mapping = vma->vm_file->f_mapping;
3436 vmf->page->index = vmf->pgoff;
3437
3438 ret = 0;
3439unlock:
3440 rcu_read_unlock();
3441
3442 return ret;
3443}
3444
10c6db11
PZ
3445static void ring_buffer_attach(struct perf_event *event,
3446 struct ring_buffer *rb)
3447{
3448 unsigned long flags;
3449
3450 if (!list_empty(&event->rb_entry))
3451 return;
3452
3453 spin_lock_irqsave(&rb->event_lock, flags);
3454 if (!list_empty(&event->rb_entry))
3455 goto unlock;
3456
3457 list_add(&event->rb_entry, &rb->event_list);
3458unlock:
3459 spin_unlock_irqrestore(&rb->event_lock, flags);
3460}
3461
3462static void ring_buffer_detach(struct perf_event *event,
3463 struct ring_buffer *rb)
3464{
3465 unsigned long flags;
3466
3467 if (list_empty(&event->rb_entry))
3468 return;
3469
3470 spin_lock_irqsave(&rb->event_lock, flags);
3471 list_del_init(&event->rb_entry);
3472 wake_up_all(&event->waitq);
3473 spin_unlock_irqrestore(&rb->event_lock, flags);
3474}
3475
3476static void ring_buffer_wakeup(struct perf_event *event)
3477{
3478 struct ring_buffer *rb;
3479
3480 rcu_read_lock();
3481 rb = rcu_dereference(event->rb);
44b7f4b9
WD
3482 if (!rb)
3483 goto unlock;
3484
3485 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
10c6db11 3486 wake_up_all(&event->waitq);
44b7f4b9
WD
3487
3488unlock:
10c6db11
PZ
3489 rcu_read_unlock();
3490}
3491
76369139 3492static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3493{
76369139 3494 struct ring_buffer *rb;
906010b2 3495
76369139
FW
3496 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3497 rb_free(rb);
7b732a75
PZ
3498}
3499
76369139 3500static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3501{
76369139 3502 struct ring_buffer *rb;
7b732a75 3503
ac9721f3 3504 rcu_read_lock();
76369139
FW
3505 rb = rcu_dereference(event->rb);
3506 if (rb) {
3507 if (!atomic_inc_not_zero(&rb->refcount))
3508 rb = NULL;
ac9721f3
PZ
3509 }
3510 rcu_read_unlock();
3511
76369139 3512 return rb;
ac9721f3
PZ
3513}
3514
76369139 3515static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3516{
10c6db11
PZ
3517 struct perf_event *event, *n;
3518 unsigned long flags;
3519
76369139 3520 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3521 return;
7b732a75 3522
10c6db11
PZ
3523 spin_lock_irqsave(&rb->event_lock, flags);
3524 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3525 list_del_init(&event->rb_entry);
3526 wake_up_all(&event->waitq);
3527 }
3528 spin_unlock_irqrestore(&rb->event_lock, flags);
3529
76369139 3530 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3531}
3532
3533static void perf_mmap_open(struct vm_area_struct *vma)
3534{
cdd6c482 3535 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3536
cdd6c482 3537 atomic_inc(&event->mmap_count);
7b732a75
PZ
3538}
3539
3540static void perf_mmap_close(struct vm_area_struct *vma)
3541{
cdd6c482 3542 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3543
cdd6c482 3544 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
76369139 3545 unsigned long size = perf_data_size(event->rb);
ac9721f3 3546 struct user_struct *user = event->mmap_user;
76369139 3547 struct ring_buffer *rb = event->rb;
789f90fc 3548
906010b2 3549 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
bc3e53f6 3550 vma->vm_mm->pinned_vm -= event->mmap_locked;
76369139 3551 rcu_assign_pointer(event->rb, NULL);
10c6db11 3552 ring_buffer_detach(event, rb);
cdd6c482 3553 mutex_unlock(&event->mmap_mutex);
ac9721f3 3554
76369139 3555 ring_buffer_put(rb);
ac9721f3 3556 free_uid(user);
7b732a75 3557 }
37d81828
PM
3558}
3559
f0f37e2f 3560static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3561 .open = perf_mmap_open,
3562 .close = perf_mmap_close,
3563 .fault = perf_mmap_fault,
3564 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3565};
3566
3567static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3568{
cdd6c482 3569 struct perf_event *event = file->private_data;
22a4f650 3570 unsigned long user_locked, user_lock_limit;
789f90fc 3571 struct user_struct *user = current_user();
22a4f650 3572 unsigned long locked, lock_limit;
76369139 3573 struct ring_buffer *rb;
7b732a75
PZ
3574 unsigned long vma_size;
3575 unsigned long nr_pages;
789f90fc 3576 long user_extra, extra;
d57e34fd 3577 int ret = 0, flags = 0;
37d81828 3578
c7920614
PZ
3579 /*
3580 * Don't allow mmap() of inherited per-task counters. This would
3581 * create a performance issue due to all children writing to the
76369139 3582 * same rb.
c7920614
PZ
3583 */
3584 if (event->cpu == -1 && event->attr.inherit)
3585 return -EINVAL;
3586
43a21ea8 3587 if (!(vma->vm_flags & VM_SHARED))
37d81828 3588 return -EINVAL;
7b732a75
PZ
3589
3590 vma_size = vma->vm_end - vma->vm_start;
3591 nr_pages = (vma_size / PAGE_SIZE) - 1;
3592
7730d865 3593 /*
76369139 3594 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3595 * can do bitmasks instead of modulo.
3596 */
3597 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3598 return -EINVAL;
3599
7b732a75 3600 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3601 return -EINVAL;
3602
7b732a75
PZ
3603 if (vma->vm_pgoff != 0)
3604 return -EINVAL;
37d81828 3605
cdd6c482
IM
3606 WARN_ON_ONCE(event->ctx->parent_ctx);
3607 mutex_lock(&event->mmap_mutex);
76369139
FW
3608 if (event->rb) {
3609 if (event->rb->nr_pages == nr_pages)
3610 atomic_inc(&event->rb->refcount);
ac9721f3 3611 else
ebb3c4c4
PZ
3612 ret = -EINVAL;
3613 goto unlock;
3614 }
3615
789f90fc 3616 user_extra = nr_pages + 1;
cdd6c482 3617 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3618
3619 /*
3620 * Increase the limit linearly with more CPUs:
3621 */
3622 user_lock_limit *= num_online_cpus();
3623
789f90fc 3624 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3625
789f90fc
PZ
3626 extra = 0;
3627 if (user_locked > user_lock_limit)
3628 extra = user_locked - user_lock_limit;
7b732a75 3629
78d7d407 3630 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 3631 lock_limit >>= PAGE_SHIFT;
bc3e53f6 3632 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 3633
459ec28a
IM
3634 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3635 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
3636 ret = -EPERM;
3637 goto unlock;
3638 }
7b732a75 3639
76369139 3640 WARN_ON(event->rb);
906010b2 3641
d57e34fd 3642 if (vma->vm_flags & VM_WRITE)
76369139 3643 flags |= RING_BUFFER_WRITABLE;
d57e34fd 3644
4ec8363d
VW
3645 rb = rb_alloc(nr_pages,
3646 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3647 event->cpu, flags);
3648
76369139 3649 if (!rb) {
ac9721f3 3650 ret = -ENOMEM;
ebb3c4c4 3651 goto unlock;
ac9721f3 3652 }
76369139 3653 rcu_assign_pointer(event->rb, rb);
43a21ea8 3654
ac9721f3
PZ
3655 atomic_long_add(user_extra, &user->locked_vm);
3656 event->mmap_locked = extra;
3657 event->mmap_user = get_current_user();
bc3e53f6 3658 vma->vm_mm->pinned_vm += event->mmap_locked;
ac9721f3 3659
9a0f05cb
PZ
3660 perf_event_update_userpage(event);
3661
ebb3c4c4 3662unlock:
ac9721f3
PZ
3663 if (!ret)
3664 atomic_inc(&event->mmap_count);
cdd6c482 3665 mutex_unlock(&event->mmap_mutex);
37d81828 3666
37d81828
PM
3667 vma->vm_flags |= VM_RESERVED;
3668 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
3669
3670 return ret;
37d81828
PM
3671}
3672
3c446b3d
PZ
3673static int perf_fasync(int fd, struct file *filp, int on)
3674{
3c446b3d 3675 struct inode *inode = filp->f_path.dentry->d_inode;
cdd6c482 3676 struct perf_event *event = filp->private_data;
3c446b3d
PZ
3677 int retval;
3678
3679 mutex_lock(&inode->i_mutex);
cdd6c482 3680 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
3681 mutex_unlock(&inode->i_mutex);
3682
3683 if (retval < 0)
3684 return retval;
3685
3686 return 0;
3687}
3688
0793a61d 3689static const struct file_operations perf_fops = {
3326c1ce 3690 .llseek = no_llseek,
0793a61d
TG
3691 .release = perf_release,
3692 .read = perf_read,
3693 .poll = perf_poll,
d859e29f
PM
3694 .unlocked_ioctl = perf_ioctl,
3695 .compat_ioctl = perf_ioctl,
37d81828 3696 .mmap = perf_mmap,
3c446b3d 3697 .fasync = perf_fasync,
0793a61d
TG
3698};
3699
925d519a 3700/*
cdd6c482 3701 * Perf event wakeup
925d519a
PZ
3702 *
3703 * If there's data, ensure we set the poll() state and publish everything
3704 * to user-space before waking everybody up.
3705 */
3706
cdd6c482 3707void perf_event_wakeup(struct perf_event *event)
925d519a 3708{
10c6db11 3709 ring_buffer_wakeup(event);
4c9e2542 3710
cdd6c482
IM
3711 if (event->pending_kill) {
3712 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3713 event->pending_kill = 0;
4c9e2542 3714 }
925d519a
PZ
3715}
3716
e360adbe 3717static void perf_pending_event(struct irq_work *entry)
79f14641 3718{
cdd6c482
IM
3719 struct perf_event *event = container_of(entry,
3720 struct perf_event, pending);
79f14641 3721
cdd6c482
IM
3722 if (event->pending_disable) {
3723 event->pending_disable = 0;
3724 __perf_event_disable(event);
79f14641
PZ
3725 }
3726
cdd6c482
IM
3727 if (event->pending_wakeup) {
3728 event->pending_wakeup = 0;
3729 perf_event_wakeup(event);
79f14641
PZ
3730 }
3731}
3732
39447b38
ZY
3733/*
3734 * We assume there is only KVM supporting the callbacks.
3735 * Later on, we might change it to a list if there is
3736 * another virtualization implementation supporting the callbacks.
3737 */
3738struct perf_guest_info_callbacks *perf_guest_cbs;
3739
3740int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3741{
3742 perf_guest_cbs = cbs;
3743 return 0;
3744}
3745EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3746
3747int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3748{
3749 perf_guest_cbs = NULL;
3750 return 0;
3751}
3752EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3753
c980d109
ACM
3754static void __perf_event_header__init_id(struct perf_event_header *header,
3755 struct perf_sample_data *data,
3756 struct perf_event *event)
6844c09d
ACM
3757{
3758 u64 sample_type = event->attr.sample_type;
3759
3760 data->type = sample_type;
3761 header->size += event->id_header_size;
3762
3763 if (sample_type & PERF_SAMPLE_TID) {
3764 /* namespace issues */
3765 data->tid_entry.pid = perf_event_pid(event, current);
3766 data->tid_entry.tid = perf_event_tid(event, current);
3767 }
3768
3769 if (sample_type & PERF_SAMPLE_TIME)
3770 data->time = perf_clock();
3771
3772 if (sample_type & PERF_SAMPLE_ID)
3773 data->id = primary_event_id(event);
3774
3775 if (sample_type & PERF_SAMPLE_STREAM_ID)
3776 data->stream_id = event->id;
3777
3778 if (sample_type & PERF_SAMPLE_CPU) {
3779 data->cpu_entry.cpu = raw_smp_processor_id();
3780 data->cpu_entry.reserved = 0;
3781 }
3782}
3783
76369139
FW
3784void perf_event_header__init_id(struct perf_event_header *header,
3785 struct perf_sample_data *data,
3786 struct perf_event *event)
c980d109
ACM
3787{
3788 if (event->attr.sample_id_all)
3789 __perf_event_header__init_id(header, data, event);
3790}
3791
3792static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3793 struct perf_sample_data *data)
3794{
3795 u64 sample_type = data->type;
3796
3797 if (sample_type & PERF_SAMPLE_TID)
3798 perf_output_put(handle, data->tid_entry);
3799
3800 if (sample_type & PERF_SAMPLE_TIME)
3801 perf_output_put(handle, data->time);
3802
3803 if (sample_type & PERF_SAMPLE_ID)
3804 perf_output_put(handle, data->id);
3805
3806 if (sample_type & PERF_SAMPLE_STREAM_ID)
3807 perf_output_put(handle, data->stream_id);
3808
3809 if (sample_type & PERF_SAMPLE_CPU)
3810 perf_output_put(handle, data->cpu_entry);
3811}
3812
76369139
FW
3813void perf_event__output_id_sample(struct perf_event *event,
3814 struct perf_output_handle *handle,
3815 struct perf_sample_data *sample)
c980d109
ACM
3816{
3817 if (event->attr.sample_id_all)
3818 __perf_event__output_id_sample(handle, sample);
3819}
3820
3dab77fb 3821static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
3822 struct perf_event *event,
3823 u64 enabled, u64 running)
3dab77fb 3824{
cdd6c482 3825 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3826 u64 values[4];
3827 int n = 0;
3828
b5e58793 3829 values[n++] = perf_event_count(event);
3dab77fb 3830 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 3831 values[n++] = enabled +
cdd6c482 3832 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
3833 }
3834 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 3835 values[n++] = running +
cdd6c482 3836 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
3837 }
3838 if (read_format & PERF_FORMAT_ID)
cdd6c482 3839 values[n++] = primary_event_id(event);
3dab77fb 3840
76369139 3841 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3842}
3843
3844/*
cdd6c482 3845 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
3846 */
3847static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
3848 struct perf_event *event,
3849 u64 enabled, u64 running)
3dab77fb 3850{
cdd6c482
IM
3851 struct perf_event *leader = event->group_leader, *sub;
3852 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3853 u64 values[5];
3854 int n = 0;
3855
3856 values[n++] = 1 + leader->nr_siblings;
3857
3858 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 3859 values[n++] = enabled;
3dab77fb
PZ
3860
3861 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 3862 values[n++] = running;
3dab77fb 3863
cdd6c482 3864 if (leader != event)
3dab77fb
PZ
3865 leader->pmu->read(leader);
3866
b5e58793 3867 values[n++] = perf_event_count(leader);
3dab77fb 3868 if (read_format & PERF_FORMAT_ID)
cdd6c482 3869 values[n++] = primary_event_id(leader);
3dab77fb 3870
76369139 3871 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 3872
65abc865 3873 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
3874 n = 0;
3875
cdd6c482 3876 if (sub != event)
3dab77fb
PZ
3877 sub->pmu->read(sub);
3878
b5e58793 3879 values[n++] = perf_event_count(sub);
3dab77fb 3880 if (read_format & PERF_FORMAT_ID)
cdd6c482 3881 values[n++] = primary_event_id(sub);
3dab77fb 3882
76369139 3883 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3884 }
3885}
3886
eed01528
SE
3887#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3888 PERF_FORMAT_TOTAL_TIME_RUNNING)
3889
3dab77fb 3890static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 3891 struct perf_event *event)
3dab77fb 3892{
e3f3541c 3893 u64 enabled = 0, running = 0, now;
eed01528
SE
3894 u64 read_format = event->attr.read_format;
3895
3896 /*
3897 * compute total_time_enabled, total_time_running
3898 * based on snapshot values taken when the event
3899 * was last scheduled in.
