perf: Remove stale comment
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
0017960f
PZ
129static void event_function_call(struct perf_event *event,
130 int (*active)(void *),
131 void (*inactive)(void *),
132 void *data)
133{
134 struct perf_event_context *ctx = event->ctx;
135 struct task_struct *task = ctx->task;
136
137 if (!task) {
138 cpu_function_call(event->cpu, active, data);
139 return;
140 }
141
142again:
143 if (!task_function_call(task, active, data))
144 return;
145
146 raw_spin_lock_irq(&ctx->lock);
147 if (ctx->is_active) {
148 /*
149 * Reload the task pointer, it might have been changed by
150 * a concurrent perf_event_context_sched_out().
151 */
152 task = ctx->task;
153 raw_spin_unlock_irq(&ctx->lock);
154 goto again;
155 }
156 inactive(data);
157 raw_spin_unlock_irq(&ctx->lock);
158}
159
f8697762
JO
160#define EVENT_OWNER_KERNEL ((void *) -1)
161
162static bool is_kernel_event(struct perf_event *event)
163{
164 return event->owner == EVENT_OWNER_KERNEL;
165}
166
e5d1367f
SE
167#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
168 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
169 PERF_FLAG_PID_CGROUP |\
170 PERF_FLAG_FD_CLOEXEC)
e5d1367f 171
bce38cd5
SE
172/*
173 * branch priv levels that need permission checks
174 */
175#define PERF_SAMPLE_BRANCH_PERM_PLM \
176 (PERF_SAMPLE_BRANCH_KERNEL |\
177 PERF_SAMPLE_BRANCH_HV)
178
0b3fcf17
SE
179enum event_type_t {
180 EVENT_FLEXIBLE = 0x1,
181 EVENT_PINNED = 0x2,
182 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
183};
184
e5d1367f
SE
185/*
186 * perf_sched_events : >0 events exist
187 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
188 */
c5905afb 189struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 190static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 191static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 192
cdd6c482
IM
193static atomic_t nr_mmap_events __read_mostly;
194static atomic_t nr_comm_events __read_mostly;
195static atomic_t nr_task_events __read_mostly;
948b26b6 196static atomic_t nr_freq_events __read_mostly;
45ac1403 197static atomic_t nr_switch_events __read_mostly;
9ee318a7 198
108b02cf
PZ
199static LIST_HEAD(pmus);
200static DEFINE_MUTEX(pmus_lock);
201static struct srcu_struct pmus_srcu;
202
0764771d 203/*
cdd6c482 204 * perf event paranoia level:
0fbdea19
IM
205 * -1 - not paranoid at all
206 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 207 * 1 - disallow cpu events for unpriv
0fbdea19 208 * 2 - disallow kernel profiling for unpriv
0764771d 209 */
cdd6c482 210int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 211
20443384
FW
212/* Minimum for 512 kiB + 1 user control page */
213int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
214
215/*
cdd6c482 216 * max perf event sample rate
df58ab24 217 */
14c63f17
DH
218#define DEFAULT_MAX_SAMPLE_RATE 100000
219#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
220#define DEFAULT_CPU_TIME_MAX_PERCENT 25
221
222int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
223
224static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
225static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
226
d9494cb4
PZ
227static int perf_sample_allowed_ns __read_mostly =
228 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 229
18ab2cd3 230static void update_perf_cpu_limits(void)
14c63f17
DH
231{
232 u64 tmp = perf_sample_period_ns;
233
234 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 235 do_div(tmp, 100);
d9494cb4 236 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 237}
163ec435 238
9e630205
SE
239static int perf_rotate_context(struct perf_cpu_context *cpuctx);
240
163ec435
PZ
241int perf_proc_update_handler(struct ctl_table *table, int write,
242 void __user *buffer, size_t *lenp,
243 loff_t *ppos)
244{
723478c8 245 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
246
247 if (ret || !write)
248 return ret;
249
250 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
251 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
252 update_perf_cpu_limits();
253
254 return 0;
255}
256
257int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
258
259int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
260 void __user *buffer, size_t *lenp,
261 loff_t *ppos)
262{
263 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
264
265 if (ret || !write)
266 return ret;
267
268 update_perf_cpu_limits();
163ec435
PZ
269
270 return 0;
271}
1ccd1549 272
14c63f17
DH
273/*
274 * perf samples are done in some very critical code paths (NMIs).
275 * If they take too much CPU time, the system can lock up and not
276 * get any real work done. This will drop the sample rate when
277 * we detect that events are taking too long.
278 */
279#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 280static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 281
6a02ad66 282static void perf_duration_warn(struct irq_work *w)
14c63f17 283{
6a02ad66 284 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 285 u64 avg_local_sample_len;
e5302920 286 u64 local_samples_len;
6a02ad66 287
4a32fea9 288 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
291 printk_ratelimited(KERN_WARNING
292 "perf interrupt took too long (%lld > %lld), lowering "
293 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 294 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
295 sysctl_perf_event_sample_rate);
296}
297
298static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
299
300void perf_sample_event_took(u64 sample_len_ns)
301{
d9494cb4 302 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
303 u64 avg_local_sample_len;
304 u64 local_samples_len;
14c63f17 305
d9494cb4 306 if (allowed_ns == 0)
14c63f17
DH
307 return;
308
309 /* decay the counter by 1 average sample */
4a32fea9 310 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
311 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
312 local_samples_len += sample_len_ns;
4a32fea9 313 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
314
315 /*
316 * note: this will be biased artifically low until we have
317 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
318 * from having to maintain a count.
319 */
320 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
321
d9494cb4 322 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
323 return;
324
325 if (max_samples_per_tick <= 1)
326 return;
327
328 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
329 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
330 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
331
14c63f17 332 update_perf_cpu_limits();
6a02ad66 333
cd578abb
PZ
334 if (!irq_work_queue(&perf_duration_work)) {
335 early_printk("perf interrupt took too long (%lld > %lld), lowering "
336 "kernel.perf_event_max_sample_rate to %d\n",
337 avg_local_sample_len, allowed_ns >> 1,
338 sysctl_perf_event_sample_rate);
339 }
14c63f17
DH
340}
341
cdd6c482 342static atomic64_t perf_event_id;
a96bbc16 343
0b3fcf17
SE
344static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
345 enum event_type_t event_type);
346
347static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
348 enum event_type_t event_type,
349 struct task_struct *task);
350
351static void update_context_time(struct perf_event_context *ctx);
352static u64 perf_event_time(struct perf_event *event);
0b3fcf17 353
cdd6c482 354void __weak perf_event_print_debug(void) { }
0793a61d 355
84c79910 356extern __weak const char *perf_pmu_name(void)
0793a61d 357{
84c79910 358 return "pmu";
0793a61d
TG
359}
360
0b3fcf17
SE
361static inline u64 perf_clock(void)
362{
363 return local_clock();
364}
365
34f43927
PZ
366static inline u64 perf_event_clock(struct perf_event *event)
367{
368 return event->clock();
369}
370
e5d1367f
SE
371static inline struct perf_cpu_context *
372__get_cpu_context(struct perf_event_context *ctx)
373{
374 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
375}
376
facc4307
PZ
377static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
378 struct perf_event_context *ctx)
379{
380 raw_spin_lock(&cpuctx->ctx.lock);
381 if (ctx)
382 raw_spin_lock(&ctx->lock);
383}
384
385static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
386 struct perf_event_context *ctx)
387{
388 if (ctx)
389 raw_spin_unlock(&ctx->lock);
390 raw_spin_unlock(&cpuctx->ctx.lock);
391}
392
e5d1367f
SE
393#ifdef CONFIG_CGROUP_PERF
394
e5d1367f
SE
395static inline bool
396perf_cgroup_match(struct perf_event *event)
397{
398 struct perf_event_context *ctx = event->ctx;
399 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
400
ef824fa1
TH
401 /* @event doesn't care about cgroup */
402 if (!event->cgrp)
403 return true;
404
405 /* wants specific cgroup scope but @cpuctx isn't associated with any */
406 if (!cpuctx->cgrp)
407 return false;
408
409 /*
410 * Cgroup scoping is recursive. An event enabled for a cgroup is
411 * also enabled for all its descendant cgroups. If @cpuctx's
412 * cgroup is a descendant of @event's (the test covers identity
413 * case), it's a match.
414 */
415 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
416 event->cgrp->css.cgroup);
e5d1367f
SE
417}
418
e5d1367f
SE
419static inline void perf_detach_cgroup(struct perf_event *event)
420{
4e2ba650 421 css_put(&event->cgrp->css);
e5d1367f
SE
422 event->cgrp = NULL;
423}
424
425static inline int is_cgroup_event(struct perf_event *event)
426{
427 return event->cgrp != NULL;
428}
429
430static inline u64 perf_cgroup_event_time(struct perf_event *event)
431{
432 struct perf_cgroup_info *t;
433
434 t = per_cpu_ptr(event->cgrp->info, event->cpu);
435 return t->time;
436}
437
438static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
439{
440 struct perf_cgroup_info *info;
441 u64 now;
442
443 now = perf_clock();
444
445 info = this_cpu_ptr(cgrp->info);
446
447 info->time += now - info->timestamp;
448 info->timestamp = now;
449}
450
451static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
452{
453 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
454 if (cgrp_out)
455 __update_cgrp_time(cgrp_out);
456}
457
458static inline void update_cgrp_time_from_event(struct perf_event *event)
459{
3f7cce3c
SE
460 struct perf_cgroup *cgrp;
461
e5d1367f 462 /*
3f7cce3c
SE
463 * ensure we access cgroup data only when needed and
464 * when we know the cgroup is pinned (css_get)
e5d1367f 465 */
3f7cce3c 466 if (!is_cgroup_event(event))
e5d1367f
SE
467 return;
468
614e4c4e 469 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
470 /*
471 * Do not update time when cgroup is not active
472 */
473 if (cgrp == event->cgrp)
474 __update_cgrp_time(event->cgrp);
e5d1367f
SE
475}
476
477static inline void
3f7cce3c
SE
478perf_cgroup_set_timestamp(struct task_struct *task,
479 struct perf_event_context *ctx)
e5d1367f
SE
480{
481 struct perf_cgroup *cgrp;
482 struct perf_cgroup_info *info;
483
3f7cce3c
SE
484 /*
485 * ctx->lock held by caller
486 * ensure we do not access cgroup data
487 * unless we have the cgroup pinned (css_get)
488 */
489 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
490 return;
491
614e4c4e 492 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 493 info = this_cpu_ptr(cgrp->info);
3f7cce3c 494 info->timestamp = ctx->timestamp;
e5d1367f
SE
495}
496
497#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
498#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
499
500/*
501 * reschedule events based on the cgroup constraint of task.
502 *
503 * mode SWOUT : schedule out everything
504 * mode SWIN : schedule in based on cgroup for next
505 */
18ab2cd3 506static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
507{
508 struct perf_cpu_context *cpuctx;
509 struct pmu *pmu;
510 unsigned long flags;
511
512 /*
513 * disable interrupts to avoid geting nr_cgroup
514 * changes via __perf_event_disable(). Also
515 * avoids preemption.
516 */
517 local_irq_save(flags);
518
519 /*
520 * we reschedule only in the presence of cgroup
521 * constrained events.
522 */
e5d1367f
SE
523
524 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 525 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
526 if (cpuctx->unique_pmu != pmu)
527 continue; /* ensure we process each cpuctx once */
e5d1367f 528
e5d1367f
SE
529 /*
530 * perf_cgroup_events says at least one
531 * context on this CPU has cgroup events.
532 *
533 * ctx->nr_cgroups reports the number of cgroup
534 * events for a context.
535 */
536 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
537 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
538 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
539
540 if (mode & PERF_CGROUP_SWOUT) {
541 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
542 /*
543 * must not be done before ctxswout due
544 * to event_filter_match() in event_sched_out()
545 */
546 cpuctx->cgrp = NULL;
547 }
548
549 if (mode & PERF_CGROUP_SWIN) {
e566b76e 550 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
551 /*
552 * set cgrp before ctxsw in to allow
553 * event_filter_match() to not have to pass
554 * task around
614e4c4e
SE
555 * we pass the cpuctx->ctx to perf_cgroup_from_task()
556 * because cgorup events are only per-cpu
e5d1367f 557 */
614e4c4e 558 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
559 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
560 }
facc4307
PZ
561 perf_pmu_enable(cpuctx->ctx.pmu);
562 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 563 }
e5d1367f
SE
564 }
565
e5d1367f
SE
566 local_irq_restore(flags);
567}
568
a8d757ef
SE
569static inline void perf_cgroup_sched_out(struct task_struct *task,
570 struct task_struct *next)
e5d1367f 571{
a8d757ef
SE
572 struct perf_cgroup *cgrp1;
573 struct perf_cgroup *cgrp2 = NULL;
574
ddaaf4e2 575 rcu_read_lock();
a8d757ef
SE
576 /*
577 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
578 * we do not need to pass the ctx here because we know
579 * we are holding the rcu lock
a8d757ef 580 */
614e4c4e 581 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 582 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
583
584 /*
585 * only schedule out current cgroup events if we know
586 * that we are switching to a different cgroup. Otherwise,
587 * do no touch the cgroup events.
588 */
589 if (cgrp1 != cgrp2)
590 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
591
592 rcu_read_unlock();
e5d1367f
SE
593}
594
a8d757ef
SE
595static inline void perf_cgroup_sched_in(struct task_struct *prev,
596 struct task_struct *task)
e5d1367f 597{
a8d757ef
SE
598 struct perf_cgroup *cgrp1;
599 struct perf_cgroup *cgrp2 = NULL;
600
ddaaf4e2 601 rcu_read_lock();
a8d757ef
SE
602 /*
603 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
604 * we do not need to pass the ctx here because we know
605 * we are holding the rcu lock
a8d757ef 606 */
614e4c4e 607 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 608 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
609
610 /*
611 * only need to schedule in cgroup events if we are changing
612 * cgroup during ctxsw. Cgroup events were not scheduled
613 * out of ctxsw out if that was not the case.
614 */
615 if (cgrp1 != cgrp2)
616 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
617
618 rcu_read_unlock();
e5d1367f
SE
619}
620
621static inline int perf_cgroup_connect(int fd, struct perf_event *event,
622 struct perf_event_attr *attr,
623 struct perf_event *group_leader)
624{
625 struct perf_cgroup *cgrp;
626 struct cgroup_subsys_state *css;
2903ff01
AV
627 struct fd f = fdget(fd);
628 int ret = 0;
e5d1367f 629
2903ff01 630 if (!f.file)
e5d1367f
SE
631 return -EBADF;
632
b583043e 633 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 634 &perf_event_cgrp_subsys);
3db272c0
LZ
635 if (IS_ERR(css)) {
636 ret = PTR_ERR(css);
637 goto out;
638 }
e5d1367f
SE
639
640 cgrp = container_of(css, struct perf_cgroup, css);
641 event->cgrp = cgrp;
642
643 /*
644 * all events in a group must monitor
645 * the same cgroup because a task belongs
646 * to only one perf cgroup at a time
647 */
648 if (group_leader && group_leader->cgrp != cgrp) {
649 perf_detach_cgroup(event);
650 ret = -EINVAL;
e5d1367f 651 }
3db272c0 652out:
2903ff01 653 fdput(f);
e5d1367f
SE
654 return ret;
655}
656
657static inline void
658perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
659{
660 struct perf_cgroup_info *t;
661 t = per_cpu_ptr(event->cgrp->info, event->cpu);
662 event->shadow_ctx_time = now - t->timestamp;
663}
664
665static inline void
666perf_cgroup_defer_enabled(struct perf_event *event)
667{
668 /*
669 * when the current task's perf cgroup does not match
670 * the event's, we need to remember to call the
671 * perf_mark_enable() function the first time a task with
672 * a matching perf cgroup is scheduled in.
673 */
674 if (is_cgroup_event(event) && !perf_cgroup_match(event))
675 event->cgrp_defer_enabled = 1;
676}
677
678static inline void
679perf_cgroup_mark_enabled(struct perf_event *event,
680 struct perf_event_context *ctx)
681{
682 struct perf_event *sub;
683 u64 tstamp = perf_event_time(event);
684
685 if (!event->cgrp_defer_enabled)
686 return;
687
688 event->cgrp_defer_enabled = 0;
689
690 event->tstamp_enabled = tstamp - event->total_time_enabled;
691 list_for_each_entry(sub, &event->sibling_list, group_entry) {
692 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
693 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
694 sub->cgrp_defer_enabled = 0;
695 }
696 }
697}
698#else /* !CONFIG_CGROUP_PERF */
699
700static inline bool
701perf_cgroup_match(struct perf_event *event)
702{
703 return true;
704}
705
706static inline void perf_detach_cgroup(struct perf_event *event)
707{}
708
709static inline int is_cgroup_event(struct perf_event *event)
710{
711 return 0;
712}
713
714static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
715{
716 return 0;
717}
718
719static inline void update_cgrp_time_from_event(struct perf_event *event)
720{
721}
722
723static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
724{
725}
726
a8d757ef
SE
727static inline void perf_cgroup_sched_out(struct task_struct *task,
728 struct task_struct *next)
e5d1367f
SE
729{
730}
731
a8d757ef
SE
732static inline void perf_cgroup_sched_in(struct task_struct *prev,
733 struct task_struct *task)
e5d1367f
SE
734{
735}
736
737static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
738 struct perf_event_attr *attr,
739 struct perf_event *group_leader)
740{
741 return -EINVAL;
742}
743
744static inline void
3f7cce3c
SE
745perf_cgroup_set_timestamp(struct task_struct *task,
746 struct perf_event_context *ctx)
e5d1367f
SE
747{
748}
749
750void
751perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
752{
753}
754
755static inline void
756perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
757{
758}
759
760static inline u64 perf_cgroup_event_time(struct perf_event *event)
761{
762 return 0;
763}
764
765static inline void
766perf_cgroup_defer_enabled(struct perf_event *event)
767{
768}
769
770static inline void
771perf_cgroup_mark_enabled(struct perf_event *event,
772 struct perf_event_context *ctx)
773{
774}
775#endif
776
9e630205
SE
777/*
778 * set default to be dependent on timer tick just
779 * like original code
780 */
781#define PERF_CPU_HRTIMER (1000 / HZ)
782/*
783 * function must be called with interrupts disbled
784 */
272325c4 785static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
786{
787 struct perf_cpu_context *cpuctx;
9e630205
SE
788 int rotations = 0;
789
790 WARN_ON(!irqs_disabled());
791
792 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
793 rotations = perf_rotate_context(cpuctx);
794
4cfafd30
PZ
795 raw_spin_lock(&cpuctx->hrtimer_lock);
796 if (rotations)
9e630205 797 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
798 else
799 cpuctx->hrtimer_active = 0;
800 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 801
4cfafd30 802 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
803}
804
272325c4 805static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 806{
272325c4 807 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 808 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 809 u64 interval;
9e630205
SE
810
811 /* no multiplexing needed for SW PMU */
812 if (pmu->task_ctx_nr == perf_sw_context)
813 return;
814
62b85639
SE
815 /*
816 * check default is sane, if not set then force to
817 * default interval (1/tick)
818 */
272325c4
PZ
819 interval = pmu->hrtimer_interval_ms;
820 if (interval < 1)
821 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 822
272325c4 823 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 824
4cfafd30
PZ
825 raw_spin_lock_init(&cpuctx->hrtimer_lock);
826 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 827 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
828}
829
272325c4 830static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 831{
272325c4 832 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 833 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 834 unsigned long flags;
9e630205
SE
835
836 /* not for SW PMU */
837 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 838 return 0;
9e630205 839
4cfafd30
PZ
840 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
841 if (!cpuctx->hrtimer_active) {
842 cpuctx->hrtimer_active = 1;
843 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
844 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
845 }
846 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 847
272325c4 848 return 0;
9e630205
SE
849}
850
33696fc0 851void perf_pmu_disable(struct pmu *pmu)
9e35ad38 852{
33696fc0
PZ
853 int *count = this_cpu_ptr(pmu->pmu_disable_count);
854 if (!(*count)++)
855 pmu->pmu_disable(pmu);
9e35ad38 856}
9e35ad38 857
33696fc0 858void perf_pmu_enable(struct pmu *pmu)
9e35ad38 859{
33696fc0
PZ
860 int *count = this_cpu_ptr(pmu->pmu_disable_count);
861 if (!--(*count))
862 pmu->pmu_enable(pmu);
9e35ad38 863}
9e35ad38 864
2fde4f94 865static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
866
867/*
2fde4f94
MR
868 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
869 * perf_event_task_tick() are fully serialized because they're strictly cpu
870 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
871 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 872 */
2fde4f94 873static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 874{
2fde4f94 875 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 876
e9d2b064 877 WARN_ON(!irqs_disabled());
b5ab4cd5 878
2fde4f94
MR
879 WARN_ON(!list_empty(&ctx->active_ctx_list));
880
881 list_add(&ctx->active_ctx_list, head);
882}
883
884static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
885{
886 WARN_ON(!irqs_disabled());
887
888 WARN_ON(list_empty(&ctx->active_ctx_list));
889
890 list_del_init(&ctx->active_ctx_list);
9e35ad38 891}
9e35ad38 892
cdd6c482 893static void get_ctx(struct perf_event_context *ctx)
a63eaf34 894{
e5289d4a 895 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
896}
897
4af57ef2
YZ
898static void free_ctx(struct rcu_head *head)
899{
900 struct perf_event_context *ctx;
901
902 ctx = container_of(head, struct perf_event_context, rcu_head);
903 kfree(ctx->task_ctx_data);
904 kfree(ctx);
905}
906
cdd6c482 907static void put_ctx(struct perf_event_context *ctx)
a63eaf34 908{
564c2b21
PM
909 if (atomic_dec_and_test(&ctx->refcount)) {
910 if (ctx->parent_ctx)
911 put_ctx(ctx->parent_ctx);
c93f7669
PM
912 if (ctx->task)
913 put_task_struct(ctx->task);
4af57ef2 914 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 915 }
a63eaf34
PM
916}
917
f63a8daa
PZ
918/*
919 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
920 * perf_pmu_migrate_context() we need some magic.
921 *
922 * Those places that change perf_event::ctx will hold both
923 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
924 *
8b10c5e2
PZ
925 * Lock ordering is by mutex address. There are two other sites where
926 * perf_event_context::mutex nests and those are:
927 *
928 * - perf_event_exit_task_context() [ child , 0 ]
929 * __perf_event_exit_task()
930 * sync_child_event()
931 * put_event() [ parent, 1 ]
932 *
933 * - perf_event_init_context() [ parent, 0 ]
934 * inherit_task_group()
935 * inherit_group()
936 * inherit_event()
937 * perf_event_alloc()
938 * perf_init_event()
939 * perf_try_init_event() [ child , 1 ]
940 *
941 * While it appears there is an obvious deadlock here -- the parent and child
942 * nesting levels are inverted between the two. This is in fact safe because
943 * life-time rules separate them. That is an exiting task cannot fork, and a
944 * spawning task cannot (yet) exit.
945 *
946 * But remember that that these are parent<->child context relations, and
947 * migration does not affect children, therefore these two orderings should not
948 * interact.
f63a8daa
PZ
949 *
950 * The change in perf_event::ctx does not affect children (as claimed above)
951 * because the sys_perf_event_open() case will install a new event and break
952 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
953 * concerned with cpuctx and that doesn't have children.
954 *
955 * The places that change perf_event::ctx will issue:
956 *
957 * perf_remove_from_context();
958 * synchronize_rcu();
959 * perf_install_in_context();
960 *
961 * to affect the change. The remove_from_context() + synchronize_rcu() should
962 * quiesce the event, after which we can install it in the new location. This
963 * means that only external vectors (perf_fops, prctl) can perturb the event
964 * while in transit. Therefore all such accessors should also acquire
965 * perf_event_context::mutex to serialize against this.
966 *
967 * However; because event->ctx can change while we're waiting to acquire
968 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
969 * function.
970 *
971 * Lock order:
972 * task_struct::perf_event_mutex
973 * perf_event_context::mutex
974 * perf_event_context::lock
975 * perf_event::child_mutex;
976 * perf_event::mmap_mutex
977 * mmap_sem
978 */
a83fe28e
PZ
979static struct perf_event_context *
980perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
981{
982 struct perf_event_context *ctx;
983
984again:
985 rcu_read_lock();
986 ctx = ACCESS_ONCE(event->ctx);
987 if (!atomic_inc_not_zero(&ctx->refcount)) {
988 rcu_read_unlock();
989 goto again;
990 }
991 rcu_read_unlock();
992
a83fe28e 993 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
994 if (event->ctx != ctx) {
995 mutex_unlock(&ctx->mutex);
996 put_ctx(ctx);
997 goto again;
998 }
999
1000 return ctx;
1001}
1002
a83fe28e
PZ
1003static inline struct perf_event_context *
1004perf_event_ctx_lock(struct perf_event *event)
1005{
1006 return perf_event_ctx_lock_nested(event, 0);
1007}
1008
f63a8daa
PZ
1009static void perf_event_ctx_unlock(struct perf_event *event,
1010 struct perf_event_context *ctx)
1011{
1012 mutex_unlock(&ctx->mutex);
1013 put_ctx(ctx);
1014}
1015
211de6eb
PZ
1016/*
1017 * This must be done under the ctx->lock, such as to serialize against
1018 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1019 * calling scheduler related locks and ctx->lock nests inside those.
1020 */
1021static __must_check struct perf_event_context *
1022unclone_ctx(struct perf_event_context *ctx)
71a851b4 1023{
211de6eb
PZ
1024 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1025
1026 lockdep_assert_held(&ctx->lock);
1027
1028 if (parent_ctx)
71a851b4 1029 ctx->parent_ctx = NULL;
5a3126d4 1030 ctx->generation++;
211de6eb
PZ
1031
1032 return parent_ctx;
71a851b4
PZ
1033}
1034
6844c09d
ACM
1035static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1036{
1037 /*
1038 * only top level events have the pid namespace they were created in
1039 */
1040 if (event->parent)
1041 event = event->parent;
1042
1043 return task_tgid_nr_ns(p, event->ns);
1044}
1045
1046static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1047{
1048 /*
1049 * only top level events have the pid namespace they were created in
1050 */
1051 if (event->parent)
1052 event = event->parent;
1053
1054 return task_pid_nr_ns(p, event->ns);
1055}
1056
7f453c24 1057/*
cdd6c482 1058 * If we inherit events we want to return the parent event id
7f453c24
PZ
1059 * to userspace.
1060 */
cdd6c482 1061static u64 primary_event_id(struct perf_event *event)
7f453c24 1062{
cdd6c482 1063 u64 id = event->id;
7f453c24 1064
cdd6c482
IM
1065 if (event->parent)
1066 id = event->parent->id;
7f453c24
PZ
1067
1068 return id;
1069}
1070
25346b93 1071/*
cdd6c482 1072 * Get the perf_event_context for a task and lock it.
25346b93
PM
1073 * This has to cope with with the fact that until it is locked,
1074 * the context could get moved to another task.
1075 */
cdd6c482 1076static struct perf_event_context *
8dc85d54 1077perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1078{
cdd6c482 1079 struct perf_event_context *ctx;
25346b93 1080
9ed6060d 1081retry:
058ebd0e
PZ
1082 /*
1083 * One of the few rules of preemptible RCU is that one cannot do
1084 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1085 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1086 * rcu_read_unlock_special().
1087 *
1088 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1089 * side critical section has interrupts disabled.
058ebd0e 1090 */
2fd59077 1091 local_irq_save(*flags);
058ebd0e 1092 rcu_read_lock();
8dc85d54 1093 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1094 if (ctx) {
1095 /*
1096 * If this context is a clone of another, it might
1097 * get swapped for another underneath us by
cdd6c482 1098 * perf_event_task_sched_out, though the
25346b93
PM
1099 * rcu_read_lock() protects us from any context
1100 * getting freed. Lock the context and check if it
1101 * got swapped before we could get the lock, and retry
1102 * if so. If we locked the right context, then it
1103 * can't get swapped on us any more.
1104 */
2fd59077 1105 raw_spin_lock(&ctx->lock);
8dc85d54 1106 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1107 raw_spin_unlock(&ctx->lock);
058ebd0e 1108 rcu_read_unlock();
2fd59077 1109 local_irq_restore(*flags);
25346b93
PM
1110 goto retry;
1111 }
b49a9e7e
PZ
1112
1113 if (!atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1114 raw_spin_unlock(&ctx->lock);
b49a9e7e
PZ
1115 ctx = NULL;
1116 }
25346b93
PM
1117 }
1118 rcu_read_unlock();
2fd59077
PM
1119 if (!ctx)
1120 local_irq_restore(*flags);
25346b93
PM
1121 return ctx;
1122}
1123
1124/*
1125 * Get the context for a task and increment its pin_count so it
1126 * can't get swapped to another task. This also increments its
1127 * reference count so that the context can't get freed.
1128 */
8dc85d54
PZ
1129static struct perf_event_context *
1130perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1131{
cdd6c482 1132 struct perf_event_context *ctx;
25346b93
PM
1133 unsigned long flags;
1134
8dc85d54 1135 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1136 if (ctx) {
1137 ++ctx->pin_count;
e625cce1 1138 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1139 }
1140 return ctx;
1141}
1142
cdd6c482 1143static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1144{
1145 unsigned long flags;
1146
e625cce1 1147 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1148 --ctx->pin_count;
e625cce1 1149 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1150}
1151
f67218c3
PZ
1152/*
1153 * Update the record of the current time in a context.
1154 */
1155static void update_context_time(struct perf_event_context *ctx)
1156{
1157 u64 now = perf_clock();
1158
1159 ctx->time += now - ctx->timestamp;
1160 ctx->timestamp = now;
1161}
1162
4158755d
SE
1163static u64 perf_event_time(struct perf_event *event)
1164{
1165 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1166
1167 if (is_cgroup_event(event))
1168 return perf_cgroup_event_time(event);
1169
4158755d
SE
1170 return ctx ? ctx->time : 0;
1171}
1172
f67218c3
PZ
1173/*
1174 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1175 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1176 */
1177static void update_event_times(struct perf_event *event)
1178{
1179 struct perf_event_context *ctx = event->ctx;
1180 u64 run_end;
1181
1182 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1183 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1184 return;
e5d1367f
SE
1185 /*
1186 * in cgroup mode, time_enabled represents
1187 * the time the event was enabled AND active
1188 * tasks were in the monitored cgroup. This is
1189 * independent of the activity of the context as
1190 * there may be a mix of cgroup and non-cgroup events.
1191 *
1192 * That is why we treat cgroup events differently
1193 * here.
1194 */
1195 if (is_cgroup_event(event))
46cd6a7f 1196 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1197 else if (ctx->is_active)
1198 run_end = ctx->time;
acd1d7c1
PZ
1199 else
1200 run_end = event->tstamp_stopped;
1201
1202 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1203
1204 if (event->state == PERF_EVENT_STATE_INACTIVE)
1205 run_end = event->tstamp_stopped;
1206 else
4158755d 1207 run_end = perf_event_time(event);
f67218c3
PZ
1208
1209 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1210
f67218c3
PZ
1211}
1212
96c21a46
PZ
1213/*
1214 * Update total_time_enabled and total_time_running for all events in a group.
1215 */
1216static void update_group_times(struct perf_event *leader)
1217{
1218 struct perf_event *event;
1219
1220 update_event_times(leader);
1221 list_for_each_entry(event, &leader->sibling_list, group_entry)
1222 update_event_times(event);
1223}
1224
889ff015
FW
1225static struct list_head *
1226ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1227{
1228 if (event->attr.pinned)
1229 return &ctx->pinned_groups;
1230 else
1231 return &ctx->flexible_groups;
1232}
1233
fccc714b 1234/*
cdd6c482 1235 * Add a event from the lists for its context.
fccc714b
PZ
1236 * Must be called with ctx->mutex and ctx->lock held.
1237 */
04289bb9 1238static void
cdd6c482 1239list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1240{
c994d613
PZ
1241 lockdep_assert_held(&ctx->lock);
1242
8a49542c
PZ
1243 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1244 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1245
1246 /*
8a49542c
PZ
1247 * If we're a stand alone event or group leader, we go to the context
1248 * list, group events are kept attached to the group so that
1249 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1250 */
8a49542c 1251 if (event->group_leader == event) {
889ff015
FW
1252 struct list_head *list;
1253
d6f962b5
FW
1254 if (is_software_event(event))
1255 event->group_flags |= PERF_GROUP_SOFTWARE;
1256
889ff015
FW
1257 list = ctx_group_list(event, ctx);
1258 list_add_tail(&event->group_entry, list);
5c148194 1259 }
592903cd 1260
08309379 1261 if (is_cgroup_event(event))
e5d1367f 1262 ctx->nr_cgroups++;
e5d1367f 1263
cdd6c482
IM
1264 list_add_rcu(&event->event_entry, &ctx->event_list);
1265 ctx->nr_events++;
1266 if (event->attr.inherit_stat)
bfbd3381 1267 ctx->nr_stat++;
5a3126d4
PZ
1268
1269 ctx->generation++;
04289bb9
IM
1270}
1271
0231bb53
JO
1272/*
1273 * Initialize event state based on the perf_event_attr::disabled.
1274 */
1275static inline void perf_event__state_init(struct perf_event *event)
1276{
1277 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1278 PERF_EVENT_STATE_INACTIVE;
1279}
1280
a723968c 1281static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1282{
1283 int entry = sizeof(u64); /* value */
1284 int size = 0;
1285 int nr = 1;
1286
1287 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1288 size += sizeof(u64);
1289
1290 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1291 size += sizeof(u64);
1292
1293 if (event->attr.read_format & PERF_FORMAT_ID)
1294 entry += sizeof(u64);
1295
1296 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1297 nr += nr_siblings;
c320c7b7
ACM
1298 size += sizeof(u64);
1299 }
1300
1301 size += entry * nr;
1302 event->read_size = size;
1303}
1304
a723968c 1305static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1306{
1307 struct perf_sample_data *data;
c320c7b7
ACM
1308 u16 size = 0;
1309
c320c7b7
ACM
1310 if (sample_type & PERF_SAMPLE_IP)
1311 size += sizeof(data->ip);
1312
6844c09d
ACM
1313 if (sample_type & PERF_SAMPLE_ADDR)
1314 size += sizeof(data->addr);
1315
1316 if (sample_type & PERF_SAMPLE_PERIOD)
1317 size += sizeof(data->period);
1318
c3feedf2
AK
1319 if (sample_type & PERF_SAMPLE_WEIGHT)
1320 size += sizeof(data->weight);
1321
6844c09d
ACM
1322 if (sample_type & PERF_SAMPLE_READ)
1323 size += event->read_size;
1324
d6be9ad6
SE
1325 if (sample_type & PERF_SAMPLE_DATA_SRC)
1326 size += sizeof(data->data_src.val);
1327
fdfbbd07
AK
1328 if (sample_type & PERF_SAMPLE_TRANSACTION)
1329 size += sizeof(data->txn);
1330
6844c09d
ACM
1331 event->header_size = size;
1332}
1333
a723968c
PZ
1334/*
1335 * Called at perf_event creation and when events are attached/detached from a
1336 * group.
1337 */
1338static void perf_event__header_size(struct perf_event *event)
1339{
1340 __perf_event_read_size(event,
1341 event->group_leader->nr_siblings);
1342 __perf_event_header_size(event, event->attr.sample_type);
1343}
1344
6844c09d
ACM
1345static void perf_event__id_header_size(struct perf_event *event)
1346{
1347 struct perf_sample_data *data;
1348 u64 sample_type = event->attr.sample_type;
1349 u16 size = 0;
1350
c320c7b7
ACM
1351 if (sample_type & PERF_SAMPLE_TID)
1352 size += sizeof(data->tid_entry);
1353
1354 if (sample_type & PERF_SAMPLE_TIME)
1355 size += sizeof(data->time);
1356
ff3d527c
AH
1357 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1358 size += sizeof(data->id);
1359
c320c7b7
ACM
1360 if (sample_type & PERF_SAMPLE_ID)
1361 size += sizeof(data->id);
1362
1363 if (sample_type & PERF_SAMPLE_STREAM_ID)
1364 size += sizeof(data->stream_id);
1365
1366 if (sample_type & PERF_SAMPLE_CPU)
1367 size += sizeof(data->cpu_entry);
1368
6844c09d 1369 event->id_header_size = size;
c320c7b7
ACM
1370}
1371
a723968c
PZ
1372static bool perf_event_validate_size(struct perf_event *event)
1373{
1374 /*
1375 * The values computed here will be over-written when we actually
1376 * attach the event.
1377 */
1378 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1379 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1380 perf_event__id_header_size(event);
1381
1382 /*
1383 * Sum the lot; should not exceed the 64k limit we have on records.
