perf: Clarify perf_cpu_context::active_pmu usage by renaming it to ::unique_pmu
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
cdd6c482 36#include <linux/perf_event.h>
6fb2915d 37#include <linux/ftrace_event.h>
3c502e7a 38#include <linux/hw_breakpoint.h>
c5ebcedb 39#include <linux/mm_types.h>
0793a61d 40
76369139
FW
41#include "internal.h"
42
4e193bd4
TB
43#include <asm/irq_regs.h>
44
fe4b04fa 45struct remote_function_call {
e7e7ee2e
IM
46 struct task_struct *p;
47 int (*func)(void *info);
48 void *info;
49 int ret;
fe4b04fa
PZ
50};
51
52static void remote_function(void *data)
53{
54 struct remote_function_call *tfc = data;
55 struct task_struct *p = tfc->p;
56
57 if (p) {
58 tfc->ret = -EAGAIN;
59 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
60 return;
61 }
62
63 tfc->ret = tfc->func(tfc->info);
64}
65
66/**
67 * task_function_call - call a function on the cpu on which a task runs
68 * @p: the task to evaluate
69 * @func: the function to be called
70 * @info: the function call argument
71 *
72 * Calls the function @func when the task is currently running. This might
73 * be on the current CPU, which just calls the function directly
74 *
75 * returns: @func return value, or
76 * -ESRCH - when the process isn't running
77 * -EAGAIN - when the process moved away
78 */
79static int
80task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
81{
82 struct remote_function_call data = {
e7e7ee2e
IM
83 .p = p,
84 .func = func,
85 .info = info,
86 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
87 };
88
89 if (task_curr(p))
90 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
91
92 return data.ret;
93}
94
95/**
96 * cpu_function_call - call a function on the cpu
97 * @func: the function to be called
98 * @info: the function call argument
99 *
100 * Calls the function @func on the remote cpu.
101 *
102 * returns: @func return value or -ENXIO when the cpu is offline
103 */
104static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = NULL,
108 .func = func,
109 .info = info,
110 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
111 };
112
113 smp_call_function_single(cpu, remote_function, &data, 1);
114
115 return data.ret;
116}
117
e5d1367f
SE
118#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
119 PERF_FLAG_FD_OUTPUT |\
120 PERF_FLAG_PID_CGROUP)
121
bce38cd5
SE
122/*
123 * branch priv levels that need permission checks
124 */
125#define PERF_SAMPLE_BRANCH_PERM_PLM \
126 (PERF_SAMPLE_BRANCH_KERNEL |\
127 PERF_SAMPLE_BRANCH_HV)
128
0b3fcf17
SE
129enum event_type_t {
130 EVENT_FLEXIBLE = 0x1,
131 EVENT_PINNED = 0x2,
132 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
133};
134
e5d1367f
SE
135/*
136 * perf_sched_events : >0 events exist
137 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
138 */
c5905afb 139struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 140static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 141static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 142
cdd6c482
IM
143static atomic_t nr_mmap_events __read_mostly;
144static atomic_t nr_comm_events __read_mostly;
145static atomic_t nr_task_events __read_mostly;
9ee318a7 146
108b02cf
PZ
147static LIST_HEAD(pmus);
148static DEFINE_MUTEX(pmus_lock);
149static struct srcu_struct pmus_srcu;
150
0764771d 151/*
cdd6c482 152 * perf event paranoia level:
0fbdea19
IM
153 * -1 - not paranoid at all
154 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 155 * 1 - disallow cpu events for unpriv
0fbdea19 156 * 2 - disallow kernel profiling for unpriv
0764771d 157 */
cdd6c482 158int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 159
20443384
FW
160/* Minimum for 512 kiB + 1 user control page */
161int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
162
163/*
cdd6c482 164 * max perf event sample rate
df58ab24 165 */
163ec435
PZ
166#define DEFAULT_MAX_SAMPLE_RATE 100000
167int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
168static int max_samples_per_tick __read_mostly =
169 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
170
171int perf_proc_update_handler(struct ctl_table *table, int write,
172 void __user *buffer, size_t *lenp,
173 loff_t *ppos)
174{
175 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
176
177 if (ret || !write)
178 return ret;
179
180 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
181
182 return 0;
183}
1ccd1549 184
cdd6c482 185static atomic64_t perf_event_id;
a96bbc16 186
0b3fcf17
SE
187static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
188 enum event_type_t event_type);
189
190static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
191 enum event_type_t event_type,
192 struct task_struct *task);
193
194static void update_context_time(struct perf_event_context *ctx);
195static u64 perf_event_time(struct perf_event *event);
0b3fcf17 196
10c6db11
PZ
197static void ring_buffer_attach(struct perf_event *event,
198 struct ring_buffer *rb);
199
cdd6c482 200void __weak perf_event_print_debug(void) { }
0793a61d 201
84c79910 202extern __weak const char *perf_pmu_name(void)
0793a61d 203{
84c79910 204 return "pmu";
0793a61d
TG
205}
206
0b3fcf17
SE
207static inline u64 perf_clock(void)
208{
209 return local_clock();
210}
211
e5d1367f
SE
212static inline struct perf_cpu_context *
213__get_cpu_context(struct perf_event_context *ctx)
214{
215 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
216}
217
facc4307
PZ
218static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
219 struct perf_event_context *ctx)
220{
221 raw_spin_lock(&cpuctx->ctx.lock);
222 if (ctx)
223 raw_spin_lock(&ctx->lock);
224}
225
226static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
227 struct perf_event_context *ctx)
228{
229 if (ctx)
230 raw_spin_unlock(&ctx->lock);
231 raw_spin_unlock(&cpuctx->ctx.lock);
232}
233
e5d1367f
SE
234#ifdef CONFIG_CGROUP_PERF
235
3f7cce3c
SE
236/*
237 * Must ensure cgroup is pinned (css_get) before calling
238 * this function. In other words, we cannot call this function
239 * if there is no cgroup event for the current CPU context.
240 */
e5d1367f
SE
241static inline struct perf_cgroup *
242perf_cgroup_from_task(struct task_struct *task)
243{
244 return container_of(task_subsys_state(task, perf_subsys_id),
245 struct perf_cgroup, css);
246}
247
248static inline bool
249perf_cgroup_match(struct perf_event *event)
250{
251 struct perf_event_context *ctx = event->ctx;
252 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
253
254 return !event->cgrp || event->cgrp == cpuctx->cgrp;
255}
256
9c5da09d 257static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 258{
9c5da09d 259 return css_tryget(&event->cgrp->css);
e5d1367f
SE
260}
261
262static inline void perf_put_cgroup(struct perf_event *event)
263{
264 css_put(&event->cgrp->css);
265}
266
267static inline void perf_detach_cgroup(struct perf_event *event)
268{
269 perf_put_cgroup(event);
270 event->cgrp = NULL;
271}
272
273static inline int is_cgroup_event(struct perf_event *event)
274{
275 return event->cgrp != NULL;
276}
277
278static inline u64 perf_cgroup_event_time(struct perf_event *event)
279{
280 struct perf_cgroup_info *t;
281
282 t = per_cpu_ptr(event->cgrp->info, event->cpu);
283 return t->time;
284}
285
286static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
287{
288 struct perf_cgroup_info *info;
289 u64 now;
290
291 now = perf_clock();
292
293 info = this_cpu_ptr(cgrp->info);
294
295 info->time += now - info->timestamp;
296 info->timestamp = now;
297}
298
299static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
300{
301 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
302 if (cgrp_out)
303 __update_cgrp_time(cgrp_out);
304}
305
306static inline void update_cgrp_time_from_event(struct perf_event *event)
307{
3f7cce3c
SE
308 struct perf_cgroup *cgrp;
309
e5d1367f 310 /*
3f7cce3c
SE
311 * ensure we access cgroup data only when needed and
312 * when we know the cgroup is pinned (css_get)
e5d1367f 313 */
3f7cce3c 314 if (!is_cgroup_event(event))
e5d1367f
SE
315 return;
316
3f7cce3c
SE
317 cgrp = perf_cgroup_from_task(current);
318 /*
319 * Do not update time when cgroup is not active
320 */
321 if (cgrp == event->cgrp)
322 __update_cgrp_time(event->cgrp);
e5d1367f
SE
323}
324
325static inline void
3f7cce3c
SE
326perf_cgroup_set_timestamp(struct task_struct *task,
327 struct perf_event_context *ctx)
e5d1367f
SE
328{
329 struct perf_cgroup *cgrp;
330 struct perf_cgroup_info *info;
331
3f7cce3c
SE
332 /*
333 * ctx->lock held by caller
334 * ensure we do not access cgroup data
335 * unless we have the cgroup pinned (css_get)
336 */
337 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
338 return;
339
340 cgrp = perf_cgroup_from_task(task);
341 info = this_cpu_ptr(cgrp->info);
3f7cce3c 342 info->timestamp = ctx->timestamp;
e5d1367f
SE
343}
344
345#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
346#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
347
348/*
349 * reschedule events based on the cgroup constraint of task.
350 *
351 * mode SWOUT : schedule out everything
352 * mode SWIN : schedule in based on cgroup for next
353 */
354void perf_cgroup_switch(struct task_struct *task, int mode)
355{
356 struct perf_cpu_context *cpuctx;
357 struct pmu *pmu;
358 unsigned long flags;
359
360 /*
361 * disable interrupts to avoid geting nr_cgroup
362 * changes via __perf_event_disable(). Also
363 * avoids preemption.
364 */
365 local_irq_save(flags);
366
367 /*
368 * we reschedule only in the presence of cgroup
369 * constrained events.
370 */
371 rcu_read_lock();
372
373 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f
SE
374 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
375
e5d1367f
SE
376 /*
377 * perf_cgroup_events says at least one
378 * context on this CPU has cgroup events.
379 *
380 * ctx->nr_cgroups reports the number of cgroup
381 * events for a context.
382 */
383 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
384 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
385 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
386
387 if (mode & PERF_CGROUP_SWOUT) {
388 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
389 /*
390 * must not be done before ctxswout due
391 * to event_filter_match() in event_sched_out()
392 */
393 cpuctx->cgrp = NULL;
394 }
395
396 if (mode & PERF_CGROUP_SWIN) {
e566b76e 397 WARN_ON_ONCE(cpuctx->cgrp);
e5d1367f
SE
398 /* set cgrp before ctxsw in to
399 * allow event_filter_match() to not
400 * have to pass task around
401 */
402 cpuctx->cgrp = perf_cgroup_from_task(task);
403 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
404 }
facc4307
PZ
405 perf_pmu_enable(cpuctx->ctx.pmu);
406 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 407 }
e5d1367f
SE
408 }
409
410 rcu_read_unlock();
411
412 local_irq_restore(flags);
413}
414
a8d757ef
SE
415static inline void perf_cgroup_sched_out(struct task_struct *task,
416 struct task_struct *next)
e5d1367f 417{
a8d757ef
SE
418 struct perf_cgroup *cgrp1;
419 struct perf_cgroup *cgrp2 = NULL;
420
421 /*
422 * we come here when we know perf_cgroup_events > 0
423 */
424 cgrp1 = perf_cgroup_from_task(task);
425
426 /*
427 * next is NULL when called from perf_event_enable_on_exec()
428 * that will systematically cause a cgroup_switch()
429 */
430 if (next)
431 cgrp2 = perf_cgroup_from_task(next);
432
433 /*
434 * only schedule out current cgroup events if we know
435 * that we are switching to a different cgroup. Otherwise,
436 * do no touch the cgroup events.
437 */
438 if (cgrp1 != cgrp2)
439 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
440}
441
a8d757ef
SE
442static inline void perf_cgroup_sched_in(struct task_struct *prev,
443 struct task_struct *task)
e5d1367f 444{
a8d757ef
SE
445 struct perf_cgroup *cgrp1;
446 struct perf_cgroup *cgrp2 = NULL;
447
448 /*
449 * we come here when we know perf_cgroup_events > 0
450 */
451 cgrp1 = perf_cgroup_from_task(task);
452
453 /* prev can never be NULL */
454 cgrp2 = perf_cgroup_from_task(prev);
455
456 /*
457 * only need to schedule in cgroup events if we are changing
458 * cgroup during ctxsw. Cgroup events were not scheduled
459 * out of ctxsw out if that was not the case.
460 */
461 if (cgrp1 != cgrp2)
462 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
463}
464
465static inline int perf_cgroup_connect(int fd, struct perf_event *event,
466 struct perf_event_attr *attr,
467 struct perf_event *group_leader)
468{
469 struct perf_cgroup *cgrp;
470 struct cgroup_subsys_state *css;
471 struct file *file;
472 int ret = 0, fput_needed;
473
474 file = fget_light(fd, &fput_needed);
475 if (!file)
476 return -EBADF;
477
478 css = cgroup_css_from_dir(file, perf_subsys_id);
3db272c0
LZ
479 if (IS_ERR(css)) {
480 ret = PTR_ERR(css);
481 goto out;
482 }
e5d1367f
SE
483
484 cgrp = container_of(css, struct perf_cgroup, css);
485 event->cgrp = cgrp;
486
f75e18cb 487 /* must be done before we fput() the file */
9c5da09d
SQ
488 if (!perf_tryget_cgroup(event)) {
489 event->cgrp = NULL;
490 ret = -ENOENT;
491 goto out;
492 }
f75e18cb 493
e5d1367f
SE
494 /*
495 * all events in a group must monitor
496 * the same cgroup because a task belongs
497 * to only one perf cgroup at a time
498 */
499 if (group_leader && group_leader->cgrp != cgrp) {
500 perf_detach_cgroup(event);
501 ret = -EINVAL;
e5d1367f 502 }
3db272c0 503out:
e5d1367f
SE
504 fput_light(file, fput_needed);
505 return ret;
506}
507
508static inline void
509perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
510{
511 struct perf_cgroup_info *t;
512 t = per_cpu_ptr(event->cgrp->info, event->cpu);
513 event->shadow_ctx_time = now - t->timestamp;
514}
515
516static inline void
517perf_cgroup_defer_enabled(struct perf_event *event)
518{
519 /*
520 * when the current task's perf cgroup does not match
521 * the event's, we need to remember to call the
522 * perf_mark_enable() function the first time a task with
523 * a matching perf cgroup is scheduled in.
524 */
525 if (is_cgroup_event(event) && !perf_cgroup_match(event))
526 event->cgrp_defer_enabled = 1;
527}
528
529static inline void
530perf_cgroup_mark_enabled(struct perf_event *event,
531 struct perf_event_context *ctx)
532{
533 struct perf_event *sub;
534 u64 tstamp = perf_event_time(event);
535
536 if (!event->cgrp_defer_enabled)
537 return;
538
539 event->cgrp_defer_enabled = 0;
540
541 event->tstamp_enabled = tstamp - event->total_time_enabled;
542 list_for_each_entry(sub, &event->sibling_list, group_entry) {
543 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
544 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
545 sub->cgrp_defer_enabled = 0;
546 }
547 }
548}
549#else /* !CONFIG_CGROUP_PERF */
550
551static inline bool
552perf_cgroup_match(struct perf_event *event)
553{
554 return true;
555}
556
557static inline void perf_detach_cgroup(struct perf_event *event)
558{}
559
560static inline int is_cgroup_event(struct perf_event *event)
561{
562 return 0;
563}
564
565static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
566{
567 return 0;
568}
569
570static inline void update_cgrp_time_from_event(struct perf_event *event)
571{
572}
573
574static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
575{
576}
577
a8d757ef
SE
578static inline void perf_cgroup_sched_out(struct task_struct *task,
579 struct task_struct *next)
e5d1367f
SE
580{
581}
582
a8d757ef
SE
583static inline void perf_cgroup_sched_in(struct task_struct *prev,
584 struct task_struct *task)
e5d1367f
SE
585{
586}
587
588static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
589 struct perf_event_attr *attr,
590 struct perf_event *group_leader)
591{
592 return -EINVAL;
593}
594
595static inline void
3f7cce3c
SE
596perf_cgroup_set_timestamp(struct task_struct *task,
597 struct perf_event_context *ctx)
e5d1367f
SE
598{
599}
600
601void
602perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
603{
604}
605
606static inline void
607perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
608{
609}
610
611static inline u64 perf_cgroup_event_time(struct perf_event *event)
612{
613 return 0;
614}
615
616static inline void
617perf_cgroup_defer_enabled(struct perf_event *event)
618{
619}
620
621static inline void
622perf_cgroup_mark_enabled(struct perf_event *event,
623 struct perf_event_context *ctx)
624{
625}
626#endif
627
33696fc0 628void perf_pmu_disable(struct pmu *pmu)
9e35ad38 629{
33696fc0
PZ
630 int *count = this_cpu_ptr(pmu->pmu_disable_count);
631 if (!(*count)++)
632 pmu->pmu_disable(pmu);
9e35ad38 633}
9e35ad38 634
33696fc0 635void perf_pmu_enable(struct pmu *pmu)
9e35ad38 636{
33696fc0
PZ
637 int *count = this_cpu_ptr(pmu->pmu_disable_count);
638 if (!--(*count))
639 pmu->pmu_enable(pmu);
9e35ad38 640}
9e35ad38 641
e9d2b064
PZ
642static DEFINE_PER_CPU(struct list_head, rotation_list);
643
644/*
645 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
646 * because they're strictly cpu affine and rotate_start is called with IRQs
647 * disabled, while rotate_context is called from IRQ context.
648 */
108b02cf 649static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 650{
108b02cf 651 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 652 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 653
e9d2b064 654 WARN_ON(!irqs_disabled());
b5ab4cd5 655
e9d2b064
PZ
656 if (list_empty(&cpuctx->rotation_list))
657 list_add(&cpuctx->rotation_list, head);
9e35ad38 658}
9e35ad38 659
cdd6c482 660static void get_ctx(struct perf_event_context *ctx)
a63eaf34 661{
e5289d4a 662 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
663}
664
cdd6c482 665static void put_ctx(struct perf_event_context *ctx)
a63eaf34 666{
564c2b21
PM
667 if (atomic_dec_and_test(&ctx->refcount)) {
668 if (ctx->parent_ctx)
669 put_ctx(ctx->parent_ctx);
c93f7669
PM
670 if (ctx->task)
671 put_task_struct(ctx->task);
cb796ff3 672 kfree_rcu(ctx, rcu_head);
564c2b21 673 }
a63eaf34
PM
674}
675
cdd6c482 676static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
677{
678 if (ctx->parent_ctx) {
679 put_ctx(ctx->parent_ctx);
680 ctx->parent_ctx = NULL;
681 }
682}
683
6844c09d
ACM
684static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
685{
686 /*
687 * only top level events have the pid namespace they were created in
688 */
689 if (event->parent)
690 event = event->parent;
691
692 return task_tgid_nr_ns(p, event->ns);
693}
694
695static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
696{
697 /*
698 * only top level events have the pid namespace they were created in
699 */
700 if (event->parent)
701 event = event->parent;
702
703 return task_pid_nr_ns(p, event->ns);
704}
705
7f453c24 706/*
cdd6c482 707 * If we inherit events we want to return the parent event id
7f453c24
PZ
708 * to userspace.
709 */
cdd6c482 710static u64 primary_event_id(struct perf_event *event)
7f453c24 711{
cdd6c482 712 u64 id = event->id;
7f453c24 713
cdd6c482
IM
714 if (event->parent)
715 id = event->parent->id;
7f453c24
PZ
716
717 return id;
718}
719
25346b93 720/*
cdd6c482 721 * Get the perf_event_context for a task and lock it.
25346b93
PM
722 * This has to cope with with the fact that until it is locked,
723 * the context could get moved to another task.
724 */
cdd6c482 725static struct perf_event_context *
8dc85d54 726perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 727{
cdd6c482 728 struct perf_event_context *ctx;
25346b93
PM
729
730 rcu_read_lock();
9ed6060d 731retry:
8dc85d54 732 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
733 if (ctx) {
734 /*
735 * If this context is a clone of another, it might
736 * get swapped for another underneath us by
cdd6c482 737 * perf_event_task_sched_out, though the
25346b93
PM
738 * rcu_read_lock() protects us from any context
739 * getting freed. Lock the context and check if it
740 * got swapped before we could get the lock, and retry
741 * if so. If we locked the right context, then it
742 * can't get swapped on us any more.
743 */
e625cce1 744 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 745 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 746 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
25346b93
PM
747 goto retry;
748 }
b49a9e7e
PZ
749
750 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 751 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
752 ctx = NULL;
753 }
25346b93
PM
754 }
755 rcu_read_unlock();
756 return ctx;
757}
758
759/*
760 * Get the context for a task and increment its pin_count so it
761 * can't get swapped to another task. This also increments its
762 * reference count so that the context can't get freed.
763 */
8dc85d54
PZ
764static struct perf_event_context *
765perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 766{
cdd6c482 767 struct perf_event_context *ctx;
25346b93
PM
768 unsigned long flags;
769
8dc85d54 770 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
771 if (ctx) {
772 ++ctx->pin_count;
e625cce1 773 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
774 }
775 return ctx;
776}
777
cdd6c482 778static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
779{
780 unsigned long flags;
781
e625cce1 782 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 783 --ctx->pin_count;
e625cce1 784 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
785}
786
f67218c3
PZ
787/*
788 * Update the record of the current time in a context.
789 */
790static void update_context_time(struct perf_event_context *ctx)
791{
792 u64 now = perf_clock();
793
794 ctx->time += now - ctx->timestamp;
795 ctx->timestamp = now;
796}
797
4158755d
SE
798static u64 perf_event_time(struct perf_event *event)
799{
800 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
801
802 if (is_cgroup_event(event))
803 return perf_cgroup_event_time(event);
804
4158755d
SE
805 return ctx ? ctx->time : 0;
806}
807
f67218c3
PZ
808/*
809 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 810 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
811 */
812static void update_event_times(struct perf_event *event)
813{
814 struct perf_event_context *ctx = event->ctx;
815 u64 run_end;
816
817 if (event->state < PERF_EVENT_STATE_INACTIVE ||
818 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
819 return;
e5d1367f
SE
820 /*
821 * in cgroup mode, time_enabled represents
822 * the time the event was enabled AND active
823 * tasks were in the monitored cgroup. This is
824 * independent of the activity of the context as
825 * there may be a mix of cgroup and non-cgroup events.
826 *
827 * That is why we treat cgroup events differently
828 * here.
829 */
830 if (is_cgroup_event(event))
46cd6a7f 831 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
832 else if (ctx->is_active)
833 run_end = ctx->time;
acd1d7c1
PZ
834 else
835 run_end = event->tstamp_stopped;
836
837 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
838
839 if (event->state == PERF_EVENT_STATE_INACTIVE)
840 run_end = event->tstamp_stopped;
841 else
4158755d 842 run_end = perf_event_time(event);
f67218c3
PZ
843
844 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 845
f67218c3
PZ
846}
847
96c21a46
PZ
848/*
849 * Update total_time_enabled and total_time_running for all events in a group.
850 */
851static void update_group_times(struct perf_event *leader)
852{
853 struct perf_event *event;
854
855 update_event_times(leader);
856 list_for_each_entry(event, &leader->sibling_list, group_entry)
857 update_event_times(event);
858}
859
889ff015
FW
860static struct list_head *
861ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
862{
863 if (event->attr.pinned)
864 return &ctx->pinned_groups;
865 else
866 return &ctx->flexible_groups;
867}
868
fccc714b 869/*
cdd6c482 870 * Add a event from the lists for its context.
fccc714b
PZ
871 * Must be called with ctx->mutex and ctx->lock held.
872 */
04289bb9 873static void
cdd6c482 874list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 875{
8a49542c
PZ
876 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
877 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
878
879 /*
8a49542c
PZ
880 * If we're a stand alone event or group leader, we go to the context
881 * list, group events are kept attached to the group so that
882 * perf_group_detach can, at all times, locate all siblings.
04289bb9 883 */
8a49542c 884 if (event->group_leader == event) {
889ff015
FW
885 struct list_head *list;
886
d6f962b5
FW
887 if (is_software_event(event))
888 event->group_flags |= PERF_GROUP_SOFTWARE;
889
889ff015
FW
890 list = ctx_group_list(event, ctx);
891 list_add_tail(&event->group_entry, list);
5c148194 892 }
592903cd 893
08309379 894 if (is_cgroup_event(event))
e5d1367f 895 ctx->nr_cgroups++;
e5d1367f 896
d010b332
SE
897 if (has_branch_stack(event))
898 ctx->nr_branch_stack++;
899
cdd6c482 900 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 901 if (!ctx->nr_events)
108b02cf 902 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
903 ctx->nr_events++;
904 if (event->attr.inherit_stat)
bfbd3381 905 ctx->nr_stat++;
04289bb9
IM
906}
907
c320c7b7
ACM
908/*
909 * Called at perf_event creation and when events are attached/detached from a
910 * group.
911 */
912static void perf_event__read_size(struct perf_event *event)
913{
914 int entry = sizeof(u64); /* value */
915 int size = 0;
916 int nr = 1;
917
918 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
919 size += sizeof(u64);
920
921 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
922 size += sizeof(u64);
923
924 if (event->attr.read_format & PERF_FORMAT_ID)
925 entry += sizeof(u64);
926
927 if (event->attr.read_format & PERF_FORMAT_GROUP) {
928 nr += event->group_leader->nr_siblings;
929 size += sizeof(u64);
930 }
931
932 size += entry * nr;
933 event->read_size = size;
934}
935
936static void perf_event__header_size(struct perf_event *event)
937{
938 struct perf_sample_data *data;
939 u64 sample_type = event->attr.sample_type;
940 u16 size = 0;
941
942 perf_event__read_size(event);
943
944 if (sample_type & PERF_SAMPLE_IP)
945 size += sizeof(data->ip);
946
6844c09d
ACM
947 if (sample_type & PERF_SAMPLE_ADDR)
948 size += sizeof(data->addr);
949
950 if (sample_type & PERF_SAMPLE_PERIOD)
951 size += sizeof(data->period);
952
953 if (sample_type & PERF_SAMPLE_READ)
954 size += event->read_size;
955
956 event->header_size = size;
957}
958
959static void perf_event__id_header_size(struct perf_event *event)
960{
961 struct perf_sample_data *data;
962 u64 sample_type = event->attr.sample_type;
963 u16 size = 0;
964
c320c7b7
ACM
965 if (sample_type & PERF_SAMPLE_TID)
966 size += sizeof(data->tid_entry);
967
968 if (sample_type & PERF_SAMPLE_TIME)
969 size += sizeof(data->time);
970
c320c7b7
ACM
971 if (sample_type & PERF_SAMPLE_ID)
972 size += sizeof(data->id);
973
974 if (sample_type & PERF_SAMPLE_STREAM_ID)
975 size += sizeof(data->stream_id);
976
977 if (sample_type & PERF_SAMPLE_CPU)
978 size += sizeof(data->cpu_entry);
979
6844c09d 980 event->id_header_size = size;
c320c7b7
ACM
981}
982
8a49542c
PZ
983static void perf_group_attach(struct perf_event *event)
984{
c320c7b7 985 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 986
74c3337c
PZ
987 /*
988 * We can have double attach due to group movement in perf_event_open.
989 */
990 if (event->attach_state & PERF_ATTACH_GROUP)
991 return;
992
8a49542c
PZ
993 event->attach_state |= PERF_ATTACH_GROUP;
994
995 if (group_leader == event)
996 return;
997
998 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
999 !is_software_event(event))
1000 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1001
1002 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1003 group_leader->nr_siblings++;
c320c7b7
ACM
1004
1005 perf_event__header_size(group_leader);
1006
1007 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1008 perf_event__header_size(pos);
8a49542c
PZ
1009}
1010
a63eaf34 1011/*
cdd6c482 1012 * Remove a event from the lists for its context.
fccc714b 1013 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1014 */
04289bb9 1015static void
cdd6c482 1016list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1017{
68cacd29 1018 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1019 /*
1020 * We can have double detach due to exit/hot-unplug + close.
1021 */
1022 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1023 return;
8a49542c
PZ
1024
1025 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1026
68cacd29 1027 if (is_cgroup_event(event)) {
e5d1367f 1028 ctx->nr_cgroups--;
68cacd29
SE
1029 cpuctx = __get_cpu_context(ctx);
1030 /*
1031 * if there are no more cgroup events
1032 * then cler cgrp to avoid stale pointer
1033 * in update_cgrp_time_from_cpuctx()
1034 */
1035 if (!ctx->nr_cgroups)
1036 cpuctx->cgrp = NULL;
1037 }
e5d1367f 1038
d010b332
SE
1039 if (has_branch_stack(event))
1040 ctx->nr_branch_stack--;
1041
cdd6c482
IM
1042 ctx->nr_events--;
1043 if (event->attr.inherit_stat)
bfbd3381 1044 ctx->nr_stat--;
8bc20959 1045
cdd6c482 1046 list_del_rcu(&event->event_entry);
04289bb9 1047
8a49542c
PZ
1048 if (event->group_leader == event)
1049 list_del_init(&event->group_entry);
5c148194 1050
96c21a46 1051 update_group_times(event);
b2e74a26
SE
1052
1053 /*
1054 * If event was in error state, then keep it
1055 * that way, otherwise bogus counts will be
1056 * returned on read(). The only way to get out
1057 * of error state is by explicit re-enabling
1058 * of the event
1059 */
1060 if (event->state > PERF_EVENT_STATE_OFF)
1061 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1062}
1063
8a49542c 1064static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1065{
1066 struct perf_event *sibling, *tmp;
8a49542c
PZ
1067 struct list_head *list = NULL;
1068
1069 /*
1070 * We can have double detach due to exit/hot-unplug + close.
