Merge tag 'perf-core-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
0793a61d 45
76369139
FW
46#include "internal.h"
47
4e193bd4
TB
48#include <asm/irq_regs.h>
49
fadfe7be
JO
50static struct workqueue_struct *perf_wq;
51
fe4b04fa 52struct remote_function_call {
e7e7ee2e
IM
53 struct task_struct *p;
54 int (*func)(void *info);
55 void *info;
56 int ret;
fe4b04fa
PZ
57};
58
59static void remote_function(void *data)
60{
61 struct remote_function_call *tfc = data;
62 struct task_struct *p = tfc->p;
63
64 if (p) {
65 tfc->ret = -EAGAIN;
66 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67 return;
68 }
69
70 tfc->ret = tfc->func(tfc->info);
71}
72
73/**
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p: the task to evaluate
76 * @func: the function to be called
77 * @info: the function call argument
78 *
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
81 *
82 * returns: @func return value, or
83 * -ESRCH - when the process isn't running
84 * -EAGAIN - when the process moved away
85 */
86static int
87task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88{
89 struct remote_function_call data = {
e7e7ee2e
IM
90 .p = p,
91 .func = func,
92 .info = info,
93 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
94 };
95
96 if (task_curr(p))
97 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98
99 return data.ret;
100}
101
102/**
103 * cpu_function_call - call a function on the cpu
104 * @func: the function to be called
105 * @info: the function call argument
106 *
107 * Calls the function @func on the remote cpu.
108 *
109 * returns: @func return value or -ENXIO when the cpu is offline
110 */
111static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112{
113 struct remote_function_call data = {
e7e7ee2e
IM
114 .p = NULL,
115 .func = func,
116 .info = info,
117 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
118 };
119
120 smp_call_function_single(cpu, remote_function, &data, 1);
121
122 return data.ret;
123}
124
f8697762
JO
125#define EVENT_OWNER_KERNEL ((void *) -1)
126
127static bool is_kernel_event(struct perf_event *event)
128{
129 return event->owner == EVENT_OWNER_KERNEL;
130}
131
e5d1367f
SE
132#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
134 PERF_FLAG_PID_CGROUP |\
135 PERF_FLAG_FD_CLOEXEC)
e5d1367f 136
bce38cd5
SE
137/*
138 * branch priv levels that need permission checks
139 */
140#define PERF_SAMPLE_BRANCH_PERM_PLM \
141 (PERF_SAMPLE_BRANCH_KERNEL |\
142 PERF_SAMPLE_BRANCH_HV)
143
0b3fcf17
SE
144enum event_type_t {
145 EVENT_FLEXIBLE = 0x1,
146 EVENT_PINNED = 0x2,
147 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148};
149
e5d1367f
SE
150/*
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153 */
c5905afb 154struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 155static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 156static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 157
cdd6c482
IM
158static atomic_t nr_mmap_events __read_mostly;
159static atomic_t nr_comm_events __read_mostly;
160static atomic_t nr_task_events __read_mostly;
948b26b6 161static atomic_t nr_freq_events __read_mostly;
9ee318a7 162
108b02cf
PZ
163static LIST_HEAD(pmus);
164static DEFINE_MUTEX(pmus_lock);
165static struct srcu_struct pmus_srcu;
166
0764771d 167/*
cdd6c482 168 * perf event paranoia level:
0fbdea19
IM
169 * -1 - not paranoid at all
170 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 171 * 1 - disallow cpu events for unpriv
0fbdea19 172 * 2 - disallow kernel profiling for unpriv
0764771d 173 */
cdd6c482 174int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 175
20443384
FW
176/* Minimum for 512 kiB + 1 user control page */
177int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
178
179/*
cdd6c482 180 * max perf event sample rate
df58ab24 181 */
14c63f17
DH
182#define DEFAULT_MAX_SAMPLE_RATE 100000
183#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184#define DEFAULT_CPU_TIME_MAX_PERCENT 25
185
186int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
187
188static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
190
d9494cb4
PZ
191static int perf_sample_allowed_ns __read_mostly =
192 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
193
194void update_perf_cpu_limits(void)
195{
196 u64 tmp = perf_sample_period_ns;
197
198 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 199 do_div(tmp, 100);
d9494cb4 200 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 201}
163ec435 202
9e630205
SE
203static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204
163ec435
PZ
205int perf_proc_update_handler(struct ctl_table *table, int write,
206 void __user *buffer, size_t *lenp,
207 loff_t *ppos)
208{
723478c8 209 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
210
211 if (ret || !write)
212 return ret;
213
214 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
215 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 update_perf_cpu_limits();
217
218 return 0;
219}
220
221int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222
223int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 void __user *buffer, size_t *lenp,
225 loff_t *ppos)
226{
227 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228
229 if (ret || !write)
230 return ret;
231
232 update_perf_cpu_limits();
163ec435
PZ
233
234 return 0;
235}
1ccd1549 236
14c63f17
DH
237/*
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done. This will drop the sample rate when
241 * we detect that events are taking too long.
242 */
243#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 244static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 245
6a02ad66 246static void perf_duration_warn(struct irq_work *w)
14c63f17 247{
6a02ad66 248 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 249 u64 avg_local_sample_len;
e5302920 250 u64 local_samples_len;
6a02ad66
PZ
251
252 local_samples_len = __get_cpu_var(running_sample_length);
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
255 printk_ratelimited(KERN_WARNING
256 "perf interrupt took too long (%lld > %lld), lowering "
257 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 258 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
259 sysctl_perf_event_sample_rate);
260}
261
262static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263
264void perf_sample_event_took(u64 sample_len_ns)
265{
d9494cb4 266 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
267 u64 avg_local_sample_len;
268 u64 local_samples_len;
14c63f17 269
d9494cb4 270 if (allowed_ns == 0)
14c63f17
DH
271 return;
272
273 /* decay the counter by 1 average sample */
274 local_samples_len = __get_cpu_var(running_sample_length);
275 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 local_samples_len += sample_len_ns;
277 __get_cpu_var(running_sample_length) = local_samples_len;
278
279 /*
280 * note: this will be biased artifically low until we have
281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
282 * from having to maintain a count.
283 */
284 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285
d9494cb4 286 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
287 return;
288
289 if (max_samples_per_tick <= 1)
290 return;
291
292 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295
14c63f17 296 update_perf_cpu_limits();
6a02ad66 297
cd578abb
PZ
298 if (!irq_work_queue(&perf_duration_work)) {
299 early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 "kernel.perf_event_max_sample_rate to %d\n",
301 avg_local_sample_len, allowed_ns >> 1,
302 sysctl_perf_event_sample_rate);
303 }
14c63f17
DH
304}
305
cdd6c482 306static atomic64_t perf_event_id;
a96bbc16 307
0b3fcf17
SE
308static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 enum event_type_t event_type);
310
311static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
312 enum event_type_t event_type,
313 struct task_struct *task);
314
315static void update_context_time(struct perf_event_context *ctx);
316static u64 perf_event_time(struct perf_event *event);
0b3fcf17 317
cdd6c482 318void __weak perf_event_print_debug(void) { }
0793a61d 319
84c79910 320extern __weak const char *perf_pmu_name(void)
0793a61d 321{
84c79910 322 return "pmu";
0793a61d
TG
323}
324
0b3fcf17
SE
325static inline u64 perf_clock(void)
326{
327 return local_clock();
328}
329
e5d1367f
SE
330static inline struct perf_cpu_context *
331__get_cpu_context(struct perf_event_context *ctx)
332{
333 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334}
335
facc4307
PZ
336static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 struct perf_event_context *ctx)
338{
339 raw_spin_lock(&cpuctx->ctx.lock);
340 if (ctx)
341 raw_spin_lock(&ctx->lock);
342}
343
344static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 struct perf_event_context *ctx)
346{
347 if (ctx)
348 raw_spin_unlock(&ctx->lock);
349 raw_spin_unlock(&cpuctx->ctx.lock);
350}
351
e5d1367f
SE
352#ifdef CONFIG_CGROUP_PERF
353
877c6856
LZ
354/*
355 * perf_cgroup_info keeps track of time_enabled for a cgroup.
356 * This is a per-cpu dynamically allocated data structure.
357 */
358struct perf_cgroup_info {
359 u64 time;
360 u64 timestamp;
361};
362
363struct perf_cgroup {
364 struct cgroup_subsys_state css;
86e213e1 365 struct perf_cgroup_info __percpu *info;
877c6856
LZ
366};
367
3f7cce3c
SE
368/*
369 * Must ensure cgroup is pinned (css_get) before calling
370 * this function. In other words, we cannot call this function
371 * if there is no cgroup event for the current CPU context.
372 */
e5d1367f
SE
373static inline struct perf_cgroup *
374perf_cgroup_from_task(struct task_struct *task)
375{
073219e9 376 return container_of(task_css(task, perf_event_cgrp_id),
8af01f56 377 struct perf_cgroup, css);
e5d1367f
SE
378}
379
380static inline bool
381perf_cgroup_match(struct perf_event *event)
382{
383 struct perf_event_context *ctx = event->ctx;
384 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
385
ef824fa1
TH
386 /* @event doesn't care about cgroup */
387 if (!event->cgrp)
388 return true;
389
390 /* wants specific cgroup scope but @cpuctx isn't associated with any */
391 if (!cpuctx->cgrp)
392 return false;
393
394 /*
395 * Cgroup scoping is recursive. An event enabled for a cgroup is
396 * also enabled for all its descendant cgroups. If @cpuctx's
397 * cgroup is a descendant of @event's (the test covers identity
398 * case), it's a match.
399 */
400 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
401 event->cgrp->css.cgroup);
e5d1367f
SE
402}
403
e5d1367f
SE
404static inline void perf_put_cgroup(struct perf_event *event)
405{
406 css_put(&event->cgrp->css);
407}
408
409static inline void perf_detach_cgroup(struct perf_event *event)
410{
411 perf_put_cgroup(event);
412 event->cgrp = NULL;
413}
414
415static inline int is_cgroup_event(struct perf_event *event)
416{
417 return event->cgrp != NULL;
418}
419
420static inline u64 perf_cgroup_event_time(struct perf_event *event)
421{
422 struct perf_cgroup_info *t;
423
424 t = per_cpu_ptr(event->cgrp->info, event->cpu);
425 return t->time;
426}
427
428static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
429{
430 struct perf_cgroup_info *info;
431 u64 now;
432
433 now = perf_clock();
434
435 info = this_cpu_ptr(cgrp->info);
436
437 info->time += now - info->timestamp;
438 info->timestamp = now;
439}
440
441static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
442{
443 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
444 if (cgrp_out)
445 __update_cgrp_time(cgrp_out);
446}
447
448static inline void update_cgrp_time_from_event(struct perf_event *event)
449{
3f7cce3c
SE
450 struct perf_cgroup *cgrp;
451
e5d1367f 452 /*
3f7cce3c
SE
453 * ensure we access cgroup data only when needed and
454 * when we know the cgroup is pinned (css_get)
e5d1367f 455 */
3f7cce3c 456 if (!is_cgroup_event(event))
e5d1367f
SE
457 return;
458
3f7cce3c
SE
459 cgrp = perf_cgroup_from_task(current);
460 /*
461 * Do not update time when cgroup is not active
462 */
463 if (cgrp == event->cgrp)
464 __update_cgrp_time(event->cgrp);
e5d1367f
SE
465}
466
467static inline void
3f7cce3c
SE
468perf_cgroup_set_timestamp(struct task_struct *task,
469 struct perf_event_context *ctx)
e5d1367f
SE
470{
471 struct perf_cgroup *cgrp;
472 struct perf_cgroup_info *info;
473
3f7cce3c
SE
474 /*
475 * ctx->lock held by caller
476 * ensure we do not access cgroup data
477 * unless we have the cgroup pinned (css_get)
478 */
479 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
480 return;
481
482 cgrp = perf_cgroup_from_task(task);
483 info = this_cpu_ptr(cgrp->info);
3f7cce3c 484 info->timestamp = ctx->timestamp;
e5d1367f
SE
485}
486
487#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
488#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
489
490/*
491 * reschedule events based on the cgroup constraint of task.
492 *
493 * mode SWOUT : schedule out everything
494 * mode SWIN : schedule in based on cgroup for next
495 */
496void perf_cgroup_switch(struct task_struct *task, int mode)
497{
498 struct perf_cpu_context *cpuctx;
499 struct pmu *pmu;
500 unsigned long flags;
501
502 /*
503 * disable interrupts to avoid geting nr_cgroup
504 * changes via __perf_event_disable(). Also
505 * avoids preemption.
506 */
507 local_irq_save(flags);
508
509 /*
510 * we reschedule only in the presence of cgroup
511 * constrained events.
512 */
513 rcu_read_lock();
514
515 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 516 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
517 if (cpuctx->unique_pmu != pmu)
518 continue; /* ensure we process each cpuctx once */
e5d1367f 519
e5d1367f
SE
520 /*
521 * perf_cgroup_events says at least one
522 * context on this CPU has cgroup events.
523 *
524 * ctx->nr_cgroups reports the number of cgroup
525 * events for a context.
526 */
527 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
528 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
529 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
530
531 if (mode & PERF_CGROUP_SWOUT) {
532 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
533 /*
534 * must not be done before ctxswout due
535 * to event_filter_match() in event_sched_out()
536 */
537 cpuctx->cgrp = NULL;
538 }
539
540 if (mode & PERF_CGROUP_SWIN) {
e566b76e 541 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
542 /*
543 * set cgrp before ctxsw in to allow
544 * event_filter_match() to not have to pass
545 * task around
e5d1367f
SE
546 */
547 cpuctx->cgrp = perf_cgroup_from_task(task);
548 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
549 }
facc4307
PZ
550 perf_pmu_enable(cpuctx->ctx.pmu);
551 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 552 }
e5d1367f
SE
553 }
554
555 rcu_read_unlock();
556
557 local_irq_restore(flags);
558}
559
a8d757ef
SE
560static inline void perf_cgroup_sched_out(struct task_struct *task,
561 struct task_struct *next)
e5d1367f 562{
a8d757ef
SE
563 struct perf_cgroup *cgrp1;
564 struct perf_cgroup *cgrp2 = NULL;
565
566 /*
567 * we come here when we know perf_cgroup_events > 0
568 */
569 cgrp1 = perf_cgroup_from_task(task);
570
571 /*
572 * next is NULL when called from perf_event_enable_on_exec()
573 * that will systematically cause a cgroup_switch()
574 */
575 if (next)
576 cgrp2 = perf_cgroup_from_task(next);
577
578 /*
579 * only schedule out current cgroup events if we know
580 * that we are switching to a different cgroup. Otherwise,
581 * do no touch the cgroup events.
582 */
583 if (cgrp1 != cgrp2)
584 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
585}
586
a8d757ef
SE
587static inline void perf_cgroup_sched_in(struct task_struct *prev,
588 struct task_struct *task)
e5d1367f 589{
a8d757ef
SE
590 struct perf_cgroup *cgrp1;
591 struct perf_cgroup *cgrp2 = NULL;
592
593 /*
594 * we come here when we know perf_cgroup_events > 0
595 */
596 cgrp1 = perf_cgroup_from_task(task);
597
598 /* prev can never be NULL */
599 cgrp2 = perf_cgroup_from_task(prev);
600
601 /*
602 * only need to schedule in cgroup events if we are changing
603 * cgroup during ctxsw. Cgroup events were not scheduled
604 * out of ctxsw out if that was not the case.
605 */
606 if (cgrp1 != cgrp2)
607 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
608}
609
610static inline int perf_cgroup_connect(int fd, struct perf_event *event,
611 struct perf_event_attr *attr,
612 struct perf_event *group_leader)
613{
614 struct perf_cgroup *cgrp;
615 struct cgroup_subsys_state *css;
2903ff01
AV
616 struct fd f = fdget(fd);
617 int ret = 0;
e5d1367f 618
2903ff01 619 if (!f.file)
e5d1367f
SE
620 return -EBADF;
621
ec903c0c
TH
622 css = css_tryget_online_from_dir(f.file->f_dentry,
623 &perf_event_cgrp_subsys);
3db272c0
LZ
624 if (IS_ERR(css)) {
625 ret = PTR_ERR(css);
626 goto out;
627 }
e5d1367f
SE
628
629 cgrp = container_of(css, struct perf_cgroup, css);
630 event->cgrp = cgrp;
631
632 /*
633 * all events in a group must monitor
634 * the same cgroup because a task belongs
635 * to only one perf cgroup at a time
636 */
637 if (group_leader && group_leader->cgrp != cgrp) {
638 perf_detach_cgroup(event);
639 ret = -EINVAL;
e5d1367f 640 }
3db272c0 641out:
2903ff01 642 fdput(f);
e5d1367f
SE
643 return ret;
644}
645
646static inline void
647perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
648{
649 struct perf_cgroup_info *t;
650 t = per_cpu_ptr(event->cgrp->info, event->cpu);
651 event->shadow_ctx_time = now - t->timestamp;
652}
653
654static inline void
655perf_cgroup_defer_enabled(struct perf_event *event)
656{
657 /*
658 * when the current task's perf cgroup does not match
659 * the event's, we need to remember to call the
660 * perf_mark_enable() function the first time a task with
661 * a matching perf cgroup is scheduled in.
662 */
663 if (is_cgroup_event(event) && !perf_cgroup_match(event))
664 event->cgrp_defer_enabled = 1;
665}
666
667static inline void
668perf_cgroup_mark_enabled(struct perf_event *event,
669 struct perf_event_context *ctx)
670{
671 struct perf_event *sub;
672 u64 tstamp = perf_event_time(event);
673
674 if (!event->cgrp_defer_enabled)
675 return;
676
677 event->cgrp_defer_enabled = 0;
678
679 event->tstamp_enabled = tstamp - event->total_time_enabled;
680 list_for_each_entry(sub, &event->sibling_list, group_entry) {
681 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
682 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
683 sub->cgrp_defer_enabled = 0;
684 }
685 }
686}
687#else /* !CONFIG_CGROUP_PERF */
688
689static inline bool
690perf_cgroup_match(struct perf_event *event)
691{
692 return true;
693}
694
695static inline void perf_detach_cgroup(struct perf_event *event)
696{}
697
698static inline int is_cgroup_event(struct perf_event *event)
699{
700 return 0;
701}
702
703static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
704{
705 return 0;
706}
707
708static inline void update_cgrp_time_from_event(struct perf_event *event)
709{
710}
711
712static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
713{
714}
715
a8d757ef
SE
716static inline void perf_cgroup_sched_out(struct task_struct *task,
717 struct task_struct *next)
e5d1367f
SE
718{
719}
720
a8d757ef
SE
721static inline void perf_cgroup_sched_in(struct task_struct *prev,
722 struct task_struct *task)
e5d1367f
SE
723{
724}
725
726static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
727 struct perf_event_attr *attr,
728 struct perf_event *group_leader)
729{
730 return -EINVAL;
731}
732
733static inline void
3f7cce3c
SE
734perf_cgroup_set_timestamp(struct task_struct *task,
735 struct perf_event_context *ctx)
e5d1367f
SE
736{
737}
738
739void
740perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
741{
742}
743
744static inline void
745perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
746{
747}
748
749static inline u64 perf_cgroup_event_time(struct perf_event *event)
750{
751 return 0;
752}
753
754static inline void
755perf_cgroup_defer_enabled(struct perf_event *event)
756{
757}
758
759static inline void
760perf_cgroup_mark_enabled(struct perf_event *event,
761 struct perf_event_context *ctx)
762{
763}
764#endif
765
9e630205
SE
766/*
767 * set default to be dependent on timer tick just
768 * like original code
769 */
770#define PERF_CPU_HRTIMER (1000 / HZ)
771/*
772 * function must be called with interrupts disbled
773 */
774static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
775{
776 struct perf_cpu_context *cpuctx;
777 enum hrtimer_restart ret = HRTIMER_NORESTART;
778 int rotations = 0;
779
780 WARN_ON(!irqs_disabled());
781
782 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
783
784 rotations = perf_rotate_context(cpuctx);
785
786 /*
787 * arm timer if needed
788 */
789 if (rotations) {
790 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
791 ret = HRTIMER_RESTART;
792 }
793
794 return ret;
795}
796
797/* CPU is going down */
798void perf_cpu_hrtimer_cancel(int cpu)
799{
800 struct perf_cpu_context *cpuctx;
801 struct pmu *pmu;
802 unsigned long flags;
803
804 if (WARN_ON(cpu != smp_processor_id()))
805 return;
806
807 local_irq_save(flags);
808
809 rcu_read_lock();
810
811 list_for_each_entry_rcu(pmu, &pmus, entry) {
812 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
813
814 if (pmu->task_ctx_nr == perf_sw_context)
815 continue;
816
817 hrtimer_cancel(&cpuctx->hrtimer);
818 }
819
820 rcu_read_unlock();
821
822 local_irq_restore(flags);
823}
824
825static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
826{
827 struct hrtimer *hr = &cpuctx->hrtimer;
828 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 829 int timer;
9e630205
SE
830
831 /* no multiplexing needed for SW PMU */
832 if (pmu->task_ctx_nr == perf_sw_context)
833 return;
834
62b85639
SE
835 /*
836 * check default is sane, if not set then force to
837 * default interval (1/tick)
838 */
839 timer = pmu->hrtimer_interval_ms;
840 if (timer < 1)
841 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
842
843 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
844
845 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
846 hr->function = perf_cpu_hrtimer_handler;
847}
848
849static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
850{
851 struct hrtimer *hr = &cpuctx->hrtimer;
852 struct pmu *pmu = cpuctx->ctx.pmu;
853
854 /* not for SW PMU */
855 if (pmu->task_ctx_nr == perf_sw_context)
856 return;
857
858 if (hrtimer_active(hr))
859 return;
860
861 if (!hrtimer_callback_running(hr))
862 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
863 0, HRTIMER_MODE_REL_PINNED, 0);
864}
865
33696fc0 866void perf_pmu_disable(struct pmu *pmu)
9e35ad38 867{
33696fc0
PZ
868 int *count = this_cpu_ptr(pmu->pmu_disable_count);
869 if (!(*count)++)
870 pmu->pmu_disable(pmu);
9e35ad38 871}
9e35ad38 872
33696fc0 873void perf_pmu_enable(struct pmu *pmu)
9e35ad38 874{
33696fc0
PZ
875 int *count = this_cpu_ptr(pmu->pmu_disable_count);
876 if (!--(*count))
877 pmu->pmu_enable(pmu);
9e35ad38 878}
9e35ad38 879
e9d2b064
PZ
880static DEFINE_PER_CPU(struct list_head, rotation_list);
881
882/*
883 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
884 * because they're strictly cpu affine and rotate_start is called with IRQs
885 * disabled, while rotate_context is called from IRQ context.
886 */
108b02cf 887static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 888{
108b02cf 889 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 890 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 891
e9d2b064 892 WARN_ON(!irqs_disabled());
b5ab4cd5 893
d84153d6 894 if (list_empty(&cpuctx->rotation_list))
e9d2b064 895 list_add(&cpuctx->rotation_list, head);
9e35ad38 896}
9e35ad38 897
cdd6c482 898static void get_ctx(struct perf_event_context *ctx)
a63eaf34 899{
e5289d4a 900 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
901}
902
cdd6c482 903static void put_ctx(struct perf_event_context *ctx)
a63eaf34 904{
564c2b21
PM
905 if (atomic_dec_and_test(&ctx->refcount)) {
906 if (ctx->parent_ctx)
907 put_ctx(ctx->parent_ctx);
c93f7669
PM
908 if (ctx->task)
909 put_task_struct(ctx->task);
cb796ff3 910 kfree_rcu(ctx, rcu_head);
564c2b21 911 }
a63eaf34
PM
912}
913
cdd6c482 914static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
915{
916 if (ctx->parent_ctx) {
917 put_ctx(ctx->parent_ctx);
918 ctx->parent_ctx = NULL;
919 }
5a3126d4 920 ctx->generation++;
71a851b4
PZ
921}
922
6844c09d
ACM
923static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
924{
925 /*
926 * only top level events have the pid namespace they were created in
927 */
928 if (event->parent)
929 event = event->parent;
930
931 return task_tgid_nr_ns(p, event->ns);
932}
933
934static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
935{
936 /*
937 * only top level events have the pid namespace they were created in
938 */
939 if (event->parent)
940 event = event->parent;
941
942 return task_pid_nr_ns(p, event->ns);
943}
944
7f453c24 945/*
cdd6c482 946 * If we inherit events we want to return the parent event id
7f453c24
PZ
947 * to userspace.
948 */
cdd6c482 949static u64 primary_event_id(struct perf_event *event)
7f453c24 950{
cdd6c482 951 u64 id = event->id;
7f453c24 952
cdd6c482
IM
953 if (event->parent)
954 id = event->parent->id;
7f453c24
PZ
955
956 return id;
957}
958
25346b93 959/*
cdd6c482 960 * Get the perf_event_context for a task and lock it.
25346b93
PM
961 * This has to cope with with the fact that until it is locked,
962 * the context could get moved to another task.
963 */
cdd6c482 964static struct perf_event_context *
8dc85d54 965perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 966{
cdd6c482 967 struct perf_event_context *ctx;
25346b93 968
9ed6060d 969retry:
058ebd0e
PZ
970 /*
971 * One of the few rules of preemptible RCU is that one cannot do
972 * rcu_read_unlock() while holding a scheduler (or nested) lock when
973 * part of the read side critical section was preemptible -- see
974 * rcu_read_unlock_special().
975 *
976 * Since ctx->lock nests under rq->lock we must ensure the entire read
977 * side critical section is non-preemptible.
978 */
979 preempt_disable();
980 rcu_read_lock();
8dc85d54 981 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
982 if (ctx) {
983 /*
984 * If this context is a clone of another, it might
985 * get swapped for another underneath us by
cdd6c482 986 * perf_event_task_sched_out, though the
25346b93
PM
987 * rcu_read_lock() protects us from any context
988 * getting freed. Lock the context and check if it
989 * got swapped before we could get the lock, and retry
990 * if so. If we locked the right context, then it
991 * can't get swapped on us any more.
992 */
e625cce1 993 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 994 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 995 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
996 rcu_read_unlock();
997 preempt_enable();
25346b93
PM
998 goto retry;
999 }
b49a9e7e
PZ
1000
1001 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1002 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1003 ctx = NULL;
1004 }
25346b93
PM
1005 }
1006 rcu_read_unlock();
058ebd0e 1007 preempt_enable();
25346b93
PM
1008 return ctx;
1009}
1010
1011/*
1012 * Get the context for a task and increment its pin_count so it
1013 * can't get swapped to another task. This also increments its
1014 * reference count so that the context can't get freed.
1015 */
8dc85d54
PZ
1016static struct perf_event_context *
1017perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1018{
cdd6c482 1019 struct perf_event_context *ctx;
25346b93
PM
1020 unsigned long flags;
1021
8dc85d54 1022 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1023 if (ctx) {
1024 ++ctx->pin_count;
e625cce1 1025 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1026 }
1027 return ctx;
1028}
1029
cdd6c482 1030static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1031{
1032 unsigned long flags;
1033
e625cce1 1034 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1035 --ctx->pin_count;
e625cce1 1036 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1037}
1038
f67218c3
PZ
1039/*
1040 * Update the record of the current time in a context.
1041 */
1042static void update_context_time(struct perf_event_context *ctx)
1043{
1044 u64 now = perf_clock();
1045
1046 ctx->time += now - ctx->timestamp;
1047 ctx->timestamp = now;
1048}
1049
4158755d
SE
1050static u64 perf_event_time(struct perf_event *event)
1051{
1052 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1053
1054 if (is_cgroup_event(event))
1055 return perf_cgroup_event_time(event);
1056
4158755d
SE
1057 return ctx ? ctx->time : 0;
1058}
1059
f67218c3
PZ
1060/*
1061 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1062 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1063 */
1064static void update_event_times(struct perf_event *event)
1065{
1066 struct perf_event_context *ctx = event->ctx;
1067 u64 run_end;
1068
1069 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1070 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1071 return;
e5d1367f
SE
1072 /*
1073 * in cgroup mode, time_enabled represents
1074 * the time the event was enabled AND active
1075 * tasks were in the monitored cgroup. This is
1076 * independent of the activity of the context as
1077 * there may be a mix of cgroup and non-cgroup events.
1078 *
1079 * That is why we treat cgroup events differently
1080 * here.
1081 */
1082 if (is_cgroup_event(event))
46cd6a7f 1083 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1084 else if (ctx->is_active)
1085 run_end = ctx->time;
acd1d7c1
PZ
1086 else
1087 run_end = event->tstamp_stopped;
1088
1089 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1090
1091 if (event->state == PERF_EVENT_STATE_INACTIVE)
1092 run_end = event->tstamp_stopped;
1093 else
4158755d 1094 run_end = perf_event_time(event);
f67218c3
PZ
1095
1096 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1097
f67218c3
PZ
1098}
1099
96c21a46
PZ
1100/*
1101 * Update total_time_enabled and total_time_running for all events in a group.
1102 */
1103static void update_group_times(struct perf_event *leader)
1104{
1105 struct perf_event *event;
1106
1107 update_event_times(leader);
1108 list_for_each_entry(event, &leader->sibling_list, group_entry)
1109 update_event_times(event);
1110}
1111
889ff015
FW
1112static struct list_head *
1113ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1114{
1115 if (event->attr.pinned)
1116 return &ctx->pinned_groups;
1117 else
1118 return &ctx->flexible_groups;
1119}
1120
fccc714b 1121/*
cdd6c482 1122 * Add a event from the lists for its context.
fccc714b
PZ
1123 * Must be called with ctx->mutex and ctx->lock held.
1124 */
04289bb9 1125static void
cdd6c482 1126list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1127{
8a49542c
PZ
1128 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1129 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1130
1131 /*
8a49542c
PZ
1132 * If we're a stand alone event or group leader, we go to the context
1133 * list, group events are kept attached to the group so that
1134 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1135 */
8a49542c 1136 if (event->group_leader == event) {
889ff015
FW
1137 struct list_head *list;
1138
d6f962b5
FW
1139 if (is_software_event(event))
1140 event->group_flags |= PERF_GROUP_SOFTWARE;
1141
889ff015
FW
1142 list = ctx_group_list(event, ctx);
1143 list_add_tail(&event->group_entry, list);
5c148194 1144 }
592903cd 1145
08309379 1146 if (is_cgroup_event(event))
e5d1367f 1147 ctx->nr_cgroups++;
e5d1367f 1148
d010b332
SE
1149 if (has_branch_stack(event))
1150 ctx->nr_branch_stack++;
1151
cdd6c482 1152 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1153 if (!ctx->nr_events)
108b02cf 1154 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1155 ctx->nr_events++;
1156 if (event->attr.inherit_stat)
bfbd3381 1157 ctx->nr_stat++;
5a3126d4
PZ
1158
1159 ctx->generation++;
04289bb9
IM
1160}
1161
0231bb53
JO
1162/*
1163 * Initialize event state based on the perf_event_attr::disabled.
1164 */
1165static inline void perf_event__state_init(struct perf_event *event)
1166{
1167 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1168 PERF_EVENT_STATE_INACTIVE;
1169}
1170
c320c7b7
ACM
1171/*
1172 * Called at perf_event creation and when events are attached/detached from a
1173 * group.
