x86/oprofile/nmi: Add missing hotplug FROZEN handling
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
272325c4
PZ
52typedef int (*remote_function_f)(void *);
53
fe4b04fa 54struct remote_function_call {
e7e7ee2e 55 struct task_struct *p;
272325c4 56 remote_function_f func;
e7e7ee2e
IM
57 void *info;
58 int ret;
fe4b04fa
PZ
59};
60
61static void remote_function(void *data)
62{
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
0da4cf3e
PZ
67 /* -EAGAIN */
68 if (task_cpu(p) != smp_processor_id())
69 return;
70
71 /*
72 * Now that we're on right CPU with IRQs disabled, we can test
73 * if we hit the right task without races.
74 */
75
76 tfc->ret = -ESRCH; /* No such (running) process */
77 if (p != current)
fe4b04fa
PZ
78 return;
79 }
80
81 tfc->ret = tfc->func(tfc->info);
82}
83
84/**
85 * task_function_call - call a function on the cpu on which a task runs
86 * @p: the task to evaluate
87 * @func: the function to be called
88 * @info: the function call argument
89 *
90 * Calls the function @func when the task is currently running. This might
91 * be on the current CPU, which just calls the function directly
92 *
93 * returns: @func return value, or
94 * -ESRCH - when the process isn't running
95 * -EAGAIN - when the process moved away
96 */
97static int
272325c4 98task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
99{
100 struct remote_function_call data = {
e7e7ee2e
IM
101 .p = p,
102 .func = func,
103 .info = info,
0da4cf3e 104 .ret = -EAGAIN,
fe4b04fa 105 };
0da4cf3e 106 int ret;
fe4b04fa 107
0da4cf3e
PZ
108 do {
109 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
110 if (!ret)
111 ret = data.ret;
112 } while (ret == -EAGAIN);
fe4b04fa 113
0da4cf3e 114 return ret;
fe4b04fa
PZ
115}
116
117/**
118 * cpu_function_call - call a function on the cpu
119 * @func: the function to be called
120 * @info: the function call argument
121 *
122 * Calls the function @func on the remote cpu.
123 *
124 * returns: @func return value or -ENXIO when the cpu is offline
125 */
272325c4 126static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
127{
128 struct remote_function_call data = {
e7e7ee2e
IM
129 .p = NULL,
130 .func = func,
131 .info = info,
132 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
133 };
134
135 smp_call_function_single(cpu, remote_function, &data, 1);
136
137 return data.ret;
138}
139
fae3fde6
PZ
140static inline struct perf_cpu_context *
141__get_cpu_context(struct perf_event_context *ctx)
142{
143 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
144}
145
146static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
147 struct perf_event_context *ctx)
0017960f 148{
fae3fde6
PZ
149 raw_spin_lock(&cpuctx->ctx.lock);
150 if (ctx)
151 raw_spin_lock(&ctx->lock);
152}
153
154static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
155 struct perf_event_context *ctx)
156{
157 if (ctx)
158 raw_spin_unlock(&ctx->lock);
159 raw_spin_unlock(&cpuctx->ctx.lock);
160}
161
63b6da39
PZ
162#define TASK_TOMBSTONE ((void *)-1L)
163
164static bool is_kernel_event(struct perf_event *event)
165{
f47c02c0 166 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
167}
168
39a43640
PZ
169/*
170 * On task ctx scheduling...
171 *
172 * When !ctx->nr_events a task context will not be scheduled. This means
173 * we can disable the scheduler hooks (for performance) without leaving
174 * pending task ctx state.
175 *
176 * This however results in two special cases:
177 *
178 * - removing the last event from a task ctx; this is relatively straight
179 * forward and is done in __perf_remove_from_context.
180 *
181 * - adding the first event to a task ctx; this is tricky because we cannot
182 * rely on ctx->is_active and therefore cannot use event_function_call().
183 * See perf_install_in_context().
184 *
39a43640
PZ
185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186 */
187
fae3fde6
PZ
188typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 struct perf_event_context *, void *);
190
191struct event_function_struct {
192 struct perf_event *event;
193 event_f func;
194 void *data;
195};
196
197static int event_function(void *info)
198{
199 struct event_function_struct *efs = info;
200 struct perf_event *event = efs->event;
0017960f 201 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 204 int ret = 0;
fae3fde6
PZ
205
206 WARN_ON_ONCE(!irqs_disabled());
207
63b6da39 208 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
209 /*
210 * Since we do the IPI call without holding ctx->lock things can have
211 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
212 */
213 if (ctx->task) {
63b6da39 214 if (ctx->task != current) {
0da4cf3e 215 ret = -ESRCH;
63b6da39
PZ
216 goto unlock;
217 }
fae3fde6 218
fae3fde6
PZ
219 /*
220 * We only use event_function_call() on established contexts,
221 * and event_function() is only ever called when active (or
222 * rather, we'll have bailed in task_function_call() or the
223 * above ctx->task != current test), therefore we must have
224 * ctx->is_active here.
225 */
226 WARN_ON_ONCE(!ctx->is_active);
227 /*
228 * And since we have ctx->is_active, cpuctx->task_ctx must
229 * match.
230 */
63b6da39
PZ
231 WARN_ON_ONCE(task_ctx != ctx);
232 } else {
233 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 234 }
63b6da39 235
fae3fde6 236 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 237unlock:
fae3fde6
PZ
238 perf_ctx_unlock(cpuctx, task_ctx);
239
63b6da39 240 return ret;
fae3fde6
PZ
241}
242
243static void event_function_local(struct perf_event *event, event_f func, void *data)
244{
245 struct event_function_struct efs = {
246 .event = event,
247 .func = func,
248 .data = data,
249 };
250
251 int ret = event_function(&efs);
252 WARN_ON_ONCE(ret);
253}
254
255static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
256{
257 struct perf_event_context *ctx = event->ctx;
63b6da39 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
259 struct event_function_struct efs = {
260 .event = event,
261 .func = func,
262 .data = data,
263 };
0017960f 264
c97f4736
PZ
265 if (!event->parent) {
266 /*
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
270 */
271 lockdep_assert_held(&ctx->mutex);
272 }
0017960f
PZ
273
274 if (!task) {
fae3fde6 275 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
276 return;
277 }
278
63b6da39
PZ
279 if (task == TASK_TOMBSTONE)
280 return;
281
a096309b 282again:
fae3fde6 283 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
284 return;
285
286 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
287 /*
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
290 */
291 task = ctx->task;
a096309b
PZ
292 if (task == TASK_TOMBSTONE) {
293 raw_spin_unlock_irq(&ctx->lock);
294 return;
0017960f 295 }
a096309b
PZ
296 if (ctx->is_active) {
297 raw_spin_unlock_irq(&ctx->lock);
298 goto again;
299 }
300 func(event, NULL, ctx, data);
0017960f
PZ
301 raw_spin_unlock_irq(&ctx->lock);
302}
303
e5d1367f
SE
304#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
306 PERF_FLAG_PID_CGROUP |\
307 PERF_FLAG_FD_CLOEXEC)
e5d1367f 308
bce38cd5
SE
309/*
310 * branch priv levels that need permission checks
311 */
312#define PERF_SAMPLE_BRANCH_PERM_PLM \
313 (PERF_SAMPLE_BRANCH_KERNEL |\
314 PERF_SAMPLE_BRANCH_HV)
315
0b3fcf17
SE
316enum event_type_t {
317 EVENT_FLEXIBLE = 0x1,
318 EVENT_PINNED = 0x2,
3cbaa590 319 EVENT_TIME = 0x4,
0b3fcf17
SE
320 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
321};
322
e5d1367f
SE
323/*
324 * perf_sched_events : >0 events exist
325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
326 */
9107c89e
PZ
327
328static void perf_sched_delayed(struct work_struct *work);
329DEFINE_STATIC_KEY_FALSE(perf_sched_events);
330static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
331static DEFINE_MUTEX(perf_sched_mutex);
332static atomic_t perf_sched_count;
333
e5d1367f 334static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 335static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 336
cdd6c482
IM
337static atomic_t nr_mmap_events __read_mostly;
338static atomic_t nr_comm_events __read_mostly;
339static atomic_t nr_task_events __read_mostly;
948b26b6 340static atomic_t nr_freq_events __read_mostly;
45ac1403 341static atomic_t nr_switch_events __read_mostly;
9ee318a7 342
108b02cf
PZ
343static LIST_HEAD(pmus);
344static DEFINE_MUTEX(pmus_lock);
345static struct srcu_struct pmus_srcu;
346
0764771d 347/*
cdd6c482 348 * perf event paranoia level:
0fbdea19
IM
349 * -1 - not paranoid at all
350 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 351 * 1 - disallow cpu events for unpriv
0fbdea19 352 * 2 - disallow kernel profiling for unpriv
0764771d 353 */
cdd6c482 354int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 355
20443384
FW
356/* Minimum for 512 kiB + 1 user control page */
357int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
358
359/*
cdd6c482 360 * max perf event sample rate
df58ab24 361 */
14c63f17
DH
362#define DEFAULT_MAX_SAMPLE_RATE 100000
363#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
364#define DEFAULT_CPU_TIME_MAX_PERCENT 25
365
366int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
367
368static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
369static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
370
d9494cb4
PZ
371static int perf_sample_allowed_ns __read_mostly =
372 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 373
18ab2cd3 374static void update_perf_cpu_limits(void)
14c63f17
DH
375{
376 u64 tmp = perf_sample_period_ns;
377
378 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 379 do_div(tmp, 100);
d9494cb4 380 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 381}
163ec435 382
9e630205
SE
383static int perf_rotate_context(struct perf_cpu_context *cpuctx);
384
163ec435
PZ
385int perf_proc_update_handler(struct ctl_table *table, int write,
386 void __user *buffer, size_t *lenp,
387 loff_t *ppos)
388{
723478c8 389 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
390
391 if (ret || !write)
392 return ret;
393
394 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
395 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
396 update_perf_cpu_limits();
397
398 return 0;
399}
400
401int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
402
403int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
404 void __user *buffer, size_t *lenp,
405 loff_t *ppos)
406{
407 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
408
409 if (ret || !write)
410 return ret;
411
412 update_perf_cpu_limits();
163ec435
PZ
413
414 return 0;
415}
1ccd1549 416
14c63f17
DH
417/*
418 * perf samples are done in some very critical code paths (NMIs).
419 * If they take too much CPU time, the system can lock up and not
420 * get any real work done. This will drop the sample rate when
421 * we detect that events are taking too long.
422 */
423#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 424static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 425
6a02ad66 426static void perf_duration_warn(struct irq_work *w)
14c63f17 427{
6a02ad66 428 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 429 u64 avg_local_sample_len;
e5302920 430 u64 local_samples_len;
6a02ad66 431
4a32fea9 432 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
433 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
434
435 printk_ratelimited(KERN_WARNING
436 "perf interrupt took too long (%lld > %lld), lowering "
437 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 438 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
439 sysctl_perf_event_sample_rate);
440}
441
442static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
443
444void perf_sample_event_took(u64 sample_len_ns)
445{
d9494cb4 446 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
447 u64 avg_local_sample_len;
448 u64 local_samples_len;
14c63f17 449
d9494cb4 450 if (allowed_ns == 0)
14c63f17
DH
451 return;
452
453 /* decay the counter by 1 average sample */
4a32fea9 454 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
455 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
456 local_samples_len += sample_len_ns;
4a32fea9 457 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
458
459 /*
460 * note: this will be biased artifically low until we have
461 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
462 * from having to maintain a count.
463 */
464 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
465
d9494cb4 466 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
467 return;
468
469 if (max_samples_per_tick <= 1)
470 return;
471
472 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
473 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
474 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
475
14c63f17 476 update_perf_cpu_limits();
6a02ad66 477
cd578abb
PZ
478 if (!irq_work_queue(&perf_duration_work)) {
479 early_printk("perf interrupt took too long (%lld > %lld), lowering "
480 "kernel.perf_event_max_sample_rate to %d\n",
481 avg_local_sample_len, allowed_ns >> 1,
482 sysctl_perf_event_sample_rate);
483 }
14c63f17
DH
484}
485
cdd6c482 486static atomic64_t perf_event_id;
a96bbc16 487
0b3fcf17
SE
488static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
489 enum event_type_t event_type);
490
491static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
492 enum event_type_t event_type,
493 struct task_struct *task);
494
495static void update_context_time(struct perf_event_context *ctx);
496static u64 perf_event_time(struct perf_event *event);
0b3fcf17 497
cdd6c482 498void __weak perf_event_print_debug(void) { }
0793a61d 499
84c79910 500extern __weak const char *perf_pmu_name(void)
0793a61d 501{
84c79910 502 return "pmu";
0793a61d
TG
503}
504
0b3fcf17
SE
505static inline u64 perf_clock(void)
506{
507 return local_clock();
508}
509
34f43927
PZ
510static inline u64 perf_event_clock(struct perf_event *event)
511{
512 return event->clock();
513}
514
e5d1367f
SE
515#ifdef CONFIG_CGROUP_PERF
516
e5d1367f
SE
517static inline bool
518perf_cgroup_match(struct perf_event *event)
519{
520 struct perf_event_context *ctx = event->ctx;
521 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
522
ef824fa1
TH
523 /* @event doesn't care about cgroup */
524 if (!event->cgrp)
525 return true;
526
527 /* wants specific cgroup scope but @cpuctx isn't associated with any */
528 if (!cpuctx->cgrp)
529 return false;
530
531 /*
532 * Cgroup scoping is recursive. An event enabled for a cgroup is
533 * also enabled for all its descendant cgroups. If @cpuctx's
534 * cgroup is a descendant of @event's (the test covers identity
535 * case), it's a match.
536 */
537 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
538 event->cgrp->css.cgroup);
e5d1367f
SE
539}
540
e5d1367f
SE
541static inline void perf_detach_cgroup(struct perf_event *event)
542{
4e2ba650 543 css_put(&event->cgrp->css);
e5d1367f
SE
544 event->cgrp = NULL;
545}
546
547static inline int is_cgroup_event(struct perf_event *event)
548{
549 return event->cgrp != NULL;
550}
551
552static inline u64 perf_cgroup_event_time(struct perf_event *event)
553{
554 struct perf_cgroup_info *t;
555
556 t = per_cpu_ptr(event->cgrp->info, event->cpu);
557 return t->time;
558}
559
560static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
561{
562 struct perf_cgroup_info *info;
563 u64 now;
564
565 now = perf_clock();
566
567 info = this_cpu_ptr(cgrp->info);
568
569 info->time += now - info->timestamp;
570 info->timestamp = now;
571}
572
573static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
574{
575 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
576 if (cgrp_out)
577 __update_cgrp_time(cgrp_out);
578}
579
580static inline void update_cgrp_time_from_event(struct perf_event *event)
581{
3f7cce3c
SE
582 struct perf_cgroup *cgrp;
583
e5d1367f 584 /*
3f7cce3c
SE
585 * ensure we access cgroup data only when needed and
586 * when we know the cgroup is pinned (css_get)
e5d1367f 587 */
3f7cce3c 588 if (!is_cgroup_event(event))
e5d1367f
SE
589 return;
590
614e4c4e 591 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
592 /*
593 * Do not update time when cgroup is not active
594 */
595 if (cgrp == event->cgrp)
596 __update_cgrp_time(event->cgrp);
e5d1367f
SE
597}
598
599static inline void
3f7cce3c
SE
600perf_cgroup_set_timestamp(struct task_struct *task,
601 struct perf_event_context *ctx)
e5d1367f
SE
602{
603 struct perf_cgroup *cgrp;
604 struct perf_cgroup_info *info;
605
3f7cce3c
SE
606 /*
607 * ctx->lock held by caller
608 * ensure we do not access cgroup data
609 * unless we have the cgroup pinned (css_get)
610 */
611 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
612 return;
613
614e4c4e 614 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 615 info = this_cpu_ptr(cgrp->info);
3f7cce3c 616 info->timestamp = ctx->timestamp;
e5d1367f
SE
617}
618
619#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
620#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
621
622/*
623 * reschedule events based on the cgroup constraint of task.
624 *
625 * mode SWOUT : schedule out everything
626 * mode SWIN : schedule in based on cgroup for next
627 */
18ab2cd3 628static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
629{
630 struct perf_cpu_context *cpuctx;
631 struct pmu *pmu;
632 unsigned long flags;
633
634 /*
635 * disable interrupts to avoid geting nr_cgroup
636 * changes via __perf_event_disable(). Also
637 * avoids preemption.
638 */
639 local_irq_save(flags);
640
641 /*
642 * we reschedule only in the presence of cgroup
643 * constrained events.
644 */
e5d1367f
SE
645
646 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 647 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
648 if (cpuctx->unique_pmu != pmu)
649 continue; /* ensure we process each cpuctx once */
e5d1367f 650
e5d1367f
SE
651 /*
652 * perf_cgroup_events says at least one
653 * context on this CPU has cgroup events.
654 *
655 * ctx->nr_cgroups reports the number of cgroup
656 * events for a context.
657 */
658 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
659 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
660 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
661
662 if (mode & PERF_CGROUP_SWOUT) {
663 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
664 /*
665 * must not be done before ctxswout due
666 * to event_filter_match() in event_sched_out()
667 */
668 cpuctx->cgrp = NULL;
669 }
670
671 if (mode & PERF_CGROUP_SWIN) {
e566b76e 672 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
673 /*
674 * set cgrp before ctxsw in to allow
675 * event_filter_match() to not have to pass
676 * task around
614e4c4e
SE
677 * we pass the cpuctx->ctx to perf_cgroup_from_task()
678 * because cgorup events are only per-cpu
e5d1367f 679 */
614e4c4e 680 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
681 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
682 }
facc4307
PZ
683 perf_pmu_enable(cpuctx->ctx.pmu);
684 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 685 }
e5d1367f
SE
686 }
687
e5d1367f
SE
688 local_irq_restore(flags);
689}
690
a8d757ef
SE
691static inline void perf_cgroup_sched_out(struct task_struct *task,
692 struct task_struct *next)
e5d1367f 693{
a8d757ef
SE
694 struct perf_cgroup *cgrp1;
695 struct perf_cgroup *cgrp2 = NULL;
696
ddaaf4e2 697 rcu_read_lock();
a8d757ef
SE
698 /*
699 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
700 * we do not need to pass the ctx here because we know
701 * we are holding the rcu lock
a8d757ef 702 */
614e4c4e 703 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 704 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
705
706 /*
707 * only schedule out current cgroup events if we know
708 * that we are switching to a different cgroup. Otherwise,
709 * do no touch the cgroup events.
710 */
711 if (cgrp1 != cgrp2)
712 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
713
714 rcu_read_unlock();
e5d1367f
SE
715}
716
a8d757ef
SE
717static inline void perf_cgroup_sched_in(struct task_struct *prev,
718 struct task_struct *task)
e5d1367f 719{
a8d757ef
SE
720 struct perf_cgroup *cgrp1;
721 struct perf_cgroup *cgrp2 = NULL;
722
ddaaf4e2 723 rcu_read_lock();
a8d757ef
SE
724 /*
725 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
726 * we do not need to pass the ctx here because we know
727 * we are holding the rcu lock
a8d757ef 728 */
614e4c4e 729 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 730 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
731
732 /*
733 * only need to schedule in cgroup events if we are changing
734 * cgroup during ctxsw. Cgroup events were not scheduled
735 * out of ctxsw out if that was not the case.
736 */
737 if (cgrp1 != cgrp2)
738 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
739
740 rcu_read_unlock();
e5d1367f
SE
741}
742
743static inline int perf_cgroup_connect(int fd, struct perf_event *event,
744 struct perf_event_attr *attr,
745 struct perf_event *group_leader)
746{
747 struct perf_cgroup *cgrp;
748 struct cgroup_subsys_state *css;
2903ff01
AV
749 struct fd f = fdget(fd);
750 int ret = 0;
e5d1367f 751
2903ff01 752 if (!f.file)
e5d1367f
SE
753 return -EBADF;
754
b583043e 755 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 756 &perf_event_cgrp_subsys);
3db272c0
LZ
757 if (IS_ERR(css)) {
758 ret = PTR_ERR(css);
759 goto out;
760 }
e5d1367f
SE
761
762 cgrp = container_of(css, struct perf_cgroup, css);
763 event->cgrp = cgrp;
764
765 /*
766 * all events in a group must monitor
767 * the same cgroup because a task belongs
768 * to only one perf cgroup at a time
769 */
770 if (group_leader && group_leader->cgrp != cgrp) {
771 perf_detach_cgroup(event);
772 ret = -EINVAL;
e5d1367f 773 }
3db272c0 774out:
2903ff01 775 fdput(f);
e5d1367f
SE
776 return ret;
777}
778
779static inline void
780perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
781{
782 struct perf_cgroup_info *t;
783 t = per_cpu_ptr(event->cgrp->info, event->cpu);
784 event->shadow_ctx_time = now - t->timestamp;
785}
786
787static inline void
788perf_cgroup_defer_enabled(struct perf_event *event)
789{
790 /*
791 * when the current task's perf cgroup does not match
792 * the event's, we need to remember to call the
793 * perf_mark_enable() function the first time a task with
794 * a matching perf cgroup is scheduled in.
795 */
796 if (is_cgroup_event(event) && !perf_cgroup_match(event))
797 event->cgrp_defer_enabled = 1;
798}
799
800static inline void
801perf_cgroup_mark_enabled(struct perf_event *event,
802 struct perf_event_context *ctx)
803{
804 struct perf_event *sub;
805 u64 tstamp = perf_event_time(event);
806
807 if (!event->cgrp_defer_enabled)
808 return;
809
810 event->cgrp_defer_enabled = 0;
811
812 event->tstamp_enabled = tstamp - event->total_time_enabled;
813 list_for_each_entry(sub, &event->sibling_list, group_entry) {
814 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
815 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
816 sub->cgrp_defer_enabled = 0;
817 }
818 }
819}
820#else /* !CONFIG_CGROUP_PERF */
821
822static inline bool
823perf_cgroup_match(struct perf_event *event)
824{
825 return true;
826}
827
828static inline void perf_detach_cgroup(struct perf_event *event)
829{}
830
831static inline int is_cgroup_event(struct perf_event *event)
832{
833 return 0;
834}
835
836static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
837{
838 return 0;
839}
840
841static inline void update_cgrp_time_from_event(struct perf_event *event)
842{
843}
844
845static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
846{
847}
848
a8d757ef
SE
849static inline void perf_cgroup_sched_out(struct task_struct *task,
850 struct task_struct *next)
e5d1367f
SE
851{
852}
853
a8d757ef
SE
854static inline void perf_cgroup_sched_in(struct task_struct *prev,
855 struct task_struct *task)
e5d1367f
SE
856{
857}
858
859static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
860 struct perf_event_attr *attr,
861 struct perf_event *group_leader)
862{
863 return -EINVAL;
864}
865
866static inline void
3f7cce3c
SE
867perf_cgroup_set_timestamp(struct task_struct *task,
868 struct perf_event_context *ctx)
e5d1367f
SE
869{
870}
871
872void
873perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
874{
875}
876
877static inline void
878perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
879{
880}
881
882static inline u64 perf_cgroup_event_time(struct perf_event *event)
883{
884 return 0;
885}
886
887static inline void
888perf_cgroup_defer_enabled(struct perf_event *event)
889{
890}
891
892static inline void
893perf_cgroup_mark_enabled(struct perf_event *event,
894 struct perf_event_context *ctx)
895{
896}
897#endif
898
9e630205
SE
899/*
900 * set default to be dependent on timer tick just
901 * like original code
902 */
903#define PERF_CPU_HRTIMER (1000 / HZ)
904/*
905 * function must be called with interrupts disbled
906 */
272325c4 907static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
908{
909 struct perf_cpu_context *cpuctx;
9e630205
SE
910 int rotations = 0;
911
912 WARN_ON(!irqs_disabled());
913
914 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
915 rotations = perf_rotate_context(cpuctx);
916
4cfafd30
PZ
917 raw_spin_lock(&cpuctx->hrtimer_lock);
918 if (rotations)
9e630205 919 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
920 else
921 cpuctx->hrtimer_active = 0;
922 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 923
4cfafd30 924 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
925}
926
272325c4 927static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 928{
272325c4 929 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 930 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 931 u64 interval;
9e630205
SE
932
933 /* no multiplexing needed for SW PMU */
934 if (pmu->task_ctx_nr == perf_sw_context)
935 return;
936
62b85639
SE
937 /*
938 * check default is sane, if not set then force to
939 * default interval (1/tick)
940 */
272325c4
PZ
941 interval = pmu->hrtimer_interval_ms;
942 if (interval < 1)
943 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 944
272325c4 945 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 946
4cfafd30
PZ
947 raw_spin_lock_init(&cpuctx->hrtimer_lock);
948 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 949 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
950}
951
272325c4 952static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 953{
272325c4 954 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 955 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 956 unsigned long flags;
9e630205
SE
957
958 /* not for SW PMU */
959 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 960 return 0;
9e630205 961
4cfafd30
PZ
962 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
963 if (!cpuctx->hrtimer_active) {
964 cpuctx->hrtimer_active = 1;
965 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
966 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
967 }
968 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 969
272325c4 970 return 0;
9e630205
SE
971}
972
33696fc0 973void perf_pmu_disable(struct pmu *pmu)
9e35ad38 974{
33696fc0
PZ
975 int *count = this_cpu_ptr(pmu->pmu_disable_count);
976 if (!(*count)++)
977 pmu->pmu_disable(pmu);
9e35ad38 978}
9e35ad38 979
33696fc0 980void perf_pmu_enable(struct pmu *pmu)
9e35ad38 981{
33696fc0
PZ
982 int *count = this_cpu_ptr(pmu->pmu_disable_count);
983 if (!--(*count))
984 pmu->pmu_enable(pmu);
9e35ad38 985}
9e35ad38 986
2fde4f94 987static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
988
989/*
2fde4f94
MR
990 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
991 * perf_event_task_tick() are fully serialized because they're strictly cpu
992 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
993 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 994 */
2fde4f94 995static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 996{
2fde4f94 997 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 998
e9d2b064 999 WARN_ON(!irqs_disabled());
b5ab4cd5 1000
2fde4f94
MR
1001 WARN_ON(!list_empty(&ctx->active_ctx_list));
1002
1003 list_add(&ctx->active_ctx_list, head);
1004}
1005
1006static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1007{
1008 WARN_ON(!irqs_disabled());
1009
1010 WARN_ON(list_empty(&ctx->active_ctx_list));
1011
1012 list_del_init(&ctx->active_ctx_list);
9e35ad38 1013}
9e35ad38 1014
cdd6c482 1015static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1016{
e5289d4a 1017 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1018}
1019
4af57ef2
YZ
1020static void free_ctx(struct rcu_head *head)
1021{
1022 struct perf_event_context *ctx;
1023
1024 ctx = container_of(head, struct perf_event_context, rcu_head);
1025 kfree(ctx->task_ctx_data);
1026 kfree(ctx);
1027}
1028
cdd6c482 1029static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1030{
564c2b21
PM
1031 if (atomic_dec_and_test(&ctx->refcount)) {
1032 if (ctx->parent_ctx)
1033 put_ctx(ctx->parent_ctx);
63b6da39 1034 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1035 put_task_struct(ctx->task);
4af57ef2 1036 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1037 }
a63eaf34
PM
1038}
1039
f63a8daa
PZ
1040/*
1041 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1042 * perf_pmu_migrate_context() we need some magic.
1043 *
1044 * Those places that change perf_event::ctx will hold both
1045 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1046 *
8b10c5e2
PZ
1047 * Lock ordering is by mutex address. There are two other sites where
1048 * perf_event_context::mutex nests and those are:
1049 *
1050 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1051 * perf_event_exit_event()
1052 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1053 *
1054 * - perf_event_init_context() [ parent, 0 ]
1055 * inherit_task_group()
1056 * inherit_group()
1057 * inherit_event()
1058 * perf_event_alloc()
1059 * perf_init_event()
1060 * perf_try_init_event() [ child , 1 ]
1061 *
1062 * While it appears there is an obvious deadlock here -- the parent and child
1063 * nesting levels are inverted between the two. This is in fact safe because
1064 * life-time rules separate them. That is an exiting task cannot fork, and a
1065 * spawning task cannot (yet) exit.
1066 *
1067 * But remember that that these are parent<->child context relations, and
1068 * migration does not affect children, therefore these two orderings should not
1069 * interact.
f63a8daa
PZ
1070 *
1071 * The change in perf_event::ctx does not affect children (as claimed above)
1072 * because the sys_perf_event_open() case will install a new event and break
1073 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1074 * concerned with cpuctx and that doesn't have children.
1075 *
1076 * The places that change perf_event::ctx will issue:
1077 *
1078 * perf_remove_from_context();
1079 * synchronize_rcu();
1080 * perf_install_in_context();
1081 *
1082 * to affect the change. The remove_from_context() + synchronize_rcu() should
1083 * quiesce the event, after which we can install it in the new location. This
1084 * means that only external vectors (perf_fops, prctl) can perturb the event
1085 * while in transit. Therefore all such accessors should also acquire
1086 * perf_event_context::mutex to serialize against this.
1087 *
1088 * However; because event->ctx can change while we're waiting to acquire
1089 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1090 * function.
1091 *
1092 * Lock order:
1093 * task_struct::perf_event_mutex
1094 * perf_event_context::mutex
f63a8daa 1095 * perf_event::child_mutex;
07c4a776 1096 * perf_event_context::lock
f63a8daa
PZ
1097 * perf_event::mmap_mutex
1098 * mmap_sem
1099 */
a83fe28e
PZ
1100static struct perf_event_context *
1101perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1102{
1103 struct perf_event_context *ctx;
1104
1105again:
1106 rcu_read_lock();
1107 ctx = ACCESS_ONCE(event->ctx);
1108 if (!atomic_inc_not_zero(&ctx->refcount)) {
1109 rcu_read_unlock();
1110 goto again;
1111 }
1112 rcu_read_unlock();
1113
a83fe28e 1114 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1115 if (event->ctx != ctx) {
1116 mutex_unlock(&ctx->mutex);
1117 put_ctx(ctx);
1118 goto again;
1119 }
1120
1121 return ctx;
1122}
1123
a83fe28e
PZ
1124static inline struct perf_event_context *
1125perf_event_ctx_lock(struct perf_event *event)
1126{
1127 return perf_event_ctx_lock_nested(event, 0);
1128}
1129
f63a8daa
PZ
1130static void perf_event_ctx_unlock(struct perf_event *event,
1131 struct perf_event_context *ctx)
1132{
1133 mutex_unlock(&ctx->mutex);
1134 put_ctx(ctx);
1135}
1136
211de6eb
PZ
1137/*
1138 * This must be done under the ctx->lock, such as to serialize against
1139 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1140 * calling scheduler related locks and ctx->lock nests inside those.
1141 */
1142static __must_check struct perf_event_context *
1143unclone_ctx(struct perf_event_context *ctx)
71a851b4 1144{
211de6eb
PZ
1145 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1146
1147 lockdep_assert_held(&ctx->lock);
1148
1149 if (parent_ctx)
71a851b4 1150 ctx->parent_ctx = NULL;
5a3126d4 1151 ctx->generation++;
211de6eb
PZ
1152
1153 return parent_ctx;
71a851b4
PZ
1154}
1155
6844c09d
ACM
1156static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1157{
1158 /*
1159 * only top level events have the pid namespace they were created in
1160 */
1161 if (event->parent)
1162 event = event->parent;
1163
1164 return task_tgid_nr_ns(p, event->ns);
1165}
1166
1167static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1168{
1169 /*
1170 * only top level events have the pid namespace they were created in
1171 */
1172 if (event->parent)
1173 event = event->parent;
1174
1175 return task_pid_nr_ns(p, event->ns);
1176}
1177
7f453c24 1178/*
cdd6c482 1179 * If we inherit events we want to return the parent event id
7f453c24
PZ
1180 * to userspace.
1181 */
cdd6c482 1182static u64 primary_event_id(struct perf_event *event)
7f453c24 1183{
cdd6c482 1184 u64 id = event->id;
7f453c24 1185
cdd6c482
IM
1186 if (event->parent)
1187 id = event->parent->id;
7f453c24
PZ
1188
1189 return id;
1190}
1191
25346b93 1192/*
cdd6c482 1193 * Get the perf_event_context for a task and lock it.
63b6da39 1194 *
25346b93
PM
1195 * This has to cope with with the fact that until it is locked,
1196 * the context could get moved to another task.
1197 */
cdd6c482 1198static struct perf_event_context *
8dc85d54 1199perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1200{
cdd6c482 1201 struct perf_event_context *ctx;
25346b93 1202
9ed6060d 1203retry:
058ebd0e
PZ
1204 /*
1205 * One of the few rules of preemptible RCU is that one cannot do
1206 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1207 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1208 * rcu_read_unlock_special().
1209 *
1210 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1211 * side critical section has interrupts disabled.
058ebd0e 1212 */
2fd59077 1213 local_irq_save(*flags);
058ebd0e 1214 rcu_read_lock();
8dc85d54 1215 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1216 if (ctx) {
1217 /*
1218 * If this context is a clone of another, it might
1219 * get swapped for another underneath us by
cdd6c482 1220 * perf_event_task_sched_out, though the
25346b93
PM
1221 * rcu_read_lock() protects us from any context
1222 * getting freed. Lock the context and check if it
1223 * got swapped before we could get the lock, and retry
1224 * if so. If we locked the right context, then it
1225 * can't get swapped on us any more.
1226 */
2fd59077 1227 raw_spin_lock(&ctx->lock);
8dc85d54 1228 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1229 raw_spin_unlock(&ctx->lock);
058ebd0e 1230 rcu_read_unlock();
2fd59077 1231 local_irq_restore(*flags);
25346b93
PM
1232 goto retry;
1233 }
b49a9e7e 1234
63b6da39
PZ
1235 if (ctx->task == TASK_TOMBSTONE ||
1236 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1237 raw_spin_unlock(&ctx->lock);
b49a9e7e 1238 ctx = NULL;
828b6f0e
PZ
1239 } else {
1240 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1241 }
25346b93
PM
1242 }
1243 rcu_read_unlock();
2fd59077
PM
1244 if (!ctx)
1245 local_irq_restore(*flags);
25346b93
PM
1246 return ctx;
1247}
1248
1249/*
1250 * Get the context for a task and increment its pin_count so it
1251 * can't get swapped to another task. This also increments its
1252 * reference count so that the context can't get freed.
1253 */
8dc85d54
PZ
1254static struct perf_event_context *
1255perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1256{
cdd6c482 1257 struct perf_event_context *ctx;
25346b93
PM
1258 unsigned long flags;
1259
8dc85d54 1260 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1261 if (ctx) {
1262 ++ctx->pin_count;
e625cce1 1263 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1264 }
1265 return ctx;
1266}
1267
cdd6c482 1268static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1269{
1270 unsigned long flags;
1271
e625cce1 1272 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1273 --ctx->pin_count;
e625cce1 1274 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1275}
1276
f67218c3
PZ
1277/*
1278 * Update the record of the current time in a context.
1279 */
1280static void update_context_time(struct perf_event_context *ctx)
1281{
1282 u64 now = perf_clock();
1283
1284 ctx->time += now - ctx->timestamp;
1285 ctx->timestamp = now;
1286}
1287
4158755d
SE
1288static u64 perf_event_time(struct perf_event *event)
1289{
1290 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1291
1292 if (is_cgroup_event(event))
1293 return perf_cgroup_event_time(event);
1294
4158755d
SE
1295 return ctx ? ctx->time : 0;
1296}
1297
f67218c3
PZ
1298/*
1299 * Update the total_time_enabled and total_time_running fields for a event.
1300 */
1301static void update_event_times(struct perf_event *event)
1302{
1303 struct perf_event_context *ctx = event->ctx;
1304 u64 run_end;
1305
3cbaa590
PZ
1306 lockdep_assert_held(&ctx->lock);
1307
f67218c3
PZ
1308 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1309 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1310 return;
3cbaa590 1311
e5d1367f
SE
1312 /*
1313 * in cgroup mode, time_enabled represents
1314 * the time the event was enabled AND active
1315 * tasks were in the monitored cgroup. This is
1316 * independent of the activity of the context as
1317 * there may be a mix of cgroup and non-cgroup events.
1318 *
1319 * That is why we treat cgroup events differently
1320 * here.
1321 */
1322 if (is_cgroup_event(event))
46cd6a7f 1323 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1324 else if (ctx->is_active)
1325 run_end = ctx->time;
acd1d7c1
PZ
1326 else
1327 run_end = event->tstamp_stopped;
1328
1329 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1330
1331 if (event->state == PERF_EVENT_STATE_INACTIVE)
1332 run_end = event->tstamp_stopped;
1333 else
4158755d 1334 run_end = perf_event_time(event);
f67218c3
PZ
1335
1336 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1337
f67218c3
PZ
1338}
1339
96c21a46
PZ
1340/*
1341 * Update total_time_enabled and total_time_running for all events in a group.
1342 */
1343static void update_group_times(struct perf_event *leader)
1344{
1345 struct perf_event *event;
1346
1347 update_event_times(leader);
1348 list_for_each_entry(event, &leader->sibling_list, group_entry)
1349 update_event_times(event);
1350}
1351
889ff015
FW
1352static struct list_head *
1353ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1354{
1355 if (event->attr.pinned)
1356 return &ctx->pinned_groups;
1357 else
1358 return &ctx->flexible_groups;
1359}
1360
fccc714b 1361/*
cdd6c482 1362 * Add a event from the lists for its context.
fccc714b
PZ
1363 * Must be called with ctx->mutex and ctx->lock held.