1071 */
1072 if (!(event->attach_state & PERF_ATTACH_GROUP))
1073 return;
1074
1075 event->attach_state &= ~PERF_ATTACH_GROUP;
1076
1077 /*
1078 * If this is a sibling, remove it from its group.
1079 */
1080 if (event->group_leader != event) {
1081 list_del_init(&event->group_entry);
1082 event->group_leader->nr_siblings--;
c320c7b7 1083 goto out;
8a49542c
PZ
1084 }
1085
1086 if (!list_empty(&event->group_entry))
1087 list = &event->group_entry;
2e2af50b 1088
04289bb9 1089 /*
cdd6c482
IM
1090 * If this was a group event with sibling events then
1091 * upgrade the siblings to singleton events by adding them
8a49542c 1092 * to whatever list we are on.
04289bb9 1093 */
cdd6c482 1094 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1095 if (list)
1096 list_move_tail(&sibling->group_entry, list);
04289bb9 1097 sibling->group_leader = sibling;
d6f962b5
FW
1098
1099 /* Inherit group flags from the previous leader */
1100 sibling->group_flags = event->group_flags;
04289bb9 1101 }
c320c7b7
ACM
1102
1103out:
1104 perf_event__header_size(event->group_leader);
1105
1106 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1107 perf_event__header_size(tmp);
04289bb9
IM
1108}
1109
fa66f07a
SE
1110static inline int
1111event_filter_match(struct perf_event *event)
1112{
e5d1367f
SE
1113 return (event->cpu == -1 || event->cpu == smp_processor_id())
1114 && perf_cgroup_match(event);
fa66f07a
SE
1115}
1116
9ffcfa6f
SE
1117static void
1118event_sched_out(struct perf_event *event,
3b6f9e5c 1119 struct perf_cpu_context *cpuctx,
cdd6c482 1120 struct perf_event_context *ctx)
3b6f9e5c 1121{
4158755d 1122 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1123 u64 delta;
1124 /*
1125 * An event which could not be activated because of
1126 * filter mismatch still needs to have its timings
1127 * maintained, otherwise bogus information is return
1128 * via read() for time_enabled, time_running:
1129 */
1130 if (event->state == PERF_EVENT_STATE_INACTIVE
1131 && !event_filter_match(event)) {
e5d1367f 1132 delta = tstamp - event->tstamp_stopped;
fa66f07a 1133 event->tstamp_running += delta;
4158755d 1134 event->tstamp_stopped = tstamp;
fa66f07a
SE
1135 }
1136
cdd6c482 1137 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1138 return;
3b6f9e5c 1139
cdd6c482
IM
1140 event->state = PERF_EVENT_STATE_INACTIVE;
1141 if (event->pending_disable) {
1142 event->pending_disable = 0;
1143 event->state = PERF_EVENT_STATE_OFF;
970892a9 1144 }
4158755d 1145 event->tstamp_stopped = tstamp;
a4eaf7f1 1146 event->pmu->del(event, 0);
cdd6c482 1147 event->oncpu = -1;
3b6f9e5c 1148
cdd6c482 1149 if (!is_software_event(event))
3b6f9e5c
PM
1150 cpuctx->active_oncpu--;
1151 ctx->nr_active--;
0f5a2601
PZ
1152 if (event->attr.freq && event->attr.sample_freq)
1153 ctx->nr_freq--;
cdd6c482 1154 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1155 cpuctx->exclusive = 0;
1156}
1157
d859e29f 1158static void
cdd6c482 1159group_sched_out(struct perf_event *group_event,
d859e29f 1160 struct perf_cpu_context *cpuctx,
cdd6c482 1161 struct perf_event_context *ctx)
d859e29f 1162{
cdd6c482 1163 struct perf_event *event;
fa66f07a 1164 int state = group_event->state;
d859e29f 1165
cdd6c482 1166 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1167
1168 /*
1169 * Schedule out siblings (if any):
1170 */
cdd6c482
IM
1171 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1172 event_sched_out(event, cpuctx, ctx);
d859e29f 1173
fa66f07a 1174 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1175 cpuctx->exclusive = 0;
1176}
1177
0793a61d 1178/*
cdd6c482 1179 * Cross CPU call to remove a performance event
0793a61d 1180 *
cdd6c482 1181 * We disable the event on the hardware level first. After that we
0793a61d
TG
1182 * remove it from the context list.
1183 */
fe4b04fa 1184static int __perf_remove_from_context(void *info)
0793a61d 1185{
cdd6c482
IM
1186 struct perf_event *event = info;
1187 struct perf_event_context *ctx = event->ctx;
108b02cf 1188 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1189
e625cce1 1190 raw_spin_lock(&ctx->lock);
cdd6c482 1191 event_sched_out(event, cpuctx, ctx);
cdd6c482 1192 list_del_event(event, ctx);
64ce3126
PZ
1193 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1194 ctx->is_active = 0;
1195 cpuctx->task_ctx = NULL;
1196 }
e625cce1 1197 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1198
1199 return 0;
0793a61d
TG
1200}
1201
1202
1203/*
cdd6c482 1204 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1205 *
cdd6c482 1206 * CPU events are removed with a smp call. For task events we only
0793a61d 1207 * call when the task is on a CPU.
c93f7669 1208 *
cdd6c482
IM
1209 * If event->ctx is a cloned context, callers must make sure that
1210 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1211 * remains valid. This is OK when called from perf_release since
1212 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1213 * When called from perf_event_exit_task, it's OK because the
c93f7669 1214 * context has been detached from its task.
0793a61d 1215 */
fe4b04fa 1216static void perf_remove_from_context(struct perf_event *event)
0793a61d 1217{
cdd6c482 1218 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1219 struct task_struct *task = ctx->task;
1220
fe4b04fa
PZ
1221 lockdep_assert_held(&ctx->mutex);
1222
0793a61d
TG
1223 if (!task) {
1224 /*
cdd6c482 1225 * Per cpu events are removed via an smp call and
af901ca1 1226 * the removal is always successful.
0793a61d 1227 */
fe4b04fa 1228 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1229 return;
1230 }
1231
1232retry:
fe4b04fa
PZ
1233 if (!task_function_call(task, __perf_remove_from_context, event))
1234 return;
0793a61d 1235
e625cce1 1236 raw_spin_lock_irq(&ctx->lock);
0793a61d 1237 /*
fe4b04fa
PZ
1238 * If we failed to find a running task, but find the context active now
1239 * that we've acquired the ctx->lock, retry.
0793a61d 1240 */
fe4b04fa 1241 if (ctx->is_active) {
e625cce1 1242 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1243 goto retry;
1244 }
1245
1246 /*
fe4b04fa
PZ
1247 * Since the task isn't running, its safe to remove the event, us
1248 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1249 */
fe4b04fa 1250 list_del_event(event, ctx);
e625cce1 1251 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1252}
1253
d859e29f 1254/*
cdd6c482 1255 * Cross CPU call to disable a performance event
d859e29f 1256 */
500ad2d8 1257int __perf_event_disable(void *info)
d859e29f 1258{
cdd6c482 1259 struct perf_event *event = info;
cdd6c482 1260 struct perf_event_context *ctx = event->ctx;
108b02cf 1261 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1262
1263 /*
cdd6c482
IM
1264 * If this is a per-task event, need to check whether this
1265 * event's task is the current task on this cpu.
fe4b04fa
PZ
1266 *
1267 * Can trigger due to concurrent perf_event_context_sched_out()
1268 * flipping contexts around.
d859e29f 1269 */
665c2142 1270 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1271 return -EINVAL;
d859e29f 1272
e625cce1 1273 raw_spin_lock(&ctx->lock);
d859e29f
PM
1274
1275 /*
cdd6c482 1276 * If the event is on, turn it off.
d859e29f
PM
1277 * If it is in error state, leave it in error state.
1278 */
cdd6c482 1279 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1280 update_context_time(ctx);
e5d1367f 1281 update_cgrp_time_from_event(event);
cdd6c482
IM
1282 update_group_times(event);
1283 if (event == event->group_leader)
1284 group_sched_out(event, cpuctx, ctx);
d859e29f 1285 else
cdd6c482
IM
1286 event_sched_out(event, cpuctx, ctx);
1287 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1288 }
1289
e625cce1 1290 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1291
1292 return 0;
d859e29f
PM
1293}
1294
1295/*
cdd6c482 1296 * Disable a event.
c93f7669 1297 *
cdd6c482
IM
1298 * If event->ctx is a cloned context, callers must make sure that
1299 * every task struct that event->ctx->task could possibly point to
c93f7669 1300 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1301 * perf_event_for_each_child or perf_event_for_each because they
1302 * hold the top-level event's child_mutex, so any descendant that
1303 * goes to exit will block in sync_child_event.
1304 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1305 * is the current context on this CPU and preemption is disabled,
cdd6c482 1306 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1307 */
44234adc 1308void perf_event_disable(struct perf_event *event)
d859e29f 1309{
cdd6c482 1310 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1311 struct task_struct *task = ctx->task;
1312
1313 if (!task) {
1314 /*
cdd6c482 1315 * Disable the event on the cpu that it's on
d859e29f 1316 */
fe4b04fa 1317 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1318 return;
1319 }
1320
9ed6060d 1321retry:
fe4b04fa
PZ
1322 if (!task_function_call(task, __perf_event_disable, event))
1323 return;
d859e29f 1324
e625cce1 1325 raw_spin_lock_irq(&ctx->lock);
d859e29f 1326 /*
cdd6c482 1327 * If the event is still active, we need to retry the cross-call.
d859e29f 1328 */
cdd6c482 1329 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1330 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1331 /*
1332 * Reload the task pointer, it might have been changed by
1333 * a concurrent perf_event_context_sched_out().
1334 */
1335 task = ctx->task;
d859e29f
PM
1336 goto retry;
1337 }
1338
1339 /*
1340 * Since we have the lock this context can't be scheduled
1341 * in, so we can change the state safely.
1342 */
cdd6c482
IM
1343 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1344 update_group_times(event);
1345 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1346 }
e625cce1 1347 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1348}
dcfce4a0 1349EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1350
e5d1367f
SE
1351static void perf_set_shadow_time(struct perf_event *event,
1352 struct perf_event_context *ctx,
1353 u64 tstamp)
1354{
1355 /*
1356 * use the correct time source for the time snapshot
1357 *
1358 * We could get by without this by leveraging the
1359 * fact that to get to this function, the caller
1360 * has most likely already called update_context_time()
1361 * and update_cgrp_time_xx() and thus both timestamp
1362 * are identical (or very close). Given that tstamp is,
1363 * already adjusted for cgroup, we could say that:
1364 * tstamp - ctx->timestamp
1365 * is equivalent to
1366 * tstamp - cgrp->timestamp.
1367 *
1368 * Then, in perf_output_read(), the calculation would
1369 * work with no changes because:
1370 * - event is guaranteed scheduled in
1371 * - no scheduled out in between
1372 * - thus the timestamp would be the same
1373 *
1374 * But this is a bit hairy.
1375 *
1376 * So instead, we have an explicit cgroup call to remain
1377 * within the time time source all along. We believe it
1378 * is cleaner and simpler to understand.
1379 */
1380 if (is_cgroup_event(event))
1381 perf_cgroup_set_shadow_time(event, tstamp);
1382 else
1383 event->shadow_ctx_time = tstamp - ctx->timestamp;
1384}
1385
4fe757dd
PZ
1386#define MAX_INTERRUPTS (~0ULL)
1387
1388static void perf_log_throttle(struct perf_event *event, int enable);
1389
235c7fc7 1390static int
9ffcfa6f 1391event_sched_in(struct perf_event *event,
235c7fc7 1392 struct perf_cpu_context *cpuctx,
6e37738a 1393 struct perf_event_context *ctx)
235c7fc7 1394{
4158755d
SE
1395 u64 tstamp = perf_event_time(event);
1396
cdd6c482 1397 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1398 return 0;
1399
cdd6c482 1400 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1401 event->oncpu = smp_processor_id();
4fe757dd
PZ
1402
1403 /*
1404 * Unthrottle events, since we scheduled we might have missed several
1405 * ticks already, also for a heavily scheduling task there is little
1406 * guarantee it'll get a tick in a timely manner.
1407 */
1408 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1409 perf_log_throttle(event, 1);
1410 event->hw.interrupts = 0;
1411 }
1412
235c7fc7
IM
1413 /*
1414 * The new state must be visible before we turn it on in the hardware:
1415 */
1416 smp_wmb();
1417
a4eaf7f1 1418 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1419 event->state = PERF_EVENT_STATE_INACTIVE;
1420 event->oncpu = -1;
235c7fc7
IM
1421 return -EAGAIN;
1422 }
1423
4158755d 1424 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1425
e5d1367f 1426 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1427
cdd6c482 1428 if (!is_software_event(event))
3b6f9e5c 1429 cpuctx->active_oncpu++;
235c7fc7 1430 ctx->nr_active++;
0f5a2601
PZ
1431 if (event->attr.freq && event->attr.sample_freq)
1432 ctx->nr_freq++;
235c7fc7 1433
cdd6c482 1434 if (event->attr.exclusive)
3b6f9e5c
PM
1435 cpuctx->exclusive = 1;
1436
235c7fc7
IM
1437 return 0;
1438}
1439
6751b71e 1440static int
cdd6c482 1441group_sched_in(struct perf_event *group_event,
6751b71e 1442 struct perf_cpu_context *cpuctx,
6e37738a 1443 struct perf_event_context *ctx)
6751b71e 1444{
6bde9b6c 1445 struct perf_event *event, *partial_group = NULL;
51b0fe39 1446 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1447 u64 now = ctx->time;
1448 bool simulate = false;
6751b71e 1449
cdd6c482 1450 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1451 return 0;
1452
ad5133b7 1453 pmu->start_txn(pmu);
6bde9b6c 1454
9ffcfa6f 1455 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1456 pmu->cancel_txn(pmu);
6751b71e 1457 return -EAGAIN;
90151c35 1458 }
6751b71e
PM
1459
1460 /*
1461 * Schedule in siblings as one group (if any):
1462 */
cdd6c482 1463 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1464 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1465 partial_group = event;
6751b71e
PM
1466 goto group_error;
1467 }
1468 }
1469
9ffcfa6f 1470 if (!pmu->commit_txn(pmu))
6e85158c 1471 return 0;
9ffcfa6f 1472
6751b71e
PM
1473group_error:
1474 /*
1475 * Groups can be scheduled in as one unit only, so undo any
1476 * partial group before returning:
d7842da4
SE
1477 * The events up to the failed event are scheduled out normally,
1478 * tstamp_stopped will be updated.
1479 *
1480 * The failed events and the remaining siblings need to have
1481 * their timings updated as if they had gone thru event_sched_in()
1482 * and event_sched_out(). This is required to get consistent timings
1483 * across the group. This also takes care of the case where the group
1484 * could never be scheduled by ensuring tstamp_stopped is set to mark
1485 * the time the event was actually stopped, such that time delta
1486 * calculation in update_event_times() is correct.
6751b71e 1487 */
cdd6c482
IM
1488 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1489 if (event == partial_group)
d7842da4
SE
1490 simulate = true;
1491
1492 if (simulate) {
1493 event->tstamp_running += now - event->tstamp_stopped;
1494 event->tstamp_stopped = now;
1495 } else {
1496 event_sched_out(event, cpuctx, ctx);
1497 }
6751b71e 1498 }
9ffcfa6f 1499 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1500
ad5133b7 1501 pmu->cancel_txn(pmu);
90151c35 1502
6751b71e
PM
1503 return -EAGAIN;
1504}
1505
3b6f9e5c 1506/*
cdd6c482 1507 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1508 */
cdd6c482 1509static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1510 struct perf_cpu_context *cpuctx,
1511 int can_add_hw)
1512{
1513 /*
cdd6c482 1514 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1515 */
d6f962b5 1516 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1517 return 1;
1518 /*
1519 * If an exclusive group is already on, no other hardware
cdd6c482 1520 * events can go on.
3b6f9e5c
PM
1521 */
1522 if (cpuctx->exclusive)
1523 return 0;
1524 /*
1525 * If this group is exclusive and there are already
cdd6c482 1526 * events on the CPU, it can't go on.
3b6f9e5c 1527 */
cdd6c482 1528 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1529 return 0;
1530 /*
1531 * Otherwise, try to add it if all previous groups were able
1532 * to go on.
1533 */
1534 return can_add_hw;
1535}
1536
cdd6c482
IM
1537static void add_event_to_ctx(struct perf_event *event,
1538 struct perf_event_context *ctx)
53cfbf59 1539{
4158755d
SE
1540 u64 tstamp = perf_event_time(event);
1541
cdd6c482 1542 list_add_event(event, ctx);
8a49542c 1543 perf_group_attach(event);
4158755d
SE
1544 event->tstamp_enabled = tstamp;
1545 event->tstamp_running = tstamp;
1546 event->tstamp_stopped = tstamp;
53cfbf59
PM
1547}
1548
2c29ef0f
PZ
1549static void task_ctx_sched_out(struct perf_event_context *ctx);
1550static void
1551ctx_sched_in(struct perf_event_context *ctx,
1552 struct perf_cpu_context *cpuctx,
1553 enum event_type_t event_type,
1554 struct task_struct *task);
fe4b04fa 1555
dce5855b
PZ
1556static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1557 struct perf_event_context *ctx,
1558 struct task_struct *task)
1559{
1560 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1561 if (ctx)
1562 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1563 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1564 if (ctx)
1565 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1566}
1567
0793a61d 1568/*
cdd6c482 1569 * Cross CPU call to install and enable a performance event
682076ae
PZ
1570 *
1571 * Must be called with ctx->mutex held
0793a61d 1572 */
fe4b04fa 1573static int __perf_install_in_context(void *info)
0793a61d 1574{
cdd6c482
IM
1575 struct perf_event *event = info;
1576 struct perf_event_context *ctx = event->ctx;
108b02cf 1577 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1578 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1579 struct task_struct *task = current;
1580
b58f6b0d 1581 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1582 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1583
1584 /*
2c29ef0f 1585 * If there was an active task_ctx schedule it out.
0793a61d 1586 */
b58f6b0d 1587 if (task_ctx)
2c29ef0f 1588 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1589
1590 /*
1591 * If the context we're installing events in is not the
1592 * active task_ctx, flip them.
1593 */
1594 if (ctx->task && task_ctx != ctx) {
1595 if (task_ctx)
1596 raw_spin_unlock(&task_ctx->lock);
1597 raw_spin_lock(&ctx->lock);
1598 task_ctx = ctx;
1599 }
1600
1601 if (task_ctx) {
1602 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1603 task = task_ctx->task;
1604 }
b58f6b0d 1605
2c29ef0f 1606 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1607
4af4998b 1608 update_context_time(ctx);
e5d1367f
SE
1609 /*
1610 * update cgrp time only if current cgrp
1611 * matches event->cgrp. Must be done before
1612 * calling add_event_to_ctx()
1613 */
1614 update_cgrp_time_from_event(event);
0793a61d 1615
cdd6c482 1616 add_event_to_ctx(event, ctx);
0793a61d 1617
d859e29f 1618 /*
2c29ef0f 1619 * Schedule everything back in
d859e29f 1620 */
dce5855b 1621 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1622
1623 perf_pmu_enable(cpuctx->ctx.pmu);
1624 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1625
1626 return 0;
0793a61d
TG
1627}
1628
1629/*
cdd6c482 1630 * Attach a performance event to a context
0793a61d 1631 *
cdd6c482
IM
1632 * First we add the event to the list with the hardware enable bit
1633 * in event->hw_config cleared.
0793a61d 1634 *
cdd6c482 1635 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1636 * call to enable it in the task context. The task might have been
1637 * scheduled away, but we check this in the smp call again.
1638 */
1639static void
cdd6c482
IM
1640perf_install_in_context(struct perf_event_context *ctx,
1641 struct perf_event *event,
0793a61d
TG
1642 int cpu)
1643{
1644 struct task_struct *task = ctx->task;
1645
fe4b04fa
PZ
1646 lockdep_assert_held(&ctx->mutex);
1647
c3f00c70 1648 event->ctx = ctx;
0cda4c02
YZ
1649 if (event->cpu != -1)
1650 event->cpu = cpu;
c3f00c70 1651
0793a61d
TG
1652 if (!task) {
1653 /*
cdd6c482 1654 * Per cpu events are installed via an smp call and
af901ca1 1655 * the install is always successful.
0793a61d 1656 */
fe4b04fa 1657 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1658 return;
1659 }
1660
0793a61d 1661retry:
fe4b04fa
PZ
1662 if (!task_function_call(task, __perf_install_in_context, event))
1663 return;
0793a61d 1664
e625cce1 1665 raw_spin_lock_irq(&ctx->lock);
0793a61d 1666 /*
fe4b04fa
PZ
1667 * If we failed to find a running task, but find the context active now
1668 * that we've acquired the ctx->lock, retry.
0793a61d 1669 */
fe4b04fa 1670 if (ctx->is_active) {
e625cce1 1671 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1672 goto retry;
1673 }
1674
1675 /*
fe4b04fa
PZ
1676 * Since the task isn't running, its safe to add the event, us holding
1677 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1678 */
fe4b04fa 1679 add_event_to_ctx(event, ctx);
e625cce1 1680 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1681}
1682
fa289bec 1683/*
cdd6c482 1684 * Put a event into inactive state and update time fields.
fa289bec
PM
1685 * Enabling the leader of a group effectively enables all
1686 * the group members that aren't explicitly disabled, so we
1687 * have to update their ->tstamp_enabled also.
1688 * Note: this works for group members as well as group leaders
1689 * since the non-leader members' sibling_lists will be empty.
1690 */
1d9b482e 1691static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1692{
cdd6c482 1693 struct perf_event *sub;
4158755d 1694 u64 tstamp = perf_event_time(event);
fa289bec 1695
cdd6c482 1696 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1697 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1698 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1699 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1700 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1701 }
fa289bec
PM
1702}
1703
d859e29f 1704/*
cdd6c482 1705 * Cross CPU call to enable a performance event
d859e29f 1706 */
fe4b04fa 1707static int __perf_event_enable(void *info)
04289bb9 1708{
cdd6c482 1709 struct perf_event *event = info;
cdd6c482
IM
1710 struct perf_event_context *ctx = event->ctx;
1711 struct perf_event *leader = event->group_leader;
108b02cf 1712 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1713 int err;
04289bb9 1714
fe4b04fa
PZ
1715 if (WARN_ON_ONCE(!ctx->is_active))
1716 return -EINVAL;
3cbed429 1717
e625cce1 1718 raw_spin_lock(&ctx->lock);
4af4998b 1719 update_context_time(ctx);
d859e29f 1720
cdd6c482 1721 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1722 goto unlock;
e5d1367f
SE
1723
1724 /*
1725 * set current task's cgroup time reference point
1726 */
3f7cce3c 1727 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1728
1d9b482e 1729 __perf_event_mark_enabled(event);
04289bb9 1730
e5d1367f
SE
1731 if (!event_filter_match(event)) {
1732 if (is_cgroup_event(event))
1733 perf_cgroup_defer_enabled(event);
f4c4176f 1734 goto unlock;
e5d1367f 1735 }
f4c4176f 1736
04289bb9 1737 /*
cdd6c482 1738 * If the event is in a group and isn't the group leader,
d859e29f 1739 * then don't put it on unless the group is on.
04289bb9 1740 */
cdd6c482 1741 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 1742 goto unlock;
3b6f9e5c 1743
cdd6c482 1744 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 1745 err = -EEXIST;
e758a33d 1746 } else {
cdd6c482 1747 if (event == leader)
6e37738a 1748 err = group_sched_in(event, cpuctx, ctx);
e758a33d 1749 else
6e37738a 1750 err = event_sched_in(event, cpuctx, ctx);
e758a33d 1751 }
d859e29f
PM
1752
1753 if (err) {
1754 /*
cdd6c482 1755 * If this event can't go on and it's part of a
d859e29f
PM
1756 * group, then the whole group has to come off.
1757 */
cdd6c482 1758 if (leader != event)
d859e29f 1759 group_sched_out(leader, cpuctx, ctx);
0d48696f 1760 if (leader->attr.pinned) {
53cfbf59 1761 update_group_times(leader);
cdd6c482 1762 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 1763 }
d859e29f
PM
1764 }
1765
9ed6060d 1766unlock:
e625cce1 1767 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1768
1769 return 0;
d859e29f
PM
1770}
1771
1772/*
cdd6c482 1773 * Enable a event.
c93f7669 1774 *
cdd6c482
IM
1775 * If event->ctx is a cloned context, callers must make sure that
1776 * every task struct that event->ctx->task could possibly point to
c93f7669 1777 * remains valid. This condition is satisfied when called through
cdd6c482
IM
1778 * perf_event_for_each_child or perf_event_for_each as described
1779 * for perf_event_disable.
d859e29f 1780 */
44234adc 1781void perf_event_enable(struct perf_event *event)
d859e29f 1782{
cdd6c482 1783 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1784 struct task_struct *task = ctx->task;
1785
1786 if (!task) {
1787 /*
cdd6c482 1788 * Enable the event on the cpu that it's on
d859e29f 1789 */
fe4b04fa 1790 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
1791 return;
1792 }
1793
e625cce1 1794 raw_spin_lock_irq(&ctx->lock);
cdd6c482 1795 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
1796 goto out;
1797
1798 /*
cdd6c482
IM
1799 * If the event is in error state, clear that first.
1800 * That way, if we see the event in error state below, we
d859e29f
PM
1801 * know that it has gone back into error state, as distinct
1802 * from the task having been scheduled away before the
1803 * cross-call arrived.
1804 */
cdd6c482
IM
1805 if (event->state == PERF_EVENT_STATE_ERROR)
1806 event->state = PERF_EVENT_STATE_OFF;
d859e29f 1807
9ed6060d 1808retry:
fe4b04fa 1809 if (!ctx->is_active) {
1d9b482e 1810 __perf_event_mark_enabled(event);
fe4b04fa
PZ
1811 goto out;
1812 }
1813
e625cce1 1814 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1815
1816 if (!task_function_call(task, __perf_event_enable, event))
1817 return;
d859e29f 1818
e625cce1 1819 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
1820
1821 /*
cdd6c482 1822 * If the context is active and the event is still off,
d859e29f
PM
1823 * we need to retry the cross-call.
1824 */
fe4b04fa
PZ
1825 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1826 /*
1827 * task could have been flipped by a concurrent
1828 * perf_event_context_sched_out()
1829 */
1830 task = ctx->task;
d859e29f 1831 goto retry;
fe4b04fa 1832 }
fa289bec 1833
9ed6060d 1834out:
e625cce1 1835 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1836}
dcfce4a0 1837EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 1838
26ca5c11 1839int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 1840{
2023b359 1841 /*
cdd6c482 1842 * not supported on inherited events
2023b359 1843 */
2e939d1d 1844 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
1845 return -EINVAL;
1846
cdd6c482
IM
1847 atomic_add(refresh, &event->event_limit);
1848 perf_event_enable(event);
2023b359
PZ
1849
1850 return 0;
79f14641 1851}
26ca5c11 1852EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 1853
5b0311e1
FW
1854static void ctx_sched_out(struct perf_event_context *ctx,
1855 struct perf_cpu_context *cpuctx,
1856 enum event_type_t event_type)
235c7fc7 1857{
cdd6c482 1858 struct perf_event *event;
db24d33e 1859 int is_active = ctx->is_active;
235c7fc7 1860
db24d33e 1861 ctx->is_active &= ~event_type;
cdd6c482 1862 if (likely(!ctx->nr_events))
facc4307
PZ
1863 return;
1864
4af4998b 1865 update_context_time(ctx);
e5d1367f 1866 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 1867 if (!ctx->nr_active)
facc4307 1868 return;
5b0311e1 1869
075e0b00 1870 perf_pmu_disable(ctx->pmu);
db24d33e 1871 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
1872 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1873 group_sched_out(event, cpuctx, ctx);
9ed6060d 1874 }
889ff015 1875
db24d33e 1876 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 1877 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 1878 group_sched_out(event, cpuctx, ctx);
9ed6060d 1879 }
1b9a644f 1880 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
1881}
1882
564c2b21
PM
1883/*
1884 * Test whether two contexts are equivalent, i.e. whether they
1885 * have both been cloned from the same version of the same context
cdd6c482
IM
1886 * and they both have the same number of enabled events.
1887 * If the number of enabled events is the same, then the set
1888 * of enabled events should be the same, because these are both
1889 * inherited contexts, therefore we can't access individual events
564c2b21 1890 * in them directly with an fd; we can only enable/disable all
cdd6c482 1891 * events via prctl, or enable/disable all events in a family
564c2b21
PM
1892 * via ioctl, which will have the same effect on both contexts.
1893 */
cdd6c482
IM
1894static int context_equiv(struct perf_event_context *ctx1,
1895 struct perf_event_context *ctx2)
564c2b21
PM
1896{
1897 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 1898 && ctx1->parent_gen == ctx2->parent_gen
25346b93 1899 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
1900}
1901
cdd6c482
IM
1902static void __perf_event_sync_stat(struct perf_event *event,
1903 struct perf_event *next_event)
bfbd3381
PZ
1904{
1905 u64 value;
1906
cdd6c482 1907 if (!event->attr.inherit_stat)
bfbd3381
PZ
1908 return;
1909
1910 /*
cdd6c482 1911 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
1912 * because we're in the middle of a context switch and have IRQs
1913 * disabled, which upsets smp_call_function_single(), however
cdd6c482 1914 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
1915 * don't need to use it.