1384 * Conservative limit to allow for callchains and other variable fields.
1385 */
1386 if (event->read_size + event->header_size +
1387 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1388 return false;
1389
1390 return true;
1391}
1392
8a49542c
PZ
1393static void perf_group_attach(struct perf_event *event)
1394{
c320c7b7 1395 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1396
74c3337c
PZ
1397 /*
1398 * We can have double attach due to group movement in perf_event_open.
1399 */
1400 if (event->attach_state & PERF_ATTACH_GROUP)
1401 return;
1402
8a49542c
PZ
1403 event->attach_state |= PERF_ATTACH_GROUP;
1404
1405 if (group_leader == event)
1406 return;
1407
652884fe
PZ
1408 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1409
8a49542c
PZ
1410 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1411 !is_software_event(event))
1412 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1413
1414 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1415 group_leader->nr_siblings++;
c320c7b7
ACM
1416
1417 perf_event__header_size(group_leader);
1418
1419 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1420 perf_event__header_size(pos);
8a49542c
PZ
1421}
1422
a63eaf34 1423/*
cdd6c482 1424 * Remove a event from the lists for its context.
fccc714b 1425 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1426 */
04289bb9 1427static void
cdd6c482 1428list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1429{
68cacd29 1430 struct perf_cpu_context *cpuctx;
652884fe
PZ
1431
1432 WARN_ON_ONCE(event->ctx != ctx);
1433 lockdep_assert_held(&ctx->lock);
1434
8a49542c
PZ
1435 /*
1436 * We can have double detach due to exit/hot-unplug + close.
1437 */
1438 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1439 return;
8a49542c
PZ
1440
1441 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1442
68cacd29 1443 if (is_cgroup_event(event)) {
e5d1367f 1444 ctx->nr_cgroups--;
70a01657
PZ
1445 /*
1446 * Because cgroup events are always per-cpu events, this will
1447 * always be called from the right CPU.
1448 */
68cacd29
SE
1449 cpuctx = __get_cpu_context(ctx);
1450 /*
70a01657
PZ
1451 * If there are no more cgroup events then clear cgrp to avoid
1452 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1453 */
1454 if (!ctx->nr_cgroups)
1455 cpuctx->cgrp = NULL;
1456 }
e5d1367f 1457
cdd6c482
IM
1458 ctx->nr_events--;
1459 if (event->attr.inherit_stat)
bfbd3381 1460 ctx->nr_stat--;
8bc20959 1461
cdd6c482 1462 list_del_rcu(&event->event_entry);
04289bb9 1463
8a49542c
PZ
1464 if (event->group_leader == event)
1465 list_del_init(&event->group_entry);
5c148194 1466
96c21a46 1467 update_group_times(event);
b2e74a26
SE
1468
1469 /*
1470 * If event was in error state, then keep it
1471 * that way, otherwise bogus counts will be
1472 * returned on read(). The only way to get out
1473 * of error state is by explicit re-enabling
1474 * of the event
1475 */
1476 if (event->state > PERF_EVENT_STATE_OFF)
1477 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1478
1479 ctx->generation++;
050735b0
PZ
1480}
1481
8a49542c 1482static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1483{
1484 struct perf_event *sibling, *tmp;
8a49542c
PZ
1485 struct list_head *list = NULL;
1486
1487 /*
1488 * We can have double detach due to exit/hot-unplug + close.
1489 */
1490 if (!(event->attach_state & PERF_ATTACH_GROUP))
1491 return;
1492
1493 event->attach_state &= ~PERF_ATTACH_GROUP;
1494
1495 /*
1496 * If this is a sibling, remove it from its group.
1497 */
1498 if (event->group_leader != event) {
1499 list_del_init(&event->group_entry);
1500 event->group_leader->nr_siblings--;
c320c7b7 1501 goto out;
8a49542c
PZ
1502 }
1503
1504 if (!list_empty(&event->group_entry))
1505 list = &event->group_entry;
2e2af50b 1506
04289bb9 1507 /*
cdd6c482
IM
1508 * If this was a group event with sibling events then
1509 * upgrade the siblings to singleton events by adding them
8a49542c 1510 * to whatever list we are on.
04289bb9 1511 */
cdd6c482 1512 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1513 if (list)
1514 list_move_tail(&sibling->group_entry, list);
04289bb9 1515 sibling->group_leader = sibling;
d6f962b5
FW
1516
1517 /* Inherit group flags from the previous leader */
1518 sibling->group_flags = event->group_flags;
652884fe
PZ
1519
1520 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1521 }
c320c7b7
ACM
1522
1523out:
1524 perf_event__header_size(event->group_leader);
1525
1526 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1527 perf_event__header_size(tmp);
04289bb9
IM
1528}
1529
fadfe7be
JO
1530/*
1531 * User event without the task.
1532 */
1533static bool is_orphaned_event(struct perf_event *event)
1534{
1535 return event && !is_kernel_event(event) && !event->owner;
1536}
1537
1538/*
1539 * Event has a parent but parent's task finished and it's
1540 * alive only because of children holding refference.
1541 */
1542static bool is_orphaned_child(struct perf_event *event)
1543{
1544 return is_orphaned_event(event->parent);
1545}
1546
1547static void orphans_remove_work(struct work_struct *work);
1548
1549static void schedule_orphans_remove(struct perf_event_context *ctx)
1550{
1551 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1552 return;
1553
1554 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1555 get_ctx(ctx);
1556 ctx->orphans_remove_sched = true;
1557 }
1558}
1559
1560static int __init perf_workqueue_init(void)
1561{
1562 perf_wq = create_singlethread_workqueue("perf");
1563 WARN(!perf_wq, "failed to create perf workqueue\n");
1564 return perf_wq ? 0 : -1;
1565}
1566
1567core_initcall(perf_workqueue_init);
1568
66eb579e
MR
1569static inline int pmu_filter_match(struct perf_event *event)
1570{
1571 struct pmu *pmu = event->pmu;
1572 return pmu->filter_match ? pmu->filter_match(event) : 1;
1573}
1574
fa66f07a
SE
1575static inline int
1576event_filter_match(struct perf_event *event)
1577{
e5d1367f 1578 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1579 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1580}
1581
9ffcfa6f
SE
1582static void
1583event_sched_out(struct perf_event *event,
3b6f9e5c 1584 struct perf_cpu_context *cpuctx,
cdd6c482 1585 struct perf_event_context *ctx)
3b6f9e5c 1586{
4158755d 1587 u64 tstamp = perf_event_time(event);
fa66f07a 1588 u64 delta;
652884fe
PZ
1589
1590 WARN_ON_ONCE(event->ctx != ctx);
1591 lockdep_assert_held(&ctx->lock);
1592
fa66f07a
SE
1593 /*
1594 * An event which could not be activated because of
1595 * filter mismatch still needs to have its timings
1596 * maintained, otherwise bogus information is return
1597 * via read() for time_enabled, time_running:
1598 */
1599 if (event->state == PERF_EVENT_STATE_INACTIVE
1600 && !event_filter_match(event)) {
e5d1367f 1601 delta = tstamp - event->tstamp_stopped;
fa66f07a 1602 event->tstamp_running += delta;
4158755d 1603 event->tstamp_stopped = tstamp;
fa66f07a
SE
1604 }
1605
cdd6c482 1606 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1607 return;
3b6f9e5c 1608
44377277
AS
1609 perf_pmu_disable(event->pmu);
1610
cdd6c482
IM
1611 event->state = PERF_EVENT_STATE_INACTIVE;
1612 if (event->pending_disable) {
1613 event->pending_disable = 0;
1614 event->state = PERF_EVENT_STATE_OFF;
970892a9 1615 }
4158755d 1616 event->tstamp_stopped = tstamp;
a4eaf7f1 1617 event->pmu->del(event, 0);
cdd6c482 1618 event->oncpu = -1;
3b6f9e5c 1619
cdd6c482 1620 if (!is_software_event(event))
3b6f9e5c 1621 cpuctx->active_oncpu--;
2fde4f94
MR
1622 if (!--ctx->nr_active)
1623 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1624 if (event->attr.freq && event->attr.sample_freq)
1625 ctx->nr_freq--;
cdd6c482 1626 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1627 cpuctx->exclusive = 0;
44377277 1628
fadfe7be
JO
1629 if (is_orphaned_child(event))
1630 schedule_orphans_remove(ctx);
1631
44377277 1632 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1633}
1634
d859e29f 1635static void
cdd6c482 1636group_sched_out(struct perf_event *group_event,
d859e29f 1637 struct perf_cpu_context *cpuctx,
cdd6c482 1638 struct perf_event_context *ctx)
d859e29f 1639{
cdd6c482 1640 struct perf_event *event;
fa66f07a 1641 int state = group_event->state;
d859e29f 1642
cdd6c482 1643 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1644
1645 /*
1646 * Schedule out siblings (if any):
1647 */
cdd6c482
IM
1648 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1649 event_sched_out(event, cpuctx, ctx);
d859e29f 1650
fa66f07a 1651 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1652 cpuctx->exclusive = 0;
1653}
1654
46ce0fe9
PZ
1655struct remove_event {
1656 struct perf_event *event;
1657 bool detach_group;
1658};
1659
0017960f
PZ
1660static void ___perf_remove_from_context(void *info)
1661{
1662 struct remove_event *re = info;
1663 struct perf_event *event = re->event;
1664 struct perf_event_context *ctx = event->ctx;
1665
1666 if (re->detach_group)
1667 perf_group_detach(event);
1668 list_del_event(event, ctx);
1669}
1670
0793a61d 1671/*
cdd6c482 1672 * Cross CPU call to remove a performance event
0793a61d 1673 *
cdd6c482 1674 * We disable the event on the hardware level first. After that we
0793a61d
TG
1675 * remove it from the context list.
1676 */
fe4b04fa 1677static int __perf_remove_from_context(void *info)
0793a61d 1678{
46ce0fe9
PZ
1679 struct remove_event *re = info;
1680 struct perf_event *event = re->event;
cdd6c482 1681 struct perf_event_context *ctx = event->ctx;
108b02cf 1682 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1683
e625cce1 1684 raw_spin_lock(&ctx->lock);
cdd6c482 1685 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1686 if (re->detach_group)
1687 perf_group_detach(event);
cdd6c482 1688 list_del_event(event, ctx);
64ce3126
PZ
1689 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1690 ctx->is_active = 0;
1691 cpuctx->task_ctx = NULL;
1692 }
e625cce1 1693 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1694
1695 return 0;
0793a61d
TG
1696}
1697
0793a61d 1698/*
cdd6c482 1699 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1700 *
cdd6c482 1701 * CPU events are removed with a smp call. For task events we only
0793a61d 1702 * call when the task is on a CPU.
c93f7669 1703 *
cdd6c482
IM
1704 * If event->ctx is a cloned context, callers must make sure that
1705 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1706 * remains valid. This is OK when called from perf_release since
1707 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1708 * When called from perf_event_exit_task, it's OK because the
c93f7669 1709 * context has been detached from its task.
0793a61d 1710 */
46ce0fe9 1711static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1712{
cdd6c482 1713 struct perf_event_context *ctx = event->ctx;
46ce0fe9
PZ
1714 struct remove_event re = {
1715 .event = event,
1716 .detach_group = detach_group,
1717 };
0793a61d 1718
fe4b04fa
PZ
1719 lockdep_assert_held(&ctx->mutex);
1720
0017960f
PZ
1721 event_function_call(event, __perf_remove_from_context,
1722 ___perf_remove_from_context, &re);
0793a61d
TG
1723}
1724
d859e29f 1725/*
cdd6c482 1726 * Cross CPU call to disable a performance event
d859e29f 1727 */
500ad2d8 1728int __perf_event_disable(void *info)
d859e29f 1729{
cdd6c482 1730 struct perf_event *event = info;
cdd6c482 1731 struct perf_event_context *ctx = event->ctx;
108b02cf 1732 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1733
1734 /*
cdd6c482
IM
1735 * If this is a per-task event, need to check whether this
1736 * event's task is the current task on this cpu.
fe4b04fa
PZ
1737 *
1738 * Can trigger due to concurrent perf_event_context_sched_out()
1739 * flipping contexts around.
d859e29f 1740 */
665c2142 1741 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1742 return -EINVAL;
d859e29f 1743
e625cce1 1744 raw_spin_lock(&ctx->lock);
d859e29f
PM
1745
1746 /*
cdd6c482 1747 * If the event is on, turn it off.
d859e29f
PM
1748 * If it is in error state, leave it in error state.
1749 */
cdd6c482 1750 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1751 update_context_time(ctx);
e5d1367f 1752 update_cgrp_time_from_event(event);
cdd6c482
IM
1753 update_group_times(event);
1754 if (event == event->group_leader)
1755 group_sched_out(event, cpuctx, ctx);
d859e29f 1756 else
cdd6c482
IM
1757 event_sched_out(event, cpuctx, ctx);
1758 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1759 }
1760
e625cce1 1761 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1762
1763 return 0;
d859e29f
PM
1764}
1765
7b648018
PZ
1766void ___perf_event_disable(void *info)
1767{
1768 struct perf_event *event = info;
1769
1770 /*
1771 * Since we have the lock this context can't be scheduled
1772 * in, so we can change the state safely.
1773 */
1774 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1775 update_group_times(event);
1776 event->state = PERF_EVENT_STATE_OFF;
1777 }
1778}
1779
d859e29f 1780/*
cdd6c482 1781 * Disable a event.
c93f7669 1782 *
cdd6c482
IM
1783 * If event->ctx is a cloned context, callers must make sure that
1784 * every task struct that event->ctx->task could possibly point to
c93f7669 1785 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1786 * perf_event_for_each_child or perf_event_for_each because they
1787 * hold the top-level event's child_mutex, so any descendant that
1788 * goes to exit will block in sync_child_event.
1789 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1790 * is the current context on this CPU and preemption is disabled,
cdd6c482 1791 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1792 */
f63a8daa 1793static void _perf_event_disable(struct perf_event *event)
d859e29f 1794{
cdd6c482 1795 struct perf_event_context *ctx = event->ctx;
d859e29f 1796
e625cce1 1797 raw_spin_lock_irq(&ctx->lock);
7b648018 1798 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1799 raw_spin_unlock_irq(&ctx->lock);
7b648018 1800 return;
53cfbf59 1801 }
e625cce1 1802 raw_spin_unlock_irq(&ctx->lock);
7b648018
PZ
1803
1804 event_function_call(event, __perf_event_disable,
1805 ___perf_event_disable, event);
d859e29f 1806}
f63a8daa
PZ
1807
1808/*
1809 * Strictly speaking kernel users cannot create groups and therefore this
1810 * interface does not need the perf_event_ctx_lock() magic.
1811 */
1812void perf_event_disable(struct perf_event *event)
1813{
1814 struct perf_event_context *ctx;
1815
1816 ctx = perf_event_ctx_lock(event);
1817 _perf_event_disable(event);
1818 perf_event_ctx_unlock(event, ctx);
1819}
dcfce4a0 1820EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1821
e5d1367f
SE
1822static void perf_set_shadow_time(struct perf_event *event,
1823 struct perf_event_context *ctx,
1824 u64 tstamp)
1825{
1826 /*
1827 * use the correct time source for the time snapshot
1828 *
1829 * We could get by without this by leveraging the
1830 * fact that to get to this function, the caller
1831 * has most likely already called update_context_time()
1832 * and update_cgrp_time_xx() and thus both timestamp
1833 * are identical (or very close). Given that tstamp is,
1834 * already adjusted for cgroup, we could say that:
1835 * tstamp - ctx->timestamp
1836 * is equivalent to
1837 * tstamp - cgrp->timestamp.
1838 *
1839 * Then, in perf_output_read(), the calculation would
1840 * work with no changes because:
1841 * - event is guaranteed scheduled in
1842 * - no scheduled out in between
1843 * - thus the timestamp would be the same
1844 *
1845 * But this is a bit hairy.
1846 *
1847 * So instead, we have an explicit cgroup call to remain
1848 * within the time time source all along. We believe it
1849 * is cleaner and simpler to understand.
1850 */
1851 if (is_cgroup_event(event))
1852 perf_cgroup_set_shadow_time(event, tstamp);
1853 else
1854 event->shadow_ctx_time = tstamp - ctx->timestamp;
1855}
1856
4fe757dd
PZ
1857#define MAX_INTERRUPTS (~0ULL)
1858
1859static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1860static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1861
235c7fc7 1862static int
9ffcfa6f 1863event_sched_in(struct perf_event *event,
235c7fc7 1864 struct perf_cpu_context *cpuctx,
6e37738a 1865 struct perf_event_context *ctx)
235c7fc7 1866{
4158755d 1867 u64 tstamp = perf_event_time(event);
44377277 1868 int ret = 0;
4158755d 1869
63342411
PZ
1870 lockdep_assert_held(&ctx->lock);
1871
cdd6c482 1872 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1873 return 0;
1874
cdd6c482 1875 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1876 event->oncpu = smp_processor_id();
4fe757dd
PZ
1877
1878 /*
1879 * Unthrottle events, since we scheduled we might have missed several
1880 * ticks already, also for a heavily scheduling task there is little
1881 * guarantee it'll get a tick in a timely manner.
1882 */
1883 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1884 perf_log_throttle(event, 1);
1885 event->hw.interrupts = 0;
1886 }
1887
235c7fc7
IM
1888 /*
1889 * The new state must be visible before we turn it on in the hardware:
1890 */
1891 smp_wmb();
1892
44377277
AS
1893 perf_pmu_disable(event->pmu);
1894
72f669c0
SL
1895 perf_set_shadow_time(event, ctx, tstamp);
1896
ec0d7729
AS
1897 perf_log_itrace_start(event);
1898
a4eaf7f1 1899 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1900 event->state = PERF_EVENT_STATE_INACTIVE;
1901 event->oncpu = -1;
44377277
AS
1902 ret = -EAGAIN;
1903 goto out;
235c7fc7
IM
1904 }
1905
00a2916f
PZ
1906 event->tstamp_running += tstamp - event->tstamp_stopped;
1907
cdd6c482 1908 if (!is_software_event(event))
3b6f9e5c 1909 cpuctx->active_oncpu++;
2fde4f94
MR
1910 if (!ctx->nr_active++)
1911 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1912 if (event->attr.freq && event->attr.sample_freq)
1913 ctx->nr_freq++;
235c7fc7 1914
cdd6c482 1915 if (event->attr.exclusive)
3b6f9e5c
PM
1916 cpuctx->exclusive = 1;
1917
fadfe7be
JO
1918 if (is_orphaned_child(event))
1919 schedule_orphans_remove(ctx);
1920
44377277
AS
1921out:
1922 perf_pmu_enable(event->pmu);
1923
1924 return ret;
235c7fc7
IM
1925}
1926
6751b71e 1927static int
cdd6c482 1928group_sched_in(struct perf_event *group_event,
6751b71e 1929 struct perf_cpu_context *cpuctx,
6e37738a 1930 struct perf_event_context *ctx)
6751b71e 1931{
6bde9b6c 1932 struct perf_event *event, *partial_group = NULL;
4a234593 1933 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1934 u64 now = ctx->time;
1935 bool simulate = false;
6751b71e 1936
cdd6c482 1937 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1938 return 0;
1939
fbbe0701 1940 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1941
9ffcfa6f 1942 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1943 pmu->cancel_txn(pmu);
272325c4 1944 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1945 return -EAGAIN;
90151c35 1946 }
6751b71e
PM
1947
1948 /*
1949 * Schedule in siblings as one group (if any):
1950 */
cdd6c482 1951 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1952 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1953 partial_group = event;
6751b71e
PM
1954 goto group_error;
1955 }
1956 }
1957
9ffcfa6f 1958 if (!pmu->commit_txn(pmu))
6e85158c 1959 return 0;
9ffcfa6f 1960
6751b71e
PM
1961group_error:
1962 /*
1963 * Groups can be scheduled in as one unit only, so undo any
1964 * partial group before returning:
d7842da4
SE
1965 * The events up to the failed event are scheduled out normally,
1966 * tstamp_stopped will be updated.
1967 *
1968 * The failed events and the remaining siblings need to have
1969 * their timings updated as if they had gone thru event_sched_in()
1970 * and event_sched_out(). This is required to get consistent timings
1971 * across the group. This also takes care of the case where the group
1972 * could never be scheduled by ensuring tstamp_stopped is set to mark
1973 * the time the event was actually stopped, such that time delta
1974 * calculation in update_event_times() is correct.
6751b71e 1975 */
cdd6c482
IM
1976 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1977 if (event == partial_group)
d7842da4
SE
1978 simulate = true;
1979
1980 if (simulate) {
1981 event->tstamp_running += now - event->tstamp_stopped;
1982 event->tstamp_stopped = now;
1983 } else {
1984 event_sched_out(event, cpuctx, ctx);
1985 }
6751b71e 1986 }
9ffcfa6f 1987 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1988
ad5133b7 1989 pmu->cancel_txn(pmu);
90151c35 1990
272325c4 1991 perf_mux_hrtimer_restart(cpuctx);
9e630205 1992
6751b71e
PM
1993 return -EAGAIN;
1994}
1995
3b6f9e5c 1996/*
cdd6c482 1997 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1998 */
cdd6c482 1999static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2000 struct perf_cpu_context *cpuctx,
2001 int can_add_hw)
2002{
2003 /*
cdd6c482 2004 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2005 */
d6f962b5 2006 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2007 return 1;
2008 /*
2009 * If an exclusive group is already on, no other hardware
cdd6c482 2010 * events can go on.
3b6f9e5c
PM
2011 */
2012 if (cpuctx->exclusive)
2013 return 0;
2014 /*
2015 * If this group is exclusive and there are already
cdd6c482 2016 * events on the CPU, it can't go on.
3b6f9e5c 2017 */
cdd6c482 2018 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2019 return 0;
2020 /*
2021 * Otherwise, try to add it if all previous groups were able
2022 * to go on.
2023 */
2024 return can_add_hw;
2025}
2026
cdd6c482
IM
2027static void add_event_to_ctx(struct perf_event *event,
2028 struct perf_event_context *ctx)
53cfbf59 2029{
4158755d
SE
2030 u64 tstamp = perf_event_time(event);
2031
cdd6c482 2032 list_add_event(event, ctx);
8a49542c 2033 perf_group_attach(event);
4158755d
SE
2034 event->tstamp_enabled = tstamp;
2035 event->tstamp_running = tstamp;
2036 event->tstamp_stopped = tstamp;
53cfbf59
PM
2037}
2038
2c29ef0f
PZ
2039static void task_ctx_sched_out(struct perf_event_context *ctx);
2040static void
2041ctx_sched_in(struct perf_event_context *ctx,
2042 struct perf_cpu_context *cpuctx,
2043 enum event_type_t event_type,
2044 struct task_struct *task);
fe4b04fa 2045
dce5855b
PZ
2046static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2047 struct perf_event_context *ctx,
2048 struct task_struct *task)
2049{
2050 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2051 if (ctx)
2052 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2053 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2054 if (ctx)
2055 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2056}
2057
0017960f
PZ
2058static void ___perf_install_in_context(void *info)
2059{
2060 struct perf_event *event = info;
2061 struct perf_event_context *ctx = event->ctx;
2062
2063 /*
2064 * Since the task isn't running, its safe to add the event, us holding
2065 * the ctx->lock ensures the task won't get scheduled in.
2066 */
2067 add_event_to_ctx(event, ctx);
2068}
2069
0793a61d 2070/*
cdd6c482 2071 * Cross CPU call to install and enable a performance event
682076ae
PZ
2072 *
2073 * Must be called with ctx->mutex held
0793a61d 2074 */
fe4b04fa 2075static int __perf_install_in_context(void *info)
0793a61d 2076{
cdd6c482
IM
2077 struct perf_event *event = info;
2078 struct perf_event_context *ctx = event->ctx;
108b02cf 2079 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2080 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2081 struct task_struct *task = current;
2082
b58f6b0d 2083 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2084 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2085
2086 /*
2c29ef0f 2087 * If there was an active task_ctx schedule it out.
0793a61d 2088 */
b58f6b0d 2089 if (task_ctx)
2c29ef0f 2090 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2091
2092 /*
2093 * If the context we're installing events in is not the
2094 * active task_ctx, flip them.
2095 */
2096 if (ctx->task && task_ctx != ctx) {
2097 if (task_ctx)
2098 raw_spin_unlock(&task_ctx->lock);
2099 raw_spin_lock(&ctx->lock);
2100 task_ctx = ctx;
2101 }
2102
2103 if (task_ctx) {
2104 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2105 task = task_ctx->task;
2106 }
b58f6b0d 2107
2c29ef0f 2108 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2109
4af4998b 2110 update_context_time(ctx);
e5d1367f
SE
2111 /*
2112 * update cgrp time only if current cgrp
2113 * matches event->cgrp. Must be done before
2114 * calling add_event_to_ctx()
2115 */
2116 update_cgrp_time_from_event(event);
0793a61d 2117
cdd6c482 2118 add_event_to_ctx(event, ctx);
0793a61d 2119
d859e29f 2120 /*
2c29ef0f 2121 * Schedule everything back in
d859e29f 2122 */
dce5855b 2123 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2124
2125 perf_pmu_enable(cpuctx->ctx.pmu);
2126 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2127
2128 return 0;
0793a61d
TG
2129}
2130
2131/*
cdd6c482 2132 * Attach a performance event to a context
0793a61d
TG
2133 */
2134static void
cdd6c482
IM
2135perf_install_in_context(struct perf_event_context *ctx,
2136 struct perf_event *event,
0793a61d
TG
2137 int cpu)
2138{
fe4b04fa
PZ
2139 lockdep_assert_held(&ctx->mutex);
2140
c3f00c70 2141 event->ctx = ctx;
0cda4c02
YZ
2142 if (event->cpu != -1)
2143 event->cpu = cpu;
c3f00c70 2144
0017960f
PZ
2145 event_function_call(event, __perf_install_in_context,
2146 ___perf_install_in_context, event);
0793a61d
TG
2147}
2148
fa289bec 2149/*
cdd6c482 2150 * Put a event into inactive state and update time fields.
fa289bec
PM
2151 * Enabling the leader of a group effectively enables all
2152 * the group members that aren't explicitly disabled, so we
2153 * have to update their ->tstamp_enabled also.
2154 * Note: this works for group members as well as group leaders
2155 * since the non-leader members' sibling_lists will be empty.
2156 */
1d9b482e 2157static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2158{
cdd6c482 2159 struct perf_event *sub;
4158755d 2160 u64 tstamp = perf_event_time(event);
fa289bec 2161
cdd6c482 2162 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2163 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2164 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2165 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2166 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2167 }
fa289bec
PM
2168}
2169
d859e29f 2170/*
cdd6c482 2171 * Cross CPU call to enable a performance event
d859e29f 2172 */
fe4b04fa 2173static int __perf_event_enable(void *info)
04289bb9 2174{
cdd6c482 2175 struct perf_event *event = info;
cdd6c482
IM
2176 struct perf_event_context *ctx = event->ctx;
2177 struct perf_event *leader = event->group_leader;
108b02cf 2178 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2179 int err;
04289bb9 2180
06f41796
JO
2181 /*
2182 * There's a time window between 'ctx->is_active' check
2183 * in perf_event_enable function and this place having:
2184 * - IRQs on
2185 * - ctx->lock unlocked
2186 *
2187 * where the task could be killed and 'ctx' deactivated
2188 * by perf_event_exit_task.
2189 */
2190 if (!ctx->is_active)
fe4b04fa 2191 return -EINVAL;
3cbed429 2192
e625cce1 2193 raw_spin_lock(&ctx->lock);
4af4998b 2194 update_context_time(ctx);
d859e29f 2195
cdd6c482 2196 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2197 goto unlock;
e5d1367f
SE
2198
2199 /*
2200 * set current task's cgroup time reference point
2201 */
3f7cce3c 2202 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2203
1d9b482e 2204 __perf_event_mark_enabled(event);
04289bb9 2205
e5d1367f
SE
2206 if (!event_filter_match(event)) {
2207 if (is_cgroup_event(event))
2208 perf_cgroup_defer_enabled(event);
f4c4176f 2209 goto unlock;
e5d1367f 2210 }
f4c4176f 2211
04289bb9 2212 /*
cdd6c482 2213 * If the event is in a group and isn't the group leader,
d859e29f 2214 * then don't put it on unless the group is on.
04289bb9 2215 */
cdd6c482 2216 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2217 goto unlock;
3b6f9e5c 2218
cdd6c482 2219 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2220 err = -EEXIST;
e758a33d 2221 } else {
cdd6c482 2222 if (event == leader)
6e37738a 2223 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2224 else
6e37738a 2225 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2226 }
d859e29f
PM
2227
2228 if (err) {
2229 /*
cdd6c482 2230 * If this event can't go on and it's part of a
d859e29f
PM
2231 * group, then the whole group has to come off.
2232 */
9e630205 2233 if (leader != event) {
d859e29f 2234 group_sched_out(leader, cpuctx, ctx);
272325c4 2235 perf_mux_hrtimer_restart(cpuctx);
9e630205 2236 }
0d48696f 2237 if (leader->attr.pinned) {
53cfbf59 2238 update_group_times(leader);
cdd6c482 2239 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2240 }
d859e29f
PM
2241 }
2242
9ed6060d 2243unlock:
e625cce1 2244 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2245
2246 return 0;
d859e29f
PM
2247}
2248
7b648018
PZ
2249void ___perf_event_enable(void *info)
2250{
2251 __perf_event_mark_enabled((struct perf_event *)info);
2252}
2253
d859e29f 2254/*
cdd6c482 2255 * Enable a event.
c93f7669 2256 *
cdd6c482
IM
2257 * If event->ctx is a cloned context, callers must make sure that
2258 * every task struct that event->ctx->task could possibly point to
c93f7669 2259 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2260 * perf_event_for_each_child or perf_event_for_each as described
2261 * for perf_event_disable.
d859e29f 2262 */
f63a8daa 2263static void _perf_event_enable(struct perf_event *event)
d859e29f 2264{
cdd6c482 2265 struct perf_event_context *ctx = event->ctx;
d859e29f 2266
7b648018
PZ
2267 raw_spin_lock_irq(&ctx->lock);
2268 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
2269 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2270 return;
2271 }
2272
d859e29f 2273 /*
cdd6c482 2274 * If the event is in error state, clear that first.
7b648018
PZ
2275 *
2276 * That way, if we see the event in error state below, we know that it
2277 * has gone back into error state, as distinct from the task having
2278 * been scheduled away before the cross-call arrived.
d859e29f 2279 */
cdd6c482
IM
2280 if (event->state == PERF_EVENT_STATE_ERROR)
2281 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2282 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2283
7b648018
PZ
2284 event_function_call(event, __perf_event_enable,
2285 ___perf_event_enable, event);
d859e29f 2286}
f63a8daa
PZ
2287
2288/*
2289 * See perf_event_disable();
2290 */
2291void perf_event_enable(struct perf_event *event)
2292{
2293 struct perf_event_context *ctx;
2294
2295 ctx = perf_event_ctx_lock(event);
2296 _perf_event_enable(event);
2297 perf_event_ctx_unlock(event, ctx);
2298}
dcfce4a0 2299EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2300
f63a8daa 2301static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2302{
2023b359 2303 /*
cdd6c482 2304 * not supported on inherited events
2023b359 2305 */
2e939d1d 2306 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2307 return -EINVAL;
2308
cdd6c482 2309 atomic_add(refresh, &event->event_limit);
f63a8daa 2310 _perf_event_enable(event);
2023b359
PZ
2311
2312 return 0;
79f14641 2313}
f63a8daa
PZ
2314
2315/*
2316 * See perf_event_disable()
2317 */
2318int perf_event_refresh(struct perf_event *event, int refresh)
2319{
2320 struct perf_event_context *ctx;
2321 int ret;
2322
2323 ctx = perf_event_ctx_lock(event);
2324 ret = _perf_event_refresh(event, refresh);
2325 perf_event_ctx_unlock(event, ctx);
2326
2327 return ret;
2328}
26ca5c11 2329EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2330
5b0311e1
FW
2331static void ctx_sched_out(struct perf_event_context *ctx,
2332 struct perf_cpu_context *cpuctx,
2333 enum event_type_t event_type)
235c7fc7 2334{
db24d33e 2335 int is_active = ctx->is_active;
c994d613
PZ
2336 struct perf_event *event;
2337
2338 lockdep_assert_held(&ctx->lock);
235c7fc7 2339
db24d33e 2340 ctx->is_active &= ~event_type;
cdd6c482 2341 if (likely(!ctx->nr_events))
facc4307
PZ
2342 return;
2343
4af4998b 2344 update_context_time(ctx);
e5d1367f 2345 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2346 if (!ctx->nr_active)
facc4307 2347 return;
5b0311e1 2348
075e0b00 2349 perf_pmu_disable(ctx->pmu);
db24d33e 2350 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2351 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2352 group_sched_out(event, cpuctx, ctx);
9ed6060d 2353 }
889ff015 2354
db24d33e 2355 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2356 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2357 group_sched_out(event, cpuctx, ctx);
9ed6060d 2358 }
1b9a644f 2359 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2360}
2361
564c2b21 2362/*
5a3126d4
PZ
2363 * Test whether two contexts are equivalent, i.e. whether they have both been
2364 * cloned from the same version of the same context.
2365 *
2366 * Equivalence is measured using a generation number in the context that is
2367 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2368 * and list_del_event().
564c2b21 2369 */
cdd6c482
IM
2370static int context_equiv(struct perf_event_context *ctx1,
2371 struct perf_event_context *ctx2)
564c2b21 2372{
211de6eb
PZ
2373 lockdep_assert_held(&ctx1->lock);
2374 lockdep_assert_held(&ctx2->lock);
2375
5a3126d4
PZ
2376 /* Pinning disables the swap optimization */
2377 if (ctx1->pin_count || ctx2->pin_count)
2378 return 0;
2379
2380 /* If ctx1 is the parent of ctx2 */
2381 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2382 return 1;
2383
2384 /* If ctx2 is the parent of ctx1 */
2385 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2386 return 1;
2387
2388 /*
2389 * If ctx1 and ctx2 have the same parent; we flatten the parent
2390 * hierarchy, see perf_event_init_context().
2391 */
2392 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2393 ctx1->parent_gen == ctx2->parent_gen)
2394 return 1;
2395
2396 /* Unmatched */
2397 return 0;
564c2b21
PM
2398}
2399
cdd6c482
IM
2400static void __perf_event_sync_stat(struct perf_event *event,
2401 struct perf_event *next_event)
bfbd3381
PZ
2402{
2403 u64 value;
2404
cdd6c482 2405 if (!event->attr.inherit_stat)
bfbd3381
PZ
2406 return;
2407
2408 /*
cdd6c482 2409 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2410 * because we're in the middle of a context switch and have IRQs
2411 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2412 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2413 * don't need to use it.
2414 */
cdd6c482
IM
2415 switch (event->state) {
2416 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2417 event->pmu->read(event);
2418 /* fall-through */
bfbd3381 2419
cdd6c482
IM
2420 case PERF_EVENT_STATE_INACTIVE:
2421 update_event_times(event);
bfbd3381
PZ
2422 break;
2423
2424 default:
2425 break;
2426 }
2427
2428 /*
cdd6c482 2429 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2430 * values when we flip the contexts.