1364 */
04289bb9 1365static void
cdd6c482 1366list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1367{
c994d613
PZ
1368 lockdep_assert_held(&ctx->lock);
1369
8a49542c
PZ
1370 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1371 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1372
1373 /*
8a49542c
PZ
1374 * If we're a stand alone event or group leader, we go to the context
1375 * list, group events are kept attached to the group so that
1376 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1377 */
8a49542c 1378 if (event->group_leader == event) {
889ff015
FW
1379 struct list_head *list;
1380
d6f962b5
FW
1381 if (is_software_event(event))
1382 event->group_flags |= PERF_GROUP_SOFTWARE;
1383
889ff015
FW
1384 list = ctx_group_list(event, ctx);
1385 list_add_tail(&event->group_entry, list);
5c148194 1386 }
592903cd 1387
08309379 1388 if (is_cgroup_event(event))
e5d1367f 1389 ctx->nr_cgroups++;
e5d1367f 1390
cdd6c482
IM
1391 list_add_rcu(&event->event_entry, &ctx->event_list);
1392 ctx->nr_events++;
1393 if (event->attr.inherit_stat)
bfbd3381 1394 ctx->nr_stat++;
5a3126d4
PZ
1395
1396 ctx->generation++;
04289bb9
IM
1397}
1398
0231bb53
JO
1399/*
1400 * Initialize event state based on the perf_event_attr::disabled.
1401 */
1402static inline void perf_event__state_init(struct perf_event *event)
1403{
1404 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1405 PERF_EVENT_STATE_INACTIVE;
1406}
1407
a723968c 1408static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1409{
1410 int entry = sizeof(u64); /* value */
1411 int size = 0;
1412 int nr = 1;
1413
1414 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1415 size += sizeof(u64);
1416
1417 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1418 size += sizeof(u64);
1419
1420 if (event->attr.read_format & PERF_FORMAT_ID)
1421 entry += sizeof(u64);
1422
1423 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1424 nr += nr_siblings;
c320c7b7
ACM
1425 size += sizeof(u64);
1426 }
1427
1428 size += entry * nr;
1429 event->read_size = size;
1430}
1431
a723968c 1432static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1433{
1434 struct perf_sample_data *data;
c320c7b7
ACM
1435 u16 size = 0;
1436
c320c7b7
ACM
1437 if (sample_type & PERF_SAMPLE_IP)
1438 size += sizeof(data->ip);
1439
6844c09d
ACM
1440 if (sample_type & PERF_SAMPLE_ADDR)
1441 size += sizeof(data->addr);
1442
1443 if (sample_type & PERF_SAMPLE_PERIOD)
1444 size += sizeof(data->period);
1445
c3feedf2
AK
1446 if (sample_type & PERF_SAMPLE_WEIGHT)
1447 size += sizeof(data->weight);
1448
6844c09d
ACM
1449 if (sample_type & PERF_SAMPLE_READ)
1450 size += event->read_size;
1451
d6be9ad6
SE
1452 if (sample_type & PERF_SAMPLE_DATA_SRC)
1453 size += sizeof(data->data_src.val);
1454
fdfbbd07
AK
1455 if (sample_type & PERF_SAMPLE_TRANSACTION)
1456 size += sizeof(data->txn);
1457
6844c09d
ACM
1458 event->header_size = size;
1459}
1460
a723968c
PZ
1461/*
1462 * Called at perf_event creation and when events are attached/detached from a
1463 * group.
1464 */
1465static void perf_event__header_size(struct perf_event *event)
1466{
1467 __perf_event_read_size(event,
1468 event->group_leader->nr_siblings);
1469 __perf_event_header_size(event, event->attr.sample_type);
1470}
1471
6844c09d
ACM
1472static void perf_event__id_header_size(struct perf_event *event)
1473{
1474 struct perf_sample_data *data;
1475 u64 sample_type = event->attr.sample_type;
1476 u16 size = 0;
1477
c320c7b7
ACM
1478 if (sample_type & PERF_SAMPLE_TID)
1479 size += sizeof(data->tid_entry);
1480
1481 if (sample_type & PERF_SAMPLE_TIME)
1482 size += sizeof(data->time);
1483
ff3d527c
AH
1484 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1485 size += sizeof(data->id);
1486
c320c7b7
ACM
1487 if (sample_type & PERF_SAMPLE_ID)
1488 size += sizeof(data->id);
1489
1490 if (sample_type & PERF_SAMPLE_STREAM_ID)
1491 size += sizeof(data->stream_id);
1492
1493 if (sample_type & PERF_SAMPLE_CPU)
1494 size += sizeof(data->cpu_entry);
1495
6844c09d 1496 event->id_header_size = size;
c320c7b7
ACM
1497}
1498
a723968c
PZ
1499static bool perf_event_validate_size(struct perf_event *event)
1500{
1501 /*
1502 * The values computed here will be over-written when we actually
1503 * attach the event.
1504 */
1505 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1506 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1507 perf_event__id_header_size(event);
1508
1509 /*
1510 * Sum the lot; should not exceed the 64k limit we have on records.
1511 * Conservative limit to allow for callchains and other variable fields.
1512 */
1513 if (event->read_size + event->header_size +
1514 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1515 return false;
1516
1517 return true;
1518}
1519
8a49542c
PZ
1520static void perf_group_attach(struct perf_event *event)
1521{
c320c7b7 1522 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1523
74c3337c
PZ
1524 /*
1525 * We can have double attach due to group movement in perf_event_open.
1526 */
1527 if (event->attach_state & PERF_ATTACH_GROUP)
1528 return;
1529
8a49542c
PZ
1530 event->attach_state |= PERF_ATTACH_GROUP;
1531
1532 if (group_leader == event)
1533 return;
1534
652884fe
PZ
1535 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1536
8a49542c
PZ
1537 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1538 !is_software_event(event))
1539 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1540
1541 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1542 group_leader->nr_siblings++;
c320c7b7
ACM
1543
1544 perf_event__header_size(group_leader);
1545
1546 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1547 perf_event__header_size(pos);
8a49542c
PZ
1548}
1549
a63eaf34 1550/*
cdd6c482 1551 * Remove a event from the lists for its context.
fccc714b 1552 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1553 */
04289bb9 1554static void
cdd6c482 1555list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1556{
68cacd29 1557 struct perf_cpu_context *cpuctx;
652884fe
PZ
1558
1559 WARN_ON_ONCE(event->ctx != ctx);
1560 lockdep_assert_held(&ctx->lock);
1561
8a49542c
PZ
1562 /*
1563 * We can have double detach due to exit/hot-unplug + close.
1564 */
1565 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1566 return;
8a49542c
PZ
1567
1568 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1569
68cacd29 1570 if (is_cgroup_event(event)) {
e5d1367f 1571 ctx->nr_cgroups--;
70a01657
PZ
1572 /*
1573 * Because cgroup events are always per-cpu events, this will
1574 * always be called from the right CPU.
1575 */
68cacd29
SE
1576 cpuctx = __get_cpu_context(ctx);
1577 /*
70a01657
PZ
1578 * If there are no more cgroup events then clear cgrp to avoid
1579 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1580 */
1581 if (!ctx->nr_cgroups)
1582 cpuctx->cgrp = NULL;
1583 }
e5d1367f 1584
cdd6c482
IM
1585 ctx->nr_events--;
1586 if (event->attr.inherit_stat)
bfbd3381 1587 ctx->nr_stat--;
8bc20959 1588
cdd6c482 1589 list_del_rcu(&event->event_entry);
04289bb9 1590
8a49542c
PZ
1591 if (event->group_leader == event)
1592 list_del_init(&event->group_entry);
5c148194 1593
96c21a46 1594 update_group_times(event);
b2e74a26
SE
1595
1596 /*
1597 * If event was in error state, then keep it
1598 * that way, otherwise bogus counts will be
1599 * returned on read(). The only way to get out
1600 * of error state is by explicit re-enabling
1601 * of the event
1602 */
1603 if (event->state > PERF_EVENT_STATE_OFF)
1604 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1605
1606 ctx->generation++;
050735b0
PZ
1607}
1608
8a49542c 1609static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1610{
1611 struct perf_event *sibling, *tmp;
8a49542c
PZ
1612 struct list_head *list = NULL;
1613
1614 /*
1615 * We can have double detach due to exit/hot-unplug + close.
1616 */
1617 if (!(event->attach_state & PERF_ATTACH_GROUP))
1618 return;
1619
1620 event->attach_state &= ~PERF_ATTACH_GROUP;
1621
1622 /*
1623 * If this is a sibling, remove it from its group.
1624 */
1625 if (event->group_leader != event) {
1626 list_del_init(&event->group_entry);
1627 event->group_leader->nr_siblings--;
c320c7b7 1628 goto out;
8a49542c
PZ
1629 }
1630
1631 if (!list_empty(&event->group_entry))
1632 list = &event->group_entry;
2e2af50b 1633
04289bb9 1634 /*
cdd6c482
IM
1635 * If this was a group event with sibling events then
1636 * upgrade the siblings to singleton events by adding them
8a49542c 1637 * to whatever list we are on.
04289bb9 1638 */
cdd6c482 1639 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1640 if (list)
1641 list_move_tail(&sibling->group_entry, list);
04289bb9 1642 sibling->group_leader = sibling;
d6f962b5
FW
1643
1644 /* Inherit group flags from the previous leader */
1645 sibling->group_flags = event->group_flags;
652884fe
PZ
1646
1647 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1648 }
c320c7b7
ACM
1649
1650out:
1651 perf_event__header_size(event->group_leader);
1652
1653 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1654 perf_event__header_size(tmp);
04289bb9
IM
1655}
1656
fadfe7be
JO
1657static bool is_orphaned_event(struct perf_event *event)
1658{
a69b0ca4 1659 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1660}
1661
66eb579e
MR
1662static inline int pmu_filter_match(struct perf_event *event)
1663{
1664 struct pmu *pmu = event->pmu;
1665 return pmu->filter_match ? pmu->filter_match(event) : 1;
1666}
1667
fa66f07a
SE
1668static inline int
1669event_filter_match(struct perf_event *event)
1670{
e5d1367f 1671 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1672 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1673}
1674
9ffcfa6f
SE
1675static void
1676event_sched_out(struct perf_event *event,
3b6f9e5c 1677 struct perf_cpu_context *cpuctx,
cdd6c482 1678 struct perf_event_context *ctx)
3b6f9e5c 1679{
4158755d 1680 u64 tstamp = perf_event_time(event);
fa66f07a 1681 u64 delta;
652884fe
PZ
1682
1683 WARN_ON_ONCE(event->ctx != ctx);
1684 lockdep_assert_held(&ctx->lock);
1685
fa66f07a
SE
1686 /*
1687 * An event which could not be activated because of
1688 * filter mismatch still needs to have its timings
1689 * maintained, otherwise bogus information is return
1690 * via read() for time_enabled, time_running:
1691 */
1692 if (event->state == PERF_EVENT_STATE_INACTIVE
1693 && !event_filter_match(event)) {
e5d1367f 1694 delta = tstamp - event->tstamp_stopped;
fa66f07a 1695 event->tstamp_running += delta;
4158755d 1696 event->tstamp_stopped = tstamp;
fa66f07a
SE
1697 }
1698
cdd6c482 1699 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1700 return;
3b6f9e5c 1701
44377277
AS
1702 perf_pmu_disable(event->pmu);
1703
28a967c3
PZ
1704 event->tstamp_stopped = tstamp;
1705 event->pmu->del(event, 0);
1706 event->oncpu = -1;
cdd6c482
IM
1707 event->state = PERF_EVENT_STATE_INACTIVE;
1708 if (event->pending_disable) {
1709 event->pending_disable = 0;
1710 event->state = PERF_EVENT_STATE_OFF;
970892a9 1711 }
3b6f9e5c 1712
cdd6c482 1713 if (!is_software_event(event))
3b6f9e5c 1714 cpuctx->active_oncpu--;
2fde4f94
MR
1715 if (!--ctx->nr_active)
1716 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1717 if (event->attr.freq && event->attr.sample_freq)
1718 ctx->nr_freq--;
cdd6c482 1719 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1720 cpuctx->exclusive = 0;
44377277
AS
1721
1722 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1723}
1724
d859e29f 1725static void
cdd6c482 1726group_sched_out(struct perf_event *group_event,
d859e29f 1727 struct perf_cpu_context *cpuctx,
cdd6c482 1728 struct perf_event_context *ctx)
d859e29f 1729{
cdd6c482 1730 struct perf_event *event;
fa66f07a 1731 int state = group_event->state;
d859e29f 1732
cdd6c482 1733 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1734
1735 /*
1736 * Schedule out siblings (if any):
1737 */
cdd6c482
IM
1738 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1739 event_sched_out(event, cpuctx, ctx);
d859e29f 1740
fa66f07a 1741 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1742 cpuctx->exclusive = 0;
1743}
1744
45a0e07a 1745#define DETACH_GROUP 0x01UL
0017960f 1746
0793a61d 1747/*
cdd6c482 1748 * Cross CPU call to remove a performance event
0793a61d 1749 *
cdd6c482 1750 * We disable the event on the hardware level first. After that we
0793a61d
TG
1751 * remove it from the context list.
1752 */
fae3fde6
PZ
1753static void
1754__perf_remove_from_context(struct perf_event *event,
1755 struct perf_cpu_context *cpuctx,
1756 struct perf_event_context *ctx,
1757 void *info)
0793a61d 1758{
45a0e07a 1759 unsigned long flags = (unsigned long)info;
0793a61d 1760
cdd6c482 1761 event_sched_out(event, cpuctx, ctx);
45a0e07a 1762 if (flags & DETACH_GROUP)
46ce0fe9 1763 perf_group_detach(event);
cdd6c482 1764 list_del_event(event, ctx);
39a43640
PZ
1765
1766 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1767 ctx->is_active = 0;
39a43640
PZ
1768 if (ctx->task) {
1769 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1770 cpuctx->task_ctx = NULL;
1771 }
64ce3126 1772 }
0793a61d
TG
1773}
1774
0793a61d 1775/*
cdd6c482 1776 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1777 *
cdd6c482
IM
1778 * If event->ctx is a cloned context, callers must make sure that
1779 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1780 * remains valid. This is OK when called from perf_release since
1781 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1782 * When called from perf_event_exit_task, it's OK because the
c93f7669 1783 * context has been detached from its task.
0793a61d 1784 */
45a0e07a 1785static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1786{
fae3fde6 1787 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1788
45a0e07a 1789 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1790}
1791
d859e29f 1792/*
cdd6c482 1793 * Cross CPU call to disable a performance event
d859e29f 1794 */
fae3fde6
PZ
1795static void __perf_event_disable(struct perf_event *event,
1796 struct perf_cpu_context *cpuctx,
1797 struct perf_event_context *ctx,
1798 void *info)
7b648018 1799{
fae3fde6
PZ
1800 if (event->state < PERF_EVENT_STATE_INACTIVE)
1801 return;
7b648018 1802
fae3fde6
PZ
1803 update_context_time(ctx);
1804 update_cgrp_time_from_event(event);
1805 update_group_times(event);
1806 if (event == event->group_leader)
1807 group_sched_out(event, cpuctx, ctx);
1808 else
1809 event_sched_out(event, cpuctx, ctx);
1810 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1811}
1812
d859e29f 1813/*
cdd6c482 1814 * Disable a event.
c93f7669 1815 *
cdd6c482
IM
1816 * If event->ctx is a cloned context, callers must make sure that
1817 * every task struct that event->ctx->task could possibly point to
c93f7669 1818 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1819 * perf_event_for_each_child or perf_event_for_each because they
1820 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1821 * goes to exit will block in perf_event_exit_event().
1822 *
cdd6c482 1823 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1824 * is the current context on this CPU and preemption is disabled,
cdd6c482 1825 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1826 */
f63a8daa 1827static void _perf_event_disable(struct perf_event *event)
d859e29f 1828{
cdd6c482 1829 struct perf_event_context *ctx = event->ctx;
d859e29f 1830
e625cce1 1831 raw_spin_lock_irq(&ctx->lock);
7b648018 1832 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1833 raw_spin_unlock_irq(&ctx->lock);
7b648018 1834 return;
53cfbf59 1835 }
e625cce1 1836 raw_spin_unlock_irq(&ctx->lock);
7b648018 1837
fae3fde6
PZ
1838 event_function_call(event, __perf_event_disable, NULL);
1839}
1840
1841void perf_event_disable_local(struct perf_event *event)
1842{
1843 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1844}
f63a8daa
PZ
1845
1846/*
1847 * Strictly speaking kernel users cannot create groups and therefore this
1848 * interface does not need the perf_event_ctx_lock() magic.
1849 */
1850void perf_event_disable(struct perf_event *event)
1851{
1852 struct perf_event_context *ctx;
1853
1854 ctx = perf_event_ctx_lock(event);
1855 _perf_event_disable(event);
1856 perf_event_ctx_unlock(event, ctx);
1857}
dcfce4a0 1858EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1859
e5d1367f
SE
1860static void perf_set_shadow_time(struct perf_event *event,
1861 struct perf_event_context *ctx,
1862 u64 tstamp)
1863{
1864 /*
1865 * use the correct time source for the time snapshot
1866 *
1867 * We could get by without this by leveraging the
1868 * fact that to get to this function, the caller
1869 * has most likely already called update_context_time()
1870 * and update_cgrp_time_xx() and thus both timestamp
1871 * are identical (or very close). Given that tstamp is,
1872 * already adjusted for cgroup, we could say that:
1873 * tstamp - ctx->timestamp
1874 * is equivalent to
1875 * tstamp - cgrp->timestamp.
1876 *
1877 * Then, in perf_output_read(), the calculation would
1878 * work with no changes because:
1879 * - event is guaranteed scheduled in
1880 * - no scheduled out in between
1881 * - thus the timestamp would be the same
1882 *
1883 * But this is a bit hairy.
1884 *
1885 * So instead, we have an explicit cgroup call to remain
1886 * within the time time source all along. We believe it
1887 * is cleaner and simpler to understand.
1888 */
1889 if (is_cgroup_event(event))
1890 perf_cgroup_set_shadow_time(event, tstamp);
1891 else
1892 event->shadow_ctx_time = tstamp - ctx->timestamp;
1893}
1894
4fe757dd
PZ
1895#define MAX_INTERRUPTS (~0ULL)
1896
1897static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1898static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1899
235c7fc7 1900static int
9ffcfa6f 1901event_sched_in(struct perf_event *event,
235c7fc7 1902 struct perf_cpu_context *cpuctx,
6e37738a 1903 struct perf_event_context *ctx)
235c7fc7 1904{
4158755d 1905 u64 tstamp = perf_event_time(event);
44377277 1906 int ret = 0;
4158755d 1907
63342411
PZ
1908 lockdep_assert_held(&ctx->lock);
1909
cdd6c482 1910 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1911 return 0;
1912
cdd6c482 1913 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1914 event->oncpu = smp_processor_id();
4fe757dd
PZ
1915
1916 /*
1917 * Unthrottle events, since we scheduled we might have missed several
1918 * ticks already, also for a heavily scheduling task there is little
1919 * guarantee it'll get a tick in a timely manner.
1920 */
1921 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1922 perf_log_throttle(event, 1);
1923 event->hw.interrupts = 0;
1924 }
1925
235c7fc7
IM
1926 /*
1927 * The new state must be visible before we turn it on in the hardware:
1928 */
1929 smp_wmb();
1930
44377277
AS
1931 perf_pmu_disable(event->pmu);
1932
72f669c0
SL
1933 perf_set_shadow_time(event, ctx, tstamp);
1934
ec0d7729
AS
1935 perf_log_itrace_start(event);
1936
a4eaf7f1 1937 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1938 event->state = PERF_EVENT_STATE_INACTIVE;
1939 event->oncpu = -1;
44377277
AS
1940 ret = -EAGAIN;
1941 goto out;
235c7fc7
IM
1942 }
1943
00a2916f
PZ
1944 event->tstamp_running += tstamp - event->tstamp_stopped;
1945
cdd6c482 1946 if (!is_software_event(event))
3b6f9e5c 1947 cpuctx->active_oncpu++;
2fde4f94
MR
1948 if (!ctx->nr_active++)
1949 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1950 if (event->attr.freq && event->attr.sample_freq)
1951 ctx->nr_freq++;
235c7fc7 1952
cdd6c482 1953 if (event->attr.exclusive)
3b6f9e5c
PM
1954 cpuctx->exclusive = 1;
1955
44377277
AS
1956out:
1957 perf_pmu_enable(event->pmu);
1958
1959 return ret;
235c7fc7
IM
1960}
1961
6751b71e 1962static int
cdd6c482 1963group_sched_in(struct perf_event *group_event,
6751b71e 1964 struct perf_cpu_context *cpuctx,
6e37738a 1965 struct perf_event_context *ctx)
6751b71e 1966{
6bde9b6c 1967 struct perf_event *event, *partial_group = NULL;
4a234593 1968 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1969 u64 now = ctx->time;
1970 bool simulate = false;
6751b71e 1971
cdd6c482 1972 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1973 return 0;
1974
fbbe0701 1975 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1976
9ffcfa6f 1977 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1978 pmu->cancel_txn(pmu);
272325c4 1979 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1980 return -EAGAIN;
90151c35 1981 }
6751b71e
PM
1982
1983 /*
1984 * Schedule in siblings as one group (if any):
1985 */
cdd6c482 1986 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1987 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1988 partial_group = event;
6751b71e
PM
1989 goto group_error;
1990 }
1991 }
1992
9ffcfa6f 1993 if (!pmu->commit_txn(pmu))
6e85158c 1994 return 0;
9ffcfa6f 1995
6751b71e
PM
1996group_error:
1997 /*
1998 * Groups can be scheduled in as one unit only, so undo any
1999 * partial group before returning:
d7842da4
SE
2000 * The events up to the failed event are scheduled out normally,
2001 * tstamp_stopped will be updated.
2002 *
2003 * The failed events and the remaining siblings need to have
2004 * their timings updated as if they had gone thru event_sched_in()
2005 * and event_sched_out(). This is required to get consistent timings
2006 * across the group. This also takes care of the case where the group
2007 * could never be scheduled by ensuring tstamp_stopped is set to mark
2008 * the time the event was actually stopped, such that time delta
2009 * calculation in update_event_times() is correct.
6751b71e 2010 */
cdd6c482
IM
2011 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2012 if (event == partial_group)
d7842da4
SE
2013 simulate = true;
2014
2015 if (simulate) {
2016 event->tstamp_running += now - event->tstamp_stopped;
2017 event->tstamp_stopped = now;
2018 } else {
2019 event_sched_out(event, cpuctx, ctx);
2020 }
6751b71e 2021 }
9ffcfa6f 2022 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2023
ad5133b7 2024 pmu->cancel_txn(pmu);
90151c35 2025
272325c4 2026 perf_mux_hrtimer_restart(cpuctx);
9e630205 2027
6751b71e
PM
2028 return -EAGAIN;
2029}
2030
3b6f9e5c 2031/*
cdd6c482 2032 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2033 */
cdd6c482 2034static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2035 struct perf_cpu_context *cpuctx,
2036 int can_add_hw)
2037{
2038 /*
cdd6c482 2039 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2040 */
d6f962b5 2041 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2042 return 1;
2043 /*
2044 * If an exclusive group is already on, no other hardware
cdd6c482 2045 * events can go on.
3b6f9e5c
PM
2046 */
2047 if (cpuctx->exclusive)
2048 return 0;
2049 /*
2050 * If this group is exclusive and there are already
cdd6c482 2051 * events on the CPU, it can't go on.
3b6f9e5c 2052 */
cdd6c482 2053 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2054 return 0;
2055 /*
2056 * Otherwise, try to add it if all previous groups were able
2057 * to go on.
2058 */
2059 return can_add_hw;
2060}
2061
cdd6c482
IM
2062static void add_event_to_ctx(struct perf_event *event,
2063 struct perf_event_context *ctx)
53cfbf59 2064{
4158755d
SE
2065 u64 tstamp = perf_event_time(event);
2066
cdd6c482 2067 list_add_event(event, ctx);
8a49542c 2068 perf_group_attach(event);
4158755d
SE
2069 event->tstamp_enabled = tstamp;
2070 event->tstamp_running = tstamp;
2071 event->tstamp_stopped = tstamp;
53cfbf59
PM
2072}
2073
bd2afa49
PZ
2074static void ctx_sched_out(struct perf_event_context *ctx,
2075 struct perf_cpu_context *cpuctx,
2076 enum event_type_t event_type);
2c29ef0f
PZ
2077static void
2078ctx_sched_in(struct perf_event_context *ctx,
2079 struct perf_cpu_context *cpuctx,
2080 enum event_type_t event_type,
2081 struct task_struct *task);
fe4b04fa 2082
bd2afa49
PZ
2083static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2084 struct perf_event_context *ctx)
2085{
2086 if (!cpuctx->task_ctx)
2087 return;
2088
2089 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2090 return;
2091
2092 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2093}
2094
dce5855b
PZ
2095static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2096 struct perf_event_context *ctx,
2097 struct task_struct *task)
2098{
2099 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2100 if (ctx)
2101 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2102 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2103 if (ctx)
2104 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2105}
2106
3e349507
PZ
2107static void ctx_resched(struct perf_cpu_context *cpuctx,
2108 struct perf_event_context *task_ctx)
0017960f 2109{
3e349507
PZ
2110 perf_pmu_disable(cpuctx->ctx.pmu);
2111 if (task_ctx)
2112 task_ctx_sched_out(cpuctx, task_ctx);
2113 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2114 perf_event_sched_in(cpuctx, task_ctx, current);
2115 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2116}
2117
0793a61d 2118/*
cdd6c482 2119 * Cross CPU call to install and enable a performance event
682076ae 2120 *
a096309b
PZ
2121 * Very similar to remote_function() + event_function() but cannot assume that
2122 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2123 */
fe4b04fa 2124static int __perf_install_in_context(void *info)
0793a61d 2125{
a096309b
PZ
2126 struct perf_event *event = info;
2127 struct perf_event_context *ctx = event->ctx;
108b02cf 2128 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2129 struct perf_event_context *task_ctx = cpuctx->task_ctx;
a096309b
PZ
2130 bool activate = true;
2131 int ret = 0;
0793a61d 2132
63b6da39 2133 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2134 if (ctx->task) {
b58f6b0d
PZ
2135 raw_spin_lock(&ctx->lock);
2136 task_ctx = ctx;
a096309b
PZ
2137
2138 /* If we're on the wrong CPU, try again */
2139 if (task_cpu(ctx->task) != smp_processor_id()) {
2140 ret = -ESRCH;
63b6da39 2141 goto unlock;
a096309b 2142 }
b58f6b0d 2143
39a43640 2144 /*
a096309b
PZ
2145 * If we're on the right CPU, see if the task we target is
2146 * current, if not we don't have to activate the ctx, a future
2147 * context switch will do that for us.
39a43640 2148 */
a096309b
PZ
2149 if (ctx->task != current)
2150 activate = false;
2151 else
2152 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2153
63b6da39
PZ
2154 } else if (task_ctx) {
2155 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2156 }
b58f6b0d 2157
a096309b
PZ
2158 if (activate) {
2159 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2160 add_event_to_ctx(event, ctx);
2161 ctx_resched(cpuctx, task_ctx);
2162 } else {
2163 add_event_to_ctx(event, ctx);
2164 }
2165
63b6da39 2166unlock:
2c29ef0f 2167 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2168
a096309b 2169 return ret;
0793a61d
TG
2170}
2171
2172/*
a096309b
PZ
2173 * Attach a performance event to a context.
2174 *
2175 * Very similar to event_function_call, see comment there.
0793a61d
TG
2176 */
2177static void
cdd6c482
IM
2178perf_install_in_context(struct perf_event_context *ctx,
2179 struct perf_event *event,
0793a61d
TG
2180 int cpu)
2181{
a096309b 2182 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2183
fe4b04fa
PZ
2184 lockdep_assert_held(&ctx->mutex);
2185
c3f00c70 2186 event->ctx = ctx;
0cda4c02
YZ
2187 if (event->cpu != -1)
2188 event->cpu = cpu;
c3f00c70 2189
a096309b
PZ
2190 if (!task) {
2191 cpu_function_call(cpu, __perf_install_in_context, event);
2192 return;
2193 }
2194
2195 /*
2196 * Should not happen, we validate the ctx is still alive before calling.
2197 */
2198 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2199 return;
2200
39a43640
PZ
2201 /*
2202 * Installing events is tricky because we cannot rely on ctx->is_active
2203 * to be set in case this is the nr_events 0 -> 1 transition.
39a43640 2204 */
a096309b 2205again:
63b6da39 2206 /*
a096309b
PZ
2207 * Cannot use task_function_call() because we need to run on the task's
2208 * CPU regardless of whether its current or not.
63b6da39 2209 */
a096309b
PZ
2210 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2211 return;
2212
2213 raw_spin_lock_irq(&ctx->lock);
2214 task = ctx->task;
84c4e620 2215 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2216 /*
2217 * Cannot happen because we already checked above (which also
2218 * cannot happen), and we hold ctx->mutex, which serializes us
2219 * against perf_event_exit_task_context().
2220 */
63b6da39
PZ
2221 raw_spin_unlock_irq(&ctx->lock);
2222 return;
2223 }
39a43640 2224 raw_spin_unlock_irq(&ctx->lock);
39a43640 2225 /*
a096309b
PZ
2226 * Since !ctx->is_active doesn't mean anything, we must IPI
2227 * unconditionally.
39a43640 2228 */
a096309b 2229 goto again;
0793a61d
TG
2230}
2231
fa289bec 2232/*
cdd6c482 2233 * Put a event into inactive state and update time fields.
fa289bec
PM
2234 * Enabling the leader of a group effectively enables all
2235 * the group members that aren't explicitly disabled, so we
2236 * have to update their ->tstamp_enabled also.
2237 * Note: this works for group members as well as group leaders
2238 * since the non-leader members' sibling_lists will be empty.
2239 */
1d9b482e 2240static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2241{
cdd6c482 2242 struct perf_event *sub;
4158755d 2243 u64 tstamp = perf_event_time(event);
fa289bec 2244
cdd6c482 2245 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2246 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2247 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2248 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2249 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2250 }
fa289bec
PM
2251}
2252
d859e29f 2253/*
cdd6c482 2254 * Cross CPU call to enable a performance event
d859e29f 2255 */
fae3fde6
PZ
2256static void __perf_event_enable(struct perf_event *event,
2257 struct perf_cpu_context *cpuctx,
2258 struct perf_event_context *ctx,
2259 void *info)
04289bb9 2260{
cdd6c482 2261 struct perf_event *leader = event->group_leader;
fae3fde6 2262 struct perf_event_context *task_ctx;
04289bb9 2263
6e801e01
PZ
2264 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2265 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2266 return;
3cbed429 2267
bd2afa49
PZ
2268 if (ctx->is_active)
2269 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2270
1d9b482e 2271 __perf_event_mark_enabled(event);
04289bb9 2272
fae3fde6
PZ
2273 if (!ctx->is_active)
2274 return;
2275
e5d1367f 2276 if (!event_filter_match(event)) {
bd2afa49 2277 if (is_cgroup_event(event))
e5d1367f 2278 perf_cgroup_defer_enabled(event);
bd2afa49 2279 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2280 return;
e5d1367f 2281 }
f4c4176f 2282
04289bb9 2283 /*
cdd6c482 2284 * If the event is in a group and isn't the group leader,
d859e29f 2285 * then don't put it on unless the group is on.
04289bb9 2286 */
bd2afa49
PZ
2287 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2288 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2289 return;
bd2afa49 2290 }
fe4b04fa 2291
fae3fde6
PZ
2292 task_ctx = cpuctx->task_ctx;
2293 if (ctx->task)
2294 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2295
fae3fde6 2296 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2297}
2298
d859e29f 2299/*
cdd6c482 2300 * Enable a event.
c93f7669 2301 *
cdd6c482
IM
2302 * If event->ctx is a cloned context, callers must make sure that
2303 * every task struct that event->ctx->task could possibly point to
c93f7669 2304 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2305 * perf_event_for_each_child or perf_event_for_each as described
2306 * for perf_event_disable.
d859e29f 2307 */
f63a8daa 2308static void _perf_event_enable(struct perf_event *event)
d859e29f 2309{
cdd6c482 2310 struct perf_event_context *ctx = event->ctx;
d859e29f 2311
7b648018 2312 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2313 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2314 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2315 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2316 return;
2317 }
2318
d859e29f 2319 /*
cdd6c482 2320 * If the event is in error state, clear that first.
7b648018
PZ
2321 *
2322 * That way, if we see the event in error state below, we know that it
2323 * has gone back into error state, as distinct from the task having
2324 * been scheduled away before the cross-call arrived.
d859e29f 2325 */
cdd6c482
IM
2326 if (event->state == PERF_EVENT_STATE_ERROR)
2327 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2328 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2329
fae3fde6 2330 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2331}
f63a8daa
PZ
2332
2333/*
2334 * See perf_event_disable();
2335 */
2336void perf_event_enable(struct perf_event *event)
2337{
2338 struct perf_event_context *ctx;
2339
2340 ctx = perf_event_ctx_lock(event);
2341 _perf_event_enable(event);
2342 perf_event_ctx_unlock(event, ctx);
2343}
dcfce4a0 2344EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2345
f63a8daa 2346static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2347{
2023b359 2348 /*
cdd6c482 2349 * not supported on inherited events
2023b359 2350 */
2e939d1d 2351 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2352 return -EINVAL;
2353
cdd6c482 2354 atomic_add(refresh, &event->event_limit);
f63a8daa 2355 _perf_event_enable(event);
2023b359
PZ
2356
2357 return 0;
79f14641 2358}
f63a8daa
PZ
2359
2360/*
2361 * See perf_event_disable()
2362 */
2363int perf_event_refresh(struct perf_event *event, int refresh)
2364{
2365 struct perf_event_context *ctx;
2366 int ret;
2367
2368 ctx = perf_event_ctx_lock(event);
2369 ret = _perf_event_refresh(event, refresh);
2370 perf_event_ctx_unlock(event, ctx);
2371
2372 return ret;
2373}
26ca5c11 2374EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2375
5b0311e1
FW
2376static void ctx_sched_out(struct perf_event_context *ctx,
2377 struct perf_cpu_context *cpuctx,
2378 enum event_type_t event_type)
235c7fc7 2379{
db24d33e 2380 int is_active = ctx->is_active;
c994d613 2381 struct perf_event *event;
235c7fc7 2382
c994d613 2383 lockdep_assert_held(&ctx->lock);
235c7fc7 2384
39a43640
PZ
2385 if (likely(!ctx->nr_events)) {
2386 /*
2387 * See __perf_remove_from_context().
2388 */
2389 WARN_ON_ONCE(ctx->is_active);
2390 if (ctx->task)
2391 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2392 return;
39a43640
PZ
2393 }
2394
db24d33e 2395 ctx->is_active &= ~event_type;
3cbaa590
PZ
2396 if (!(ctx->is_active & EVENT_ALL))
2397 ctx->is_active = 0;
2398
63e30d3e
PZ
2399 if (ctx->task) {
2400 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2401 if (!ctx->is_active)
2402 cpuctx->task_ctx = NULL;
2403 }
facc4307 2404
3cbaa590
PZ
2405 is_active ^= ctx->is_active; /* changed bits */
2406
2407 if (is_active & EVENT_TIME) {
2408 /* update (and stop) ctx time */
2409 update_context_time(ctx);
2410 update_cgrp_time_from_cpuctx(cpuctx);
2411 }
2412
2413 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2414 return;
5b0311e1 2415
075e0b00 2416 perf_pmu_disable(ctx->pmu);
3cbaa590 2417 if (is_active & EVENT_PINNED) {
889ff015
FW
2418 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2419 group_sched_out(event, cpuctx, ctx);
9ed6060d 2420 }
889ff015 2421
3cbaa590 2422 if (is_active & EVENT_FLEXIBLE) {
889ff015 2423 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2424 group_sched_out(event, cpuctx, ctx);
9ed6060d 2425 }
1b9a644f 2426 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2427}
2428
564c2b21 2429/*
5a3126d4
PZ
2430 * Test whether two contexts are equivalent, i.e. whether they have both been
2431 * cloned from the same version of the same context.
2432 *
2433 * Equivalence is measured using a generation number in the context that is
2434 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2435 * and list_del_event().
564c2b21 2436 */
cdd6c482
IM
2437static int context_equiv(struct perf_event_context *ctx1,
2438 struct perf_event_context *ctx2)
564c2b21 2439{
211de6eb
PZ
2440 lockdep_assert_held(&ctx1->lock);
2441 lockdep_assert_held(&ctx2->lock);
2442
5a3126d4
PZ
2443 /* Pinning disables the swap optimization */
2444 if (ctx1->pin_count || ctx2->pin_count)
2445 return 0;
2446
2447 /* If ctx1 is the parent of ctx2 */
2448 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2449 return 1;
2450
2451 /* If ctx2 is the parent of ctx1 */
2452 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2453 return 1;
2454
2455 /*
2456 * If ctx1 and ctx2 have the same parent; we flatten the parent
2457 * hierarchy, see perf_event_init_context().
2458 */
2459 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2460 ctx1->parent_gen == ctx2->parent_gen)
2461 return 1;
2462
2463 /* Unmatched */
2464 return 0;
564c2b21
PM
2465}
2466
cdd6c482
IM
2467static void __perf_event_sync_stat(struct perf_event *event,
2468 struct perf_event *next_event)
bfbd3381
PZ
2469{
2470 u64 value;
2471
cdd6c482 2472 if (!event->attr.inherit_stat)
bfbd3381
PZ
2473 return;
2474
2475 /*
cdd6c482 2476 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2477 * because we're in the middle of a context switch and have IRQs
2478 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2479 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2480 * don't need to use it.