1916 */
cdd6c482
IM
1917 switch (event->state) {
1918 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
1919 event->pmu->read(event);
1920 /* fall-through */
bfbd3381 1921
cdd6c482
IM
1922 case PERF_EVENT_STATE_INACTIVE:
1923 update_event_times(event);
bfbd3381
PZ
1924 break;
1925
1926 default:
1927 break;
1928 }
1929
1930 /*
cdd6c482 1931 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
1932 * values when we flip the contexts.
1933 */
e7850595
PZ
1934 value = local64_read(&next_event->count);
1935 value = local64_xchg(&event->count, value);
1936 local64_set(&next_event->count, value);
bfbd3381 1937
cdd6c482
IM
1938 swap(event->total_time_enabled, next_event->total_time_enabled);
1939 swap(event->total_time_running, next_event->total_time_running);
19d2e755 1940
bfbd3381 1941 /*
19d2e755 1942 * Since we swizzled the values, update the user visible data too.
bfbd3381 1943 */
cdd6c482
IM
1944 perf_event_update_userpage(event);
1945 perf_event_update_userpage(next_event);
bfbd3381
PZ
1946}
1947
1948#define list_next_entry(pos, member) \
1949 list_entry(pos->member.next, typeof(*pos), member)
1950
cdd6c482
IM
1951static void perf_event_sync_stat(struct perf_event_context *ctx,
1952 struct perf_event_context *next_ctx)
bfbd3381 1953{
cdd6c482 1954 struct perf_event *event, *next_event;
bfbd3381
PZ
1955
1956 if (!ctx->nr_stat)
1957 return;
1958
02ffdbc8
PZ
1959 update_context_time(ctx);
1960
cdd6c482
IM
1961 event = list_first_entry(&ctx->event_list,
1962 struct perf_event, event_entry);
bfbd3381 1963
cdd6c482
IM
1964 next_event = list_first_entry(&next_ctx->event_list,
1965 struct perf_event, event_entry);
bfbd3381 1966
cdd6c482
IM
1967 while (&event->event_entry != &ctx->event_list &&
1968 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 1969
cdd6c482 1970 __perf_event_sync_stat(event, next_event);
bfbd3381 1971
cdd6c482
IM
1972 event = list_next_entry(event, event_entry);
1973 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
1974 }
1975}
1976
fe4b04fa
PZ
1977static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1978 struct task_struct *next)
0793a61d 1979{
8dc85d54 1980 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
1981 struct perf_event_context *next_ctx;
1982 struct perf_event_context *parent;
108b02cf 1983 struct perf_cpu_context *cpuctx;
c93f7669 1984 int do_switch = 1;
0793a61d 1985
108b02cf
PZ
1986 if (likely(!ctx))
1987 return;
10989fb2 1988
108b02cf
PZ
1989 cpuctx = __get_cpu_context(ctx);
1990 if (!cpuctx->task_ctx)
0793a61d
TG
1991 return;
1992
c93f7669
PM
1993 rcu_read_lock();
1994 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 1995 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
1996 if (parent && next_ctx &&
1997 rcu_dereference(next_ctx->parent_ctx) == parent) {
1998 /*
1999 * Looks like the two contexts are clones, so we might be
2000 * able to optimize the context switch. We lock both
2001 * contexts and check that they are clones under the
2002 * lock (including re-checking that neither has been
2003 * uncloned in the meantime). It doesn't matter which
2004 * order we take the locks because no other cpu could
2005 * be trying to lock both of these tasks.
2006 */
e625cce1
TG
2007 raw_spin_lock(&ctx->lock);
2008 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2009 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2010 /*
2011 * XXX do we need a memory barrier of sorts
cdd6c482 2012 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2013 */
8dc85d54
PZ
2014 task->perf_event_ctxp[ctxn] = next_ctx;
2015 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2016 ctx->task = next;
2017 next_ctx->task = task;
2018 do_switch = 0;
bfbd3381 2019
cdd6c482 2020 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2021 }
e625cce1
TG
2022 raw_spin_unlock(&next_ctx->lock);
2023 raw_spin_unlock(&ctx->lock);
564c2b21 2024 }
c93f7669 2025 rcu_read_unlock();
564c2b21 2026
c93f7669 2027 if (do_switch) {
facc4307 2028 raw_spin_lock(&ctx->lock);
5b0311e1 2029 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2030 cpuctx->task_ctx = NULL;
facc4307 2031 raw_spin_unlock(&ctx->lock);
c93f7669 2032 }
0793a61d
TG
2033}
2034
8dc85d54
PZ
2035#define for_each_task_context_nr(ctxn) \
2036 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2037
2038/*
2039 * Called from scheduler to remove the events of the current task,
2040 * with interrupts disabled.
2041 *
2042 * We stop each event and update the event value in event->count.
2043 *
2044 * This does not protect us against NMI, but disable()
2045 * sets the disabled bit in the control field of event _before_
2046 * accessing the event control register. If a NMI hits, then it will
2047 * not restart the event.
2048 */
ab0cce56
JO
2049void __perf_event_task_sched_out(struct task_struct *task,
2050 struct task_struct *next)
8dc85d54
PZ
2051{
2052 int ctxn;
2053
8dc85d54
PZ
2054 for_each_task_context_nr(ctxn)
2055 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2056
2057 /*
2058 * if cgroup events exist on this CPU, then we need
2059 * to check if we have to switch out PMU state.
2060 * cgroup event are system-wide mode only
2061 */
2062 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2063 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2064}
2065
04dc2dbb 2066static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2067{
108b02cf 2068 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2069
a63eaf34
PM
2070 if (!cpuctx->task_ctx)
2071 return;
012b84da
IM
2072
2073 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2074 return;
2075
04dc2dbb 2076 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2077 cpuctx->task_ctx = NULL;
2078}
2079
5b0311e1
FW
2080/*
2081 * Called with IRQs disabled
2082 */
2083static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2084 enum event_type_t event_type)
2085{
2086 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2087}
2088
235c7fc7 2089static void
5b0311e1 2090ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2091 struct perf_cpu_context *cpuctx)
0793a61d 2092{
cdd6c482 2093 struct perf_event *event;
0793a61d 2094
889ff015
FW
2095 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2096 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2097 continue;
5632ab12 2098 if (!event_filter_match(event))
3b6f9e5c
PM
2099 continue;
2100
e5d1367f
SE
2101 /* may need to reset tstamp_enabled */
2102 if (is_cgroup_event(event))
2103 perf_cgroup_mark_enabled(event, ctx);
2104
8c9ed8e1 2105 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2106 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2107
2108 /*
2109 * If this pinned group hasn't been scheduled,
2110 * put it in error state.
2111 */
cdd6c482
IM
2112 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2113 update_group_times(event);
2114 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2115 }
3b6f9e5c 2116 }
5b0311e1
FW
2117}
2118
2119static void
2120ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2121 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2122{
2123 struct perf_event *event;
2124 int can_add_hw = 1;
3b6f9e5c 2125
889ff015
FW
2126 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2127 /* Ignore events in OFF or ERROR state */
2128 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2129 continue;
04289bb9
IM
2130 /*
2131 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2132 * of events:
04289bb9 2133 */
5632ab12 2134 if (!event_filter_match(event))
0793a61d
TG
2135 continue;
2136
e5d1367f
SE
2137 /* may need to reset tstamp_enabled */
2138 if (is_cgroup_event(event))
2139 perf_cgroup_mark_enabled(event, ctx);
2140
9ed6060d 2141 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2142 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2143 can_add_hw = 0;
9ed6060d 2144 }
0793a61d 2145 }
5b0311e1
FW
2146}
2147
2148static void
2149ctx_sched_in(struct perf_event_context *ctx,
2150 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2151 enum event_type_t event_type,
2152 struct task_struct *task)
5b0311e1 2153{
e5d1367f 2154 u64 now;
db24d33e 2155 int is_active = ctx->is_active;
e5d1367f 2156
db24d33e 2157 ctx->is_active |= event_type;
5b0311e1 2158 if (likely(!ctx->nr_events))
facc4307 2159 return;
5b0311e1 2160
e5d1367f
SE
2161 now = perf_clock();
2162 ctx->timestamp = now;
3f7cce3c 2163 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2164 /*
2165 * First go through the list and put on any pinned groups
2166 * in order to give them the best chance of going on.
2167 */
db24d33e 2168 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2169 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2170
2171 /* Then walk through the lower prio flexible groups */
db24d33e 2172 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2173 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2174}
2175
329c0e01 2176static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2177 enum event_type_t event_type,
2178 struct task_struct *task)
329c0e01
FW
2179{
2180 struct perf_event_context *ctx = &cpuctx->ctx;
2181
e5d1367f 2182 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2183}
2184
e5d1367f
SE
2185static void perf_event_context_sched_in(struct perf_event_context *ctx,
2186 struct task_struct *task)
235c7fc7 2187{
108b02cf 2188 struct perf_cpu_context *cpuctx;
235c7fc7 2189
108b02cf 2190 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2191 if (cpuctx->task_ctx == ctx)
2192 return;
2193
facc4307 2194 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2195 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2196 /*
2197 * We want to keep the following priority order:
2198 * cpu pinned (that don't need to move), task pinned,
2199 * cpu flexible, task flexible.
2200 */
2201 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2202
1d5f003f
GN
2203 if (ctx->nr_events)
2204 cpuctx->task_ctx = ctx;
9b33fa6b 2205
86b47c25
GN
2206 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2207
facc4307
PZ
2208 perf_pmu_enable(ctx->pmu);
2209 perf_ctx_unlock(cpuctx, ctx);
2210
b5ab4cd5
PZ
2211 /*
2212 * Since these rotations are per-cpu, we need to ensure the
2213 * cpu-context we got scheduled on is actually rotating.
2214 */
108b02cf 2215 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2216}
2217
d010b332
SE
2218/*
2219 * When sampling the branck stack in system-wide, it may be necessary
2220 * to flush the stack on context switch. This happens when the branch
2221 * stack does not tag its entries with the pid of the current task.
2222 * Otherwise it becomes impossible to associate a branch entry with a
2223 * task. This ambiguity is more likely to appear when the branch stack
2224 * supports priv level filtering and the user sets it to monitor only
2225 * at the user level (which could be a useful measurement in system-wide
2226 * mode). In that case, the risk is high of having a branch stack with
2227 * branch from multiple tasks. Flushing may mean dropping the existing
2228 * entries or stashing them somewhere in the PMU specific code layer.
2229 *
2230 * This function provides the context switch callback to the lower code
2231 * layer. It is invoked ONLY when there is at least one system-wide context
2232 * with at least one active event using taken branch sampling.
2233 */
2234static void perf_branch_stack_sched_in(struct task_struct *prev,
2235 struct task_struct *task)
2236{
2237 struct perf_cpu_context *cpuctx;
2238 struct pmu *pmu;
2239 unsigned long flags;
2240
2241 /* no need to flush branch stack if not changing task */
2242 if (prev == task)
2243 return;
2244
2245 local_irq_save(flags);
2246
2247 rcu_read_lock();
2248
2249 list_for_each_entry_rcu(pmu, &pmus, entry) {
2250 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2251
2252 /*
2253 * check if the context has at least one
2254 * event using PERF_SAMPLE_BRANCH_STACK
2255 */
2256 if (cpuctx->ctx.nr_branch_stack > 0
2257 && pmu->flush_branch_stack) {
2258
2259 pmu = cpuctx->ctx.pmu;
2260
2261 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2262
2263 perf_pmu_disable(pmu);
2264
2265 pmu->flush_branch_stack();
2266
2267 perf_pmu_enable(pmu);
2268
2269 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2270 }
2271 }
2272
2273 rcu_read_unlock();
2274
2275 local_irq_restore(flags);
2276}
2277
8dc85d54
PZ
2278/*
2279 * Called from scheduler to add the events of the current task
2280 * with interrupts disabled.
2281 *
2282 * We restore the event value and then enable it.
2283 *
2284 * This does not protect us against NMI, but enable()
2285 * sets the enabled bit in the control field of event _before_
2286 * accessing the event control register. If a NMI hits, then it will
2287 * keep the event running.
2288 */
ab0cce56
JO
2289void __perf_event_task_sched_in(struct task_struct *prev,
2290 struct task_struct *task)
8dc85d54
PZ
2291{
2292 struct perf_event_context *ctx;
2293 int ctxn;
2294
2295 for_each_task_context_nr(ctxn) {
2296 ctx = task->perf_event_ctxp[ctxn];
2297 if (likely(!ctx))
2298 continue;
2299
e5d1367f 2300 perf_event_context_sched_in(ctx, task);
8dc85d54 2301 }
e5d1367f
SE
2302 /*
2303 * if cgroup events exist on this CPU, then we need
2304 * to check if we have to switch in PMU state.
2305 * cgroup event are system-wide mode only
2306 */
2307 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2308 perf_cgroup_sched_in(prev, task);
d010b332
SE
2309
2310 /* check for system-wide branch_stack events */
2311 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2312 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2313}
2314
abd50713
PZ
2315static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2316{
2317 u64 frequency = event->attr.sample_freq;
2318 u64 sec = NSEC_PER_SEC;
2319 u64 divisor, dividend;
2320
2321 int count_fls, nsec_fls, frequency_fls, sec_fls;
2322
2323 count_fls = fls64(count);
2324 nsec_fls = fls64(nsec);
2325 frequency_fls = fls64(frequency);
2326 sec_fls = 30;
2327
2328 /*
2329 * We got @count in @nsec, with a target of sample_freq HZ
2330 * the target period becomes:
2331 *
2332 * @count * 10^9
2333 * period = -------------------
2334 * @nsec * sample_freq
2335 *
2336 */
2337
2338 /*
2339 * Reduce accuracy by one bit such that @a and @b converge
2340 * to a similar magnitude.
2341 */
fe4b04fa 2342#define REDUCE_FLS(a, b) \
abd50713
PZ
2343do { \
2344 if (a##_fls > b##_fls) { \
2345 a >>= 1; \
2346 a##_fls--; \
2347 } else { \
2348 b >>= 1; \
2349 b##_fls--; \
2350 } \
2351} while (0)
2352
2353 /*
2354 * Reduce accuracy until either term fits in a u64, then proceed with
2355 * the other, so that finally we can do a u64/u64 division.
2356 */
2357 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2358 REDUCE_FLS(nsec, frequency);
2359 REDUCE_FLS(sec, count);
2360 }
2361
2362 if (count_fls + sec_fls > 64) {
2363 divisor = nsec * frequency;
2364
2365 while (count_fls + sec_fls > 64) {
2366 REDUCE_FLS(count, sec);
2367 divisor >>= 1;
2368 }
2369
2370 dividend = count * sec;
2371 } else {
2372 dividend = count * sec;
2373
2374 while (nsec_fls + frequency_fls > 64) {
2375 REDUCE_FLS(nsec, frequency);
2376 dividend >>= 1;
2377 }
2378
2379 divisor = nsec * frequency;
2380 }
2381
f6ab91ad
PZ
2382 if (!divisor)
2383 return dividend;
2384
abd50713
PZ
2385 return div64_u64(dividend, divisor);
2386}
2387
e050e3f0
SE
2388static DEFINE_PER_CPU(int, perf_throttled_count);
2389static DEFINE_PER_CPU(u64, perf_throttled_seq);
2390
f39d47ff 2391static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2392{
cdd6c482 2393 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2394 s64 period, sample_period;
bd2b5b12
PZ
2395 s64 delta;
2396
abd50713 2397 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2398
2399 delta = (s64)(period - hwc->sample_period);
2400 delta = (delta + 7) / 8; /* low pass filter */
2401
2402 sample_period = hwc->sample_period + delta;
2403
2404 if (!sample_period)
2405 sample_period = 1;
2406
bd2b5b12 2407 hwc->sample_period = sample_period;
abd50713 2408
e7850595 2409 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2410 if (disable)
2411 event->pmu->stop(event, PERF_EF_UPDATE);
2412
e7850595 2413 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2414
2415 if (disable)
2416 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2417 }
bd2b5b12
PZ
2418}
2419
e050e3f0
SE
2420/*
2421 * combine freq adjustment with unthrottling to avoid two passes over the
2422 * events. At the same time, make sure, having freq events does not change
2423 * the rate of unthrottling as that would introduce bias.
2424 */
2425static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2426 int needs_unthr)
60db5e09 2427{
cdd6c482
IM
2428 struct perf_event *event;
2429 struct hw_perf_event *hwc;
e050e3f0 2430 u64 now, period = TICK_NSEC;
abd50713 2431 s64 delta;
60db5e09 2432
e050e3f0
SE
2433 /*
2434 * only need to iterate over all events iff:
2435 * - context have events in frequency mode (needs freq adjust)
2436 * - there are events to unthrottle on this cpu
2437 */
2438 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2439 return;
2440
e050e3f0 2441 raw_spin_lock(&ctx->lock);
f39d47ff 2442 perf_pmu_disable(ctx->pmu);
e050e3f0 2443
03541f8b 2444 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2445 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2446 continue;
2447
5632ab12 2448 if (!event_filter_match(event))
5d27c23d
PZ
2449 continue;
2450
cdd6c482 2451 hwc = &event->hw;
6a24ed6c 2452
e050e3f0
SE
2453 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2454 hwc->interrupts = 0;
cdd6c482 2455 perf_log_throttle(event, 1);
a4eaf7f1 2456 event->pmu->start(event, 0);
a78ac325
PZ
2457 }
2458
cdd6c482 2459 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2460 continue;
2461
e050e3f0
SE
2462 /*
2463 * stop the event and update event->count
2464 */
2465 event->pmu->stop(event, PERF_EF_UPDATE);
2466
e7850595 2467 now = local64_read(&event->count);
abd50713
PZ
2468 delta = now - hwc->freq_count_stamp;
2469 hwc->freq_count_stamp = now;
60db5e09 2470
e050e3f0
SE
2471 /*
2472 * restart the event
2473 * reload only if value has changed
f39d47ff
SE
2474 * we have stopped the event so tell that
2475 * to perf_adjust_period() to avoid stopping it
2476 * twice.
e050e3f0 2477 */
abd50713 2478 if (delta > 0)
f39d47ff 2479 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2480
2481 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2482 }
e050e3f0 2483
f39d47ff 2484 perf_pmu_enable(ctx->pmu);
e050e3f0 2485 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2486}
2487
235c7fc7 2488/*
cdd6c482 2489 * Round-robin a context's events:
235c7fc7 2490 */
cdd6c482 2491static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2492{
dddd3379
TG
2493 /*
2494 * Rotate the first entry last of non-pinned groups. Rotation might be
2495 * disabled by the inheritance code.
2496 */
2497 if (!ctx->rotate_disable)
2498 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2499}
2500
b5ab4cd5 2501/*
e9d2b064
PZ
2502 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2503 * because they're strictly cpu affine and rotate_start is called with IRQs
2504 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2505 */
e9d2b064 2506static void perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2507{
8dc85d54 2508 struct perf_event_context *ctx = NULL;
e050e3f0 2509 int rotate = 0, remove = 1;
7fc23a53 2510
b5ab4cd5 2511 if (cpuctx->ctx.nr_events) {
e9d2b064 2512 remove = 0;
b5ab4cd5
PZ
2513 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2514 rotate = 1;
2515 }
235c7fc7 2516
8dc85d54 2517 ctx = cpuctx->task_ctx;
b5ab4cd5 2518 if (ctx && ctx->nr_events) {
e9d2b064 2519 remove = 0;
b5ab4cd5
PZ
2520 if (ctx->nr_events != ctx->nr_active)
2521 rotate = 1;
2522 }
9717e6cd 2523
e050e3f0 2524 if (!rotate)
0f5a2601
PZ
2525 goto done;
2526
facc4307 2527 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2528 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2529
e050e3f0
SE
2530 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2531 if (ctx)
2532 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2533
e050e3f0
SE
2534 rotate_ctx(&cpuctx->ctx);
2535 if (ctx)
2536 rotate_ctx(ctx);
235c7fc7 2537
e050e3f0 2538 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2539
0f5a2601
PZ
2540 perf_pmu_enable(cpuctx->ctx.pmu);
2541 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2542done:
e9d2b064
PZ
2543 if (remove)
2544 list_del_init(&cpuctx->rotation_list);
e9d2b064
PZ
2545}
2546
2547void perf_event_task_tick(void)
2548{
2549 struct list_head *head = &__get_cpu_var(rotation_list);
2550 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2551 struct perf_event_context *ctx;
2552 int throttled;
b5ab4cd5 2553
e9d2b064
PZ
2554 WARN_ON(!irqs_disabled());
2555
e050e3f0
SE
2556 __this_cpu_inc(perf_throttled_seq);
2557 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2558
e9d2b064 2559 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2560 ctx = &cpuctx->ctx;
2561 perf_adjust_freq_unthr_context(ctx, throttled);
2562
2563 ctx = cpuctx->task_ctx;
2564 if (ctx)
2565 perf_adjust_freq_unthr_context(ctx, throttled);
2566
e9d2b064
PZ
2567 if (cpuctx->jiffies_interval == 1 ||
2568 !(jiffies % cpuctx->jiffies_interval))
2569 perf_rotate_context(cpuctx);
2570 }
0793a61d
TG
2571}
2572
889ff015
FW
2573static int event_enable_on_exec(struct perf_event *event,
2574 struct perf_event_context *ctx)
2575{
2576 if (!event->attr.enable_on_exec)
2577 return 0;
2578
2579 event->attr.enable_on_exec = 0;
2580 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2581 return 0;
2582
1d9b482e 2583 __perf_event_mark_enabled(event);
889ff015
FW
2584
2585 return 1;
2586}
2587
57e7986e 2588/*
cdd6c482 2589 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2590 * This expects task == current.
2591 */
8dc85d54 2592static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2593{
cdd6c482 2594 struct perf_event *event;
57e7986e
PM
2595 unsigned long flags;
2596 int enabled = 0;
889ff015 2597 int ret;
57e7986e
PM
2598
2599 local_irq_save(flags);
cdd6c482 2600 if (!ctx || !ctx->nr_events)
57e7986e
PM
2601 goto out;
2602
e566b76e
SE
2603 /*
2604 * We must ctxsw out cgroup events to avoid conflict
2605 * when invoking perf_task_event_sched_in() later on
2606 * in this function. Otherwise we end up trying to
2607 * ctxswin cgroup events which are already scheduled
2608 * in.
2609 */
a8d757ef 2610 perf_cgroup_sched_out(current, NULL);
57e7986e 2611
e625cce1 2612 raw_spin_lock(&ctx->lock);
04dc2dbb 2613 task_ctx_sched_out(ctx);
57e7986e 2614
b79387ef 2615 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2616 ret = event_enable_on_exec(event, ctx);
2617 if (ret)
2618 enabled = 1;
57e7986e
PM
2619 }
2620
2621 /*
cdd6c482 2622 * Unclone this context if we enabled any event.
57e7986e 2623 */
71a851b4
PZ
2624 if (enabled)
2625 unclone_ctx(ctx);
57e7986e 2626
e625cce1 2627 raw_spin_unlock(&ctx->lock);
57e7986e 2628
e566b76e
SE
2629 /*
2630 * Also calls ctxswin for cgroup events, if any:
2631 */
e5d1367f 2632 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2633out:
57e7986e
PM
2634 local_irq_restore(flags);
2635}
2636
0793a61d 2637/*
cdd6c482 2638 * Cross CPU call to read the hardware event
0793a61d 2639 */
cdd6c482 2640static void __perf_event_read(void *info)
0793a61d 2641{
cdd6c482
IM
2642 struct perf_event *event = info;
2643 struct perf_event_context *ctx = event->ctx;
108b02cf 2644 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2645
e1ac3614
PM
2646 /*
2647 * If this is a task context, we need to check whether it is
2648 * the current task context of this cpu. If not it has been
2649 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2650 * event->count would have been updated to a recent sample
2651 * when the event was scheduled out.
e1ac3614
PM
2652 */
2653 if (ctx->task && cpuctx->task_ctx != ctx)
2654 return;
2655
e625cce1 2656 raw_spin_lock(&ctx->lock);
e5d1367f 2657 if (ctx->is_active) {
542e72fc 2658 update_context_time(ctx);
e5d1367f
SE
2659 update_cgrp_time_from_event(event);
2660 }
cdd6c482 2661 update_event_times(event);
542e72fc
PZ
2662 if (event->state == PERF_EVENT_STATE_ACTIVE)
2663 event->pmu->read(event);
e625cce1 2664 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2665}
2666
b5e58793
PZ
2667static inline u64 perf_event_count(struct perf_event *event)
2668{
e7850595 2669 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2670}
2671
cdd6c482 2672static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2673{
2674 /*
cdd6c482
IM
2675 * If event is enabled and currently active on a CPU, update the
2676 * value in the event structure:
0793a61d 2677 */
cdd6c482
IM
2678 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2679 smp_call_function_single(event->oncpu,
2680 __perf_event_read, event, 1);
2681 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2682 struct perf_event_context *ctx = event->ctx;
2683 unsigned long flags;
2684
e625cce1 2685 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2686 /*
2687 * may read while context is not active
2688 * (e.g., thread is blocked), in that case
2689 * we cannot update context time
2690 */
e5d1367f 2691 if (ctx->is_active) {
c530ccd9 2692 update_context_time(ctx);
e5d1367f
SE
2693 update_cgrp_time_from_event(event);
2694 }
cdd6c482 2695 update_event_times(event);
e625cce1 2696 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2697 }
2698
b5e58793 2699 return perf_event_count(event);
0793a61d
TG
2700}
2701
a63eaf34 2702/*
cdd6c482 2703 * Initialize the perf_event context in a task_struct:
a63eaf34 2704 */
eb184479 2705static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2706{
e625cce1 2707 raw_spin_lock_init(&ctx->lock);
a63eaf34 2708 mutex_init(&ctx->mutex);
889ff015
FW
2709 INIT_LIST_HEAD(&ctx->pinned_groups);
2710 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2711 INIT_LIST_HEAD(&ctx->event_list);
2712 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2713}
2714
2715static struct perf_event_context *
2716alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2717{
2718 struct perf_event_context *ctx;
2719
2720 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2721 if (!ctx)
2722 return NULL;
2723
2724 __perf_event_init_context(ctx);
2725 if (task) {
2726 ctx->task = task;
2727 get_task_struct(task);
0793a61d 2728 }
eb184479
PZ
2729 ctx->pmu = pmu;
2730
2731 return ctx;
a63eaf34
PM
2732}
2733
2ebd4ffb
MH
2734static struct task_struct *
2735find_lively_task_by_vpid(pid_t vpid)
2736{
2737 struct task_struct *task;
2738 int err;
0793a61d
TG
2739
2740 rcu_read_lock();
2ebd4ffb 2741 if (!vpid)
0793a61d
TG
2742 task = current;
2743 else
2ebd4ffb 2744 task = find_task_by_vpid(vpid);
0793a61d
TG
2745 if (task)
2746 get_task_struct(task);
2747 rcu_read_unlock();
2748
2749 if (!task)
2750 return ERR_PTR(-ESRCH);
2751
0793a61d 2752 /* Reuse ptrace permission checks for now. */
c93f7669
PM
2753 err = -EACCES;
2754 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2755 goto errout;
2756
2ebd4ffb
MH
2757 return task;
2758errout:
2759 put_task_struct(task);
2760 return ERR_PTR(err);
2761
2762}
2763
fe4b04fa
PZ
2764/*
2765 * Returns a matching context with refcount and pincount.
2766 */
108b02cf 2767static struct perf_event_context *
38a81da2 2768find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 2769{
cdd6c482 2770 struct perf_event_context *ctx;
22a4f650 2771 struct perf_cpu_context *cpuctx;
25346b93 2772 unsigned long flags;
8dc85d54 2773 int ctxn, err;
0793a61d 2774
22a4ec72 2775 if (!task) {
cdd6c482 2776 /* Must be root to operate on a CPU event: */
0764771d 2777 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
2778 return ERR_PTR(-EACCES);
2779
0793a61d 2780 /*
cdd6c482 2781 * We could be clever and allow to attach a event to an
0793a61d
TG
2782 * offline CPU and activate it when the CPU comes up, but
2783 * that's for later.
2784 */
f6325e30 2785 if (!cpu_online(cpu))
0793a61d
TG
2786 return ERR_PTR(-ENODEV);
2787
108b02cf 2788 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 2789 ctx = &cpuctx->ctx;
c93f7669 2790 get_ctx(ctx);
fe4b04fa 2791 ++ctx->pin_count;
0793a61d 2792
0793a61d
TG
2793 return ctx;
2794 }
2795
8dc85d54
PZ
2796 err = -EINVAL;
2797 ctxn = pmu->task_ctx_nr;
2798 if (ctxn < 0)
2799 goto errout;
2800
9ed6060d 2801retry:
8dc85d54 2802 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 2803 if (ctx) {
71a851b4 2804 unclone_ctx(ctx);
fe4b04fa 2805 ++ctx->pin_count;
e625cce1 2806 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 2807 } else {
eb184479 2808 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
2809 err = -ENOMEM;
2810 if (!ctx)
2811 goto errout;
eb184479 2812
dbe08d82
ON
2813 err = 0;
2814 mutex_lock(&task->perf_event_mutex);
2815 /*
2816 * If it has already passed perf_event_exit_task().
2817 * we must see PF_EXITING, it takes this mutex too.