3900 *
3901 * we cannot simply called update_context_time()
3902 * because of locking issue as we are called in
3903 * NMI context
3904 */
c4794295 3905 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 3906 calc_timer_values(event, &now, &enabled, &running);
eed01528 3907
cdd6c482 3908 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 3909 perf_output_read_group(handle, event, enabled, running);
3dab77fb 3910 else
eed01528 3911 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
3912}
3913
5622f295
MM
3914void perf_output_sample(struct perf_output_handle *handle,
3915 struct perf_event_header *header,
3916 struct perf_sample_data *data,
cdd6c482 3917 struct perf_event *event)
5622f295
MM
3918{
3919 u64 sample_type = data->type;
3920
3921 perf_output_put(handle, *header);
3922
3923 if (sample_type & PERF_SAMPLE_IP)
3924 perf_output_put(handle, data->ip);
3925
3926 if (sample_type & PERF_SAMPLE_TID)
3927 perf_output_put(handle, data->tid_entry);
3928
3929 if (sample_type & PERF_SAMPLE_TIME)
3930 perf_output_put(handle, data->time);
3931
3932 if (sample_type & PERF_SAMPLE_ADDR)
3933 perf_output_put(handle, data->addr);
3934
3935 if (sample_type & PERF_SAMPLE_ID)
3936 perf_output_put(handle, data->id);
3937
3938 if (sample_type & PERF_SAMPLE_STREAM_ID)
3939 perf_output_put(handle, data->stream_id);
3940
3941 if (sample_type & PERF_SAMPLE_CPU)
3942 perf_output_put(handle, data->cpu_entry);
3943
3944 if (sample_type & PERF_SAMPLE_PERIOD)
3945 perf_output_put(handle, data->period);
3946
3947 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 3948 perf_output_read(handle, event);
5622f295
MM
3949
3950 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3951 if (data->callchain) {
3952 int size = 1;
3953
3954 if (data->callchain)
3955 size += data->callchain->nr;
3956
3957 size *= sizeof(u64);
3958
76369139 3959 __output_copy(handle, data->callchain, size);
5622f295
MM
3960 } else {
3961 u64 nr = 0;
3962 perf_output_put(handle, nr);
3963 }
3964 }
3965
3966 if (sample_type & PERF_SAMPLE_RAW) {
3967 if (data->raw) {
3968 perf_output_put(handle, data->raw->size);
76369139
FW
3969 __output_copy(handle, data->raw->data,
3970 data->raw->size);
5622f295
MM
3971 } else {
3972 struct {
3973 u32 size;
3974 u32 data;
3975 } raw = {
3976 .size = sizeof(u32),
3977 .data = 0,
3978 };
3979 perf_output_put(handle, raw);
3980 }
3981 }
a7ac67ea
PZ
3982
3983 if (!event->attr.watermark) {
3984 int wakeup_events = event->attr.wakeup_events;
3985
3986 if (wakeup_events) {
3987 struct ring_buffer *rb = handle->rb;
3988 int events = local_inc_return(&rb->events);
3989
3990 if (events >= wakeup_events) {
3991 local_sub(wakeup_events, &rb->events);
3992 local_inc(&rb->wakeup);
3993 }
3994 }
3995 }
bce38cd5
SE
3996
3997 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
3998 if (data->br_stack) {
3999 size_t size;
4000
4001 size = data->br_stack->nr
4002 * sizeof(struct perf_branch_entry);
4003
4004 perf_output_put(handle, data->br_stack->nr);
4005 perf_output_copy(handle, data->br_stack->entries, size);
4006 } else {
4007 /*
4008 * we always store at least the value of nr
4009 */
4010 u64 nr = 0;
4011 perf_output_put(handle, nr);
4012 }
4013 }
5622f295
MM
4014}
4015
4016void perf_prepare_sample(struct perf_event_header *header,
4017 struct perf_sample_data *data,
cdd6c482 4018 struct perf_event *event,
5622f295 4019 struct pt_regs *regs)
7b732a75 4020{
cdd6c482 4021 u64 sample_type = event->attr.sample_type;
7b732a75 4022
cdd6c482 4023 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4024 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4025
4026 header->misc = 0;
4027 header->misc |= perf_misc_flags(regs);
6fab0192 4028
c980d109 4029 __perf_event_header__init_id(header, data, event);
6844c09d 4030
c320c7b7 4031 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4032 data->ip = perf_instruction_pointer(regs);
4033
b23f3325 4034 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4035 int size = 1;
394ee076 4036
5622f295
MM
4037 data->callchain = perf_callchain(regs);
4038
4039 if (data->callchain)
4040 size += data->callchain->nr;
4041
4042 header->size += size * sizeof(u64);
394ee076
PZ
4043 }
4044
3a43ce68 4045 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4046 int size = sizeof(u32);
4047
4048 if (data->raw)
4049 size += data->raw->size;
4050 else
4051 size += sizeof(u32);
4052
4053 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4054 header->size += size;
7f453c24 4055 }
bce38cd5
SE
4056
4057 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4058 int size = sizeof(u64); /* nr */
4059 if (data->br_stack) {
4060 size += data->br_stack->nr
4061 * sizeof(struct perf_branch_entry);
4062 }
4063 header->size += size;
4064 }
5622f295 4065}
7f453c24 4066
a8b0ca17 4067static void perf_event_output(struct perf_event *event,
5622f295
MM
4068 struct perf_sample_data *data,
4069 struct pt_regs *regs)
4070{
4071 struct perf_output_handle handle;
4072 struct perf_event_header header;
689802b2 4073
927c7a9e
FW
4074 /* protect the callchain buffers */
4075 rcu_read_lock();
4076
cdd6c482 4077 perf_prepare_sample(&header, data, event, regs);
5c148194 4078
a7ac67ea 4079 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4080 goto exit;
0322cd6e 4081
cdd6c482 4082 perf_output_sample(&handle, &header, data, event);
f413cdb8 4083
8a057d84 4084 perf_output_end(&handle);
927c7a9e
FW
4085
4086exit:
4087 rcu_read_unlock();
0322cd6e
PZ
4088}
4089
38b200d6 4090/*
cdd6c482 4091 * read event_id
38b200d6
PZ
4092 */
4093
4094struct perf_read_event {
4095 struct perf_event_header header;
4096
4097 u32 pid;
4098 u32 tid;
38b200d6
PZ
4099};
4100
4101static void
cdd6c482 4102perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4103 struct task_struct *task)
4104{
4105 struct perf_output_handle handle;
c980d109 4106 struct perf_sample_data sample;
dfc65094 4107 struct perf_read_event read_event = {
38b200d6 4108 .header = {
cdd6c482 4109 .type = PERF_RECORD_READ,
38b200d6 4110 .misc = 0,
c320c7b7 4111 .size = sizeof(read_event) + event->read_size,
38b200d6 4112 },
cdd6c482
IM
4113 .pid = perf_event_pid(event, task),
4114 .tid = perf_event_tid(event, task),
38b200d6 4115 };
3dab77fb 4116 int ret;
38b200d6 4117
c980d109 4118 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4119 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4120 if (ret)
4121 return;
4122
dfc65094 4123 perf_output_put(&handle, read_event);
cdd6c482 4124 perf_output_read(&handle, event);
c980d109 4125 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4126
38b200d6
PZ
4127 perf_output_end(&handle);
4128}
4129
60313ebe 4130/*
9f498cc5
PZ
4131 * task tracking -- fork/exit
4132 *
3af9e859 4133 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4134 */
4135
9f498cc5 4136struct perf_task_event {
3a80b4a3 4137 struct task_struct *task;
cdd6c482 4138 struct perf_event_context *task_ctx;
60313ebe
PZ
4139
4140 struct {
4141 struct perf_event_header header;
4142
4143 u32 pid;
4144 u32 ppid;
9f498cc5
PZ
4145 u32 tid;
4146 u32 ptid;
393b2ad8 4147 u64 time;
cdd6c482 4148 } event_id;
60313ebe
PZ
4149};
4150
cdd6c482 4151static void perf_event_task_output(struct perf_event *event,
9f498cc5 4152 struct perf_task_event *task_event)
60313ebe
PZ
4153{
4154 struct perf_output_handle handle;
c980d109 4155 struct perf_sample_data sample;
9f498cc5 4156 struct task_struct *task = task_event->task;
c980d109 4157 int ret, size = task_event->event_id.header.size;
8bb39f9a 4158
c980d109 4159 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4160
c980d109 4161 ret = perf_output_begin(&handle, event,
a7ac67ea 4162 task_event->event_id.header.size);
ef60777c 4163 if (ret)
c980d109 4164 goto out;
60313ebe 4165
cdd6c482
IM
4166 task_event->event_id.pid = perf_event_pid(event, task);
4167 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4168
cdd6c482
IM
4169 task_event->event_id.tid = perf_event_tid(event, task);
4170 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4171
cdd6c482 4172 perf_output_put(&handle, task_event->event_id);
393b2ad8 4173
c980d109
ACM
4174 perf_event__output_id_sample(event, &handle, &sample);
4175
60313ebe 4176 perf_output_end(&handle);
c980d109
ACM
4177out:
4178 task_event->event_id.header.size = size;
60313ebe
PZ
4179}
4180
cdd6c482 4181static int perf_event_task_match(struct perf_event *event)
60313ebe 4182{
6f93d0a7 4183 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4184 return 0;
4185
5632ab12 4186 if (!event_filter_match(event))
5d27c23d
PZ
4187 return 0;
4188
3af9e859
EM
4189 if (event->attr.comm || event->attr.mmap ||
4190 event->attr.mmap_data || event->attr.task)
60313ebe
PZ
4191 return 1;
4192
4193 return 0;
4194}
4195
cdd6c482 4196static void perf_event_task_ctx(struct perf_event_context *ctx,
9f498cc5 4197 struct perf_task_event *task_event)
60313ebe 4198{
cdd6c482 4199 struct perf_event *event;
60313ebe 4200
cdd6c482
IM
4201 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4202 if (perf_event_task_match(event))
4203 perf_event_task_output(event, task_event);
60313ebe 4204 }
60313ebe
PZ
4205}
4206
cdd6c482 4207static void perf_event_task_event(struct perf_task_event *task_event)
60313ebe
PZ
4208{
4209 struct perf_cpu_context *cpuctx;
8dc85d54 4210 struct perf_event_context *ctx;
108b02cf 4211 struct pmu *pmu;
8dc85d54 4212 int ctxn;
60313ebe 4213
d6ff86cf 4214 rcu_read_lock();
108b02cf 4215 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4216 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4217 if (cpuctx->active_pmu != pmu)
4218 goto next;
108b02cf 4219 perf_event_task_ctx(&cpuctx->ctx, task_event);
8dc85d54
PZ
4220
4221 ctx = task_event->task_ctx;
4222 if (!ctx) {
4223 ctxn = pmu->task_ctx_nr;
4224 if (ctxn < 0)
41945f6c 4225 goto next;
8dc85d54
PZ
4226 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4227 }
4228 if (ctx)
4229 perf_event_task_ctx(ctx, task_event);
41945f6c
PZ
4230next:
4231 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4232 }
60313ebe
PZ
4233 rcu_read_unlock();
4234}
4235
cdd6c482
IM
4236static void perf_event_task(struct task_struct *task,
4237 struct perf_event_context *task_ctx,
3a80b4a3 4238 int new)
60313ebe 4239{
9f498cc5 4240 struct perf_task_event task_event;
60313ebe 4241
cdd6c482
IM
4242 if (!atomic_read(&nr_comm_events) &&
4243 !atomic_read(&nr_mmap_events) &&
4244 !atomic_read(&nr_task_events))
60313ebe
PZ
4245 return;
4246
9f498cc5 4247 task_event = (struct perf_task_event){
3a80b4a3
PZ
4248 .task = task,
4249 .task_ctx = task_ctx,
cdd6c482 4250 .event_id = {
60313ebe 4251 .header = {
cdd6c482 4252 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4253 .misc = 0,
cdd6c482 4254 .size = sizeof(task_event.event_id),
60313ebe 4255 },
573402db
PZ
4256 /* .pid */
4257 /* .ppid */
9f498cc5
PZ
4258 /* .tid */
4259 /* .ptid */
6f93d0a7 4260 .time = perf_clock(),
60313ebe
PZ
4261 },
4262 };
4263
cdd6c482 4264 perf_event_task_event(&task_event);
9f498cc5
PZ
4265}
4266
cdd6c482 4267void perf_event_fork(struct task_struct *task)
9f498cc5 4268{
cdd6c482 4269 perf_event_task(task, NULL, 1);
60313ebe
PZ
4270}
4271
8d1b2d93
PZ
4272/*
4273 * comm tracking
4274 */
4275
4276struct perf_comm_event {
22a4f650
IM
4277 struct task_struct *task;
4278 char *comm;
8d1b2d93
PZ
4279 int comm_size;
4280
4281 struct {
4282 struct perf_event_header header;
4283
4284 u32 pid;
4285 u32 tid;
cdd6c482 4286 } event_id;
8d1b2d93
PZ
4287};
4288
cdd6c482 4289static void perf_event_comm_output(struct perf_event *event,
8d1b2d93
PZ
4290 struct perf_comm_event *comm_event)
4291{
4292 struct perf_output_handle handle;
c980d109 4293 struct perf_sample_data sample;
cdd6c482 4294 int size = comm_event->event_id.header.size;
c980d109
ACM
4295 int ret;
4296
4297 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4298 ret = perf_output_begin(&handle, event,
a7ac67ea 4299 comm_event->event_id.header.size);
8d1b2d93
PZ
4300
4301 if (ret)
c980d109 4302 goto out;
8d1b2d93 4303
cdd6c482
IM
4304 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4305 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4306
cdd6c482 4307 perf_output_put(&handle, comm_event->event_id);
76369139 4308 __output_copy(&handle, comm_event->comm,
8d1b2d93 4309 comm_event->comm_size);
c980d109
ACM
4310
4311 perf_event__output_id_sample(event, &handle, &sample);
4312
8d1b2d93 4313 perf_output_end(&handle);
c980d109
ACM
4314out:
4315 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4316}
4317
cdd6c482 4318static int perf_event_comm_match(struct perf_event *event)
8d1b2d93 4319{
6f93d0a7 4320 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4321 return 0;
4322
5632ab12 4323 if (!event_filter_match(event))
5d27c23d
PZ
4324 return 0;
4325
cdd6c482 4326 if (event->attr.comm)
8d1b2d93
PZ
4327 return 1;
4328
4329 return 0;
4330}
4331
cdd6c482 4332static void perf_event_comm_ctx(struct perf_event_context *ctx,
8d1b2d93
PZ
4333 struct perf_comm_event *comm_event)
4334{
cdd6c482 4335 struct perf_event *event;
8d1b2d93 4336
cdd6c482
IM
4337 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4338 if (perf_event_comm_match(event))
4339 perf_event_comm_output(event, comm_event);
8d1b2d93 4340 }
8d1b2d93
PZ
4341}
4342
cdd6c482 4343static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93
PZ
4344{
4345 struct perf_cpu_context *cpuctx;
cdd6c482 4346 struct perf_event_context *ctx;
413ee3b4 4347 char comm[TASK_COMM_LEN];
8d1b2d93 4348 unsigned int size;
108b02cf 4349 struct pmu *pmu;
8dc85d54 4350 int ctxn;
8d1b2d93 4351
413ee3b4 4352 memset(comm, 0, sizeof(comm));