2481 */
cdd6c482
IM
2482 switch (event->state) {
2483 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2484 event->pmu->read(event);
2485 /* fall-through */
bfbd3381 2486
cdd6c482
IM
2487 case PERF_EVENT_STATE_INACTIVE:
2488 update_event_times(event);
bfbd3381
PZ
2489 break;
2490
2491 default:
2492 break;
2493 }
2494
2495 /*
cdd6c482 2496 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2497 * values when we flip the contexts.
2498 */
e7850595
PZ
2499 value = local64_read(&next_event->count);
2500 value = local64_xchg(&event->count, value);
2501 local64_set(&next_event->count, value);
bfbd3381 2502
cdd6c482
IM
2503 swap(event->total_time_enabled, next_event->total_time_enabled);
2504 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2505
bfbd3381 2506 /*
19d2e755 2507 * Since we swizzled the values, update the user visible data too.
bfbd3381 2508 */
cdd6c482
IM
2509 perf_event_update_userpage(event);
2510 perf_event_update_userpage(next_event);
bfbd3381
PZ
2511}
2512
cdd6c482
IM
2513static void perf_event_sync_stat(struct perf_event_context *ctx,
2514 struct perf_event_context *next_ctx)
bfbd3381 2515{
cdd6c482 2516 struct perf_event *event, *next_event;
bfbd3381
PZ
2517
2518 if (!ctx->nr_stat)
2519 return;
2520
02ffdbc8
PZ
2521 update_context_time(ctx);
2522
cdd6c482
IM
2523 event = list_first_entry(&ctx->event_list,
2524 struct perf_event, event_entry);
bfbd3381 2525
cdd6c482
IM
2526 next_event = list_first_entry(&next_ctx->event_list,
2527 struct perf_event, event_entry);
bfbd3381 2528
cdd6c482
IM
2529 while (&event->event_entry != &ctx->event_list &&
2530 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2531
cdd6c482 2532 __perf_event_sync_stat(event, next_event);
bfbd3381 2533
cdd6c482
IM
2534 event = list_next_entry(event, event_entry);
2535 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2536 }
2537}
2538
fe4b04fa
PZ
2539static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2540 struct task_struct *next)
0793a61d 2541{
8dc85d54 2542 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2543 struct perf_event_context *next_ctx;
5a3126d4 2544 struct perf_event_context *parent, *next_parent;
108b02cf 2545 struct perf_cpu_context *cpuctx;
c93f7669 2546 int do_switch = 1;
0793a61d 2547
108b02cf
PZ
2548 if (likely(!ctx))
2549 return;
10989fb2 2550
108b02cf
PZ
2551 cpuctx = __get_cpu_context(ctx);
2552 if (!cpuctx->task_ctx)
0793a61d
TG
2553 return;
2554
c93f7669 2555 rcu_read_lock();
8dc85d54 2556 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2557 if (!next_ctx)
2558 goto unlock;
2559
2560 parent = rcu_dereference(ctx->parent_ctx);
2561 next_parent = rcu_dereference(next_ctx->parent_ctx);
2562
2563 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2564 if (!parent && !next_parent)
5a3126d4
PZ
2565 goto unlock;
2566
2567 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2568 /*
2569 * Looks like the two contexts are clones, so we might be
2570 * able to optimize the context switch. We lock both
2571 * contexts and check that they are clones under the
2572 * lock (including re-checking that neither has been
2573 * uncloned in the meantime). It doesn't matter which
2574 * order we take the locks because no other cpu could
2575 * be trying to lock both of these tasks.
2576 */
e625cce1
TG
2577 raw_spin_lock(&ctx->lock);
2578 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2579 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2580 WRITE_ONCE(ctx->task, next);
2581 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2582
2583 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2584
63b6da39
PZ
2585 /*
2586 * RCU_INIT_POINTER here is safe because we've not
2587 * modified the ctx and the above modification of
2588 * ctx->task and ctx->task_ctx_data are immaterial
2589 * since those values are always verified under
2590 * ctx->lock which we're now holding.
2591 */
2592 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2593 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2594
c93f7669 2595 do_switch = 0;
bfbd3381 2596
cdd6c482 2597 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2598 }
e625cce1
TG
2599 raw_spin_unlock(&next_ctx->lock);
2600 raw_spin_unlock(&ctx->lock);
564c2b21 2601 }
5a3126d4 2602unlock:
c93f7669 2603 rcu_read_unlock();
564c2b21 2604
c93f7669 2605 if (do_switch) {
facc4307 2606 raw_spin_lock(&ctx->lock);
8833d0e2 2607 task_ctx_sched_out(cpuctx, ctx);
facc4307 2608 raw_spin_unlock(&ctx->lock);
c93f7669 2609 }
0793a61d
TG
2610}
2611
ba532500
YZ
2612void perf_sched_cb_dec(struct pmu *pmu)
2613{
2614 this_cpu_dec(perf_sched_cb_usages);
2615}
2616
2617void perf_sched_cb_inc(struct pmu *pmu)
2618{
2619 this_cpu_inc(perf_sched_cb_usages);
2620}
2621
2622/*
2623 * This function provides the context switch callback to the lower code
2624 * layer. It is invoked ONLY when the context switch callback is enabled.
2625 */
2626static void perf_pmu_sched_task(struct task_struct *prev,
2627 struct task_struct *next,
2628 bool sched_in)
2629{
2630 struct perf_cpu_context *cpuctx;
2631 struct pmu *pmu;
2632 unsigned long flags;
2633
2634 if (prev == next)
2635 return;
2636
2637 local_irq_save(flags);
2638
2639 rcu_read_lock();
2640
2641 list_for_each_entry_rcu(pmu, &pmus, entry) {
2642 if (pmu->sched_task) {
2643 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2644
2645 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2646
2647 perf_pmu_disable(pmu);
2648
2649 pmu->sched_task(cpuctx->task_ctx, sched_in);
2650
2651 perf_pmu_enable(pmu);
2652
2653 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2654 }
2655 }
2656
2657 rcu_read_unlock();
2658
2659 local_irq_restore(flags);
2660}
2661
45ac1403
AH
2662static void perf_event_switch(struct task_struct *task,
2663 struct task_struct *next_prev, bool sched_in);
2664
8dc85d54
PZ
2665#define for_each_task_context_nr(ctxn) \
2666 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2667
2668/*
2669 * Called from scheduler to remove the events of the current task,
2670 * with interrupts disabled.
2671 *
2672 * We stop each event and update the event value in event->count.
2673 *
2674 * This does not protect us against NMI, but disable()
2675 * sets the disabled bit in the control field of event _before_
2676 * accessing the event control register. If a NMI hits, then it will
2677 * not restart the event.
2678 */
ab0cce56
JO
2679void __perf_event_task_sched_out(struct task_struct *task,
2680 struct task_struct *next)
8dc85d54
PZ
2681{
2682 int ctxn;
2683
ba532500
YZ
2684 if (__this_cpu_read(perf_sched_cb_usages))
2685 perf_pmu_sched_task(task, next, false);
2686
45ac1403
AH
2687 if (atomic_read(&nr_switch_events))
2688 perf_event_switch(task, next, false);
2689
8dc85d54
PZ
2690 for_each_task_context_nr(ctxn)
2691 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2692
2693 /*
2694 * if cgroup events exist on this CPU, then we need
2695 * to check if we have to switch out PMU state.
2696 * cgroup event are system-wide mode only
2697 */
4a32fea9 2698 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2699 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2700}
2701
5b0311e1
FW
2702/*
2703 * Called with IRQs disabled
2704 */
2705static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2706 enum event_type_t event_type)
2707{
2708 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2709}
2710
235c7fc7 2711static void
5b0311e1 2712ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2713 struct perf_cpu_context *cpuctx)
0793a61d 2714{
cdd6c482 2715 struct perf_event *event;
0793a61d 2716
889ff015
FW
2717 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2718 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2719 continue;
5632ab12 2720 if (!event_filter_match(event))
3b6f9e5c
PM
2721 continue;
2722
e5d1367f
SE
2723 /* may need to reset tstamp_enabled */
2724 if (is_cgroup_event(event))
2725 perf_cgroup_mark_enabled(event, ctx);
2726
8c9ed8e1 2727 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2728 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2729
2730 /*
2731 * If this pinned group hasn't been scheduled,
2732 * put it in error state.
2733 */
cdd6c482
IM
2734 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2735 update_group_times(event);
2736 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2737 }
3b6f9e5c 2738 }
5b0311e1
FW
2739}
2740
2741static void
2742ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2743 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2744{
2745 struct perf_event *event;
2746 int can_add_hw = 1;
3b6f9e5c 2747
889ff015
FW
2748 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2749 /* Ignore events in OFF or ERROR state */
2750 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2751 continue;
04289bb9
IM
2752 /*
2753 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2754 * of events:
04289bb9 2755 */
5632ab12 2756 if (!event_filter_match(event))
0793a61d
TG
2757 continue;
2758
e5d1367f
SE
2759 /* may need to reset tstamp_enabled */
2760 if (is_cgroup_event(event))
2761 perf_cgroup_mark_enabled(event, ctx);
2762
9ed6060d 2763 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2764 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2765 can_add_hw = 0;
9ed6060d 2766 }
0793a61d 2767 }
5b0311e1
FW
2768}
2769
2770static void
2771ctx_sched_in(struct perf_event_context *ctx,
2772 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2773 enum event_type_t event_type,
2774 struct task_struct *task)
5b0311e1 2775{
db24d33e 2776 int is_active = ctx->is_active;
c994d613
PZ
2777 u64 now;
2778
2779 lockdep_assert_held(&ctx->lock);
e5d1367f 2780
5b0311e1 2781 if (likely(!ctx->nr_events))
facc4307 2782 return;
5b0311e1 2783
3cbaa590 2784 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
2785 if (ctx->task) {
2786 if (!is_active)
2787 cpuctx->task_ctx = ctx;
2788 else
2789 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2790 }
2791
3cbaa590
PZ
2792 is_active ^= ctx->is_active; /* changed bits */
2793
2794 if (is_active & EVENT_TIME) {
2795 /* start ctx time */
2796 now = perf_clock();
2797 ctx->timestamp = now;
2798 perf_cgroup_set_timestamp(task, ctx);
2799 }
2800
5b0311e1
FW
2801 /*
2802 * First go through the list and put on any pinned groups
2803 * in order to give them the best chance of going on.
2804 */
3cbaa590 2805 if (is_active & EVENT_PINNED)
6e37738a 2806 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2807
2808 /* Then walk through the lower prio flexible groups */
3cbaa590 2809 if (is_active & EVENT_FLEXIBLE)
6e37738a 2810 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2811}
2812
329c0e01 2813static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2814 enum event_type_t event_type,
2815 struct task_struct *task)
329c0e01
FW
2816{
2817 struct perf_event_context *ctx = &cpuctx->ctx;
2818
e5d1367f 2819 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2820}
2821
e5d1367f
SE
2822static void perf_event_context_sched_in(struct perf_event_context *ctx,
2823 struct task_struct *task)
235c7fc7 2824{
108b02cf 2825 struct perf_cpu_context *cpuctx;
235c7fc7 2826
108b02cf 2827 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2828 if (cpuctx->task_ctx == ctx)
2829 return;
2830
facc4307 2831 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2832 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2833 /*
2834 * We want to keep the following priority order:
2835 * cpu pinned (that don't need to move), task pinned,
2836 * cpu flexible, task flexible.
2837 */
2838 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 2839 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
2840 perf_pmu_enable(ctx->pmu);
2841 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2842}
2843
8dc85d54
PZ
2844/*
2845 * Called from scheduler to add the events of the current task
2846 * with interrupts disabled.
2847 *
2848 * We restore the event value and then enable it.
2849 *
2850 * This does not protect us against NMI, but enable()
2851 * sets the enabled bit in the control field of event _before_
2852 * accessing the event control register. If a NMI hits, then it will
2853 * keep the event running.
2854 */
ab0cce56
JO
2855void __perf_event_task_sched_in(struct task_struct *prev,
2856 struct task_struct *task)
8dc85d54
PZ
2857{
2858 struct perf_event_context *ctx;
2859 int ctxn;
2860
7e41d177
PZ
2861 /*
2862 * If cgroup events exist on this CPU, then we need to check if we have
2863 * to switch in PMU state; cgroup event are system-wide mode only.
2864 *
2865 * Since cgroup events are CPU events, we must schedule these in before
2866 * we schedule in the task events.
2867 */
2868 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2869 perf_cgroup_sched_in(prev, task);
2870
8dc85d54
PZ
2871 for_each_task_context_nr(ctxn) {
2872 ctx = task->perf_event_ctxp[ctxn];
2873 if (likely(!ctx))
2874 continue;
2875
e5d1367f 2876 perf_event_context_sched_in(ctx, task);
8dc85d54 2877 }
d010b332 2878
45ac1403
AH
2879 if (atomic_read(&nr_switch_events))
2880 perf_event_switch(task, prev, true);
2881
ba532500
YZ
2882 if (__this_cpu_read(perf_sched_cb_usages))
2883 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2884}
2885
abd50713
PZ
2886static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2887{
2888 u64 frequency = event->attr.sample_freq;
2889 u64 sec = NSEC_PER_SEC;
2890 u64 divisor, dividend;
2891
2892 int count_fls, nsec_fls, frequency_fls, sec_fls;
2893
2894 count_fls = fls64(count);
2895 nsec_fls = fls64(nsec);
2896 frequency_fls = fls64(frequency);
2897 sec_fls = 30;
2898
2899 /*
2900 * We got @count in @nsec, with a target of sample_freq HZ
2901 * the target period becomes:
2902 *
2903 * @count * 10^9
2904 * period = -------------------
2905 * @nsec * sample_freq
2906 *
2907 */
2908
2909 /*
2910 * Reduce accuracy by one bit such that @a and @b converge
2911 * to a similar magnitude.
2912 */
fe4b04fa 2913#define REDUCE_FLS(a, b) \
abd50713
PZ
2914do { \
2915 if (a##_fls > b##_fls) { \
2916 a >>= 1; \
2917 a##_fls--; \
2918 } else { \
2919 b >>= 1; \
2920 b##_fls--; \
2921 } \
2922} while (0)
2923
2924 /*
2925 * Reduce accuracy until either term fits in a u64, then proceed with
2926 * the other, so that finally we can do a u64/u64 division.
2927 */
2928 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2929 REDUCE_FLS(nsec, frequency);
2930 REDUCE_FLS(sec, count);
2931 }
2932
2933 if (count_fls + sec_fls > 64) {
2934 divisor = nsec * frequency;
2935
2936 while (count_fls + sec_fls > 64) {
2937 REDUCE_FLS(count, sec);
2938 divisor >>= 1;
2939 }
2940
2941 dividend = count * sec;
2942 } else {
2943 dividend = count * sec;
2944
2945 while (nsec_fls + frequency_fls > 64) {
2946 REDUCE_FLS(nsec, frequency);
2947 dividend >>= 1;
2948 }
2949
2950 divisor = nsec * frequency;
2951 }
2952
f6ab91ad
PZ
2953 if (!divisor)
2954 return dividend;
2955
abd50713
PZ
2956 return div64_u64(dividend, divisor);
2957}
2958
e050e3f0
SE
2959static DEFINE_PER_CPU(int, perf_throttled_count);
2960static DEFINE_PER_CPU(u64, perf_throttled_seq);
2961
f39d47ff 2962static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2963{
cdd6c482 2964 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2965 s64 period, sample_period;
bd2b5b12
PZ
2966 s64 delta;
2967
abd50713 2968 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2969
2970 delta = (s64)(period - hwc->sample_period);
2971 delta = (delta + 7) / 8; /* low pass filter */
2972
2973 sample_period = hwc->sample_period + delta;
2974
2975 if (!sample_period)
2976 sample_period = 1;
2977
bd2b5b12 2978 hwc->sample_period = sample_period;
abd50713 2979
e7850595 2980 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2981 if (disable)
2982 event->pmu->stop(event, PERF_EF_UPDATE);
2983
e7850595 2984 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2985
2986 if (disable)
2987 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2988 }
bd2b5b12
PZ
2989}
2990
e050e3f0
SE
2991/*
2992 * combine freq adjustment with unthrottling to avoid two passes over the
2993 * events. At the same time, make sure, having freq events does not change
2994 * the rate of unthrottling as that would introduce bias.
2995 */
2996static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2997 int needs_unthr)
60db5e09 2998{
cdd6c482
IM
2999 struct perf_event *event;
3000 struct hw_perf_event *hwc;
e050e3f0 3001 u64 now, period = TICK_NSEC;
abd50713 3002 s64 delta;
60db5e09 3003
e050e3f0
SE
3004 /*
3005 * only need to iterate over all events iff:
3006 * - context have events in frequency mode (needs freq adjust)
3007 * - there are events to unthrottle on this cpu
3008 */
3009 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3010 return;
3011
e050e3f0 3012 raw_spin_lock(&ctx->lock);
f39d47ff 3013 perf_pmu_disable(ctx->pmu);
e050e3f0 3014
03541f8b 3015 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3016 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3017 continue;
3018
5632ab12 3019 if (!event_filter_match(event))
5d27c23d
PZ
3020 continue;
3021
44377277
AS
3022 perf_pmu_disable(event->pmu);
3023
cdd6c482 3024 hwc = &event->hw;
6a24ed6c 3025
ae23bff1 3026 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3027 hwc->interrupts = 0;
cdd6c482 3028 perf_log_throttle(event, 1);
a4eaf7f1 3029 event->pmu->start(event, 0);
a78ac325
PZ
3030 }
3031
cdd6c482 3032 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3033 goto next;
60db5e09 3034
e050e3f0
SE
3035 /*
3036 * stop the event and update event->count
3037 */
3038 event->pmu->stop(event, PERF_EF_UPDATE);
3039
e7850595 3040 now = local64_read(&event->count);
abd50713
PZ
3041 delta = now - hwc->freq_count_stamp;
3042 hwc->freq_count_stamp = now;
60db5e09 3043
e050e3f0
SE
3044 /*
3045 * restart the event
3046 * reload only if value has changed
f39d47ff
SE
3047 * we have stopped the event so tell that
3048 * to perf_adjust_period() to avoid stopping it
3049 * twice.
e050e3f0 3050 */
abd50713 3051 if (delta > 0)
f39d47ff 3052 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3053
3054 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3055 next:
3056 perf_pmu_enable(event->pmu);
60db5e09 3057 }
e050e3f0 3058
f39d47ff 3059 perf_pmu_enable(ctx->pmu);
e050e3f0 3060 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3061}
3062
235c7fc7 3063/*
cdd6c482 3064 * Round-robin a context's events:
235c7fc7 3065 */
cdd6c482 3066static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3067{
dddd3379
TG
3068 /*
3069 * Rotate the first entry last of non-pinned groups. Rotation might be
3070 * disabled by the inheritance code.
3071 */
3072 if (!ctx->rotate_disable)
3073 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3074}
3075
9e630205 3076static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3077{
8dc85d54 3078 struct perf_event_context *ctx = NULL;
2fde4f94 3079 int rotate = 0;
7fc23a53 3080
b5ab4cd5 3081 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3082 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3083 rotate = 1;
3084 }
235c7fc7 3085
8dc85d54 3086 ctx = cpuctx->task_ctx;
b5ab4cd5 3087 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3088 if (ctx->nr_events != ctx->nr_active)
3089 rotate = 1;
3090 }
9717e6cd 3091
e050e3f0 3092 if (!rotate)
0f5a2601
PZ
3093 goto done;
3094
facc4307 3095 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3096 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3097
e050e3f0
SE
3098 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3099 if (ctx)
3100 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3101
e050e3f0
SE
3102 rotate_ctx(&cpuctx->ctx);
3103 if (ctx)
3104 rotate_ctx(ctx);
235c7fc7 3105
e050e3f0 3106 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3107
0f5a2601
PZ
3108 perf_pmu_enable(cpuctx->ctx.pmu);
3109 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3110done:
9e630205
SE
3111
3112 return rotate;
e9d2b064
PZ
3113}
3114
3115void perf_event_task_tick(void)
3116{
2fde4f94
MR
3117 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3118 struct perf_event_context *ctx, *tmp;
e050e3f0 3119 int throttled;
b5ab4cd5 3120
e9d2b064
PZ
3121 WARN_ON(!irqs_disabled());
3122
e050e3f0
SE
3123 __this_cpu_inc(perf_throttled_seq);
3124 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3125 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3126
2fde4f94 3127 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3128 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3129}
3130
889ff015
FW
3131static int event_enable_on_exec(struct perf_event *event,
3132 struct perf_event_context *ctx)
3133{
3134 if (!event->attr.enable_on_exec)
3135 return 0;
3136
3137 event->attr.enable_on_exec = 0;
3138 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3139 return 0;
3140
1d9b482e 3141 __perf_event_mark_enabled(event);
889ff015
FW
3142
3143 return 1;
3144}
3145
57e7986e 3146/*
cdd6c482 3147 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3148 * This expects task == current.
3149 */
c1274499 3150static void perf_event_enable_on_exec(int ctxn)
57e7986e 3151{
c1274499 3152 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3153 struct perf_cpu_context *cpuctx;
cdd6c482 3154 struct perf_event *event;
57e7986e
PM
3155 unsigned long flags;
3156 int enabled = 0;
3157
3158 local_irq_save(flags);
c1274499 3159 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3160 if (!ctx || !ctx->nr_events)
57e7986e
PM
3161 goto out;
3162
3e349507
PZ
3163 cpuctx = __get_cpu_context(ctx);
3164 perf_ctx_lock(cpuctx, ctx);
7fce2509 3165 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3e349507
PZ
3166 list_for_each_entry(event, &ctx->event_list, event_entry)
3167 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3168
3169 /*
3e349507 3170 * Unclone and reschedule this context if we enabled any event.
57e7986e 3171 */
3e349507 3172 if (enabled) {
211de6eb 3173 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3174 ctx_resched(cpuctx, ctx);
3175 }
3176 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3177
9ed6060d 3178out:
57e7986e 3179 local_irq_restore(flags);
211de6eb
PZ
3180
3181 if (clone_ctx)
3182 put_ctx(clone_ctx);
57e7986e
PM
3183}
3184
e041e328
PZ
3185void perf_event_exec(void)
3186{
e041e328
PZ
3187 int ctxn;
3188
3189 rcu_read_lock();
c1274499
PZ
3190 for_each_task_context_nr(ctxn)
3191 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3192 rcu_read_unlock();
3193}
3194
0492d4c5
PZ
3195struct perf_read_data {
3196 struct perf_event *event;
3197 bool group;
7d88962e 3198 int ret;
0492d4c5
PZ
3199};
3200
0793a61d 3201/*
cdd6c482 3202 * Cross CPU call to read the hardware event
0793a61d 3203 */
cdd6c482 3204static void __perf_event_read(void *info)
0793a61d 3205{
0492d4c5
PZ
3206 struct perf_read_data *data = info;
3207 struct perf_event *sub, *event = data->event;
cdd6c482 3208 struct perf_event_context *ctx = event->ctx;
108b02cf 3209 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3210 struct pmu *pmu = event->pmu;
621a01ea 3211
e1ac3614
PM
3212 /*
3213 * If this is a task context, we need to check whether it is
3214 * the current task context of this cpu. If not it has been
3215 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3216 * event->count would have been updated to a recent sample
3217 * when the event was scheduled out.
e1ac3614
PM
3218 */
3219 if (ctx->task && cpuctx->task_ctx != ctx)
3220 return;
3221
e625cce1 3222 raw_spin_lock(&ctx->lock);
e5d1367f 3223 if (ctx->is_active) {
542e72fc 3224 update_context_time(ctx);
e5d1367f
SE
3225 update_cgrp_time_from_event(event);
3226 }
0492d4c5 3227
cdd6c482 3228 update_event_times(event);
4a00c16e
SB
3229 if (event->state != PERF_EVENT_STATE_ACTIVE)
3230 goto unlock;
0492d4c5 3231
4a00c16e
SB
3232 if (!data->group) {
3233 pmu->read(event);
3234 data->ret = 0;
0492d4c5 3235 goto unlock;
4a00c16e
SB
3236 }
3237
3238 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3239
3240 pmu->read(event);
0492d4c5
PZ
3241
3242 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3243 update_event_times(sub);
4a00c16e
SB
3244 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3245 /*
3246 * Use sibling's PMU rather than @event's since
3247 * sibling could be on different (eg: software) PMU.
3248 */
0492d4c5 3249 sub->pmu->read(sub);
4a00c16e 3250 }
0492d4c5 3251 }
4a00c16e
SB
3252
3253 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3254
3255unlock:
e625cce1 3256 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3257}
3258
b5e58793
PZ
3259static inline u64 perf_event_count(struct perf_event *event)
3260{
eacd3ecc
MF
3261 if (event->pmu->count)
3262 return event->pmu->count(event);
3263
3264 return __perf_event_count(event);
b5e58793
PZ
3265}
3266
ffe8690c
KX
3267/*
3268 * NMI-safe method to read a local event, that is an event that
3269 * is:
3270 * - either for the current task, or for this CPU
3271 * - does not have inherit set, for inherited task events
3272 * will not be local and we cannot read them atomically
3273 * - must not have a pmu::count method
3274 */
3275u64 perf_event_read_local(struct perf_event *event)
3276{
3277 unsigned long flags;
3278 u64 val;
3279
3280 /*
3281 * Disabling interrupts avoids all counter scheduling (context
3282 * switches, timer based rotation and IPIs).
3283 */
3284 local_irq_save(flags);
3285
3286 /* If this is a per-task event, it must be for current */
3287 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3288 event->hw.target != current);
3289
3290 /* If this is a per-CPU event, it must be for this CPU */
3291 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3292 event->cpu != smp_processor_id());
3293
3294 /*
3295 * It must not be an event with inherit set, we cannot read
3296 * all child counters from atomic context.
3297 */
3298 WARN_ON_ONCE(event->attr.inherit);
3299
3300 /*
3301 * It must not have a pmu::count method, those are not
3302 * NMI safe.
3303 */
3304 WARN_ON_ONCE(event->pmu->count);
3305
3306 /*
3307 * If the event is currently on this CPU, its either a per-task event,
3308 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3309 * oncpu == -1).
3310 */
3311 if (event->oncpu == smp_processor_id())
3312 event->pmu->read(event);
3313
3314 val = local64_read(&event->count);
3315 local_irq_restore(flags);
3316
3317 return val;
3318}
3319
7d88962e 3320static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3321{
7d88962e
SB
3322 int ret = 0;
3323
0793a61d 3324 /*
cdd6c482
IM
3325 * If event is enabled and currently active on a CPU, update the
3326 * value in the event structure:
0793a61d 3327 */
cdd6c482 3328 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3329 struct perf_read_data data = {
3330 .event = event,
3331 .group = group,
7d88962e 3332 .ret = 0,
0492d4c5 3333 };
cdd6c482 3334 smp_call_function_single(event->oncpu,
0492d4c5 3335 __perf_event_read, &data, 1);
7d88962e 3336 ret = data.ret;
cdd6c482 3337 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3338 struct perf_event_context *ctx = event->ctx;
3339 unsigned long flags;
3340
e625cce1 3341 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3342 /*
3343 * may read while context is not active
3344 * (e.g., thread is blocked), in that case
3345 * we cannot update context time
3346 */
e5d1367f 3347 if (ctx->is_active) {
c530ccd9 3348 update_context_time(ctx);
e5d1367f
SE
3349 update_cgrp_time_from_event(event);
3350 }
0492d4c5
PZ
3351 if (group)
3352 update_group_times(event);
3353 else
3354 update_event_times(event);
e625cce1 3355 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3356 }
7d88962e
SB
3357
3358 return ret;
0793a61d
TG
3359}
3360
a63eaf34 3361/*
cdd6c482 3362 * Initialize the perf_event context in a task_struct:
a63eaf34 3363 */
eb184479 3364static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3365{
e625cce1 3366 raw_spin_lock_init(&ctx->lock);
a63eaf34 3367 mutex_init(&ctx->mutex);
2fde4f94 3368 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3369 INIT_LIST_HEAD(&ctx->pinned_groups);
3370 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3371 INIT_LIST_HEAD(&ctx->event_list);
3372 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3373}
3374
3375static struct perf_event_context *
3376alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3377{
3378 struct perf_event_context *ctx;
3379
3380 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3381 if (!ctx)
3382 return NULL;
3383
3384 __perf_event_init_context(ctx);
3385 if (task) {
3386 ctx->task = task;
3387 get_task_struct(task);
0793a61d 3388 }
eb184479
PZ
3389 ctx->pmu = pmu;
3390
3391 return ctx;
a63eaf34
PM
3392}
3393
2ebd4ffb
MH
3394static struct task_struct *
3395find_lively_task_by_vpid(pid_t vpid)
3396{
3397 struct task_struct *task;
3398 int err;
0793a61d
TG
3399
3400 rcu_read_lock();
2ebd4ffb 3401 if (!vpid)
0793a61d
TG
3402 task = current;
3403 else
2ebd4ffb 3404 task = find_task_by_vpid(vpid);
0793a61d
TG
3405 if (task)
3406 get_task_struct(task);
3407 rcu_read_unlock();
3408
3409 if (!task)
3410 return ERR_PTR(-ESRCH);
3411
0793a61d 3412 /* Reuse ptrace permission checks for now. */
c93f7669 3413 err = -EACCES;
caaee623 3414 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
c93f7669
PM
3415 goto errout;
3416
2ebd4ffb
MH
3417 return task;
3418errout:
3419 put_task_struct(task);
3420 return ERR_PTR(err);
3421
3422}
3423
fe4b04fa
PZ
3424/*
3425 * Returns a matching context with refcount and pincount.
3426 */
108b02cf 3427static struct perf_event_context *
4af57ef2
YZ
3428find_get_context(struct pmu *pmu, struct task_struct *task,
3429 struct perf_event *event)
0793a61d 3430{
211de6eb 3431 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3432 struct perf_cpu_context *cpuctx;
4af57ef2 3433 void *task_ctx_data = NULL;
25346b93 3434 unsigned long flags;
8dc85d54 3435 int ctxn, err;
4af57ef2 3436 int cpu = event->cpu;
0793a61d 3437
22a4ec72 3438 if (!task) {
cdd6c482 3439 /* Must be root to operate on a CPU event: */
0764771d 3440 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3441 return ERR_PTR(-EACCES);
3442
0793a61d 3443 /*
cdd6c482 3444 * We could be clever and allow to attach a event to an
0793a61d
TG
3445 * offline CPU and activate it when the CPU comes up, but
3446 * that's for later.
3447 */
f6325e30 3448 if (!cpu_online(cpu))
0793a61d
TG
3449 return ERR_PTR(-ENODEV);
3450
108b02cf 3451 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3452 ctx = &cpuctx->ctx;
c93f7669 3453 get_ctx(ctx);
fe4b04fa 3454 ++ctx->pin_count;
0793a61d 3455
0793a61d
TG
3456 return ctx;
3457 }
3458
8dc85d54
PZ
3459 err = -EINVAL;
3460 ctxn = pmu->task_ctx_nr;
3461 if (ctxn < 0)
3462 goto errout;
3463
4af57ef2
YZ
3464 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3465 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3466 if (!task_ctx_data) {
3467 err = -ENOMEM;
3468 goto errout;
3469 }
3470 }
3471
9ed6060d 3472retry:
8dc85d54 3473 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3474 if (ctx) {
211de6eb 3475 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3476 ++ctx->pin_count;
4af57ef2
YZ
3477
3478 if (task_ctx_data && !ctx->task_ctx_data) {
3479 ctx->task_ctx_data = task_ctx_data;
3480 task_ctx_data = NULL;
3481 }
e625cce1 3482 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3483
3484 if (clone_ctx)
3485 put_ctx(clone_ctx);
9137fb28 3486 } else {
eb184479 3487 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3488 err = -ENOMEM;
3489 if (!ctx)
3490 goto errout;
eb184479 3491
4af57ef2
YZ
3492 if (task_ctx_data) {
3493 ctx->task_ctx_data = task_ctx_data;
3494 task_ctx_data = NULL;
3495 }
3496
dbe08d82
ON
3497 err = 0;
3498 mutex_lock(&task->perf_event_mutex);
3499 /*
3500 * If it has already passed perf_event_exit_task().
3501 * we must see PF_EXITING, it takes this mutex too.
3502 */
3503 if (task->flags & PF_EXITING)
3504 err = -ESRCH;
3505 else if (task->perf_event_ctxp[ctxn])
3506 err = -EAGAIN;
fe4b04fa 3507 else {
9137fb28 3508 get_ctx(ctx);
fe4b04fa 3509 ++ctx->pin_count;
dbe08d82 3510 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3511 }
dbe08d82
ON
3512 mutex_unlock(&task->perf_event_mutex);
3513
3514 if (unlikely(err)) {
9137fb28 3515 put_ctx(ctx);
dbe08d82
ON
3516
3517 if (err == -EAGAIN)
3518 goto retry;
3519 goto errout;
a63eaf34
PM
3520 }
3521 }
3522
4af57ef2 3523 kfree(task_ctx_data);
0793a61d 3524 return ctx;
c93f7669 3525
9ed6060d 3526errout:
4af57ef2 3527 kfree(task_ctx_data);
c93f7669 3528 return ERR_PTR(err);
0793a61d
TG
3529}
3530
6fb2915d 3531static void perf_event_free_filter(struct perf_event *event);
2541517c 3532static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3533
cdd6c482 3534static void free_event_rcu(struct rcu_head *head)
592903cd 3535{
cdd6c482 3536 struct perf_event *event;
592903cd 3537
cdd6c482
IM
3538 event = container_of(head, struct perf_event, rcu_head);
3539 if (event->ns)
3540 put_pid_ns(event->ns);
6fb2915d 3541 perf_event_free_filter(event);
cdd6c482 3542 kfree(event);
592903cd
PZ
3543}
3544
b69cf536
PZ
3545static void ring_buffer_attach(struct perf_event *event,
3546 struct ring_buffer *rb);
925d519a 3547
4beb31f3 3548static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3549{
4beb31f3
FW
3550 if (event->parent)
3551 return;
3552
4beb31f3
FW
3553 if (is_cgroup_event(event))
3554 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3555}
925d519a 3556
555e0c1e
FW
3557#ifdef CONFIG_NO_HZ_FULL
3558static DEFINE_SPINLOCK(nr_freq_lock);
3559#endif
3560
3561static void unaccount_freq_event_nohz(void)
3562{
3563#ifdef CONFIG_NO_HZ_FULL
3564 spin_lock(&nr_freq_lock);
3565 if (atomic_dec_and_test(&nr_freq_events))
3566 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3567 spin_unlock(&nr_freq_lock);
3568#endif
3569}
3570
3571static void unaccount_freq_event(void)
3572{
3573 if (tick_nohz_full_enabled())
3574 unaccount_freq_event_nohz();
3575 else
3576 atomic_dec(&nr_freq_events);
3577}
3578
4beb31f3
FW
3579static void unaccount_event(struct perf_event *event)
3580{
25432ae9
PZ
3581 bool dec = false;
3582
4beb31f3
FW
3583 if (event->parent)
3584 return;
3585
3586 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3587 dec = true;
4beb31f3
FW
3588 if (event->attr.mmap || event->attr.mmap_data)
3589 atomic_dec(&nr_mmap_events);
3590 if (event->attr.comm)
3591 atomic_dec(&nr_comm_events);
3592 if (event->attr.task)
3593 atomic_dec(&nr_task_events);
948b26b6 3594 if (event->attr.freq)
555e0c1e 3595 unaccount_freq_event();
45ac1403 3596 if (event->attr.context_switch) {
25432ae9 3597 dec = true;
45ac1403
AH
3598 atomic_dec(&nr_switch_events);
3599 }
4beb31f3 3600 if (is_cgroup_event(event))
25432ae9 3601 dec = true;
4beb31f3 3602 if (has_branch_stack(event))
25432ae9
PZ
3603 dec = true;
3604
9107c89e
PZ
3605 if (dec) {
3606 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3607 schedule_delayed_work(&perf_sched_work, HZ);
3608 }
4beb31f3
FW
3609
3610 unaccount_event_cpu(event, event->cpu);
3611}
925d519a 3612
9107c89e
PZ
3613static void perf_sched_delayed(struct work_struct *work)
3614{
3615 mutex_lock(&perf_sched_mutex);
3616 if (atomic_dec_and_test(&perf_sched_count))
3617 static_branch_disable(&perf_sched_events);
3618 mutex_unlock(&perf_sched_mutex);
3619}
3620
bed5b25a
AS
3621/*
3622 * The following implement mutual exclusion of events on "exclusive" pmus
3623 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3624 * at a time, so we disallow creating events that might conflict, namely:
3625 *
3626 * 1) cpu-wide events in the presence of per-task events,
3627 * 2) per-task events in the presence of cpu-wide events,
3628 * 3) two matching events on the same context.
3629 *
3630 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3631 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3632 */
3633static int exclusive_event_init(struct perf_event *event)
3634{
3635 struct pmu *pmu = event->pmu;
3636
3637 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3638 return 0;
3639
3640 /*
3641 * Prevent co-existence of per-task and cpu-wide events on the
3642 * same exclusive pmu.
3643 *
3644 * Negative pmu::exclusive_cnt means there are cpu-wide
3645 * events on this "exclusive" pmu, positive means there are
3646 * per-task events.
3647 *
3648 * Since this is called in perf_event_alloc() path, event::ctx
3649 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3650 * to mean "per-task event", because unlike other attach states it
3651 * never gets cleared.