2818 */
2819 if (task->flags & PF_EXITING)
2820 err = -ESRCH;
2821 else if (task->perf_event_ctxp[ctxn])
2822 err = -EAGAIN;
fe4b04fa 2823 else {
9137fb28 2824 get_ctx(ctx);
fe4b04fa 2825 ++ctx->pin_count;
dbe08d82 2826 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 2827 }
dbe08d82
ON
2828 mutex_unlock(&task->perf_event_mutex);
2829
2830 if (unlikely(err)) {
9137fb28 2831 put_ctx(ctx);
dbe08d82
ON
2832
2833 if (err == -EAGAIN)
2834 goto retry;
2835 goto errout;
a63eaf34
PM
2836 }
2837 }
2838
0793a61d 2839 return ctx;
c93f7669 2840
9ed6060d 2841errout:
c93f7669 2842 return ERR_PTR(err);
0793a61d
TG
2843}
2844
6fb2915d
LZ
2845static void perf_event_free_filter(struct perf_event *event);
2846
cdd6c482 2847static void free_event_rcu(struct rcu_head *head)
592903cd 2848{
cdd6c482 2849 struct perf_event *event;
592903cd 2850
cdd6c482
IM
2851 event = container_of(head, struct perf_event, rcu_head);
2852 if (event->ns)
2853 put_pid_ns(event->ns);
6fb2915d 2854 perf_event_free_filter(event);
cdd6c482 2855 kfree(event);
592903cd
PZ
2856}
2857
76369139 2858static void ring_buffer_put(struct ring_buffer *rb);
925d519a 2859
cdd6c482 2860static void free_event(struct perf_event *event)
f1600952 2861{
e360adbe 2862 irq_work_sync(&event->pending);
925d519a 2863
cdd6c482 2864 if (!event->parent) {
82cd6def 2865 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 2866 static_key_slow_dec_deferred(&perf_sched_events);
3af9e859 2867 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
2868 atomic_dec(&nr_mmap_events);
2869 if (event->attr.comm)
2870 atomic_dec(&nr_comm_events);
2871 if (event->attr.task)
2872 atomic_dec(&nr_task_events);
927c7a9e
FW
2873 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2874 put_callchain_buffers();
08309379
PZ
2875 if (is_cgroup_event(event)) {
2876 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 2877 static_key_slow_dec_deferred(&perf_sched_events);
08309379 2878 }
d010b332
SE
2879
2880 if (has_branch_stack(event)) {
2881 static_key_slow_dec_deferred(&perf_sched_events);
2882 /* is system-wide event */
2883 if (!(event->attach_state & PERF_ATTACH_TASK))
2884 atomic_dec(&per_cpu(perf_branch_stack_events,
2885 event->cpu));
2886 }
f344011c 2887 }
9ee318a7 2888
76369139
FW
2889 if (event->rb) {
2890 ring_buffer_put(event->rb);
2891 event->rb = NULL;
a4be7c27
PZ
2892 }
2893
e5d1367f
SE
2894 if (is_cgroup_event(event))
2895 perf_detach_cgroup(event);
2896
cdd6c482
IM
2897 if (event->destroy)
2898 event->destroy(event);
e077df4f 2899
0c67b408
PZ
2900 if (event->ctx)
2901 put_ctx(event->ctx);
2902
cdd6c482 2903 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
2904}
2905
a66a3052 2906int perf_event_release_kernel(struct perf_event *event)
0793a61d 2907{
cdd6c482 2908 struct perf_event_context *ctx = event->ctx;
0793a61d 2909
ad3a37de 2910 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
2911 /*
2912 * There are two ways this annotation is useful:
2913 *
2914 * 1) there is a lock recursion from perf_event_exit_task
2915 * see the comment there.
2916 *
2917 * 2) there is a lock-inversion with mmap_sem through
2918 * perf_event_read_group(), which takes faults while
2919 * holding ctx->mutex, however this is called after
2920 * the last filedesc died, so there is no possibility
2921 * to trigger the AB-BA case.
2922 */
2923 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 2924 raw_spin_lock_irq(&ctx->lock);
8a49542c 2925 perf_group_detach(event);
050735b0 2926 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 2927 perf_remove_from_context(event);
d859e29f 2928 mutex_unlock(&ctx->mutex);
0793a61d 2929
cdd6c482 2930 free_event(event);
0793a61d
TG
2931
2932 return 0;
2933}
a66a3052 2934EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 2935
a66a3052
PZ
2936/*
2937 * Called when the last reference to the file is gone.
2938 */
a6fa941d 2939static void put_event(struct perf_event *event)
fb0459d7 2940{
8882135b 2941 struct task_struct *owner;
fb0459d7 2942
a6fa941d
AV
2943 if (!atomic_long_dec_and_test(&event->refcount))
2944 return;
fb0459d7 2945
8882135b
PZ
2946 rcu_read_lock();
2947 owner = ACCESS_ONCE(event->owner);
2948 /*
2949 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2950 * !owner it means the list deletion is complete and we can indeed
2951 * free this event, otherwise we need to serialize on
2952 * owner->perf_event_mutex.
2953 */
2954 smp_read_barrier_depends();
2955 if (owner) {
2956 /*
2957 * Since delayed_put_task_struct() also drops the last
2958 * task reference we can safely take a new reference
2959 * while holding the rcu_read_lock().
2960 */
2961 get_task_struct(owner);
2962 }
2963 rcu_read_unlock();
2964
2965 if (owner) {
2966 mutex_lock(&owner->perf_event_mutex);
2967 /*
2968 * We have to re-check the event->owner field, if it is cleared
2969 * we raced with perf_event_exit_task(), acquiring the mutex
2970 * ensured they're done, and we can proceed with freeing the
2971 * event.
2972 */
2973 if (event->owner)
2974 list_del_init(&event->owner_entry);
2975 mutex_unlock(&owner->perf_event_mutex);
2976 put_task_struct(owner);
2977 }
2978
a6fa941d
AV
2979 perf_event_release_kernel(event);
2980}
2981
2982static int perf_release(struct inode *inode, struct file *file)
2983{
2984 put_event(file->private_data);
2985 return 0;
fb0459d7 2986}
fb0459d7 2987
59ed446f 2988u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 2989{
cdd6c482 2990 struct perf_event *child;
e53c0994
PZ
2991 u64 total = 0;
2992
59ed446f
PZ
2993 *enabled = 0;
2994 *running = 0;
2995
6f10581a 2996 mutex_lock(&event->child_mutex);
cdd6c482 2997 total += perf_event_read(event);
59ed446f
PZ
2998 *enabled += event->total_time_enabled +
2999 atomic64_read(&event->child_total_time_enabled);
3000 *running += event->total_time_running +
3001 atomic64_read(&event->child_total_time_running);
3002
3003 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3004 total += perf_event_read(child);
59ed446f
PZ
3005 *enabled += child->total_time_enabled;
3006 *running += child->total_time_running;
3007 }
6f10581a 3008 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3009
3010 return total;
3011}
fb0459d7 3012EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3013
cdd6c482 3014static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3015 u64 read_format, char __user *buf)
3016{
cdd6c482 3017 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3018 int n = 0, size = 0, ret = -EFAULT;
3019 struct perf_event_context *ctx = leader->ctx;
abf4868b 3020 u64 values[5];
59ed446f 3021 u64 count, enabled, running;
abf4868b 3022
6f10581a 3023 mutex_lock(&ctx->mutex);
59ed446f 3024 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3025
3026 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3027 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3028 values[n++] = enabled;
3029 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3030 values[n++] = running;
abf4868b
PZ
3031 values[n++] = count;
3032 if (read_format & PERF_FORMAT_ID)
3033 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3034
3035 size = n * sizeof(u64);
3036
3037 if (copy_to_user(buf, values, size))
6f10581a 3038 goto unlock;
3dab77fb 3039
6f10581a 3040 ret = size;
3dab77fb 3041
65abc865 3042 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3043 n = 0;
3dab77fb 3044
59ed446f 3045 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3046 if (read_format & PERF_FORMAT_ID)
3047 values[n++] = primary_event_id(sub);
3048
3049 size = n * sizeof(u64);
3050
184d3da8 3051 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3052 ret = -EFAULT;
3053 goto unlock;
3054 }
abf4868b
PZ
3055
3056 ret += size;
3dab77fb 3057 }
6f10581a
PZ
3058unlock:
3059 mutex_unlock(&ctx->mutex);
3dab77fb 3060
abf4868b 3061 return ret;
3dab77fb
PZ
3062}
3063
cdd6c482 3064static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3065 u64 read_format, char __user *buf)
3066{
59ed446f 3067 u64 enabled, running;
3dab77fb
PZ
3068 u64 values[4];
3069 int n = 0;
3070
59ed446f
PZ
3071 values[n++] = perf_event_read_value(event, &enabled, &running);
3072 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3073 values[n++] = enabled;
3074 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3075 values[n++] = running;
3dab77fb 3076 if (read_format & PERF_FORMAT_ID)
cdd6c482 3077 values[n++] = primary_event_id(event);
3dab77fb
PZ
3078
3079 if (copy_to_user(buf, values, n * sizeof(u64)))
3080 return -EFAULT;
3081
3082 return n * sizeof(u64);
3083}
3084
0793a61d 3085/*
cdd6c482 3086 * Read the performance event - simple non blocking version for now
0793a61d
TG
3087 */
3088static ssize_t
cdd6c482 3089perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3090{
cdd6c482 3091 u64 read_format = event->attr.read_format;
3dab77fb 3092 int ret;
0793a61d 3093
3b6f9e5c 3094 /*
cdd6c482 3095 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3096 * error state (i.e. because it was pinned but it couldn't be
3097 * scheduled on to the CPU at some point).
3098 */
cdd6c482 3099 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3100 return 0;
3101
c320c7b7 3102 if (count < event->read_size)
3dab77fb
PZ
3103 return -ENOSPC;
3104
cdd6c482 3105 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3106 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3107 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3108 else
cdd6c482 3109 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3110
3dab77fb 3111 return ret;
0793a61d
TG
3112}
3113
0793a61d
TG
3114static ssize_t
3115perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3116{
cdd6c482 3117 struct perf_event *event = file->private_data;
0793a61d 3118
cdd6c482 3119 return perf_read_hw(event, buf, count);
0793a61d
TG
3120}
3121
3122static unsigned int perf_poll(struct file *file, poll_table *wait)
3123{
cdd6c482 3124 struct perf_event *event = file->private_data;
76369139 3125 struct ring_buffer *rb;
c33a0bc4 3126 unsigned int events = POLL_HUP;
c7138f37 3127
10c6db11
PZ
3128 /*
3129 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3130 * grabs the rb reference but perf_event_set_output() overrides it.
3131 * Here is the timeline for two threads T1, T2:
3132 * t0: T1, rb = rcu_dereference(event->rb)
3133 * t1: T2, old_rb = event->rb
3134 * t2: T2, event->rb = new rb
3135 * t3: T2, ring_buffer_detach(old_rb)
3136 * t4: T1, ring_buffer_attach(rb1)
3137 * t5: T1, poll_wait(event->waitq)
3138 *
3139 * To avoid this problem, we grab mmap_mutex in perf_poll()
3140 * thereby ensuring that the assignment of the new ring buffer
3141 * and the detachment of the old buffer appear atomic to perf_poll()
3142 */
3143 mutex_lock(&event->mmap_mutex);
3144
c7138f37 3145 rcu_read_lock();
76369139 3146 rb = rcu_dereference(event->rb);
10c6db11
PZ
3147 if (rb) {
3148 ring_buffer_attach(event, rb);
76369139 3149 events = atomic_xchg(&rb->poll, 0);
10c6db11 3150 }
c7138f37 3151 rcu_read_unlock();
0793a61d 3152
10c6db11
PZ
3153 mutex_unlock(&event->mmap_mutex);
3154
cdd6c482 3155 poll_wait(file, &event->waitq, wait);
0793a61d 3156
0793a61d
TG
3157 return events;
3158}
3159
cdd6c482 3160static void perf_event_reset(struct perf_event *event)
6de6a7b9 3161{
cdd6c482 3162 (void)perf_event_read(event);
e7850595 3163 local64_set(&event->count, 0);
cdd6c482 3164 perf_event_update_userpage(event);
3df5edad
PZ
3165}
3166
c93f7669 3167/*
cdd6c482
IM
3168 * Holding the top-level event's child_mutex means that any
3169 * descendant process that has inherited this event will block
3170 * in sync_child_event if it goes to exit, thus satisfying the
3171 * task existence requirements of perf_event_enable/disable.
c93f7669 3172 */
cdd6c482
IM
3173static void perf_event_for_each_child(struct perf_event *event,
3174 void (*func)(struct perf_event *))
3df5edad 3175{
cdd6c482 3176 struct perf_event *child;
3df5edad 3177
cdd6c482
IM
3178 WARN_ON_ONCE(event->ctx->parent_ctx);
3179 mutex_lock(&event->child_mutex);
3180 func(event);
3181 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3182 func(child);
cdd6c482 3183 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3184}
3185
cdd6c482
IM
3186static void perf_event_for_each(struct perf_event *event,
3187 void (*func)(struct perf_event *))
3df5edad 3188{
cdd6c482
IM
3189 struct perf_event_context *ctx = event->ctx;
3190 struct perf_event *sibling;
3df5edad 3191
75f937f2
PZ
3192 WARN_ON_ONCE(ctx->parent_ctx);
3193 mutex_lock(&ctx->mutex);
cdd6c482 3194 event = event->group_leader;
75f937f2 3195
cdd6c482 3196 perf_event_for_each_child(event, func);
cdd6c482 3197 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3198 perf_event_for_each_child(sibling, func);
75f937f2 3199 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3200}
3201
cdd6c482 3202static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3203{
cdd6c482 3204 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3205 int ret = 0;
3206 u64 value;
3207
6c7e550f 3208 if (!is_sampling_event(event))
08247e31
PZ
3209 return -EINVAL;
3210
ad0cf347 3211 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3212 return -EFAULT;
3213
3214 if (!value)
3215 return -EINVAL;
3216
e625cce1 3217 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3218 if (event->attr.freq) {
3219 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3220 ret = -EINVAL;
3221 goto unlock;
3222 }
3223
cdd6c482 3224 event->attr.sample_freq = value;
08247e31 3225 } else {
cdd6c482
IM
3226 event->attr.sample_period = value;
3227 event->hw.sample_period = value;
08247e31
PZ
3228 }
3229unlock:
e625cce1 3230 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3231
3232 return ret;
3233}
3234
ac9721f3
PZ
3235static const struct file_operations perf_fops;
3236
a6fa941d 3237static struct file *perf_fget_light(int fd, int *fput_needed)
ac9721f3
PZ
3238{
3239 struct file *file;
3240
3241 file = fget_light(fd, fput_needed);
3242 if (!file)
3243 return ERR_PTR(-EBADF);
3244
3245 if (file->f_op != &perf_fops) {
3246 fput_light(file, *fput_needed);
3247 *fput_needed = 0;
3248 return ERR_PTR(-EBADF);
3249 }
3250
a6fa941d 3251 return file;
ac9721f3
PZ
3252}
3253
3254static int perf_event_set_output(struct perf_event *event,
3255 struct perf_event *output_event);
6fb2915d 3256static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3257
d859e29f
PM
3258static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3259{
cdd6c482
IM
3260 struct perf_event *event = file->private_data;
3261 void (*func)(struct perf_event *);
3df5edad 3262 u32 flags = arg;
d859e29f
PM
3263
3264 switch (cmd) {
cdd6c482
IM
3265 case PERF_EVENT_IOC_ENABLE:
3266 func = perf_event_enable;
d859e29f 3267 break;
cdd6c482
IM
3268 case PERF_EVENT_IOC_DISABLE:
3269 func = perf_event_disable;
79f14641 3270 break;
cdd6c482
IM
3271 case PERF_EVENT_IOC_RESET:
3272 func = perf_event_reset;
6de6a7b9 3273 break;
3df5edad 3274
cdd6c482
IM
3275 case PERF_EVENT_IOC_REFRESH:
3276 return perf_event_refresh(event, arg);
08247e31 3277
cdd6c482
IM
3278 case PERF_EVENT_IOC_PERIOD:
3279 return perf_event_period(event, (u64 __user *)arg);
08247e31 3280
cdd6c482 3281 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3282 {
a6fa941d 3283 struct file *output_file = NULL;
ac9721f3
PZ
3284 struct perf_event *output_event = NULL;
3285 int fput_needed = 0;
3286 int ret;
3287
3288 if (arg != -1) {
a6fa941d
AV
3289 output_file = perf_fget_light(arg, &fput_needed);
3290 if (IS_ERR(output_file))
3291 return PTR_ERR(output_file);
3292 output_event = output_file->private_data;
ac9721f3
PZ
3293 }
3294
3295 ret = perf_event_set_output(event, output_event);
3296 if (output_event)
a6fa941d 3297 fput_light(output_file, fput_needed);
ac9721f3
PZ
3298
3299 return ret;
3300 }
a4be7c27 3301
6fb2915d
LZ
3302 case PERF_EVENT_IOC_SET_FILTER:
3303 return perf_event_set_filter(event, (void __user *)arg);
3304
d859e29f 3305 default:
3df5edad 3306 return -ENOTTY;
d859e29f 3307 }
3df5edad
PZ
3308
3309 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3310 perf_event_for_each(event, func);
3df5edad 3311 else
cdd6c482 3312 perf_event_for_each_child(event, func);
3df5edad
PZ
3313
3314 return 0;
d859e29f
PM
3315}
3316
cdd6c482 3317int perf_event_task_enable(void)
771d7cde 3318{
cdd6c482 3319 struct perf_event *event;
771d7cde 3320
cdd6c482
IM
3321 mutex_lock(&current->perf_event_mutex);
3322 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3323 perf_event_for_each_child(event, perf_event_enable);
3324 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3325
3326 return 0;
3327}
3328
cdd6c482 3329int perf_event_task_disable(void)
771d7cde 3330{
cdd6c482 3331 struct perf_event *event;
771d7cde 3332
cdd6c482
IM
3333 mutex_lock(&current->perf_event_mutex);
3334 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3335 perf_event_for_each_child(event, perf_event_disable);
3336 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3337
3338 return 0;
3339}
3340
cdd6c482 3341static int perf_event_index(struct perf_event *event)
194002b2 3342{
a4eaf7f1
PZ
3343 if (event->hw.state & PERF_HES_STOPPED)
3344 return 0;
3345
cdd6c482 3346 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3347 return 0;
3348
35edc2a5 3349 return event->pmu->event_idx(event);
194002b2
PZ
3350}
3351
c4794295 3352static void calc_timer_values(struct perf_event *event,
e3f3541c 3353 u64 *now,
7f310a5d
EM
3354 u64 *enabled,
3355 u64 *running)
c4794295 3356{
e3f3541c 3357 u64 ctx_time;
c4794295 3358
e3f3541c
PZ
3359 *now = perf_clock();
3360 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3361 *enabled = ctx_time - event->tstamp_enabled;
3362 *running = ctx_time - event->tstamp_running;
3363}
3364
c7206205 3365void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3366{
3367}
3368
38ff667b
PZ
3369/*
3370 * Callers need to ensure there can be no nesting of this function, otherwise
3371 * the seqlock logic goes bad. We can not serialize this because the arch
3372 * code calls this from NMI context.
3373 */
cdd6c482 3374void perf_event_update_userpage(struct perf_event *event)
37d81828 3375{
cdd6c482 3376 struct perf_event_mmap_page *userpg;
76369139 3377 struct ring_buffer *rb;
e3f3541c 3378 u64 enabled, running, now;
38ff667b
PZ
3379
3380 rcu_read_lock();
0d641208
EM
3381 /*
3382 * compute total_time_enabled, total_time_running
3383 * based on snapshot values taken when the event
3384 * was last scheduled in.
3385 *
3386 * we cannot simply called update_context_time()
3387 * because of locking issue as we can be called in
3388 * NMI context
3389 */
e3f3541c 3390 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3391 rb = rcu_dereference(event->rb);
3392 if (!rb)
38ff667b
PZ
3393 goto unlock;
3394
76369139 3395 userpg = rb->user_page;
37d81828 3396
7b732a75
PZ
3397 /*
3398 * Disable preemption so as to not let the corresponding user-space
3399 * spin too long if we get preempted.
3400 */
3401 preempt_disable();
37d81828 3402 ++userpg->lock;
92f22a38 3403 barrier();
cdd6c482 3404 userpg->index = perf_event_index(event);
b5e58793 3405 userpg->offset = perf_event_count(event);
365a4038 3406 if (userpg->index)
e7850595 3407 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3408
0d641208 3409 userpg->time_enabled = enabled +
cdd6c482 3410 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3411
0d641208 3412 userpg->time_running = running +
cdd6c482 3413 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3414
c7206205 3415 arch_perf_update_userpage(userpg, now);
e3f3541c 3416
92f22a38 3417 barrier();
37d81828 3418 ++userpg->lock;
7b732a75 3419 preempt_enable();
38ff667b 3420unlock:
7b732a75 3421 rcu_read_unlock();
37d81828
PM
3422}
3423
906010b2
PZ
3424static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3425{
3426 struct perf_event *event = vma->vm_file->private_data;
76369139 3427 struct ring_buffer *rb;
906010b2
PZ
3428 int ret = VM_FAULT_SIGBUS;
3429
3430 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3431 if (vmf->pgoff == 0)
3432 ret = 0;
3433 return ret;
3434 }
3435
3436 rcu_read_lock();
76369139
FW
3437 rb = rcu_dereference(event->rb);
3438 if (!rb)
906010b2
PZ
3439 goto unlock;
3440
3441 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3442 goto unlock;
3443
76369139 3444 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3445 if (!vmf->page)
3446 goto unlock;
3447
3448 get_page(vmf->page);
3449 vmf->page->mapping = vma->vm_file->f_mapping;
3450 vmf->page->index = vmf->pgoff;
3451
3452 ret = 0;
3453unlock:
3454 rcu_read_unlock();
3455
3456 return ret;
3457}
3458
10c6db11
PZ
3459static void ring_buffer_attach(struct perf_event *event,
3460 struct ring_buffer *rb)
3461{
3462 unsigned long flags;
3463
3464 if (!list_empty(&event->rb_entry))
3465 return;
3466
3467 spin_lock_irqsave(&rb->event_lock, flags);
3468 if (!list_empty(&event->rb_entry))
3469 goto unlock;
3470
3471 list_add(&event->rb_entry, &rb->event_list);
3472unlock:
3473 spin_unlock_irqrestore(&rb->event_lock, flags);
3474}
3475
3476static void ring_buffer_detach(struct perf_event *event,
3477 struct ring_buffer *rb)
3478{
3479 unsigned long flags;
3480
3481 if (list_empty(&event->rb_entry))
3482 return;
3483
3484 spin_lock_irqsave(&rb->event_lock, flags);
3485 list_del_init(&event->rb_entry);
3486 wake_up_all(&event->waitq);
3487 spin_unlock_irqrestore(&rb->event_lock, flags);
3488}
3489
3490static void ring_buffer_wakeup(struct perf_event *event)
3491{
3492 struct ring_buffer *rb;
3493
3494 rcu_read_lock();
3495 rb = rcu_dereference(event->rb);
44b7f4b9
WD
3496 if (!rb)
3497 goto unlock;
3498
3499 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
10c6db11 3500 wake_up_all(&event->waitq);
44b7f4b9
WD
3501
3502unlock:
10c6db11
PZ
3503 rcu_read_unlock();
3504}
3505
76369139 3506static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3507{
76369139 3508 struct ring_buffer *rb;
906010b2 3509
76369139
FW
3510 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3511 rb_free(rb);
7b732a75
PZ
3512}
3513
76369139 3514static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3515{
76369139 3516 struct ring_buffer *rb;
7b732a75 3517
ac9721f3 3518 rcu_read_lock();
76369139
FW
3519 rb = rcu_dereference(event->rb);
3520 if (rb) {
3521 if (!atomic_inc_not_zero(&rb->refcount))
3522 rb = NULL;
ac9721f3
PZ
3523 }
3524 rcu_read_unlock();
3525
76369139 3526 return rb;
ac9721f3
PZ
3527}
3528
76369139 3529static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3530{
10c6db11
PZ
3531 struct perf_event *event, *n;
3532 unsigned long flags;
3533
76369139 3534 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3535 return;
7b732a75 3536
10c6db11
PZ
3537 spin_lock_irqsave(&rb->event_lock, flags);
3538 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3539 list_del_init(&event->rb_entry);
3540 wake_up_all(&event->waitq);
3541 }
3542 spin_unlock_irqrestore(&rb->event_lock, flags);
3543
76369139 3544 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3545}
3546
3547static void perf_mmap_open(struct vm_area_struct *vma)
3548{
cdd6c482 3549 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3550
cdd6c482 3551 atomic_inc(&event->mmap_count);
7b732a75
PZ
3552}
3553
3554static void perf_mmap_close(struct vm_area_struct *vma)
3555{
cdd6c482 3556 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3557
cdd6c482 3558 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
76369139 3559 unsigned long size = perf_data_size(event->rb);
ac9721f3 3560 struct user_struct *user = event->mmap_user;
76369139 3561 struct ring_buffer *rb = event->rb;
789f90fc 3562
906010b2 3563 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
bc3e53f6 3564 vma->vm_mm->pinned_vm -= event->mmap_locked;
76369139 3565 rcu_assign_pointer(event->rb, NULL);
10c6db11 3566 ring_buffer_detach(event, rb);
cdd6c482 3567 mutex_unlock(&event->mmap_mutex);
ac9721f3 3568
76369139 3569 ring_buffer_put(rb);
ac9721f3 3570 free_uid(user);
7b732a75 3571 }
37d81828
PM
3572}
3573
f0f37e2f 3574static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3575 .open = perf_mmap_open,
3576 .close = perf_mmap_close,
3577 .fault = perf_mmap_fault,
3578 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3579};
3580
3581static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3582{
cdd6c482 3583 struct perf_event *event = file->private_data;
22a4f650 3584 unsigned long user_locked, user_lock_limit;
789f90fc 3585 struct user_struct *user = current_user();
22a4f650 3586 unsigned long locked, lock_limit;
76369139 3587 struct ring_buffer *rb;
7b732a75
PZ
3588 unsigned long vma_size;
3589 unsigned long nr_pages;
789f90fc 3590 long user_extra, extra;
d57e34fd 3591 int ret = 0, flags = 0;
37d81828 3592
c7920614
PZ
3593 /*
3594 * Don't allow mmap() of inherited per-task counters. This would
3595 * create a performance issue due to all children writing to the
76369139 3596 * same rb.
c7920614
PZ
3597 */
3598 if (event->cpu == -1 && event->attr.inherit)
3599 return -EINVAL;
3600
43a21ea8 3601 if (!(vma->vm_flags & VM_SHARED))
37d81828 3602 return -EINVAL;
7b732a75
PZ
3603
3604 vma_size = vma->vm_end - vma->vm_start;
3605 nr_pages = (vma_size / PAGE_SIZE) - 1;
3606
7730d865 3607 /*
76369139 3608 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3609 * can do bitmasks instead of modulo.
3610 */
3611 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3612 return -EINVAL;
3613
7b732a75 3614 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3615 return -EINVAL;
3616
7b732a75
PZ
3617 if (vma->vm_pgoff != 0)
3618 return -EINVAL;
37d81828 3619
cdd6c482
IM
3620 WARN_ON_ONCE(event->ctx->parent_ctx);
3621 mutex_lock(&event->mmap_mutex);
76369139
FW
3622 if (event->rb) {
3623 if (event->rb->nr_pages == nr_pages)
3624 atomic_inc(&event->rb->refcount);
ac9721f3 3625 else
ebb3c4c4
PZ
3626 ret = -EINVAL;
3627 goto unlock;
3628 }
3629
789f90fc 3630 user_extra = nr_pages + 1;
cdd6c482 3631 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3632
3633 /*
3634 * Increase the limit linearly with more CPUs:
3635 */
3636 user_lock_limit *= num_online_cpus();
3637
789f90fc 3638 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3639
789f90fc
PZ
3640 extra = 0;
3641 if (user_locked > user_lock_limit)
3642 extra = user_locked - user_lock_limit;
7b732a75 3643
78d7d407 3644 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 3645 lock_limit >>= PAGE_SHIFT;
bc3e53f6 3646 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 3647
459ec28a
IM
3648 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3649 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
3650 ret = -EPERM;
3651 goto unlock;
3652 }
7b732a75 3653
76369139 3654 WARN_ON(event->rb);
906010b2 3655
d57e34fd 3656 if (vma->vm_flags & VM_WRITE)
76369139 3657 flags |= RING_BUFFER_WRITABLE;
d57e34fd 3658
4ec8363d
VW
3659 rb = rb_alloc(nr_pages,
3660 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3661 event->cpu, flags);
3662
76369139 3663 if (!rb) {
ac9721f3 3664 ret = -ENOMEM;
ebb3c4c4 3665 goto unlock;
ac9721f3 3666 }
76369139 3667 rcu_assign_pointer(event->rb, rb);
43a21ea8 3668
ac9721f3
PZ
3669 atomic_long_add(user_extra, &user->locked_vm);
3670 event->mmap_locked = extra;
3671 event->mmap_user = get_current_user();
bc3e53f6 3672 vma->vm_mm->pinned_vm += event->mmap_locked;
ac9721f3 3673
9a0f05cb
PZ
3674 perf_event_update_userpage(event);
3675
ebb3c4c4 3676unlock:
ac9721f3
PZ
3677 if (!ret)
3678 atomic_inc(&event->mmap_count);
cdd6c482 3679 mutex_unlock(&event->mmap_mutex);
37d81828 3680
37d81828
PM
3681 vma->vm_flags |= VM_RESERVED;
3682 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
3683
3684 return ret;
37d81828
PM
3685}
3686
3c446b3d
PZ
3687static int perf_fasync(int fd, struct file *filp, int on)
3688{
3c446b3d 3689 struct inode *inode = filp->f_path.dentry->d_inode;
cdd6c482 3690 struct perf_event *event = filp->private_data;
3c446b3d
PZ
3691 int retval;
3692
3693 mutex_lock(&inode->i_mutex);
cdd6c482 3694 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
3695 mutex_unlock(&inode->i_mutex);
3696
3697 if (retval < 0)
3698 return retval;
3699
3700 return 0;
3701}
3702
0793a61d 3703static const struct file_operations perf_fops = {
3326c1ce 3704 .llseek = no_llseek,
0793a61d
TG
3705 .release = perf_release,
3706 .read = perf_read,
3707 .poll = perf_poll,
d859e29f
PM
3708 .unlocked_ioctl = perf_ioctl,
3709 .compat_ioctl = perf_ioctl,
37d81828 3710 .mmap = perf_mmap,
3c446b3d 3711 .fasync = perf_fasync,
0793a61d
TG
3712};
3713
925d519a 3714/*
cdd6c482 3715 * Perf event wakeup
925d519a
PZ
3716 *
3717 * If there's data, ensure we set the poll() state and publish everything
3718 * to user-space before waking everybody up.
