Linux 3.9-rc7
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
cdd6c482 36#include <linux/perf_event.h>
6fb2915d 37#include <linux/ftrace_event.h>
3c502e7a 38#include <linux/hw_breakpoint.h>
c5ebcedb 39#include <linux/mm_types.h>
0793a61d 40
76369139
FW
41#include "internal.h"
42
4e193bd4
TB
43#include <asm/irq_regs.h>
44
fe4b04fa 45struct remote_function_call {
e7e7ee2e
IM
46 struct task_struct *p;
47 int (*func)(void *info);
48 void *info;
49 int ret;
fe4b04fa
PZ
50};
51
52static void remote_function(void *data)
53{
54 struct remote_function_call *tfc = data;
55 struct task_struct *p = tfc->p;
56
57 if (p) {
58 tfc->ret = -EAGAIN;
59 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
60 return;
61 }
62
63 tfc->ret = tfc->func(tfc->info);
64}
65
66/**
67 * task_function_call - call a function on the cpu on which a task runs
68 * @p: the task to evaluate
69 * @func: the function to be called
70 * @info: the function call argument
71 *
72 * Calls the function @func when the task is currently running. This might
73 * be on the current CPU, which just calls the function directly
74 *
75 * returns: @func return value, or
76 * -ESRCH - when the process isn't running
77 * -EAGAIN - when the process moved away
78 */
79static int
80task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
81{
82 struct remote_function_call data = {
e7e7ee2e
IM
83 .p = p,
84 .func = func,
85 .info = info,
86 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
87 };
88
89 if (task_curr(p))
90 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
91
92 return data.ret;
93}
94
95/**
96 * cpu_function_call - call a function on the cpu
97 * @func: the function to be called
98 * @info: the function call argument
99 *
100 * Calls the function @func on the remote cpu.
101 *
102 * returns: @func return value or -ENXIO when the cpu is offline
103 */
104static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = NULL,
108 .func = func,
109 .info = info,
110 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
111 };
112
113 smp_call_function_single(cpu, remote_function, &data, 1);
114
115 return data.ret;
116}
117
e5d1367f
SE
118#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
119 PERF_FLAG_FD_OUTPUT |\
120 PERF_FLAG_PID_CGROUP)
121
bce38cd5
SE
122/*
123 * branch priv levels that need permission checks
124 */
125#define PERF_SAMPLE_BRANCH_PERM_PLM \
126 (PERF_SAMPLE_BRANCH_KERNEL |\
127 PERF_SAMPLE_BRANCH_HV)
128
0b3fcf17
SE
129enum event_type_t {
130 EVENT_FLEXIBLE = 0x1,
131 EVENT_PINNED = 0x2,
132 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
133};
134
e5d1367f
SE
135/*
136 * perf_sched_events : >0 events exist
137 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
138 */
c5905afb 139struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 140static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 141static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 142
cdd6c482
IM
143static atomic_t nr_mmap_events __read_mostly;
144static atomic_t nr_comm_events __read_mostly;
145static atomic_t nr_task_events __read_mostly;
9ee318a7 146
108b02cf
PZ
147static LIST_HEAD(pmus);
148static DEFINE_MUTEX(pmus_lock);
149static struct srcu_struct pmus_srcu;
150
0764771d 151/*
cdd6c482 152 * perf event paranoia level:
0fbdea19
IM
153 * -1 - not paranoid at all
154 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 155 * 1 - disallow cpu events for unpriv
0fbdea19 156 * 2 - disallow kernel profiling for unpriv
0764771d 157 */
cdd6c482 158int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 159
20443384
FW
160/* Minimum for 512 kiB + 1 user control page */
161int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
162
163/*
cdd6c482 164 * max perf event sample rate
df58ab24 165 */
163ec435
PZ
166#define DEFAULT_MAX_SAMPLE_RATE 100000
167int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
168static int max_samples_per_tick __read_mostly =
169 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
170
171int perf_proc_update_handler(struct ctl_table *table, int write,
172 void __user *buffer, size_t *lenp,
173 loff_t *ppos)
174{
175 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
176
177 if (ret || !write)
178 return ret;
179
180 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
181
182 return 0;
183}
1ccd1549 184
cdd6c482 185static atomic64_t perf_event_id;
a96bbc16 186
0b3fcf17
SE
187static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
188 enum event_type_t event_type);
189
190static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
191 enum event_type_t event_type,
192 struct task_struct *task);
193
194static void update_context_time(struct perf_event_context *ctx);
195static u64 perf_event_time(struct perf_event *event);
0b3fcf17 196
10c6db11
PZ
197static void ring_buffer_attach(struct perf_event *event,
198 struct ring_buffer *rb);
199
cdd6c482 200void __weak perf_event_print_debug(void) { }
0793a61d 201
84c79910 202extern __weak const char *perf_pmu_name(void)
0793a61d 203{
84c79910 204 return "pmu";
0793a61d
TG
205}
206
0b3fcf17
SE
207static inline u64 perf_clock(void)
208{
209 return local_clock();
210}
211
e5d1367f
SE
212static inline struct perf_cpu_context *
213__get_cpu_context(struct perf_event_context *ctx)
214{
215 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
216}
217
facc4307
PZ
218static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
219 struct perf_event_context *ctx)
220{
221 raw_spin_lock(&cpuctx->ctx.lock);
222 if (ctx)
223 raw_spin_lock(&ctx->lock);
224}
225
226static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
227 struct perf_event_context *ctx)
228{
229 if (ctx)
230 raw_spin_unlock(&ctx->lock);
231 raw_spin_unlock(&cpuctx->ctx.lock);
232}
233
e5d1367f
SE
234#ifdef CONFIG_CGROUP_PERF
235
3f7cce3c
SE
236/*
237 * Must ensure cgroup is pinned (css_get) before calling
238 * this function. In other words, we cannot call this function
239 * if there is no cgroup event for the current CPU context.
240 */
e5d1367f
SE
241static inline struct perf_cgroup *
242perf_cgroup_from_task(struct task_struct *task)
243{
244 return container_of(task_subsys_state(task, perf_subsys_id),
245 struct perf_cgroup, css);
246}
247
248static inline bool
249perf_cgroup_match(struct perf_event *event)
250{
251 struct perf_event_context *ctx = event->ctx;
252 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
253
254 return !event->cgrp || event->cgrp == cpuctx->cgrp;
255}
256
9c5da09d 257static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 258{
9c5da09d 259 return css_tryget(&event->cgrp->css);
e5d1367f
SE
260}
261
262static inline void perf_put_cgroup(struct perf_event *event)
263{
264 css_put(&event->cgrp->css);
265}
266
267static inline void perf_detach_cgroup(struct perf_event *event)
268{
269 perf_put_cgroup(event);
270 event->cgrp = NULL;
271}
272
273static inline int is_cgroup_event(struct perf_event *event)
274{
275 return event->cgrp != NULL;
276}
277
278static inline u64 perf_cgroup_event_time(struct perf_event *event)
279{
280 struct perf_cgroup_info *t;
281
282 t = per_cpu_ptr(event->cgrp->info, event->cpu);
283 return t->time;
284}
285
286static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
287{
288 struct perf_cgroup_info *info;
289 u64 now;
290
291 now = perf_clock();
292
293 info = this_cpu_ptr(cgrp->info);
294
295 info->time += now - info->timestamp;
296 info->timestamp = now;
297}
298
299static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
300{
301 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
302 if (cgrp_out)
303 __update_cgrp_time(cgrp_out);
304}
305
306static inline void update_cgrp_time_from_event(struct perf_event *event)
307{
3f7cce3c
SE
308 struct perf_cgroup *cgrp;
309
e5d1367f 310 /*
3f7cce3c
SE
311 * ensure we access cgroup data only when needed and
312 * when we know the cgroup is pinned (css_get)
e5d1367f 313 */
3f7cce3c 314 if (!is_cgroup_event(event))
e5d1367f
SE
315 return;
316
3f7cce3c
SE
317 cgrp = perf_cgroup_from_task(current);
318 /*
319 * Do not update time when cgroup is not active
320 */
321 if (cgrp == event->cgrp)
322 __update_cgrp_time(event->cgrp);
e5d1367f
SE
323}
324
325static inline void
3f7cce3c
SE
326perf_cgroup_set_timestamp(struct task_struct *task,
327 struct perf_event_context *ctx)
e5d1367f
SE
328{
329 struct perf_cgroup *cgrp;
330 struct perf_cgroup_info *info;
331
3f7cce3c
SE
332 /*
333 * ctx->lock held by caller
334 * ensure we do not access cgroup data
335 * unless we have the cgroup pinned (css_get)
336 */
337 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
338 return;
339
340 cgrp = perf_cgroup_from_task(task);
341 info = this_cpu_ptr(cgrp->info);
3f7cce3c 342 info->timestamp = ctx->timestamp;
e5d1367f
SE
343}
344
345#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
346#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
347
348/*
349 * reschedule events based on the cgroup constraint of task.
350 *
351 * mode SWOUT : schedule out everything
352 * mode SWIN : schedule in based on cgroup for next
353 */
354void perf_cgroup_switch(struct task_struct *task, int mode)
355{
356 struct perf_cpu_context *cpuctx;
357 struct pmu *pmu;
358 unsigned long flags;
359
360 /*
361 * disable interrupts to avoid geting nr_cgroup
362 * changes via __perf_event_disable(). Also
363 * avoids preemption.
364 */
365 local_irq_save(flags);
366
367 /*
368 * we reschedule only in the presence of cgroup
369 * constrained events.
370 */
371 rcu_read_lock();
372
373 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 374 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
375 if (cpuctx->unique_pmu != pmu)
376 continue; /* ensure we process each cpuctx once */
e5d1367f 377
e5d1367f
SE
378 /*
379 * perf_cgroup_events says at least one
380 * context on this CPU has cgroup events.
381 *
382 * ctx->nr_cgroups reports the number of cgroup
383 * events for a context.
384 */
385 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
386 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
387 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
388
389 if (mode & PERF_CGROUP_SWOUT) {
390 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
391 /*
392 * must not be done before ctxswout due
393 * to event_filter_match() in event_sched_out()
394 */
395 cpuctx->cgrp = NULL;
396 }
397
398 if (mode & PERF_CGROUP_SWIN) {
e566b76e 399 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
400 /*
401 * set cgrp before ctxsw in to allow
402 * event_filter_match() to not have to pass
403 * task around
e5d1367f
SE
404 */
405 cpuctx->cgrp = perf_cgroup_from_task(task);
406 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
407 }
facc4307
PZ
408 perf_pmu_enable(cpuctx->ctx.pmu);
409 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 410 }
e5d1367f
SE
411 }
412
413 rcu_read_unlock();
414
415 local_irq_restore(flags);
416}
417
a8d757ef
SE
418static inline void perf_cgroup_sched_out(struct task_struct *task,
419 struct task_struct *next)
e5d1367f 420{
a8d757ef
SE
421 struct perf_cgroup *cgrp1;
422 struct perf_cgroup *cgrp2 = NULL;
423
424 /*
425 * we come here when we know perf_cgroup_events > 0
426 */
427 cgrp1 = perf_cgroup_from_task(task);
428
429 /*
430 * next is NULL when called from perf_event_enable_on_exec()
431 * that will systematically cause a cgroup_switch()
432 */
433 if (next)
434 cgrp2 = perf_cgroup_from_task(next);
435
436 /*
437 * only schedule out current cgroup events if we know
438 * that we are switching to a different cgroup. Otherwise,
439 * do no touch the cgroup events.
440 */
441 if (cgrp1 != cgrp2)
442 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
443}
444
a8d757ef
SE
445static inline void perf_cgroup_sched_in(struct task_struct *prev,
446 struct task_struct *task)
e5d1367f 447{
a8d757ef
SE
448 struct perf_cgroup *cgrp1;
449 struct perf_cgroup *cgrp2 = NULL;
450
451 /*
452 * we come here when we know perf_cgroup_events > 0
453 */
454 cgrp1 = perf_cgroup_from_task(task);
455
456 /* prev can never be NULL */
457 cgrp2 = perf_cgroup_from_task(prev);
458
459 /*
460 * only need to schedule in cgroup events if we are changing
461 * cgroup during ctxsw. Cgroup events were not scheduled
462 * out of ctxsw out if that was not the case.
463 */
464 if (cgrp1 != cgrp2)
465 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
466}
467
468static inline int perf_cgroup_connect(int fd, struct perf_event *event,
469 struct perf_event_attr *attr,
470 struct perf_event *group_leader)
471{
472 struct perf_cgroup *cgrp;
473 struct cgroup_subsys_state *css;
2903ff01
AV
474 struct fd f = fdget(fd);
475 int ret = 0;
e5d1367f 476
2903ff01 477 if (!f.file)
e5d1367f
SE
478 return -EBADF;
479
2903ff01 480 css = cgroup_css_from_dir(f.file, perf_subsys_id);
3db272c0
LZ
481 if (IS_ERR(css)) {
482 ret = PTR_ERR(css);
483 goto out;
484 }
e5d1367f
SE
485
486 cgrp = container_of(css, struct perf_cgroup, css);
487 event->cgrp = cgrp;
488
f75e18cb 489 /* must be done before we fput() the file */
9c5da09d
SQ
490 if (!perf_tryget_cgroup(event)) {
491 event->cgrp = NULL;
492 ret = -ENOENT;
493 goto out;
494 }
f75e18cb 495
e5d1367f
SE
496 /*
497 * all events in a group must monitor
498 * the same cgroup because a task belongs
499 * to only one perf cgroup at a time
500 */
501 if (group_leader && group_leader->cgrp != cgrp) {
502 perf_detach_cgroup(event);
503 ret = -EINVAL;
e5d1367f 504 }
3db272c0 505out:
2903ff01 506 fdput(f);
e5d1367f
SE
507 return ret;
508}
509
510static inline void
511perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
512{
513 struct perf_cgroup_info *t;
514 t = per_cpu_ptr(event->cgrp->info, event->cpu);
515 event->shadow_ctx_time = now - t->timestamp;
516}
517
518static inline void
519perf_cgroup_defer_enabled(struct perf_event *event)
520{
521 /*
522 * when the current task's perf cgroup does not match
523 * the event's, we need to remember to call the
524 * perf_mark_enable() function the first time a task with
525 * a matching perf cgroup is scheduled in.
526 */
527 if (is_cgroup_event(event) && !perf_cgroup_match(event))
528 event->cgrp_defer_enabled = 1;
529}
530
531static inline void
532perf_cgroup_mark_enabled(struct perf_event *event,
533 struct perf_event_context *ctx)
534{
535 struct perf_event *sub;
536 u64 tstamp = perf_event_time(event);
537
538 if (!event->cgrp_defer_enabled)
539 return;
540
541 event->cgrp_defer_enabled = 0;
542
543 event->tstamp_enabled = tstamp - event->total_time_enabled;
544 list_for_each_entry(sub, &event->sibling_list, group_entry) {
545 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
546 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
547 sub->cgrp_defer_enabled = 0;
548 }
549 }
550}
551#else /* !CONFIG_CGROUP_PERF */
552
553static inline bool
554perf_cgroup_match(struct perf_event *event)
555{
556 return true;
557}
558
559static inline void perf_detach_cgroup(struct perf_event *event)
560{}
561
562static inline int is_cgroup_event(struct perf_event *event)
563{
564 return 0;
565}
566
567static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
568{
569 return 0;
570}
571
572static inline void update_cgrp_time_from_event(struct perf_event *event)
573{
574}
575
576static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
577{
578}
579
a8d757ef
SE
580static inline void perf_cgroup_sched_out(struct task_struct *task,
581 struct task_struct *next)
e5d1367f
SE
582{
583}
584
a8d757ef
SE
585static inline void perf_cgroup_sched_in(struct task_struct *prev,
586 struct task_struct *task)
e5d1367f
SE
587{
588}
589
590static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
591 struct perf_event_attr *attr,
592 struct perf_event *group_leader)
593{
594 return -EINVAL;
595}
596
597static inline void
3f7cce3c
SE
598perf_cgroup_set_timestamp(struct task_struct *task,
599 struct perf_event_context *ctx)
e5d1367f
SE
600{
601}
602
603void
604perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
605{
606}
607
608static inline void
609perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
610{
611}
612
613static inline u64 perf_cgroup_event_time(struct perf_event *event)
614{
615 return 0;
616}
617
618static inline void
619perf_cgroup_defer_enabled(struct perf_event *event)
620{
621}
622
623static inline void
624perf_cgroup_mark_enabled(struct perf_event *event,
625 struct perf_event_context *ctx)
626{
627}
628#endif
629
33696fc0 630void perf_pmu_disable(struct pmu *pmu)
9e35ad38 631{
33696fc0
PZ
632 int *count = this_cpu_ptr(pmu->pmu_disable_count);
633 if (!(*count)++)
634 pmu->pmu_disable(pmu);
9e35ad38 635}
9e35ad38 636
33696fc0 637void perf_pmu_enable(struct pmu *pmu)
9e35ad38 638{
33696fc0
PZ
639 int *count = this_cpu_ptr(pmu->pmu_disable_count);
640 if (!--(*count))
641 pmu->pmu_enable(pmu);
9e35ad38 642}
9e35ad38 643
e9d2b064
PZ
644static DEFINE_PER_CPU(struct list_head, rotation_list);
645
646/*
647 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
648 * because they're strictly cpu affine and rotate_start is called with IRQs
649 * disabled, while rotate_context is called from IRQ context.
650 */
108b02cf 651static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 652{
108b02cf 653 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 654 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 655
e9d2b064 656 WARN_ON(!irqs_disabled());
b5ab4cd5 657
e9d2b064
PZ
658 if (list_empty(&cpuctx->rotation_list))
659 list_add(&cpuctx->rotation_list, head);
9e35ad38 660}
9e35ad38 661
cdd6c482 662static void get_ctx(struct perf_event_context *ctx)
a63eaf34 663{
e5289d4a 664 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
665}
666
cdd6c482 667static void put_ctx(struct perf_event_context *ctx)
a63eaf34 668{
564c2b21
PM
669 if (atomic_dec_and_test(&ctx->refcount)) {
670 if (ctx->parent_ctx)
671 put_ctx(ctx->parent_ctx);
c93f7669
PM
672 if (ctx->task)
673 put_task_struct(ctx->task);
cb796ff3 674 kfree_rcu(ctx, rcu_head);
564c2b21 675 }
a63eaf34
PM
676}
677
cdd6c482 678static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
679{
680 if (ctx->parent_ctx) {
681 put_ctx(ctx->parent_ctx);
682 ctx->parent_ctx = NULL;
683 }
684}
685
6844c09d
ACM
686static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
687{
688 /*
689 * only top level events have the pid namespace they were created in
690 */
691 if (event->parent)
692 event = event->parent;
693
694 return task_tgid_nr_ns(p, event->ns);
695}
696
697static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
698{
699 /*
700 * only top level events have the pid namespace they were created in
701 */
702 if (event->parent)
703 event = event->parent;
704
705 return task_pid_nr_ns(p, event->ns);
706}
707
7f453c24 708/*
cdd6c482 709 * If we inherit events we want to return the parent event id
7f453c24
PZ
710 * to userspace.
711 */
cdd6c482 712static u64 primary_event_id(struct perf_event *event)
7f453c24 713{
cdd6c482 714 u64 id = event->id;
7f453c24 715
cdd6c482
IM
716 if (event->parent)
717 id = event->parent->id;
7f453c24
PZ
718
719 return id;
720}
721
25346b93 722/*
cdd6c482 723 * Get the perf_event_context for a task and lock it.
25346b93
PM
724 * This has to cope with with the fact that until it is locked,
725 * the context could get moved to another task.
726 */
cdd6c482 727static struct perf_event_context *
8dc85d54 728perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 729{
cdd6c482 730 struct perf_event_context *ctx;
25346b93
PM
731
732 rcu_read_lock();
9ed6060d 733retry:
8dc85d54 734 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
735 if (ctx) {
736 /*
737 * If this context is a clone of another, it might
738 * get swapped for another underneath us by
cdd6c482 739 * perf_event_task_sched_out, though the
25346b93
PM
740 * rcu_read_lock() protects us from any context
741 * getting freed. Lock the context and check if it
742 * got swapped before we could get the lock, and retry
743 * if so. If we locked the right context, then it
744 * can't get swapped on us any more.
745 */
e625cce1 746 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 747 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 748 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
25346b93
PM
749 goto retry;
750 }
b49a9e7e
PZ
751
752 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 753 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
754 ctx = NULL;
755 }
25346b93
PM
756 }
757 rcu_read_unlock();
758 return ctx;
759}
760
761/*
762 * Get the context for a task and increment its pin_count so it
763 * can't get swapped to another task. This also increments its
764 * reference count so that the context can't get freed.
765 */
8dc85d54
PZ
766static struct perf_event_context *
767perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 768{
cdd6c482 769 struct perf_event_context *ctx;
25346b93
PM
770 unsigned long flags;
771
8dc85d54 772 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
773 if (ctx) {
774 ++ctx->pin_count;
e625cce1 775 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
776 }
777 return ctx;
778}
779
cdd6c482 780static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
781{
782 unsigned long flags;
783
e625cce1 784 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 785 --ctx->pin_count;
e625cce1 786 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
787}
788
f67218c3
PZ
789/*
790 * Update the record of the current time in a context.
791 */
792static void update_context_time(struct perf_event_context *ctx)
793{
794 u64 now = perf_clock();
795
796 ctx->time += now - ctx->timestamp;
797 ctx->timestamp = now;
798}
799
4158755d
SE
800static u64 perf_event_time(struct perf_event *event)
801{
802 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
803
804 if (is_cgroup_event(event))
805 return perf_cgroup_event_time(event);
806
4158755d
SE
807 return ctx ? ctx->time : 0;
808}
809
f67218c3
PZ
810/*
811 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 812 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
813 */
814static void update_event_times(struct perf_event *event)
815{
816 struct perf_event_context *ctx = event->ctx;
817 u64 run_end;
818
819 if (event->state < PERF_EVENT_STATE_INACTIVE ||
820 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
821 return;
e5d1367f
SE
822 /*
823 * in cgroup mode, time_enabled represents
824 * the time the event was enabled AND active
825 * tasks were in the monitored cgroup. This is
826 * independent of the activity of the context as
827 * there may be a mix of cgroup and non-cgroup events.
828 *
829 * That is why we treat cgroup events differently
830 * here.
831 */
832 if (is_cgroup_event(event))
46cd6a7f 833 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
834 else if (ctx->is_active)
835 run_end = ctx->time;
acd1d7c1
PZ
836 else
837 run_end = event->tstamp_stopped;
838
839 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
840
841 if (event->state == PERF_EVENT_STATE_INACTIVE)
842 run_end = event->tstamp_stopped;
843 else
4158755d 844 run_end = perf_event_time(event);
f67218c3
PZ
845
846 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 847
f67218c3
PZ
848}
849
96c21a46
PZ
850/*
851 * Update total_time_enabled and total_time_running for all events in a group.
852 */
853static void update_group_times(struct perf_event *leader)
854{
855 struct perf_event *event;
856
857 update_event_times(leader);
858 list_for_each_entry(event, &leader->sibling_list, group_entry)
859 update_event_times(event);
860}
861
889ff015
FW
862static struct list_head *
863ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
864{
865 if (event->attr.pinned)
866 return &ctx->pinned_groups;
867 else
868 return &ctx->flexible_groups;
869}
870
fccc714b 871/*
cdd6c482 872 * Add a event from the lists for its context.
fccc714b
PZ
873 * Must be called with ctx->mutex and ctx->lock held.
874 */
04289bb9 875static void
cdd6c482 876list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 877{
8a49542c
PZ
878 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
879 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
880
881 /*
8a49542c
PZ
882 * If we're a stand alone event or group leader, we go to the context
883 * list, group events are kept attached to the group so that
884 * perf_group_detach can, at all times, locate all siblings.
04289bb9 885 */
8a49542c 886 if (event->group_leader == event) {
889ff015
FW
887 struct list_head *list;
888
d6f962b5
FW
889 if (is_software_event(event))
890 event->group_flags |= PERF_GROUP_SOFTWARE;
891
889ff015
FW
892 list = ctx_group_list(event, ctx);
893 list_add_tail(&event->group_entry, list);
5c148194 894 }
592903cd 895
08309379 896 if (is_cgroup_event(event))
e5d1367f 897 ctx->nr_cgroups++;
e5d1367f 898
d010b332
SE
899 if (has_branch_stack(event))
900 ctx->nr_branch_stack++;
901
cdd6c482 902 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 903 if (!ctx->nr_events)
108b02cf 904 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
905 ctx->nr_events++;
906 if (event->attr.inherit_stat)
bfbd3381 907 ctx->nr_stat++;
04289bb9
IM
908}
909
0231bb53
JO
910/*
911 * Initialize event state based on the perf_event_attr::disabled.
912 */
913static inline void perf_event__state_init(struct perf_event *event)
914{
915 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
916 PERF_EVENT_STATE_INACTIVE;
917}
918
c320c7b7
ACM
919/*
920 * Called at perf_event creation and when events are attached/detached from a
921 * group.
922 */
923static void perf_event__read_size(struct perf_event *event)
924{
925 int entry = sizeof(u64); /* value */
926 int size = 0;
927 int nr = 1;
928
929 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
930 size += sizeof(u64);
931
932 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
933 size += sizeof(u64);
934
935 if (event->attr.read_format & PERF_FORMAT_ID)
936 entry += sizeof(u64);
937
938 if (event->attr.read_format & PERF_FORMAT_GROUP) {
939 nr += event->group_leader->nr_siblings;
940 size += sizeof(u64);
941 }
942
943 size += entry * nr;
944 event->read_size = size;
945}
946
947static void perf_event__header_size(struct perf_event *event)
948{
949 struct perf_sample_data *data;
950 u64 sample_type = event->attr.sample_type;
951 u16 size = 0;
952
953 perf_event__read_size(event);
954
955 if (sample_type & PERF_SAMPLE_IP)
956 size += sizeof(data->ip);
957
6844c09d
ACM
958 if (sample_type & PERF_SAMPLE_ADDR)
959 size += sizeof(data->addr);
960
961 if (sample_type & PERF_SAMPLE_PERIOD)
962 size += sizeof(data->period);
963
964 if (sample_type & PERF_SAMPLE_READ)
965 size += event->read_size;
966
967 event->header_size = size;
968}
969
970static void perf_event__id_header_size(struct perf_event *event)
971{
972 struct perf_sample_data *data;
973 u64 sample_type = event->attr.sample_type;
974 u16 size = 0;
975
c320c7b7
ACM
976 if (sample_type & PERF_SAMPLE_TID)
977 size += sizeof(data->tid_entry);
978
979 if (sample_type & PERF_SAMPLE_TIME)
980 size += sizeof(data->time);
981
c320c7b7
ACM
982 if (sample_type & PERF_SAMPLE_ID)
983 size += sizeof(data->id);
984
985 if (sample_type & PERF_SAMPLE_STREAM_ID)
986 size += sizeof(data->stream_id);
987
988 if (sample_type & PERF_SAMPLE_CPU)
989 size += sizeof(data->cpu_entry);
990
6844c09d 991 event->id_header_size = size;
c320c7b7
ACM
992}
993
8a49542c
PZ
994static void perf_group_attach(struct perf_event *event)
995{
c320c7b7 996 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 997
74c3337c
PZ
998 /*
999 * We can have double attach due to group movement in perf_event_open.
1000 */
1001 if (event->attach_state & PERF_ATTACH_GROUP)
1002 return;
1003
8a49542c
PZ
1004 event->attach_state |= PERF_ATTACH_GROUP;
1005
1006 if (group_leader == event)
1007 return;
1008
1009 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1010 !is_software_event(event))
1011 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1012
1013 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1014 group_leader->nr_siblings++;
c320c7b7
ACM
1015
1016 perf_event__header_size(group_leader);
1017
1018 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1019 perf_event__header_size(pos);
8a49542c
PZ
1020}
1021
a63eaf34 1022/*
cdd6c482 1023 * Remove a event from the lists for its context.
fccc714b 1024 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1025 */
04289bb9 1026static void
cdd6c482 1027list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1028{
68cacd29 1029 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1030 /*
1031 * We can have double detach due to exit/hot-unplug + close.
1032 */
1033 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1034 return;
8a49542c
PZ
1035
1036 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1037
68cacd29 1038 if (is_cgroup_event(event)) {
e5d1367f 1039 ctx->nr_cgroups--;
68cacd29
SE
1040 cpuctx = __get_cpu_context(ctx);
1041 /*
1042 * if there are no more cgroup events
1043 * then cler cgrp to avoid stale pointer
1044 * in update_cgrp_time_from_cpuctx()
1045 */
1046 if (!ctx->nr_cgroups)
1047 cpuctx->cgrp = NULL;
1048 }
e5d1367f 1049
d010b332
SE
1050 if (has_branch_stack(event))
1051 ctx->nr_branch_stack--;
1052
cdd6c482
IM
1053 ctx->nr_events--;
1054 if (event->attr.inherit_stat)
bfbd3381 1055 ctx->nr_stat--;
8bc20959 1056
cdd6c482 1057 list_del_rcu(&event->event_entry);
04289bb9 1058
8a49542c
PZ
1059 if (event->group_leader == event)
1060 list_del_init(&event->group_entry);
5c148194 1061
96c21a46 1062 update_group_times(event);
b2e74a26
SE
1063
1064 /*
1065 * If event was in error state, then keep it
1066 * that way, otherwise bogus counts will be
1067 * returned on read(). The only way to get out
1068 * of error state is by explicit re-enabling
1069 * of the event
1070 */
1071 if (event->state > PERF_EVENT_STATE_OFF)
1072 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1073}
1074
8a49542c 1075static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1076{
1077 struct perf_event *sibling, *tmp;
8a49542c
PZ
1078 struct list_head *list = NULL;
1079
1080 /*
1081 * We can have double detach due to exit/hot-unplug + close.
1082 */
1083 if (!(event->attach_state & PERF_ATTACH_GROUP))
1084 return;
1085
1086 event->attach_state &= ~PERF_ATTACH_GROUP;
1087
1088 /*
1089 * If this is a sibling, remove it from its group.