3652 */
3653 if (event->attach_state & PERF_ATTACH_TASK) {
3654 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3655 return -EBUSY;
3656 } else {
3657 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3658 return -EBUSY;
3659 }
3660
3661 return 0;
3662}
3663
3664static void exclusive_event_destroy(struct perf_event *event)
3665{
3666 struct pmu *pmu = event->pmu;
3667
3668 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3669 return;
3670
3671 /* see comment in exclusive_event_init() */
3672 if (event->attach_state & PERF_ATTACH_TASK)
3673 atomic_dec(&pmu->exclusive_cnt);
3674 else
3675 atomic_inc(&pmu->exclusive_cnt);
3676}
3677
3678static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3679{
3680 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3681 (e1->cpu == e2->cpu ||
3682 e1->cpu == -1 ||
3683 e2->cpu == -1))
3684 return true;
3685 return false;
3686}
3687
3688/* Called under the same ctx::mutex as perf_install_in_context() */
3689static bool exclusive_event_installable(struct perf_event *event,
3690 struct perf_event_context *ctx)
3691{
3692 struct perf_event *iter_event;
3693 struct pmu *pmu = event->pmu;
3694
3695 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3696 return true;
3697
3698 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3699 if (exclusive_event_match(iter_event, event))
3700 return false;
3701 }
3702
3703 return true;
3704}
3705
683ede43 3706static void _free_event(struct perf_event *event)
f1600952 3707{
e360adbe 3708 irq_work_sync(&event->pending);
925d519a 3709
4beb31f3 3710 unaccount_event(event);
9ee318a7 3711
76369139 3712 if (event->rb) {
9bb5d40c
PZ
3713 /*
3714 * Can happen when we close an event with re-directed output.
3715 *
3716 * Since we have a 0 refcount, perf_mmap_close() will skip
3717 * over us; possibly making our ring_buffer_put() the last.
3718 */
3719 mutex_lock(&event->mmap_mutex);
b69cf536 3720 ring_buffer_attach(event, NULL);
9bb5d40c 3721 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3722 }
3723
e5d1367f
SE
3724 if (is_cgroup_event(event))
3725 perf_detach_cgroup(event);
3726
a0733e69
PZ
3727 if (!event->parent) {
3728 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3729 put_callchain_buffers();
3730 }
3731
3732 perf_event_free_bpf_prog(event);
3733
3734 if (event->destroy)
3735 event->destroy(event);
3736
3737 if (event->ctx)
3738 put_ctx(event->ctx);
3739
3740 if (event->pmu) {
3741 exclusive_event_destroy(event);
3742 module_put(event->pmu->module);
3743 }
3744
3745 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3746}
3747
683ede43
PZ
3748/*
3749 * Used to free events which have a known refcount of 1, such as in error paths
3750 * where the event isn't exposed yet and inherited events.
3751 */
3752static void free_event(struct perf_event *event)
0793a61d 3753{
683ede43
PZ
3754 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3755 "unexpected event refcount: %ld; ptr=%p\n",
3756 atomic_long_read(&event->refcount), event)) {
3757 /* leak to avoid use-after-free */
3758 return;
3759 }
0793a61d 3760
683ede43 3761 _free_event(event);
0793a61d
TG
3762}
3763
a66a3052 3764/*
f8697762 3765 * Remove user event from the owner task.
a66a3052 3766 */
f8697762 3767static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3768{
8882135b 3769 struct task_struct *owner;
fb0459d7 3770
8882135b 3771 rcu_read_lock();
8882135b 3772 /*
f47c02c0
PZ
3773 * Matches the smp_store_release() in perf_event_exit_task(). If we
3774 * observe !owner it means the list deletion is complete and we can
3775 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
3776 * owner->perf_event_mutex.
3777 */
f47c02c0 3778 owner = lockless_dereference(event->owner);
8882135b
PZ
3779 if (owner) {
3780 /*
3781 * Since delayed_put_task_struct() also drops the last
3782 * task reference we can safely take a new reference
3783 * while holding the rcu_read_lock().
3784 */
3785 get_task_struct(owner);
3786 }
3787 rcu_read_unlock();
3788
3789 if (owner) {
f63a8daa
PZ
3790 /*
3791 * If we're here through perf_event_exit_task() we're already
3792 * holding ctx->mutex which would be an inversion wrt. the
3793 * normal lock order.
3794 *
3795 * However we can safely take this lock because its the child
3796 * ctx->mutex.
3797 */
3798 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3799
8882135b
PZ
3800 /*
3801 * We have to re-check the event->owner field, if it is cleared
3802 * we raced with perf_event_exit_task(), acquiring the mutex
3803 * ensured they're done, and we can proceed with freeing the
3804 * event.
3805 */
f47c02c0 3806 if (event->owner) {
8882135b 3807 list_del_init(&event->owner_entry);
f47c02c0
PZ
3808 smp_store_release(&event->owner, NULL);
3809 }
8882135b
PZ
3810 mutex_unlock(&owner->perf_event_mutex);
3811 put_task_struct(owner);
3812 }
f8697762
JO
3813}
3814
f8697762
JO
3815static void put_event(struct perf_event *event)
3816{
f8697762
JO
3817 if (!atomic_long_dec_and_test(&event->refcount))
3818 return;
3819
c6e5b732
PZ
3820 _free_event(event);
3821}
3822
3823/*
3824 * Kill an event dead; while event:refcount will preserve the event
3825 * object, it will not preserve its functionality. Once the last 'user'
3826 * gives up the object, we'll destroy the thing.
3827 */
3828int perf_event_release_kernel(struct perf_event *event)
3829{
a4f4bb6d 3830 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
3831 struct perf_event *child, *tmp;
3832
a4f4bb6d
PZ
3833 /*
3834 * If we got here through err_file: fput(event_file); we will not have
3835 * attached to a context yet.
3836 */
3837 if (!ctx) {
3838 WARN_ON_ONCE(event->attach_state &
3839 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3840 goto no_ctx;
3841 }
3842
f8697762
JO
3843 if (!is_kernel_event(event))
3844 perf_remove_from_owner(event);
8882135b 3845
5fa7c8ec 3846 ctx = perf_event_ctx_lock(event);
a83fe28e 3847 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 3848 perf_remove_from_context(event, DETACH_GROUP);
683ede43 3849
a69b0ca4 3850 raw_spin_lock_irq(&ctx->lock);
683ede43 3851 /*
a69b0ca4
PZ
3852 * Mark this even as STATE_DEAD, there is no external reference to it
3853 * anymore.
683ede43 3854 *
a69b0ca4
PZ
3855 * Anybody acquiring event->child_mutex after the below loop _must_
3856 * also see this, most importantly inherit_event() which will avoid
3857 * placing more children on the list.
683ede43 3858 *
c6e5b732
PZ
3859 * Thus this guarantees that we will in fact observe and kill _ALL_
3860 * child events.
683ede43 3861 */
a69b0ca4
PZ
3862 event->state = PERF_EVENT_STATE_DEAD;
3863 raw_spin_unlock_irq(&ctx->lock);
3864
3865 perf_event_ctx_unlock(event, ctx);
683ede43 3866
c6e5b732
PZ
3867again:
3868 mutex_lock(&event->child_mutex);
3869 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 3870
c6e5b732
PZ
3871 /*
3872 * Cannot change, child events are not migrated, see the
3873 * comment with perf_event_ctx_lock_nested().
3874 */
3875 ctx = lockless_dereference(child->ctx);
3876 /*
3877 * Since child_mutex nests inside ctx::mutex, we must jump
3878 * through hoops. We start by grabbing a reference on the ctx.
3879 *
3880 * Since the event cannot get freed while we hold the
3881 * child_mutex, the context must also exist and have a !0
3882 * reference count.
3883 */
3884 get_ctx(ctx);
3885
3886 /*
3887 * Now that we have a ctx ref, we can drop child_mutex, and
3888 * acquire ctx::mutex without fear of it going away. Then we
3889 * can re-acquire child_mutex.
3890 */
3891 mutex_unlock(&event->child_mutex);
3892 mutex_lock(&ctx->mutex);
3893 mutex_lock(&event->child_mutex);
3894
3895 /*
3896 * Now that we hold ctx::mutex and child_mutex, revalidate our
3897 * state, if child is still the first entry, it didn't get freed
3898 * and we can continue doing so.
3899 */
3900 tmp = list_first_entry_or_null(&event->child_list,
3901 struct perf_event, child_list);
3902 if (tmp == child) {
3903 perf_remove_from_context(child, DETACH_GROUP);
3904 list_del(&child->child_list);
3905 free_event(child);
3906 /*
3907 * This matches the refcount bump in inherit_event();
3908 * this can't be the last reference.
3909 */
3910 put_event(event);
3911 }
3912
3913 mutex_unlock(&event->child_mutex);
3914 mutex_unlock(&ctx->mutex);
3915 put_ctx(ctx);
3916 goto again;
3917 }
3918 mutex_unlock(&event->child_mutex);
3919
a4f4bb6d
PZ
3920no_ctx:
3921 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
3922 return 0;
3923}
3924EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3925
8b10c5e2
PZ
3926/*
3927 * Called when the last reference to the file is gone.
3928 */
a6fa941d
AV
3929static int perf_release(struct inode *inode, struct file *file)
3930{
c6e5b732 3931 perf_event_release_kernel(file->private_data);
a6fa941d 3932 return 0;
fb0459d7 3933}
fb0459d7 3934
59ed446f 3935u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3936{
cdd6c482 3937 struct perf_event *child;
e53c0994
PZ
3938 u64 total = 0;
3939
59ed446f
PZ
3940 *enabled = 0;
3941 *running = 0;
3942
6f10581a 3943 mutex_lock(&event->child_mutex);
01add3ea 3944
7d88962e 3945 (void)perf_event_read(event, false);
01add3ea
SB
3946 total += perf_event_count(event);
3947
59ed446f
PZ
3948 *enabled += event->total_time_enabled +
3949 atomic64_read(&event->child_total_time_enabled);
3950 *running += event->total_time_running +
3951 atomic64_read(&event->child_total_time_running);
3952
3953 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3954 (void)perf_event_read(child, false);
01add3ea 3955 total += perf_event_count(child);
59ed446f
PZ
3956 *enabled += child->total_time_enabled;
3957 *running += child->total_time_running;
3958 }
6f10581a 3959 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3960
3961 return total;
3962}
fb0459d7 3963EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3964
7d88962e 3965static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3966 u64 read_format, u64 *values)
3dab77fb 3967{
fa8c2693
PZ
3968 struct perf_event *sub;
3969 int n = 1; /* skip @nr */
7d88962e 3970 int ret;
f63a8daa 3971
7d88962e
SB
3972 ret = perf_event_read(leader, true);
3973 if (ret)
3974 return ret;
abf4868b 3975
fa8c2693
PZ
3976 /*
3977 * Since we co-schedule groups, {enabled,running} times of siblings
3978 * will be identical to those of the leader, so we only publish one
3979 * set.
3980 */
3981 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3982 values[n++] += leader->total_time_enabled +
3983 atomic64_read(&leader->child_total_time_enabled);
3984 }
3dab77fb 3985
fa8c2693
PZ
3986 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3987 values[n++] += leader->total_time_running +
3988 atomic64_read(&leader->child_total_time_running);
3989 }
3990
3991 /*
3992 * Write {count,id} tuples for every sibling.
3993 */
3994 values[n++] += perf_event_count(leader);
abf4868b
PZ
3995 if (read_format & PERF_FORMAT_ID)
3996 values[n++] = primary_event_id(leader);
3dab77fb 3997
fa8c2693
PZ
3998 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3999 values[n++] += perf_event_count(sub);
4000 if (read_format & PERF_FORMAT_ID)
4001 values[n++] = primary_event_id(sub);
4002 }
7d88962e
SB
4003
4004 return 0;
fa8c2693 4005}
3dab77fb 4006
fa8c2693
PZ
4007static int perf_read_group(struct perf_event *event,
4008 u64 read_format, char __user *buf)
4009{
4010 struct perf_event *leader = event->group_leader, *child;
4011 struct perf_event_context *ctx = leader->ctx;
7d88962e 4012 int ret;
fa8c2693 4013 u64 *values;
3dab77fb 4014
fa8c2693 4015 lockdep_assert_held(&ctx->mutex);
3dab77fb 4016
fa8c2693
PZ
4017 values = kzalloc(event->read_size, GFP_KERNEL);
4018 if (!values)
4019 return -ENOMEM;
3dab77fb 4020
fa8c2693
PZ
4021 values[0] = 1 + leader->nr_siblings;
4022
4023 /*
4024 * By locking the child_mutex of the leader we effectively
4025 * lock the child list of all siblings.. XXX explain how.
4026 */
4027 mutex_lock(&leader->child_mutex);
abf4868b 4028
7d88962e
SB
4029 ret = __perf_read_group_add(leader, read_format, values);
4030 if (ret)
4031 goto unlock;
4032
4033 list_for_each_entry(child, &leader->child_list, child_list) {
4034 ret = __perf_read_group_add(child, read_format, values);
4035 if (ret)
4036 goto unlock;
4037 }
abf4868b 4038
fa8c2693 4039 mutex_unlock(&leader->child_mutex);
abf4868b 4040
7d88962e 4041 ret = event->read_size;
fa8c2693
PZ
4042 if (copy_to_user(buf, values, event->read_size))
4043 ret = -EFAULT;
7d88962e 4044 goto out;
fa8c2693 4045
7d88962e
SB
4046unlock:
4047 mutex_unlock(&leader->child_mutex);
4048out:
fa8c2693 4049 kfree(values);
abf4868b 4050 return ret;
3dab77fb
PZ
4051}
4052
b15f495b 4053static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4054 u64 read_format, char __user *buf)
4055{
59ed446f 4056 u64 enabled, running;
3dab77fb
PZ
4057 u64 values[4];
4058 int n = 0;
4059
59ed446f
PZ
4060 values[n++] = perf_event_read_value(event, &enabled, &running);
4061 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4062 values[n++] = enabled;
4063 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4064 values[n++] = running;
3dab77fb 4065 if (read_format & PERF_FORMAT_ID)
cdd6c482 4066 values[n++] = primary_event_id(event);
3dab77fb
PZ
4067
4068 if (copy_to_user(buf, values, n * sizeof(u64)))
4069 return -EFAULT;
4070
4071 return n * sizeof(u64);
4072}
4073
dc633982
JO
4074static bool is_event_hup(struct perf_event *event)
4075{
4076 bool no_children;
4077
a69b0ca4 4078 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4079 return false;
4080
4081 mutex_lock(&event->child_mutex);
4082 no_children = list_empty(&event->child_list);
4083 mutex_unlock(&event->child_mutex);
4084 return no_children;
4085}
4086
0793a61d 4087/*
cdd6c482 4088 * Read the performance event - simple non blocking version for now
0793a61d
TG
4089 */
4090static ssize_t
b15f495b 4091__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4092{
cdd6c482 4093 u64 read_format = event->attr.read_format;
3dab77fb 4094 int ret;
0793a61d 4095
3b6f9e5c 4096 /*
cdd6c482 4097 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4098 * error state (i.e. because it was pinned but it couldn't be
4099 * scheduled on to the CPU at some point).
4100 */
cdd6c482 4101 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4102 return 0;
4103
c320c7b7 4104 if (count < event->read_size)
3dab77fb
PZ
4105 return -ENOSPC;
4106
cdd6c482 4107 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4108 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4109 ret = perf_read_group(event, read_format, buf);
3dab77fb 4110 else
b15f495b 4111 ret = perf_read_one(event, read_format, buf);
0793a61d 4112
3dab77fb 4113 return ret;
0793a61d
TG
4114}
4115
0793a61d
TG
4116static ssize_t
4117perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4118{
cdd6c482 4119 struct perf_event *event = file->private_data;
f63a8daa
PZ
4120 struct perf_event_context *ctx;
4121 int ret;
0793a61d 4122
f63a8daa 4123 ctx = perf_event_ctx_lock(event);
b15f495b 4124 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4125 perf_event_ctx_unlock(event, ctx);
4126
4127 return ret;
0793a61d
TG
4128}
4129
4130static unsigned int perf_poll(struct file *file, poll_table *wait)
4131{
cdd6c482 4132 struct perf_event *event = file->private_data;
76369139 4133 struct ring_buffer *rb;
61b67684 4134 unsigned int events = POLLHUP;
c7138f37 4135
e708d7ad 4136 poll_wait(file, &event->waitq, wait);
179033b3 4137
dc633982 4138 if (is_event_hup(event))
179033b3 4139 return events;
c7138f37 4140
10c6db11 4141 /*
9bb5d40c
PZ
4142 * Pin the event->rb by taking event->mmap_mutex; otherwise
4143 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4144 */
4145 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4146 rb = event->rb;
4147 if (rb)
76369139 4148 events = atomic_xchg(&rb->poll, 0);
10c6db11 4149 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4150 return events;
4151}
4152
f63a8daa 4153static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4154{
7d88962e 4155 (void)perf_event_read(event, false);
e7850595 4156 local64_set(&event->count, 0);
cdd6c482 4157 perf_event_update_userpage(event);
3df5edad
PZ
4158}
4159
c93f7669 4160/*
cdd6c482
IM
4161 * Holding the top-level event's child_mutex means that any
4162 * descendant process that has inherited this event will block
8ba289b8 4163 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4164 * task existence requirements of perf_event_enable/disable.
c93f7669 4165 */
cdd6c482
IM
4166static void perf_event_for_each_child(struct perf_event *event,
4167 void (*func)(struct perf_event *))
3df5edad 4168{
cdd6c482 4169 struct perf_event *child;
3df5edad 4170
cdd6c482 4171 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4172
cdd6c482
IM
4173 mutex_lock(&event->child_mutex);
4174 func(event);
4175 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4176 func(child);
cdd6c482 4177 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4178}
4179
cdd6c482
IM
4180static void perf_event_for_each(struct perf_event *event,
4181 void (*func)(struct perf_event *))
3df5edad 4182{
cdd6c482
IM
4183 struct perf_event_context *ctx = event->ctx;
4184 struct perf_event *sibling;
3df5edad 4185
f63a8daa
PZ
4186 lockdep_assert_held(&ctx->mutex);
4187
cdd6c482 4188 event = event->group_leader;
75f937f2 4189
cdd6c482 4190 perf_event_for_each_child(event, func);
cdd6c482 4191 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4192 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4193}
4194
fae3fde6
PZ
4195static void __perf_event_period(struct perf_event *event,
4196 struct perf_cpu_context *cpuctx,
4197 struct perf_event_context *ctx,
4198 void *info)
c7999c6f 4199{
fae3fde6 4200 u64 value = *((u64 *)info);
c7999c6f 4201 bool active;
08247e31 4202
cdd6c482 4203 if (event->attr.freq) {
cdd6c482 4204 event->attr.sample_freq = value;
08247e31 4205 } else {
cdd6c482
IM
4206 event->attr.sample_period = value;
4207 event->hw.sample_period = value;
08247e31 4208 }
bad7192b
PZ
4209
4210 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4211 if (active) {
4212 perf_pmu_disable(ctx->pmu);
4213 event->pmu->stop(event, PERF_EF_UPDATE);
4214 }
4215
4216 local64_set(&event->hw.period_left, 0);
4217
4218 if (active) {
4219 event->pmu->start(event, PERF_EF_RELOAD);
4220 perf_pmu_enable(ctx->pmu);
4221 }
c7999c6f
PZ
4222}
4223
4224static int perf_event_period(struct perf_event *event, u64 __user *arg)
4225{
c7999c6f
PZ
4226 u64 value;
4227
4228 if (!is_sampling_event(event))
4229 return -EINVAL;
4230
4231 if (copy_from_user(&value, arg, sizeof(value)))
4232 return -EFAULT;
4233
4234 if (!value)
4235 return -EINVAL;
4236
4237 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4238 return -EINVAL;
4239
fae3fde6 4240 event_function_call(event, __perf_event_period, &value);
08247e31 4241
c7999c6f 4242 return 0;
08247e31
PZ
4243}
4244
ac9721f3
PZ
4245static const struct file_operations perf_fops;
4246
2903ff01 4247static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4248{
2903ff01
AV
4249 struct fd f = fdget(fd);
4250 if (!f.file)
4251 return -EBADF;
ac9721f3 4252
2903ff01
AV
4253 if (f.file->f_op != &perf_fops) {
4254 fdput(f);
4255 return -EBADF;
ac9721f3 4256 }
2903ff01
AV
4257 *p = f;
4258 return 0;
ac9721f3
PZ
4259}
4260
4261static int perf_event_set_output(struct perf_event *event,
4262 struct perf_event *output_event);
6fb2915d 4263static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4264static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4265
f63a8daa 4266static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4267{
cdd6c482 4268 void (*func)(struct perf_event *);
3df5edad 4269 u32 flags = arg;
d859e29f
PM
4270
4271 switch (cmd) {
cdd6c482 4272 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4273 func = _perf_event_enable;
d859e29f 4274 break;
cdd6c482 4275 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4276 func = _perf_event_disable;
79f14641 4277 break;
cdd6c482 4278 case PERF_EVENT_IOC_RESET:
f63a8daa 4279 func = _perf_event_reset;
6de6a7b9 4280 break;
3df5edad 4281
cdd6c482 4282 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4283 return _perf_event_refresh(event, arg);
08247e31 4284
cdd6c482
IM
4285 case PERF_EVENT_IOC_PERIOD:
4286 return perf_event_period(event, (u64 __user *)arg);
08247e31 4287
cf4957f1
JO
4288 case PERF_EVENT_IOC_ID:
4289 {
4290 u64 id = primary_event_id(event);
4291
4292 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4293 return -EFAULT;
4294 return 0;
4295 }
4296
cdd6c482 4297 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4298 {
ac9721f3 4299 int ret;
ac9721f3 4300 if (arg != -1) {
2903ff01
AV
4301 struct perf_event *output_event;
4302 struct fd output;
4303 ret = perf_fget_light(arg, &output);
4304 if (ret)
4305 return ret;
4306 output_event = output.file->private_data;
4307 ret = perf_event_set_output(event, output_event);
4308 fdput(output);
4309 } else {
4310 ret = perf_event_set_output(event, NULL);
ac9721f3 4311 }
ac9721f3
PZ
4312 return ret;
4313 }
a4be7c27 4314
6fb2915d
LZ
4315 case PERF_EVENT_IOC_SET_FILTER:
4316 return perf_event_set_filter(event, (void __user *)arg);
4317
2541517c
AS
4318 case PERF_EVENT_IOC_SET_BPF:
4319 return perf_event_set_bpf_prog(event, arg);
4320
d859e29f 4321 default:
3df5edad 4322 return -ENOTTY;
d859e29f 4323 }
3df5edad
PZ
4324
4325 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4326 perf_event_for_each(event, func);
3df5edad 4327 else
cdd6c482 4328 perf_event_for_each_child(event, func);
3df5edad
PZ
4329
4330 return 0;
d859e29f
PM
4331}
4332
f63a8daa
PZ
4333static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4334{
4335 struct perf_event *event = file->private_data;
4336 struct perf_event_context *ctx;
4337 long ret;
4338
4339 ctx = perf_event_ctx_lock(event);
4340 ret = _perf_ioctl(event, cmd, arg);
4341 perf_event_ctx_unlock(event, ctx);
4342
4343 return ret;
4344}
4345
b3f20785
PM
4346#ifdef CONFIG_COMPAT
4347static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4348 unsigned long arg)
4349{
4350 switch (_IOC_NR(cmd)) {
4351 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4352 case _IOC_NR(PERF_EVENT_IOC_ID):
4353 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4354 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4355 cmd &= ~IOCSIZE_MASK;
4356 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4357 }
4358 break;
4359 }
4360 return perf_ioctl(file, cmd, arg);
4361}
4362#else
4363# define perf_compat_ioctl NULL
4364#endif
4365
cdd6c482 4366int perf_event_task_enable(void)
771d7cde 4367{
f63a8daa 4368 struct perf_event_context *ctx;
cdd6c482 4369 struct perf_event *event;
771d7cde 4370
cdd6c482 4371 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4372 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4373 ctx = perf_event_ctx_lock(event);
4374 perf_event_for_each_child(event, _perf_event_enable);
4375 perf_event_ctx_unlock(event, ctx);
4376 }
cdd6c482 4377 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4378
4379 return 0;
4380}
4381
cdd6c482 4382int perf_event_task_disable(void)
771d7cde 4383{
f63a8daa 4384 struct perf_event_context *ctx;
cdd6c482 4385 struct perf_event *event;
771d7cde 4386
cdd6c482 4387 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4388 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4389 ctx = perf_event_ctx_lock(event);
4390 perf_event_for_each_child(event, _perf_event_disable);
4391 perf_event_ctx_unlock(event, ctx);
4392 }
cdd6c482 4393 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4394
4395 return 0;
4396}
4397
cdd6c482 4398static int perf_event_index(struct perf_event *event)
194002b2 4399{
a4eaf7f1
PZ
4400 if (event->hw.state & PERF_HES_STOPPED)
4401 return 0;
4402
cdd6c482 4403 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4404 return 0;
4405
35edc2a5 4406 return event->pmu->event_idx(event);
194002b2
PZ
4407}
4408
c4794295 4409static void calc_timer_values(struct perf_event *event,
e3f3541c 4410 u64 *now,
7f310a5d
EM
4411 u64 *enabled,
4412 u64 *running)
c4794295 4413{
e3f3541c 4414 u64 ctx_time;
c4794295 4415
e3f3541c
PZ
4416 *now = perf_clock();
4417 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4418 *enabled = ctx_time - event->tstamp_enabled;
4419 *running = ctx_time - event->tstamp_running;
4420}
4421
fa731587
PZ
4422static void perf_event_init_userpage(struct perf_event *event)
4423{
4424 struct perf_event_mmap_page *userpg;
4425 struct ring_buffer *rb;
4426
4427 rcu_read_lock();
4428 rb = rcu_dereference(event->rb);
4429 if (!rb)
4430 goto unlock;
4431
4432 userpg = rb->user_page;
4433
4434 /* Allow new userspace to detect that bit 0 is deprecated */
4435 userpg->cap_bit0_is_deprecated = 1;
4436 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4437 userpg->data_offset = PAGE_SIZE;
4438 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4439
4440unlock:
4441 rcu_read_unlock();
4442}
4443
c1317ec2
AL
4444void __weak arch_perf_update_userpage(
4445 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4446{
4447}
4448
38ff667b
PZ
4449/*
4450 * Callers need to ensure there can be no nesting of this function, otherwise
4451 * the seqlock logic goes bad. We can not serialize this because the arch
4452 * code calls this from NMI context.
4453 */
cdd6c482 4454void perf_event_update_userpage(struct perf_event *event)
37d81828 4455{
cdd6c482 4456 struct perf_event_mmap_page *userpg;
76369139 4457 struct ring_buffer *rb;
e3f3541c 4458 u64 enabled, running, now;
38ff667b
PZ
4459
4460 rcu_read_lock();
5ec4c599
PZ
4461 rb = rcu_dereference(event->rb);
4462 if (!rb)
4463 goto unlock;
4464
0d641208
EM
4465 /*
4466 * compute total_time_enabled, total_time_running
4467 * based on snapshot values taken when the event
4468 * was last scheduled in.
4469 *
4470 * we cannot simply called update_context_time()
4471 * because of locking issue as we can be called in
4472 * NMI context
4473 */
e3f3541c 4474 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4475
76369139 4476 userpg = rb->user_page;
7b732a75
PZ
4477 /*
4478 * Disable preemption so as to not let the corresponding user-space
4479 * spin too long if we get preempted.
4480 */
4481 preempt_disable();
37d81828 4482 ++userpg->lock;
92f22a38 4483 barrier();
cdd6c482 4484 userpg->index = perf_event_index(event);
b5e58793 4485 userpg->offset = perf_event_count(event);
365a4038 4486 if (userpg->index)
e7850595 4487 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4488
0d641208 4489 userpg->time_enabled = enabled +
cdd6c482 4490 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4491
0d641208 4492 userpg->time_running = running +
cdd6c482 4493 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4494
c1317ec2 4495 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4496
92f22a38 4497 barrier();
37d81828 4498 ++userpg->lock;
7b732a75 4499 preempt_enable();
38ff667b 4500unlock:
7b732a75 4501 rcu_read_unlock();
37d81828
PM
4502}
4503
906010b2
PZ
4504static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4505{
4506 struct perf_event *event = vma->vm_file->private_data;
76369139 4507 struct ring_buffer *rb;
906010b2
PZ
4508 int ret = VM_FAULT_SIGBUS;
4509
4510 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4511 if (vmf->pgoff == 0)
4512 ret = 0;
4513 return ret;
4514 }
4515
4516 rcu_read_lock();
76369139
FW
4517 rb = rcu_dereference(event->rb);
4518 if (!rb)
906010b2
PZ
4519 goto unlock;
4520
4521 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4522 goto unlock;
4523
76369139 4524 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4525 if (!vmf->page)
4526 goto unlock;
4527
4528 get_page(vmf->page);
4529 vmf->page->mapping = vma->vm_file->f_mapping;
4530 vmf->page->index = vmf->pgoff;
4531
4532 ret = 0;
4533unlock:
4534 rcu_read_unlock();
4535
4536 return ret;
4537}
4538
10c6db11
PZ
4539static void ring_buffer_attach(struct perf_event *event,
4540 struct ring_buffer *rb)
4541{
b69cf536 4542 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4543 unsigned long flags;
4544
b69cf536
PZ
4545 if (event->rb) {
4546 /*
4547 * Should be impossible, we set this when removing
4548 * event->rb_entry and wait/clear when adding event->rb_entry.
4549 */
4550 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4551
b69cf536 4552 old_rb = event->rb;
b69cf536
PZ
4553 spin_lock_irqsave(&old_rb->event_lock, flags);
4554 list_del_rcu(&event->rb_entry);
4555 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4556
2f993cf0
ON
4557 event->rcu_batches = get_state_synchronize_rcu();
4558 event->rcu_pending = 1;
b69cf536 4559 }
10c6db11 4560
b69cf536 4561 if (rb) {
2f993cf0
ON
4562 if (event->rcu_pending) {
4563 cond_synchronize_rcu(event->rcu_batches);
4564 event->rcu_pending = 0;
4565 }
4566
b69cf536
PZ
4567 spin_lock_irqsave(&rb->event_lock, flags);
4568 list_add_rcu(&event->rb_entry, &rb->event_list);
4569 spin_unlock_irqrestore(&rb->event_lock, flags);
4570 }
4571
4572 rcu_assign_pointer(event->rb, rb);
4573
4574 if (old_rb) {
4575 ring_buffer_put(old_rb);
4576 /*
4577 * Since we detached before setting the new rb, so that we
4578 * could attach the new rb, we could have missed a wakeup.
4579 * Provide it now.
4580 */
4581 wake_up_all(&event->waitq);
4582 }
10c6db11
PZ
4583}
4584
4585static void ring_buffer_wakeup(struct perf_event *event)
4586{
4587 struct ring_buffer *rb;
4588
4589 rcu_read_lock();
4590 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4591 if (rb) {
4592 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4593 wake_up_all(&event->waitq);
4594 }
10c6db11
PZ
4595 rcu_read_unlock();
4596}
4597
fdc26706 4598struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4599{
76369139 4600 struct ring_buffer *rb;
7b732a75 4601
ac9721f3 4602 rcu_read_lock();
76369139
FW
4603 rb = rcu_dereference(event->rb);
4604 if (rb) {
4605 if (!atomic_inc_not_zero(&rb->refcount))
4606 rb = NULL;
ac9721f3
PZ
4607 }
4608 rcu_read_unlock();
4609
76369139 4610 return rb;
ac9721f3
PZ
4611}
4612
fdc26706 4613void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4614{
76369139 4615 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4616 return;
7b732a75 4617
9bb5d40c 4618 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4619
76369139 4620 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4621}
4622
4623static void perf_mmap_open(struct vm_area_struct *vma)
4624{
cdd6c482 4625 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4626
cdd6c482 4627 atomic_inc(&event->mmap_count);
9bb5d40c 4628 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4629
45bfb2e5
PZ
4630 if (vma->vm_pgoff)
4631 atomic_inc(&event->rb->aux_mmap_count);
4632
1e0fb9ec
AL
4633 if (event->pmu->event_mapped)
4634 event->pmu->event_mapped(event);
7b732a75
PZ
4635}
4636
9bb5d40c
PZ
4637/*
4638 * A buffer can be mmap()ed multiple times; either directly through the same
4639 * event, or through other events by use of perf_event_set_output().
4640 *
4641 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4642 * the buffer here, where we still have a VM context. This means we need
4643 * to detach all events redirecting to us.
4644 */
7b732a75
PZ
4645static void perf_mmap_close(struct vm_area_struct *vma)
4646{
cdd6c482 4647 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4648
b69cf536 4649 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4650 struct user_struct *mmap_user = rb->mmap_user;
4651 int mmap_locked = rb->mmap_locked;
4652 unsigned long size = perf_data_size(rb);
789f90fc 4653
1e0fb9ec
AL
4654 if (event->pmu->event_unmapped)
4655 event->pmu->event_unmapped(event);
4656
45bfb2e5
PZ
4657 /*
4658 * rb->aux_mmap_count will always drop before rb->mmap_count and
4659 * event->mmap_count, so it is ok to use event->mmap_mutex to
4660 * serialize with perf_mmap here.
4661 */
4662 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4663 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4664 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4665 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4666
4667 rb_free_aux(rb);
4668 mutex_unlock(&event->mmap_mutex);
4669 }
4670
9bb5d40c
PZ
4671 atomic_dec(&rb->mmap_count);
4672
4673 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4674 goto out_put;
9bb5d40c 4675
b69cf536 4676 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4677 mutex_unlock(&event->mmap_mutex);
4678
4679 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4680 if (atomic_read(&rb->mmap_count))
4681 goto out_put;
ac9721f3 4682
9bb5d40c
PZ
4683 /*
4684 * No other mmap()s, detach from all other events that might redirect
4685 * into the now unreachable buffer. Somewhat complicated by the
4686 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4687 */
4688again:
4689 rcu_read_lock();
4690 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4691 if (!atomic_long_inc_not_zero(&event->refcount)) {
4692 /*
4693 * This event is en-route to free_event() which will
4694 * detach it and remove it from the list.
4695 */
4696 continue;
4697 }
4698 rcu_read_unlock();
789f90fc 4699
9bb5d40c
PZ
4700 mutex_lock(&event->mmap_mutex);
4701 /*
4702 * Check we didn't race with perf_event_set_output() which can
4703 * swizzle the rb from under us while we were waiting to
4704 * acquire mmap_mutex.
4705 *
4706 * If we find a different rb; ignore this event, a next
4707 * iteration will no longer find it on the list. We have to
4708 * still restart the iteration to make sure we're not now
4709 * iterating the wrong list.
4710 */
b69cf536
PZ
4711 if (event->rb == rb)
4712 ring_buffer_attach(event, NULL);
4713
cdd6c482 4714 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4715 put_event(event);
ac9721f3 4716
9bb5d40c
PZ
4717 /*
4718 * Restart the iteration; either we're on the wrong list or
4719 * destroyed its integrity by doing a deletion.
4720 */
4721 goto again;
7b732a75 4722 }
9bb5d40c
PZ
4723 rcu_read_unlock();
4724
4725 /*
4726 * It could be there's still a few 0-ref events on the list; they'll
4727 * get cleaned up by free_event() -- they'll also still have their
4728 * ref on the rb and will free it whenever they are done with it.
4729 *
4730 * Aside from that, this buffer is 'fully' detached and unmapped,
4731 * undo the VM accounting.
4732 */
4733
4734 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4735 vma->vm_mm->pinned_vm -= mmap_locked;
4736 free_uid(mmap_user);
4737
b69cf536 4738out_put:
9bb5d40c 4739 ring_buffer_put(rb); /* could be last */
37d81828
PM
4740}
4741
f0f37e2f 4742static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4743 .open = perf_mmap_open,
45bfb2e5 4744 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4745 .fault = perf_mmap_fault,
4746 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4747};
4748
4749static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4750{
cdd6c482 4751 struct perf_event *event = file->private_data;
22a4f650 4752 unsigned long user_locked, user_lock_limit;
789f90fc 4753 struct user_struct *user = current_user();
22a4f650 4754 unsigned long locked, lock_limit;
45bfb2e5 4755 struct ring_buffer *rb = NULL;
7b732a75
PZ
4756 unsigned long vma_size;
4757 unsigned long nr_pages;
45bfb2e5 4758 long user_extra = 0, extra = 0;
d57e34fd 4759 int ret = 0, flags = 0;
37d81828 4760
c7920614
PZ
4761 /*
4762 * Don't allow mmap() of inherited per-task counters. This would
4763 * create a performance issue due to all children writing to the
76369139 4764 * same rb.
c7920614
PZ
4765 */
4766 if (event->cpu == -1 && event->attr.inherit)
4767 return -EINVAL;
4768
43a21ea8 4769 if (!(vma->vm_flags & VM_SHARED))
37d81828 4770 return -EINVAL;
7b732a75
PZ
4771
4772 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4773
4774 if (vma->vm_pgoff == 0) {
4775 nr_pages = (vma_size / PAGE_SIZE) - 1;
4776 } else {
4777 /*
4778 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4779 * mapped, all subsequent mappings should have the same size
4780 * and offset. Must be above the normal perf buffer.