2431 */
e7850595
PZ
2432 value = local64_read(&next_event->count);
2433 value = local64_xchg(&event->count, value);
2434 local64_set(&next_event->count, value);
bfbd3381 2435
cdd6c482
IM
2436 swap(event->total_time_enabled, next_event->total_time_enabled);
2437 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2438
bfbd3381 2439 /*
19d2e755 2440 * Since we swizzled the values, update the user visible data too.
bfbd3381 2441 */
cdd6c482
IM
2442 perf_event_update_userpage(event);
2443 perf_event_update_userpage(next_event);
bfbd3381
PZ
2444}
2445
cdd6c482
IM
2446static void perf_event_sync_stat(struct perf_event_context *ctx,
2447 struct perf_event_context *next_ctx)
bfbd3381 2448{
cdd6c482 2449 struct perf_event *event, *next_event;
bfbd3381
PZ
2450
2451 if (!ctx->nr_stat)
2452 return;
2453
02ffdbc8
PZ
2454 update_context_time(ctx);
2455
cdd6c482
IM
2456 event = list_first_entry(&ctx->event_list,
2457 struct perf_event, event_entry);
bfbd3381 2458
cdd6c482
IM
2459 next_event = list_first_entry(&next_ctx->event_list,
2460 struct perf_event, event_entry);
bfbd3381 2461
cdd6c482
IM
2462 while (&event->event_entry != &ctx->event_list &&
2463 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2464
cdd6c482 2465 __perf_event_sync_stat(event, next_event);
bfbd3381 2466
cdd6c482
IM
2467 event = list_next_entry(event, event_entry);
2468 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2469 }
2470}
2471
fe4b04fa
PZ
2472static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2473 struct task_struct *next)
0793a61d 2474{
8dc85d54 2475 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2476 struct perf_event_context *next_ctx;
5a3126d4 2477 struct perf_event_context *parent, *next_parent;
108b02cf 2478 struct perf_cpu_context *cpuctx;
c93f7669 2479 int do_switch = 1;
0793a61d 2480
108b02cf
PZ
2481 if (likely(!ctx))
2482 return;
10989fb2 2483
108b02cf
PZ
2484 cpuctx = __get_cpu_context(ctx);
2485 if (!cpuctx->task_ctx)
0793a61d
TG
2486 return;
2487
c93f7669 2488 rcu_read_lock();
8dc85d54 2489 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2490 if (!next_ctx)
2491 goto unlock;
2492
2493 parent = rcu_dereference(ctx->parent_ctx);
2494 next_parent = rcu_dereference(next_ctx->parent_ctx);
2495
2496 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2497 if (!parent && !next_parent)
5a3126d4
PZ
2498 goto unlock;
2499
2500 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2501 /*
2502 * Looks like the two contexts are clones, so we might be
2503 * able to optimize the context switch. We lock both
2504 * contexts and check that they are clones under the
2505 * lock (including re-checking that neither has been
2506 * uncloned in the meantime). It doesn't matter which
2507 * order we take the locks because no other cpu could
2508 * be trying to lock both of these tasks.
2509 */
e625cce1
TG
2510 raw_spin_lock(&ctx->lock);
2511 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2512 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2513 /*
2514 * XXX do we need a memory barrier of sorts
cdd6c482 2515 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2516 */
8dc85d54
PZ
2517 task->perf_event_ctxp[ctxn] = next_ctx;
2518 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2519 ctx->task = next;
2520 next_ctx->task = task;
5a158c3c
YZ
2521
2522 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2523
c93f7669 2524 do_switch = 0;
bfbd3381 2525
cdd6c482 2526 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2527 }
e625cce1
TG
2528 raw_spin_unlock(&next_ctx->lock);
2529 raw_spin_unlock(&ctx->lock);
564c2b21 2530 }
5a3126d4 2531unlock:
c93f7669 2532 rcu_read_unlock();
564c2b21 2533
c93f7669 2534 if (do_switch) {
facc4307 2535 raw_spin_lock(&ctx->lock);
5b0311e1 2536 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2537 cpuctx->task_ctx = NULL;
facc4307 2538 raw_spin_unlock(&ctx->lock);
c93f7669 2539 }
0793a61d
TG
2540}
2541
ba532500
YZ
2542void perf_sched_cb_dec(struct pmu *pmu)
2543{
2544 this_cpu_dec(perf_sched_cb_usages);
2545}
2546
2547void perf_sched_cb_inc(struct pmu *pmu)
2548{
2549 this_cpu_inc(perf_sched_cb_usages);
2550}
2551
2552/*
2553 * This function provides the context switch callback to the lower code
2554 * layer. It is invoked ONLY when the context switch callback is enabled.
2555 */
2556static void perf_pmu_sched_task(struct task_struct *prev,
2557 struct task_struct *next,
2558 bool sched_in)
2559{
2560 struct perf_cpu_context *cpuctx;
2561 struct pmu *pmu;
2562 unsigned long flags;
2563
2564 if (prev == next)
2565 return;
2566
2567 local_irq_save(flags);
2568
2569 rcu_read_lock();
2570
2571 list_for_each_entry_rcu(pmu, &pmus, entry) {
2572 if (pmu->sched_task) {
2573 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2574
2575 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2576
2577 perf_pmu_disable(pmu);
2578
2579 pmu->sched_task(cpuctx->task_ctx, sched_in);
2580
2581 perf_pmu_enable(pmu);
2582
2583 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2584 }
2585 }
2586
2587 rcu_read_unlock();
2588
2589 local_irq_restore(flags);
2590}
2591
45ac1403
AH
2592static void perf_event_switch(struct task_struct *task,
2593 struct task_struct *next_prev, bool sched_in);
2594
8dc85d54
PZ
2595#define for_each_task_context_nr(ctxn) \
2596 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2597
2598/*
2599 * Called from scheduler to remove the events of the current task,
2600 * with interrupts disabled.
2601 *
2602 * We stop each event and update the event value in event->count.
2603 *
2604 * This does not protect us against NMI, but disable()
2605 * sets the disabled bit in the control field of event _before_
2606 * accessing the event control register. If a NMI hits, then it will
2607 * not restart the event.
2608 */
ab0cce56
JO
2609void __perf_event_task_sched_out(struct task_struct *task,
2610 struct task_struct *next)
8dc85d54
PZ
2611{
2612 int ctxn;
2613
ba532500
YZ
2614 if (__this_cpu_read(perf_sched_cb_usages))
2615 perf_pmu_sched_task(task, next, false);
2616
45ac1403
AH
2617 if (atomic_read(&nr_switch_events))
2618 perf_event_switch(task, next, false);
2619
8dc85d54
PZ
2620 for_each_task_context_nr(ctxn)
2621 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2622
2623 /*
2624 * if cgroup events exist on this CPU, then we need
2625 * to check if we have to switch out PMU state.
2626 * cgroup event are system-wide mode only
2627 */
4a32fea9 2628 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2629 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2630}
2631
04dc2dbb 2632static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2633{
108b02cf 2634 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2635
a63eaf34
PM
2636 if (!cpuctx->task_ctx)
2637 return;
012b84da
IM
2638
2639 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2640 return;
2641
04dc2dbb 2642 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2643 cpuctx->task_ctx = NULL;
2644}
2645
5b0311e1
FW
2646/*
2647 * Called with IRQs disabled
2648 */
2649static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2650 enum event_type_t event_type)
2651{
2652 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2653}
2654
235c7fc7 2655static void
5b0311e1 2656ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2657 struct perf_cpu_context *cpuctx)
0793a61d 2658{
cdd6c482 2659 struct perf_event *event;
0793a61d 2660
889ff015
FW
2661 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2662 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2663 continue;
5632ab12 2664 if (!event_filter_match(event))
3b6f9e5c
PM
2665 continue;
2666
e5d1367f
SE
2667 /* may need to reset tstamp_enabled */
2668 if (is_cgroup_event(event))
2669 perf_cgroup_mark_enabled(event, ctx);
2670
8c9ed8e1 2671 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2672 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2673
2674 /*
2675 * If this pinned group hasn't been scheduled,
2676 * put it in error state.
2677 */
cdd6c482
IM
2678 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2679 update_group_times(event);
2680 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2681 }
3b6f9e5c 2682 }
5b0311e1
FW
2683}
2684
2685static void
2686ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2687 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2688{
2689 struct perf_event *event;
2690 int can_add_hw = 1;
3b6f9e5c 2691
889ff015
FW
2692 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2693 /* Ignore events in OFF or ERROR state */
2694 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2695 continue;
04289bb9
IM
2696 /*
2697 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2698 * of events:
04289bb9 2699 */
5632ab12 2700 if (!event_filter_match(event))
0793a61d
TG
2701 continue;
2702
e5d1367f
SE
2703 /* may need to reset tstamp_enabled */
2704 if (is_cgroup_event(event))
2705 perf_cgroup_mark_enabled(event, ctx);
2706
9ed6060d 2707 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2708 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2709 can_add_hw = 0;
9ed6060d 2710 }
0793a61d 2711 }
5b0311e1
FW
2712}
2713
2714static void
2715ctx_sched_in(struct perf_event_context *ctx,
2716 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2717 enum event_type_t event_type,
2718 struct task_struct *task)
5b0311e1 2719{
db24d33e 2720 int is_active = ctx->is_active;
c994d613
PZ
2721 u64 now;
2722
2723 lockdep_assert_held(&ctx->lock);
e5d1367f 2724
db24d33e 2725 ctx->is_active |= event_type;
5b0311e1 2726 if (likely(!ctx->nr_events))
facc4307 2727 return;
5b0311e1 2728
e5d1367f
SE
2729 now = perf_clock();
2730 ctx->timestamp = now;
3f7cce3c 2731 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2732 /*
2733 * First go through the list and put on any pinned groups
2734 * in order to give them the best chance of going on.
2735 */
db24d33e 2736 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2737 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2738
2739 /* Then walk through the lower prio flexible groups */
db24d33e 2740 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2741 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2742}
2743
329c0e01 2744static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2745 enum event_type_t event_type,
2746 struct task_struct *task)
329c0e01
FW
2747{
2748 struct perf_event_context *ctx = &cpuctx->ctx;
2749
e5d1367f 2750 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2751}
2752
e5d1367f
SE
2753static void perf_event_context_sched_in(struct perf_event_context *ctx,
2754 struct task_struct *task)
235c7fc7 2755{
108b02cf 2756 struct perf_cpu_context *cpuctx;
235c7fc7 2757
108b02cf 2758 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2759 if (cpuctx->task_ctx == ctx)
2760 return;
2761
facc4307 2762 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2763 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2764 /*
2765 * We want to keep the following priority order:
2766 * cpu pinned (that don't need to move), task pinned,
2767 * cpu flexible, task flexible.
2768 */
2769 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2770
1d5f003f
GN
2771 if (ctx->nr_events)
2772 cpuctx->task_ctx = ctx;
9b33fa6b 2773
86b47c25
GN
2774 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2775
facc4307
PZ
2776 perf_pmu_enable(ctx->pmu);
2777 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2778}
2779
8dc85d54
PZ
2780/*
2781 * Called from scheduler to add the events of the current task
2782 * with interrupts disabled.
2783 *
2784 * We restore the event value and then enable it.
2785 *
2786 * This does not protect us against NMI, but enable()
2787 * sets the enabled bit in the control field of event _before_
2788 * accessing the event control register. If a NMI hits, then it will
2789 * keep the event running.
2790 */
ab0cce56
JO
2791void __perf_event_task_sched_in(struct task_struct *prev,
2792 struct task_struct *task)
8dc85d54
PZ
2793{
2794 struct perf_event_context *ctx;
2795 int ctxn;
2796
7e41d177
PZ
2797 /*
2798 * If cgroup events exist on this CPU, then we need to check if we have
2799 * to switch in PMU state; cgroup event are system-wide mode only.
2800 *
2801 * Since cgroup events are CPU events, we must schedule these in before
2802 * we schedule in the task events.
2803 */
2804 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2805 perf_cgroup_sched_in(prev, task);
2806
8dc85d54
PZ
2807 for_each_task_context_nr(ctxn) {
2808 ctx = task->perf_event_ctxp[ctxn];
2809 if (likely(!ctx))
2810 continue;
2811
e5d1367f 2812 perf_event_context_sched_in(ctx, task);
8dc85d54 2813 }
d010b332 2814
45ac1403
AH
2815 if (atomic_read(&nr_switch_events))
2816 perf_event_switch(task, prev, true);
2817
ba532500
YZ
2818 if (__this_cpu_read(perf_sched_cb_usages))
2819 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2820}
2821
abd50713
PZ
2822static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2823{
2824 u64 frequency = event->attr.sample_freq;
2825 u64 sec = NSEC_PER_SEC;
2826 u64 divisor, dividend;
2827
2828 int count_fls, nsec_fls, frequency_fls, sec_fls;
2829
2830 count_fls = fls64(count);
2831 nsec_fls = fls64(nsec);
2832 frequency_fls = fls64(frequency);
2833 sec_fls = 30;
2834
2835 /*
2836 * We got @count in @nsec, with a target of sample_freq HZ
2837 * the target period becomes:
2838 *
2839 * @count * 10^9
2840 * period = -------------------
2841 * @nsec * sample_freq
2842 *
2843 */
2844
2845 /*
2846 * Reduce accuracy by one bit such that @a and @b converge
2847 * to a similar magnitude.
2848 */
fe4b04fa 2849#define REDUCE_FLS(a, b) \
abd50713
PZ
2850do { \
2851 if (a##_fls > b##_fls) { \
2852 a >>= 1; \
2853 a##_fls--; \
2854 } else { \
2855 b >>= 1; \
2856 b##_fls--; \
2857 } \
2858} while (0)
2859
2860 /*
2861 * Reduce accuracy until either term fits in a u64, then proceed with
2862 * the other, so that finally we can do a u64/u64 division.
2863 */
2864 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2865 REDUCE_FLS(nsec, frequency);
2866 REDUCE_FLS(sec, count);
2867 }
2868
2869 if (count_fls + sec_fls > 64) {
2870 divisor = nsec * frequency;
2871
2872 while (count_fls + sec_fls > 64) {
2873 REDUCE_FLS(count, sec);
2874 divisor >>= 1;
2875 }
2876
2877 dividend = count * sec;
2878 } else {
2879 dividend = count * sec;
2880
2881 while (nsec_fls + frequency_fls > 64) {
2882 REDUCE_FLS(nsec, frequency);
2883 dividend >>= 1;
2884 }
2885
2886 divisor = nsec * frequency;
2887 }
2888
f6ab91ad
PZ
2889 if (!divisor)
2890 return dividend;
2891
abd50713
PZ
2892 return div64_u64(dividend, divisor);
2893}
2894
e050e3f0
SE
2895static DEFINE_PER_CPU(int, perf_throttled_count);
2896static DEFINE_PER_CPU(u64, perf_throttled_seq);
2897
f39d47ff 2898static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2899{
cdd6c482 2900 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2901 s64 period, sample_period;
bd2b5b12
PZ
2902 s64 delta;
2903
abd50713 2904 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2905
2906 delta = (s64)(period - hwc->sample_period);
2907 delta = (delta + 7) / 8; /* low pass filter */
2908
2909 sample_period = hwc->sample_period + delta;
2910
2911 if (!sample_period)
2912 sample_period = 1;
2913
bd2b5b12 2914 hwc->sample_period = sample_period;
abd50713 2915
e7850595 2916 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2917 if (disable)
2918 event->pmu->stop(event, PERF_EF_UPDATE);
2919
e7850595 2920 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2921
2922 if (disable)
2923 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2924 }
bd2b5b12
PZ
2925}
2926
e050e3f0
SE
2927/*
2928 * combine freq adjustment with unthrottling to avoid two passes over the
2929 * events. At the same time, make sure, having freq events does not change
2930 * the rate of unthrottling as that would introduce bias.
2931 */
2932static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2933 int needs_unthr)
60db5e09 2934{
cdd6c482
IM
2935 struct perf_event *event;
2936 struct hw_perf_event *hwc;
e050e3f0 2937 u64 now, period = TICK_NSEC;
abd50713 2938 s64 delta;
60db5e09 2939
e050e3f0
SE
2940 /*
2941 * only need to iterate over all events iff:
2942 * - context have events in frequency mode (needs freq adjust)
2943 * - there are events to unthrottle on this cpu
2944 */
2945 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2946 return;
2947
e050e3f0 2948 raw_spin_lock(&ctx->lock);
f39d47ff 2949 perf_pmu_disable(ctx->pmu);
e050e3f0 2950
03541f8b 2951 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2952 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2953 continue;
2954
5632ab12 2955 if (!event_filter_match(event))
5d27c23d
PZ
2956 continue;
2957
44377277
AS
2958 perf_pmu_disable(event->pmu);
2959
cdd6c482 2960 hwc = &event->hw;
6a24ed6c 2961
ae23bff1 2962 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2963 hwc->interrupts = 0;
cdd6c482 2964 perf_log_throttle(event, 1);
a4eaf7f1 2965 event->pmu->start(event, 0);
a78ac325
PZ
2966 }
2967
cdd6c482 2968 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2969 goto next;
60db5e09 2970
e050e3f0
SE
2971 /*
2972 * stop the event and update event->count
2973 */
2974 event->pmu->stop(event, PERF_EF_UPDATE);
2975
e7850595 2976 now = local64_read(&event->count);
abd50713
PZ
2977 delta = now - hwc->freq_count_stamp;
2978 hwc->freq_count_stamp = now;
60db5e09 2979
e050e3f0
SE
2980 /*
2981 * restart the event
2982 * reload only if value has changed
f39d47ff
SE
2983 * we have stopped the event so tell that
2984 * to perf_adjust_period() to avoid stopping it
2985 * twice.
e050e3f0 2986 */
abd50713 2987 if (delta > 0)
f39d47ff 2988 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2989
2990 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
2991 next:
2992 perf_pmu_enable(event->pmu);
60db5e09 2993 }
e050e3f0 2994
f39d47ff 2995 perf_pmu_enable(ctx->pmu);
e050e3f0 2996 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2997}
2998
235c7fc7 2999/*
cdd6c482 3000 * Round-robin a context's events:
235c7fc7 3001 */
cdd6c482 3002static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3003{
dddd3379
TG
3004 /*
3005 * Rotate the first entry last of non-pinned groups. Rotation might be
3006 * disabled by the inheritance code.
3007 */
3008 if (!ctx->rotate_disable)
3009 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3010}
3011
9e630205 3012static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3013{
8dc85d54 3014 struct perf_event_context *ctx = NULL;
2fde4f94 3015 int rotate = 0;
7fc23a53 3016
b5ab4cd5 3017 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3018 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3019 rotate = 1;
3020 }
235c7fc7 3021
8dc85d54 3022 ctx = cpuctx->task_ctx;
b5ab4cd5 3023 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3024 if (ctx->nr_events != ctx->nr_active)
3025 rotate = 1;
3026 }
9717e6cd 3027
e050e3f0 3028 if (!rotate)
0f5a2601
PZ
3029 goto done;
3030
facc4307 3031 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3032 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3033
e050e3f0
SE
3034 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3035 if (ctx)
3036 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3037
e050e3f0
SE
3038 rotate_ctx(&cpuctx->ctx);
3039 if (ctx)
3040 rotate_ctx(ctx);
235c7fc7 3041
e050e3f0 3042 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3043
0f5a2601
PZ
3044 perf_pmu_enable(cpuctx->ctx.pmu);
3045 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3046done:
9e630205
SE
3047
3048 return rotate;
e9d2b064
PZ
3049}
3050
026249ef
FW
3051#ifdef CONFIG_NO_HZ_FULL
3052bool perf_event_can_stop_tick(void)
3053{
948b26b6 3054 if (atomic_read(&nr_freq_events) ||
d84153d6 3055 __this_cpu_read(perf_throttled_count))
026249ef 3056 return false;
d84153d6
FW
3057 else
3058 return true;
026249ef
FW
3059}
3060#endif
3061
e9d2b064
PZ
3062void perf_event_task_tick(void)
3063{
2fde4f94
MR
3064 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3065 struct perf_event_context *ctx, *tmp;
e050e3f0 3066 int throttled;
b5ab4cd5 3067
e9d2b064
PZ
3068 WARN_ON(!irqs_disabled());
3069
e050e3f0
SE
3070 __this_cpu_inc(perf_throttled_seq);
3071 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3072
2fde4f94 3073 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3074 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3075}
3076
889ff015
FW
3077static int event_enable_on_exec(struct perf_event *event,
3078 struct perf_event_context *ctx)
3079{
3080 if (!event->attr.enable_on_exec)
3081 return 0;
3082
3083 event->attr.enable_on_exec = 0;
3084 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3085 return 0;
3086
1d9b482e 3087 __perf_event_mark_enabled(event);
889ff015
FW
3088
3089 return 1;
3090}
3091
57e7986e 3092/*
cdd6c482 3093 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3094 * This expects task == current.
3095 */
c1274499 3096static void perf_event_enable_on_exec(int ctxn)
57e7986e 3097{
c1274499 3098 struct perf_event_context *ctx, *clone_ctx = NULL;
cdd6c482 3099 struct perf_event *event;
57e7986e
PM
3100 unsigned long flags;
3101 int enabled = 0;
889ff015 3102 int ret;
57e7986e
PM
3103
3104 local_irq_save(flags);
c1274499 3105 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3106 if (!ctx || !ctx->nr_events)
57e7986e
PM
3107 goto out;
3108
e625cce1 3109 raw_spin_lock(&ctx->lock);
04dc2dbb 3110 task_ctx_sched_out(ctx);
57e7986e 3111
b79387ef 3112 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3113 ret = event_enable_on_exec(event, ctx);
3114 if (ret)
3115 enabled = 1;
57e7986e
PM
3116 }
3117
3118 /*
cdd6c482 3119 * Unclone this context if we enabled any event.
57e7986e 3120 */
71a851b4 3121 if (enabled)
211de6eb 3122 clone_ctx = unclone_ctx(ctx);
57e7986e 3123
e625cce1 3124 raw_spin_unlock(&ctx->lock);
57e7986e 3125
e5d1367f 3126 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3127out:
57e7986e 3128 local_irq_restore(flags);
211de6eb
PZ
3129
3130 if (clone_ctx)
3131 put_ctx(clone_ctx);
57e7986e
PM
3132}
3133
e041e328
PZ
3134void perf_event_exec(void)
3135{
e041e328
PZ
3136 int ctxn;
3137
3138 rcu_read_lock();
c1274499
PZ
3139 for_each_task_context_nr(ctxn)
3140 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3141 rcu_read_unlock();
3142}
3143
0492d4c5
PZ
3144struct perf_read_data {
3145 struct perf_event *event;
3146 bool group;
7d88962e 3147 int ret;
0492d4c5
PZ
3148};
3149
0793a61d 3150/*
cdd6c482 3151 * Cross CPU call to read the hardware event
0793a61d 3152 */
cdd6c482 3153static void __perf_event_read(void *info)
0793a61d 3154{
0492d4c5
PZ
3155 struct perf_read_data *data = info;
3156 struct perf_event *sub, *event = data->event;
cdd6c482 3157 struct perf_event_context *ctx = event->ctx;
108b02cf 3158 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3159 struct pmu *pmu = event->pmu;
621a01ea 3160
e1ac3614
PM
3161 /*
3162 * If this is a task context, we need to check whether it is
3163 * the current task context of this cpu. If not it has been
3164 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3165 * event->count would have been updated to a recent sample
3166 * when the event was scheduled out.
e1ac3614
PM
3167 */
3168 if (ctx->task && cpuctx->task_ctx != ctx)
3169 return;
3170
e625cce1 3171 raw_spin_lock(&ctx->lock);
e5d1367f 3172 if (ctx->is_active) {
542e72fc 3173 update_context_time(ctx);
e5d1367f
SE
3174 update_cgrp_time_from_event(event);
3175 }
0492d4c5 3176
cdd6c482 3177 update_event_times(event);
4a00c16e
SB
3178 if (event->state != PERF_EVENT_STATE_ACTIVE)
3179 goto unlock;
0492d4c5 3180
4a00c16e
SB
3181 if (!data->group) {
3182 pmu->read(event);
3183 data->ret = 0;
0492d4c5 3184 goto unlock;
4a00c16e
SB
3185 }
3186
3187 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3188
3189 pmu->read(event);
0492d4c5
PZ
3190
3191 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3192 update_event_times(sub);
4a00c16e
SB
3193 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3194 /*
3195 * Use sibling's PMU rather than @event's since
3196 * sibling could be on different (eg: software) PMU.
3197 */
0492d4c5 3198 sub->pmu->read(sub);
4a00c16e 3199 }
0492d4c5 3200 }
4a00c16e
SB
3201
3202 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3203
3204unlock:
e625cce1 3205 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3206}
3207
b5e58793
PZ
3208static inline u64 perf_event_count(struct perf_event *event)
3209{
eacd3ecc
MF
3210 if (event->pmu->count)
3211 return event->pmu->count(event);
3212
3213 return __perf_event_count(event);
b5e58793
PZ
3214}
3215
ffe8690c
KX
3216/*
3217 * NMI-safe method to read a local event, that is an event that
3218 * is:
3219 * - either for the current task, or for this CPU
3220 * - does not have inherit set, for inherited task events
3221 * will not be local and we cannot read them atomically
3222 * - must not have a pmu::count method
3223 */
3224u64 perf_event_read_local(struct perf_event *event)
3225{
3226 unsigned long flags;
3227 u64 val;
3228
3229 /*
3230 * Disabling interrupts avoids all counter scheduling (context
3231 * switches, timer based rotation and IPIs).
3232 */
3233 local_irq_save(flags);
3234
3235 /* If this is a per-task event, it must be for current */
3236 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3237 event->hw.target != current);
3238
3239 /* If this is a per-CPU event, it must be for this CPU */
3240 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3241 event->cpu != smp_processor_id());
3242
3243 /*
3244 * It must not be an event with inherit set, we cannot read
3245 * all child counters from atomic context.
3246 */
3247 WARN_ON_ONCE(event->attr.inherit);
3248
3249 /*
3250 * It must not have a pmu::count method, those are not
3251 * NMI safe.
3252 */
3253 WARN_ON_ONCE(event->pmu->count);
3254
3255 /*
3256 * If the event is currently on this CPU, its either a per-task event,
3257 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3258 * oncpu == -1).
3259 */
3260 if (event->oncpu == smp_processor_id())
3261 event->pmu->read(event);
3262
3263 val = local64_read(&event->count);
3264 local_irq_restore(flags);
3265
3266 return val;
3267}
3268
7d88962e 3269static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3270{
7d88962e
SB
3271 int ret = 0;
3272
0793a61d 3273 /*
cdd6c482
IM
3274 * If event is enabled and currently active on a CPU, update the
3275 * value in the event structure:
0793a61d 3276 */
cdd6c482 3277 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3278 struct perf_read_data data = {
3279 .event = event,
3280 .group = group,
7d88962e 3281 .ret = 0,
0492d4c5 3282 };
cdd6c482 3283 smp_call_function_single(event->oncpu,
0492d4c5 3284 __perf_event_read, &data, 1);
7d88962e 3285 ret = data.ret;
cdd6c482 3286 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3287 struct perf_event_context *ctx = event->ctx;
3288 unsigned long flags;
3289
e625cce1 3290 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3291 /*
3292 * may read while context is not active
3293 * (e.g., thread is blocked), in that case
3294 * we cannot update context time
3295 */
e5d1367f 3296 if (ctx->is_active) {
c530ccd9 3297 update_context_time(ctx);
e5d1367f
SE
3298 update_cgrp_time_from_event(event);
3299 }
0492d4c5
PZ
3300 if (group)
3301 update_group_times(event);
3302 else
3303 update_event_times(event);
e625cce1 3304 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3305 }
7d88962e
SB
3306
3307 return ret;
0793a61d
TG
3308}
3309
a63eaf34 3310/*
cdd6c482 3311 * Initialize the perf_event context in a task_struct:
a63eaf34 3312 */
eb184479 3313static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3314{
e625cce1 3315 raw_spin_lock_init(&ctx->lock);
a63eaf34 3316 mutex_init(&ctx->mutex);
2fde4f94 3317 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3318 INIT_LIST_HEAD(&ctx->pinned_groups);
3319 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3320 INIT_LIST_HEAD(&ctx->event_list);
3321 atomic_set(&ctx->refcount, 1);
fadfe7be 3322 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3323}
3324
3325static struct perf_event_context *
3326alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3327{
3328 struct perf_event_context *ctx;
3329
3330 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3331 if (!ctx)
3332 return NULL;
3333
3334 __perf_event_init_context(ctx);
3335 if (task) {
3336 ctx->task = task;
3337 get_task_struct(task);
0793a61d 3338 }
eb184479
PZ
3339 ctx->pmu = pmu;
3340
3341 return ctx;
a63eaf34
PM
3342}
3343
2ebd4ffb
MH
3344static struct task_struct *
3345find_lively_task_by_vpid(pid_t vpid)
3346{
3347 struct task_struct *task;
3348 int err;
0793a61d
TG
3349
3350 rcu_read_lock();
2ebd4ffb 3351 if (!vpid)
0793a61d
TG
3352 task = current;
3353 else
2ebd4ffb 3354 task = find_task_by_vpid(vpid);
0793a61d
TG
3355 if (task)
3356 get_task_struct(task);
3357 rcu_read_unlock();
3358
3359 if (!task)
3360 return ERR_PTR(-ESRCH);
3361
0793a61d 3362 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3363 err = -EACCES;
3364 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3365 goto errout;
3366
2ebd4ffb
MH
3367 return task;
3368errout:
3369 put_task_struct(task);
3370 return ERR_PTR(err);
3371
3372}
3373
fe4b04fa
PZ
3374/*
3375 * Returns a matching context with refcount and pincount.
3376 */
108b02cf 3377static struct perf_event_context *
4af57ef2
YZ
3378find_get_context(struct pmu *pmu, struct task_struct *task,
3379 struct perf_event *event)
0793a61d 3380{
211de6eb 3381 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3382 struct perf_cpu_context *cpuctx;
4af57ef2 3383 void *task_ctx_data = NULL;
25346b93 3384 unsigned long flags;
8dc85d54 3385 int ctxn, err;
4af57ef2 3386 int cpu = event->cpu;
0793a61d 3387
22a4ec72 3388 if (!task) {
cdd6c482 3389 /* Must be root to operate on a CPU event: */
0764771d 3390 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3391 return ERR_PTR(-EACCES);
3392
0793a61d 3393 /*
cdd6c482 3394 * We could be clever and allow to attach a event to an
0793a61d
TG
3395 * offline CPU and activate it when the CPU comes up, but
3396 * that's for later.
3397 */
f6325e30 3398 if (!cpu_online(cpu))
0793a61d
TG
3399 return ERR_PTR(-ENODEV);
3400
108b02cf 3401 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3402 ctx = &cpuctx->ctx;
c93f7669 3403 get_ctx(ctx);
fe4b04fa 3404 ++ctx->pin_count;
0793a61d 3405
0793a61d
TG
3406 return ctx;
3407 }
3408
8dc85d54
PZ
3409 err = -EINVAL;
3410 ctxn = pmu->task_ctx_nr;
3411 if (ctxn < 0)
3412 goto errout;
3413
4af57ef2
YZ
3414 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3415 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3416 if (!task_ctx_data) {
3417 err = -ENOMEM;
3418 goto errout;
3419 }
3420 }
3421
9ed6060d 3422retry:
8dc85d54 3423 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3424 if (ctx) {
211de6eb 3425 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3426 ++ctx->pin_count;
4af57ef2
YZ
3427
3428 if (task_ctx_data && !ctx->task_ctx_data) {
3429 ctx->task_ctx_data = task_ctx_data;
3430 task_ctx_data = NULL;
3431 }
e625cce1 3432 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3433
3434 if (clone_ctx)
3435 put_ctx(clone_ctx);
9137fb28 3436 } else {
eb184479 3437 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3438 err = -ENOMEM;
3439 if (!ctx)
3440 goto errout;
eb184479 3441
4af57ef2
YZ
3442 if (task_ctx_data) {
3443 ctx->task_ctx_data = task_ctx_data;
3444 task_ctx_data = NULL;
3445 }
3446
dbe08d82
ON
3447 err = 0;
3448 mutex_lock(&task->perf_event_mutex);
3449 /*
3450 * If it has already passed perf_event_exit_task().
3451 * we must see PF_EXITING, it takes this mutex too.
3452 */
3453 if (task->flags & PF_EXITING)
3454 err = -ESRCH;
3455 else if (task->perf_event_ctxp[ctxn])
3456 err = -EAGAIN;
fe4b04fa 3457 else {
9137fb28 3458 get_ctx(ctx);
fe4b04fa 3459 ++ctx->pin_count;
dbe08d82 3460 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3461 }
dbe08d82
ON
3462 mutex_unlock(&task->perf_event_mutex);
3463
3464 if (unlikely(err)) {
9137fb28 3465 put_ctx(ctx);
dbe08d82
ON
3466
3467 if (err == -EAGAIN)
3468 goto retry;
3469 goto errout;
a63eaf34
PM
3470 }
3471 }
3472
4af57ef2 3473 kfree(task_ctx_data);
0793a61d 3474 return ctx;
c93f7669 3475
9ed6060d 3476errout:
4af57ef2 3477 kfree(task_ctx_data);
c93f7669 3478 return ERR_PTR(err);
0793a61d
TG
3479}
3480
6fb2915d 3481static void perf_event_free_filter(struct perf_event *event);
2541517c 3482static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3483
cdd6c482 3484static void free_event_rcu(struct rcu_head *head)
592903cd 3485{
cdd6c482 3486 struct perf_event *event;
592903cd 3487
cdd6c482
IM
3488 event = container_of(head, struct perf_event, rcu_head);
3489 if (event->ns)
3490 put_pid_ns(event->ns);
6fb2915d 3491 perf_event_free_filter(event);
cdd6c482 3492 kfree(event);
592903cd
PZ
3493}
3494
b69cf536
PZ
3495static void ring_buffer_attach(struct perf_event *event,
3496 struct ring_buffer *rb);
925d519a 3497
4beb31f3 3498static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3499{
4beb31f3
FW
3500 if (event->parent)
3501 return;
3502
4beb31f3
FW
3503 if (is_cgroup_event(event))
3504 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3505}
925d519a 3506
4beb31f3
FW
3507static void unaccount_event(struct perf_event *event)
3508{
3509 if (event->parent)
3510 return;
3511
3512 if (event->attach_state & PERF_ATTACH_TASK)
3513 static_key_slow_dec_deferred(&perf_sched_events);
3514 if (event->attr.mmap || event->attr.mmap_data)
3515 atomic_dec(&nr_mmap_events);
3516 if (event->attr.comm)
3517 atomic_dec(&nr_comm_events);
3518 if (event->attr.task)
3519 atomic_dec(&nr_task_events);
948b26b6
FW
3520 if (event->attr.freq)
3521 atomic_dec(&nr_freq_events);
45ac1403
AH
3522 if (event->attr.context_switch) {
3523 static_key_slow_dec_deferred(&perf_sched_events);
3524 atomic_dec(&nr_switch_events);
3525 }
4beb31f3
FW
3526 if (is_cgroup_event(event))
3527 static_key_slow_dec_deferred(&perf_sched_events);
3528 if (has_branch_stack(event))
3529 static_key_slow_dec_deferred(&perf_sched_events);
3530
3531 unaccount_event_cpu(event, event->cpu);
3532}
925d519a 3533
bed5b25a
AS
3534/*
3535 * The following implement mutual exclusion of events on "exclusive" pmus
3536 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3537 * at a time, so we disallow creating events that might conflict, namely:
3538 *
3539 * 1) cpu-wide events in the presence of per-task events,
3540 * 2) per-task events in the presence of cpu-wide events,
3541 * 3) two matching events on the same context.
3542 *
3543 * The former two cases are handled in the allocation path (perf_event_alloc(),
3544 * __free_event()), the latter -- before the first perf_install_in_context().
3545 */
3546static int exclusive_event_init(struct perf_event *event)
3547{
3548 struct pmu *pmu = event->pmu;
3549
3550 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3551 return 0;
3552
3553 /*
3554 * Prevent co-existence of per-task and cpu-wide events on the
3555 * same exclusive pmu.
3556 *
3557 * Negative pmu::exclusive_cnt means there are cpu-wide
3558 * events on this "exclusive" pmu, positive means there are
3559 * per-task events.
3560 *
3561 * Since this is called in perf_event_alloc() path, event::ctx
3562 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3563 * to mean "per-task event", because unlike other attach states it
3564 * never gets cleared.
3565 */
3566 if (event->attach_state & PERF_ATTACH_TASK) {
3567 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3568 return -EBUSY;
3569 } else {
3570 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3571 return -EBUSY;
3572 }
3573
3574 return 0;
3575}
3576
3577static void exclusive_event_destroy(struct perf_event *event)
3578{
3579 struct pmu *pmu = event->pmu;
3580
3581 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3582 return;
3583
3584 /* see comment in exclusive_event_init() */
3585 if (event->attach_state & PERF_ATTACH_TASK)
3586 atomic_dec(&pmu->exclusive_cnt);
3587 else
3588 atomic_inc(&pmu->exclusive_cnt);
3589}
3590
3591static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3592{
3593 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3594 (e1->cpu == e2->cpu ||
3595 e1->cpu == -1 ||
3596 e2->cpu == -1))
3597 return true;
3598 return false;
3599}
3600
3601/* Called under the same ctx::mutex as perf_install_in_context() */
3602static bool exclusive_event_installable(struct perf_event *event,
3603 struct perf_event_context *ctx)
3604{
3605 struct perf_event *iter_event;
3606 struct pmu *pmu = event->pmu;
3607
3608 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3609 return true;
3610
3611 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3612 if (exclusive_event_match(iter_event, event))
3613 return false;
3614 }
3615
3616 return true;
3617}
3618
766d6c07
FW
3619static void __free_event(struct perf_event *event)
3620{
cdd6c482 3621 if (!event->parent) {
927c7a9e
FW
3622 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3623 put_callchain_buffers();
f344011c 3624 }
9ee318a7 3625
dead9f29
AS
3626 perf_event_free_bpf_prog(event);
3627
766d6c07
FW
3628 if (event->destroy)
3629 event->destroy(event);
3630
3631 if (event->ctx)
3632 put_ctx(event->ctx);
3633
bed5b25a
AS
3634 if (event->pmu) {
3635 exclusive_event_destroy(event);
c464c76e 3636 module_put(event->pmu->module);
bed5b25a 3637 }
c464c76e 3638
766d6c07
FW
3639 call_rcu(&event->rcu_head, free_event_rcu);
3640}
683ede43
PZ
3641
3642static void _free_event(struct perf_event *event)
f1600952 3643{
e360adbe 3644 irq_work_sync(&event->pending);
925d519a 3645
4beb31f3 3646 unaccount_event(event);
9ee318a7 3647
76369139 3648 if (event->rb) {
9bb5d40c
PZ
3649 /*
3650 * Can happen when we close an event with re-directed output.