1090 */
1091 if (event->group_leader != event) {
1092 list_del_init(&event->group_entry);
1093 event->group_leader->nr_siblings--;
c320c7b7 1094 goto out;
8a49542c
PZ
1095 }
1096
1097 if (!list_empty(&event->group_entry))
1098 list = &event->group_entry;
2e2af50b 1099
04289bb9 1100 /*
cdd6c482
IM
1101 * If this was a group event with sibling events then
1102 * upgrade the siblings to singleton events by adding them
8a49542c 1103 * to whatever list we are on.
04289bb9 1104 */
cdd6c482 1105 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1106 if (list)
1107 list_move_tail(&sibling->group_entry, list);
04289bb9 1108 sibling->group_leader = sibling;
d6f962b5
FW
1109
1110 /* Inherit group flags from the previous leader */
1111 sibling->group_flags = event->group_flags;
04289bb9 1112 }
c320c7b7
ACM
1113
1114out:
1115 perf_event__header_size(event->group_leader);
1116
1117 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1118 perf_event__header_size(tmp);
04289bb9
IM
1119}
1120
fa66f07a
SE
1121static inline int
1122event_filter_match(struct perf_event *event)
1123{
e5d1367f
SE
1124 return (event->cpu == -1 || event->cpu == smp_processor_id())
1125 && perf_cgroup_match(event);
fa66f07a
SE
1126}
1127
9ffcfa6f
SE
1128static void
1129event_sched_out(struct perf_event *event,
3b6f9e5c 1130 struct perf_cpu_context *cpuctx,
cdd6c482 1131 struct perf_event_context *ctx)
3b6f9e5c 1132{
4158755d 1133 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1134 u64 delta;
1135 /*
1136 * An event which could not be activated because of
1137 * filter mismatch still needs to have its timings
1138 * maintained, otherwise bogus information is return
1139 * via read() for time_enabled, time_running:
1140 */
1141 if (event->state == PERF_EVENT_STATE_INACTIVE
1142 && !event_filter_match(event)) {
e5d1367f 1143 delta = tstamp - event->tstamp_stopped;
fa66f07a 1144 event->tstamp_running += delta;
4158755d 1145 event->tstamp_stopped = tstamp;
fa66f07a
SE
1146 }
1147
cdd6c482 1148 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1149 return;
3b6f9e5c 1150
cdd6c482
IM
1151 event->state = PERF_EVENT_STATE_INACTIVE;
1152 if (event->pending_disable) {
1153 event->pending_disable = 0;
1154 event->state = PERF_EVENT_STATE_OFF;
970892a9 1155 }
4158755d 1156 event->tstamp_stopped = tstamp;
a4eaf7f1 1157 event->pmu->del(event, 0);
cdd6c482 1158 event->oncpu = -1;
3b6f9e5c 1159
cdd6c482 1160 if (!is_software_event(event))
3b6f9e5c
PM
1161 cpuctx->active_oncpu--;
1162 ctx->nr_active--;
0f5a2601
PZ
1163 if (event->attr.freq && event->attr.sample_freq)
1164 ctx->nr_freq--;
cdd6c482 1165 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1166 cpuctx->exclusive = 0;
1167}
1168
d859e29f 1169static void
cdd6c482 1170group_sched_out(struct perf_event *group_event,
d859e29f 1171 struct perf_cpu_context *cpuctx,
cdd6c482 1172 struct perf_event_context *ctx)
d859e29f 1173{
cdd6c482 1174 struct perf_event *event;
fa66f07a 1175 int state = group_event->state;
d859e29f 1176
cdd6c482 1177 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1178
1179 /*
1180 * Schedule out siblings (if any):
1181 */
cdd6c482
IM
1182 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1183 event_sched_out(event, cpuctx, ctx);
d859e29f 1184
fa66f07a 1185 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1186 cpuctx->exclusive = 0;
1187}
1188
0793a61d 1189/*
cdd6c482 1190 * Cross CPU call to remove a performance event
0793a61d 1191 *
cdd6c482 1192 * We disable the event on the hardware level first. After that we
0793a61d
TG
1193 * remove it from the context list.
1194 */
fe4b04fa 1195static int __perf_remove_from_context(void *info)
0793a61d 1196{
cdd6c482
IM
1197 struct perf_event *event = info;
1198 struct perf_event_context *ctx = event->ctx;
108b02cf 1199 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1200
e625cce1 1201 raw_spin_lock(&ctx->lock);
cdd6c482 1202 event_sched_out(event, cpuctx, ctx);
cdd6c482 1203 list_del_event(event, ctx);
64ce3126
PZ
1204 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1205 ctx->is_active = 0;
1206 cpuctx->task_ctx = NULL;
1207 }
e625cce1 1208 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1209
1210 return 0;
0793a61d
TG
1211}
1212
1213
1214/*
cdd6c482 1215 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1216 *
cdd6c482 1217 * CPU events are removed with a smp call. For task events we only
0793a61d 1218 * call when the task is on a CPU.
c93f7669 1219 *
cdd6c482
IM
1220 * If event->ctx is a cloned context, callers must make sure that
1221 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1222 * remains valid. This is OK when called from perf_release since
1223 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1224 * When called from perf_event_exit_task, it's OK because the
c93f7669 1225 * context has been detached from its task.
0793a61d 1226 */
fe4b04fa 1227static void perf_remove_from_context(struct perf_event *event)
0793a61d 1228{
cdd6c482 1229 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1230 struct task_struct *task = ctx->task;
1231
fe4b04fa
PZ
1232 lockdep_assert_held(&ctx->mutex);
1233
0793a61d
TG
1234 if (!task) {
1235 /*
cdd6c482 1236 * Per cpu events are removed via an smp call and
af901ca1 1237 * the removal is always successful.
0793a61d 1238 */
fe4b04fa 1239 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1240 return;
1241 }
1242
1243retry:
fe4b04fa
PZ
1244 if (!task_function_call(task, __perf_remove_from_context, event))
1245 return;
0793a61d 1246
e625cce1 1247 raw_spin_lock_irq(&ctx->lock);
0793a61d 1248 /*
fe4b04fa
PZ
1249 * If we failed to find a running task, but find the context active now
1250 * that we've acquired the ctx->lock, retry.
0793a61d 1251 */
fe4b04fa 1252 if (ctx->is_active) {
e625cce1 1253 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1254 goto retry;
1255 }
1256
1257 /*
fe4b04fa
PZ
1258 * Since the task isn't running, its safe to remove the event, us
1259 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1260 */
fe4b04fa 1261 list_del_event(event, ctx);
e625cce1 1262 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1263}
1264
d859e29f 1265/*
cdd6c482 1266 * Cross CPU call to disable a performance event
d859e29f 1267 */
500ad2d8 1268int __perf_event_disable(void *info)
d859e29f 1269{
cdd6c482 1270 struct perf_event *event = info;
cdd6c482 1271 struct perf_event_context *ctx = event->ctx;
108b02cf 1272 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1273
1274 /*
cdd6c482
IM
1275 * If this is a per-task event, need to check whether this
1276 * event's task is the current task on this cpu.
fe4b04fa
PZ
1277 *
1278 * Can trigger due to concurrent perf_event_context_sched_out()
1279 * flipping contexts around.
d859e29f 1280 */
665c2142 1281 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1282 return -EINVAL;
d859e29f 1283
e625cce1 1284 raw_spin_lock(&ctx->lock);
d859e29f
PM
1285
1286 /*
cdd6c482 1287 * If the event is on, turn it off.
d859e29f
PM
1288 * If it is in error state, leave it in error state.
1289 */
cdd6c482 1290 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1291 update_context_time(ctx);
e5d1367f 1292 update_cgrp_time_from_event(event);
cdd6c482
IM
1293 update_group_times(event);
1294 if (event == event->group_leader)
1295 group_sched_out(event, cpuctx, ctx);
d859e29f 1296 else
cdd6c482
IM
1297 event_sched_out(event, cpuctx, ctx);
1298 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1299 }
1300
e625cce1 1301 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1302
1303 return 0;
d859e29f
PM
1304}
1305
1306/*
cdd6c482 1307 * Disable a event.
c93f7669 1308 *
cdd6c482
IM
1309 * If event->ctx is a cloned context, callers must make sure that
1310 * every task struct that event->ctx->task could possibly point to
c93f7669 1311 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1312 * perf_event_for_each_child or perf_event_for_each because they
1313 * hold the top-level event's child_mutex, so any descendant that
1314 * goes to exit will block in sync_child_event.
1315 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1316 * is the current context on this CPU and preemption is disabled,
cdd6c482 1317 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1318 */
44234adc 1319void perf_event_disable(struct perf_event *event)
d859e29f 1320{
cdd6c482 1321 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1322 struct task_struct *task = ctx->task;
1323
1324 if (!task) {
1325 /*
cdd6c482 1326 * Disable the event on the cpu that it's on
d859e29f 1327 */
fe4b04fa 1328 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1329 return;
1330 }
1331
9ed6060d 1332retry:
fe4b04fa
PZ
1333 if (!task_function_call(task, __perf_event_disable, event))
1334 return;
d859e29f 1335
e625cce1 1336 raw_spin_lock_irq(&ctx->lock);
d859e29f 1337 /*
cdd6c482 1338 * If the event is still active, we need to retry the cross-call.
d859e29f 1339 */
cdd6c482 1340 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1341 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1342 /*
1343 * Reload the task pointer, it might have been changed by
1344 * a concurrent perf_event_context_sched_out().
1345 */
1346 task = ctx->task;
d859e29f
PM
1347 goto retry;
1348 }
1349
1350 /*
1351 * Since we have the lock this context can't be scheduled
1352 * in, so we can change the state safely.
1353 */
cdd6c482
IM
1354 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1355 update_group_times(event);
1356 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1357 }
e625cce1 1358 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1359}
dcfce4a0 1360EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1361
e5d1367f
SE
1362static void perf_set_shadow_time(struct perf_event *event,
1363 struct perf_event_context *ctx,
1364 u64 tstamp)
1365{
1366 /*
1367 * use the correct time source for the time snapshot
1368 *
1369 * We could get by without this by leveraging the
1370 * fact that to get to this function, the caller
1371 * has most likely already called update_context_time()
1372 * and update_cgrp_time_xx() and thus both timestamp
1373 * are identical (or very close). Given that tstamp is,
1374 * already adjusted for cgroup, we could say that:
1375 * tstamp - ctx->timestamp
1376 * is equivalent to
1377 * tstamp - cgrp->timestamp.
1378 *
1379 * Then, in perf_output_read(), the calculation would
1380 * work with no changes because:
1381 * - event is guaranteed scheduled in
1382 * - no scheduled out in between
1383 * - thus the timestamp would be the same
1384 *
1385 * But this is a bit hairy.
1386 *
1387 * So instead, we have an explicit cgroup call to remain
1388 * within the time time source all along. We believe it
1389 * is cleaner and simpler to understand.
1390 */
1391 if (is_cgroup_event(event))
1392 perf_cgroup_set_shadow_time(event, tstamp);
1393 else
1394 event->shadow_ctx_time = tstamp - ctx->timestamp;
1395}
1396
4fe757dd
PZ
1397#define MAX_INTERRUPTS (~0ULL)
1398
1399static void perf_log_throttle(struct perf_event *event, int enable);
1400
235c7fc7 1401static int
9ffcfa6f 1402event_sched_in(struct perf_event *event,
235c7fc7 1403 struct perf_cpu_context *cpuctx,
6e37738a 1404 struct perf_event_context *ctx)
235c7fc7 1405{
4158755d
SE
1406 u64 tstamp = perf_event_time(event);
1407
cdd6c482 1408 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1409 return 0;
1410
cdd6c482 1411 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1412 event->oncpu = smp_processor_id();
4fe757dd
PZ
1413
1414 /*
1415 * Unthrottle events, since we scheduled we might have missed several
1416 * ticks already, also for a heavily scheduling task there is little
1417 * guarantee it'll get a tick in a timely manner.
1418 */
1419 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1420 perf_log_throttle(event, 1);
1421 event->hw.interrupts = 0;
1422 }
1423
235c7fc7
IM
1424 /*
1425 * The new state must be visible before we turn it on in the hardware:
1426 */
1427 smp_wmb();
1428
a4eaf7f1 1429 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1430 event->state = PERF_EVENT_STATE_INACTIVE;
1431 event->oncpu = -1;
235c7fc7
IM
1432 return -EAGAIN;
1433 }
1434
4158755d 1435 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1436
e5d1367f 1437 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1438
cdd6c482 1439 if (!is_software_event(event))
3b6f9e5c 1440 cpuctx->active_oncpu++;
235c7fc7 1441 ctx->nr_active++;
0f5a2601
PZ
1442 if (event->attr.freq && event->attr.sample_freq)
1443 ctx->nr_freq++;
235c7fc7 1444
cdd6c482 1445 if (event->attr.exclusive)
3b6f9e5c
PM
1446 cpuctx->exclusive = 1;
1447
235c7fc7
IM
1448 return 0;
1449}
1450
6751b71e 1451static int
cdd6c482 1452group_sched_in(struct perf_event *group_event,
6751b71e 1453 struct perf_cpu_context *cpuctx,
6e37738a 1454 struct perf_event_context *ctx)
6751b71e 1455{
6bde9b6c 1456 struct perf_event *event, *partial_group = NULL;
51b0fe39 1457 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1458 u64 now = ctx->time;
1459 bool simulate = false;
6751b71e 1460
cdd6c482 1461 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1462 return 0;
1463
ad5133b7 1464 pmu->start_txn(pmu);
6bde9b6c 1465
9ffcfa6f 1466 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1467 pmu->cancel_txn(pmu);
6751b71e 1468 return -EAGAIN;
90151c35 1469 }
6751b71e
PM
1470
1471 /*
1472 * Schedule in siblings as one group (if any):
1473 */
cdd6c482 1474 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1475 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1476 partial_group = event;
6751b71e
PM
1477 goto group_error;
1478 }
1479 }
1480
9ffcfa6f 1481 if (!pmu->commit_txn(pmu))
6e85158c 1482 return 0;
9ffcfa6f 1483
6751b71e
PM
1484group_error:
1485 /*
1486 * Groups can be scheduled in as one unit only, so undo any
1487 * partial group before returning:
d7842da4
SE
1488 * The events up to the failed event are scheduled out normally,
1489 * tstamp_stopped will be updated.
1490 *
1491 * The failed events and the remaining siblings need to have
1492 * their timings updated as if they had gone thru event_sched_in()
1493 * and event_sched_out(). This is required to get consistent timings
1494 * across the group. This also takes care of the case where the group
1495 * could never be scheduled by ensuring tstamp_stopped is set to mark
1496 * the time the event was actually stopped, such that time delta
1497 * calculation in update_event_times() is correct.
6751b71e 1498 */
cdd6c482
IM
1499 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1500 if (event == partial_group)
d7842da4
SE
1501 simulate = true;
1502
1503 if (simulate) {
1504 event->tstamp_running += now - event->tstamp_stopped;
1505 event->tstamp_stopped = now;
1506 } else {
1507 event_sched_out(event, cpuctx, ctx);
1508 }
6751b71e 1509 }
9ffcfa6f 1510 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1511
ad5133b7 1512 pmu->cancel_txn(pmu);
90151c35 1513
6751b71e
PM
1514 return -EAGAIN;
1515}
1516
3b6f9e5c 1517/*
cdd6c482 1518 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1519 */
cdd6c482 1520static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1521 struct perf_cpu_context *cpuctx,
1522 int can_add_hw)
1523{
1524 /*
cdd6c482 1525 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1526 */
d6f962b5 1527 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1528 return 1;
1529 /*
1530 * If an exclusive group is already on, no other hardware
cdd6c482 1531 * events can go on.
3b6f9e5c
PM
1532 */
1533 if (cpuctx->exclusive)
1534 return 0;
1535 /*
1536 * If this group is exclusive and there are already
cdd6c482 1537 * events on the CPU, it can't go on.
3b6f9e5c 1538 */
cdd6c482 1539 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1540 return 0;
1541 /*
1542 * Otherwise, try to add it if all previous groups were able
1543 * to go on.
1544 */
1545 return can_add_hw;
1546}
1547
cdd6c482
IM
1548static void add_event_to_ctx(struct perf_event *event,
1549 struct perf_event_context *ctx)
53cfbf59 1550{
4158755d
SE
1551 u64 tstamp = perf_event_time(event);
1552
cdd6c482 1553 list_add_event(event, ctx);
8a49542c 1554 perf_group_attach(event);
4158755d
SE
1555 event->tstamp_enabled = tstamp;
1556 event->tstamp_running = tstamp;
1557 event->tstamp_stopped = tstamp;
53cfbf59
PM
1558}
1559
2c29ef0f
PZ
1560static void task_ctx_sched_out(struct perf_event_context *ctx);
1561static void
1562ctx_sched_in(struct perf_event_context *ctx,
1563 struct perf_cpu_context *cpuctx,
1564 enum event_type_t event_type,
1565 struct task_struct *task);
fe4b04fa 1566
dce5855b
PZ
1567static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1568 struct perf_event_context *ctx,
1569 struct task_struct *task)
1570{
1571 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1572 if (ctx)
1573 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1574 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1575 if (ctx)
1576 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1577}
1578
0793a61d 1579/*
cdd6c482 1580 * Cross CPU call to install and enable a performance event
682076ae
PZ
1581 *
1582 * Must be called with ctx->mutex held
0793a61d 1583 */
fe4b04fa 1584static int __perf_install_in_context(void *info)
0793a61d 1585{
cdd6c482
IM
1586 struct perf_event *event = info;
1587 struct perf_event_context *ctx = event->ctx;
108b02cf 1588 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1589 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1590 struct task_struct *task = current;
1591
b58f6b0d 1592 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1593 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1594
1595 /*
2c29ef0f 1596 * If there was an active task_ctx schedule it out.
0793a61d 1597 */
b58f6b0d 1598 if (task_ctx)
2c29ef0f 1599 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1600
1601 /*
1602 * If the context we're installing events in is not the
1603 * active task_ctx, flip them.
1604 */
1605 if (ctx->task && task_ctx != ctx) {
1606 if (task_ctx)
1607 raw_spin_unlock(&task_ctx->lock);
1608 raw_spin_lock(&ctx->lock);
1609 task_ctx = ctx;
1610 }
1611
1612 if (task_ctx) {
1613 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1614 task = task_ctx->task;
1615 }
b58f6b0d 1616
2c29ef0f 1617 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1618
4af4998b 1619 update_context_time(ctx);
e5d1367f
SE
1620 /*
1621 * update cgrp time only if current cgrp
1622 * matches event->cgrp. Must be done before
1623 * calling add_event_to_ctx()
1624 */
1625 update_cgrp_time_from_event(event);
0793a61d 1626
cdd6c482 1627 add_event_to_ctx(event, ctx);
0793a61d 1628
d859e29f 1629 /*
2c29ef0f 1630 * Schedule everything back in
d859e29f 1631 */
dce5855b 1632 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1633
1634 perf_pmu_enable(cpuctx->ctx.pmu);
1635 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1636
1637 return 0;
0793a61d
TG
1638}
1639
1640/*
cdd6c482 1641 * Attach a performance event to a context
0793a61d 1642 *
cdd6c482
IM
1643 * First we add the event to the list with the hardware enable bit
1644 * in event->hw_config cleared.
0793a61d 1645 *
cdd6c482 1646 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1647 * call to enable it in the task context. The task might have been
1648 * scheduled away, but we check this in the smp call again.
1649 */
1650static void
cdd6c482
IM
1651perf_install_in_context(struct perf_event_context *ctx,
1652 struct perf_event *event,
0793a61d
TG
1653 int cpu)
1654{
1655 struct task_struct *task = ctx->task;
1656
fe4b04fa
PZ
1657 lockdep_assert_held(&ctx->mutex);
1658
c3f00c70 1659 event->ctx = ctx;
0cda4c02
YZ
1660 if (event->cpu != -1)
1661 event->cpu = cpu;
c3f00c70 1662
0793a61d
TG
1663 if (!task) {
1664 /*
cdd6c482 1665 * Per cpu events are installed via an smp call and
af901ca1 1666 * the install is always successful.
0793a61d 1667 */
fe4b04fa 1668 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1669 return;
1670 }
1671
0793a61d 1672retry:
fe4b04fa
PZ
1673 if (!task_function_call(task, __perf_install_in_context, event))
1674 return;
0793a61d 1675
e625cce1 1676 raw_spin_lock_irq(&ctx->lock);
0793a61d 1677 /*
fe4b04fa
PZ
1678 * If we failed to find a running task, but find the context active now
1679 * that we've acquired the ctx->lock, retry.
0793a61d 1680 */
fe4b04fa 1681 if (ctx->is_active) {
e625cce1 1682 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1683 goto retry;
1684 }
1685
1686 /*
fe4b04fa
PZ
1687 * Since the task isn't running, its safe to add the event, us holding
1688 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1689 */
fe4b04fa 1690 add_event_to_ctx(event, ctx);
e625cce1 1691 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1692}
1693
fa289bec 1694/*
cdd6c482 1695 * Put a event into inactive state and update time fields.
fa289bec
PM
1696 * Enabling the leader of a group effectively enables all
1697 * the group members that aren't explicitly disabled, so we
1698 * have to update their ->tstamp_enabled also.
1699 * Note: this works for group members as well as group leaders
1700 * since the non-leader members' sibling_lists will be empty.
1701 */
1d9b482e 1702static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1703{
cdd6c482 1704 struct perf_event *sub;
4158755d 1705 u64 tstamp = perf_event_time(event);
fa289bec 1706
cdd6c482 1707 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1708 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1709 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1710 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1711 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1712 }
fa289bec
PM
1713}
1714
d859e29f 1715/*
cdd6c482 1716 * Cross CPU call to enable a performance event
d859e29f 1717 */
fe4b04fa 1718static int __perf_event_enable(void *info)
04289bb9 1719{
cdd6c482 1720 struct perf_event *event = info;
cdd6c482
IM
1721 struct perf_event_context *ctx = event->ctx;
1722 struct perf_event *leader = event->group_leader;
108b02cf 1723 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1724 int err;
04289bb9 1725
fe4b04fa
PZ
1726 if (WARN_ON_ONCE(!ctx->is_active))
1727 return -EINVAL;
3cbed429 1728
e625cce1 1729 raw_spin_lock(&ctx->lock);
4af4998b 1730 update_context_time(ctx);
d859e29f 1731
cdd6c482 1732 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1733 goto unlock;
e5d1367f
SE
1734
1735 /*
1736 * set current task's cgroup time reference point
1737 */
3f7cce3c 1738 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1739
1d9b482e 1740 __perf_event_mark_enabled(event);
04289bb9 1741
e5d1367f
SE
1742 if (!event_filter_match(event)) {
1743 if (is_cgroup_event(event))
1744 perf_cgroup_defer_enabled(event);
f4c4176f 1745 goto unlock;
e5d1367f 1746 }
f4c4176f 1747
04289bb9 1748 /*
cdd6c482 1749 * If the event is in a group and isn't the group leader,
d859e29f 1750 * then don't put it on unless the group is on.
04289bb9 1751 */
cdd6c482 1752 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 1753 goto unlock;
3b6f9e5c 1754
cdd6c482 1755 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 1756 err = -EEXIST;
e758a33d 1757 } else {
cdd6c482 1758 if (event == leader)
6e37738a 1759 err = group_sched_in(event, cpuctx, ctx);
e758a33d 1760 else
6e37738a 1761 err = event_sched_in(event, cpuctx, ctx);
e758a33d 1762 }
d859e29f
PM
1763
1764 if (err) {
1765 /*
cdd6c482 1766 * If this event can't go on and it's part of a
d859e29f
PM
1767 * group, then the whole group has to come off.
1768 */
cdd6c482 1769 if (leader != event)
d859e29f 1770 group_sched_out(leader, cpuctx, ctx);
0d48696f 1771 if (leader->attr.pinned) {
53cfbf59 1772 update_group_times(leader);
cdd6c482 1773 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 1774 }
d859e29f
PM
1775 }
1776
9ed6060d 1777unlock:
e625cce1 1778 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1779
1780 return 0;
d859e29f
PM
1781}
1782
1783/*
cdd6c482 1784 * Enable a event.
c93f7669 1785 *
cdd6c482
IM
1786 * If event->ctx is a cloned context, callers must make sure that
1787 * every task struct that event->ctx->task could possibly point to
c93f7669 1788 * remains valid. This condition is satisfied when called through
cdd6c482
IM
1789 * perf_event_for_each_child or perf_event_for_each as described
1790 * for perf_event_disable.
d859e29f 1791 */
44234adc 1792void perf_event_enable(struct perf_event *event)
d859e29f 1793{
cdd6c482 1794 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1795 struct task_struct *task = ctx->task;
1796
1797 if (!task) {
1798 /*
cdd6c482 1799 * Enable the event on the cpu that it's on
d859e29f 1800 */
fe4b04fa 1801 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
1802 return;
1803 }
1804
e625cce1 1805 raw_spin_lock_irq(&ctx->lock);
cdd6c482 1806 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
1807 goto out;
1808
1809 /*
cdd6c482
IM
1810 * If the event is in error state, clear that first.
1811 * That way, if we see the event in error state below, we
d859e29f
PM
1812 * know that it has gone back into error state, as distinct
1813 * from the task having been scheduled away before the
1814 * cross-call arrived.
1815 */
cdd6c482
IM
1816 if (event->state == PERF_EVENT_STATE_ERROR)
1817 event->state = PERF_EVENT_STATE_OFF;
d859e29f 1818
9ed6060d 1819retry:
fe4b04fa 1820 if (!ctx->is_active) {
1d9b482e 1821 __perf_event_mark_enabled(event);
fe4b04fa
PZ
1822 goto out;
1823 }
1824
e625cce1 1825 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1826
1827 if (!task_function_call(task, __perf_event_enable, event))
1828 return;
d859e29f 1829
e625cce1 1830 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
1831
1832 /*
cdd6c482 1833 * If the context is active and the event is still off,
d859e29f
PM
1834 * we need to retry the cross-call.
1835 */
fe4b04fa
PZ
1836 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1837 /*
1838 * task could have been flipped by a concurrent
1839 * perf_event_context_sched_out()
1840 */
1841 task = ctx->task;
d859e29f 1842 goto retry;
fe4b04fa 1843 }
fa289bec 1844
9ed6060d 1845out:
e625cce1 1846 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1847}
dcfce4a0 1848EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 1849
26ca5c11 1850int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 1851{
2023b359 1852 /*
cdd6c482 1853 * not supported on inherited events
2023b359 1854 */
2e939d1d 1855 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
1856 return -EINVAL;
1857
cdd6c482
IM
1858 atomic_add(refresh, &event->event_limit);
1859 perf_event_enable(event);
2023b359
PZ
1860
1861 return 0;
79f14641 1862}
26ca5c11 1863EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 1864
5b0311e1
FW
1865static void ctx_sched_out(struct perf_event_context *ctx,
1866 struct perf_cpu_context *cpuctx,
1867 enum event_type_t event_type)
235c7fc7 1868{
cdd6c482 1869 struct perf_event *event;
db24d33e 1870 int is_active = ctx->is_active;
235c7fc7 1871
db24d33e 1872 ctx->is_active &= ~event_type;
cdd6c482 1873 if (likely(!ctx->nr_events))
facc4307
PZ
1874 return;
1875
4af4998b 1876 update_context_time(ctx);
e5d1367f 1877 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 1878 if (!ctx->nr_active)
facc4307 1879 return;
5b0311e1 1880
075e0b00 1881 perf_pmu_disable(ctx->pmu);
db24d33e 1882 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
1883 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1884 group_sched_out(event, cpuctx, ctx);
9ed6060d 1885 }
889ff015 1886
db24d33e 1887 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 1888 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 1889 group_sched_out(event, cpuctx, ctx);
9ed6060d 1890 }
1b9a644f 1891 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
1892}
1893
564c2b21
PM
1894/*
1895 * Test whether two contexts are equivalent, i.e. whether they
1896 * have both been cloned from the same version of the same context
cdd6c482
IM
1897 * and they both have the same number of enabled events.
1898 * If the number of enabled events is the same, then the set
1899 * of enabled events should be the same, because these are both
1900 * inherited contexts, therefore we can't access individual events
564c2b21 1901 * in them directly with an fd; we can only enable/disable all
cdd6c482 1902 * events via prctl, or enable/disable all events in a family
564c2b21
PM
1903 * via ioctl, which will have the same effect on both contexts.
1904 */
cdd6c482
IM
1905static int context_equiv(struct perf_event_context *ctx1,
1906 struct perf_event_context *ctx2)
564c2b21
PM
1907{
1908 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 1909 && ctx1->parent_gen == ctx2->parent_gen
25346b93 1910 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
1911}
1912
cdd6c482
IM
1913static void __perf_event_sync_stat(struct perf_event *event,
1914 struct perf_event *next_event)
bfbd3381
PZ
1915{
1916 u64 value;
1917
cdd6c482 1918 if (!event->attr.inherit_stat)
bfbd3381
PZ
1919 return;
1920
1921 /*
cdd6c482 1922 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
1923 * because we're in the middle of a context switch and have IRQs
1924 * disabled, which upsets smp_call_function_single(), however
cdd6c482 1925 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
1926 * don't need to use it.
1927 */
cdd6c482
IM
1928 switch (event->state) {
1929 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
1930 event->pmu->read(event);
1931 /* fall-through */
bfbd3381 1932
cdd6c482
IM
1933 case PERF_EVENT_STATE_INACTIVE:
1934 update_event_times(event);
bfbd3381
PZ
1935 break;
1936
1937 default:
1938 break;
1939 }
1940
1941 /*
cdd6c482 1942 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
1943 * values when we flip the contexts.