4781 */
4782 u64 aux_offset, aux_size;
4783
4784 if (!event->rb)
4785 return -EINVAL;
4786
4787 nr_pages = vma_size / PAGE_SIZE;
4788
4789 mutex_lock(&event->mmap_mutex);
4790 ret = -EINVAL;
4791
4792 rb = event->rb;
4793 if (!rb)
4794 goto aux_unlock;
4795
4796 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4797 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4798
4799 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4800 goto aux_unlock;
4801
4802 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4803 goto aux_unlock;
4804
4805 /* already mapped with a different offset */
4806 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4807 goto aux_unlock;
4808
4809 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4810 goto aux_unlock;
4811
4812 /* already mapped with a different size */
4813 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4814 goto aux_unlock;
4815
4816 if (!is_power_of_2(nr_pages))
4817 goto aux_unlock;
4818
4819 if (!atomic_inc_not_zero(&rb->mmap_count))
4820 goto aux_unlock;
4821
4822 if (rb_has_aux(rb)) {
4823 atomic_inc(&rb->aux_mmap_count);
4824 ret = 0;
4825 goto unlock;
4826 }
4827
4828 atomic_set(&rb->aux_mmap_count, 1);
4829 user_extra = nr_pages;
4830
4831 goto accounting;
4832 }
7b732a75 4833
7730d865 4834 /*
76369139 4835 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4836 * can do bitmasks instead of modulo.
4837 */
2ed11312 4838 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4839 return -EINVAL;
4840
7b732a75 4841 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4842 return -EINVAL;
4843
cdd6c482 4844 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4845again:
cdd6c482 4846 mutex_lock(&event->mmap_mutex);
76369139 4847 if (event->rb) {
9bb5d40c 4848 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4849 ret = -EINVAL;
9bb5d40c
PZ
4850 goto unlock;
4851 }
4852
4853 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4854 /*
4855 * Raced against perf_mmap_close() through
4856 * perf_event_set_output(). Try again, hope for better
4857 * luck.
4858 */
4859 mutex_unlock(&event->mmap_mutex);
4860 goto again;
4861 }
4862
ebb3c4c4
PZ
4863 goto unlock;
4864 }
4865
789f90fc 4866 user_extra = nr_pages + 1;
45bfb2e5
PZ
4867
4868accounting:
cdd6c482 4869 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4870
4871 /*
4872 * Increase the limit linearly with more CPUs:
4873 */
4874 user_lock_limit *= num_online_cpus();
4875
789f90fc 4876 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4877
789f90fc
PZ
4878 if (user_locked > user_lock_limit)
4879 extra = user_locked - user_lock_limit;
7b732a75 4880
78d7d407 4881 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4882 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4883 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4884
459ec28a
IM
4885 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4886 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4887 ret = -EPERM;
4888 goto unlock;
4889 }
7b732a75 4890
45bfb2e5 4891 WARN_ON(!rb && event->rb);
906010b2 4892
d57e34fd 4893 if (vma->vm_flags & VM_WRITE)
76369139 4894 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4895
76369139 4896 if (!rb) {
45bfb2e5
PZ
4897 rb = rb_alloc(nr_pages,
4898 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4899 event->cpu, flags);
26cb63ad 4900
45bfb2e5
PZ
4901 if (!rb) {
4902 ret = -ENOMEM;
4903 goto unlock;
4904 }
43a21ea8 4905
45bfb2e5
PZ
4906 atomic_set(&rb->mmap_count, 1);
4907 rb->mmap_user = get_current_user();
4908 rb->mmap_locked = extra;
26cb63ad 4909
45bfb2e5 4910 ring_buffer_attach(event, rb);
ac9721f3 4911
45bfb2e5
PZ
4912 perf_event_init_userpage(event);
4913 perf_event_update_userpage(event);
4914 } else {
1a594131
AS
4915 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4916 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4917 if (!ret)
4918 rb->aux_mmap_locked = extra;
4919 }
9a0f05cb 4920
ebb3c4c4 4921unlock:
45bfb2e5
PZ
4922 if (!ret) {
4923 atomic_long_add(user_extra, &user->locked_vm);
4924 vma->vm_mm->pinned_vm += extra;
4925
ac9721f3 4926 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4927 } else if (rb) {
4928 atomic_dec(&rb->mmap_count);
4929 }
4930aux_unlock:
cdd6c482 4931 mutex_unlock(&event->mmap_mutex);
37d81828 4932
9bb5d40c
PZ
4933 /*
4934 * Since pinned accounting is per vm we cannot allow fork() to copy our
4935 * vma.
4936 */
26cb63ad 4937 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4938 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4939
1e0fb9ec
AL
4940 if (event->pmu->event_mapped)
4941 event->pmu->event_mapped(event);
4942
7b732a75 4943 return ret;
37d81828
PM
4944}
4945
3c446b3d
PZ
4946static int perf_fasync(int fd, struct file *filp, int on)
4947{
496ad9aa 4948 struct inode *inode = file_inode(filp);
cdd6c482 4949 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4950 int retval;
4951
5955102c 4952 inode_lock(inode);
cdd6c482 4953 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 4954 inode_unlock(inode);
3c446b3d
PZ
4955
4956 if (retval < 0)
4957 return retval;
4958
4959 return 0;
4960}
4961
0793a61d 4962static const struct file_operations perf_fops = {
3326c1ce 4963 .llseek = no_llseek,
0793a61d
TG
4964 .release = perf_release,
4965 .read = perf_read,
4966 .poll = perf_poll,
d859e29f 4967 .unlocked_ioctl = perf_ioctl,
b3f20785 4968 .compat_ioctl = perf_compat_ioctl,
37d81828 4969 .mmap = perf_mmap,
3c446b3d 4970 .fasync = perf_fasync,
0793a61d
TG
4971};
4972
925d519a 4973/*
cdd6c482 4974 * Perf event wakeup
925d519a
PZ
4975 *
4976 * If there's data, ensure we set the poll() state and publish everything
4977 * to user-space before waking everybody up.
4978 */
4979
fed66e2c
PZ
4980static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4981{
4982 /* only the parent has fasync state */
4983 if (event->parent)
4984 event = event->parent;
4985 return &event->fasync;
4986}
4987
cdd6c482 4988void perf_event_wakeup(struct perf_event *event)
925d519a 4989{
10c6db11 4990 ring_buffer_wakeup(event);
4c9e2542 4991
cdd6c482 4992 if (event->pending_kill) {
fed66e2c 4993 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4994 event->pending_kill = 0;
4c9e2542 4995 }
925d519a
PZ
4996}
4997
e360adbe 4998static void perf_pending_event(struct irq_work *entry)
79f14641 4999{
cdd6c482
IM
5000 struct perf_event *event = container_of(entry,
5001 struct perf_event, pending);
d525211f
PZ
5002 int rctx;
5003
5004 rctx = perf_swevent_get_recursion_context();
5005 /*
5006 * If we 'fail' here, that's OK, it means recursion is already disabled
5007 * and we won't recurse 'further'.
5008 */
79f14641 5009
cdd6c482
IM
5010 if (event->pending_disable) {
5011 event->pending_disable = 0;
fae3fde6 5012 perf_event_disable_local(event);
79f14641
PZ
5013 }
5014
cdd6c482
IM
5015 if (event->pending_wakeup) {
5016 event->pending_wakeup = 0;
5017 perf_event_wakeup(event);
79f14641 5018 }
d525211f
PZ
5019
5020 if (rctx >= 0)
5021 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5022}
5023
39447b38
ZY
5024/*
5025 * We assume there is only KVM supporting the callbacks.
5026 * Later on, we might change it to a list if there is
5027 * another virtualization implementation supporting the callbacks.
5028 */
5029struct perf_guest_info_callbacks *perf_guest_cbs;
5030
5031int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5032{
5033 perf_guest_cbs = cbs;
5034 return 0;
5035}
5036EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5037
5038int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5039{
5040 perf_guest_cbs = NULL;
5041 return 0;
5042}
5043EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5044
4018994f
JO
5045static void
5046perf_output_sample_regs(struct perf_output_handle *handle,
5047 struct pt_regs *regs, u64 mask)
5048{
5049 int bit;
5050
5051 for_each_set_bit(bit, (const unsigned long *) &mask,
5052 sizeof(mask) * BITS_PER_BYTE) {
5053 u64 val;
5054
5055 val = perf_reg_value(regs, bit);
5056 perf_output_put(handle, val);
5057 }
5058}
5059
60e2364e 5060static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5061 struct pt_regs *regs,
5062 struct pt_regs *regs_user_copy)
4018994f 5063{
88a7c26a
AL
5064 if (user_mode(regs)) {
5065 regs_user->abi = perf_reg_abi(current);
2565711f 5066 regs_user->regs = regs;
88a7c26a
AL
5067 } else if (current->mm) {
5068 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5069 } else {
5070 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5071 regs_user->regs = NULL;
4018994f
JO
5072 }
5073}
5074
60e2364e
SE
5075static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5076 struct pt_regs *regs)
5077{
5078 regs_intr->regs = regs;
5079 regs_intr->abi = perf_reg_abi(current);
5080}
5081
5082
c5ebcedb
JO
5083/*
5084 * Get remaining task size from user stack pointer.
5085 *
5086 * It'd be better to take stack vma map and limit this more
5087 * precisly, but there's no way to get it safely under interrupt,
5088 * so using TASK_SIZE as limit.
5089 */
5090static u64 perf_ustack_task_size(struct pt_regs *regs)
5091{
5092 unsigned long addr = perf_user_stack_pointer(regs);
5093
5094 if (!addr || addr >= TASK_SIZE)
5095 return 0;
5096
5097 return TASK_SIZE - addr;
5098}
5099
5100static u16
5101perf_sample_ustack_size(u16 stack_size, u16 header_size,
5102 struct pt_regs *regs)
5103{
5104 u64 task_size;
5105
5106 /* No regs, no stack pointer, no dump. */
5107 if (!regs)
5108 return 0;
5109
5110 /*
5111 * Check if we fit in with the requested stack size into the:
5112 * - TASK_SIZE
5113 * If we don't, we limit the size to the TASK_SIZE.
5114 *
5115 * - remaining sample size
5116 * If we don't, we customize the stack size to
5117 * fit in to the remaining sample size.
5118 */
5119
5120 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5121 stack_size = min(stack_size, (u16) task_size);
5122
5123 /* Current header size plus static size and dynamic size. */
5124 header_size += 2 * sizeof(u64);
5125
5126 /* Do we fit in with the current stack dump size? */
5127 if ((u16) (header_size + stack_size) < header_size) {
5128 /*
5129 * If we overflow the maximum size for the sample,
5130 * we customize the stack dump size to fit in.
5131 */
5132 stack_size = USHRT_MAX - header_size - sizeof(u64);
5133 stack_size = round_up(stack_size, sizeof(u64));
5134 }
5135
5136 return stack_size;
5137}
5138
5139static void
5140perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5141 struct pt_regs *regs)
5142{
5143 /* Case of a kernel thread, nothing to dump */
5144 if (!regs) {
5145 u64 size = 0;
5146 perf_output_put(handle, size);
5147 } else {
5148 unsigned long sp;
5149 unsigned int rem;
5150 u64 dyn_size;
5151
5152 /*
5153 * We dump:
5154 * static size
5155 * - the size requested by user or the best one we can fit
5156 * in to the sample max size
5157 * data
5158 * - user stack dump data
5159 * dynamic size
5160 * - the actual dumped size
5161 */
5162
5163 /* Static size. */
5164 perf_output_put(handle, dump_size);
5165
5166 /* Data. */
5167 sp = perf_user_stack_pointer(regs);
5168 rem = __output_copy_user(handle, (void *) sp, dump_size);
5169 dyn_size = dump_size - rem;
5170
5171 perf_output_skip(handle, rem);
5172
5173 /* Dynamic size. */
5174 perf_output_put(handle, dyn_size);
5175 }
5176}
5177
c980d109
ACM
5178static void __perf_event_header__init_id(struct perf_event_header *header,
5179 struct perf_sample_data *data,
5180 struct perf_event *event)
6844c09d
ACM
5181{
5182 u64 sample_type = event->attr.sample_type;
5183
5184 data->type = sample_type;
5185 header->size += event->id_header_size;
5186
5187 if (sample_type & PERF_SAMPLE_TID) {
5188 /* namespace issues */
5189 data->tid_entry.pid = perf_event_pid(event, current);
5190 data->tid_entry.tid = perf_event_tid(event, current);
5191 }
5192
5193 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5194 data->time = perf_event_clock(event);
6844c09d 5195
ff3d527c 5196 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5197 data->id = primary_event_id(event);
5198
5199 if (sample_type & PERF_SAMPLE_STREAM_ID)
5200 data->stream_id = event->id;
5201
5202 if (sample_type & PERF_SAMPLE_CPU) {
5203 data->cpu_entry.cpu = raw_smp_processor_id();
5204 data->cpu_entry.reserved = 0;
5205 }
5206}
5207
76369139
FW
5208void perf_event_header__init_id(struct perf_event_header *header,
5209 struct perf_sample_data *data,
5210 struct perf_event *event)
c980d109
ACM
5211{
5212 if (event->attr.sample_id_all)
5213 __perf_event_header__init_id(header, data, event);
5214}
5215
5216static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5217 struct perf_sample_data *data)
5218{
5219 u64 sample_type = data->type;
5220
5221 if (sample_type & PERF_SAMPLE_TID)
5222 perf_output_put(handle, data->tid_entry);
5223
5224 if (sample_type & PERF_SAMPLE_TIME)
5225 perf_output_put(handle, data->time);
5226
5227 if (sample_type & PERF_SAMPLE_ID)
5228 perf_output_put(handle, data->id);
5229
5230 if (sample_type & PERF_SAMPLE_STREAM_ID)
5231 perf_output_put(handle, data->stream_id);
5232
5233 if (sample_type & PERF_SAMPLE_CPU)
5234 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5235
5236 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5237 perf_output_put(handle, data->id);
c980d109
ACM
5238}
5239
76369139
FW
5240void perf_event__output_id_sample(struct perf_event *event,
5241 struct perf_output_handle *handle,
5242 struct perf_sample_data *sample)
c980d109
ACM
5243{
5244 if (event->attr.sample_id_all)
5245 __perf_event__output_id_sample(handle, sample);
5246}
5247
3dab77fb 5248static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5249 struct perf_event *event,
5250 u64 enabled, u64 running)
3dab77fb 5251{
cdd6c482 5252 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5253 u64 values[4];
5254 int n = 0;
5255
b5e58793 5256 values[n++] = perf_event_count(event);
3dab77fb 5257 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5258 values[n++] = enabled +
cdd6c482 5259 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5260 }
5261 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5262 values[n++] = running +
cdd6c482 5263 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5264 }
5265 if (read_format & PERF_FORMAT_ID)
cdd6c482 5266 values[n++] = primary_event_id(event);
3dab77fb 5267
76369139 5268 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5269}
5270
5271/*
cdd6c482 5272 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5273 */
5274static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5275 struct perf_event *event,
5276 u64 enabled, u64 running)
3dab77fb 5277{
cdd6c482
IM
5278 struct perf_event *leader = event->group_leader, *sub;
5279 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5280 u64 values[5];
5281 int n = 0;
5282
5283 values[n++] = 1 + leader->nr_siblings;
5284
5285 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5286 values[n++] = enabled;
3dab77fb
PZ
5287
5288 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5289 values[n++] = running;
3dab77fb 5290
cdd6c482 5291 if (leader != event)
3dab77fb
PZ
5292 leader->pmu->read(leader);
5293
b5e58793 5294 values[n++] = perf_event_count(leader);
3dab77fb 5295 if (read_format & PERF_FORMAT_ID)
cdd6c482 5296 values[n++] = primary_event_id(leader);
3dab77fb 5297
76369139 5298 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5299
65abc865 5300 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5301 n = 0;
5302
6f5ab001
JO
5303 if ((sub != event) &&
5304 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5305 sub->pmu->read(sub);
5306
b5e58793 5307 values[n++] = perf_event_count(sub);
3dab77fb 5308 if (read_format & PERF_FORMAT_ID)
cdd6c482 5309 values[n++] = primary_event_id(sub);
3dab77fb 5310
76369139 5311 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5312 }
5313}
5314
eed01528
SE
5315#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5316 PERF_FORMAT_TOTAL_TIME_RUNNING)
5317
3dab77fb 5318static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5319 struct perf_event *event)
3dab77fb 5320{
e3f3541c 5321 u64 enabled = 0, running = 0, now;
eed01528
SE
5322 u64 read_format = event->attr.read_format;
5323
5324 /*
5325 * compute total_time_enabled, total_time_running
5326 * based on snapshot values taken when the event
5327 * was last scheduled in.
5328 *
5329 * we cannot simply called update_context_time()
5330 * because of locking issue as we are called in
5331 * NMI context
5332 */
c4794295 5333 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5334 calc_timer_values(event, &now, &enabled, &running);
eed01528 5335
cdd6c482 5336 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5337 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5338 else
eed01528 5339 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5340}
5341
5622f295
MM
5342void perf_output_sample(struct perf_output_handle *handle,
5343 struct perf_event_header *header,
5344 struct perf_sample_data *data,
cdd6c482 5345 struct perf_event *event)
5622f295
MM
5346{
5347 u64 sample_type = data->type;
5348
5349 perf_output_put(handle, *header);
5350
ff3d527c
AH
5351 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5352 perf_output_put(handle, data->id);
5353
5622f295
MM
5354 if (sample_type & PERF_SAMPLE_IP)
5355 perf_output_put(handle, data->ip);
5356
5357 if (sample_type & PERF_SAMPLE_TID)
5358 perf_output_put(handle, data->tid_entry);
5359
5360 if (sample_type & PERF_SAMPLE_TIME)
5361 perf_output_put(handle, data->time);
5362
5363 if (sample_type & PERF_SAMPLE_ADDR)
5364 perf_output_put(handle, data->addr);
5365
5366 if (sample_type & PERF_SAMPLE_ID)
5367 perf_output_put(handle, data->id);
5368
5369 if (sample_type & PERF_SAMPLE_STREAM_ID)
5370 perf_output_put(handle, data->stream_id);
5371
5372 if (sample_type & PERF_SAMPLE_CPU)
5373 perf_output_put(handle, data->cpu_entry);
5374
5375 if (sample_type & PERF_SAMPLE_PERIOD)
5376 perf_output_put(handle, data->period);
5377
5378 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5379 perf_output_read(handle, event);
5622f295
MM
5380
5381 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5382 if (data->callchain) {
5383 int size = 1;
5384
5385 if (data->callchain)
5386 size += data->callchain->nr;
5387
5388 size *= sizeof(u64);
5389
76369139 5390 __output_copy(handle, data->callchain, size);
5622f295
MM
5391 } else {
5392 u64 nr = 0;
5393 perf_output_put(handle, nr);
5394 }
5395 }
5396
5397 if (sample_type & PERF_SAMPLE_RAW) {
5398 if (data->raw) {
fa128e6a
AS
5399 u32 raw_size = data->raw->size;
5400 u32 real_size = round_up(raw_size + sizeof(u32),
5401 sizeof(u64)) - sizeof(u32);
5402 u64 zero = 0;
5403
5404 perf_output_put(handle, real_size);
5405 __output_copy(handle, data->raw->data, raw_size);
5406 if (real_size - raw_size)
5407 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5408 } else {
5409 struct {
5410 u32 size;
5411 u32 data;
5412 } raw = {
5413 .size = sizeof(u32),
5414 .data = 0,
5415 };
5416 perf_output_put(handle, raw);
5417 }
5418 }
a7ac67ea 5419
bce38cd5
SE
5420 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5421 if (data->br_stack) {
5422 size_t size;
5423
5424 size = data->br_stack->nr
5425 * sizeof(struct perf_branch_entry);
5426
5427 perf_output_put(handle, data->br_stack->nr);
5428 perf_output_copy(handle, data->br_stack->entries, size);
5429 } else {
5430 /*
5431 * we always store at least the value of nr
5432 */
5433 u64 nr = 0;
5434 perf_output_put(handle, nr);
5435 }
5436 }
4018994f
JO
5437
5438 if (sample_type & PERF_SAMPLE_REGS_USER) {
5439 u64 abi = data->regs_user.abi;
5440
5441 /*
5442 * If there are no regs to dump, notice it through
5443 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5444 */
5445 perf_output_put(handle, abi);
5446
5447 if (abi) {
5448 u64 mask = event->attr.sample_regs_user;
5449 perf_output_sample_regs(handle,
5450 data->regs_user.regs,
5451 mask);
5452 }
5453 }
c5ebcedb 5454
a5cdd40c 5455 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5456 perf_output_sample_ustack(handle,
5457 data->stack_user_size,
5458 data->regs_user.regs);
a5cdd40c 5459 }
c3feedf2
AK
5460
5461 if (sample_type & PERF_SAMPLE_WEIGHT)
5462 perf_output_put(handle, data->weight);
d6be9ad6
SE
5463
5464 if (sample_type & PERF_SAMPLE_DATA_SRC)
5465 perf_output_put(handle, data->data_src.val);
a5cdd40c 5466
fdfbbd07
AK
5467 if (sample_type & PERF_SAMPLE_TRANSACTION)
5468 perf_output_put(handle, data->txn);
5469
60e2364e
SE
5470 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5471 u64 abi = data->regs_intr.abi;
5472 /*
5473 * If there are no regs to dump, notice it through
5474 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5475 */
5476 perf_output_put(handle, abi);
5477
5478 if (abi) {
5479 u64 mask = event->attr.sample_regs_intr;
5480
5481 perf_output_sample_regs(handle,
5482 data->regs_intr.regs,
5483 mask);
5484 }
5485 }
5486
a5cdd40c
PZ
5487 if (!event->attr.watermark) {
5488 int wakeup_events = event->attr.wakeup_events;
5489
5490 if (wakeup_events) {
5491 struct ring_buffer *rb = handle->rb;
5492 int events = local_inc_return(&rb->events);
5493
5494 if (events >= wakeup_events) {
5495 local_sub(wakeup_events, &rb->events);
5496 local_inc(&rb->wakeup);
5497 }
5498 }
5499 }
5622f295
MM
5500}
5501
5502void perf_prepare_sample(struct perf_event_header *header,
5503 struct perf_sample_data *data,
cdd6c482 5504 struct perf_event *event,
5622f295 5505 struct pt_regs *regs)
7b732a75 5506{
cdd6c482 5507 u64 sample_type = event->attr.sample_type;
7b732a75 5508
cdd6c482 5509 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5510 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5511
5512 header->misc = 0;
5513 header->misc |= perf_misc_flags(regs);
6fab0192 5514
c980d109 5515 __perf_event_header__init_id(header, data, event);
6844c09d 5516
c320c7b7 5517 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5518 data->ip = perf_instruction_pointer(regs);
5519
b23f3325 5520 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5521 int size = 1;
394ee076 5522
e6dab5ff 5523 data->callchain = perf_callchain(event, regs);
5622f295
MM
5524
5525 if (data->callchain)
5526 size += data->callchain->nr;
5527
5528 header->size += size * sizeof(u64);
394ee076
PZ
5529 }
5530
3a43ce68 5531 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5532 int size = sizeof(u32);
5533
5534 if (data->raw)
5535 size += data->raw->size;
5536 else
5537 size += sizeof(u32);
5538
fa128e6a 5539 header->size += round_up(size, sizeof(u64));
7f453c24 5540 }
bce38cd5
SE
5541
5542 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5543 int size = sizeof(u64); /* nr */
5544 if (data->br_stack) {
5545 size += data->br_stack->nr
5546 * sizeof(struct perf_branch_entry);
5547 }
5548 header->size += size;
5549 }
4018994f 5550
2565711f 5551 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5552 perf_sample_regs_user(&data->regs_user, regs,
5553 &data->regs_user_copy);
2565711f 5554
4018994f
JO
5555 if (sample_type & PERF_SAMPLE_REGS_USER) {
5556 /* regs dump ABI info */
5557 int size = sizeof(u64);
5558
4018994f
JO
5559 if (data->regs_user.regs) {
5560 u64 mask = event->attr.sample_regs_user;
5561 size += hweight64(mask) * sizeof(u64);
5562 }
5563
5564 header->size += size;
5565 }
c5ebcedb
JO
5566
5567 if (sample_type & PERF_SAMPLE_STACK_USER) {
5568 /*
5569 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5570 * processed as the last one or have additional check added
5571 * in case new sample type is added, because we could eat
5572 * up the rest of the sample size.
5573 */
c5ebcedb
JO
5574 u16 stack_size = event->attr.sample_stack_user;
5575 u16 size = sizeof(u64);
5576
c5ebcedb 5577 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5578 data->regs_user.regs);
c5ebcedb
JO
5579
5580 /*
5581 * If there is something to dump, add space for the dump
5582 * itself and for the field that tells the dynamic size,
5583 * which is how many have been actually dumped.
5584 */
5585 if (stack_size)
5586 size += sizeof(u64) + stack_size;
5587
5588 data->stack_user_size = stack_size;
5589 header->size += size;
5590 }
60e2364e
SE
5591
5592 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5593 /* regs dump ABI info */
5594 int size = sizeof(u64);
5595
5596 perf_sample_regs_intr(&data->regs_intr, regs);
5597
5598 if (data->regs_intr.regs) {
5599 u64 mask = event->attr.sample_regs_intr;
5600
5601 size += hweight64(mask) * sizeof(u64);
5602 }
5603
5604 header->size += size;
5605 }
5622f295 5606}
7f453c24 5607
21509084
YZ
5608void perf_event_output(struct perf_event *event,
5609 struct perf_sample_data *data,
5610 struct pt_regs *regs)
5622f295
MM
5611{
5612 struct perf_output_handle handle;
5613 struct perf_event_header header;
689802b2 5614
927c7a9e
FW
5615 /* protect the callchain buffers */
5616 rcu_read_lock();
5617
cdd6c482 5618 perf_prepare_sample(&header, data, event, regs);
5c148194 5619
a7ac67ea 5620 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5621 goto exit;
0322cd6e 5622
cdd6c482 5623 perf_output_sample(&handle, &header, data, event);
f413cdb8 5624
8a057d84 5625 perf_output_end(&handle);
927c7a9e
FW
5626
5627exit:
5628 rcu_read_unlock();
0322cd6e
PZ
5629}
5630
38b200d6 5631/*
cdd6c482 5632 * read event_id
38b200d6
PZ
5633 */
5634
5635struct perf_read_event {
5636 struct perf_event_header header;
5637
5638 u32 pid;
5639 u32 tid;
38b200d6
PZ
5640};
5641
5642static void
cdd6c482 5643perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5644 struct task_struct *task)
5645{
5646 struct perf_output_handle handle;
c980d109 5647 struct perf_sample_data sample;
dfc65094 5648 struct perf_read_event read_event = {
38b200d6 5649 .header = {
cdd6c482 5650 .type = PERF_RECORD_READ,
38b200d6 5651 .misc = 0,
c320c7b7 5652 .size = sizeof(read_event) + event->read_size,
38b200d6 5653 },
cdd6c482
IM
5654 .pid = perf_event_pid(event, task),
5655 .tid = perf_event_tid(event, task),
38b200d6 5656 };
3dab77fb 5657 int ret;
38b200d6 5658
c980d109 5659 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5660 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5661 if (ret)
5662 return;
5663
dfc65094 5664 perf_output_put(&handle, read_event);
cdd6c482 5665 perf_output_read(&handle, event);
c980d109 5666 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5667
38b200d6
PZ
5668 perf_output_end(&handle);
5669}
5670
52d857a8
JO
5671typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5672
5673static void
5674perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5675 perf_event_aux_output_cb output,
5676 void *data)
5677{
5678 struct perf_event *event;
5679
5680 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5681 if (event->state < PERF_EVENT_STATE_INACTIVE)
5682 continue;
5683 if (!event_filter_match(event))
5684 continue;
67516844 5685 output(event, data);
52d857a8
JO
5686 }
5687}
5688
4e93ad60
JO
5689static void
5690perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5691 struct perf_event_context *task_ctx)
5692{
5693 rcu_read_lock();
5694 preempt_disable();
5695 perf_event_aux_ctx(task_ctx, output, data);
5696 preempt_enable();
5697 rcu_read_unlock();
5698}
5699
52d857a8 5700static void
67516844 5701perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5702 struct perf_event_context *task_ctx)
5703{
5704 struct perf_cpu_context *cpuctx;
5705 struct perf_event_context *ctx;
5706 struct pmu *pmu;
5707 int ctxn;
5708
4e93ad60
JO
5709 /*
5710 * If we have task_ctx != NULL we only notify
5711 * the task context itself. The task_ctx is set
5712 * only for EXIT events before releasing task
5713 * context.
5714 */
5715 if (task_ctx) {
5716 perf_event_aux_task_ctx(output, data, task_ctx);
5717 return;
5718 }
5719
52d857a8
JO
5720 rcu_read_lock();
5721 list_for_each_entry_rcu(pmu, &pmus, entry) {
5722 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5723 if (cpuctx->unique_pmu != pmu)
5724 goto next;
67516844 5725 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5726 ctxn = pmu->task_ctx_nr;
5727 if (ctxn < 0)
5728 goto next;
5729 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5730 if (ctx)
67516844 5731 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5732next:
5733 put_cpu_ptr(pmu->pmu_cpu_context);
5734 }
52d857a8
JO
5735 rcu_read_unlock();
5736}
5737
60313ebe 5738/*
9f498cc5
PZ
5739 * task tracking -- fork/exit
5740 *
13d7a241 5741 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5742 */
5743
9f498cc5 5744struct perf_task_event {
3a80b4a3 5745 struct task_struct *task;
cdd6c482 5746 struct perf_event_context *task_ctx;
60313ebe
PZ
5747
5748 struct {
5749 struct perf_event_header header;
5750
5751 u32 pid;
5752 u32 ppid;
9f498cc5
PZ
5753 u32 tid;
5754 u32 ptid;
393b2ad8 5755 u64 time;
cdd6c482 5756 } event_id;
60313ebe
PZ
5757};
5758
67516844
JO
5759static int perf_event_task_match(struct perf_event *event)
5760{
13d7a241
SE
5761 return event->attr.comm || event->attr.mmap ||
5762 event->attr.mmap2 || event->attr.mmap_data ||
5763 event->attr.task;
67516844
JO
5764}
5765
cdd6c482 5766static void perf_event_task_output(struct perf_event *event,
52d857a8 5767 void *data)
60313ebe 5768{
52d857a8 5769 struct perf_task_event *task_event = data;
60313ebe 5770 struct perf_output_handle handle;
c980d109 5771 struct perf_sample_data sample;
9f498cc5 5772 struct task_struct *task = task_event->task;
c980d109 5773 int ret, size = task_event->event_id.header.size;
8bb39f9a 5774
67516844
JO
5775 if (!perf_event_task_match(event))
5776 return;
5777
c980d109 5778 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5779
c980d109 5780 ret = perf_output_begin(&handle, event,
a7ac67ea 5781 task_event->event_id.header.size);
ef60777c 5782 if (ret)
c980d109 5783 goto out;
60313ebe 5784
cdd6c482
IM
5785 task_event->event_id.pid = perf_event_pid(event, task);
5786 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5787
cdd6c482
IM
5788 task_event->event_id.tid = perf_event_tid(event, task);
5789 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5790
34f43927
PZ
5791 task_event->event_id.time = perf_event_clock(event);
5792
cdd6c482 5793 perf_output_put(&handle, task_event->event_id);
393b2ad8 5794
c980d109
ACM
5795 perf_event__output_id_sample(event, &handle, &sample);
5796
60313ebe 5797 perf_output_end(&handle);
c980d109
ACM
5798out:
5799 task_event->event_id.header.size = size;
60313ebe
PZ
5800}
5801
cdd6c482
IM
5802static void perf_event_task(struct task_struct *task,
5803 struct perf_event_context *task_ctx,
3a80b4a3 5804 int new)
60313ebe 5805{
9f498cc5 5806 struct perf_task_event task_event;
60313ebe 5807
cdd6c482
IM
5808 if (!atomic_read(&nr_comm_events) &&
5809 !atomic_read(&nr_mmap_events) &&
5810 !atomic_read(&nr_task_events))
60313ebe
PZ
5811 return;
5812
9f498cc5 5813 task_event = (struct perf_task_event){
3a80b4a3
PZ
5814 .task = task,
5815 .task_ctx = task_ctx,
cdd6c482 5816 .event_id = {
60313ebe 5817 .header = {
cdd6c482 5818 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5819 .misc = 0,
cdd6c482 5820 .size = sizeof(task_event.event_id),
60313ebe 5821 },
573402db
PZ
5822 /* .pid */
5823 /* .ppid */
9f498cc5
PZ
5824 /* .tid */
5825 /* .ptid */
34f43927 5826 /* .time */
60313ebe
PZ
5827 },
5828 };
5829
67516844 5830 perf_event_aux(perf_event_task_output,
52d857a8
JO
5831 &task_event,
5832 task_ctx);
9f498cc5
PZ
5833}
5834
cdd6c482 5835void perf_event_fork(struct task_struct *task)
9f498cc5 5836{
cdd6c482 5837 perf_event_task(task, NULL, 1);
60313ebe
PZ
5838}
5839
8d1b2d93
PZ
5840/*
5841 * comm tracking
5842 */
5843
5844struct perf_comm_event {
22a4f650
IM
5845 struct task_struct *task;
5846 char *comm;
8d1b2d93
PZ
5847 int comm_size;
5848
5849 struct {
5850 struct perf_event_header header;
5851
5852 u32 pid;
5853 u32 tid;
cdd6c482 5854 } event_id;
8d1b2d93
PZ
5855};
5856
67516844
JO
5857static int perf_event_comm_match(struct perf_event *event)
5858{
5859 return event->attr.comm;
5860}
5861
cdd6c482 5862static void perf_event_comm_output(struct perf_event *event,
52d857a8 5863 void *data)
8d1b2d93 5864{
52d857a8 5865 struct perf_comm_event *comm_event = data;
8d1b2d93 5866 struct perf_output_handle handle;
c980d109 5867 struct perf_sample_data sample;
cdd6c482 5868 int size = comm_event->event_id.header.size;
c980d109
ACM
5869 int ret;
5870
67516844
JO
5871 if (!perf_event_comm_match(event))
5872 return;
5873
c980d109
ACM
5874 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5875 ret = perf_output_begin(&handle, event,
a7ac67ea 5876 comm_event->event_id.header.size);
8d1b2d93
PZ
5877
5878 if (ret)
c980d109 5879 goto out;
8d1b2d93 5880
cdd6c482
IM
5881 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5882 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5883
cdd6c482 5884 perf_output_put(&handle, comm_event->event_id);
76369139 5885 __output_copy(&handle, comm_event->comm,
8d1b2d93 5886 comm_event->comm_size);
c980d109
ACM
5887
5888 perf_event__output_id_sample(event, &handle, &sample);
5889
8d1b2d93 5890 perf_output_end(&handle);
c980d109
ACM
5891out:
5892 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5893}
5894
cdd6c482 5895static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5896{
413ee3b4 5897 char comm[TASK_COMM_LEN];
8d1b2d93 5898 unsigned int size;
8d1b2d93 5899
413ee3b4 5900 memset(comm, 0, sizeof(comm));
96b02d78 5901 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5902 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5903
5904 comm_event->comm = comm;
5905 comm_event->comm_size = size;
5906
cdd6c482 5907 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5908
67516844 5909 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5910 comm_event,
5911 NULL);
8d1b2d93
PZ
5912}
5913
82b89778 5914void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5915{
9ee318a7
PZ
5916 struct perf_comm_event comm_event;
5917
cdd6c482 5918 if (!atomic_read(&nr_comm_events))
9ee318a7 5919 return;
a63eaf34 5920
9ee318a7 5921 comm_event = (struct perf_comm_event){
8d1b2d93 5922 .task = task,
573402db
PZ
5923 /* .comm */
5924 /* .comm_size */
cdd6c482 5925 .event_id = {
573402db 5926 .header = {
cdd6c482 5927 .type = PERF_RECORD_COMM,
82b89778 5928 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5929 /* .size */
5930 },
5931 /* .pid */
5932 /* .tid */
8d1b2d93
PZ
5933 },
5934 };
5935
cdd6c482 5936 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5937}
5938
0a4a9391
PZ
5939/*
5940 * mmap tracking
5941 */
5942
5943struct perf_mmap_event {
089dd79d
PZ
5944 struct vm_area_struct *vma;
5945
5946 const char *file_name;
5947 int file_size;
13d7a241
SE
5948 int maj, min;
5949 u64 ino;
5950 u64 ino_generation;
f972eb63 5951 u32 prot, flags;
0a4a9391
PZ
5952
5953 struct {
5954 struct perf_event_header header;
5955
5956 u32 pid;
5957 u32 tid;
5958 u64 start;
5959 u64 len;
5960 u64 pgoff;
cdd6c482 5961 } event_id;
0a4a9391
PZ
5962};
5963
67516844
JO
5964static int perf_event_mmap_match(struct perf_event *event,
5965 void *data)
5966{
5967 struct perf_mmap_event *mmap_event = data;
5968 struct vm_area_struct *vma = mmap_event->vma;
5969 int executable = vma->vm_flags & VM_EXEC;
5970
5971 return (!executable && event->attr.mmap_data) ||
13d7a241 5972 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5973}
5974
cdd6c482 5975static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5976 void *data)
0a4a9391 5977{
52d857a8 5978 struct perf_mmap_event *mmap_event = data;
0a4a9391 5979 struct perf_output_handle handle;
c980d109 5980 struct perf_sample_data sample;
cdd6c482 5981 int size = mmap_event->event_id.header.size;
c980d109 5982 int ret;
0a4a9391 5983
67516844
JO
5984 if (!perf_event_mmap_match(event, data))
5985 return;
5986
13d7a241
SE
5987 if (event->attr.mmap2) {
5988 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5989 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5990 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5991 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5992 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5993 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5994 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5995 }
5996
c980d109
ACM
5997 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5998 ret = perf_output_begin(&handle, event,
a7ac67ea 5999 mmap_event->event_id.header.size);
0a4a9391 6000 if (ret)
c980d109 6001 goto out;
0a4a9391 6002
cdd6c482
IM
6003 mmap_event->event_id.pid = perf_event_pid(event, current);
6004 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6005
cdd6c482 6006 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6007
6008 if (event->attr.mmap2) {
6009 perf_output_put(&handle, mmap_event->maj);
6010 perf_output_put(&handle, mmap_event->min);
6011 perf_output_put(&handle, mmap_event->ino);
6012 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6013 perf_output_put(&handle, mmap_event->prot);
6014 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6015 }
6016
76369139 6017 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6018 mmap_event->file_size);
c980d109
ACM
6019
6020 perf_event__output_id_sample(event, &handle, &sample);
6021
78d613eb 6022 perf_output_end(&handle);
c980d109
ACM
6023out:
6024 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6025}
6026
cdd6c482 6027static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6028{
089dd79d
PZ
6029 struct vm_area_struct *vma = mmap_event->vma;
6030 struct file *file = vma->vm_file;
13d7a241
SE
6031 int maj = 0, min = 0;
6032 u64 ino = 0, gen = 0;
f972eb63 6033 u32 prot = 0, flags = 0;
0a4a9391
PZ
6034 unsigned int size;
6035 char tmp[16];
6036 char *buf = NULL;
2c42cfbf 6037 char *name;
413ee3b4 6038
0a4a9391 6039 if (file) {
13d7a241
SE
6040 struct inode *inode;
6041 dev_t dev;
3ea2f2b9 6042
2c42cfbf 6043 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6044 if (!buf) {
c7e548b4
ON
6045 name = "//enomem";
6046 goto cpy_name;
0a4a9391 6047 }
413ee3b4 6048 /*
3ea2f2b9 6049 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6050 * need to add enough zero bytes after the string to handle
6051 * the 64bit alignment we do later.