3651 *
3652 * Since we have a 0 refcount, perf_mmap_close() will skip
3653 * over us; possibly making our ring_buffer_put() the last.
3654 */
3655 mutex_lock(&event->mmap_mutex);
b69cf536 3656 ring_buffer_attach(event, NULL);
9bb5d40c 3657 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3658 }
3659
e5d1367f
SE
3660 if (is_cgroup_event(event))
3661 perf_detach_cgroup(event);
3662
766d6c07 3663 __free_event(event);
f1600952
PZ
3664}
3665
683ede43
PZ
3666/*
3667 * Used to free events which have a known refcount of 1, such as in error paths
3668 * where the event isn't exposed yet and inherited events.
3669 */
3670static void free_event(struct perf_event *event)
0793a61d 3671{
683ede43
PZ
3672 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3673 "unexpected event refcount: %ld; ptr=%p\n",
3674 atomic_long_read(&event->refcount), event)) {
3675 /* leak to avoid use-after-free */
3676 return;
3677 }
0793a61d 3678
683ede43 3679 _free_event(event);
0793a61d
TG
3680}
3681
a66a3052 3682/*
f8697762 3683 * Remove user event from the owner task.
a66a3052 3684 */
f8697762 3685static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3686{
8882135b 3687 struct task_struct *owner;
fb0459d7 3688
8882135b
PZ
3689 rcu_read_lock();
3690 owner = ACCESS_ONCE(event->owner);
3691 /*
3692 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3693 * !owner it means the list deletion is complete and we can indeed
3694 * free this event, otherwise we need to serialize on
3695 * owner->perf_event_mutex.
3696 */
3697 smp_read_barrier_depends();
3698 if (owner) {
3699 /*
3700 * Since delayed_put_task_struct() also drops the last
3701 * task reference we can safely take a new reference
3702 * while holding the rcu_read_lock().
3703 */
3704 get_task_struct(owner);
3705 }
3706 rcu_read_unlock();
3707
3708 if (owner) {
f63a8daa
PZ
3709 /*
3710 * If we're here through perf_event_exit_task() we're already
3711 * holding ctx->mutex which would be an inversion wrt. the
3712 * normal lock order.
3713 *
3714 * However we can safely take this lock because its the child
3715 * ctx->mutex.
3716 */
3717 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3718
8882135b
PZ
3719 /*
3720 * We have to re-check the event->owner field, if it is cleared
3721 * we raced with perf_event_exit_task(), acquiring the mutex
3722 * ensured they're done, and we can proceed with freeing the
3723 * event.
3724 */
3725 if (event->owner)
3726 list_del_init(&event->owner_entry);
3727 mutex_unlock(&owner->perf_event_mutex);
3728 put_task_struct(owner);
3729 }
f8697762
JO
3730}
3731
f8697762
JO
3732static void put_event(struct perf_event *event)
3733{
a83fe28e 3734 struct perf_event_context *ctx;
f8697762
JO
3735
3736 if (!atomic_long_dec_and_test(&event->refcount))
3737 return;
3738
3739 if (!is_kernel_event(event))
3740 perf_remove_from_owner(event);
8882135b 3741
683ede43
PZ
3742 /*
3743 * There are two ways this annotation is useful:
3744 *
3745 * 1) there is a lock recursion from perf_event_exit_task
3746 * see the comment there.
3747 *
3748 * 2) there is a lock-inversion with mmap_sem through
b15f495b 3749 * perf_read_group(), which takes faults while
683ede43
PZ
3750 * holding ctx->mutex, however this is called after
3751 * the last filedesc died, so there is no possibility
3752 * to trigger the AB-BA case.
3753 */
a83fe28e
PZ
3754 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3755 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3756 perf_remove_from_context(event, true);
d415a7f1 3757 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3758
3759 _free_event(event);
a6fa941d
AV
3760}
3761
683ede43
PZ
3762int perf_event_release_kernel(struct perf_event *event)
3763{
3764 put_event(event);
3765 return 0;
3766}
3767EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3768
8b10c5e2
PZ
3769/*
3770 * Called when the last reference to the file is gone.
3771 */
a6fa941d
AV
3772static int perf_release(struct inode *inode, struct file *file)
3773{
3774 put_event(file->private_data);
3775 return 0;
fb0459d7 3776}
fb0459d7 3777
fadfe7be
JO
3778/*
3779 * Remove all orphanes events from the context.
3780 */
3781static void orphans_remove_work(struct work_struct *work)
3782{
3783 struct perf_event_context *ctx;
3784 struct perf_event *event, *tmp;
3785
3786 ctx = container_of(work, struct perf_event_context,
3787 orphans_remove.work);
3788
3789 mutex_lock(&ctx->mutex);
3790 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3791 struct perf_event *parent_event = event->parent;
3792
3793 if (!is_orphaned_child(event))
3794 continue;
3795
3796 perf_remove_from_context(event, true);
3797
3798 mutex_lock(&parent_event->child_mutex);
3799 list_del_init(&event->child_list);
3800 mutex_unlock(&parent_event->child_mutex);
3801
3802 free_event(event);
3803 put_event(parent_event);
3804 }
3805
3806 raw_spin_lock_irq(&ctx->lock);
3807 ctx->orphans_remove_sched = false;
3808 raw_spin_unlock_irq(&ctx->lock);
3809 mutex_unlock(&ctx->mutex);
3810
3811 put_ctx(ctx);
3812}
3813
59ed446f 3814u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3815{
cdd6c482 3816 struct perf_event *child;
e53c0994
PZ
3817 u64 total = 0;
3818
59ed446f
PZ
3819 *enabled = 0;
3820 *running = 0;
3821
6f10581a 3822 mutex_lock(&event->child_mutex);
01add3ea 3823
7d88962e 3824 (void)perf_event_read(event, false);
01add3ea
SB
3825 total += perf_event_count(event);
3826
59ed446f
PZ
3827 *enabled += event->total_time_enabled +
3828 atomic64_read(&event->child_total_time_enabled);
3829 *running += event->total_time_running +
3830 atomic64_read(&event->child_total_time_running);
3831
3832 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3833 (void)perf_event_read(child, false);
01add3ea 3834 total += perf_event_count(child);
59ed446f
PZ
3835 *enabled += child->total_time_enabled;
3836 *running += child->total_time_running;
3837 }
6f10581a 3838 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3839
3840 return total;
3841}
fb0459d7 3842EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3843
7d88962e 3844static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3845 u64 read_format, u64 *values)
3dab77fb 3846{
fa8c2693
PZ
3847 struct perf_event *sub;
3848 int n = 1; /* skip @nr */
7d88962e 3849 int ret;
f63a8daa 3850
7d88962e
SB
3851 ret = perf_event_read(leader, true);
3852 if (ret)
3853 return ret;
abf4868b 3854
fa8c2693
PZ
3855 /*
3856 * Since we co-schedule groups, {enabled,running} times of siblings
3857 * will be identical to those of the leader, so we only publish one
3858 * set.
3859 */
3860 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3861 values[n++] += leader->total_time_enabled +
3862 atomic64_read(&leader->child_total_time_enabled);
3863 }
3dab77fb 3864
fa8c2693
PZ
3865 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3866 values[n++] += leader->total_time_running +
3867 atomic64_read(&leader->child_total_time_running);
3868 }
3869
3870 /*
3871 * Write {count,id} tuples for every sibling.
3872 */
3873 values[n++] += perf_event_count(leader);
abf4868b
PZ
3874 if (read_format & PERF_FORMAT_ID)
3875 values[n++] = primary_event_id(leader);
3dab77fb 3876
fa8c2693
PZ
3877 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3878 values[n++] += perf_event_count(sub);
3879 if (read_format & PERF_FORMAT_ID)
3880 values[n++] = primary_event_id(sub);
3881 }
7d88962e
SB
3882
3883 return 0;
fa8c2693 3884}
3dab77fb 3885
fa8c2693
PZ
3886static int perf_read_group(struct perf_event *event,
3887 u64 read_format, char __user *buf)
3888{
3889 struct perf_event *leader = event->group_leader, *child;
3890 struct perf_event_context *ctx = leader->ctx;
7d88962e 3891 int ret;
fa8c2693 3892 u64 *values;
3dab77fb 3893
fa8c2693 3894 lockdep_assert_held(&ctx->mutex);
3dab77fb 3895
fa8c2693
PZ
3896 values = kzalloc(event->read_size, GFP_KERNEL);
3897 if (!values)
3898 return -ENOMEM;
3dab77fb 3899
fa8c2693
PZ
3900 values[0] = 1 + leader->nr_siblings;
3901
3902 /*
3903 * By locking the child_mutex of the leader we effectively
3904 * lock the child list of all siblings.. XXX explain how.
3905 */
3906 mutex_lock(&leader->child_mutex);
abf4868b 3907
7d88962e
SB
3908 ret = __perf_read_group_add(leader, read_format, values);
3909 if (ret)
3910 goto unlock;
3911
3912 list_for_each_entry(child, &leader->child_list, child_list) {
3913 ret = __perf_read_group_add(child, read_format, values);
3914 if (ret)
3915 goto unlock;
3916 }
abf4868b 3917
fa8c2693 3918 mutex_unlock(&leader->child_mutex);
abf4868b 3919
7d88962e 3920 ret = event->read_size;
fa8c2693
PZ
3921 if (copy_to_user(buf, values, event->read_size))
3922 ret = -EFAULT;
7d88962e 3923 goto out;
fa8c2693 3924
7d88962e
SB
3925unlock:
3926 mutex_unlock(&leader->child_mutex);
3927out:
fa8c2693 3928 kfree(values);
abf4868b 3929 return ret;
3dab77fb
PZ
3930}
3931
b15f495b 3932static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
3933 u64 read_format, char __user *buf)
3934{
59ed446f 3935 u64 enabled, running;
3dab77fb
PZ
3936 u64 values[4];
3937 int n = 0;
3938
59ed446f
PZ
3939 values[n++] = perf_event_read_value(event, &enabled, &running);
3940 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3941 values[n++] = enabled;
3942 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3943 values[n++] = running;
3dab77fb 3944 if (read_format & PERF_FORMAT_ID)
cdd6c482 3945 values[n++] = primary_event_id(event);
3dab77fb
PZ
3946
3947 if (copy_to_user(buf, values, n * sizeof(u64)))
3948 return -EFAULT;
3949
3950 return n * sizeof(u64);
3951}
3952
dc633982
JO
3953static bool is_event_hup(struct perf_event *event)
3954{
3955 bool no_children;
3956
3957 if (event->state != PERF_EVENT_STATE_EXIT)
3958 return false;
3959
3960 mutex_lock(&event->child_mutex);
3961 no_children = list_empty(&event->child_list);
3962 mutex_unlock(&event->child_mutex);
3963 return no_children;
3964}
3965
0793a61d 3966/*
cdd6c482 3967 * Read the performance event - simple non blocking version for now
0793a61d
TG
3968 */
3969static ssize_t
b15f495b 3970__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3971{
cdd6c482 3972 u64 read_format = event->attr.read_format;
3dab77fb 3973 int ret;
0793a61d 3974
3b6f9e5c 3975 /*
cdd6c482 3976 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3977 * error state (i.e. because it was pinned but it couldn't be
3978 * scheduled on to the CPU at some point).
3979 */
cdd6c482 3980 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3981 return 0;
3982
c320c7b7 3983 if (count < event->read_size)
3dab77fb
PZ
3984 return -ENOSPC;
3985
cdd6c482 3986 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3987 if (read_format & PERF_FORMAT_GROUP)
b15f495b 3988 ret = perf_read_group(event, read_format, buf);
3dab77fb 3989 else
b15f495b 3990 ret = perf_read_one(event, read_format, buf);
0793a61d 3991
3dab77fb 3992 return ret;
0793a61d
TG
3993}
3994
0793a61d
TG
3995static ssize_t
3996perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3997{
cdd6c482 3998 struct perf_event *event = file->private_data;
f63a8daa
PZ
3999 struct perf_event_context *ctx;
4000 int ret;
0793a61d 4001
f63a8daa 4002 ctx = perf_event_ctx_lock(event);
b15f495b 4003 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4004 perf_event_ctx_unlock(event, ctx);
4005
4006 return ret;
0793a61d
TG
4007}
4008
4009static unsigned int perf_poll(struct file *file, poll_table *wait)
4010{
cdd6c482 4011 struct perf_event *event = file->private_data;
76369139 4012 struct ring_buffer *rb;
61b67684 4013 unsigned int events = POLLHUP;
c7138f37 4014
e708d7ad 4015 poll_wait(file, &event->waitq, wait);
179033b3 4016
dc633982 4017 if (is_event_hup(event))
179033b3 4018 return events;
c7138f37 4019
10c6db11 4020 /*
9bb5d40c
PZ
4021 * Pin the event->rb by taking event->mmap_mutex; otherwise
4022 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4023 */
4024 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4025 rb = event->rb;
4026 if (rb)
76369139 4027 events = atomic_xchg(&rb->poll, 0);
10c6db11 4028 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4029 return events;
4030}
4031
f63a8daa 4032static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4033{
7d88962e 4034 (void)perf_event_read(event, false);
e7850595 4035 local64_set(&event->count, 0);
cdd6c482 4036 perf_event_update_userpage(event);
3df5edad
PZ
4037}
4038
c93f7669 4039/*
cdd6c482
IM
4040 * Holding the top-level event's child_mutex means that any
4041 * descendant process that has inherited this event will block
4042 * in sync_child_event if it goes to exit, thus satisfying the
4043 * task existence requirements of perf_event_enable/disable.
c93f7669 4044 */
cdd6c482
IM
4045static void perf_event_for_each_child(struct perf_event *event,
4046 void (*func)(struct perf_event *))
3df5edad 4047{
cdd6c482 4048 struct perf_event *child;
3df5edad 4049
cdd6c482 4050 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4051
cdd6c482
IM
4052 mutex_lock(&event->child_mutex);
4053 func(event);
4054 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4055 func(child);
cdd6c482 4056 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4057}
4058
cdd6c482
IM
4059static void perf_event_for_each(struct perf_event *event,
4060 void (*func)(struct perf_event *))
3df5edad 4061{
cdd6c482
IM
4062 struct perf_event_context *ctx = event->ctx;
4063 struct perf_event *sibling;
3df5edad 4064
f63a8daa
PZ
4065 lockdep_assert_held(&ctx->mutex);
4066
cdd6c482 4067 event = event->group_leader;
75f937f2 4068
cdd6c482 4069 perf_event_for_each_child(event, func);
cdd6c482 4070 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4071 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4072}
4073
c7999c6f
PZ
4074struct period_event {
4075 struct perf_event *event;
08247e31 4076 u64 value;
c7999c6f 4077};
08247e31 4078
0017960f
PZ
4079static void ___perf_event_period(void *info)
4080{
4081 struct period_event *pe = info;
4082 struct perf_event *event = pe->event;
4083 u64 value = pe->value;
4084
4085 if (event->attr.freq) {
4086 event->attr.sample_freq = value;
4087 } else {
4088 event->attr.sample_period = value;
4089 event->hw.sample_period = value;
4090 }
4091
4092 local64_set(&event->hw.period_left, 0);
4093}
4094
c7999c6f
PZ
4095static int __perf_event_period(void *info)
4096{
4097 struct period_event *pe = info;
4098 struct perf_event *event = pe->event;
4099 struct perf_event_context *ctx = event->ctx;
4100 u64 value = pe->value;
4101 bool active;
08247e31 4102
c7999c6f 4103 raw_spin_lock(&ctx->lock);
cdd6c482 4104 if (event->attr.freq) {
cdd6c482 4105 event->attr.sample_freq = value;
08247e31 4106 } else {
cdd6c482
IM
4107 event->attr.sample_period = value;
4108 event->hw.sample_period = value;
08247e31 4109 }
bad7192b
PZ
4110
4111 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4112 if (active) {
4113 perf_pmu_disable(ctx->pmu);
4114 event->pmu->stop(event, PERF_EF_UPDATE);
4115 }
4116
4117 local64_set(&event->hw.period_left, 0);
4118
4119 if (active) {
4120 event->pmu->start(event, PERF_EF_RELOAD);
4121 perf_pmu_enable(ctx->pmu);
4122 }
c7999c6f 4123 raw_spin_unlock(&ctx->lock);
bad7192b 4124
c7999c6f
PZ
4125 return 0;
4126}
4127
4128static int perf_event_period(struct perf_event *event, u64 __user *arg)
4129{
4130 struct period_event pe = { .event = event, };
c7999c6f
PZ
4131 u64 value;
4132
4133 if (!is_sampling_event(event))
4134 return -EINVAL;
4135
4136 if (copy_from_user(&value, arg, sizeof(value)))
4137 return -EFAULT;
4138
4139 if (!value)
4140 return -EINVAL;
4141
4142 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4143 return -EINVAL;
4144
c7999c6f
PZ
4145 pe.value = value;
4146
0017960f
PZ
4147 event_function_call(event, __perf_event_period,
4148 ___perf_event_period, &pe);
08247e31 4149
c7999c6f 4150 return 0;
08247e31
PZ
4151}
4152
ac9721f3
PZ
4153static const struct file_operations perf_fops;
4154
2903ff01 4155static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4156{
2903ff01
AV
4157 struct fd f = fdget(fd);
4158 if (!f.file)
4159 return -EBADF;
ac9721f3 4160
2903ff01
AV
4161 if (f.file->f_op != &perf_fops) {
4162 fdput(f);
4163 return -EBADF;
ac9721f3 4164 }
2903ff01
AV
4165 *p = f;
4166 return 0;
ac9721f3
PZ
4167}
4168
4169static int perf_event_set_output(struct perf_event *event,
4170 struct perf_event *output_event);
6fb2915d 4171static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4172static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4173
f63a8daa 4174static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4175{
cdd6c482 4176 void (*func)(struct perf_event *);
3df5edad 4177 u32 flags = arg;
d859e29f
PM
4178
4179 switch (cmd) {
cdd6c482 4180 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4181 func = _perf_event_enable;
d859e29f 4182 break;
cdd6c482 4183 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4184 func = _perf_event_disable;
79f14641 4185 break;
cdd6c482 4186 case PERF_EVENT_IOC_RESET:
f63a8daa 4187 func = _perf_event_reset;
6de6a7b9 4188 break;
3df5edad 4189
cdd6c482 4190 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4191 return _perf_event_refresh(event, arg);
08247e31 4192
cdd6c482
IM
4193 case PERF_EVENT_IOC_PERIOD:
4194 return perf_event_period(event, (u64 __user *)arg);
08247e31 4195
cf4957f1
JO
4196 case PERF_EVENT_IOC_ID:
4197 {
4198 u64 id = primary_event_id(event);
4199
4200 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4201 return -EFAULT;
4202 return 0;
4203 }
4204
cdd6c482 4205 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4206 {
ac9721f3 4207 int ret;
ac9721f3 4208 if (arg != -1) {
2903ff01
AV
4209 struct perf_event *output_event;
4210 struct fd output;
4211 ret = perf_fget_light(arg, &output);
4212 if (ret)
4213 return ret;
4214 output_event = output.file->private_data;
4215 ret = perf_event_set_output(event, output_event);
4216 fdput(output);
4217 } else {
4218 ret = perf_event_set_output(event, NULL);
ac9721f3 4219 }
ac9721f3
PZ
4220 return ret;
4221 }
a4be7c27 4222
6fb2915d
LZ
4223 case PERF_EVENT_IOC_SET_FILTER:
4224 return perf_event_set_filter(event, (void __user *)arg);
4225
2541517c
AS
4226 case PERF_EVENT_IOC_SET_BPF:
4227 return perf_event_set_bpf_prog(event, arg);
4228
d859e29f 4229 default:
3df5edad 4230 return -ENOTTY;
d859e29f 4231 }
3df5edad
PZ
4232
4233 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4234 perf_event_for_each(event, func);
3df5edad 4235 else
cdd6c482 4236 perf_event_for_each_child(event, func);
3df5edad
PZ
4237
4238 return 0;
d859e29f
PM
4239}
4240
f63a8daa
PZ
4241static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4242{
4243 struct perf_event *event = file->private_data;
4244 struct perf_event_context *ctx;
4245 long ret;
4246
4247 ctx = perf_event_ctx_lock(event);
4248 ret = _perf_ioctl(event, cmd, arg);
4249 perf_event_ctx_unlock(event, ctx);
4250
4251 return ret;
4252}
4253
b3f20785
PM
4254#ifdef CONFIG_COMPAT
4255static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4256 unsigned long arg)
4257{
4258 switch (_IOC_NR(cmd)) {
4259 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4260 case _IOC_NR(PERF_EVENT_IOC_ID):
4261 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4262 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4263 cmd &= ~IOCSIZE_MASK;
4264 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4265 }
4266 break;
4267 }
4268 return perf_ioctl(file, cmd, arg);
4269}
4270#else
4271# define perf_compat_ioctl NULL
4272#endif
4273
cdd6c482 4274int perf_event_task_enable(void)
771d7cde 4275{
f63a8daa 4276 struct perf_event_context *ctx;
cdd6c482 4277 struct perf_event *event;
771d7cde 4278
cdd6c482 4279 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4280 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4281 ctx = perf_event_ctx_lock(event);
4282 perf_event_for_each_child(event, _perf_event_enable);
4283 perf_event_ctx_unlock(event, ctx);
4284 }
cdd6c482 4285 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4286
4287 return 0;
4288}
4289
cdd6c482 4290int perf_event_task_disable(void)
771d7cde 4291{
f63a8daa 4292 struct perf_event_context *ctx;
cdd6c482 4293 struct perf_event *event;
771d7cde 4294
cdd6c482 4295 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4296 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4297 ctx = perf_event_ctx_lock(event);
4298 perf_event_for_each_child(event, _perf_event_disable);
4299 perf_event_ctx_unlock(event, ctx);
4300 }
cdd6c482 4301 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4302
4303 return 0;
4304}
4305
cdd6c482 4306static int perf_event_index(struct perf_event *event)
194002b2 4307{
a4eaf7f1
PZ
4308 if (event->hw.state & PERF_HES_STOPPED)
4309 return 0;
4310
cdd6c482 4311 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4312 return 0;
4313
35edc2a5 4314 return event->pmu->event_idx(event);
194002b2
PZ
4315}
4316
c4794295 4317static void calc_timer_values(struct perf_event *event,
e3f3541c 4318 u64 *now,
7f310a5d
EM
4319 u64 *enabled,
4320 u64 *running)
c4794295 4321{
e3f3541c 4322 u64 ctx_time;
c4794295 4323
e3f3541c
PZ
4324 *now = perf_clock();
4325 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4326 *enabled = ctx_time - event->tstamp_enabled;
4327 *running = ctx_time - event->tstamp_running;
4328}
4329
fa731587
PZ
4330static void perf_event_init_userpage(struct perf_event *event)
4331{
4332 struct perf_event_mmap_page *userpg;
4333 struct ring_buffer *rb;
4334
4335 rcu_read_lock();
4336 rb = rcu_dereference(event->rb);
4337 if (!rb)
4338 goto unlock;
4339
4340 userpg = rb->user_page;
4341
4342 /* Allow new userspace to detect that bit 0 is deprecated */
4343 userpg->cap_bit0_is_deprecated = 1;
4344 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4345 userpg->data_offset = PAGE_SIZE;
4346 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4347
4348unlock:
4349 rcu_read_unlock();
4350}
4351
c1317ec2
AL
4352void __weak arch_perf_update_userpage(
4353 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4354{
4355}
4356
38ff667b
PZ
4357/*
4358 * Callers need to ensure there can be no nesting of this function, otherwise
4359 * the seqlock logic goes bad. We can not serialize this because the arch
4360 * code calls this from NMI context.
4361 */
cdd6c482 4362void perf_event_update_userpage(struct perf_event *event)
37d81828 4363{
cdd6c482 4364 struct perf_event_mmap_page *userpg;
76369139 4365 struct ring_buffer *rb;
e3f3541c 4366 u64 enabled, running, now;
38ff667b
PZ
4367
4368 rcu_read_lock();
5ec4c599
PZ
4369 rb = rcu_dereference(event->rb);
4370 if (!rb)
4371 goto unlock;
4372
0d641208
EM
4373 /*
4374 * compute total_time_enabled, total_time_running
4375 * based on snapshot values taken when the event
4376 * was last scheduled in.
4377 *
4378 * we cannot simply called update_context_time()
4379 * because of locking issue as we can be called in
4380 * NMI context
4381 */
e3f3541c 4382 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4383
76369139 4384 userpg = rb->user_page;
7b732a75
PZ
4385 /*
4386 * Disable preemption so as to not let the corresponding user-space
4387 * spin too long if we get preempted.
4388 */
4389 preempt_disable();
37d81828 4390 ++userpg->lock;
92f22a38 4391 barrier();
cdd6c482 4392 userpg->index = perf_event_index(event);
b5e58793 4393 userpg->offset = perf_event_count(event);
365a4038 4394 if (userpg->index)
e7850595 4395 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4396
0d641208 4397 userpg->time_enabled = enabled +
cdd6c482 4398 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4399
0d641208 4400 userpg->time_running = running +
cdd6c482 4401 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4402
c1317ec2 4403 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4404
92f22a38 4405 barrier();
37d81828 4406 ++userpg->lock;
7b732a75 4407 preempt_enable();
38ff667b 4408unlock:
7b732a75 4409 rcu_read_unlock();
37d81828
PM
4410}
4411
906010b2
PZ
4412static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4413{
4414 struct perf_event *event = vma->vm_file->private_data;
76369139 4415 struct ring_buffer *rb;
906010b2
PZ
4416 int ret = VM_FAULT_SIGBUS;
4417
4418 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4419 if (vmf->pgoff == 0)
4420 ret = 0;
4421 return ret;
4422 }
4423
4424 rcu_read_lock();
76369139
FW
4425 rb = rcu_dereference(event->rb);
4426 if (!rb)
906010b2
PZ
4427 goto unlock;
4428
4429 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4430 goto unlock;
4431
76369139 4432 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4433 if (!vmf->page)
4434 goto unlock;
4435
4436 get_page(vmf->page);
4437 vmf->page->mapping = vma->vm_file->f_mapping;
4438 vmf->page->index = vmf->pgoff;
4439
4440 ret = 0;
4441unlock:
4442 rcu_read_unlock();
4443
4444 return ret;
4445}
4446
10c6db11
PZ
4447static void ring_buffer_attach(struct perf_event *event,
4448 struct ring_buffer *rb)
4449{
b69cf536 4450 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4451 unsigned long flags;
4452
b69cf536
PZ
4453 if (event->rb) {
4454 /*
4455 * Should be impossible, we set this when removing
4456 * event->rb_entry and wait/clear when adding event->rb_entry.
4457 */
4458 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4459
b69cf536 4460 old_rb = event->rb;
b69cf536
PZ
4461 spin_lock_irqsave(&old_rb->event_lock, flags);
4462 list_del_rcu(&event->rb_entry);
4463 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4464
2f993cf0
ON
4465 event->rcu_batches = get_state_synchronize_rcu();
4466 event->rcu_pending = 1;
b69cf536 4467 }
10c6db11 4468
b69cf536 4469 if (rb) {
2f993cf0
ON
4470 if (event->rcu_pending) {
4471 cond_synchronize_rcu(event->rcu_batches);
4472 event->rcu_pending = 0;
4473 }
4474
b69cf536
PZ
4475 spin_lock_irqsave(&rb->event_lock, flags);
4476 list_add_rcu(&event->rb_entry, &rb->event_list);
4477 spin_unlock_irqrestore(&rb->event_lock, flags);
4478 }
4479
4480 rcu_assign_pointer(event->rb, rb);
4481
4482 if (old_rb) {
4483 ring_buffer_put(old_rb);
4484 /*
4485 * Since we detached before setting the new rb, so that we
4486 * could attach the new rb, we could have missed a wakeup.
4487 * Provide it now.
4488 */
4489 wake_up_all(&event->waitq);
4490 }
10c6db11
PZ
4491}
4492
4493static void ring_buffer_wakeup(struct perf_event *event)
4494{
4495 struct ring_buffer *rb;
4496
4497 rcu_read_lock();
4498 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4499 if (rb) {
4500 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4501 wake_up_all(&event->waitq);
4502 }
10c6db11
PZ
4503 rcu_read_unlock();
4504}
4505
fdc26706 4506struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4507{
76369139 4508 struct ring_buffer *rb;
7b732a75 4509
ac9721f3 4510 rcu_read_lock();
76369139
FW
4511 rb = rcu_dereference(event->rb);
4512 if (rb) {
4513 if (!atomic_inc_not_zero(&rb->refcount))
4514 rb = NULL;
ac9721f3
PZ
4515 }
4516 rcu_read_unlock();
4517
76369139 4518 return rb;
ac9721f3
PZ
4519}
4520
fdc26706 4521void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4522{
76369139 4523 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4524 return;
7b732a75 4525
9bb5d40c 4526 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4527
76369139 4528 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4529}
4530
4531static void perf_mmap_open(struct vm_area_struct *vma)
4532{
cdd6c482 4533 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4534
cdd6c482 4535 atomic_inc(&event->mmap_count);
9bb5d40c 4536 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4537
45bfb2e5
PZ
4538 if (vma->vm_pgoff)
4539 atomic_inc(&event->rb->aux_mmap_count);
4540
1e0fb9ec
AL
4541 if (event->pmu->event_mapped)
4542 event->pmu->event_mapped(event);
7b732a75
PZ
4543}
4544
9bb5d40c
PZ
4545/*
4546 * A buffer can be mmap()ed multiple times; either directly through the same
4547 * event, or through other events by use of perf_event_set_output().
4548 *
4549 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4550 * the buffer here, where we still have a VM context. This means we need
4551 * to detach all events redirecting to us.
4552 */
7b732a75
PZ
4553static void perf_mmap_close(struct vm_area_struct *vma)
4554{
cdd6c482 4555 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4556
b69cf536 4557 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4558 struct user_struct *mmap_user = rb->mmap_user;
4559 int mmap_locked = rb->mmap_locked;
4560 unsigned long size = perf_data_size(rb);
789f90fc 4561
1e0fb9ec
AL
4562 if (event->pmu->event_unmapped)
4563 event->pmu->event_unmapped(event);
4564
45bfb2e5
PZ
4565 /*
4566 * rb->aux_mmap_count will always drop before rb->mmap_count and
4567 * event->mmap_count, so it is ok to use event->mmap_mutex to
4568 * serialize with perf_mmap here.
4569 */
4570 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4571 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4572 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4573 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4574
4575 rb_free_aux(rb);
4576 mutex_unlock(&event->mmap_mutex);
4577 }
4578
9bb5d40c
PZ
4579 atomic_dec(&rb->mmap_count);
4580
4581 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4582 goto out_put;
9bb5d40c 4583
b69cf536 4584 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4585 mutex_unlock(&event->mmap_mutex);
4586
4587 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4588 if (atomic_read(&rb->mmap_count))
4589 goto out_put;
ac9721f3 4590
9bb5d40c
PZ
4591 /*
4592 * No other mmap()s, detach from all other events that might redirect
4593 * into the now unreachable buffer. Somewhat complicated by the
4594 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4595 */
4596again:
4597 rcu_read_lock();
4598 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4599 if (!atomic_long_inc_not_zero(&event->refcount)) {
4600 /*
4601 * This event is en-route to free_event() which will
4602 * detach it and remove it from the list.
4603 */
4604 continue;
4605 }
4606 rcu_read_unlock();
789f90fc 4607
9bb5d40c
PZ
4608 mutex_lock(&event->mmap_mutex);
4609 /*
4610 * Check we didn't race with perf_event_set_output() which can
4611 * swizzle the rb from under us while we were waiting to
4612 * acquire mmap_mutex.
4613 *
4614 * If we find a different rb; ignore this event, a next
4615 * iteration will no longer find it on the list. We have to
4616 * still restart the iteration to make sure we're not now
4617 * iterating the wrong list.
4618 */
b69cf536
PZ
4619 if (event->rb == rb)
4620 ring_buffer_attach(event, NULL);
4621
cdd6c482 4622 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4623 put_event(event);
ac9721f3 4624
9bb5d40c
PZ
4625 /*
4626 * Restart the iteration; either we're on the wrong list or
4627 * destroyed its integrity by doing a deletion.
4628 */
4629 goto again;
7b732a75 4630 }
9bb5d40c
PZ
4631 rcu_read_unlock();
4632
4633 /*
4634 * It could be there's still a few 0-ref events on the list; they'll
4635 * get cleaned up by free_event() -- they'll also still have their
4636 * ref on the rb and will free it whenever they are done with it.
4637 *
4638 * Aside from that, this buffer is 'fully' detached and unmapped,
4639 * undo the VM accounting.
4640 */
4641
4642 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4643 vma->vm_mm->pinned_vm -= mmap_locked;
4644 free_uid(mmap_user);
4645
b69cf536 4646out_put:
9bb5d40c 4647 ring_buffer_put(rb); /* could be last */
37d81828
PM
4648}
4649
f0f37e2f 4650static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4651 .open = perf_mmap_open,
45bfb2e5 4652 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4653 .fault = perf_mmap_fault,
4654 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4655};
4656
4657static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4658{
cdd6c482 4659 struct perf_event *event = file->private_data;
22a4f650 4660 unsigned long user_locked, user_lock_limit;
789f90fc 4661 struct user_struct *user = current_user();
22a4f650 4662 unsigned long locked, lock_limit;
45bfb2e5 4663 struct ring_buffer *rb = NULL;
7b732a75
PZ
4664 unsigned long vma_size;
4665 unsigned long nr_pages;
45bfb2e5 4666 long user_extra = 0, extra = 0;
d57e34fd 4667 int ret = 0, flags = 0;
37d81828 4668
c7920614
PZ
4669 /*
4670 * Don't allow mmap() of inherited per-task counters. This would
4671 * create a performance issue due to all children writing to the
76369139 4672 * same rb.
c7920614
PZ
4673 */
4674 if (event->cpu == -1 && event->attr.inherit)
4675 return -EINVAL;
4676
43a21ea8 4677 if (!(vma->vm_flags & VM_SHARED))
37d81828 4678 return -EINVAL;
7b732a75
PZ
4679
4680 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4681
4682 if (vma->vm_pgoff == 0) {
4683 nr_pages = (vma_size / PAGE_SIZE) - 1;
4684 } else {
4685 /*
4686 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4687 * mapped, all subsequent mappings should have the same size
4688 * and offset. Must be above the normal perf buffer.
4689 */
4690 u64 aux_offset, aux_size;
4691
4692 if (!event->rb)
4693 return -EINVAL;
4694
4695 nr_pages = vma_size / PAGE_SIZE;
4696
4697 mutex_lock(&event->mmap_mutex);
4698 ret = -EINVAL;
4699
4700 rb = event->rb;
4701 if (!rb)
4702 goto aux_unlock;
4703
4704 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4705 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4706
4707 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4708 goto aux_unlock;
4709
4710 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4711 goto aux_unlock;
4712
4713 /* already mapped with a different offset */
4714 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4715 goto aux_unlock;
4716
4717 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4718 goto aux_unlock;
4719
4720 /* already mapped with a different size */
4721 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4722 goto aux_unlock;
4723
4724 if (!is_power_of_2(nr_pages))
4725 goto aux_unlock;
4726
4727 if (!atomic_inc_not_zero(&rb->mmap_count))
4728 goto aux_unlock;
4729
4730 if (rb_has_aux(rb)) {
4731 atomic_inc(&rb->aux_mmap_count);
4732 ret = 0;
4733 goto unlock;
4734 }
4735
4736 atomic_set(&rb->aux_mmap_count, 1);
4737 user_extra = nr_pages;
4738
4739 goto accounting;
4740 }
7b732a75 4741
7730d865 4742 /*
76369139 4743 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4744 * can do bitmasks instead of modulo.