1944 */
e7850595
PZ
1945 value = local64_read(&next_event->count);
1946 value = local64_xchg(&event->count, value);
1947 local64_set(&next_event->count, value);
bfbd3381 1948
cdd6c482
IM
1949 swap(event->total_time_enabled, next_event->total_time_enabled);
1950 swap(event->total_time_running, next_event->total_time_running);
19d2e755 1951
bfbd3381 1952 /*
19d2e755 1953 * Since we swizzled the values, update the user visible data too.
bfbd3381 1954 */
cdd6c482
IM
1955 perf_event_update_userpage(event);
1956 perf_event_update_userpage(next_event);
bfbd3381
PZ
1957}
1958
1959#define list_next_entry(pos, member) \
1960 list_entry(pos->member.next, typeof(*pos), member)
1961
cdd6c482
IM
1962static void perf_event_sync_stat(struct perf_event_context *ctx,
1963 struct perf_event_context *next_ctx)
bfbd3381 1964{
cdd6c482 1965 struct perf_event *event, *next_event;
bfbd3381
PZ
1966
1967 if (!ctx->nr_stat)
1968 return;
1969
02ffdbc8
PZ
1970 update_context_time(ctx);
1971
cdd6c482
IM
1972 event = list_first_entry(&ctx->event_list,
1973 struct perf_event, event_entry);
bfbd3381 1974
cdd6c482
IM
1975 next_event = list_first_entry(&next_ctx->event_list,
1976 struct perf_event, event_entry);
bfbd3381 1977
cdd6c482
IM
1978 while (&event->event_entry != &ctx->event_list &&
1979 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 1980
cdd6c482 1981 __perf_event_sync_stat(event, next_event);
bfbd3381 1982
cdd6c482
IM
1983 event = list_next_entry(event, event_entry);
1984 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
1985 }
1986}
1987
fe4b04fa
PZ
1988static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1989 struct task_struct *next)
0793a61d 1990{
8dc85d54 1991 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
1992 struct perf_event_context *next_ctx;
1993 struct perf_event_context *parent;
108b02cf 1994 struct perf_cpu_context *cpuctx;
c93f7669 1995 int do_switch = 1;
0793a61d 1996
108b02cf
PZ
1997 if (likely(!ctx))
1998 return;
10989fb2 1999
108b02cf
PZ
2000 cpuctx = __get_cpu_context(ctx);
2001 if (!cpuctx->task_ctx)
0793a61d
TG
2002 return;
2003
c93f7669
PM
2004 rcu_read_lock();
2005 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 2006 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
2007 if (parent && next_ctx &&
2008 rcu_dereference(next_ctx->parent_ctx) == parent) {
2009 /*
2010 * Looks like the two contexts are clones, so we might be
2011 * able to optimize the context switch. We lock both
2012 * contexts and check that they are clones under the
2013 * lock (including re-checking that neither has been
2014 * uncloned in the meantime). It doesn't matter which
2015 * order we take the locks because no other cpu could
2016 * be trying to lock both of these tasks.
2017 */
e625cce1
TG
2018 raw_spin_lock(&ctx->lock);
2019 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2020 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2021 /*
2022 * XXX do we need a memory barrier of sorts
cdd6c482 2023 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2024 */
8dc85d54
PZ
2025 task->perf_event_ctxp[ctxn] = next_ctx;
2026 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2027 ctx->task = next;
2028 next_ctx->task = task;
2029 do_switch = 0;
bfbd3381 2030
cdd6c482 2031 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2032 }
e625cce1
TG
2033 raw_spin_unlock(&next_ctx->lock);
2034 raw_spin_unlock(&ctx->lock);
564c2b21 2035 }
c93f7669 2036 rcu_read_unlock();
564c2b21 2037
c93f7669 2038 if (do_switch) {
facc4307 2039 raw_spin_lock(&ctx->lock);
5b0311e1 2040 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2041 cpuctx->task_ctx = NULL;
facc4307 2042 raw_spin_unlock(&ctx->lock);
c93f7669 2043 }
0793a61d
TG
2044}
2045
8dc85d54
PZ
2046#define for_each_task_context_nr(ctxn) \
2047 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2048
2049/*
2050 * Called from scheduler to remove the events of the current task,
2051 * with interrupts disabled.
2052 *
2053 * We stop each event and update the event value in event->count.
2054 *
2055 * This does not protect us against NMI, but disable()
2056 * sets the disabled bit in the control field of event _before_
2057 * accessing the event control register. If a NMI hits, then it will
2058 * not restart the event.
2059 */
ab0cce56
JO
2060void __perf_event_task_sched_out(struct task_struct *task,
2061 struct task_struct *next)
8dc85d54
PZ
2062{
2063 int ctxn;
2064
8dc85d54
PZ
2065 for_each_task_context_nr(ctxn)
2066 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2067
2068 /*
2069 * if cgroup events exist on this CPU, then we need
2070 * to check if we have to switch out PMU state.
2071 * cgroup event are system-wide mode only
2072 */
2073 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2074 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2075}
2076
04dc2dbb 2077static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2078{
108b02cf 2079 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2080
a63eaf34
PM
2081 if (!cpuctx->task_ctx)
2082 return;
012b84da
IM
2083
2084 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2085 return;
2086
04dc2dbb 2087 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2088 cpuctx->task_ctx = NULL;
2089}
2090
5b0311e1
FW
2091/*
2092 * Called with IRQs disabled
2093 */
2094static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2095 enum event_type_t event_type)
2096{
2097 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2098}
2099
235c7fc7 2100static void
5b0311e1 2101ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2102 struct perf_cpu_context *cpuctx)
0793a61d 2103{
cdd6c482 2104 struct perf_event *event;
0793a61d 2105
889ff015
FW
2106 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2107 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2108 continue;
5632ab12 2109 if (!event_filter_match(event))
3b6f9e5c
PM
2110 continue;
2111
e5d1367f
SE
2112 /* may need to reset tstamp_enabled */
2113 if (is_cgroup_event(event))
2114 perf_cgroup_mark_enabled(event, ctx);
2115
8c9ed8e1 2116 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2117 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2118
2119 /*
2120 * If this pinned group hasn't been scheduled,
2121 * put it in error state.
2122 */
cdd6c482
IM
2123 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2124 update_group_times(event);
2125 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2126 }
3b6f9e5c 2127 }
5b0311e1
FW
2128}
2129
2130static void
2131ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2132 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2133{
2134 struct perf_event *event;
2135 int can_add_hw = 1;
3b6f9e5c 2136
889ff015
FW
2137 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2138 /* Ignore events in OFF or ERROR state */
2139 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2140 continue;
04289bb9
IM
2141 /*
2142 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2143 * of events:
04289bb9 2144 */
5632ab12 2145 if (!event_filter_match(event))
0793a61d
TG
2146 continue;
2147
e5d1367f
SE
2148 /* may need to reset tstamp_enabled */
2149 if (is_cgroup_event(event))
2150 perf_cgroup_mark_enabled(event, ctx);
2151
9ed6060d 2152 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2153 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2154 can_add_hw = 0;
9ed6060d 2155 }
0793a61d 2156 }
5b0311e1
FW
2157}
2158
2159static void
2160ctx_sched_in(struct perf_event_context *ctx,
2161 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2162 enum event_type_t event_type,
2163 struct task_struct *task)
5b0311e1 2164{
e5d1367f 2165 u64 now;
db24d33e 2166 int is_active = ctx->is_active;
e5d1367f 2167
db24d33e 2168 ctx->is_active |= event_type;
5b0311e1 2169 if (likely(!ctx->nr_events))
facc4307 2170 return;
5b0311e1 2171
e5d1367f
SE
2172 now = perf_clock();
2173 ctx->timestamp = now;
3f7cce3c 2174 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2175 /*
2176 * First go through the list and put on any pinned groups
2177 * in order to give them the best chance of going on.
2178 */
db24d33e 2179 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2180 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2181
2182 /* Then walk through the lower prio flexible groups */
db24d33e 2183 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2184 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2185}
2186
329c0e01 2187static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2188 enum event_type_t event_type,
2189 struct task_struct *task)
329c0e01
FW
2190{
2191 struct perf_event_context *ctx = &cpuctx->ctx;
2192
e5d1367f 2193 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2194}
2195
e5d1367f
SE
2196static void perf_event_context_sched_in(struct perf_event_context *ctx,
2197 struct task_struct *task)
235c7fc7 2198{
108b02cf 2199 struct perf_cpu_context *cpuctx;
235c7fc7 2200
108b02cf 2201 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2202 if (cpuctx->task_ctx == ctx)
2203 return;
2204
facc4307 2205 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2206 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2207 /*
2208 * We want to keep the following priority order:
2209 * cpu pinned (that don't need to move), task pinned,
2210 * cpu flexible, task flexible.
2211 */
2212 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2213
1d5f003f
GN
2214 if (ctx->nr_events)
2215 cpuctx->task_ctx = ctx;
9b33fa6b 2216
86b47c25
GN
2217 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2218
facc4307
PZ
2219 perf_pmu_enable(ctx->pmu);
2220 perf_ctx_unlock(cpuctx, ctx);
2221
b5ab4cd5
PZ
2222 /*
2223 * Since these rotations are per-cpu, we need to ensure the
2224 * cpu-context we got scheduled on is actually rotating.
2225 */
108b02cf 2226 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2227}
2228
d010b332
SE
2229/*
2230 * When sampling the branck stack in system-wide, it may be necessary
2231 * to flush the stack on context switch. This happens when the branch
2232 * stack does not tag its entries with the pid of the current task.
2233 * Otherwise it becomes impossible to associate a branch entry with a
2234 * task. This ambiguity is more likely to appear when the branch stack
2235 * supports priv level filtering and the user sets it to monitor only
2236 * at the user level (which could be a useful measurement in system-wide
2237 * mode). In that case, the risk is high of having a branch stack with
2238 * branch from multiple tasks. Flushing may mean dropping the existing
2239 * entries or stashing them somewhere in the PMU specific code layer.
2240 *
2241 * This function provides the context switch callback to the lower code
2242 * layer. It is invoked ONLY when there is at least one system-wide context
2243 * with at least one active event using taken branch sampling.
2244 */
2245static void perf_branch_stack_sched_in(struct task_struct *prev,
2246 struct task_struct *task)
2247{
2248 struct perf_cpu_context *cpuctx;
2249 struct pmu *pmu;
2250 unsigned long flags;
2251
2252 /* no need to flush branch stack if not changing task */
2253 if (prev == task)
2254 return;
2255
2256 local_irq_save(flags);
2257
2258 rcu_read_lock();
2259
2260 list_for_each_entry_rcu(pmu, &pmus, entry) {
2261 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2262
2263 /*
2264 * check if the context has at least one
2265 * event using PERF_SAMPLE_BRANCH_STACK
2266 */
2267 if (cpuctx->ctx.nr_branch_stack > 0
2268 && pmu->flush_branch_stack) {
2269
2270 pmu = cpuctx->ctx.pmu;
2271
2272 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2273
2274 perf_pmu_disable(pmu);
2275
2276 pmu->flush_branch_stack();
2277
2278 perf_pmu_enable(pmu);
2279
2280 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2281 }
2282 }
2283
2284 rcu_read_unlock();
2285
2286 local_irq_restore(flags);
2287}
2288
8dc85d54
PZ
2289/*
2290 * Called from scheduler to add the events of the current task
2291 * with interrupts disabled.
2292 *
2293 * We restore the event value and then enable it.
2294 *
2295 * This does not protect us against NMI, but enable()
2296 * sets the enabled bit in the control field of event _before_
2297 * accessing the event control register. If a NMI hits, then it will
2298 * keep the event running.
2299 */
ab0cce56
JO
2300void __perf_event_task_sched_in(struct task_struct *prev,
2301 struct task_struct *task)
8dc85d54
PZ
2302{
2303 struct perf_event_context *ctx;
2304 int ctxn;
2305
2306 for_each_task_context_nr(ctxn) {
2307 ctx = task->perf_event_ctxp[ctxn];
2308 if (likely(!ctx))
2309 continue;
2310
e5d1367f 2311 perf_event_context_sched_in(ctx, task);
8dc85d54 2312 }
e5d1367f
SE
2313 /*
2314 * if cgroup events exist on this CPU, then we need
2315 * to check if we have to switch in PMU state.
2316 * cgroup event are system-wide mode only
2317 */
2318 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2319 perf_cgroup_sched_in(prev, task);
d010b332
SE
2320
2321 /* check for system-wide branch_stack events */
2322 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2323 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2324}
2325
abd50713
PZ
2326static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2327{
2328 u64 frequency = event->attr.sample_freq;
2329 u64 sec = NSEC_PER_SEC;
2330 u64 divisor, dividend;
2331
2332 int count_fls, nsec_fls, frequency_fls, sec_fls;
2333
2334 count_fls = fls64(count);
2335 nsec_fls = fls64(nsec);
2336 frequency_fls = fls64(frequency);
2337 sec_fls = 30;
2338
2339 /*
2340 * We got @count in @nsec, with a target of sample_freq HZ
2341 * the target period becomes:
2342 *
2343 * @count * 10^9
2344 * period = -------------------
2345 * @nsec * sample_freq
2346 *
2347 */
2348
2349 /*
2350 * Reduce accuracy by one bit such that @a and @b converge
2351 * to a similar magnitude.
2352 */
fe4b04fa 2353#define REDUCE_FLS(a, b) \
abd50713
PZ
2354do { \
2355 if (a##_fls > b##_fls) { \
2356 a >>= 1; \
2357 a##_fls--; \
2358 } else { \
2359 b >>= 1; \
2360 b##_fls--; \
2361 } \
2362} while (0)
2363
2364 /*
2365 * Reduce accuracy until either term fits in a u64, then proceed with
2366 * the other, so that finally we can do a u64/u64 division.
2367 */
2368 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2369 REDUCE_FLS(nsec, frequency);
2370 REDUCE_FLS(sec, count);
2371 }
2372
2373 if (count_fls + sec_fls > 64) {
2374 divisor = nsec * frequency;
2375
2376 while (count_fls + sec_fls > 64) {
2377 REDUCE_FLS(count, sec);
2378 divisor >>= 1;
2379 }
2380
2381 dividend = count * sec;
2382 } else {
2383 dividend = count * sec;
2384
2385 while (nsec_fls + frequency_fls > 64) {
2386 REDUCE_FLS(nsec, frequency);
2387 dividend >>= 1;
2388 }
2389
2390 divisor = nsec * frequency;
2391 }
2392
f6ab91ad
PZ
2393 if (!divisor)
2394 return dividend;
2395
abd50713
PZ
2396 return div64_u64(dividend, divisor);
2397}
2398
e050e3f0
SE
2399static DEFINE_PER_CPU(int, perf_throttled_count);
2400static DEFINE_PER_CPU(u64, perf_throttled_seq);
2401
f39d47ff 2402static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2403{
cdd6c482 2404 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2405 s64 period, sample_period;
bd2b5b12
PZ
2406 s64 delta;
2407
abd50713 2408 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2409
2410 delta = (s64)(period - hwc->sample_period);
2411 delta = (delta + 7) / 8; /* low pass filter */
2412
2413 sample_period = hwc->sample_period + delta;
2414
2415 if (!sample_period)
2416 sample_period = 1;
2417
bd2b5b12 2418 hwc->sample_period = sample_period;
abd50713 2419
e7850595 2420 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2421 if (disable)
2422 event->pmu->stop(event, PERF_EF_UPDATE);
2423
e7850595 2424 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2425
2426 if (disable)
2427 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2428 }
bd2b5b12
PZ
2429}
2430
e050e3f0
SE
2431/*
2432 * combine freq adjustment with unthrottling to avoid two passes over the
2433 * events. At the same time, make sure, having freq events does not change
2434 * the rate of unthrottling as that would introduce bias.
2435 */
2436static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2437 int needs_unthr)
60db5e09 2438{
cdd6c482
IM
2439 struct perf_event *event;
2440 struct hw_perf_event *hwc;
e050e3f0 2441 u64 now, period = TICK_NSEC;
abd50713 2442 s64 delta;
60db5e09 2443
e050e3f0
SE
2444 /*
2445 * only need to iterate over all events iff:
2446 * - context have events in frequency mode (needs freq adjust)
2447 * - there are events to unthrottle on this cpu
2448 */
2449 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2450 return;
2451
e050e3f0 2452 raw_spin_lock(&ctx->lock);
f39d47ff 2453 perf_pmu_disable(ctx->pmu);
e050e3f0 2454
03541f8b 2455 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2456 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2457 continue;
2458
5632ab12 2459 if (!event_filter_match(event))
5d27c23d
PZ
2460 continue;
2461
cdd6c482 2462 hwc = &event->hw;
6a24ed6c 2463
e050e3f0
SE
2464 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2465 hwc->interrupts = 0;
cdd6c482 2466 perf_log_throttle(event, 1);
a4eaf7f1 2467 event->pmu->start(event, 0);
a78ac325
PZ
2468 }
2469
cdd6c482 2470 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2471 continue;
2472
e050e3f0
SE
2473 /*
2474 * stop the event and update event->count
2475 */
2476 event->pmu->stop(event, PERF_EF_UPDATE);
2477
e7850595 2478 now = local64_read(&event->count);
abd50713
PZ
2479 delta = now - hwc->freq_count_stamp;
2480 hwc->freq_count_stamp = now;
60db5e09 2481
e050e3f0
SE
2482 /*
2483 * restart the event
2484 * reload only if value has changed
f39d47ff
SE
2485 * we have stopped the event so tell that
2486 * to perf_adjust_period() to avoid stopping it
2487 * twice.
e050e3f0 2488 */
abd50713 2489 if (delta > 0)
f39d47ff 2490 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2491
2492 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2493 }
e050e3f0 2494
f39d47ff 2495 perf_pmu_enable(ctx->pmu);
e050e3f0 2496 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2497}
2498
235c7fc7 2499/*
cdd6c482 2500 * Round-robin a context's events:
235c7fc7 2501 */
cdd6c482 2502static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2503{
dddd3379
TG
2504 /*
2505 * Rotate the first entry last of non-pinned groups. Rotation might be
2506 * disabled by the inheritance code.
2507 */
2508 if (!ctx->rotate_disable)
2509 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2510}
2511
b5ab4cd5 2512/*
e9d2b064
PZ
2513 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2514 * because they're strictly cpu affine and rotate_start is called with IRQs
2515 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2516 */
e9d2b064 2517static void perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2518{
8dc85d54 2519 struct perf_event_context *ctx = NULL;
e050e3f0 2520 int rotate = 0, remove = 1;
7fc23a53 2521
b5ab4cd5 2522 if (cpuctx->ctx.nr_events) {
e9d2b064 2523 remove = 0;
b5ab4cd5
PZ
2524 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2525 rotate = 1;
2526 }
235c7fc7 2527
8dc85d54 2528 ctx = cpuctx->task_ctx;
b5ab4cd5 2529 if (ctx && ctx->nr_events) {
e9d2b064 2530 remove = 0;
b5ab4cd5
PZ
2531 if (ctx->nr_events != ctx->nr_active)
2532 rotate = 1;
2533 }
9717e6cd 2534
e050e3f0 2535 if (!rotate)
0f5a2601
PZ
2536 goto done;
2537
facc4307 2538 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2539 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2540
e050e3f0
SE
2541 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2542 if (ctx)
2543 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2544
e050e3f0
SE
2545 rotate_ctx(&cpuctx->ctx);
2546 if (ctx)
2547 rotate_ctx(ctx);
235c7fc7 2548
e050e3f0 2549 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2550
0f5a2601
PZ
2551 perf_pmu_enable(cpuctx->ctx.pmu);
2552 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2553done:
e9d2b064
PZ
2554 if (remove)
2555 list_del_init(&cpuctx->rotation_list);
e9d2b064
PZ
2556}
2557
2558void perf_event_task_tick(void)
2559{
2560 struct list_head *head = &__get_cpu_var(rotation_list);
2561 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2562 struct perf_event_context *ctx;
2563 int throttled;
b5ab4cd5 2564
e9d2b064
PZ
2565 WARN_ON(!irqs_disabled());
2566
e050e3f0
SE
2567 __this_cpu_inc(perf_throttled_seq);
2568 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2569
e9d2b064 2570 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2571 ctx = &cpuctx->ctx;
2572 perf_adjust_freq_unthr_context(ctx, throttled);
2573
2574 ctx = cpuctx->task_ctx;
2575 if (ctx)
2576 perf_adjust_freq_unthr_context(ctx, throttled);
2577
e9d2b064
PZ
2578 if (cpuctx->jiffies_interval == 1 ||
2579 !(jiffies % cpuctx->jiffies_interval))
2580 perf_rotate_context(cpuctx);
2581 }
0793a61d
TG
2582}
2583
889ff015
FW
2584static int event_enable_on_exec(struct perf_event *event,
2585 struct perf_event_context *ctx)
2586{
2587 if (!event->attr.enable_on_exec)
2588 return 0;
2589
2590 event->attr.enable_on_exec = 0;
2591 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2592 return 0;
2593
1d9b482e 2594 __perf_event_mark_enabled(event);
889ff015
FW
2595
2596 return 1;
2597}
2598
57e7986e 2599/*
cdd6c482 2600 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2601 * This expects task == current.
2602 */
8dc85d54 2603static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2604{
cdd6c482 2605 struct perf_event *event;
57e7986e
PM
2606 unsigned long flags;
2607 int enabled = 0;
889ff015 2608 int ret;
57e7986e
PM
2609
2610 local_irq_save(flags);
cdd6c482 2611 if (!ctx || !ctx->nr_events)
57e7986e
PM
2612 goto out;
2613
e566b76e
SE
2614 /*
2615 * We must ctxsw out cgroup events to avoid conflict
2616 * when invoking perf_task_event_sched_in() later on
2617 * in this function. Otherwise we end up trying to
2618 * ctxswin cgroup events which are already scheduled
2619 * in.
2620 */
a8d757ef 2621 perf_cgroup_sched_out(current, NULL);
57e7986e 2622
e625cce1 2623 raw_spin_lock(&ctx->lock);
04dc2dbb 2624 task_ctx_sched_out(ctx);
57e7986e 2625
b79387ef 2626 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2627 ret = event_enable_on_exec(event, ctx);
2628 if (ret)
2629 enabled = 1;
57e7986e
PM
2630 }
2631
2632 /*
cdd6c482 2633 * Unclone this context if we enabled any event.
57e7986e 2634 */
71a851b4
PZ
2635 if (enabled)
2636 unclone_ctx(ctx);
57e7986e 2637
e625cce1 2638 raw_spin_unlock(&ctx->lock);
57e7986e 2639
e566b76e
SE
2640 /*
2641 * Also calls ctxswin for cgroup events, if any:
2642 */
e5d1367f 2643 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2644out:
57e7986e
PM
2645 local_irq_restore(flags);
2646}
2647
0793a61d 2648/*
cdd6c482 2649 * Cross CPU call to read the hardware event
0793a61d 2650 */
cdd6c482 2651static void __perf_event_read(void *info)
0793a61d 2652{
cdd6c482
IM
2653 struct perf_event *event = info;
2654 struct perf_event_context *ctx = event->ctx;
108b02cf 2655 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2656
e1ac3614
PM
2657 /*
2658 * If this is a task context, we need to check whether it is
2659 * the current task context of this cpu. If not it has been
2660 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2661 * event->count would have been updated to a recent sample
2662 * when the event was scheduled out.
e1ac3614
PM
2663 */
2664 if (ctx->task && cpuctx->task_ctx != ctx)
2665 return;
2666
e625cce1 2667 raw_spin_lock(&ctx->lock);
e5d1367f 2668 if (ctx->is_active) {
542e72fc 2669 update_context_time(ctx);
e5d1367f
SE
2670 update_cgrp_time_from_event(event);
2671 }
cdd6c482 2672 update_event_times(event);
542e72fc
PZ
2673 if (event->state == PERF_EVENT_STATE_ACTIVE)
2674 event->pmu->read(event);
e625cce1 2675 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2676}
2677
b5e58793
PZ
2678static inline u64 perf_event_count(struct perf_event *event)
2679{
e7850595 2680 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2681}
2682
cdd6c482 2683static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2684{
2685 /*
cdd6c482
IM
2686 * If event is enabled and currently active on a CPU, update the
2687 * value in the event structure:
0793a61d 2688 */
cdd6c482
IM
2689 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2690 smp_call_function_single(event->oncpu,
2691 __perf_event_read, event, 1);
2692 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2693 struct perf_event_context *ctx = event->ctx;
2694 unsigned long flags;
2695
e625cce1 2696 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2697 /*
2698 * may read while context is not active
2699 * (e.g., thread is blocked), in that case
2700 * we cannot update context time
2701 */
e5d1367f 2702 if (ctx->is_active) {
c530ccd9 2703 update_context_time(ctx);
e5d1367f
SE
2704 update_cgrp_time_from_event(event);
2705 }
cdd6c482 2706 update_event_times(event);
e625cce1 2707 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2708 }
2709
b5e58793 2710 return perf_event_count(event);
0793a61d
TG
2711}
2712
a63eaf34 2713/*
cdd6c482 2714 * Initialize the perf_event context in a task_struct:
a63eaf34 2715 */
eb184479 2716static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2717{
e625cce1 2718 raw_spin_lock_init(&ctx->lock);
a63eaf34 2719 mutex_init(&ctx->mutex);
889ff015
FW
2720 INIT_LIST_HEAD(&ctx->pinned_groups);
2721 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2722 INIT_LIST_HEAD(&ctx->event_list);
2723 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2724}
2725
2726static struct perf_event_context *
2727alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2728{
2729 struct perf_event_context *ctx;
2730
2731 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2732 if (!ctx)
2733 return NULL;
2734
2735 __perf_event_init_context(ctx);
2736 if (task) {
2737 ctx->task = task;
2738 get_task_struct(task);
0793a61d 2739 }
eb184479
PZ
2740 ctx->pmu = pmu;
2741
2742 return ctx;
a63eaf34
PM
2743}
2744
2ebd4ffb
MH
2745static struct task_struct *
2746find_lively_task_by_vpid(pid_t vpid)
2747{
2748 struct task_struct *task;
2749 int err;
0793a61d
TG
2750
2751 rcu_read_lock();
2ebd4ffb 2752 if (!vpid)
0793a61d
TG
2753 task = current;
2754 else
2ebd4ffb 2755 task = find_task_by_vpid(vpid);
0793a61d
TG
2756 if (task)
2757 get_task_struct(task);
2758 rcu_read_unlock();
2759
2760 if (!task)
2761 return ERR_PTR(-ESRCH);
2762
0793a61d 2763 /* Reuse ptrace permission checks for now. */
c93f7669
PM
2764 err = -EACCES;
2765 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2766 goto errout;
2767
2ebd4ffb
MH
2768 return task;
2769errout:
2770 put_task_struct(task);
2771 return ERR_PTR(err);
2772
2773}
2774
fe4b04fa
PZ
2775/*
2776 * Returns a matching context with refcount and pincount.
2777 */
108b02cf 2778static struct perf_event_context *
38a81da2 2779find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 2780{
cdd6c482 2781 struct perf_event_context *ctx;
22a4f650 2782 struct perf_cpu_context *cpuctx;
25346b93 2783 unsigned long flags;
8dc85d54 2784 int ctxn, err;
0793a61d 2785
22a4ec72 2786 if (!task) {
cdd6c482 2787 /* Must be root to operate on a CPU event: */
0764771d 2788 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
2789 return ERR_PTR(-EACCES);
2790
0793a61d 2791 /*
cdd6c482 2792 * We could be clever and allow to attach a event to an
0793a61d
TG
2793 * offline CPU and activate it when the CPU comes up, but
2794 * that's for later.
2795 */
f6325e30 2796 if (!cpu_online(cpu))
0793a61d
TG
2797 return ERR_PTR(-ENODEV);
2798
108b02cf 2799 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 2800 ctx = &cpuctx->ctx;
c93f7669 2801 get_ctx(ctx);
fe4b04fa 2802 ++ctx->pin_count;
0793a61d 2803
0793a61d
TG
2804 return ctx;
2805 }
2806
8dc85d54
PZ
2807 err = -EINVAL;
2808 ctxn = pmu->task_ctx_nr;
2809 if (ctxn < 0)
2810 goto errout;
2811
9ed6060d 2812retry:
8dc85d54 2813 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 2814 if (ctx) {
71a851b4 2815 unclone_ctx(ctx);
fe4b04fa 2816 ++ctx->pin_count;
e625cce1 2817 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 2818 } else {
eb184479 2819 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
2820 err = -ENOMEM;
2821 if (!ctx)
2822 goto errout;
eb184479 2823
dbe08d82
ON
2824 err = 0;
2825 mutex_lock(&task->perf_event_mutex);
2826 /*
2827 * If it has already passed perf_event_exit_task().
2828 * we must see PF_EXITING, it takes this mutex too.
2829 */
2830 if (task->flags & PF_EXITING)
2831 err = -ESRCH;
2832 else if (task->perf_event_ctxp[ctxn])
2833 err = -EAGAIN;
fe4b04fa 2834 else {
9137fb28 2835 get_ctx(ctx);
fe4b04fa 2836 ++ctx->pin_count;
dbe08d82 2837 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 2838 }
dbe08d82
ON
2839 mutex_unlock(&task->perf_event_mutex);
2840
2841 if (unlikely(err)) {
9137fb28 2842 put_ctx(ctx);
dbe08d82
ON
2843
2844 if (err == -EAGAIN)
2845 goto retry;
2846 goto errout;
a63eaf34
PM
2847 }
2848 }
2849
0793a61d 2850 return ctx;
c93f7669 2851
9ed6060d 2852errout:
c93f7669 2853 return ERR_PTR(err);
0793a61d
TG
2854}
2855
6fb2915d
LZ
2856static void perf_event_free_filter(struct perf_event *event);
2857
cdd6c482 2858static void free_event_rcu(struct rcu_head *head)
592903cd 2859{
cdd6c482 2860 struct perf_event *event;
592903cd 2861
cdd6c482
IM
2862 event = container_of(head, struct perf_event, rcu_head);
2863 if (event->ns)
2864 put_pid_ns(event->ns);
6fb2915d 2865 perf_event_free_filter(event);
cdd6c482 2866 kfree(event);
592903cd
PZ
2867}
2868
76369139 2869static void ring_buffer_put(struct ring_buffer *rb);
925d519a 2870
cdd6c482 2871static void free_event(struct perf_event *event)
f1600952 2872{
e360adbe 2873 irq_work_sync(&event->pending);
925d519a 2874
cdd6c482 2875 if (!event->parent) {
82cd6def 2876 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 2877 static_key_slow_dec_deferred(&perf_sched_events);
3af9e859 2878 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
2879 atomic_dec(&nr_mmap_events);
2880 if (event->attr.comm)
2881 atomic_dec(&nr_comm_events);
2882 if (event->attr.task)
2883 atomic_dec(&nr_task_events);
927c7a9e
FW
2884 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2885 put_callchain_buffers();
08309379
PZ
2886 if (is_cgroup_event(event)) {
2887 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 2888 static_key_slow_dec_deferred(&perf_sched_events);
08309379 2889 }
d010b332
SE
2890
2891 if (has_branch_stack(event)) {
2892 static_key_slow_dec_deferred(&perf_sched_events);
2893 /* is system-wide event */
2894 if (!(event->attach_state & PERF_ATTACH_TASK))
2895 atomic_dec(&per_cpu(perf_branch_stack_events,
2896 event->cpu));
2897 }
f344011c 2898 }
9ee318a7 2899
76369139
FW
2900 if (event->rb) {
2901 ring_buffer_put(event->rb);
2902 event->rb = NULL;
a4be7c27
PZ
2903 }
2904
e5d1367f
SE
2905 if (is_cgroup_event(event))
2906 perf_detach_cgroup(event);
2907
cdd6c482
IM
2908 if (event->destroy)
2909 event->destroy(event);
e077df4f 2910
0c67b408
PZ
2911 if (event->ctx)
2912 put_ctx(event->ctx);
2913
cdd6c482 2914 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
2915}
2916
a66a3052 2917int perf_event_release_kernel(struct perf_event *event)
0793a61d 2918{
cdd6c482 2919 struct perf_event_context *ctx = event->ctx;
0793a61d 2920
ad3a37de 2921 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
2922 /*
2923 * There are two ways this annotation is useful:
2924 *
2925 * 1) there is a lock recursion from perf_event_exit_task
2926 * see the comment there.