6052 */
9bf39ab2 6053 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6054 if (IS_ERR(name)) {
c7e548b4
ON
6055 name = "//toolong";
6056 goto cpy_name;
0a4a9391 6057 }
13d7a241
SE
6058 inode = file_inode(vma->vm_file);
6059 dev = inode->i_sb->s_dev;
6060 ino = inode->i_ino;
6061 gen = inode->i_generation;
6062 maj = MAJOR(dev);
6063 min = MINOR(dev);
f972eb63
PZ
6064
6065 if (vma->vm_flags & VM_READ)
6066 prot |= PROT_READ;
6067 if (vma->vm_flags & VM_WRITE)
6068 prot |= PROT_WRITE;
6069 if (vma->vm_flags & VM_EXEC)
6070 prot |= PROT_EXEC;
6071
6072 if (vma->vm_flags & VM_MAYSHARE)
6073 flags = MAP_SHARED;
6074 else
6075 flags = MAP_PRIVATE;
6076
6077 if (vma->vm_flags & VM_DENYWRITE)
6078 flags |= MAP_DENYWRITE;
6079 if (vma->vm_flags & VM_MAYEXEC)
6080 flags |= MAP_EXECUTABLE;
6081 if (vma->vm_flags & VM_LOCKED)
6082 flags |= MAP_LOCKED;
6083 if (vma->vm_flags & VM_HUGETLB)
6084 flags |= MAP_HUGETLB;
6085
c7e548b4 6086 goto got_name;
0a4a9391 6087 } else {
fbe26abe
JO
6088 if (vma->vm_ops && vma->vm_ops->name) {
6089 name = (char *) vma->vm_ops->name(vma);
6090 if (name)
6091 goto cpy_name;
6092 }
6093
2c42cfbf 6094 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6095 if (name)
6096 goto cpy_name;
089dd79d 6097
32c5fb7e 6098 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6099 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6100 name = "[heap]";
6101 goto cpy_name;
32c5fb7e
ON
6102 }
6103 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6104 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6105 name = "[stack]";
6106 goto cpy_name;
089dd79d
PZ
6107 }
6108
c7e548b4
ON
6109 name = "//anon";
6110 goto cpy_name;
0a4a9391
PZ
6111 }
6112
c7e548b4
ON
6113cpy_name:
6114 strlcpy(tmp, name, sizeof(tmp));
6115 name = tmp;
0a4a9391 6116got_name:
2c42cfbf
PZ
6117 /*
6118 * Since our buffer works in 8 byte units we need to align our string
6119 * size to a multiple of 8. However, we must guarantee the tail end is
6120 * zero'd out to avoid leaking random bits to userspace.
6121 */
6122 size = strlen(name)+1;
6123 while (!IS_ALIGNED(size, sizeof(u64)))
6124 name[size++] = '\0';
0a4a9391
PZ
6125
6126 mmap_event->file_name = name;
6127 mmap_event->file_size = size;
13d7a241
SE
6128 mmap_event->maj = maj;
6129 mmap_event->min = min;
6130 mmap_event->ino = ino;
6131 mmap_event->ino_generation = gen;
f972eb63
PZ
6132 mmap_event->prot = prot;
6133 mmap_event->flags = flags;
0a4a9391 6134
2fe85427
SE
6135 if (!(vma->vm_flags & VM_EXEC))
6136 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6137
cdd6c482 6138 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6139
67516844 6140 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6141 mmap_event,
6142 NULL);
665c2142 6143
0a4a9391
PZ
6144 kfree(buf);
6145}
6146
3af9e859 6147void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6148{
9ee318a7
PZ
6149 struct perf_mmap_event mmap_event;
6150
cdd6c482 6151 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6152 return;
6153
6154 mmap_event = (struct perf_mmap_event){
089dd79d 6155 .vma = vma,
573402db
PZ
6156 /* .file_name */
6157 /* .file_size */
cdd6c482 6158 .event_id = {
573402db 6159 .header = {
cdd6c482 6160 .type = PERF_RECORD_MMAP,
39447b38 6161 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6162 /* .size */
6163 },
6164 /* .pid */
6165 /* .tid */
089dd79d
PZ
6166 .start = vma->vm_start,
6167 .len = vma->vm_end - vma->vm_start,
3a0304e9 6168 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6169 },
13d7a241
SE
6170 /* .maj (attr_mmap2 only) */
6171 /* .min (attr_mmap2 only) */
6172 /* .ino (attr_mmap2 only) */
6173 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6174 /* .prot (attr_mmap2 only) */
6175 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6176 };
6177
cdd6c482 6178 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6179}
6180
68db7e98
AS
6181void perf_event_aux_event(struct perf_event *event, unsigned long head,
6182 unsigned long size, u64 flags)
6183{
6184 struct perf_output_handle handle;
6185 struct perf_sample_data sample;
6186 struct perf_aux_event {
6187 struct perf_event_header header;
6188 u64 offset;
6189 u64 size;
6190 u64 flags;
6191 } rec = {
6192 .header = {
6193 .type = PERF_RECORD_AUX,
6194 .misc = 0,
6195 .size = sizeof(rec),
6196 },
6197 .offset = head,
6198 .size = size,
6199 .flags = flags,
6200 };
6201 int ret;
6202
6203 perf_event_header__init_id(&rec.header, &sample, event);
6204 ret = perf_output_begin(&handle, event, rec.header.size);
6205
6206 if (ret)
6207 return;
6208
6209 perf_output_put(&handle, rec);
6210 perf_event__output_id_sample(event, &handle, &sample);
6211
6212 perf_output_end(&handle);
6213}
6214
f38b0dbb
KL
6215/*
6216 * Lost/dropped samples logging
6217 */
6218void perf_log_lost_samples(struct perf_event *event, u64 lost)
6219{
6220 struct perf_output_handle handle;
6221 struct perf_sample_data sample;
6222 int ret;
6223
6224 struct {
6225 struct perf_event_header header;
6226 u64 lost;
6227 } lost_samples_event = {
6228 .header = {
6229 .type = PERF_RECORD_LOST_SAMPLES,
6230 .misc = 0,
6231 .size = sizeof(lost_samples_event),
6232 },
6233 .lost = lost,
6234 };
6235
6236 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6237
6238 ret = perf_output_begin(&handle, event,
6239 lost_samples_event.header.size);
6240 if (ret)
6241 return;
6242
6243 perf_output_put(&handle, lost_samples_event);
6244 perf_event__output_id_sample(event, &handle, &sample);
6245 perf_output_end(&handle);
6246}
6247
45ac1403
AH
6248/*
6249 * context_switch tracking
6250 */
6251
6252struct perf_switch_event {
6253 struct task_struct *task;
6254 struct task_struct *next_prev;
6255
6256 struct {
6257 struct perf_event_header header;
6258 u32 next_prev_pid;
6259 u32 next_prev_tid;
6260 } event_id;
6261};
6262
6263static int perf_event_switch_match(struct perf_event *event)
6264{
6265 return event->attr.context_switch;
6266}
6267
6268static void perf_event_switch_output(struct perf_event *event, void *data)
6269{
6270 struct perf_switch_event *se = data;
6271 struct perf_output_handle handle;
6272 struct perf_sample_data sample;
6273 int ret;
6274
6275 if (!perf_event_switch_match(event))
6276 return;
6277
6278 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6279 if (event->ctx->task) {
6280 se->event_id.header.type = PERF_RECORD_SWITCH;
6281 se->event_id.header.size = sizeof(se->event_id.header);
6282 } else {
6283 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6284 se->event_id.header.size = sizeof(se->event_id);
6285 se->event_id.next_prev_pid =
6286 perf_event_pid(event, se->next_prev);
6287 se->event_id.next_prev_tid =
6288 perf_event_tid(event, se->next_prev);
6289 }
6290
6291 perf_event_header__init_id(&se->event_id.header, &sample, event);
6292
6293 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6294 if (ret)
6295 return;
6296
6297 if (event->ctx->task)
6298 perf_output_put(&handle, se->event_id.header);
6299 else
6300 perf_output_put(&handle, se->event_id);
6301
6302 perf_event__output_id_sample(event, &handle, &sample);
6303
6304 perf_output_end(&handle);
6305}
6306
6307static void perf_event_switch(struct task_struct *task,
6308 struct task_struct *next_prev, bool sched_in)
6309{
6310 struct perf_switch_event switch_event;
6311
6312 /* N.B. caller checks nr_switch_events != 0 */
6313
6314 switch_event = (struct perf_switch_event){
6315 .task = task,
6316 .next_prev = next_prev,
6317 .event_id = {
6318 .header = {
6319 /* .type */
6320 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6321 /* .size */
6322 },
6323 /* .next_prev_pid */
6324 /* .next_prev_tid */
6325 },
6326 };
6327
6328 perf_event_aux(perf_event_switch_output,
6329 &switch_event,
6330 NULL);
6331}
6332
a78ac325
PZ
6333/*
6334 * IRQ throttle logging
6335 */
6336
cdd6c482 6337static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6338{
6339 struct perf_output_handle handle;
c980d109 6340 struct perf_sample_data sample;
a78ac325
PZ
6341 int ret;
6342
6343 struct {
6344 struct perf_event_header header;
6345 u64 time;
cca3f454 6346 u64 id;
7f453c24 6347 u64 stream_id;
a78ac325
PZ
6348 } throttle_event = {
6349 .header = {
cdd6c482 6350 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6351 .misc = 0,
6352 .size = sizeof(throttle_event),
6353 },
34f43927 6354 .time = perf_event_clock(event),
cdd6c482
IM
6355 .id = primary_event_id(event),
6356 .stream_id = event->id,
a78ac325
PZ
6357 };
6358
966ee4d6 6359 if (enable)
cdd6c482 6360 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6361
c980d109
ACM
6362 perf_event_header__init_id(&throttle_event.header, &sample, event);
6363
6364 ret = perf_output_begin(&handle, event,
a7ac67ea 6365 throttle_event.header.size);
a78ac325
PZ
6366 if (ret)
6367 return;
6368
6369 perf_output_put(&handle, throttle_event);
c980d109 6370 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6371 perf_output_end(&handle);
6372}
6373
ec0d7729
AS
6374static void perf_log_itrace_start(struct perf_event *event)
6375{
6376 struct perf_output_handle handle;
6377 struct perf_sample_data sample;
6378 struct perf_aux_event {
6379 struct perf_event_header header;
6380 u32 pid;
6381 u32 tid;
6382 } rec;
6383 int ret;
6384
6385 if (event->parent)
6386 event = event->parent;
6387
6388 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6389 event->hw.itrace_started)
6390 return;
6391
ec0d7729
AS
6392 rec.header.type = PERF_RECORD_ITRACE_START;
6393 rec.header.misc = 0;
6394 rec.header.size = sizeof(rec);
6395 rec.pid = perf_event_pid(event, current);
6396 rec.tid = perf_event_tid(event, current);
6397
6398 perf_event_header__init_id(&rec.header, &sample, event);
6399 ret = perf_output_begin(&handle, event, rec.header.size);
6400
6401 if (ret)
6402 return;
6403
6404 perf_output_put(&handle, rec);
6405 perf_event__output_id_sample(event, &handle, &sample);
6406
6407 perf_output_end(&handle);
6408}
6409
f6c7d5fe 6410/*
cdd6c482 6411 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6412 */
6413
a8b0ca17 6414static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6415 int throttle, struct perf_sample_data *data,
6416 struct pt_regs *regs)
f6c7d5fe 6417{
cdd6c482
IM
6418 int events = atomic_read(&event->event_limit);
6419 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6420 u64 seq;
79f14641
PZ
6421 int ret = 0;
6422
96398826
PZ
6423 /*
6424 * Non-sampling counters might still use the PMI to fold short
6425 * hardware counters, ignore those.
6426 */
6427 if (unlikely(!is_sampling_event(event)))
6428 return 0;
6429
e050e3f0
SE
6430 seq = __this_cpu_read(perf_throttled_seq);
6431 if (seq != hwc->interrupts_seq) {
6432 hwc->interrupts_seq = seq;
6433 hwc->interrupts = 1;
6434 } else {
6435 hwc->interrupts++;
6436 if (unlikely(throttle
6437 && hwc->interrupts >= max_samples_per_tick)) {
6438 __this_cpu_inc(perf_throttled_count);
555e0c1e 6439 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
6440 hwc->interrupts = MAX_INTERRUPTS;
6441 perf_log_throttle(event, 0);
a78ac325
PZ
6442 ret = 1;
6443 }
e050e3f0 6444 }
60db5e09 6445
cdd6c482 6446 if (event->attr.freq) {
def0a9b2 6447 u64 now = perf_clock();
abd50713 6448 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6449
abd50713 6450 hwc->freq_time_stamp = now;
bd2b5b12 6451
abd50713 6452 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6453 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6454 }
6455
2023b359
PZ
6456 /*
6457 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6458 * events
2023b359
PZ
6459 */
6460
cdd6c482
IM
6461 event->pending_kill = POLL_IN;
6462 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6463 ret = 1;
cdd6c482 6464 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6465 event->pending_disable = 1;
6466 irq_work_queue(&event->pending);
79f14641
PZ
6467 }
6468
453f19ee 6469 if (event->overflow_handler)
a8b0ca17 6470 event->overflow_handler(event, data, regs);
453f19ee 6471 else
a8b0ca17 6472 perf_event_output(event, data, regs);
453f19ee 6473
fed66e2c 6474 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6475 event->pending_wakeup = 1;
6476 irq_work_queue(&event->pending);
f506b3dc
PZ
6477 }
6478
79f14641 6479 return ret;
f6c7d5fe
PZ
6480}
6481
a8b0ca17 6482int perf_event_overflow(struct perf_event *event,
5622f295
MM
6483 struct perf_sample_data *data,
6484 struct pt_regs *regs)
850bc73f 6485{
a8b0ca17 6486 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6487}
6488
15dbf27c 6489/*
cdd6c482 6490 * Generic software event infrastructure
15dbf27c
PZ
6491 */
6492
b28ab83c
PZ
6493struct swevent_htable {
6494 struct swevent_hlist *swevent_hlist;
6495 struct mutex hlist_mutex;
6496 int hlist_refcount;
6497
6498 /* Recursion avoidance in each contexts */
6499 int recursion[PERF_NR_CONTEXTS];
6500};
6501
6502static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6503
7b4b6658 6504/*
cdd6c482
IM
6505 * We directly increment event->count and keep a second value in
6506 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6507 * is kept in the range [-sample_period, 0] so that we can use the
6508 * sign as trigger.
6509 */
6510
ab573844 6511u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6512{
cdd6c482 6513 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6514 u64 period = hwc->last_period;
6515 u64 nr, offset;
6516 s64 old, val;
6517
6518 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6519
6520again:
e7850595 6521 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6522 if (val < 0)
6523 return 0;
15dbf27c 6524
7b4b6658
PZ
6525 nr = div64_u64(period + val, period);
6526 offset = nr * period;
6527 val -= offset;
e7850595 6528 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6529 goto again;
15dbf27c 6530
7b4b6658 6531 return nr;
15dbf27c
PZ
6532}
6533
0cff784a 6534static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6535 struct perf_sample_data *data,
5622f295 6536 struct pt_regs *regs)
15dbf27c 6537{
cdd6c482 6538 struct hw_perf_event *hwc = &event->hw;
850bc73f 6539 int throttle = 0;
15dbf27c 6540
0cff784a
PZ
6541 if (!overflow)
6542 overflow = perf_swevent_set_period(event);
15dbf27c 6543
7b4b6658
PZ
6544 if (hwc->interrupts == MAX_INTERRUPTS)
6545 return;
15dbf27c 6546
7b4b6658 6547 for (; overflow; overflow--) {
a8b0ca17 6548 if (__perf_event_overflow(event, throttle,
5622f295 6549 data, regs)) {
7b4b6658
PZ
6550 /*
6551 * We inhibit the overflow from happening when
6552 * hwc->interrupts == MAX_INTERRUPTS.
6553 */
6554 break;
6555 }
cf450a73 6556 throttle = 1;
7b4b6658 6557 }
15dbf27c
PZ
6558}
6559
a4eaf7f1 6560static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6561 struct perf_sample_data *data,
5622f295 6562 struct pt_regs *regs)
7b4b6658 6563{
cdd6c482 6564 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6565
e7850595 6566 local64_add(nr, &event->count);
d6d020e9 6567
0cff784a
PZ
6568 if (!regs)
6569 return;
6570
6c7e550f 6571 if (!is_sampling_event(event))
7b4b6658 6572 return;
d6d020e9 6573
5d81e5cf
AV
6574 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6575 data->period = nr;
6576 return perf_swevent_overflow(event, 1, data, regs);
6577 } else
6578 data->period = event->hw.last_period;
6579
0cff784a 6580 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6581 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6582
e7850595 6583 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6584 return;
df1a132b 6585
a8b0ca17 6586 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6587}
6588
f5ffe02e
FW
6589static int perf_exclude_event(struct perf_event *event,
6590 struct pt_regs *regs)
6591{
a4eaf7f1 6592 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6593 return 1;
a4eaf7f1 6594
f5ffe02e
FW
6595 if (regs) {
6596 if (event->attr.exclude_user && user_mode(regs))
6597 return 1;
6598
6599 if (event->attr.exclude_kernel && !user_mode(regs))
6600 return 1;
6601 }
6602
6603 return 0;
6604}
6605
cdd6c482 6606static int perf_swevent_match(struct perf_event *event,
1c432d89 6607 enum perf_type_id type,
6fb2915d
LZ
6608 u32 event_id,
6609 struct perf_sample_data *data,
6610 struct pt_regs *regs)
15dbf27c 6611{
cdd6c482 6612 if (event->attr.type != type)
a21ca2ca 6613 return 0;
f5ffe02e 6614
cdd6c482 6615 if (event->attr.config != event_id)
15dbf27c
PZ
6616 return 0;
6617
f5ffe02e
FW
6618 if (perf_exclude_event(event, regs))
6619 return 0;
15dbf27c
PZ
6620
6621 return 1;
6622}
6623
76e1d904
FW
6624static inline u64 swevent_hash(u64 type, u32 event_id)
6625{
6626 u64 val = event_id | (type << 32);
6627
6628 return hash_64(val, SWEVENT_HLIST_BITS);
6629}
6630
49f135ed
FW
6631static inline struct hlist_head *
6632__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6633{
49f135ed
FW
6634 u64 hash = swevent_hash(type, event_id);
6635
6636 return &hlist->heads[hash];
6637}
76e1d904 6638
49f135ed
FW
6639/* For the read side: events when they trigger */
6640static inline struct hlist_head *
b28ab83c 6641find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6642{
6643 struct swevent_hlist *hlist;
76e1d904 6644
b28ab83c 6645 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6646 if (!hlist)
6647 return NULL;
6648
49f135ed
FW
6649 return __find_swevent_head(hlist, type, event_id);
6650}
6651
6652/* For the event head insertion and removal in the hlist */
6653static inline struct hlist_head *
b28ab83c 6654find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6655{
6656 struct swevent_hlist *hlist;
6657 u32 event_id = event->attr.config;
6658 u64 type = event->attr.type;
6659
6660 /*
6661 * Event scheduling is always serialized against hlist allocation
6662 * and release. Which makes the protected version suitable here.
6663 * The context lock guarantees that.
6664 */
b28ab83c 6665 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6666 lockdep_is_held(&event->ctx->lock));
6667 if (!hlist)
6668 return NULL;
6669
6670 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6671}
6672
6673static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6674 u64 nr,
76e1d904
FW
6675 struct perf_sample_data *data,
6676 struct pt_regs *regs)
15dbf27c 6677{
4a32fea9 6678 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6679 struct perf_event *event;
76e1d904 6680 struct hlist_head *head;
15dbf27c 6681
76e1d904 6682 rcu_read_lock();
b28ab83c 6683 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6684 if (!head)
6685 goto end;
6686
b67bfe0d 6687 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6688 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6689 perf_swevent_event(event, nr, data, regs);
15dbf27c 6690 }
76e1d904
FW
6691end:
6692 rcu_read_unlock();
15dbf27c
PZ
6693}
6694
86038c5e
PZI
6695DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6696
4ed7c92d 6697int perf_swevent_get_recursion_context(void)
96f6d444 6698{
4a32fea9 6699 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6700
b28ab83c 6701 return get_recursion_context(swhash->recursion);
96f6d444 6702}
645e8cc0 6703EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6704
fa9f90be 6705inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6706{
4a32fea9 6707 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6708
b28ab83c 6709 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6710}
15dbf27c 6711
86038c5e 6712void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6713{
a4234bfc 6714 struct perf_sample_data data;
4ed7c92d 6715
86038c5e 6716 if (WARN_ON_ONCE(!regs))
4ed7c92d 6717 return;
a4234bfc 6718
fd0d000b 6719 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6720 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6721}
6722
6723void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6724{
6725 int rctx;
6726
6727 preempt_disable_notrace();
6728 rctx = perf_swevent_get_recursion_context();
6729 if (unlikely(rctx < 0))
6730 goto fail;
6731
6732 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6733
6734 perf_swevent_put_recursion_context(rctx);
86038c5e 6735fail:
1c024eca 6736 preempt_enable_notrace();
b8e83514
PZ
6737}
6738
cdd6c482 6739static void perf_swevent_read(struct perf_event *event)
15dbf27c 6740{
15dbf27c
PZ
6741}
6742
a4eaf7f1 6743static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6744{
4a32fea9 6745 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6746 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6747 struct hlist_head *head;
6748
6c7e550f 6749 if (is_sampling_event(event)) {
7b4b6658 6750 hwc->last_period = hwc->sample_period;
cdd6c482 6751 perf_swevent_set_period(event);
7b4b6658 6752 }
76e1d904 6753
a4eaf7f1
PZ
6754 hwc->state = !(flags & PERF_EF_START);
6755
b28ab83c 6756 head = find_swevent_head(swhash, event);
12ca6ad2 6757 if (WARN_ON_ONCE(!head))
76e1d904
FW
6758 return -EINVAL;
6759
6760 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6761 perf_event_update_userpage(event);
76e1d904 6762
15dbf27c
PZ
6763 return 0;
6764}
6765
a4eaf7f1 6766static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6767{
76e1d904 6768 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6769}
6770
a4eaf7f1 6771static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6772{
a4eaf7f1 6773 event->hw.state = 0;
d6d020e9 6774}
aa9c4c0f 6775
a4eaf7f1 6776static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6777{
a4eaf7f1 6778 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6779}
6780
49f135ed
FW
6781/* Deref the hlist from the update side */
6782static inline struct swevent_hlist *
b28ab83c 6783swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6784{
b28ab83c
PZ
6785 return rcu_dereference_protected(swhash->swevent_hlist,
6786 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6787}
6788
b28ab83c 6789static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6790{
b28ab83c 6791 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6792
49f135ed 6793 if (!hlist)
76e1d904
FW
6794 return;
6795
70691d4a 6796 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6797 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6798}
6799
3b364d7b 6800static void swevent_hlist_put_cpu(int cpu)
76e1d904 6801{
b28ab83c 6802 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6803
b28ab83c 6804 mutex_lock(&swhash->hlist_mutex);
76e1d904 6805
b28ab83c
PZ
6806 if (!--swhash->hlist_refcount)
6807 swevent_hlist_release(swhash);
76e1d904 6808
b28ab83c 6809 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6810}
6811
3b364d7b 6812static void swevent_hlist_put(void)
76e1d904
FW
6813{
6814 int cpu;
6815
76e1d904 6816 for_each_possible_cpu(cpu)
3b364d7b 6817 swevent_hlist_put_cpu(cpu);
76e1d904
FW
6818}
6819
3b364d7b 6820static int swevent_hlist_get_cpu(int cpu)
76e1d904 6821{
b28ab83c 6822 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6823 int err = 0;
6824
b28ab83c 6825 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6826 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6827 struct swevent_hlist *hlist;
6828
6829 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6830 if (!hlist) {
6831 err = -ENOMEM;
6832 goto exit;
6833 }
b28ab83c 6834 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6835 }
b28ab83c 6836 swhash->hlist_refcount++;
9ed6060d 6837exit:
b28ab83c 6838 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6839
6840 return err;
6841}
6842
3b364d7b 6843static int swevent_hlist_get(void)
76e1d904 6844{
3b364d7b 6845 int err, cpu, failed_cpu;
76e1d904 6846
76e1d904
FW
6847 get_online_cpus();
6848 for_each_possible_cpu(cpu) {
3b364d7b 6849 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
6850 if (err) {
6851 failed_cpu = cpu;
6852 goto fail;
6853 }
6854 }
6855 put_online_cpus();
6856
6857 return 0;
9ed6060d 6858fail:
76e1d904
FW
6859 for_each_possible_cpu(cpu) {
6860 if (cpu == failed_cpu)
6861 break;
3b364d7b 6862 swevent_hlist_put_cpu(cpu);
76e1d904
FW
6863 }
6864
6865 put_online_cpus();
6866 return err;
6867}
6868
c5905afb 6869struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6870
b0a873eb
PZ
6871static void sw_perf_event_destroy(struct perf_event *event)
6872{
6873 u64 event_id = event->attr.config;
95476b64 6874
b0a873eb
PZ
6875 WARN_ON(event->parent);
6876
c5905afb 6877 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 6878 swevent_hlist_put();
b0a873eb
PZ
6879}
6880
6881static int perf_swevent_init(struct perf_event *event)
6882{
8176cced 6883 u64 event_id = event->attr.config;
b0a873eb
PZ
6884
6885 if (event->attr.type != PERF_TYPE_SOFTWARE)
6886 return -ENOENT;
6887
2481c5fa
SE
6888 /*
6889 * no branch sampling for software events
6890 */
6891 if (has_branch_stack(event))
6892 return -EOPNOTSUPP;
6893
b0a873eb
PZ
6894 switch (event_id) {
6895 case PERF_COUNT_SW_CPU_CLOCK:
6896 case PERF_COUNT_SW_TASK_CLOCK:
6897 return -ENOENT;
6898
6899 default:
6900 break;
6901 }
6902
ce677831 6903 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6904 return -ENOENT;
6905
6906 if (!event->parent) {
6907 int err;
6908
3b364d7b 6909 err = swevent_hlist_get();
b0a873eb
PZ
6910 if (err)
6911 return err;
6912
c5905afb 6913 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6914 event->destroy = sw_perf_event_destroy;
6915 }
6916
6917 return 0;
6918}
6919
6920static struct pmu perf_swevent = {
89a1e187 6921 .task_ctx_nr = perf_sw_context,
95476b64 6922
34f43927
PZ
6923 .capabilities = PERF_PMU_CAP_NO_NMI,
6924
b0a873eb 6925 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6926 .add = perf_swevent_add,
6927 .del = perf_swevent_del,
6928 .start = perf_swevent_start,
6929 .stop = perf_swevent_stop,
1c024eca 6930 .read = perf_swevent_read,
1c024eca
PZ
6931};
6932
b0a873eb
PZ
6933#ifdef CONFIG_EVENT_TRACING
6934
1c024eca
PZ
6935static int perf_tp_filter_match(struct perf_event *event,
6936 struct perf_sample_data *data)
6937{
6938 void *record = data->raw->data;
6939
b71b437e
PZ
6940 /* only top level events have filters set */
6941 if (event->parent)
6942 event = event->parent;
6943
1c024eca
PZ
6944 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6945 return 1;
6946 return 0;
6947}
6948
6949static int perf_tp_event_match(struct perf_event *event,
6950 struct perf_sample_data *data,
6951 struct pt_regs *regs)
6952{
a0f7d0f7
FW
6953 if (event->hw.state & PERF_HES_STOPPED)
6954 return 0;
580d607c
PZ
6955 /*
6956 * All tracepoints are from kernel-space.
6957 */
6958 if (event->attr.exclude_kernel)
1c024eca
PZ
6959 return 0;
6960
6961 if (!perf_tp_filter_match(event, data))
6962 return 0;
6963
6964 return 1;
6965}
6966
6967void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6968 struct pt_regs *regs, struct hlist_head *head, int rctx,
6969 struct task_struct *task)
95476b64
FW
6970{
6971 struct perf_sample_data data;
1c024eca 6972 struct perf_event *event;
1c024eca 6973
95476b64
FW
6974 struct perf_raw_record raw = {
6975 .size = entry_size,
6976 .data = record,
6977 };
6978
fd0d000b 6979 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6980 data.raw = &raw;
6981
b67bfe0d 6982 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6983 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6984 perf_swevent_event(event, count, &data, regs);
4f41c013 6985 }
ecc55f84 6986
e6dab5ff
AV
6987 /*
6988 * If we got specified a target task, also iterate its context and
6989 * deliver this event there too.
6990 */
6991 if (task && task != current) {
6992 struct perf_event_context *ctx;
6993 struct trace_entry *entry = record;
6994
6995 rcu_read_lock();
6996 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6997 if (!ctx)
6998 goto unlock;
6999
7000 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7001 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7002 continue;
7003 if (event->attr.config != entry->type)
7004 continue;
7005 if (perf_tp_event_match(event, &data, regs))
7006 perf_swevent_event(event, count, &data, regs);
7007 }
7008unlock:
7009 rcu_read_unlock();
7010 }
7011
ecc55f84 7012 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7013}
7014EXPORT_SYMBOL_GPL(perf_tp_event);
7015
cdd6c482 7016static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7017{
1c024eca 7018 perf_trace_destroy(event);
e077df4f
PZ
7019}
7020
b0a873eb 7021static int perf_tp_event_init(struct perf_event *event)
e077df4f 7022{
76e1d904
FW
7023 int err;
7024
b0a873eb
PZ
7025 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7026 return -ENOENT;
7027
2481c5fa
SE
7028 /*
7029 * no branch sampling for tracepoint events
7030 */
7031 if (has_branch_stack(event))
7032 return -EOPNOTSUPP;
7033
1c024eca
PZ
7034 err = perf_trace_init(event);
7035 if (err)
b0a873eb 7036 return err;
e077df4f 7037
cdd6c482 7038 event->destroy = tp_perf_event_destroy;
e077df4f 7039
b0a873eb
PZ
7040 return 0;
7041}
7042
7043static struct pmu perf_tracepoint = {
89a1e187
PZ
7044 .task_ctx_nr = perf_sw_context,
7045
b0a873eb 7046 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7047 .add = perf_trace_add,
7048 .del = perf_trace_del,
7049 .start = perf_swevent_start,
7050 .stop = perf_swevent_stop,
b0a873eb 7051 .read = perf_swevent_read,
b0a873eb
PZ
7052};
7053
7054static inline void perf_tp_register(void)
7055{
2e80a82a 7056 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7057}
6fb2915d
LZ
7058
7059static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7060{
7061 char *filter_str;
7062 int ret;
7063
7064 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7065 return -EINVAL;
7066
7067 filter_str = strndup_user(arg, PAGE_SIZE);
7068 if (IS_ERR(filter_str))
7069 return PTR_ERR(filter_str);
7070
7071 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7072
7073 kfree(filter_str);
7074 return ret;
7075}
7076
7077static void perf_event_free_filter(struct perf_event *event)
7078{
7079 ftrace_profile_free_filter(event);
7080}
7081
2541517c
AS
7082static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7083{
7084 struct bpf_prog *prog;
7085
7086 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7087 return -EINVAL;
7088
7089 if (event->tp_event->prog)
7090 return -EEXIST;
7091
04a22fae
WN
7092 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7093 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7094 return -EINVAL;
7095
7096 prog = bpf_prog_get(prog_fd);
7097 if (IS_ERR(prog))
7098 return PTR_ERR(prog);
7099
6c373ca8 7100 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7101 /* valid fd, but invalid bpf program type */
7102 bpf_prog_put(prog);
7103 return -EINVAL;
7104 }
7105
7106 event->tp_event->prog = prog;
7107
7108 return 0;
7109}
7110
7111static void perf_event_free_bpf_prog(struct perf_event *event)
7112{
7113 struct bpf_prog *prog;
7114
7115 if (!event->tp_event)
7116 return;
7117
7118 prog = event->tp_event->prog;
7119 if (prog) {
7120 event->tp_event->prog = NULL;
7121 bpf_prog_put(prog);
7122 }
7123}
7124
e077df4f 7125#else
6fb2915d 7126
b0a873eb 7127static inline void perf_tp_register(void)
e077df4f 7128{
e077df4f 7129}
6fb2915d
LZ
7130
7131static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7132{
7133 return -ENOENT;
7134}
7135
7136static void perf_event_free_filter(struct perf_event *event)
7137{
7138}
7139
2541517c
AS
7140static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7141{
7142 return -ENOENT;
7143}
7144
7145static void perf_event_free_bpf_prog(struct perf_event *event)
7146{
7147}
07b139c8 7148#endif /* CONFIG_EVENT_TRACING */
e077df4f 7149
24f1e32c 7150#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7151void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7152{
f5ffe02e
FW
7153 struct perf_sample_data sample;
7154 struct pt_regs *regs = data;
7155
fd0d000b 7156 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7157
a4eaf7f1 7158 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7159 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7160}
7161#endif
7162
b0a873eb
PZ
7163/*
7164 * hrtimer based swevent callback
7165 */
f29ac756 7166
b0a873eb 7167static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7168{
b0a873eb
PZ
7169 enum hrtimer_restart ret = HRTIMER_RESTART;
7170 struct perf_sample_data data;
7171 struct pt_regs *regs;
7172 struct perf_event *event;
7173 u64 period;
f29ac756 7174
b0a873eb 7175 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7176
7177 if (event->state != PERF_EVENT_STATE_ACTIVE)
7178 return HRTIMER_NORESTART;
7179
b0a873eb 7180 event->pmu->read(event);
f344011c 7181
fd0d000b 7182 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7183 regs = get_irq_regs();
7184
7185 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7186 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7187 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7188 ret = HRTIMER_NORESTART;
7189 }
24f1e32c 7190
b0a873eb
PZ
7191 period = max_t(u64, 10000, event->hw.sample_period);
7192 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7193
b0a873eb 7194 return ret;
f29ac756
PZ
7195}
7196
b0a873eb 7197static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7198{
b0a873eb 7199 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7200 s64 period;
7201
7202 if (!is_sampling_event(event))
7203 return;
f5ffe02e 7204
5d508e82
FBH
7205 period = local64_read(&hwc->period_left);
7206 if (period) {
7207 if (period < 0)
7208 period = 10000;
fa407f35 7209
5d508e82
FBH
7210 local64_set(&hwc->period_left, 0);
7211 } else {
7212 period = max_t(u64, 10000, hwc->sample_period);
7213 }
3497d206
TG
7214 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7215 HRTIMER_MODE_REL_PINNED);
24f1e32c 7216}
b0a873eb
PZ
7217
7218static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7219{
b0a873eb
PZ
7220 struct hw_perf_event *hwc = &event->hw;
7221
6c7e550f 7222 if (is_sampling_event(event)) {
b0a873eb 7223 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7224 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7225
7226 hrtimer_cancel(&hwc->hrtimer);
7227 }
24f1e32c
FW
7228}
7229
ba3dd36c
PZ
7230static void perf_swevent_init_hrtimer(struct perf_event *event)
7231{
7232 struct hw_perf_event *hwc = &event->hw;
7233
7234 if (!is_sampling_event(event))
7235 return;
7236
7237 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7238 hwc->hrtimer.function = perf_swevent_hrtimer;
7239
7240 /*
7241 * Since hrtimers have a fixed rate, we can do a static freq->period
7242 * mapping and avoid the whole period adjust feedback stuff.