1174 */
1175static void perf_event__read_size(struct perf_event *event)
1176{
1177 int entry = sizeof(u64); /* value */
1178 int size = 0;
1179 int nr = 1;
1180
1181 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1182 size += sizeof(u64);
1183
1184 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1185 size += sizeof(u64);
1186
1187 if (event->attr.read_format & PERF_FORMAT_ID)
1188 entry += sizeof(u64);
1189
1190 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1191 nr += event->group_leader->nr_siblings;
1192 size += sizeof(u64);
1193 }
1194
1195 size += entry * nr;
1196 event->read_size = size;
1197}
1198
1199static void perf_event__header_size(struct perf_event *event)
1200{
1201 struct perf_sample_data *data;
1202 u64 sample_type = event->attr.sample_type;
1203 u16 size = 0;
1204
1205 perf_event__read_size(event);
1206
1207 if (sample_type & PERF_SAMPLE_IP)
1208 size += sizeof(data->ip);
1209
6844c09d
ACM
1210 if (sample_type & PERF_SAMPLE_ADDR)
1211 size += sizeof(data->addr);
1212
1213 if (sample_type & PERF_SAMPLE_PERIOD)
1214 size += sizeof(data->period);
1215
c3feedf2
AK
1216 if (sample_type & PERF_SAMPLE_WEIGHT)
1217 size += sizeof(data->weight);
1218
6844c09d
ACM
1219 if (sample_type & PERF_SAMPLE_READ)
1220 size += event->read_size;
1221
d6be9ad6
SE
1222 if (sample_type & PERF_SAMPLE_DATA_SRC)
1223 size += sizeof(data->data_src.val);
1224
fdfbbd07
AK
1225 if (sample_type & PERF_SAMPLE_TRANSACTION)
1226 size += sizeof(data->txn);
1227
6844c09d
ACM
1228 event->header_size = size;
1229}
1230
1231static void perf_event__id_header_size(struct perf_event *event)
1232{
1233 struct perf_sample_data *data;
1234 u64 sample_type = event->attr.sample_type;
1235 u16 size = 0;
1236
c320c7b7
ACM
1237 if (sample_type & PERF_SAMPLE_TID)
1238 size += sizeof(data->tid_entry);
1239
1240 if (sample_type & PERF_SAMPLE_TIME)
1241 size += sizeof(data->time);
1242
ff3d527c
AH
1243 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1244 size += sizeof(data->id);
1245
c320c7b7
ACM
1246 if (sample_type & PERF_SAMPLE_ID)
1247 size += sizeof(data->id);
1248
1249 if (sample_type & PERF_SAMPLE_STREAM_ID)
1250 size += sizeof(data->stream_id);
1251
1252 if (sample_type & PERF_SAMPLE_CPU)
1253 size += sizeof(data->cpu_entry);
1254
6844c09d 1255 event->id_header_size = size;
c320c7b7
ACM
1256}
1257
8a49542c
PZ
1258static void perf_group_attach(struct perf_event *event)
1259{
c320c7b7 1260 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1261
74c3337c
PZ
1262 /*
1263 * We can have double attach due to group movement in perf_event_open.
1264 */
1265 if (event->attach_state & PERF_ATTACH_GROUP)
1266 return;
1267
8a49542c
PZ
1268 event->attach_state |= PERF_ATTACH_GROUP;
1269
1270 if (group_leader == event)
1271 return;
1272
1273 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1274 !is_software_event(event))
1275 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1276
1277 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1278 group_leader->nr_siblings++;
c320c7b7
ACM
1279
1280 perf_event__header_size(group_leader);
1281
1282 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1283 perf_event__header_size(pos);
8a49542c
PZ
1284}
1285
a63eaf34 1286/*
cdd6c482 1287 * Remove a event from the lists for its context.
fccc714b 1288 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1289 */
04289bb9 1290static void
cdd6c482 1291list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1292{
68cacd29 1293 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1294 /*
1295 * We can have double detach due to exit/hot-unplug + close.
1296 */
1297 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1298 return;
8a49542c
PZ
1299
1300 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1301
68cacd29 1302 if (is_cgroup_event(event)) {
e5d1367f 1303 ctx->nr_cgroups--;
68cacd29
SE
1304 cpuctx = __get_cpu_context(ctx);
1305 /*
1306 * if there are no more cgroup events
1307 * then cler cgrp to avoid stale pointer
1308 * in update_cgrp_time_from_cpuctx()
1309 */
1310 if (!ctx->nr_cgroups)
1311 cpuctx->cgrp = NULL;
1312 }
e5d1367f 1313
d010b332
SE
1314 if (has_branch_stack(event))
1315 ctx->nr_branch_stack--;
1316
cdd6c482
IM
1317 ctx->nr_events--;
1318 if (event->attr.inherit_stat)
bfbd3381 1319 ctx->nr_stat--;
8bc20959 1320
cdd6c482 1321 list_del_rcu(&event->event_entry);
04289bb9 1322
8a49542c
PZ
1323 if (event->group_leader == event)
1324 list_del_init(&event->group_entry);
5c148194 1325
96c21a46 1326 update_group_times(event);
b2e74a26
SE
1327
1328 /*
1329 * If event was in error state, then keep it
1330 * that way, otherwise bogus counts will be
1331 * returned on read(). The only way to get out
1332 * of error state is by explicit re-enabling
1333 * of the event
1334 */
1335 if (event->state > PERF_EVENT_STATE_OFF)
1336 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1337
1338 ctx->generation++;
050735b0
PZ
1339}
1340
8a49542c 1341static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1342{
1343 struct perf_event *sibling, *tmp;
8a49542c
PZ
1344 struct list_head *list = NULL;
1345
1346 /*
1347 * We can have double detach due to exit/hot-unplug + close.
1348 */
1349 if (!(event->attach_state & PERF_ATTACH_GROUP))
1350 return;
1351
1352 event->attach_state &= ~PERF_ATTACH_GROUP;
1353
1354 /*
1355 * If this is a sibling, remove it from its group.
1356 */
1357 if (event->group_leader != event) {
1358 list_del_init(&event->group_entry);
1359 event->group_leader->nr_siblings--;
c320c7b7 1360 goto out;
8a49542c
PZ
1361 }
1362
1363 if (!list_empty(&event->group_entry))
1364 list = &event->group_entry;
2e2af50b 1365
04289bb9 1366 /*
cdd6c482
IM
1367 * If this was a group event with sibling events then
1368 * upgrade the siblings to singleton events by adding them
8a49542c 1369 * to whatever list we are on.
04289bb9 1370 */
cdd6c482 1371 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1372 if (list)
1373 list_move_tail(&sibling->group_entry, list);
04289bb9 1374 sibling->group_leader = sibling;
d6f962b5
FW
1375
1376 /* Inherit group flags from the previous leader */
1377 sibling->group_flags = event->group_flags;
04289bb9 1378 }
c320c7b7
ACM
1379
1380out:
1381 perf_event__header_size(event->group_leader);
1382
1383 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1384 perf_event__header_size(tmp);
04289bb9
IM
1385}
1386
fadfe7be
JO
1387/*
1388 * User event without the task.
1389 */
1390static bool is_orphaned_event(struct perf_event *event)
1391{
1392 return event && !is_kernel_event(event) && !event->owner;
1393}
1394
1395/*
1396 * Event has a parent but parent's task finished and it's
1397 * alive only because of children holding refference.
1398 */
1399static bool is_orphaned_child(struct perf_event *event)
1400{
1401 return is_orphaned_event(event->parent);
1402}
1403
1404static void orphans_remove_work(struct work_struct *work);
1405
1406static void schedule_orphans_remove(struct perf_event_context *ctx)
1407{
1408 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1409 return;
1410
1411 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1412 get_ctx(ctx);
1413 ctx->orphans_remove_sched = true;
1414 }
1415}
1416
1417static int __init perf_workqueue_init(void)
1418{
1419 perf_wq = create_singlethread_workqueue("perf");
1420 WARN(!perf_wq, "failed to create perf workqueue\n");
1421 return perf_wq ? 0 : -1;
1422}
1423
1424core_initcall(perf_workqueue_init);
1425
fa66f07a
SE
1426static inline int
1427event_filter_match(struct perf_event *event)
1428{
e5d1367f
SE
1429 return (event->cpu == -1 || event->cpu == smp_processor_id())
1430 && perf_cgroup_match(event);
fa66f07a
SE
1431}
1432
9ffcfa6f
SE
1433static void
1434event_sched_out(struct perf_event *event,
3b6f9e5c 1435 struct perf_cpu_context *cpuctx,
cdd6c482 1436 struct perf_event_context *ctx)
3b6f9e5c 1437{
4158755d 1438 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1439 u64 delta;
1440 /*
1441 * An event which could not be activated because of
1442 * filter mismatch still needs to have its timings
1443 * maintained, otherwise bogus information is return
1444 * via read() for time_enabled, time_running:
1445 */
1446 if (event->state == PERF_EVENT_STATE_INACTIVE
1447 && !event_filter_match(event)) {
e5d1367f 1448 delta = tstamp - event->tstamp_stopped;
fa66f07a 1449 event->tstamp_running += delta;
4158755d 1450 event->tstamp_stopped = tstamp;
fa66f07a
SE
1451 }
1452
cdd6c482 1453 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1454 return;
3b6f9e5c 1455
44377277
AS
1456 perf_pmu_disable(event->pmu);
1457
cdd6c482
IM
1458 event->state = PERF_EVENT_STATE_INACTIVE;
1459 if (event->pending_disable) {
1460 event->pending_disable = 0;
1461 event->state = PERF_EVENT_STATE_OFF;
970892a9 1462 }
4158755d 1463 event->tstamp_stopped = tstamp;
a4eaf7f1 1464 event->pmu->del(event, 0);
cdd6c482 1465 event->oncpu = -1;
3b6f9e5c 1466
cdd6c482 1467 if (!is_software_event(event))
3b6f9e5c
PM
1468 cpuctx->active_oncpu--;
1469 ctx->nr_active--;
0f5a2601
PZ
1470 if (event->attr.freq && event->attr.sample_freq)
1471 ctx->nr_freq--;
cdd6c482 1472 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1473 cpuctx->exclusive = 0;
44377277 1474
fadfe7be
JO
1475 if (is_orphaned_child(event))
1476 schedule_orphans_remove(ctx);
1477
44377277 1478 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1479}
1480
d859e29f 1481static void
cdd6c482 1482group_sched_out(struct perf_event *group_event,
d859e29f 1483 struct perf_cpu_context *cpuctx,
cdd6c482 1484 struct perf_event_context *ctx)
d859e29f 1485{
cdd6c482 1486 struct perf_event *event;
fa66f07a 1487 int state = group_event->state;
d859e29f 1488
cdd6c482 1489 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1490
1491 /*
1492 * Schedule out siblings (if any):
1493 */
cdd6c482
IM
1494 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1495 event_sched_out(event, cpuctx, ctx);
d859e29f 1496
fa66f07a 1497 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1498 cpuctx->exclusive = 0;
1499}
1500
46ce0fe9
PZ
1501struct remove_event {
1502 struct perf_event *event;
1503 bool detach_group;
1504};
1505
0793a61d 1506/*
cdd6c482 1507 * Cross CPU call to remove a performance event
0793a61d 1508 *
cdd6c482 1509 * We disable the event on the hardware level first. After that we
0793a61d
TG
1510 * remove it from the context list.
1511 */
fe4b04fa 1512static int __perf_remove_from_context(void *info)
0793a61d 1513{
46ce0fe9
PZ
1514 struct remove_event *re = info;
1515 struct perf_event *event = re->event;
cdd6c482 1516 struct perf_event_context *ctx = event->ctx;
108b02cf 1517 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1518
e625cce1 1519 raw_spin_lock(&ctx->lock);
cdd6c482 1520 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1521 if (re->detach_group)
1522 perf_group_detach(event);
cdd6c482 1523 list_del_event(event, ctx);
64ce3126
PZ
1524 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1525 ctx->is_active = 0;
1526 cpuctx->task_ctx = NULL;
1527 }
e625cce1 1528 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1529
1530 return 0;
0793a61d
TG
1531}
1532
1533
1534/*
cdd6c482 1535 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1536 *
cdd6c482 1537 * CPU events are removed with a smp call. For task events we only
0793a61d 1538 * call when the task is on a CPU.
c93f7669 1539 *
cdd6c482
IM
1540 * If event->ctx is a cloned context, callers must make sure that
1541 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1542 * remains valid. This is OK when called from perf_release since
1543 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1544 * When called from perf_event_exit_task, it's OK because the
c93f7669 1545 * context has been detached from its task.
0793a61d 1546 */
46ce0fe9 1547static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1548{
cdd6c482 1549 struct perf_event_context *ctx = event->ctx;
0793a61d 1550 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1551 struct remove_event re = {
1552 .event = event,
1553 .detach_group = detach_group,
1554 };
0793a61d 1555
fe4b04fa
PZ
1556 lockdep_assert_held(&ctx->mutex);
1557
0793a61d
TG
1558 if (!task) {
1559 /*
cdd6c482 1560 * Per cpu events are removed via an smp call and
af901ca1 1561 * the removal is always successful.
0793a61d 1562 */
46ce0fe9 1563 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1564 return;
1565 }
1566
1567retry:
46ce0fe9 1568 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1569 return;
0793a61d 1570
e625cce1 1571 raw_spin_lock_irq(&ctx->lock);
0793a61d 1572 /*
fe4b04fa
PZ
1573 * If we failed to find a running task, but find the context active now
1574 * that we've acquired the ctx->lock, retry.
0793a61d 1575 */
fe4b04fa 1576 if (ctx->is_active) {
e625cce1 1577 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1578 goto retry;
1579 }
1580
1581 /*
fe4b04fa
PZ
1582 * Since the task isn't running, its safe to remove the event, us
1583 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1584 */
46ce0fe9
PZ
1585 if (detach_group)
1586 perf_group_detach(event);
fe4b04fa 1587 list_del_event(event, ctx);
e625cce1 1588 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1589}
1590
d859e29f 1591/*
cdd6c482 1592 * Cross CPU call to disable a performance event
d859e29f 1593 */
500ad2d8 1594int __perf_event_disable(void *info)
d859e29f 1595{
cdd6c482 1596 struct perf_event *event = info;
cdd6c482 1597 struct perf_event_context *ctx = event->ctx;
108b02cf 1598 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1599
1600 /*
cdd6c482
IM
1601 * If this is a per-task event, need to check whether this
1602 * event's task is the current task on this cpu.
fe4b04fa
PZ
1603 *
1604 * Can trigger due to concurrent perf_event_context_sched_out()
1605 * flipping contexts around.
d859e29f 1606 */
665c2142 1607 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1608 return -EINVAL;
d859e29f 1609
e625cce1 1610 raw_spin_lock(&ctx->lock);
d859e29f
PM
1611
1612 /*
cdd6c482 1613 * If the event is on, turn it off.
d859e29f
PM
1614 * If it is in error state, leave it in error state.
1615 */
cdd6c482 1616 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1617 update_context_time(ctx);
e5d1367f 1618 update_cgrp_time_from_event(event);
cdd6c482
IM
1619 update_group_times(event);
1620 if (event == event->group_leader)
1621 group_sched_out(event, cpuctx, ctx);
d859e29f 1622 else
cdd6c482
IM
1623 event_sched_out(event, cpuctx, ctx);
1624 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1625 }
1626
e625cce1 1627 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1628
1629 return 0;
d859e29f
PM
1630}
1631
1632/*
cdd6c482 1633 * Disable a event.
c93f7669 1634 *
cdd6c482
IM
1635 * If event->ctx is a cloned context, callers must make sure that
1636 * every task struct that event->ctx->task could possibly point to
c93f7669 1637 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1638 * perf_event_for_each_child or perf_event_for_each because they
1639 * hold the top-level event's child_mutex, so any descendant that
1640 * goes to exit will block in sync_child_event.
1641 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1642 * is the current context on this CPU and preemption is disabled,
cdd6c482 1643 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1644 */
44234adc 1645void perf_event_disable(struct perf_event *event)
d859e29f 1646{
cdd6c482 1647 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1648 struct task_struct *task = ctx->task;
1649
1650 if (!task) {
1651 /*
cdd6c482 1652 * Disable the event on the cpu that it's on
d859e29f 1653 */
fe4b04fa 1654 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1655 return;
1656 }
1657
9ed6060d 1658retry:
fe4b04fa
PZ
1659 if (!task_function_call(task, __perf_event_disable, event))
1660 return;
d859e29f 1661
e625cce1 1662 raw_spin_lock_irq(&ctx->lock);
d859e29f 1663 /*
cdd6c482 1664 * If the event is still active, we need to retry the cross-call.
d859e29f 1665 */
cdd6c482 1666 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1667 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1668 /*
1669 * Reload the task pointer, it might have been changed by
1670 * a concurrent perf_event_context_sched_out().
1671 */
1672 task = ctx->task;
d859e29f
PM
1673 goto retry;
1674 }
1675
1676 /*
1677 * Since we have the lock this context can't be scheduled
1678 * in, so we can change the state safely.
1679 */
cdd6c482
IM
1680 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1681 update_group_times(event);
1682 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1683 }
e625cce1 1684 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1685}
dcfce4a0 1686EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1687
e5d1367f
SE
1688static void perf_set_shadow_time(struct perf_event *event,
1689 struct perf_event_context *ctx,
1690 u64 tstamp)
1691{
1692 /*
1693 * use the correct time source for the time snapshot
1694 *
1695 * We could get by without this by leveraging the
1696 * fact that to get to this function, the caller
1697 * has most likely already called update_context_time()
1698 * and update_cgrp_time_xx() and thus both timestamp
1699 * are identical (or very close). Given that tstamp is,
1700 * already adjusted for cgroup, we could say that:
1701 * tstamp - ctx->timestamp
1702 * is equivalent to
1703 * tstamp - cgrp->timestamp.
1704 *
1705 * Then, in perf_output_read(), the calculation would
1706 * work with no changes because:
1707 * - event is guaranteed scheduled in
1708 * - no scheduled out in between
1709 * - thus the timestamp would be the same
1710 *
1711 * But this is a bit hairy.
1712 *
1713 * So instead, we have an explicit cgroup call to remain
1714 * within the time time source all along. We believe it
1715 * is cleaner and simpler to understand.
1716 */
1717 if (is_cgroup_event(event))
1718 perf_cgroup_set_shadow_time(event, tstamp);
1719 else
1720 event->shadow_ctx_time = tstamp - ctx->timestamp;
1721}
1722
4fe757dd
PZ
1723#define MAX_INTERRUPTS (~0ULL)
1724
1725static void perf_log_throttle(struct perf_event *event, int enable);
1726
235c7fc7 1727static int
9ffcfa6f 1728event_sched_in(struct perf_event *event,
235c7fc7 1729 struct perf_cpu_context *cpuctx,
6e37738a 1730 struct perf_event_context *ctx)
235c7fc7 1731{
4158755d 1732 u64 tstamp = perf_event_time(event);
44377277 1733 int ret = 0;
4158755d 1734
63342411
PZ
1735 lockdep_assert_held(&ctx->lock);
1736
cdd6c482 1737 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1738 return 0;
1739
cdd6c482 1740 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1741 event->oncpu = smp_processor_id();
4fe757dd
PZ
1742
1743 /*
1744 * Unthrottle events, since we scheduled we might have missed several
1745 * ticks already, also for a heavily scheduling task there is little
1746 * guarantee it'll get a tick in a timely manner.
1747 */
1748 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1749 perf_log_throttle(event, 1);
1750 event->hw.interrupts = 0;
1751 }
1752
235c7fc7
IM
1753 /*
1754 * The new state must be visible before we turn it on in the hardware:
1755 */
1756 smp_wmb();
1757
44377277
AS
1758 perf_pmu_disable(event->pmu);
1759
a4eaf7f1 1760 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1761 event->state = PERF_EVENT_STATE_INACTIVE;
1762 event->oncpu = -1;
44377277
AS
1763 ret = -EAGAIN;
1764 goto out;
235c7fc7
IM
1765 }
1766
4158755d 1767 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1768
e5d1367f 1769 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1770
cdd6c482 1771 if (!is_software_event(event))
3b6f9e5c 1772 cpuctx->active_oncpu++;
235c7fc7 1773 ctx->nr_active++;
0f5a2601
PZ
1774 if (event->attr.freq && event->attr.sample_freq)
1775 ctx->nr_freq++;
235c7fc7 1776
cdd6c482 1777 if (event->attr.exclusive)
3b6f9e5c
PM
1778 cpuctx->exclusive = 1;
1779
fadfe7be
JO
1780 if (is_orphaned_child(event))
1781 schedule_orphans_remove(ctx);
1782
44377277
AS
1783out:
1784 perf_pmu_enable(event->pmu);
1785
1786 return ret;
235c7fc7
IM
1787}
1788
6751b71e 1789static int
cdd6c482 1790group_sched_in(struct perf_event *group_event,
6751b71e 1791 struct perf_cpu_context *cpuctx,
6e37738a 1792 struct perf_event_context *ctx)
6751b71e 1793{
6bde9b6c 1794 struct perf_event *event, *partial_group = NULL;
4a234593 1795 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1796 u64 now = ctx->time;
1797 bool simulate = false;
6751b71e 1798
cdd6c482 1799 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1800 return 0;
1801
ad5133b7 1802 pmu->start_txn(pmu);
6bde9b6c 1803
9ffcfa6f 1804 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1805 pmu->cancel_txn(pmu);
9e630205 1806 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1807 return -EAGAIN;
90151c35 1808 }
6751b71e
PM
1809
1810 /*
1811 * Schedule in siblings as one group (if any):
1812 */
cdd6c482 1813 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1814 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1815 partial_group = event;
6751b71e
PM
1816 goto group_error;
1817 }
1818 }
1819
9ffcfa6f 1820 if (!pmu->commit_txn(pmu))
6e85158c 1821 return 0;
9ffcfa6f 1822
6751b71e
PM
1823group_error:
1824 /*
1825 * Groups can be scheduled in as one unit only, so undo any
1826 * partial group before returning:
d7842da4
SE
1827 * The events up to the failed event are scheduled out normally,
1828 * tstamp_stopped will be updated.
1829 *
1830 * The failed events and the remaining siblings need to have
1831 * their timings updated as if they had gone thru event_sched_in()
1832 * and event_sched_out(). This is required to get consistent timings
1833 * across the group. This also takes care of the case where the group
1834 * could never be scheduled by ensuring tstamp_stopped is set to mark
1835 * the time the event was actually stopped, such that time delta
1836 * calculation in update_event_times() is correct.
6751b71e 1837 */
cdd6c482
IM
1838 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1839 if (event == partial_group)
d7842da4
SE
1840 simulate = true;
1841
1842 if (simulate) {
1843 event->tstamp_running += now - event->tstamp_stopped;
1844 event->tstamp_stopped = now;
1845 } else {
1846 event_sched_out(event, cpuctx, ctx);
1847 }
6751b71e 1848 }
9ffcfa6f 1849 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1850
ad5133b7 1851 pmu->cancel_txn(pmu);
90151c35 1852
9e630205
SE
1853 perf_cpu_hrtimer_restart(cpuctx);
1854
6751b71e
PM
1855 return -EAGAIN;
1856}
1857
3b6f9e5c 1858/*
cdd6c482 1859 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1860 */
cdd6c482 1861static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1862 struct perf_cpu_context *cpuctx,
1863 int can_add_hw)
1864{
1865 /*
cdd6c482 1866 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1867 */
d6f962b5 1868 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1869 return 1;
1870 /*
1871 * If an exclusive group is already on, no other hardware
cdd6c482 1872 * events can go on.
3b6f9e5c
PM
1873 */
1874 if (cpuctx->exclusive)
1875 return 0;
1876 /*
1877 * If this group is exclusive and there are already
cdd6c482 1878 * events on the CPU, it can't go on.
3b6f9e5c 1879 */
cdd6c482 1880 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1881 return 0;
1882 /*
1883 * Otherwise, try to add it if all previous groups were able
1884 * to go on.
1885 */
1886 return can_add_hw;
1887}
1888
cdd6c482
IM
1889static void add_event_to_ctx(struct perf_event *event,
1890 struct perf_event_context *ctx)
53cfbf59 1891{
4158755d
SE
1892 u64 tstamp = perf_event_time(event);
1893
cdd6c482 1894 list_add_event(event, ctx);
8a49542c 1895 perf_group_attach(event);
4158755d
SE
1896 event->tstamp_enabled = tstamp;
1897 event->tstamp_running = tstamp;
1898 event->tstamp_stopped = tstamp;
53cfbf59
PM
1899}
1900
2c29ef0f
PZ
1901static void task_ctx_sched_out(struct perf_event_context *ctx);
1902static void
1903ctx_sched_in(struct perf_event_context *ctx,
1904 struct perf_cpu_context *cpuctx,
1905 enum event_type_t event_type,
1906 struct task_struct *task);
fe4b04fa 1907
dce5855b
PZ
1908static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1909 struct perf_event_context *ctx,
1910 struct task_struct *task)
1911{
1912 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1913 if (ctx)
1914 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1915 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1916 if (ctx)
1917 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1918}
1919
0793a61d 1920/*
cdd6c482 1921 * Cross CPU call to install and enable a performance event
682076ae
PZ
1922 *
1923 * Must be called with ctx->mutex held
0793a61d 1924 */
fe4b04fa 1925static int __perf_install_in_context(void *info)
0793a61d 1926{
cdd6c482
IM
1927 struct perf_event *event = info;
1928 struct perf_event_context *ctx = event->ctx;
108b02cf 1929 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1930 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1931 struct task_struct *task = current;
1932
b58f6b0d 1933 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1934 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1935
1936 /*
2c29ef0f 1937 * If there was an active task_ctx schedule it out.
0793a61d 1938 */
b58f6b0d 1939 if (task_ctx)
2c29ef0f 1940 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1941
1942 /*
1943 * If the context we're installing events in is not the
1944 * active task_ctx, flip them.
1945 */
1946 if (ctx->task && task_ctx != ctx) {
1947 if (task_ctx)
1948 raw_spin_unlock(&task_ctx->lock);
1949 raw_spin_lock(&ctx->lock);
1950 task_ctx = ctx;
1951 }
1952
1953 if (task_ctx) {
1954 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1955 task = task_ctx->task;
1956 }
b58f6b0d 1957
2c29ef0f 1958 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1959
4af4998b 1960 update_context_time(ctx);
e5d1367f
SE
1961 /*
1962 * update cgrp time only if current cgrp
1963 * matches event->cgrp. Must be done before
1964 * calling add_event_to_ctx()
1965 */
1966 update_cgrp_time_from_event(event);
0793a61d 1967
cdd6c482 1968 add_event_to_ctx(event, ctx);
0793a61d 1969
d859e29f 1970 /*
2c29ef0f 1971 * Schedule everything back in
d859e29f 1972 */
dce5855b 1973 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1974
1975 perf_pmu_enable(cpuctx->ctx.pmu);
1976 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1977
1978 return 0;
0793a61d
TG
1979}
1980
1981/*
cdd6c482 1982 * Attach a performance event to a context
0793a61d 1983 *
cdd6c482
IM
1984 * First we add the event to the list with the hardware enable bit
1985 * in event->hw_config cleared.
0793a61d 1986 *
cdd6c482 1987 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1988 * call to enable it in the task context. The task might have been
1989 * scheduled away, but we check this in the smp call again.
1990 */
1991static void
cdd6c482
IM
1992perf_install_in_context(struct perf_event_context *ctx,
1993 struct perf_event *event,
0793a61d
TG
1994 int cpu)
1995{
1996 struct task_struct *task = ctx->task;
1997
fe4b04fa
PZ
1998 lockdep_assert_held(&ctx->mutex);
1999
c3f00c70 2000 event->ctx = ctx;
0cda4c02
YZ
2001 if (event->cpu != -1)
2002 event->cpu = cpu;
c3f00c70 2003
0793a61d
TG
2004 if (!task) {
2005 /*
cdd6c482 2006 * Per cpu events are installed via an smp call and
af901ca1 2007 * the install is always successful.
0793a61d 2008 */
fe4b04fa 2009 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2010 return;
2011 }
2012
0793a61d 2013retry:
fe4b04fa
PZ
2014 if (!task_function_call(task, __perf_install_in_context, event))
2015 return;
0793a61d 2016
e625cce1 2017 raw_spin_lock_irq(&ctx->lock);
0793a61d 2018 /*
fe4b04fa
PZ
2019 * If we failed to find a running task, but find the context active now
2020 * that we've acquired the ctx->lock, retry.
0793a61d 2021 */
fe4b04fa 2022 if (ctx->is_active) {
e625cce1 2023 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2024 goto retry;
2025 }
2026
2027 /*
fe4b04fa
PZ
2028 * Since the task isn't running, its safe to add the event, us holding
2029 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2030 */
fe4b04fa 2031 add_event_to_ctx(event, ctx);
e625cce1 2032 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2033}
2034
fa289bec 2035/*
cdd6c482 2036 * Put a event into inactive state and update time fields.
fa289bec
PM
2037 * Enabling the leader of a group effectively enables all
2038 * the group members that aren't explicitly disabled, so we
2039 * have to update their ->tstamp_enabled also.
2040 * Note: this works for group members as well as group leaders
2041 * since the non-leader members' sibling_lists will be empty.
2042 */
1d9b482e 2043static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2044{
cdd6c482 2045 struct perf_event *sub;
4158755d 2046 u64 tstamp = perf_event_time(event);
fa289bec 2047
cdd6c482 2048 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2049 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2050 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2051 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2052 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2053 }
fa289bec
PM
2054}
2055
d859e29f 2056/*
cdd6c482 2057 * Cross CPU call to enable a performance event
d859e29f 2058 */
fe4b04fa 2059static int __perf_event_enable(void *info)
04289bb9 2060{
cdd6c482 2061 struct perf_event *event = info;
cdd6c482
IM
2062 struct perf_event_context *ctx = event->ctx;
2063 struct perf_event *leader = event->group_leader;
108b02cf 2064 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2065 int err;
04289bb9 2066
06f41796
JO
2067 /*
2068 * There's a time window between 'ctx->is_active' check
2069 * in perf_event_enable function and this place having:
2070 * - IRQs on
2071 * - ctx->lock unlocked
2072 *
2073 * where the task could be killed and 'ctx' deactivated
2074 * by perf_event_exit_task.
2075 */
2076 if (!ctx->is_active)
fe4b04fa 2077 return -EINVAL;
3cbed429 2078
e625cce1 2079 raw_spin_lock(&ctx->lock);
4af4998b 2080 update_context_time(ctx);
d859e29f 2081
cdd6c482 2082 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2083 goto unlock;
e5d1367f
SE
2084
2085 /*
2086 * set current task's cgroup time reference point
2087 */
3f7cce3c 2088 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2089
1d9b482e 2090 __perf_event_mark_enabled(event);
04289bb9 2091
e5d1367f
SE
2092 if (!event_filter_match(event)) {
2093 if (is_cgroup_event(event))
2094 perf_cgroup_defer_enabled(event);
f4c4176f 2095 goto unlock;
e5d1367f 2096 }
f4c4176f 2097
04289bb9 2098 /*
cdd6c482 2099 * If the event is in a group and isn't the group leader,
d859e29f 2100 * then don't put it on unless the group is on.
04289bb9 2101 */
cdd6c482 2102 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2103 goto unlock;
3b6f9e5c 2104
cdd6c482 2105 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2106 err = -EEXIST;
e758a33d 2107 } else {
cdd6c482 2108 if (event == leader)
6e37738a 2109 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2110 else
6e37738a 2111 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2112 }
d859e29f
PM
2113
2114 if (err) {
2115 /*
cdd6c482 2116 * If this event can't go on and it's part of a
d859e29f
PM
2117 * group, then the whole group has to come off.
2118 */
9e630205 2119 if (leader != event) {
d859e29f 2120 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2121 perf_cpu_hrtimer_restart(cpuctx);
2122 }
0d48696f 2123 if (leader->attr.pinned) {
53cfbf59 2124 update_group_times(leader);
cdd6c482 2125 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2126 }
d859e29f
PM
2127 }
2128
9ed6060d 2129unlock:
e625cce1 2130 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2131
2132 return 0;
d859e29f
PM
2133}
2134
2135/*
cdd6c482 2136 * Enable a event.
c93f7669 2137 *
cdd6c482
IM
2138 * If event->ctx is a cloned context, callers must make sure that
2139 * every task struct that event->ctx->task could possibly point to
c93f7669 2140 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2141 * perf_event_for_each_child or perf_event_for_each as described
2142 * for perf_event_disable.
d859e29f 2143 */
44234adc 2144void perf_event_enable(struct perf_event *event)
d859e29f 2145{
cdd6c482 2146 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2147 struct task_struct *task = ctx->task;
2148
2149 if (!task) {
2150 /*
cdd6c482 2151 * Enable the event on the cpu that it's on
d859e29f 2152 */
fe4b04fa 2153 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2154 return;
2155 }
2156
e625cce1 2157 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2158 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2159 goto out;
2160
2161 /*
cdd6c482
IM
2162 * If the event is in error state, clear that first.
2163 * That way, if we see the event in error state below, we
d859e29f
PM
2164 * know that it has gone back into error state, as distinct
2165 * from the task having been scheduled away before the
2166 * cross-call arrived.
2167 */
cdd6c482
IM
2168 if (event->state == PERF_EVENT_STATE_ERROR)
2169 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2170
9ed6060d 2171retry:
fe4b04fa 2172 if (!ctx->is_active) {
1d9b482e 2173 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2174 goto out;
2175 }
2176
e625cce1 2177 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2178
2179 if (!task_function_call(task, __perf_event_enable, event))
2180 return;
d859e29f 2181
e625cce1 2182 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2183
2184 /*
cdd6c482 2185 * If the context is active and the event is still off,
d859e29f
PM
2186 * we need to retry the cross-call.