2927 *
2928 * 2) there is a lock-inversion with mmap_sem through
2929 * perf_event_read_group(), which takes faults while
2930 * holding ctx->mutex, however this is called after
2931 * the last filedesc died, so there is no possibility
2932 * to trigger the AB-BA case.
2933 */
2934 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 2935 raw_spin_lock_irq(&ctx->lock);
8a49542c 2936 perf_group_detach(event);
050735b0 2937 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 2938 perf_remove_from_context(event);
d859e29f 2939 mutex_unlock(&ctx->mutex);
0793a61d 2940
cdd6c482 2941 free_event(event);
0793a61d
TG
2942
2943 return 0;
2944}
a66a3052 2945EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 2946
a66a3052
PZ
2947/*
2948 * Called when the last reference to the file is gone.
2949 */
a6fa941d 2950static void put_event(struct perf_event *event)
fb0459d7 2951{
8882135b 2952 struct task_struct *owner;
fb0459d7 2953
a6fa941d
AV
2954 if (!atomic_long_dec_and_test(&event->refcount))
2955 return;
fb0459d7 2956
8882135b
PZ
2957 rcu_read_lock();
2958 owner = ACCESS_ONCE(event->owner);
2959 /*
2960 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2961 * !owner it means the list deletion is complete and we can indeed
2962 * free this event, otherwise we need to serialize on
2963 * owner->perf_event_mutex.
2964 */
2965 smp_read_barrier_depends();
2966 if (owner) {
2967 /*
2968 * Since delayed_put_task_struct() also drops the last
2969 * task reference we can safely take a new reference
2970 * while holding the rcu_read_lock().
2971 */
2972 get_task_struct(owner);
2973 }
2974 rcu_read_unlock();
2975
2976 if (owner) {
2977 mutex_lock(&owner->perf_event_mutex);
2978 /*
2979 * We have to re-check the event->owner field, if it is cleared
2980 * we raced with perf_event_exit_task(), acquiring the mutex
2981 * ensured they're done, and we can proceed with freeing the
2982 * event.
2983 */
2984 if (event->owner)
2985 list_del_init(&event->owner_entry);
2986 mutex_unlock(&owner->perf_event_mutex);
2987 put_task_struct(owner);
2988 }
2989
a6fa941d
AV
2990 perf_event_release_kernel(event);
2991}
2992
2993static int perf_release(struct inode *inode, struct file *file)
2994{
2995 put_event(file->private_data);
2996 return 0;
fb0459d7 2997}
fb0459d7 2998
59ed446f 2999u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3000{
cdd6c482 3001 struct perf_event *child;
e53c0994
PZ
3002 u64 total = 0;
3003
59ed446f
PZ
3004 *enabled = 0;
3005 *running = 0;
3006
6f10581a 3007 mutex_lock(&event->child_mutex);
cdd6c482 3008 total += perf_event_read(event);
59ed446f
PZ
3009 *enabled += event->total_time_enabled +
3010 atomic64_read(&event->child_total_time_enabled);
3011 *running += event->total_time_running +
3012 atomic64_read(&event->child_total_time_running);
3013
3014 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3015 total += perf_event_read(child);
59ed446f
PZ
3016 *enabled += child->total_time_enabled;
3017 *running += child->total_time_running;
3018 }
6f10581a 3019 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3020
3021 return total;
3022}
fb0459d7 3023EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3024
cdd6c482 3025static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3026 u64 read_format, char __user *buf)
3027{
cdd6c482 3028 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3029 int n = 0, size = 0, ret = -EFAULT;
3030 struct perf_event_context *ctx = leader->ctx;
abf4868b 3031 u64 values[5];
59ed446f 3032 u64 count, enabled, running;
abf4868b 3033
6f10581a 3034 mutex_lock(&ctx->mutex);
59ed446f 3035 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3036
3037 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3038 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3039 values[n++] = enabled;
3040 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3041 values[n++] = running;
abf4868b
PZ
3042 values[n++] = count;
3043 if (read_format & PERF_FORMAT_ID)
3044 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3045
3046 size = n * sizeof(u64);
3047
3048 if (copy_to_user(buf, values, size))
6f10581a 3049 goto unlock;
3dab77fb 3050
6f10581a 3051 ret = size;
3dab77fb 3052
65abc865 3053 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3054 n = 0;
3dab77fb 3055
59ed446f 3056 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3057 if (read_format & PERF_FORMAT_ID)
3058 values[n++] = primary_event_id(sub);
3059
3060 size = n * sizeof(u64);
3061
184d3da8 3062 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3063 ret = -EFAULT;
3064 goto unlock;
3065 }
abf4868b
PZ
3066
3067 ret += size;
3dab77fb 3068 }
6f10581a
PZ
3069unlock:
3070 mutex_unlock(&ctx->mutex);
3dab77fb 3071
abf4868b 3072 return ret;
3dab77fb
PZ
3073}
3074
cdd6c482 3075static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3076 u64 read_format, char __user *buf)
3077{
59ed446f 3078 u64 enabled, running;
3dab77fb
PZ
3079 u64 values[4];
3080 int n = 0;
3081
59ed446f
PZ
3082 values[n++] = perf_event_read_value(event, &enabled, &running);
3083 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3084 values[n++] = enabled;
3085 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3086 values[n++] = running;
3dab77fb 3087 if (read_format & PERF_FORMAT_ID)
cdd6c482 3088 values[n++] = primary_event_id(event);
3dab77fb
PZ
3089
3090 if (copy_to_user(buf, values, n * sizeof(u64)))
3091 return -EFAULT;
3092
3093 return n * sizeof(u64);
3094}
3095
0793a61d 3096/*
cdd6c482 3097 * Read the performance event - simple non blocking version for now
0793a61d
TG
3098 */
3099static ssize_t
cdd6c482 3100perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3101{
cdd6c482 3102 u64 read_format = event->attr.read_format;
3dab77fb 3103 int ret;
0793a61d 3104
3b6f9e5c 3105 /*
cdd6c482 3106 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3107 * error state (i.e. because it was pinned but it couldn't be
3108 * scheduled on to the CPU at some point).
3109 */
cdd6c482 3110 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3111 return 0;
3112
c320c7b7 3113 if (count < event->read_size)
3dab77fb
PZ
3114 return -ENOSPC;
3115
cdd6c482 3116 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3117 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3118 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3119 else
cdd6c482 3120 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3121
3dab77fb 3122 return ret;
0793a61d
TG
3123}
3124
0793a61d
TG
3125static ssize_t
3126perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3127{
cdd6c482 3128 struct perf_event *event = file->private_data;
0793a61d 3129
cdd6c482 3130 return perf_read_hw(event, buf, count);
0793a61d
TG
3131}
3132
3133static unsigned int perf_poll(struct file *file, poll_table *wait)
3134{
cdd6c482 3135 struct perf_event *event = file->private_data;
76369139 3136 struct ring_buffer *rb;
c33a0bc4 3137 unsigned int events = POLL_HUP;
c7138f37 3138
10c6db11
PZ
3139 /*
3140 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3141 * grabs the rb reference but perf_event_set_output() overrides it.
3142 * Here is the timeline for two threads T1, T2:
3143 * t0: T1, rb = rcu_dereference(event->rb)
3144 * t1: T2, old_rb = event->rb
3145 * t2: T2, event->rb = new rb
3146 * t3: T2, ring_buffer_detach(old_rb)
3147 * t4: T1, ring_buffer_attach(rb1)
3148 * t5: T1, poll_wait(event->waitq)
3149 *
3150 * To avoid this problem, we grab mmap_mutex in perf_poll()
3151 * thereby ensuring that the assignment of the new ring buffer
3152 * and the detachment of the old buffer appear atomic to perf_poll()
3153 */
3154 mutex_lock(&event->mmap_mutex);
3155
c7138f37 3156 rcu_read_lock();
76369139 3157 rb = rcu_dereference(event->rb);
10c6db11
PZ
3158 if (rb) {
3159 ring_buffer_attach(event, rb);
76369139 3160 events = atomic_xchg(&rb->poll, 0);
10c6db11 3161 }
c7138f37 3162 rcu_read_unlock();
0793a61d 3163
10c6db11
PZ
3164 mutex_unlock(&event->mmap_mutex);
3165
cdd6c482 3166 poll_wait(file, &event->waitq, wait);
0793a61d 3167
0793a61d
TG
3168 return events;
3169}
3170
cdd6c482 3171static void perf_event_reset(struct perf_event *event)
6de6a7b9 3172{
cdd6c482 3173 (void)perf_event_read(event);
e7850595 3174 local64_set(&event->count, 0);
cdd6c482 3175 perf_event_update_userpage(event);
3df5edad
PZ
3176}
3177
c93f7669 3178/*
cdd6c482
IM
3179 * Holding the top-level event's child_mutex means that any
3180 * descendant process that has inherited this event will block
3181 * in sync_child_event if it goes to exit, thus satisfying the
3182 * task existence requirements of perf_event_enable/disable.
c93f7669 3183 */
cdd6c482
IM
3184static void perf_event_for_each_child(struct perf_event *event,
3185 void (*func)(struct perf_event *))
3df5edad 3186{
cdd6c482 3187 struct perf_event *child;
3df5edad 3188
cdd6c482
IM
3189 WARN_ON_ONCE(event->ctx->parent_ctx);
3190 mutex_lock(&event->child_mutex);
3191 func(event);
3192 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3193 func(child);
cdd6c482 3194 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3195}
3196
cdd6c482
IM
3197static void perf_event_for_each(struct perf_event *event,
3198 void (*func)(struct perf_event *))
3df5edad 3199{
cdd6c482
IM
3200 struct perf_event_context *ctx = event->ctx;
3201 struct perf_event *sibling;
3df5edad 3202
75f937f2
PZ
3203 WARN_ON_ONCE(ctx->parent_ctx);
3204 mutex_lock(&ctx->mutex);
cdd6c482 3205 event = event->group_leader;
75f937f2 3206
cdd6c482 3207 perf_event_for_each_child(event, func);
cdd6c482 3208 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3209 perf_event_for_each_child(sibling, func);
75f937f2 3210 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3211}
3212
cdd6c482 3213static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3214{
cdd6c482 3215 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3216 int ret = 0;
3217 u64 value;
3218
6c7e550f 3219 if (!is_sampling_event(event))
08247e31
PZ
3220 return -EINVAL;
3221
ad0cf347 3222 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3223 return -EFAULT;
3224
3225 if (!value)
3226 return -EINVAL;
3227
e625cce1 3228 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3229 if (event->attr.freq) {
3230 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3231 ret = -EINVAL;
3232 goto unlock;
3233 }
3234
cdd6c482 3235 event->attr.sample_freq = value;
08247e31 3236 } else {
cdd6c482
IM
3237 event->attr.sample_period = value;
3238 event->hw.sample_period = value;
08247e31
PZ
3239 }
3240unlock:
e625cce1 3241 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3242
3243 return ret;
3244}
3245
ac9721f3
PZ
3246static const struct file_operations perf_fops;
3247
2903ff01 3248static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3249{
2903ff01
AV
3250 struct fd f = fdget(fd);
3251 if (!f.file)
3252 return -EBADF;
ac9721f3 3253
2903ff01
AV
3254 if (f.file->f_op != &perf_fops) {
3255 fdput(f);
3256 return -EBADF;
ac9721f3 3257 }
2903ff01
AV
3258 *p = f;
3259 return 0;
ac9721f3
PZ
3260}
3261
3262static int perf_event_set_output(struct perf_event *event,
3263 struct perf_event *output_event);
6fb2915d 3264static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3265
d859e29f
PM
3266static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3267{
cdd6c482
IM
3268 struct perf_event *event = file->private_data;
3269 void (*func)(struct perf_event *);
3df5edad 3270 u32 flags = arg;
d859e29f
PM
3271
3272 switch (cmd) {
cdd6c482
IM
3273 case PERF_EVENT_IOC_ENABLE:
3274 func = perf_event_enable;
d859e29f 3275 break;
cdd6c482
IM
3276 case PERF_EVENT_IOC_DISABLE:
3277 func = perf_event_disable;
79f14641 3278 break;
cdd6c482
IM
3279 case PERF_EVENT_IOC_RESET:
3280 func = perf_event_reset;
6de6a7b9 3281 break;
3df5edad 3282
cdd6c482
IM
3283 case PERF_EVENT_IOC_REFRESH:
3284 return perf_event_refresh(event, arg);
08247e31 3285
cdd6c482
IM
3286 case PERF_EVENT_IOC_PERIOD:
3287 return perf_event_period(event, (u64 __user *)arg);
08247e31 3288
cdd6c482 3289 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3290 {
ac9721f3 3291 int ret;
ac9721f3 3292 if (arg != -1) {
2903ff01
AV
3293 struct perf_event *output_event;
3294 struct fd output;
3295 ret = perf_fget_light(arg, &output);
3296 if (ret)
3297 return ret;
3298 output_event = output.file->private_data;
3299 ret = perf_event_set_output(event, output_event);
3300 fdput(output);
3301 } else {
3302 ret = perf_event_set_output(event, NULL);
ac9721f3 3303 }
ac9721f3
PZ
3304 return ret;
3305 }
a4be7c27 3306
6fb2915d
LZ
3307 case PERF_EVENT_IOC_SET_FILTER:
3308 return perf_event_set_filter(event, (void __user *)arg);
3309
d859e29f 3310 default:
3df5edad 3311 return -ENOTTY;
d859e29f 3312 }
3df5edad
PZ
3313
3314 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3315 perf_event_for_each(event, func);
3df5edad 3316 else
cdd6c482 3317 perf_event_for_each_child(event, func);
3df5edad
PZ
3318
3319 return 0;
d859e29f
PM
3320}
3321
cdd6c482 3322int perf_event_task_enable(void)
771d7cde 3323{
cdd6c482 3324 struct perf_event *event;
771d7cde 3325
cdd6c482
IM
3326 mutex_lock(&current->perf_event_mutex);
3327 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3328 perf_event_for_each_child(event, perf_event_enable);
3329 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3330
3331 return 0;
3332}
3333
cdd6c482 3334int perf_event_task_disable(void)
771d7cde 3335{
cdd6c482 3336 struct perf_event *event;
771d7cde 3337
cdd6c482
IM
3338 mutex_lock(&current->perf_event_mutex);
3339 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3340 perf_event_for_each_child(event, perf_event_disable);
3341 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3342
3343 return 0;
3344}
3345
cdd6c482 3346static int perf_event_index(struct perf_event *event)
194002b2 3347{
a4eaf7f1
PZ
3348 if (event->hw.state & PERF_HES_STOPPED)
3349 return 0;
3350
cdd6c482 3351 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3352 return 0;
3353
35edc2a5 3354 return event->pmu->event_idx(event);
194002b2
PZ
3355}
3356
c4794295 3357static void calc_timer_values(struct perf_event *event,
e3f3541c 3358 u64 *now,
7f310a5d
EM
3359 u64 *enabled,
3360 u64 *running)
c4794295 3361{
e3f3541c 3362 u64 ctx_time;
c4794295 3363
e3f3541c
PZ
3364 *now = perf_clock();
3365 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3366 *enabled = ctx_time - event->tstamp_enabled;
3367 *running = ctx_time - event->tstamp_running;
3368}
3369
c7206205 3370void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3371{
3372}
3373
38ff667b
PZ
3374/*
3375 * Callers need to ensure there can be no nesting of this function, otherwise
3376 * the seqlock logic goes bad. We can not serialize this because the arch
3377 * code calls this from NMI context.
3378 */
cdd6c482 3379void perf_event_update_userpage(struct perf_event *event)
37d81828 3380{
cdd6c482 3381 struct perf_event_mmap_page *userpg;
76369139 3382 struct ring_buffer *rb;
e3f3541c 3383 u64 enabled, running, now;
38ff667b
PZ
3384
3385 rcu_read_lock();
0d641208
EM
3386 /*
3387 * compute total_time_enabled, total_time_running
3388 * based on snapshot values taken when the event
3389 * was last scheduled in.
3390 *
3391 * we cannot simply called update_context_time()
3392 * because of locking issue as we can be called in
3393 * NMI context
3394 */
e3f3541c 3395 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3396 rb = rcu_dereference(event->rb);
3397 if (!rb)
38ff667b
PZ
3398 goto unlock;
3399
76369139 3400 userpg = rb->user_page;
37d81828 3401
7b732a75
PZ
3402 /*
3403 * Disable preemption so as to not let the corresponding user-space
3404 * spin too long if we get preempted.
3405 */
3406 preempt_disable();
37d81828 3407 ++userpg->lock;
92f22a38 3408 barrier();
cdd6c482 3409 userpg->index = perf_event_index(event);
b5e58793 3410 userpg->offset = perf_event_count(event);
365a4038 3411 if (userpg->index)
e7850595 3412 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3413
0d641208 3414 userpg->time_enabled = enabled +
cdd6c482 3415 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3416
0d641208 3417 userpg->time_running = running +
cdd6c482 3418 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3419
c7206205 3420 arch_perf_update_userpage(userpg, now);
e3f3541c 3421
92f22a38 3422 barrier();
37d81828 3423 ++userpg->lock;
7b732a75 3424 preempt_enable();
38ff667b 3425unlock:
7b732a75 3426 rcu_read_unlock();
37d81828
PM
3427}
3428
906010b2
PZ
3429static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3430{
3431 struct perf_event *event = vma->vm_file->private_data;
76369139 3432 struct ring_buffer *rb;
906010b2
PZ
3433 int ret = VM_FAULT_SIGBUS;
3434
3435 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3436 if (vmf->pgoff == 0)
3437 ret = 0;
3438 return ret;
3439 }
3440
3441 rcu_read_lock();
76369139
FW
3442 rb = rcu_dereference(event->rb);
3443 if (!rb)
906010b2
PZ
3444 goto unlock;
3445
3446 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3447 goto unlock;
3448
76369139 3449 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3450 if (!vmf->page)
3451 goto unlock;
3452
3453 get_page(vmf->page);
3454 vmf->page->mapping = vma->vm_file->f_mapping;
3455 vmf->page->index = vmf->pgoff;
3456
3457 ret = 0;
3458unlock:
3459 rcu_read_unlock();
3460
3461 return ret;
3462}
3463
10c6db11
PZ
3464static void ring_buffer_attach(struct perf_event *event,
3465 struct ring_buffer *rb)
3466{
3467 unsigned long flags;
3468
3469 if (!list_empty(&event->rb_entry))
3470 return;
3471
3472 spin_lock_irqsave(&rb->event_lock, flags);
3473 if (!list_empty(&event->rb_entry))
3474 goto unlock;
3475
3476 list_add(&event->rb_entry, &rb->event_list);
3477unlock:
3478 spin_unlock_irqrestore(&rb->event_lock, flags);
3479}
3480
3481static void ring_buffer_detach(struct perf_event *event,
3482 struct ring_buffer *rb)
3483{
3484 unsigned long flags;
3485
3486 if (list_empty(&event->rb_entry))
3487 return;
3488
3489 spin_lock_irqsave(&rb->event_lock, flags);
3490 list_del_init(&event->rb_entry);
3491 wake_up_all(&event->waitq);
3492 spin_unlock_irqrestore(&rb->event_lock, flags);
3493}
3494
3495static void ring_buffer_wakeup(struct perf_event *event)
3496{
3497 struct ring_buffer *rb;
3498
3499 rcu_read_lock();
3500 rb = rcu_dereference(event->rb);
44b7f4b9
WD
3501 if (!rb)
3502 goto unlock;
3503
3504 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
10c6db11 3505 wake_up_all(&event->waitq);
44b7f4b9
WD
3506
3507unlock:
10c6db11
PZ
3508 rcu_read_unlock();
3509}
3510
76369139 3511static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3512{
76369139 3513 struct ring_buffer *rb;
906010b2 3514
76369139
FW
3515 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3516 rb_free(rb);
7b732a75
PZ
3517}
3518
76369139 3519static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3520{
76369139 3521 struct ring_buffer *rb;
7b732a75 3522
ac9721f3 3523 rcu_read_lock();
76369139
FW
3524 rb = rcu_dereference(event->rb);
3525 if (rb) {
3526 if (!atomic_inc_not_zero(&rb->refcount))
3527 rb = NULL;
ac9721f3
PZ
3528 }
3529 rcu_read_unlock();
3530
76369139 3531 return rb;
ac9721f3
PZ
3532}
3533
76369139 3534static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3535{
10c6db11
PZ
3536 struct perf_event *event, *n;
3537 unsigned long flags;
3538
76369139 3539 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3540 return;
7b732a75 3541
10c6db11
PZ
3542 spin_lock_irqsave(&rb->event_lock, flags);
3543 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3544 list_del_init(&event->rb_entry);
3545 wake_up_all(&event->waitq);
3546 }
3547 spin_unlock_irqrestore(&rb->event_lock, flags);
3548
76369139 3549 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3550}
3551
3552static void perf_mmap_open(struct vm_area_struct *vma)
3553{
cdd6c482 3554 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3555
cdd6c482 3556 atomic_inc(&event->mmap_count);
7b732a75
PZ
3557}
3558
3559static void perf_mmap_close(struct vm_area_struct *vma)
3560{
cdd6c482 3561 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3562
cdd6c482 3563 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
76369139 3564 unsigned long size = perf_data_size(event->rb);
ac9721f3 3565 struct user_struct *user = event->mmap_user;
76369139 3566 struct ring_buffer *rb = event->rb;
789f90fc 3567
906010b2 3568 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
bc3e53f6 3569 vma->vm_mm->pinned_vm -= event->mmap_locked;
76369139 3570 rcu_assign_pointer(event->rb, NULL);
10c6db11 3571 ring_buffer_detach(event, rb);
cdd6c482 3572 mutex_unlock(&event->mmap_mutex);
ac9721f3 3573
76369139 3574 ring_buffer_put(rb);
ac9721f3 3575 free_uid(user);
7b732a75 3576 }
37d81828
PM
3577}
3578
f0f37e2f 3579static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3580 .open = perf_mmap_open,
3581 .close = perf_mmap_close,
3582 .fault = perf_mmap_fault,
3583 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3584};
3585
3586static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3587{
cdd6c482 3588 struct perf_event *event = file->private_data;
22a4f650 3589 unsigned long user_locked, user_lock_limit;
789f90fc 3590 struct user_struct *user = current_user();
22a4f650 3591 unsigned long locked, lock_limit;
76369139 3592 struct ring_buffer *rb;
7b732a75
PZ
3593 unsigned long vma_size;
3594 unsigned long nr_pages;
789f90fc 3595 long user_extra, extra;
d57e34fd 3596 int ret = 0, flags = 0;
37d81828 3597
c7920614
PZ
3598 /*
3599 * Don't allow mmap() of inherited per-task counters. This would
3600 * create a performance issue due to all children writing to the
76369139 3601 * same rb.
c7920614
PZ
3602 */
3603 if (event->cpu == -1 && event->attr.inherit)
3604 return -EINVAL;
3605
43a21ea8 3606 if (!(vma->vm_flags & VM_SHARED))
37d81828 3607 return -EINVAL;
7b732a75
PZ
3608
3609 vma_size = vma->vm_end - vma->vm_start;
3610 nr_pages = (vma_size / PAGE_SIZE) - 1;
3611
7730d865 3612 /*
76369139 3613 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3614 * can do bitmasks instead of modulo.
3615 */
3616 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3617 return -EINVAL;
3618
7b732a75 3619 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3620 return -EINVAL;
3621
7b732a75
PZ
3622 if (vma->vm_pgoff != 0)
3623 return -EINVAL;
37d81828 3624
cdd6c482
IM
3625 WARN_ON_ONCE(event->ctx->parent_ctx);
3626 mutex_lock(&event->mmap_mutex);
76369139
FW
3627 if (event->rb) {
3628 if (event->rb->nr_pages == nr_pages)
3629 atomic_inc(&event->rb->refcount);
ac9721f3 3630 else
ebb3c4c4
PZ
3631 ret = -EINVAL;
3632 goto unlock;
3633 }
3634
789f90fc 3635 user_extra = nr_pages + 1;
cdd6c482 3636 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3637
3638 /*
3639 * Increase the limit linearly with more CPUs:
3640 */
3641 user_lock_limit *= num_online_cpus();
3642
789f90fc 3643 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3644
789f90fc
PZ
3645 extra = 0;
3646 if (user_locked > user_lock_limit)
3647 extra = user_locked - user_lock_limit;
7b732a75 3648
78d7d407 3649 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 3650 lock_limit >>= PAGE_SHIFT;
bc3e53f6 3651 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 3652
459ec28a
IM
3653 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3654 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
3655 ret = -EPERM;
3656 goto unlock;
3657 }
7b732a75 3658
76369139 3659 WARN_ON(event->rb);
906010b2 3660
d57e34fd 3661 if (vma->vm_flags & VM_WRITE)
76369139 3662 flags |= RING_BUFFER_WRITABLE;
d57e34fd 3663
4ec8363d
VW
3664 rb = rb_alloc(nr_pages,
3665 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3666 event->cpu, flags);
3667
76369139 3668 if (!rb) {
ac9721f3 3669 ret = -ENOMEM;
ebb3c4c4 3670 goto unlock;
ac9721f3 3671 }
76369139 3672 rcu_assign_pointer(event->rb, rb);
43a21ea8 3673
ac9721f3
PZ
3674 atomic_long_add(user_extra, &user->locked_vm);
3675 event->mmap_locked = extra;
3676 event->mmap_user = get_current_user();
bc3e53f6 3677 vma->vm_mm->pinned_vm += event->mmap_locked;
ac9721f3 3678
9a0f05cb
PZ
3679 perf_event_update_userpage(event);
3680
ebb3c4c4 3681unlock:
ac9721f3
PZ
3682 if (!ret)
3683 atomic_inc(&event->mmap_count);
cdd6c482 3684 mutex_unlock(&event->mmap_mutex);
37d81828 3685
314e51b9 3686 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
37d81828 3687 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
3688
3689 return ret;
37d81828
PM
3690}
3691
3c446b3d
PZ
3692static int perf_fasync(int fd, struct file *filp, int on)
3693{
496ad9aa 3694 struct inode *inode = file_inode(filp);
cdd6c482 3695 struct perf_event *event = filp->private_data;
3c446b3d
PZ
3696 int retval;
3697
3698 mutex_lock(&inode->i_mutex);
cdd6c482 3699 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
3700 mutex_unlock(&inode->i_mutex);
3701
3702 if (retval < 0)
3703 return retval;
3704
3705 return 0;
3706}
3707
0793a61d 3708static const struct file_operations perf_fops = {
3326c1ce 3709 .llseek = no_llseek,
0793a61d
TG
3710 .release = perf_release,
3711 .read = perf_read,
3712 .poll = perf_poll,
d859e29f
PM
3713 .unlocked_ioctl = perf_ioctl,
3714 .compat_ioctl = perf_ioctl,
37d81828 3715 .mmap = perf_mmap,
3c446b3d 3716 .fasync = perf_fasync,
0793a61d
TG
3717};
3718
925d519a 3719/*
cdd6c482 3720 * Perf event wakeup
925d519a
PZ
3721 *
3722 * If there's data, ensure we set the poll() state and publish everything
3723 * to user-space before waking everybody up.
3724 */
3725
cdd6c482 3726void perf_event_wakeup(struct perf_event *event)
925d519a 3727{
10c6db11 3728 ring_buffer_wakeup(event);
4c9e2542 3729
cdd6c482
IM
3730 if (event->pending_kill) {
3731 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3732 event->pending_kill = 0;
4c9e2542 3733 }
925d519a
PZ
3734}
3735
e360adbe 3736static void perf_pending_event(struct irq_work *entry)
79f14641 3737{
cdd6c482
IM
3738 struct perf_event *event = container_of(entry,
3739 struct perf_event, pending);
79f14641 3740
cdd6c482
IM
3741 if (event->pending_disable) {
3742 event->pending_disable = 0;
3743 __perf_event_disable(event);
79f14641
PZ
3744 }
3745
cdd6c482
IM
3746 if (event->pending_wakeup) {
3747 event->pending_wakeup = 0;
3748 perf_event_wakeup(event);
79f14641
PZ
3749 }
3750}
3751
39447b38
ZY
3752/*
3753 * We assume there is only KVM supporting the callbacks.
3754 * Later on, we might change it to a list if there is
3755 * another virtualization implementation supporting the callbacks.