96b02d78 4353 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4354 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4355
4356 comm_event->comm = comm;
4357 comm_event->comm_size = size;
4358
cdd6c482 4359 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
f6595f3a 4360 rcu_read_lock();
108b02cf 4361 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4362 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4363 if (cpuctx->active_pmu != pmu)
4364 goto next;
108b02cf 4365 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
8dc85d54
PZ
4366
4367 ctxn = pmu->task_ctx_nr;
4368 if (ctxn < 0)
41945f6c 4369 goto next;
8dc85d54
PZ
4370
4371 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4372 if (ctx)
4373 perf_event_comm_ctx(ctx, comm_event);
41945f6c
PZ
4374next:
4375 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4376 }
665c2142 4377 rcu_read_unlock();
8d1b2d93
PZ
4378}
4379
cdd6c482 4380void perf_event_comm(struct task_struct *task)
8d1b2d93 4381{
9ee318a7 4382 struct perf_comm_event comm_event;
8dc85d54
PZ
4383 struct perf_event_context *ctx;
4384 int ctxn;
9ee318a7 4385
8dc85d54
PZ
4386 for_each_task_context_nr(ctxn) {
4387 ctx = task->perf_event_ctxp[ctxn];
4388 if (!ctx)
4389 continue;
9ee318a7 4390
8dc85d54
PZ
4391 perf_event_enable_on_exec(ctx);
4392 }
9ee318a7 4393
cdd6c482 4394 if (!atomic_read(&nr_comm_events))
9ee318a7 4395 return;
a63eaf34 4396
9ee318a7 4397 comm_event = (struct perf_comm_event){
8d1b2d93 4398 .task = task,
573402db
PZ
4399 /* .comm */
4400 /* .comm_size */
cdd6c482 4401 .event_id = {
573402db 4402 .header = {
cdd6c482 4403 .type = PERF_RECORD_COMM,
573402db
PZ
4404 .misc = 0,
4405 /* .size */
4406 },
4407 /* .pid */
4408 /* .tid */
8d1b2d93
PZ
4409 },
4410 };
4411
cdd6c482 4412 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4413}
4414
0a4a9391
PZ
4415/*
4416 * mmap tracking
4417 */
4418
4419struct perf_mmap_event {
089dd79d
PZ
4420 struct vm_area_struct *vma;
4421
4422 const char *file_name;
4423 int file_size;
0a4a9391
PZ
4424
4425 struct {
4426 struct perf_event_header header;
4427
4428 u32 pid;
4429 u32 tid;
4430 u64 start;
4431 u64 len;
4432 u64 pgoff;
cdd6c482 4433 } event_id;
0a4a9391
PZ
4434};
4435
cdd6c482 4436static void perf_event_mmap_output(struct perf_event *event,
0a4a9391
PZ
4437 struct perf_mmap_event *mmap_event)
4438{
4439 struct perf_output_handle handle;
c980d109 4440 struct perf_sample_data sample;
cdd6c482 4441 int size = mmap_event->event_id.header.size;
c980d109 4442 int ret;
0a4a9391 4443
c980d109
ACM
4444 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4445 ret = perf_output_begin(&handle, event,
a7ac67ea 4446 mmap_event->event_id.header.size);
0a4a9391 4447 if (ret)
c980d109 4448 goto out;
0a4a9391 4449
cdd6c482
IM
4450 mmap_event->event_id.pid = perf_event_pid(event, current);
4451 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 4452
cdd6c482 4453 perf_output_put(&handle, mmap_event->event_id);
76369139 4454 __output_copy(&handle, mmap_event->file_name,
0a4a9391 4455 mmap_event->file_size);
c980d109
ACM
4456
4457 perf_event__output_id_sample(event, &handle, &sample);
4458
78d613eb 4459 perf_output_end(&handle);
c980d109
ACM
4460out:
4461 mmap_event->event_id.header.size = size;
0a4a9391
PZ
4462}
4463
cdd6c482 4464static int perf_event_mmap_match(struct perf_event *event,
3af9e859
EM
4465 struct perf_mmap_event *mmap_event,
4466 int executable)
0a4a9391 4467{
6f93d0a7 4468 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4469 return 0;
4470
5632ab12 4471 if (!event_filter_match(event))
5d27c23d
PZ
4472 return 0;
4473
3af9e859
EM
4474 if ((!executable && event->attr.mmap_data) ||
4475 (executable && event->attr.mmap))
0a4a9391
PZ
4476 return 1;
4477
4478 return 0;
4479}
4480
cdd6c482 4481static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3af9e859
EM
4482 struct perf_mmap_event *mmap_event,
4483 int executable)
0a4a9391 4484{
cdd6c482 4485 struct perf_event *event;
0a4a9391 4486
cdd6c482 4487 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3af9e859 4488 if (perf_event_mmap_match(event, mmap_event, executable))
cdd6c482 4489 perf_event_mmap_output(event, mmap_event);
0a4a9391 4490 }
0a4a9391
PZ
4491}
4492
cdd6c482 4493static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391
PZ
4494{
4495 struct perf_cpu_context *cpuctx;
cdd6c482 4496 struct perf_event_context *ctx;
089dd79d
PZ
4497 struct vm_area_struct *vma = mmap_event->vma;
4498 struct file *file = vma->vm_file;
0a4a9391
PZ
4499 unsigned int size;
4500 char tmp[16];
4501 char *buf = NULL;
089dd79d 4502 const char *name;
108b02cf 4503 struct pmu *pmu;
8dc85d54 4504 int ctxn;
0a4a9391 4505
413ee3b4
AB
4506 memset(tmp, 0, sizeof(tmp));
4507
0a4a9391 4508 if (file) {
413ee3b4 4509 /*
76369139 4510 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
4511 * need to add enough zero bytes after the string to handle
4512 * the 64bit alignment we do later.
4513 */
4514 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
4515 if (!buf) {
4516 name = strncpy(tmp, "//enomem", sizeof(tmp));
4517 goto got_name;
4518 }
d3d21c41 4519 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
4520 if (IS_ERR(name)) {
4521 name = strncpy(tmp, "//toolong", sizeof(tmp));
4522 goto got_name;
4523 }
4524 } else {
413ee3b4
AB
4525 if (arch_vma_name(mmap_event->vma)) {
4526 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4527 sizeof(tmp));
089dd79d 4528 goto got_name;
413ee3b4 4529 }
089dd79d
PZ
4530
4531 if (!vma->vm_mm) {
4532 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4533 goto got_name;
3af9e859
EM
4534 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4535 vma->vm_end >= vma->vm_mm->brk) {
4536 name = strncpy(tmp, "[heap]", sizeof(tmp));
4537 goto got_name;
4538 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4539 vma->vm_end >= vma->vm_mm->start_stack) {
4540 name = strncpy(tmp, "[stack]", sizeof(tmp));
4541 goto got_name;
089dd79d
PZ
4542 }
4543
0a4a9391
PZ
4544 name = strncpy(tmp, "//anon", sizeof(tmp));
4545 goto got_name;
4546 }
4547
4548got_name:
888fcee0 4549 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
4550
4551 mmap_event->file_name = name;
4552 mmap_event->file_size = size;
4553
cdd6c482 4554 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 4555
f6d9dd23 4556 rcu_read_lock();
108b02cf 4557 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4558 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4559 if (cpuctx->active_pmu != pmu)
4560 goto next;
108b02cf
PZ
4561 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4562 vma->vm_flags & VM_EXEC);
8dc85d54
PZ
4563
4564 ctxn = pmu->task_ctx_nr;
4565 if (ctxn < 0)
41945f6c 4566 goto next;
8dc85d54
PZ
4567
4568 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4569 if (ctx) {
4570 perf_event_mmap_ctx(ctx, mmap_event,
4571 vma->vm_flags & VM_EXEC);
4572 }
41945f6c
PZ
4573next:
4574 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4575 }
665c2142
PZ
4576 rcu_read_unlock();
4577
0a4a9391
PZ
4578 kfree(buf);
4579}
4580
3af9e859 4581void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 4582{
9ee318a7
PZ
4583 struct perf_mmap_event mmap_event;
4584
cdd6c482 4585 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
4586 return;
4587
4588 mmap_event = (struct perf_mmap_event){
089dd79d 4589 .vma = vma,
573402db
PZ
4590 /* .file_name */
4591 /* .file_size */
cdd6c482 4592 .event_id = {
573402db 4593 .header = {
cdd6c482 4594 .type = PERF_RECORD_MMAP,
39447b38 4595 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
4596 /* .size */
4597 },
4598 /* .pid */
4599 /* .tid */
089dd79d
PZ
4600 .start = vma->vm_start,
4601 .len = vma->vm_end - vma->vm_start,
3a0304e9 4602 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
4603 },
4604 };
4605
cdd6c482 4606 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
4607}
4608
a78ac325
PZ
4609/*
4610 * IRQ throttle logging
4611 */
4612
cdd6c482 4613static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
4614{
4615 struct perf_output_handle handle;
c980d109 4616 struct perf_sample_data sample;
a78ac325
PZ
4617 int ret;
4618
4619 struct {
4620 struct perf_event_header header;
4621 u64 time;
cca3f454 4622 u64 id;
7f453c24 4623 u64 stream_id;
a78ac325
PZ
4624 } throttle_event = {
4625 .header = {
cdd6c482 4626 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
4627 .misc = 0,
4628 .size = sizeof(throttle_event),
4629 },
def0a9b2 4630 .time = perf_clock(),
cdd6c482
IM
4631 .id = primary_event_id(event),
4632 .stream_id = event->id,
a78ac325
PZ
4633 };
4634
966ee4d6 4635 if (enable)
cdd6c482 4636 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 4637
c980d109
ACM
4638 perf_event_header__init_id(&throttle_event.header, &sample, event);
4639
4640 ret = perf_output_begin(&handle, event,
a7ac67ea 4641 throttle_event.header.size);
a78ac325
PZ
4642 if (ret)
4643 return;
4644
4645 perf_output_put(&handle, throttle_event);
c980d109 4646 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
4647 perf_output_end(&handle);
4648}
4649
f6c7d5fe 4650/*
cdd6c482 4651 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
4652 */
4653
a8b0ca17 4654static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
4655 int throttle, struct perf_sample_data *data,
4656 struct pt_regs *regs)
f6c7d5fe 4657{
cdd6c482
IM
4658 int events = atomic_read(&event->event_limit);
4659 struct hw_perf_event *hwc = &event->hw;
e050e3f0 4660 u64 seq;
79f14641
PZ
4661 int ret = 0;
4662
96398826
PZ
4663 /*
4664 * Non-sampling counters might still use the PMI to fold short
4665 * hardware counters, ignore those.
4666 */
4667 if (unlikely(!is_sampling_event(event)))
4668 return 0;
4669
e050e3f0
SE
4670 seq = __this_cpu_read(perf_throttled_seq);
4671 if (seq != hwc->interrupts_seq) {
4672 hwc->interrupts_seq = seq;
4673 hwc->interrupts = 1;
4674 } else {
4675 hwc->interrupts++;
4676 if (unlikely(throttle
4677 && hwc->interrupts >= max_samples_per_tick)) {
4678 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
4679 hwc->interrupts = MAX_INTERRUPTS;
4680 perf_log_throttle(event, 0);
a78ac325
PZ
4681 ret = 1;
4682 }
e050e3f0 4683 }
60db5e09 4684
cdd6c482 4685 if (event->attr.freq) {
def0a9b2 4686 u64 now = perf_clock();
abd50713 4687 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 4688
abd50713 4689 hwc->freq_time_stamp = now;
bd2b5b12 4690
abd50713 4691 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 4692 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
4693 }
4694
2023b359
PZ
4695 /*
4696 * XXX event_limit might not quite work as expected on inherited
cdd6c482 4697 * events
2023b359
PZ
4698 */
4699
cdd6c482
IM
4700 event->pending_kill = POLL_IN;
4701 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 4702 ret = 1;
cdd6c482 4703 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
4704 event->pending_disable = 1;
4705 irq_work_queue(&event->pending);
79f14641
PZ
4706 }
4707
453f19ee 4708 if (event->overflow_handler)
a8b0ca17 4709 event->overflow_handler(event, data, regs);
453f19ee 4710 else
a8b0ca17 4711 perf_event_output(event, data, regs);
453f19ee 4712
f506b3dc 4713 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
4714 event->pending_wakeup = 1;
4715 irq_work_queue(&event->pending);
f506b3dc
PZ
4716 }
4717
79f14641 4718 return ret;
f6c7d5fe
PZ
4719}
4720
a8b0ca17 4721int perf_event_overflow(struct perf_event *event,
5622f295
MM
4722 struct perf_sample_data *data,
4723 struct pt_regs *regs)
850bc73f 4724{
a8b0ca17 4725 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
4726}
4727
15dbf27c 4728/*
cdd6c482 4729 * Generic software event infrastructure
15dbf27c
PZ
4730 */
4731
b28ab83c
PZ
4732struct swevent_htable {
4733 struct swevent_hlist *swevent_hlist;
4734 struct mutex hlist_mutex;
4735 int hlist_refcount;
4736
4737 /* Recursion avoidance in each contexts */
4738 int recursion[PERF_NR_CONTEXTS];
4739};
4740
4741static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4742
7b4b6658 4743/*
cdd6c482
IM
4744 * We directly increment event->count and keep a second value in
4745 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
4746 * is kept in the range [-sample_period, 0] so that we can use the
4747 * sign as trigger.
4748 */
4749
cdd6c482 4750static u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 4751{
cdd6c482 4752 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
4753 u64 period = hwc->last_period;
4754 u64 nr, offset;
4755 s64 old, val;
4756
4757 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
4758
4759again:
e7850595 4760 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
4761 if (val < 0)
4762 return 0;
15dbf27c 4763
7b4b6658
PZ
4764 nr = div64_u64(period + val, period);
4765 offset = nr * period;
4766 val -= offset;
e7850595 4767 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 4768 goto again;
15dbf27c 4769
7b4b6658 4770 return nr;
15dbf27c
PZ
4771}
4772
0cff784a 4773static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 4774 struct perf_sample_data *data,
5622f295 4775 struct pt_regs *regs)
15dbf27c 4776{
cdd6c482 4777 struct hw_perf_event *hwc = &event->hw;
850bc73f 4778 int throttle = 0;
15dbf27c 4779
0cff784a
PZ
4780 if (!overflow)
4781 overflow = perf_swevent_set_period(event);
15dbf27c 4782
7b4b6658
PZ
4783 if (hwc->interrupts == MAX_INTERRUPTS)
4784 return;
15dbf27c 4785
7b4b6658 4786 for (; overflow; overflow--) {
a8b0ca17 4787 if (__perf_event_overflow(event, throttle,
5622f295 4788 data, regs)) {
7b4b6658
PZ
4789 /*
4790 * We inhibit the overflow from happening when
4791 * hwc->interrupts == MAX_INTERRUPTS.