2187 */
fe4b04fa
PZ
2188 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2189 /*
2190 * task could have been flipped by a concurrent
2191 * perf_event_context_sched_out()
2192 */
2193 task = ctx->task;
d859e29f 2194 goto retry;
fe4b04fa 2195 }
fa289bec 2196
9ed6060d 2197out:
e625cce1 2198 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2199}
dcfce4a0 2200EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2201
26ca5c11 2202int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2203{
2023b359 2204 /*
cdd6c482 2205 * not supported on inherited events
2023b359 2206 */
2e939d1d 2207 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2208 return -EINVAL;
2209
cdd6c482
IM
2210 atomic_add(refresh, &event->event_limit);
2211 perf_event_enable(event);
2023b359
PZ
2212
2213 return 0;
79f14641 2214}
26ca5c11 2215EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2216
5b0311e1
FW
2217static void ctx_sched_out(struct perf_event_context *ctx,
2218 struct perf_cpu_context *cpuctx,
2219 enum event_type_t event_type)
235c7fc7 2220{
cdd6c482 2221 struct perf_event *event;
db24d33e 2222 int is_active = ctx->is_active;
235c7fc7 2223
db24d33e 2224 ctx->is_active &= ~event_type;
cdd6c482 2225 if (likely(!ctx->nr_events))
facc4307
PZ
2226 return;
2227
4af4998b 2228 update_context_time(ctx);
e5d1367f 2229 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2230 if (!ctx->nr_active)
facc4307 2231 return;
5b0311e1 2232
075e0b00 2233 perf_pmu_disable(ctx->pmu);
db24d33e 2234 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2235 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2236 group_sched_out(event, cpuctx, ctx);
9ed6060d 2237 }
889ff015 2238
db24d33e 2239 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2240 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2241 group_sched_out(event, cpuctx, ctx);
9ed6060d 2242 }
1b9a644f 2243 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2244}
2245
564c2b21 2246/*
5a3126d4
PZ
2247 * Test whether two contexts are equivalent, i.e. whether they have both been
2248 * cloned from the same version of the same context.
2249 *
2250 * Equivalence is measured using a generation number in the context that is
2251 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2252 * and list_del_event().
564c2b21 2253 */
cdd6c482
IM
2254static int context_equiv(struct perf_event_context *ctx1,
2255 struct perf_event_context *ctx2)
564c2b21 2256{
5a3126d4
PZ
2257 /* Pinning disables the swap optimization */
2258 if (ctx1->pin_count || ctx2->pin_count)
2259 return 0;
2260
2261 /* If ctx1 is the parent of ctx2 */
2262 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2263 return 1;
2264
2265 /* If ctx2 is the parent of ctx1 */
2266 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2267 return 1;
2268
2269 /*
2270 * If ctx1 and ctx2 have the same parent; we flatten the parent
2271 * hierarchy, see perf_event_init_context().
2272 */
2273 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2274 ctx1->parent_gen == ctx2->parent_gen)
2275 return 1;
2276
2277 /* Unmatched */
2278 return 0;
564c2b21
PM
2279}
2280
cdd6c482
IM
2281static void __perf_event_sync_stat(struct perf_event *event,
2282 struct perf_event *next_event)
bfbd3381
PZ
2283{
2284 u64 value;
2285
cdd6c482 2286 if (!event->attr.inherit_stat)
bfbd3381
PZ
2287 return;
2288
2289 /*
cdd6c482 2290 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2291 * because we're in the middle of a context switch and have IRQs
2292 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2293 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2294 * don't need to use it.
2295 */
cdd6c482
IM
2296 switch (event->state) {
2297 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2298 event->pmu->read(event);
2299 /* fall-through */
bfbd3381 2300
cdd6c482
IM
2301 case PERF_EVENT_STATE_INACTIVE:
2302 update_event_times(event);
bfbd3381
PZ
2303 break;
2304
2305 default:
2306 break;
2307 }
2308
2309 /*
cdd6c482 2310 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2311 * values when we flip the contexts.
2312 */
e7850595
PZ
2313 value = local64_read(&next_event->count);
2314 value = local64_xchg(&event->count, value);
2315 local64_set(&next_event->count, value);
bfbd3381 2316
cdd6c482
IM
2317 swap(event->total_time_enabled, next_event->total_time_enabled);
2318 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2319
bfbd3381 2320 /*
19d2e755 2321 * Since we swizzled the values, update the user visible data too.
bfbd3381 2322 */
cdd6c482
IM
2323 perf_event_update_userpage(event);
2324 perf_event_update_userpage(next_event);
bfbd3381
PZ
2325}
2326
cdd6c482
IM
2327static void perf_event_sync_stat(struct perf_event_context *ctx,
2328 struct perf_event_context *next_ctx)
bfbd3381 2329{
cdd6c482 2330 struct perf_event *event, *next_event;
bfbd3381
PZ
2331
2332 if (!ctx->nr_stat)
2333 return;
2334
02ffdbc8
PZ
2335 update_context_time(ctx);
2336
cdd6c482
IM
2337 event = list_first_entry(&ctx->event_list,
2338 struct perf_event, event_entry);
bfbd3381 2339
cdd6c482
IM
2340 next_event = list_first_entry(&next_ctx->event_list,
2341 struct perf_event, event_entry);
bfbd3381 2342
cdd6c482
IM
2343 while (&event->event_entry != &ctx->event_list &&
2344 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2345
cdd6c482 2346 __perf_event_sync_stat(event, next_event);
bfbd3381 2347
cdd6c482
IM
2348 event = list_next_entry(event, event_entry);
2349 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2350 }
2351}
2352
fe4b04fa
PZ
2353static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2354 struct task_struct *next)
0793a61d 2355{
8dc85d54 2356 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2357 struct perf_event_context *next_ctx;
5a3126d4 2358 struct perf_event_context *parent, *next_parent;
108b02cf 2359 struct perf_cpu_context *cpuctx;
c93f7669 2360 int do_switch = 1;
0793a61d 2361
108b02cf
PZ
2362 if (likely(!ctx))
2363 return;
10989fb2 2364
108b02cf
PZ
2365 cpuctx = __get_cpu_context(ctx);
2366 if (!cpuctx->task_ctx)
0793a61d
TG
2367 return;
2368
c93f7669 2369 rcu_read_lock();
8dc85d54 2370 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2371 if (!next_ctx)
2372 goto unlock;
2373
2374 parent = rcu_dereference(ctx->parent_ctx);
2375 next_parent = rcu_dereference(next_ctx->parent_ctx);
2376
2377 /* If neither context have a parent context; they cannot be clones. */
1f9a7268 2378 if (!parent || !next_parent)
5a3126d4
PZ
2379 goto unlock;
2380
2381 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2382 /*
2383 * Looks like the two contexts are clones, so we might be
2384 * able to optimize the context switch. We lock both
2385 * contexts and check that they are clones under the
2386 * lock (including re-checking that neither has been
2387 * uncloned in the meantime). It doesn't matter which
2388 * order we take the locks because no other cpu could
2389 * be trying to lock both of these tasks.
2390 */
e625cce1
TG
2391 raw_spin_lock(&ctx->lock);
2392 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2393 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2394 /*
2395 * XXX do we need a memory barrier of sorts
cdd6c482 2396 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2397 */
8dc85d54
PZ
2398 task->perf_event_ctxp[ctxn] = next_ctx;
2399 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2400 ctx->task = next;
2401 next_ctx->task = task;
2402 do_switch = 0;
bfbd3381 2403
cdd6c482 2404 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2405 }
e625cce1
TG
2406 raw_spin_unlock(&next_ctx->lock);
2407 raw_spin_unlock(&ctx->lock);
564c2b21 2408 }
5a3126d4 2409unlock:
c93f7669 2410 rcu_read_unlock();
564c2b21 2411
c93f7669 2412 if (do_switch) {
facc4307 2413 raw_spin_lock(&ctx->lock);
5b0311e1 2414 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2415 cpuctx->task_ctx = NULL;
facc4307 2416 raw_spin_unlock(&ctx->lock);
c93f7669 2417 }
0793a61d
TG
2418}
2419
8dc85d54
PZ
2420#define for_each_task_context_nr(ctxn) \
2421 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2422
2423/*
2424 * Called from scheduler to remove the events of the current task,
2425 * with interrupts disabled.
2426 *
2427 * We stop each event and update the event value in event->count.
2428 *
2429 * This does not protect us against NMI, but disable()
2430 * sets the disabled bit in the control field of event _before_
2431 * accessing the event control register. If a NMI hits, then it will
2432 * not restart the event.
2433 */
ab0cce56
JO
2434void __perf_event_task_sched_out(struct task_struct *task,
2435 struct task_struct *next)
8dc85d54
PZ
2436{
2437 int ctxn;
2438
8dc85d54
PZ
2439 for_each_task_context_nr(ctxn)
2440 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2441
2442 /*
2443 * if cgroup events exist on this CPU, then we need
2444 * to check if we have to switch out PMU state.
2445 * cgroup event are system-wide mode only
2446 */
2447 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2448 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2449}
2450
04dc2dbb 2451static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2452{
108b02cf 2453 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2454
a63eaf34
PM
2455 if (!cpuctx->task_ctx)
2456 return;
012b84da
IM
2457
2458 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2459 return;
2460
04dc2dbb 2461 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2462 cpuctx->task_ctx = NULL;
2463}
2464
5b0311e1
FW
2465/*
2466 * Called with IRQs disabled
2467 */
2468static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2469 enum event_type_t event_type)
2470{
2471 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2472}
2473
235c7fc7 2474static void
5b0311e1 2475ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2476 struct perf_cpu_context *cpuctx)
0793a61d 2477{
cdd6c482 2478 struct perf_event *event;
0793a61d 2479
889ff015
FW
2480 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2481 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2482 continue;
5632ab12 2483 if (!event_filter_match(event))
3b6f9e5c
PM
2484 continue;
2485
e5d1367f
SE
2486 /* may need to reset tstamp_enabled */
2487 if (is_cgroup_event(event))
2488 perf_cgroup_mark_enabled(event, ctx);
2489
8c9ed8e1 2490 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2491 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2492
2493 /*
2494 * If this pinned group hasn't been scheduled,
2495 * put it in error state.
2496 */
cdd6c482
IM
2497 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2498 update_group_times(event);
2499 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2500 }
3b6f9e5c 2501 }
5b0311e1
FW
2502}
2503
2504static void
2505ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2506 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2507{
2508 struct perf_event *event;
2509 int can_add_hw = 1;
3b6f9e5c 2510
889ff015
FW
2511 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2512 /* Ignore events in OFF or ERROR state */
2513 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2514 continue;
04289bb9
IM
2515 /*
2516 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2517 * of events:
04289bb9 2518 */
5632ab12 2519 if (!event_filter_match(event))
0793a61d
TG
2520 continue;
2521
e5d1367f
SE
2522 /* may need to reset tstamp_enabled */
2523 if (is_cgroup_event(event))
2524 perf_cgroup_mark_enabled(event, ctx);
2525
9ed6060d 2526 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2527 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2528 can_add_hw = 0;
9ed6060d 2529 }
0793a61d 2530 }
5b0311e1
FW
2531}
2532
2533static void
2534ctx_sched_in(struct perf_event_context *ctx,
2535 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2536 enum event_type_t event_type,
2537 struct task_struct *task)
5b0311e1 2538{
e5d1367f 2539 u64 now;
db24d33e 2540 int is_active = ctx->is_active;
e5d1367f 2541
db24d33e 2542 ctx->is_active |= event_type;
5b0311e1 2543 if (likely(!ctx->nr_events))
facc4307 2544 return;
5b0311e1 2545
e5d1367f
SE
2546 now = perf_clock();
2547 ctx->timestamp = now;
3f7cce3c 2548 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2549 /*
2550 * First go through the list and put on any pinned groups
2551 * in order to give them the best chance of going on.
2552 */
db24d33e 2553 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2554 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2555
2556 /* Then walk through the lower prio flexible groups */
db24d33e 2557 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2558 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2559}
2560
329c0e01 2561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2562 enum event_type_t event_type,
2563 struct task_struct *task)
329c0e01
FW
2564{
2565 struct perf_event_context *ctx = &cpuctx->ctx;
2566
e5d1367f 2567 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2568}
2569
e5d1367f
SE
2570static void perf_event_context_sched_in(struct perf_event_context *ctx,
2571 struct task_struct *task)
235c7fc7 2572{
108b02cf 2573 struct perf_cpu_context *cpuctx;
235c7fc7 2574
108b02cf 2575 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2576 if (cpuctx->task_ctx == ctx)
2577 return;
2578
facc4307 2579 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2580 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2581 /*
2582 * We want to keep the following priority order:
2583 * cpu pinned (that don't need to move), task pinned,
2584 * cpu flexible, task flexible.
2585 */
2586 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2587
1d5f003f
GN
2588 if (ctx->nr_events)
2589 cpuctx->task_ctx = ctx;
9b33fa6b 2590
86b47c25
GN
2591 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2592
facc4307
PZ
2593 perf_pmu_enable(ctx->pmu);
2594 perf_ctx_unlock(cpuctx, ctx);
2595
b5ab4cd5
PZ
2596 /*
2597 * Since these rotations are per-cpu, we need to ensure the
2598 * cpu-context we got scheduled on is actually rotating.
2599 */
108b02cf 2600 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2601}
2602
d010b332
SE
2603/*
2604 * When sampling the branck stack in system-wide, it may be necessary
2605 * to flush the stack on context switch. This happens when the branch
2606 * stack does not tag its entries with the pid of the current task.
2607 * Otherwise it becomes impossible to associate a branch entry with a
2608 * task. This ambiguity is more likely to appear when the branch stack
2609 * supports priv level filtering and the user sets it to monitor only
2610 * at the user level (which could be a useful measurement in system-wide
2611 * mode). In that case, the risk is high of having a branch stack with
2612 * branch from multiple tasks. Flushing may mean dropping the existing
2613 * entries or stashing them somewhere in the PMU specific code layer.
2614 *
2615 * This function provides the context switch callback to the lower code
2616 * layer. It is invoked ONLY when there is at least one system-wide context
2617 * with at least one active event using taken branch sampling.
2618 */
2619static void perf_branch_stack_sched_in(struct task_struct *prev,
2620 struct task_struct *task)
2621{
2622 struct perf_cpu_context *cpuctx;
2623 struct pmu *pmu;
2624 unsigned long flags;
2625
2626 /* no need to flush branch stack if not changing task */
2627 if (prev == task)
2628 return;
2629
2630 local_irq_save(flags);
2631
2632 rcu_read_lock();
2633
2634 list_for_each_entry_rcu(pmu, &pmus, entry) {
2635 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2636
2637 /*
2638 * check if the context has at least one
2639 * event using PERF_SAMPLE_BRANCH_STACK
2640 */
2641 if (cpuctx->ctx.nr_branch_stack > 0
2642 && pmu->flush_branch_stack) {
2643
d010b332
SE
2644 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2645
2646 perf_pmu_disable(pmu);
2647
2648 pmu->flush_branch_stack();
2649
2650 perf_pmu_enable(pmu);
2651
2652 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2653 }
2654 }
2655
2656 rcu_read_unlock();
2657
2658 local_irq_restore(flags);
2659}
2660
8dc85d54
PZ
2661/*
2662 * Called from scheduler to add the events of the current task
2663 * with interrupts disabled.
2664 *
2665 * We restore the event value and then enable it.
2666 *
2667 * This does not protect us against NMI, but enable()
2668 * sets the enabled bit in the control field of event _before_
2669 * accessing the event control register. If a NMI hits, then it will
2670 * keep the event running.
2671 */
ab0cce56
JO
2672void __perf_event_task_sched_in(struct task_struct *prev,
2673 struct task_struct *task)
8dc85d54
PZ
2674{
2675 struct perf_event_context *ctx;
2676 int ctxn;
2677
2678 for_each_task_context_nr(ctxn) {
2679 ctx = task->perf_event_ctxp[ctxn];
2680 if (likely(!ctx))
2681 continue;
2682
e5d1367f 2683 perf_event_context_sched_in(ctx, task);
8dc85d54 2684 }
e5d1367f
SE
2685 /*
2686 * if cgroup events exist on this CPU, then we need
2687 * to check if we have to switch in PMU state.
2688 * cgroup event are system-wide mode only
2689 */
2690 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2691 perf_cgroup_sched_in(prev, task);
d010b332
SE
2692
2693 /* check for system-wide branch_stack events */
2694 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2695 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2696}
2697
abd50713
PZ
2698static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2699{
2700 u64 frequency = event->attr.sample_freq;
2701 u64 sec = NSEC_PER_SEC;
2702 u64 divisor, dividend;
2703
2704 int count_fls, nsec_fls, frequency_fls, sec_fls;
2705
2706 count_fls = fls64(count);
2707 nsec_fls = fls64(nsec);
2708 frequency_fls = fls64(frequency);
2709 sec_fls = 30;
2710
2711 /*
2712 * We got @count in @nsec, with a target of sample_freq HZ
2713 * the target period becomes:
2714 *
2715 * @count * 10^9
2716 * period = -------------------
2717 * @nsec * sample_freq
2718 *
2719 */
2720
2721 /*
2722 * Reduce accuracy by one bit such that @a and @b converge
2723 * to a similar magnitude.
2724 */
fe4b04fa 2725#define REDUCE_FLS(a, b) \
abd50713
PZ
2726do { \
2727 if (a##_fls > b##_fls) { \
2728 a >>= 1; \
2729 a##_fls--; \
2730 } else { \
2731 b >>= 1; \
2732 b##_fls--; \
2733 } \
2734} while (0)
2735
2736 /*
2737 * Reduce accuracy until either term fits in a u64, then proceed with
2738 * the other, so that finally we can do a u64/u64 division.
2739 */
2740 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2741 REDUCE_FLS(nsec, frequency);
2742 REDUCE_FLS(sec, count);
2743 }
2744
2745 if (count_fls + sec_fls > 64) {
2746 divisor = nsec * frequency;
2747
2748 while (count_fls + sec_fls > 64) {
2749 REDUCE_FLS(count, sec);
2750 divisor >>= 1;
2751 }
2752
2753 dividend = count * sec;
2754 } else {
2755 dividend = count * sec;
2756
2757 while (nsec_fls + frequency_fls > 64) {
2758 REDUCE_FLS(nsec, frequency);
2759 dividend >>= 1;
2760 }
2761
2762 divisor = nsec * frequency;
2763 }
2764
f6ab91ad
PZ
2765 if (!divisor)
2766 return dividend;
2767
abd50713
PZ
2768 return div64_u64(dividend, divisor);
2769}
2770
e050e3f0
SE
2771static DEFINE_PER_CPU(int, perf_throttled_count);
2772static DEFINE_PER_CPU(u64, perf_throttled_seq);
2773
f39d47ff 2774static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2775{
cdd6c482 2776 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2777 s64 period, sample_period;
bd2b5b12
PZ
2778 s64 delta;
2779
abd50713 2780 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2781
2782 delta = (s64)(period - hwc->sample_period);
2783 delta = (delta + 7) / 8; /* low pass filter */
2784
2785 sample_period = hwc->sample_period + delta;
2786
2787 if (!sample_period)
2788 sample_period = 1;
2789
bd2b5b12 2790 hwc->sample_period = sample_period;
abd50713 2791
e7850595 2792 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2793 if (disable)
2794 event->pmu->stop(event, PERF_EF_UPDATE);
2795
e7850595 2796 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2797
2798 if (disable)
2799 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2800 }
bd2b5b12
PZ
2801}
2802
e050e3f0
SE
2803/*
2804 * combine freq adjustment with unthrottling to avoid two passes over the
2805 * events. At the same time, make sure, having freq events does not change
2806 * the rate of unthrottling as that would introduce bias.
2807 */
2808static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2809 int needs_unthr)
60db5e09 2810{
cdd6c482
IM
2811 struct perf_event *event;
2812 struct hw_perf_event *hwc;
e050e3f0 2813 u64 now, period = TICK_NSEC;
abd50713 2814 s64 delta;
60db5e09 2815
e050e3f0
SE
2816 /*
2817 * only need to iterate over all events iff:
2818 * - context have events in frequency mode (needs freq adjust)
2819 * - there are events to unthrottle on this cpu
2820 */
2821 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2822 return;
2823
e050e3f0 2824 raw_spin_lock(&ctx->lock);
f39d47ff 2825 perf_pmu_disable(ctx->pmu);
e050e3f0 2826
03541f8b 2827 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2828 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2829 continue;
2830
5632ab12 2831 if (!event_filter_match(event))
5d27c23d
PZ
2832 continue;
2833
44377277
AS
2834 perf_pmu_disable(event->pmu);
2835
cdd6c482 2836 hwc = &event->hw;
6a24ed6c 2837
ae23bff1 2838 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2839 hwc->interrupts = 0;
cdd6c482 2840 perf_log_throttle(event, 1);
a4eaf7f1 2841 event->pmu->start(event, 0);
a78ac325
PZ
2842 }
2843
cdd6c482 2844 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2845 goto next;
60db5e09 2846
e050e3f0
SE
2847 /*
2848 * stop the event and update event->count
2849 */
2850 event->pmu->stop(event, PERF_EF_UPDATE);
2851
e7850595 2852 now = local64_read(&event->count);
abd50713
PZ
2853 delta = now - hwc->freq_count_stamp;
2854 hwc->freq_count_stamp = now;
60db5e09 2855
e050e3f0
SE
2856 /*
2857 * restart the event
2858 * reload only if value has changed
f39d47ff
SE
2859 * we have stopped the event so tell that
2860 * to perf_adjust_period() to avoid stopping it
2861 * twice.
e050e3f0 2862 */
abd50713 2863 if (delta > 0)
f39d47ff 2864 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2865
2866 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
2867 next:
2868 perf_pmu_enable(event->pmu);
60db5e09 2869 }
e050e3f0 2870
f39d47ff 2871 perf_pmu_enable(ctx->pmu);
e050e3f0 2872 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2873}
2874
235c7fc7 2875/*
cdd6c482 2876 * Round-robin a context's events:
235c7fc7 2877 */
cdd6c482 2878static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2879{
dddd3379
TG
2880 /*
2881 * Rotate the first entry last of non-pinned groups. Rotation might be
2882 * disabled by the inheritance code.
2883 */
2884 if (!ctx->rotate_disable)
2885 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2886}
2887
b5ab4cd5 2888/*
e9d2b064
PZ
2889 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2890 * because they're strictly cpu affine and rotate_start is called with IRQs
2891 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2892 */
9e630205 2893static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2894{
8dc85d54 2895 struct perf_event_context *ctx = NULL;
e050e3f0 2896 int rotate = 0, remove = 1;
7fc23a53 2897
b5ab4cd5 2898 if (cpuctx->ctx.nr_events) {
e9d2b064 2899 remove = 0;
b5ab4cd5
PZ
2900 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2901 rotate = 1;
2902 }
235c7fc7 2903
8dc85d54 2904 ctx = cpuctx->task_ctx;
b5ab4cd5 2905 if (ctx && ctx->nr_events) {
e9d2b064 2906 remove = 0;
b5ab4cd5
PZ
2907 if (ctx->nr_events != ctx->nr_active)
2908 rotate = 1;
2909 }
9717e6cd 2910
e050e3f0 2911 if (!rotate)
0f5a2601
PZ
2912 goto done;
2913
facc4307 2914 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2915 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2916
e050e3f0
SE
2917 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2918 if (ctx)
2919 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2920
e050e3f0
SE
2921 rotate_ctx(&cpuctx->ctx);
2922 if (ctx)
2923 rotate_ctx(ctx);
235c7fc7 2924
e050e3f0 2925 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2926
0f5a2601
PZ
2927 perf_pmu_enable(cpuctx->ctx.pmu);
2928 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2929done:
e9d2b064
PZ
2930 if (remove)
2931 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2932
2933 return rotate;
e9d2b064
PZ
2934}
2935
026249ef
FW
2936#ifdef CONFIG_NO_HZ_FULL
2937bool perf_event_can_stop_tick(void)
2938{
948b26b6 2939 if (atomic_read(&nr_freq_events) ||
d84153d6 2940 __this_cpu_read(perf_throttled_count))
026249ef 2941 return false;
d84153d6
FW
2942 else
2943 return true;
026249ef
FW
2944}
2945#endif
2946
e9d2b064
PZ
2947void perf_event_task_tick(void)
2948{
2949 struct list_head *head = &__get_cpu_var(rotation_list);
2950 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2951 struct perf_event_context *ctx;
2952 int throttled;
b5ab4cd5 2953
e9d2b064
PZ
2954 WARN_ON(!irqs_disabled());
2955
e050e3f0
SE
2956 __this_cpu_inc(perf_throttled_seq);
2957 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2958
e9d2b064 2959 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2960 ctx = &cpuctx->ctx;
2961 perf_adjust_freq_unthr_context(ctx, throttled);
2962
2963 ctx = cpuctx->task_ctx;
2964 if (ctx)
2965 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2966 }
0793a61d
TG
2967}
2968
889ff015
FW
2969static int event_enable_on_exec(struct perf_event *event,
2970 struct perf_event_context *ctx)
2971{
2972 if (!event->attr.enable_on_exec)
2973 return 0;
2974
2975 event->attr.enable_on_exec = 0;
2976 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2977 return 0;
2978
1d9b482e 2979 __perf_event_mark_enabled(event);
889ff015
FW
2980
2981 return 1;
2982}
2983
57e7986e 2984/*
cdd6c482 2985 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2986 * This expects task == current.
2987 */
8dc85d54 2988static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2989{
cdd6c482 2990 struct perf_event *event;
57e7986e
PM
2991 unsigned long flags;
2992 int enabled = 0;
889ff015 2993 int ret;
57e7986e
PM
2994
2995 local_irq_save(flags);
cdd6c482 2996 if (!ctx || !ctx->nr_events)
57e7986e
PM
2997 goto out;
2998
e566b76e
SE
2999 /*
3000 * We must ctxsw out cgroup events to avoid conflict
3001 * when invoking perf_task_event_sched_in() later on
3002 * in this function. Otherwise we end up trying to
3003 * ctxswin cgroup events which are already scheduled
3004 * in.
3005 */
a8d757ef 3006 perf_cgroup_sched_out(current, NULL);
57e7986e 3007
e625cce1 3008 raw_spin_lock(&ctx->lock);
04dc2dbb 3009 task_ctx_sched_out(ctx);
57e7986e 3010
b79387ef 3011 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3012 ret = event_enable_on_exec(event, ctx);
3013 if (ret)
3014 enabled = 1;
57e7986e
PM
3015 }
3016
3017 /*
cdd6c482 3018 * Unclone this context if we enabled any event.
57e7986e 3019 */
71a851b4
PZ
3020 if (enabled)
3021 unclone_ctx(ctx);
57e7986e 3022
e625cce1 3023 raw_spin_unlock(&ctx->lock);
57e7986e 3024
e566b76e
SE
3025 /*
3026 * Also calls ctxswin for cgroup events, if any:
3027 */
e5d1367f 3028 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3029out:
57e7986e
PM
3030 local_irq_restore(flags);
3031}
3032
e041e328
PZ
3033void perf_event_exec(void)
3034{
3035 struct perf_event_context *ctx;
3036 int ctxn;
3037
3038 rcu_read_lock();
3039 for_each_task_context_nr(ctxn) {
3040 ctx = current->perf_event_ctxp[ctxn];
3041 if (!ctx)
3042 continue;
3043
3044 perf_event_enable_on_exec(ctx);
3045 }
3046 rcu_read_unlock();
3047}
3048
0793a61d 3049/*
cdd6c482 3050 * Cross CPU call to read the hardware event
0793a61d 3051 */
cdd6c482 3052static void __perf_event_read(void *info)
0793a61d 3053{
cdd6c482
IM
3054 struct perf_event *event = info;
3055 struct perf_event_context *ctx = event->ctx;
108b02cf 3056 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3057
e1ac3614
PM
3058 /*
3059 * If this is a task context, we need to check whether it is
3060 * the current task context of this cpu. If not it has been
3061 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3062 * event->count would have been updated to a recent sample
3063 * when the event was scheduled out.
e1ac3614
PM
3064 */
3065 if (ctx->task && cpuctx->task_ctx != ctx)
3066 return;
3067
e625cce1 3068 raw_spin_lock(&ctx->lock);
e5d1367f 3069 if (ctx->is_active) {
542e72fc 3070 update_context_time(ctx);
e5d1367f
SE
3071 update_cgrp_time_from_event(event);
3072 }
cdd6c482 3073 update_event_times(event);
542e72fc
PZ
3074 if (event->state == PERF_EVENT_STATE_ACTIVE)
3075 event->pmu->read(event);
e625cce1 3076 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3077}
3078
b5e58793
PZ
3079static inline u64 perf_event_count(struct perf_event *event)
3080{
e7850595 3081 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3082}
3083
cdd6c482 3084static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3085{
3086 /*
cdd6c482
IM
3087 * If event is enabled and currently active on a CPU, update the
3088 * value in the event structure:
0793a61d 3089 */
cdd6c482
IM
3090 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3091 smp_call_function_single(event->oncpu,
3092 __perf_event_read, event, 1);
3093 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3094 struct perf_event_context *ctx = event->ctx;
3095 unsigned long flags;
3096
e625cce1 3097 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3098 /*
3099 * may read while context is not active
3100 * (e.g., thread is blocked), in that case
3101 * we cannot update context time
3102 */
e5d1367f 3103 if (ctx->is_active) {
c530ccd9 3104 update_context_time(ctx);
e5d1367f
SE
3105 update_cgrp_time_from_event(event);
3106 }
cdd6c482 3107 update_event_times(event);
e625cce1 3108 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3109 }
3110
b5e58793 3111 return perf_event_count(event);
0793a61d
TG
3112}
3113
a63eaf34 3114/*
cdd6c482 3115 * Initialize the perf_event context in a task_struct:
a63eaf34 3116 */
eb184479 3117static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3118{
e625cce1 3119 raw_spin_lock_init(&ctx->lock);
a63eaf34 3120 mutex_init(&ctx->mutex);
889ff015
FW
3121 INIT_LIST_HEAD(&ctx->pinned_groups);
3122 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3123 INIT_LIST_HEAD(&ctx->event_list);
3124 atomic_set(&ctx->refcount, 1);
fadfe7be 3125 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3126}
3127
3128static struct perf_event_context *
3129alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3130{
3131 struct perf_event_context *ctx;
3132
3133 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3134 if (!ctx)
3135 return NULL;
3136
3137 __perf_event_init_context(ctx);
3138 if (task) {
3139 ctx->task = task;
3140 get_task_struct(task);
0793a61d 3141 }
eb184479
PZ
3142 ctx->pmu = pmu;
3143
3144 return ctx;
a63eaf34
PM
3145}
3146
2ebd4ffb
MH
3147static struct task_struct *
3148find_lively_task_by_vpid(pid_t vpid)
3149{
3150 struct task_struct *task;
3151 int err;
0793a61d
TG
3152
3153 rcu_read_lock();
2ebd4ffb 3154 if (!vpid)
0793a61d
TG
3155 task = current;
3156 else
2ebd4ffb 3157 task = find_task_by_vpid(vpid);
0793a61d
TG
3158 if (task)
3159 get_task_struct(task);
3160 rcu_read_unlock();
3161
3162 if (!task)
3163 return ERR_PTR(-ESRCH);
3164
0793a61d 3165 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3166 err = -EACCES;
3167 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3168 goto errout;
3169
2ebd4ffb
MH
3170 return task;
3171errout:
3172 put_task_struct(task);
3173 return ERR_PTR(err);
3174
3175}
3176
fe4b04fa
PZ
3177/*
3178 * Returns a matching context with refcount and pincount.
3179 */
108b02cf 3180static struct perf_event_context *
38a81da2 3181find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3182{
cdd6c482 3183 struct perf_event_context *ctx;
22a4f650 3184 struct perf_cpu_context *cpuctx;
25346b93 3185 unsigned long flags;
8dc85d54 3186 int ctxn, err;
0793a61d 3187
22a4ec72 3188 if (!task) {
cdd6c482 3189 /* Must be root to operate on a CPU event: */
0764771d 3190 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3191 return ERR_PTR(-EACCES);
3192
0793a61d 3193 /*
cdd6c482 3194 * We could be clever and allow to attach a event to an
0793a61d
TG
3195 * offline CPU and activate it when the CPU comes up, but
3196 * that's for later.
3197 */
f6325e30 3198 if (!cpu_online(cpu))
0793a61d
TG
3199 return ERR_PTR(-ENODEV);
3200
108b02cf 3201 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3202 ctx = &cpuctx->ctx;
c93f7669 3203 get_ctx(ctx);
fe4b04fa 3204 ++ctx->pin_count;
0793a61d 3205
0793a61d
TG
3206 return ctx;
3207 }
3208
8dc85d54
PZ
3209 err = -EINVAL;
3210 ctxn = pmu->task_ctx_nr;
3211 if (ctxn < 0)
3212 goto errout;
3213
9ed6060d 3214retry:
8dc85d54 3215 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3216 if (ctx) {
71a851b4 3217 unclone_ctx(ctx);
fe4b04fa 3218 ++ctx->pin_count;
e625cce1 3219 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 3220 } else {
eb184479 3221 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3222 err = -ENOMEM;
3223 if (!ctx)
3224 goto errout;
eb184479 3225
dbe08d82
ON
3226 err = 0;
3227 mutex_lock(&task->perf_event_mutex);
3228 /*
3229 * If it has already passed perf_event_exit_task().