4745 */
2ed11312 4746 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4747 return -EINVAL;
4748
7b732a75 4749 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4750 return -EINVAL;
4751
cdd6c482 4752 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4753again:
cdd6c482 4754 mutex_lock(&event->mmap_mutex);
76369139 4755 if (event->rb) {
9bb5d40c 4756 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4757 ret = -EINVAL;
9bb5d40c
PZ
4758 goto unlock;
4759 }
4760
4761 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4762 /*
4763 * Raced against perf_mmap_close() through
4764 * perf_event_set_output(). Try again, hope for better
4765 * luck.
4766 */
4767 mutex_unlock(&event->mmap_mutex);
4768 goto again;
4769 }
4770
ebb3c4c4
PZ
4771 goto unlock;
4772 }
4773
789f90fc 4774 user_extra = nr_pages + 1;
45bfb2e5
PZ
4775
4776accounting:
cdd6c482 4777 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4778
4779 /*
4780 * Increase the limit linearly with more CPUs:
4781 */
4782 user_lock_limit *= num_online_cpus();
4783
789f90fc 4784 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4785
789f90fc
PZ
4786 if (user_locked > user_lock_limit)
4787 extra = user_locked - user_lock_limit;
7b732a75 4788
78d7d407 4789 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4790 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4791 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4792
459ec28a
IM
4793 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4794 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4795 ret = -EPERM;
4796 goto unlock;
4797 }
7b732a75 4798
45bfb2e5 4799 WARN_ON(!rb && event->rb);
906010b2 4800
d57e34fd 4801 if (vma->vm_flags & VM_WRITE)
76369139 4802 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4803
76369139 4804 if (!rb) {
45bfb2e5
PZ
4805 rb = rb_alloc(nr_pages,
4806 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4807 event->cpu, flags);
26cb63ad 4808
45bfb2e5
PZ
4809 if (!rb) {
4810 ret = -ENOMEM;
4811 goto unlock;
4812 }
43a21ea8 4813
45bfb2e5
PZ
4814 atomic_set(&rb->mmap_count, 1);
4815 rb->mmap_user = get_current_user();
4816 rb->mmap_locked = extra;
26cb63ad 4817
45bfb2e5 4818 ring_buffer_attach(event, rb);
ac9721f3 4819
45bfb2e5
PZ
4820 perf_event_init_userpage(event);
4821 perf_event_update_userpage(event);
4822 } else {
1a594131
AS
4823 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4824 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4825 if (!ret)
4826 rb->aux_mmap_locked = extra;
4827 }
9a0f05cb 4828
ebb3c4c4 4829unlock:
45bfb2e5
PZ
4830 if (!ret) {
4831 atomic_long_add(user_extra, &user->locked_vm);
4832 vma->vm_mm->pinned_vm += extra;
4833
ac9721f3 4834 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4835 } else if (rb) {
4836 atomic_dec(&rb->mmap_count);
4837 }
4838aux_unlock:
cdd6c482 4839 mutex_unlock(&event->mmap_mutex);
37d81828 4840
9bb5d40c
PZ
4841 /*
4842 * Since pinned accounting is per vm we cannot allow fork() to copy our
4843 * vma.
4844 */
26cb63ad 4845 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4846 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4847
1e0fb9ec
AL
4848 if (event->pmu->event_mapped)
4849 event->pmu->event_mapped(event);
4850
7b732a75 4851 return ret;
37d81828
PM
4852}
4853
3c446b3d
PZ
4854static int perf_fasync(int fd, struct file *filp, int on)
4855{
496ad9aa 4856 struct inode *inode = file_inode(filp);
cdd6c482 4857 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4858 int retval;
4859
4860 mutex_lock(&inode->i_mutex);
cdd6c482 4861 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4862 mutex_unlock(&inode->i_mutex);
4863
4864 if (retval < 0)
4865 return retval;
4866
4867 return 0;
4868}
4869
0793a61d 4870static const struct file_operations perf_fops = {
3326c1ce 4871 .llseek = no_llseek,
0793a61d
TG
4872 .release = perf_release,
4873 .read = perf_read,
4874 .poll = perf_poll,
d859e29f 4875 .unlocked_ioctl = perf_ioctl,
b3f20785 4876 .compat_ioctl = perf_compat_ioctl,
37d81828 4877 .mmap = perf_mmap,
3c446b3d 4878 .fasync = perf_fasync,
0793a61d
TG
4879};
4880
925d519a 4881/*
cdd6c482 4882 * Perf event wakeup
925d519a
PZ
4883 *
4884 * If there's data, ensure we set the poll() state and publish everything
4885 * to user-space before waking everybody up.
4886 */
4887
fed66e2c
PZ
4888static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4889{
4890 /* only the parent has fasync state */
4891 if (event->parent)
4892 event = event->parent;
4893 return &event->fasync;
4894}
4895
cdd6c482 4896void perf_event_wakeup(struct perf_event *event)
925d519a 4897{
10c6db11 4898 ring_buffer_wakeup(event);
4c9e2542 4899
cdd6c482 4900 if (event->pending_kill) {
fed66e2c 4901 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4902 event->pending_kill = 0;
4c9e2542 4903 }
925d519a
PZ
4904}
4905
e360adbe 4906static void perf_pending_event(struct irq_work *entry)
79f14641 4907{
cdd6c482
IM
4908 struct perf_event *event = container_of(entry,
4909 struct perf_event, pending);
d525211f
PZ
4910 int rctx;
4911
4912 rctx = perf_swevent_get_recursion_context();
4913 /*
4914 * If we 'fail' here, that's OK, it means recursion is already disabled
4915 * and we won't recurse 'further'.
4916 */
79f14641 4917
cdd6c482
IM
4918 if (event->pending_disable) {
4919 event->pending_disable = 0;
4920 __perf_event_disable(event);
79f14641
PZ
4921 }
4922
cdd6c482
IM
4923 if (event->pending_wakeup) {
4924 event->pending_wakeup = 0;
4925 perf_event_wakeup(event);
79f14641 4926 }
d525211f
PZ
4927
4928 if (rctx >= 0)
4929 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4930}
4931
39447b38
ZY
4932/*
4933 * We assume there is only KVM supporting the callbacks.
4934 * Later on, we might change it to a list if there is
4935 * another virtualization implementation supporting the callbacks.
4936 */
4937struct perf_guest_info_callbacks *perf_guest_cbs;
4938
4939int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4940{
4941 perf_guest_cbs = cbs;
4942 return 0;
4943}
4944EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4945
4946int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4947{
4948 perf_guest_cbs = NULL;
4949 return 0;
4950}
4951EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4952
4018994f
JO
4953static void
4954perf_output_sample_regs(struct perf_output_handle *handle,
4955 struct pt_regs *regs, u64 mask)
4956{
4957 int bit;
4958
4959 for_each_set_bit(bit, (const unsigned long *) &mask,
4960 sizeof(mask) * BITS_PER_BYTE) {
4961 u64 val;
4962
4963 val = perf_reg_value(regs, bit);
4964 perf_output_put(handle, val);
4965 }
4966}
4967
60e2364e 4968static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4969 struct pt_regs *regs,
4970 struct pt_regs *regs_user_copy)
4018994f 4971{
88a7c26a
AL
4972 if (user_mode(regs)) {
4973 regs_user->abi = perf_reg_abi(current);
2565711f 4974 regs_user->regs = regs;
88a7c26a
AL
4975 } else if (current->mm) {
4976 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4977 } else {
4978 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4979 regs_user->regs = NULL;
4018994f
JO
4980 }
4981}
4982
60e2364e
SE
4983static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4984 struct pt_regs *regs)
4985{
4986 regs_intr->regs = regs;
4987 regs_intr->abi = perf_reg_abi(current);
4988}
4989
4990
c5ebcedb
JO
4991/*
4992 * Get remaining task size from user stack pointer.
4993 *
4994 * It'd be better to take stack vma map and limit this more
4995 * precisly, but there's no way to get it safely under interrupt,
4996 * so using TASK_SIZE as limit.
4997 */
4998static u64 perf_ustack_task_size(struct pt_regs *regs)
4999{
5000 unsigned long addr = perf_user_stack_pointer(regs);
5001
5002 if (!addr || addr >= TASK_SIZE)
5003 return 0;
5004
5005 return TASK_SIZE - addr;
5006}
5007
5008static u16
5009perf_sample_ustack_size(u16 stack_size, u16 header_size,
5010 struct pt_regs *regs)
5011{
5012 u64 task_size;
5013
5014 /* No regs, no stack pointer, no dump. */
5015 if (!regs)
5016 return 0;
5017
5018 /*
5019 * Check if we fit in with the requested stack size into the:
5020 * - TASK_SIZE
5021 * If we don't, we limit the size to the TASK_SIZE.
5022 *
5023 * - remaining sample size
5024 * If we don't, we customize the stack size to
5025 * fit in to the remaining sample size.
5026 */
5027
5028 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5029 stack_size = min(stack_size, (u16) task_size);
5030
5031 /* Current header size plus static size and dynamic size. */
5032 header_size += 2 * sizeof(u64);
5033
5034 /* Do we fit in with the current stack dump size? */
5035 if ((u16) (header_size + stack_size) < header_size) {
5036 /*
5037 * If we overflow the maximum size for the sample,
5038 * we customize the stack dump size to fit in.
5039 */
5040 stack_size = USHRT_MAX - header_size - sizeof(u64);
5041 stack_size = round_up(stack_size, sizeof(u64));
5042 }
5043
5044 return stack_size;
5045}
5046
5047static void
5048perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5049 struct pt_regs *regs)
5050{
5051 /* Case of a kernel thread, nothing to dump */
5052 if (!regs) {
5053 u64 size = 0;
5054 perf_output_put(handle, size);
5055 } else {
5056 unsigned long sp;
5057 unsigned int rem;
5058 u64 dyn_size;
5059
5060 /*
5061 * We dump:
5062 * static size
5063 * - the size requested by user or the best one we can fit
5064 * in to the sample max size
5065 * data
5066 * - user stack dump data
5067 * dynamic size
5068 * - the actual dumped size
5069 */
5070
5071 /* Static size. */
5072 perf_output_put(handle, dump_size);
5073
5074 /* Data. */
5075 sp = perf_user_stack_pointer(regs);
5076 rem = __output_copy_user(handle, (void *) sp, dump_size);
5077 dyn_size = dump_size - rem;
5078
5079 perf_output_skip(handle, rem);
5080
5081 /* Dynamic size. */
5082 perf_output_put(handle, dyn_size);
5083 }
5084}
5085
c980d109
ACM
5086static void __perf_event_header__init_id(struct perf_event_header *header,
5087 struct perf_sample_data *data,
5088 struct perf_event *event)
6844c09d
ACM
5089{
5090 u64 sample_type = event->attr.sample_type;
5091
5092 data->type = sample_type;
5093 header->size += event->id_header_size;
5094
5095 if (sample_type & PERF_SAMPLE_TID) {
5096 /* namespace issues */
5097 data->tid_entry.pid = perf_event_pid(event, current);
5098 data->tid_entry.tid = perf_event_tid(event, current);
5099 }
5100
5101 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5102 data->time = perf_event_clock(event);
6844c09d 5103
ff3d527c 5104 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5105 data->id = primary_event_id(event);
5106
5107 if (sample_type & PERF_SAMPLE_STREAM_ID)
5108 data->stream_id = event->id;
5109
5110 if (sample_type & PERF_SAMPLE_CPU) {
5111 data->cpu_entry.cpu = raw_smp_processor_id();
5112 data->cpu_entry.reserved = 0;
5113 }
5114}
5115
76369139
FW
5116void perf_event_header__init_id(struct perf_event_header *header,
5117 struct perf_sample_data *data,
5118 struct perf_event *event)
c980d109
ACM
5119{
5120 if (event->attr.sample_id_all)
5121 __perf_event_header__init_id(header, data, event);
5122}
5123
5124static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5125 struct perf_sample_data *data)
5126{
5127 u64 sample_type = data->type;
5128
5129 if (sample_type & PERF_SAMPLE_TID)
5130 perf_output_put(handle, data->tid_entry);
5131
5132 if (sample_type & PERF_SAMPLE_TIME)
5133 perf_output_put(handle, data->time);
5134
5135 if (sample_type & PERF_SAMPLE_ID)
5136 perf_output_put(handle, data->id);
5137
5138 if (sample_type & PERF_SAMPLE_STREAM_ID)
5139 perf_output_put(handle, data->stream_id);
5140
5141 if (sample_type & PERF_SAMPLE_CPU)
5142 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5143
5144 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5145 perf_output_put(handle, data->id);
c980d109
ACM
5146}
5147
76369139
FW
5148void perf_event__output_id_sample(struct perf_event *event,
5149 struct perf_output_handle *handle,
5150 struct perf_sample_data *sample)
c980d109
ACM
5151{
5152 if (event->attr.sample_id_all)
5153 __perf_event__output_id_sample(handle, sample);
5154}
5155
3dab77fb 5156static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5157 struct perf_event *event,
5158 u64 enabled, u64 running)
3dab77fb 5159{
cdd6c482 5160 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5161 u64 values[4];
5162 int n = 0;
5163
b5e58793 5164 values[n++] = perf_event_count(event);
3dab77fb 5165 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5166 values[n++] = enabled +
cdd6c482 5167 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5168 }
5169 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5170 values[n++] = running +
cdd6c482 5171 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5172 }
5173 if (read_format & PERF_FORMAT_ID)
cdd6c482 5174 values[n++] = primary_event_id(event);
3dab77fb 5175
76369139 5176 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5177}
5178
5179/*
cdd6c482 5180 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5181 */
5182static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5183 struct perf_event *event,
5184 u64 enabled, u64 running)
3dab77fb 5185{
cdd6c482
IM
5186 struct perf_event *leader = event->group_leader, *sub;
5187 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5188 u64 values[5];
5189 int n = 0;
5190
5191 values[n++] = 1 + leader->nr_siblings;
5192
5193 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5194 values[n++] = enabled;
3dab77fb
PZ
5195
5196 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5197 values[n++] = running;
3dab77fb 5198
cdd6c482 5199 if (leader != event)
3dab77fb
PZ
5200 leader->pmu->read(leader);
5201
b5e58793 5202 values[n++] = perf_event_count(leader);
3dab77fb 5203 if (read_format & PERF_FORMAT_ID)
cdd6c482 5204 values[n++] = primary_event_id(leader);
3dab77fb 5205
76369139 5206 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5207
65abc865 5208 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5209 n = 0;
5210
6f5ab001
JO
5211 if ((sub != event) &&
5212 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5213 sub->pmu->read(sub);
5214
b5e58793 5215 values[n++] = perf_event_count(sub);
3dab77fb 5216 if (read_format & PERF_FORMAT_ID)
cdd6c482 5217 values[n++] = primary_event_id(sub);
3dab77fb 5218
76369139 5219 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5220 }
5221}
5222
eed01528
SE
5223#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5224 PERF_FORMAT_TOTAL_TIME_RUNNING)
5225
3dab77fb 5226static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5227 struct perf_event *event)
3dab77fb 5228{
e3f3541c 5229 u64 enabled = 0, running = 0, now;
eed01528
SE
5230 u64 read_format = event->attr.read_format;
5231
5232 /*
5233 * compute total_time_enabled, total_time_running
5234 * based on snapshot values taken when the event
5235 * was last scheduled in.
5236 *
5237 * we cannot simply called update_context_time()
5238 * because of locking issue as we are called in
5239 * NMI context
5240 */
c4794295 5241 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5242 calc_timer_values(event, &now, &enabled, &running);
eed01528 5243
cdd6c482 5244 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5245 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5246 else
eed01528 5247 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5248}
5249
5622f295
MM
5250void perf_output_sample(struct perf_output_handle *handle,
5251 struct perf_event_header *header,
5252 struct perf_sample_data *data,
cdd6c482 5253 struct perf_event *event)
5622f295
MM
5254{
5255 u64 sample_type = data->type;
5256
5257 perf_output_put(handle, *header);
5258
ff3d527c
AH
5259 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5260 perf_output_put(handle, data->id);
5261
5622f295
MM
5262 if (sample_type & PERF_SAMPLE_IP)
5263 perf_output_put(handle, data->ip);
5264
5265 if (sample_type & PERF_SAMPLE_TID)
5266 perf_output_put(handle, data->tid_entry);
5267
5268 if (sample_type & PERF_SAMPLE_TIME)
5269 perf_output_put(handle, data->time);
5270
5271 if (sample_type & PERF_SAMPLE_ADDR)
5272 perf_output_put(handle, data->addr);
5273
5274 if (sample_type & PERF_SAMPLE_ID)
5275 perf_output_put(handle, data->id);
5276
5277 if (sample_type & PERF_SAMPLE_STREAM_ID)
5278 perf_output_put(handle, data->stream_id);
5279
5280 if (sample_type & PERF_SAMPLE_CPU)
5281 perf_output_put(handle, data->cpu_entry);
5282
5283 if (sample_type & PERF_SAMPLE_PERIOD)
5284 perf_output_put(handle, data->period);
5285
5286 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5287 perf_output_read(handle, event);
5622f295
MM
5288
5289 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5290 if (data->callchain) {
5291 int size = 1;
5292
5293 if (data->callchain)
5294 size += data->callchain->nr;
5295
5296 size *= sizeof(u64);
5297
76369139 5298 __output_copy(handle, data->callchain, size);
5622f295
MM
5299 } else {
5300 u64 nr = 0;
5301 perf_output_put(handle, nr);
5302 }
5303 }
5304
5305 if (sample_type & PERF_SAMPLE_RAW) {
5306 if (data->raw) {
fa128e6a
AS
5307 u32 raw_size = data->raw->size;
5308 u32 real_size = round_up(raw_size + sizeof(u32),
5309 sizeof(u64)) - sizeof(u32);
5310 u64 zero = 0;
5311
5312 perf_output_put(handle, real_size);
5313 __output_copy(handle, data->raw->data, raw_size);
5314 if (real_size - raw_size)
5315 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5316 } else {
5317 struct {
5318 u32 size;
5319 u32 data;
5320 } raw = {
5321 .size = sizeof(u32),
5322 .data = 0,
5323 };
5324 perf_output_put(handle, raw);
5325 }
5326 }
a7ac67ea 5327
bce38cd5
SE
5328 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5329 if (data->br_stack) {
5330 size_t size;
5331
5332 size = data->br_stack->nr
5333 * sizeof(struct perf_branch_entry);
5334
5335 perf_output_put(handle, data->br_stack->nr);
5336 perf_output_copy(handle, data->br_stack->entries, size);
5337 } else {
5338 /*
5339 * we always store at least the value of nr
5340 */
5341 u64 nr = 0;
5342 perf_output_put(handle, nr);
5343 }
5344 }
4018994f
JO
5345
5346 if (sample_type & PERF_SAMPLE_REGS_USER) {
5347 u64 abi = data->regs_user.abi;
5348
5349 /*
5350 * If there are no regs to dump, notice it through
5351 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5352 */
5353 perf_output_put(handle, abi);
5354
5355 if (abi) {
5356 u64 mask = event->attr.sample_regs_user;
5357 perf_output_sample_regs(handle,
5358 data->regs_user.regs,
5359 mask);
5360 }
5361 }
c5ebcedb 5362
a5cdd40c 5363 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5364 perf_output_sample_ustack(handle,
5365 data->stack_user_size,
5366 data->regs_user.regs);
a5cdd40c 5367 }
c3feedf2
AK
5368
5369 if (sample_type & PERF_SAMPLE_WEIGHT)
5370 perf_output_put(handle, data->weight);
d6be9ad6
SE
5371
5372 if (sample_type & PERF_SAMPLE_DATA_SRC)
5373 perf_output_put(handle, data->data_src.val);
a5cdd40c 5374
fdfbbd07
AK
5375 if (sample_type & PERF_SAMPLE_TRANSACTION)
5376 perf_output_put(handle, data->txn);
5377
60e2364e
SE
5378 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5379 u64 abi = data->regs_intr.abi;
5380 /*
5381 * If there are no regs to dump, notice it through
5382 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5383 */
5384 perf_output_put(handle, abi);
5385
5386 if (abi) {
5387 u64 mask = event->attr.sample_regs_intr;
5388
5389 perf_output_sample_regs(handle,
5390 data->regs_intr.regs,
5391 mask);
5392 }
5393 }
5394
a5cdd40c
PZ
5395 if (!event->attr.watermark) {
5396 int wakeup_events = event->attr.wakeup_events;
5397
5398 if (wakeup_events) {
5399 struct ring_buffer *rb = handle->rb;
5400 int events = local_inc_return(&rb->events);
5401
5402 if (events >= wakeup_events) {
5403 local_sub(wakeup_events, &rb->events);
5404 local_inc(&rb->wakeup);
5405 }
5406 }
5407 }
5622f295
MM
5408}
5409
5410void perf_prepare_sample(struct perf_event_header *header,
5411 struct perf_sample_data *data,
cdd6c482 5412 struct perf_event *event,
5622f295 5413 struct pt_regs *regs)
7b732a75 5414{
cdd6c482 5415 u64 sample_type = event->attr.sample_type;
7b732a75 5416
cdd6c482 5417 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5418 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5419
5420 header->misc = 0;
5421 header->misc |= perf_misc_flags(regs);
6fab0192 5422
c980d109 5423 __perf_event_header__init_id(header, data, event);
6844c09d 5424
c320c7b7 5425 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5426 data->ip = perf_instruction_pointer(regs);
5427
b23f3325 5428 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5429 int size = 1;
394ee076 5430
e6dab5ff 5431 data->callchain = perf_callchain(event, regs);
5622f295
MM
5432
5433 if (data->callchain)
5434 size += data->callchain->nr;
5435
5436 header->size += size * sizeof(u64);
394ee076
PZ
5437 }
5438
3a43ce68 5439 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5440 int size = sizeof(u32);
5441
5442 if (data->raw)
5443 size += data->raw->size;
5444 else
5445 size += sizeof(u32);
5446
fa128e6a 5447 header->size += round_up(size, sizeof(u64));
7f453c24 5448 }
bce38cd5
SE
5449
5450 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5451 int size = sizeof(u64); /* nr */
5452 if (data->br_stack) {
5453 size += data->br_stack->nr
5454 * sizeof(struct perf_branch_entry);
5455 }
5456 header->size += size;
5457 }
4018994f 5458
2565711f 5459 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5460 perf_sample_regs_user(&data->regs_user, regs,
5461 &data->regs_user_copy);
2565711f 5462
4018994f
JO
5463 if (sample_type & PERF_SAMPLE_REGS_USER) {
5464 /* regs dump ABI info */
5465 int size = sizeof(u64);
5466
4018994f
JO
5467 if (data->regs_user.regs) {
5468 u64 mask = event->attr.sample_regs_user;
5469 size += hweight64(mask) * sizeof(u64);
5470 }
5471
5472 header->size += size;
5473 }
c5ebcedb
JO
5474
5475 if (sample_type & PERF_SAMPLE_STACK_USER) {
5476 /*
5477 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5478 * processed as the last one or have additional check added
5479 * in case new sample type is added, because we could eat
5480 * up the rest of the sample size.
5481 */
c5ebcedb
JO
5482 u16 stack_size = event->attr.sample_stack_user;
5483 u16 size = sizeof(u64);
5484
c5ebcedb 5485 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5486 data->regs_user.regs);
c5ebcedb
JO
5487
5488 /*
5489 * If there is something to dump, add space for the dump
5490 * itself and for the field that tells the dynamic size,
5491 * which is how many have been actually dumped.
5492 */
5493 if (stack_size)
5494 size += sizeof(u64) + stack_size;
5495
5496 data->stack_user_size = stack_size;
5497 header->size += size;
5498 }
60e2364e
SE
5499
5500 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5501 /* regs dump ABI info */
5502 int size = sizeof(u64);
5503
5504 perf_sample_regs_intr(&data->regs_intr, regs);
5505
5506 if (data->regs_intr.regs) {
5507 u64 mask = event->attr.sample_regs_intr;
5508
5509 size += hweight64(mask) * sizeof(u64);
5510 }
5511
5512 header->size += size;
5513 }
5622f295 5514}
7f453c24 5515
21509084
YZ
5516void perf_event_output(struct perf_event *event,
5517 struct perf_sample_data *data,
5518 struct pt_regs *regs)
5622f295
MM
5519{
5520 struct perf_output_handle handle;
5521 struct perf_event_header header;
689802b2 5522
927c7a9e
FW
5523 /* protect the callchain buffers */
5524 rcu_read_lock();
5525
cdd6c482 5526 perf_prepare_sample(&header, data, event, regs);
5c148194 5527
a7ac67ea 5528 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5529 goto exit;
0322cd6e 5530
cdd6c482 5531 perf_output_sample(&handle, &header, data, event);
f413cdb8 5532
8a057d84 5533 perf_output_end(&handle);
927c7a9e
FW
5534
5535exit:
5536 rcu_read_unlock();
0322cd6e
PZ
5537}
5538
38b200d6 5539/*
cdd6c482 5540 * read event_id
38b200d6
PZ
5541 */
5542
5543struct perf_read_event {
5544 struct perf_event_header header;
5545
5546 u32 pid;
5547 u32 tid;
38b200d6
PZ
5548};
5549
5550static void
cdd6c482 5551perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5552 struct task_struct *task)
5553{
5554 struct perf_output_handle handle;
c980d109 5555 struct perf_sample_data sample;
dfc65094 5556 struct perf_read_event read_event = {
38b200d6 5557 .header = {
cdd6c482 5558 .type = PERF_RECORD_READ,
38b200d6 5559 .misc = 0,
c320c7b7 5560 .size = sizeof(read_event) + event->read_size,
38b200d6 5561 },
cdd6c482
IM
5562 .pid = perf_event_pid(event, task),
5563 .tid = perf_event_tid(event, task),
38b200d6 5564 };
3dab77fb 5565 int ret;
38b200d6 5566
c980d109 5567 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5568 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5569 if (ret)
5570 return;
5571
dfc65094 5572 perf_output_put(&handle, read_event);
cdd6c482 5573 perf_output_read(&handle, event);
c980d109 5574 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5575
38b200d6
PZ
5576 perf_output_end(&handle);
5577}
5578
52d857a8
JO
5579typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5580
5581static void
5582perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5583 perf_event_aux_output_cb output,
5584 void *data)
5585{
5586 struct perf_event *event;
5587
5588 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5589 if (event->state < PERF_EVENT_STATE_INACTIVE)
5590 continue;
5591 if (!event_filter_match(event))
5592 continue;
67516844 5593 output(event, data);
52d857a8
JO
5594 }
5595}
5596
4e93ad60
JO
5597static void
5598perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5599 struct perf_event_context *task_ctx)
5600{
5601 rcu_read_lock();
5602 preempt_disable();
5603 perf_event_aux_ctx(task_ctx, output, data);
5604 preempt_enable();
5605 rcu_read_unlock();
5606}
5607
52d857a8 5608static void
67516844 5609perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5610 struct perf_event_context *task_ctx)
5611{
5612 struct perf_cpu_context *cpuctx;
5613 struct perf_event_context *ctx;
5614 struct pmu *pmu;
5615 int ctxn;
5616
4e93ad60
JO
5617 /*
5618 * If we have task_ctx != NULL we only notify
5619 * the task context itself. The task_ctx is set
5620 * only for EXIT events before releasing task
5621 * context.
5622 */
5623 if (task_ctx) {
5624 perf_event_aux_task_ctx(output, data, task_ctx);
5625 return;
5626 }
5627
52d857a8
JO
5628 rcu_read_lock();
5629 list_for_each_entry_rcu(pmu, &pmus, entry) {
5630 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5631 if (cpuctx->unique_pmu != pmu)
5632 goto next;
67516844 5633 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5634 ctxn = pmu->task_ctx_nr;
5635 if (ctxn < 0)
5636 goto next;
5637 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5638 if (ctx)
67516844 5639 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5640next:
5641 put_cpu_ptr(pmu->pmu_cpu_context);
5642 }
52d857a8
JO
5643 rcu_read_unlock();
5644}
5645
60313ebe 5646/*
9f498cc5
PZ
5647 * task tracking -- fork/exit
5648 *
13d7a241 5649 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5650 */
5651
9f498cc5 5652struct perf_task_event {
3a80b4a3 5653 struct task_struct *task;
cdd6c482 5654 struct perf_event_context *task_ctx;
60313ebe
PZ
5655
5656 struct {
5657 struct perf_event_header header;
5658
5659 u32 pid;
5660 u32 ppid;
9f498cc5
PZ
5661 u32 tid;
5662 u32 ptid;
393b2ad8 5663 u64 time;
cdd6c482 5664 } event_id;
60313ebe
PZ
5665};
5666
67516844
JO
5667static int perf_event_task_match(struct perf_event *event)
5668{
13d7a241
SE
5669 return event->attr.comm || event->attr.mmap ||
5670 event->attr.mmap2 || event->attr.mmap_data ||
5671 event->attr.task;
67516844
JO
5672}
5673
cdd6c482 5674static void perf_event_task_output(struct perf_event *event,
52d857a8 5675 void *data)
60313ebe 5676{
52d857a8 5677 struct perf_task_event *task_event = data;
60313ebe 5678 struct perf_output_handle handle;
c980d109 5679 struct perf_sample_data sample;
9f498cc5 5680 struct task_struct *task = task_event->task;
c980d109 5681 int ret, size = task_event->event_id.header.size;
8bb39f9a 5682
67516844
JO
5683 if (!perf_event_task_match(event))
5684 return;
5685
c980d109 5686 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5687
c980d109 5688 ret = perf_output_begin(&handle, event,
a7ac67ea 5689 task_event->event_id.header.size);
ef60777c 5690 if (ret)
c980d109 5691 goto out;
60313ebe 5692
cdd6c482
IM
5693 task_event->event_id.pid = perf_event_pid(event, task);
5694 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5695
cdd6c482
IM
5696 task_event->event_id.tid = perf_event_tid(event, task);
5697 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5698
34f43927
PZ
5699 task_event->event_id.time = perf_event_clock(event);
5700
cdd6c482 5701 perf_output_put(&handle, task_event->event_id);
393b2ad8 5702
c980d109
ACM
5703 perf_event__output_id_sample(event, &handle, &sample);
5704
60313ebe 5705 perf_output_end(&handle);
c980d109
ACM
5706out:
5707 task_event->event_id.header.size = size;
60313ebe
PZ
5708}
5709
cdd6c482
IM
5710static void perf_event_task(struct task_struct *task,
5711 struct perf_event_context *task_ctx,
3a80b4a3 5712 int new)
60313ebe 5713{
9f498cc5 5714 struct perf_task_event task_event;
60313ebe 5715
cdd6c482
IM
5716 if (!atomic_read(&nr_comm_events) &&
5717 !atomic_read(&nr_mmap_events) &&
5718 !atomic_read(&nr_task_events))
60313ebe
PZ
5719 return;
5720
9f498cc5 5721 task_event = (struct perf_task_event){
3a80b4a3
PZ
5722 .task = task,
5723 .task_ctx = task_ctx,
cdd6c482 5724 .event_id = {
60313ebe 5725 .header = {
cdd6c482 5726 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5727 .misc = 0,
cdd6c482 5728 .size = sizeof(task_event.event_id),
60313ebe 5729 },
573402db
PZ
5730 /* .pid */
5731 /* .ppid */
9f498cc5
PZ
5732 /* .tid */
5733 /* .ptid */
34f43927 5734 /* .time */
60313ebe
PZ
5735 },
5736 };
5737
67516844 5738 perf_event_aux(perf_event_task_output,
52d857a8
JO
5739 &task_event,
5740 task_ctx);
9f498cc5
PZ
5741}
5742
cdd6c482 5743void perf_event_fork(struct task_struct *task)
9f498cc5 5744{
cdd6c482 5745 perf_event_task(task, NULL, 1);
60313ebe
PZ
5746}
5747
8d1b2d93
PZ
5748/*
5749 * comm tracking
5750 */
5751
5752struct perf_comm_event {
22a4f650
IM
5753 struct task_struct *task;
5754 char *comm;
8d1b2d93
PZ
5755 int comm_size;
5756
5757 struct {
5758 struct perf_event_header header;
5759
5760 u32 pid;
5761 u32 tid;
cdd6c482 5762 } event_id;
8d1b2d93
PZ
5763};
5764
67516844
JO
5765static int perf_event_comm_match(struct perf_event *event)
5766{
5767 return event->attr.comm;
5768}
5769
cdd6c482 5770static void perf_event_comm_output(struct perf_event *event,
52d857a8 5771 void *data)
8d1b2d93 5772{
52d857a8 5773 struct perf_comm_event *comm_event = data;
8d1b2d93 5774 struct perf_output_handle handle;
c980d109 5775 struct perf_sample_data sample;
cdd6c482 5776 int size = comm_event->event_id.header.size;
c980d109
ACM
5777 int ret;
5778
67516844
JO
5779 if (!perf_event_comm_match(event))
5780 return;
5781
c980d109
ACM
5782 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5783 ret = perf_output_begin(&handle, event,
a7ac67ea 5784 comm_event->event_id.header.size);
8d1b2d93
PZ
5785
5786 if (ret)
c980d109 5787 goto out;
8d1b2d93 5788
cdd6c482
IM
5789 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5790 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5791
cdd6c482 5792 perf_output_put(&handle, comm_event->event_id);
76369139 5793 __output_copy(&handle, comm_event->comm,
8d1b2d93 5794 comm_event->comm_size);
c980d109
ACM
5795
5796 perf_event__output_id_sample(event, &handle, &sample);
5797
8d1b2d93 5798 perf_output_end(&handle);
c980d109
ACM
5799out:
5800 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5801}
5802
cdd6c482 5803static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5804{
413ee3b4 5805 char comm[TASK_COMM_LEN];
8d1b2d93 5806 unsigned int size;
8d1b2d93 5807
413ee3b4 5808 memset(comm, 0, sizeof(comm));
96b02d78 5809 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5810 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5811
5812 comm_event->comm = comm;
5813 comm_event->comm_size = size;
5814
cdd6c482 5815 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5816
67516844 5817 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5818 comm_event,
5819 NULL);
8d1b2d93
PZ
5820}
5821
82b89778 5822void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5823{
9ee318a7
PZ
5824 struct perf_comm_event comm_event;
5825
cdd6c482 5826 if (!atomic_read(&nr_comm_events))
9ee318a7 5827 return;
a63eaf34 5828
9ee318a7 5829 comm_event = (struct perf_comm_event){
8d1b2d93 5830 .task = task,
573402db
PZ
5831 /* .comm */
5832 /* .comm_size */
cdd6c482 5833 .event_id = {
573402db 5834 .header = {
cdd6c482 5835 .type = PERF_RECORD_COMM,
82b89778 5836 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5837 /* .size */
5838 },
5839 /* .pid */
5840 /* .tid */
8d1b2d93
PZ
5841 },
5842 };
5843
cdd6c482 5844 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5845}
5846
0a4a9391
PZ
5847/*
5848 * mmap tracking
5849 */
5850
5851struct perf_mmap_event {
089dd79d
PZ
5852 struct vm_area_struct *vma;
5853
5854 const char *file_name;
5855 int file_size;
13d7a241
SE
5856 int maj, min;
5857 u64 ino;
5858 u64 ino_generation;
f972eb63 5859 u32 prot, flags;
0a4a9391
PZ
5860
5861 struct {
5862 struct perf_event_header header;
5863
5864 u32 pid;
5865 u32 tid;
5866 u64 start;
5867 u64 len;
5868 u64 pgoff;
cdd6c482 5869 } event_id;
0a4a9391
PZ
5870};
5871
67516844
JO
5872static int perf_event_mmap_match(struct perf_event *event,
5873 void *data)
5874{
5875 struct perf_mmap_event *mmap_event = data;
5876 struct vm_area_struct *vma = mmap_event->vma;
5877 int executable = vma->vm_flags & VM_EXEC;
5878
5879 return (!executable && event->attr.mmap_data) ||
13d7a241 5880 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5881}
5882
cdd6c482 5883static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5884 void *data)
0a4a9391 5885{
52d857a8 5886 struct perf_mmap_event *mmap_event = data;
0a4a9391 5887 struct perf_output_handle handle;
c980d109 5888 struct perf_sample_data sample;
cdd6c482 5889 int size = mmap_event->event_id.header.size;
c980d109 5890 int ret;
0a4a9391 5891
67516844
JO
5892 if (!perf_event_mmap_match(event, data))
5893 return;
5894
13d7a241
SE
5895 if (event->attr.mmap2) {
5896 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5897 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5898 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5899 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5900 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5901 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5902 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5903 }
5904
c980d109
ACM
5905 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5906 ret = perf_output_begin(&handle, event,
a7ac67ea 5907 mmap_event->event_id.header.size);
0a4a9391 5908 if (ret)
c980d109 5909 goto out;
0a4a9391 5910
cdd6c482
IM
5911 mmap_event->event_id.pid = perf_event_pid(event, current);
5912 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5913
cdd6c482 5914 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5915
5916 if (event->attr.mmap2) {
5917 perf_output_put(&handle, mmap_event->maj);
5918 perf_output_put(&handle, mmap_event->min);
5919 perf_output_put(&handle, mmap_event->ino);
5920 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5921 perf_output_put(&handle, mmap_event->prot);
5922 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5923 }
5924
76369139 5925 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5926 mmap_event->file_size);
c980d109
ACM
5927
5928 perf_event__output_id_sample(event, &handle, &sample);
5929
78d613eb 5930 perf_output_end(&handle);
c980d109
ACM
5931out:
5932 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5933}
5934
cdd6c482 5935static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5936{
089dd79d
PZ
5937 struct vm_area_struct *vma = mmap_event->vma;
5938 struct file *file = vma->vm_file;
13d7a241
SE
5939 int maj = 0, min = 0;
5940 u64 ino = 0, gen = 0;
f972eb63 5941 u32 prot = 0, flags = 0;
0a4a9391
PZ
5942 unsigned int size;
5943 char tmp[16];
5944 char *buf = NULL;
2c42cfbf 5945 char *name;
413ee3b4 5946
0a4a9391 5947 if (file) {
13d7a241
SE
5948 struct inode *inode;
5949 dev_t dev;
3ea2f2b9 5950
2c42cfbf 5951 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5952 if (!buf) {
c7e548b4
ON
5953 name = "//enomem";
5954 goto cpy_name;
0a4a9391 5955 }
413ee3b4 5956 /*
3ea2f2b9 5957 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5958 * need to add enough zero bytes after the string to handle
5959 * the 64bit alignment we do later.