3719 */
3720
cdd6c482 3721void perf_event_wakeup(struct perf_event *event)
925d519a 3722{
10c6db11 3723 ring_buffer_wakeup(event);
4c9e2542 3724
cdd6c482
IM
3725 if (event->pending_kill) {
3726 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3727 event->pending_kill = 0;
4c9e2542 3728 }
925d519a
PZ
3729}
3730
e360adbe 3731static void perf_pending_event(struct irq_work *entry)
79f14641 3732{
cdd6c482
IM
3733 struct perf_event *event = container_of(entry,
3734 struct perf_event, pending);
79f14641 3735
cdd6c482
IM
3736 if (event->pending_disable) {
3737 event->pending_disable = 0;
3738 __perf_event_disable(event);
79f14641
PZ
3739 }
3740
cdd6c482
IM
3741 if (event->pending_wakeup) {
3742 event->pending_wakeup = 0;
3743 perf_event_wakeup(event);
79f14641
PZ
3744 }
3745}
3746
39447b38
ZY
3747/*
3748 * We assume there is only KVM supporting the callbacks.
3749 * Later on, we might change it to a list if there is
3750 * another virtualization implementation supporting the callbacks.
3751 */
3752struct perf_guest_info_callbacks *perf_guest_cbs;
3753
3754int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3755{
3756 perf_guest_cbs = cbs;
3757 return 0;
3758}
3759EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3760
3761int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3762{
3763 perf_guest_cbs = NULL;
3764 return 0;
3765}
3766EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3767
4018994f
JO
3768static void
3769perf_output_sample_regs(struct perf_output_handle *handle,
3770 struct pt_regs *regs, u64 mask)
3771{
3772 int bit;
3773
3774 for_each_set_bit(bit, (const unsigned long *) &mask,
3775 sizeof(mask) * BITS_PER_BYTE) {
3776 u64 val;
3777
3778 val = perf_reg_value(regs, bit);
3779 perf_output_put(handle, val);
3780 }
3781}
3782
3783static void perf_sample_regs_user(struct perf_regs_user *regs_user,
3784 struct pt_regs *regs)
3785{
3786 if (!user_mode(regs)) {
3787 if (current->mm)
3788 regs = task_pt_regs(current);
3789 else
3790 regs = NULL;
3791 }
3792
3793 if (regs) {
3794 regs_user->regs = regs;
3795 regs_user->abi = perf_reg_abi(current);
3796 }
3797}
3798
c5ebcedb
JO
3799/*
3800 * Get remaining task size from user stack pointer.
3801 *
3802 * It'd be better to take stack vma map and limit this more
3803 * precisly, but there's no way to get it safely under interrupt,
3804 * so using TASK_SIZE as limit.
3805 */
3806static u64 perf_ustack_task_size(struct pt_regs *regs)
3807{
3808 unsigned long addr = perf_user_stack_pointer(regs);
3809
3810 if (!addr || addr >= TASK_SIZE)
3811 return 0;
3812
3813 return TASK_SIZE - addr;
3814}
3815
3816static u16
3817perf_sample_ustack_size(u16 stack_size, u16 header_size,
3818 struct pt_regs *regs)
3819{
3820 u64 task_size;
3821
3822 /* No regs, no stack pointer, no dump. */
3823 if (!regs)
3824 return 0;
3825
3826 /*
3827 * Check if we fit in with the requested stack size into the:
3828 * - TASK_SIZE
3829 * If we don't, we limit the size to the TASK_SIZE.
3830 *
3831 * - remaining sample size
3832 * If we don't, we customize the stack size to
3833 * fit in to the remaining sample size.
3834 */
3835
3836 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
3837 stack_size = min(stack_size, (u16) task_size);
3838
3839 /* Current header size plus static size and dynamic size. */
3840 header_size += 2 * sizeof(u64);
3841
3842 /* Do we fit in with the current stack dump size? */
3843 if ((u16) (header_size + stack_size) < header_size) {
3844 /*
3845 * If we overflow the maximum size for the sample,
3846 * we customize the stack dump size to fit in.
3847 */
3848 stack_size = USHRT_MAX - header_size - sizeof(u64);
3849 stack_size = round_up(stack_size, sizeof(u64));
3850 }
3851
3852 return stack_size;
3853}
3854
3855static void
3856perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
3857 struct pt_regs *regs)
3858{
3859 /* Case of a kernel thread, nothing to dump */
3860 if (!regs) {
3861 u64 size = 0;
3862 perf_output_put(handle, size);
3863 } else {
3864 unsigned long sp;
3865 unsigned int rem;
3866 u64 dyn_size;
3867
3868 /*
3869 * We dump:
3870 * static size
3871 * - the size requested by user or the best one we can fit
3872 * in to the sample max size
3873 * data
3874 * - user stack dump data
3875 * dynamic size
3876 * - the actual dumped size
3877 */
3878
3879 /* Static size. */
3880 perf_output_put(handle, dump_size);
3881
3882 /* Data. */
3883 sp = perf_user_stack_pointer(regs);
3884 rem = __output_copy_user(handle, (void *) sp, dump_size);
3885 dyn_size = dump_size - rem;
3886
3887 perf_output_skip(handle, rem);
3888
3889 /* Dynamic size. */
3890 perf_output_put(handle, dyn_size);
3891 }
3892}
3893
c980d109
ACM
3894static void __perf_event_header__init_id(struct perf_event_header *header,
3895 struct perf_sample_data *data,
3896 struct perf_event *event)
6844c09d
ACM
3897{
3898 u64 sample_type = event->attr.sample_type;
3899
3900 data->type = sample_type;
3901 header->size += event->id_header_size;
3902
3903 if (sample_type & PERF_SAMPLE_TID) {
3904 /* namespace issues */
3905 data->tid_entry.pid = perf_event_pid(event, current);
3906 data->tid_entry.tid = perf_event_tid(event, current);
3907 }
3908
3909 if (sample_type & PERF_SAMPLE_TIME)
3910 data->time = perf_clock();
3911
3912 if (sample_type & PERF_SAMPLE_ID)
3913 data->id = primary_event_id(event);
3914
3915 if (sample_type & PERF_SAMPLE_STREAM_ID)
3916 data->stream_id = event->id;
3917
3918 if (sample_type & PERF_SAMPLE_CPU) {
3919 data->cpu_entry.cpu = raw_smp_processor_id();
3920 data->cpu_entry.reserved = 0;
3921 }
3922}
3923
76369139
FW
3924void perf_event_header__init_id(struct perf_event_header *header,
3925 struct perf_sample_data *data,
3926 struct perf_event *event)
c980d109
ACM
3927{
3928 if (event->attr.sample_id_all)
3929 __perf_event_header__init_id(header, data, event);
3930}
3931
3932static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3933 struct perf_sample_data *data)
3934{
3935 u64 sample_type = data->type;
3936
3937 if (sample_type & PERF_SAMPLE_TID)
3938 perf_output_put(handle, data->tid_entry);
3939
3940 if (sample_type & PERF_SAMPLE_TIME)
3941 perf_output_put(handle, data->time);
3942
3943 if (sample_type & PERF_SAMPLE_ID)
3944 perf_output_put(handle, data->id);
3945
3946 if (sample_type & PERF_SAMPLE_STREAM_ID)
3947 perf_output_put(handle, data->stream_id);
3948
3949 if (sample_type & PERF_SAMPLE_CPU)
3950 perf_output_put(handle, data->cpu_entry);
3951}
3952
76369139
FW
3953void perf_event__output_id_sample(struct perf_event *event,
3954 struct perf_output_handle *handle,
3955 struct perf_sample_data *sample)
c980d109
ACM
3956{
3957 if (event->attr.sample_id_all)
3958 __perf_event__output_id_sample(handle, sample);
3959}
3960
3dab77fb 3961static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
3962 struct perf_event *event,
3963 u64 enabled, u64 running)
3dab77fb 3964{
cdd6c482 3965 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3966 u64 values[4];
3967 int n = 0;
3968
b5e58793 3969 values[n++] = perf_event_count(event);
3dab77fb 3970 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 3971 values[n++] = enabled +
cdd6c482 3972 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
3973 }
3974 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 3975 values[n++] = running +
cdd6c482 3976 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
3977 }
3978 if (read_format & PERF_FORMAT_ID)
cdd6c482 3979 values[n++] = primary_event_id(event);
3dab77fb 3980
76369139 3981 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3982}
3983
3984/*
cdd6c482 3985 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
3986 */
3987static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
3988 struct perf_event *event,
3989 u64 enabled, u64 running)
3dab77fb 3990{
cdd6c482
IM
3991 struct perf_event *leader = event->group_leader, *sub;
3992 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3993 u64 values[5];
3994 int n = 0;
3995
3996 values[n++] = 1 + leader->nr_siblings;
3997
3998 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 3999 values[n++] = enabled;
3dab77fb
PZ
4000
4001 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4002 values[n++] = running;
3dab77fb 4003
cdd6c482 4004 if (leader != event)
3dab77fb
PZ
4005 leader->pmu->read(leader);
4006
b5e58793 4007 values[n++] = perf_event_count(leader);
3dab77fb 4008 if (read_format & PERF_FORMAT_ID)
cdd6c482 4009 values[n++] = primary_event_id(leader);
3dab77fb 4010
76369139 4011 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4012
65abc865 4013 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4014 n = 0;
4015
cdd6c482 4016 if (sub != event)
3dab77fb
PZ
4017 sub->pmu->read(sub);
4018
b5e58793 4019 values[n++] = perf_event_count(sub);
3dab77fb 4020 if (read_format & PERF_FORMAT_ID)
cdd6c482 4021 values[n++] = primary_event_id(sub);
3dab77fb 4022
76369139 4023 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4024 }
4025}
4026
eed01528
SE
4027#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4028 PERF_FORMAT_TOTAL_TIME_RUNNING)
4029
3dab77fb 4030static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4031 struct perf_event *event)
3dab77fb 4032{
e3f3541c 4033 u64 enabled = 0, running = 0, now;
eed01528
SE
4034 u64 read_format = event->attr.read_format;
4035
4036 /*
4037 * compute total_time_enabled, total_time_running
4038 * based on snapshot values taken when the event
4039 * was last scheduled in.
4040 *
4041 * we cannot simply called update_context_time()
4042 * because of locking issue as we are called in
4043 * NMI context
4044 */
c4794295 4045 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4046 calc_timer_values(event, &now, &enabled, &running);
eed01528 4047
cdd6c482 4048 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4049 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4050 else
eed01528 4051 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4052}
4053
5622f295
MM
4054void perf_output_sample(struct perf_output_handle *handle,
4055 struct perf_event_header *header,
4056 struct perf_sample_data *data,
cdd6c482 4057 struct perf_event *event)
5622f295
MM
4058{
4059 u64 sample_type = data->type;
4060
4061 perf_output_put(handle, *header);
4062
4063 if (sample_type & PERF_SAMPLE_IP)
4064 perf_output_put(handle, data->ip);
4065
4066 if (sample_type & PERF_SAMPLE_TID)
4067 perf_output_put(handle, data->tid_entry);
4068
4069 if (sample_type & PERF_SAMPLE_TIME)
4070 perf_output_put(handle, data->time);
4071
4072 if (sample_type & PERF_SAMPLE_ADDR)
4073 perf_output_put(handle, data->addr);
4074
4075 if (sample_type & PERF_SAMPLE_ID)
4076 perf_output_put(handle, data->id);
4077
4078 if (sample_type & PERF_SAMPLE_STREAM_ID)
4079 perf_output_put(handle, data->stream_id);
4080
4081 if (sample_type & PERF_SAMPLE_CPU)
4082 perf_output_put(handle, data->cpu_entry);
4083
4084 if (sample_type & PERF_SAMPLE_PERIOD)
4085 perf_output_put(handle, data->period);
4086
4087 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4088 perf_output_read(handle, event);
5622f295
MM
4089
4090 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4091 if (data->callchain) {
4092 int size = 1;
4093
4094 if (data->callchain)
4095 size += data->callchain->nr;
4096
4097 size *= sizeof(u64);
4098
76369139 4099 __output_copy(handle, data->callchain, size);
5622f295
MM
4100 } else {
4101 u64 nr = 0;
4102 perf_output_put(handle, nr);
4103 }
4104 }
4105
4106 if (sample_type & PERF_SAMPLE_RAW) {
4107 if (data->raw) {
4108 perf_output_put(handle, data->raw->size);
76369139
FW
4109 __output_copy(handle, data->raw->data,
4110 data->raw->size);
5622f295
MM
4111 } else {
4112 struct {
4113 u32 size;
4114 u32 data;
4115 } raw = {
4116 .size = sizeof(u32),
4117 .data = 0,
4118 };
4119 perf_output_put(handle, raw);
4120 }
4121 }
a7ac67ea
PZ
4122
4123 if (!event->attr.watermark) {
4124 int wakeup_events = event->attr.wakeup_events;
4125
4126 if (wakeup_events) {
4127 struct ring_buffer *rb = handle->rb;
4128 int events = local_inc_return(&rb->events);
4129
4130 if (events >= wakeup_events) {
4131 local_sub(wakeup_events, &rb->events);
4132 local_inc(&rb->wakeup);
4133 }
4134 }
4135 }
bce38cd5
SE
4136
4137 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4138 if (data->br_stack) {
4139 size_t size;
4140
4141 size = data->br_stack->nr
4142 * sizeof(struct perf_branch_entry);
4143
4144 perf_output_put(handle, data->br_stack->nr);
4145 perf_output_copy(handle, data->br_stack->entries, size);
4146 } else {
4147 /*
4148 * we always store at least the value of nr
4149 */
4150 u64 nr = 0;
4151 perf_output_put(handle, nr);
4152 }
4153 }
4018994f
JO
4154
4155 if (sample_type & PERF_SAMPLE_REGS_USER) {
4156 u64 abi = data->regs_user.abi;
4157
4158 /*
4159 * If there are no regs to dump, notice it through
4160 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4161 */
4162 perf_output_put(handle, abi);
4163
4164 if (abi) {
4165 u64 mask = event->attr.sample_regs_user;
4166 perf_output_sample_regs(handle,
4167 data->regs_user.regs,
4168 mask);
4169 }
4170 }
c5ebcedb
JO
4171
4172 if (sample_type & PERF_SAMPLE_STACK_USER)
4173 perf_output_sample_ustack(handle,
4174 data->stack_user_size,
4175 data->regs_user.regs);
5622f295
MM
4176}
4177
4178void perf_prepare_sample(struct perf_event_header *header,
4179 struct perf_sample_data *data,
cdd6c482 4180 struct perf_event *event,
5622f295 4181 struct pt_regs *regs)
7b732a75 4182{
cdd6c482 4183 u64 sample_type = event->attr.sample_type;
7b732a75 4184
cdd6c482 4185 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4186 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4187
4188 header->misc = 0;
4189 header->misc |= perf_misc_flags(regs);
6fab0192 4190
c980d109 4191 __perf_event_header__init_id(header, data, event);
6844c09d 4192
c320c7b7 4193 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4194 data->ip = perf_instruction_pointer(regs);
4195
b23f3325 4196 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4197 int size = 1;
394ee076 4198
e6dab5ff 4199 data->callchain = perf_callchain(event, regs);
5622f295
MM
4200
4201 if (data->callchain)
4202 size += data->callchain->nr;
4203
4204 header->size += size * sizeof(u64);
394ee076
PZ
4205 }
4206
3a43ce68 4207 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4208 int size = sizeof(u32);
4209
4210 if (data->raw)
4211 size += data->raw->size;
4212 else
4213 size += sizeof(u32);
4214
4215 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4216 header->size += size;
7f453c24 4217 }
bce38cd5
SE
4218
4219 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4220 int size = sizeof(u64); /* nr */
4221 if (data->br_stack) {
4222 size += data->br_stack->nr
4223 * sizeof(struct perf_branch_entry);
4224 }
4225 header->size += size;
4226 }
4018994f
JO
4227
4228 if (sample_type & PERF_SAMPLE_REGS_USER) {
4229 /* regs dump ABI info */
4230 int size = sizeof(u64);
4231
4232 perf_sample_regs_user(&data->regs_user, regs);
4233
4234 if (data->regs_user.regs) {
4235 u64 mask = event->attr.sample_regs_user;
4236 size += hweight64(mask) * sizeof(u64);
4237 }
4238
4239 header->size += size;
4240 }
c5ebcedb
JO
4241
4242 if (sample_type & PERF_SAMPLE_STACK_USER) {
4243 /*
4244 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4245 * processed as the last one or have additional check added
4246 * in case new sample type is added, because we could eat
4247 * up the rest of the sample size.
4248 */
4249 struct perf_regs_user *uregs = &data->regs_user;
4250 u16 stack_size = event->attr.sample_stack_user;
4251 u16 size = sizeof(u64);
4252
4253 if (!uregs->abi)
4254 perf_sample_regs_user(uregs, regs);
4255
4256 stack_size = perf_sample_ustack_size(stack_size, header->size,
4257 uregs->regs);
4258
4259 /*
4260 * If there is something to dump, add space for the dump
4261 * itself and for the field that tells the dynamic size,
4262 * which is how many have been actually dumped.
4263 */
4264 if (stack_size)
4265 size += sizeof(u64) + stack_size;
4266
4267 data->stack_user_size = stack_size;
4268 header->size += size;
4269 }
5622f295 4270}
7f453c24 4271
a8b0ca17 4272static void perf_event_output(struct perf_event *event,
5622f295
MM
4273 struct perf_sample_data *data,
4274 struct pt_regs *regs)
4275{
4276 struct perf_output_handle handle;
4277 struct perf_event_header header;
689802b2 4278
927c7a9e
FW
4279 /* protect the callchain buffers */
4280 rcu_read_lock();
4281
cdd6c482 4282 perf_prepare_sample(&header, data, event, regs);
5c148194 4283
a7ac67ea 4284 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4285 goto exit;
0322cd6e 4286
cdd6c482 4287 perf_output_sample(&handle, &header, data, event);
f413cdb8 4288
8a057d84 4289 perf_output_end(&handle);
927c7a9e
FW
4290
4291exit:
4292 rcu_read_unlock();
0322cd6e
PZ
4293}
4294
38b200d6 4295/*
cdd6c482 4296 * read event_id
38b200d6
PZ
4297 */
4298
4299struct perf_read_event {
4300 struct perf_event_header header;
4301
4302 u32 pid;
4303 u32 tid;
38b200d6
PZ
4304};
4305
4306static void
cdd6c482 4307perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4308 struct task_struct *task)
4309{
4310 struct perf_output_handle handle;
c980d109 4311 struct perf_sample_data sample;
dfc65094 4312 struct perf_read_event read_event = {
38b200d6 4313 .header = {
cdd6c482 4314 .type = PERF_RECORD_READ,
38b200d6 4315 .misc = 0,
c320c7b7 4316 .size = sizeof(read_event) + event->read_size,
38b200d6 4317 },
cdd6c482
IM
4318 .pid = perf_event_pid(event, task),
4319 .tid = perf_event_tid(event, task),
38b200d6 4320 };
3dab77fb 4321 int ret;
38b200d6 4322
c980d109 4323 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4324 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4325 if (ret)
4326 return;
4327
dfc65094 4328 perf_output_put(&handle, read_event);
cdd6c482 4329 perf_output_read(&handle, event);
c980d109 4330 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4331
38b200d6
PZ
4332 perf_output_end(&handle);
4333}
4334
60313ebe 4335/*
9f498cc5
PZ
4336 * task tracking -- fork/exit
4337 *
3af9e859 4338 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4339 */
4340
9f498cc5 4341struct perf_task_event {
3a80b4a3 4342 struct task_struct *task;
cdd6c482 4343 struct perf_event_context *task_ctx;
60313ebe
PZ
4344
4345 struct {
4346 struct perf_event_header header;
4347
4348 u32 pid;
4349 u32 ppid;
9f498cc5
PZ
4350 u32 tid;
4351 u32 ptid;
393b2ad8 4352 u64 time;
cdd6c482 4353 } event_id;
60313ebe
PZ
4354};
4355
cdd6c482 4356static void perf_event_task_output(struct perf_event *event,
9f498cc5 4357 struct perf_task_event *task_event)
60313ebe
PZ
4358{
4359 struct perf_output_handle handle;
c980d109 4360 struct perf_sample_data sample;
9f498cc5 4361 struct task_struct *task = task_event->task;
c980d109 4362 int ret, size = task_event->event_id.header.size;
8bb39f9a 4363
c980d109 4364 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4365
c980d109 4366 ret = perf_output_begin(&handle, event,
a7ac67ea 4367 task_event->event_id.header.size);
ef60777c 4368 if (ret)
c980d109 4369 goto out;
60313ebe 4370
cdd6c482
IM
4371 task_event->event_id.pid = perf_event_pid(event, task);
4372 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4373
cdd6c482
IM
4374 task_event->event_id.tid = perf_event_tid(event, task);
4375 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4376
cdd6c482 4377 perf_output_put(&handle, task_event->event_id);
393b2ad8 4378
c980d109
ACM
4379 perf_event__output_id_sample(event, &handle, &sample);
4380
60313ebe 4381 perf_output_end(&handle);
c980d109
ACM
4382out:
4383 task_event->event_id.header.size = size;
60313ebe
PZ
4384}
4385
cdd6c482 4386static int perf_event_task_match(struct perf_event *event)
60313ebe 4387{
6f93d0a7 4388 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4389 return 0;
4390
5632ab12 4391 if (!event_filter_match(event))
5d27c23d
PZ
4392 return 0;
4393
3af9e859
EM
4394 if (event->attr.comm || event->attr.mmap ||
4395 event->attr.mmap_data || event->attr.task)
60313ebe
PZ
4396 return 1;
4397
4398 return 0;
4399}
4400
cdd6c482 4401static void perf_event_task_ctx(struct perf_event_context *ctx,
9f498cc5 4402 struct perf_task_event *task_event)
60313ebe 4403{
cdd6c482 4404 struct perf_event *event;
60313ebe 4405
cdd6c482
IM
4406 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4407 if (perf_event_task_match(event))
4408 perf_event_task_output(event, task_event);
60313ebe 4409 }
60313ebe
PZ
4410}
4411
cdd6c482 4412static void perf_event_task_event(struct perf_task_event *task_event)
60313ebe
PZ
4413{
4414 struct perf_cpu_context *cpuctx;
8dc85d54 4415 struct perf_event_context *ctx;
108b02cf 4416 struct pmu *pmu;
8dc85d54 4417 int ctxn;
60313ebe 4418
d6ff86cf 4419 rcu_read_lock();
108b02cf 4420 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4421 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3f1f3320 4422 if (cpuctx->unique_pmu != pmu)
51676957 4423 goto next;
108b02cf 4424 perf_event_task_ctx(&cpuctx->ctx, task_event);
8dc85d54
PZ
4425
4426 ctx = task_event->task_ctx;
4427 if (!ctx) {
4428 ctxn = pmu->task_ctx_nr;
4429 if (ctxn < 0)
41945f6c 4430 goto next;
8dc85d54
PZ
4431 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4432 }
4433 if (ctx)
4434 perf_event_task_ctx(ctx, task_event);
41945f6c
PZ
4435next:
4436 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4437 }
60313ebe
PZ
4438 rcu_read_unlock();
4439}
4440
cdd6c482
IM
4441static void perf_event_task(struct task_struct *task,
4442 struct perf_event_context *task_ctx,
3a80b4a3 4443 int new)
60313ebe 4444{
9f498cc5 4445 struct perf_task_event task_event;
60313ebe 4446
cdd6c482
IM
4447 if (!atomic_read(&nr_comm_events) &&
4448 !atomic_read(&nr_mmap_events) &&
4449 !atomic_read(&nr_task_events))
60313ebe
PZ
4450 return;
4451
9f498cc5 4452 task_event = (struct perf_task_event){
3a80b4a3
PZ
4453 .task = task,
4454 .task_ctx = task_ctx,
cdd6c482 4455 .event_id = {
60313ebe 4456 .header = {
cdd6c482 4457 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4458 .misc = 0,
cdd6c482 4459 .size = sizeof(task_event.event_id),
60313ebe 4460 },
573402db
PZ
4461 /* .pid */
4462 /* .ppid */
9f498cc5
PZ
4463 /* .tid */
4464 /* .ptid */
6f93d0a7 4465 .time = perf_clock(),
60313ebe
PZ
4466 },
4467 };
4468
cdd6c482 4469 perf_event_task_event(&task_event);
9f498cc5
PZ
4470}
4471
cdd6c482 4472void perf_event_fork(struct task_struct *task)
9f498cc5 4473{
cdd6c482 4474 perf_event_task(task, NULL, 1);
60313ebe
PZ
4475}
4476
8d1b2d93
PZ
4477/*
4478 * comm tracking
4479 */
4480
4481struct perf_comm_event {
22a4f650
IM
4482 struct task_struct *task;
4483 char *comm;
8d1b2d93
PZ
4484 int comm_size;
4485
4486 struct {
4487 struct perf_event_header header;
4488
4489 u32 pid;
4490 u32 tid;
cdd6c482 4491 } event_id;
8d1b2d93
PZ
4492};
4493
cdd6c482 4494static void perf_event_comm_output(struct perf_event *event,
8d1b2d93
PZ
4495 struct perf_comm_event *comm_event)
4496{
4497 struct perf_output_handle handle;
c980d109 4498 struct perf_sample_data sample;
cdd6c482 4499 int size = comm_event->event_id.header.size;
c980d109
ACM
4500 int ret;
4501
4502 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4503 ret = perf_output_begin(&handle, event,
a7ac67ea 4504 comm_event->event_id.header.size);
8d1b2d93
PZ
4505
4506 if (ret)
c980d109 4507 goto out;
8d1b2d93 4508
cdd6c482
IM
4509 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4510 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4511
cdd6c482 4512 perf_output_put(&handle, comm_event->event_id);
76369139 4513 __output_copy(&handle, comm_event->comm,
8d1b2d93 4514 comm_event->comm_size);
c980d109
ACM
4515
4516 perf_event__output_id_sample(event, &handle, &sample);
4517
8d1b2d93 4518 perf_output_end(&handle);
c980d109
ACM
4519out:
4520 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4521}
4522
cdd6c482 4523static int perf_event_comm_match(struct perf_event *event)
8d1b2d93 4524{
6f93d0a7 4525 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4526 return 0;
4527
5632ab12 4528 if (!event_filter_match(event))
5d27c23d
PZ
4529 return 0;
4530
cdd6c482 4531 if (event->attr.comm)
8d1b2d93
PZ
4532 return 1;
4533
4534 return 0;
4535}
4536
cdd6c482 4537static void perf_event_comm_ctx(struct perf_event_context *ctx,
8d1b2d93
PZ
4538 struct perf_comm_event *comm_event)
4539{
cdd6c482 4540 struct perf_event *event;
8d1b2d93 4541
cdd6c482
IM
4542 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4543 if (perf_event_comm_match(event))
4544 perf_event_comm_output(event, comm_event);
8d1b2d93 4545 }
8d1b2d93
PZ
4546}
4547
cdd6c482 4548static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93
PZ
4549{
4550 struct perf_cpu_context *cpuctx;
cdd6c482 4551 struct perf_event_context *ctx;
413ee3b4 4552 char comm[TASK_COMM_LEN];
8d1b2d93 4553 unsigned int size;
108b02cf 4554 struct pmu *pmu;
8dc85d54 4555 int ctxn;
8d1b2d93 4556
413ee3b4 4557 memset(comm, 0, sizeof(comm));
96b02d78 4558 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4559 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4560
4561 comm_event->comm = comm;
4562 comm_event->comm_size = size;
4563
cdd6c482 4564 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
f6595f3a 4565 rcu_read_lock();
108b02cf 4566 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4567 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3f1f3320 4568 if (cpuctx->unique_pmu != pmu)
51676957 4569 goto next;
108b02cf 4570 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
8dc85d54
PZ
4571
4572 ctxn = pmu->task_ctx_nr;
4573 if (ctxn < 0)
41945f6c 4574 goto next;
8dc85d54
PZ
4575
4576 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4577 if (ctx)
4578 perf_event_comm_ctx(ctx, comm_event);
41945f6c
PZ
4579next:
4580 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4581 }
665c2142 4582 rcu_read_unlock();
8d1b2d93
PZ
4583}
4584
cdd6c482 4585void perf_event_comm(struct task_struct *task)
8d1b2d93 4586{
9ee318a7 4587 struct perf_comm_event comm_event;
8dc85d54
PZ
4588 struct perf_event_context *ctx;
4589 int ctxn;
9ee318a7 4590
8dc85d54
PZ
4591 for_each_task_context_nr(ctxn) {
4592 ctx = task->perf_event_ctxp[ctxn];
4593 if (!ctx)
4594 continue;
9ee318a7 4595
8dc85d54
PZ
4596 perf_event_enable_on_exec(ctx);
4597 }
9ee318a7 4598
cdd6c482 4599 if (!atomic_read(&nr_comm_events))
9ee318a7 4600 return;
a63eaf34 4601
9ee318a7 4602 comm_event = (struct perf_comm_event){
8d1b2d93 4603 .task = task,
573402db
PZ
4604 /* .comm */
4605 /* .comm_size */
cdd6c482 4606 .event_id = {
573402db 4607 .header = {
cdd6c482 4608 .type = PERF_RECORD_COMM,
573402db
PZ
4609 .misc = 0,
4610 /* .size */
4611 },
4612 /* .pid */
4613 /* .tid */
8d1b2d93
PZ
4614 },
4615 };
4616
cdd6c482 4617 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4618}
4619
0a4a9391
PZ
4620/*
4621 * mmap tracking
4622 */
4623
4624struct perf_mmap_event {
089dd79d
PZ
4625 struct vm_area_struct *vma;
4626
4627 const char *file_name;
4628 int file_size;
0a4a9391
PZ
4629
4630 struct {
4631 struct perf_event_header header;
4632
4633 u32 pid;
4634 u32 tid;
4635 u64 start;
4636 u64 len;
4637 u64 pgoff;
cdd6c482 4638 } event_id;
0a4a9391
PZ
4639};
4640
cdd6c482 4641static void perf_event_mmap_output(struct perf_event *event,
0a4a9391
PZ
4642 struct perf_mmap_event *mmap_event)
4643{
4644 struct perf_output_handle handle;
c980d109 4645 struct perf_sample_data sample;
cdd6c482 4646 int size = mmap_event->event_id.header.size;
c980d109 4647 int ret;
0a4a9391 4648
c980d109
ACM
4649 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4650 ret = perf_output_begin(&handle, event,
a7ac67ea 4651 mmap_event->event_id.header.size);
0a4a9391 4652 if (ret)
c980d109 4653 goto out;
0a4a9391 4654
cdd6c482
IM
4655 mmap_event->event_id.pid = perf_event_pid(event, current);
4656 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 4657
cdd6c482 4658 perf_output_put(&handle, mmap_event->event_id);
76369139 4659 __output_copy(&handle, mmap_event->file_name,
0a4a9391 4660 mmap_event->file_size);
c980d109
ACM
4661
4662 perf_event__output_id_sample(event, &handle, &sample);
4663
78d613eb 4664 perf_output_end(&handle);
c980d109
ACM
4665out:
4666 mmap_event->event_id.header.size = size;
0a4a9391
PZ
4667}
4668
cdd6c482 4669static int perf_event_mmap_match(struct perf_event *event,
3af9e859
EM
4670 struct perf_mmap_event *mmap_event,
4671 int executable)
0a4a9391 4672{
6f93d0a7 4673 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4674 return 0;
4675
5632ab12 4676 if (!event_filter_match(event))
5d27c23d
PZ
4677 return 0;
4678
3af9e859
EM
4679 if ((!executable && event->attr.mmap_data) ||
4680 (executable && event->attr.mmap))
0a4a9391
PZ
4681 return 1;
4682
4683 return 0;
4684}
4685
cdd6c482 4686static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3af9e859
EM
4687 struct perf_mmap_event *mmap_event,
4688 int executable)
0a4a9391 4689{
cdd6c482 4690 struct perf_event *event;
0a4a9391 4691
cdd6c482 4692 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3af9e859 4693 if (perf_event_mmap_match(event, mmap_event, executable))
cdd6c482 4694 perf_event_mmap_output(event, mmap_event);
0a4a9391 4695 }
0a4a9391
PZ
4696}
4697
cdd6c482 4698static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391
PZ
4699{
4700 struct perf_cpu_context *cpuctx;
cdd6c482 4701 struct perf_event_context *ctx;
089dd79d
PZ
4702 struct vm_area_struct *vma = mmap_event->vma;
4703 struct file *file = vma->vm_file;
0a4a9391
PZ
4704 unsigned int size;
4705 char tmp[16];
4706 char *buf = NULL;
089dd79d 4707 const char *name;
108b02cf 4708 struct pmu *pmu;
8dc85d54 4709 int ctxn;
0a4a9391 4710
413ee3b4
AB
4711 memset(tmp, 0, sizeof(tmp));
4712
0a4a9391 4713 if (file) {
413ee3b4 4714 /*
76369139 4715 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
4716 * need to add enough zero bytes after the string to handle
4717 * the 64bit alignment we do later.