3230 * we must see PF_EXITING, it takes this mutex too.
3231 */
3232 if (task->flags & PF_EXITING)
3233 err = -ESRCH;
3234 else if (task->perf_event_ctxp[ctxn])
3235 err = -EAGAIN;
fe4b04fa 3236 else {
9137fb28 3237 get_ctx(ctx);
fe4b04fa 3238 ++ctx->pin_count;
dbe08d82 3239 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3240 }
dbe08d82
ON
3241 mutex_unlock(&task->perf_event_mutex);
3242
3243 if (unlikely(err)) {
9137fb28 3244 put_ctx(ctx);
dbe08d82
ON
3245
3246 if (err == -EAGAIN)
3247 goto retry;
3248 goto errout;
a63eaf34
PM
3249 }
3250 }
3251
0793a61d 3252 return ctx;
c93f7669 3253
9ed6060d 3254errout:
c93f7669 3255 return ERR_PTR(err);
0793a61d
TG
3256}
3257
6fb2915d
LZ
3258static void perf_event_free_filter(struct perf_event *event);
3259
cdd6c482 3260static void free_event_rcu(struct rcu_head *head)
592903cd 3261{
cdd6c482 3262 struct perf_event *event;
592903cd 3263
cdd6c482
IM
3264 event = container_of(head, struct perf_event, rcu_head);
3265 if (event->ns)
3266 put_pid_ns(event->ns);
6fb2915d 3267 perf_event_free_filter(event);
cdd6c482 3268 kfree(event);
592903cd
PZ
3269}
3270
76369139 3271static void ring_buffer_put(struct ring_buffer *rb);
b69cf536
PZ
3272static void ring_buffer_attach(struct perf_event *event,
3273 struct ring_buffer *rb);
925d519a 3274
4beb31f3 3275static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3276{
4beb31f3
FW
3277 if (event->parent)
3278 return;
3279
3280 if (has_branch_stack(event)) {
3281 if (!(event->attach_state & PERF_ATTACH_TASK))
3282 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3283 }
3284 if (is_cgroup_event(event))
3285 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3286}
925d519a 3287
4beb31f3
FW
3288static void unaccount_event(struct perf_event *event)
3289{
3290 if (event->parent)
3291 return;
3292
3293 if (event->attach_state & PERF_ATTACH_TASK)
3294 static_key_slow_dec_deferred(&perf_sched_events);
3295 if (event->attr.mmap || event->attr.mmap_data)
3296 atomic_dec(&nr_mmap_events);
3297 if (event->attr.comm)
3298 atomic_dec(&nr_comm_events);
3299 if (event->attr.task)
3300 atomic_dec(&nr_task_events);
948b26b6
FW
3301 if (event->attr.freq)
3302 atomic_dec(&nr_freq_events);
4beb31f3
FW
3303 if (is_cgroup_event(event))
3304 static_key_slow_dec_deferred(&perf_sched_events);
3305 if (has_branch_stack(event))
3306 static_key_slow_dec_deferred(&perf_sched_events);
3307
3308 unaccount_event_cpu(event, event->cpu);
3309}
925d519a 3310
766d6c07
FW
3311static void __free_event(struct perf_event *event)
3312{
cdd6c482 3313 if (!event->parent) {
927c7a9e
FW
3314 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3315 put_callchain_buffers();
f344011c 3316 }
9ee318a7 3317
766d6c07
FW
3318 if (event->destroy)
3319 event->destroy(event);
3320
3321 if (event->ctx)
3322 put_ctx(event->ctx);
3323
c464c76e
YZ
3324 if (event->pmu)
3325 module_put(event->pmu->module);
3326
766d6c07
FW
3327 call_rcu(&event->rcu_head, free_event_rcu);
3328}
683ede43
PZ
3329
3330static void _free_event(struct perf_event *event)
f1600952 3331{
e360adbe 3332 irq_work_sync(&event->pending);
925d519a 3333
4beb31f3 3334 unaccount_event(event);
9ee318a7 3335
76369139 3336 if (event->rb) {
9bb5d40c
PZ
3337 /*
3338 * Can happen when we close an event with re-directed output.
3339 *
3340 * Since we have a 0 refcount, perf_mmap_close() will skip
3341 * over us; possibly making our ring_buffer_put() the last.
3342 */
3343 mutex_lock(&event->mmap_mutex);
b69cf536 3344 ring_buffer_attach(event, NULL);
9bb5d40c 3345 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3346 }
3347
e5d1367f
SE
3348 if (is_cgroup_event(event))
3349 perf_detach_cgroup(event);
3350
766d6c07 3351 __free_event(event);
f1600952
PZ
3352}
3353
683ede43
PZ
3354/*
3355 * Used to free events which have a known refcount of 1, such as in error paths
3356 * where the event isn't exposed yet and inherited events.
3357 */
3358static void free_event(struct perf_event *event)
0793a61d 3359{
683ede43
PZ
3360 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3361 "unexpected event refcount: %ld; ptr=%p\n",
3362 atomic_long_read(&event->refcount), event)) {
3363 /* leak to avoid use-after-free */
3364 return;
3365 }
0793a61d 3366
683ede43 3367 _free_event(event);
0793a61d
TG
3368}
3369
a66a3052 3370/*
f8697762 3371 * Remove user event from the owner task.
a66a3052 3372 */
f8697762 3373static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3374{
8882135b 3375 struct task_struct *owner;
fb0459d7 3376
8882135b
PZ
3377 rcu_read_lock();
3378 owner = ACCESS_ONCE(event->owner);
3379 /*
3380 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3381 * !owner it means the list deletion is complete and we can indeed
3382 * free this event, otherwise we need to serialize on
3383 * owner->perf_event_mutex.
3384 */
3385 smp_read_barrier_depends();
3386 if (owner) {
3387 /*
3388 * Since delayed_put_task_struct() also drops the last
3389 * task reference we can safely take a new reference
3390 * while holding the rcu_read_lock().
3391 */
3392 get_task_struct(owner);
3393 }
3394 rcu_read_unlock();
3395
3396 if (owner) {
3397 mutex_lock(&owner->perf_event_mutex);
3398 /*
3399 * We have to re-check the event->owner field, if it is cleared
3400 * we raced with perf_event_exit_task(), acquiring the mutex
3401 * ensured they're done, and we can proceed with freeing the
3402 * event.
3403 */
3404 if (event->owner)
3405 list_del_init(&event->owner_entry);
3406 mutex_unlock(&owner->perf_event_mutex);
3407 put_task_struct(owner);
3408 }
f8697762
JO
3409}
3410
3411/*
3412 * Called when the last reference to the file is gone.
3413 */
3414static void put_event(struct perf_event *event)
3415{
3416 struct perf_event_context *ctx = event->ctx;
3417
3418 if (!atomic_long_dec_and_test(&event->refcount))
3419 return;
3420
3421 if (!is_kernel_event(event))
3422 perf_remove_from_owner(event);
8882135b 3423
683ede43
PZ
3424 WARN_ON_ONCE(ctx->parent_ctx);
3425 /*
3426 * There are two ways this annotation is useful:
3427 *
3428 * 1) there is a lock recursion from perf_event_exit_task
3429 * see the comment there.
3430 *
3431 * 2) there is a lock-inversion with mmap_sem through
3432 * perf_event_read_group(), which takes faults while
3433 * holding ctx->mutex, however this is called after
3434 * the last filedesc died, so there is no possibility
3435 * to trigger the AB-BA case.
3436 */
3437 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3438 perf_remove_from_context(event, true);
3439 mutex_unlock(&ctx->mutex);
3440
3441 _free_event(event);
a6fa941d
AV
3442}
3443
683ede43
PZ
3444int perf_event_release_kernel(struct perf_event *event)
3445{
3446 put_event(event);
3447 return 0;
3448}
3449EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3450
a6fa941d
AV
3451static int perf_release(struct inode *inode, struct file *file)
3452{
3453 put_event(file->private_data);
3454 return 0;
fb0459d7 3455}
fb0459d7 3456
fadfe7be
JO
3457/*
3458 * Remove all orphanes events from the context.
3459 */
3460static void orphans_remove_work(struct work_struct *work)
3461{
3462 struct perf_event_context *ctx;
3463 struct perf_event *event, *tmp;
3464
3465 ctx = container_of(work, struct perf_event_context,
3466 orphans_remove.work);
3467
3468 mutex_lock(&ctx->mutex);
3469 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3470 struct perf_event *parent_event = event->parent;
3471
3472 if (!is_orphaned_child(event))
3473 continue;
3474
3475 perf_remove_from_context(event, true);
3476
3477 mutex_lock(&parent_event->child_mutex);
3478 list_del_init(&event->child_list);
3479 mutex_unlock(&parent_event->child_mutex);
3480
3481 free_event(event);
3482 put_event(parent_event);
3483 }
3484
3485 raw_spin_lock_irq(&ctx->lock);
3486 ctx->orphans_remove_sched = false;
3487 raw_spin_unlock_irq(&ctx->lock);
3488 mutex_unlock(&ctx->mutex);
3489
3490 put_ctx(ctx);
3491}
3492
59ed446f 3493u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3494{
cdd6c482 3495 struct perf_event *child;
e53c0994
PZ
3496 u64 total = 0;
3497
59ed446f
PZ
3498 *enabled = 0;
3499 *running = 0;
3500
6f10581a 3501 mutex_lock(&event->child_mutex);
cdd6c482 3502 total += perf_event_read(event);
59ed446f
PZ
3503 *enabled += event->total_time_enabled +
3504 atomic64_read(&event->child_total_time_enabled);
3505 *running += event->total_time_running +
3506 atomic64_read(&event->child_total_time_running);
3507
3508 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3509 total += perf_event_read(child);
59ed446f
PZ
3510 *enabled += child->total_time_enabled;
3511 *running += child->total_time_running;
3512 }
6f10581a 3513 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3514
3515 return total;
3516}
fb0459d7 3517EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3518
cdd6c482 3519static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3520 u64 read_format, char __user *buf)
3521{
cdd6c482 3522 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3523 int n = 0, size = 0, ret = -EFAULT;
3524 struct perf_event_context *ctx = leader->ctx;
abf4868b 3525 u64 values[5];
59ed446f 3526 u64 count, enabled, running;
abf4868b 3527
6f10581a 3528 mutex_lock(&ctx->mutex);
59ed446f 3529 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3530
3531 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3532 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3533 values[n++] = enabled;
3534 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3535 values[n++] = running;
abf4868b
PZ
3536 values[n++] = count;
3537 if (read_format & PERF_FORMAT_ID)
3538 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3539
3540 size = n * sizeof(u64);
3541
3542 if (copy_to_user(buf, values, size))
6f10581a 3543 goto unlock;
3dab77fb 3544
6f10581a 3545 ret = size;
3dab77fb 3546
65abc865 3547 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3548 n = 0;
3dab77fb 3549
59ed446f 3550 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3551 if (read_format & PERF_FORMAT_ID)
3552 values[n++] = primary_event_id(sub);
3553
3554 size = n * sizeof(u64);
3555
184d3da8 3556 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3557 ret = -EFAULT;
3558 goto unlock;
3559 }
abf4868b
PZ
3560
3561 ret += size;
3dab77fb 3562 }
6f10581a
PZ
3563unlock:
3564 mutex_unlock(&ctx->mutex);
3dab77fb 3565
abf4868b 3566 return ret;
3dab77fb
PZ
3567}
3568
cdd6c482 3569static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3570 u64 read_format, char __user *buf)
3571{
59ed446f 3572 u64 enabled, running;
3dab77fb
PZ
3573 u64 values[4];
3574 int n = 0;
3575
59ed446f
PZ
3576 values[n++] = perf_event_read_value(event, &enabled, &running);
3577 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3578 values[n++] = enabled;
3579 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3580 values[n++] = running;
3dab77fb 3581 if (read_format & PERF_FORMAT_ID)
cdd6c482 3582 values[n++] = primary_event_id(event);
3dab77fb
PZ
3583
3584 if (copy_to_user(buf, values, n * sizeof(u64)))
3585 return -EFAULT;
3586
3587 return n * sizeof(u64);
3588}
3589
0793a61d 3590/*
cdd6c482 3591 * Read the performance event - simple non blocking version for now
0793a61d
TG
3592 */
3593static ssize_t
cdd6c482 3594perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3595{
cdd6c482 3596 u64 read_format = event->attr.read_format;
3dab77fb 3597 int ret;
0793a61d 3598
3b6f9e5c 3599 /*
cdd6c482 3600 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3601 * error state (i.e. because it was pinned but it couldn't be
3602 * scheduled on to the CPU at some point).
3603 */
c88f2096 3604 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3605 return 0;
3606
c320c7b7 3607 if (count < event->read_size)
3dab77fb
PZ
3608 return -ENOSPC;
3609
cdd6c482 3610 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3611 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3612 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3613 else
cdd6c482 3614 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3615
3dab77fb 3616 return ret;
0793a61d
TG
3617}
3618
0793a61d
TG
3619static ssize_t
3620perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3621{
cdd6c482 3622 struct perf_event *event = file->private_data;
0793a61d 3623
cdd6c482 3624 return perf_read_hw(event, buf, count);
0793a61d
TG
3625}
3626
3627static unsigned int perf_poll(struct file *file, poll_table *wait)
3628{
cdd6c482 3629 struct perf_event *event = file->private_data;
76369139 3630 struct ring_buffer *rb;
61b67684 3631 unsigned int events = POLLHUP;
c7138f37 3632
e708d7ad 3633 poll_wait(file, &event->waitq, wait);
179033b3
JO
3634
3635 if (event->state == PERF_EVENT_STATE_EXIT)
3636 return events;
3637
10c6db11 3638 /*
9bb5d40c
PZ
3639 * Pin the event->rb by taking event->mmap_mutex; otherwise
3640 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3641 */
3642 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3643 rb = event->rb;
3644 if (rb)
76369139 3645 events = atomic_xchg(&rb->poll, 0);
10c6db11 3646 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
3647 return events;
3648}
3649
cdd6c482 3650static void perf_event_reset(struct perf_event *event)
6de6a7b9 3651{
cdd6c482 3652 (void)perf_event_read(event);
e7850595 3653 local64_set(&event->count, 0);
cdd6c482 3654 perf_event_update_userpage(event);
3df5edad
PZ
3655}
3656
c93f7669 3657/*
cdd6c482
IM
3658 * Holding the top-level event's child_mutex means that any
3659 * descendant process that has inherited this event will block
3660 * in sync_child_event if it goes to exit, thus satisfying the
3661 * task existence requirements of perf_event_enable/disable.
c93f7669 3662 */
cdd6c482
IM
3663static void perf_event_for_each_child(struct perf_event *event,
3664 void (*func)(struct perf_event *))
3df5edad 3665{
cdd6c482 3666 struct perf_event *child;
3df5edad 3667
cdd6c482
IM
3668 WARN_ON_ONCE(event->ctx->parent_ctx);
3669 mutex_lock(&event->child_mutex);
3670 func(event);
3671 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3672 func(child);
cdd6c482 3673 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3674}
3675
cdd6c482
IM
3676static void perf_event_for_each(struct perf_event *event,
3677 void (*func)(struct perf_event *))
3df5edad 3678{
cdd6c482
IM
3679 struct perf_event_context *ctx = event->ctx;
3680 struct perf_event *sibling;
3df5edad 3681
75f937f2
PZ
3682 WARN_ON_ONCE(ctx->parent_ctx);
3683 mutex_lock(&ctx->mutex);
cdd6c482 3684 event = event->group_leader;
75f937f2 3685
cdd6c482 3686 perf_event_for_each_child(event, func);
cdd6c482 3687 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3688 perf_event_for_each_child(sibling, func);
75f937f2 3689 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3690}
3691
cdd6c482 3692static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3693{
cdd6c482 3694 struct perf_event_context *ctx = event->ctx;
bad7192b 3695 int ret = 0, active;
08247e31
PZ
3696 u64 value;
3697
6c7e550f 3698 if (!is_sampling_event(event))
08247e31
PZ
3699 return -EINVAL;
3700
ad0cf347 3701 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3702 return -EFAULT;
3703
3704 if (!value)
3705 return -EINVAL;
3706
e625cce1 3707 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3708 if (event->attr.freq) {
3709 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3710 ret = -EINVAL;
3711 goto unlock;
3712 }
3713
cdd6c482 3714 event->attr.sample_freq = value;
08247e31 3715 } else {
cdd6c482
IM
3716 event->attr.sample_period = value;
3717 event->hw.sample_period = value;
08247e31 3718 }
bad7192b
PZ
3719
3720 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3721 if (active) {
3722 perf_pmu_disable(ctx->pmu);
3723 event->pmu->stop(event, PERF_EF_UPDATE);
3724 }
3725
3726 local64_set(&event->hw.period_left, 0);
3727
3728 if (active) {
3729 event->pmu->start(event, PERF_EF_RELOAD);
3730 perf_pmu_enable(ctx->pmu);
3731 }
3732
08247e31 3733unlock:
e625cce1 3734 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3735
3736 return ret;
3737}
3738
ac9721f3
PZ
3739static const struct file_operations perf_fops;
3740
2903ff01 3741static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3742{
2903ff01
AV
3743 struct fd f = fdget(fd);
3744 if (!f.file)
3745 return -EBADF;
ac9721f3 3746
2903ff01
AV
3747 if (f.file->f_op != &perf_fops) {
3748 fdput(f);
3749 return -EBADF;
ac9721f3 3750 }
2903ff01
AV
3751 *p = f;
3752 return 0;
ac9721f3
PZ
3753}
3754
3755static int perf_event_set_output(struct perf_event *event,
3756 struct perf_event *output_event);
6fb2915d 3757static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3758
d859e29f
PM
3759static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3760{
cdd6c482
IM
3761 struct perf_event *event = file->private_data;
3762 void (*func)(struct perf_event *);
3df5edad 3763 u32 flags = arg;
d859e29f
PM
3764
3765 switch (cmd) {
cdd6c482
IM
3766 case PERF_EVENT_IOC_ENABLE:
3767 func = perf_event_enable;
d859e29f 3768 break;
cdd6c482
IM
3769 case PERF_EVENT_IOC_DISABLE:
3770 func = perf_event_disable;
79f14641 3771 break;
cdd6c482
IM
3772 case PERF_EVENT_IOC_RESET:
3773 func = perf_event_reset;
6de6a7b9 3774 break;
3df5edad 3775
cdd6c482
IM
3776 case PERF_EVENT_IOC_REFRESH:
3777 return perf_event_refresh(event, arg);
08247e31 3778
cdd6c482
IM
3779 case PERF_EVENT_IOC_PERIOD:
3780 return perf_event_period(event, (u64 __user *)arg);
08247e31 3781
cf4957f1
JO
3782 case PERF_EVENT_IOC_ID:
3783 {
3784 u64 id = primary_event_id(event);
3785
3786 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3787 return -EFAULT;
3788 return 0;
3789 }
3790
cdd6c482 3791 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3792 {
ac9721f3 3793 int ret;
ac9721f3 3794 if (arg != -1) {
2903ff01
AV
3795 struct perf_event *output_event;
3796 struct fd output;
3797 ret = perf_fget_light(arg, &output);
3798 if (ret)
3799 return ret;
3800 output_event = output.file->private_data;
3801 ret = perf_event_set_output(event, output_event);
3802 fdput(output);
3803 } else {
3804 ret = perf_event_set_output(event, NULL);
ac9721f3 3805 }
ac9721f3
PZ
3806 return ret;
3807 }
a4be7c27 3808
6fb2915d
LZ
3809 case PERF_EVENT_IOC_SET_FILTER:
3810 return perf_event_set_filter(event, (void __user *)arg);
3811
d859e29f 3812 default:
3df5edad 3813 return -ENOTTY;
d859e29f 3814 }
3df5edad
PZ
3815
3816 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3817 perf_event_for_each(event, func);
3df5edad 3818 else
cdd6c482 3819 perf_event_for_each_child(event, func);
3df5edad
PZ
3820
3821 return 0;
d859e29f
PM
3822}
3823
b3f20785
PM
3824#ifdef CONFIG_COMPAT
3825static long perf_compat_ioctl(struct file *file, unsigned int cmd,
3826 unsigned long arg)
3827{
3828 switch (_IOC_NR(cmd)) {
3829 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
3830 case _IOC_NR(PERF_EVENT_IOC_ID):
3831 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3832 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
3833 cmd &= ~IOCSIZE_MASK;
3834 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
3835 }
3836 break;
3837 }
3838 return perf_ioctl(file, cmd, arg);
3839}
3840#else
3841# define perf_compat_ioctl NULL
3842#endif
3843
cdd6c482 3844int perf_event_task_enable(void)
771d7cde 3845{
cdd6c482 3846 struct perf_event *event;
771d7cde 3847
cdd6c482
IM
3848 mutex_lock(&current->perf_event_mutex);
3849 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3850 perf_event_for_each_child(event, perf_event_enable);
3851 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3852
3853 return 0;
3854}
3855
cdd6c482 3856int perf_event_task_disable(void)
771d7cde 3857{
cdd6c482 3858 struct perf_event *event;
771d7cde 3859
cdd6c482
IM
3860 mutex_lock(&current->perf_event_mutex);
3861 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3862 perf_event_for_each_child(event, perf_event_disable);
3863 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3864
3865 return 0;
3866}
3867
cdd6c482 3868static int perf_event_index(struct perf_event *event)
194002b2 3869{
a4eaf7f1
PZ
3870 if (event->hw.state & PERF_HES_STOPPED)
3871 return 0;
3872
cdd6c482 3873 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3874 return 0;
3875
35edc2a5 3876 return event->pmu->event_idx(event);
194002b2
PZ
3877}
3878
c4794295 3879static void calc_timer_values(struct perf_event *event,
e3f3541c 3880 u64 *now,
7f310a5d
EM
3881 u64 *enabled,
3882 u64 *running)
c4794295 3883{
e3f3541c 3884 u64 ctx_time;
c4794295 3885
e3f3541c
PZ
3886 *now = perf_clock();
3887 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3888 *enabled = ctx_time - event->tstamp_enabled;
3889 *running = ctx_time - event->tstamp_running;
3890}
3891
fa731587
PZ
3892static void perf_event_init_userpage(struct perf_event *event)
3893{
3894 struct perf_event_mmap_page *userpg;
3895 struct ring_buffer *rb;
3896
3897 rcu_read_lock();
3898 rb = rcu_dereference(event->rb);
3899 if (!rb)
3900 goto unlock;
3901
3902 userpg = rb->user_page;
3903
3904 /* Allow new userspace to detect that bit 0 is deprecated */
3905 userpg->cap_bit0_is_deprecated = 1;
3906 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3907
3908unlock:
3909 rcu_read_unlock();
3910}
3911
c7206205 3912void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3913{
3914}
3915
38ff667b
PZ
3916/*
3917 * Callers need to ensure there can be no nesting of this function, otherwise
3918 * the seqlock logic goes bad. We can not serialize this because the arch
3919 * code calls this from NMI context.
3920 */
cdd6c482 3921void perf_event_update_userpage(struct perf_event *event)
37d81828 3922{
cdd6c482 3923 struct perf_event_mmap_page *userpg;
76369139 3924 struct ring_buffer *rb;
e3f3541c 3925 u64 enabled, running, now;
38ff667b
PZ
3926
3927 rcu_read_lock();
5ec4c599
PZ
3928 rb = rcu_dereference(event->rb);
3929 if (!rb)
3930 goto unlock;
3931
0d641208
EM
3932 /*
3933 * compute total_time_enabled, total_time_running
3934 * based on snapshot values taken when the event
3935 * was last scheduled in.
3936 *
3937 * we cannot simply called update_context_time()
3938 * because of locking issue as we can be called in
3939 * NMI context
3940 */
e3f3541c 3941 calc_timer_values(event, &now, &enabled, &running);
38ff667b 3942
76369139 3943 userpg = rb->user_page;
7b732a75
PZ
3944 /*
3945 * Disable preemption so as to not let the corresponding user-space
3946 * spin too long if we get preempted.
3947 */
3948 preempt_disable();
37d81828 3949 ++userpg->lock;
92f22a38 3950 barrier();
cdd6c482 3951 userpg->index = perf_event_index(event);
b5e58793 3952 userpg->offset = perf_event_count(event);
365a4038 3953 if (userpg->index)
e7850595 3954 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3955
0d641208 3956 userpg->time_enabled = enabled +
cdd6c482 3957 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3958
0d641208 3959 userpg->time_running = running +
cdd6c482 3960 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3961
c7206205 3962 arch_perf_update_userpage(userpg, now);
e3f3541c 3963
92f22a38 3964 barrier();
37d81828 3965 ++userpg->lock;
7b732a75 3966 preempt_enable();
38ff667b 3967unlock:
7b732a75 3968 rcu_read_unlock();
37d81828
PM
3969}
3970
906010b2
PZ
3971static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3972{
3973 struct perf_event *event = vma->vm_file->private_data;
76369139 3974 struct ring_buffer *rb;
906010b2
PZ
3975 int ret = VM_FAULT_SIGBUS;
3976
3977 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3978 if (vmf->pgoff == 0)
3979 ret = 0;
3980 return ret;
3981 }
3982
3983 rcu_read_lock();
76369139
FW
3984 rb = rcu_dereference(event->rb);
3985 if (!rb)
906010b2
PZ
3986 goto unlock;
3987
3988 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3989 goto unlock;
3990
76369139 3991 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3992 if (!vmf->page)
3993 goto unlock;
3994
3995 get_page(vmf->page);
3996 vmf->page->mapping = vma->vm_file->f_mapping;
3997 vmf->page->index = vmf->pgoff;
3998
3999 ret = 0;
4000unlock:
4001 rcu_read_unlock();
4002
4003 return ret;
4004}
4005
10c6db11
PZ
4006static void ring_buffer_attach(struct perf_event *event,
4007 struct ring_buffer *rb)
4008{
b69cf536 4009 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4010 unsigned long flags;
4011
b69cf536
PZ
4012 if (event->rb) {
4013 /*
4014 * Should be impossible, we set this when removing
4015 * event->rb_entry and wait/clear when adding event->rb_entry.
4016 */
4017 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4018
b69cf536
PZ
4019 old_rb = event->rb;
4020 event->rcu_batches = get_state_synchronize_rcu();
4021 event->rcu_pending = 1;
10c6db11 4022
b69cf536
PZ
4023 spin_lock_irqsave(&old_rb->event_lock, flags);
4024 list_del_rcu(&event->rb_entry);
4025 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4026 }
10c6db11 4027
b69cf536
PZ
4028 if (event->rcu_pending && rb) {
4029 cond_synchronize_rcu(event->rcu_batches);
4030 event->rcu_pending = 0;
4031 }
10c6db11 4032
b69cf536
PZ
4033 if (rb) {
4034 spin_lock_irqsave(&rb->event_lock, flags);
4035 list_add_rcu(&event->rb_entry, &rb->event_list);
4036 spin_unlock_irqrestore(&rb->event_lock, flags);
4037 }
4038
4039 rcu_assign_pointer(event->rb, rb);
4040
4041 if (old_rb) {
4042 ring_buffer_put(old_rb);
4043 /*
4044 * Since we detached before setting the new rb, so that we
4045 * could attach the new rb, we could have missed a wakeup.
4046 * Provide it now.
4047 */
4048 wake_up_all(&event->waitq);
4049 }
10c6db11
PZ
4050}
4051
4052static void ring_buffer_wakeup(struct perf_event *event)
4053{
4054 struct ring_buffer *rb;
4055
4056 rcu_read_lock();
4057 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4058 if (rb) {
4059 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4060 wake_up_all(&event->waitq);
4061 }
10c6db11
PZ
4062 rcu_read_unlock();
4063}
4064
76369139 4065static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 4066{
76369139 4067 struct ring_buffer *rb;
906010b2 4068
76369139
FW
4069 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4070 rb_free(rb);
7b732a75
PZ
4071}
4072
76369139 4073static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4074{
76369139 4075 struct ring_buffer *rb;
7b732a75 4076
ac9721f3 4077 rcu_read_lock();
76369139
FW
4078 rb = rcu_dereference(event->rb);
4079 if (rb) {
4080 if (!atomic_inc_not_zero(&rb->refcount))
4081 rb = NULL;
ac9721f3
PZ
4082 }
4083 rcu_read_unlock();
4084
76369139 4085 return rb;
ac9721f3
PZ
4086}
4087
76369139 4088static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4089{
76369139 4090 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4091 return;
7b732a75 4092
9bb5d40c 4093 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4094
76369139 4095 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4096}
4097
4098static void perf_mmap_open(struct vm_area_struct *vma)
4099{
cdd6c482 4100 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4101
cdd6c482 4102 atomic_inc(&event->mmap_count);
9bb5d40c 4103 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
4104}
4105
9bb5d40c
PZ
4106/*
4107 * A buffer can be mmap()ed multiple times; either directly through the same
4108 * event, or through other events by use of perf_event_set_output().
4109 *
4110 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4111 * the buffer here, where we still have a VM context. This means we need
4112 * to detach all events redirecting to us.
4113 */
7b732a75
PZ
4114static void perf_mmap_close(struct vm_area_struct *vma)
4115{
cdd6c482 4116 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4117
b69cf536 4118 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4119 struct user_struct *mmap_user = rb->mmap_user;
4120 int mmap_locked = rb->mmap_locked;
4121 unsigned long size = perf_data_size(rb);
789f90fc 4122
9bb5d40c
PZ
4123 atomic_dec(&rb->mmap_count);
4124
4125 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4126 goto out_put;
9bb5d40c 4127
b69cf536 4128 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4129 mutex_unlock(&event->mmap_mutex);
4130
4131 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4132 if (atomic_read(&rb->mmap_count))
4133 goto out_put;
ac9721f3 4134
9bb5d40c
PZ
4135 /*
4136 * No other mmap()s, detach from all other events that might redirect
4137 * into the now unreachable buffer. Somewhat complicated by the
4138 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4139 */
4140again:
4141 rcu_read_lock();
4142 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4143 if (!atomic_long_inc_not_zero(&event->refcount)) {
4144 /*
4145 * This event is en-route to free_event() which will
4146 * detach it and remove it from the list.
4147 */
4148 continue;
4149 }
4150 rcu_read_unlock();
789f90fc 4151
9bb5d40c
PZ
4152 mutex_lock(&event->mmap_mutex);
4153 /*
4154 * Check we didn't race with perf_event_set_output() which can
4155 * swizzle the rb from under us while we were waiting to
4156 * acquire mmap_mutex.
4157 *
4158 * If we find a different rb; ignore this event, a next
4159 * iteration will no longer find it on the list. We have to
4160 * still restart the iteration to make sure we're not now
4161 * iterating the wrong list.
4162 */
b69cf536
PZ
4163 if (event->rb == rb)
4164 ring_buffer_attach(event, NULL);
4165
cdd6c482 4166 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4167 put_event(event);
ac9721f3 4168
9bb5d40c
PZ
4169 /*
4170 * Restart the iteration; either we're on the wrong list or
4171 * destroyed its integrity by doing a deletion.
4172 */
4173 goto again;
7b732a75 4174 }
9bb5d40c
PZ
4175 rcu_read_unlock();
4176
4177 /*
4178 * It could be there's still a few 0-ref events on the list; they'll
4179 * get cleaned up by free_event() -- they'll also still have their
4180 * ref on the rb and will free it whenever they are done with it.
4181 *
4182 * Aside from that, this buffer is 'fully' detached and unmapped,
4183 * undo the VM accounting.
4184 */
4185
4186 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4187 vma->vm_mm->pinned_vm -= mmap_locked;
4188 free_uid(mmap_user);
4189
b69cf536 4190out_put:
9bb5d40c 4191 ring_buffer_put(rb); /* could be last */
37d81828
PM
4192}
4193
f0f37e2f 4194static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
4195 .open = perf_mmap_open,
4196 .close = perf_mmap_close,
4197 .fault = perf_mmap_fault,
4198 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4199};
4200
4201static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4202{
cdd6c482 4203 struct perf_event *event = file->private_data;
22a4f650 4204 unsigned long user_locked, user_lock_limit;
789f90fc 4205 struct user_struct *user = current_user();
22a4f650 4206 unsigned long locked, lock_limit;
76369139 4207 struct ring_buffer *rb;
7b732a75
PZ
4208 unsigned long vma_size;
4209 unsigned long nr_pages;
789f90fc 4210 long user_extra, extra;
d57e34fd 4211 int ret = 0, flags = 0;
37d81828 4212
c7920614
PZ
4213 /*
4214 * Don't allow mmap() of inherited per-task counters. This would
4215 * create a performance issue due to all children writing to the
76369139 4216 * same rb.
c7920614
PZ
4217 */
4218 if (event->cpu == -1 && event->attr.inherit)
4219 return -EINVAL;
4220
43a21ea8 4221 if (!(vma->vm_flags & VM_SHARED))
37d81828 4222 return -EINVAL;
7b732a75
PZ
4223
4224 vma_size = vma->vm_end - vma->vm_start;
4225 nr_pages = (vma_size / PAGE_SIZE) - 1;
4226
7730d865 4227 /*
76369139 4228 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4229 * can do bitmasks instead of modulo.