5960 */
9bf39ab2 5961 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 5962 if (IS_ERR(name)) {
c7e548b4
ON
5963 name = "//toolong";
5964 goto cpy_name;
0a4a9391 5965 }
13d7a241
SE
5966 inode = file_inode(vma->vm_file);
5967 dev = inode->i_sb->s_dev;
5968 ino = inode->i_ino;
5969 gen = inode->i_generation;
5970 maj = MAJOR(dev);
5971 min = MINOR(dev);
f972eb63
PZ
5972
5973 if (vma->vm_flags & VM_READ)
5974 prot |= PROT_READ;
5975 if (vma->vm_flags & VM_WRITE)
5976 prot |= PROT_WRITE;
5977 if (vma->vm_flags & VM_EXEC)
5978 prot |= PROT_EXEC;
5979
5980 if (vma->vm_flags & VM_MAYSHARE)
5981 flags = MAP_SHARED;
5982 else
5983 flags = MAP_PRIVATE;
5984
5985 if (vma->vm_flags & VM_DENYWRITE)
5986 flags |= MAP_DENYWRITE;
5987 if (vma->vm_flags & VM_MAYEXEC)
5988 flags |= MAP_EXECUTABLE;
5989 if (vma->vm_flags & VM_LOCKED)
5990 flags |= MAP_LOCKED;
5991 if (vma->vm_flags & VM_HUGETLB)
5992 flags |= MAP_HUGETLB;
5993
c7e548b4 5994 goto got_name;
0a4a9391 5995 } else {
fbe26abe
JO
5996 if (vma->vm_ops && vma->vm_ops->name) {
5997 name = (char *) vma->vm_ops->name(vma);
5998 if (name)
5999 goto cpy_name;
6000 }
6001
2c42cfbf 6002 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6003 if (name)
6004 goto cpy_name;
089dd79d 6005
32c5fb7e 6006 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6007 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6008 name = "[heap]";
6009 goto cpy_name;
32c5fb7e
ON
6010 }
6011 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6012 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6013 name = "[stack]";
6014 goto cpy_name;
089dd79d
PZ
6015 }
6016
c7e548b4
ON
6017 name = "//anon";
6018 goto cpy_name;
0a4a9391
PZ
6019 }
6020
c7e548b4
ON
6021cpy_name:
6022 strlcpy(tmp, name, sizeof(tmp));
6023 name = tmp;
0a4a9391 6024got_name:
2c42cfbf
PZ
6025 /*
6026 * Since our buffer works in 8 byte units we need to align our string
6027 * size to a multiple of 8. However, we must guarantee the tail end is
6028 * zero'd out to avoid leaking random bits to userspace.
6029 */
6030 size = strlen(name)+1;
6031 while (!IS_ALIGNED(size, sizeof(u64)))
6032 name[size++] = '\0';
0a4a9391
PZ
6033
6034 mmap_event->file_name = name;
6035 mmap_event->file_size = size;
13d7a241
SE
6036 mmap_event->maj = maj;
6037 mmap_event->min = min;
6038 mmap_event->ino = ino;
6039 mmap_event->ino_generation = gen;
f972eb63
PZ
6040 mmap_event->prot = prot;
6041 mmap_event->flags = flags;
0a4a9391 6042
2fe85427
SE
6043 if (!(vma->vm_flags & VM_EXEC))
6044 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6045
cdd6c482 6046 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6047
67516844 6048 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6049 mmap_event,
6050 NULL);
665c2142 6051
0a4a9391
PZ
6052 kfree(buf);
6053}
6054
3af9e859 6055void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6056{
9ee318a7
PZ
6057 struct perf_mmap_event mmap_event;
6058
cdd6c482 6059 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6060 return;
6061
6062 mmap_event = (struct perf_mmap_event){
089dd79d 6063 .vma = vma,
573402db
PZ
6064 /* .file_name */
6065 /* .file_size */
cdd6c482 6066 .event_id = {
573402db 6067 .header = {
cdd6c482 6068 .type = PERF_RECORD_MMAP,
39447b38 6069 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6070 /* .size */
6071 },
6072 /* .pid */
6073 /* .tid */
089dd79d
PZ
6074 .start = vma->vm_start,
6075 .len = vma->vm_end - vma->vm_start,
3a0304e9 6076 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6077 },
13d7a241
SE
6078 /* .maj (attr_mmap2 only) */
6079 /* .min (attr_mmap2 only) */
6080 /* .ino (attr_mmap2 only) */
6081 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6082 /* .prot (attr_mmap2 only) */
6083 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6084 };
6085
cdd6c482 6086 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6087}
6088
68db7e98
AS
6089void perf_event_aux_event(struct perf_event *event, unsigned long head,
6090 unsigned long size, u64 flags)
6091{
6092 struct perf_output_handle handle;
6093 struct perf_sample_data sample;
6094 struct perf_aux_event {
6095 struct perf_event_header header;
6096 u64 offset;
6097 u64 size;
6098 u64 flags;
6099 } rec = {
6100 .header = {
6101 .type = PERF_RECORD_AUX,
6102 .misc = 0,
6103 .size = sizeof(rec),
6104 },
6105 .offset = head,
6106 .size = size,
6107 .flags = flags,
6108 };
6109 int ret;
6110
6111 perf_event_header__init_id(&rec.header, &sample, event);
6112 ret = perf_output_begin(&handle, event, rec.header.size);
6113
6114 if (ret)
6115 return;
6116
6117 perf_output_put(&handle, rec);
6118 perf_event__output_id_sample(event, &handle, &sample);
6119
6120 perf_output_end(&handle);
6121}
6122
f38b0dbb
KL
6123/*
6124 * Lost/dropped samples logging
6125 */
6126void perf_log_lost_samples(struct perf_event *event, u64 lost)
6127{
6128 struct perf_output_handle handle;
6129 struct perf_sample_data sample;
6130 int ret;
6131
6132 struct {
6133 struct perf_event_header header;
6134 u64 lost;
6135 } lost_samples_event = {
6136 .header = {
6137 .type = PERF_RECORD_LOST_SAMPLES,
6138 .misc = 0,
6139 .size = sizeof(lost_samples_event),
6140 },
6141 .lost = lost,
6142 };
6143
6144 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6145
6146 ret = perf_output_begin(&handle, event,
6147 lost_samples_event.header.size);
6148 if (ret)
6149 return;
6150
6151 perf_output_put(&handle, lost_samples_event);
6152 perf_event__output_id_sample(event, &handle, &sample);
6153 perf_output_end(&handle);
6154}
6155
45ac1403
AH
6156/*
6157 * context_switch tracking
6158 */
6159
6160struct perf_switch_event {
6161 struct task_struct *task;
6162 struct task_struct *next_prev;
6163
6164 struct {
6165 struct perf_event_header header;
6166 u32 next_prev_pid;
6167 u32 next_prev_tid;
6168 } event_id;
6169};
6170
6171static int perf_event_switch_match(struct perf_event *event)
6172{
6173 return event->attr.context_switch;
6174}
6175
6176static void perf_event_switch_output(struct perf_event *event, void *data)
6177{
6178 struct perf_switch_event *se = data;
6179 struct perf_output_handle handle;
6180 struct perf_sample_data sample;
6181 int ret;
6182
6183 if (!perf_event_switch_match(event))
6184 return;
6185
6186 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6187 if (event->ctx->task) {
6188 se->event_id.header.type = PERF_RECORD_SWITCH;
6189 se->event_id.header.size = sizeof(se->event_id.header);
6190 } else {
6191 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6192 se->event_id.header.size = sizeof(se->event_id);
6193 se->event_id.next_prev_pid =
6194 perf_event_pid(event, se->next_prev);
6195 se->event_id.next_prev_tid =
6196 perf_event_tid(event, se->next_prev);
6197 }
6198
6199 perf_event_header__init_id(&se->event_id.header, &sample, event);
6200
6201 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6202 if (ret)
6203 return;
6204
6205 if (event->ctx->task)
6206 perf_output_put(&handle, se->event_id.header);
6207 else
6208 perf_output_put(&handle, se->event_id);
6209
6210 perf_event__output_id_sample(event, &handle, &sample);
6211
6212 perf_output_end(&handle);
6213}
6214
6215static void perf_event_switch(struct task_struct *task,
6216 struct task_struct *next_prev, bool sched_in)
6217{
6218 struct perf_switch_event switch_event;
6219
6220 /* N.B. caller checks nr_switch_events != 0 */
6221
6222 switch_event = (struct perf_switch_event){
6223 .task = task,
6224 .next_prev = next_prev,
6225 .event_id = {
6226 .header = {
6227 /* .type */
6228 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6229 /* .size */
6230 },
6231 /* .next_prev_pid */
6232 /* .next_prev_tid */
6233 },
6234 };
6235
6236 perf_event_aux(perf_event_switch_output,
6237 &switch_event,
6238 NULL);
6239}
6240
a78ac325
PZ
6241/*
6242 * IRQ throttle logging
6243 */
6244
cdd6c482 6245static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6246{
6247 struct perf_output_handle handle;
c980d109 6248 struct perf_sample_data sample;
a78ac325
PZ
6249 int ret;
6250
6251 struct {
6252 struct perf_event_header header;
6253 u64 time;
cca3f454 6254 u64 id;
7f453c24 6255 u64 stream_id;
a78ac325
PZ
6256 } throttle_event = {
6257 .header = {
cdd6c482 6258 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6259 .misc = 0,
6260 .size = sizeof(throttle_event),
6261 },
34f43927 6262 .time = perf_event_clock(event),
cdd6c482
IM
6263 .id = primary_event_id(event),
6264 .stream_id = event->id,
a78ac325
PZ
6265 };
6266
966ee4d6 6267 if (enable)
cdd6c482 6268 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6269
c980d109
ACM
6270 perf_event_header__init_id(&throttle_event.header, &sample, event);
6271
6272 ret = perf_output_begin(&handle, event,
a7ac67ea 6273 throttle_event.header.size);
a78ac325
PZ
6274 if (ret)
6275 return;
6276
6277 perf_output_put(&handle, throttle_event);
c980d109 6278 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6279 perf_output_end(&handle);
6280}
6281
ec0d7729
AS
6282static void perf_log_itrace_start(struct perf_event *event)
6283{
6284 struct perf_output_handle handle;
6285 struct perf_sample_data sample;
6286 struct perf_aux_event {
6287 struct perf_event_header header;
6288 u32 pid;
6289 u32 tid;
6290 } rec;
6291 int ret;
6292
6293 if (event->parent)
6294 event = event->parent;
6295
6296 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6297 event->hw.itrace_started)
6298 return;
6299
ec0d7729
AS
6300 rec.header.type = PERF_RECORD_ITRACE_START;
6301 rec.header.misc = 0;
6302 rec.header.size = sizeof(rec);
6303 rec.pid = perf_event_pid(event, current);
6304 rec.tid = perf_event_tid(event, current);
6305
6306 perf_event_header__init_id(&rec.header, &sample, event);
6307 ret = perf_output_begin(&handle, event, rec.header.size);
6308
6309 if (ret)
6310 return;
6311
6312 perf_output_put(&handle, rec);
6313 perf_event__output_id_sample(event, &handle, &sample);
6314
6315 perf_output_end(&handle);
6316}
6317
f6c7d5fe 6318/*
cdd6c482 6319 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6320 */
6321
a8b0ca17 6322static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6323 int throttle, struct perf_sample_data *data,
6324 struct pt_regs *regs)
f6c7d5fe 6325{
cdd6c482
IM
6326 int events = atomic_read(&event->event_limit);
6327 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6328 u64 seq;
79f14641
PZ
6329 int ret = 0;
6330
96398826
PZ
6331 /*
6332 * Non-sampling counters might still use the PMI to fold short
6333 * hardware counters, ignore those.
6334 */
6335 if (unlikely(!is_sampling_event(event)))
6336 return 0;
6337
e050e3f0
SE
6338 seq = __this_cpu_read(perf_throttled_seq);
6339 if (seq != hwc->interrupts_seq) {
6340 hwc->interrupts_seq = seq;
6341 hwc->interrupts = 1;
6342 } else {
6343 hwc->interrupts++;
6344 if (unlikely(throttle
6345 && hwc->interrupts >= max_samples_per_tick)) {
6346 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6347 hwc->interrupts = MAX_INTERRUPTS;
6348 perf_log_throttle(event, 0);
d84153d6 6349 tick_nohz_full_kick();
a78ac325
PZ
6350 ret = 1;
6351 }
e050e3f0 6352 }
60db5e09 6353
cdd6c482 6354 if (event->attr.freq) {
def0a9b2 6355 u64 now = perf_clock();
abd50713 6356 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6357
abd50713 6358 hwc->freq_time_stamp = now;
bd2b5b12 6359
abd50713 6360 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6361 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6362 }
6363
2023b359
PZ
6364 /*
6365 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6366 * events
2023b359
PZ
6367 */
6368
cdd6c482
IM
6369 event->pending_kill = POLL_IN;
6370 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6371 ret = 1;
cdd6c482 6372 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6373 event->pending_disable = 1;
6374 irq_work_queue(&event->pending);
79f14641
PZ
6375 }
6376
453f19ee 6377 if (event->overflow_handler)
a8b0ca17 6378 event->overflow_handler(event, data, regs);
453f19ee 6379 else
a8b0ca17 6380 perf_event_output(event, data, regs);
453f19ee 6381
fed66e2c 6382 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6383 event->pending_wakeup = 1;
6384 irq_work_queue(&event->pending);
f506b3dc
PZ
6385 }
6386
79f14641 6387 return ret;
f6c7d5fe
PZ
6388}
6389
a8b0ca17 6390int perf_event_overflow(struct perf_event *event,
5622f295
MM
6391 struct perf_sample_data *data,
6392 struct pt_regs *regs)
850bc73f 6393{
a8b0ca17 6394 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6395}
6396
15dbf27c 6397/*
cdd6c482 6398 * Generic software event infrastructure
15dbf27c
PZ
6399 */
6400
b28ab83c
PZ
6401struct swevent_htable {
6402 struct swevent_hlist *swevent_hlist;
6403 struct mutex hlist_mutex;
6404 int hlist_refcount;
6405
6406 /* Recursion avoidance in each contexts */
6407 int recursion[PERF_NR_CONTEXTS];
6408};
6409
6410static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6411
7b4b6658 6412/*
cdd6c482
IM
6413 * We directly increment event->count and keep a second value in
6414 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6415 * is kept in the range [-sample_period, 0] so that we can use the
6416 * sign as trigger.
6417 */
6418
ab573844 6419u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6420{
cdd6c482 6421 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6422 u64 period = hwc->last_period;
6423 u64 nr, offset;
6424 s64 old, val;
6425
6426 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6427
6428again:
e7850595 6429 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6430 if (val < 0)
6431 return 0;
15dbf27c 6432
7b4b6658
PZ
6433 nr = div64_u64(period + val, period);
6434 offset = nr * period;
6435 val -= offset;
e7850595 6436 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6437 goto again;
15dbf27c 6438
7b4b6658 6439 return nr;
15dbf27c
PZ
6440}
6441
0cff784a 6442static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6443 struct perf_sample_data *data,
5622f295 6444 struct pt_regs *regs)
15dbf27c 6445{
cdd6c482 6446 struct hw_perf_event *hwc = &event->hw;
850bc73f 6447 int throttle = 0;
15dbf27c 6448
0cff784a
PZ
6449 if (!overflow)
6450 overflow = perf_swevent_set_period(event);
15dbf27c 6451
7b4b6658
PZ
6452 if (hwc->interrupts == MAX_INTERRUPTS)
6453 return;
15dbf27c 6454
7b4b6658 6455 for (; overflow; overflow--) {
a8b0ca17 6456 if (__perf_event_overflow(event, throttle,
5622f295 6457 data, regs)) {
7b4b6658
PZ
6458 /*
6459 * We inhibit the overflow from happening when
6460 * hwc->interrupts == MAX_INTERRUPTS.
6461 */
6462 break;
6463 }
cf450a73 6464 throttle = 1;
7b4b6658 6465 }
15dbf27c
PZ
6466}
6467
a4eaf7f1 6468static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6469 struct perf_sample_data *data,
5622f295 6470 struct pt_regs *regs)
7b4b6658 6471{
cdd6c482 6472 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6473
e7850595 6474 local64_add(nr, &event->count);
d6d020e9 6475
0cff784a
PZ
6476 if (!regs)
6477 return;
6478
6c7e550f 6479 if (!is_sampling_event(event))
7b4b6658 6480 return;
d6d020e9 6481
5d81e5cf
AV
6482 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6483 data->period = nr;
6484 return perf_swevent_overflow(event, 1, data, regs);
6485 } else
6486 data->period = event->hw.last_period;
6487
0cff784a 6488 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6489 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6490
e7850595 6491 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6492 return;
df1a132b 6493
a8b0ca17 6494 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6495}
6496
f5ffe02e
FW
6497static int perf_exclude_event(struct perf_event *event,
6498 struct pt_regs *regs)
6499{
a4eaf7f1 6500 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6501 return 1;
a4eaf7f1 6502
f5ffe02e
FW
6503 if (regs) {
6504 if (event->attr.exclude_user && user_mode(regs))
6505 return 1;
6506
6507 if (event->attr.exclude_kernel && !user_mode(regs))
6508 return 1;
6509 }
6510
6511 return 0;
6512}
6513
cdd6c482 6514static int perf_swevent_match(struct perf_event *event,
1c432d89 6515 enum perf_type_id type,
6fb2915d
LZ
6516 u32 event_id,
6517 struct perf_sample_data *data,
6518 struct pt_regs *regs)
15dbf27c 6519{
cdd6c482 6520 if (event->attr.type != type)
a21ca2ca 6521 return 0;
f5ffe02e 6522
cdd6c482 6523 if (event->attr.config != event_id)
15dbf27c
PZ
6524 return 0;
6525
f5ffe02e
FW
6526 if (perf_exclude_event(event, regs))
6527 return 0;
15dbf27c
PZ
6528
6529 return 1;
6530}
6531
76e1d904
FW
6532static inline u64 swevent_hash(u64 type, u32 event_id)
6533{
6534 u64 val = event_id | (type << 32);
6535
6536 return hash_64(val, SWEVENT_HLIST_BITS);
6537}
6538
49f135ed
FW
6539static inline struct hlist_head *
6540__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6541{
49f135ed
FW
6542 u64 hash = swevent_hash(type, event_id);
6543
6544 return &hlist->heads[hash];
6545}
76e1d904 6546
49f135ed
FW
6547/* For the read side: events when they trigger */
6548static inline struct hlist_head *
b28ab83c 6549find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6550{
6551 struct swevent_hlist *hlist;
76e1d904 6552
b28ab83c 6553 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6554 if (!hlist)
6555 return NULL;
6556
49f135ed
FW
6557 return __find_swevent_head(hlist, type, event_id);
6558}
6559
6560/* For the event head insertion and removal in the hlist */
6561static inline struct hlist_head *
b28ab83c 6562find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6563{
6564 struct swevent_hlist *hlist;
6565 u32 event_id = event->attr.config;
6566 u64 type = event->attr.type;
6567
6568 /*
6569 * Event scheduling is always serialized against hlist allocation
6570 * and release. Which makes the protected version suitable here.
6571 * The context lock guarantees that.
6572 */
b28ab83c 6573 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6574 lockdep_is_held(&event->ctx->lock));
6575 if (!hlist)
6576 return NULL;
6577
6578 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6579}
6580
6581static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6582 u64 nr,
76e1d904
FW
6583 struct perf_sample_data *data,
6584 struct pt_regs *regs)
15dbf27c 6585{
4a32fea9 6586 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6587 struct perf_event *event;
76e1d904 6588 struct hlist_head *head;
15dbf27c 6589
76e1d904 6590 rcu_read_lock();
b28ab83c 6591 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6592 if (!head)
6593 goto end;
6594
b67bfe0d 6595 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6596 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6597 perf_swevent_event(event, nr, data, regs);
15dbf27c 6598 }
76e1d904
FW
6599end:
6600 rcu_read_unlock();
15dbf27c
PZ
6601}
6602
86038c5e
PZI
6603DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6604
4ed7c92d 6605int perf_swevent_get_recursion_context(void)
96f6d444 6606{
4a32fea9 6607 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6608
b28ab83c 6609 return get_recursion_context(swhash->recursion);
96f6d444 6610}
645e8cc0 6611EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6612
fa9f90be 6613inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6614{
4a32fea9 6615 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6616
b28ab83c 6617 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6618}
15dbf27c 6619
86038c5e 6620void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6621{
a4234bfc 6622 struct perf_sample_data data;
4ed7c92d 6623
86038c5e 6624 if (WARN_ON_ONCE(!regs))
4ed7c92d 6625 return;
a4234bfc 6626
fd0d000b 6627 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6628 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6629}
6630
6631void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6632{
6633 int rctx;
6634
6635 preempt_disable_notrace();
6636 rctx = perf_swevent_get_recursion_context();
6637 if (unlikely(rctx < 0))
6638 goto fail;
6639
6640 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6641
6642 perf_swevent_put_recursion_context(rctx);
86038c5e 6643fail:
1c024eca 6644 preempt_enable_notrace();
b8e83514
PZ
6645}
6646
cdd6c482 6647static void perf_swevent_read(struct perf_event *event)
15dbf27c 6648{
15dbf27c
PZ
6649}
6650
a4eaf7f1 6651static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6652{
4a32fea9 6653 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6654 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6655 struct hlist_head *head;
6656
6c7e550f 6657 if (is_sampling_event(event)) {
7b4b6658 6658 hwc->last_period = hwc->sample_period;
cdd6c482 6659 perf_swevent_set_period(event);
7b4b6658 6660 }
76e1d904 6661
a4eaf7f1
PZ
6662 hwc->state = !(flags & PERF_EF_START);
6663
b28ab83c 6664 head = find_swevent_head(swhash, event);
12ca6ad2 6665 if (WARN_ON_ONCE(!head))
76e1d904
FW
6666 return -EINVAL;
6667
6668 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6669 perf_event_update_userpage(event);
76e1d904 6670
15dbf27c
PZ
6671 return 0;
6672}
6673
a4eaf7f1 6674static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6675{
76e1d904 6676 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6677}
6678
a4eaf7f1 6679static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6680{
a4eaf7f1 6681 event->hw.state = 0;
d6d020e9 6682}
aa9c4c0f 6683
a4eaf7f1 6684static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6685{
a4eaf7f1 6686 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6687}
6688
49f135ed
FW
6689/* Deref the hlist from the update side */
6690static inline struct swevent_hlist *
b28ab83c 6691swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6692{
b28ab83c
PZ
6693 return rcu_dereference_protected(swhash->swevent_hlist,
6694 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6695}
6696
b28ab83c 6697static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6698{
b28ab83c 6699 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6700
49f135ed 6701 if (!hlist)
76e1d904
FW
6702 return;
6703
70691d4a 6704 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6705 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6706}
6707
6708static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6709{
b28ab83c 6710 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6711
b28ab83c 6712 mutex_lock(&swhash->hlist_mutex);
76e1d904 6713
b28ab83c
PZ
6714 if (!--swhash->hlist_refcount)
6715 swevent_hlist_release(swhash);
76e1d904 6716
b28ab83c 6717 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6718}
6719
6720static void swevent_hlist_put(struct perf_event *event)
6721{
6722 int cpu;
6723
76e1d904
FW
6724 for_each_possible_cpu(cpu)
6725 swevent_hlist_put_cpu(event, cpu);
6726}
6727
6728static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6729{
b28ab83c 6730 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6731 int err = 0;
6732
b28ab83c 6733 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6734 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6735 struct swevent_hlist *hlist;
6736
6737 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6738 if (!hlist) {
6739 err = -ENOMEM;
6740 goto exit;
6741 }
b28ab83c 6742 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6743 }
b28ab83c 6744 swhash->hlist_refcount++;
9ed6060d 6745exit:
b28ab83c 6746 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6747
6748 return err;
6749}
6750
6751static int swevent_hlist_get(struct perf_event *event)
6752{
6753 int err;
6754 int cpu, failed_cpu;
6755
76e1d904
FW
6756 get_online_cpus();
6757 for_each_possible_cpu(cpu) {
6758 err = swevent_hlist_get_cpu(event, cpu);
6759 if (err) {
6760 failed_cpu = cpu;
6761 goto fail;
6762 }
6763 }
6764 put_online_cpus();
6765
6766 return 0;
9ed6060d 6767fail:
76e1d904
FW
6768 for_each_possible_cpu(cpu) {
6769 if (cpu == failed_cpu)
6770 break;
6771 swevent_hlist_put_cpu(event, cpu);
6772 }
6773
6774 put_online_cpus();
6775 return err;
6776}
6777
c5905afb 6778struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6779
b0a873eb
PZ
6780static void sw_perf_event_destroy(struct perf_event *event)
6781{
6782 u64 event_id = event->attr.config;
95476b64 6783
b0a873eb
PZ
6784 WARN_ON(event->parent);
6785
c5905afb 6786 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6787 swevent_hlist_put(event);
6788}
6789
6790static int perf_swevent_init(struct perf_event *event)
6791{
8176cced 6792 u64 event_id = event->attr.config;
b0a873eb
PZ
6793
6794 if (event->attr.type != PERF_TYPE_SOFTWARE)
6795 return -ENOENT;
6796
2481c5fa
SE
6797 /*
6798 * no branch sampling for software events
6799 */
6800 if (has_branch_stack(event))
6801 return -EOPNOTSUPP;
6802
b0a873eb
PZ
6803 switch (event_id) {
6804 case PERF_COUNT_SW_CPU_CLOCK:
6805 case PERF_COUNT_SW_TASK_CLOCK:
6806 return -ENOENT;
6807
6808 default:
6809 break;
6810 }
6811
ce677831 6812 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6813 return -ENOENT;
6814
6815 if (!event->parent) {
6816 int err;
6817
6818 err = swevent_hlist_get(event);
6819 if (err)
6820 return err;
6821
c5905afb 6822 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6823 event->destroy = sw_perf_event_destroy;
6824 }
6825
6826 return 0;
6827}
6828
6829static struct pmu perf_swevent = {
89a1e187 6830 .task_ctx_nr = perf_sw_context,
95476b64 6831
34f43927
PZ
6832 .capabilities = PERF_PMU_CAP_NO_NMI,
6833
b0a873eb 6834 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6835 .add = perf_swevent_add,
6836 .del = perf_swevent_del,
6837 .start = perf_swevent_start,
6838 .stop = perf_swevent_stop,
1c024eca 6839 .read = perf_swevent_read,
1c024eca
PZ
6840};
6841
b0a873eb
PZ
6842#ifdef CONFIG_EVENT_TRACING
6843
1c024eca
PZ
6844static int perf_tp_filter_match(struct perf_event *event,
6845 struct perf_sample_data *data)
6846{
6847 void *record = data->raw->data;
6848
b71b437e
PZ
6849 /* only top level events have filters set */
6850 if (event->parent)
6851 event = event->parent;
6852
1c024eca
PZ
6853 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6854 return 1;
6855 return 0;
6856}
6857
6858static int perf_tp_event_match(struct perf_event *event,
6859 struct perf_sample_data *data,
6860 struct pt_regs *regs)
6861{
a0f7d0f7
FW
6862 if (event->hw.state & PERF_HES_STOPPED)
6863 return 0;
580d607c
PZ
6864 /*
6865 * All tracepoints are from kernel-space.
6866 */
6867 if (event->attr.exclude_kernel)
1c024eca
PZ
6868 return 0;
6869
6870 if (!perf_tp_filter_match(event, data))
6871 return 0;
6872
6873 return 1;
6874}
6875
6876void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6877 struct pt_regs *regs, struct hlist_head *head, int rctx,
6878 struct task_struct *task)
95476b64
FW
6879{
6880 struct perf_sample_data data;
1c024eca 6881 struct perf_event *event;
1c024eca 6882
95476b64
FW
6883 struct perf_raw_record raw = {
6884 .size = entry_size,
6885 .data = record,
6886 };
6887
fd0d000b 6888 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6889 data.raw = &raw;
6890
b67bfe0d 6891 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6892 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6893 perf_swevent_event(event, count, &data, regs);
4f41c013 6894 }
ecc55f84 6895
e6dab5ff
AV
6896 /*
6897 * If we got specified a target task, also iterate its context and
6898 * deliver this event there too.
6899 */
6900 if (task && task != current) {
6901 struct perf_event_context *ctx;
6902 struct trace_entry *entry = record;
6903
6904 rcu_read_lock();
6905 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6906 if (!ctx)
6907 goto unlock;
6908
6909 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6910 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6911 continue;
6912 if (event->attr.config != entry->type)
6913 continue;
6914 if (perf_tp_event_match(event, &data, regs))
6915 perf_swevent_event(event, count, &data, regs);
6916 }
6917unlock:
6918 rcu_read_unlock();
6919 }
6920
ecc55f84 6921 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6922}
6923EXPORT_SYMBOL_GPL(perf_tp_event);
6924
cdd6c482 6925static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6926{
1c024eca 6927 perf_trace_destroy(event);
e077df4f
PZ
6928}
6929
b0a873eb 6930static int perf_tp_event_init(struct perf_event *event)
e077df4f 6931{
76e1d904
FW
6932 int err;
6933
b0a873eb
PZ
6934 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6935 return -ENOENT;
6936
2481c5fa
SE
6937 /*
6938 * no branch sampling for tracepoint events
6939 */
6940 if (has_branch_stack(event))
6941 return -EOPNOTSUPP;
6942
1c024eca
PZ
6943 err = perf_trace_init(event);
6944 if (err)
b0a873eb 6945 return err;
e077df4f 6946
cdd6c482 6947 event->destroy = tp_perf_event_destroy;
e077df4f 6948
b0a873eb
PZ
6949 return 0;
6950}
6951
6952static struct pmu perf_tracepoint = {
89a1e187
PZ
6953 .task_ctx_nr = perf_sw_context,
6954
b0a873eb 6955 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6956 .add = perf_trace_add,
6957 .del = perf_trace_del,
6958 .start = perf_swevent_start,
6959 .stop = perf_swevent_stop,
b0a873eb 6960 .read = perf_swevent_read,
b0a873eb
PZ
6961};
6962
6963static inline void perf_tp_register(void)
6964{
2e80a82a 6965 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6966}
6fb2915d
LZ
6967
6968static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6969{
6970 char *filter_str;
6971 int ret;
6972
6973 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6974 return -EINVAL;
6975
6976 filter_str = strndup_user(arg, PAGE_SIZE);
6977 if (IS_ERR(filter_str))
6978 return PTR_ERR(filter_str);
6979
6980 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6981
6982 kfree(filter_str);
6983 return ret;
6984}
6985
6986static void perf_event_free_filter(struct perf_event *event)
6987{
6988 ftrace_profile_free_filter(event);
6989}
6990
2541517c
AS
6991static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6992{
6993 struct bpf_prog *prog;
6994
6995 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6996 return -EINVAL;
6997
6998 if (event->tp_event->prog)
6999 return -EEXIST;
7000
04a22fae
WN
7001 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7002 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7003 return -EINVAL;
7004
7005 prog = bpf_prog_get(prog_fd);
7006 if (IS_ERR(prog))
7007 return PTR_ERR(prog);
7008
6c373ca8 7009 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7010 /* valid fd, but invalid bpf program type */
7011 bpf_prog_put(prog);
7012 return -EINVAL;
7013 }
7014
7015 event->tp_event->prog = prog;
7016
7017 return 0;
7018}
7019
7020static void perf_event_free_bpf_prog(struct perf_event *event)
7021{
7022 struct bpf_prog *prog;
7023
7024 if (!event->tp_event)
7025 return;
7026
7027 prog = event->tp_event->prog;
7028 if (prog) {
7029 event->tp_event->prog = NULL;
7030 bpf_prog_put(prog);
7031 }
7032}
7033
e077df4f 7034#else
6fb2915d 7035
b0a873eb 7036static inline void perf_tp_register(void)
e077df4f 7037{
e077df4f 7038}
6fb2915d
LZ
7039
7040static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7041{
7042 return -ENOENT;
7043}
7044
7045static void perf_event_free_filter(struct perf_event *event)
7046{
7047}
7048
2541517c
AS
7049static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7050{
7051 return -ENOENT;
7052}
7053
7054static void perf_event_free_bpf_prog(struct perf_event *event)
7055{
7056}
07b139c8 7057#endif /* CONFIG_EVENT_TRACING */
e077df4f 7058
24f1e32c 7059#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7060void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7061{
f5ffe02e
FW
7062 struct perf_sample_data sample;
7063 struct pt_regs *regs = data;
7064
fd0d000b 7065 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7066
a4eaf7f1 7067 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7068 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7069}
7070#endif
7071
b0a873eb
PZ
7072/*
7073 * hrtimer based swevent callback
7074 */
f29ac756 7075
b0a873eb 7076static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7077{
b0a873eb
PZ
7078 enum hrtimer_restart ret = HRTIMER_RESTART;
7079 struct perf_sample_data data;
7080 struct pt_regs *regs;
7081 struct perf_event *event;
7082 u64 period;
f29ac756 7083
b0a873eb 7084 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7085
7086 if (event->state != PERF_EVENT_STATE_ACTIVE)
7087 return HRTIMER_NORESTART;
7088
b0a873eb 7089 event->pmu->read(event);
f344011c 7090
fd0d000b 7091 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7092 regs = get_irq_regs();
7093
7094 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7095 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7096 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7097 ret = HRTIMER_NORESTART;
7098 }
24f1e32c 7099
b0a873eb
PZ
7100 period = max_t(u64, 10000, event->hw.sample_period);
7101 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7102
b0a873eb 7103 return ret;
f29ac756
PZ
7104}
7105
b0a873eb 7106static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7107{
b0a873eb 7108 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7109 s64 period;
7110
7111 if (!is_sampling_event(event))
7112 return;
f5ffe02e 7113
5d508e82
FBH
7114 period = local64_read(&hwc->period_left);
7115 if (period) {
7116 if (period < 0)
7117 period = 10000;
fa407f35 7118
5d508e82
FBH
7119 local64_set(&hwc->period_left, 0);
7120 } else {
7121 period = max_t(u64, 10000, hwc->sample_period);
7122 }
3497d206
TG
7123 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7124 HRTIMER_MODE_REL_PINNED);
24f1e32c 7125}
b0a873eb
PZ
7126
7127static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7128{
b0a873eb
PZ
7129 struct hw_perf_event *hwc = &event->hw;
7130
6c7e550f 7131 if (is_sampling_event(event)) {
b0a873eb 7132 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7133 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7134
7135 hrtimer_cancel(&hwc->hrtimer);
7136 }
24f1e32c
FW
7137}
7138
ba3dd36c
PZ
7139static void perf_swevent_init_hrtimer(struct perf_event *event)
7140{
7141 struct hw_perf_event *hwc = &event->hw;
7142
7143 if (!is_sampling_event(event))
7144 return;
7145
7146 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7147 hwc->hrtimer.function = perf_swevent_hrtimer;
7148
7149 /*
7150 * Since hrtimers have a fixed rate, we can do a static freq->period
7151 * mapping and avoid the whole period adjust feedback stuff.