4792 */
4793 break;
4794 }
cf450a73 4795 throttle = 1;
7b4b6658 4796 }
15dbf27c
PZ
4797}
4798
a4eaf7f1 4799static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 4800 struct perf_sample_data *data,
5622f295 4801 struct pt_regs *regs)
7b4b6658 4802{
cdd6c482 4803 struct hw_perf_event *hwc = &event->hw;
d6d020e9 4804
e7850595 4805 local64_add(nr, &event->count);
d6d020e9 4806
0cff784a
PZ
4807 if (!regs)
4808 return;
4809
6c7e550f 4810 if (!is_sampling_event(event))
7b4b6658 4811 return;
d6d020e9 4812
5d81e5cf
AV
4813 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4814 data->period = nr;
4815 return perf_swevent_overflow(event, 1, data, regs);
4816 } else
4817 data->period = event->hw.last_period;
4818
0cff784a 4819 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 4820 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 4821
e7850595 4822 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 4823 return;
df1a132b 4824
a8b0ca17 4825 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
4826}
4827
f5ffe02e
FW
4828static int perf_exclude_event(struct perf_event *event,
4829 struct pt_regs *regs)
4830{
a4eaf7f1 4831 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 4832 return 1;
a4eaf7f1 4833
f5ffe02e
FW
4834 if (regs) {
4835 if (event->attr.exclude_user && user_mode(regs))
4836 return 1;
4837
4838 if (event->attr.exclude_kernel && !user_mode(regs))
4839 return 1;
4840 }
4841
4842 return 0;
4843}
4844
cdd6c482 4845static int perf_swevent_match(struct perf_event *event,
1c432d89 4846 enum perf_type_id type,
6fb2915d
LZ
4847 u32 event_id,
4848 struct perf_sample_data *data,
4849 struct pt_regs *regs)
15dbf27c 4850{
cdd6c482 4851 if (event->attr.type != type)
a21ca2ca 4852 return 0;
f5ffe02e 4853
cdd6c482 4854 if (event->attr.config != event_id)
15dbf27c
PZ
4855 return 0;
4856
f5ffe02e
FW
4857 if (perf_exclude_event(event, regs))
4858 return 0;
15dbf27c
PZ
4859
4860 return 1;
4861}
4862
76e1d904
FW
4863static inline u64 swevent_hash(u64 type, u32 event_id)
4864{
4865 u64 val = event_id | (type << 32);
4866
4867 return hash_64(val, SWEVENT_HLIST_BITS);
4868}
4869
49f135ed
FW
4870static inline struct hlist_head *
4871__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 4872{
49f135ed
FW
4873 u64 hash = swevent_hash(type, event_id);
4874
4875 return &hlist->heads[hash];
4876}
76e1d904 4877
49f135ed
FW
4878/* For the read side: events when they trigger */
4879static inline struct hlist_head *
b28ab83c 4880find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
4881{
4882 struct swevent_hlist *hlist;
76e1d904 4883
b28ab83c 4884 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
4885 if (!hlist)
4886 return NULL;
4887
49f135ed
FW
4888 return __find_swevent_head(hlist, type, event_id);
4889}
4890
4891/* For the event head insertion and removal in the hlist */
4892static inline struct hlist_head *
b28ab83c 4893find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
4894{
4895 struct swevent_hlist *hlist;
4896 u32 event_id = event->attr.config;
4897 u64 type = event->attr.type;
4898
4899 /*
4900 * Event scheduling is always serialized against hlist allocation
4901 * and release. Which makes the protected version suitable here.
4902 * The context lock guarantees that.
4903 */
b28ab83c 4904 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
4905 lockdep_is_held(&event->ctx->lock));
4906 if (!hlist)
4907 return NULL;
4908
4909 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
4910}
4911
4912static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 4913 u64 nr,
76e1d904
FW
4914 struct perf_sample_data *data,
4915 struct pt_regs *regs)
15dbf27c 4916{
b28ab83c 4917 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 4918 struct perf_event *event;
76e1d904
FW
4919 struct hlist_node *node;
4920 struct hlist_head *head;
15dbf27c 4921
76e1d904 4922 rcu_read_lock();
b28ab83c 4923 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
4924 if (!head)
4925 goto end;
4926
4927 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
6fb2915d 4928 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 4929 perf_swevent_event(event, nr, data, regs);
15dbf27c 4930 }
76e1d904
FW
4931end:
4932 rcu_read_unlock();
15dbf27c
PZ
4933}
4934
4ed7c92d 4935int perf_swevent_get_recursion_context(void)
96f6d444 4936{
b28ab83c 4937 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 4938
b28ab83c 4939 return get_recursion_context(swhash->recursion);
96f6d444 4940}
645e8cc0 4941EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 4942
fa9f90be 4943inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 4944{
b28ab83c 4945 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 4946
b28ab83c 4947 put_recursion_context(swhash->recursion, rctx);
ce71b9df 4948}
15dbf27c 4949
a8b0ca17 4950void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 4951{
a4234bfc 4952 struct perf_sample_data data;
4ed7c92d
PZ
4953 int rctx;
4954
1c024eca 4955 preempt_disable_notrace();
4ed7c92d
PZ
4956 rctx = perf_swevent_get_recursion_context();
4957 if (rctx < 0)
4958 return;
a4234bfc 4959
dc1d628a 4960 perf_sample_data_init(&data, addr);
92bf309a 4961
a8b0ca17 4962 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
4963
4964 perf_swevent_put_recursion_context(rctx);
1c024eca 4965 preempt_enable_notrace();
b8e83514
PZ
4966}
4967
cdd6c482 4968static void perf_swevent_read(struct perf_event *event)
15dbf27c 4969{
15dbf27c
PZ
4970}
4971
a4eaf7f1 4972static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 4973{
b28ab83c 4974 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 4975 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
4976 struct hlist_head *head;
4977
6c7e550f 4978 if (is_sampling_event(event)) {
7b4b6658 4979 hwc->last_period = hwc->sample_period;
cdd6c482 4980 perf_swevent_set_period(event);
7b4b6658 4981 }
76e1d904 4982
a4eaf7f1
PZ
4983 hwc->state = !(flags & PERF_EF_START);
4984
b28ab83c 4985 head = find_swevent_head(swhash, event);
76e1d904
FW
4986 if (WARN_ON_ONCE(!head))
4987 return -EINVAL;
4988
4989 hlist_add_head_rcu(&event->hlist_entry, head);
4990
15dbf27c
PZ
4991 return 0;
4992}
4993
a4eaf7f1 4994static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 4995{
76e1d904 4996 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
4997}
4998
a4eaf7f1 4999static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5000{
a4eaf7f1 5001 event->hw.state = 0;
d6d020e9 5002}
aa9c4c0f 5003
a4eaf7f1 5004static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5005{
a4eaf7f1 5006 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5007}
5008
49f135ed
FW
5009/* Deref the hlist from the update side */
5010static inline struct swevent_hlist *
b28ab83c 5011swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5012{
b28ab83c
PZ
5013 return rcu_dereference_protected(swhash->swevent_hlist,
5014 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5015}
5016
b28ab83c 5017static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5018{
b28ab83c 5019 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5020
49f135ed 5021 if (!hlist)
76e1d904
FW
5022 return;
5023
b28ab83c 5024 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5025 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5026}
5027
5028static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5029{
b28ab83c 5030 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5031
b28ab83c 5032 mutex_lock(&swhash->hlist_mutex);
76e1d904 5033
b28ab83c
PZ
5034 if (!--swhash->hlist_refcount)
5035 swevent_hlist_release(swhash);
76e1d904 5036
b28ab83c 5037 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5038}
5039
5040static void swevent_hlist_put(struct perf_event *event)
5041{
5042 int cpu;
5043
5044 if (event->cpu != -1) {
5045 swevent_hlist_put_cpu(event, event->cpu);
5046 return;
5047 }
5048
5049 for_each_possible_cpu(cpu)
5050 swevent_hlist_put_cpu(event, cpu);
5051}
5052
5053static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5054{
b28ab83c 5055 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5056 int err = 0;
5057
b28ab83c 5058 mutex_lock(&swhash->hlist_mutex);
76e1d904 5059
b28ab83c 5060 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5061 struct swevent_hlist *hlist;
5062
5063 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5064 if (!hlist) {
5065 err = -ENOMEM;
5066 goto exit;
5067 }
b28ab83c 5068 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5069 }
b28ab83c 5070 swhash->hlist_refcount++;
9ed6060d 5071exit:
b28ab83c 5072 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5073
5074 return err;
5075}
5076
5077static int swevent_hlist_get(struct perf_event *event)
5078{
5079 int err;
5080 int cpu, failed_cpu;
5081
5082 if (event->cpu != -1)
5083 return swevent_hlist_get_cpu(event, event->cpu);
5084
5085 get_online_cpus();
5086 for_each_possible_cpu(cpu) {
5087 err = swevent_hlist_get_cpu(event, cpu);
5088 if (err) {
5089 failed_cpu = cpu;
5090 goto fail;
5091 }
5092 }
5093 put_online_cpus();
5094
5095 return 0;
9ed6060d 5096fail:
76e1d904
FW
5097 for_each_possible_cpu(cpu) {
5098 if (cpu == failed_cpu)
5099 break;
5100 swevent_hlist_put_cpu(event, cpu);
5101 }
5102
5103 put_online_cpus();
5104 return err;
5105}
5106
c5905afb 5107struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5108
b0a873eb
PZ
5109static void sw_perf_event_destroy(struct perf_event *event)
5110{
5111 u64 event_id = event->attr.config;
95476b64 5112
b0a873eb
PZ
5113 WARN_ON(event->parent);
5114
c5905afb 5115 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5116 swevent_hlist_put(event);
5117}
5118
5119static int perf_swevent_init(struct perf_event *event)
5120{
5121 int event_id = event->attr.config;
5122
5123 if (event->attr.type != PERF_TYPE_SOFTWARE)
5124 return -ENOENT;
5125
2481c5fa
SE
5126 /*
5127 * no branch sampling for software events
5128 */
5129 if (has_branch_stack(event))
5130 return -EOPNOTSUPP;
5131
b0a873eb
PZ
5132 switch (event_id) {
5133 case PERF_COUNT_SW_CPU_CLOCK:
5134 case PERF_COUNT_SW_TASK_CLOCK:
5135 return -ENOENT;
5136
5137 default:
5138 break;
5139 }
5140
ce677831 5141 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5142 return -ENOENT;
5143
5144 if (!event->parent) {
5145 int err;
5146
5147 err = swevent_hlist_get(event);
5148 if (err)
5149 return err;
5150
c5905afb 5151 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5152 event->destroy = sw_perf_event_destroy;
5153 }
5154
5155 return 0;
5156}
5157
35edc2a5
PZ
5158static int perf_swevent_event_idx(struct perf_event *event)
5159{
5160 return 0;
5161}
5162
b0a873eb 5163static struct pmu perf_swevent = {
89a1e187 5164 .task_ctx_nr = perf_sw_context,
95476b64 5165
b0a873eb 5166 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5167 .add = perf_swevent_add,
5168 .del = perf_swevent_del,
5169 .start = perf_swevent_start,
5170 .stop = perf_swevent_stop,
1c024eca 5171 .read = perf_swevent_read,
35edc2a5
PZ
5172
5173 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5174};
5175
b0a873eb
PZ
5176#ifdef CONFIG_EVENT_TRACING
5177
1c024eca
PZ
5178static int perf_tp_filter_match(struct perf_event *event,
5179 struct perf_sample_data *data)
5180{
5181 void *record = data->raw->data;
5182
5183 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5184 return 1;
5185 return 0;
5186}
5187
5188static int perf_tp_event_match(struct perf_event *event,
5189 struct perf_sample_data *data,
5190 struct pt_regs *regs)
5191{
a0f7d0f7
FW
5192 if (event->hw.state & PERF_HES_STOPPED)
5193 return 0;
580d607c
PZ
5194 /*
5195 * All tracepoints are from kernel-space.
5196 */
5197 if (event->attr.exclude_kernel)
1c024eca
PZ
5198 return 0;
5199
5200 if (!perf_tp_filter_match(event, data))
5201 return 0;
5202
5203 return 1;
5204}
5205
5206void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
ecc55f84 5207 struct pt_regs *regs, struct hlist_head *head, int rctx)
95476b64
FW
5208{
5209 struct perf_sample_data data;
1c024eca
PZ
5210 struct perf_event *event;
5211 struct hlist_node *node;
5212
95476b64
FW
5213 struct perf_raw_record raw = {
5214 .size = entry_size,
5215 .data = record,
5216 };
5217
5218 perf_sample_data_init(&data, addr);
5219 data.raw = &raw;
5220
1c024eca
PZ
5221 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5222 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5223 perf_swevent_event(event, count, &data, regs);
4f41c013 5224 }
ecc55f84
PZ
5225
5226 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5227}
5228EXPORT_SYMBOL_GPL(perf_tp_event);
5229
cdd6c482 5230static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5231{
1c024eca 5232 perf_trace_destroy(event);
e077df4f
PZ
5233}
5234
b0a873eb 5235static int perf_tp_event_init(struct perf_event *event)
e077df4f 5236{
76e1d904
FW
5237 int err;
5238
b0a873eb
PZ
5239 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5240 return -ENOENT;
5241
2481c5fa
SE
5242 /*
5243 * no branch sampling for tracepoint events
5244 */
5245 if (has_branch_stack(event))
5246 return -EOPNOTSUPP;
5247
1c024eca
PZ
5248 err = perf_trace_init(event);
5249 if (err)
b0a873eb 5250 return err;
e077df4f 5251
cdd6c482 5252 event->destroy = tp_perf_event_destroy;
e077df4f 5253
b0a873eb
PZ
5254 return 0;
5255}
5256
5257static struct pmu perf_tracepoint = {
89a1e187
PZ
5258 .task_ctx_nr = perf_sw_context,
5259
b0a873eb 5260 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5261 .add = perf_trace_add,
5262 .del = perf_trace_del,
5263 .start = perf_swevent_start,
5264 .stop = perf_swevent_stop,
b0a873eb 5265 .read = perf_swevent_read,
35edc2a5
PZ
5266
5267 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5268};
5269
5270static inline void perf_tp_register(void)
5271{
2e80a82a 5272 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5273}
6fb2915d
LZ
5274
5275static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5276{
5277 char *filter_str;
5278 int ret;
5279
5280 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5281 return -EINVAL;
5282
5283 filter_str = strndup_user(arg, PAGE_SIZE);
5284 if (IS_ERR(filter_str))
5285 return PTR_ERR(filter_str);
5286
5287 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5288
5289 kfree(filter_str);
5290 return ret;
5291}
5292
5293static void perf_event_free_filter(struct perf_event *event)
5294{
5295 ftrace_profile_free_filter(event);
5296}
5297
e077df4f 5298#else
6fb2915d 5299
b0a873eb 5300static inline void perf_tp_register(void)
e077df4f 5301{
e077df4f 5302}
6fb2915d
LZ
5303
5304static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5305{
5306 return -ENOENT;
5307}
5308
5309static void perf_event_free_filter(struct perf_event *event)
5310{
5311}
5312
07b139c8 5313#endif /* CONFIG_EVENT_TRACING */
e077df4f 5314
24f1e32c 5315#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5316void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5317{
f5ffe02e
FW
5318 struct perf_sample_data sample;
5319 struct pt_regs *regs = data;
5320
dc1d628a 5321 perf_sample_data_init(&sample, bp->attr.bp_addr);
f5ffe02e 5322
a4eaf7f1 5323 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5324 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5325}
5326#endif
5327
b0a873eb
PZ
5328/*
5329 * hrtimer based swevent callback
5330 */
f29ac756 5331
b0a873eb 5332static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5333{
b0a873eb
PZ
5334 enum hrtimer_restart ret = HRTIMER_RESTART;
5335 struct perf_sample_data data;
5336 struct pt_regs *regs;
5337 struct perf_event *event;
5338 u64 period;
f29ac756 5339
b0a873eb 5340 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5341
5342 if (event->state != PERF_EVENT_STATE_ACTIVE)
5343 return HRTIMER_NORESTART;
5344
b0a873eb 5345 event->pmu->read(event);
f344011c 5346
b0a873eb
PZ
5347 perf_sample_data_init(&data, 0);
5348 data.period = event->hw.last_period;
5349 regs = get_irq_regs();
5350
5351 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5352 if (!(event->attr.exclude_idle && is_idle_task(current)))
a8b0ca17 5353 if (perf_event_overflow(event, &data, regs))
b0a873eb
PZ
5354 ret = HRTIMER_NORESTART;
5355 }
24f1e32c 5356
b0a873eb
PZ
5357 period = max_t(u64, 10000, event->hw.sample_period);
5358 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5359
b0a873eb 5360 return ret;
f29ac756
PZ
5361}
5362
b0a873eb 5363static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5364{
b0a873eb 5365 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5366 s64 period;
5367
5368 if (!is_sampling_event(event))
5369 return;
f5ffe02e 5370
5d508e82
FBH
5371 period = local64_read(&hwc->period_left);
5372 if (period) {
5373 if (period < 0)
5374 period = 10000;
fa407f35 5375
5d508e82
FBH
5376 local64_set(&hwc->period_left, 0);
5377 } else {
5378 period = max_t(u64, 10000, hwc->sample_period);
5379 }
5380 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5381 ns_to_ktime(period), 0,
b5ab4cd5 5382 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5383}
b0a873eb
PZ
5384
5385static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5386{
b0a873eb
PZ
5387 struct hw_perf_event *hwc = &event->hw;
5388
6c7e550f 5389 if (is_sampling_event(event)) {
b0a873eb 5390 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5391 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5392
5393 hrtimer_cancel(&hwc->hrtimer);
5394 }
24f1e32c
FW
5395}
5396
ba3dd36c
PZ
5397static void perf_swevent_init_hrtimer(struct perf_event *event)
5398{
5399 struct hw_perf_event *hwc = &event->hw;
5400
5401 if (!is_sampling_event(event))
5402 return;
5403
5404 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5405 hwc->hrtimer.function = perf_swevent_hrtimer;
5406
5407 /*
5408 * Since hrtimers have a fixed rate, we can do a static freq->period
5409 * mapping and avoid the whole period adjust feedback stuff.