4230 */
4231 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4232 return -EINVAL;
4233
7b732a75 4234 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4235 return -EINVAL;
4236
7b732a75
PZ
4237 if (vma->vm_pgoff != 0)
4238 return -EINVAL;
37d81828 4239
cdd6c482 4240 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4241again:
cdd6c482 4242 mutex_lock(&event->mmap_mutex);
76369139 4243 if (event->rb) {
9bb5d40c 4244 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4245 ret = -EINVAL;
9bb5d40c
PZ
4246 goto unlock;
4247 }
4248
4249 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4250 /*
4251 * Raced against perf_mmap_close() through
4252 * perf_event_set_output(). Try again, hope for better
4253 * luck.
4254 */
4255 mutex_unlock(&event->mmap_mutex);
4256 goto again;
4257 }
4258
ebb3c4c4
PZ
4259 goto unlock;
4260 }
4261
789f90fc 4262 user_extra = nr_pages + 1;
cdd6c482 4263 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4264
4265 /*
4266 * Increase the limit linearly with more CPUs:
4267 */
4268 user_lock_limit *= num_online_cpus();
4269
789f90fc 4270 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4271
789f90fc
PZ
4272 extra = 0;
4273 if (user_locked > user_lock_limit)
4274 extra = user_locked - user_lock_limit;
7b732a75 4275
78d7d407 4276 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4277 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4278 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4279
459ec28a
IM
4280 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4281 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4282 ret = -EPERM;
4283 goto unlock;
4284 }
7b732a75 4285
76369139 4286 WARN_ON(event->rb);
906010b2 4287
d57e34fd 4288 if (vma->vm_flags & VM_WRITE)
76369139 4289 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4290
4ec8363d
VW
4291 rb = rb_alloc(nr_pages,
4292 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4293 event->cpu, flags);
4294
76369139 4295 if (!rb) {
ac9721f3 4296 ret = -ENOMEM;
ebb3c4c4 4297 goto unlock;
ac9721f3 4298 }
26cb63ad 4299
9bb5d40c 4300 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4301 rb->mmap_locked = extra;
4302 rb->mmap_user = get_current_user();
43a21ea8 4303
ac9721f3 4304 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4305 vma->vm_mm->pinned_vm += extra;
4306
9bb5d40c 4307 ring_buffer_attach(event, rb);
ac9721f3 4308
fa731587 4309 perf_event_init_userpage(event);
9a0f05cb
PZ
4310 perf_event_update_userpage(event);
4311
ebb3c4c4 4312unlock:
ac9721f3
PZ
4313 if (!ret)
4314 atomic_inc(&event->mmap_count);
cdd6c482 4315 mutex_unlock(&event->mmap_mutex);
37d81828 4316
9bb5d40c
PZ
4317 /*
4318 * Since pinned accounting is per vm we cannot allow fork() to copy our
4319 * vma.
4320 */
26cb63ad 4321 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4322 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4323
4324 return ret;
37d81828
PM
4325}
4326
3c446b3d
PZ
4327static int perf_fasync(int fd, struct file *filp, int on)
4328{
496ad9aa 4329 struct inode *inode = file_inode(filp);
cdd6c482 4330 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4331 int retval;
4332
4333 mutex_lock(&inode->i_mutex);
cdd6c482 4334 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4335 mutex_unlock(&inode->i_mutex);
4336
4337 if (retval < 0)
4338 return retval;
4339
4340 return 0;
4341}
4342
0793a61d 4343static const struct file_operations perf_fops = {
3326c1ce 4344 .llseek = no_llseek,
0793a61d
TG
4345 .release = perf_release,
4346 .read = perf_read,
4347 .poll = perf_poll,
d859e29f 4348 .unlocked_ioctl = perf_ioctl,
b3f20785 4349 .compat_ioctl = perf_compat_ioctl,
37d81828 4350 .mmap = perf_mmap,
3c446b3d 4351 .fasync = perf_fasync,
0793a61d
TG
4352};
4353
925d519a 4354/*
cdd6c482 4355 * Perf event wakeup
925d519a
PZ
4356 *
4357 * If there's data, ensure we set the poll() state and publish everything
4358 * to user-space before waking everybody up.
4359 */
4360
cdd6c482 4361void perf_event_wakeup(struct perf_event *event)
925d519a 4362{
10c6db11 4363 ring_buffer_wakeup(event);
4c9e2542 4364
cdd6c482
IM
4365 if (event->pending_kill) {
4366 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4367 event->pending_kill = 0;
4c9e2542 4368 }
925d519a
PZ
4369}
4370
e360adbe 4371static void perf_pending_event(struct irq_work *entry)
79f14641 4372{
cdd6c482
IM
4373 struct perf_event *event = container_of(entry,
4374 struct perf_event, pending);
79f14641 4375
cdd6c482
IM
4376 if (event->pending_disable) {
4377 event->pending_disable = 0;
4378 __perf_event_disable(event);
79f14641
PZ
4379 }
4380
cdd6c482
IM
4381 if (event->pending_wakeup) {
4382 event->pending_wakeup = 0;
4383 perf_event_wakeup(event);
79f14641
PZ
4384 }
4385}
4386
39447b38
ZY
4387/*
4388 * We assume there is only KVM supporting the callbacks.
4389 * Later on, we might change it to a list if there is
4390 * another virtualization implementation supporting the callbacks.
4391 */
4392struct perf_guest_info_callbacks *perf_guest_cbs;
4393
4394int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4395{
4396 perf_guest_cbs = cbs;
4397 return 0;
4398}
4399EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4400
4401int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4402{
4403 perf_guest_cbs = NULL;
4404 return 0;
4405}
4406EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4407
4018994f
JO
4408static void
4409perf_output_sample_regs(struct perf_output_handle *handle,
4410 struct pt_regs *regs, u64 mask)
4411{
4412 int bit;
4413
4414 for_each_set_bit(bit, (const unsigned long *) &mask,
4415 sizeof(mask) * BITS_PER_BYTE) {
4416 u64 val;
4417
4418 val = perf_reg_value(regs, bit);
4419 perf_output_put(handle, val);
4420 }
4421}
4422
4423static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4424 struct pt_regs *regs)
4425{
4426 if (!user_mode(regs)) {
4427 if (current->mm)
4428 regs = task_pt_regs(current);
4429 else
4430 regs = NULL;
4431 }
4432
4433 if (regs) {
4434 regs_user->regs = regs;
4435 regs_user->abi = perf_reg_abi(current);
4436 }
4437}
4438
c5ebcedb
JO
4439/*
4440 * Get remaining task size from user stack pointer.
4441 *
4442 * It'd be better to take stack vma map and limit this more
4443 * precisly, but there's no way to get it safely under interrupt,
4444 * so using TASK_SIZE as limit.
4445 */
4446static u64 perf_ustack_task_size(struct pt_regs *regs)
4447{
4448 unsigned long addr = perf_user_stack_pointer(regs);
4449
4450 if (!addr || addr >= TASK_SIZE)
4451 return 0;
4452
4453 return TASK_SIZE - addr;
4454}
4455
4456static u16
4457perf_sample_ustack_size(u16 stack_size, u16 header_size,
4458 struct pt_regs *regs)
4459{
4460 u64 task_size;
4461
4462 /* No regs, no stack pointer, no dump. */
4463 if (!regs)
4464 return 0;
4465
4466 /*
4467 * Check if we fit in with the requested stack size into the:
4468 * - TASK_SIZE
4469 * If we don't, we limit the size to the TASK_SIZE.
4470 *
4471 * - remaining sample size
4472 * If we don't, we customize the stack size to
4473 * fit in to the remaining sample size.
4474 */
4475
4476 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4477 stack_size = min(stack_size, (u16) task_size);
4478
4479 /* Current header size plus static size and dynamic size. */
4480 header_size += 2 * sizeof(u64);
4481
4482 /* Do we fit in with the current stack dump size? */
4483 if ((u16) (header_size + stack_size) < header_size) {
4484 /*
4485 * If we overflow the maximum size for the sample,
4486 * we customize the stack dump size to fit in.
4487 */
4488 stack_size = USHRT_MAX - header_size - sizeof(u64);
4489 stack_size = round_up(stack_size, sizeof(u64));
4490 }
4491
4492 return stack_size;
4493}
4494
4495static void
4496perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4497 struct pt_regs *regs)
4498{
4499 /* Case of a kernel thread, nothing to dump */
4500 if (!regs) {
4501 u64 size = 0;
4502 perf_output_put(handle, size);
4503 } else {
4504 unsigned long sp;
4505 unsigned int rem;
4506 u64 dyn_size;
4507
4508 /*
4509 * We dump:
4510 * static size
4511 * - the size requested by user or the best one we can fit
4512 * in to the sample max size
4513 * data
4514 * - user stack dump data
4515 * dynamic size
4516 * - the actual dumped size
4517 */
4518
4519 /* Static size. */
4520 perf_output_put(handle, dump_size);
4521
4522 /* Data. */
4523 sp = perf_user_stack_pointer(regs);
4524 rem = __output_copy_user(handle, (void *) sp, dump_size);
4525 dyn_size = dump_size - rem;
4526
4527 perf_output_skip(handle, rem);
4528
4529 /* Dynamic size. */
4530 perf_output_put(handle, dyn_size);
4531 }
4532}
4533
c980d109
ACM
4534static void __perf_event_header__init_id(struct perf_event_header *header,
4535 struct perf_sample_data *data,
4536 struct perf_event *event)
6844c09d
ACM
4537{
4538 u64 sample_type = event->attr.sample_type;
4539
4540 data->type = sample_type;
4541 header->size += event->id_header_size;
4542
4543 if (sample_type & PERF_SAMPLE_TID) {
4544 /* namespace issues */
4545 data->tid_entry.pid = perf_event_pid(event, current);
4546 data->tid_entry.tid = perf_event_tid(event, current);
4547 }
4548
4549 if (sample_type & PERF_SAMPLE_TIME)
4550 data->time = perf_clock();
4551
ff3d527c 4552 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4553 data->id = primary_event_id(event);
4554
4555 if (sample_type & PERF_SAMPLE_STREAM_ID)
4556 data->stream_id = event->id;
4557
4558 if (sample_type & PERF_SAMPLE_CPU) {
4559 data->cpu_entry.cpu = raw_smp_processor_id();
4560 data->cpu_entry.reserved = 0;
4561 }
4562}
4563
76369139
FW
4564void perf_event_header__init_id(struct perf_event_header *header,
4565 struct perf_sample_data *data,
4566 struct perf_event *event)
c980d109
ACM
4567{
4568 if (event->attr.sample_id_all)
4569 __perf_event_header__init_id(header, data, event);
4570}
4571
4572static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4573 struct perf_sample_data *data)
4574{
4575 u64 sample_type = data->type;
4576
4577 if (sample_type & PERF_SAMPLE_TID)
4578 perf_output_put(handle, data->tid_entry);
4579
4580 if (sample_type & PERF_SAMPLE_TIME)
4581 perf_output_put(handle, data->time);
4582
4583 if (sample_type & PERF_SAMPLE_ID)
4584 perf_output_put(handle, data->id);
4585
4586 if (sample_type & PERF_SAMPLE_STREAM_ID)
4587 perf_output_put(handle, data->stream_id);
4588
4589 if (sample_type & PERF_SAMPLE_CPU)
4590 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4591
4592 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4593 perf_output_put(handle, data->id);
c980d109
ACM
4594}
4595
76369139
FW
4596void perf_event__output_id_sample(struct perf_event *event,
4597 struct perf_output_handle *handle,
4598 struct perf_sample_data *sample)
c980d109
ACM
4599{
4600 if (event->attr.sample_id_all)
4601 __perf_event__output_id_sample(handle, sample);
4602}
4603
3dab77fb 4604static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4605 struct perf_event *event,
4606 u64 enabled, u64 running)
3dab77fb 4607{
cdd6c482 4608 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4609 u64 values[4];
4610 int n = 0;
4611
b5e58793 4612 values[n++] = perf_event_count(event);
3dab77fb 4613 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4614 values[n++] = enabled +
cdd6c482 4615 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4616 }
4617 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4618 values[n++] = running +
cdd6c482 4619 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4620 }
4621 if (read_format & PERF_FORMAT_ID)
cdd6c482 4622 values[n++] = primary_event_id(event);
3dab77fb 4623
76369139 4624 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4625}
4626
4627/*
cdd6c482 4628 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4629 */
4630static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4631 struct perf_event *event,
4632 u64 enabled, u64 running)
3dab77fb 4633{
cdd6c482
IM
4634 struct perf_event *leader = event->group_leader, *sub;
4635 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4636 u64 values[5];
4637 int n = 0;
4638
4639 values[n++] = 1 + leader->nr_siblings;
4640
4641 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4642 values[n++] = enabled;
3dab77fb
PZ
4643
4644 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4645 values[n++] = running;
3dab77fb 4646
cdd6c482 4647 if (leader != event)
3dab77fb
PZ
4648 leader->pmu->read(leader);
4649
b5e58793 4650 values[n++] = perf_event_count(leader);
3dab77fb 4651 if (read_format & PERF_FORMAT_ID)
cdd6c482 4652 values[n++] = primary_event_id(leader);
3dab77fb 4653
76369139 4654 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4655
65abc865 4656 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4657 n = 0;
4658
6f5ab001
JO
4659 if ((sub != event) &&
4660 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4661 sub->pmu->read(sub);
4662
b5e58793 4663 values[n++] = perf_event_count(sub);
3dab77fb 4664 if (read_format & PERF_FORMAT_ID)
cdd6c482 4665 values[n++] = primary_event_id(sub);
3dab77fb 4666
76369139 4667 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4668 }
4669}
4670
eed01528
SE
4671#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4672 PERF_FORMAT_TOTAL_TIME_RUNNING)
4673
3dab77fb 4674static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4675 struct perf_event *event)
3dab77fb 4676{
e3f3541c 4677 u64 enabled = 0, running = 0, now;
eed01528
SE
4678 u64 read_format = event->attr.read_format;
4679
4680 /*
4681 * compute total_time_enabled, total_time_running
4682 * based on snapshot values taken when the event
4683 * was last scheduled in.
4684 *
4685 * we cannot simply called update_context_time()
4686 * because of locking issue as we are called in
4687 * NMI context
4688 */
c4794295 4689 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4690 calc_timer_values(event, &now, &enabled, &running);
eed01528 4691
cdd6c482 4692 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4693 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4694 else
eed01528 4695 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4696}
4697
5622f295
MM
4698void perf_output_sample(struct perf_output_handle *handle,
4699 struct perf_event_header *header,
4700 struct perf_sample_data *data,
cdd6c482 4701 struct perf_event *event)
5622f295
MM
4702{
4703 u64 sample_type = data->type;
4704
4705 perf_output_put(handle, *header);
4706
ff3d527c
AH
4707 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4708 perf_output_put(handle, data->id);
4709
5622f295
MM
4710 if (sample_type & PERF_SAMPLE_IP)
4711 perf_output_put(handle, data->ip);
4712
4713 if (sample_type & PERF_SAMPLE_TID)
4714 perf_output_put(handle, data->tid_entry);
4715
4716 if (sample_type & PERF_SAMPLE_TIME)
4717 perf_output_put(handle, data->time);
4718
4719 if (sample_type & PERF_SAMPLE_ADDR)
4720 perf_output_put(handle, data->addr);
4721
4722 if (sample_type & PERF_SAMPLE_ID)
4723 perf_output_put(handle, data->id);
4724
4725 if (sample_type & PERF_SAMPLE_STREAM_ID)
4726 perf_output_put(handle, data->stream_id);
4727
4728 if (sample_type & PERF_SAMPLE_CPU)
4729 perf_output_put(handle, data->cpu_entry);
4730
4731 if (sample_type & PERF_SAMPLE_PERIOD)
4732 perf_output_put(handle, data->period);
4733
4734 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4735 perf_output_read(handle, event);
5622f295
MM
4736
4737 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4738 if (data->callchain) {
4739 int size = 1;
4740
4741 if (data->callchain)
4742 size += data->callchain->nr;
4743
4744 size *= sizeof(u64);
4745
76369139 4746 __output_copy(handle, data->callchain, size);
5622f295
MM
4747 } else {
4748 u64 nr = 0;
4749 perf_output_put(handle, nr);
4750 }
4751 }
4752
4753 if (sample_type & PERF_SAMPLE_RAW) {
4754 if (data->raw) {
4755 perf_output_put(handle, data->raw->size);
76369139
FW
4756 __output_copy(handle, data->raw->data,
4757 data->raw->size);
5622f295
MM
4758 } else {
4759 struct {
4760 u32 size;
4761 u32 data;
4762 } raw = {
4763 .size = sizeof(u32),
4764 .data = 0,
4765 };
4766 perf_output_put(handle, raw);
4767 }
4768 }
a7ac67ea 4769
bce38cd5
SE
4770 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4771 if (data->br_stack) {
4772 size_t size;
4773
4774 size = data->br_stack->nr
4775 * sizeof(struct perf_branch_entry);
4776
4777 perf_output_put(handle, data->br_stack->nr);
4778 perf_output_copy(handle, data->br_stack->entries, size);
4779 } else {
4780 /*
4781 * we always store at least the value of nr
4782 */
4783 u64 nr = 0;
4784 perf_output_put(handle, nr);
4785 }
4786 }
4018994f
JO
4787
4788 if (sample_type & PERF_SAMPLE_REGS_USER) {
4789 u64 abi = data->regs_user.abi;
4790
4791 /*
4792 * If there are no regs to dump, notice it through
4793 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4794 */
4795 perf_output_put(handle, abi);
4796
4797 if (abi) {
4798 u64 mask = event->attr.sample_regs_user;
4799 perf_output_sample_regs(handle,
4800 data->regs_user.regs,
4801 mask);
4802 }
4803 }
c5ebcedb 4804
a5cdd40c 4805 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
4806 perf_output_sample_ustack(handle,
4807 data->stack_user_size,
4808 data->regs_user.regs);
a5cdd40c 4809 }
c3feedf2
AK
4810
4811 if (sample_type & PERF_SAMPLE_WEIGHT)
4812 perf_output_put(handle, data->weight);
d6be9ad6
SE
4813
4814 if (sample_type & PERF_SAMPLE_DATA_SRC)
4815 perf_output_put(handle, data->data_src.val);
a5cdd40c 4816
fdfbbd07
AK
4817 if (sample_type & PERF_SAMPLE_TRANSACTION)
4818 perf_output_put(handle, data->txn);
4819
a5cdd40c
PZ
4820 if (!event->attr.watermark) {
4821 int wakeup_events = event->attr.wakeup_events;
4822
4823 if (wakeup_events) {
4824 struct ring_buffer *rb = handle->rb;
4825 int events = local_inc_return(&rb->events);
4826
4827 if (events >= wakeup_events) {
4828 local_sub(wakeup_events, &rb->events);
4829 local_inc(&rb->wakeup);
4830 }
4831 }
4832 }
5622f295
MM
4833}
4834
4835void perf_prepare_sample(struct perf_event_header *header,
4836 struct perf_sample_data *data,
cdd6c482 4837 struct perf_event *event,
5622f295 4838 struct pt_regs *regs)
7b732a75 4839{
cdd6c482 4840 u64 sample_type = event->attr.sample_type;
7b732a75 4841
cdd6c482 4842 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4843 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4844
4845 header->misc = 0;
4846 header->misc |= perf_misc_flags(regs);
6fab0192 4847
c980d109 4848 __perf_event_header__init_id(header, data, event);
6844c09d 4849
c320c7b7 4850 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4851 data->ip = perf_instruction_pointer(regs);
4852
b23f3325 4853 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4854 int size = 1;
394ee076 4855
e6dab5ff 4856 data->callchain = perf_callchain(event, regs);
5622f295
MM
4857
4858 if (data->callchain)
4859 size += data->callchain->nr;
4860
4861 header->size += size * sizeof(u64);
394ee076
PZ
4862 }
4863
3a43ce68 4864 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4865 int size = sizeof(u32);
4866
4867 if (data->raw)
4868 size += data->raw->size;
4869 else
4870 size += sizeof(u32);
4871
4872 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4873 header->size += size;
7f453c24 4874 }
bce38cd5
SE
4875
4876 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4877 int size = sizeof(u64); /* nr */
4878 if (data->br_stack) {
4879 size += data->br_stack->nr
4880 * sizeof(struct perf_branch_entry);
4881 }
4882 header->size += size;
4883 }
4018994f
JO
4884
4885 if (sample_type & PERF_SAMPLE_REGS_USER) {
4886 /* regs dump ABI info */
4887 int size = sizeof(u64);
4888
4889 perf_sample_regs_user(&data->regs_user, regs);
4890
4891 if (data->regs_user.regs) {
4892 u64 mask = event->attr.sample_regs_user;
4893 size += hweight64(mask) * sizeof(u64);
4894 }
4895
4896 header->size += size;
4897 }
c5ebcedb
JO
4898
4899 if (sample_type & PERF_SAMPLE_STACK_USER) {
4900 /*
4901 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4902 * processed as the last one or have additional check added
4903 * in case new sample type is added, because we could eat
4904 * up the rest of the sample size.
4905 */
4906 struct perf_regs_user *uregs = &data->regs_user;
4907 u16 stack_size = event->attr.sample_stack_user;
4908 u16 size = sizeof(u64);
4909
4910 if (!uregs->abi)
4911 perf_sample_regs_user(uregs, regs);
4912
4913 stack_size = perf_sample_ustack_size(stack_size, header->size,
4914 uregs->regs);
4915
4916 /*
4917 * If there is something to dump, add space for the dump
4918 * itself and for the field that tells the dynamic size,
4919 * which is how many have been actually dumped.
4920 */
4921 if (stack_size)
4922 size += sizeof(u64) + stack_size;
4923
4924 data->stack_user_size = stack_size;
4925 header->size += size;
4926 }
5622f295 4927}
7f453c24 4928
a8b0ca17 4929static void perf_event_output(struct perf_event *event,
5622f295
MM
4930 struct perf_sample_data *data,
4931 struct pt_regs *regs)
4932{
4933 struct perf_output_handle handle;
4934 struct perf_event_header header;
689802b2 4935
927c7a9e
FW
4936 /* protect the callchain buffers */
4937 rcu_read_lock();
4938
cdd6c482 4939 perf_prepare_sample(&header, data, event, regs);
5c148194 4940
a7ac67ea 4941 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4942 goto exit;
0322cd6e 4943
cdd6c482 4944 perf_output_sample(&handle, &header, data, event);
f413cdb8 4945
8a057d84 4946 perf_output_end(&handle);
927c7a9e
FW
4947
4948exit:
4949 rcu_read_unlock();
0322cd6e
PZ
4950}
4951
38b200d6 4952/*
cdd6c482 4953 * read event_id
38b200d6
PZ
4954 */
4955
4956struct perf_read_event {
4957 struct perf_event_header header;
4958
4959 u32 pid;
4960 u32 tid;
38b200d6
PZ
4961};
4962
4963static void
cdd6c482 4964perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4965 struct task_struct *task)
4966{
4967 struct perf_output_handle handle;
c980d109 4968 struct perf_sample_data sample;
dfc65094 4969 struct perf_read_event read_event = {
38b200d6 4970 .header = {
cdd6c482 4971 .type = PERF_RECORD_READ,
38b200d6 4972 .misc = 0,
c320c7b7 4973 .size = sizeof(read_event) + event->read_size,
38b200d6 4974 },
cdd6c482
IM
4975 .pid = perf_event_pid(event, task),
4976 .tid = perf_event_tid(event, task),
38b200d6 4977 };
3dab77fb 4978 int ret;
38b200d6 4979
c980d109 4980 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4981 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4982 if (ret)
4983 return;
4984
dfc65094 4985 perf_output_put(&handle, read_event);
cdd6c482 4986 perf_output_read(&handle, event);
c980d109 4987 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4988
38b200d6
PZ
4989 perf_output_end(&handle);
4990}
4991
52d857a8
JO
4992typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4993
4994static void
4995perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
4996 perf_event_aux_output_cb output,
4997 void *data)
4998{
4999 struct perf_event *event;
5000
5001 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5002 if (event->state < PERF_EVENT_STATE_INACTIVE)
5003 continue;
5004 if (!event_filter_match(event))
5005 continue;
67516844 5006 output(event, data);
52d857a8
JO
5007 }
5008}
5009
5010static void
67516844 5011perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5012 struct perf_event_context *task_ctx)
5013{
5014 struct perf_cpu_context *cpuctx;
5015 struct perf_event_context *ctx;
5016 struct pmu *pmu;
5017 int ctxn;
5018
5019 rcu_read_lock();
5020 list_for_each_entry_rcu(pmu, &pmus, entry) {
5021 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5022 if (cpuctx->unique_pmu != pmu)
5023 goto next;
67516844 5024 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5025 if (task_ctx)
5026 goto next;
5027 ctxn = pmu->task_ctx_nr;
5028 if (ctxn < 0)
5029 goto next;
5030 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5031 if (ctx)
67516844 5032 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5033next:
5034 put_cpu_ptr(pmu->pmu_cpu_context);
5035 }
5036
5037 if (task_ctx) {
5038 preempt_disable();
67516844 5039 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5040 preempt_enable();
5041 }
5042 rcu_read_unlock();
5043}
5044
60313ebe 5045/*
9f498cc5
PZ
5046 * task tracking -- fork/exit
5047 *
13d7a241 5048 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5049 */
5050
9f498cc5 5051struct perf_task_event {
3a80b4a3 5052 struct task_struct *task;
cdd6c482 5053 struct perf_event_context *task_ctx;
60313ebe
PZ
5054
5055 struct {
5056 struct perf_event_header header;
5057
5058 u32 pid;
5059 u32 ppid;
9f498cc5
PZ
5060 u32 tid;
5061 u32 ptid;
393b2ad8 5062 u64 time;
cdd6c482 5063 } event_id;
60313ebe
PZ
5064};
5065
67516844
JO
5066static int perf_event_task_match(struct perf_event *event)
5067{
13d7a241
SE
5068 return event->attr.comm || event->attr.mmap ||
5069 event->attr.mmap2 || event->attr.mmap_data ||
5070 event->attr.task;
67516844
JO
5071}
5072
cdd6c482 5073static void perf_event_task_output(struct perf_event *event,
52d857a8 5074 void *data)
60313ebe 5075{
52d857a8 5076 struct perf_task_event *task_event = data;
60313ebe 5077 struct perf_output_handle handle;
c980d109 5078 struct perf_sample_data sample;
9f498cc5 5079 struct task_struct *task = task_event->task;
c980d109 5080 int ret, size = task_event->event_id.header.size;
8bb39f9a 5081
67516844
JO
5082 if (!perf_event_task_match(event))
5083 return;
5084
c980d109 5085 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5086
c980d109 5087 ret = perf_output_begin(&handle, event,
a7ac67ea 5088 task_event->event_id.header.size);
ef60777c 5089 if (ret)
c980d109 5090 goto out;
60313ebe 5091
cdd6c482
IM
5092 task_event->event_id.pid = perf_event_pid(event, task);
5093 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5094
cdd6c482
IM
5095 task_event->event_id.tid = perf_event_tid(event, task);
5096 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5097
cdd6c482 5098 perf_output_put(&handle, task_event->event_id);
393b2ad8 5099
c980d109
ACM
5100 perf_event__output_id_sample(event, &handle, &sample);
5101
60313ebe 5102 perf_output_end(&handle);
c980d109
ACM
5103out:
5104 task_event->event_id.header.size = size;
60313ebe
PZ
5105}
5106
cdd6c482
IM
5107static void perf_event_task(struct task_struct *task,
5108 struct perf_event_context *task_ctx,
3a80b4a3 5109 int new)
60313ebe 5110{
9f498cc5 5111 struct perf_task_event task_event;
60313ebe 5112
cdd6c482
IM
5113 if (!atomic_read(&nr_comm_events) &&
5114 !atomic_read(&nr_mmap_events) &&
5115 !atomic_read(&nr_task_events))
60313ebe
PZ
5116 return;
5117
9f498cc5 5118 task_event = (struct perf_task_event){
3a80b4a3
PZ
5119 .task = task,
5120 .task_ctx = task_ctx,
cdd6c482 5121 .event_id = {
60313ebe 5122 .header = {
cdd6c482 5123 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5124 .misc = 0,
cdd6c482 5125 .size = sizeof(task_event.event_id),
60313ebe 5126 },
573402db
PZ
5127 /* .pid */
5128 /* .ppid */
9f498cc5
PZ
5129 /* .tid */
5130 /* .ptid */
6f93d0a7 5131 .time = perf_clock(),
60313ebe
PZ
5132 },
5133 };
5134
67516844 5135 perf_event_aux(perf_event_task_output,
52d857a8
JO
5136 &task_event,
5137 task_ctx);
9f498cc5
PZ
5138}
5139
cdd6c482 5140void perf_event_fork(struct task_struct *task)
9f498cc5 5141{
cdd6c482 5142 perf_event_task(task, NULL, 1);
60313ebe
PZ
5143}
5144
8d1b2d93
PZ
5145/*
5146 * comm tracking
5147 */
5148
5149struct perf_comm_event {
22a4f650
IM
5150 struct task_struct *task;
5151 char *comm;
8d1b2d93
PZ
5152 int comm_size;
5153
5154 struct {
5155 struct perf_event_header header;
5156
5157 u32 pid;
5158 u32 tid;
cdd6c482 5159 } event_id;
8d1b2d93
PZ
5160};
5161
67516844
JO
5162static int perf_event_comm_match(struct perf_event *event)
5163{
5164 return event->attr.comm;
5165}
5166
cdd6c482 5167static void perf_event_comm_output(struct perf_event *event,
52d857a8 5168 void *data)
8d1b2d93 5169{
52d857a8 5170 struct perf_comm_event *comm_event = data;
8d1b2d93 5171 struct perf_output_handle handle;
c980d109 5172 struct perf_sample_data sample;
cdd6c482 5173 int size = comm_event->event_id.header.size;
c980d109
ACM
5174 int ret;
5175
67516844
JO
5176 if (!perf_event_comm_match(event))
5177 return;
5178
c980d109
ACM
5179 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5180 ret = perf_output_begin(&handle, event,
a7ac67ea 5181 comm_event->event_id.header.size);
8d1b2d93
PZ
5182
5183 if (ret)
c980d109 5184 goto out;
8d1b2d93 5185
cdd6c482
IM
5186 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5187 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5188
cdd6c482 5189 perf_output_put(&handle, comm_event->event_id);
76369139 5190 __output_copy(&handle, comm_event->comm,
8d1b2d93 5191 comm_event->comm_size);
c980d109
ACM
5192
5193 perf_event__output_id_sample(event, &handle, &sample);
5194
8d1b2d93 5195 perf_output_end(&handle);
c980d109
ACM
5196out:
5197 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5198}
5199
cdd6c482 5200static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5201{
413ee3b4 5202 char comm[TASK_COMM_LEN];
8d1b2d93 5203 unsigned int size;
8d1b2d93 5204
413ee3b4 5205 memset(comm, 0, sizeof(comm));
96b02d78 5206 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5207 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5208
5209 comm_event->comm = comm;
5210 comm_event->comm_size = size;
5211
cdd6c482 5212 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5213
67516844 5214 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5215 comm_event,
5216 NULL);
8d1b2d93
PZ
5217}
5218
82b89778 5219void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5220{
9ee318a7
PZ
5221 struct perf_comm_event comm_event;
5222
cdd6c482 5223 if (!atomic_read(&nr_comm_events))
9ee318a7 5224 return;
a63eaf34 5225
9ee318a7 5226 comm_event = (struct perf_comm_event){
8d1b2d93 5227 .task = task,
573402db
PZ
5228 /* .comm */
5229 /* .comm_size */
cdd6c482 5230 .event_id = {
573402db 5231 .header = {
cdd6c482 5232 .type = PERF_RECORD_COMM,
82b89778 5233 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5234 /* .size */
5235 },
5236 /* .pid */
5237 /* .tid */
8d1b2d93
PZ
5238 },
5239 };
5240
cdd6c482 5241 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5242}
5243
0a4a9391
PZ
5244/*
5245 * mmap tracking
5246 */
5247
5248struct perf_mmap_event {
089dd79d
PZ
5249 struct vm_area_struct *vma;
5250
5251 const char *file_name;
5252 int file_size;
13d7a241
SE
5253 int maj, min;
5254 u64 ino;
5255 u64 ino_generation;
f972eb63 5256 u32 prot, flags;
0a4a9391
PZ
5257
5258 struct {
5259 struct perf_event_header header;
5260
5261 u32 pid;
5262 u32 tid;
5263 u64 start;
5264 u64 len;
5265 u64 pgoff;
cdd6c482 5266 } event_id;
0a4a9391
PZ
5267};
5268
67516844
JO
5269static int perf_event_mmap_match(struct perf_event *event,
5270 void *data)
5271{
5272 struct perf_mmap_event *mmap_event = data;
5273 struct vm_area_struct *vma = mmap_event->vma;
5274 int executable = vma->vm_flags & VM_EXEC;
5275
5276 return (!executable && event->attr.mmap_data) ||
13d7a241 5277 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5278}
5279
cdd6c482 5280static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5281 void *data)
0a4a9391 5282{
52d857a8 5283 struct perf_mmap_event *mmap_event = data;
0a4a9391 5284 struct perf_output_handle handle;
c980d109 5285 struct perf_sample_data sample;
cdd6c482 5286 int size = mmap_event->event_id.header.size;
c980d109 5287 int ret;
0a4a9391 5288
67516844
JO
5289 if (!perf_event_mmap_match(event, data))
5290 return;
5291
13d7a241
SE
5292 if (event->attr.mmap2) {
5293 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5294 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5295 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5296 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5297 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5298 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5299 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5300 }
5301
c980d109
ACM
5302 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5303 ret = perf_output_begin(&handle, event,
a7ac67ea 5304 mmap_event->event_id.header.size);
0a4a9391 5305 if (ret)
c980d109 5306 goto out;
0a4a9391 5307
cdd6c482
IM
5308 mmap_event->event_id.pid = perf_event_pid(event, current);
5309 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5310
cdd6c482 5311 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5312
5313 if (event->attr.mmap2) {
5314 perf_output_put(&handle, mmap_event->maj);
5315 perf_output_put(&handle, mmap_event->min);
5316 perf_output_put(&handle, mmap_event->ino);
5317 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5318 perf_output_put(&handle, mmap_event->prot);
5319 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5320 }
5321
76369139 5322 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5323 mmap_event->file_size);
c980d109
ACM
5324
5325 perf_event__output_id_sample(event, &handle, &sample);
5326
78d613eb 5327 perf_output_end(&handle);
c980d109
ACM
5328out:
5329 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5330}
5331
cdd6c482 5332static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5333{
089dd79d
PZ
5334 struct vm_area_struct *vma = mmap_event->vma;
5335 struct file *file = vma->vm_file;
13d7a241
SE
5336 int maj = 0, min = 0;
5337 u64 ino = 0, gen = 0;
f972eb63 5338 u32 prot = 0, flags = 0;
0a4a9391
PZ
5339 unsigned int size;
5340 char tmp[16];
5341 char *buf = NULL;
2c42cfbf 5342 char *name;
413ee3b4 5343
0a4a9391 5344 if (file) {
13d7a241
SE
5345 struct inode *inode;
5346 dev_t dev;
3ea2f2b9 5347
2c42cfbf 5348 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5349 if (!buf) {
c7e548b4
ON
5350 name = "//enomem";
5351 goto cpy_name;
0a4a9391 5352 }
413ee3b4 5353 /*
3ea2f2b9 5354 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5355 * need to add enough zero bytes after the string to handle
5356 * the 64bit alignment we do later.