7243 */
7244 if (event->attr.freq) {
7245 long freq = event->attr.sample_freq;
7246
7247 event->attr.sample_period = NSEC_PER_SEC / freq;
7248 hwc->sample_period = event->attr.sample_period;
7249 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7250 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7251 event->attr.freq = 0;
7252 }
7253}
7254
b0a873eb
PZ
7255/*
7256 * Software event: cpu wall time clock
7257 */
7258
7259static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7260{
b0a873eb
PZ
7261 s64 prev;
7262 u64 now;
7263
a4eaf7f1 7264 now = local_clock();
b0a873eb
PZ
7265 prev = local64_xchg(&event->hw.prev_count, now);
7266 local64_add(now - prev, &event->count);
24f1e32c 7267}
24f1e32c 7268
a4eaf7f1 7269static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7270{
a4eaf7f1 7271 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7272 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7273}
7274
a4eaf7f1 7275static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7276{
b0a873eb
PZ
7277 perf_swevent_cancel_hrtimer(event);
7278 cpu_clock_event_update(event);
7279}
f29ac756 7280
a4eaf7f1
PZ
7281static int cpu_clock_event_add(struct perf_event *event, int flags)
7282{
7283 if (flags & PERF_EF_START)
7284 cpu_clock_event_start(event, flags);
6a694a60 7285 perf_event_update_userpage(event);
a4eaf7f1
PZ
7286
7287 return 0;
7288}
7289
7290static void cpu_clock_event_del(struct perf_event *event, int flags)
7291{
7292 cpu_clock_event_stop(event, flags);
7293}
7294
b0a873eb
PZ
7295static void cpu_clock_event_read(struct perf_event *event)
7296{
7297 cpu_clock_event_update(event);
7298}
f344011c 7299
b0a873eb
PZ
7300static int cpu_clock_event_init(struct perf_event *event)
7301{
7302 if (event->attr.type != PERF_TYPE_SOFTWARE)
7303 return -ENOENT;
7304
7305 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7306 return -ENOENT;
7307
2481c5fa
SE
7308 /*
7309 * no branch sampling for software events
7310 */
7311 if (has_branch_stack(event))
7312 return -EOPNOTSUPP;
7313
ba3dd36c
PZ
7314 perf_swevent_init_hrtimer(event);
7315
b0a873eb 7316 return 0;
f29ac756
PZ
7317}
7318
b0a873eb 7319static struct pmu perf_cpu_clock = {
89a1e187
PZ
7320 .task_ctx_nr = perf_sw_context,
7321
34f43927
PZ
7322 .capabilities = PERF_PMU_CAP_NO_NMI,
7323
b0a873eb 7324 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7325 .add = cpu_clock_event_add,
7326 .del = cpu_clock_event_del,
7327 .start = cpu_clock_event_start,
7328 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7329 .read = cpu_clock_event_read,
7330};
7331
7332/*
7333 * Software event: task time clock
7334 */
7335
7336static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7337{
b0a873eb
PZ
7338 u64 prev;
7339 s64 delta;
5c92d124 7340
b0a873eb
PZ
7341 prev = local64_xchg(&event->hw.prev_count, now);
7342 delta = now - prev;
7343 local64_add(delta, &event->count);
7344}
5c92d124 7345
a4eaf7f1 7346static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7347{
a4eaf7f1 7348 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7349 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7350}
7351
a4eaf7f1 7352static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7353{
7354 perf_swevent_cancel_hrtimer(event);
7355 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7356}
7357
7358static int task_clock_event_add(struct perf_event *event, int flags)
7359{
7360 if (flags & PERF_EF_START)
7361 task_clock_event_start(event, flags);
6a694a60 7362 perf_event_update_userpage(event);
b0a873eb 7363
a4eaf7f1
PZ
7364 return 0;
7365}
7366
7367static void task_clock_event_del(struct perf_event *event, int flags)
7368{
7369 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7370}
7371
7372static void task_clock_event_read(struct perf_event *event)
7373{
768a06e2
PZ
7374 u64 now = perf_clock();
7375 u64 delta = now - event->ctx->timestamp;
7376 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7377
7378 task_clock_event_update(event, time);
7379}
7380
7381static int task_clock_event_init(struct perf_event *event)
6fb2915d 7382{
b0a873eb
PZ
7383 if (event->attr.type != PERF_TYPE_SOFTWARE)
7384 return -ENOENT;
7385
7386 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7387 return -ENOENT;
7388
2481c5fa
SE
7389 /*
7390 * no branch sampling for software events
7391 */
7392 if (has_branch_stack(event))
7393 return -EOPNOTSUPP;
7394
ba3dd36c
PZ
7395 perf_swevent_init_hrtimer(event);
7396
b0a873eb 7397 return 0;
6fb2915d
LZ
7398}
7399
b0a873eb 7400static struct pmu perf_task_clock = {
89a1e187
PZ
7401 .task_ctx_nr = perf_sw_context,
7402
34f43927
PZ
7403 .capabilities = PERF_PMU_CAP_NO_NMI,
7404
b0a873eb 7405 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7406 .add = task_clock_event_add,
7407 .del = task_clock_event_del,
7408 .start = task_clock_event_start,
7409 .stop = task_clock_event_stop,
b0a873eb
PZ
7410 .read = task_clock_event_read,
7411};
6fb2915d 7412
ad5133b7 7413static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7414{
e077df4f 7415}
6fb2915d 7416
fbbe0701
SB
7417static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7418{
7419}
7420
ad5133b7 7421static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7422{
ad5133b7 7423 return 0;
6fb2915d
LZ
7424}
7425
18ab2cd3 7426static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7427
7428static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7429{
fbbe0701
SB
7430 __this_cpu_write(nop_txn_flags, flags);
7431
7432 if (flags & ~PERF_PMU_TXN_ADD)
7433 return;
7434
ad5133b7 7435 perf_pmu_disable(pmu);
6fb2915d
LZ
7436}
7437
ad5133b7
PZ
7438static int perf_pmu_commit_txn(struct pmu *pmu)
7439{
fbbe0701
SB
7440 unsigned int flags = __this_cpu_read(nop_txn_flags);
7441
7442 __this_cpu_write(nop_txn_flags, 0);
7443
7444 if (flags & ~PERF_PMU_TXN_ADD)
7445 return 0;
7446
ad5133b7
PZ
7447 perf_pmu_enable(pmu);
7448 return 0;
7449}
e077df4f 7450
ad5133b7 7451static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7452{
fbbe0701
SB
7453 unsigned int flags = __this_cpu_read(nop_txn_flags);
7454
7455 __this_cpu_write(nop_txn_flags, 0);
7456
7457 if (flags & ~PERF_PMU_TXN_ADD)
7458 return;
7459
ad5133b7 7460 perf_pmu_enable(pmu);
24f1e32c
FW
7461}
7462
35edc2a5
PZ
7463static int perf_event_idx_default(struct perf_event *event)
7464{
c719f560 7465 return 0;
35edc2a5
PZ
7466}
7467
8dc85d54
PZ
7468/*
7469 * Ensures all contexts with the same task_ctx_nr have the same
7470 * pmu_cpu_context too.
7471 */
9e317041 7472static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7473{
8dc85d54 7474 struct pmu *pmu;
b326e956 7475
8dc85d54
PZ
7476 if (ctxn < 0)
7477 return NULL;
24f1e32c 7478
8dc85d54
PZ
7479 list_for_each_entry(pmu, &pmus, entry) {
7480 if (pmu->task_ctx_nr == ctxn)
7481 return pmu->pmu_cpu_context;
7482 }
24f1e32c 7483
8dc85d54 7484 return NULL;
24f1e32c
FW
7485}
7486
51676957 7487static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7488{
51676957
PZ
7489 int cpu;
7490
7491 for_each_possible_cpu(cpu) {
7492 struct perf_cpu_context *cpuctx;
7493
7494 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7495
3f1f3320
PZ
7496 if (cpuctx->unique_pmu == old_pmu)
7497 cpuctx->unique_pmu = pmu;
51676957
PZ
7498 }
7499}
7500
7501static void free_pmu_context(struct pmu *pmu)
7502{
7503 struct pmu *i;
f5ffe02e 7504
8dc85d54 7505 mutex_lock(&pmus_lock);
0475f9ea 7506 /*
8dc85d54 7507 * Like a real lame refcount.
0475f9ea 7508 */
51676957
PZ
7509 list_for_each_entry(i, &pmus, entry) {
7510 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7511 update_pmu_context(i, pmu);
8dc85d54 7512 goto out;
51676957 7513 }
8dc85d54 7514 }
d6d020e9 7515
51676957 7516 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7517out:
7518 mutex_unlock(&pmus_lock);
24f1e32c 7519}
2e80a82a 7520static struct idr pmu_idr;
d6d020e9 7521
abe43400
PZ
7522static ssize_t
7523type_show(struct device *dev, struct device_attribute *attr, char *page)
7524{
7525 struct pmu *pmu = dev_get_drvdata(dev);
7526
7527 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7528}
90826ca7 7529static DEVICE_ATTR_RO(type);
abe43400 7530
62b85639
SE
7531static ssize_t
7532perf_event_mux_interval_ms_show(struct device *dev,
7533 struct device_attribute *attr,
7534 char *page)
7535{
7536 struct pmu *pmu = dev_get_drvdata(dev);
7537
7538 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7539}
7540
272325c4
PZ
7541static DEFINE_MUTEX(mux_interval_mutex);
7542
62b85639
SE
7543static ssize_t
7544perf_event_mux_interval_ms_store(struct device *dev,
7545 struct device_attribute *attr,
7546 const char *buf, size_t count)
7547{
7548 struct pmu *pmu = dev_get_drvdata(dev);
7549 int timer, cpu, ret;
7550
7551 ret = kstrtoint(buf, 0, &timer);
7552 if (ret)
7553 return ret;
7554
7555 if (timer < 1)
7556 return -EINVAL;
7557
7558 /* same value, noting to do */
7559 if (timer == pmu->hrtimer_interval_ms)
7560 return count;
7561
272325c4 7562 mutex_lock(&mux_interval_mutex);
62b85639
SE
7563 pmu->hrtimer_interval_ms = timer;
7564
7565 /* update all cpuctx for this PMU */
272325c4
PZ
7566 get_online_cpus();
7567 for_each_online_cpu(cpu) {
62b85639
SE
7568 struct perf_cpu_context *cpuctx;
7569 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7570 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7571
272325c4
PZ
7572 cpu_function_call(cpu,
7573 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7574 }
272325c4
PZ
7575 put_online_cpus();
7576 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7577
7578 return count;
7579}
90826ca7 7580static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7581
90826ca7
GKH
7582static struct attribute *pmu_dev_attrs[] = {
7583 &dev_attr_type.attr,
7584 &dev_attr_perf_event_mux_interval_ms.attr,
7585 NULL,
abe43400 7586};
90826ca7 7587ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7588
7589static int pmu_bus_running;
7590static struct bus_type pmu_bus = {
7591 .name = "event_source",
90826ca7 7592 .dev_groups = pmu_dev_groups,
abe43400
PZ
7593};
7594
7595static void pmu_dev_release(struct device *dev)
7596{
7597 kfree(dev);
7598}
7599
7600static int pmu_dev_alloc(struct pmu *pmu)
7601{
7602 int ret = -ENOMEM;
7603
7604 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7605 if (!pmu->dev)
7606 goto out;
7607
0c9d42ed 7608 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7609 device_initialize(pmu->dev);
7610 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7611 if (ret)
7612 goto free_dev;
7613
7614 dev_set_drvdata(pmu->dev, pmu);
7615 pmu->dev->bus = &pmu_bus;
7616 pmu->dev->release = pmu_dev_release;
7617 ret = device_add(pmu->dev);
7618 if (ret)
7619 goto free_dev;
7620
7621out:
7622 return ret;
7623
7624free_dev:
7625 put_device(pmu->dev);
7626 goto out;
7627}
7628
547e9fd7 7629static struct lock_class_key cpuctx_mutex;
facc4307 7630static struct lock_class_key cpuctx_lock;
547e9fd7 7631
03d8e80b 7632int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7633{
108b02cf 7634 int cpu, ret;
24f1e32c 7635
b0a873eb 7636 mutex_lock(&pmus_lock);
33696fc0
PZ
7637 ret = -ENOMEM;
7638 pmu->pmu_disable_count = alloc_percpu(int);
7639 if (!pmu->pmu_disable_count)
7640 goto unlock;
f29ac756 7641
2e80a82a
PZ
7642 pmu->type = -1;
7643 if (!name)
7644 goto skip_type;
7645 pmu->name = name;
7646
7647 if (type < 0) {
0e9c3be2
TH
7648 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7649 if (type < 0) {
7650 ret = type;
2e80a82a
PZ
7651 goto free_pdc;
7652 }
7653 }
7654 pmu->type = type;
7655
abe43400
PZ
7656 if (pmu_bus_running) {
7657 ret = pmu_dev_alloc(pmu);
7658 if (ret)
7659 goto free_idr;
7660 }
7661
2e80a82a 7662skip_type:
8dc85d54
PZ
7663 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7664 if (pmu->pmu_cpu_context)
7665 goto got_cpu_context;
f29ac756 7666
c4814202 7667 ret = -ENOMEM;
108b02cf
PZ
7668 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7669 if (!pmu->pmu_cpu_context)
abe43400 7670 goto free_dev;
f344011c 7671
108b02cf
PZ
7672 for_each_possible_cpu(cpu) {
7673 struct perf_cpu_context *cpuctx;
7674
7675 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7676 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7677 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7678 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7679 cpuctx->ctx.pmu = pmu;
9e630205 7680
272325c4 7681 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7682
3f1f3320 7683 cpuctx->unique_pmu = pmu;
108b02cf 7684 }
76e1d904 7685
8dc85d54 7686got_cpu_context:
ad5133b7
PZ
7687 if (!pmu->start_txn) {
7688 if (pmu->pmu_enable) {
7689 /*
7690 * If we have pmu_enable/pmu_disable calls, install
7691 * transaction stubs that use that to try and batch
7692 * hardware accesses.
7693 */
7694 pmu->start_txn = perf_pmu_start_txn;
7695 pmu->commit_txn = perf_pmu_commit_txn;
7696 pmu->cancel_txn = perf_pmu_cancel_txn;
7697 } else {
fbbe0701 7698 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7699 pmu->commit_txn = perf_pmu_nop_int;
7700 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7701 }
5c92d124 7702 }
15dbf27c 7703
ad5133b7
PZ
7704 if (!pmu->pmu_enable) {
7705 pmu->pmu_enable = perf_pmu_nop_void;
7706 pmu->pmu_disable = perf_pmu_nop_void;
7707 }
7708
35edc2a5
PZ
7709 if (!pmu->event_idx)
7710 pmu->event_idx = perf_event_idx_default;
7711
b0a873eb 7712 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7713 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7714 ret = 0;
7715unlock:
b0a873eb
PZ
7716 mutex_unlock(&pmus_lock);
7717
33696fc0 7718 return ret;
108b02cf 7719
abe43400
PZ
7720free_dev:
7721 device_del(pmu->dev);
7722 put_device(pmu->dev);
7723
2e80a82a
PZ
7724free_idr:
7725 if (pmu->type >= PERF_TYPE_MAX)
7726 idr_remove(&pmu_idr, pmu->type);
7727
108b02cf
PZ
7728free_pdc:
7729 free_percpu(pmu->pmu_disable_count);
7730 goto unlock;
f29ac756 7731}
c464c76e 7732EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7733
b0a873eb 7734void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7735{
b0a873eb
PZ
7736 mutex_lock(&pmus_lock);
7737 list_del_rcu(&pmu->entry);
7738 mutex_unlock(&pmus_lock);
5c92d124 7739
0475f9ea 7740 /*
cde8e884
PZ
7741 * We dereference the pmu list under both SRCU and regular RCU, so
7742 * synchronize against both of those.
0475f9ea 7743 */
b0a873eb 7744 synchronize_srcu(&pmus_srcu);
cde8e884 7745 synchronize_rcu();
d6d020e9 7746
33696fc0 7747 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7748 if (pmu->type >= PERF_TYPE_MAX)
7749 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7750 device_del(pmu->dev);
7751 put_device(pmu->dev);
51676957 7752 free_pmu_context(pmu);
b0a873eb 7753}
c464c76e 7754EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7755
cc34b98b
MR
7756static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7757{
ccd41c86 7758 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7759 int ret;
7760
7761 if (!try_module_get(pmu->module))
7762 return -ENODEV;
ccd41c86
PZ
7763
7764 if (event->group_leader != event) {
8b10c5e2
PZ
7765 /*
7766 * This ctx->mutex can nest when we're called through
7767 * inheritance. See the perf_event_ctx_lock_nested() comment.
7768 */
7769 ctx = perf_event_ctx_lock_nested(event->group_leader,
7770 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7771 BUG_ON(!ctx);
7772 }
7773
cc34b98b
MR
7774 event->pmu = pmu;
7775 ret = pmu->event_init(event);
ccd41c86
PZ
7776
7777 if (ctx)
7778 perf_event_ctx_unlock(event->group_leader, ctx);
7779
cc34b98b
MR
7780 if (ret)
7781 module_put(pmu->module);
7782
7783 return ret;
7784}
7785
18ab2cd3 7786static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7787{
7788 struct pmu *pmu = NULL;
7789 int idx;
940c5b29 7790 int ret;
b0a873eb
PZ
7791
7792 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7793
7794 rcu_read_lock();
7795 pmu = idr_find(&pmu_idr, event->attr.type);
7796 rcu_read_unlock();
940c5b29 7797 if (pmu) {
cc34b98b 7798 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7799 if (ret)
7800 pmu = ERR_PTR(ret);
2e80a82a 7801 goto unlock;
940c5b29 7802 }
2e80a82a 7803
b0a873eb 7804 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7805 ret = perf_try_init_event(pmu, event);
b0a873eb 7806 if (!ret)
e5f4d339 7807 goto unlock;
76e1d904 7808
b0a873eb
PZ
7809 if (ret != -ENOENT) {
7810 pmu = ERR_PTR(ret);
e5f4d339 7811 goto unlock;
f344011c 7812 }
5c92d124 7813 }
e5f4d339
PZ
7814 pmu = ERR_PTR(-ENOENT);
7815unlock:
b0a873eb 7816 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7817
4aeb0b42 7818 return pmu;
5c92d124
IM
7819}
7820
4beb31f3
FW
7821static void account_event_cpu(struct perf_event *event, int cpu)
7822{
7823 if (event->parent)
7824 return;
7825
4beb31f3
FW
7826 if (is_cgroup_event(event))
7827 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7828}
7829
555e0c1e
FW
7830/* Freq events need the tick to stay alive (see perf_event_task_tick). */
7831static void account_freq_event_nohz(void)
7832{
7833#ifdef CONFIG_NO_HZ_FULL
7834 /* Lock so we don't race with concurrent unaccount */
7835 spin_lock(&nr_freq_lock);
7836 if (atomic_inc_return(&nr_freq_events) == 1)
7837 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
7838 spin_unlock(&nr_freq_lock);
7839#endif
7840}
7841
7842static void account_freq_event(void)
7843{
7844 if (tick_nohz_full_enabled())
7845 account_freq_event_nohz();
7846 else
7847 atomic_inc(&nr_freq_events);
7848}
7849
7850
766d6c07
FW
7851static void account_event(struct perf_event *event)
7852{
25432ae9
PZ
7853 bool inc = false;
7854
4beb31f3
FW
7855 if (event->parent)
7856 return;
7857
766d6c07 7858 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 7859 inc = true;
766d6c07
FW
7860 if (event->attr.mmap || event->attr.mmap_data)
7861 atomic_inc(&nr_mmap_events);
7862 if (event->attr.comm)
7863 atomic_inc(&nr_comm_events);
7864 if (event->attr.task)
7865 atomic_inc(&nr_task_events);
555e0c1e
FW
7866 if (event->attr.freq)
7867 account_freq_event();
45ac1403
AH
7868 if (event->attr.context_switch) {
7869 atomic_inc(&nr_switch_events);
25432ae9 7870 inc = true;
45ac1403 7871 }
4beb31f3 7872 if (has_branch_stack(event))
25432ae9 7873 inc = true;
4beb31f3 7874 if (is_cgroup_event(event))
25432ae9
PZ
7875 inc = true;
7876
9107c89e
PZ
7877 if (inc) {
7878 if (atomic_inc_not_zero(&perf_sched_count))
7879 goto enabled;
7880
7881 mutex_lock(&perf_sched_mutex);
7882 if (!atomic_read(&perf_sched_count)) {
7883 static_branch_enable(&perf_sched_events);
7884 /*
7885 * Guarantee that all CPUs observe they key change and
7886 * call the perf scheduling hooks before proceeding to
7887 * install events that need them.
7888 */
7889 synchronize_sched();
7890 }
7891 /*
7892 * Now that we have waited for the sync_sched(), allow further
7893 * increments to by-pass the mutex.
7894 */
7895 atomic_inc(&perf_sched_count);
7896 mutex_unlock(&perf_sched_mutex);
7897 }
7898enabled:
4beb31f3
FW
7899
7900 account_event_cpu(event, event->cpu);
766d6c07
FW
7901}
7902
0793a61d 7903/*
cdd6c482 7904 * Allocate and initialize a event structure
0793a61d 7905 */
cdd6c482 7906static struct perf_event *
c3f00c70 7907perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7908 struct task_struct *task,
7909 struct perf_event *group_leader,
7910 struct perf_event *parent_event,
4dc0da86 7911 perf_overflow_handler_t overflow_handler,
79dff51e 7912 void *context, int cgroup_fd)
0793a61d 7913{
51b0fe39 7914 struct pmu *pmu;
cdd6c482
IM
7915 struct perf_event *event;
7916 struct hw_perf_event *hwc;
90983b16 7917 long err = -EINVAL;
0793a61d 7918
66832eb4
ON
7919 if ((unsigned)cpu >= nr_cpu_ids) {
7920 if (!task || cpu != -1)
7921 return ERR_PTR(-EINVAL);
7922 }
7923
c3f00c70 7924 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7925 if (!event)
d5d2bc0d 7926 return ERR_PTR(-ENOMEM);
0793a61d 7927
04289bb9 7928 /*
cdd6c482 7929 * Single events are their own group leaders, with an
04289bb9
IM
7930 * empty sibling list:
7931 */
7932 if (!group_leader)
cdd6c482 7933 group_leader = event;
04289bb9 7934
cdd6c482
IM
7935 mutex_init(&event->child_mutex);
7936 INIT_LIST_HEAD(&event->child_list);
fccc714b 7937
cdd6c482
IM
7938 INIT_LIST_HEAD(&event->group_entry);
7939 INIT_LIST_HEAD(&event->event_entry);
7940 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7941 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7942 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7943 INIT_HLIST_NODE(&event->hlist_entry);
7944
10c6db11 7945
cdd6c482 7946 init_waitqueue_head(&event->waitq);
e360adbe 7947 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7948
cdd6c482 7949 mutex_init(&event->mmap_mutex);
7b732a75 7950
a6fa941d 7951 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7952 event->cpu = cpu;
7953 event->attr = *attr;
7954 event->group_leader = group_leader;
7955 event->pmu = NULL;
cdd6c482 7956 event->oncpu = -1;
a96bbc16 7957
cdd6c482 7958 event->parent = parent_event;
b84fbc9f 7959
17cf22c3 7960 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7961 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7962
cdd6c482 7963 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7964
d580ff86
PZ
7965 if (task) {
7966 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7967 /*
50f16a8b
PZ
7968 * XXX pmu::event_init needs to know what task to account to
7969 * and we cannot use the ctx information because we need the
7970 * pmu before we get a ctx.
d580ff86 7971 */
50f16a8b 7972 event->hw.target = task;
d580ff86
PZ
7973 }
7974
34f43927
PZ
7975 event->clock = &local_clock;
7976 if (parent_event)
7977 event->clock = parent_event->clock;
7978
4dc0da86 7979 if (!overflow_handler && parent_event) {
b326e956 7980 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7981 context = parent_event->overflow_handler_context;
7982 }
66832eb4 7983
b326e956 7984 event->overflow_handler = overflow_handler;
4dc0da86 7985 event->overflow_handler_context = context;
97eaf530 7986
0231bb53 7987 perf_event__state_init(event);
a86ed508 7988
4aeb0b42 7989 pmu = NULL;
b8e83514 7990
cdd6c482 7991 hwc = &event->hw;
bd2b5b12 7992 hwc->sample_period = attr->sample_period;
0d48696f 7993 if (attr->freq && attr->sample_freq)
bd2b5b12 7994 hwc->sample_period = 1;
eced1dfc 7995 hwc->last_period = hwc->sample_period;
bd2b5b12 7996
e7850595 7997 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7998
2023b359 7999 /*
cdd6c482 8000 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 8001 */
3dab77fb 8002 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 8003 goto err_ns;
a46a2300
YZ
8004
8005 if (!has_branch_stack(event))
8006 event->attr.branch_sample_type = 0;
2023b359 8007
79dff51e
MF
8008 if (cgroup_fd != -1) {
8009 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8010 if (err)
8011 goto err_ns;
8012 }
8013
b0a873eb 8014 pmu = perf_init_event(event);
4aeb0b42 8015 if (!pmu)
90983b16
FW
8016 goto err_ns;
8017 else if (IS_ERR(pmu)) {
4aeb0b42 8018 err = PTR_ERR(pmu);
90983b16 8019 goto err_ns;
621a01ea 8020 }
d5d2bc0d 8021
bed5b25a
AS
8022 err = exclusive_event_init(event);
8023 if (err)
8024 goto err_pmu;
8025
cdd6c482 8026 if (!event->parent) {
927c7a9e
FW
8027 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8028 err = get_callchain_buffers();
90983b16 8029 if (err)
bed5b25a 8030 goto err_per_task;
d010b332 8031 }
f344011c 8032 }
9ee318a7 8033
927a5570
AS
8034 /* symmetric to unaccount_event() in _free_event() */
8035 account_event(event);
8036
cdd6c482 8037 return event;
90983b16 8038
bed5b25a
AS
8039err_per_task:
8040 exclusive_event_destroy(event);
8041
90983b16
FW
8042err_pmu:
8043 if (event->destroy)
8044 event->destroy(event);
c464c76e 8045 module_put(pmu->module);
90983b16 8046err_ns:
79dff51e
MF
8047 if (is_cgroup_event(event))
8048 perf_detach_cgroup(event);
90983b16
FW
8049 if (event->ns)
8050 put_pid_ns(event->ns);
8051 kfree(event);
8052
8053 return ERR_PTR(err);
0793a61d
TG
8054}
8055
cdd6c482
IM
8056static int perf_copy_attr(struct perf_event_attr __user *uattr,
8057 struct perf_event_attr *attr)
974802ea 8058{
974802ea 8059 u32 size;
cdf8073d 8060 int ret;
974802ea
PZ
8061
8062 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8063 return -EFAULT;
8064
8065 /*
8066 * zero the full structure, so that a short copy will be nice.
8067 */
8068 memset(attr, 0, sizeof(*attr));
8069
8070 ret = get_user(size, &uattr->size);
8071 if (ret)
8072 return ret;
8073
8074 if (size > PAGE_SIZE) /* silly large */
8075 goto err_size;
8076
8077 if (!size) /* abi compat */
8078 size = PERF_ATTR_SIZE_VER0;
8079
8080 if (size < PERF_ATTR_SIZE_VER0)
8081 goto err_size;
8082
8083 /*
8084 * If we're handed a bigger struct than we know of,
cdf8073d
IS
8085 * ensure all the unknown bits are 0 - i.e. new
8086 * user-space does not rely on any kernel feature
8087 * extensions we dont know about yet.
974802ea
PZ
8088 */
8089 if (size > sizeof(*attr)) {
cdf8073d
IS
8090 unsigned char __user *addr;
8091 unsigned char __user *end;
8092 unsigned char val;
974802ea 8093
cdf8073d
IS
8094 addr = (void __user *)uattr + sizeof(*attr);
8095 end = (void __user *)uattr + size;
974802ea 8096
cdf8073d 8097 for (; addr < end; addr++) {
974802ea
PZ
8098 ret = get_user(val, addr);
8099 if (ret)
8100 return ret;
8101 if (val)
8102 goto err_size;
8103 }
b3e62e35 8104 size = sizeof(*attr);
974802ea
PZ
8105 }
8106
8107 ret = copy_from_user(attr, uattr, size);
8108 if (ret)
8109 return -EFAULT;
8110
cd757645 8111 if (attr->__reserved_1)
974802ea
PZ
8112 return -EINVAL;
8113
8114 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8115 return -EINVAL;
8116
8117 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8118 return -EINVAL;
8119
bce38cd5
SE
8120 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8121 u64 mask = attr->branch_sample_type;
8122
8123 /* only using defined bits */
8124 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8125 return -EINVAL;
8126
8127 /* at least one branch bit must be set */
8128 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8129 return -EINVAL;
8130
bce38cd5
SE
8131 /* propagate priv level, when not set for branch */
8132 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8133
8134 /* exclude_kernel checked on syscall entry */
8135 if (!attr->exclude_kernel)
8136 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8137
8138 if (!attr->exclude_user)
8139 mask |= PERF_SAMPLE_BRANCH_USER;
8140
8141 if (!attr->exclude_hv)
8142 mask |= PERF_SAMPLE_BRANCH_HV;
8143 /*
8144 * adjust user setting (for HW filter setup)
8145 */
8146 attr->branch_sample_type = mask;
8147 }
e712209a
SE
8148 /* privileged levels capture (kernel, hv): check permissions */
8149 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8150 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8151 return -EACCES;
bce38cd5 8152 }
4018994f 8153
c5ebcedb 8154 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8155 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8156 if (ret)
8157 return ret;
8158 }
8159
8160 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8161 if (!arch_perf_have_user_stack_dump())
8162 return -ENOSYS;
8163
8164 /*
8165 * We have __u32 type for the size, but so far
8166 * we can only use __u16 as maximum due to the
8167 * __u16 sample size limit.
8168 */
8169 if (attr->sample_stack_user >= USHRT_MAX)
8170 ret = -EINVAL;
8171 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8172 ret = -EINVAL;
8173 }
4018994f 8174
60e2364e
SE
8175 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8176 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8177out:
8178 return ret;
8179
8180err_size:
8181 put_user(sizeof(*attr), &uattr->size);
8182 ret = -E2BIG;
8183 goto out;
8184}
8185
ac9721f3
PZ
8186static int
8187perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8188{
b69cf536 8189 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8190 int ret = -EINVAL;
8191
ac9721f3 8192 if (!output_event)
a4be7c27
PZ
8193 goto set;
8194
ac9721f3
PZ
8195 /* don't allow circular references */
8196 if (event == output_event)
a4be7c27
PZ
8197 goto out;
8198
0f139300
PZ
8199 /*
8200 * Don't allow cross-cpu buffers
8201 */
8202 if (output_event->cpu != event->cpu)
8203 goto out;
8204
8205 /*
76369139 8206 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8207 */
8208 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8209 goto out;
8210
34f43927
PZ
8211 /*
8212 * Mixing clocks in the same buffer is trouble you don't need.
8213 */
8214 if (output_event->clock != event->clock)
8215 goto out;
8216
45bfb2e5
PZ
8217 /*
8218 * If both events generate aux data, they must be on the same PMU
8219 */
8220 if (has_aux(event) && has_aux(output_event) &&
8221 event->pmu != output_event->pmu)
8222 goto out;
8223
a4be7c27 8224set:
cdd6c482 8225 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8226 /* Can't redirect output if we've got an active mmap() */
8227 if (atomic_read(&event->mmap_count))
8228 goto unlock;
a4be7c27 8229
ac9721f3 8230 if (output_event) {
76369139
FW
8231 /* get the rb we want to redirect to */
8232 rb = ring_buffer_get(output_event);
8233 if (!rb)
ac9721f3 8234 goto unlock;
a4be7c27
PZ
8235 }
8236
b69cf536 8237 ring_buffer_attach(event, rb);
9bb5d40c 8238
a4be7c27 8239 ret = 0;
ac9721f3
PZ
8240unlock:
8241 mutex_unlock(&event->mmap_mutex);
8242
a4be7c27 8243out:
a4be7c27
PZ
8244 return ret;
8245}
8246
f63a8daa
PZ
8247static void mutex_lock_double(struct mutex *a, struct mutex *b)
8248{
8249 if (b < a)
8250 swap(a, b);
8251
8252 mutex_lock(a);
8253 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8254}
8255
34f43927
PZ
8256static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8257{
8258 bool nmi_safe = false;
8259
8260 switch (clk_id) {
8261 case CLOCK_MONOTONIC:
8262 event->clock = &ktime_get_mono_fast_ns;
8263 nmi_safe = true;
8264 break;
8265
8266 case CLOCK_MONOTONIC_RAW:
8267 event->clock = &ktime_get_raw_fast_ns;
8268 nmi_safe = true;
8269 break;
8270
8271 case CLOCK_REALTIME:
8272 event->clock = &ktime_get_real_ns;
8273 break;
8274
8275 case CLOCK_BOOTTIME:
8276 event->clock = &ktime_get_boot_ns;
8277 break;
8278
8279 case CLOCK_TAI:
8280 event->clock = &ktime_get_tai_ns;
8281 break;
8282
8283 default:
8284 return -EINVAL;
8285 }
8286
8287 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8288 return -EINVAL;
8289
8290 return 0;
8291}
8292
0793a61d 8293/**
cdd6c482 8294 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8295 *
cdd6c482 8296 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8297 * @pid: target pid
9f66a381 8298 * @cpu: target cpu
cdd6c482 8299 * @group_fd: group leader event fd
0793a61d 8300 */
cdd6c482
IM
8301SYSCALL_DEFINE5(perf_event_open,
8302 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8303 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8304{
b04243ef
PZ
8305 struct perf_event *group_leader = NULL, *output_event = NULL;
8306 struct perf_event *event, *sibling;
cdd6c482 8307 struct perf_event_attr attr;
f63a8daa 8308 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8309 struct file *event_file = NULL;
2903ff01 8310 struct fd group = {NULL, 0};
38a81da2 8311 struct task_struct *task = NULL;
89a1e187 8312 struct pmu *pmu;
ea635c64 8313 int event_fd;
b04243ef 8314 int move_group = 0;
dc86cabe 8315 int err;
a21b0b35 8316 int f_flags = O_RDWR;
79dff51e 8317 int cgroup_fd = -1;
0793a61d 8318
2743a5b0 8319 /* for future expandability... */
e5d1367f 8320 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8321 return -EINVAL;
8322
dc86cabe
IM
8323 err = perf_copy_attr(attr_uptr, &attr);
8324 if (err)
8325 return err;
eab656ae 8326
0764771d
PZ
8327 if (!attr.exclude_kernel) {
8328 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8329 return -EACCES;
8330 }
8331
df58ab24 8332 if (attr.freq) {
cdd6c482 8333 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8334 return -EINVAL;
0819b2e3
PZ
8335 } else {
8336 if (attr.sample_period & (1ULL << 63))
8337 return -EINVAL;
df58ab24
PZ
8338 }
8339
e5d1367f
SE
8340 /*
8341 * In cgroup mode, the pid argument is used to pass the fd
8342 * opened to the cgroup directory in cgroupfs. The cpu argument
8343 * designates the cpu on which to monitor threads from that
8344 * cgroup.
8345 */
8346 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8347 return -EINVAL;
8348
a21b0b35
YD
8349 if (flags & PERF_FLAG_FD_CLOEXEC)
8350 f_flags |= O_CLOEXEC;
8351
8352 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8353 if (event_fd < 0)
8354 return event_fd;
8355
ac9721f3 8356 if (group_fd != -1) {
2903ff01
AV
8357 err = perf_fget_light(group_fd, &group);
8358 if (err)
d14b12d7 8359 goto err_fd;
2903ff01 8360 group_leader = group.file->private_data;
ac9721f3
PZ
8361 if (flags & PERF_FLAG_FD_OUTPUT)
8362 output_event = group_leader;
8363 if (flags & PERF_FLAG_FD_NO_GROUP)
8364 group_leader = NULL;
8365 }
8366
e5d1367f 8367 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8368 task = find_lively_task_by_vpid(pid);
8369 if (IS_ERR(task)) {
8370 err = PTR_ERR(task);
8371 goto err_group_fd;
8372 }
8373 }
8374
1f4ee503
PZ
8375 if (task && group_leader &&
8376 group_leader->attr.inherit != attr.inherit) {
8377 err = -EINVAL;
8378 goto err_task;
8379 }
8380
fbfc623f
YZ
8381 get_online_cpus();
8382
79dff51e
MF
8383 if (flags & PERF_FLAG_PID_CGROUP)
8384 cgroup_fd = pid;
8385
4dc0da86 8386 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8387 NULL, NULL, cgroup_fd);
d14b12d7
SE
8388 if (IS_ERR(event)) {
8389 err = PTR_ERR(event);
1f4ee503 8390 goto err_cpus;
d14b12d7
SE
8391 }
8392
53b25335
VW
8393 if (is_sampling_event(event)) {
8394 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8395 err = -ENOTSUPP;
8396 goto err_alloc;
8397 }
8398 }
8399
89a1e187
PZ
8400 /*
8401 * Special case software events and allow them to be part of
8402 * any hardware group.
8403 */
8404 pmu = event->pmu;
b04243ef 8405
34f43927
PZ
8406 if (attr.use_clockid) {
8407 err = perf_event_set_clock(event, attr.clockid);
8408 if (err)
8409 goto err_alloc;
8410 }
8411
b04243ef
PZ
8412 if (group_leader &&
8413 (is_software_event(event) != is_software_event(group_leader))) {
8414 if (is_software_event(event)) {
8415 /*
8416 * If event and group_leader are not both a software
8417 * event, and event is, then group leader is not.
8418 *
8419 * Allow the addition of software events to !software
8420 * groups, this is safe because software events never
8421 * fail to schedule.