3756 */
3757struct perf_guest_info_callbacks *perf_guest_cbs;
3758
3759int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3760{
3761 perf_guest_cbs = cbs;
3762 return 0;
3763}
3764EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3765
3766int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3767{
3768 perf_guest_cbs = NULL;
3769 return 0;
3770}
3771EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3772
4018994f
JO
3773static void
3774perf_output_sample_regs(struct perf_output_handle *handle,
3775 struct pt_regs *regs, u64 mask)
3776{
3777 int bit;
3778
3779 for_each_set_bit(bit, (const unsigned long *) &mask,
3780 sizeof(mask) * BITS_PER_BYTE) {
3781 u64 val;
3782
3783 val = perf_reg_value(regs, bit);
3784 perf_output_put(handle, val);
3785 }
3786}
3787
3788static void perf_sample_regs_user(struct perf_regs_user *regs_user,
3789 struct pt_regs *regs)
3790{
3791 if (!user_mode(regs)) {
3792 if (current->mm)
3793 regs = task_pt_regs(current);
3794 else
3795 regs = NULL;
3796 }
3797
3798 if (regs) {
3799 regs_user->regs = regs;
3800 regs_user->abi = perf_reg_abi(current);
3801 }
3802}
3803
c5ebcedb
JO
3804/*
3805 * Get remaining task size from user stack pointer.
3806 *
3807 * It'd be better to take stack vma map and limit this more
3808 * precisly, but there's no way to get it safely under interrupt,
3809 * so using TASK_SIZE as limit.
3810 */
3811static u64 perf_ustack_task_size(struct pt_regs *regs)
3812{
3813 unsigned long addr = perf_user_stack_pointer(regs);
3814
3815 if (!addr || addr >= TASK_SIZE)
3816 return 0;
3817
3818 return TASK_SIZE - addr;
3819}
3820
3821static u16
3822perf_sample_ustack_size(u16 stack_size, u16 header_size,
3823 struct pt_regs *regs)
3824{
3825 u64 task_size;
3826
3827 /* No regs, no stack pointer, no dump. */
3828 if (!regs)
3829 return 0;
3830
3831 /*
3832 * Check if we fit in with the requested stack size into the:
3833 * - TASK_SIZE
3834 * If we don't, we limit the size to the TASK_SIZE.
3835 *
3836 * - remaining sample size
3837 * If we don't, we customize the stack size to
3838 * fit in to the remaining sample size.
3839 */
3840
3841 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
3842 stack_size = min(stack_size, (u16) task_size);
3843
3844 /* Current header size plus static size and dynamic size. */
3845 header_size += 2 * sizeof(u64);
3846
3847 /* Do we fit in with the current stack dump size? */
3848 if ((u16) (header_size + stack_size) < header_size) {
3849 /*
3850 * If we overflow the maximum size for the sample,
3851 * we customize the stack dump size to fit in.
3852 */
3853 stack_size = USHRT_MAX - header_size - sizeof(u64);
3854 stack_size = round_up(stack_size, sizeof(u64));
3855 }
3856
3857 return stack_size;
3858}
3859
3860static void
3861perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
3862 struct pt_regs *regs)
3863{
3864 /* Case of a kernel thread, nothing to dump */
3865 if (!regs) {
3866 u64 size = 0;
3867 perf_output_put(handle, size);
3868 } else {
3869 unsigned long sp;
3870 unsigned int rem;
3871 u64 dyn_size;
3872
3873 /*
3874 * We dump:
3875 * static size
3876 * - the size requested by user or the best one we can fit
3877 * in to the sample max size
3878 * data
3879 * - user stack dump data
3880 * dynamic size
3881 * - the actual dumped size
3882 */
3883
3884 /* Static size. */
3885 perf_output_put(handle, dump_size);
3886
3887 /* Data. */
3888 sp = perf_user_stack_pointer(regs);
3889 rem = __output_copy_user(handle, (void *) sp, dump_size);
3890 dyn_size = dump_size - rem;
3891
3892 perf_output_skip(handle, rem);
3893
3894 /* Dynamic size. */
3895 perf_output_put(handle, dyn_size);
3896 }
3897}
3898
c980d109
ACM
3899static void __perf_event_header__init_id(struct perf_event_header *header,
3900 struct perf_sample_data *data,
3901 struct perf_event *event)
6844c09d
ACM
3902{
3903 u64 sample_type = event->attr.sample_type;
3904
3905 data->type = sample_type;
3906 header->size += event->id_header_size;
3907
3908 if (sample_type & PERF_SAMPLE_TID) {
3909 /* namespace issues */
3910 data->tid_entry.pid = perf_event_pid(event, current);
3911 data->tid_entry.tid = perf_event_tid(event, current);
3912 }
3913
3914 if (sample_type & PERF_SAMPLE_TIME)
3915 data->time = perf_clock();
3916
3917 if (sample_type & PERF_SAMPLE_ID)
3918 data->id = primary_event_id(event);
3919
3920 if (sample_type & PERF_SAMPLE_STREAM_ID)
3921 data->stream_id = event->id;
3922
3923 if (sample_type & PERF_SAMPLE_CPU) {
3924 data->cpu_entry.cpu = raw_smp_processor_id();
3925 data->cpu_entry.reserved = 0;
3926 }
3927}
3928
76369139
FW
3929void perf_event_header__init_id(struct perf_event_header *header,
3930 struct perf_sample_data *data,
3931 struct perf_event *event)
c980d109
ACM
3932{
3933 if (event->attr.sample_id_all)
3934 __perf_event_header__init_id(header, data, event);
3935}
3936
3937static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3938 struct perf_sample_data *data)
3939{
3940 u64 sample_type = data->type;
3941
3942 if (sample_type & PERF_SAMPLE_TID)
3943 perf_output_put(handle, data->tid_entry);
3944
3945 if (sample_type & PERF_SAMPLE_TIME)
3946 perf_output_put(handle, data->time);
3947
3948 if (sample_type & PERF_SAMPLE_ID)
3949 perf_output_put(handle, data->id);
3950
3951 if (sample_type & PERF_SAMPLE_STREAM_ID)
3952 perf_output_put(handle, data->stream_id);
3953
3954 if (sample_type & PERF_SAMPLE_CPU)
3955 perf_output_put(handle, data->cpu_entry);
3956}
3957
76369139
FW
3958void perf_event__output_id_sample(struct perf_event *event,
3959 struct perf_output_handle *handle,
3960 struct perf_sample_data *sample)
c980d109
ACM
3961{
3962 if (event->attr.sample_id_all)
3963 __perf_event__output_id_sample(handle, sample);
3964}
3965
3dab77fb 3966static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
3967 struct perf_event *event,
3968 u64 enabled, u64 running)
3dab77fb 3969{
cdd6c482 3970 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3971 u64 values[4];
3972 int n = 0;
3973
b5e58793 3974 values[n++] = perf_event_count(event);
3dab77fb 3975 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 3976 values[n++] = enabled +
cdd6c482 3977 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
3978 }
3979 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 3980 values[n++] = running +
cdd6c482 3981 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
3982 }
3983 if (read_format & PERF_FORMAT_ID)
cdd6c482 3984 values[n++] = primary_event_id(event);
3dab77fb 3985
76369139 3986 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3987}
3988
3989/*
cdd6c482 3990 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
3991 */
3992static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
3993 struct perf_event *event,
3994 u64 enabled, u64 running)
3dab77fb 3995{
cdd6c482
IM
3996 struct perf_event *leader = event->group_leader, *sub;
3997 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3998 u64 values[5];
3999 int n = 0;
4000
4001 values[n++] = 1 + leader->nr_siblings;
4002
4003 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4004 values[n++] = enabled;
3dab77fb
PZ
4005
4006 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4007 values[n++] = running;
3dab77fb 4008
cdd6c482 4009 if (leader != event)
3dab77fb
PZ
4010 leader->pmu->read(leader);
4011
b5e58793 4012 values[n++] = perf_event_count(leader);
3dab77fb 4013 if (read_format & PERF_FORMAT_ID)
cdd6c482 4014 values[n++] = primary_event_id(leader);
3dab77fb 4015
76369139 4016 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4017
65abc865 4018 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4019 n = 0;
4020
cdd6c482 4021 if (sub != event)
3dab77fb
PZ
4022 sub->pmu->read(sub);
4023
b5e58793 4024 values[n++] = perf_event_count(sub);
3dab77fb 4025 if (read_format & PERF_FORMAT_ID)
cdd6c482 4026 values[n++] = primary_event_id(sub);
3dab77fb 4027
76369139 4028 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4029 }
4030}
4031
eed01528
SE
4032#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4033 PERF_FORMAT_TOTAL_TIME_RUNNING)
4034
3dab77fb 4035static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4036 struct perf_event *event)
3dab77fb 4037{
e3f3541c 4038 u64 enabled = 0, running = 0, now;
eed01528
SE
4039 u64 read_format = event->attr.read_format;
4040
4041 /*
4042 * compute total_time_enabled, total_time_running
4043 * based on snapshot values taken when the event
4044 * was last scheduled in.
4045 *
4046 * we cannot simply called update_context_time()
4047 * because of locking issue as we are called in
4048 * NMI context
4049 */
c4794295 4050 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4051 calc_timer_values(event, &now, &enabled, &running);
eed01528 4052
cdd6c482 4053 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4054 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4055 else
eed01528 4056 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4057}
4058
5622f295
MM
4059void perf_output_sample(struct perf_output_handle *handle,
4060 struct perf_event_header *header,
4061 struct perf_sample_data *data,
cdd6c482 4062 struct perf_event *event)
5622f295
MM
4063{
4064 u64 sample_type = data->type;
4065
4066 perf_output_put(handle, *header);
4067
4068 if (sample_type & PERF_SAMPLE_IP)
4069 perf_output_put(handle, data->ip);
4070
4071 if (sample_type & PERF_SAMPLE_TID)
4072 perf_output_put(handle, data->tid_entry);
4073
4074 if (sample_type & PERF_SAMPLE_TIME)
4075 perf_output_put(handle, data->time);
4076
4077 if (sample_type & PERF_SAMPLE_ADDR)
4078 perf_output_put(handle, data->addr);
4079
4080 if (sample_type & PERF_SAMPLE_ID)
4081 perf_output_put(handle, data->id);
4082
4083 if (sample_type & PERF_SAMPLE_STREAM_ID)
4084 perf_output_put(handle, data->stream_id);
4085
4086 if (sample_type & PERF_SAMPLE_CPU)
4087 perf_output_put(handle, data->cpu_entry);
4088
4089 if (sample_type & PERF_SAMPLE_PERIOD)
4090 perf_output_put(handle, data->period);
4091
4092 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4093 perf_output_read(handle, event);
5622f295
MM
4094
4095 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4096 if (data->callchain) {
4097 int size = 1;
4098
4099 if (data->callchain)
4100 size += data->callchain->nr;
4101
4102 size *= sizeof(u64);
4103
76369139 4104 __output_copy(handle, data->callchain, size);
5622f295
MM
4105 } else {
4106 u64 nr = 0;
4107 perf_output_put(handle, nr);
4108 }
4109 }
4110
4111 if (sample_type & PERF_SAMPLE_RAW) {
4112 if (data->raw) {
4113 perf_output_put(handle, data->raw->size);
76369139
FW
4114 __output_copy(handle, data->raw->data,
4115 data->raw->size);
5622f295
MM
4116 } else {
4117 struct {
4118 u32 size;
4119 u32 data;
4120 } raw = {
4121 .size = sizeof(u32),
4122 .data = 0,
4123 };
4124 perf_output_put(handle, raw);
4125 }
4126 }
a7ac67ea
PZ
4127
4128 if (!event->attr.watermark) {
4129 int wakeup_events = event->attr.wakeup_events;
4130
4131 if (wakeup_events) {
4132 struct ring_buffer *rb = handle->rb;
4133 int events = local_inc_return(&rb->events);
4134
4135 if (events >= wakeup_events) {
4136 local_sub(wakeup_events, &rb->events);
4137 local_inc(&rb->wakeup);
4138 }
4139 }
4140 }
bce38cd5
SE
4141
4142 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4143 if (data->br_stack) {
4144 size_t size;
4145
4146 size = data->br_stack->nr
4147 * sizeof(struct perf_branch_entry);
4148
4149 perf_output_put(handle, data->br_stack->nr);
4150 perf_output_copy(handle, data->br_stack->entries, size);
4151 } else {
4152 /*
4153 * we always store at least the value of nr
4154 */
4155 u64 nr = 0;
4156 perf_output_put(handle, nr);
4157 }
4158 }
4018994f
JO
4159
4160 if (sample_type & PERF_SAMPLE_REGS_USER) {
4161 u64 abi = data->regs_user.abi;
4162
4163 /*
4164 * If there are no regs to dump, notice it through
4165 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4166 */
4167 perf_output_put(handle, abi);
4168
4169 if (abi) {
4170 u64 mask = event->attr.sample_regs_user;
4171 perf_output_sample_regs(handle,
4172 data->regs_user.regs,
4173 mask);
4174 }
4175 }
c5ebcedb
JO
4176
4177 if (sample_type & PERF_SAMPLE_STACK_USER)
4178 perf_output_sample_ustack(handle,
4179 data->stack_user_size,
4180 data->regs_user.regs);
5622f295
MM
4181}
4182
4183void perf_prepare_sample(struct perf_event_header *header,
4184 struct perf_sample_data *data,
cdd6c482 4185 struct perf_event *event,
5622f295 4186 struct pt_regs *regs)
7b732a75 4187{
cdd6c482 4188 u64 sample_type = event->attr.sample_type;
7b732a75 4189
cdd6c482 4190 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4191 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4192
4193 header->misc = 0;
4194 header->misc |= perf_misc_flags(regs);
6fab0192 4195
c980d109 4196 __perf_event_header__init_id(header, data, event);
6844c09d 4197
c320c7b7 4198 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4199 data->ip = perf_instruction_pointer(regs);
4200
b23f3325 4201 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4202 int size = 1;
394ee076 4203
e6dab5ff 4204 data->callchain = perf_callchain(event, regs);
5622f295
MM
4205
4206 if (data->callchain)
4207 size += data->callchain->nr;
4208
4209 header->size += size * sizeof(u64);
394ee076
PZ
4210 }
4211
3a43ce68 4212 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4213 int size = sizeof(u32);
4214
4215 if (data->raw)
4216 size += data->raw->size;
4217 else
4218 size += sizeof(u32);
4219
4220 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4221 header->size += size;
7f453c24 4222 }
bce38cd5
SE
4223
4224 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4225 int size = sizeof(u64); /* nr */
4226 if (data->br_stack) {
4227 size += data->br_stack->nr
4228 * sizeof(struct perf_branch_entry);
4229 }
4230 header->size += size;
4231 }
4018994f
JO
4232
4233 if (sample_type & PERF_SAMPLE_REGS_USER) {
4234 /* regs dump ABI info */
4235 int size = sizeof(u64);
4236
4237 perf_sample_regs_user(&data->regs_user, regs);
4238
4239 if (data->regs_user.regs) {
4240 u64 mask = event->attr.sample_regs_user;
4241 size += hweight64(mask) * sizeof(u64);
4242 }
4243
4244 header->size += size;
4245 }
c5ebcedb
JO
4246
4247 if (sample_type & PERF_SAMPLE_STACK_USER) {
4248 /*
4249 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4250 * processed as the last one or have additional check added
4251 * in case new sample type is added, because we could eat
4252 * up the rest of the sample size.
4253 */
4254 struct perf_regs_user *uregs = &data->regs_user;
4255 u16 stack_size = event->attr.sample_stack_user;
4256 u16 size = sizeof(u64);
4257
4258 if (!uregs->abi)
4259 perf_sample_regs_user(uregs, regs);
4260
4261 stack_size = perf_sample_ustack_size(stack_size, header->size,
4262 uregs->regs);
4263
4264 /*
4265 * If there is something to dump, add space for the dump
4266 * itself and for the field that tells the dynamic size,
4267 * which is how many have been actually dumped.
4268 */
4269 if (stack_size)
4270 size += sizeof(u64) + stack_size;
4271
4272 data->stack_user_size = stack_size;
4273 header->size += size;
4274 }
5622f295 4275}
7f453c24 4276
a8b0ca17 4277static void perf_event_output(struct perf_event *event,
5622f295
MM
4278 struct perf_sample_data *data,
4279 struct pt_regs *regs)
4280{
4281 struct perf_output_handle handle;
4282 struct perf_event_header header;
689802b2 4283
927c7a9e
FW
4284 /* protect the callchain buffers */
4285 rcu_read_lock();
4286
cdd6c482 4287 perf_prepare_sample(&header, data, event, regs);
5c148194 4288
a7ac67ea 4289 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4290 goto exit;
0322cd6e 4291
cdd6c482 4292 perf_output_sample(&handle, &header, data, event);
f413cdb8 4293
8a057d84 4294 perf_output_end(&handle);
927c7a9e
FW
4295
4296exit:
4297 rcu_read_unlock();
0322cd6e
PZ
4298}
4299
38b200d6 4300/*
cdd6c482 4301 * read event_id
38b200d6
PZ
4302 */
4303
4304struct perf_read_event {
4305 struct perf_event_header header;
4306
4307 u32 pid;
4308 u32 tid;
38b200d6
PZ
4309};
4310
4311static void
cdd6c482 4312perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4313 struct task_struct *task)
4314{
4315 struct perf_output_handle handle;
c980d109 4316 struct perf_sample_data sample;
dfc65094 4317 struct perf_read_event read_event = {
38b200d6 4318 .header = {
cdd6c482 4319 .type = PERF_RECORD_READ,
38b200d6 4320 .misc = 0,
c320c7b7 4321 .size = sizeof(read_event) + event->read_size,
38b200d6 4322 },
cdd6c482
IM
4323 .pid = perf_event_pid(event, task),
4324 .tid = perf_event_tid(event, task),
38b200d6 4325 };
3dab77fb 4326 int ret;
38b200d6 4327
c980d109 4328 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4329 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4330 if (ret)
4331 return;
4332
dfc65094 4333 perf_output_put(&handle, read_event);
cdd6c482 4334 perf_output_read(&handle, event);
c980d109 4335 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4336
38b200d6
PZ
4337 perf_output_end(&handle);
4338}
4339
60313ebe 4340/*
9f498cc5
PZ
4341 * task tracking -- fork/exit
4342 *
3af9e859 4343 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4344 */
4345
9f498cc5 4346struct perf_task_event {
3a80b4a3 4347 struct task_struct *task;
cdd6c482 4348 struct perf_event_context *task_ctx;
60313ebe
PZ
4349
4350 struct {
4351 struct perf_event_header header;
4352
4353 u32 pid;
4354 u32 ppid;
9f498cc5
PZ
4355 u32 tid;
4356 u32 ptid;
393b2ad8 4357 u64 time;
cdd6c482 4358 } event_id;
60313ebe
PZ
4359};
4360
cdd6c482 4361static void perf_event_task_output(struct perf_event *event,
9f498cc5 4362 struct perf_task_event *task_event)
60313ebe
PZ
4363{
4364 struct perf_output_handle handle;
c980d109 4365 struct perf_sample_data sample;
9f498cc5 4366 struct task_struct *task = task_event->task;
c980d109 4367 int ret, size = task_event->event_id.header.size;
8bb39f9a 4368
c980d109 4369 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4370
c980d109 4371 ret = perf_output_begin(&handle, event,
a7ac67ea 4372 task_event->event_id.header.size);
ef60777c 4373 if (ret)
c980d109 4374 goto out;
60313ebe 4375
cdd6c482
IM
4376 task_event->event_id.pid = perf_event_pid(event, task);
4377 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4378
cdd6c482
IM
4379 task_event->event_id.tid = perf_event_tid(event, task);
4380 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4381
cdd6c482 4382 perf_output_put(&handle, task_event->event_id);
393b2ad8 4383
c980d109
ACM
4384 perf_event__output_id_sample(event, &handle, &sample);
4385
60313ebe 4386 perf_output_end(&handle);
c980d109
ACM
4387out:
4388 task_event->event_id.header.size = size;
60313ebe
PZ
4389}
4390
cdd6c482 4391static int perf_event_task_match(struct perf_event *event)
60313ebe 4392{
6f93d0a7 4393 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4394 return 0;
4395
5632ab12 4396 if (!event_filter_match(event))
5d27c23d
PZ
4397 return 0;
4398
3af9e859
EM
4399 if (event->attr.comm || event->attr.mmap ||
4400 event->attr.mmap_data || event->attr.task)
60313ebe
PZ
4401 return 1;
4402
4403 return 0;
4404}
4405
cdd6c482 4406static void perf_event_task_ctx(struct perf_event_context *ctx,
9f498cc5 4407 struct perf_task_event *task_event)
60313ebe 4408{
cdd6c482 4409 struct perf_event *event;
60313ebe 4410
cdd6c482
IM
4411 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4412 if (perf_event_task_match(event))
4413 perf_event_task_output(event, task_event);
60313ebe 4414 }
60313ebe
PZ
4415}
4416
cdd6c482 4417static void perf_event_task_event(struct perf_task_event *task_event)
60313ebe
PZ
4418{
4419 struct perf_cpu_context *cpuctx;
8dc85d54 4420 struct perf_event_context *ctx;
108b02cf 4421 struct pmu *pmu;
8dc85d54 4422 int ctxn;
60313ebe 4423
d6ff86cf 4424 rcu_read_lock();
108b02cf 4425 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4426 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3f1f3320 4427 if (cpuctx->unique_pmu != pmu)
51676957 4428 goto next;
108b02cf 4429 perf_event_task_ctx(&cpuctx->ctx, task_event);
8dc85d54
PZ
4430
4431 ctx = task_event->task_ctx;
4432 if (!ctx) {
4433 ctxn = pmu->task_ctx_nr;
4434 if (ctxn < 0)
41945f6c 4435 goto next;
8dc85d54 4436 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
d610d98b
NK
4437 if (ctx)
4438 perf_event_task_ctx(ctx, task_event);
8dc85d54 4439 }
41945f6c
PZ
4440next:
4441 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4442 }
d610d98b
NK
4443 if (task_event->task_ctx)
4444 perf_event_task_ctx(task_event->task_ctx, task_event);
4445
60313ebe
PZ
4446 rcu_read_unlock();
4447}
4448
cdd6c482
IM
4449static void perf_event_task(struct task_struct *task,
4450 struct perf_event_context *task_ctx,
3a80b4a3 4451 int new)
60313ebe 4452{
9f498cc5 4453 struct perf_task_event task_event;
60313ebe 4454
cdd6c482
IM
4455 if (!atomic_read(&nr_comm_events) &&
4456 !atomic_read(&nr_mmap_events) &&
4457 !atomic_read(&nr_task_events))
60313ebe
PZ
4458 return;
4459
9f498cc5 4460 task_event = (struct perf_task_event){
3a80b4a3
PZ
4461 .task = task,
4462 .task_ctx = task_ctx,
cdd6c482 4463 .event_id = {
60313ebe 4464 .header = {
cdd6c482 4465 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4466 .misc = 0,
cdd6c482 4467 .size = sizeof(task_event.event_id),
60313ebe 4468 },
573402db
PZ
4469 /* .pid */
4470 /* .ppid */
9f498cc5
PZ
4471 /* .tid */
4472 /* .ptid */
6f93d0a7 4473 .time = perf_clock(),
60313ebe
PZ
4474 },
4475 };
4476
cdd6c482 4477 perf_event_task_event(&task_event);
9f498cc5
PZ
4478}
4479
cdd6c482 4480void perf_event_fork(struct task_struct *task)
9f498cc5 4481{
cdd6c482 4482 perf_event_task(task, NULL, 1);
60313ebe
PZ
4483}
4484
8d1b2d93
PZ
4485/*
4486 * comm tracking
4487 */
4488
4489struct perf_comm_event {
22a4f650
IM
4490 struct task_struct *task;
4491 char *comm;
8d1b2d93
PZ
4492 int comm_size;
4493
4494 struct {
4495 struct perf_event_header header;
4496
4497 u32 pid;
4498 u32 tid;
cdd6c482 4499 } event_id;
8d1b2d93
PZ
4500};
4501
cdd6c482 4502static void perf_event_comm_output(struct perf_event *event,
8d1b2d93
PZ
4503 struct perf_comm_event *comm_event)
4504{
4505 struct perf_output_handle handle;
c980d109 4506 struct perf_sample_data sample;
cdd6c482 4507 int size = comm_event->event_id.header.size;
c980d109
ACM
4508 int ret;
4509
4510 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4511 ret = perf_output_begin(&handle, event,
a7ac67ea 4512 comm_event->event_id.header.size);
8d1b2d93
PZ
4513
4514 if (ret)
c980d109 4515 goto out;
8d1b2d93 4516
cdd6c482
IM
4517 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4518 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4519
cdd6c482 4520 perf_output_put(&handle, comm_event->event_id);
76369139 4521 __output_copy(&handle, comm_event->comm,
8d1b2d93 4522 comm_event->comm_size);
c980d109
ACM
4523
4524 perf_event__output_id_sample(event, &handle, &sample);
4525
8d1b2d93 4526 perf_output_end(&handle);
c980d109
ACM
4527out:
4528 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4529}
4530
cdd6c482 4531static int perf_event_comm_match(struct perf_event *event)
8d1b2d93 4532{
6f93d0a7 4533 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4534 return 0;
4535
5632ab12 4536 if (!event_filter_match(event))
5d27c23d
PZ
4537 return 0;
4538
cdd6c482 4539 if (event->attr.comm)
8d1b2d93
PZ
4540 return 1;
4541
4542 return 0;
4543}
4544
cdd6c482 4545static void perf_event_comm_ctx(struct perf_event_context *ctx,
8d1b2d93
PZ
4546 struct perf_comm_event *comm_event)
4547{
cdd6c482 4548 struct perf_event *event;
8d1b2d93 4549
cdd6c482
IM
4550 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4551 if (perf_event_comm_match(event))
4552 perf_event_comm_output(event, comm_event);
8d1b2d93 4553 }
8d1b2d93
PZ
4554}
4555
cdd6c482 4556static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93
PZ
4557{
4558 struct perf_cpu_context *cpuctx;
cdd6c482 4559 struct perf_event_context *ctx;
413ee3b4 4560 char comm[TASK_COMM_LEN];
8d1b2d93 4561 unsigned int size;
108b02cf 4562 struct pmu *pmu;
8dc85d54 4563 int ctxn;
8d1b2d93 4564
413ee3b4 4565 memset(comm, 0, sizeof(comm));
96b02d78 4566 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4567 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4568
4569 comm_event->comm = comm;
4570 comm_event->comm_size = size;
4571
cdd6c482 4572 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
f6595f3a 4573 rcu_read_lock();
108b02cf 4574 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4575 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3f1f3320 4576 if (cpuctx->unique_pmu != pmu)
51676957 4577 goto next;
108b02cf 4578 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
8dc85d54
PZ
4579
4580 ctxn = pmu->task_ctx_nr;
4581 if (ctxn < 0)
41945f6c 4582 goto next;
8dc85d54
PZ
4583
4584 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4585 if (ctx)
4586 perf_event_comm_ctx(ctx, comm_event);
41945f6c
PZ
4587next:
4588 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4589 }
665c2142 4590 rcu_read_unlock();
8d1b2d93
PZ
4591}
4592
cdd6c482 4593void perf_event_comm(struct task_struct *task)
8d1b2d93 4594{
9ee318a7 4595 struct perf_comm_event comm_event;
8dc85d54
PZ
4596 struct perf_event_context *ctx;
4597 int ctxn;
9ee318a7 4598
8dc85d54
PZ
4599 for_each_task_context_nr(ctxn) {
4600 ctx = task->perf_event_ctxp[ctxn];
4601 if (!ctx)
4602 continue;
9ee318a7 4603
8dc85d54
PZ
4604 perf_event_enable_on_exec(ctx);
4605 }
9ee318a7 4606
cdd6c482 4607 if (!atomic_read(&nr_comm_events))
9ee318a7 4608 return;
a63eaf34 4609
9ee318a7 4610 comm_event = (struct perf_comm_event){
8d1b2d93 4611 .task = task,
573402db
PZ
4612 /* .comm */
4613 /* .comm_size */
cdd6c482 4614 .event_id = {
573402db 4615 .header = {
cdd6c482 4616 .type = PERF_RECORD_COMM,
573402db
PZ
4617 .misc = 0,
4618 /* .size */
4619 },
4620 /* .pid */
4621 /* .tid */
8d1b2d93
PZ
4622 },
4623 };
4624
cdd6c482 4625 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4626}
4627
0a4a9391
PZ
4628/*
4629 * mmap tracking
4630 */
4631
4632struct perf_mmap_event {
089dd79d
PZ
4633 struct vm_area_struct *vma;
4634
4635 const char *file_name;
4636 int file_size;
0a4a9391
PZ
4637
4638 struct {
4639 struct perf_event_header header;
4640
4641 u32 pid;
4642 u32 tid;
4643 u64 start;
4644 u64 len;
4645 u64 pgoff;
cdd6c482 4646 } event_id;
0a4a9391
PZ
4647};
4648
cdd6c482 4649static void perf_event_mmap_output(struct perf_event *event,
0a4a9391
PZ
4650 struct perf_mmap_event *mmap_event)
4651{
4652 struct perf_output_handle handle;
c980d109 4653 struct perf_sample_data sample;
cdd6c482 4654 int size = mmap_event->event_id.header.size;
c980d109 4655 int ret;
0a4a9391 4656
c980d109
ACM
4657 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4658 ret = perf_output_begin(&handle, event,
a7ac67ea 4659 mmap_event->event_id.header.size);
0a4a9391 4660 if (ret)
c980d109 4661 goto out;
0a4a9391 4662
cdd6c482
IM
4663 mmap_event->event_id.pid = perf_event_pid(event, current);
4664 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 4665
cdd6c482 4666 perf_output_put(&handle, mmap_event->event_id);
76369139 4667 __output_copy(&handle, mmap_event->file_name,
0a4a9391 4668 mmap_event->file_size);
c980d109
ACM
4669
4670 perf_event__output_id_sample(event, &handle, &sample);
4671
78d613eb 4672 perf_output_end(&handle);
c980d109
ACM
4673out:
4674 mmap_event->event_id.header.size = size;
0a4a9391
PZ
4675}
4676
cdd6c482 4677static int perf_event_mmap_match(struct perf_event *event,
3af9e859
EM
4678 struct perf_mmap_event *mmap_event,
4679 int executable)
0a4a9391 4680{
6f93d0a7 4681 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4682 return 0;
4683
5632ab12 4684 if (!event_filter_match(event))
5d27c23d
PZ
4685 return 0;
4686
3af9e859
EM
4687 if ((!executable && event->attr.mmap_data) ||
4688 (executable && event->attr.mmap))
0a4a9391
PZ
4689 return 1;
4690
4691 return 0;
4692}
4693
cdd6c482 4694static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3af9e859
EM
4695 struct perf_mmap_event *mmap_event,
4696 int executable)
0a4a9391 4697{
cdd6c482 4698 struct perf_event *event;
0a4a9391 4699
cdd6c482 4700 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3af9e859 4701 if (perf_event_mmap_match(event, mmap_event, executable))
cdd6c482 4702 perf_event_mmap_output(event, mmap_event);
0a4a9391 4703 }
0a4a9391
PZ
4704}
4705
cdd6c482 4706static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391
PZ
4707{
4708 struct perf_cpu_context *cpuctx;
cdd6c482 4709 struct perf_event_context *ctx;
089dd79d
PZ
4710 struct vm_area_struct *vma = mmap_event->vma;
4711 struct file *file = vma->vm_file;
0a4a9391
PZ
4712 unsigned int size;
4713 char tmp[16];
4714 char *buf = NULL;
089dd79d 4715 const char *name;
108b02cf 4716 struct pmu *pmu;
8dc85d54 4717 int ctxn;
0a4a9391 4718
413ee3b4
AB
4719 memset(tmp, 0, sizeof(tmp));
4720
0a4a9391 4721 if (file) {
413ee3b4 4722 /*
76369139 4723 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
4724 * need to add enough zero bytes after the string to handle
4725 * the 64bit alignment we do later.