5357 */
3ea2f2b9 5358 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5359 if (IS_ERR(name)) {
c7e548b4
ON
5360 name = "//toolong";
5361 goto cpy_name;
0a4a9391 5362 }
13d7a241
SE
5363 inode = file_inode(vma->vm_file);
5364 dev = inode->i_sb->s_dev;
5365 ino = inode->i_ino;
5366 gen = inode->i_generation;
5367 maj = MAJOR(dev);
5368 min = MINOR(dev);
f972eb63
PZ
5369
5370 if (vma->vm_flags & VM_READ)
5371 prot |= PROT_READ;
5372 if (vma->vm_flags & VM_WRITE)
5373 prot |= PROT_WRITE;
5374 if (vma->vm_flags & VM_EXEC)
5375 prot |= PROT_EXEC;
5376
5377 if (vma->vm_flags & VM_MAYSHARE)
5378 flags = MAP_SHARED;
5379 else
5380 flags = MAP_PRIVATE;
5381
5382 if (vma->vm_flags & VM_DENYWRITE)
5383 flags |= MAP_DENYWRITE;
5384 if (vma->vm_flags & VM_MAYEXEC)
5385 flags |= MAP_EXECUTABLE;
5386 if (vma->vm_flags & VM_LOCKED)
5387 flags |= MAP_LOCKED;
5388 if (vma->vm_flags & VM_HUGETLB)
5389 flags |= MAP_HUGETLB;
5390
c7e548b4 5391 goto got_name;
0a4a9391 5392 } else {
fbe26abe
JO
5393 if (vma->vm_ops && vma->vm_ops->name) {
5394 name = (char *) vma->vm_ops->name(vma);
5395 if (name)
5396 goto cpy_name;
5397 }
5398
2c42cfbf 5399 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5400 if (name)
5401 goto cpy_name;
089dd79d 5402
32c5fb7e 5403 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5404 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5405 name = "[heap]";
5406 goto cpy_name;
32c5fb7e
ON
5407 }
5408 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5409 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5410 name = "[stack]";
5411 goto cpy_name;
089dd79d
PZ
5412 }
5413
c7e548b4
ON
5414 name = "//anon";
5415 goto cpy_name;
0a4a9391
PZ
5416 }
5417
c7e548b4
ON
5418cpy_name:
5419 strlcpy(tmp, name, sizeof(tmp));
5420 name = tmp;
0a4a9391 5421got_name:
2c42cfbf
PZ
5422 /*
5423 * Since our buffer works in 8 byte units we need to align our string
5424 * size to a multiple of 8. However, we must guarantee the tail end is
5425 * zero'd out to avoid leaking random bits to userspace.
5426 */
5427 size = strlen(name)+1;
5428 while (!IS_ALIGNED(size, sizeof(u64)))
5429 name[size++] = '\0';
0a4a9391
PZ
5430
5431 mmap_event->file_name = name;
5432 mmap_event->file_size = size;
13d7a241
SE
5433 mmap_event->maj = maj;
5434 mmap_event->min = min;
5435 mmap_event->ino = ino;
5436 mmap_event->ino_generation = gen;
f972eb63
PZ
5437 mmap_event->prot = prot;
5438 mmap_event->flags = flags;
0a4a9391 5439
2fe85427
SE
5440 if (!(vma->vm_flags & VM_EXEC))
5441 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5442
cdd6c482 5443 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5444
67516844 5445 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5446 mmap_event,
5447 NULL);
665c2142 5448
0a4a9391
PZ
5449 kfree(buf);
5450}
5451
3af9e859 5452void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5453{
9ee318a7
PZ
5454 struct perf_mmap_event mmap_event;
5455
cdd6c482 5456 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5457 return;
5458
5459 mmap_event = (struct perf_mmap_event){
089dd79d 5460 .vma = vma,
573402db
PZ
5461 /* .file_name */
5462 /* .file_size */
cdd6c482 5463 .event_id = {
573402db 5464 .header = {
cdd6c482 5465 .type = PERF_RECORD_MMAP,
39447b38 5466 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5467 /* .size */
5468 },
5469 /* .pid */
5470 /* .tid */
089dd79d
PZ
5471 .start = vma->vm_start,
5472 .len = vma->vm_end - vma->vm_start,
3a0304e9 5473 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5474 },
13d7a241
SE
5475 /* .maj (attr_mmap2 only) */
5476 /* .min (attr_mmap2 only) */
5477 /* .ino (attr_mmap2 only) */
5478 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
5479 /* .prot (attr_mmap2 only) */
5480 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
5481 };
5482
cdd6c482 5483 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5484}
5485
a78ac325
PZ
5486/*
5487 * IRQ throttle logging
5488 */
5489
cdd6c482 5490static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5491{
5492 struct perf_output_handle handle;
c980d109 5493 struct perf_sample_data sample;
a78ac325
PZ
5494 int ret;
5495
5496 struct {
5497 struct perf_event_header header;
5498 u64 time;
cca3f454 5499 u64 id;
7f453c24 5500 u64 stream_id;
a78ac325
PZ
5501 } throttle_event = {
5502 .header = {
cdd6c482 5503 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5504 .misc = 0,
5505 .size = sizeof(throttle_event),
5506 },
def0a9b2 5507 .time = perf_clock(),
cdd6c482
IM
5508 .id = primary_event_id(event),
5509 .stream_id = event->id,
a78ac325
PZ
5510 };
5511
966ee4d6 5512 if (enable)
cdd6c482 5513 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5514
c980d109
ACM
5515 perf_event_header__init_id(&throttle_event.header, &sample, event);
5516
5517 ret = perf_output_begin(&handle, event,
a7ac67ea 5518 throttle_event.header.size);
a78ac325
PZ
5519 if (ret)
5520 return;
5521
5522 perf_output_put(&handle, throttle_event);
c980d109 5523 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5524 perf_output_end(&handle);
5525}
5526
f6c7d5fe 5527/*
cdd6c482 5528 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5529 */
5530
a8b0ca17 5531static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5532 int throttle, struct perf_sample_data *data,
5533 struct pt_regs *regs)
f6c7d5fe 5534{
cdd6c482
IM
5535 int events = atomic_read(&event->event_limit);
5536 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5537 u64 seq;
79f14641
PZ
5538 int ret = 0;
5539
96398826
PZ
5540 /*
5541 * Non-sampling counters might still use the PMI to fold short
5542 * hardware counters, ignore those.
5543 */
5544 if (unlikely(!is_sampling_event(event)))
5545 return 0;
5546
e050e3f0
SE
5547 seq = __this_cpu_read(perf_throttled_seq);
5548 if (seq != hwc->interrupts_seq) {
5549 hwc->interrupts_seq = seq;
5550 hwc->interrupts = 1;
5551 } else {
5552 hwc->interrupts++;
5553 if (unlikely(throttle
5554 && hwc->interrupts >= max_samples_per_tick)) {
5555 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5556 hwc->interrupts = MAX_INTERRUPTS;
5557 perf_log_throttle(event, 0);
d84153d6 5558 tick_nohz_full_kick();
a78ac325
PZ
5559 ret = 1;
5560 }
e050e3f0 5561 }
60db5e09 5562
cdd6c482 5563 if (event->attr.freq) {
def0a9b2 5564 u64 now = perf_clock();
abd50713 5565 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5566
abd50713 5567 hwc->freq_time_stamp = now;
bd2b5b12 5568
abd50713 5569 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5570 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5571 }
5572
2023b359
PZ
5573 /*
5574 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5575 * events
2023b359
PZ
5576 */
5577
cdd6c482
IM
5578 event->pending_kill = POLL_IN;
5579 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5580 ret = 1;
cdd6c482 5581 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5582 event->pending_disable = 1;
5583 irq_work_queue(&event->pending);
79f14641
PZ
5584 }
5585
453f19ee 5586 if (event->overflow_handler)
a8b0ca17 5587 event->overflow_handler(event, data, regs);
453f19ee 5588 else
a8b0ca17 5589 perf_event_output(event, data, regs);
453f19ee 5590
f506b3dc 5591 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5592 event->pending_wakeup = 1;
5593 irq_work_queue(&event->pending);
f506b3dc
PZ
5594 }
5595
79f14641 5596 return ret;
f6c7d5fe
PZ
5597}
5598
a8b0ca17 5599int perf_event_overflow(struct perf_event *event,
5622f295
MM
5600 struct perf_sample_data *data,
5601 struct pt_regs *regs)
850bc73f 5602{
a8b0ca17 5603 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5604}
5605
15dbf27c 5606/*
cdd6c482 5607 * Generic software event infrastructure
15dbf27c
PZ
5608 */
5609
b28ab83c
PZ
5610struct swevent_htable {
5611 struct swevent_hlist *swevent_hlist;
5612 struct mutex hlist_mutex;
5613 int hlist_refcount;
5614
5615 /* Recursion avoidance in each contexts */
5616 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
5617
5618 /* Keeps track of cpu being initialized/exited */
5619 bool online;
b28ab83c
PZ
5620};
5621
5622static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5623
7b4b6658 5624/*
cdd6c482
IM
5625 * We directly increment event->count and keep a second value in
5626 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5627 * is kept in the range [-sample_period, 0] so that we can use the
5628 * sign as trigger.
5629 */
5630
ab573844 5631u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5632{
cdd6c482 5633 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5634 u64 period = hwc->last_period;
5635 u64 nr, offset;
5636 s64 old, val;
5637
5638 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5639
5640again:
e7850595 5641 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5642 if (val < 0)
5643 return 0;
15dbf27c 5644
7b4b6658
PZ
5645 nr = div64_u64(period + val, period);
5646 offset = nr * period;
5647 val -= offset;
e7850595 5648 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5649 goto again;
15dbf27c 5650
7b4b6658 5651 return nr;
15dbf27c
PZ
5652}
5653
0cff784a 5654static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5655 struct perf_sample_data *data,
5622f295 5656 struct pt_regs *regs)
15dbf27c 5657{
cdd6c482 5658 struct hw_perf_event *hwc = &event->hw;
850bc73f 5659 int throttle = 0;
15dbf27c 5660
0cff784a
PZ
5661 if (!overflow)
5662 overflow = perf_swevent_set_period(event);
15dbf27c 5663
7b4b6658
PZ
5664 if (hwc->interrupts == MAX_INTERRUPTS)
5665 return;
15dbf27c 5666
7b4b6658 5667 for (; overflow; overflow--) {
a8b0ca17 5668 if (__perf_event_overflow(event, throttle,
5622f295 5669 data, regs)) {
7b4b6658
PZ
5670 /*
5671 * We inhibit the overflow from happening when
5672 * hwc->interrupts == MAX_INTERRUPTS.
5673 */
5674 break;
5675 }
cf450a73 5676 throttle = 1;
7b4b6658 5677 }
15dbf27c
PZ
5678}
5679
a4eaf7f1 5680static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5681 struct perf_sample_data *data,
5622f295 5682 struct pt_regs *regs)
7b4b6658 5683{
cdd6c482 5684 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5685
e7850595 5686 local64_add(nr, &event->count);
d6d020e9 5687
0cff784a
PZ
5688 if (!regs)
5689 return;
5690
6c7e550f 5691 if (!is_sampling_event(event))
7b4b6658 5692 return;
d6d020e9 5693
5d81e5cf
AV
5694 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5695 data->period = nr;
5696 return perf_swevent_overflow(event, 1, data, regs);
5697 } else
5698 data->period = event->hw.last_period;
5699
0cff784a 5700 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5701 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5702
e7850595 5703 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5704 return;
df1a132b 5705
a8b0ca17 5706 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5707}
5708
f5ffe02e
FW
5709static int perf_exclude_event(struct perf_event *event,
5710 struct pt_regs *regs)
5711{
a4eaf7f1 5712 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5713 return 1;
a4eaf7f1 5714
f5ffe02e
FW
5715 if (regs) {
5716 if (event->attr.exclude_user && user_mode(regs))
5717 return 1;
5718
5719 if (event->attr.exclude_kernel && !user_mode(regs))
5720 return 1;
5721 }
5722
5723 return 0;
5724}
5725
cdd6c482 5726static int perf_swevent_match(struct perf_event *event,
1c432d89 5727 enum perf_type_id type,
6fb2915d
LZ
5728 u32 event_id,
5729 struct perf_sample_data *data,
5730 struct pt_regs *regs)
15dbf27c 5731{
cdd6c482 5732 if (event->attr.type != type)
a21ca2ca 5733 return 0;
f5ffe02e 5734
cdd6c482 5735 if (event->attr.config != event_id)
15dbf27c
PZ
5736 return 0;
5737
f5ffe02e
FW
5738 if (perf_exclude_event(event, regs))
5739 return 0;
15dbf27c
PZ
5740
5741 return 1;
5742}
5743
76e1d904
FW
5744static inline u64 swevent_hash(u64 type, u32 event_id)
5745{
5746 u64 val = event_id | (type << 32);
5747
5748 return hash_64(val, SWEVENT_HLIST_BITS);
5749}
5750
49f135ed
FW
5751static inline struct hlist_head *
5752__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5753{
49f135ed
FW
5754 u64 hash = swevent_hash(type, event_id);
5755
5756 return &hlist->heads[hash];
5757}
76e1d904 5758
49f135ed
FW
5759/* For the read side: events when they trigger */
5760static inline struct hlist_head *
b28ab83c 5761find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5762{
5763 struct swevent_hlist *hlist;
76e1d904 5764
b28ab83c 5765 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5766 if (!hlist)
5767 return NULL;
5768
49f135ed
FW
5769 return __find_swevent_head(hlist, type, event_id);
5770}
5771
5772/* For the event head insertion and removal in the hlist */
5773static inline struct hlist_head *
b28ab83c 5774find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5775{
5776 struct swevent_hlist *hlist;
5777 u32 event_id = event->attr.config;
5778 u64 type = event->attr.type;
5779
5780 /*
5781 * Event scheduling is always serialized against hlist allocation
5782 * and release. Which makes the protected version suitable here.
5783 * The context lock guarantees that.
5784 */
b28ab83c 5785 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5786 lockdep_is_held(&event->ctx->lock));
5787 if (!hlist)
5788 return NULL;
5789
5790 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5791}
5792
5793static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5794 u64 nr,
76e1d904
FW
5795 struct perf_sample_data *data,
5796 struct pt_regs *regs)
15dbf27c 5797{
b28ab83c 5798 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5799 struct perf_event *event;
76e1d904 5800 struct hlist_head *head;
15dbf27c 5801
76e1d904 5802 rcu_read_lock();
b28ab83c 5803 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5804 if (!head)
5805 goto end;
5806
b67bfe0d 5807 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5808 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5809 perf_swevent_event(event, nr, data, regs);
15dbf27c 5810 }
76e1d904
FW
5811end:
5812 rcu_read_unlock();
15dbf27c
PZ
5813}
5814
4ed7c92d 5815int perf_swevent_get_recursion_context(void)
96f6d444 5816{
b28ab83c 5817 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5818
b28ab83c 5819 return get_recursion_context(swhash->recursion);
96f6d444 5820}
645e8cc0 5821EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5822
fa9f90be 5823inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5824{
b28ab83c 5825 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5826
b28ab83c 5827 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5828}
15dbf27c 5829
a8b0ca17 5830void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5831{
a4234bfc 5832 struct perf_sample_data data;
4ed7c92d
PZ
5833 int rctx;
5834
1c024eca 5835 preempt_disable_notrace();
4ed7c92d
PZ
5836 rctx = perf_swevent_get_recursion_context();
5837 if (rctx < 0)
5838 return;
a4234bfc 5839
fd0d000b 5840 perf_sample_data_init(&data, addr, 0);
92bf309a 5841
a8b0ca17 5842 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5843
5844 perf_swevent_put_recursion_context(rctx);
1c024eca 5845 preempt_enable_notrace();
b8e83514
PZ
5846}
5847
cdd6c482 5848static void perf_swevent_read(struct perf_event *event)
15dbf27c 5849{
15dbf27c
PZ
5850}
5851
a4eaf7f1 5852static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5853{
b28ab83c 5854 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5855 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5856 struct hlist_head *head;
5857
6c7e550f 5858 if (is_sampling_event(event)) {
7b4b6658 5859 hwc->last_period = hwc->sample_period;
cdd6c482 5860 perf_swevent_set_period(event);
7b4b6658 5861 }
76e1d904 5862
a4eaf7f1
PZ
5863 hwc->state = !(flags & PERF_EF_START);
5864
b28ab83c 5865 head = find_swevent_head(swhash, event);
39af6b16
JO
5866 if (!head) {
5867 /*
5868 * We can race with cpu hotplug code. Do not
5869 * WARN if the cpu just got unplugged.
5870 */
5871 WARN_ON_ONCE(swhash->online);
76e1d904 5872 return -EINVAL;
39af6b16 5873 }
76e1d904
FW
5874
5875 hlist_add_head_rcu(&event->hlist_entry, head);
5876
15dbf27c
PZ
5877 return 0;
5878}
5879
a4eaf7f1 5880static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5881{
76e1d904 5882 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5883}
5884
a4eaf7f1 5885static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5886{
a4eaf7f1 5887 event->hw.state = 0;
d6d020e9 5888}
aa9c4c0f 5889
a4eaf7f1 5890static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5891{
a4eaf7f1 5892 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5893}
5894
49f135ed
FW
5895/* Deref the hlist from the update side */
5896static inline struct swevent_hlist *
b28ab83c 5897swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5898{
b28ab83c
PZ
5899 return rcu_dereference_protected(swhash->swevent_hlist,
5900 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5901}
5902
b28ab83c 5903static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5904{
b28ab83c 5905 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5906
49f135ed 5907 if (!hlist)
76e1d904
FW
5908 return;
5909
70691d4a 5910 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 5911 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5912}
5913
5914static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5915{
b28ab83c 5916 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5917
b28ab83c 5918 mutex_lock(&swhash->hlist_mutex);
76e1d904 5919
b28ab83c
PZ
5920 if (!--swhash->hlist_refcount)
5921 swevent_hlist_release(swhash);
76e1d904 5922
b28ab83c 5923 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5924}
5925
5926static void swevent_hlist_put(struct perf_event *event)
5927{
5928 int cpu;
5929
76e1d904
FW
5930 for_each_possible_cpu(cpu)
5931 swevent_hlist_put_cpu(event, cpu);
5932}
5933
5934static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5935{
b28ab83c 5936 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5937 int err = 0;
5938
b28ab83c 5939 mutex_lock(&swhash->hlist_mutex);
76e1d904 5940
b28ab83c 5941 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5942 struct swevent_hlist *hlist;
5943
5944 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5945 if (!hlist) {
5946 err = -ENOMEM;
5947 goto exit;
5948 }
b28ab83c 5949 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5950 }
b28ab83c 5951 swhash->hlist_refcount++;
9ed6060d 5952exit:
b28ab83c 5953 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5954
5955 return err;
5956}
5957
5958static int swevent_hlist_get(struct perf_event *event)
5959{
5960 int err;
5961 int cpu, failed_cpu;
5962
76e1d904
FW
5963 get_online_cpus();
5964 for_each_possible_cpu(cpu) {
5965 err = swevent_hlist_get_cpu(event, cpu);
5966 if (err) {
5967 failed_cpu = cpu;
5968 goto fail;
5969 }
5970 }
5971 put_online_cpus();
5972
5973 return 0;
9ed6060d 5974fail:
76e1d904
FW
5975 for_each_possible_cpu(cpu) {
5976 if (cpu == failed_cpu)
5977 break;
5978 swevent_hlist_put_cpu(event, cpu);
5979 }
5980
5981 put_online_cpus();
5982 return err;
5983}
5984
c5905afb 5985struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5986
b0a873eb
PZ
5987static void sw_perf_event_destroy(struct perf_event *event)
5988{
5989 u64 event_id = event->attr.config;
95476b64 5990
b0a873eb
PZ
5991 WARN_ON(event->parent);
5992
c5905afb 5993 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5994 swevent_hlist_put(event);
5995}
5996
5997static int perf_swevent_init(struct perf_event *event)
5998{
8176cced 5999 u64 event_id = event->attr.config;
b0a873eb
PZ
6000
6001 if (event->attr.type != PERF_TYPE_SOFTWARE)
6002 return -ENOENT;
6003
2481c5fa
SE
6004 /*
6005 * no branch sampling for software events
6006 */
6007 if (has_branch_stack(event))
6008 return -EOPNOTSUPP;
6009
b0a873eb
PZ
6010 switch (event_id) {
6011 case PERF_COUNT_SW_CPU_CLOCK:
6012 case PERF_COUNT_SW_TASK_CLOCK:
6013 return -ENOENT;
6014
6015 default:
6016 break;
6017 }
6018
ce677831 6019 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6020 return -ENOENT;
6021
6022 if (!event->parent) {
6023 int err;
6024
6025 err = swevent_hlist_get(event);
6026 if (err)
6027 return err;
6028
c5905afb 6029 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6030 event->destroy = sw_perf_event_destroy;
6031 }
6032
6033 return 0;
6034}
6035
35edc2a5
PZ
6036static int perf_swevent_event_idx(struct perf_event *event)
6037{
6038 return 0;
6039}
6040
b0a873eb 6041static struct pmu perf_swevent = {
89a1e187 6042 .task_ctx_nr = perf_sw_context,
95476b64 6043
b0a873eb 6044 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6045 .add = perf_swevent_add,
6046 .del = perf_swevent_del,
6047 .start = perf_swevent_start,
6048 .stop = perf_swevent_stop,
1c024eca 6049 .read = perf_swevent_read,
35edc2a5
PZ
6050
6051 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
6052};
6053
b0a873eb
PZ
6054#ifdef CONFIG_EVENT_TRACING
6055
1c024eca
PZ
6056static int perf_tp_filter_match(struct perf_event *event,
6057 struct perf_sample_data *data)
6058{
6059 void *record = data->raw->data;
6060
6061 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6062 return 1;
6063 return 0;
6064}
6065
6066static int perf_tp_event_match(struct perf_event *event,
6067 struct perf_sample_data *data,
6068 struct pt_regs *regs)
6069{
a0f7d0f7
FW
6070 if (event->hw.state & PERF_HES_STOPPED)
6071 return 0;
580d607c
PZ
6072 /*
6073 * All tracepoints are from kernel-space.
6074 */
6075 if (event->attr.exclude_kernel)
1c024eca
PZ
6076 return 0;
6077
6078 if (!perf_tp_filter_match(event, data))
6079 return 0;
6080
6081 return 1;
6082}
6083
6084void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6085 struct pt_regs *regs, struct hlist_head *head, int rctx,
6086 struct task_struct *task)
95476b64
FW
6087{
6088 struct perf_sample_data data;
1c024eca 6089 struct perf_event *event;
1c024eca 6090
95476b64
FW
6091 struct perf_raw_record raw = {
6092 .size = entry_size,
6093 .data = record,
6094 };
6095
fd0d000b 6096 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6097 data.raw = &raw;
6098
b67bfe0d 6099 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6100 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6101 perf_swevent_event(event, count, &data, regs);
4f41c013 6102 }
ecc55f84 6103
e6dab5ff
AV
6104 /*
6105 * If we got specified a target task, also iterate its context and
6106 * deliver this event there too.
6107 */
6108 if (task && task != current) {
6109 struct perf_event_context *ctx;
6110 struct trace_entry *entry = record;
6111
6112 rcu_read_lock();
6113 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6114 if (!ctx)
6115 goto unlock;
6116
6117 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6118 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6119 continue;
6120 if (event->attr.config != entry->type)
6121 continue;
6122 if (perf_tp_event_match(event, &data, regs))
6123 perf_swevent_event(event, count, &data, regs);
6124 }
6125unlock:
6126 rcu_read_unlock();
6127 }
6128
ecc55f84 6129 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6130}
6131EXPORT_SYMBOL_GPL(perf_tp_event);
6132
cdd6c482 6133static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6134{
1c024eca 6135 perf_trace_destroy(event);
e077df4f
PZ
6136}
6137
b0a873eb 6138static int perf_tp_event_init(struct perf_event *event)
e077df4f 6139{
76e1d904
FW
6140 int err;
6141
b0a873eb
PZ
6142 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6143 return -ENOENT;
6144
2481c5fa
SE
6145 /*
6146 * no branch sampling for tracepoint events
6147 */
6148 if (has_branch_stack(event))
6149 return -EOPNOTSUPP;
6150
1c024eca
PZ
6151 err = perf_trace_init(event);
6152 if (err)
b0a873eb 6153 return err;
e077df4f 6154
cdd6c482 6155 event->destroy = tp_perf_event_destroy;
e077df4f 6156
b0a873eb
PZ
6157 return 0;
6158}
6159
6160static struct pmu perf_tracepoint = {
89a1e187
PZ
6161 .task_ctx_nr = perf_sw_context,
6162
b0a873eb 6163 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6164 .add = perf_trace_add,
6165 .del = perf_trace_del,
6166 .start = perf_swevent_start,
6167 .stop = perf_swevent_stop,
b0a873eb 6168 .read = perf_swevent_read,
35edc2a5
PZ
6169
6170 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6171};
6172
6173static inline void perf_tp_register(void)
6174{
2e80a82a 6175 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6176}
6fb2915d
LZ
6177
6178static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6179{
6180 char *filter_str;
6181 int ret;
6182
6183 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6184 return -EINVAL;
6185
6186 filter_str = strndup_user(arg, PAGE_SIZE);
6187 if (IS_ERR(filter_str))
6188 return PTR_ERR(filter_str);
6189
6190 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6191
6192 kfree(filter_str);
6193 return ret;
6194}
6195
6196static void perf_event_free_filter(struct perf_event *event)
6197{
6198 ftrace_profile_free_filter(event);
6199}
6200
e077df4f 6201#else
6fb2915d 6202
b0a873eb 6203static inline void perf_tp_register(void)
e077df4f 6204{
e077df4f 6205}
6fb2915d
LZ
6206
6207static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6208{
6209 return -ENOENT;
6210}
6211
6212static void perf_event_free_filter(struct perf_event *event)
6213{
6214}
6215
07b139c8 6216#endif /* CONFIG_EVENT_TRACING */
e077df4f 6217
24f1e32c 6218#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6219void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6220{
f5ffe02e
FW
6221 struct perf_sample_data sample;
6222 struct pt_regs *regs = data;
6223
fd0d000b 6224 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6225
a4eaf7f1 6226 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6227 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6228}
6229#endif
6230
b0a873eb
PZ
6231/*
6232 * hrtimer based swevent callback
6233 */
f29ac756 6234
b0a873eb 6235static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6236{
b0a873eb
PZ
6237 enum hrtimer_restart ret = HRTIMER_RESTART;
6238 struct perf_sample_data data;
6239 struct pt_regs *regs;
6240 struct perf_event *event;
6241 u64 period;
f29ac756 6242
b0a873eb 6243 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6244
6245 if (event->state != PERF_EVENT_STATE_ACTIVE)
6246 return HRTIMER_NORESTART;
6247
b0a873eb 6248 event->pmu->read(event);
f344011c 6249
fd0d000b 6250 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6251 regs = get_irq_regs();
6252
6253 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6254 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6255 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6256 ret = HRTIMER_NORESTART;
6257 }
24f1e32c 6258
b0a873eb
PZ
6259 period = max_t(u64, 10000, event->hw.sample_period);
6260 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6261
b0a873eb 6262 return ret;
f29ac756
PZ
6263}
6264
b0a873eb 6265static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6266{
b0a873eb 6267 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6268 s64 period;
6269
6270 if (!is_sampling_event(event))
6271 return;
f5ffe02e 6272
5d508e82
FBH
6273 period = local64_read(&hwc->period_left);
6274 if (period) {
6275 if (period < 0)
6276 period = 10000;
fa407f35 6277
5d508e82
FBH
6278 local64_set(&hwc->period_left, 0);
6279 } else {
6280 period = max_t(u64, 10000, hwc->sample_period);
6281 }
6282 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6283 ns_to_ktime(period), 0,
b5ab4cd5 6284 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6285}
b0a873eb
PZ
6286
6287static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6288{
b0a873eb
PZ
6289 struct hw_perf_event *hwc = &event->hw;
6290
6c7e550f 6291 if (is_sampling_event(event)) {
b0a873eb 6292 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6293 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6294
6295 hrtimer_cancel(&hwc->hrtimer);
6296 }
24f1e32c
FW
6297}
6298
ba3dd36c
PZ
6299static void perf_swevent_init_hrtimer(struct perf_event *event)
6300{
6301 struct hw_perf_event *hwc = &event->hw;
6302
6303 if (!is_sampling_event(event))
6304 return;
6305
6306 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6307 hwc->hrtimer.function = perf_swevent_hrtimer;
6308
6309 /*
6310 * Since hrtimers have a fixed rate, we can do a static freq->period
6311 * mapping and avoid the whole period adjust feedback stuff.