8422 */
8423 pmu = group_leader->pmu;
8424 } else if (is_software_event(group_leader) &&
8425 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8426 /*
8427 * In case the group is a pure software group, and we
8428 * try to add a hardware event, move the whole group to
8429 * the hardware context.
8430 */
8431 move_group = 1;
8432 }
8433 }
89a1e187
PZ
8434
8435 /*
8436 * Get the target context (task or percpu):
8437 */
4af57ef2 8438 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8439 if (IS_ERR(ctx)) {
8440 err = PTR_ERR(ctx);
c6be5a5c 8441 goto err_alloc;
89a1e187
PZ
8442 }
8443
bed5b25a
AS
8444 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8445 err = -EBUSY;
8446 goto err_context;
8447 }
8448
fd1edb3a
PZ
8449 if (task) {
8450 put_task_struct(task);
8451 task = NULL;
8452 }
8453
ccff286d 8454 /*
cdd6c482 8455 * Look up the group leader (we will attach this event to it):
04289bb9 8456 */
ac9721f3 8457 if (group_leader) {
dc86cabe 8458 err = -EINVAL;
04289bb9 8459
04289bb9 8460 /*
ccff286d
IM
8461 * Do not allow a recursive hierarchy (this new sibling
8462 * becoming part of another group-sibling):
8463 */
8464 if (group_leader->group_leader != group_leader)
c3f00c70 8465 goto err_context;
34f43927
PZ
8466
8467 /* All events in a group should have the same clock */
8468 if (group_leader->clock != event->clock)
8469 goto err_context;
8470
ccff286d
IM
8471 /*
8472 * Do not allow to attach to a group in a different
8473 * task or CPU context:
04289bb9 8474 */
b04243ef 8475 if (move_group) {
c3c87e77
PZ
8476 /*
8477 * Make sure we're both on the same task, or both
8478 * per-cpu events.
8479 */
8480 if (group_leader->ctx->task != ctx->task)
8481 goto err_context;
8482
8483 /*
8484 * Make sure we're both events for the same CPU;
8485 * grouping events for different CPUs is broken; since
8486 * you can never concurrently schedule them anyhow.
8487 */
8488 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8489 goto err_context;
8490 } else {
8491 if (group_leader->ctx != ctx)
8492 goto err_context;
8493 }
8494
3b6f9e5c
PM
8495 /*
8496 * Only a group leader can be exclusive or pinned
8497 */
0d48696f 8498 if (attr.exclusive || attr.pinned)
c3f00c70 8499 goto err_context;
ac9721f3
PZ
8500 }
8501
8502 if (output_event) {
8503 err = perf_event_set_output(event, output_event);
8504 if (err)
c3f00c70 8505 goto err_context;
ac9721f3 8506 }
0793a61d 8507
a21b0b35
YD
8508 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8509 f_flags);
ea635c64
AV
8510 if (IS_ERR(event_file)) {
8511 err = PTR_ERR(event_file);
c3f00c70 8512 goto err_context;
ea635c64 8513 }
9b51f66d 8514
b04243ef 8515 if (move_group) {
f63a8daa 8516 gctx = group_leader->ctx;
f55fc2a5 8517 mutex_lock_double(&gctx->mutex, &ctx->mutex);
84c4e620
PZ
8518 if (gctx->task == TASK_TOMBSTONE) {
8519 err = -ESRCH;
8520 goto err_locked;
8521 }
f55fc2a5
PZ
8522 } else {
8523 mutex_lock(&ctx->mutex);
8524 }
8525
84c4e620
PZ
8526 if (ctx->task == TASK_TOMBSTONE) {
8527 err = -ESRCH;
8528 goto err_locked;
8529 }
8530
a723968c
PZ
8531 if (!perf_event_validate_size(event)) {
8532 err = -E2BIG;
8533 goto err_locked;
8534 }
8535
f55fc2a5
PZ
8536 /*
8537 * Must be under the same ctx::mutex as perf_install_in_context(),
8538 * because we need to serialize with concurrent event creation.
8539 */
8540 if (!exclusive_event_installable(event, ctx)) {
8541 /* exclusive and group stuff are assumed mutually exclusive */
8542 WARN_ON_ONCE(move_group);
f63a8daa 8543
f55fc2a5
PZ
8544 err = -EBUSY;
8545 goto err_locked;
8546 }
f63a8daa 8547
f55fc2a5
PZ
8548 WARN_ON_ONCE(ctx->parent_ctx);
8549
8550 if (move_group) {
f63a8daa
PZ
8551 /*
8552 * See perf_event_ctx_lock() for comments on the details
8553 * of swizzling perf_event::ctx.
8554 */
45a0e07a 8555 perf_remove_from_context(group_leader, 0);
0231bb53 8556
b04243ef
PZ
8557 list_for_each_entry(sibling, &group_leader->sibling_list,
8558 group_entry) {
45a0e07a 8559 perf_remove_from_context(sibling, 0);
b04243ef
PZ
8560 put_ctx(gctx);
8561 }
b04243ef 8562
f63a8daa
PZ
8563 /*
8564 * Wait for everybody to stop referencing the events through
8565 * the old lists, before installing it on new lists.
8566 */
0cda4c02 8567 synchronize_rcu();
f63a8daa 8568
8f95b435
PZI
8569 /*
8570 * Install the group siblings before the group leader.
8571 *
8572 * Because a group leader will try and install the entire group
8573 * (through the sibling list, which is still in-tact), we can
8574 * end up with siblings installed in the wrong context.
8575 *
8576 * By installing siblings first we NO-OP because they're not
8577 * reachable through the group lists.
8578 */
b04243ef
PZ
8579 list_for_each_entry(sibling, &group_leader->sibling_list,
8580 group_entry) {
8f95b435 8581 perf_event__state_init(sibling);
9fc81d87 8582 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8583 get_ctx(ctx);
8584 }
8f95b435
PZI
8585
8586 /*
8587 * Removing from the context ends up with disabled
8588 * event. What we want here is event in the initial
8589 * startup state, ready to be add into new context.
8590 */
8591 perf_event__state_init(group_leader);
8592 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8593 get_ctx(ctx);
b04243ef 8594
f55fc2a5
PZ
8595 /*
8596 * Now that all events are installed in @ctx, nothing
8597 * references @gctx anymore, so drop the last reference we have
8598 * on it.
8599 */
8600 put_ctx(gctx);
bed5b25a
AS
8601 }
8602
f73e22ab
PZ
8603 /*
8604 * Precalculate sample_data sizes; do while holding ctx::mutex such
8605 * that we're serialized against further additions and before
8606 * perf_install_in_context() which is the point the event is active and
8607 * can use these values.
8608 */
8609 perf_event__header_size(event);
8610 perf_event__id_header_size(event);
8611
78cd2c74
PZ
8612 event->owner = current;
8613
e2d37cd2 8614 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8615 perf_unpin_context(ctx);
f63a8daa 8616
f55fc2a5 8617 if (move_group)
f63a8daa 8618 mutex_unlock(&gctx->mutex);
d859e29f 8619 mutex_unlock(&ctx->mutex);
9b51f66d 8620
fbfc623f
YZ
8621 put_online_cpus();
8622
cdd6c482
IM
8623 mutex_lock(&current->perf_event_mutex);
8624 list_add_tail(&event->owner_entry, &current->perf_event_list);
8625 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8626
8a49542c
PZ
8627 /*
8628 * Drop the reference on the group_event after placing the
8629 * new event on the sibling_list. This ensures destruction
8630 * of the group leader will find the pointer to itself in
8631 * perf_group_detach().
8632 */
2903ff01 8633 fdput(group);
ea635c64
AV
8634 fd_install(event_fd, event_file);
8635 return event_fd;
0793a61d 8636
f55fc2a5
PZ
8637err_locked:
8638 if (move_group)
8639 mutex_unlock(&gctx->mutex);
8640 mutex_unlock(&ctx->mutex);
8641/* err_file: */
8642 fput(event_file);
c3f00c70 8643err_context:
fe4b04fa 8644 perf_unpin_context(ctx);
ea635c64 8645 put_ctx(ctx);
c6be5a5c 8646err_alloc:
13005627
PZ
8647 /*
8648 * If event_file is set, the fput() above will have called ->release()
8649 * and that will take care of freeing the event.
8650 */
8651 if (!event_file)
8652 free_event(event);
1f4ee503 8653err_cpus:
fbfc623f 8654 put_online_cpus();
1f4ee503 8655err_task:
e7d0bc04
PZ
8656 if (task)
8657 put_task_struct(task);
89a1e187 8658err_group_fd:
2903ff01 8659 fdput(group);
ea635c64
AV
8660err_fd:
8661 put_unused_fd(event_fd);
dc86cabe 8662 return err;
0793a61d
TG
8663}
8664
fb0459d7
AV
8665/**
8666 * perf_event_create_kernel_counter
8667 *
8668 * @attr: attributes of the counter to create
8669 * @cpu: cpu in which the counter is bound
38a81da2 8670 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8671 */
8672struct perf_event *
8673perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8674 struct task_struct *task,
4dc0da86
AK
8675 perf_overflow_handler_t overflow_handler,
8676 void *context)
fb0459d7 8677{
fb0459d7 8678 struct perf_event_context *ctx;
c3f00c70 8679 struct perf_event *event;
fb0459d7 8680 int err;
d859e29f 8681
fb0459d7
AV
8682 /*
8683 * Get the target context (task or percpu):
8684 */
d859e29f 8685
4dc0da86 8686 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8687 overflow_handler, context, -1);
c3f00c70
PZ
8688 if (IS_ERR(event)) {
8689 err = PTR_ERR(event);
8690 goto err;
8691 }
d859e29f 8692
f8697762 8693 /* Mark owner so we could distinguish it from user events. */
63b6da39 8694 event->owner = TASK_TOMBSTONE;
f8697762 8695
4af57ef2 8696 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8697 if (IS_ERR(ctx)) {
8698 err = PTR_ERR(ctx);
c3f00c70 8699 goto err_free;
d859e29f 8700 }
fb0459d7 8701
fb0459d7
AV
8702 WARN_ON_ONCE(ctx->parent_ctx);
8703 mutex_lock(&ctx->mutex);
84c4e620
PZ
8704 if (ctx->task == TASK_TOMBSTONE) {
8705 err = -ESRCH;
8706 goto err_unlock;
8707 }
8708
bed5b25a 8709 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 8710 err = -EBUSY;
84c4e620 8711 goto err_unlock;
bed5b25a
AS
8712 }
8713
fb0459d7 8714 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8715 perf_unpin_context(ctx);
fb0459d7
AV
8716 mutex_unlock(&ctx->mutex);
8717
fb0459d7
AV
8718 return event;
8719
84c4e620
PZ
8720err_unlock:
8721 mutex_unlock(&ctx->mutex);
8722 perf_unpin_context(ctx);
8723 put_ctx(ctx);
c3f00c70
PZ
8724err_free:
8725 free_event(event);
8726err:
c6567f64 8727 return ERR_PTR(err);
9b51f66d 8728}
fb0459d7 8729EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8730
0cda4c02
YZ
8731void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8732{
8733 struct perf_event_context *src_ctx;
8734 struct perf_event_context *dst_ctx;
8735 struct perf_event *event, *tmp;
8736 LIST_HEAD(events);
8737
8738 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8739 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8740
f63a8daa
PZ
8741 /*
8742 * See perf_event_ctx_lock() for comments on the details
8743 * of swizzling perf_event::ctx.
8744 */
8745 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8746 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8747 event_entry) {
45a0e07a 8748 perf_remove_from_context(event, 0);
9a545de0 8749 unaccount_event_cpu(event, src_cpu);
0cda4c02 8750 put_ctx(src_ctx);
9886167d 8751 list_add(&event->migrate_entry, &events);
0cda4c02 8752 }
0cda4c02 8753
8f95b435
PZI
8754 /*
8755 * Wait for the events to quiesce before re-instating them.
8756 */
0cda4c02
YZ
8757 synchronize_rcu();
8758
8f95b435
PZI
8759 /*
8760 * Re-instate events in 2 passes.
8761 *
8762 * Skip over group leaders and only install siblings on this first
8763 * pass, siblings will not get enabled without a leader, however a
8764 * leader will enable its siblings, even if those are still on the old
8765 * context.
8766 */
8767 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8768 if (event->group_leader == event)
8769 continue;
8770
8771 list_del(&event->migrate_entry);
8772 if (event->state >= PERF_EVENT_STATE_OFF)
8773 event->state = PERF_EVENT_STATE_INACTIVE;
8774 account_event_cpu(event, dst_cpu);
8775 perf_install_in_context(dst_ctx, event, dst_cpu);
8776 get_ctx(dst_ctx);
8777 }
8778
8779 /*
8780 * Once all the siblings are setup properly, install the group leaders
8781 * to make it go.
8782 */
9886167d
PZ
8783 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8784 list_del(&event->migrate_entry);
0cda4c02
YZ
8785 if (event->state >= PERF_EVENT_STATE_OFF)
8786 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8787 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8788 perf_install_in_context(dst_ctx, event, dst_cpu);
8789 get_ctx(dst_ctx);
8790 }
8791 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8792 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8793}
8794EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8795
cdd6c482 8796static void sync_child_event(struct perf_event *child_event,
38b200d6 8797 struct task_struct *child)
d859e29f 8798{
cdd6c482 8799 struct perf_event *parent_event = child_event->parent;
8bc20959 8800 u64 child_val;
d859e29f 8801
cdd6c482
IM
8802 if (child_event->attr.inherit_stat)
8803 perf_event_read_event(child_event, child);
38b200d6 8804
b5e58793 8805 child_val = perf_event_count(child_event);
d859e29f
PM
8806
8807 /*
8808 * Add back the child's count to the parent's count:
8809 */
a6e6dea6 8810 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8811 atomic64_add(child_event->total_time_enabled,
8812 &parent_event->child_total_time_enabled);
8813 atomic64_add(child_event->total_time_running,
8814 &parent_event->child_total_time_running);
d859e29f
PM
8815}
8816
9b51f66d 8817static void
8ba289b8
PZ
8818perf_event_exit_event(struct perf_event *child_event,
8819 struct perf_event_context *child_ctx,
8820 struct task_struct *child)
9b51f66d 8821{
8ba289b8
PZ
8822 struct perf_event *parent_event = child_event->parent;
8823
1903d50c
PZ
8824 /*
8825 * Do not destroy the 'original' grouping; because of the context
8826 * switch optimization the original events could've ended up in a
8827 * random child task.
8828 *
8829 * If we were to destroy the original group, all group related
8830 * operations would cease to function properly after this random
8831 * child dies.
8832 *
8833 * Do destroy all inherited groups, we don't care about those
8834 * and being thorough is better.
8835 */
32132a3d
PZ
8836 raw_spin_lock_irq(&child_ctx->lock);
8837 WARN_ON_ONCE(child_ctx->is_active);
8838
8ba289b8 8839 if (parent_event)
32132a3d
PZ
8840 perf_group_detach(child_event);
8841 list_del_event(child_event, child_ctx);
a69b0ca4 8842 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 8843 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 8844
9b51f66d 8845 /*
8ba289b8 8846 * Parent events are governed by their filedesc, retain them.
9b51f66d 8847 */
8ba289b8 8848 if (!parent_event) {
179033b3 8849 perf_event_wakeup(child_event);
8ba289b8 8850 return;
4bcf349a 8851 }
8ba289b8
PZ
8852 /*
8853 * Child events can be cleaned up.
8854 */
8855
8856 sync_child_event(child_event, child);
8857
8858 /*
8859 * Remove this event from the parent's list
8860 */
8861 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8862 mutex_lock(&parent_event->child_mutex);
8863 list_del_init(&child_event->child_list);
8864 mutex_unlock(&parent_event->child_mutex);
8865
8866 /*
8867 * Kick perf_poll() for is_event_hup().
8868 */
8869 perf_event_wakeup(parent_event);
8870 free_event(child_event);
8871 put_event(parent_event);
9b51f66d
IM
8872}
8873
8dc85d54 8874static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8875{
211de6eb 8876 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 8877 struct perf_event *child_event, *next;
63b6da39
PZ
8878
8879 WARN_ON_ONCE(child != current);
9b51f66d 8880
6a3351b6 8881 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 8882 if (!child_ctx)
9b51f66d
IM
8883 return;
8884
ad3a37de 8885 /*
6a3351b6
PZ
8886 * In order to reduce the amount of tricky in ctx tear-down, we hold
8887 * ctx::mutex over the entire thing. This serializes against almost
8888 * everything that wants to access the ctx.
8889 *
8890 * The exception is sys_perf_event_open() /
8891 * perf_event_create_kernel_count() which does find_get_context()
8892 * without ctx::mutex (it cannot because of the move_group double mutex
8893 * lock thing). See the comments in perf_install_in_context().
ad3a37de 8894 */
6a3351b6 8895 mutex_lock(&child_ctx->mutex);
c93f7669
PM
8896
8897 /*
6a3351b6
PZ
8898 * In a single ctx::lock section, de-schedule the events and detach the
8899 * context from the task such that we cannot ever get it scheduled back
8900 * in.
c93f7669 8901 */
6a3351b6 8902 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 8903 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 8904
71a851b4 8905 /*
63b6da39
PZ
8906 * Now that the context is inactive, destroy the task <-> ctx relation
8907 * and mark the context dead.
71a851b4 8908 */
63b6da39
PZ
8909 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8910 put_ctx(child_ctx); /* cannot be last */
8911 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8912 put_task_struct(current); /* cannot be last */
4a1c0f26 8913
211de6eb 8914 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 8915 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 8916
211de6eb
PZ
8917 if (clone_ctx)
8918 put_ctx(clone_ctx);
4a1c0f26 8919
9f498cc5 8920 /*
cdd6c482
IM
8921 * Report the task dead after unscheduling the events so that we
8922 * won't get any samples after PERF_RECORD_EXIT. We can however still
8923 * get a few PERF_RECORD_READ events.
9f498cc5 8924 */
cdd6c482 8925 perf_event_task(child, child_ctx, 0);
a63eaf34 8926
ebf905fc 8927 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 8928 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 8929
a63eaf34
PM
8930 mutex_unlock(&child_ctx->mutex);
8931
8932 put_ctx(child_ctx);
9b51f66d
IM
8933}
8934
8dc85d54
PZ
8935/*
8936 * When a child task exits, feed back event values to parent events.
8937 */
8938void perf_event_exit_task(struct task_struct *child)
8939{
8882135b 8940 struct perf_event *event, *tmp;
8dc85d54
PZ
8941 int ctxn;
8942
8882135b
PZ
8943 mutex_lock(&child->perf_event_mutex);
8944 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8945 owner_entry) {
8946 list_del_init(&event->owner_entry);
8947
8948 /*
8949 * Ensure the list deletion is visible before we clear
8950 * the owner, closes a race against perf_release() where
8951 * we need to serialize on the owner->perf_event_mutex.
8952 */
f47c02c0 8953 smp_store_release(&event->owner, NULL);
8882135b
PZ
8954 }
8955 mutex_unlock(&child->perf_event_mutex);
8956
8dc85d54
PZ
8957 for_each_task_context_nr(ctxn)
8958 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
8959
8960 /*
8961 * The perf_event_exit_task_context calls perf_event_task
8962 * with child's task_ctx, which generates EXIT events for
8963 * child contexts and sets child->perf_event_ctxp[] to NULL.
8964 * At this point we need to send EXIT events to cpu contexts.
8965 */
8966 perf_event_task(child, NULL, 0);
8dc85d54
PZ
8967}
8968
889ff015
FW
8969static void perf_free_event(struct perf_event *event,
8970 struct perf_event_context *ctx)
8971{
8972 struct perf_event *parent = event->parent;
8973
8974 if (WARN_ON_ONCE(!parent))
8975 return;
8976
8977 mutex_lock(&parent->child_mutex);
8978 list_del_init(&event->child_list);
8979 mutex_unlock(&parent->child_mutex);
8980
a6fa941d 8981 put_event(parent);
889ff015 8982
652884fe 8983 raw_spin_lock_irq(&ctx->lock);
8a49542c 8984 perf_group_detach(event);
889ff015 8985 list_del_event(event, ctx);
652884fe 8986 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8987 free_event(event);
8988}
8989
bbbee908 8990/*
652884fe 8991 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8992 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8993 *
8994 * Not all locks are strictly required, but take them anyway to be nice and
8995 * help out with the lockdep assertions.
bbbee908 8996 */
cdd6c482 8997void perf_event_free_task(struct task_struct *task)
bbbee908 8998{
8dc85d54 8999 struct perf_event_context *ctx;
cdd6c482 9000 struct perf_event *event, *tmp;
8dc85d54 9001 int ctxn;
bbbee908 9002
8dc85d54
PZ
9003 for_each_task_context_nr(ctxn) {
9004 ctx = task->perf_event_ctxp[ctxn];
9005 if (!ctx)
9006 continue;
bbbee908 9007
8dc85d54 9008 mutex_lock(&ctx->mutex);
bbbee908 9009again:
8dc85d54
PZ
9010 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9011 group_entry)
9012 perf_free_event(event, ctx);
bbbee908 9013
8dc85d54
PZ
9014 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9015 group_entry)
9016 perf_free_event(event, ctx);
bbbee908 9017
8dc85d54
PZ
9018 if (!list_empty(&ctx->pinned_groups) ||
9019 !list_empty(&ctx->flexible_groups))
9020 goto again;
bbbee908 9021
8dc85d54 9022 mutex_unlock(&ctx->mutex);
bbbee908 9023
8dc85d54
PZ
9024 put_ctx(ctx);
9025 }
889ff015
FW
9026}
9027
4e231c79
PZ
9028void perf_event_delayed_put(struct task_struct *task)
9029{
9030 int ctxn;
9031
9032 for_each_task_context_nr(ctxn)
9033 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9034}
9035
e03e7ee3 9036struct file *perf_event_get(unsigned int fd)
ffe8690c 9037{
e03e7ee3 9038 struct file *file;
ffe8690c 9039
e03e7ee3
AS
9040 file = fget_raw(fd);
9041 if (!file)
9042 return ERR_PTR(-EBADF);
ffe8690c 9043
e03e7ee3
AS
9044 if (file->f_op != &perf_fops) {
9045 fput(file);
9046 return ERR_PTR(-EBADF);
9047 }
ffe8690c 9048
e03e7ee3 9049 return file;
ffe8690c
KX
9050}
9051
9052const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9053{
9054 if (!event)
9055 return ERR_PTR(-EINVAL);
9056
9057 return &event->attr;
9058}
9059
97dee4f3
PZ
9060/*
9061 * inherit a event from parent task to child task:
9062 */
9063static struct perf_event *
9064inherit_event(struct perf_event *parent_event,
9065 struct task_struct *parent,
9066 struct perf_event_context *parent_ctx,
9067 struct task_struct *child,
9068 struct perf_event *group_leader,
9069 struct perf_event_context *child_ctx)
9070{
1929def9 9071 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 9072 struct perf_event *child_event;
cee010ec 9073 unsigned long flags;
97dee4f3
PZ
9074
9075 /*
9076 * Instead of creating recursive hierarchies of events,
9077 * we link inherited events back to the original parent,
9078 * which has a filp for sure, which we use as the reference
9079 * count:
9080 */
9081 if (parent_event->parent)
9082 parent_event = parent_event->parent;
9083
9084 child_event = perf_event_alloc(&parent_event->attr,
9085 parent_event->cpu,
d580ff86 9086 child,
97dee4f3 9087 group_leader, parent_event,
79dff51e 9088 NULL, NULL, -1);
97dee4f3
PZ
9089 if (IS_ERR(child_event))
9090 return child_event;
a6fa941d 9091
c6e5b732
PZ
9092 /*
9093 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9094 * must be under the same lock in order to serialize against
9095 * perf_event_release_kernel(), such that either we must observe
9096 * is_orphaned_event() or they will observe us on the child_list.
9097 */
9098 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
9099 if (is_orphaned_event(parent_event) ||
9100 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 9101 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
9102 free_event(child_event);
9103 return NULL;
9104 }
9105
97dee4f3
PZ
9106 get_ctx(child_ctx);
9107
9108 /*
9109 * Make the child state follow the state of the parent event,
9110 * not its attr.disabled bit. We hold the parent's mutex,
9111 * so we won't race with perf_event_{en, dis}able_family.
9112 */
1929def9 9113 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
9114 child_event->state = PERF_EVENT_STATE_INACTIVE;
9115 else
9116 child_event->state = PERF_EVENT_STATE_OFF;
9117
9118 if (parent_event->attr.freq) {
9119 u64 sample_period = parent_event->hw.sample_period;
9120 struct hw_perf_event *hwc = &child_event->hw;
9121
9122 hwc->sample_period = sample_period;
9123 hwc->last_period = sample_period;
9124
9125 local64_set(&hwc->period_left, sample_period);
9126 }
9127
9128 child_event->ctx = child_ctx;
9129 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9130 child_event->overflow_handler_context
9131 = parent_event->overflow_handler_context;
97dee4f3 9132
614b6780
TG
9133 /*
9134 * Precalculate sample_data sizes
9135 */
9136 perf_event__header_size(child_event);
6844c09d 9137 perf_event__id_header_size(child_event);
614b6780 9138
97dee4f3
PZ
9139 /*
9140 * Link it up in the child's context:
9141 */
cee010ec 9142 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9143 add_event_to_ctx(child_event, child_ctx);
cee010ec 9144 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9145
97dee4f3
PZ
9146 /*
9147 * Link this into the parent event's child list
9148 */
97dee4f3
PZ
9149 list_add_tail(&child_event->child_list, &parent_event->child_list);
9150 mutex_unlock(&parent_event->child_mutex);
9151
9152 return child_event;
9153}
9154
9155static int inherit_group(struct perf_event *parent_event,
9156 struct task_struct *parent,
9157 struct perf_event_context *parent_ctx,
9158 struct task_struct *child,
9159 struct perf_event_context *child_ctx)
9160{
9161 struct perf_event *leader;
9162 struct perf_event *sub;
9163 struct perf_event *child_ctr;
9164
9165 leader = inherit_event(parent_event, parent, parent_ctx,
9166 child, NULL, child_ctx);
9167 if (IS_ERR(leader))
9168 return PTR_ERR(leader);
9169 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9170 child_ctr = inherit_event(sub, parent, parent_ctx,
9171 child, leader, child_ctx);
9172 if (IS_ERR(child_ctr))
9173 return PTR_ERR(child_ctr);
9174 }
9175 return 0;
889ff015
FW
9176}
9177
9178static int
9179inherit_task_group(struct perf_event *event, struct task_struct *parent,
9180 struct perf_event_context *parent_ctx,
8dc85d54 9181 struct task_struct *child, int ctxn,
889ff015
FW
9182 int *inherited_all)
9183{
9184 int ret;
8dc85d54 9185 struct perf_event_context *child_ctx;
889ff015
FW
9186
9187 if (!event->attr.inherit) {
9188 *inherited_all = 0;
9189 return 0;
bbbee908
PZ
9190 }
9191
fe4b04fa 9192 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9193 if (!child_ctx) {
9194 /*
9195 * This is executed from the parent task context, so
9196 * inherit events that have been marked for cloning.
9197 * First allocate and initialize a context for the
9198 * child.
9199 */
bbbee908 9200
734df5ab 9201 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9202 if (!child_ctx)
9203 return -ENOMEM;
bbbee908 9204
8dc85d54 9205 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9206 }
9207
9208 ret = inherit_group(event, parent, parent_ctx,
9209 child, child_ctx);
9210
9211 if (ret)
9212 *inherited_all = 0;
9213
9214 return ret;
bbbee908
PZ
9215}
9216
9b51f66d 9217/*
cdd6c482 9218 * Initialize the perf_event context in task_struct
9b51f66d 9219 */
985c8dcb 9220static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9221{
889ff015 9222 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9223 struct perf_event_context *cloned_ctx;
9224 struct perf_event *event;
9b51f66d 9225 struct task_struct *parent = current;
564c2b21 9226 int inherited_all = 1;
dddd3379 9227 unsigned long flags;
6ab423e0 9228 int ret = 0;
9b51f66d 9229
8dc85d54 9230 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9231 return 0;
9232
ad3a37de 9233 /*
25346b93
PM
9234 * If the parent's context is a clone, pin it so it won't get
9235 * swapped under us.
ad3a37de 9236 */
8dc85d54 9237 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9238 if (!parent_ctx)
9239 return 0;
25346b93 9240
ad3a37de
PM
9241 /*
9242 * No need to check if parent_ctx != NULL here; since we saw
9243 * it non-NULL earlier, the only reason for it to become NULL
9244 * is if we exit, and since we're currently in the middle of
9245 * a fork we can't be exiting at the same time.
9246 */
ad3a37de 9247
9b51f66d
IM
9248 /*
9249 * Lock the parent list. No need to lock the child - not PID
9250 * hashed yet and not running, so nobody can access it.
9251 */
d859e29f 9252 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9253
9254 /*
9255 * We dont have to disable NMIs - we are only looking at
9256 * the list, not manipulating it:
9257 */
889ff015 9258 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9259 ret = inherit_task_group(event, parent, parent_ctx,
9260 child, ctxn, &inherited_all);
889ff015
FW
9261 if (ret)
9262 break;
9263 }
b93f7978 9264
dddd3379
TG
9265 /*
9266 * We can't hold ctx->lock when iterating the ->flexible_group list due
9267 * to allocations, but we need to prevent rotation because
9268 * rotate_ctx() will change the list from interrupt context.
9269 */
9270 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9271 parent_ctx->rotate_disable = 1;
9272 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9273
889ff015 9274 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9275 ret = inherit_task_group(event, parent, parent_ctx,
9276 child, ctxn, &inherited_all);
889ff015 9277 if (ret)
9b51f66d 9278 break;
564c2b21
PM
9279 }
9280
dddd3379
TG
9281 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9282 parent_ctx->rotate_disable = 0;
dddd3379 9283
8dc85d54 9284 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9285
05cbaa28 9286 if (child_ctx && inherited_all) {
564c2b21
PM
9287 /*
9288 * Mark the child context as a clone of the parent
9289 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9290 *
9291 * Note that if the parent is a clone, the holding of
9292 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9293 */
c5ed5145 9294 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9295 if (cloned_ctx) {
9296 child_ctx->parent_ctx = cloned_ctx;
25346b93 9297 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9298 } else {
9299 child_ctx->parent_ctx = parent_ctx;
9300 child_ctx->parent_gen = parent_ctx->generation;
9301 }
9302 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9303 }
9304
c5ed5145 9305 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9306 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9307
25346b93 9308 perf_unpin_context(parent_ctx);
fe4b04fa 9309 put_ctx(parent_ctx);
ad3a37de 9310
6ab423e0 9311 return ret;
9b51f66d
IM
9312}
9313
8dc85d54
PZ
9314/*
9315 * Initialize the perf_event context in task_struct
9316 */
9317int perf_event_init_task(struct task_struct *child)
9318{
9319 int ctxn, ret;
9320
8550d7cb
ON
9321 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9322 mutex_init(&child->perf_event_mutex);
9323 INIT_LIST_HEAD(&child->perf_event_list);
9324
8dc85d54
PZ
9325 for_each_task_context_nr(ctxn) {
9326 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9327 if (ret) {
9328 perf_event_free_task(child);
8dc85d54 9329 return ret;
6c72e350 9330 }
8dc85d54
PZ
9331 }
9332
9333 return 0;
9334}
9335
220b140b
PM
9336static void __init perf_event_init_all_cpus(void)
9337{
b28ab83c 9338 struct swevent_htable *swhash;
220b140b 9339 int cpu;
220b140b
PM
9340
9341 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9342 swhash = &per_cpu(swevent_htable, cpu);
9343 mutex_init(&swhash->hlist_mutex);
2fde4f94 9344 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9345 }
9346}
9347
0db0628d 9348static void perf_event_init_cpu(int cpu)
0793a61d 9349{
108b02cf 9350 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9351
b28ab83c 9352 mutex_lock(&swhash->hlist_mutex);
059fcd8c 9353 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
9354 struct swevent_hlist *hlist;
9355
b28ab83c
PZ
9356 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9357 WARN_ON(!hlist);
9358 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9359 }
b28ab83c 9360 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9361}
9362
2965faa5 9363#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9364static void __perf_event_exit_context(void *__info)
0793a61d 9365{
108b02cf 9366 struct perf_event_context *ctx = __info;
fae3fde6
PZ
9367 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9368 struct perf_event *event;
0793a61d 9369
fae3fde6
PZ
9370 raw_spin_lock(&ctx->lock);
9371 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 9372 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 9373 raw_spin_unlock(&ctx->lock);
0793a61d 9374}
108b02cf
PZ
9375
9376static void perf_event_exit_cpu_context(int cpu)
9377{
9378 struct perf_event_context *ctx;
9379 struct pmu *pmu;
9380 int idx;
9381
9382 idx = srcu_read_lock(&pmus_srcu);
9383 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9384 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9385
9386 mutex_lock(&ctx->mutex);
9387 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9388 mutex_unlock(&ctx->mutex);
9389 }
9390 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9391}
9392
cdd6c482 9393static void perf_event_exit_cpu(int cpu)
0793a61d 9394{
e3703f8c 9395 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9396}
9397#else
cdd6c482 9398static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9399#endif
9400
c277443c
PZ
9401static int
9402perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9403{
9404 int cpu;
9405
9406 for_each_online_cpu(cpu)
9407 perf_event_exit_cpu(cpu);
9408
9409 return NOTIFY_OK;
9410}
9411
9412/*
9413 * Run the perf reboot notifier at the very last possible moment so that
9414 * the generic watchdog code runs as long as possible.
9415 */
9416static struct notifier_block perf_reboot_notifier = {
9417 .notifier_call = perf_reboot,
9418 .priority = INT_MIN,
9419};
9420
0db0628d 9421static int
0793a61d
TG
9422perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9423{
9424 unsigned int cpu = (long)hcpu;
9425
4536e4d1 9426 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9427
9428 case CPU_UP_PREPARE:
cdd6c482 9429 perf_event_init_cpu(cpu);
0793a61d
TG
9430 break;
9431
9432 case CPU_DOWN_PREPARE:
cdd6c482 9433 perf_event_exit_cpu(cpu);
0793a61d 9434 break;
0793a61d
TG
9435 default:
9436 break;
9437 }
9438
9439 return NOTIFY_OK;
9440}
9441
cdd6c482 9442void __init perf_event_init(void)
0793a61d 9443{
3c502e7a
JW
9444 int ret;
9445
2e80a82a
PZ
9446 idr_init(&pmu_idr);
9447
220b140b 9448 perf_event_init_all_cpus();
b0a873eb 9449 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9450 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9451 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9452 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9453 perf_tp_register();
9454 perf_cpu_notifier(perf_cpu_notify);
c277443c 9455 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9456
9457 ret = init_hw_breakpoint();
9458 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 9459
b01c3a00
JO
9460 /*
9461 * Build time assertion that we keep the data_head at the intended
9462 * location. IOW, validation we got the __reserved[] size right.
9463 */
9464 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9465 != 1024);
0793a61d 9466}
abe43400 9467
fd979c01
CS
9468ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9469 char *page)
9470{
9471 struct perf_pmu_events_attr *pmu_attr =
9472 container_of(attr, struct perf_pmu_events_attr, attr);
9473
9474 if (pmu_attr->event_str)
9475 return sprintf(page, "%s\n", pmu_attr->event_str);
9476
9477 return 0;
9478}
675965b0 9479EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 9480
abe43400
PZ
9481static int __init perf_event_sysfs_init(void)
9482{
9483 struct pmu *pmu;
9484 int ret;
9485
9486 mutex_lock(&pmus_lock);
9487
9488 ret = bus_register(&pmu_bus);
9489 if (ret)
9490 goto unlock;
9491
9492 list_for_each_entry(pmu, &pmus, entry) {
9493 if (!pmu->name || pmu->type < 0)
9494 continue;
9495
9496 ret = pmu_dev_alloc(pmu);
9497 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9498 }
9499 pmu_bus_running = 1;
9500 ret = 0;
9501
9502unlock:
9503 mutex_unlock(&pmus_lock);
9504
9505 return ret;
9506}
9507device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9508
9509#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9510static struct cgroup_subsys_state *
9511perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9512{
9513 struct perf_cgroup *jc;
e5d1367f 9514
1b15d055 9515 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9516 if (!jc)
9517 return ERR_PTR(-ENOMEM);
9518
e5d1367f
SE
9519 jc->info = alloc_percpu(struct perf_cgroup_info);
9520 if (!jc->info) {
9521 kfree(jc);
9522 return ERR_PTR(-ENOMEM);
9523 }
9524
e5d1367f
SE
9525 return &jc->css;
9526}
9527
eb95419b 9528static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9529{
eb95419b
TH
9530 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9531
e5d1367f
SE
9532 free_percpu(jc->info);
9533 kfree(jc);
9534}
9535
9536static int __perf_cgroup_move(void *info)
9537{
9538 struct task_struct *task = info;
ddaaf4e2 9539 rcu_read_lock();
e5d1367f 9540 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9541 rcu_read_unlock();
e5d1367f
SE
9542 return 0;
9543}
9544
1f7dd3e5 9545static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9546{
bb9d97b6 9547 struct task_struct *task;
1f7dd3e5 9548 struct cgroup_subsys_state *css;
bb9d97b6 9549
1f7dd3e5 9550 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9551 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9552}
9553
073219e9 9554struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9555 .css_alloc = perf_cgroup_css_alloc,
9556 .css_free = perf_cgroup_css_free,
bb9d97b6 9557 .attach = perf_cgroup_attach,
e5d1367f
SE
9558};
9559#endif /* CONFIG_CGROUP_PERF */