4726 */
4727 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
4728 if (!buf) {
4729 name = strncpy(tmp, "//enomem", sizeof(tmp));
4730 goto got_name;
4731 }
d3d21c41 4732 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
4733 if (IS_ERR(name)) {
4734 name = strncpy(tmp, "//toolong", sizeof(tmp));
4735 goto got_name;
4736 }
4737 } else {
413ee3b4
AB
4738 if (arch_vma_name(mmap_event->vma)) {
4739 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
c97847d2
CG
4740 sizeof(tmp) - 1);
4741 tmp[sizeof(tmp) - 1] = '\0';
089dd79d 4742 goto got_name;
413ee3b4 4743 }
089dd79d
PZ
4744
4745 if (!vma->vm_mm) {
4746 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4747 goto got_name;
3af9e859
EM
4748 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4749 vma->vm_end >= vma->vm_mm->brk) {
4750 name = strncpy(tmp, "[heap]", sizeof(tmp));
4751 goto got_name;
4752 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4753 vma->vm_end >= vma->vm_mm->start_stack) {
4754 name = strncpy(tmp, "[stack]", sizeof(tmp));
4755 goto got_name;
089dd79d
PZ
4756 }
4757
0a4a9391
PZ
4758 name = strncpy(tmp, "//anon", sizeof(tmp));
4759 goto got_name;
4760 }
4761
4762got_name:
888fcee0 4763 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
4764
4765 mmap_event->file_name = name;
4766 mmap_event->file_size = size;
4767
cdd6c482 4768 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 4769
f6d9dd23 4770 rcu_read_lock();
108b02cf 4771 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4772 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3f1f3320 4773 if (cpuctx->unique_pmu != pmu)
51676957 4774 goto next;
108b02cf
PZ
4775 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4776 vma->vm_flags & VM_EXEC);
8dc85d54
PZ
4777
4778 ctxn = pmu->task_ctx_nr;
4779 if (ctxn < 0)
41945f6c 4780 goto next;
8dc85d54
PZ
4781
4782 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4783 if (ctx) {
4784 perf_event_mmap_ctx(ctx, mmap_event,
4785 vma->vm_flags & VM_EXEC);
4786 }
41945f6c
PZ
4787next:
4788 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4789 }
665c2142
PZ
4790 rcu_read_unlock();
4791
0a4a9391
PZ
4792 kfree(buf);
4793}
4794
3af9e859 4795void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 4796{
9ee318a7
PZ
4797 struct perf_mmap_event mmap_event;
4798
cdd6c482 4799 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
4800 return;
4801
4802 mmap_event = (struct perf_mmap_event){
089dd79d 4803 .vma = vma,
573402db
PZ
4804 /* .file_name */
4805 /* .file_size */
cdd6c482 4806 .event_id = {
573402db 4807 .header = {
cdd6c482 4808 .type = PERF_RECORD_MMAP,
39447b38 4809 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
4810 /* .size */
4811 },
4812 /* .pid */
4813 /* .tid */
089dd79d
PZ
4814 .start = vma->vm_start,
4815 .len = vma->vm_end - vma->vm_start,
3a0304e9 4816 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
4817 },
4818 };
4819
cdd6c482 4820 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
4821}
4822
a78ac325
PZ
4823/*
4824 * IRQ throttle logging
4825 */
4826
cdd6c482 4827static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
4828{
4829 struct perf_output_handle handle;
c980d109 4830 struct perf_sample_data sample;
a78ac325
PZ
4831 int ret;
4832
4833 struct {
4834 struct perf_event_header header;
4835 u64 time;
cca3f454 4836 u64 id;
7f453c24 4837 u64 stream_id;
a78ac325
PZ
4838 } throttle_event = {
4839 .header = {
cdd6c482 4840 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
4841 .misc = 0,
4842 .size = sizeof(throttle_event),
4843 },
def0a9b2 4844 .time = perf_clock(),
cdd6c482
IM
4845 .id = primary_event_id(event),
4846 .stream_id = event->id,
a78ac325
PZ
4847 };
4848
966ee4d6 4849 if (enable)
cdd6c482 4850 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 4851
c980d109
ACM
4852 perf_event_header__init_id(&throttle_event.header, &sample, event);
4853
4854 ret = perf_output_begin(&handle, event,
a7ac67ea 4855 throttle_event.header.size);
a78ac325
PZ
4856 if (ret)
4857 return;
4858
4859 perf_output_put(&handle, throttle_event);
c980d109 4860 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
4861 perf_output_end(&handle);
4862}
4863
f6c7d5fe 4864/*
cdd6c482 4865 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
4866 */
4867
a8b0ca17 4868static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
4869 int throttle, struct perf_sample_data *data,
4870 struct pt_regs *regs)
f6c7d5fe 4871{
cdd6c482
IM
4872 int events = atomic_read(&event->event_limit);
4873 struct hw_perf_event *hwc = &event->hw;
e050e3f0 4874 u64 seq;
79f14641
PZ
4875 int ret = 0;
4876
96398826
PZ
4877 /*
4878 * Non-sampling counters might still use the PMI to fold short
4879 * hardware counters, ignore those.
4880 */
4881 if (unlikely(!is_sampling_event(event)))
4882 return 0;
4883
e050e3f0
SE
4884 seq = __this_cpu_read(perf_throttled_seq);
4885 if (seq != hwc->interrupts_seq) {
4886 hwc->interrupts_seq = seq;
4887 hwc->interrupts = 1;
4888 } else {
4889 hwc->interrupts++;
4890 if (unlikely(throttle
4891 && hwc->interrupts >= max_samples_per_tick)) {
4892 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
4893 hwc->interrupts = MAX_INTERRUPTS;
4894 perf_log_throttle(event, 0);
a78ac325
PZ
4895 ret = 1;
4896 }
e050e3f0 4897 }
60db5e09 4898
cdd6c482 4899 if (event->attr.freq) {
def0a9b2 4900 u64 now = perf_clock();
abd50713 4901 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 4902
abd50713 4903 hwc->freq_time_stamp = now;
bd2b5b12 4904
abd50713 4905 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 4906 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
4907 }
4908
2023b359
PZ
4909 /*
4910 * XXX event_limit might not quite work as expected on inherited
cdd6c482 4911 * events
2023b359
PZ
4912 */
4913
cdd6c482
IM
4914 event->pending_kill = POLL_IN;
4915 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 4916 ret = 1;
cdd6c482 4917 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
4918 event->pending_disable = 1;
4919 irq_work_queue(&event->pending);
79f14641
PZ
4920 }
4921
453f19ee 4922 if (event->overflow_handler)
a8b0ca17 4923 event->overflow_handler(event, data, regs);
453f19ee 4924 else
a8b0ca17 4925 perf_event_output(event, data, regs);
453f19ee 4926
f506b3dc 4927 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
4928 event->pending_wakeup = 1;
4929 irq_work_queue(&event->pending);
f506b3dc
PZ
4930 }
4931
79f14641 4932 return ret;
f6c7d5fe
PZ
4933}
4934
a8b0ca17 4935int perf_event_overflow(struct perf_event *event,
5622f295
MM
4936 struct perf_sample_data *data,
4937 struct pt_regs *regs)
850bc73f 4938{
a8b0ca17 4939 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
4940}
4941
15dbf27c 4942/*
cdd6c482 4943 * Generic software event infrastructure
15dbf27c
PZ
4944 */
4945
b28ab83c
PZ
4946struct swevent_htable {
4947 struct swevent_hlist *swevent_hlist;
4948 struct mutex hlist_mutex;
4949 int hlist_refcount;
4950
4951 /* Recursion avoidance in each contexts */
4952 int recursion[PERF_NR_CONTEXTS];
4953};
4954
4955static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4956
7b4b6658 4957/*
cdd6c482
IM
4958 * We directly increment event->count and keep a second value in
4959 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
4960 * is kept in the range [-sample_period, 0] so that we can use the
4961 * sign as trigger.
4962 */
4963
cdd6c482 4964static u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 4965{
cdd6c482 4966 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
4967 u64 period = hwc->last_period;
4968 u64 nr, offset;
4969 s64 old, val;
4970
4971 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
4972
4973again:
e7850595 4974 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
4975 if (val < 0)
4976 return 0;
15dbf27c 4977
7b4b6658
PZ
4978 nr = div64_u64(period + val, period);
4979 offset = nr * period;
4980 val -= offset;
e7850595 4981 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 4982 goto again;
15dbf27c 4983
7b4b6658 4984 return nr;
15dbf27c
PZ
4985}
4986
0cff784a 4987static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 4988 struct perf_sample_data *data,
5622f295 4989 struct pt_regs *regs)
15dbf27c 4990{
cdd6c482 4991 struct hw_perf_event *hwc = &event->hw;
850bc73f 4992 int throttle = 0;
15dbf27c 4993
0cff784a
PZ
4994 if (!overflow)
4995 overflow = perf_swevent_set_period(event);
15dbf27c 4996
7b4b6658
PZ
4997 if (hwc->interrupts == MAX_INTERRUPTS)
4998 return;
15dbf27c 4999
7b4b6658 5000 for (; overflow; overflow--) {
a8b0ca17 5001 if (__perf_event_overflow(event, throttle,
5622f295 5002 data, regs)) {
7b4b6658
PZ
5003 /*
5004 * We inhibit the overflow from happening when
5005 * hwc->interrupts == MAX_INTERRUPTS.
5006 */
5007 break;
5008 }
cf450a73 5009 throttle = 1;
7b4b6658 5010 }
15dbf27c
PZ
5011}
5012
a4eaf7f1 5013static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5014 struct perf_sample_data *data,
5622f295 5015 struct pt_regs *regs)
7b4b6658 5016{
cdd6c482 5017 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5018
e7850595 5019 local64_add(nr, &event->count);
d6d020e9 5020
0cff784a
PZ
5021 if (!regs)
5022 return;
5023
6c7e550f 5024 if (!is_sampling_event(event))
7b4b6658 5025 return;
d6d020e9 5026
5d81e5cf
AV
5027 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5028 data->period = nr;
5029 return perf_swevent_overflow(event, 1, data, regs);
5030 } else
5031 data->period = event->hw.last_period;
5032
0cff784a 5033 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5034 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5035
e7850595 5036 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5037 return;
df1a132b 5038
a8b0ca17 5039 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5040}
5041
f5ffe02e
FW
5042static int perf_exclude_event(struct perf_event *event,
5043 struct pt_regs *regs)
5044{
a4eaf7f1 5045 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5046 return 1;
a4eaf7f1 5047
f5ffe02e
FW
5048 if (regs) {
5049 if (event->attr.exclude_user && user_mode(regs))
5050 return 1;
5051
5052 if (event->attr.exclude_kernel && !user_mode(regs))
5053 return 1;
5054 }
5055
5056 return 0;
5057}
5058
cdd6c482 5059static int perf_swevent_match(struct perf_event *event,
1c432d89 5060 enum perf_type_id type,
6fb2915d
LZ
5061 u32 event_id,
5062 struct perf_sample_data *data,
5063 struct pt_regs *regs)
15dbf27c 5064{
cdd6c482 5065 if (event->attr.type != type)
a21ca2ca 5066 return 0;
f5ffe02e 5067
cdd6c482 5068 if (event->attr.config != event_id)
15dbf27c
PZ
5069 return 0;
5070
f5ffe02e
FW
5071 if (perf_exclude_event(event, regs))
5072 return 0;
15dbf27c
PZ
5073
5074 return 1;
5075}
5076
76e1d904
FW
5077static inline u64 swevent_hash(u64 type, u32 event_id)
5078{
5079 u64 val = event_id | (type << 32);
5080
5081 return hash_64(val, SWEVENT_HLIST_BITS);
5082}
5083
49f135ed
FW
5084static inline struct hlist_head *
5085__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5086{
49f135ed
FW
5087 u64 hash = swevent_hash(type, event_id);
5088
5089 return &hlist->heads[hash];
5090}
76e1d904 5091
49f135ed
FW
5092/* For the read side: events when they trigger */
5093static inline struct hlist_head *
b28ab83c 5094find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5095{
5096 struct swevent_hlist *hlist;
76e1d904 5097
b28ab83c 5098 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5099 if (!hlist)
5100 return NULL;
5101
49f135ed
FW
5102 return __find_swevent_head(hlist, type, event_id);
5103}
5104
5105/* For the event head insertion and removal in the hlist */
5106static inline struct hlist_head *
b28ab83c 5107find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5108{
5109 struct swevent_hlist *hlist;
5110 u32 event_id = event->attr.config;
5111 u64 type = event->attr.type;
5112
5113 /*
5114 * Event scheduling is always serialized against hlist allocation
5115 * and release. Which makes the protected version suitable here.
5116 * The context lock guarantees that.
5117 */
b28ab83c 5118 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5119 lockdep_is_held(&event->ctx->lock));
5120 if (!hlist)
5121 return NULL;
5122
5123 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5124}
5125
5126static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5127 u64 nr,
76e1d904
FW
5128 struct perf_sample_data *data,
5129 struct pt_regs *regs)
15dbf27c 5130{
b28ab83c 5131 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5132 struct perf_event *event;
76e1d904 5133 struct hlist_head *head;
15dbf27c 5134
76e1d904 5135 rcu_read_lock();
b28ab83c 5136 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5137 if (!head)
5138 goto end;
5139
b67bfe0d 5140 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5141 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5142 perf_swevent_event(event, nr, data, regs);
15dbf27c 5143 }
76e1d904
FW
5144end:
5145 rcu_read_unlock();
15dbf27c
PZ
5146}
5147
4ed7c92d 5148int perf_swevent_get_recursion_context(void)
96f6d444 5149{
b28ab83c 5150 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5151
b28ab83c 5152 return get_recursion_context(swhash->recursion);
96f6d444 5153}
645e8cc0 5154EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5155
fa9f90be 5156inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5157{
b28ab83c 5158 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5159
b28ab83c 5160 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5161}
15dbf27c 5162
a8b0ca17 5163void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5164{
a4234bfc 5165 struct perf_sample_data data;
4ed7c92d
PZ
5166 int rctx;
5167
1c024eca 5168 preempt_disable_notrace();
4ed7c92d
PZ
5169 rctx = perf_swevent_get_recursion_context();
5170 if (rctx < 0)
5171 return;
a4234bfc 5172
fd0d000b 5173 perf_sample_data_init(&data, addr, 0);
92bf309a 5174
a8b0ca17 5175 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5176
5177 perf_swevent_put_recursion_context(rctx);
1c024eca 5178 preempt_enable_notrace();
b8e83514
PZ
5179}
5180
cdd6c482 5181static void perf_swevent_read(struct perf_event *event)
15dbf27c 5182{
15dbf27c
PZ
5183}
5184
a4eaf7f1 5185static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5186{
b28ab83c 5187 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5188 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5189 struct hlist_head *head;
5190
6c7e550f 5191 if (is_sampling_event(event)) {
7b4b6658 5192 hwc->last_period = hwc->sample_period;
cdd6c482 5193 perf_swevent_set_period(event);
7b4b6658 5194 }
76e1d904 5195
a4eaf7f1
PZ
5196 hwc->state = !(flags & PERF_EF_START);
5197
b28ab83c 5198 head = find_swevent_head(swhash, event);
76e1d904
FW
5199 if (WARN_ON_ONCE(!head))
5200 return -EINVAL;
5201
5202 hlist_add_head_rcu(&event->hlist_entry, head);
5203
15dbf27c
PZ
5204 return 0;
5205}
5206
a4eaf7f1 5207static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5208{
76e1d904 5209 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5210}
5211
a4eaf7f1 5212static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5213{
a4eaf7f1 5214 event->hw.state = 0;
d6d020e9 5215}
aa9c4c0f 5216
a4eaf7f1 5217static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5218{
a4eaf7f1 5219 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5220}
5221
49f135ed
FW
5222/* Deref the hlist from the update side */
5223static inline struct swevent_hlist *
b28ab83c 5224swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5225{
b28ab83c
PZ
5226 return rcu_dereference_protected(swhash->swevent_hlist,
5227 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5228}
5229
b28ab83c 5230static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5231{
b28ab83c 5232 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5233
49f135ed 5234 if (!hlist)
76e1d904
FW
5235 return;
5236
b28ab83c 5237 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5238 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5239}
5240
5241static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5242{
b28ab83c 5243 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5244
b28ab83c 5245 mutex_lock(&swhash->hlist_mutex);
76e1d904 5246
b28ab83c
PZ
5247 if (!--swhash->hlist_refcount)
5248 swevent_hlist_release(swhash);
76e1d904 5249
b28ab83c 5250 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5251}
5252
5253static void swevent_hlist_put(struct perf_event *event)
5254{
5255 int cpu;
5256
5257 if (event->cpu != -1) {
5258 swevent_hlist_put_cpu(event, event->cpu);
5259 return;
5260 }
5261
5262 for_each_possible_cpu(cpu)
5263 swevent_hlist_put_cpu(event, cpu);
5264}
5265
5266static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5267{
b28ab83c 5268 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5269 int err = 0;
5270
b28ab83c 5271 mutex_lock(&swhash->hlist_mutex);
76e1d904 5272
b28ab83c 5273 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5274 struct swevent_hlist *hlist;
5275
5276 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5277 if (!hlist) {
5278 err = -ENOMEM;
5279 goto exit;
5280 }
b28ab83c 5281 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5282 }
b28ab83c 5283 swhash->hlist_refcount++;
9ed6060d 5284exit:
b28ab83c 5285 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5286
5287 return err;
5288}
5289
5290static int swevent_hlist_get(struct perf_event *event)
5291{
5292 int err;
5293 int cpu, failed_cpu;
5294
5295 if (event->cpu != -1)
5296 return swevent_hlist_get_cpu(event, event->cpu);
5297
5298 get_online_cpus();
5299 for_each_possible_cpu(cpu) {
5300 err = swevent_hlist_get_cpu(event, cpu);
5301 if (err) {
5302 failed_cpu = cpu;
5303 goto fail;
5304 }
5305 }
5306 put_online_cpus();
5307
5308 return 0;
9ed6060d 5309fail:
76e1d904
FW
5310 for_each_possible_cpu(cpu) {
5311 if (cpu == failed_cpu)
5312 break;
5313 swevent_hlist_put_cpu(event, cpu);
5314 }
5315
5316 put_online_cpus();
5317 return err;
5318}
5319
c5905afb 5320struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5321
b0a873eb
PZ
5322static void sw_perf_event_destroy(struct perf_event *event)
5323{
5324 u64 event_id = event->attr.config;
95476b64 5325
b0a873eb
PZ
5326 WARN_ON(event->parent);
5327
c5905afb 5328 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5329 swevent_hlist_put(event);
5330}
5331
5332static int perf_swevent_init(struct perf_event *event)
5333{
5334 int event_id = event->attr.config;
5335
5336 if (event->attr.type != PERF_TYPE_SOFTWARE)
5337 return -ENOENT;
5338
2481c5fa
SE
5339 /*
5340 * no branch sampling for software events
5341 */
5342 if (has_branch_stack(event))
5343 return -EOPNOTSUPP;
5344
b0a873eb
PZ
5345 switch (event_id) {
5346 case PERF_COUNT_SW_CPU_CLOCK:
5347 case PERF_COUNT_SW_TASK_CLOCK:
5348 return -ENOENT;
5349
5350 default:
5351 break;
5352 }
5353
ce677831 5354 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5355 return -ENOENT;
5356
5357 if (!event->parent) {
5358 int err;
5359
5360 err = swevent_hlist_get(event);
5361 if (err)
5362 return err;
5363
c5905afb 5364 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5365 event->destroy = sw_perf_event_destroy;
5366 }
5367
5368 return 0;
5369}
5370
35edc2a5
PZ
5371static int perf_swevent_event_idx(struct perf_event *event)
5372{
5373 return 0;
5374}
5375
b0a873eb 5376static struct pmu perf_swevent = {
89a1e187 5377 .task_ctx_nr = perf_sw_context,
95476b64 5378
b0a873eb 5379 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5380 .add = perf_swevent_add,
5381 .del = perf_swevent_del,
5382 .start = perf_swevent_start,
5383 .stop = perf_swevent_stop,
1c024eca 5384 .read = perf_swevent_read,
35edc2a5
PZ
5385
5386 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5387};
5388
b0a873eb
PZ
5389#ifdef CONFIG_EVENT_TRACING
5390
1c024eca
PZ
5391static int perf_tp_filter_match(struct perf_event *event,
5392 struct perf_sample_data *data)
5393{
5394 void *record = data->raw->data;
5395
5396 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5397 return 1;
5398 return 0;
5399}
5400
5401static int perf_tp_event_match(struct perf_event *event,
5402 struct perf_sample_data *data,
5403 struct pt_regs *regs)
5404{
a0f7d0f7
FW
5405 if (event->hw.state & PERF_HES_STOPPED)
5406 return 0;
580d607c
PZ
5407 /*
5408 * All tracepoints are from kernel-space.
5409 */
5410 if (event->attr.exclude_kernel)
1c024eca
PZ
5411 return 0;
5412
5413 if (!perf_tp_filter_match(event, data))
5414 return 0;
5415
5416 return 1;
5417}
5418
5419void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5420 struct pt_regs *regs, struct hlist_head *head, int rctx,
5421 struct task_struct *task)
95476b64
FW
5422{
5423 struct perf_sample_data data;
1c024eca 5424 struct perf_event *event;
1c024eca 5425
95476b64
FW
5426 struct perf_raw_record raw = {
5427 .size = entry_size,
5428 .data = record,
5429 };
5430
fd0d000b 5431 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5432 data.raw = &raw;
5433
b67bfe0d 5434 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5435 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5436 perf_swevent_event(event, count, &data, regs);
4f41c013 5437 }
ecc55f84 5438
e6dab5ff
AV
5439 /*
5440 * If we got specified a target task, also iterate its context and
5441 * deliver this event there too.
5442 */
5443 if (task && task != current) {
5444 struct perf_event_context *ctx;
5445 struct trace_entry *entry = record;
5446
5447 rcu_read_lock();
5448 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5449 if (!ctx)
5450 goto unlock;
5451
5452 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5453 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5454 continue;
5455 if (event->attr.config != entry->type)
5456 continue;
5457 if (perf_tp_event_match(event, &data, regs))
5458 perf_swevent_event(event, count, &data, regs);
5459 }
5460unlock:
5461 rcu_read_unlock();
5462 }
5463
ecc55f84 5464 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5465}
5466EXPORT_SYMBOL_GPL(perf_tp_event);
5467
cdd6c482 5468static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5469{
1c024eca 5470 perf_trace_destroy(event);
e077df4f
PZ
5471}
5472
b0a873eb 5473static int perf_tp_event_init(struct perf_event *event)
e077df4f 5474{
76e1d904
FW
5475 int err;
5476
b0a873eb
PZ
5477 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5478 return -ENOENT;
5479
2481c5fa
SE
5480 /*
5481 * no branch sampling for tracepoint events
5482 */
5483 if (has_branch_stack(event))
5484 return -EOPNOTSUPP;
5485
1c024eca
PZ
5486 err = perf_trace_init(event);
5487 if (err)
b0a873eb 5488 return err;
e077df4f 5489
cdd6c482 5490 event->destroy = tp_perf_event_destroy;
e077df4f 5491
b0a873eb
PZ
5492 return 0;
5493}
5494
5495static struct pmu perf_tracepoint = {
89a1e187
PZ
5496 .task_ctx_nr = perf_sw_context,
5497
b0a873eb 5498 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5499 .add = perf_trace_add,
5500 .del = perf_trace_del,
5501 .start = perf_swevent_start,
5502 .stop = perf_swevent_stop,
b0a873eb 5503 .read = perf_swevent_read,
35edc2a5
PZ
5504
5505 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5506};
5507
5508static inline void perf_tp_register(void)
5509{
2e80a82a 5510 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5511}
6fb2915d
LZ
5512
5513static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5514{
5515 char *filter_str;
5516 int ret;
5517
5518 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5519 return -EINVAL;
5520
5521 filter_str = strndup_user(arg, PAGE_SIZE);
5522 if (IS_ERR(filter_str))
5523 return PTR_ERR(filter_str);
5524
5525 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5526
5527 kfree(filter_str);
5528 return ret;
5529}
5530
5531static void perf_event_free_filter(struct perf_event *event)
5532{
5533 ftrace_profile_free_filter(event);
5534}
5535
e077df4f 5536#else
6fb2915d 5537
b0a873eb 5538static inline void perf_tp_register(void)
e077df4f 5539{
e077df4f 5540}
6fb2915d
LZ
5541
5542static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5543{
5544 return -ENOENT;
5545}
5546
5547static void perf_event_free_filter(struct perf_event *event)
5548{
5549}
5550
07b139c8 5551#endif /* CONFIG_EVENT_TRACING */
e077df4f 5552
24f1e32c 5553#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5554void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5555{
f5ffe02e
FW
5556 struct perf_sample_data sample;
5557 struct pt_regs *regs = data;
5558
fd0d000b 5559 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5560
a4eaf7f1 5561 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5562 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5563}
5564#endif
5565
b0a873eb
PZ
5566/*
5567 * hrtimer based swevent callback
5568 */
f29ac756 5569
b0a873eb 5570static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5571{
b0a873eb
PZ
5572 enum hrtimer_restart ret = HRTIMER_RESTART;
5573 struct perf_sample_data data;
5574 struct pt_regs *regs;
5575 struct perf_event *event;
5576 u64 period;
f29ac756 5577
b0a873eb 5578 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5579
5580 if (event->state != PERF_EVENT_STATE_ACTIVE)
5581 return HRTIMER_NORESTART;
5582
b0a873eb 5583 event->pmu->read(event);
f344011c 5584
fd0d000b 5585 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5586 regs = get_irq_regs();
5587
5588 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5589 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5590 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5591 ret = HRTIMER_NORESTART;
5592 }
24f1e32c 5593
b0a873eb
PZ
5594 period = max_t(u64, 10000, event->hw.sample_period);
5595 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5596
b0a873eb 5597 return ret;
f29ac756
PZ
5598}
5599
b0a873eb 5600static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5601{
b0a873eb 5602 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5603 s64 period;
5604
5605 if (!is_sampling_event(event))
5606 return;
f5ffe02e 5607
5d508e82
FBH
5608 period = local64_read(&hwc->period_left);
5609 if (period) {
5610 if (period < 0)
5611 period = 10000;
fa407f35 5612
5d508e82
FBH
5613 local64_set(&hwc->period_left, 0);
5614 } else {
5615 period = max_t(u64, 10000, hwc->sample_period);
5616 }
5617 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5618 ns_to_ktime(period), 0,
b5ab4cd5 5619 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5620}
b0a873eb
PZ
5621
5622static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5623{
b0a873eb
PZ
5624 struct hw_perf_event *hwc = &event->hw;
5625
6c7e550f 5626 if (is_sampling_event(event)) {
b0a873eb 5627 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5628 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5629
5630 hrtimer_cancel(&hwc->hrtimer);
5631 }
24f1e32c
FW
5632}
5633
ba3dd36c
PZ
5634static void perf_swevent_init_hrtimer(struct perf_event *event)
5635{
5636 struct hw_perf_event *hwc = &event->hw;
5637
5638 if (!is_sampling_event(event))
5639 return;
5640
5641 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5642 hwc->hrtimer.function = perf_swevent_hrtimer;
5643
5644 /*
5645 * Since hrtimers have a fixed rate, we can do a static freq->period
5646 * mapping and avoid the whole period adjust feedback stuff.