6312 */
6313 if (event->attr.freq) {
6314 long freq = event->attr.sample_freq;
6315
6316 event->attr.sample_period = NSEC_PER_SEC / freq;
6317 hwc->sample_period = event->attr.sample_period;
6318 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6319 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6320 event->attr.freq = 0;
6321 }
6322}
6323
b0a873eb
PZ
6324/*
6325 * Software event: cpu wall time clock
6326 */
6327
6328static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6329{
b0a873eb
PZ
6330 s64 prev;
6331 u64 now;
6332
a4eaf7f1 6333 now = local_clock();
b0a873eb
PZ
6334 prev = local64_xchg(&event->hw.prev_count, now);
6335 local64_add(now - prev, &event->count);
24f1e32c 6336}
24f1e32c 6337
a4eaf7f1 6338static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6339{
a4eaf7f1 6340 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6341 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6342}
6343
a4eaf7f1 6344static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6345{
b0a873eb
PZ
6346 perf_swevent_cancel_hrtimer(event);
6347 cpu_clock_event_update(event);
6348}
f29ac756 6349
a4eaf7f1
PZ
6350static int cpu_clock_event_add(struct perf_event *event, int flags)
6351{
6352 if (flags & PERF_EF_START)
6353 cpu_clock_event_start(event, flags);
6354
6355 return 0;
6356}
6357
6358static void cpu_clock_event_del(struct perf_event *event, int flags)
6359{
6360 cpu_clock_event_stop(event, flags);
6361}
6362
b0a873eb
PZ
6363static void cpu_clock_event_read(struct perf_event *event)
6364{
6365 cpu_clock_event_update(event);
6366}
f344011c 6367
b0a873eb
PZ
6368static int cpu_clock_event_init(struct perf_event *event)
6369{
6370 if (event->attr.type != PERF_TYPE_SOFTWARE)
6371 return -ENOENT;
6372
6373 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6374 return -ENOENT;
6375
2481c5fa
SE
6376 /*
6377 * no branch sampling for software events
6378 */
6379 if (has_branch_stack(event))
6380 return -EOPNOTSUPP;
6381
ba3dd36c
PZ
6382 perf_swevent_init_hrtimer(event);
6383
b0a873eb 6384 return 0;
f29ac756
PZ
6385}
6386
b0a873eb 6387static struct pmu perf_cpu_clock = {
89a1e187
PZ
6388 .task_ctx_nr = perf_sw_context,
6389
b0a873eb 6390 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6391 .add = cpu_clock_event_add,
6392 .del = cpu_clock_event_del,
6393 .start = cpu_clock_event_start,
6394 .stop = cpu_clock_event_stop,
b0a873eb 6395 .read = cpu_clock_event_read,
35edc2a5
PZ
6396
6397 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6398};
6399
6400/*
6401 * Software event: task time clock
6402 */
6403
6404static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6405{
b0a873eb
PZ
6406 u64 prev;
6407 s64 delta;
5c92d124 6408
b0a873eb
PZ
6409 prev = local64_xchg(&event->hw.prev_count, now);
6410 delta = now - prev;
6411 local64_add(delta, &event->count);
6412}
5c92d124 6413
a4eaf7f1 6414static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6415{
a4eaf7f1 6416 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6417 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6418}
6419
a4eaf7f1 6420static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6421{
6422 perf_swevent_cancel_hrtimer(event);
6423 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6424}
6425
6426static int task_clock_event_add(struct perf_event *event, int flags)
6427{
6428 if (flags & PERF_EF_START)
6429 task_clock_event_start(event, flags);
b0a873eb 6430
a4eaf7f1
PZ
6431 return 0;
6432}
6433
6434static void task_clock_event_del(struct perf_event *event, int flags)
6435{
6436 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6437}
6438
6439static void task_clock_event_read(struct perf_event *event)
6440{
768a06e2
PZ
6441 u64 now = perf_clock();
6442 u64 delta = now - event->ctx->timestamp;
6443 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6444
6445 task_clock_event_update(event, time);
6446}
6447
6448static int task_clock_event_init(struct perf_event *event)
6fb2915d 6449{
b0a873eb
PZ
6450 if (event->attr.type != PERF_TYPE_SOFTWARE)
6451 return -ENOENT;
6452
6453 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6454 return -ENOENT;
6455
2481c5fa
SE
6456 /*
6457 * no branch sampling for software events
6458 */
6459 if (has_branch_stack(event))
6460 return -EOPNOTSUPP;
6461
ba3dd36c
PZ
6462 perf_swevent_init_hrtimer(event);
6463
b0a873eb 6464 return 0;
6fb2915d
LZ
6465}
6466
b0a873eb 6467static struct pmu perf_task_clock = {
89a1e187
PZ
6468 .task_ctx_nr = perf_sw_context,
6469
b0a873eb 6470 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6471 .add = task_clock_event_add,
6472 .del = task_clock_event_del,
6473 .start = task_clock_event_start,
6474 .stop = task_clock_event_stop,
b0a873eb 6475 .read = task_clock_event_read,
35edc2a5
PZ
6476
6477 .event_idx = perf_swevent_event_idx,
b0a873eb 6478};
6fb2915d 6479
ad5133b7 6480static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6481{
e077df4f 6482}
6fb2915d 6483
ad5133b7 6484static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6485{
ad5133b7 6486 return 0;
6fb2915d
LZ
6487}
6488
ad5133b7 6489static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6490{
ad5133b7 6491 perf_pmu_disable(pmu);
6fb2915d
LZ
6492}
6493
ad5133b7
PZ
6494static int perf_pmu_commit_txn(struct pmu *pmu)
6495{
6496 perf_pmu_enable(pmu);
6497 return 0;
6498}
e077df4f 6499
ad5133b7 6500static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6501{
ad5133b7 6502 perf_pmu_enable(pmu);
24f1e32c
FW
6503}
6504
35edc2a5
PZ
6505static int perf_event_idx_default(struct perf_event *event)
6506{
6507 return event->hw.idx + 1;
6508}
6509
8dc85d54
PZ
6510/*
6511 * Ensures all contexts with the same task_ctx_nr have the same
6512 * pmu_cpu_context too.
6513 */
9e317041 6514static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 6515{
8dc85d54 6516 struct pmu *pmu;
b326e956 6517
8dc85d54
PZ
6518 if (ctxn < 0)
6519 return NULL;
24f1e32c 6520
8dc85d54
PZ
6521 list_for_each_entry(pmu, &pmus, entry) {
6522 if (pmu->task_ctx_nr == ctxn)
6523 return pmu->pmu_cpu_context;
6524 }
24f1e32c 6525
8dc85d54 6526 return NULL;
24f1e32c
FW
6527}
6528
51676957 6529static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6530{
51676957
PZ
6531 int cpu;
6532
6533 for_each_possible_cpu(cpu) {
6534 struct perf_cpu_context *cpuctx;
6535
6536 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6537
3f1f3320
PZ
6538 if (cpuctx->unique_pmu == old_pmu)
6539 cpuctx->unique_pmu = pmu;
51676957
PZ
6540 }
6541}
6542
6543static void free_pmu_context(struct pmu *pmu)
6544{
6545 struct pmu *i;
f5ffe02e 6546
8dc85d54 6547 mutex_lock(&pmus_lock);
0475f9ea 6548 /*
8dc85d54 6549 * Like a real lame refcount.
0475f9ea 6550 */
51676957
PZ
6551 list_for_each_entry(i, &pmus, entry) {
6552 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6553 update_pmu_context(i, pmu);
8dc85d54 6554 goto out;
51676957 6555 }
8dc85d54 6556 }
d6d020e9 6557
51676957 6558 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6559out:
6560 mutex_unlock(&pmus_lock);
24f1e32c 6561}
2e80a82a 6562static struct idr pmu_idr;
d6d020e9 6563
abe43400
PZ
6564static ssize_t
6565type_show(struct device *dev, struct device_attribute *attr, char *page)
6566{
6567 struct pmu *pmu = dev_get_drvdata(dev);
6568
6569 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6570}
90826ca7 6571static DEVICE_ATTR_RO(type);
abe43400 6572
62b85639
SE
6573static ssize_t
6574perf_event_mux_interval_ms_show(struct device *dev,
6575 struct device_attribute *attr,
6576 char *page)
6577{
6578 struct pmu *pmu = dev_get_drvdata(dev);
6579
6580 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6581}
6582
6583static ssize_t
6584perf_event_mux_interval_ms_store(struct device *dev,
6585 struct device_attribute *attr,
6586 const char *buf, size_t count)
6587{
6588 struct pmu *pmu = dev_get_drvdata(dev);
6589 int timer, cpu, ret;
6590
6591 ret = kstrtoint(buf, 0, &timer);
6592 if (ret)
6593 return ret;
6594
6595 if (timer < 1)
6596 return -EINVAL;
6597
6598 /* same value, noting to do */
6599 if (timer == pmu->hrtimer_interval_ms)
6600 return count;
6601
6602 pmu->hrtimer_interval_ms = timer;
6603
6604 /* update all cpuctx for this PMU */
6605 for_each_possible_cpu(cpu) {
6606 struct perf_cpu_context *cpuctx;
6607 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6608 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6609
6610 if (hrtimer_active(&cpuctx->hrtimer))
6611 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6612 }
6613
6614 return count;
6615}
90826ca7 6616static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 6617
90826ca7
GKH
6618static struct attribute *pmu_dev_attrs[] = {
6619 &dev_attr_type.attr,
6620 &dev_attr_perf_event_mux_interval_ms.attr,
6621 NULL,
abe43400 6622};
90826ca7 6623ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
6624
6625static int pmu_bus_running;
6626static struct bus_type pmu_bus = {
6627 .name = "event_source",
90826ca7 6628 .dev_groups = pmu_dev_groups,
abe43400
PZ
6629};
6630
6631static void pmu_dev_release(struct device *dev)
6632{
6633 kfree(dev);
6634}
6635
6636static int pmu_dev_alloc(struct pmu *pmu)
6637{
6638 int ret = -ENOMEM;
6639
6640 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6641 if (!pmu->dev)
6642 goto out;
6643
0c9d42ed 6644 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6645 device_initialize(pmu->dev);
6646 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6647 if (ret)
6648 goto free_dev;
6649
6650 dev_set_drvdata(pmu->dev, pmu);
6651 pmu->dev->bus = &pmu_bus;
6652 pmu->dev->release = pmu_dev_release;
6653 ret = device_add(pmu->dev);
6654 if (ret)
6655 goto free_dev;
6656
6657out:
6658 return ret;
6659
6660free_dev:
6661 put_device(pmu->dev);
6662 goto out;
6663}
6664
547e9fd7 6665static struct lock_class_key cpuctx_mutex;
facc4307 6666static struct lock_class_key cpuctx_lock;
547e9fd7 6667
03d8e80b 6668int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6669{
108b02cf 6670 int cpu, ret;
24f1e32c 6671
b0a873eb 6672 mutex_lock(&pmus_lock);
33696fc0
PZ
6673 ret = -ENOMEM;
6674 pmu->pmu_disable_count = alloc_percpu(int);
6675 if (!pmu->pmu_disable_count)
6676 goto unlock;
f29ac756 6677
2e80a82a
PZ
6678 pmu->type = -1;
6679 if (!name)
6680 goto skip_type;
6681 pmu->name = name;
6682
6683 if (type < 0) {
0e9c3be2
TH
6684 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6685 if (type < 0) {
6686 ret = type;
2e80a82a
PZ
6687 goto free_pdc;
6688 }
6689 }
6690 pmu->type = type;
6691
abe43400
PZ
6692 if (pmu_bus_running) {
6693 ret = pmu_dev_alloc(pmu);
6694 if (ret)
6695 goto free_idr;
6696 }
6697
2e80a82a 6698skip_type:
8dc85d54
PZ
6699 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6700 if (pmu->pmu_cpu_context)
6701 goto got_cpu_context;
f29ac756 6702
c4814202 6703 ret = -ENOMEM;
108b02cf
PZ
6704 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6705 if (!pmu->pmu_cpu_context)
abe43400 6706 goto free_dev;
f344011c 6707
108b02cf
PZ
6708 for_each_possible_cpu(cpu) {
6709 struct perf_cpu_context *cpuctx;
6710
6711 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6712 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6713 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6714 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6715 cpuctx->ctx.type = cpu_context;
108b02cf 6716 cpuctx->ctx.pmu = pmu;
9e630205
SE
6717
6718 __perf_cpu_hrtimer_init(cpuctx, cpu);
6719
e9d2b064 6720 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6721 cpuctx->unique_pmu = pmu;
108b02cf 6722 }
76e1d904 6723
8dc85d54 6724got_cpu_context:
ad5133b7
PZ
6725 if (!pmu->start_txn) {
6726 if (pmu->pmu_enable) {
6727 /*
6728 * If we have pmu_enable/pmu_disable calls, install
6729 * transaction stubs that use that to try and batch
6730 * hardware accesses.
6731 */
6732 pmu->start_txn = perf_pmu_start_txn;
6733 pmu->commit_txn = perf_pmu_commit_txn;
6734 pmu->cancel_txn = perf_pmu_cancel_txn;
6735 } else {
6736 pmu->start_txn = perf_pmu_nop_void;
6737 pmu->commit_txn = perf_pmu_nop_int;
6738 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6739 }
5c92d124 6740 }
15dbf27c 6741
ad5133b7
PZ
6742 if (!pmu->pmu_enable) {
6743 pmu->pmu_enable = perf_pmu_nop_void;
6744 pmu->pmu_disable = perf_pmu_nop_void;
6745 }
6746
35edc2a5
PZ
6747 if (!pmu->event_idx)
6748 pmu->event_idx = perf_event_idx_default;
6749
b0a873eb 6750 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6751 ret = 0;
6752unlock:
b0a873eb
PZ
6753 mutex_unlock(&pmus_lock);
6754
33696fc0 6755 return ret;
108b02cf 6756
abe43400
PZ
6757free_dev:
6758 device_del(pmu->dev);
6759 put_device(pmu->dev);
6760
2e80a82a
PZ
6761free_idr:
6762 if (pmu->type >= PERF_TYPE_MAX)
6763 idr_remove(&pmu_idr, pmu->type);
6764
108b02cf
PZ
6765free_pdc:
6766 free_percpu(pmu->pmu_disable_count);
6767 goto unlock;
f29ac756 6768}
c464c76e 6769EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 6770
b0a873eb 6771void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6772{
b0a873eb
PZ
6773 mutex_lock(&pmus_lock);
6774 list_del_rcu(&pmu->entry);
6775 mutex_unlock(&pmus_lock);
5c92d124 6776
0475f9ea 6777 /*
cde8e884
PZ
6778 * We dereference the pmu list under both SRCU and regular RCU, so
6779 * synchronize against both of those.
0475f9ea 6780 */
b0a873eb 6781 synchronize_srcu(&pmus_srcu);
cde8e884 6782 synchronize_rcu();
d6d020e9 6783
33696fc0 6784 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6785 if (pmu->type >= PERF_TYPE_MAX)
6786 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6787 device_del(pmu->dev);
6788 put_device(pmu->dev);
51676957 6789 free_pmu_context(pmu);
b0a873eb 6790}
c464c76e 6791EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 6792
b0a873eb
PZ
6793struct pmu *perf_init_event(struct perf_event *event)
6794{
6795 struct pmu *pmu = NULL;
6796 int idx;
940c5b29 6797 int ret;
b0a873eb
PZ
6798
6799 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6800
6801 rcu_read_lock();
6802 pmu = idr_find(&pmu_idr, event->attr.type);
6803 rcu_read_unlock();
940c5b29 6804 if (pmu) {
c464c76e
YZ
6805 if (!try_module_get(pmu->module)) {
6806 pmu = ERR_PTR(-ENODEV);
6807 goto unlock;
6808 }
7e5b2a01 6809 event->pmu = pmu;
940c5b29
LM
6810 ret = pmu->event_init(event);
6811 if (ret)
6812 pmu = ERR_PTR(ret);
2e80a82a 6813 goto unlock;
940c5b29 6814 }
2e80a82a 6815
b0a873eb 6816 list_for_each_entry_rcu(pmu, &pmus, entry) {
c464c76e
YZ
6817 if (!try_module_get(pmu->module)) {
6818 pmu = ERR_PTR(-ENODEV);
6819 goto unlock;
6820 }
7e5b2a01 6821 event->pmu = pmu;
940c5b29 6822 ret = pmu->event_init(event);
b0a873eb 6823 if (!ret)
e5f4d339 6824 goto unlock;
76e1d904 6825
b0a873eb
PZ
6826 if (ret != -ENOENT) {
6827 pmu = ERR_PTR(ret);
e5f4d339 6828 goto unlock;
f344011c 6829 }
5c92d124 6830 }
e5f4d339
PZ
6831 pmu = ERR_PTR(-ENOENT);
6832unlock:
b0a873eb 6833 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6834
4aeb0b42 6835 return pmu;
5c92d124
IM
6836}
6837
4beb31f3
FW
6838static void account_event_cpu(struct perf_event *event, int cpu)
6839{
6840 if (event->parent)
6841 return;
6842
6843 if (has_branch_stack(event)) {
6844 if (!(event->attach_state & PERF_ATTACH_TASK))
6845 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6846 }
6847 if (is_cgroup_event(event))
6848 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6849}
6850
766d6c07
FW
6851static void account_event(struct perf_event *event)
6852{
4beb31f3
FW
6853 if (event->parent)
6854 return;
6855
766d6c07
FW
6856 if (event->attach_state & PERF_ATTACH_TASK)
6857 static_key_slow_inc(&perf_sched_events.key);
6858 if (event->attr.mmap || event->attr.mmap_data)
6859 atomic_inc(&nr_mmap_events);
6860 if (event->attr.comm)
6861 atomic_inc(&nr_comm_events);
6862 if (event->attr.task)
6863 atomic_inc(&nr_task_events);
948b26b6
FW
6864 if (event->attr.freq) {
6865 if (atomic_inc_return(&nr_freq_events) == 1)
6866 tick_nohz_full_kick_all();
6867 }
4beb31f3 6868 if (has_branch_stack(event))
766d6c07 6869 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 6870 if (is_cgroup_event(event))
766d6c07 6871 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
6872
6873 account_event_cpu(event, event->cpu);
766d6c07
FW
6874}
6875
0793a61d 6876/*
cdd6c482 6877 * Allocate and initialize a event structure
0793a61d 6878 */
cdd6c482 6879static struct perf_event *
c3f00c70 6880perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6881 struct task_struct *task,
6882 struct perf_event *group_leader,
6883 struct perf_event *parent_event,
4dc0da86
AK
6884 perf_overflow_handler_t overflow_handler,
6885 void *context)
0793a61d 6886{
51b0fe39 6887 struct pmu *pmu;
cdd6c482
IM
6888 struct perf_event *event;
6889 struct hw_perf_event *hwc;
90983b16 6890 long err = -EINVAL;
0793a61d 6891
66832eb4
ON
6892 if ((unsigned)cpu >= nr_cpu_ids) {
6893 if (!task || cpu != -1)
6894 return ERR_PTR(-EINVAL);
6895 }
6896
c3f00c70 6897 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6898 if (!event)
d5d2bc0d 6899 return ERR_PTR(-ENOMEM);
0793a61d 6900
04289bb9 6901 /*
cdd6c482 6902 * Single events are their own group leaders, with an
04289bb9
IM
6903 * empty sibling list:
6904 */
6905 if (!group_leader)
cdd6c482 6906 group_leader = event;
04289bb9 6907
cdd6c482
IM
6908 mutex_init(&event->child_mutex);
6909 INIT_LIST_HEAD(&event->child_list);
fccc714b 6910
cdd6c482
IM
6911 INIT_LIST_HEAD(&event->group_entry);
6912 INIT_LIST_HEAD(&event->event_entry);
6913 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 6914 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 6915 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
6916 INIT_HLIST_NODE(&event->hlist_entry);
6917
10c6db11 6918
cdd6c482 6919 init_waitqueue_head(&event->waitq);
e360adbe 6920 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6921
cdd6c482 6922 mutex_init(&event->mmap_mutex);
7b732a75 6923
a6fa941d 6924 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6925 event->cpu = cpu;
6926 event->attr = *attr;
6927 event->group_leader = group_leader;
6928 event->pmu = NULL;
cdd6c482 6929 event->oncpu = -1;
a96bbc16 6930
cdd6c482 6931 event->parent = parent_event;
b84fbc9f 6932
17cf22c3 6933 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6934 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6935
cdd6c482 6936 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6937
d580ff86
PZ
6938 if (task) {
6939 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6940
6941 if (attr->type == PERF_TYPE_TRACEPOINT)
6942 event->hw.tp_target = task;
d580ff86
PZ
6943#ifdef CONFIG_HAVE_HW_BREAKPOINT
6944 /*
6945 * hw_breakpoint is a bit difficult here..
6946 */
f22c1bb6 6947 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6948 event->hw.bp_target = task;
6949#endif
6950 }
6951
4dc0da86 6952 if (!overflow_handler && parent_event) {
b326e956 6953 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6954 context = parent_event->overflow_handler_context;
6955 }
66832eb4 6956
b326e956 6957 event->overflow_handler = overflow_handler;
4dc0da86 6958 event->overflow_handler_context = context;
97eaf530 6959
0231bb53 6960 perf_event__state_init(event);
a86ed508 6961
4aeb0b42 6962 pmu = NULL;
b8e83514 6963
cdd6c482 6964 hwc = &event->hw;
bd2b5b12 6965 hwc->sample_period = attr->sample_period;
0d48696f 6966 if (attr->freq && attr->sample_freq)
bd2b5b12 6967 hwc->sample_period = 1;
eced1dfc 6968 hwc->last_period = hwc->sample_period;
bd2b5b12 6969
e7850595 6970 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6971
2023b359 6972 /*
cdd6c482 6973 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6974 */
3dab77fb 6975 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 6976 goto err_ns;
2023b359 6977
b0a873eb 6978 pmu = perf_init_event(event);
4aeb0b42 6979 if (!pmu)
90983b16
FW
6980 goto err_ns;
6981 else if (IS_ERR(pmu)) {
4aeb0b42 6982 err = PTR_ERR(pmu);
90983b16 6983 goto err_ns;
621a01ea 6984 }
d5d2bc0d 6985
cdd6c482 6986 if (!event->parent) {
927c7a9e
FW
6987 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6988 err = get_callchain_buffers();
90983b16
FW
6989 if (err)
6990 goto err_pmu;
d010b332 6991 }
f344011c 6992 }
9ee318a7 6993
cdd6c482 6994 return event;
90983b16
FW
6995
6996err_pmu:
6997 if (event->destroy)
6998 event->destroy(event);
c464c76e 6999 module_put(pmu->module);
90983b16
FW
7000err_ns:
7001 if (event->ns)
7002 put_pid_ns(event->ns);
7003 kfree(event);
7004
7005 return ERR_PTR(err);
0793a61d
TG
7006}
7007
cdd6c482
IM
7008static int perf_copy_attr(struct perf_event_attr __user *uattr,
7009 struct perf_event_attr *attr)
974802ea 7010{
974802ea 7011 u32 size;
cdf8073d 7012 int ret;
974802ea
PZ
7013
7014 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7015 return -EFAULT;
7016
7017 /*
7018 * zero the full structure, so that a short copy will be nice.
7019 */
7020 memset(attr, 0, sizeof(*attr));
7021
7022 ret = get_user(size, &uattr->size);
7023 if (ret)
7024 return ret;
7025
7026 if (size > PAGE_SIZE) /* silly large */
7027 goto err_size;
7028
7029 if (!size) /* abi compat */
7030 size = PERF_ATTR_SIZE_VER0;
7031
7032 if (size < PERF_ATTR_SIZE_VER0)
7033 goto err_size;
7034
7035 /*
7036 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7037 * ensure all the unknown bits are 0 - i.e. new
7038 * user-space does not rely on any kernel feature
7039 * extensions we dont know about yet.
974802ea
PZ
7040 */
7041 if (size > sizeof(*attr)) {
cdf8073d
IS
7042 unsigned char __user *addr;
7043 unsigned char __user *end;
7044 unsigned char val;
974802ea 7045
cdf8073d
IS
7046 addr = (void __user *)uattr + sizeof(*attr);
7047 end = (void __user *)uattr + size;
974802ea 7048
cdf8073d 7049 for (; addr < end; addr++) {
974802ea
PZ
7050 ret = get_user(val, addr);
7051 if (ret)
7052 return ret;
7053 if (val)
7054 goto err_size;
7055 }
b3e62e35 7056 size = sizeof(*attr);
974802ea
PZ
7057 }
7058
7059 ret = copy_from_user(attr, uattr, size);
7060 if (ret)
7061 return -EFAULT;
7062
cd757645 7063 if (attr->__reserved_1)
974802ea
PZ
7064 return -EINVAL;
7065
7066 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7067 return -EINVAL;
7068
7069 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7070 return -EINVAL;
7071
bce38cd5
SE
7072 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7073 u64 mask = attr->branch_sample_type;
7074
7075 /* only using defined bits */
7076 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7077 return -EINVAL;
7078
7079 /* at least one branch bit must be set */
7080 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7081 return -EINVAL;
7082
bce38cd5
SE
7083 /* propagate priv level, when not set for branch */
7084 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7085
7086 /* exclude_kernel checked on syscall entry */
7087 if (!attr->exclude_kernel)
7088 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7089
7090 if (!attr->exclude_user)
7091 mask |= PERF_SAMPLE_BRANCH_USER;
7092
7093 if (!attr->exclude_hv)
7094 mask |= PERF_SAMPLE_BRANCH_HV;
7095 /*
7096 * adjust user setting (for HW filter setup)
7097 */
7098 attr->branch_sample_type = mask;
7099 }
e712209a
SE
7100 /* privileged levels capture (kernel, hv): check permissions */
7101 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7102 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7103 return -EACCES;
bce38cd5 7104 }
4018994f 7105
c5ebcedb 7106 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7107 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7108 if (ret)
7109 return ret;
7110 }
7111
7112 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7113 if (!arch_perf_have_user_stack_dump())
7114 return -ENOSYS;
7115
7116 /*
7117 * We have __u32 type for the size, but so far
7118 * we can only use __u16 as maximum due to the
7119 * __u16 sample size limit.
7120 */
7121 if (attr->sample_stack_user >= USHRT_MAX)
7122 ret = -EINVAL;
7123 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7124 ret = -EINVAL;
7125 }
4018994f 7126
974802ea
PZ
7127out:
7128 return ret;
7129
7130err_size:
7131 put_user(sizeof(*attr), &uattr->size);
7132 ret = -E2BIG;
7133 goto out;
7134}
7135
ac9721f3
PZ
7136static int
7137perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7138{
b69cf536 7139 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7140 int ret = -EINVAL;
7141
ac9721f3 7142 if (!output_event)
a4be7c27
PZ
7143 goto set;
7144
ac9721f3
PZ
7145 /* don't allow circular references */
7146 if (event == output_event)
a4be7c27
PZ
7147 goto out;
7148
0f139300
PZ
7149 /*
7150 * Don't allow cross-cpu buffers
7151 */
7152 if (output_event->cpu != event->cpu)
7153 goto out;
7154
7155 /*
76369139 7156 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7157 */
7158 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7159 goto out;
7160
a4be7c27 7161set:
cdd6c482 7162 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7163 /* Can't redirect output if we've got an active mmap() */
7164 if (atomic_read(&event->mmap_count))
7165 goto unlock;
a4be7c27 7166
ac9721f3 7167 if (output_event) {
76369139
FW
7168 /* get the rb we want to redirect to */
7169 rb = ring_buffer_get(output_event);
7170 if (!rb)
ac9721f3 7171 goto unlock;
a4be7c27
PZ
7172 }
7173
b69cf536 7174 ring_buffer_attach(event, rb);
9bb5d40c 7175
a4be7c27 7176 ret = 0;
ac9721f3
PZ
7177unlock:
7178 mutex_unlock(&event->mmap_mutex);
7179
a4be7c27 7180out:
a4be7c27
PZ
7181 return ret;
7182}
7183
0793a61d 7184/**
cdd6c482 7185 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7186 *
cdd6c482 7187 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7188 * @pid: target pid
9f66a381 7189 * @cpu: target cpu
cdd6c482 7190 * @group_fd: group leader event fd
0793a61d 7191 */
cdd6c482
IM
7192SYSCALL_DEFINE5(perf_event_open,
7193 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7194 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7195{
b04243ef
PZ
7196 struct perf_event *group_leader = NULL, *output_event = NULL;
7197 struct perf_event *event, *sibling;
cdd6c482
IM
7198 struct perf_event_attr attr;
7199 struct perf_event_context *ctx;
7200 struct file *event_file = NULL;
2903ff01 7201 struct fd group = {NULL, 0};
38a81da2 7202 struct task_struct *task = NULL;
89a1e187 7203 struct pmu *pmu;
ea635c64 7204 int event_fd;
b04243ef 7205 int move_group = 0;
dc86cabe 7206 int err;
a21b0b35 7207 int f_flags = O_RDWR;
0793a61d 7208
2743a5b0 7209 /* for future expandability... */
e5d1367f 7210 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7211 return -EINVAL;
7212
dc86cabe
IM
7213 err = perf_copy_attr(attr_uptr, &attr);
7214 if (err)
7215 return err;
eab656ae 7216
0764771d
PZ
7217 if (!attr.exclude_kernel) {
7218 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7219 return -EACCES;
7220 }
7221
df58ab24 7222 if (attr.freq) {
cdd6c482 7223 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 7224 return -EINVAL;
0819b2e3
PZ
7225 } else {
7226 if (attr.sample_period & (1ULL << 63))
7227 return -EINVAL;
df58ab24
PZ
7228 }
7229
e5d1367f
SE
7230 /*
7231 * In cgroup mode, the pid argument is used to pass the fd
7232 * opened to the cgroup directory in cgroupfs. The cpu argument
7233 * designates the cpu on which to monitor threads from that
7234 * cgroup.
7235 */
7236 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7237 return -EINVAL;
7238
a21b0b35
YD
7239 if (flags & PERF_FLAG_FD_CLOEXEC)
7240 f_flags |= O_CLOEXEC;
7241
7242 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7243 if (event_fd < 0)
7244 return event_fd;
7245
ac9721f3 7246 if (group_fd != -1) {
2903ff01
AV
7247 err = perf_fget_light(group_fd, &group);
7248 if (err)
d14b12d7 7249 goto err_fd;
2903ff01 7250 group_leader = group.file->private_data;
ac9721f3
PZ
7251 if (flags & PERF_FLAG_FD_OUTPUT)
7252 output_event = group_leader;
7253 if (flags & PERF_FLAG_FD_NO_GROUP)
7254 group_leader = NULL;
7255 }
7256
e5d1367f 7257 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7258 task = find_lively_task_by_vpid(pid);
7259 if (IS_ERR(task)) {
7260 err = PTR_ERR(task);
7261 goto err_group_fd;
7262 }
7263 }
7264
1f4ee503
PZ
7265 if (task && group_leader &&
7266 group_leader->attr.inherit != attr.inherit) {
7267 err = -EINVAL;
7268 goto err_task;
7269 }
7270
fbfc623f
YZ
7271 get_online_cpus();
7272
4dc0da86
AK
7273 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7274 NULL, NULL);
d14b12d7
SE
7275 if (IS_ERR(event)) {
7276 err = PTR_ERR(event);
1f4ee503 7277 goto err_cpus;
d14b12d7
SE
7278 }
7279
e5d1367f
SE
7280 if (flags & PERF_FLAG_PID_CGROUP) {
7281 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
7282 if (err) {
7283 __free_event(event);
1f4ee503 7284 goto err_cpus;
766d6c07 7285 }
e5d1367f
SE
7286 }
7287
53b25335
VW
7288 if (is_sampling_event(event)) {
7289 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7290 err = -ENOTSUPP;
7291 goto err_alloc;
7292 }
7293 }
7294
766d6c07
FW
7295 account_event(event);
7296
89a1e187
PZ
7297 /*
7298 * Special case software events and allow them to be part of
7299 * any hardware group.
7300 */
7301 pmu = event->pmu;
b04243ef
PZ
7302
7303 if (group_leader &&
7304 (is_software_event(event) != is_software_event(group_leader))) {
7305 if (is_software_event(event)) {
7306 /*
7307 * If event and group_leader are not both a software
7308 * event, and event is, then group leader is not.
7309 *
7310 * Allow the addition of software events to !software
7311 * groups, this is safe because software events never
7312 * fail to schedule.
7313 */
7314 pmu = group_leader->pmu;
7315 } else if (is_software_event(group_leader) &&
7316 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7317 /*
7318 * In case the group is a pure software group, and we
7319 * try to add a hardware event, move the whole group to
7320 * the hardware context.