7152 */
7153 if (event->attr.freq) {
7154 long freq = event->attr.sample_freq;
7155
7156 event->attr.sample_period = NSEC_PER_SEC / freq;
7157 hwc->sample_period = event->attr.sample_period;
7158 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7159 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7160 event->attr.freq = 0;
7161 }
7162}
7163
b0a873eb
PZ
7164/*
7165 * Software event: cpu wall time clock
7166 */
7167
7168static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7169{
b0a873eb
PZ
7170 s64 prev;
7171 u64 now;
7172
a4eaf7f1 7173 now = local_clock();
b0a873eb
PZ
7174 prev = local64_xchg(&event->hw.prev_count, now);
7175 local64_add(now - prev, &event->count);
24f1e32c 7176}
24f1e32c 7177
a4eaf7f1 7178static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7179{
a4eaf7f1 7180 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7181 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7182}
7183
a4eaf7f1 7184static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7185{
b0a873eb
PZ
7186 perf_swevent_cancel_hrtimer(event);
7187 cpu_clock_event_update(event);
7188}
f29ac756 7189
a4eaf7f1
PZ
7190static int cpu_clock_event_add(struct perf_event *event, int flags)
7191{
7192 if (flags & PERF_EF_START)
7193 cpu_clock_event_start(event, flags);
6a694a60 7194 perf_event_update_userpage(event);
a4eaf7f1
PZ
7195
7196 return 0;
7197}
7198
7199static void cpu_clock_event_del(struct perf_event *event, int flags)
7200{
7201 cpu_clock_event_stop(event, flags);
7202}
7203
b0a873eb
PZ
7204static void cpu_clock_event_read(struct perf_event *event)
7205{
7206 cpu_clock_event_update(event);
7207}
f344011c 7208
b0a873eb
PZ
7209static int cpu_clock_event_init(struct perf_event *event)
7210{
7211 if (event->attr.type != PERF_TYPE_SOFTWARE)
7212 return -ENOENT;
7213
7214 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7215 return -ENOENT;
7216
2481c5fa
SE
7217 /*
7218 * no branch sampling for software events
7219 */
7220 if (has_branch_stack(event))
7221 return -EOPNOTSUPP;
7222
ba3dd36c
PZ
7223 perf_swevent_init_hrtimer(event);
7224
b0a873eb 7225 return 0;
f29ac756
PZ
7226}
7227
b0a873eb 7228static struct pmu perf_cpu_clock = {
89a1e187
PZ
7229 .task_ctx_nr = perf_sw_context,
7230
34f43927
PZ
7231 .capabilities = PERF_PMU_CAP_NO_NMI,
7232
b0a873eb 7233 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7234 .add = cpu_clock_event_add,
7235 .del = cpu_clock_event_del,
7236 .start = cpu_clock_event_start,
7237 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7238 .read = cpu_clock_event_read,
7239};
7240
7241/*
7242 * Software event: task time clock
7243 */
7244
7245static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7246{
b0a873eb
PZ
7247 u64 prev;
7248 s64 delta;
5c92d124 7249
b0a873eb
PZ
7250 prev = local64_xchg(&event->hw.prev_count, now);
7251 delta = now - prev;
7252 local64_add(delta, &event->count);
7253}
5c92d124 7254
a4eaf7f1 7255static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7256{
a4eaf7f1 7257 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7258 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7259}
7260
a4eaf7f1 7261static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7262{
7263 perf_swevent_cancel_hrtimer(event);
7264 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7265}
7266
7267static int task_clock_event_add(struct perf_event *event, int flags)
7268{
7269 if (flags & PERF_EF_START)
7270 task_clock_event_start(event, flags);
6a694a60 7271 perf_event_update_userpage(event);
b0a873eb 7272
a4eaf7f1
PZ
7273 return 0;
7274}
7275
7276static void task_clock_event_del(struct perf_event *event, int flags)
7277{
7278 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7279}
7280
7281static void task_clock_event_read(struct perf_event *event)
7282{
768a06e2
PZ
7283 u64 now = perf_clock();
7284 u64 delta = now - event->ctx->timestamp;
7285 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7286
7287 task_clock_event_update(event, time);
7288}
7289
7290static int task_clock_event_init(struct perf_event *event)
6fb2915d 7291{
b0a873eb
PZ
7292 if (event->attr.type != PERF_TYPE_SOFTWARE)
7293 return -ENOENT;
7294
7295 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7296 return -ENOENT;
7297
2481c5fa
SE
7298 /*
7299 * no branch sampling for software events
7300 */
7301 if (has_branch_stack(event))
7302 return -EOPNOTSUPP;
7303
ba3dd36c
PZ
7304 perf_swevent_init_hrtimer(event);
7305
b0a873eb 7306 return 0;
6fb2915d
LZ
7307}
7308
b0a873eb 7309static struct pmu perf_task_clock = {
89a1e187
PZ
7310 .task_ctx_nr = perf_sw_context,
7311
34f43927
PZ
7312 .capabilities = PERF_PMU_CAP_NO_NMI,
7313
b0a873eb 7314 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7315 .add = task_clock_event_add,
7316 .del = task_clock_event_del,
7317 .start = task_clock_event_start,
7318 .stop = task_clock_event_stop,
b0a873eb
PZ
7319 .read = task_clock_event_read,
7320};
6fb2915d 7321
ad5133b7 7322static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7323{
e077df4f 7324}
6fb2915d 7325
fbbe0701
SB
7326static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7327{
7328}
7329
ad5133b7 7330static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7331{
ad5133b7 7332 return 0;
6fb2915d
LZ
7333}
7334
18ab2cd3 7335static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7336
7337static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7338{
fbbe0701
SB
7339 __this_cpu_write(nop_txn_flags, flags);
7340
7341 if (flags & ~PERF_PMU_TXN_ADD)
7342 return;
7343
ad5133b7 7344 perf_pmu_disable(pmu);
6fb2915d
LZ
7345}
7346
ad5133b7
PZ
7347static int perf_pmu_commit_txn(struct pmu *pmu)
7348{
fbbe0701
SB
7349 unsigned int flags = __this_cpu_read(nop_txn_flags);
7350
7351 __this_cpu_write(nop_txn_flags, 0);
7352
7353 if (flags & ~PERF_PMU_TXN_ADD)
7354 return 0;
7355
ad5133b7
PZ
7356 perf_pmu_enable(pmu);
7357 return 0;
7358}
e077df4f 7359
ad5133b7 7360static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7361{
fbbe0701
SB
7362 unsigned int flags = __this_cpu_read(nop_txn_flags);
7363
7364 __this_cpu_write(nop_txn_flags, 0);
7365
7366 if (flags & ~PERF_PMU_TXN_ADD)
7367 return;
7368
ad5133b7 7369 perf_pmu_enable(pmu);
24f1e32c
FW
7370}
7371
35edc2a5
PZ
7372static int perf_event_idx_default(struct perf_event *event)
7373{
c719f560 7374 return 0;
35edc2a5
PZ
7375}
7376
8dc85d54
PZ
7377/*
7378 * Ensures all contexts with the same task_ctx_nr have the same
7379 * pmu_cpu_context too.
7380 */
9e317041 7381static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7382{
8dc85d54 7383 struct pmu *pmu;
b326e956 7384
8dc85d54
PZ
7385 if (ctxn < 0)
7386 return NULL;
24f1e32c 7387
8dc85d54
PZ
7388 list_for_each_entry(pmu, &pmus, entry) {
7389 if (pmu->task_ctx_nr == ctxn)
7390 return pmu->pmu_cpu_context;
7391 }
24f1e32c 7392
8dc85d54 7393 return NULL;
24f1e32c
FW
7394}
7395
51676957 7396static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7397{
51676957
PZ
7398 int cpu;
7399
7400 for_each_possible_cpu(cpu) {
7401 struct perf_cpu_context *cpuctx;
7402
7403 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7404
3f1f3320
PZ
7405 if (cpuctx->unique_pmu == old_pmu)
7406 cpuctx->unique_pmu = pmu;
51676957
PZ
7407 }
7408}
7409
7410static void free_pmu_context(struct pmu *pmu)
7411{
7412 struct pmu *i;
f5ffe02e 7413
8dc85d54 7414 mutex_lock(&pmus_lock);
0475f9ea 7415 /*
8dc85d54 7416 * Like a real lame refcount.
0475f9ea 7417 */
51676957
PZ
7418 list_for_each_entry(i, &pmus, entry) {
7419 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7420 update_pmu_context(i, pmu);
8dc85d54 7421 goto out;
51676957 7422 }
8dc85d54 7423 }
d6d020e9 7424
51676957 7425 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7426out:
7427 mutex_unlock(&pmus_lock);
24f1e32c 7428}
2e80a82a 7429static struct idr pmu_idr;
d6d020e9 7430
abe43400
PZ
7431static ssize_t
7432type_show(struct device *dev, struct device_attribute *attr, char *page)
7433{
7434 struct pmu *pmu = dev_get_drvdata(dev);
7435
7436 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7437}
90826ca7 7438static DEVICE_ATTR_RO(type);
abe43400 7439
62b85639
SE
7440static ssize_t
7441perf_event_mux_interval_ms_show(struct device *dev,
7442 struct device_attribute *attr,
7443 char *page)
7444{
7445 struct pmu *pmu = dev_get_drvdata(dev);
7446
7447 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7448}
7449
272325c4
PZ
7450static DEFINE_MUTEX(mux_interval_mutex);
7451
62b85639
SE
7452static ssize_t
7453perf_event_mux_interval_ms_store(struct device *dev,
7454 struct device_attribute *attr,
7455 const char *buf, size_t count)
7456{
7457 struct pmu *pmu = dev_get_drvdata(dev);
7458 int timer, cpu, ret;
7459
7460 ret = kstrtoint(buf, 0, &timer);
7461 if (ret)
7462 return ret;
7463
7464 if (timer < 1)
7465 return -EINVAL;
7466
7467 /* same value, noting to do */
7468 if (timer == pmu->hrtimer_interval_ms)
7469 return count;
7470
272325c4 7471 mutex_lock(&mux_interval_mutex);
62b85639
SE
7472 pmu->hrtimer_interval_ms = timer;
7473
7474 /* update all cpuctx for this PMU */
272325c4
PZ
7475 get_online_cpus();
7476 for_each_online_cpu(cpu) {
62b85639
SE
7477 struct perf_cpu_context *cpuctx;
7478 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7479 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7480
272325c4
PZ
7481 cpu_function_call(cpu,
7482 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7483 }
272325c4
PZ
7484 put_online_cpus();
7485 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7486
7487 return count;
7488}
90826ca7 7489static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7490
90826ca7
GKH
7491static struct attribute *pmu_dev_attrs[] = {
7492 &dev_attr_type.attr,
7493 &dev_attr_perf_event_mux_interval_ms.attr,
7494 NULL,
abe43400 7495};
90826ca7 7496ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7497
7498static int pmu_bus_running;
7499static struct bus_type pmu_bus = {
7500 .name = "event_source",
90826ca7 7501 .dev_groups = pmu_dev_groups,
abe43400
PZ
7502};
7503
7504static void pmu_dev_release(struct device *dev)
7505{
7506 kfree(dev);
7507}
7508
7509static int pmu_dev_alloc(struct pmu *pmu)
7510{
7511 int ret = -ENOMEM;
7512
7513 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7514 if (!pmu->dev)
7515 goto out;
7516
0c9d42ed 7517 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7518 device_initialize(pmu->dev);
7519 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7520 if (ret)
7521 goto free_dev;
7522
7523 dev_set_drvdata(pmu->dev, pmu);
7524 pmu->dev->bus = &pmu_bus;
7525 pmu->dev->release = pmu_dev_release;
7526 ret = device_add(pmu->dev);
7527 if (ret)
7528 goto free_dev;
7529
7530out:
7531 return ret;
7532
7533free_dev:
7534 put_device(pmu->dev);
7535 goto out;
7536}
7537
547e9fd7 7538static struct lock_class_key cpuctx_mutex;
facc4307 7539static struct lock_class_key cpuctx_lock;
547e9fd7 7540
03d8e80b 7541int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7542{
108b02cf 7543 int cpu, ret;
24f1e32c 7544
b0a873eb 7545 mutex_lock(&pmus_lock);
33696fc0
PZ
7546 ret = -ENOMEM;
7547 pmu->pmu_disable_count = alloc_percpu(int);
7548 if (!pmu->pmu_disable_count)
7549 goto unlock;
f29ac756 7550
2e80a82a
PZ
7551 pmu->type = -1;
7552 if (!name)
7553 goto skip_type;
7554 pmu->name = name;
7555
7556 if (type < 0) {
0e9c3be2
TH
7557 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7558 if (type < 0) {
7559 ret = type;
2e80a82a
PZ
7560 goto free_pdc;
7561 }
7562 }
7563 pmu->type = type;
7564
abe43400
PZ
7565 if (pmu_bus_running) {
7566 ret = pmu_dev_alloc(pmu);
7567 if (ret)
7568 goto free_idr;
7569 }
7570
2e80a82a 7571skip_type:
8dc85d54
PZ
7572 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7573 if (pmu->pmu_cpu_context)
7574 goto got_cpu_context;
f29ac756 7575
c4814202 7576 ret = -ENOMEM;
108b02cf
PZ
7577 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7578 if (!pmu->pmu_cpu_context)
abe43400 7579 goto free_dev;
f344011c 7580
108b02cf
PZ
7581 for_each_possible_cpu(cpu) {
7582 struct perf_cpu_context *cpuctx;
7583
7584 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7585 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7586 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7587 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7588 cpuctx->ctx.pmu = pmu;
9e630205 7589
272325c4 7590 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7591
3f1f3320 7592 cpuctx->unique_pmu = pmu;
108b02cf 7593 }
76e1d904 7594
8dc85d54 7595got_cpu_context:
ad5133b7
PZ
7596 if (!pmu->start_txn) {
7597 if (pmu->pmu_enable) {
7598 /*
7599 * If we have pmu_enable/pmu_disable calls, install
7600 * transaction stubs that use that to try and batch
7601 * hardware accesses.
7602 */
7603 pmu->start_txn = perf_pmu_start_txn;
7604 pmu->commit_txn = perf_pmu_commit_txn;
7605 pmu->cancel_txn = perf_pmu_cancel_txn;
7606 } else {
fbbe0701 7607 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7608 pmu->commit_txn = perf_pmu_nop_int;
7609 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7610 }
5c92d124 7611 }
15dbf27c 7612
ad5133b7
PZ
7613 if (!pmu->pmu_enable) {
7614 pmu->pmu_enable = perf_pmu_nop_void;
7615 pmu->pmu_disable = perf_pmu_nop_void;
7616 }
7617
35edc2a5
PZ
7618 if (!pmu->event_idx)
7619 pmu->event_idx = perf_event_idx_default;
7620
b0a873eb 7621 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7622 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7623 ret = 0;
7624unlock:
b0a873eb
PZ
7625 mutex_unlock(&pmus_lock);
7626
33696fc0 7627 return ret;
108b02cf 7628
abe43400
PZ
7629free_dev:
7630 device_del(pmu->dev);
7631 put_device(pmu->dev);
7632
2e80a82a
PZ
7633free_idr:
7634 if (pmu->type >= PERF_TYPE_MAX)
7635 idr_remove(&pmu_idr, pmu->type);
7636
108b02cf
PZ
7637free_pdc:
7638 free_percpu(pmu->pmu_disable_count);
7639 goto unlock;
f29ac756 7640}
c464c76e 7641EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7642
b0a873eb 7643void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7644{
b0a873eb
PZ
7645 mutex_lock(&pmus_lock);
7646 list_del_rcu(&pmu->entry);
7647 mutex_unlock(&pmus_lock);
5c92d124 7648
0475f9ea 7649 /*
cde8e884
PZ
7650 * We dereference the pmu list under both SRCU and regular RCU, so
7651 * synchronize against both of those.
0475f9ea 7652 */
b0a873eb 7653 synchronize_srcu(&pmus_srcu);
cde8e884 7654 synchronize_rcu();
d6d020e9 7655
33696fc0 7656 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7657 if (pmu->type >= PERF_TYPE_MAX)
7658 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7659 device_del(pmu->dev);
7660 put_device(pmu->dev);
51676957 7661 free_pmu_context(pmu);
b0a873eb 7662}
c464c76e 7663EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7664
cc34b98b
MR
7665static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7666{
ccd41c86 7667 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7668 int ret;
7669
7670 if (!try_module_get(pmu->module))
7671 return -ENODEV;
ccd41c86
PZ
7672
7673 if (event->group_leader != event) {
8b10c5e2
PZ
7674 /*
7675 * This ctx->mutex can nest when we're called through
7676 * inheritance. See the perf_event_ctx_lock_nested() comment.
7677 */
7678 ctx = perf_event_ctx_lock_nested(event->group_leader,
7679 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7680 BUG_ON(!ctx);
7681 }
7682
cc34b98b
MR
7683 event->pmu = pmu;
7684 ret = pmu->event_init(event);
ccd41c86
PZ
7685
7686 if (ctx)
7687 perf_event_ctx_unlock(event->group_leader, ctx);
7688
cc34b98b
MR
7689 if (ret)
7690 module_put(pmu->module);
7691
7692 return ret;
7693}
7694
18ab2cd3 7695static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7696{
7697 struct pmu *pmu = NULL;
7698 int idx;
940c5b29 7699 int ret;
b0a873eb
PZ
7700
7701 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7702
7703 rcu_read_lock();
7704 pmu = idr_find(&pmu_idr, event->attr.type);
7705 rcu_read_unlock();
940c5b29 7706 if (pmu) {
cc34b98b 7707 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7708 if (ret)
7709 pmu = ERR_PTR(ret);
2e80a82a 7710 goto unlock;
940c5b29 7711 }
2e80a82a 7712
b0a873eb 7713 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7714 ret = perf_try_init_event(pmu, event);
b0a873eb 7715 if (!ret)
e5f4d339 7716 goto unlock;
76e1d904 7717
b0a873eb
PZ
7718 if (ret != -ENOENT) {
7719 pmu = ERR_PTR(ret);
e5f4d339 7720 goto unlock;
f344011c 7721 }
5c92d124 7722 }
e5f4d339
PZ
7723 pmu = ERR_PTR(-ENOENT);
7724unlock:
b0a873eb 7725 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7726
4aeb0b42 7727 return pmu;
5c92d124
IM
7728}
7729
4beb31f3
FW
7730static void account_event_cpu(struct perf_event *event, int cpu)
7731{
7732 if (event->parent)
7733 return;
7734
4beb31f3
FW
7735 if (is_cgroup_event(event))
7736 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7737}
7738
766d6c07
FW
7739static void account_event(struct perf_event *event)
7740{
4beb31f3
FW
7741 if (event->parent)
7742 return;
7743
766d6c07
FW
7744 if (event->attach_state & PERF_ATTACH_TASK)
7745 static_key_slow_inc(&perf_sched_events.key);
7746 if (event->attr.mmap || event->attr.mmap_data)
7747 atomic_inc(&nr_mmap_events);
7748 if (event->attr.comm)
7749 atomic_inc(&nr_comm_events);
7750 if (event->attr.task)
7751 atomic_inc(&nr_task_events);
948b26b6
FW
7752 if (event->attr.freq) {
7753 if (atomic_inc_return(&nr_freq_events) == 1)
7754 tick_nohz_full_kick_all();
7755 }
45ac1403
AH
7756 if (event->attr.context_switch) {
7757 atomic_inc(&nr_switch_events);
7758 static_key_slow_inc(&perf_sched_events.key);
7759 }
4beb31f3 7760 if (has_branch_stack(event))
766d6c07 7761 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7762 if (is_cgroup_event(event))
766d6c07 7763 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7764
7765 account_event_cpu(event, event->cpu);
766d6c07
FW
7766}
7767
0793a61d 7768/*
cdd6c482 7769 * Allocate and initialize a event structure
0793a61d 7770 */
cdd6c482 7771static struct perf_event *
c3f00c70 7772perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7773 struct task_struct *task,
7774 struct perf_event *group_leader,
7775 struct perf_event *parent_event,
4dc0da86 7776 perf_overflow_handler_t overflow_handler,
79dff51e 7777 void *context, int cgroup_fd)
0793a61d 7778{
51b0fe39 7779 struct pmu *pmu;
cdd6c482
IM
7780 struct perf_event *event;
7781 struct hw_perf_event *hwc;
90983b16 7782 long err = -EINVAL;
0793a61d 7783
66832eb4
ON
7784 if ((unsigned)cpu >= nr_cpu_ids) {
7785 if (!task || cpu != -1)
7786 return ERR_PTR(-EINVAL);
7787 }
7788
c3f00c70 7789 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7790 if (!event)
d5d2bc0d 7791 return ERR_PTR(-ENOMEM);
0793a61d 7792
04289bb9 7793 /*
cdd6c482 7794 * Single events are their own group leaders, with an
04289bb9
IM
7795 * empty sibling list:
7796 */
7797 if (!group_leader)
cdd6c482 7798 group_leader = event;
04289bb9 7799
cdd6c482
IM
7800 mutex_init(&event->child_mutex);
7801 INIT_LIST_HEAD(&event->child_list);
fccc714b 7802
cdd6c482
IM
7803 INIT_LIST_HEAD(&event->group_entry);
7804 INIT_LIST_HEAD(&event->event_entry);
7805 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7806 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7807 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7808 INIT_HLIST_NODE(&event->hlist_entry);
7809
10c6db11 7810
cdd6c482 7811 init_waitqueue_head(&event->waitq);
e360adbe 7812 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7813
cdd6c482 7814 mutex_init(&event->mmap_mutex);
7b732a75 7815
a6fa941d 7816 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7817 event->cpu = cpu;
7818 event->attr = *attr;
7819 event->group_leader = group_leader;
7820 event->pmu = NULL;
cdd6c482 7821 event->oncpu = -1;
a96bbc16 7822
cdd6c482 7823 event->parent = parent_event;
b84fbc9f 7824
17cf22c3 7825 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7826 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7827
cdd6c482 7828 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7829
d580ff86
PZ
7830 if (task) {
7831 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7832 /*
50f16a8b
PZ
7833 * XXX pmu::event_init needs to know what task to account to
7834 * and we cannot use the ctx information because we need the
7835 * pmu before we get a ctx.
d580ff86 7836 */
50f16a8b 7837 event->hw.target = task;
d580ff86
PZ
7838 }
7839
34f43927
PZ
7840 event->clock = &local_clock;
7841 if (parent_event)
7842 event->clock = parent_event->clock;
7843
4dc0da86 7844 if (!overflow_handler && parent_event) {
b326e956 7845 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7846 context = parent_event->overflow_handler_context;
7847 }
66832eb4 7848
b326e956 7849 event->overflow_handler = overflow_handler;
4dc0da86 7850 event->overflow_handler_context = context;
97eaf530 7851
0231bb53 7852 perf_event__state_init(event);
a86ed508 7853
4aeb0b42 7854 pmu = NULL;
b8e83514 7855
cdd6c482 7856 hwc = &event->hw;
bd2b5b12 7857 hwc->sample_period = attr->sample_period;
0d48696f 7858 if (attr->freq && attr->sample_freq)
bd2b5b12 7859 hwc->sample_period = 1;
eced1dfc 7860 hwc->last_period = hwc->sample_period;
bd2b5b12 7861
e7850595 7862 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7863
2023b359 7864 /*
cdd6c482 7865 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7866 */
3dab77fb 7867 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7868 goto err_ns;
a46a2300
YZ
7869
7870 if (!has_branch_stack(event))
7871 event->attr.branch_sample_type = 0;
2023b359 7872
79dff51e
MF
7873 if (cgroup_fd != -1) {
7874 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7875 if (err)
7876 goto err_ns;
7877 }
7878
b0a873eb 7879 pmu = perf_init_event(event);
4aeb0b42 7880 if (!pmu)
90983b16
FW
7881 goto err_ns;
7882 else if (IS_ERR(pmu)) {
4aeb0b42 7883 err = PTR_ERR(pmu);
90983b16 7884 goto err_ns;
621a01ea 7885 }
d5d2bc0d 7886
bed5b25a
AS
7887 err = exclusive_event_init(event);
7888 if (err)
7889 goto err_pmu;
7890
cdd6c482 7891 if (!event->parent) {
927c7a9e
FW
7892 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7893 err = get_callchain_buffers();
90983b16 7894 if (err)
bed5b25a 7895 goto err_per_task;
d010b332 7896 }
f344011c 7897 }
9ee318a7 7898
cdd6c482 7899 return event;
90983b16 7900
bed5b25a
AS
7901err_per_task:
7902 exclusive_event_destroy(event);
7903
90983b16
FW
7904err_pmu:
7905 if (event->destroy)
7906 event->destroy(event);
c464c76e 7907 module_put(pmu->module);
90983b16 7908err_ns:
79dff51e
MF
7909 if (is_cgroup_event(event))
7910 perf_detach_cgroup(event);
90983b16
FW
7911 if (event->ns)
7912 put_pid_ns(event->ns);
7913 kfree(event);
7914
7915 return ERR_PTR(err);
0793a61d
TG
7916}
7917
cdd6c482
IM
7918static int perf_copy_attr(struct perf_event_attr __user *uattr,
7919 struct perf_event_attr *attr)
974802ea 7920{
974802ea 7921 u32 size;
cdf8073d 7922 int ret;
974802ea
PZ
7923
7924 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7925 return -EFAULT;
7926
7927 /*
7928 * zero the full structure, so that a short copy will be nice.
7929 */
7930 memset(attr, 0, sizeof(*attr));
7931
7932 ret = get_user(size, &uattr->size);
7933 if (ret)
7934 return ret;
7935
7936 if (size > PAGE_SIZE) /* silly large */
7937 goto err_size;
7938
7939 if (!size) /* abi compat */
7940 size = PERF_ATTR_SIZE_VER0;
7941
7942 if (size < PERF_ATTR_SIZE_VER0)
7943 goto err_size;
7944
7945 /*
7946 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7947 * ensure all the unknown bits are 0 - i.e. new
7948 * user-space does not rely on any kernel feature
7949 * extensions we dont know about yet.
974802ea
PZ
7950 */
7951 if (size > sizeof(*attr)) {
cdf8073d
IS
7952 unsigned char __user *addr;
7953 unsigned char __user *end;
7954 unsigned char val;
974802ea 7955
cdf8073d
IS
7956 addr = (void __user *)uattr + sizeof(*attr);
7957 end = (void __user *)uattr + size;
974802ea 7958
cdf8073d 7959 for (; addr < end; addr++) {
974802ea
PZ
7960 ret = get_user(val, addr);
7961 if (ret)
7962 return ret;
7963 if (val)
7964 goto err_size;
7965 }
b3e62e35 7966 size = sizeof(*attr);
974802ea
PZ
7967 }
7968
7969 ret = copy_from_user(attr, uattr, size);
7970 if (ret)
7971 return -EFAULT;
7972
cd757645 7973 if (attr->__reserved_1)
974802ea
PZ
7974 return -EINVAL;
7975
7976 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7977 return -EINVAL;
7978
7979 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7980 return -EINVAL;
7981
bce38cd5
SE
7982 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7983 u64 mask = attr->branch_sample_type;
7984
7985 /* only using defined bits */
7986 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7987 return -EINVAL;
7988
7989 /* at least one branch bit must be set */
7990 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7991 return -EINVAL;
7992
bce38cd5
SE
7993 /* propagate priv level, when not set for branch */
7994 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7995
7996 /* exclude_kernel checked on syscall entry */
7997 if (!attr->exclude_kernel)
7998 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7999
8000 if (!attr->exclude_user)
8001 mask |= PERF_SAMPLE_BRANCH_USER;
8002
8003 if (!attr->exclude_hv)
8004 mask |= PERF_SAMPLE_BRANCH_HV;
8005 /*
8006 * adjust user setting (for HW filter setup)
8007 */
8008 attr->branch_sample_type = mask;
8009 }
e712209a
SE
8010 /* privileged levels capture (kernel, hv): check permissions */
8011 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8012 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8013 return -EACCES;
bce38cd5 8014 }
4018994f 8015
c5ebcedb 8016 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8017 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8018 if (ret)
8019 return ret;
8020 }
8021
8022 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8023 if (!arch_perf_have_user_stack_dump())
8024 return -ENOSYS;
8025
8026 /*
8027 * We have __u32 type for the size, but so far
8028 * we can only use __u16 as maximum due to the
8029 * __u16 sample size limit.
8030 */
8031 if (attr->sample_stack_user >= USHRT_MAX)
8032 ret = -EINVAL;
8033 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8034 ret = -EINVAL;
8035 }
4018994f 8036
60e2364e
SE
8037 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8038 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8039out:
8040 return ret;
8041
8042err_size:
8043 put_user(sizeof(*attr), &uattr->size);
8044 ret = -E2BIG;
8045 goto out;
8046}
8047
ac9721f3
PZ
8048static int
8049perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8050{
b69cf536 8051 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8052 int ret = -EINVAL;
8053
ac9721f3 8054 if (!output_event)
a4be7c27
PZ
8055 goto set;
8056
ac9721f3
PZ
8057 /* don't allow circular references */
8058 if (event == output_event)
a4be7c27
PZ
8059 goto out;
8060
0f139300
PZ
8061 /*
8062 * Don't allow cross-cpu buffers
8063 */
8064 if (output_event->cpu != event->cpu)
8065 goto out;
8066
8067 /*
76369139 8068 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8069 */
8070 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8071 goto out;
8072
34f43927
PZ
8073 /*
8074 * Mixing clocks in the same buffer is trouble you don't need.
8075 */
8076 if (output_event->clock != event->clock)
8077 goto out;
8078
45bfb2e5
PZ
8079 /*
8080 * If both events generate aux data, they must be on the same PMU
8081 */
8082 if (has_aux(event) && has_aux(output_event) &&
8083 event->pmu != output_event->pmu)
8084 goto out;
8085
a4be7c27 8086set:
cdd6c482 8087 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8088 /* Can't redirect output if we've got an active mmap() */
8089 if (atomic_read(&event->mmap_count))
8090 goto unlock;
a4be7c27 8091
ac9721f3 8092 if (output_event) {
76369139
FW
8093 /* get the rb we want to redirect to */
8094 rb = ring_buffer_get(output_event);
8095 if (!rb)
ac9721f3 8096 goto unlock;
a4be7c27
PZ
8097 }
8098
b69cf536 8099 ring_buffer_attach(event, rb);
9bb5d40c 8100
a4be7c27 8101 ret = 0;
ac9721f3
PZ
8102unlock:
8103 mutex_unlock(&event->mmap_mutex);
8104
a4be7c27 8105out:
a4be7c27
PZ
8106 return ret;
8107}
8108
f63a8daa
PZ
8109static void mutex_lock_double(struct mutex *a, struct mutex *b)
8110{
8111 if (b < a)
8112 swap(a, b);
8113
8114 mutex_lock(a);
8115 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8116}
8117
34f43927
PZ
8118static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8119{
8120 bool nmi_safe = false;
8121
8122 switch (clk_id) {
8123 case CLOCK_MONOTONIC:
8124 event->clock = &ktime_get_mono_fast_ns;
8125 nmi_safe = true;
8126 break;
8127
8128 case CLOCK_MONOTONIC_RAW:
8129 event->clock = &ktime_get_raw_fast_ns;
8130 nmi_safe = true;
8131 break;
8132
8133 case CLOCK_REALTIME:
8134 event->clock = &ktime_get_real_ns;
8135 break;
8136
8137 case CLOCK_BOOTTIME:
8138 event->clock = &ktime_get_boot_ns;
8139 break;
8140
8141 case CLOCK_TAI:
8142 event->clock = &ktime_get_tai_ns;
8143 break;
8144
8145 default:
8146 return -EINVAL;
8147 }
8148
8149 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8150 return -EINVAL;
8151
8152 return 0;
8153}
8154
0793a61d 8155/**
cdd6c482 8156 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8157 *
cdd6c482 8158 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8159 * @pid: target pid
9f66a381 8160 * @cpu: target cpu
cdd6c482 8161 * @group_fd: group leader event fd
0793a61d 8162 */
cdd6c482
IM
8163SYSCALL_DEFINE5(perf_event_open,
8164 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8165 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8166{
b04243ef
PZ
8167 struct perf_event *group_leader = NULL, *output_event = NULL;
8168 struct perf_event *event, *sibling;
cdd6c482 8169 struct perf_event_attr attr;
f63a8daa 8170 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8171 struct file *event_file = NULL;
2903ff01 8172 struct fd group = {NULL, 0};
38a81da2 8173 struct task_struct *task = NULL;
89a1e187 8174 struct pmu *pmu;
ea635c64 8175 int event_fd;
b04243ef 8176 int move_group = 0;
dc86cabe 8177 int err;
a21b0b35 8178 int f_flags = O_RDWR;
79dff51e 8179 int cgroup_fd = -1;
0793a61d 8180
2743a5b0 8181 /* for future expandability... */
e5d1367f 8182 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8183 return -EINVAL;
8184
dc86cabe
IM
8185 err = perf_copy_attr(attr_uptr, &attr);
8186 if (err)
8187 return err;
eab656ae 8188
0764771d
PZ
8189 if (!attr.exclude_kernel) {
8190 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8191 return -EACCES;
8192 }
8193
df58ab24 8194 if (attr.freq) {
cdd6c482 8195 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8196 return -EINVAL;
0819b2e3
PZ
8197 } else {
8198 if (attr.sample_period & (1ULL << 63))
8199 return -EINVAL;
df58ab24
PZ
8200 }
8201
e5d1367f
SE
8202 /*
8203 * In cgroup mode, the pid argument is used to pass the fd
8204 * opened to the cgroup directory in cgroupfs. The cpu argument
8205 * designates the cpu on which to monitor threads from that
8206 * cgroup.
8207 */
8208 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8209 return -EINVAL;
8210
a21b0b35
YD
8211 if (flags & PERF_FLAG_FD_CLOEXEC)
8212 f_flags |= O_CLOEXEC;
8213
8214 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8215 if (event_fd < 0)
8216 return event_fd;
8217
ac9721f3 8218 if (group_fd != -1) {
2903ff01
AV
8219 err = perf_fget_light(group_fd, &group);
8220 if (err)
d14b12d7 8221 goto err_fd;
2903ff01 8222 group_leader = group.file->private_data;
ac9721f3
PZ
8223 if (flags & PERF_FLAG_FD_OUTPUT)
8224 output_event = group_leader;
8225 if (flags & PERF_FLAG_FD_NO_GROUP)
8226 group_leader = NULL;
8227 }
8228
e5d1367f 8229 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8230 task = find_lively_task_by_vpid(pid);
8231 if (IS_ERR(task)) {
8232 err = PTR_ERR(task);
8233 goto err_group_fd;
8234 }
8235 }
8236
1f4ee503
PZ
8237 if (task && group_leader &&
8238 group_leader->attr.inherit != attr.inherit) {
8239 err = -EINVAL;
8240 goto err_task;
8241 }
8242
fbfc623f
YZ
8243 get_online_cpus();
8244
79dff51e
MF
8245 if (flags & PERF_FLAG_PID_CGROUP)
8246 cgroup_fd = pid;
8247
4dc0da86 8248 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8249 NULL, NULL, cgroup_fd);
d14b12d7
SE
8250 if (IS_ERR(event)) {
8251 err = PTR_ERR(event);
1f4ee503 8252 goto err_cpus;
d14b12d7
SE
8253 }
8254
53b25335
VW
8255 if (is_sampling_event(event)) {
8256 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8257 err = -ENOTSUPP;
8258 goto err_alloc;
8259 }
8260 }
8261
766d6c07
FW
8262 account_event(event);
8263
89a1e187
PZ
8264 /*
8265 * Special case software events and allow them to be part of
8266 * any hardware group.
8267 */
8268 pmu = event->pmu;
b04243ef 8269
34f43927
PZ
8270 if (attr.use_clockid) {
8271 err = perf_event_set_clock(event, attr.clockid);
8272 if (err)
8273 goto err_alloc;
8274 }
8275
b04243ef
PZ
8276 if (group_leader &&
8277 (is_software_event(event) != is_software_event(group_leader))) {
8278 if (is_software_event(event)) {
8279 /*
8280 * If event and group_leader are not both a software
8281 * event, and event is, then group leader is not.
8282 *
8283 * Allow the addition of software events to !software
8284 * groups, this is safe because software events never
8285 * fail to schedule.