4718 */
4719 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
4720 if (!buf) {
4721 name = strncpy(tmp, "//enomem", sizeof(tmp));
4722 goto got_name;
4723 }
d3d21c41 4724 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
4725 if (IS_ERR(name)) {
4726 name = strncpy(tmp, "//toolong", sizeof(tmp));
4727 goto got_name;
4728 }
4729 } else {
413ee3b4
AB
4730 if (arch_vma_name(mmap_event->vma)) {
4731 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4732 sizeof(tmp));
089dd79d 4733 goto got_name;
413ee3b4 4734 }
089dd79d
PZ
4735
4736 if (!vma->vm_mm) {
4737 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4738 goto got_name;
3af9e859
EM
4739 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4740 vma->vm_end >= vma->vm_mm->brk) {
4741 name = strncpy(tmp, "[heap]", sizeof(tmp));
4742 goto got_name;
4743 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4744 vma->vm_end >= vma->vm_mm->start_stack) {
4745 name = strncpy(tmp, "[stack]", sizeof(tmp));
4746 goto got_name;
089dd79d
PZ
4747 }
4748
0a4a9391
PZ
4749 name = strncpy(tmp, "//anon", sizeof(tmp));
4750 goto got_name;
4751 }
4752
4753got_name:
888fcee0 4754 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
4755
4756 mmap_event->file_name = name;
4757 mmap_event->file_size = size;
4758
cdd6c482 4759 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 4760
f6d9dd23 4761 rcu_read_lock();
108b02cf 4762 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4763 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3f1f3320 4764 if (cpuctx->unique_pmu != pmu)
51676957 4765 goto next;
108b02cf
PZ
4766 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4767 vma->vm_flags & VM_EXEC);
8dc85d54
PZ
4768
4769 ctxn = pmu->task_ctx_nr;
4770 if (ctxn < 0)
41945f6c 4771 goto next;
8dc85d54
PZ
4772
4773 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4774 if (ctx) {
4775 perf_event_mmap_ctx(ctx, mmap_event,
4776 vma->vm_flags & VM_EXEC);
4777 }
41945f6c
PZ
4778next:
4779 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4780 }
665c2142
PZ
4781 rcu_read_unlock();
4782
0a4a9391
PZ
4783 kfree(buf);
4784}
4785
3af9e859 4786void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 4787{
9ee318a7
PZ
4788 struct perf_mmap_event mmap_event;
4789
cdd6c482 4790 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
4791 return;
4792
4793 mmap_event = (struct perf_mmap_event){
089dd79d 4794 .vma = vma,
573402db
PZ
4795 /* .file_name */
4796 /* .file_size */
cdd6c482 4797 .event_id = {
573402db 4798 .header = {
cdd6c482 4799 .type = PERF_RECORD_MMAP,
39447b38 4800 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
4801 /* .size */
4802 },
4803 /* .pid */
4804 /* .tid */
089dd79d
PZ
4805 .start = vma->vm_start,
4806 .len = vma->vm_end - vma->vm_start,
3a0304e9 4807 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
4808 },
4809 };
4810
cdd6c482 4811 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
4812}
4813
a78ac325
PZ
4814/*
4815 * IRQ throttle logging
4816 */
4817
cdd6c482 4818static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
4819{
4820 struct perf_output_handle handle;
c980d109 4821 struct perf_sample_data sample;
a78ac325
PZ
4822 int ret;
4823
4824 struct {
4825 struct perf_event_header header;
4826 u64 time;
cca3f454 4827 u64 id;
7f453c24 4828 u64 stream_id;
a78ac325
PZ
4829 } throttle_event = {
4830 .header = {
cdd6c482 4831 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
4832 .misc = 0,
4833 .size = sizeof(throttle_event),
4834 },
def0a9b2 4835 .time = perf_clock(),
cdd6c482
IM
4836 .id = primary_event_id(event),
4837 .stream_id = event->id,
a78ac325
PZ
4838 };
4839
966ee4d6 4840 if (enable)
cdd6c482 4841 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 4842
c980d109
ACM
4843 perf_event_header__init_id(&throttle_event.header, &sample, event);
4844
4845 ret = perf_output_begin(&handle, event,
a7ac67ea 4846 throttle_event.header.size);
a78ac325
PZ
4847 if (ret)
4848 return;
4849
4850 perf_output_put(&handle, throttle_event);
c980d109 4851 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
4852 perf_output_end(&handle);
4853}
4854
f6c7d5fe 4855/*
cdd6c482 4856 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
4857 */
4858
a8b0ca17 4859static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
4860 int throttle, struct perf_sample_data *data,
4861 struct pt_regs *regs)
f6c7d5fe 4862{
cdd6c482
IM
4863 int events = atomic_read(&event->event_limit);
4864 struct hw_perf_event *hwc = &event->hw;
e050e3f0 4865 u64 seq;
79f14641
PZ
4866 int ret = 0;
4867
96398826
PZ
4868 /*
4869 * Non-sampling counters might still use the PMI to fold short
4870 * hardware counters, ignore those.
4871 */
4872 if (unlikely(!is_sampling_event(event)))
4873 return 0;
4874
e050e3f0
SE
4875 seq = __this_cpu_read(perf_throttled_seq);
4876 if (seq != hwc->interrupts_seq) {
4877 hwc->interrupts_seq = seq;
4878 hwc->interrupts = 1;
4879 } else {
4880 hwc->interrupts++;
4881 if (unlikely(throttle
4882 && hwc->interrupts >= max_samples_per_tick)) {
4883 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
4884 hwc->interrupts = MAX_INTERRUPTS;
4885 perf_log_throttle(event, 0);
a78ac325
PZ
4886 ret = 1;
4887 }
e050e3f0 4888 }
60db5e09 4889
cdd6c482 4890 if (event->attr.freq) {
def0a9b2 4891 u64 now = perf_clock();
abd50713 4892 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 4893
abd50713 4894 hwc->freq_time_stamp = now;
bd2b5b12 4895
abd50713 4896 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 4897 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
4898 }
4899
2023b359
PZ
4900 /*
4901 * XXX event_limit might not quite work as expected on inherited
cdd6c482 4902 * events
2023b359
PZ
4903 */
4904
cdd6c482
IM
4905 event->pending_kill = POLL_IN;
4906 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 4907 ret = 1;
cdd6c482 4908 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
4909 event->pending_disable = 1;
4910 irq_work_queue(&event->pending);
79f14641
PZ
4911 }
4912
453f19ee 4913 if (event->overflow_handler)
a8b0ca17 4914 event->overflow_handler(event, data, regs);
453f19ee 4915 else
a8b0ca17 4916 perf_event_output(event, data, regs);
453f19ee 4917
f506b3dc 4918 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
4919 event->pending_wakeup = 1;
4920 irq_work_queue(&event->pending);
f506b3dc
PZ
4921 }
4922
79f14641 4923 return ret;
f6c7d5fe
PZ
4924}
4925
a8b0ca17 4926int perf_event_overflow(struct perf_event *event,
5622f295
MM
4927 struct perf_sample_data *data,
4928 struct pt_regs *regs)
850bc73f 4929{
a8b0ca17 4930 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
4931}
4932
15dbf27c 4933/*
cdd6c482 4934 * Generic software event infrastructure
15dbf27c
PZ
4935 */
4936
b28ab83c
PZ
4937struct swevent_htable {
4938 struct swevent_hlist *swevent_hlist;
4939 struct mutex hlist_mutex;
4940 int hlist_refcount;
4941
4942 /* Recursion avoidance in each contexts */
4943 int recursion[PERF_NR_CONTEXTS];
4944};
4945
4946static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4947
7b4b6658 4948/*
cdd6c482
IM
4949 * We directly increment event->count and keep a second value in
4950 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
4951 * is kept in the range [-sample_period, 0] so that we can use the
4952 * sign as trigger.
4953 */
4954
cdd6c482 4955static u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 4956{
cdd6c482 4957 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
4958 u64 period = hwc->last_period;
4959 u64 nr, offset;
4960 s64 old, val;
4961
4962 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
4963
4964again:
e7850595 4965 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
4966 if (val < 0)
4967 return 0;
15dbf27c 4968
7b4b6658
PZ
4969 nr = div64_u64(period + val, period);
4970 offset = nr * period;
4971 val -= offset;
e7850595 4972 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 4973 goto again;
15dbf27c 4974
7b4b6658 4975 return nr;
15dbf27c
PZ
4976}
4977
0cff784a 4978static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 4979 struct perf_sample_data *data,
5622f295 4980 struct pt_regs *regs)
15dbf27c 4981{
cdd6c482 4982 struct hw_perf_event *hwc = &event->hw;
850bc73f 4983 int throttle = 0;
15dbf27c 4984
0cff784a
PZ
4985 if (!overflow)
4986 overflow = perf_swevent_set_period(event);
15dbf27c 4987
7b4b6658
PZ
4988 if (hwc->interrupts == MAX_INTERRUPTS)
4989 return;
15dbf27c 4990
7b4b6658 4991 for (; overflow; overflow--) {
a8b0ca17 4992 if (__perf_event_overflow(event, throttle,
5622f295 4993 data, regs)) {
7b4b6658
PZ
4994 /*
4995 * We inhibit the overflow from happening when
4996 * hwc->interrupts == MAX_INTERRUPTS.
4997 */
4998 break;
4999 }
cf450a73 5000 throttle = 1;
7b4b6658 5001 }
15dbf27c
PZ
5002}
5003
a4eaf7f1 5004static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5005 struct perf_sample_data *data,
5622f295 5006 struct pt_regs *regs)
7b4b6658 5007{
cdd6c482 5008 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5009
e7850595 5010 local64_add(nr, &event->count);
d6d020e9 5011
0cff784a
PZ
5012 if (!regs)
5013 return;
5014
6c7e550f 5015 if (!is_sampling_event(event))
7b4b6658 5016 return;
d6d020e9 5017
5d81e5cf
AV
5018 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5019 data->period = nr;
5020 return perf_swevent_overflow(event, 1, data, regs);
5021 } else
5022 data->period = event->hw.last_period;
5023
0cff784a 5024 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5025 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5026
e7850595 5027 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5028 return;
df1a132b 5029
a8b0ca17 5030 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5031}
5032
f5ffe02e
FW
5033static int perf_exclude_event(struct perf_event *event,
5034 struct pt_regs *regs)
5035{
a4eaf7f1 5036 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5037 return 1;
a4eaf7f1 5038
f5ffe02e
FW
5039 if (regs) {
5040 if (event->attr.exclude_user && user_mode(regs))
5041 return 1;
5042
5043 if (event->attr.exclude_kernel && !user_mode(regs))
5044 return 1;
5045 }
5046
5047 return 0;
5048}
5049
cdd6c482 5050static int perf_swevent_match(struct perf_event *event,
1c432d89 5051 enum perf_type_id type,
6fb2915d
LZ
5052 u32 event_id,
5053 struct perf_sample_data *data,
5054 struct pt_regs *regs)
15dbf27c 5055{
cdd6c482 5056 if (event->attr.type != type)
a21ca2ca 5057 return 0;
f5ffe02e 5058
cdd6c482 5059 if (event->attr.config != event_id)
15dbf27c
PZ
5060 return 0;
5061
f5ffe02e
FW
5062 if (perf_exclude_event(event, regs))
5063 return 0;
15dbf27c
PZ
5064
5065 return 1;
5066}
5067
76e1d904
FW
5068static inline u64 swevent_hash(u64 type, u32 event_id)
5069{
5070 u64 val = event_id | (type << 32);
5071
5072 return hash_64(val, SWEVENT_HLIST_BITS);
5073}
5074
49f135ed
FW
5075static inline struct hlist_head *
5076__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5077{
49f135ed
FW
5078 u64 hash = swevent_hash(type, event_id);
5079
5080 return &hlist->heads[hash];
5081}
76e1d904 5082
49f135ed
FW
5083/* For the read side: events when they trigger */
5084static inline struct hlist_head *
b28ab83c 5085find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5086{
5087 struct swevent_hlist *hlist;
76e1d904 5088
b28ab83c 5089 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5090 if (!hlist)
5091 return NULL;
5092
49f135ed
FW
5093 return __find_swevent_head(hlist, type, event_id);
5094}
5095
5096/* For the event head insertion and removal in the hlist */
5097static inline struct hlist_head *
b28ab83c 5098find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5099{
5100 struct swevent_hlist *hlist;
5101 u32 event_id = event->attr.config;
5102 u64 type = event->attr.type;
5103
5104 /*
5105 * Event scheduling is always serialized against hlist allocation
5106 * and release. Which makes the protected version suitable here.
5107 * The context lock guarantees that.
5108 */
b28ab83c 5109 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5110 lockdep_is_held(&event->ctx->lock));
5111 if (!hlist)
5112 return NULL;
5113
5114 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5115}
5116
5117static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5118 u64 nr,
76e1d904
FW
5119 struct perf_sample_data *data,
5120 struct pt_regs *regs)
15dbf27c 5121{
b28ab83c 5122 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5123 struct perf_event *event;
76e1d904
FW
5124 struct hlist_node *node;
5125 struct hlist_head *head;
15dbf27c 5126
76e1d904 5127 rcu_read_lock();
b28ab83c 5128 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5129 if (!head)
5130 goto end;
5131
5132 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
6fb2915d 5133 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5134 perf_swevent_event(event, nr, data, regs);
15dbf27c 5135 }
76e1d904
FW
5136end:
5137 rcu_read_unlock();
15dbf27c
PZ
5138}
5139
4ed7c92d 5140int perf_swevent_get_recursion_context(void)
96f6d444 5141{
b28ab83c 5142 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5143
b28ab83c 5144 return get_recursion_context(swhash->recursion);
96f6d444 5145}
645e8cc0 5146EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5147
fa9f90be 5148inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5149{
b28ab83c 5150 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5151
b28ab83c 5152 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5153}
15dbf27c 5154
a8b0ca17 5155void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5156{
a4234bfc 5157 struct perf_sample_data data;
4ed7c92d
PZ
5158 int rctx;
5159
1c024eca 5160 preempt_disable_notrace();
4ed7c92d
PZ
5161 rctx = perf_swevent_get_recursion_context();
5162 if (rctx < 0)
5163 return;
a4234bfc 5164
fd0d000b 5165 perf_sample_data_init(&data, addr, 0);
92bf309a 5166
a8b0ca17 5167 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5168
5169 perf_swevent_put_recursion_context(rctx);
1c024eca 5170 preempt_enable_notrace();
b8e83514
PZ
5171}
5172
cdd6c482 5173static void perf_swevent_read(struct perf_event *event)
15dbf27c 5174{
15dbf27c
PZ
5175}
5176
a4eaf7f1 5177static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5178{
b28ab83c 5179 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5180 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5181 struct hlist_head *head;
5182
6c7e550f 5183 if (is_sampling_event(event)) {
7b4b6658 5184 hwc->last_period = hwc->sample_period;
cdd6c482 5185 perf_swevent_set_period(event);
7b4b6658 5186 }
76e1d904 5187
a4eaf7f1
PZ
5188 hwc->state = !(flags & PERF_EF_START);
5189
b28ab83c 5190 head = find_swevent_head(swhash, event);
76e1d904
FW
5191 if (WARN_ON_ONCE(!head))
5192 return -EINVAL;
5193
5194 hlist_add_head_rcu(&event->hlist_entry, head);
5195
15dbf27c
PZ
5196 return 0;
5197}
5198
a4eaf7f1 5199static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5200{
76e1d904 5201 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5202}
5203
a4eaf7f1 5204static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5205{
a4eaf7f1 5206 event->hw.state = 0;
d6d020e9 5207}
aa9c4c0f 5208
a4eaf7f1 5209static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5210{
a4eaf7f1 5211 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5212}
5213
49f135ed
FW
5214/* Deref the hlist from the update side */
5215static inline struct swevent_hlist *
b28ab83c 5216swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5217{
b28ab83c
PZ
5218 return rcu_dereference_protected(swhash->swevent_hlist,
5219 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5220}
5221
b28ab83c 5222static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5223{
b28ab83c 5224 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5225
49f135ed 5226 if (!hlist)
76e1d904
FW
5227 return;
5228
b28ab83c 5229 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5230 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5231}
5232
5233static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5234{
b28ab83c 5235 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5236
b28ab83c 5237 mutex_lock(&swhash->hlist_mutex);
76e1d904 5238
b28ab83c
PZ
5239 if (!--swhash->hlist_refcount)
5240 swevent_hlist_release(swhash);
76e1d904 5241
b28ab83c 5242 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5243}
5244
5245static void swevent_hlist_put(struct perf_event *event)
5246{
5247 int cpu;
5248
5249 if (event->cpu != -1) {
5250 swevent_hlist_put_cpu(event, event->cpu);
5251 return;
5252 }
5253
5254 for_each_possible_cpu(cpu)
5255 swevent_hlist_put_cpu(event, cpu);
5256}
5257
5258static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5259{
b28ab83c 5260 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5261 int err = 0;
5262
b28ab83c 5263 mutex_lock(&swhash->hlist_mutex);
76e1d904 5264
b28ab83c 5265 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5266 struct swevent_hlist *hlist;
5267
5268 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5269 if (!hlist) {
5270 err = -ENOMEM;
5271 goto exit;
5272 }
b28ab83c 5273 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5274 }
b28ab83c 5275 swhash->hlist_refcount++;
9ed6060d 5276exit:
b28ab83c 5277 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5278
5279 return err;
5280}
5281
5282static int swevent_hlist_get(struct perf_event *event)
5283{
5284 int err;
5285 int cpu, failed_cpu;
5286
5287 if (event->cpu != -1)
5288 return swevent_hlist_get_cpu(event, event->cpu);
5289
5290 get_online_cpus();
5291 for_each_possible_cpu(cpu) {
5292 err = swevent_hlist_get_cpu(event, cpu);
5293 if (err) {
5294 failed_cpu = cpu;
5295 goto fail;
5296 }
5297 }
5298 put_online_cpus();
5299
5300 return 0;
9ed6060d 5301fail:
76e1d904
FW
5302 for_each_possible_cpu(cpu) {
5303 if (cpu == failed_cpu)
5304 break;
5305 swevent_hlist_put_cpu(event, cpu);
5306 }
5307
5308 put_online_cpus();
5309 return err;
5310}
5311
c5905afb 5312struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5313
b0a873eb
PZ
5314static void sw_perf_event_destroy(struct perf_event *event)
5315{
5316 u64 event_id = event->attr.config;
95476b64 5317
b0a873eb
PZ
5318 WARN_ON(event->parent);
5319
c5905afb 5320 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5321 swevent_hlist_put(event);
5322}
5323
5324static int perf_swevent_init(struct perf_event *event)
5325{
5326 int event_id = event->attr.config;
5327
5328 if (event->attr.type != PERF_TYPE_SOFTWARE)
5329 return -ENOENT;
5330
2481c5fa
SE
5331 /*
5332 * no branch sampling for software events
5333 */
5334 if (has_branch_stack(event))
5335 return -EOPNOTSUPP;
5336
b0a873eb
PZ
5337 switch (event_id) {
5338 case PERF_COUNT_SW_CPU_CLOCK:
5339 case PERF_COUNT_SW_TASK_CLOCK:
5340 return -ENOENT;
5341
5342 default:
5343 break;
5344 }
5345
ce677831 5346 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5347 return -ENOENT;
5348
5349 if (!event->parent) {
5350 int err;
5351
5352 err = swevent_hlist_get(event);
5353 if (err)
5354 return err;
5355
c5905afb 5356 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5357 event->destroy = sw_perf_event_destroy;
5358 }
5359
5360 return 0;
5361}
5362
35edc2a5
PZ
5363static int perf_swevent_event_idx(struct perf_event *event)
5364{
5365 return 0;
5366}
5367
b0a873eb 5368static struct pmu perf_swevent = {
89a1e187 5369 .task_ctx_nr = perf_sw_context,
95476b64 5370
b0a873eb 5371 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5372 .add = perf_swevent_add,
5373 .del = perf_swevent_del,
5374 .start = perf_swevent_start,
5375 .stop = perf_swevent_stop,
1c024eca 5376 .read = perf_swevent_read,
35edc2a5
PZ
5377
5378 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5379};
5380
b0a873eb
PZ
5381#ifdef CONFIG_EVENT_TRACING
5382
1c024eca
PZ
5383static int perf_tp_filter_match(struct perf_event *event,
5384 struct perf_sample_data *data)
5385{
5386 void *record = data->raw->data;
5387
5388 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5389 return 1;
5390 return 0;
5391}
5392
5393static int perf_tp_event_match(struct perf_event *event,
5394 struct perf_sample_data *data,
5395 struct pt_regs *regs)
5396{
a0f7d0f7
FW
5397 if (event->hw.state & PERF_HES_STOPPED)
5398 return 0;
580d607c
PZ
5399 /*
5400 * All tracepoints are from kernel-space.
5401 */
5402 if (event->attr.exclude_kernel)
1c024eca
PZ
5403 return 0;
5404
5405 if (!perf_tp_filter_match(event, data))
5406 return 0;
5407
5408 return 1;
5409}
5410
5411void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5412 struct pt_regs *regs, struct hlist_head *head, int rctx,
5413 struct task_struct *task)
95476b64
FW
5414{
5415 struct perf_sample_data data;
1c024eca
PZ
5416 struct perf_event *event;
5417 struct hlist_node *node;
5418
95476b64
FW
5419 struct perf_raw_record raw = {
5420 .size = entry_size,
5421 .data = record,
5422 };
5423
fd0d000b 5424 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5425 data.raw = &raw;
5426
1c024eca
PZ
5427 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5428 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5429 perf_swevent_event(event, count, &data, regs);
4f41c013 5430 }
ecc55f84 5431
e6dab5ff
AV
5432 /*
5433 * If we got specified a target task, also iterate its context and
5434 * deliver this event there too.
5435 */
5436 if (task && task != current) {
5437 struct perf_event_context *ctx;
5438 struct trace_entry *entry = record;
5439
5440 rcu_read_lock();
5441 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5442 if (!ctx)
5443 goto unlock;
5444
5445 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5446 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5447 continue;
5448 if (event->attr.config != entry->type)
5449 continue;
5450 if (perf_tp_event_match(event, &data, regs))
5451 perf_swevent_event(event, count, &data, regs);
5452 }
5453unlock:
5454 rcu_read_unlock();
5455 }
5456
ecc55f84 5457 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5458}
5459EXPORT_SYMBOL_GPL(perf_tp_event);
5460
cdd6c482 5461static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5462{
1c024eca 5463 perf_trace_destroy(event);
e077df4f
PZ
5464}
5465
b0a873eb 5466static int perf_tp_event_init(struct perf_event *event)
e077df4f 5467{
76e1d904
FW
5468 int err;
5469
b0a873eb
PZ
5470 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5471 return -ENOENT;
5472
2481c5fa
SE
5473 /*
5474 * no branch sampling for tracepoint events
5475 */
5476 if (has_branch_stack(event))
5477 return -EOPNOTSUPP;
5478
1c024eca
PZ
5479 err = perf_trace_init(event);
5480 if (err)
b0a873eb 5481 return err;
e077df4f 5482
cdd6c482 5483 event->destroy = tp_perf_event_destroy;
e077df4f 5484
b0a873eb
PZ
5485 return 0;
5486}
5487
5488static struct pmu perf_tracepoint = {
89a1e187
PZ
5489 .task_ctx_nr = perf_sw_context,
5490
b0a873eb 5491 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5492 .add = perf_trace_add,
5493 .del = perf_trace_del,
5494 .start = perf_swevent_start,
5495 .stop = perf_swevent_stop,
b0a873eb 5496 .read = perf_swevent_read,
35edc2a5
PZ
5497
5498 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5499};
5500
5501static inline void perf_tp_register(void)
5502{
2e80a82a 5503 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5504}
6fb2915d
LZ
5505
5506static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5507{
5508 char *filter_str;
5509 int ret;
5510
5511 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5512 return -EINVAL;
5513
5514 filter_str = strndup_user(arg, PAGE_SIZE);
5515 if (IS_ERR(filter_str))
5516 return PTR_ERR(filter_str);
5517
5518 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5519
5520 kfree(filter_str);
5521 return ret;
5522}
5523
5524static void perf_event_free_filter(struct perf_event *event)
5525{
5526 ftrace_profile_free_filter(event);
5527}
5528
e077df4f 5529#else
6fb2915d 5530
b0a873eb 5531static inline void perf_tp_register(void)
e077df4f 5532{
e077df4f 5533}
6fb2915d
LZ
5534
5535static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5536{
5537 return -ENOENT;
5538}
5539
5540static void perf_event_free_filter(struct perf_event *event)
5541{
5542}
5543
07b139c8 5544#endif /* CONFIG_EVENT_TRACING */
e077df4f 5545
24f1e32c 5546#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5547void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5548{
f5ffe02e
FW
5549 struct perf_sample_data sample;
5550 struct pt_regs *regs = data;
5551
fd0d000b 5552 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5553
a4eaf7f1 5554 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5555 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5556}
5557#endif
5558
b0a873eb
PZ
5559/*
5560 * hrtimer based swevent callback
5561 */
f29ac756 5562
b0a873eb 5563static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5564{
b0a873eb
PZ
5565 enum hrtimer_restart ret = HRTIMER_RESTART;
5566 struct perf_sample_data data;
5567 struct pt_regs *regs;
5568 struct perf_event *event;
5569 u64 period;
f29ac756 5570
b0a873eb 5571 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5572
5573 if (event->state != PERF_EVENT_STATE_ACTIVE)
5574 return HRTIMER_NORESTART;
5575
b0a873eb 5576 event->pmu->read(event);
f344011c 5577
fd0d000b 5578 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5579 regs = get_irq_regs();
5580
5581 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5582 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5583 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5584 ret = HRTIMER_NORESTART;
5585 }
24f1e32c 5586
b0a873eb
PZ
5587 period = max_t(u64, 10000, event->hw.sample_period);
5588 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5589
b0a873eb 5590 return ret;
f29ac756
PZ
5591}
5592
b0a873eb 5593static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5594{
b0a873eb 5595 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5596 s64 period;
5597
5598 if (!is_sampling_event(event))
5599 return;
f5ffe02e 5600
5d508e82
FBH
5601 period = local64_read(&hwc->period_left);
5602 if (period) {
5603 if (period < 0)
5604 period = 10000;
fa407f35 5605
5d508e82
FBH
5606 local64_set(&hwc->period_left, 0);
5607 } else {
5608 period = max_t(u64, 10000, hwc->sample_period);
5609 }
5610 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5611 ns_to_ktime(period), 0,
b5ab4cd5 5612 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5613}
b0a873eb
PZ
5614
5615static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5616{
b0a873eb
PZ
5617 struct hw_perf_event *hwc = &event->hw;
5618
6c7e550f 5619 if (is_sampling_event(event)) {
b0a873eb 5620 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5621 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5622
5623 hrtimer_cancel(&hwc->hrtimer);
5624 }
24f1e32c
FW
5625}
5626
ba3dd36c
PZ
5627static void perf_swevent_init_hrtimer(struct perf_event *event)
5628{
5629 struct hw_perf_event *hwc = &event->hw;
5630
5631 if (!is_sampling_event(event))
5632 return;
5633
5634 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5635 hwc->hrtimer.function = perf_swevent_hrtimer;
5636
5637 /*
5638 * Since hrtimers have a fixed rate, we can do a static freq->period
5639 * mapping and avoid the whole period adjust feedback stuff.