5410 */
5411 if (event->attr.freq) {
5412 long freq = event->attr.sample_freq;
5413
5414 event->attr.sample_period = NSEC_PER_SEC / freq;
5415 hwc->sample_period = event->attr.sample_period;
5416 local64_set(&hwc->period_left, hwc->sample_period);
5417 event->attr.freq = 0;
5418 }
5419}
5420
b0a873eb
PZ
5421/*
5422 * Software event: cpu wall time clock
5423 */
5424
5425static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5426{
b0a873eb
PZ
5427 s64 prev;
5428 u64 now;
5429
a4eaf7f1 5430 now = local_clock();
b0a873eb
PZ
5431 prev = local64_xchg(&event->hw.prev_count, now);
5432 local64_add(now - prev, &event->count);
24f1e32c 5433}
24f1e32c 5434
a4eaf7f1 5435static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5436{
a4eaf7f1 5437 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5438 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5439}
5440
a4eaf7f1 5441static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5442{
b0a873eb
PZ
5443 perf_swevent_cancel_hrtimer(event);
5444 cpu_clock_event_update(event);
5445}
f29ac756 5446
a4eaf7f1
PZ
5447static int cpu_clock_event_add(struct perf_event *event, int flags)
5448{
5449 if (flags & PERF_EF_START)
5450 cpu_clock_event_start(event, flags);
5451
5452 return 0;
5453}
5454
5455static void cpu_clock_event_del(struct perf_event *event, int flags)
5456{
5457 cpu_clock_event_stop(event, flags);
5458}
5459
b0a873eb
PZ
5460static void cpu_clock_event_read(struct perf_event *event)
5461{
5462 cpu_clock_event_update(event);
5463}
f344011c 5464
b0a873eb
PZ
5465static int cpu_clock_event_init(struct perf_event *event)
5466{
5467 if (event->attr.type != PERF_TYPE_SOFTWARE)
5468 return -ENOENT;
5469
5470 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5471 return -ENOENT;
5472
2481c5fa
SE
5473 /*
5474 * no branch sampling for software events
5475 */
5476 if (has_branch_stack(event))
5477 return -EOPNOTSUPP;
5478
ba3dd36c
PZ
5479 perf_swevent_init_hrtimer(event);
5480
b0a873eb 5481 return 0;
f29ac756
PZ
5482}
5483
b0a873eb 5484static struct pmu perf_cpu_clock = {
89a1e187
PZ
5485 .task_ctx_nr = perf_sw_context,
5486
b0a873eb 5487 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
5488 .add = cpu_clock_event_add,
5489 .del = cpu_clock_event_del,
5490 .start = cpu_clock_event_start,
5491 .stop = cpu_clock_event_stop,
b0a873eb 5492 .read = cpu_clock_event_read,
35edc2a5
PZ
5493
5494 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5495};
5496
5497/*
5498 * Software event: task time clock
5499 */
5500
5501static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 5502{
b0a873eb
PZ
5503 u64 prev;
5504 s64 delta;
5c92d124 5505
b0a873eb
PZ
5506 prev = local64_xchg(&event->hw.prev_count, now);
5507 delta = now - prev;
5508 local64_add(delta, &event->count);
5509}
5c92d124 5510
a4eaf7f1 5511static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5512{
a4eaf7f1 5513 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 5514 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5515}
5516
a4eaf7f1 5517static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
5518{
5519 perf_swevent_cancel_hrtimer(event);
5520 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
5521}
5522
5523static int task_clock_event_add(struct perf_event *event, int flags)
5524{
5525 if (flags & PERF_EF_START)
5526 task_clock_event_start(event, flags);
b0a873eb 5527
a4eaf7f1
PZ
5528 return 0;
5529}
5530
5531static void task_clock_event_del(struct perf_event *event, int flags)
5532{
5533 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
5534}
5535
5536static void task_clock_event_read(struct perf_event *event)
5537{
768a06e2
PZ
5538 u64 now = perf_clock();
5539 u64 delta = now - event->ctx->timestamp;
5540 u64 time = event->ctx->time + delta;
b0a873eb
PZ
5541
5542 task_clock_event_update(event, time);
5543}
5544
5545static int task_clock_event_init(struct perf_event *event)
6fb2915d 5546{
b0a873eb
PZ
5547 if (event->attr.type != PERF_TYPE_SOFTWARE)
5548 return -ENOENT;
5549
5550 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5551 return -ENOENT;
5552
2481c5fa
SE
5553 /*
5554 * no branch sampling for software events
5555 */
5556 if (has_branch_stack(event))
5557 return -EOPNOTSUPP;
5558
ba3dd36c
PZ
5559 perf_swevent_init_hrtimer(event);
5560
b0a873eb 5561 return 0;
6fb2915d
LZ
5562}
5563
b0a873eb 5564static struct pmu perf_task_clock = {
89a1e187
PZ
5565 .task_ctx_nr = perf_sw_context,
5566
b0a873eb 5567 .event_init = task_clock_event_init,
a4eaf7f1
PZ
5568 .add = task_clock_event_add,
5569 .del = task_clock_event_del,
5570 .start = task_clock_event_start,
5571 .stop = task_clock_event_stop,
b0a873eb 5572 .read = task_clock_event_read,
35edc2a5
PZ
5573
5574 .event_idx = perf_swevent_event_idx,
b0a873eb 5575};
6fb2915d 5576
ad5133b7 5577static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 5578{
e077df4f 5579}
6fb2915d 5580
ad5133b7 5581static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 5582{
ad5133b7 5583 return 0;
6fb2915d
LZ
5584}
5585
ad5133b7 5586static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 5587{
ad5133b7 5588 perf_pmu_disable(pmu);
6fb2915d
LZ
5589}
5590
ad5133b7
PZ
5591static int perf_pmu_commit_txn(struct pmu *pmu)
5592{
5593 perf_pmu_enable(pmu);
5594 return 0;
5595}
e077df4f 5596
ad5133b7 5597static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 5598{
ad5133b7 5599 perf_pmu_enable(pmu);
24f1e32c
FW
5600}
5601
35edc2a5
PZ
5602static int perf_event_idx_default(struct perf_event *event)
5603{
5604 return event->hw.idx + 1;
5605}
5606
8dc85d54
PZ
5607/*
5608 * Ensures all contexts with the same task_ctx_nr have the same
5609 * pmu_cpu_context too.
5610 */
5611static void *find_pmu_context(int ctxn)
24f1e32c 5612{
8dc85d54 5613 struct pmu *pmu;
b326e956 5614
8dc85d54
PZ
5615 if (ctxn < 0)
5616 return NULL;
24f1e32c 5617
8dc85d54
PZ
5618 list_for_each_entry(pmu, &pmus, entry) {
5619 if (pmu->task_ctx_nr == ctxn)
5620 return pmu->pmu_cpu_context;
5621 }
24f1e32c 5622
8dc85d54 5623 return NULL;
24f1e32c
FW
5624}
5625
51676957 5626static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 5627{
51676957
PZ
5628 int cpu;
5629
5630 for_each_possible_cpu(cpu) {
5631 struct perf_cpu_context *cpuctx;
5632
5633 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5634
5635 if (cpuctx->active_pmu == old_pmu)
5636 cpuctx->active_pmu = pmu;
5637 }
5638}
5639
5640static void free_pmu_context(struct pmu *pmu)
5641{
5642 struct pmu *i;
f5ffe02e 5643
8dc85d54 5644 mutex_lock(&pmus_lock);
0475f9ea 5645 /*
8dc85d54 5646 * Like a real lame refcount.
0475f9ea 5647 */
51676957
PZ
5648 list_for_each_entry(i, &pmus, entry) {
5649 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5650 update_pmu_context(i, pmu);
8dc85d54 5651 goto out;
51676957 5652 }
8dc85d54 5653 }
d6d020e9 5654
51676957 5655 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
5656out:
5657 mutex_unlock(&pmus_lock);
24f1e32c 5658}
2e80a82a 5659static struct idr pmu_idr;
d6d020e9 5660
abe43400
PZ
5661static ssize_t
5662type_show(struct device *dev, struct device_attribute *attr, char *page)
5663{
5664 struct pmu *pmu = dev_get_drvdata(dev);
5665
5666 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5667}
5668
5669static struct device_attribute pmu_dev_attrs[] = {
5670 __ATTR_RO(type),
5671 __ATTR_NULL,
5672};
5673
5674static int pmu_bus_running;
5675static struct bus_type pmu_bus = {
5676 .name = "event_source",
5677 .dev_attrs = pmu_dev_attrs,
5678};
5679
5680static void pmu_dev_release(struct device *dev)
5681{
5682 kfree(dev);
5683}
5684
5685static int pmu_dev_alloc(struct pmu *pmu)
5686{
5687 int ret = -ENOMEM;
5688
5689 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5690 if (!pmu->dev)
5691 goto out;
5692
0c9d42ed 5693 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
5694 device_initialize(pmu->dev);
5695 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5696 if (ret)
5697 goto free_dev;
5698
5699 dev_set_drvdata(pmu->dev, pmu);
5700 pmu->dev->bus = &pmu_bus;
5701 pmu->dev->release = pmu_dev_release;
5702 ret = device_add(pmu->dev);
5703 if (ret)
5704 goto free_dev;
5705
5706out:
5707 return ret;
5708
5709free_dev:
5710 put_device(pmu->dev);
5711 goto out;
5712}
5713
547e9fd7 5714static struct lock_class_key cpuctx_mutex;
facc4307 5715static struct lock_class_key cpuctx_lock;
547e9fd7 5716
2e80a82a 5717int perf_pmu_register(struct pmu *pmu, char *name, int type)
24f1e32c 5718{
108b02cf 5719 int cpu, ret;
24f1e32c 5720
b0a873eb 5721 mutex_lock(&pmus_lock);
33696fc0
PZ
5722 ret = -ENOMEM;
5723 pmu->pmu_disable_count = alloc_percpu(int);
5724 if (!pmu->pmu_disable_count)
5725 goto unlock;
f29ac756 5726
2e80a82a
PZ
5727 pmu->type = -1;
5728 if (!name)
5729 goto skip_type;
5730 pmu->name = name;
5731
5732 if (type < 0) {
5733 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5734 if (!err)
5735 goto free_pdc;
5736
5737 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5738 if (err) {
5739 ret = err;
5740 goto free_pdc;
5741 }
5742 }
5743 pmu->type = type;
5744
abe43400
PZ
5745 if (pmu_bus_running) {
5746 ret = pmu_dev_alloc(pmu);
5747 if (ret)
5748 goto free_idr;
5749 }
5750
2e80a82a 5751skip_type:
8dc85d54
PZ
5752 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5753 if (pmu->pmu_cpu_context)
5754 goto got_cpu_context;
f29ac756 5755
108b02cf
PZ
5756 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5757 if (!pmu->pmu_cpu_context)
abe43400 5758 goto free_dev;
f344011c 5759
108b02cf
PZ
5760 for_each_possible_cpu(cpu) {
5761 struct perf_cpu_context *cpuctx;
5762
5763 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 5764 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 5765 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 5766 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 5767 cpuctx->ctx.type = cpu_context;
108b02cf 5768 cpuctx->ctx.pmu = pmu;
e9d2b064
PZ
5769 cpuctx->jiffies_interval = 1;
5770 INIT_LIST_HEAD(&cpuctx->rotation_list);
51676957 5771 cpuctx->active_pmu = pmu;
108b02cf 5772 }
76e1d904 5773
8dc85d54 5774got_cpu_context:
ad5133b7
PZ
5775 if (!pmu->start_txn) {
5776 if (pmu->pmu_enable) {
5777 /*
5778 * If we have pmu_enable/pmu_disable calls, install
5779 * transaction stubs that use that to try and batch
5780 * hardware accesses.
5781 */
5782 pmu->start_txn = perf_pmu_start_txn;
5783 pmu->commit_txn = perf_pmu_commit_txn;
5784 pmu->cancel_txn = perf_pmu_cancel_txn;
5785 } else {
5786 pmu->start_txn = perf_pmu_nop_void;
5787 pmu->commit_txn = perf_pmu_nop_int;
5788 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 5789 }
5c92d124 5790 }
15dbf27c 5791
ad5133b7
PZ
5792 if (!pmu->pmu_enable) {
5793 pmu->pmu_enable = perf_pmu_nop_void;
5794 pmu->pmu_disable = perf_pmu_nop_void;
5795 }
5796
35edc2a5
PZ
5797 if (!pmu->event_idx)
5798 pmu->event_idx = perf_event_idx_default;
5799
b0a873eb 5800 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
5801 ret = 0;
5802unlock:
b0a873eb
PZ
5803 mutex_unlock(&pmus_lock);
5804
33696fc0 5805 return ret;
108b02cf 5806
abe43400
PZ
5807free_dev:
5808 device_del(pmu->dev);
5809 put_device(pmu->dev);
5810
2e80a82a
PZ
5811free_idr:
5812 if (pmu->type >= PERF_TYPE_MAX)
5813 idr_remove(&pmu_idr, pmu->type);
5814
108b02cf
PZ
5815free_pdc:
5816 free_percpu(pmu->pmu_disable_count);
5817 goto unlock;
f29ac756
PZ
5818}
5819
b0a873eb 5820void perf_pmu_unregister(struct pmu *pmu)
5c92d124 5821{
b0a873eb
PZ
5822 mutex_lock(&pmus_lock);
5823 list_del_rcu(&pmu->entry);
5824 mutex_unlock(&pmus_lock);
5c92d124 5825
0475f9ea 5826 /*
cde8e884
PZ
5827 * We dereference the pmu list under both SRCU and regular RCU, so
5828 * synchronize against both of those.