7321 */
7322 move_group = 1;
7323 }
7324 }
89a1e187
PZ
7325
7326 /*
7327 * Get the target context (task or percpu):
7328 */
e2d37cd2 7329 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
7330 if (IS_ERR(ctx)) {
7331 err = PTR_ERR(ctx);
c6be5a5c 7332 goto err_alloc;
89a1e187
PZ
7333 }
7334
fd1edb3a
PZ
7335 if (task) {
7336 put_task_struct(task);
7337 task = NULL;
7338 }
7339
ccff286d 7340 /*
cdd6c482 7341 * Look up the group leader (we will attach this event to it):
04289bb9 7342 */
ac9721f3 7343 if (group_leader) {
dc86cabe 7344 err = -EINVAL;
04289bb9 7345
04289bb9 7346 /*
ccff286d
IM
7347 * Do not allow a recursive hierarchy (this new sibling
7348 * becoming part of another group-sibling):
7349 */
7350 if (group_leader->group_leader != group_leader)
c3f00c70 7351 goto err_context;
ccff286d
IM
7352 /*
7353 * Do not allow to attach to a group in a different
7354 * task or CPU context:
04289bb9 7355 */
b04243ef
PZ
7356 if (move_group) {
7357 if (group_leader->ctx->type != ctx->type)
7358 goto err_context;
7359 } else {
7360 if (group_leader->ctx != ctx)
7361 goto err_context;
7362 }
7363
3b6f9e5c
PM
7364 /*
7365 * Only a group leader can be exclusive or pinned
7366 */
0d48696f 7367 if (attr.exclusive || attr.pinned)
c3f00c70 7368 goto err_context;
ac9721f3
PZ
7369 }
7370
7371 if (output_event) {
7372 err = perf_event_set_output(event, output_event);
7373 if (err)
c3f00c70 7374 goto err_context;
ac9721f3 7375 }
0793a61d 7376
a21b0b35
YD
7377 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7378 f_flags);
ea635c64
AV
7379 if (IS_ERR(event_file)) {
7380 err = PTR_ERR(event_file);
c3f00c70 7381 goto err_context;
ea635c64 7382 }
9b51f66d 7383
b04243ef
PZ
7384 if (move_group) {
7385 struct perf_event_context *gctx = group_leader->ctx;
7386
7387 mutex_lock(&gctx->mutex);
46ce0fe9 7388 perf_remove_from_context(group_leader, false);
0231bb53
JO
7389
7390 /*
7391 * Removing from the context ends up with disabled
7392 * event. What we want here is event in the initial
7393 * startup state, ready to be add into new context.
7394 */
7395 perf_event__state_init(group_leader);
b04243ef
PZ
7396 list_for_each_entry(sibling, &group_leader->sibling_list,
7397 group_entry) {
46ce0fe9 7398 perf_remove_from_context(sibling, false);
0231bb53 7399 perf_event__state_init(sibling);
b04243ef
PZ
7400 put_ctx(gctx);
7401 }
7402 mutex_unlock(&gctx->mutex);
7403 put_ctx(gctx);
ea635c64 7404 }
9b51f66d 7405
ad3a37de 7406 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 7407 mutex_lock(&ctx->mutex);
b04243ef
PZ
7408
7409 if (move_group) {
0cda4c02 7410 synchronize_rcu();
e2d37cd2 7411 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
7412 get_ctx(ctx);
7413 list_for_each_entry(sibling, &group_leader->sibling_list,
7414 group_entry) {
e2d37cd2 7415 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
7416 get_ctx(ctx);
7417 }
7418 }
7419
e2d37cd2 7420 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 7421 perf_unpin_context(ctx);
d859e29f 7422 mutex_unlock(&ctx->mutex);
9b51f66d 7423
fbfc623f
YZ
7424 put_online_cpus();
7425
cdd6c482 7426 event->owner = current;
8882135b 7427
cdd6c482
IM
7428 mutex_lock(&current->perf_event_mutex);
7429 list_add_tail(&event->owner_entry, &current->perf_event_list);
7430 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7431
c320c7b7
ACM
7432 /*
7433 * Precalculate sample_data sizes
7434 */
7435 perf_event__header_size(event);
6844c09d 7436 perf_event__id_header_size(event);
c320c7b7 7437
8a49542c
PZ
7438 /*
7439 * Drop the reference on the group_event after placing the
7440 * new event on the sibling_list. This ensures destruction
7441 * of the group leader will find the pointer to itself in
7442 * perf_group_detach().
7443 */
2903ff01 7444 fdput(group);
ea635c64
AV
7445 fd_install(event_fd, event_file);
7446 return event_fd;
0793a61d 7447
c3f00c70 7448err_context:
fe4b04fa 7449 perf_unpin_context(ctx);
ea635c64 7450 put_ctx(ctx);
c6be5a5c 7451err_alloc:
ea635c64 7452 free_event(event);
1f4ee503 7453err_cpus:
fbfc623f 7454 put_online_cpus();
1f4ee503 7455err_task:
e7d0bc04
PZ
7456 if (task)
7457 put_task_struct(task);
89a1e187 7458err_group_fd:
2903ff01 7459 fdput(group);
ea635c64
AV
7460err_fd:
7461 put_unused_fd(event_fd);
dc86cabe 7462 return err;
0793a61d
TG
7463}
7464
fb0459d7
AV
7465/**
7466 * perf_event_create_kernel_counter
7467 *
7468 * @attr: attributes of the counter to create
7469 * @cpu: cpu in which the counter is bound
38a81da2 7470 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7471 */
7472struct perf_event *
7473perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7474 struct task_struct *task,
4dc0da86
AK
7475 perf_overflow_handler_t overflow_handler,
7476 void *context)
fb0459d7 7477{
fb0459d7 7478 struct perf_event_context *ctx;
c3f00c70 7479 struct perf_event *event;
fb0459d7 7480 int err;
d859e29f 7481
fb0459d7
AV
7482 /*
7483 * Get the target context (task or percpu):
7484 */
d859e29f 7485
4dc0da86
AK
7486 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7487 overflow_handler, context);
c3f00c70
PZ
7488 if (IS_ERR(event)) {
7489 err = PTR_ERR(event);
7490 goto err;
7491 }
d859e29f 7492
f8697762
JO
7493 /* Mark owner so we could distinguish it from user events. */
7494 event->owner = EVENT_OWNER_KERNEL;
7495
766d6c07
FW
7496 account_event(event);
7497
38a81da2 7498 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7499 if (IS_ERR(ctx)) {
7500 err = PTR_ERR(ctx);
c3f00c70 7501 goto err_free;
d859e29f 7502 }
fb0459d7 7503
fb0459d7
AV
7504 WARN_ON_ONCE(ctx->parent_ctx);
7505 mutex_lock(&ctx->mutex);
7506 perf_install_in_context(ctx, event, cpu);
fe4b04fa 7507 perf_unpin_context(ctx);
fb0459d7
AV
7508 mutex_unlock(&ctx->mutex);
7509
fb0459d7
AV
7510 return event;
7511
c3f00c70
PZ
7512err_free:
7513 free_event(event);
7514err:
c6567f64 7515 return ERR_PTR(err);
9b51f66d 7516}
fb0459d7 7517EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7518
0cda4c02
YZ
7519void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7520{
7521 struct perf_event_context *src_ctx;
7522 struct perf_event_context *dst_ctx;
7523 struct perf_event *event, *tmp;
7524 LIST_HEAD(events);
7525
7526 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7527 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7528
7529 mutex_lock(&src_ctx->mutex);
7530 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7531 event_entry) {
46ce0fe9 7532 perf_remove_from_context(event, false);
9a545de0 7533 unaccount_event_cpu(event, src_cpu);
0cda4c02 7534 put_ctx(src_ctx);
9886167d 7535 list_add(&event->migrate_entry, &events);
0cda4c02
YZ
7536 }
7537 mutex_unlock(&src_ctx->mutex);
7538
7539 synchronize_rcu();
7540
7541 mutex_lock(&dst_ctx->mutex);
9886167d
PZ
7542 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7543 list_del(&event->migrate_entry);
0cda4c02
YZ
7544 if (event->state >= PERF_EVENT_STATE_OFF)
7545 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7546 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7547 perf_install_in_context(dst_ctx, event, dst_cpu);
7548 get_ctx(dst_ctx);
7549 }
7550 mutex_unlock(&dst_ctx->mutex);
7551}
7552EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7553
cdd6c482 7554static void sync_child_event(struct perf_event *child_event,
38b200d6 7555 struct task_struct *child)
d859e29f 7556{
cdd6c482 7557 struct perf_event *parent_event = child_event->parent;
8bc20959 7558 u64 child_val;
d859e29f 7559
cdd6c482
IM
7560 if (child_event->attr.inherit_stat)
7561 perf_event_read_event(child_event, child);
38b200d6 7562
b5e58793 7563 child_val = perf_event_count(child_event);
d859e29f
PM
7564
7565 /*
7566 * Add back the child's count to the parent's count:
7567 */
a6e6dea6 7568 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7569 atomic64_add(child_event->total_time_enabled,
7570 &parent_event->child_total_time_enabled);
7571 atomic64_add(child_event->total_time_running,
7572 &parent_event->child_total_time_running);
d859e29f
PM
7573
7574 /*
cdd6c482 7575 * Remove this event from the parent's list
d859e29f 7576 */
cdd6c482
IM
7577 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7578 mutex_lock(&parent_event->child_mutex);
7579 list_del_init(&child_event->child_list);
7580 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
7581
7582 /*
cdd6c482 7583 * Release the parent event, if this was the last
d859e29f
PM
7584 * reference to it.
7585 */
a6fa941d 7586 put_event(parent_event);
d859e29f
PM
7587}
7588
9b51f66d 7589static void
cdd6c482
IM
7590__perf_event_exit_task(struct perf_event *child_event,
7591 struct perf_event_context *child_ctx,
38b200d6 7592 struct task_struct *child)
9b51f66d 7593{
1903d50c
PZ
7594 /*
7595 * Do not destroy the 'original' grouping; because of the context
7596 * switch optimization the original events could've ended up in a
7597 * random child task.
7598 *
7599 * If we were to destroy the original group, all group related
7600 * operations would cease to function properly after this random
7601 * child dies.
7602 *
7603 * Do destroy all inherited groups, we don't care about those
7604 * and being thorough is better.
7605 */
7606 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 7607
9b51f66d 7608 /*
38b435b1 7609 * It can happen that the parent exits first, and has events
9b51f66d 7610 * that are still around due to the child reference. These
38b435b1 7611 * events need to be zapped.
9b51f66d 7612 */
38b435b1 7613 if (child_event->parent) {
cdd6c482
IM
7614 sync_child_event(child_event, child);
7615 free_event(child_event);
179033b3
JO
7616 } else {
7617 child_event->state = PERF_EVENT_STATE_EXIT;
7618 perf_event_wakeup(child_event);
4bcf349a 7619 }
9b51f66d
IM
7620}
7621
8dc85d54 7622static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7623{
ebf905fc 7624 struct perf_event *child_event, *next;
4a1c0f26 7625 struct perf_event_context *child_ctx, *parent_ctx;
a63eaf34 7626 unsigned long flags;
9b51f66d 7627
8dc85d54 7628 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7629 perf_event_task(child, NULL, 0);
9b51f66d 7630 return;
9f498cc5 7631 }
9b51f66d 7632
a63eaf34 7633 local_irq_save(flags);
ad3a37de
PM
7634 /*
7635 * We can't reschedule here because interrupts are disabled,
7636 * and either child is current or it is a task that can't be
7637 * scheduled, so we are now safe from rescheduling changing
7638 * our context.
7639 */
806839b2 7640 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7641
7642 /*
7643 * Take the context lock here so that if find_get_context is
cdd6c482 7644 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7645 * incremented the context's refcount before we do put_ctx below.
7646 */
e625cce1 7647 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7648 task_ctx_sched_out(child_ctx);
8dc85d54 7649 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26
PZ
7650
7651 /*
7652 * In order to avoid freeing: child_ctx->parent_ctx->task
7653 * under perf_event_context::lock, grab another reference.
7654 */
7655 parent_ctx = child_ctx->parent_ctx;
7656 if (parent_ctx)
7657 get_ctx(parent_ctx);
7658
71a851b4
PZ
7659 /*
7660 * If this context is a clone; unclone it so it can't get
7661 * swapped to another process while we're removing all
cdd6c482 7662 * the events from it.
71a851b4
PZ
7663 */
7664 unclone_ctx(child_ctx);
5e942bb3 7665 update_context_time(child_ctx);
e625cce1 7666 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 7667
4a1c0f26
PZ
7668 /*
7669 * Now that we no longer hold perf_event_context::lock, drop
7670 * our extra child_ctx->parent_ctx reference.
7671 */
7672 if (parent_ctx)
7673 put_ctx(parent_ctx);
7674
9f498cc5 7675 /*
cdd6c482
IM
7676 * Report the task dead after unscheduling the events so that we
7677 * won't get any samples after PERF_RECORD_EXIT. We can however still
7678 * get a few PERF_RECORD_READ events.
9f498cc5 7679 */
cdd6c482 7680 perf_event_task(child, child_ctx, 0);
a63eaf34 7681
66fff224
PZ
7682 /*
7683 * We can recurse on the same lock type through:
7684 *
cdd6c482
IM
7685 * __perf_event_exit_task()
7686 * sync_child_event()
a6fa941d
AV
7687 * put_event()
7688 * mutex_lock(&ctx->mutex)
66fff224
PZ
7689 *
7690 * But since its the parent context it won't be the same instance.
7691 */
a0507c84 7692 mutex_lock(&child_ctx->mutex);
a63eaf34 7693
ebf905fc 7694 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 7695 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 7696
a63eaf34
PM
7697 mutex_unlock(&child_ctx->mutex);
7698
7699 put_ctx(child_ctx);
9b51f66d
IM
7700}
7701
8dc85d54
PZ
7702/*
7703 * When a child task exits, feed back event values to parent events.
7704 */
7705void perf_event_exit_task(struct task_struct *child)
7706{
8882135b 7707 struct perf_event *event, *tmp;
8dc85d54
PZ
7708 int ctxn;
7709
8882135b
PZ
7710 mutex_lock(&child->perf_event_mutex);
7711 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7712 owner_entry) {
7713 list_del_init(&event->owner_entry);
7714
7715 /*
7716 * Ensure the list deletion is visible before we clear
7717 * the owner, closes a race against perf_release() where
7718 * we need to serialize on the owner->perf_event_mutex.
7719 */
7720 smp_wmb();
7721 event->owner = NULL;
7722 }
7723 mutex_unlock(&child->perf_event_mutex);
7724
8dc85d54
PZ
7725 for_each_task_context_nr(ctxn)
7726 perf_event_exit_task_context(child, ctxn);
7727}
7728
889ff015
FW
7729static void perf_free_event(struct perf_event *event,
7730 struct perf_event_context *ctx)
7731{
7732 struct perf_event *parent = event->parent;
7733
7734 if (WARN_ON_ONCE(!parent))
7735 return;
7736
7737 mutex_lock(&parent->child_mutex);
7738 list_del_init(&event->child_list);
7739 mutex_unlock(&parent->child_mutex);
7740
a6fa941d 7741 put_event(parent);
889ff015 7742
8a49542c 7743 perf_group_detach(event);
889ff015
FW
7744 list_del_event(event, ctx);
7745 free_event(event);
7746}
7747
bbbee908
PZ
7748/*
7749 * free an unexposed, unused context as created by inheritance by
8dc85d54 7750 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7751 */
cdd6c482 7752void perf_event_free_task(struct task_struct *task)
bbbee908 7753{
8dc85d54 7754 struct perf_event_context *ctx;
cdd6c482 7755 struct perf_event *event, *tmp;
8dc85d54 7756 int ctxn;
bbbee908 7757
8dc85d54
PZ
7758 for_each_task_context_nr(ctxn) {
7759 ctx = task->perf_event_ctxp[ctxn];
7760 if (!ctx)
7761 continue;
bbbee908 7762
8dc85d54 7763 mutex_lock(&ctx->mutex);
bbbee908 7764again:
8dc85d54
PZ
7765 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7766 group_entry)
7767 perf_free_event(event, ctx);
bbbee908 7768
8dc85d54
PZ
7769 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7770 group_entry)
7771 perf_free_event(event, ctx);
bbbee908 7772
8dc85d54
PZ
7773 if (!list_empty(&ctx->pinned_groups) ||
7774 !list_empty(&ctx->flexible_groups))
7775 goto again;
bbbee908 7776
8dc85d54 7777 mutex_unlock(&ctx->mutex);
bbbee908 7778
8dc85d54
PZ
7779 put_ctx(ctx);
7780 }
889ff015
FW
7781}
7782
4e231c79
PZ
7783void perf_event_delayed_put(struct task_struct *task)
7784{
7785 int ctxn;
7786
7787 for_each_task_context_nr(ctxn)
7788 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7789}
7790
97dee4f3
PZ
7791/*
7792 * inherit a event from parent task to child task:
7793 */
7794static struct perf_event *
7795inherit_event(struct perf_event *parent_event,
7796 struct task_struct *parent,
7797 struct perf_event_context *parent_ctx,
7798 struct task_struct *child,
7799 struct perf_event *group_leader,
7800 struct perf_event_context *child_ctx)
7801{
7802 struct perf_event *child_event;
cee010ec 7803 unsigned long flags;
97dee4f3
PZ
7804
7805 /*
7806 * Instead of creating recursive hierarchies of events,
7807 * we link inherited events back to the original parent,
7808 * which has a filp for sure, which we use as the reference
7809 * count:
7810 */
7811 if (parent_event->parent)
7812 parent_event = parent_event->parent;
7813
7814 child_event = perf_event_alloc(&parent_event->attr,
7815 parent_event->cpu,
d580ff86 7816 child,
97dee4f3 7817 group_leader, parent_event,
4dc0da86 7818 NULL, NULL);
97dee4f3
PZ
7819 if (IS_ERR(child_event))
7820 return child_event;
a6fa941d 7821
fadfe7be
JO
7822 if (is_orphaned_event(parent_event) ||
7823 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
7824 free_event(child_event);
7825 return NULL;
7826 }
7827
97dee4f3
PZ
7828 get_ctx(child_ctx);
7829
7830 /*
7831 * Make the child state follow the state of the parent event,
7832 * not its attr.disabled bit. We hold the parent's mutex,
7833 * so we won't race with perf_event_{en, dis}able_family.
7834 */
7835 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7836 child_event->state = PERF_EVENT_STATE_INACTIVE;
7837 else
7838 child_event->state = PERF_EVENT_STATE_OFF;
7839
7840 if (parent_event->attr.freq) {
7841 u64 sample_period = parent_event->hw.sample_period;
7842 struct hw_perf_event *hwc = &child_event->hw;
7843
7844 hwc->sample_period = sample_period;
7845 hwc->last_period = sample_period;
7846
7847 local64_set(&hwc->period_left, sample_period);
7848 }
7849
7850 child_event->ctx = child_ctx;
7851 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7852 child_event->overflow_handler_context
7853 = parent_event->overflow_handler_context;
97dee4f3 7854
614b6780
TG
7855 /*
7856 * Precalculate sample_data sizes
7857 */
7858 perf_event__header_size(child_event);
6844c09d 7859 perf_event__id_header_size(child_event);
614b6780 7860
97dee4f3
PZ
7861 /*
7862 * Link it up in the child's context:
7863 */
cee010ec 7864 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7865 add_event_to_ctx(child_event, child_ctx);
cee010ec 7866 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7867
97dee4f3
PZ
7868 /*
7869 * Link this into the parent event's child list
7870 */
7871 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7872 mutex_lock(&parent_event->child_mutex);
7873 list_add_tail(&child_event->child_list, &parent_event->child_list);
7874 mutex_unlock(&parent_event->child_mutex);
7875
7876 return child_event;
7877}
7878
7879static int inherit_group(struct perf_event *parent_event,
7880 struct task_struct *parent,
7881 struct perf_event_context *parent_ctx,
7882 struct task_struct *child,
7883 struct perf_event_context *child_ctx)
7884{
7885 struct perf_event *leader;
7886 struct perf_event *sub;
7887 struct perf_event *child_ctr;
7888
7889 leader = inherit_event(parent_event, parent, parent_ctx,
7890 child, NULL, child_ctx);
7891 if (IS_ERR(leader))
7892 return PTR_ERR(leader);
7893 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7894 child_ctr = inherit_event(sub, parent, parent_ctx,
7895 child, leader, child_ctx);
7896 if (IS_ERR(child_ctr))
7897 return PTR_ERR(child_ctr);
7898 }
7899 return 0;
889ff015
FW
7900}
7901
7902static int
7903inherit_task_group(struct perf_event *event, struct task_struct *parent,
7904 struct perf_event_context *parent_ctx,
8dc85d54 7905 struct task_struct *child, int ctxn,
889ff015
FW
7906 int *inherited_all)
7907{
7908 int ret;
8dc85d54 7909 struct perf_event_context *child_ctx;
889ff015
FW
7910
7911 if (!event->attr.inherit) {
7912 *inherited_all = 0;
7913 return 0;
bbbee908
PZ
7914 }
7915
fe4b04fa 7916 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7917 if (!child_ctx) {
7918 /*
7919 * This is executed from the parent task context, so
7920 * inherit events that have been marked for cloning.
7921 * First allocate and initialize a context for the
7922 * child.
7923 */
bbbee908 7924
734df5ab 7925 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
7926 if (!child_ctx)
7927 return -ENOMEM;
bbbee908 7928
8dc85d54 7929 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7930 }
7931
7932 ret = inherit_group(event, parent, parent_ctx,
7933 child, child_ctx);
7934
7935 if (ret)
7936 *inherited_all = 0;
7937
7938 return ret;
bbbee908
PZ
7939}
7940
9b51f66d 7941/*
cdd6c482 7942 * Initialize the perf_event context in task_struct
9b51f66d 7943 */
985c8dcb 7944static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7945{
889ff015 7946 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7947 struct perf_event_context *cloned_ctx;
7948 struct perf_event *event;
9b51f66d 7949 struct task_struct *parent = current;
564c2b21 7950 int inherited_all = 1;
dddd3379 7951 unsigned long flags;
6ab423e0 7952 int ret = 0;
9b51f66d 7953
8dc85d54 7954 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7955 return 0;
7956
ad3a37de 7957 /*
25346b93
PM
7958 * If the parent's context is a clone, pin it so it won't get
7959 * swapped under us.
ad3a37de 7960 */
8dc85d54 7961 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
7962 if (!parent_ctx)
7963 return 0;
25346b93 7964
ad3a37de
PM
7965 /*
7966 * No need to check if parent_ctx != NULL here; since we saw
7967 * it non-NULL earlier, the only reason for it to become NULL
7968 * is if we exit, and since we're currently in the middle of
7969 * a fork we can't be exiting at the same time.
7970 */
ad3a37de 7971
9b51f66d
IM
7972 /*
7973 * Lock the parent list. No need to lock the child - not PID
7974 * hashed yet and not running, so nobody can access it.
7975 */
d859e29f 7976 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7977
7978 /*
7979 * We dont have to disable NMIs - we are only looking at
7980 * the list, not manipulating it:
7981 */
889ff015 7982 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7983 ret = inherit_task_group(event, parent, parent_ctx,
7984 child, ctxn, &inherited_all);
889ff015
FW
7985 if (ret)
7986 break;
7987 }
b93f7978 7988
dddd3379
TG
7989 /*
7990 * We can't hold ctx->lock when iterating the ->flexible_group list due
7991 * to allocations, but we need to prevent rotation because
7992 * rotate_ctx() will change the list from interrupt context.
7993 */
7994 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7995 parent_ctx->rotate_disable = 1;
7996 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7997
889ff015 7998 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7999 ret = inherit_task_group(event, parent, parent_ctx,
8000 child, ctxn, &inherited_all);
889ff015 8001 if (ret)
9b51f66d 8002 break;
564c2b21
PM
8003 }
8004
dddd3379
TG
8005 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8006 parent_ctx->rotate_disable = 0;
dddd3379 8007
8dc85d54 8008 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 8009
05cbaa28 8010 if (child_ctx && inherited_all) {
564c2b21
PM
8011 /*
8012 * Mark the child context as a clone of the parent
8013 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
8014 *
8015 * Note that if the parent is a clone, the holding of
8016 * parent_ctx->lock avoids it from being uncloned.
564c2b21 8017 */
c5ed5145 8018 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
8019 if (cloned_ctx) {
8020 child_ctx->parent_ctx = cloned_ctx;
25346b93 8021 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
8022 } else {
8023 child_ctx->parent_ctx = parent_ctx;
8024 child_ctx->parent_gen = parent_ctx->generation;
8025 }
8026 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
8027 }
8028
c5ed5145 8029 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 8030 mutex_unlock(&parent_ctx->mutex);
6ab423e0 8031
25346b93 8032 perf_unpin_context(parent_ctx);
fe4b04fa 8033 put_ctx(parent_ctx);
ad3a37de 8034
6ab423e0 8035 return ret;
9b51f66d
IM
8036}
8037
8dc85d54
PZ
8038/*
8039 * Initialize the perf_event context in task_struct
8040 */
8041int perf_event_init_task(struct task_struct *child)
8042{
8043 int ctxn, ret;
8044
8550d7cb
ON
8045 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8046 mutex_init(&child->perf_event_mutex);
8047 INIT_LIST_HEAD(&child->perf_event_list);
8048
8dc85d54
PZ
8049 for_each_task_context_nr(ctxn) {
8050 ret = perf_event_init_context(child, ctxn);
8051 if (ret)
8052 return ret;
8053 }
8054
8055 return 0;
8056}
8057
220b140b
PM
8058static void __init perf_event_init_all_cpus(void)
8059{
b28ab83c 8060 struct swevent_htable *swhash;
220b140b 8061 int cpu;
220b140b
PM
8062
8063 for_each_possible_cpu(cpu) {
b28ab83c
PZ
8064 swhash = &per_cpu(swevent_htable, cpu);
8065 mutex_init(&swhash->hlist_mutex);
e9d2b064 8066 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
8067 }
8068}
8069
0db0628d 8070static void perf_event_init_cpu(int cpu)
0793a61d 8071{
108b02cf 8072 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 8073
b28ab83c 8074 mutex_lock(&swhash->hlist_mutex);
39af6b16 8075 swhash->online = true;
4536e4d1 8076 if (swhash->hlist_refcount > 0) {
76e1d904
FW
8077 struct swevent_hlist *hlist;
8078
b28ab83c
PZ
8079 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8080 WARN_ON(!hlist);
8081 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8082 }
b28ab83c 8083 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8084}
8085
c277443c 8086#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 8087static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 8088{
e9d2b064
PZ
8089 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
8090
8091 WARN_ON(!irqs_disabled());
8092
8093 list_del_init(&cpuctx->rotation_list);
8094}
8095
108b02cf 8096static void __perf_event_exit_context(void *__info)
0793a61d 8097{
46ce0fe9 8098 struct remove_event re = { .detach_group = false };
108b02cf 8099 struct perf_event_context *ctx = __info;
0793a61d 8100
108b02cf 8101 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 8102
e3703f8c 8103 rcu_read_lock();
46ce0fe9
PZ
8104 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8105 __perf_remove_from_context(&re);
e3703f8c 8106 rcu_read_unlock();
0793a61d 8107}
108b02cf
PZ
8108
8109static void perf_event_exit_cpu_context(int cpu)
8110{
8111 struct perf_event_context *ctx;
8112 struct pmu *pmu;
8113 int idx;
8114
8115 idx = srcu_read_lock(&pmus_srcu);
8116 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 8117 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
8118
8119 mutex_lock(&ctx->mutex);
8120 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8121 mutex_unlock(&ctx->mutex);
8122 }
8123 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
8124}
8125
cdd6c482 8126static void perf_event_exit_cpu(int cpu)
0793a61d 8127{
b28ab83c 8128 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 8129
e3703f8c
PZ
8130 perf_event_exit_cpu_context(cpu);
8131
b28ab83c 8132 mutex_lock(&swhash->hlist_mutex);
39af6b16 8133 swhash->online = false;
b28ab83c
PZ
8134 swevent_hlist_release(swhash);
8135 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8136}
8137#else
cdd6c482 8138static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
8139#endif
8140
c277443c
PZ
8141static int
8142perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8143{
8144 int cpu;
8145
8146 for_each_online_cpu(cpu)
8147 perf_event_exit_cpu(cpu);
8148
8149 return NOTIFY_OK;
8150}
8151
8152/*
8153 * Run the perf reboot notifier at the very last possible moment so that
8154 * the generic watchdog code runs as long as possible.
8155 */
8156static struct notifier_block perf_reboot_notifier = {
8157 .notifier_call = perf_reboot,
8158 .priority = INT_MIN,
8159};
8160
0db0628d 8161static int
0793a61d
TG
8162perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8163{
8164 unsigned int cpu = (long)hcpu;
8165
4536e4d1 8166 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
8167
8168 case CPU_UP_PREPARE:
5e11637e 8169 case CPU_DOWN_FAILED:
cdd6c482 8170 perf_event_init_cpu(cpu);
0793a61d
TG
8171 break;
8172
5e11637e 8173 case CPU_UP_CANCELED:
0793a61d 8174 case CPU_DOWN_PREPARE:
cdd6c482 8175 perf_event_exit_cpu(cpu);
0793a61d 8176 break;
0793a61d
TG
8177 default:
8178 break;
8179 }
8180
8181 return NOTIFY_OK;
8182}
8183
cdd6c482 8184void __init perf_event_init(void)
0793a61d 8185{
3c502e7a
JW
8186 int ret;
8187
2e80a82a
PZ
8188 idr_init(&pmu_idr);
8189
220b140b 8190 perf_event_init_all_cpus();
b0a873eb 8191 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
8192 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8193 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8194 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
8195 perf_tp_register();
8196 perf_cpu_notifier(perf_cpu_notify);
c277443c 8197 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
8198
8199 ret = init_hw_breakpoint();
8200 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
8201
8202 /* do not patch jump label more than once per second */
8203 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
8204
8205 /*
8206 * Build time assertion that we keep the data_head at the intended
8207 * location. IOW, validation we got the __reserved[] size right.
8208 */
8209 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8210 != 1024);
0793a61d 8211}
abe43400
PZ
8212
8213static int __init perf_event_sysfs_init(void)
8214{
8215 struct pmu *pmu;
8216 int ret;
8217
8218 mutex_lock(&pmus_lock);
8219
8220 ret = bus_register(&pmu_bus);
8221 if (ret)
8222 goto unlock;
8223
8224 list_for_each_entry(pmu, &pmus, entry) {
8225 if (!pmu->name || pmu->type < 0)
8226 continue;
8227
8228 ret = pmu_dev_alloc(pmu);
8229 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8230 }
8231 pmu_bus_running = 1;
8232 ret = 0;
8233
8234unlock:
8235 mutex_unlock(&pmus_lock);
8236
8237 return ret;
8238}
8239device_initcall(perf_event_sysfs_init);
e5d1367f
SE
8240
8241#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
8242static struct cgroup_subsys_state *
8243perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
8244{
8245 struct perf_cgroup *jc;
e5d1367f 8246
1b15d055 8247 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
8248 if (!jc)
8249 return ERR_PTR(-ENOMEM);
8250
e5d1367f
SE
8251 jc->info = alloc_percpu(struct perf_cgroup_info);
8252 if (!jc->info) {
8253 kfree(jc);
8254 return ERR_PTR(-ENOMEM);
8255 }
8256
e5d1367f
SE
8257 return &jc->css;
8258}
8259
eb95419b 8260static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 8261{
eb95419b
TH
8262 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8263
e5d1367f
SE
8264 free_percpu(jc->info);
8265 kfree(jc);
8266}
8267
8268static int __perf_cgroup_move(void *info)
8269{
8270 struct task_struct *task = info;
8271 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8272 return 0;
8273}
8274
eb95419b
TH
8275static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8276 struct cgroup_taskset *tset)
e5d1367f 8277{
bb9d97b6
TH
8278 struct task_struct *task;
8279
924f0d9a 8280 cgroup_taskset_for_each(task, tset)
bb9d97b6 8281 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8282}
8283
eb95419b
TH
8284static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8285 struct cgroup_subsys_state *old_css,
761b3ef5 8286 struct task_struct *task)
e5d1367f
SE
8287{
8288 /*
8289 * cgroup_exit() is called in the copy_process() failure path.
8290 * Ignore this case since the task hasn't ran yet, this avoids
8291 * trying to poke a half freed task state from generic code.
8292 */
8293 if (!(task->flags & PF_EXITING))
8294 return;
8295
bb9d97b6 8296 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8297}
8298
073219e9 8299struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
8300 .css_alloc = perf_cgroup_css_alloc,
8301 .css_free = perf_cgroup_css_free,
e7e7ee2e 8302 .exit = perf_cgroup_exit,
bb9d97b6 8303 .attach = perf_cgroup_attach,
e5d1367f
SE
8304};
8305#endif /* CONFIG_CGROUP_PERF */