5647 */
5648 if (event->attr.freq) {
5649 long freq = event->attr.sample_freq;
5650
5651 event->attr.sample_period = NSEC_PER_SEC / freq;
5652 hwc->sample_period = event->attr.sample_period;
5653 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 5654 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
5655 event->attr.freq = 0;
5656 }
5657}
5658
b0a873eb
PZ
5659/*
5660 * Software event: cpu wall time clock
5661 */
5662
5663static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5664{
b0a873eb
PZ
5665 s64 prev;
5666 u64 now;
5667
a4eaf7f1 5668 now = local_clock();
b0a873eb
PZ
5669 prev = local64_xchg(&event->hw.prev_count, now);
5670 local64_add(now - prev, &event->count);
24f1e32c 5671}
24f1e32c 5672
a4eaf7f1 5673static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5674{
a4eaf7f1 5675 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5676 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5677}
5678
a4eaf7f1 5679static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5680{
b0a873eb
PZ
5681 perf_swevent_cancel_hrtimer(event);
5682 cpu_clock_event_update(event);
5683}
f29ac756 5684
a4eaf7f1
PZ
5685static int cpu_clock_event_add(struct perf_event *event, int flags)
5686{
5687 if (flags & PERF_EF_START)
5688 cpu_clock_event_start(event, flags);
5689
5690 return 0;
5691}
5692
5693static void cpu_clock_event_del(struct perf_event *event, int flags)
5694{
5695 cpu_clock_event_stop(event, flags);
5696}
5697
b0a873eb
PZ
5698static void cpu_clock_event_read(struct perf_event *event)
5699{
5700 cpu_clock_event_update(event);
5701}
f344011c 5702
b0a873eb
PZ
5703static int cpu_clock_event_init(struct perf_event *event)
5704{
5705 if (event->attr.type != PERF_TYPE_SOFTWARE)
5706 return -ENOENT;
5707
5708 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5709 return -ENOENT;
5710
2481c5fa
SE
5711 /*
5712 * no branch sampling for software events
5713 */
5714 if (has_branch_stack(event))
5715 return -EOPNOTSUPP;
5716
ba3dd36c
PZ
5717 perf_swevent_init_hrtimer(event);
5718
b0a873eb 5719 return 0;
f29ac756
PZ
5720}
5721
b0a873eb 5722static struct pmu perf_cpu_clock = {
89a1e187
PZ
5723 .task_ctx_nr = perf_sw_context,
5724
b0a873eb 5725 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
5726 .add = cpu_clock_event_add,
5727 .del = cpu_clock_event_del,
5728 .start = cpu_clock_event_start,
5729 .stop = cpu_clock_event_stop,
b0a873eb 5730 .read = cpu_clock_event_read,
35edc2a5
PZ
5731
5732 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5733};
5734
5735/*
5736 * Software event: task time clock
5737 */
5738
5739static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 5740{
b0a873eb
PZ
5741 u64 prev;
5742 s64 delta;
5c92d124 5743
b0a873eb
PZ
5744 prev = local64_xchg(&event->hw.prev_count, now);
5745 delta = now - prev;
5746 local64_add(delta, &event->count);
5747}
5c92d124 5748
a4eaf7f1 5749static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5750{
a4eaf7f1 5751 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 5752 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5753}
5754
a4eaf7f1 5755static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
5756{
5757 perf_swevent_cancel_hrtimer(event);
5758 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
5759}
5760
5761static int task_clock_event_add(struct perf_event *event, int flags)
5762{
5763 if (flags & PERF_EF_START)
5764 task_clock_event_start(event, flags);
b0a873eb 5765
a4eaf7f1
PZ
5766 return 0;
5767}
5768
5769static void task_clock_event_del(struct perf_event *event, int flags)
5770{
5771 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
5772}
5773
5774static void task_clock_event_read(struct perf_event *event)
5775{
768a06e2
PZ
5776 u64 now = perf_clock();
5777 u64 delta = now - event->ctx->timestamp;
5778 u64 time = event->ctx->time + delta;
b0a873eb
PZ
5779
5780 task_clock_event_update(event, time);
5781}
5782
5783static int task_clock_event_init(struct perf_event *event)
6fb2915d 5784{
b0a873eb
PZ
5785 if (event->attr.type != PERF_TYPE_SOFTWARE)
5786 return -ENOENT;
5787
5788 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5789 return -ENOENT;
5790
2481c5fa
SE
5791 /*
5792 * no branch sampling for software events
5793 */
5794 if (has_branch_stack(event))
5795 return -EOPNOTSUPP;
5796
ba3dd36c
PZ
5797 perf_swevent_init_hrtimer(event);
5798
b0a873eb 5799 return 0;
6fb2915d
LZ
5800}
5801
b0a873eb 5802static struct pmu perf_task_clock = {
89a1e187
PZ
5803 .task_ctx_nr = perf_sw_context,
5804
b0a873eb 5805 .event_init = task_clock_event_init,
a4eaf7f1
PZ
5806 .add = task_clock_event_add,
5807 .del = task_clock_event_del,
5808 .start = task_clock_event_start,
5809 .stop = task_clock_event_stop,
b0a873eb 5810 .read = task_clock_event_read,
35edc2a5
PZ
5811
5812 .event_idx = perf_swevent_event_idx,
b0a873eb 5813};
6fb2915d 5814
ad5133b7 5815static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 5816{
e077df4f 5817}
6fb2915d 5818
ad5133b7 5819static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 5820{
ad5133b7 5821 return 0;
6fb2915d
LZ
5822}
5823
ad5133b7 5824static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 5825{
ad5133b7 5826 perf_pmu_disable(pmu);
6fb2915d
LZ
5827}
5828
ad5133b7
PZ
5829static int perf_pmu_commit_txn(struct pmu *pmu)
5830{
5831 perf_pmu_enable(pmu);
5832 return 0;
5833}
e077df4f 5834
ad5133b7 5835static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 5836{
ad5133b7 5837 perf_pmu_enable(pmu);
24f1e32c
FW
5838}
5839
35edc2a5
PZ
5840static int perf_event_idx_default(struct perf_event *event)
5841{
5842 return event->hw.idx + 1;
5843}
5844
8dc85d54
PZ
5845/*
5846 * Ensures all contexts with the same task_ctx_nr have the same
5847 * pmu_cpu_context too.
5848 */
5849static void *find_pmu_context(int ctxn)
24f1e32c 5850{
8dc85d54 5851 struct pmu *pmu;
b326e956 5852
8dc85d54
PZ
5853 if (ctxn < 0)
5854 return NULL;
24f1e32c 5855
8dc85d54
PZ
5856 list_for_each_entry(pmu, &pmus, entry) {
5857 if (pmu->task_ctx_nr == ctxn)
5858 return pmu->pmu_cpu_context;
5859 }
24f1e32c 5860
8dc85d54 5861 return NULL;
24f1e32c
FW
5862}
5863
51676957 5864static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 5865{
51676957
PZ
5866 int cpu;
5867
5868 for_each_possible_cpu(cpu) {
5869 struct perf_cpu_context *cpuctx;
5870
5871 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5872
3f1f3320
PZ
5873 if (cpuctx->unique_pmu == old_pmu)
5874 cpuctx->unique_pmu = pmu;
51676957
PZ
5875 }
5876}
5877
5878static void free_pmu_context(struct pmu *pmu)
5879{
5880 struct pmu *i;
f5ffe02e 5881
8dc85d54 5882 mutex_lock(&pmus_lock);
0475f9ea 5883 /*
8dc85d54 5884 * Like a real lame refcount.
0475f9ea 5885 */
51676957
PZ
5886 list_for_each_entry(i, &pmus, entry) {
5887 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5888 update_pmu_context(i, pmu);
8dc85d54 5889 goto out;
51676957 5890 }
8dc85d54 5891 }
d6d020e9 5892
51676957 5893 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
5894out:
5895 mutex_unlock(&pmus_lock);
24f1e32c 5896}
2e80a82a 5897static struct idr pmu_idr;
d6d020e9 5898
abe43400
PZ
5899static ssize_t
5900type_show(struct device *dev, struct device_attribute *attr, char *page)
5901{
5902 struct pmu *pmu = dev_get_drvdata(dev);
5903
5904 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5905}
5906
5907static struct device_attribute pmu_dev_attrs[] = {
5908 __ATTR_RO(type),
5909 __ATTR_NULL,
5910};
5911
5912static int pmu_bus_running;
5913static struct bus_type pmu_bus = {
5914 .name = "event_source",
5915 .dev_attrs = pmu_dev_attrs,
5916};
5917
5918static void pmu_dev_release(struct device *dev)
5919{
5920 kfree(dev);
5921}
5922
5923static int pmu_dev_alloc(struct pmu *pmu)
5924{
5925 int ret = -ENOMEM;
5926
5927 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5928 if (!pmu->dev)
5929 goto out;
5930
0c9d42ed 5931 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
5932 device_initialize(pmu->dev);
5933 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5934 if (ret)
5935 goto free_dev;
5936
5937 dev_set_drvdata(pmu->dev, pmu);
5938 pmu->dev->bus = &pmu_bus;
5939 pmu->dev->release = pmu_dev_release;
5940 ret = device_add(pmu->dev);
5941 if (ret)
5942 goto free_dev;
5943
5944out:
5945 return ret;
5946
5947free_dev:
5948 put_device(pmu->dev);
5949 goto out;
5950}
5951
547e9fd7 5952static struct lock_class_key cpuctx_mutex;
facc4307 5953static struct lock_class_key cpuctx_lock;
547e9fd7 5954
2e80a82a 5955int perf_pmu_register(struct pmu *pmu, char *name, int type)
24f1e32c 5956{
108b02cf 5957 int cpu, ret;
24f1e32c 5958
b0a873eb 5959 mutex_lock(&pmus_lock);
33696fc0
PZ
5960 ret = -ENOMEM;
5961 pmu->pmu_disable_count = alloc_percpu(int);
5962 if (!pmu->pmu_disable_count)
5963 goto unlock;
f29ac756 5964
2e80a82a
PZ
5965 pmu->type = -1;
5966 if (!name)
5967 goto skip_type;
5968 pmu->name = name;
5969
5970 if (type < 0) {
0e9c3be2
TH
5971 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
5972 if (type < 0) {
5973 ret = type;
2e80a82a
PZ
5974 goto free_pdc;
5975 }
5976 }
5977 pmu->type = type;
5978
abe43400
PZ
5979 if (pmu_bus_running) {
5980 ret = pmu_dev_alloc(pmu);
5981 if (ret)
5982 goto free_idr;
5983 }
5984
2e80a82a 5985skip_type:
8dc85d54
PZ
5986 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5987 if (pmu->pmu_cpu_context)
5988 goto got_cpu_context;
f29ac756 5989
c4814202 5990 ret = -ENOMEM;
108b02cf
PZ
5991 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5992 if (!pmu->pmu_cpu_context)
abe43400 5993 goto free_dev;
f344011c 5994
108b02cf
PZ
5995 for_each_possible_cpu(cpu) {
5996 struct perf_cpu_context *cpuctx;
5997
5998 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 5999 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6000 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6001 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6002 cpuctx->ctx.type = cpu_context;
108b02cf 6003 cpuctx->ctx.pmu = pmu;
e9d2b064
PZ
6004 cpuctx->jiffies_interval = 1;
6005 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6006 cpuctx->unique_pmu = pmu;
108b02cf 6007 }
76e1d904 6008
8dc85d54 6009got_cpu_context:
ad5133b7
PZ
6010 if (!pmu->start_txn) {
6011 if (pmu->pmu_enable) {
6012 /*
6013 * If we have pmu_enable/pmu_disable calls, install
6014 * transaction stubs that use that to try and batch
6015 * hardware accesses.
6016 */
6017 pmu->start_txn = perf_pmu_start_txn;
6018 pmu->commit_txn = perf_pmu_commit_txn;
6019 pmu->cancel_txn = perf_pmu_cancel_txn;
6020 } else {
6021 pmu->start_txn = perf_pmu_nop_void;
6022 pmu->commit_txn = perf_pmu_nop_int;
6023 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6024 }
5c92d124 6025 }
15dbf27c 6026
ad5133b7
PZ
6027 if (!pmu->pmu_enable) {
6028 pmu->pmu_enable = perf_pmu_nop_void;
6029 pmu->pmu_disable = perf_pmu_nop_void;
6030 }
6031
35edc2a5
PZ
6032 if (!pmu->event_idx)
6033 pmu->event_idx = perf_event_idx_default;
6034
b0a873eb 6035 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6036 ret = 0;
6037unlock:
b0a873eb
PZ
6038 mutex_unlock(&pmus_lock);
6039
33696fc0 6040 return ret;
108b02cf 6041
abe43400
PZ
6042free_dev:
6043 device_del(pmu->dev);
6044 put_device(pmu->dev);
6045
2e80a82a
PZ
6046free_idr:
6047 if (pmu->type >= PERF_TYPE_MAX)
6048 idr_remove(&pmu_idr, pmu->type);
6049
108b02cf
PZ
6050free_pdc:
6051 free_percpu(pmu->pmu_disable_count);
6052 goto unlock;
f29ac756
PZ
6053}
6054
b0a873eb 6055void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6056{
b0a873eb
PZ
6057 mutex_lock(&pmus_lock);
6058 list_del_rcu(&pmu->entry);
6059 mutex_unlock(&pmus_lock);
5c92d124 6060
0475f9ea 6061 /*
cde8e884
PZ
6062 * We dereference the pmu list under both SRCU and regular RCU, so
6063 * synchronize against both of those.
0475f9ea 6064 */
b0a873eb 6065 synchronize_srcu(&pmus_srcu);
cde8e884 6066 synchronize_rcu();
d6d020e9 6067
33696fc0 6068 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6069 if (pmu->type >= PERF_TYPE_MAX)
6070 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6071 device_del(pmu->dev);
6072 put_device(pmu->dev);
51676957 6073 free_pmu_context(pmu);
b0a873eb 6074}
d6d020e9 6075
b0a873eb
PZ
6076struct pmu *perf_init_event(struct perf_event *event)
6077{
6078 struct pmu *pmu = NULL;
6079 int idx;
940c5b29 6080 int ret;
b0a873eb
PZ
6081
6082 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6083
6084 rcu_read_lock();
6085 pmu = idr_find(&pmu_idr, event->attr.type);
6086 rcu_read_unlock();
940c5b29 6087 if (pmu) {
7e5b2a01 6088 event->pmu = pmu;
940c5b29
LM
6089 ret = pmu->event_init(event);
6090 if (ret)
6091 pmu = ERR_PTR(ret);
2e80a82a 6092 goto unlock;
940c5b29 6093 }
2e80a82a 6094
b0a873eb 6095 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 6096 event->pmu = pmu;
940c5b29 6097 ret = pmu->event_init(event);
b0a873eb 6098 if (!ret)
e5f4d339 6099 goto unlock;
76e1d904 6100
b0a873eb
PZ
6101 if (ret != -ENOENT) {
6102 pmu = ERR_PTR(ret);
e5f4d339 6103 goto unlock;
f344011c 6104 }
5c92d124 6105 }
e5f4d339
PZ
6106 pmu = ERR_PTR(-ENOENT);
6107unlock:
b0a873eb 6108 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6109
4aeb0b42 6110 return pmu;
5c92d124
IM
6111}
6112
0793a61d 6113/*
cdd6c482 6114 * Allocate and initialize a event structure
0793a61d 6115 */
cdd6c482 6116static struct perf_event *
c3f00c70 6117perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6118 struct task_struct *task,
6119 struct perf_event *group_leader,
6120 struct perf_event *parent_event,
4dc0da86
AK
6121 perf_overflow_handler_t overflow_handler,
6122 void *context)
0793a61d 6123{
51b0fe39 6124 struct pmu *pmu;
cdd6c482
IM
6125 struct perf_event *event;
6126 struct hw_perf_event *hwc;
d5d2bc0d 6127 long err;
0793a61d 6128
66832eb4
ON
6129 if ((unsigned)cpu >= nr_cpu_ids) {
6130 if (!task || cpu != -1)
6131 return ERR_PTR(-EINVAL);
6132 }
6133
c3f00c70 6134 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6135 if (!event)
d5d2bc0d 6136 return ERR_PTR(-ENOMEM);
0793a61d 6137
04289bb9 6138 /*
cdd6c482 6139 * Single events are their own group leaders, with an
04289bb9
IM
6140 * empty sibling list:
6141 */
6142 if (!group_leader)
cdd6c482 6143 group_leader = event;
04289bb9 6144
cdd6c482
IM
6145 mutex_init(&event->child_mutex);
6146 INIT_LIST_HEAD(&event->child_list);
fccc714b 6147
cdd6c482
IM
6148 INIT_LIST_HEAD(&event->group_entry);
6149 INIT_LIST_HEAD(&event->event_entry);
6150 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
6151 INIT_LIST_HEAD(&event->rb_entry);
6152
cdd6c482 6153 init_waitqueue_head(&event->waitq);
e360adbe 6154 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6155
cdd6c482 6156 mutex_init(&event->mmap_mutex);
7b732a75 6157
a6fa941d 6158 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6159 event->cpu = cpu;
6160 event->attr = *attr;
6161 event->group_leader = group_leader;
6162 event->pmu = NULL;
cdd6c482 6163 event->oncpu = -1;
a96bbc16 6164
cdd6c482 6165 event->parent = parent_event;
b84fbc9f 6166
17cf22c3 6167 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6168 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6169
cdd6c482 6170 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6171
d580ff86
PZ
6172 if (task) {
6173 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6174
6175 if (attr->type == PERF_TYPE_TRACEPOINT)
6176 event->hw.tp_target = task;
d580ff86
PZ
6177#ifdef CONFIG_HAVE_HW_BREAKPOINT
6178 /*
6179 * hw_breakpoint is a bit difficult here..
6180 */
f22c1bb6 6181 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6182 event->hw.bp_target = task;
6183#endif
6184 }
6185
4dc0da86 6186 if (!overflow_handler && parent_event) {
b326e956 6187 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6188 context = parent_event->overflow_handler_context;
6189 }
66832eb4 6190
b326e956 6191 event->overflow_handler = overflow_handler;
4dc0da86 6192 event->overflow_handler_context = context;
97eaf530 6193
0231bb53 6194 perf_event__state_init(event);
a86ed508 6195
4aeb0b42 6196 pmu = NULL;
b8e83514 6197
cdd6c482 6198 hwc = &event->hw;
bd2b5b12 6199 hwc->sample_period = attr->sample_period;
0d48696f 6200 if (attr->freq && attr->sample_freq)
bd2b5b12 6201 hwc->sample_period = 1;
eced1dfc 6202 hwc->last_period = hwc->sample_period;
bd2b5b12 6203
e7850595 6204 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6205
2023b359 6206 /*
cdd6c482 6207 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6208 */
3dab77fb 6209 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
2023b359
PZ
6210 goto done;
6211
b0a873eb 6212 pmu = perf_init_event(event);
974802ea 6213
d5d2bc0d
PM
6214done:
6215 err = 0;
4aeb0b42 6216 if (!pmu)
d5d2bc0d 6217 err = -EINVAL;
4aeb0b42
RR
6218 else if (IS_ERR(pmu))
6219 err = PTR_ERR(pmu);
5c92d124 6220
d5d2bc0d 6221 if (err) {
cdd6c482
IM
6222 if (event->ns)
6223 put_pid_ns(event->ns);
6224 kfree(event);
d5d2bc0d 6225 return ERR_PTR(err);
621a01ea 6226 }
d5d2bc0d 6227
cdd6c482 6228 if (!event->parent) {
82cd6def 6229 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 6230 static_key_slow_inc(&perf_sched_events.key);
3af9e859 6231 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
6232 atomic_inc(&nr_mmap_events);
6233 if (event->attr.comm)
6234 atomic_inc(&nr_comm_events);
6235 if (event->attr.task)
6236 atomic_inc(&nr_task_events);
927c7a9e
FW
6237 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6238 err = get_callchain_buffers();
6239 if (err) {
6240 free_event(event);
6241 return ERR_PTR(err);
6242 }
6243 }
d010b332
SE
6244 if (has_branch_stack(event)) {
6245 static_key_slow_inc(&perf_sched_events.key);
6246 if (!(event->attach_state & PERF_ATTACH_TASK))
6247 atomic_inc(&per_cpu(perf_branch_stack_events,
6248 event->cpu));
6249 }
f344011c 6250 }
9ee318a7 6251
cdd6c482 6252 return event;
0793a61d
TG
6253}
6254
cdd6c482
IM
6255static int perf_copy_attr(struct perf_event_attr __user *uattr,
6256 struct perf_event_attr *attr)
974802ea 6257{
974802ea 6258 u32 size;
cdf8073d 6259 int ret;
974802ea
PZ
6260
6261 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6262 return -EFAULT;
6263
6264 /*
6265 * zero the full structure, so that a short copy will be nice.
6266 */
6267 memset(attr, 0, sizeof(*attr));
6268
6269 ret = get_user(size, &uattr->size);
6270 if (ret)
6271 return ret;
6272
6273 if (size > PAGE_SIZE) /* silly large */
6274 goto err_size;
6275
6276 if (!size) /* abi compat */
6277 size = PERF_ATTR_SIZE_VER0;
6278
6279 if (size < PERF_ATTR_SIZE_VER0)
6280 goto err_size;
6281
6282 /*
6283 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6284 * ensure all the unknown bits are 0 - i.e. new
6285 * user-space does not rely on any kernel feature
6286 * extensions we dont know about yet.
974802ea
PZ
6287 */
6288 if (size > sizeof(*attr)) {
cdf8073d
IS
6289 unsigned char __user *addr;
6290 unsigned char __user *end;
6291 unsigned char val;
974802ea 6292
cdf8073d
IS
6293 addr = (void __user *)uattr + sizeof(*attr);
6294 end = (void __user *)uattr + size;
974802ea 6295
cdf8073d 6296 for (; addr < end; addr++) {
974802ea
PZ
6297 ret = get_user(val, addr);
6298 if (ret)
6299 return ret;
6300 if (val)
6301 goto err_size;
6302 }
b3e62e35 6303 size = sizeof(*attr);
974802ea
PZ
6304 }
6305
6306 ret = copy_from_user(attr, uattr, size);
6307 if (ret)
6308 return -EFAULT;
6309
cd757645 6310 if (attr->__reserved_1)
974802ea
PZ
6311 return -EINVAL;
6312
6313 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6314 return -EINVAL;
6315
6316 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6317 return -EINVAL;
6318
bce38cd5
SE
6319 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6320 u64 mask = attr->branch_sample_type;
6321
6322 /* only using defined bits */
6323 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6324 return -EINVAL;
6325
6326 /* at least one branch bit must be set */
6327 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6328 return -EINVAL;
6329
6330 /* kernel level capture: check permissions */
6331 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6332 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6333 return -EACCES;
6334
6335 /* propagate priv level, when not set for branch */
6336 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6337
6338 /* exclude_kernel checked on syscall entry */
6339 if (!attr->exclude_kernel)
6340 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6341
6342 if (!attr->exclude_user)
6343 mask |= PERF_SAMPLE_BRANCH_USER;
6344
6345 if (!attr->exclude_hv)
6346 mask |= PERF_SAMPLE_BRANCH_HV;
6347 /*
6348 * adjust user setting (for HW filter setup)
6349 */
6350 attr->branch_sample_type = mask;
6351 }
6352 }
4018994f 6353
c5ebcedb 6354 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6355 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6356 if (ret)
6357 return ret;
6358 }
6359
6360 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6361 if (!arch_perf_have_user_stack_dump())
6362 return -ENOSYS;
6363
6364 /*
6365 * We have __u32 type for the size, but so far
6366 * we can only use __u16 as maximum due to the
6367 * __u16 sample size limit.
6368 */
6369 if (attr->sample_stack_user >= USHRT_MAX)
6370 ret = -EINVAL;
6371 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6372 ret = -EINVAL;
6373 }
4018994f 6374
974802ea
PZ
6375out:
6376 return ret;
6377
6378err_size:
6379 put_user(sizeof(*attr), &uattr->size);
6380 ret = -E2BIG;
6381 goto out;
6382}
6383
ac9721f3
PZ
6384static int
6385perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6386{
76369139 6387 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6388 int ret = -EINVAL;
6389
ac9721f3 6390 if (!output_event)
a4be7c27
PZ
6391 goto set;
6392
ac9721f3
PZ
6393 /* don't allow circular references */
6394 if (event == output_event)
a4be7c27
PZ
6395 goto out;
6396
0f139300
PZ
6397 /*
6398 * Don't allow cross-cpu buffers
6399 */
6400 if (output_event->cpu != event->cpu)
6401 goto out;
6402
6403 /*
76369139 6404 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6405 */
6406 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6407 goto out;
6408
a4be7c27 6409set:
cdd6c482 6410 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6411 /* Can't redirect output if we've got an active mmap() */
6412 if (atomic_read(&event->mmap_count))
6413 goto unlock;
a4be7c27 6414
ac9721f3 6415 if (output_event) {
76369139
FW
6416 /* get the rb we want to redirect to */
6417 rb = ring_buffer_get(output_event);
6418 if (!rb)
ac9721f3 6419 goto unlock;
a4be7c27
PZ
6420 }
6421
76369139
FW
6422 old_rb = event->rb;
6423 rcu_assign_pointer(event->rb, rb);
10c6db11
PZ
6424 if (old_rb)
6425 ring_buffer_detach(event, old_rb);
a4be7c27 6426 ret = 0;
ac9721f3
PZ
6427unlock:
6428 mutex_unlock(&event->mmap_mutex);
6429
76369139
FW
6430 if (old_rb)
6431 ring_buffer_put(old_rb);
a4be7c27 6432out:
a4be7c27
PZ
6433 return ret;
6434}
6435
0793a61d 6436/**
cdd6c482 6437 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6438 *
cdd6c482 6439 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6440 * @pid: target pid
9f66a381 6441 * @cpu: target cpu
cdd6c482 6442 * @group_fd: group leader event fd
0793a61d 6443 */
cdd6c482
IM
6444SYSCALL_DEFINE5(perf_event_open,
6445 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6446 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6447{
b04243ef
PZ
6448 struct perf_event *group_leader = NULL, *output_event = NULL;
6449 struct perf_event *event, *sibling;
cdd6c482
IM
6450 struct perf_event_attr attr;
6451 struct perf_event_context *ctx;
6452 struct file *event_file = NULL;
2903ff01 6453 struct fd group = {NULL, 0};
38a81da2 6454 struct task_struct *task = NULL;
89a1e187 6455 struct pmu *pmu;
ea635c64 6456 int event_fd;
b04243ef 6457 int move_group = 0;
dc86cabe 6458 int err;
0793a61d 6459
2743a5b0 6460 /* for future expandability... */
e5d1367f 6461 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6462 return -EINVAL;
6463
dc86cabe
IM
6464 err = perf_copy_attr(attr_uptr, &attr);
6465 if (err)
6466 return err;
eab656ae 6467
0764771d
PZ
6468 if (!attr.exclude_kernel) {
6469 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6470 return -EACCES;
6471 }
6472
df58ab24 6473 if (attr.freq) {
cdd6c482 6474 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6475 return -EINVAL;
6476 }
6477
e5d1367f
SE
6478 /*
6479 * In cgroup mode, the pid argument is used to pass the fd
6480 * opened to the cgroup directory in cgroupfs. The cpu argument
6481 * designates the cpu on which to monitor threads from that
6482 * cgroup.
6483 */
6484 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6485 return -EINVAL;
6486
ab72a702 6487 event_fd = get_unused_fd();
ea635c64
AV
6488 if (event_fd < 0)
6489 return event_fd;
6490
ac9721f3 6491 if (group_fd != -1) {
2903ff01
AV
6492 err = perf_fget_light(group_fd, &group);
6493 if (err)
d14b12d7 6494 goto err_fd;
2903ff01 6495 group_leader = group.file->private_data;
ac9721f3
PZ
6496 if (flags & PERF_FLAG_FD_OUTPUT)
6497 output_event = group_leader;
6498 if (flags & PERF_FLAG_FD_NO_GROUP)
6499 group_leader = NULL;
6500 }
6501
e5d1367f 6502 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6503 task = find_lively_task_by_vpid(pid);
6504 if (IS_ERR(task)) {
6505 err = PTR_ERR(task);
6506 goto err_group_fd;
6507 }
6508 }
6509
fbfc623f
YZ
6510 get_online_cpus();
6511
4dc0da86
AK
6512 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6513 NULL, NULL);
d14b12d7
SE
6514 if (IS_ERR(event)) {
6515 err = PTR_ERR(event);
c6be5a5c 6516 goto err_task;
d14b12d7
SE
6517 }
6518
e5d1367f
SE
6519 if (flags & PERF_FLAG_PID_CGROUP) {
6520 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6521 if (err)
6522 goto err_alloc;
08309379
PZ
6523 /*
6524 * one more event:
6525 * - that has cgroup constraint on event->cpu
6526 * - that may need work on context switch
6527 */
6528 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 6529 static_key_slow_inc(&perf_sched_events.key);
e5d1367f
SE
6530 }
6531
89a1e187
PZ
6532 /*
6533 * Special case software events and allow them to be part of
6534 * any hardware group.
6535 */
6536 pmu = event->pmu;
b04243ef
PZ
6537
6538 if (group_leader &&
6539 (is_software_event(event) != is_software_event(group_leader))) {
6540 if (is_software_event(event)) {
6541 /*
6542 * If event and group_leader are not both a software
6543 * event, and event is, then group leader is not.
6544 *
6545 * Allow the addition of software events to !software
6546 * groups, this is safe because software events never
6547 * fail to schedule.
6548 */
6549 pmu = group_leader->pmu;
6550 } else if (is_software_event(group_leader) &&
6551 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6552 /*
6553 * In case the group is a pure software group, and we
6554 * try to add a hardware event, move the whole group to
6555 * the hardware context.
6556 */
6557 move_group = 1;
6558 }
6559 }
89a1e187
PZ
6560
6561 /*
6562 * Get the target context (task or percpu):
6563 */
e2d37cd2 6564 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
6565 if (IS_ERR(ctx)) {
6566 err = PTR_ERR(ctx);
c6be5a5c 6567 goto err_alloc;
89a1e187
PZ
6568 }
6569
fd1edb3a
PZ
6570 if (task) {
6571 put_task_struct(task);
6572 task = NULL;
6573 }
6574
ccff286d 6575 /*
cdd6c482 6576 * Look up the group leader (we will attach this event to it):
04289bb9 6577 */
ac9721f3 6578 if (group_leader) {
dc86cabe 6579 err = -EINVAL;
04289bb9 6580
04289bb9 6581 /*
ccff286d
IM
6582 * Do not allow a recursive hierarchy (this new sibling
6583 * becoming part of another group-sibling):
6584 */
6585 if (group_leader->group_leader != group_leader)
c3f00c70 6586 goto err_context;
ccff286d
IM
6587 /*
6588 * Do not allow to attach to a group in a different
6589 * task or CPU context:
04289bb9 6590 */
b04243ef
PZ
6591 if (move_group) {
6592 if (group_leader->ctx->type != ctx->type)
6593 goto err_context;
6594 } else {
6595 if (group_leader->ctx != ctx)
6596 goto err_context;
6597 }
6598
3b6f9e5c
PM
6599 /*
6600 * Only a group leader can be exclusive or pinned
6601 */
0d48696f 6602 if (attr.exclusive || attr.pinned)
c3f00c70 6603 goto err_context;
ac9721f3
PZ
6604 }
6605
6606 if (output_event) {
6607 err = perf_event_set_output(event, output_event);
6608 if (err)
c3f00c70 6609 goto err_context;
ac9721f3 6610 }
0793a61d 6611
ea635c64
AV
6612 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6613 if (IS_ERR(event_file)) {
6614 err = PTR_ERR(event_file);
c3f00c70 6615 goto err_context;
ea635c64 6616 }
9b51f66d 6617
b04243ef
PZ
6618 if (move_group) {
6619 struct perf_event_context *gctx = group_leader->ctx;
6620
6621 mutex_lock(&gctx->mutex);
fe4b04fa 6622 perf_remove_from_context(group_leader);
0231bb53
JO
6623
6624 /*
6625 * Removing from the context ends up with disabled
6626 * event. What we want here is event in the initial
6627 * startup state, ready to be add into new context.