8286 */
8287 pmu = group_leader->pmu;
8288 } else if (is_software_event(group_leader) &&
8289 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8290 /*
8291 * In case the group is a pure software group, and we
8292 * try to add a hardware event, move the whole group to
8293 * the hardware context.
8294 */
8295 move_group = 1;
8296 }
8297 }
89a1e187
PZ
8298
8299 /*
8300 * Get the target context (task or percpu):
8301 */
4af57ef2 8302 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8303 if (IS_ERR(ctx)) {
8304 err = PTR_ERR(ctx);
c6be5a5c 8305 goto err_alloc;
89a1e187
PZ
8306 }
8307
bed5b25a
AS
8308 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8309 err = -EBUSY;
8310 goto err_context;
8311 }
8312
fd1edb3a
PZ
8313 if (task) {
8314 put_task_struct(task);
8315 task = NULL;
8316 }
8317
ccff286d 8318 /*
cdd6c482 8319 * Look up the group leader (we will attach this event to it):
04289bb9 8320 */
ac9721f3 8321 if (group_leader) {
dc86cabe 8322 err = -EINVAL;
04289bb9 8323
04289bb9 8324 /*
ccff286d
IM
8325 * Do not allow a recursive hierarchy (this new sibling
8326 * becoming part of another group-sibling):
8327 */
8328 if (group_leader->group_leader != group_leader)
c3f00c70 8329 goto err_context;
34f43927
PZ
8330
8331 /* All events in a group should have the same clock */
8332 if (group_leader->clock != event->clock)
8333 goto err_context;
8334
ccff286d
IM
8335 /*
8336 * Do not allow to attach to a group in a different
8337 * task or CPU context:
04289bb9 8338 */
b04243ef 8339 if (move_group) {
c3c87e77
PZ
8340 /*
8341 * Make sure we're both on the same task, or both
8342 * per-cpu events.
8343 */
8344 if (group_leader->ctx->task != ctx->task)
8345 goto err_context;
8346
8347 /*
8348 * Make sure we're both events for the same CPU;
8349 * grouping events for different CPUs is broken; since
8350 * you can never concurrently schedule them anyhow.
8351 */
8352 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8353 goto err_context;
8354 } else {
8355 if (group_leader->ctx != ctx)
8356 goto err_context;
8357 }
8358
3b6f9e5c
PM
8359 /*
8360 * Only a group leader can be exclusive or pinned
8361 */
0d48696f 8362 if (attr.exclusive || attr.pinned)
c3f00c70 8363 goto err_context;
ac9721f3
PZ
8364 }
8365
8366 if (output_event) {
8367 err = perf_event_set_output(event, output_event);
8368 if (err)
c3f00c70 8369 goto err_context;
ac9721f3 8370 }
0793a61d 8371
a21b0b35
YD
8372 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8373 f_flags);
ea635c64
AV
8374 if (IS_ERR(event_file)) {
8375 err = PTR_ERR(event_file);
c3f00c70 8376 goto err_context;
ea635c64 8377 }
9b51f66d 8378
b04243ef 8379 if (move_group) {
f63a8daa 8380 gctx = group_leader->ctx;
f55fc2a5
PZ
8381 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8382 } else {
8383 mutex_lock(&ctx->mutex);
8384 }
8385
a723968c
PZ
8386 if (!perf_event_validate_size(event)) {
8387 err = -E2BIG;
8388 goto err_locked;
8389 }
8390
f55fc2a5
PZ
8391 /*
8392 * Must be under the same ctx::mutex as perf_install_in_context(),
8393 * because we need to serialize with concurrent event creation.
8394 */
8395 if (!exclusive_event_installable(event, ctx)) {
8396 /* exclusive and group stuff are assumed mutually exclusive */
8397 WARN_ON_ONCE(move_group);
f63a8daa 8398
f55fc2a5
PZ
8399 err = -EBUSY;
8400 goto err_locked;
8401 }
f63a8daa 8402
f55fc2a5
PZ
8403 WARN_ON_ONCE(ctx->parent_ctx);
8404
8405 if (move_group) {
f63a8daa
PZ
8406 /*
8407 * See perf_event_ctx_lock() for comments on the details
8408 * of swizzling perf_event::ctx.
8409 */
46ce0fe9 8410 perf_remove_from_context(group_leader, false);
0231bb53 8411
b04243ef
PZ
8412 list_for_each_entry(sibling, &group_leader->sibling_list,
8413 group_entry) {
46ce0fe9 8414 perf_remove_from_context(sibling, false);
b04243ef
PZ
8415 put_ctx(gctx);
8416 }
b04243ef 8417
f63a8daa
PZ
8418 /*
8419 * Wait for everybody to stop referencing the events through
8420 * the old lists, before installing it on new lists.
8421 */
0cda4c02 8422 synchronize_rcu();
f63a8daa 8423
8f95b435
PZI
8424 /*
8425 * Install the group siblings before the group leader.
8426 *
8427 * Because a group leader will try and install the entire group
8428 * (through the sibling list, which is still in-tact), we can
8429 * end up with siblings installed in the wrong context.
8430 *
8431 * By installing siblings first we NO-OP because they're not
8432 * reachable through the group lists.
8433 */
b04243ef
PZ
8434 list_for_each_entry(sibling, &group_leader->sibling_list,
8435 group_entry) {
8f95b435 8436 perf_event__state_init(sibling);
9fc81d87 8437 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8438 get_ctx(ctx);
8439 }
8f95b435
PZI
8440
8441 /*
8442 * Removing from the context ends up with disabled
8443 * event. What we want here is event in the initial
8444 * startup state, ready to be add into new context.
8445 */
8446 perf_event__state_init(group_leader);
8447 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8448 get_ctx(ctx);
b04243ef 8449
f55fc2a5
PZ
8450 /*
8451 * Now that all events are installed in @ctx, nothing
8452 * references @gctx anymore, so drop the last reference we have
8453 * on it.
8454 */
8455 put_ctx(gctx);
bed5b25a
AS
8456 }
8457
f73e22ab
PZ
8458 /*
8459 * Precalculate sample_data sizes; do while holding ctx::mutex such
8460 * that we're serialized against further additions and before
8461 * perf_install_in_context() which is the point the event is active and
8462 * can use these values.
8463 */
8464 perf_event__header_size(event);
8465 perf_event__id_header_size(event);
8466
e2d37cd2 8467 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8468 perf_unpin_context(ctx);
f63a8daa 8469
f55fc2a5 8470 if (move_group)
f63a8daa 8471 mutex_unlock(&gctx->mutex);
d859e29f 8472 mutex_unlock(&ctx->mutex);
9b51f66d 8473
fbfc623f
YZ
8474 put_online_cpus();
8475
cdd6c482 8476 event->owner = current;
8882135b 8477
cdd6c482
IM
8478 mutex_lock(&current->perf_event_mutex);
8479 list_add_tail(&event->owner_entry, &current->perf_event_list);
8480 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8481
8a49542c
PZ
8482 /*
8483 * Drop the reference on the group_event after placing the
8484 * new event on the sibling_list. This ensures destruction
8485 * of the group leader will find the pointer to itself in
8486 * perf_group_detach().
8487 */
2903ff01 8488 fdput(group);
ea635c64
AV
8489 fd_install(event_fd, event_file);
8490 return event_fd;
0793a61d 8491
f55fc2a5
PZ
8492err_locked:
8493 if (move_group)
8494 mutex_unlock(&gctx->mutex);
8495 mutex_unlock(&ctx->mutex);
8496/* err_file: */
8497 fput(event_file);
c3f00c70 8498err_context:
fe4b04fa 8499 perf_unpin_context(ctx);
ea635c64 8500 put_ctx(ctx);
c6be5a5c 8501err_alloc:
ea635c64 8502 free_event(event);
1f4ee503 8503err_cpus:
fbfc623f 8504 put_online_cpus();
1f4ee503 8505err_task:
e7d0bc04
PZ
8506 if (task)
8507 put_task_struct(task);
89a1e187 8508err_group_fd:
2903ff01 8509 fdput(group);
ea635c64
AV
8510err_fd:
8511 put_unused_fd(event_fd);
dc86cabe 8512 return err;
0793a61d
TG
8513}
8514
fb0459d7
AV
8515/**
8516 * perf_event_create_kernel_counter
8517 *
8518 * @attr: attributes of the counter to create
8519 * @cpu: cpu in which the counter is bound
38a81da2 8520 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8521 */
8522struct perf_event *
8523perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8524 struct task_struct *task,
4dc0da86
AK
8525 perf_overflow_handler_t overflow_handler,
8526 void *context)
fb0459d7 8527{
fb0459d7 8528 struct perf_event_context *ctx;
c3f00c70 8529 struct perf_event *event;
fb0459d7 8530 int err;
d859e29f 8531
fb0459d7
AV
8532 /*
8533 * Get the target context (task or percpu):
8534 */
d859e29f 8535
4dc0da86 8536 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8537 overflow_handler, context, -1);
c3f00c70
PZ
8538 if (IS_ERR(event)) {
8539 err = PTR_ERR(event);
8540 goto err;
8541 }
d859e29f 8542
f8697762
JO
8543 /* Mark owner so we could distinguish it from user events. */
8544 event->owner = EVENT_OWNER_KERNEL;
8545
766d6c07
FW
8546 account_event(event);
8547
4af57ef2 8548 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8549 if (IS_ERR(ctx)) {
8550 err = PTR_ERR(ctx);
c3f00c70 8551 goto err_free;
d859e29f 8552 }
fb0459d7 8553
fb0459d7
AV
8554 WARN_ON_ONCE(ctx->parent_ctx);
8555 mutex_lock(&ctx->mutex);
bed5b25a
AS
8556 if (!exclusive_event_installable(event, ctx)) {
8557 mutex_unlock(&ctx->mutex);
8558 perf_unpin_context(ctx);
8559 put_ctx(ctx);
8560 err = -EBUSY;
8561 goto err_free;
8562 }
8563
fb0459d7 8564 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8565 perf_unpin_context(ctx);
fb0459d7
AV
8566 mutex_unlock(&ctx->mutex);
8567
fb0459d7
AV
8568 return event;
8569
c3f00c70
PZ
8570err_free:
8571 free_event(event);
8572err:
c6567f64 8573 return ERR_PTR(err);
9b51f66d 8574}
fb0459d7 8575EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8576
0cda4c02
YZ
8577void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8578{
8579 struct perf_event_context *src_ctx;
8580 struct perf_event_context *dst_ctx;
8581 struct perf_event *event, *tmp;
8582 LIST_HEAD(events);
8583
8584 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8585 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8586
f63a8daa
PZ
8587 /*
8588 * See perf_event_ctx_lock() for comments on the details
8589 * of swizzling perf_event::ctx.
8590 */
8591 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8592 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8593 event_entry) {
46ce0fe9 8594 perf_remove_from_context(event, false);
9a545de0 8595 unaccount_event_cpu(event, src_cpu);
0cda4c02 8596 put_ctx(src_ctx);
9886167d 8597 list_add(&event->migrate_entry, &events);
0cda4c02 8598 }
0cda4c02 8599
8f95b435
PZI
8600 /*
8601 * Wait for the events to quiesce before re-instating them.
8602 */
0cda4c02
YZ
8603 synchronize_rcu();
8604
8f95b435
PZI
8605 /*
8606 * Re-instate events in 2 passes.
8607 *
8608 * Skip over group leaders and only install siblings on this first
8609 * pass, siblings will not get enabled without a leader, however a
8610 * leader will enable its siblings, even if those are still on the old
8611 * context.
8612 */
8613 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8614 if (event->group_leader == event)
8615 continue;
8616
8617 list_del(&event->migrate_entry);
8618 if (event->state >= PERF_EVENT_STATE_OFF)
8619 event->state = PERF_EVENT_STATE_INACTIVE;
8620 account_event_cpu(event, dst_cpu);
8621 perf_install_in_context(dst_ctx, event, dst_cpu);
8622 get_ctx(dst_ctx);
8623 }
8624
8625 /*
8626 * Once all the siblings are setup properly, install the group leaders
8627 * to make it go.
8628 */
9886167d
PZ
8629 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8630 list_del(&event->migrate_entry);
0cda4c02
YZ
8631 if (event->state >= PERF_EVENT_STATE_OFF)
8632 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8633 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8634 perf_install_in_context(dst_ctx, event, dst_cpu);
8635 get_ctx(dst_ctx);
8636 }
8637 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8638 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8639}
8640EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8641
cdd6c482 8642static void sync_child_event(struct perf_event *child_event,
38b200d6 8643 struct task_struct *child)
d859e29f 8644{
cdd6c482 8645 struct perf_event *parent_event = child_event->parent;
8bc20959 8646 u64 child_val;
d859e29f 8647
cdd6c482
IM
8648 if (child_event->attr.inherit_stat)
8649 perf_event_read_event(child_event, child);
38b200d6 8650
b5e58793 8651 child_val = perf_event_count(child_event);
d859e29f
PM
8652
8653 /*
8654 * Add back the child's count to the parent's count:
8655 */
a6e6dea6 8656 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8657 atomic64_add(child_event->total_time_enabled,
8658 &parent_event->child_total_time_enabled);
8659 atomic64_add(child_event->total_time_running,
8660 &parent_event->child_total_time_running);
d859e29f
PM
8661
8662 /*
cdd6c482 8663 * Remove this event from the parent's list
d859e29f 8664 */
cdd6c482
IM
8665 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8666 mutex_lock(&parent_event->child_mutex);
8667 list_del_init(&child_event->child_list);
8668 mutex_unlock(&parent_event->child_mutex);
d859e29f 8669
dc633982
JO
8670 /*
8671 * Make sure user/parent get notified, that we just
8672 * lost one event.
8673 */
8674 perf_event_wakeup(parent_event);
8675
d859e29f 8676 /*
cdd6c482 8677 * Release the parent event, if this was the last
d859e29f
PM
8678 * reference to it.
8679 */
a6fa941d 8680 put_event(parent_event);
d859e29f
PM
8681}
8682
9b51f66d 8683static void
cdd6c482
IM
8684__perf_event_exit_task(struct perf_event *child_event,
8685 struct perf_event_context *child_ctx,
38b200d6 8686 struct task_struct *child)
9b51f66d 8687{
1903d50c
PZ
8688 /*
8689 * Do not destroy the 'original' grouping; because of the context
8690 * switch optimization the original events could've ended up in a
8691 * random child task.
8692 *
8693 * If we were to destroy the original group, all group related
8694 * operations would cease to function properly after this random
8695 * child dies.
8696 *
8697 * Do destroy all inherited groups, we don't care about those
8698 * and being thorough is better.
8699 */
8700 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8701
9b51f66d 8702 /*
38b435b1 8703 * It can happen that the parent exits first, and has events
9b51f66d 8704 * that are still around due to the child reference. These
38b435b1 8705 * events need to be zapped.
9b51f66d 8706 */
38b435b1 8707 if (child_event->parent) {
cdd6c482
IM
8708 sync_child_event(child_event, child);
8709 free_event(child_event);
179033b3
JO
8710 } else {
8711 child_event->state = PERF_EVENT_STATE_EXIT;
8712 perf_event_wakeup(child_event);
4bcf349a 8713 }
9b51f66d
IM
8714}
8715
8dc85d54 8716static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8717{
ebf905fc 8718 struct perf_event *child_event, *next;
211de6eb 8719 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8720 unsigned long flags;
9b51f66d 8721
4e93ad60 8722 if (likely(!child->perf_event_ctxp[ctxn]))
9b51f66d
IM
8723 return;
8724
a63eaf34 8725 local_irq_save(flags);
ad3a37de
PM
8726 /*
8727 * We can't reschedule here because interrupts are disabled,
8728 * and either child is current or it is a task that can't be
8729 * scheduled, so we are now safe from rescheduling changing
8730 * our context.
8731 */
806839b2 8732 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8733
8734 /*
8735 * Take the context lock here so that if find_get_context is
cdd6c482 8736 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8737 * incremented the context's refcount before we do put_ctx below.
8738 */
e625cce1 8739 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8740 task_ctx_sched_out(child_ctx);
8dc85d54 8741 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8742
71a851b4
PZ
8743 /*
8744 * If this context is a clone; unclone it so it can't get
8745 * swapped to another process while we're removing all
cdd6c482 8746 * the events from it.
71a851b4 8747 */
211de6eb 8748 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8749 update_context_time(child_ctx);
e625cce1 8750 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8751
211de6eb
PZ
8752 if (clone_ctx)
8753 put_ctx(clone_ctx);
4a1c0f26 8754
9f498cc5 8755 /*
cdd6c482
IM
8756 * Report the task dead after unscheduling the events so that we
8757 * won't get any samples after PERF_RECORD_EXIT. We can however still
8758 * get a few PERF_RECORD_READ events.
9f498cc5 8759 */
cdd6c482 8760 perf_event_task(child, child_ctx, 0);
a63eaf34 8761
66fff224
PZ
8762 /*
8763 * We can recurse on the same lock type through:
8764 *
cdd6c482
IM
8765 * __perf_event_exit_task()
8766 * sync_child_event()
a6fa941d
AV
8767 * put_event()
8768 * mutex_lock(&ctx->mutex)
66fff224
PZ
8769 *
8770 * But since its the parent context it won't be the same instance.
8771 */
a0507c84 8772 mutex_lock(&child_ctx->mutex);
a63eaf34 8773
ebf905fc 8774 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8775 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8776
a63eaf34
PM
8777 mutex_unlock(&child_ctx->mutex);
8778
8779 put_ctx(child_ctx);
9b51f66d
IM
8780}
8781
8dc85d54
PZ
8782/*
8783 * When a child task exits, feed back event values to parent events.
8784 */
8785void perf_event_exit_task(struct task_struct *child)
8786{
8882135b 8787 struct perf_event *event, *tmp;
8dc85d54
PZ
8788 int ctxn;
8789
8882135b
PZ
8790 mutex_lock(&child->perf_event_mutex);
8791 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8792 owner_entry) {
8793 list_del_init(&event->owner_entry);
8794
8795 /*
8796 * Ensure the list deletion is visible before we clear
8797 * the owner, closes a race against perf_release() where
8798 * we need to serialize on the owner->perf_event_mutex.
8799 */
8800 smp_wmb();
8801 event->owner = NULL;
8802 }
8803 mutex_unlock(&child->perf_event_mutex);
8804
8dc85d54
PZ
8805 for_each_task_context_nr(ctxn)
8806 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
8807
8808 /*
8809 * The perf_event_exit_task_context calls perf_event_task
8810 * with child's task_ctx, which generates EXIT events for
8811 * child contexts and sets child->perf_event_ctxp[] to NULL.
8812 * At this point we need to send EXIT events to cpu contexts.
8813 */
8814 perf_event_task(child, NULL, 0);
8dc85d54
PZ
8815}
8816
889ff015
FW
8817static void perf_free_event(struct perf_event *event,
8818 struct perf_event_context *ctx)
8819{
8820 struct perf_event *parent = event->parent;
8821
8822 if (WARN_ON_ONCE(!parent))
8823 return;
8824
8825 mutex_lock(&parent->child_mutex);
8826 list_del_init(&event->child_list);
8827 mutex_unlock(&parent->child_mutex);
8828
a6fa941d 8829 put_event(parent);
889ff015 8830
652884fe 8831 raw_spin_lock_irq(&ctx->lock);
8a49542c 8832 perf_group_detach(event);
889ff015 8833 list_del_event(event, ctx);
652884fe 8834 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8835 free_event(event);
8836}
8837
bbbee908 8838/*
652884fe 8839 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8840 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8841 *
8842 * Not all locks are strictly required, but take them anyway to be nice and
8843 * help out with the lockdep assertions.
bbbee908 8844 */
cdd6c482 8845void perf_event_free_task(struct task_struct *task)
bbbee908 8846{
8dc85d54 8847 struct perf_event_context *ctx;
cdd6c482 8848 struct perf_event *event, *tmp;
8dc85d54 8849 int ctxn;
bbbee908 8850
8dc85d54
PZ
8851 for_each_task_context_nr(ctxn) {
8852 ctx = task->perf_event_ctxp[ctxn];
8853 if (!ctx)
8854 continue;
bbbee908 8855
8dc85d54 8856 mutex_lock(&ctx->mutex);
bbbee908 8857again:
8dc85d54
PZ
8858 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8859 group_entry)
8860 perf_free_event(event, ctx);
bbbee908 8861
8dc85d54
PZ
8862 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8863 group_entry)
8864 perf_free_event(event, ctx);
bbbee908 8865
8dc85d54
PZ
8866 if (!list_empty(&ctx->pinned_groups) ||
8867 !list_empty(&ctx->flexible_groups))
8868 goto again;
bbbee908 8869
8dc85d54 8870 mutex_unlock(&ctx->mutex);
bbbee908 8871
8dc85d54
PZ
8872 put_ctx(ctx);
8873 }
889ff015
FW
8874}
8875
4e231c79
PZ
8876void perf_event_delayed_put(struct task_struct *task)
8877{
8878 int ctxn;
8879
8880 for_each_task_context_nr(ctxn)
8881 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8882}
8883
ffe8690c
KX
8884struct perf_event *perf_event_get(unsigned int fd)
8885{
8886 int err;
8887 struct fd f;
8888 struct perf_event *event;
8889
8890 err = perf_fget_light(fd, &f);
8891 if (err)
8892 return ERR_PTR(err);
8893
8894 event = f.file->private_data;
8895 atomic_long_inc(&event->refcount);
8896 fdput(f);
8897
8898 return event;
8899}
8900
8901const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8902{
8903 if (!event)
8904 return ERR_PTR(-EINVAL);
8905
8906 return &event->attr;
8907}
8908
97dee4f3
PZ
8909/*
8910 * inherit a event from parent task to child task:
8911 */
8912static struct perf_event *
8913inherit_event(struct perf_event *parent_event,
8914 struct task_struct *parent,
8915 struct perf_event_context *parent_ctx,
8916 struct task_struct *child,
8917 struct perf_event *group_leader,
8918 struct perf_event_context *child_ctx)
8919{
1929def9 8920 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8921 struct perf_event *child_event;
cee010ec 8922 unsigned long flags;
97dee4f3
PZ
8923
8924 /*
8925 * Instead of creating recursive hierarchies of events,
8926 * we link inherited events back to the original parent,
8927 * which has a filp for sure, which we use as the reference
8928 * count:
8929 */
8930 if (parent_event->parent)
8931 parent_event = parent_event->parent;
8932
8933 child_event = perf_event_alloc(&parent_event->attr,
8934 parent_event->cpu,
d580ff86 8935 child,
97dee4f3 8936 group_leader, parent_event,
79dff51e 8937 NULL, NULL, -1);
97dee4f3
PZ
8938 if (IS_ERR(child_event))
8939 return child_event;
a6fa941d 8940
fadfe7be
JO
8941 if (is_orphaned_event(parent_event) ||
8942 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8943 free_event(child_event);
8944 return NULL;
8945 }
8946
97dee4f3
PZ
8947 get_ctx(child_ctx);
8948
8949 /*
8950 * Make the child state follow the state of the parent event,
8951 * not its attr.disabled bit. We hold the parent's mutex,
8952 * so we won't race with perf_event_{en, dis}able_family.
8953 */
1929def9 8954 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8955 child_event->state = PERF_EVENT_STATE_INACTIVE;
8956 else
8957 child_event->state = PERF_EVENT_STATE_OFF;
8958
8959 if (parent_event->attr.freq) {
8960 u64 sample_period = parent_event->hw.sample_period;
8961 struct hw_perf_event *hwc = &child_event->hw;
8962
8963 hwc->sample_period = sample_period;
8964 hwc->last_period = sample_period;
8965
8966 local64_set(&hwc->period_left, sample_period);
8967 }
8968
8969 child_event->ctx = child_ctx;
8970 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8971 child_event->overflow_handler_context
8972 = parent_event->overflow_handler_context;
97dee4f3 8973
614b6780
TG
8974 /*
8975 * Precalculate sample_data sizes
8976 */
8977 perf_event__header_size(child_event);
6844c09d 8978 perf_event__id_header_size(child_event);
614b6780 8979
97dee4f3
PZ
8980 /*
8981 * Link it up in the child's context:
8982 */
cee010ec 8983 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8984 add_event_to_ctx(child_event, child_ctx);
cee010ec 8985 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8986
97dee4f3
PZ
8987 /*
8988 * Link this into the parent event's child list
8989 */
8990 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8991 mutex_lock(&parent_event->child_mutex);
8992 list_add_tail(&child_event->child_list, &parent_event->child_list);
8993 mutex_unlock(&parent_event->child_mutex);
8994
8995 return child_event;
8996}
8997
8998static int inherit_group(struct perf_event *parent_event,
8999 struct task_struct *parent,
9000 struct perf_event_context *parent_ctx,
9001 struct task_struct *child,
9002 struct perf_event_context *child_ctx)
9003{
9004 struct perf_event *leader;
9005 struct perf_event *sub;
9006 struct perf_event *child_ctr;
9007
9008 leader = inherit_event(parent_event, parent, parent_ctx,
9009 child, NULL, child_ctx);
9010 if (IS_ERR(leader))
9011 return PTR_ERR(leader);
9012 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9013 child_ctr = inherit_event(sub, parent, parent_ctx,
9014 child, leader, child_ctx);
9015 if (IS_ERR(child_ctr))
9016 return PTR_ERR(child_ctr);
9017 }
9018 return 0;
889ff015
FW
9019}
9020
9021static int
9022inherit_task_group(struct perf_event *event, struct task_struct *parent,
9023 struct perf_event_context *parent_ctx,
8dc85d54 9024 struct task_struct *child, int ctxn,
889ff015
FW
9025 int *inherited_all)
9026{
9027 int ret;
8dc85d54 9028 struct perf_event_context *child_ctx;
889ff015
FW
9029
9030 if (!event->attr.inherit) {
9031 *inherited_all = 0;
9032 return 0;
bbbee908
PZ
9033 }
9034
fe4b04fa 9035 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9036 if (!child_ctx) {
9037 /*
9038 * This is executed from the parent task context, so
9039 * inherit events that have been marked for cloning.
9040 * First allocate and initialize a context for the
9041 * child.
9042 */
bbbee908 9043
734df5ab 9044 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9045 if (!child_ctx)
9046 return -ENOMEM;
bbbee908 9047
8dc85d54 9048 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9049 }
9050
9051 ret = inherit_group(event, parent, parent_ctx,
9052 child, child_ctx);
9053
9054 if (ret)
9055 *inherited_all = 0;
9056
9057 return ret;
bbbee908
PZ
9058}
9059
9b51f66d 9060/*
cdd6c482 9061 * Initialize the perf_event context in task_struct
9b51f66d 9062 */
985c8dcb 9063static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9064{
889ff015 9065 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9066 struct perf_event_context *cloned_ctx;
9067 struct perf_event *event;
9b51f66d 9068 struct task_struct *parent = current;
564c2b21 9069 int inherited_all = 1;
dddd3379 9070 unsigned long flags;
6ab423e0 9071 int ret = 0;
9b51f66d 9072
8dc85d54 9073 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9074 return 0;
9075
ad3a37de 9076 /*
25346b93
PM
9077 * If the parent's context is a clone, pin it so it won't get
9078 * swapped under us.
ad3a37de 9079 */
8dc85d54 9080 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9081 if (!parent_ctx)
9082 return 0;
25346b93 9083
ad3a37de
PM
9084 /*
9085 * No need to check if parent_ctx != NULL here; since we saw
9086 * it non-NULL earlier, the only reason for it to become NULL
9087 * is if we exit, and since we're currently in the middle of
9088 * a fork we can't be exiting at the same time.
9089 */
ad3a37de 9090
9b51f66d
IM
9091 /*
9092 * Lock the parent list. No need to lock the child - not PID
9093 * hashed yet and not running, so nobody can access it.
9094 */
d859e29f 9095 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9096
9097 /*
9098 * We dont have to disable NMIs - we are only looking at
9099 * the list, not manipulating it:
9100 */
889ff015 9101 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9102 ret = inherit_task_group(event, parent, parent_ctx,
9103 child, ctxn, &inherited_all);
889ff015
FW
9104 if (ret)
9105 break;
9106 }
b93f7978 9107
dddd3379
TG
9108 /*
9109 * We can't hold ctx->lock when iterating the ->flexible_group list due
9110 * to allocations, but we need to prevent rotation because
9111 * rotate_ctx() will change the list from interrupt context.
9112 */
9113 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9114 parent_ctx->rotate_disable = 1;
9115 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9116
889ff015 9117 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9118 ret = inherit_task_group(event, parent, parent_ctx,
9119 child, ctxn, &inherited_all);
889ff015 9120 if (ret)
9b51f66d 9121 break;
564c2b21
PM
9122 }
9123
dddd3379
TG
9124 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9125 parent_ctx->rotate_disable = 0;
dddd3379 9126
8dc85d54 9127 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9128
05cbaa28 9129 if (child_ctx && inherited_all) {
564c2b21
PM
9130 /*
9131 * Mark the child context as a clone of the parent
9132 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9133 *
9134 * Note that if the parent is a clone, the holding of
9135 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9136 */
c5ed5145 9137 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9138 if (cloned_ctx) {
9139 child_ctx->parent_ctx = cloned_ctx;
25346b93 9140 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9141 } else {
9142 child_ctx->parent_ctx = parent_ctx;
9143 child_ctx->parent_gen = parent_ctx->generation;
9144 }
9145 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9146 }
9147
c5ed5145 9148 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9149 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9150
25346b93 9151 perf_unpin_context(parent_ctx);
fe4b04fa 9152 put_ctx(parent_ctx);
ad3a37de 9153
6ab423e0 9154 return ret;
9b51f66d
IM
9155}
9156
8dc85d54
PZ
9157/*
9158 * Initialize the perf_event context in task_struct
9159 */
9160int perf_event_init_task(struct task_struct *child)
9161{
9162 int ctxn, ret;
9163
8550d7cb
ON
9164 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9165 mutex_init(&child->perf_event_mutex);
9166 INIT_LIST_HEAD(&child->perf_event_list);
9167
8dc85d54
PZ
9168 for_each_task_context_nr(ctxn) {
9169 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9170 if (ret) {
9171 perf_event_free_task(child);
8dc85d54 9172 return ret;
6c72e350 9173 }
8dc85d54
PZ
9174 }
9175
9176 return 0;
9177}
9178
220b140b
PM
9179static void __init perf_event_init_all_cpus(void)
9180{
b28ab83c 9181 struct swevent_htable *swhash;
220b140b 9182 int cpu;
220b140b
PM
9183
9184 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9185 swhash = &per_cpu(swevent_htable, cpu);
9186 mutex_init(&swhash->hlist_mutex);
2fde4f94 9187 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9188 }
9189}
9190
0db0628d 9191static void perf_event_init_cpu(int cpu)
0793a61d 9192{
108b02cf 9193 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9194
b28ab83c 9195 mutex_lock(&swhash->hlist_mutex);
4536e4d1 9196 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9197 struct swevent_hlist *hlist;
9198
b28ab83c
PZ
9199 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9200 WARN_ON(!hlist);
9201 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9202 }
b28ab83c 9203 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9204}
9205
2965faa5 9206#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9207static void __perf_event_exit_context(void *__info)
0793a61d 9208{
226424ee 9209 struct remove_event re = { .detach_group = true };
108b02cf 9210 struct perf_event_context *ctx = __info;
0793a61d 9211
e3703f8c 9212 rcu_read_lock();
46ce0fe9
PZ
9213 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9214 __perf_remove_from_context(&re);
e3703f8c 9215 rcu_read_unlock();
0793a61d 9216}
108b02cf
PZ
9217
9218static void perf_event_exit_cpu_context(int cpu)
9219{
9220 struct perf_event_context *ctx;
9221 struct pmu *pmu;
9222 int idx;
9223
9224 idx = srcu_read_lock(&pmus_srcu);
9225 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9226 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9227
9228 mutex_lock(&ctx->mutex);
9229 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9230 mutex_unlock(&ctx->mutex);
9231 }
9232 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9233}
9234
cdd6c482 9235static void perf_event_exit_cpu(int cpu)
0793a61d 9236{
e3703f8c 9237 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9238}
9239#else
cdd6c482 9240static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9241#endif
9242
c277443c
PZ
9243static int
9244perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9245{
9246 int cpu;
9247
9248 for_each_online_cpu(cpu)
9249 perf_event_exit_cpu(cpu);
9250
9251 return NOTIFY_OK;
9252}
9253
9254/*
9255 * Run the perf reboot notifier at the very last possible moment so that
9256 * the generic watchdog code runs as long as possible.
9257 */
9258static struct notifier_block perf_reboot_notifier = {
9259 .notifier_call = perf_reboot,
9260 .priority = INT_MIN,
9261};
9262
0db0628d 9263static int
0793a61d
TG
9264perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9265{
9266 unsigned int cpu = (long)hcpu;
9267
4536e4d1 9268 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9269
9270 case CPU_UP_PREPARE:
5e11637e 9271 case CPU_DOWN_FAILED:
cdd6c482 9272 perf_event_init_cpu(cpu);
0793a61d
TG
9273 break;
9274
5e11637e 9275 case CPU_UP_CANCELED:
0793a61d 9276 case CPU_DOWN_PREPARE:
cdd6c482 9277 perf_event_exit_cpu(cpu);
0793a61d 9278 break;
0793a61d
TG
9279 default:
9280 break;
9281 }
9282
9283 return NOTIFY_OK;
9284}
9285
cdd6c482 9286void __init perf_event_init(void)
0793a61d 9287{
3c502e7a
JW
9288 int ret;
9289
2e80a82a
PZ
9290 idr_init(&pmu_idr);
9291
220b140b 9292 perf_event_init_all_cpus();
b0a873eb 9293 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9294 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9295 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9296 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9297 perf_tp_register();
9298 perf_cpu_notifier(perf_cpu_notify);
c277443c 9299 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9300
9301 ret = init_hw_breakpoint();
9302 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9303
9304 /* do not patch jump label more than once per second */
9305 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9306
9307 /*
9308 * Build time assertion that we keep the data_head at the intended
9309 * location. IOW, validation we got the __reserved[] size right.
9310 */
9311 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9312 != 1024);
0793a61d 9313}
abe43400 9314
fd979c01
CS
9315ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9316 char *page)
9317{
9318 struct perf_pmu_events_attr *pmu_attr =
9319 container_of(attr, struct perf_pmu_events_attr, attr);
9320
9321 if (pmu_attr->event_str)
9322 return sprintf(page, "%s\n", pmu_attr->event_str);
9323
9324 return 0;
9325}
9326
abe43400
PZ
9327static int __init perf_event_sysfs_init(void)
9328{
9329 struct pmu *pmu;
9330 int ret;
9331
9332 mutex_lock(&pmus_lock);
9333
9334 ret = bus_register(&pmu_bus);
9335 if (ret)
9336 goto unlock;
9337
9338 list_for_each_entry(pmu, &pmus, entry) {
9339 if (!pmu->name || pmu->type < 0)
9340 continue;
9341
9342 ret = pmu_dev_alloc(pmu);
9343 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9344 }
9345 pmu_bus_running = 1;
9346 ret = 0;
9347
9348unlock:
9349 mutex_unlock(&pmus_lock);
9350
9351 return ret;
9352}
9353device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9354
9355#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9356static struct cgroup_subsys_state *
9357perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9358{
9359 struct perf_cgroup *jc;
e5d1367f 9360
1b15d055 9361 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9362 if (!jc)
9363 return ERR_PTR(-ENOMEM);
9364
e5d1367f
SE
9365 jc->info = alloc_percpu(struct perf_cgroup_info);
9366 if (!jc->info) {
9367 kfree(jc);
9368 return ERR_PTR(-ENOMEM);
9369 }
9370
e5d1367f
SE
9371 return &jc->css;
9372}
9373
eb95419b 9374static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9375{
eb95419b
TH
9376 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9377
e5d1367f
SE
9378 free_percpu(jc->info);
9379 kfree(jc);
9380}
9381
9382static int __perf_cgroup_move(void *info)
9383{
9384 struct task_struct *task = info;
ddaaf4e2 9385 rcu_read_lock();
e5d1367f 9386 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9387 rcu_read_unlock();
e5d1367f
SE
9388 return 0;
9389}
9390
1f7dd3e5 9391static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9392{
bb9d97b6 9393 struct task_struct *task;
1f7dd3e5 9394 struct cgroup_subsys_state *css;
bb9d97b6 9395
1f7dd3e5 9396 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9397 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9398}
9399
073219e9 9400struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9401 .css_alloc = perf_cgroup_css_alloc,
9402 .css_free = perf_cgroup_css_free,
bb9d97b6 9403 .attach = perf_cgroup_attach,
e5d1367f
SE
9404};
9405#endif /* CONFIG_CGROUP_PERF */