0475f9ea 5829 */
b0a873eb 5830 synchronize_srcu(&pmus_srcu);
cde8e884 5831 synchronize_rcu();
d6d020e9 5832
33696fc0 5833 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
5834 if (pmu->type >= PERF_TYPE_MAX)
5835 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
5836 device_del(pmu->dev);
5837 put_device(pmu->dev);
51676957 5838 free_pmu_context(pmu);
b0a873eb 5839}
d6d020e9 5840
b0a873eb
PZ
5841struct pmu *perf_init_event(struct perf_event *event)
5842{
5843 struct pmu *pmu = NULL;
5844 int idx;
940c5b29 5845 int ret;
b0a873eb
PZ
5846
5847 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
5848
5849 rcu_read_lock();
5850 pmu = idr_find(&pmu_idr, event->attr.type);
5851 rcu_read_unlock();
940c5b29 5852 if (pmu) {
7e5b2a01 5853 event->pmu = pmu;
940c5b29
LM
5854 ret = pmu->event_init(event);
5855 if (ret)
5856 pmu = ERR_PTR(ret);
2e80a82a 5857 goto unlock;
940c5b29 5858 }
2e80a82a 5859
b0a873eb 5860 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 5861 event->pmu = pmu;
940c5b29 5862 ret = pmu->event_init(event);
b0a873eb 5863 if (!ret)
e5f4d339 5864 goto unlock;
76e1d904 5865
b0a873eb
PZ
5866 if (ret != -ENOENT) {
5867 pmu = ERR_PTR(ret);
e5f4d339 5868 goto unlock;
f344011c 5869 }
5c92d124 5870 }
e5f4d339
PZ
5871 pmu = ERR_PTR(-ENOENT);
5872unlock:
b0a873eb 5873 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 5874
4aeb0b42 5875 return pmu;
5c92d124
IM
5876}
5877
0793a61d 5878/*
cdd6c482 5879 * Allocate and initialize a event structure
0793a61d 5880 */
cdd6c482 5881static struct perf_event *
c3f00c70 5882perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
5883 struct task_struct *task,
5884 struct perf_event *group_leader,
5885 struct perf_event *parent_event,
4dc0da86
AK
5886 perf_overflow_handler_t overflow_handler,
5887 void *context)
0793a61d 5888{
51b0fe39 5889 struct pmu *pmu;
cdd6c482
IM
5890 struct perf_event *event;
5891 struct hw_perf_event *hwc;
d5d2bc0d 5892 long err;
0793a61d 5893
66832eb4
ON
5894 if ((unsigned)cpu >= nr_cpu_ids) {
5895 if (!task || cpu != -1)
5896 return ERR_PTR(-EINVAL);
5897 }
5898
c3f00c70 5899 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 5900 if (!event)
d5d2bc0d 5901 return ERR_PTR(-ENOMEM);
0793a61d 5902
04289bb9 5903 /*
cdd6c482 5904 * Single events are their own group leaders, with an
04289bb9
IM
5905 * empty sibling list:
5906 */
5907 if (!group_leader)
cdd6c482 5908 group_leader = event;
04289bb9 5909
cdd6c482
IM
5910 mutex_init(&event->child_mutex);
5911 INIT_LIST_HEAD(&event->child_list);
fccc714b 5912
cdd6c482
IM
5913 INIT_LIST_HEAD(&event->group_entry);
5914 INIT_LIST_HEAD(&event->event_entry);
5915 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
5916 INIT_LIST_HEAD(&event->rb_entry);
5917
cdd6c482 5918 init_waitqueue_head(&event->waitq);
e360adbe 5919 init_irq_work(&event->pending, perf_pending_event);
0793a61d 5920
cdd6c482 5921 mutex_init(&event->mmap_mutex);
7b732a75 5922
cdd6c482
IM
5923 event->cpu = cpu;
5924 event->attr = *attr;
5925 event->group_leader = group_leader;
5926 event->pmu = NULL;
cdd6c482 5927 event->oncpu = -1;
a96bbc16 5928
cdd6c482 5929 event->parent = parent_event;
b84fbc9f 5930
cdd6c482
IM
5931 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5932 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 5933
cdd6c482 5934 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 5935
d580ff86
PZ
5936 if (task) {
5937 event->attach_state = PERF_ATTACH_TASK;
5938#ifdef CONFIG_HAVE_HW_BREAKPOINT
5939 /*
5940 * hw_breakpoint is a bit difficult here..
5941 */
5942 if (attr->type == PERF_TYPE_BREAKPOINT)
5943 event->hw.bp_target = task;
5944#endif
5945 }
5946
4dc0da86 5947 if (!overflow_handler && parent_event) {
b326e956 5948 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
5949 context = parent_event->overflow_handler_context;
5950 }
66832eb4 5951
b326e956 5952 event->overflow_handler = overflow_handler;
4dc0da86 5953 event->overflow_handler_context = context;
97eaf530 5954
0d48696f 5955 if (attr->disabled)
cdd6c482 5956 event->state = PERF_EVENT_STATE_OFF;
a86ed508 5957
4aeb0b42 5958 pmu = NULL;
b8e83514 5959
cdd6c482 5960 hwc = &event->hw;
bd2b5b12 5961 hwc->sample_period = attr->sample_period;
0d48696f 5962 if (attr->freq && attr->sample_freq)
bd2b5b12 5963 hwc->sample_period = 1;
eced1dfc 5964 hwc->last_period = hwc->sample_period;
bd2b5b12 5965
e7850595 5966 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 5967
2023b359 5968 /*
cdd6c482 5969 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 5970 */
3dab77fb 5971 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
2023b359
PZ
5972 goto done;
5973
b0a873eb 5974 pmu = perf_init_event(event);
974802ea 5975
d5d2bc0d
PM
5976done:
5977 err = 0;
4aeb0b42 5978 if (!pmu)
d5d2bc0d 5979 err = -EINVAL;
4aeb0b42
RR
5980 else if (IS_ERR(pmu))
5981 err = PTR_ERR(pmu);
5c92d124 5982
d5d2bc0d 5983 if (err) {
cdd6c482
IM
5984 if (event->ns)
5985 put_pid_ns(event->ns);
5986 kfree(event);
d5d2bc0d 5987 return ERR_PTR(err);
621a01ea 5988 }
d5d2bc0d 5989
cdd6c482 5990 if (!event->parent) {
82cd6def 5991 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 5992 static_key_slow_inc(&perf_sched_events.key);
3af9e859 5993 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
5994 atomic_inc(&nr_mmap_events);
5995 if (event->attr.comm)
5996 atomic_inc(&nr_comm_events);
5997 if (event->attr.task)
5998 atomic_inc(&nr_task_events);
927c7a9e
FW
5999 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6000 err = get_callchain_buffers();
6001 if (err) {
6002 free_event(event);
6003 return ERR_PTR(err);
6004 }
6005 }
d010b332
SE
6006 if (has_branch_stack(event)) {
6007 static_key_slow_inc(&perf_sched_events.key);
6008 if (!(event->attach_state & PERF_ATTACH_TASK))
6009 atomic_inc(&per_cpu(perf_branch_stack_events,
6010 event->cpu));
6011 }
f344011c 6012 }
9ee318a7 6013
cdd6c482 6014 return event;
0793a61d
TG
6015}
6016
cdd6c482
IM
6017static int perf_copy_attr(struct perf_event_attr __user *uattr,
6018 struct perf_event_attr *attr)
974802ea 6019{
974802ea 6020 u32 size;
cdf8073d 6021 int ret;
974802ea
PZ
6022
6023 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6024 return -EFAULT;
6025
6026 /*
6027 * zero the full structure, so that a short copy will be nice.
6028 */
6029 memset(attr, 0, sizeof(*attr));
6030
6031 ret = get_user(size, &uattr->size);
6032 if (ret)
6033 return ret;
6034
6035 if (size > PAGE_SIZE) /* silly large */
6036 goto err_size;
6037
6038 if (!size) /* abi compat */
6039 size = PERF_ATTR_SIZE_VER0;
6040
6041 if (size < PERF_ATTR_SIZE_VER0)
6042 goto err_size;
6043
6044 /*
6045 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6046 * ensure all the unknown bits are 0 - i.e. new
6047 * user-space does not rely on any kernel feature
6048 * extensions we dont know about yet.
974802ea
PZ
6049 */
6050 if (size > sizeof(*attr)) {
cdf8073d
IS
6051 unsigned char __user *addr;
6052 unsigned char __user *end;
6053 unsigned char val;
974802ea 6054
cdf8073d
IS
6055 addr = (void __user *)uattr + sizeof(*attr);
6056 end = (void __user *)uattr + size;
974802ea 6057
cdf8073d 6058 for (; addr < end; addr++) {
974802ea
PZ
6059 ret = get_user(val, addr);
6060 if (ret)
6061 return ret;
6062 if (val)
6063 goto err_size;
6064 }
b3e62e35 6065 size = sizeof(*attr);
974802ea
PZ
6066 }
6067
6068 ret = copy_from_user(attr, uattr, size);
6069 if (ret)
6070 return -EFAULT;
6071
cd757645 6072 if (attr->__reserved_1)
974802ea
PZ
6073 return -EINVAL;
6074
6075 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6076 return -EINVAL;
6077
6078 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6079 return -EINVAL;
6080
bce38cd5
SE
6081 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6082 u64 mask = attr->branch_sample_type;
6083
6084 /* only using defined bits */
6085 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6086 return -EINVAL;
6087
6088 /* at least one branch bit must be set */
6089 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6090 return -EINVAL;
6091
6092 /* kernel level capture: check permissions */
6093 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6094 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6095 return -EACCES;
6096
6097 /* propagate priv level, when not set for branch */
6098 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6099
6100 /* exclude_kernel checked on syscall entry */
6101 if (!attr->exclude_kernel)
6102 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6103
6104 if (!attr->exclude_user)
6105 mask |= PERF_SAMPLE_BRANCH_USER;
6106
6107 if (!attr->exclude_hv)
6108 mask |= PERF_SAMPLE_BRANCH_HV;
6109 /*
6110 * adjust user setting (for HW filter setup)
6111 */
6112 attr->branch_sample_type = mask;
6113 }
6114 }
974802ea
PZ
6115out:
6116 return ret;
6117
6118err_size:
6119 put_user(sizeof(*attr), &uattr->size);
6120 ret = -E2BIG;
6121 goto out;
6122}
6123
ac9721f3
PZ
6124static int
6125perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6126{
76369139 6127 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6128 int ret = -EINVAL;
6129
ac9721f3 6130 if (!output_event)
a4be7c27
PZ
6131 goto set;
6132
ac9721f3
PZ
6133 /* don't allow circular references */
6134 if (event == output_event)
a4be7c27
PZ
6135 goto out;
6136
0f139300
PZ
6137 /*
6138 * Don't allow cross-cpu buffers
6139 */
6140 if (output_event->cpu != event->cpu)
6141 goto out;
6142
6143 /*
76369139 6144 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6145 */
6146 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6147 goto out;
6148
a4be7c27 6149set:
cdd6c482 6150 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6151 /* Can't redirect output if we've got an active mmap() */
6152 if (atomic_read(&event->mmap_count))
6153 goto unlock;
a4be7c27 6154
ac9721f3 6155 if (output_event) {
76369139
FW
6156 /* get the rb we want to redirect to */
6157 rb = ring_buffer_get(output_event);
6158 if (!rb)
ac9721f3 6159 goto unlock;
a4be7c27
PZ
6160 }
6161
76369139
FW
6162 old_rb = event->rb;
6163 rcu_assign_pointer(event->rb, rb);
10c6db11
PZ
6164 if (old_rb)
6165 ring_buffer_detach(event, old_rb);
a4be7c27 6166 ret = 0;
ac9721f3
PZ
6167unlock:
6168 mutex_unlock(&event->mmap_mutex);
6169
76369139
FW
6170 if (old_rb)
6171 ring_buffer_put(old_rb);
a4be7c27 6172out:
a4be7c27
PZ
6173 return ret;
6174}
6175
0793a61d 6176/**
cdd6c482 6177 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6178 *
cdd6c482 6179 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6180 * @pid: target pid
9f66a381 6181 * @cpu: target cpu
cdd6c482 6182 * @group_fd: group leader event fd
0793a61d 6183 */
cdd6c482
IM
6184SYSCALL_DEFINE5(perf_event_open,
6185 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6186 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6187{
b04243ef
PZ
6188 struct perf_event *group_leader = NULL, *output_event = NULL;
6189 struct perf_event *event, *sibling;
cdd6c482
IM
6190 struct perf_event_attr attr;
6191 struct perf_event_context *ctx;
6192 struct file *event_file = NULL;
04289bb9 6193 struct file *group_file = NULL;
38a81da2 6194 struct task_struct *task = NULL;
89a1e187 6195 struct pmu *pmu;
ea635c64 6196 int event_fd;
b04243ef 6197 int move_group = 0;
04289bb9 6198 int fput_needed = 0;
dc86cabe 6199 int err;
0793a61d 6200
2743a5b0 6201 /* for future expandability... */
e5d1367f 6202 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6203 return -EINVAL;
6204
dc86cabe
IM
6205 err = perf_copy_attr(attr_uptr, &attr);
6206 if (err)
6207 return err;
eab656ae 6208
0764771d
PZ
6209 if (!attr.exclude_kernel) {
6210 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6211 return -EACCES;
6212 }
6213
df58ab24 6214 if (attr.freq) {
cdd6c482 6215 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6216 return -EINVAL;
6217 }
6218
e5d1367f
SE
6219 /*
6220 * In cgroup mode, the pid argument is used to pass the fd
6221 * opened to the cgroup directory in cgroupfs. The cpu argument
6222 * designates the cpu on which to monitor threads from that
6223 * cgroup.
6224 */
6225 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6226 return -EINVAL;
6227
ea635c64
AV
6228 event_fd = get_unused_fd_flags(O_RDWR);
6229 if (event_fd < 0)
6230 return event_fd;
6231
ac9721f3
PZ
6232 if (group_fd != -1) {
6233 group_leader = perf_fget_light(group_fd, &fput_needed);
6234 if (IS_ERR(group_leader)) {
6235 err = PTR_ERR(group_leader);
d14b12d7 6236 goto err_fd;
ac9721f3
PZ
6237 }
6238 group_file = group_leader->filp;
6239 if (flags & PERF_FLAG_FD_OUTPUT)
6240 output_event = group_leader;
6241 if (flags & PERF_FLAG_FD_NO_GROUP)
6242 group_leader = NULL;
6243 }
6244
e5d1367f 6245 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6246 task = find_lively_task_by_vpid(pid);
6247 if (IS_ERR(task)) {
6248 err = PTR_ERR(task);
6249 goto err_group_fd;
6250 }
6251 }
6252
4dc0da86
AK
6253 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6254 NULL, NULL);
d14b12d7
SE
6255 if (IS_ERR(event)) {
6256 err = PTR_ERR(event);
c6be5a5c 6257 goto err_task;
d14b12d7
SE
6258 }
6259
e5d1367f
SE
6260 if (flags & PERF_FLAG_PID_CGROUP) {
6261 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6262 if (err)
6263 goto err_alloc;
08309379
PZ
6264 /*
6265 * one more event:
6266 * - that has cgroup constraint on event->cpu
6267 * - that may need work on context switch
6268 */
6269 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 6270 static_key_slow_inc(&perf_sched_events.key);
e5d1367f
SE
6271 }
6272
89a1e187
PZ
6273 /*
6274 * Special case software events and allow them to be part of
6275 * any hardware group.
6276 */
6277 pmu = event->pmu;
b04243ef
PZ
6278
6279 if (group_leader &&
6280 (is_software_event(event) != is_software_event(group_leader))) {
6281 if (is_software_event(event)) {
6282 /*
6283 * If event and group_leader are not both a software
6284 * event, and event is, then group leader is not.
6285 *
6286 * Allow the addition of software events to !software
6287 * groups, this is safe because software events never
6288 * fail to schedule.
6289 */
6290 pmu = group_leader->pmu;
6291 } else if (is_software_event(group_leader) &&
6292 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6293 /*
6294 * In case the group is a pure software group, and we
6295 * try to add a hardware event, move the whole group to
6296 * the hardware context.