5640 */
5641 if (event->attr.freq) {
5642 long freq = event->attr.sample_freq;
5643
5644 event->attr.sample_period = NSEC_PER_SEC / freq;
5645 hwc->sample_period = event->attr.sample_period;
5646 local64_set(&hwc->period_left, hwc->sample_period);
5647 event->attr.freq = 0;
5648 }
5649}
5650
b0a873eb
PZ
5651/*
5652 * Software event: cpu wall time clock
5653 */
5654
5655static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5656{
b0a873eb
PZ
5657 s64 prev;
5658 u64 now;
5659
a4eaf7f1 5660 now = local_clock();
b0a873eb
PZ
5661 prev = local64_xchg(&event->hw.prev_count, now);
5662 local64_add(now - prev, &event->count);
24f1e32c 5663}
24f1e32c 5664
a4eaf7f1 5665static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5666{
a4eaf7f1 5667 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5668 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5669}
5670
a4eaf7f1 5671static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5672{
b0a873eb
PZ
5673 perf_swevent_cancel_hrtimer(event);
5674 cpu_clock_event_update(event);
5675}
f29ac756 5676
a4eaf7f1
PZ
5677static int cpu_clock_event_add(struct perf_event *event, int flags)
5678{
5679 if (flags & PERF_EF_START)
5680 cpu_clock_event_start(event, flags);
5681
5682 return 0;
5683}
5684
5685static void cpu_clock_event_del(struct perf_event *event, int flags)
5686{
5687 cpu_clock_event_stop(event, flags);
5688}
5689
b0a873eb
PZ
5690static void cpu_clock_event_read(struct perf_event *event)
5691{
5692 cpu_clock_event_update(event);
5693}
f344011c 5694
b0a873eb
PZ
5695static int cpu_clock_event_init(struct perf_event *event)
5696{
5697 if (event->attr.type != PERF_TYPE_SOFTWARE)
5698 return -ENOENT;
5699
5700 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5701 return -ENOENT;
5702
2481c5fa
SE
5703 /*
5704 * no branch sampling for software events
5705 */
5706 if (has_branch_stack(event))
5707 return -EOPNOTSUPP;
5708
ba3dd36c
PZ
5709 perf_swevent_init_hrtimer(event);
5710
b0a873eb 5711 return 0;
f29ac756
PZ
5712}
5713
b0a873eb 5714static struct pmu perf_cpu_clock = {
89a1e187
PZ
5715 .task_ctx_nr = perf_sw_context,
5716
b0a873eb 5717 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
5718 .add = cpu_clock_event_add,
5719 .del = cpu_clock_event_del,
5720 .start = cpu_clock_event_start,
5721 .stop = cpu_clock_event_stop,
b0a873eb 5722 .read = cpu_clock_event_read,
35edc2a5
PZ
5723
5724 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5725};
5726
5727/*
5728 * Software event: task time clock
5729 */
5730
5731static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 5732{
b0a873eb
PZ
5733 u64 prev;
5734 s64 delta;
5c92d124 5735
b0a873eb
PZ
5736 prev = local64_xchg(&event->hw.prev_count, now);
5737 delta = now - prev;
5738 local64_add(delta, &event->count);
5739}
5c92d124 5740
a4eaf7f1 5741static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5742{
a4eaf7f1 5743 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 5744 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5745}
5746
a4eaf7f1 5747static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
5748{
5749 perf_swevent_cancel_hrtimer(event);
5750 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
5751}
5752
5753static int task_clock_event_add(struct perf_event *event, int flags)
5754{
5755 if (flags & PERF_EF_START)
5756 task_clock_event_start(event, flags);
b0a873eb 5757
a4eaf7f1
PZ
5758 return 0;
5759}
5760
5761static void task_clock_event_del(struct perf_event *event, int flags)
5762{
5763 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
5764}
5765
5766static void task_clock_event_read(struct perf_event *event)
5767{
768a06e2
PZ
5768 u64 now = perf_clock();
5769 u64 delta = now - event->ctx->timestamp;
5770 u64 time = event->ctx->time + delta;
b0a873eb
PZ
5771
5772 task_clock_event_update(event, time);
5773}
5774
5775static int task_clock_event_init(struct perf_event *event)
6fb2915d 5776{
b0a873eb
PZ
5777 if (event->attr.type != PERF_TYPE_SOFTWARE)
5778 return -ENOENT;
5779
5780 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5781 return -ENOENT;
5782
2481c5fa
SE
5783 /*
5784 * no branch sampling for software events
5785 */
5786 if (has_branch_stack(event))
5787 return -EOPNOTSUPP;
5788
ba3dd36c
PZ
5789 perf_swevent_init_hrtimer(event);
5790
b0a873eb 5791 return 0;
6fb2915d
LZ
5792}
5793
b0a873eb 5794static struct pmu perf_task_clock = {
89a1e187
PZ
5795 .task_ctx_nr = perf_sw_context,
5796
b0a873eb 5797 .event_init = task_clock_event_init,
a4eaf7f1
PZ
5798 .add = task_clock_event_add,
5799 .del = task_clock_event_del,
5800 .start = task_clock_event_start,
5801 .stop = task_clock_event_stop,
b0a873eb 5802 .read = task_clock_event_read,
35edc2a5
PZ
5803
5804 .event_idx = perf_swevent_event_idx,
b0a873eb 5805};
6fb2915d 5806
ad5133b7 5807static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 5808{
e077df4f 5809}
6fb2915d 5810
ad5133b7 5811static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 5812{
ad5133b7 5813 return 0;
6fb2915d
LZ
5814}
5815
ad5133b7 5816static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 5817{
ad5133b7 5818 perf_pmu_disable(pmu);
6fb2915d
LZ
5819}
5820
ad5133b7
PZ
5821static int perf_pmu_commit_txn(struct pmu *pmu)
5822{
5823 perf_pmu_enable(pmu);
5824 return 0;
5825}
e077df4f 5826
ad5133b7 5827static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 5828{
ad5133b7 5829 perf_pmu_enable(pmu);
24f1e32c
FW
5830}
5831
35edc2a5
PZ
5832static int perf_event_idx_default(struct perf_event *event)
5833{
5834 return event->hw.idx + 1;
5835}
5836
8dc85d54
PZ
5837/*
5838 * Ensures all contexts with the same task_ctx_nr have the same
5839 * pmu_cpu_context too.
5840 */
5841static void *find_pmu_context(int ctxn)
24f1e32c 5842{
8dc85d54 5843 struct pmu *pmu;
b326e956 5844
8dc85d54
PZ
5845 if (ctxn < 0)
5846 return NULL;
24f1e32c 5847
8dc85d54
PZ
5848 list_for_each_entry(pmu, &pmus, entry) {
5849 if (pmu->task_ctx_nr == ctxn)
5850 return pmu->pmu_cpu_context;
5851 }
24f1e32c 5852
8dc85d54 5853 return NULL;
24f1e32c
FW
5854}
5855
51676957 5856static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 5857{
51676957
PZ
5858 int cpu;
5859
5860 for_each_possible_cpu(cpu) {
5861 struct perf_cpu_context *cpuctx;
5862
5863 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5864
3f1f3320
PZ
5865 if (cpuctx->unique_pmu == old_pmu)
5866 cpuctx->unique_pmu = pmu;
51676957
PZ
5867 }
5868}
5869
5870static void free_pmu_context(struct pmu *pmu)
5871{
5872 struct pmu *i;
f5ffe02e 5873
8dc85d54 5874 mutex_lock(&pmus_lock);
0475f9ea 5875 /*
8dc85d54 5876 * Like a real lame refcount.
0475f9ea 5877 */
51676957
PZ
5878 list_for_each_entry(i, &pmus, entry) {
5879 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5880 update_pmu_context(i, pmu);
8dc85d54 5881 goto out;
51676957 5882 }
8dc85d54 5883 }
d6d020e9 5884
51676957 5885 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
5886out:
5887 mutex_unlock(&pmus_lock);
24f1e32c 5888}
2e80a82a 5889static struct idr pmu_idr;
d6d020e9 5890
abe43400
PZ
5891static ssize_t
5892type_show(struct device *dev, struct device_attribute *attr, char *page)
5893{
5894 struct pmu *pmu = dev_get_drvdata(dev);
5895
5896 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5897}
5898
5899static struct device_attribute pmu_dev_attrs[] = {
5900 __ATTR_RO(type),
5901 __ATTR_NULL,
5902};
5903
5904static int pmu_bus_running;
5905static struct bus_type pmu_bus = {
5906 .name = "event_source",
5907 .dev_attrs = pmu_dev_attrs,
5908};
5909
5910static void pmu_dev_release(struct device *dev)
5911{
5912 kfree(dev);
5913}
5914
5915static int pmu_dev_alloc(struct pmu *pmu)
5916{
5917 int ret = -ENOMEM;
5918
5919 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5920 if (!pmu->dev)
5921 goto out;
5922
0c9d42ed 5923 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
5924 device_initialize(pmu->dev);
5925 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5926 if (ret)
5927 goto free_dev;
5928
5929 dev_set_drvdata(pmu->dev, pmu);
5930 pmu->dev->bus = &pmu_bus;
5931 pmu->dev->release = pmu_dev_release;
5932 ret = device_add(pmu->dev);
5933 if (ret)
5934 goto free_dev;
5935
5936out:
5937 return ret;
5938
5939free_dev:
5940 put_device(pmu->dev);
5941 goto out;
5942}
5943
547e9fd7 5944static struct lock_class_key cpuctx_mutex;
facc4307 5945static struct lock_class_key cpuctx_lock;
547e9fd7 5946
2e80a82a 5947int perf_pmu_register(struct pmu *pmu, char *name, int type)
24f1e32c 5948{
108b02cf 5949 int cpu, ret;
24f1e32c 5950
b0a873eb 5951 mutex_lock(&pmus_lock);
33696fc0
PZ
5952 ret = -ENOMEM;
5953 pmu->pmu_disable_count = alloc_percpu(int);
5954 if (!pmu->pmu_disable_count)
5955 goto unlock;
f29ac756 5956
2e80a82a
PZ
5957 pmu->type = -1;
5958 if (!name)
5959 goto skip_type;
5960 pmu->name = name;
5961
5962 if (type < 0) {
5963 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5964 if (!err)
5965 goto free_pdc;
5966
5967 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5968 if (err) {
5969 ret = err;
5970 goto free_pdc;
5971 }
5972 }
5973 pmu->type = type;
5974
abe43400
PZ
5975 if (pmu_bus_running) {
5976 ret = pmu_dev_alloc(pmu);
5977 if (ret)
5978 goto free_idr;
5979 }
5980
2e80a82a 5981skip_type:
8dc85d54
PZ
5982 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5983 if (pmu->pmu_cpu_context)
5984 goto got_cpu_context;
f29ac756 5985
108b02cf
PZ
5986 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5987 if (!pmu->pmu_cpu_context)
abe43400 5988 goto free_dev;
f344011c 5989
108b02cf
PZ
5990 for_each_possible_cpu(cpu) {
5991 struct perf_cpu_context *cpuctx;
5992
5993 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 5994 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 5995 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 5996 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 5997 cpuctx->ctx.type = cpu_context;
108b02cf 5998 cpuctx->ctx.pmu = pmu;
e9d2b064
PZ
5999 cpuctx->jiffies_interval = 1;
6000 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6001 cpuctx->unique_pmu = pmu;
108b02cf 6002 }
76e1d904 6003
8dc85d54 6004got_cpu_context:
ad5133b7
PZ
6005 if (!pmu->start_txn) {
6006 if (pmu->pmu_enable) {
6007 /*
6008 * If we have pmu_enable/pmu_disable calls, install
6009 * transaction stubs that use that to try and batch
6010 * hardware accesses.
6011 */
6012 pmu->start_txn = perf_pmu_start_txn;
6013 pmu->commit_txn = perf_pmu_commit_txn;
6014 pmu->cancel_txn = perf_pmu_cancel_txn;
6015 } else {
6016 pmu->start_txn = perf_pmu_nop_void;
6017 pmu->commit_txn = perf_pmu_nop_int;
6018 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6019 }
5c92d124 6020 }
15dbf27c 6021
ad5133b7
PZ
6022 if (!pmu->pmu_enable) {
6023 pmu->pmu_enable = perf_pmu_nop_void;
6024 pmu->pmu_disable = perf_pmu_nop_void;
6025 }
6026
35edc2a5
PZ
6027 if (!pmu->event_idx)
6028 pmu->event_idx = perf_event_idx_default;
6029
b0a873eb 6030 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6031 ret = 0;
6032unlock:
b0a873eb
PZ
6033 mutex_unlock(&pmus_lock);
6034
33696fc0 6035 return ret;
108b02cf 6036
abe43400
PZ
6037free_dev:
6038 device_del(pmu->dev);
6039 put_device(pmu->dev);
6040
2e80a82a
PZ
6041free_idr:
6042 if (pmu->type >= PERF_TYPE_MAX)
6043 idr_remove(&pmu_idr, pmu->type);
6044
108b02cf
PZ
6045free_pdc:
6046 free_percpu(pmu->pmu_disable_count);
6047 goto unlock;
f29ac756
PZ
6048}
6049
b0a873eb 6050void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6051{
b0a873eb
PZ
6052 mutex_lock(&pmus_lock);
6053 list_del_rcu(&pmu->entry);
6054 mutex_unlock(&pmus_lock);
5c92d124 6055
0475f9ea 6056 /*
cde8e884
PZ
6057 * We dereference the pmu list under both SRCU and regular RCU, so
6058 * synchronize against both of those.
0475f9ea 6059 */
b0a873eb 6060 synchronize_srcu(&pmus_srcu);
cde8e884 6061 synchronize_rcu();
d6d020e9 6062
33696fc0 6063 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6064 if (pmu->type >= PERF_TYPE_MAX)
6065 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6066 device_del(pmu->dev);
6067 put_device(pmu->dev);
51676957 6068 free_pmu_context(pmu);
b0a873eb 6069}
d6d020e9 6070
b0a873eb
PZ
6071struct pmu *perf_init_event(struct perf_event *event)
6072{
6073 struct pmu *pmu = NULL;
6074 int idx;
940c5b29 6075 int ret;
b0a873eb
PZ
6076
6077 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6078
6079 rcu_read_lock();
6080 pmu = idr_find(&pmu_idr, event->attr.type);
6081 rcu_read_unlock();
940c5b29 6082 if (pmu) {
7e5b2a01 6083 event->pmu = pmu;
940c5b29
LM
6084 ret = pmu->event_init(event);
6085 if (ret)
6086 pmu = ERR_PTR(ret);
2e80a82a 6087 goto unlock;
940c5b29 6088 }
2e80a82a 6089
b0a873eb 6090 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 6091 event->pmu = pmu;
940c5b29 6092 ret = pmu->event_init(event);
b0a873eb 6093 if (!ret)
e5f4d339 6094 goto unlock;
76e1d904 6095
b0a873eb
PZ
6096 if (ret != -ENOENT) {
6097 pmu = ERR_PTR(ret);
e5f4d339 6098 goto unlock;
f344011c 6099 }
5c92d124 6100 }
e5f4d339
PZ
6101 pmu = ERR_PTR(-ENOENT);
6102unlock:
b0a873eb 6103 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6104
4aeb0b42 6105 return pmu;
5c92d124
IM
6106}
6107
0793a61d 6108/*
cdd6c482 6109 * Allocate and initialize a event structure
0793a61d 6110 */
cdd6c482 6111static struct perf_event *
c3f00c70 6112perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6113 struct task_struct *task,
6114 struct perf_event *group_leader,
6115 struct perf_event *parent_event,
4dc0da86
AK
6116 perf_overflow_handler_t overflow_handler,
6117 void *context)
0793a61d 6118{
51b0fe39 6119 struct pmu *pmu;
cdd6c482
IM
6120 struct perf_event *event;
6121 struct hw_perf_event *hwc;
d5d2bc0d 6122 long err;
0793a61d 6123
66832eb4
ON
6124 if ((unsigned)cpu >= nr_cpu_ids) {
6125 if (!task || cpu != -1)
6126 return ERR_PTR(-EINVAL);
6127 }
6128
c3f00c70 6129 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6130 if (!event)
d5d2bc0d 6131 return ERR_PTR(-ENOMEM);
0793a61d 6132
04289bb9 6133 /*
cdd6c482 6134 * Single events are their own group leaders, with an
04289bb9
IM
6135 * empty sibling list:
6136 */
6137 if (!group_leader)
cdd6c482 6138 group_leader = event;
04289bb9 6139
cdd6c482
IM
6140 mutex_init(&event->child_mutex);
6141 INIT_LIST_HEAD(&event->child_list);
fccc714b 6142
cdd6c482
IM
6143 INIT_LIST_HEAD(&event->group_entry);
6144 INIT_LIST_HEAD(&event->event_entry);
6145 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
6146 INIT_LIST_HEAD(&event->rb_entry);
6147
cdd6c482 6148 init_waitqueue_head(&event->waitq);
e360adbe 6149 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6150
cdd6c482 6151 mutex_init(&event->mmap_mutex);
7b732a75 6152
a6fa941d 6153 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6154 event->cpu = cpu;
6155 event->attr = *attr;
6156 event->group_leader = group_leader;
6157 event->pmu = NULL;
cdd6c482 6158 event->oncpu = -1;
a96bbc16 6159
cdd6c482 6160 event->parent = parent_event;
b84fbc9f 6161
cdd6c482
IM
6162 event->ns = get_pid_ns(current->nsproxy->pid_ns);
6163 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6164
cdd6c482 6165 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6166
d580ff86
PZ
6167 if (task) {
6168 event->attach_state = PERF_ATTACH_TASK;
6169#ifdef CONFIG_HAVE_HW_BREAKPOINT
6170 /*
6171 * hw_breakpoint is a bit difficult here..
6172 */
6173 if (attr->type == PERF_TYPE_BREAKPOINT)
6174 event->hw.bp_target = task;
6175#endif
6176 }
6177
4dc0da86 6178 if (!overflow_handler && parent_event) {
b326e956 6179 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6180 context = parent_event->overflow_handler_context;
6181 }
66832eb4 6182
b326e956 6183 event->overflow_handler = overflow_handler;
4dc0da86 6184 event->overflow_handler_context = context;
97eaf530 6185
0d48696f 6186 if (attr->disabled)
cdd6c482 6187 event->state = PERF_EVENT_STATE_OFF;
a86ed508 6188
4aeb0b42 6189 pmu = NULL;
b8e83514 6190
cdd6c482 6191 hwc = &event->hw;
bd2b5b12 6192 hwc->sample_period = attr->sample_period;
0d48696f 6193 if (attr->freq && attr->sample_freq)
bd2b5b12 6194 hwc->sample_period = 1;
eced1dfc 6195 hwc->last_period = hwc->sample_period;
bd2b5b12 6196
e7850595 6197 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6198
2023b359 6199 /*
cdd6c482 6200 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6201 */
3dab77fb 6202 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
2023b359
PZ
6203 goto done;
6204
b0a873eb 6205 pmu = perf_init_event(event);
974802ea 6206
d5d2bc0d
PM
6207done:
6208 err = 0;
4aeb0b42 6209 if (!pmu)
d5d2bc0d 6210 err = -EINVAL;
4aeb0b42
RR
6211 else if (IS_ERR(pmu))
6212 err = PTR_ERR(pmu);
5c92d124 6213
d5d2bc0d 6214 if (err) {
cdd6c482
IM
6215 if (event->ns)
6216 put_pid_ns(event->ns);
6217 kfree(event);
d5d2bc0d 6218 return ERR_PTR(err);
621a01ea 6219 }
d5d2bc0d 6220
cdd6c482 6221 if (!event->parent) {
82cd6def 6222 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 6223 static_key_slow_inc(&perf_sched_events.key);
3af9e859 6224 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
6225 atomic_inc(&nr_mmap_events);
6226 if (event->attr.comm)
6227 atomic_inc(&nr_comm_events);
6228 if (event->attr.task)
6229 atomic_inc(&nr_task_events);
927c7a9e
FW
6230 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6231 err = get_callchain_buffers();
6232 if (err) {
6233 free_event(event);
6234 return ERR_PTR(err);
6235 }
6236 }
d010b332
SE
6237 if (has_branch_stack(event)) {
6238 static_key_slow_inc(&perf_sched_events.key);
6239 if (!(event->attach_state & PERF_ATTACH_TASK))
6240 atomic_inc(&per_cpu(perf_branch_stack_events,
6241 event->cpu));
6242 }
f344011c 6243 }
9ee318a7 6244
cdd6c482 6245 return event;
0793a61d
TG
6246}
6247
cdd6c482
IM
6248static int perf_copy_attr(struct perf_event_attr __user *uattr,
6249 struct perf_event_attr *attr)
974802ea 6250{
974802ea 6251 u32 size;
cdf8073d 6252 int ret;
974802ea
PZ
6253
6254 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6255 return -EFAULT;
6256
6257 /*
6258 * zero the full structure, so that a short copy will be nice.
6259 */
6260 memset(attr, 0, sizeof(*attr));
6261
6262 ret = get_user(size, &uattr->size);
6263 if (ret)
6264 return ret;
6265
6266 if (size > PAGE_SIZE) /* silly large */
6267 goto err_size;
6268
6269 if (!size) /* abi compat */
6270 size = PERF_ATTR_SIZE_VER0;
6271
6272 if (size < PERF_ATTR_SIZE_VER0)
6273 goto err_size;
6274
6275 /*
6276 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6277 * ensure all the unknown bits are 0 - i.e. new
6278 * user-space does not rely on any kernel feature
6279 * extensions we dont know about yet.
974802ea
PZ
6280 */
6281 if (size > sizeof(*attr)) {
cdf8073d
IS
6282 unsigned char __user *addr;
6283 unsigned char __user *end;
6284 unsigned char val;
974802ea 6285
cdf8073d
IS
6286 addr = (void __user *)uattr + sizeof(*attr);
6287 end = (void __user *)uattr + size;
974802ea 6288
cdf8073d 6289 for (; addr < end; addr++) {
974802ea
PZ
6290 ret = get_user(val, addr);
6291 if (ret)
6292 return ret;
6293 if (val)
6294 goto err_size;
6295 }
b3e62e35 6296 size = sizeof(*attr);
974802ea
PZ
6297 }
6298
6299 ret = copy_from_user(attr, uattr, size);
6300 if (ret)
6301 return -EFAULT;
6302
cd757645 6303 if (attr->__reserved_1)
974802ea
PZ
6304 return -EINVAL;
6305
6306 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6307 return -EINVAL;
6308
6309 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6310 return -EINVAL;
6311
bce38cd5
SE
6312 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6313 u64 mask = attr->branch_sample_type;
6314
6315 /* only using defined bits */
6316 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6317 return -EINVAL;
6318
6319 /* at least one branch bit must be set */
6320 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6321 return -EINVAL;
6322
6323 /* kernel level capture: check permissions */
6324 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6325 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6326 return -EACCES;
6327
6328 /* propagate priv level, when not set for branch */
6329 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6330
6331 /* exclude_kernel checked on syscall entry */
6332 if (!attr->exclude_kernel)
6333 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6334
6335 if (!attr->exclude_user)
6336 mask |= PERF_SAMPLE_BRANCH_USER;
6337
6338 if (!attr->exclude_hv)
6339 mask |= PERF_SAMPLE_BRANCH_HV;
6340 /*
6341 * adjust user setting (for HW filter setup)
6342 */
6343 attr->branch_sample_type = mask;
6344 }
6345 }
4018994f 6346
c5ebcedb 6347 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6348 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6349 if (ret)
6350 return ret;
6351 }
6352
6353 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6354 if (!arch_perf_have_user_stack_dump())
6355 return -ENOSYS;
6356
6357 /*
6358 * We have __u32 type for the size, but so far
6359 * we can only use __u16 as maximum due to the
6360 * __u16 sample size limit.
6361 */
6362 if (attr->sample_stack_user >= USHRT_MAX)
6363 ret = -EINVAL;
6364 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6365 ret = -EINVAL;
6366 }
4018994f 6367
974802ea
PZ
6368out:
6369 return ret;
6370
6371err_size:
6372 put_user(sizeof(*attr), &uattr->size);
6373 ret = -E2BIG;
6374 goto out;
6375}
6376
ac9721f3
PZ
6377static int
6378perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6379{
76369139 6380 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6381 int ret = -EINVAL;
6382
ac9721f3 6383 if (!output_event)
a4be7c27
PZ
6384 goto set;
6385
ac9721f3
PZ
6386 /* don't allow circular references */
6387 if (event == output_event)
a4be7c27
PZ
6388 goto out;
6389
0f139300
PZ
6390 /*
6391 * Don't allow cross-cpu buffers
6392 */
6393 if (output_event->cpu != event->cpu)
6394 goto out;
6395
6396 /*
76369139 6397 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6398 */
6399 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6400 goto out;
6401
a4be7c27 6402set:
cdd6c482 6403 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6404 /* Can't redirect output if we've got an active mmap() */
6405 if (atomic_read(&event->mmap_count))
6406 goto unlock;
a4be7c27 6407
ac9721f3 6408 if (output_event) {
76369139
FW
6409 /* get the rb we want to redirect to */
6410 rb = ring_buffer_get(output_event);
6411 if (!rb)
ac9721f3 6412 goto unlock;
a4be7c27
PZ
6413 }
6414
76369139
FW
6415 old_rb = event->rb;
6416 rcu_assign_pointer(event->rb, rb);
10c6db11
PZ
6417 if (old_rb)
6418 ring_buffer_detach(event, old_rb);
a4be7c27 6419 ret = 0;
ac9721f3
PZ
6420unlock:
6421 mutex_unlock(&event->mmap_mutex);
6422
76369139
FW
6423 if (old_rb)
6424 ring_buffer_put(old_rb);
a4be7c27 6425out:
a4be7c27
PZ
6426 return ret;
6427}
6428
0793a61d 6429/**
cdd6c482 6430 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6431 *
cdd6c482 6432 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6433 * @pid: target pid
9f66a381 6434 * @cpu: target cpu
cdd6c482 6435 * @group_fd: group leader event fd
0793a61d 6436 */
cdd6c482
IM
6437SYSCALL_DEFINE5(perf_event_open,
6438 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6439 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6440{
b04243ef
PZ
6441 struct perf_event *group_leader = NULL, *output_event = NULL;
6442 struct perf_event *event, *sibling;
cdd6c482
IM
6443 struct perf_event_attr attr;
6444 struct perf_event_context *ctx;
6445 struct file *event_file = NULL;
04289bb9 6446 struct file *group_file = NULL;
38a81da2 6447 struct task_struct *task = NULL;
89a1e187 6448 struct pmu *pmu;
ea635c64 6449 int event_fd;
b04243ef 6450 int move_group = 0;
04289bb9 6451 int fput_needed = 0;
dc86cabe 6452 int err;
0793a61d 6453
2743a5b0 6454 /* for future expandability... */
e5d1367f 6455 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6456 return -EINVAL;
6457
dc86cabe
IM
6458 err = perf_copy_attr(attr_uptr, &attr);
6459 if (err)
6460 return err;
eab656ae 6461
0764771d
PZ
6462 if (!attr.exclude_kernel) {
6463 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6464 return -EACCES;
6465 }
6466
df58ab24 6467 if (attr.freq) {
cdd6c482 6468 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6469 return -EINVAL;
6470 }
6471
e5d1367f
SE
6472 /*
6473 * In cgroup mode, the pid argument is used to pass the fd
6474 * opened to the cgroup directory in cgroupfs. The cpu argument
6475 * designates the cpu on which to monitor threads from that
6476 * cgroup.