6628 */
6629 perf_event__state_init(group_leader);
b04243ef
PZ
6630 list_for_each_entry(sibling, &group_leader->sibling_list,
6631 group_entry) {
fe4b04fa 6632 perf_remove_from_context(sibling);
0231bb53 6633 perf_event__state_init(sibling);
b04243ef
PZ
6634 put_ctx(gctx);
6635 }
6636 mutex_unlock(&gctx->mutex);
6637 put_ctx(gctx);
ea635c64 6638 }
9b51f66d 6639
ad3a37de 6640 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 6641 mutex_lock(&ctx->mutex);
b04243ef
PZ
6642
6643 if (move_group) {
0cda4c02 6644 synchronize_rcu();
e2d37cd2 6645 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
6646 get_ctx(ctx);
6647 list_for_each_entry(sibling, &group_leader->sibling_list,
6648 group_entry) {
e2d37cd2 6649 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
6650 get_ctx(ctx);
6651 }
6652 }
6653
e2d37cd2 6654 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 6655 ++ctx->generation;
fe4b04fa 6656 perf_unpin_context(ctx);
d859e29f 6657 mutex_unlock(&ctx->mutex);
9b51f66d 6658
fbfc623f
YZ
6659 put_online_cpus();
6660
cdd6c482 6661 event->owner = current;
8882135b 6662
cdd6c482
IM
6663 mutex_lock(&current->perf_event_mutex);
6664 list_add_tail(&event->owner_entry, &current->perf_event_list);
6665 mutex_unlock(&current->perf_event_mutex);
082ff5a2 6666
c320c7b7
ACM
6667 /*
6668 * Precalculate sample_data sizes
6669 */
6670 perf_event__header_size(event);
6844c09d 6671 perf_event__id_header_size(event);
c320c7b7 6672
8a49542c
PZ
6673 /*
6674 * Drop the reference on the group_event after placing the
6675 * new event on the sibling_list. This ensures destruction
6676 * of the group leader will find the pointer to itself in
6677 * perf_group_detach().
6678 */
2903ff01 6679 fdput(group);
ea635c64
AV
6680 fd_install(event_fd, event_file);
6681 return event_fd;
0793a61d 6682
c3f00c70 6683err_context:
fe4b04fa 6684 perf_unpin_context(ctx);
ea635c64 6685 put_ctx(ctx);
c6be5a5c 6686err_alloc:
ea635c64 6687 free_event(event);
e7d0bc04 6688err_task:
fbfc623f 6689 put_online_cpus();
e7d0bc04
PZ
6690 if (task)
6691 put_task_struct(task);
89a1e187 6692err_group_fd:
2903ff01 6693 fdput(group);
ea635c64
AV
6694err_fd:
6695 put_unused_fd(event_fd);
dc86cabe 6696 return err;
0793a61d
TG
6697}
6698
fb0459d7
AV
6699/**
6700 * perf_event_create_kernel_counter
6701 *
6702 * @attr: attributes of the counter to create
6703 * @cpu: cpu in which the counter is bound
38a81da2 6704 * @task: task to profile (NULL for percpu)
fb0459d7
AV
6705 */
6706struct perf_event *
6707perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 6708 struct task_struct *task,
4dc0da86
AK
6709 perf_overflow_handler_t overflow_handler,
6710 void *context)
fb0459d7 6711{
fb0459d7 6712 struct perf_event_context *ctx;
c3f00c70 6713 struct perf_event *event;
fb0459d7 6714 int err;
d859e29f 6715
fb0459d7
AV
6716 /*
6717 * Get the target context (task or percpu):
6718 */
d859e29f 6719
4dc0da86
AK
6720 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6721 overflow_handler, context);
c3f00c70
PZ
6722 if (IS_ERR(event)) {
6723 err = PTR_ERR(event);
6724 goto err;
6725 }
d859e29f 6726
38a81da2 6727 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
6728 if (IS_ERR(ctx)) {
6729 err = PTR_ERR(ctx);
c3f00c70 6730 goto err_free;
d859e29f 6731 }
fb0459d7 6732
fb0459d7
AV
6733 WARN_ON_ONCE(ctx->parent_ctx);
6734 mutex_lock(&ctx->mutex);
6735 perf_install_in_context(ctx, event, cpu);
6736 ++ctx->generation;
fe4b04fa 6737 perf_unpin_context(ctx);
fb0459d7
AV
6738 mutex_unlock(&ctx->mutex);
6739
fb0459d7
AV
6740 return event;
6741
c3f00c70
PZ
6742err_free:
6743 free_event(event);
6744err:
c6567f64 6745 return ERR_PTR(err);
9b51f66d 6746}
fb0459d7 6747EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 6748
0cda4c02
YZ
6749void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6750{
6751 struct perf_event_context *src_ctx;
6752 struct perf_event_context *dst_ctx;
6753 struct perf_event *event, *tmp;
6754 LIST_HEAD(events);
6755
6756 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6757 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6758
6759 mutex_lock(&src_ctx->mutex);
6760 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6761 event_entry) {
6762 perf_remove_from_context(event);
6763 put_ctx(src_ctx);
6764 list_add(&event->event_entry, &events);
6765 }
6766 mutex_unlock(&src_ctx->mutex);
6767
6768 synchronize_rcu();
6769
6770 mutex_lock(&dst_ctx->mutex);
6771 list_for_each_entry_safe(event, tmp, &events, event_entry) {
6772 list_del(&event->event_entry);
6773 if (event->state >= PERF_EVENT_STATE_OFF)
6774 event->state = PERF_EVENT_STATE_INACTIVE;
6775 perf_install_in_context(dst_ctx, event, dst_cpu);
6776 get_ctx(dst_ctx);
6777 }
6778 mutex_unlock(&dst_ctx->mutex);
6779}
6780EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6781
cdd6c482 6782static void sync_child_event(struct perf_event *child_event,
38b200d6 6783 struct task_struct *child)
d859e29f 6784{
cdd6c482 6785 struct perf_event *parent_event = child_event->parent;
8bc20959 6786 u64 child_val;
d859e29f 6787
cdd6c482
IM
6788 if (child_event->attr.inherit_stat)
6789 perf_event_read_event(child_event, child);
38b200d6 6790
b5e58793 6791 child_val = perf_event_count(child_event);
d859e29f
PM
6792
6793 /*
6794 * Add back the child's count to the parent's count:
6795 */
a6e6dea6 6796 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
6797 atomic64_add(child_event->total_time_enabled,
6798 &parent_event->child_total_time_enabled);
6799 atomic64_add(child_event->total_time_running,
6800 &parent_event->child_total_time_running);
d859e29f
PM
6801
6802 /*
cdd6c482 6803 * Remove this event from the parent's list
d859e29f 6804 */
cdd6c482
IM
6805 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6806 mutex_lock(&parent_event->child_mutex);
6807 list_del_init(&child_event->child_list);
6808 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
6809
6810 /*
cdd6c482 6811 * Release the parent event, if this was the last
d859e29f
PM
6812 * reference to it.
6813 */
a6fa941d 6814 put_event(parent_event);
d859e29f
PM
6815}
6816
9b51f66d 6817static void
cdd6c482
IM
6818__perf_event_exit_task(struct perf_event *child_event,
6819 struct perf_event_context *child_ctx,
38b200d6 6820 struct task_struct *child)
9b51f66d 6821{
38b435b1
PZ
6822 if (child_event->parent) {
6823 raw_spin_lock_irq(&child_ctx->lock);
6824 perf_group_detach(child_event);
6825 raw_spin_unlock_irq(&child_ctx->lock);
6826 }
9b51f66d 6827
fe4b04fa 6828 perf_remove_from_context(child_event);
0cc0c027 6829
9b51f66d 6830 /*
38b435b1 6831 * It can happen that the parent exits first, and has events
9b51f66d 6832 * that are still around due to the child reference. These
38b435b1 6833 * events need to be zapped.
9b51f66d 6834 */
38b435b1 6835 if (child_event->parent) {
cdd6c482
IM
6836 sync_child_event(child_event, child);
6837 free_event(child_event);
4bcf349a 6838 }
9b51f66d
IM
6839}
6840
8dc85d54 6841static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 6842{
cdd6c482
IM
6843 struct perf_event *child_event, *tmp;
6844 struct perf_event_context *child_ctx;
a63eaf34 6845 unsigned long flags;
9b51f66d 6846
8dc85d54 6847 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 6848 perf_event_task(child, NULL, 0);
9b51f66d 6849 return;
9f498cc5 6850 }
9b51f66d 6851
a63eaf34 6852 local_irq_save(flags);
ad3a37de
PM
6853 /*
6854 * We can't reschedule here because interrupts are disabled,
6855 * and either child is current or it is a task that can't be
6856 * scheduled, so we are now safe from rescheduling changing
6857 * our context.
6858 */
806839b2 6859 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
6860
6861 /*
6862 * Take the context lock here so that if find_get_context is
cdd6c482 6863 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
6864 * incremented the context's refcount before we do put_ctx below.
6865 */
e625cce1 6866 raw_spin_lock(&child_ctx->lock);
04dc2dbb 6867 task_ctx_sched_out(child_ctx);
8dc85d54 6868 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
6869 /*
6870 * If this context is a clone; unclone it so it can't get
6871 * swapped to another process while we're removing all
cdd6c482 6872 * the events from it.
71a851b4
PZ
6873 */
6874 unclone_ctx(child_ctx);
5e942bb3 6875 update_context_time(child_ctx);
e625cce1 6876 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
6877
6878 /*
cdd6c482
IM
6879 * Report the task dead after unscheduling the events so that we
6880 * won't get any samples after PERF_RECORD_EXIT. We can however still
6881 * get a few PERF_RECORD_READ events.
9f498cc5 6882 */
cdd6c482 6883 perf_event_task(child, child_ctx, 0);
a63eaf34 6884
66fff224
PZ
6885 /*
6886 * We can recurse on the same lock type through:
6887 *
cdd6c482
IM
6888 * __perf_event_exit_task()
6889 * sync_child_event()
a6fa941d
AV
6890 * put_event()
6891 * mutex_lock(&ctx->mutex)
66fff224
PZ
6892 *
6893 * But since its the parent context it won't be the same instance.
6894 */
a0507c84 6895 mutex_lock(&child_ctx->mutex);
a63eaf34 6896
8bc20959 6897again:
889ff015
FW
6898 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6899 group_entry)
6900 __perf_event_exit_task(child_event, child_ctx, child);
6901
6902 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 6903 group_entry)
cdd6c482 6904 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
6905
6906 /*
cdd6c482 6907 * If the last event was a group event, it will have appended all
8bc20959
PZ
6908 * its siblings to the list, but we obtained 'tmp' before that which
6909 * will still point to the list head terminating the iteration.
6910 */
889ff015
FW
6911 if (!list_empty(&child_ctx->pinned_groups) ||
6912 !list_empty(&child_ctx->flexible_groups))
8bc20959 6913 goto again;
a63eaf34
PM
6914
6915 mutex_unlock(&child_ctx->mutex);
6916
6917 put_ctx(child_ctx);
9b51f66d
IM
6918}
6919
8dc85d54
PZ
6920/*
6921 * When a child task exits, feed back event values to parent events.
6922 */
6923void perf_event_exit_task(struct task_struct *child)
6924{
8882135b 6925 struct perf_event *event, *tmp;
8dc85d54
PZ
6926 int ctxn;
6927
8882135b
PZ
6928 mutex_lock(&child->perf_event_mutex);
6929 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6930 owner_entry) {
6931 list_del_init(&event->owner_entry);
6932
6933 /*
6934 * Ensure the list deletion is visible before we clear
6935 * the owner, closes a race against perf_release() where
6936 * we need to serialize on the owner->perf_event_mutex.
6937 */
6938 smp_wmb();
6939 event->owner = NULL;
6940 }
6941 mutex_unlock(&child->perf_event_mutex);
6942
8dc85d54
PZ
6943 for_each_task_context_nr(ctxn)
6944 perf_event_exit_task_context(child, ctxn);
6945}
6946
889ff015
FW
6947static void perf_free_event(struct perf_event *event,
6948 struct perf_event_context *ctx)
6949{
6950 struct perf_event *parent = event->parent;
6951
6952 if (WARN_ON_ONCE(!parent))
6953 return;
6954
6955 mutex_lock(&parent->child_mutex);
6956 list_del_init(&event->child_list);
6957 mutex_unlock(&parent->child_mutex);
6958
a6fa941d 6959 put_event(parent);
889ff015 6960
8a49542c 6961 perf_group_detach(event);
889ff015
FW
6962 list_del_event(event, ctx);
6963 free_event(event);
6964}
6965
bbbee908
PZ
6966/*
6967 * free an unexposed, unused context as created by inheritance by
8dc85d54 6968 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 6969 */
cdd6c482 6970void perf_event_free_task(struct task_struct *task)
bbbee908 6971{
8dc85d54 6972 struct perf_event_context *ctx;
cdd6c482 6973 struct perf_event *event, *tmp;
8dc85d54 6974 int ctxn;
bbbee908 6975
8dc85d54
PZ
6976 for_each_task_context_nr(ctxn) {
6977 ctx = task->perf_event_ctxp[ctxn];
6978 if (!ctx)
6979 continue;
bbbee908 6980
8dc85d54 6981 mutex_lock(&ctx->mutex);
bbbee908 6982again:
8dc85d54
PZ
6983 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6984 group_entry)
6985 perf_free_event(event, ctx);
bbbee908 6986
8dc85d54
PZ
6987 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6988 group_entry)
6989 perf_free_event(event, ctx);
bbbee908 6990
8dc85d54
PZ
6991 if (!list_empty(&ctx->pinned_groups) ||
6992 !list_empty(&ctx->flexible_groups))
6993 goto again;
bbbee908 6994
8dc85d54 6995 mutex_unlock(&ctx->mutex);
bbbee908 6996
8dc85d54
PZ
6997 put_ctx(ctx);
6998 }
889ff015
FW
6999}
7000
4e231c79
PZ
7001void perf_event_delayed_put(struct task_struct *task)
7002{
7003 int ctxn;
7004
7005 for_each_task_context_nr(ctxn)
7006 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7007}
7008
97dee4f3
PZ
7009/*
7010 * inherit a event from parent task to child task:
7011 */
7012static struct perf_event *
7013inherit_event(struct perf_event *parent_event,
7014 struct task_struct *parent,
7015 struct perf_event_context *parent_ctx,
7016 struct task_struct *child,
7017 struct perf_event *group_leader,
7018 struct perf_event_context *child_ctx)
7019{
7020 struct perf_event *child_event;
cee010ec 7021 unsigned long flags;
97dee4f3
PZ
7022
7023 /*
7024 * Instead of creating recursive hierarchies of events,
7025 * we link inherited events back to the original parent,
7026 * which has a filp for sure, which we use as the reference
7027 * count:
7028 */
7029 if (parent_event->parent)
7030 parent_event = parent_event->parent;
7031
7032 child_event = perf_event_alloc(&parent_event->attr,
7033 parent_event->cpu,
d580ff86 7034 child,
97dee4f3 7035 group_leader, parent_event,
4dc0da86 7036 NULL, NULL);
97dee4f3
PZ
7037 if (IS_ERR(child_event))
7038 return child_event;
a6fa941d
AV
7039
7040 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7041 free_event(child_event);
7042 return NULL;
7043 }
7044
97dee4f3
PZ
7045 get_ctx(child_ctx);
7046
7047 /*
7048 * Make the child state follow the state of the parent event,
7049 * not its attr.disabled bit. We hold the parent's mutex,
7050 * so we won't race with perf_event_{en, dis}able_family.
7051 */
7052 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7053 child_event->state = PERF_EVENT_STATE_INACTIVE;
7054 else
7055 child_event->state = PERF_EVENT_STATE_OFF;
7056
7057 if (parent_event->attr.freq) {
7058 u64 sample_period = parent_event->hw.sample_period;
7059 struct hw_perf_event *hwc = &child_event->hw;
7060
7061 hwc->sample_period = sample_period;
7062 hwc->last_period = sample_period;
7063
7064 local64_set(&hwc->period_left, sample_period);
7065 }
7066
7067 child_event->ctx = child_ctx;
7068 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7069 child_event->overflow_handler_context
7070 = parent_event->overflow_handler_context;
97dee4f3 7071
614b6780
TG
7072 /*
7073 * Precalculate sample_data sizes
7074 */
7075 perf_event__header_size(child_event);
6844c09d 7076 perf_event__id_header_size(child_event);
614b6780 7077
97dee4f3
PZ
7078 /*
7079 * Link it up in the child's context:
7080 */
cee010ec 7081 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7082 add_event_to_ctx(child_event, child_ctx);
cee010ec 7083 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7084
97dee4f3
PZ
7085 /*
7086 * Link this into the parent event's child list
7087 */
7088 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7089 mutex_lock(&parent_event->child_mutex);
7090 list_add_tail(&child_event->child_list, &parent_event->child_list);
7091 mutex_unlock(&parent_event->child_mutex);
7092
7093 return child_event;
7094}
7095
7096static int inherit_group(struct perf_event *parent_event,
7097 struct task_struct *parent,
7098 struct perf_event_context *parent_ctx,
7099 struct task_struct *child,
7100 struct perf_event_context *child_ctx)
7101{
7102 struct perf_event *leader;
7103 struct perf_event *sub;
7104 struct perf_event *child_ctr;
7105
7106 leader = inherit_event(parent_event, parent, parent_ctx,
7107 child, NULL, child_ctx);
7108 if (IS_ERR(leader))
7109 return PTR_ERR(leader);
7110 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7111 child_ctr = inherit_event(sub, parent, parent_ctx,
7112 child, leader, child_ctx);
7113 if (IS_ERR(child_ctr))
7114 return PTR_ERR(child_ctr);
7115 }
7116 return 0;
889ff015
FW
7117}
7118
7119static int
7120inherit_task_group(struct perf_event *event, struct task_struct *parent,
7121 struct perf_event_context *parent_ctx,
8dc85d54 7122 struct task_struct *child, int ctxn,
889ff015
FW
7123 int *inherited_all)
7124{
7125 int ret;
8dc85d54 7126 struct perf_event_context *child_ctx;
889ff015
FW
7127
7128 if (!event->attr.inherit) {
7129 *inherited_all = 0;
7130 return 0;
bbbee908
PZ
7131 }
7132
fe4b04fa 7133 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7134 if (!child_ctx) {
7135 /*
7136 * This is executed from the parent task context, so
7137 * inherit events that have been marked for cloning.
7138 * First allocate and initialize a context for the
7139 * child.
7140 */
bbbee908 7141
eb184479 7142 child_ctx = alloc_perf_context(event->pmu, child);
889ff015
FW
7143 if (!child_ctx)
7144 return -ENOMEM;
bbbee908 7145
8dc85d54 7146 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7147 }
7148
7149 ret = inherit_group(event, parent, parent_ctx,
7150 child, child_ctx);
7151
7152 if (ret)
7153 *inherited_all = 0;
7154
7155 return ret;
bbbee908
PZ
7156}
7157
9b51f66d 7158/*
cdd6c482 7159 * Initialize the perf_event context in task_struct
9b51f66d 7160 */
8dc85d54 7161int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7162{
889ff015 7163 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7164 struct perf_event_context *cloned_ctx;
7165 struct perf_event *event;
9b51f66d 7166 struct task_struct *parent = current;
564c2b21 7167 int inherited_all = 1;
dddd3379 7168 unsigned long flags;
6ab423e0 7169 int ret = 0;
9b51f66d 7170
8dc85d54 7171 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7172 return 0;
7173
ad3a37de 7174 /*
25346b93
PM
7175 * If the parent's context is a clone, pin it so it won't get
7176 * swapped under us.
ad3a37de 7177 */
8dc85d54 7178 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 7179
ad3a37de
PM
7180 /*
7181 * No need to check if parent_ctx != NULL here; since we saw
7182 * it non-NULL earlier, the only reason for it to become NULL
7183 * is if we exit, and since we're currently in the middle of
7184 * a fork we can't be exiting at the same time.
7185 */
ad3a37de 7186
9b51f66d
IM
7187 /*
7188 * Lock the parent list. No need to lock the child - not PID
7189 * hashed yet and not running, so nobody can access it.
7190 */
d859e29f 7191 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7192
7193 /*
7194 * We dont have to disable NMIs - we are only looking at
7195 * the list, not manipulating it:
7196 */
889ff015 7197 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7198 ret = inherit_task_group(event, parent, parent_ctx,
7199 child, ctxn, &inherited_all);
889ff015
FW
7200 if (ret)
7201 break;
7202 }
b93f7978 7203
dddd3379
TG
7204 /*
7205 * We can't hold ctx->lock when iterating the ->flexible_group list due
7206 * to allocations, but we need to prevent rotation because
7207 * rotate_ctx() will change the list from interrupt context.
7208 */
7209 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7210 parent_ctx->rotate_disable = 1;
7211 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7212
889ff015 7213 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7214 ret = inherit_task_group(event, parent, parent_ctx,
7215 child, ctxn, &inherited_all);
889ff015 7216 if (ret)
9b51f66d 7217 break;
564c2b21
PM
7218 }
7219
dddd3379
TG
7220 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7221 parent_ctx->rotate_disable = 0;
dddd3379 7222
8dc85d54 7223 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7224
05cbaa28 7225 if (child_ctx && inherited_all) {
564c2b21
PM
7226 /*
7227 * Mark the child context as a clone of the parent
7228 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7229 *
7230 * Note that if the parent is a clone, the holding of
7231 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7232 */
c5ed5145 7233 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7234 if (cloned_ctx) {
7235 child_ctx->parent_ctx = cloned_ctx;
25346b93 7236 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7237 } else {
7238 child_ctx->parent_ctx = parent_ctx;
7239 child_ctx->parent_gen = parent_ctx->generation;
7240 }
7241 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7242 }
7243
c5ed5145 7244 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7245 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7246
25346b93 7247 perf_unpin_context(parent_ctx);
fe4b04fa 7248 put_ctx(parent_ctx);
ad3a37de 7249
6ab423e0 7250 return ret;
9b51f66d
IM
7251}
7252
8dc85d54
PZ
7253/*
7254 * Initialize the perf_event context in task_struct
7255 */
7256int perf_event_init_task(struct task_struct *child)
7257{
7258 int ctxn, ret;
7259
8550d7cb
ON
7260 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7261 mutex_init(&child->perf_event_mutex);
7262 INIT_LIST_HEAD(&child->perf_event_list);
7263
8dc85d54
PZ
7264 for_each_task_context_nr(ctxn) {
7265 ret = perf_event_init_context(child, ctxn);
7266 if (ret)
7267 return ret;
7268 }
7269
7270 return 0;
7271}
7272
220b140b
PM
7273static void __init perf_event_init_all_cpus(void)
7274{
b28ab83c 7275 struct swevent_htable *swhash;
220b140b 7276 int cpu;
220b140b
PM
7277
7278 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7279 swhash = &per_cpu(swevent_htable, cpu);
7280 mutex_init(&swhash->hlist_mutex);
e9d2b064 7281 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7282 }
7283}
7284
cdd6c482 7285static void __cpuinit perf_event_init_cpu(int cpu)
0793a61d 7286{
108b02cf 7287 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7288
b28ab83c 7289 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7290 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7291 struct swevent_hlist *hlist;
7292
b28ab83c
PZ
7293 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7294 WARN_ON(!hlist);
7295 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7296 }
b28ab83c 7297 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7298}
7299
c277443c 7300#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7301static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7302{
e9d2b064
PZ
7303 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7304
7305 WARN_ON(!irqs_disabled());
7306
7307 list_del_init(&cpuctx->rotation_list);
7308}
7309
108b02cf 7310static void __perf_event_exit_context(void *__info)
0793a61d 7311{
108b02cf 7312 struct perf_event_context *ctx = __info;
cdd6c482 7313 struct perf_event *event, *tmp;
0793a61d 7314
108b02cf 7315 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7316
889ff015 7317 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7318 __perf_remove_from_context(event);
889ff015 7319 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7320 __perf_remove_from_context(event);
0793a61d 7321}
108b02cf
PZ
7322
7323static void perf_event_exit_cpu_context(int cpu)
7324{
7325 struct perf_event_context *ctx;
7326 struct pmu *pmu;
7327 int idx;
7328
7329 idx = srcu_read_lock(&pmus_srcu);
7330 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7331 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7332
7333 mutex_lock(&ctx->mutex);
7334 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7335 mutex_unlock(&ctx->mutex);
7336 }
7337 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7338}
7339
cdd6c482 7340static void perf_event_exit_cpu(int cpu)
0793a61d 7341{
b28ab83c 7342 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7343
b28ab83c
PZ
7344 mutex_lock(&swhash->hlist_mutex);
7345 swevent_hlist_release(swhash);
7346 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7347
108b02cf 7348 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7349}
7350#else
cdd6c482 7351static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7352#endif
7353
c277443c
PZ
7354static int
7355perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7356{
7357 int cpu;
7358
7359 for_each_online_cpu(cpu)
7360 perf_event_exit_cpu(cpu);
7361
7362 return NOTIFY_OK;
7363}
7364
7365/*
7366 * Run the perf reboot notifier at the very last possible moment so that
7367 * the generic watchdog code runs as long as possible.
7368 */
7369static struct notifier_block perf_reboot_notifier = {
7370 .notifier_call = perf_reboot,
7371 .priority = INT_MIN,
7372};
7373
0793a61d
TG
7374static int __cpuinit
7375perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7376{
7377 unsigned int cpu = (long)hcpu;
7378
4536e4d1 7379 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7380
7381 case CPU_UP_PREPARE:
5e11637e 7382 case CPU_DOWN_FAILED:
cdd6c482 7383 perf_event_init_cpu(cpu);
0793a61d
TG
7384 break;
7385
5e11637e 7386 case CPU_UP_CANCELED:
0793a61d 7387 case CPU_DOWN_PREPARE:
cdd6c482 7388 perf_event_exit_cpu(cpu);
0793a61d
TG
7389 break;
7390
7391 default:
7392 break;
7393 }
7394
7395 return NOTIFY_OK;
7396}
7397
cdd6c482 7398void __init perf_event_init(void)
0793a61d 7399{
3c502e7a
JW
7400 int ret;
7401
2e80a82a
PZ
7402 idr_init(&pmu_idr);
7403
220b140b 7404 perf_event_init_all_cpus();
b0a873eb 7405 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7406 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7407 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7408 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7409 perf_tp_register();
7410 perf_cpu_notifier(perf_cpu_notify);
c277443c 7411 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7412
7413 ret = init_hw_breakpoint();
7414 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7415
7416 /* do not patch jump label more than once per second */
7417 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7418
7419 /*
7420 * Build time assertion that we keep the data_head at the intended
7421 * location. IOW, validation we got the __reserved[] size right.
7422 */
7423 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7424 != 1024);
0793a61d 7425}
abe43400
PZ
7426
7427static int __init perf_event_sysfs_init(void)
7428{
7429 struct pmu *pmu;
7430 int ret;
7431
7432 mutex_lock(&pmus_lock);
7433
7434 ret = bus_register(&pmu_bus);
7435 if (ret)
7436 goto unlock;
7437
7438 list_for_each_entry(pmu, &pmus, entry) {
7439 if (!pmu->name || pmu->type < 0)
7440 continue;
7441
7442 ret = pmu_dev_alloc(pmu);
7443 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7444 }
7445 pmu_bus_running = 1;
7446 ret = 0;
7447
7448unlock:
7449 mutex_unlock(&pmus_lock);
7450
7451 return ret;
7452}
7453device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7454
7455#ifdef CONFIG_CGROUP_PERF
92fb9748 7456static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
e5d1367f
SE
7457{
7458 struct perf_cgroup *jc;
e5d1367f 7459
1b15d055 7460 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7461 if (!jc)
7462 return ERR_PTR(-ENOMEM);
7463
e5d1367f
SE
7464 jc->info = alloc_percpu(struct perf_cgroup_info);
7465 if (!jc->info) {
7466 kfree(jc);
7467 return ERR_PTR(-ENOMEM);
7468 }
7469
e5d1367f
SE
7470 return &jc->css;
7471}
7472
92fb9748 7473static void perf_cgroup_css_free(struct cgroup *cont)
e5d1367f
SE
7474{
7475 struct perf_cgroup *jc;
7476 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7477 struct perf_cgroup, css);
7478 free_percpu(jc->info);
7479 kfree(jc);
7480}
7481
7482static int __perf_cgroup_move(void *info)
7483{
7484 struct task_struct *task = info;
7485 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7486 return 0;
7487}
7488
761b3ef5 7489static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7490{
bb9d97b6
TH
7491 struct task_struct *task;
7492
7493 cgroup_taskset_for_each(task, cgrp, tset)
7494 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7495}
7496
761b3ef5
LZ
7497static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7498 struct task_struct *task)
e5d1367f
SE
7499{
7500 /*
7501 * cgroup_exit() is called in the copy_process() failure path.
7502 * Ignore this case since the task hasn't ran yet, this avoids
7503 * trying to poke a half freed task state from generic code.
7504 */
7505 if (!(task->flags & PF_EXITING))
7506 return;
7507
bb9d97b6 7508 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7509}
7510
7511struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7512 .name = "perf_event",
7513 .subsys_id = perf_subsys_id,
92fb9748
TH
7514 .css_alloc = perf_cgroup_css_alloc,
7515 .css_free = perf_cgroup_css_free,
e7e7ee2e 7516 .exit = perf_cgroup_exit,
bb9d97b6 7517 .attach = perf_cgroup_attach,
8c7f6edb
TH
7518
7519 /*
7520 * perf_event cgroup doesn't handle nesting correctly.
7521 * ctx->nr_cgroups adjustments should be propagated through the
7522 * cgroup hierarchy. Fix it and remove the following.
7523 */
7524 .broken_hierarchy = true,
e5d1367f
SE
7525};
7526#endif /* CONFIG_CGROUP_PERF */