6297 */
6298 move_group = 1;
6299 }
6300 }
89a1e187
PZ
6301
6302 /*
6303 * Get the target context (task or percpu):
6304 */
38a81da2 6305 ctx = find_get_context(pmu, task, cpu);
89a1e187
PZ
6306 if (IS_ERR(ctx)) {
6307 err = PTR_ERR(ctx);
c6be5a5c 6308 goto err_alloc;
89a1e187
PZ
6309 }
6310
fd1edb3a
PZ
6311 if (task) {
6312 put_task_struct(task);
6313 task = NULL;
6314 }
6315
ccff286d 6316 /*
cdd6c482 6317 * Look up the group leader (we will attach this event to it):
04289bb9 6318 */
ac9721f3 6319 if (group_leader) {
dc86cabe 6320 err = -EINVAL;
04289bb9 6321
04289bb9 6322 /*
ccff286d
IM
6323 * Do not allow a recursive hierarchy (this new sibling
6324 * becoming part of another group-sibling):
6325 */
6326 if (group_leader->group_leader != group_leader)
c3f00c70 6327 goto err_context;
ccff286d
IM
6328 /*
6329 * Do not allow to attach to a group in a different
6330 * task or CPU context:
04289bb9 6331 */
b04243ef
PZ
6332 if (move_group) {
6333 if (group_leader->ctx->type != ctx->type)
6334 goto err_context;
6335 } else {
6336 if (group_leader->ctx != ctx)
6337 goto err_context;
6338 }
6339
3b6f9e5c
PM
6340 /*
6341 * Only a group leader can be exclusive or pinned
6342 */
0d48696f 6343 if (attr.exclusive || attr.pinned)
c3f00c70 6344 goto err_context;
ac9721f3
PZ
6345 }
6346
6347 if (output_event) {
6348 err = perf_event_set_output(event, output_event);
6349 if (err)
c3f00c70 6350 goto err_context;
ac9721f3 6351 }
0793a61d 6352
ea635c64
AV
6353 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6354 if (IS_ERR(event_file)) {
6355 err = PTR_ERR(event_file);
c3f00c70 6356 goto err_context;
ea635c64 6357 }
9b51f66d 6358
b04243ef
PZ
6359 if (move_group) {
6360 struct perf_event_context *gctx = group_leader->ctx;
6361
6362 mutex_lock(&gctx->mutex);
fe4b04fa 6363 perf_remove_from_context(group_leader);
b04243ef
PZ
6364 list_for_each_entry(sibling, &group_leader->sibling_list,
6365 group_entry) {
fe4b04fa 6366 perf_remove_from_context(sibling);
b04243ef
PZ
6367 put_ctx(gctx);
6368 }
6369 mutex_unlock(&gctx->mutex);
6370 put_ctx(gctx);
ea635c64 6371 }
9b51f66d 6372
cdd6c482 6373 event->filp = event_file;
ad3a37de 6374 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 6375 mutex_lock(&ctx->mutex);
b04243ef
PZ
6376
6377 if (move_group) {
6378 perf_install_in_context(ctx, group_leader, cpu);
6379 get_ctx(ctx);
6380 list_for_each_entry(sibling, &group_leader->sibling_list,
6381 group_entry) {
6382 perf_install_in_context(ctx, sibling, cpu);
6383 get_ctx(ctx);
6384 }
6385 }
6386
cdd6c482 6387 perf_install_in_context(ctx, event, cpu);
ad3a37de 6388 ++ctx->generation;
fe4b04fa 6389 perf_unpin_context(ctx);
d859e29f 6390 mutex_unlock(&ctx->mutex);
9b51f66d 6391
cdd6c482 6392 event->owner = current;
8882135b 6393
cdd6c482
IM
6394 mutex_lock(&current->perf_event_mutex);
6395 list_add_tail(&event->owner_entry, &current->perf_event_list);
6396 mutex_unlock(&current->perf_event_mutex);
082ff5a2 6397
c320c7b7
ACM
6398 /*
6399 * Precalculate sample_data sizes
6400 */
6401 perf_event__header_size(event);
6844c09d 6402 perf_event__id_header_size(event);
c320c7b7 6403
8a49542c
PZ
6404 /*
6405 * Drop the reference on the group_event after placing the
6406 * new event on the sibling_list. This ensures destruction
6407 * of the group leader will find the pointer to itself in
6408 * perf_group_detach().
6409 */
ea635c64
AV
6410 fput_light(group_file, fput_needed);
6411 fd_install(event_fd, event_file);
6412 return event_fd;
0793a61d 6413
c3f00c70 6414err_context:
fe4b04fa 6415 perf_unpin_context(ctx);
ea635c64 6416 put_ctx(ctx);
c6be5a5c 6417err_alloc:
ea635c64 6418 free_event(event);
e7d0bc04
PZ
6419err_task:
6420 if (task)
6421 put_task_struct(task);
89a1e187 6422err_group_fd:
dc86cabe 6423 fput_light(group_file, fput_needed);
ea635c64
AV
6424err_fd:
6425 put_unused_fd(event_fd);
dc86cabe 6426 return err;
0793a61d
TG
6427}
6428
fb0459d7
AV
6429/**
6430 * perf_event_create_kernel_counter
6431 *
6432 * @attr: attributes of the counter to create
6433 * @cpu: cpu in which the counter is bound
38a81da2 6434 * @task: task to profile (NULL for percpu)
fb0459d7
AV
6435 */
6436struct perf_event *
6437perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 6438 struct task_struct *task,
4dc0da86
AK
6439 perf_overflow_handler_t overflow_handler,
6440 void *context)
fb0459d7 6441{
fb0459d7 6442 struct perf_event_context *ctx;
c3f00c70 6443 struct perf_event *event;
fb0459d7 6444 int err;
d859e29f 6445
fb0459d7
AV
6446 /*
6447 * Get the target context (task or percpu):
6448 */
d859e29f 6449
4dc0da86
AK
6450 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6451 overflow_handler, context);
c3f00c70
PZ
6452 if (IS_ERR(event)) {
6453 err = PTR_ERR(event);
6454 goto err;
6455 }
d859e29f 6456
38a81da2 6457 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
6458 if (IS_ERR(ctx)) {
6459 err = PTR_ERR(ctx);
c3f00c70 6460 goto err_free;
d859e29f 6461 }
fb0459d7
AV
6462
6463 event->filp = NULL;
6464 WARN_ON_ONCE(ctx->parent_ctx);
6465 mutex_lock(&ctx->mutex);
6466 perf_install_in_context(ctx, event, cpu);
6467 ++ctx->generation;
fe4b04fa 6468 perf_unpin_context(ctx);
fb0459d7
AV
6469 mutex_unlock(&ctx->mutex);
6470
fb0459d7
AV
6471 return event;
6472
c3f00c70
PZ
6473err_free:
6474 free_event(event);
6475err:
c6567f64 6476 return ERR_PTR(err);
9b51f66d 6477}
fb0459d7 6478EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 6479
cdd6c482 6480static void sync_child_event(struct perf_event *child_event,
38b200d6 6481 struct task_struct *child)
d859e29f 6482{
cdd6c482 6483 struct perf_event *parent_event = child_event->parent;
8bc20959 6484 u64 child_val;
d859e29f 6485
cdd6c482
IM
6486 if (child_event->attr.inherit_stat)
6487 perf_event_read_event(child_event, child);
38b200d6 6488
b5e58793 6489 child_val = perf_event_count(child_event);
d859e29f
PM
6490
6491 /*
6492 * Add back the child's count to the parent's count:
6493 */
a6e6dea6 6494 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
6495 atomic64_add(child_event->total_time_enabled,
6496 &parent_event->child_total_time_enabled);
6497 atomic64_add(child_event->total_time_running,
6498 &parent_event->child_total_time_running);
d859e29f
PM
6499
6500 /*
cdd6c482 6501 * Remove this event from the parent's list
d859e29f 6502 */
cdd6c482
IM
6503 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6504 mutex_lock(&parent_event->child_mutex);
6505 list_del_init(&child_event->child_list);
6506 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
6507
6508 /*
cdd6c482 6509 * Release the parent event, if this was the last
d859e29f
PM
6510 * reference to it.
6511 */
cdd6c482 6512 fput(parent_event->filp);
d859e29f
PM
6513}
6514
9b51f66d 6515static void
cdd6c482
IM
6516__perf_event_exit_task(struct perf_event *child_event,
6517 struct perf_event_context *child_ctx,
38b200d6 6518 struct task_struct *child)
9b51f66d 6519{
38b435b1
PZ
6520 if (child_event->parent) {
6521 raw_spin_lock_irq(&child_ctx->lock);
6522 perf_group_detach(child_event);
6523 raw_spin_unlock_irq(&child_ctx->lock);
6524 }
9b51f66d 6525
fe4b04fa 6526 perf_remove_from_context(child_event);
0cc0c027 6527
9b51f66d 6528 /*
38b435b1 6529 * It can happen that the parent exits first, and has events
9b51f66d 6530 * that are still around due to the child reference. These
38b435b1 6531 * events need to be zapped.
9b51f66d 6532 */
38b435b1 6533 if (child_event->parent) {
cdd6c482
IM
6534 sync_child_event(child_event, child);
6535 free_event(child_event);
4bcf349a 6536 }
9b51f66d
IM
6537}
6538
8dc85d54 6539static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 6540{
cdd6c482
IM
6541 struct perf_event *child_event, *tmp;
6542 struct perf_event_context *child_ctx;
a63eaf34 6543 unsigned long flags;
9b51f66d 6544
8dc85d54 6545 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 6546 perf_event_task(child, NULL, 0);
9b51f66d 6547 return;
9f498cc5 6548 }
9b51f66d 6549
a63eaf34 6550 local_irq_save(flags);
ad3a37de
PM
6551 /*
6552 * We can't reschedule here because interrupts are disabled,
6553 * and either child is current or it is a task that can't be
6554 * scheduled, so we are now safe from rescheduling changing
6555 * our context.
6556 */
806839b2 6557 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
6558
6559 /*
6560 * Take the context lock here so that if find_get_context is
cdd6c482 6561 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
6562 * incremented the context's refcount before we do put_ctx below.
6563 */
e625cce1 6564 raw_spin_lock(&child_ctx->lock);
04dc2dbb 6565 task_ctx_sched_out(child_ctx);
8dc85d54 6566 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
6567 /*
6568 * If this context is a clone; unclone it so it can't get
6569 * swapped to another process while we're removing all
cdd6c482 6570 * the events from it.
71a851b4
PZ
6571 */
6572 unclone_ctx(child_ctx);
5e942bb3 6573 update_context_time(child_ctx);
e625cce1 6574 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
6575
6576 /*
cdd6c482
IM
6577 * Report the task dead after unscheduling the events so that we
6578 * won't get any samples after PERF_RECORD_EXIT. We can however still
6579 * get a few PERF_RECORD_READ events.
9f498cc5 6580 */
cdd6c482 6581 perf_event_task(child, child_ctx, 0);
a63eaf34 6582
66fff224
PZ
6583 /*
6584 * We can recurse on the same lock type through:
6585 *
cdd6c482
IM
6586 * __perf_event_exit_task()
6587 * sync_child_event()
6588 * fput(parent_event->filp)
66fff224
PZ
6589 * perf_release()
6590 * mutex_lock(&ctx->mutex)
6591 *
6592 * But since its the parent context it won't be the same instance.
6593 */
a0507c84 6594 mutex_lock(&child_ctx->mutex);
a63eaf34 6595
8bc20959 6596again:
889ff015
FW
6597 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6598 group_entry)
6599 __perf_event_exit_task(child_event, child_ctx, child);
6600
6601 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 6602 group_entry)
cdd6c482 6603 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
6604
6605 /*
cdd6c482 6606 * If the last event was a group event, it will have appended all
8bc20959
PZ
6607 * its siblings to the list, but we obtained 'tmp' before that which
6608 * will still point to the list head terminating the iteration.
6609 */
889ff015
FW
6610 if (!list_empty(&child_ctx->pinned_groups) ||
6611 !list_empty(&child_ctx->flexible_groups))
8bc20959 6612 goto again;
a63eaf34
PM
6613
6614 mutex_unlock(&child_ctx->mutex);
6615
6616 put_ctx(child_ctx);
9b51f66d
IM
6617}
6618
8dc85d54
PZ
6619/*
6620 * When a child task exits, feed back event values to parent events.
6621 */
6622void perf_event_exit_task(struct task_struct *child)
6623{
8882135b 6624 struct perf_event *event, *tmp;
8dc85d54
PZ
6625 int ctxn;
6626
8882135b
PZ
6627 mutex_lock(&child->perf_event_mutex);
6628 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6629 owner_entry) {
6630 list_del_init(&event->owner_entry);
6631
6632 /*
6633 * Ensure the list deletion is visible before we clear
6634 * the owner, closes a race against perf_release() where
6635 * we need to serialize on the owner->perf_event_mutex.
6636 */
6637 smp_wmb();
6638 event->owner = NULL;
6639 }
6640 mutex_unlock(&child->perf_event_mutex);
6641
8dc85d54
PZ
6642 for_each_task_context_nr(ctxn)
6643 perf_event_exit_task_context(child, ctxn);
6644}
6645
889ff015
FW
6646static void perf_free_event(struct perf_event *event,
6647 struct perf_event_context *ctx)
6648{
6649 struct perf_event *parent = event->parent;
6650
6651 if (WARN_ON_ONCE(!parent))
6652 return;
6653
6654 mutex_lock(&parent->child_mutex);
6655 list_del_init(&event->child_list);
6656 mutex_unlock(&parent->child_mutex);
6657
6658 fput(parent->filp);
6659
8a49542c 6660 perf_group_detach(event);
889ff015
FW
6661 list_del_event(event, ctx);
6662 free_event(event);
6663}
6664
bbbee908
PZ
6665/*
6666 * free an unexposed, unused context as created by inheritance by
8dc85d54 6667 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 6668 */
cdd6c482 6669void perf_event_free_task(struct task_struct *task)
bbbee908 6670{
8dc85d54 6671 struct perf_event_context *ctx;
cdd6c482 6672 struct perf_event *event, *tmp;
8dc85d54 6673 int ctxn;
bbbee908 6674
8dc85d54
PZ
6675 for_each_task_context_nr(ctxn) {
6676 ctx = task->perf_event_ctxp[ctxn];
6677 if (!ctx)
6678 continue;
bbbee908 6679
8dc85d54 6680 mutex_lock(&ctx->mutex);
bbbee908 6681again:
8dc85d54
PZ
6682 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6683 group_entry)
6684 perf_free_event(event, ctx);
bbbee908 6685
8dc85d54
PZ
6686 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6687 group_entry)
6688 perf_free_event(event, ctx);
bbbee908 6689
8dc85d54
PZ
6690 if (!list_empty(&ctx->pinned_groups) ||
6691 !list_empty(&ctx->flexible_groups))
6692 goto again;
bbbee908 6693
8dc85d54 6694 mutex_unlock(&ctx->mutex);
bbbee908 6695
8dc85d54
PZ
6696 put_ctx(ctx);
6697 }
889ff015
FW
6698}
6699
4e231c79
PZ
6700void perf_event_delayed_put(struct task_struct *task)
6701{
6702 int ctxn;
6703
6704 for_each_task_context_nr(ctxn)
6705 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6706}
6707
97dee4f3
PZ
6708/*
6709 * inherit a event from parent task to child task:
6710 */
6711static struct perf_event *
6712inherit_event(struct perf_event *parent_event,
6713 struct task_struct *parent,
6714 struct perf_event_context *parent_ctx,
6715 struct task_struct *child,
6716 struct perf_event *group_leader,
6717 struct perf_event_context *child_ctx)
6718{
6719 struct perf_event *child_event;
cee010ec 6720 unsigned long flags;
97dee4f3
PZ
6721
6722 /*
6723 * Instead of creating recursive hierarchies of events,
6724 * we link inherited events back to the original parent,
6725 * which has a filp for sure, which we use as the reference
6726 * count:
6727 */
6728 if (parent_event->parent)
6729 parent_event = parent_event->parent;
6730
6731 child_event = perf_event_alloc(&parent_event->attr,
6732 parent_event->cpu,
d580ff86 6733 child,
97dee4f3 6734 group_leader, parent_event,
4dc0da86 6735 NULL, NULL);
97dee4f3
PZ
6736 if (IS_ERR(child_event))
6737 return child_event;
6738 get_ctx(child_ctx);
6739
6740 /*
6741 * Make the child state follow the state of the parent event,
6742 * not its attr.disabled bit. We hold the parent's mutex,
6743 * so we won't race with perf_event_{en, dis}able_family.
6744 */
6745 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6746 child_event->state = PERF_EVENT_STATE_INACTIVE;
6747 else
6748 child_event->state = PERF_EVENT_STATE_OFF;
6749
6750 if (parent_event->attr.freq) {
6751 u64 sample_period = parent_event->hw.sample_period;
6752 struct hw_perf_event *hwc = &child_event->hw;
6753
6754 hwc->sample_period = sample_period;
6755 hwc->last_period = sample_period;
6756
6757 local64_set(&hwc->period_left, sample_period);
6758 }
6759
6760 child_event->ctx = child_ctx;
6761 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6762 child_event->overflow_handler_context
6763 = parent_event->overflow_handler_context;
97dee4f3 6764
614b6780
TG
6765 /*
6766 * Precalculate sample_data sizes
6767 */
6768 perf_event__header_size(child_event);
6844c09d 6769 perf_event__id_header_size(child_event);
614b6780 6770
97dee4f3
PZ
6771 /*
6772 * Link it up in the child's context:
6773 */
cee010ec 6774 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 6775 add_event_to_ctx(child_event, child_ctx);
cee010ec 6776 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3
PZ
6777
6778 /*
6779 * Get a reference to the parent filp - we will fput it
6780 * when the child event exits. This is safe to do because
6781 * we are in the parent and we know that the filp still
6782 * exists and has a nonzero count:
6783 */
6784 atomic_long_inc(&parent_event->filp->f_count);
6785
6786 /*
6787 * Link this into the parent event's child list
6788 */
6789 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6790 mutex_lock(&parent_event->child_mutex);
6791 list_add_tail(&child_event->child_list, &parent_event->child_list);
6792 mutex_unlock(&parent_event->child_mutex);
6793
6794 return child_event;
6795}
6796
6797static int inherit_group(struct perf_event *parent_event,
6798 struct task_struct *parent,
6799 struct perf_event_context *parent_ctx,
6800 struct task_struct *child,
6801 struct perf_event_context *child_ctx)
6802{
6803 struct perf_event *leader;
6804 struct perf_event *sub;
6805 struct perf_event *child_ctr;
6806
6807 leader = inherit_event(parent_event, parent, parent_ctx,
6808 child, NULL, child_ctx);
6809 if (IS_ERR(leader))
6810 return PTR_ERR(leader);
6811 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6812 child_ctr = inherit_event(sub, parent, parent_ctx,
6813 child, leader, child_ctx);
6814 if (IS_ERR(child_ctr))
6815 return PTR_ERR(child_ctr);
6816 }
6817 return 0;
889ff015
FW
6818}
6819
6820static int
6821inherit_task_group(struct perf_event *event, struct task_struct *parent,
6822 struct perf_event_context *parent_ctx,
8dc85d54 6823 struct task_struct *child, int ctxn,
889ff015
FW
6824 int *inherited_all)
6825{
6826 int ret;
8dc85d54 6827 struct perf_event_context *child_ctx;
889ff015
FW
6828
6829 if (!event->attr.inherit) {
6830 *inherited_all = 0;
6831 return 0;
bbbee908
PZ
6832 }
6833
fe4b04fa 6834 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
6835 if (!child_ctx) {
6836 /*
6837 * This is executed from the parent task context, so
6838 * inherit events that have been marked for cloning.
6839 * First allocate and initialize a context for the
6840 * child.
6841 */
bbbee908 6842
eb184479 6843 child_ctx = alloc_perf_context(event->pmu, child);
889ff015
FW
6844 if (!child_ctx)
6845 return -ENOMEM;
bbbee908 6846
8dc85d54 6847 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
6848 }
6849
6850 ret = inherit_group(event, parent, parent_ctx,
6851 child, child_ctx);
6852
6853 if (ret)
6854 *inherited_all = 0;
6855
6856 return ret;
bbbee908
PZ
6857}
6858
9b51f66d 6859/*
cdd6c482 6860 * Initialize the perf_event context in task_struct
9b51f66d 6861 */
8dc85d54 6862int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 6863{
889ff015 6864 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
6865 struct perf_event_context *cloned_ctx;
6866 struct perf_event *event;
9b51f66d 6867 struct task_struct *parent = current;
564c2b21 6868 int inherited_all = 1;
dddd3379 6869 unsigned long flags;
6ab423e0 6870 int ret = 0;
9b51f66d 6871
8dc85d54 6872 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
6873 return 0;
6874
ad3a37de 6875 /*
25346b93
PM
6876 * If the parent's context is a clone, pin it so it won't get
6877 * swapped under us.
ad3a37de 6878 */
8dc85d54 6879 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 6880
ad3a37de
PM
6881 /*
6882 * No need to check if parent_ctx != NULL here; since we saw
6883 * it non-NULL earlier, the only reason for it to become NULL
6884 * is if we exit, and since we're currently in the middle of
6885 * a fork we can't be exiting at the same time.
6886 */
ad3a37de 6887
9b51f66d
IM
6888 /*
6889 * Lock the parent list. No need to lock the child - not PID
6890 * hashed yet and not running, so nobody can access it.
6891 */
d859e29f 6892 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
6893
6894 /*
6895 * We dont have to disable NMIs - we are only looking at
6896 * the list, not manipulating it:
6897 */
889ff015 6898 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
6899 ret = inherit_task_group(event, parent, parent_ctx,
6900 child, ctxn, &inherited_all);
889ff015
FW
6901 if (ret)
6902 break;
6903 }
b93f7978 6904
dddd3379
TG
6905 /*
6906 * We can't hold ctx->lock when iterating the ->flexible_group list due
6907 * to allocations, but we need to prevent rotation because
6908 * rotate_ctx() will change the list from interrupt context.
6909 */
6910 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6911 parent_ctx->rotate_disable = 1;
6912 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6913
889ff015 6914 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
6915 ret = inherit_task_group(event, parent, parent_ctx,
6916 child, ctxn, &inherited_all);
889ff015 6917 if (ret)
9b51f66d 6918 break;
564c2b21
PM
6919 }
6920
dddd3379
TG
6921 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6922 parent_ctx->rotate_disable = 0;
dddd3379 6923
8dc85d54 6924 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 6925
05cbaa28 6926 if (child_ctx && inherited_all) {
564c2b21
PM
6927 /*
6928 * Mark the child context as a clone of the parent
6929 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
6930 *
6931 * Note that if the parent is a clone, the holding of
6932 * parent_ctx->lock avoids it from being uncloned.
564c2b21 6933 */
c5ed5145 6934 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
6935 if (cloned_ctx) {
6936 child_ctx->parent_ctx = cloned_ctx;
25346b93 6937 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
6938 } else {
6939 child_ctx->parent_ctx = parent_ctx;
6940 child_ctx->parent_gen = parent_ctx->generation;
6941 }
6942 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
6943 }
6944
c5ed5145 6945 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 6946 mutex_unlock(&parent_ctx->mutex);
6ab423e0 6947
25346b93 6948 perf_unpin_context(parent_ctx);
fe4b04fa 6949 put_ctx(parent_ctx);
ad3a37de 6950
6ab423e0 6951 return ret;
9b51f66d
IM
6952}
6953
8dc85d54
PZ
6954/*
6955 * Initialize the perf_event context in task_struct
6956 */
6957int perf_event_init_task(struct task_struct *child)
6958{
6959 int ctxn, ret;
6960
8550d7cb
ON
6961 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6962 mutex_init(&child->perf_event_mutex);
6963 INIT_LIST_HEAD(&child->perf_event_list);
6964
8dc85d54
PZ
6965 for_each_task_context_nr(ctxn) {
6966 ret = perf_event_init_context(child, ctxn);
6967 if (ret)
6968 return ret;
6969 }
6970
6971 return 0;
6972}
6973
220b140b
PM
6974static void __init perf_event_init_all_cpus(void)
6975{
b28ab83c 6976 struct swevent_htable *swhash;
220b140b 6977 int cpu;
220b140b
PM
6978
6979 for_each_possible_cpu(cpu) {
b28ab83c
PZ
6980 swhash = &per_cpu(swevent_htable, cpu);
6981 mutex_init(&swhash->hlist_mutex);
e9d2b064 6982 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
6983 }
6984}
6985
cdd6c482 6986static void __cpuinit perf_event_init_cpu(int cpu)
0793a61d 6987{
108b02cf 6988 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 6989
b28ab83c 6990 mutex_lock(&swhash->hlist_mutex);
4536e4d1 6991 if (swhash->hlist_refcount > 0) {
76e1d904
FW
6992 struct swevent_hlist *hlist;
6993
b28ab83c
PZ
6994 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6995 WARN_ON(!hlist);
6996 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6997 }
b28ab83c 6998 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
6999}
7000
c277443c 7001#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7002static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7003{
e9d2b064
PZ
7004 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7005
7006 WARN_ON(!irqs_disabled());
7007
7008 list_del_init(&cpuctx->rotation_list);
7009}
7010
108b02cf 7011static void __perf_event_exit_context(void *__info)
0793a61d 7012{
108b02cf 7013 struct perf_event_context *ctx = __info;
cdd6c482 7014 struct perf_event *event, *tmp;
0793a61d 7015
108b02cf 7016 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7017
889ff015 7018 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7019 __perf_remove_from_context(event);
889ff015 7020 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7021 __perf_remove_from_context(event);
0793a61d 7022}
108b02cf
PZ
7023
7024static void perf_event_exit_cpu_context(int cpu)
7025{
7026 struct perf_event_context *ctx;
7027 struct pmu *pmu;
7028 int idx;
7029
7030 idx = srcu_read_lock(&pmus_srcu);
7031 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7032 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7033
7034 mutex_lock(&ctx->mutex);
7035 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7036 mutex_unlock(&ctx->mutex);
7037 }
7038 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7039}
7040
cdd6c482 7041static void perf_event_exit_cpu(int cpu)
0793a61d 7042{
b28ab83c 7043 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7044
b28ab83c
PZ
7045 mutex_lock(&swhash->hlist_mutex);
7046 swevent_hlist_release(swhash);
7047 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7048
108b02cf 7049 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7050}
7051#else
cdd6c482 7052static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7053#endif
7054
c277443c
PZ
7055static int
7056perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7057{
7058 int cpu;
7059
7060 for_each_online_cpu(cpu)
7061 perf_event_exit_cpu(cpu);
7062
7063 return NOTIFY_OK;
7064}
7065
7066/*
7067 * Run the perf reboot notifier at the very last possible moment so that
7068 * the generic watchdog code runs as long as possible.
7069 */
7070static struct notifier_block perf_reboot_notifier = {
7071 .notifier_call = perf_reboot,
7072 .priority = INT_MIN,
7073};
7074
0793a61d
TG
7075static int __cpuinit
7076perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7077{
7078 unsigned int cpu = (long)hcpu;
7079
4536e4d1 7080 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7081
7082 case CPU_UP_PREPARE:
5e11637e 7083 case CPU_DOWN_FAILED:
cdd6c482 7084 perf_event_init_cpu(cpu);
0793a61d
TG
7085 break;
7086
5e11637e 7087 case CPU_UP_CANCELED:
0793a61d 7088 case CPU_DOWN_PREPARE:
cdd6c482 7089 perf_event_exit_cpu(cpu);
0793a61d
TG
7090 break;
7091
7092 default:
7093 break;
7094 }
7095
7096 return NOTIFY_OK;
7097}
7098
cdd6c482 7099void __init perf_event_init(void)
0793a61d 7100{
3c502e7a
JW
7101 int ret;
7102
2e80a82a
PZ
7103 idr_init(&pmu_idr);
7104
220b140b 7105 perf_event_init_all_cpus();
b0a873eb 7106 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7107 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7108 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7109 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7110 perf_tp_register();
7111 perf_cpu_notifier(perf_cpu_notify);
c277443c 7112 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7113
7114 ret = init_hw_breakpoint();
7115 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7116
7117 /* do not patch jump label more than once per second */
7118 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7119
7120 /*
7121 * Build time assertion that we keep the data_head at the intended
7122 * location. IOW, validation we got the __reserved[] size right.
7123 */
7124 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7125 != 1024);
0793a61d 7126}
abe43400
PZ
7127
7128static int __init perf_event_sysfs_init(void)
7129{
7130 struct pmu *pmu;
7131 int ret;
7132
7133 mutex_lock(&pmus_lock);
7134
7135 ret = bus_register(&pmu_bus);
7136 if (ret)
7137 goto unlock;
7138
7139 list_for_each_entry(pmu, &pmus, entry) {
7140 if (!pmu->name || pmu->type < 0)
7141 continue;
7142
7143 ret = pmu_dev_alloc(pmu);
7144 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7145 }
7146 pmu_bus_running = 1;
7147 ret = 0;
7148
7149unlock:
7150 mutex_unlock(&pmus_lock);
7151
7152 return ret;
7153}
7154device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7155
7156#ifdef CONFIG_CGROUP_PERF
761b3ef5 7157static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
e5d1367f
SE
7158{
7159 struct perf_cgroup *jc;
e5d1367f 7160
1b15d055 7161 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7162 if (!jc)
7163 return ERR_PTR(-ENOMEM);
7164
e5d1367f
SE
7165 jc->info = alloc_percpu(struct perf_cgroup_info);
7166 if (!jc->info) {
7167 kfree(jc);
7168 return ERR_PTR(-ENOMEM);
7169 }
7170
e5d1367f
SE
7171 return &jc->css;
7172}
7173
761b3ef5 7174static void perf_cgroup_destroy(struct cgroup *cont)
e5d1367f
SE
7175{
7176 struct perf_cgroup *jc;
7177 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7178 struct perf_cgroup, css);
7179 free_percpu(jc->info);
7180 kfree(jc);
7181}
7182
7183static int __perf_cgroup_move(void *info)
7184{
7185 struct task_struct *task = info;
7186 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7187 return 0;
7188}
7189
761b3ef5 7190static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7191{
bb9d97b6
TH
7192 struct task_struct *task;
7193
7194 cgroup_taskset_for_each(task, cgrp, tset)
7195 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7196}
7197
761b3ef5
LZ
7198static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7199 struct task_struct *task)
e5d1367f
SE
7200{
7201 /*
7202 * cgroup_exit() is called in the copy_process() failure path.
7203 * Ignore this case since the task hasn't ran yet, this avoids
7204 * trying to poke a half freed task state from generic code.
7205 */
7206 if (!(task->flags & PF_EXITING))
7207 return;
7208
bb9d97b6 7209 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7210}
7211
7212struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7213 .name = "perf_event",
7214 .subsys_id = perf_subsys_id,
7215 .create = perf_cgroup_create,
7216 .destroy = perf_cgroup_destroy,
7217 .exit = perf_cgroup_exit,
bb9d97b6 7218 .attach = perf_cgroup_attach,
e5d1367f
SE
7219};
7220#endif /* CONFIG_CGROUP_PERF */