6477 */
6478 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6479 return -EINVAL;
6480
ea635c64
AV
6481 event_fd = get_unused_fd_flags(O_RDWR);
6482 if (event_fd < 0)
6483 return event_fd;
6484
ac9721f3 6485 if (group_fd != -1) {
a6fa941d
AV
6486 group_file = perf_fget_light(group_fd, &fput_needed);
6487 if (IS_ERR(group_file)) {
6488 err = PTR_ERR(group_file);
d14b12d7 6489 goto err_fd;
ac9721f3 6490 }
a6fa941d 6491 group_leader = group_file->private_data;
ac9721f3
PZ
6492 if (flags & PERF_FLAG_FD_OUTPUT)
6493 output_event = group_leader;
6494 if (flags & PERF_FLAG_FD_NO_GROUP)
6495 group_leader = NULL;
6496 }
6497
e5d1367f 6498 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6499 task = find_lively_task_by_vpid(pid);
6500 if (IS_ERR(task)) {
6501 err = PTR_ERR(task);
6502 goto err_group_fd;
6503 }
6504 }
6505
fbfc623f
YZ
6506 get_online_cpus();
6507
4dc0da86
AK
6508 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6509 NULL, NULL);
d14b12d7
SE
6510 if (IS_ERR(event)) {
6511 err = PTR_ERR(event);
c6be5a5c 6512 goto err_task;
d14b12d7
SE
6513 }
6514
e5d1367f
SE
6515 if (flags & PERF_FLAG_PID_CGROUP) {
6516 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6517 if (err)
6518 goto err_alloc;
08309379
PZ
6519 /*
6520 * one more event:
6521 * - that has cgroup constraint on event->cpu
6522 * - that may need work on context switch
6523 */
6524 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 6525 static_key_slow_inc(&perf_sched_events.key);
e5d1367f
SE
6526 }
6527
89a1e187
PZ
6528 /*
6529 * Special case software events and allow them to be part of
6530 * any hardware group.
6531 */
6532 pmu = event->pmu;
b04243ef
PZ
6533
6534 if (group_leader &&
6535 (is_software_event(event) != is_software_event(group_leader))) {
6536 if (is_software_event(event)) {
6537 /*
6538 * If event and group_leader are not both a software
6539 * event, and event is, then group leader is not.
6540 *
6541 * Allow the addition of software events to !software
6542 * groups, this is safe because software events never
6543 * fail to schedule.
6544 */
6545 pmu = group_leader->pmu;
6546 } else if (is_software_event(group_leader) &&
6547 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6548 /*
6549 * In case the group is a pure software group, and we
6550 * try to add a hardware event, move the whole group to
6551 * the hardware context.
6552 */
6553 move_group = 1;
6554 }
6555 }
89a1e187
PZ
6556
6557 /*
6558 * Get the target context (task or percpu):
6559 */
e2d37cd2 6560 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
6561 if (IS_ERR(ctx)) {
6562 err = PTR_ERR(ctx);
c6be5a5c 6563 goto err_alloc;
89a1e187
PZ
6564 }
6565
fd1edb3a
PZ
6566 if (task) {
6567 put_task_struct(task);
6568 task = NULL;
6569 }
6570
ccff286d 6571 /*
cdd6c482 6572 * Look up the group leader (we will attach this event to it):
04289bb9 6573 */
ac9721f3 6574 if (group_leader) {
dc86cabe 6575 err = -EINVAL;
04289bb9 6576
04289bb9 6577 /*
ccff286d
IM
6578 * Do not allow a recursive hierarchy (this new sibling
6579 * becoming part of another group-sibling):
6580 */
6581 if (group_leader->group_leader != group_leader)
c3f00c70 6582 goto err_context;
ccff286d
IM
6583 /*
6584 * Do not allow to attach to a group in a different
6585 * task or CPU context:
04289bb9 6586 */
b04243ef
PZ
6587 if (move_group) {
6588 if (group_leader->ctx->type != ctx->type)
6589 goto err_context;
6590 } else {
6591 if (group_leader->ctx != ctx)
6592 goto err_context;
6593 }
6594
3b6f9e5c
PM
6595 /*
6596 * Only a group leader can be exclusive or pinned
6597 */
0d48696f 6598 if (attr.exclusive || attr.pinned)
c3f00c70 6599 goto err_context;
ac9721f3
PZ
6600 }
6601
6602 if (output_event) {
6603 err = perf_event_set_output(event, output_event);
6604 if (err)
c3f00c70 6605 goto err_context;
ac9721f3 6606 }
0793a61d 6607
ea635c64
AV
6608 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6609 if (IS_ERR(event_file)) {
6610 err = PTR_ERR(event_file);
c3f00c70 6611 goto err_context;
ea635c64 6612 }
9b51f66d 6613
b04243ef
PZ
6614 if (move_group) {
6615 struct perf_event_context *gctx = group_leader->ctx;
6616
6617 mutex_lock(&gctx->mutex);
fe4b04fa 6618 perf_remove_from_context(group_leader);
b04243ef
PZ
6619 list_for_each_entry(sibling, &group_leader->sibling_list,
6620 group_entry) {
fe4b04fa 6621 perf_remove_from_context(sibling);
b04243ef
PZ
6622 put_ctx(gctx);
6623 }
6624 mutex_unlock(&gctx->mutex);
6625 put_ctx(gctx);
ea635c64 6626 }
9b51f66d 6627
ad3a37de 6628 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 6629 mutex_lock(&ctx->mutex);
b04243ef
PZ
6630
6631 if (move_group) {
0cda4c02 6632 synchronize_rcu();
e2d37cd2 6633 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
6634 get_ctx(ctx);
6635 list_for_each_entry(sibling, &group_leader->sibling_list,
6636 group_entry) {
e2d37cd2 6637 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
6638 get_ctx(ctx);
6639 }
6640 }
6641
e2d37cd2 6642 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 6643 ++ctx->generation;
fe4b04fa 6644 perf_unpin_context(ctx);
d859e29f 6645 mutex_unlock(&ctx->mutex);
9b51f66d 6646
fbfc623f
YZ
6647 put_online_cpus();
6648
cdd6c482 6649 event->owner = current;
8882135b 6650
cdd6c482
IM
6651 mutex_lock(&current->perf_event_mutex);
6652 list_add_tail(&event->owner_entry, &current->perf_event_list);
6653 mutex_unlock(&current->perf_event_mutex);
082ff5a2 6654
c320c7b7
ACM
6655 /*
6656 * Precalculate sample_data sizes
6657 */
6658 perf_event__header_size(event);
6844c09d 6659 perf_event__id_header_size(event);
c320c7b7 6660
8a49542c
PZ
6661 /*
6662 * Drop the reference on the group_event after placing the
6663 * new event on the sibling_list. This ensures destruction
6664 * of the group leader will find the pointer to itself in
6665 * perf_group_detach().
6666 */
ea635c64
AV
6667 fput_light(group_file, fput_needed);
6668 fd_install(event_fd, event_file);
6669 return event_fd;
0793a61d 6670
c3f00c70 6671err_context:
fe4b04fa 6672 perf_unpin_context(ctx);
ea635c64 6673 put_ctx(ctx);
c6be5a5c 6674err_alloc:
ea635c64 6675 free_event(event);
e7d0bc04 6676err_task:
fbfc623f 6677 put_online_cpus();
e7d0bc04
PZ
6678 if (task)
6679 put_task_struct(task);
89a1e187 6680err_group_fd:
dc86cabe 6681 fput_light(group_file, fput_needed);
ea635c64
AV
6682err_fd:
6683 put_unused_fd(event_fd);
dc86cabe 6684 return err;
0793a61d
TG
6685}
6686
fb0459d7
AV
6687/**
6688 * perf_event_create_kernel_counter
6689 *
6690 * @attr: attributes of the counter to create
6691 * @cpu: cpu in which the counter is bound
38a81da2 6692 * @task: task to profile (NULL for percpu)
fb0459d7
AV
6693 */
6694struct perf_event *
6695perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 6696 struct task_struct *task,
4dc0da86
AK
6697 perf_overflow_handler_t overflow_handler,
6698 void *context)
fb0459d7 6699{
fb0459d7 6700 struct perf_event_context *ctx;
c3f00c70 6701 struct perf_event *event;
fb0459d7 6702 int err;
d859e29f 6703
fb0459d7
AV
6704 /*
6705 * Get the target context (task or percpu):
6706 */
d859e29f 6707
4dc0da86
AK
6708 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6709 overflow_handler, context);
c3f00c70
PZ
6710 if (IS_ERR(event)) {
6711 err = PTR_ERR(event);
6712 goto err;
6713 }
d859e29f 6714
38a81da2 6715 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
6716 if (IS_ERR(ctx)) {
6717 err = PTR_ERR(ctx);
c3f00c70 6718 goto err_free;
d859e29f 6719 }
fb0459d7 6720
fb0459d7
AV
6721 WARN_ON_ONCE(ctx->parent_ctx);
6722 mutex_lock(&ctx->mutex);
6723 perf_install_in_context(ctx, event, cpu);
6724 ++ctx->generation;
fe4b04fa 6725 perf_unpin_context(ctx);
fb0459d7
AV
6726 mutex_unlock(&ctx->mutex);
6727
fb0459d7
AV
6728 return event;
6729
c3f00c70
PZ
6730err_free:
6731 free_event(event);
6732err:
c6567f64 6733 return ERR_PTR(err);
9b51f66d 6734}
fb0459d7 6735EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 6736
0cda4c02
YZ
6737void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6738{
6739 struct perf_event_context *src_ctx;
6740 struct perf_event_context *dst_ctx;
6741 struct perf_event *event, *tmp;
6742 LIST_HEAD(events);
6743
6744 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6745 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6746
6747 mutex_lock(&src_ctx->mutex);
6748 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6749 event_entry) {
6750 perf_remove_from_context(event);
6751 put_ctx(src_ctx);
6752 list_add(&event->event_entry, &events);
6753 }
6754 mutex_unlock(&src_ctx->mutex);
6755
6756 synchronize_rcu();
6757
6758 mutex_lock(&dst_ctx->mutex);
6759 list_for_each_entry_safe(event, tmp, &events, event_entry) {
6760 list_del(&event->event_entry);
6761 if (event->state >= PERF_EVENT_STATE_OFF)
6762 event->state = PERF_EVENT_STATE_INACTIVE;
6763 perf_install_in_context(dst_ctx, event, dst_cpu);
6764 get_ctx(dst_ctx);
6765 }
6766 mutex_unlock(&dst_ctx->mutex);
6767}
6768EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6769
cdd6c482 6770static void sync_child_event(struct perf_event *child_event,
38b200d6 6771 struct task_struct *child)
d859e29f 6772{
cdd6c482 6773 struct perf_event *parent_event = child_event->parent;
8bc20959 6774 u64 child_val;
d859e29f 6775
cdd6c482
IM
6776 if (child_event->attr.inherit_stat)
6777 perf_event_read_event(child_event, child);
38b200d6 6778
b5e58793 6779 child_val = perf_event_count(child_event);
d859e29f
PM
6780
6781 /*
6782 * Add back the child's count to the parent's count:
6783 */
a6e6dea6 6784 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
6785 atomic64_add(child_event->total_time_enabled,
6786 &parent_event->child_total_time_enabled);
6787 atomic64_add(child_event->total_time_running,
6788 &parent_event->child_total_time_running);
d859e29f
PM
6789
6790 /*
cdd6c482 6791 * Remove this event from the parent's list
d859e29f 6792 */
cdd6c482
IM
6793 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6794 mutex_lock(&parent_event->child_mutex);
6795 list_del_init(&child_event->child_list);
6796 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
6797
6798 /*
cdd6c482 6799 * Release the parent event, if this was the last
d859e29f
PM
6800 * reference to it.
6801 */
a6fa941d 6802 put_event(parent_event);
d859e29f
PM
6803}
6804
9b51f66d 6805static void
cdd6c482
IM
6806__perf_event_exit_task(struct perf_event *child_event,
6807 struct perf_event_context *child_ctx,
38b200d6 6808 struct task_struct *child)
9b51f66d 6809{
38b435b1
PZ
6810 if (child_event->parent) {
6811 raw_spin_lock_irq(&child_ctx->lock);
6812 perf_group_detach(child_event);
6813 raw_spin_unlock_irq(&child_ctx->lock);
6814 }
9b51f66d 6815
fe4b04fa 6816 perf_remove_from_context(child_event);
0cc0c027 6817
9b51f66d 6818 /*
38b435b1 6819 * It can happen that the parent exits first, and has events
9b51f66d 6820 * that are still around due to the child reference. These
38b435b1 6821 * events need to be zapped.
9b51f66d 6822 */
38b435b1 6823 if (child_event->parent) {
cdd6c482
IM
6824 sync_child_event(child_event, child);
6825 free_event(child_event);
4bcf349a 6826 }
9b51f66d
IM
6827}
6828
8dc85d54 6829static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 6830{
cdd6c482
IM
6831 struct perf_event *child_event, *tmp;
6832 struct perf_event_context *child_ctx;
a63eaf34 6833 unsigned long flags;
9b51f66d 6834
8dc85d54 6835 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 6836 perf_event_task(child, NULL, 0);
9b51f66d 6837 return;
9f498cc5 6838 }
9b51f66d 6839
a63eaf34 6840 local_irq_save(flags);
ad3a37de
PM
6841 /*
6842 * We can't reschedule here because interrupts are disabled,
6843 * and either child is current or it is a task that can't be
6844 * scheduled, so we are now safe from rescheduling changing
6845 * our context.
6846 */
806839b2 6847 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
6848
6849 /*
6850 * Take the context lock here so that if find_get_context is
cdd6c482 6851 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
6852 * incremented the context's refcount before we do put_ctx below.
6853 */
e625cce1 6854 raw_spin_lock(&child_ctx->lock);
04dc2dbb 6855 task_ctx_sched_out(child_ctx);
8dc85d54 6856 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
6857 /*
6858 * If this context is a clone; unclone it so it can't get
6859 * swapped to another process while we're removing all
cdd6c482 6860 * the events from it.
71a851b4
PZ
6861 */
6862 unclone_ctx(child_ctx);
5e942bb3 6863 update_context_time(child_ctx);
e625cce1 6864 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
6865
6866 /*
cdd6c482
IM
6867 * Report the task dead after unscheduling the events so that we
6868 * won't get any samples after PERF_RECORD_EXIT. We can however still
6869 * get a few PERF_RECORD_READ events.
9f498cc5 6870 */
cdd6c482 6871 perf_event_task(child, child_ctx, 0);
a63eaf34 6872
66fff224
PZ
6873 /*
6874 * We can recurse on the same lock type through:
6875 *
cdd6c482
IM
6876 * __perf_event_exit_task()
6877 * sync_child_event()
a6fa941d
AV
6878 * put_event()
6879 * mutex_lock(&ctx->mutex)
66fff224
PZ
6880 *
6881 * But since its the parent context it won't be the same instance.
6882 */
a0507c84 6883 mutex_lock(&child_ctx->mutex);
a63eaf34 6884
8bc20959 6885again:
889ff015
FW
6886 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6887 group_entry)
6888 __perf_event_exit_task(child_event, child_ctx, child);
6889
6890 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 6891 group_entry)
cdd6c482 6892 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
6893
6894 /*
cdd6c482 6895 * If the last event was a group event, it will have appended all
8bc20959
PZ
6896 * its siblings to the list, but we obtained 'tmp' before that which
6897 * will still point to the list head terminating the iteration.
6898 */
889ff015
FW
6899 if (!list_empty(&child_ctx->pinned_groups) ||
6900 !list_empty(&child_ctx->flexible_groups))
8bc20959 6901 goto again;
a63eaf34
PM
6902
6903 mutex_unlock(&child_ctx->mutex);
6904
6905 put_ctx(child_ctx);
9b51f66d
IM
6906}
6907
8dc85d54
PZ
6908/*
6909 * When a child task exits, feed back event values to parent events.
6910 */
6911void perf_event_exit_task(struct task_struct *child)
6912{
8882135b 6913 struct perf_event *event, *tmp;
8dc85d54
PZ
6914 int ctxn;
6915
8882135b
PZ
6916 mutex_lock(&child->perf_event_mutex);
6917 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6918 owner_entry) {
6919 list_del_init(&event->owner_entry);
6920
6921 /*
6922 * Ensure the list deletion is visible before we clear
6923 * the owner, closes a race against perf_release() where
6924 * we need to serialize on the owner->perf_event_mutex.
6925 */
6926 smp_wmb();
6927 event->owner = NULL;
6928 }
6929 mutex_unlock(&child->perf_event_mutex);
6930
8dc85d54
PZ
6931 for_each_task_context_nr(ctxn)
6932 perf_event_exit_task_context(child, ctxn);
6933}
6934
889ff015
FW
6935static void perf_free_event(struct perf_event *event,
6936 struct perf_event_context *ctx)
6937{
6938 struct perf_event *parent = event->parent;
6939
6940 if (WARN_ON_ONCE(!parent))
6941 return;
6942
6943 mutex_lock(&parent->child_mutex);
6944 list_del_init(&event->child_list);
6945 mutex_unlock(&parent->child_mutex);
6946
a6fa941d 6947 put_event(parent);
889ff015 6948
8a49542c 6949 perf_group_detach(event);
889ff015
FW
6950 list_del_event(event, ctx);
6951 free_event(event);
6952}
6953
bbbee908
PZ
6954/*
6955 * free an unexposed, unused context as created by inheritance by
8dc85d54 6956 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 6957 */
cdd6c482 6958void perf_event_free_task(struct task_struct *task)
bbbee908 6959{
8dc85d54 6960 struct perf_event_context *ctx;
cdd6c482 6961 struct perf_event *event, *tmp;
8dc85d54 6962 int ctxn;
bbbee908 6963
8dc85d54
PZ
6964 for_each_task_context_nr(ctxn) {
6965 ctx = task->perf_event_ctxp[ctxn];
6966 if (!ctx)
6967 continue;
bbbee908 6968
8dc85d54 6969 mutex_lock(&ctx->mutex);
bbbee908 6970again:
8dc85d54
PZ
6971 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6972 group_entry)
6973 perf_free_event(event, ctx);
bbbee908 6974
8dc85d54
PZ
6975 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6976 group_entry)
6977 perf_free_event(event, ctx);
bbbee908 6978
8dc85d54
PZ
6979 if (!list_empty(&ctx->pinned_groups) ||
6980 !list_empty(&ctx->flexible_groups))
6981 goto again;
bbbee908 6982
8dc85d54 6983 mutex_unlock(&ctx->mutex);
bbbee908 6984
8dc85d54
PZ
6985 put_ctx(ctx);
6986 }
889ff015
FW
6987}
6988
4e231c79
PZ
6989void perf_event_delayed_put(struct task_struct *task)
6990{
6991 int ctxn;
6992
6993 for_each_task_context_nr(ctxn)
6994 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6995}
6996
97dee4f3
PZ
6997/*
6998 * inherit a event from parent task to child task:
6999 */
7000static struct perf_event *
7001inherit_event(struct perf_event *parent_event,
7002 struct task_struct *parent,
7003 struct perf_event_context *parent_ctx,
7004 struct task_struct *child,
7005 struct perf_event *group_leader,
7006 struct perf_event_context *child_ctx)
7007{
7008 struct perf_event *child_event;
cee010ec 7009 unsigned long flags;
97dee4f3
PZ
7010
7011 /*
7012 * Instead of creating recursive hierarchies of events,
7013 * we link inherited events back to the original parent,
7014 * which has a filp for sure, which we use as the reference
7015 * count:
7016 */
7017 if (parent_event->parent)
7018 parent_event = parent_event->parent;
7019
7020 child_event = perf_event_alloc(&parent_event->attr,
7021 parent_event->cpu,
d580ff86 7022 child,
97dee4f3 7023 group_leader, parent_event,
4dc0da86 7024 NULL, NULL);
97dee4f3
PZ
7025 if (IS_ERR(child_event))
7026 return child_event;
a6fa941d
AV
7027
7028 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7029 free_event(child_event);
7030 return NULL;
7031 }
7032
97dee4f3
PZ
7033 get_ctx(child_ctx);
7034
7035 /*
7036 * Make the child state follow the state of the parent event,
7037 * not its attr.disabled bit. We hold the parent's mutex,
7038 * so we won't race with perf_event_{en, dis}able_family.
7039 */
7040 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7041 child_event->state = PERF_EVENT_STATE_INACTIVE;
7042 else
7043 child_event->state = PERF_EVENT_STATE_OFF;
7044
7045 if (parent_event->attr.freq) {
7046 u64 sample_period = parent_event->hw.sample_period;
7047 struct hw_perf_event *hwc = &child_event->hw;
7048
7049 hwc->sample_period = sample_period;
7050 hwc->last_period = sample_period;
7051
7052 local64_set(&hwc->period_left, sample_period);
7053 }
7054
7055 child_event->ctx = child_ctx;
7056 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7057 child_event->overflow_handler_context
7058 = parent_event->overflow_handler_context;
97dee4f3 7059
614b6780
TG
7060 /*
7061 * Precalculate sample_data sizes
7062 */
7063 perf_event__header_size(child_event);
6844c09d 7064 perf_event__id_header_size(child_event);
614b6780 7065
97dee4f3
PZ
7066 /*
7067 * Link it up in the child's context:
7068 */
cee010ec 7069 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7070 add_event_to_ctx(child_event, child_ctx);
cee010ec 7071 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7072
97dee4f3
PZ
7073 /*
7074 * Link this into the parent event's child list
7075 */
7076 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7077 mutex_lock(&parent_event->child_mutex);
7078 list_add_tail(&child_event->child_list, &parent_event->child_list);
7079 mutex_unlock(&parent_event->child_mutex);
7080
7081 return child_event;
7082}
7083
7084static int inherit_group(struct perf_event *parent_event,
7085 struct task_struct *parent,
7086 struct perf_event_context *parent_ctx,
7087 struct task_struct *child,
7088 struct perf_event_context *child_ctx)
7089{
7090 struct perf_event *leader;
7091 struct perf_event *sub;
7092 struct perf_event *child_ctr;
7093
7094 leader = inherit_event(parent_event, parent, parent_ctx,
7095 child, NULL, child_ctx);
7096 if (IS_ERR(leader))
7097 return PTR_ERR(leader);
7098 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7099 child_ctr = inherit_event(sub, parent, parent_ctx,
7100 child, leader, child_ctx);
7101 if (IS_ERR(child_ctr))
7102 return PTR_ERR(child_ctr);
7103 }
7104 return 0;
889ff015
FW
7105}
7106
7107static int
7108inherit_task_group(struct perf_event *event, struct task_struct *parent,
7109 struct perf_event_context *parent_ctx,
8dc85d54 7110 struct task_struct *child, int ctxn,
889ff015
FW
7111 int *inherited_all)
7112{
7113 int ret;
8dc85d54 7114 struct perf_event_context *child_ctx;
889ff015
FW
7115
7116 if (!event->attr.inherit) {
7117 *inherited_all = 0;
7118 return 0;
bbbee908
PZ
7119 }
7120
fe4b04fa 7121 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7122 if (!child_ctx) {
7123 /*
7124 * This is executed from the parent task context, so
7125 * inherit events that have been marked for cloning.
7126 * First allocate and initialize a context for the
7127 * child.
7128 */
bbbee908 7129
eb184479 7130 child_ctx = alloc_perf_context(event->pmu, child);
889ff015
FW
7131 if (!child_ctx)
7132 return -ENOMEM;
bbbee908 7133
8dc85d54 7134 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7135 }
7136
7137 ret = inherit_group(event, parent, parent_ctx,
7138 child, child_ctx);
7139
7140 if (ret)
7141 *inherited_all = 0;
7142
7143 return ret;
bbbee908
PZ
7144}
7145
9b51f66d 7146/*
cdd6c482 7147 * Initialize the perf_event context in task_struct
9b51f66d 7148 */
8dc85d54 7149int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7150{
889ff015 7151 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7152 struct perf_event_context *cloned_ctx;
7153 struct perf_event *event;
9b51f66d 7154 struct task_struct *parent = current;
564c2b21 7155 int inherited_all = 1;
dddd3379 7156 unsigned long flags;
6ab423e0 7157 int ret = 0;
9b51f66d 7158
8dc85d54 7159 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7160 return 0;
7161
ad3a37de 7162 /*
25346b93
PM
7163 * If the parent's context is a clone, pin it so it won't get
7164 * swapped under us.
ad3a37de 7165 */
8dc85d54 7166 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 7167
ad3a37de
PM
7168 /*
7169 * No need to check if parent_ctx != NULL here; since we saw
7170 * it non-NULL earlier, the only reason for it to become NULL
7171 * is if we exit, and since we're currently in the middle of
7172 * a fork we can't be exiting at the same time.
7173 */
ad3a37de 7174
9b51f66d
IM
7175 /*
7176 * Lock the parent list. No need to lock the child - not PID
7177 * hashed yet and not running, so nobody can access it.
7178 */
d859e29f 7179 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7180
7181 /*
7182 * We dont have to disable NMIs - we are only looking at
7183 * the list, not manipulating it:
7184 */
889ff015 7185 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7186 ret = inherit_task_group(event, parent, parent_ctx,
7187 child, ctxn, &inherited_all);
889ff015
FW
7188 if (ret)
7189 break;
7190 }
b93f7978 7191
dddd3379
TG
7192 /*
7193 * We can't hold ctx->lock when iterating the ->flexible_group list due
7194 * to allocations, but we need to prevent rotation because
7195 * rotate_ctx() will change the list from interrupt context.
7196 */
7197 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7198 parent_ctx->rotate_disable = 1;
7199 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7200
889ff015 7201 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7202 ret = inherit_task_group(event, parent, parent_ctx,
7203 child, ctxn, &inherited_all);
889ff015 7204 if (ret)
9b51f66d 7205 break;
564c2b21
PM
7206 }
7207
dddd3379
TG
7208 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7209 parent_ctx->rotate_disable = 0;
dddd3379 7210
8dc85d54 7211 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7212
05cbaa28 7213 if (child_ctx && inherited_all) {
564c2b21
PM
7214 /*
7215 * Mark the child context as a clone of the parent
7216 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7217 *
7218 * Note that if the parent is a clone, the holding of
7219 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7220 */
c5ed5145 7221 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7222 if (cloned_ctx) {
7223 child_ctx->parent_ctx = cloned_ctx;
25346b93 7224 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7225 } else {
7226 child_ctx->parent_ctx = parent_ctx;
7227 child_ctx->parent_gen = parent_ctx->generation;
7228 }
7229 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7230 }
7231
c5ed5145 7232 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7233 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7234
25346b93 7235 perf_unpin_context(parent_ctx);
fe4b04fa 7236 put_ctx(parent_ctx);
ad3a37de 7237
6ab423e0 7238 return ret;
9b51f66d
IM
7239}
7240
8dc85d54
PZ
7241/*
7242 * Initialize the perf_event context in task_struct
7243 */
7244int perf_event_init_task(struct task_struct *child)
7245{
7246 int ctxn, ret;
7247
8550d7cb
ON
7248 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7249 mutex_init(&child->perf_event_mutex);
7250 INIT_LIST_HEAD(&child->perf_event_list);
7251
8dc85d54
PZ
7252 for_each_task_context_nr(ctxn) {
7253 ret = perf_event_init_context(child, ctxn);
7254 if (ret)
7255 return ret;
7256 }
7257
7258 return 0;
7259}
7260
220b140b
PM
7261static void __init perf_event_init_all_cpus(void)
7262{
b28ab83c 7263 struct swevent_htable *swhash;
220b140b 7264 int cpu;
220b140b
PM
7265
7266 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7267 swhash = &per_cpu(swevent_htable, cpu);
7268 mutex_init(&swhash->hlist_mutex);
e9d2b064 7269 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7270 }
7271}
7272
cdd6c482 7273static void __cpuinit perf_event_init_cpu(int cpu)
0793a61d 7274{
108b02cf 7275 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7276
b28ab83c 7277 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7278 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7279 struct swevent_hlist *hlist;
7280
b28ab83c
PZ
7281 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7282 WARN_ON(!hlist);
7283 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7284 }
b28ab83c 7285 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7286}
7287
c277443c 7288#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7289static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7290{
e9d2b064
PZ
7291 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7292
7293 WARN_ON(!irqs_disabled());
7294
7295 list_del_init(&cpuctx->rotation_list);
7296}
7297
108b02cf 7298static void __perf_event_exit_context(void *__info)
0793a61d 7299{
108b02cf 7300 struct perf_event_context *ctx = __info;
cdd6c482 7301 struct perf_event *event, *tmp;
0793a61d 7302
108b02cf 7303 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7304
889ff015 7305 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7306 __perf_remove_from_context(event);
889ff015 7307 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7308 __perf_remove_from_context(event);
0793a61d 7309}
108b02cf
PZ
7310
7311static void perf_event_exit_cpu_context(int cpu)
7312{
7313 struct perf_event_context *ctx;
7314 struct pmu *pmu;
7315 int idx;
7316
7317 idx = srcu_read_lock(&pmus_srcu);
7318 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7319 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7320
7321 mutex_lock(&ctx->mutex);
7322 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7323 mutex_unlock(&ctx->mutex);
7324 }
7325 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7326}
7327
cdd6c482 7328static void perf_event_exit_cpu(int cpu)
0793a61d 7329{
b28ab83c 7330 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7331
b28ab83c
PZ
7332 mutex_lock(&swhash->hlist_mutex);
7333 swevent_hlist_release(swhash);
7334 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7335
108b02cf 7336 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7337}
7338#else
cdd6c482 7339static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7340#endif
7341
c277443c
PZ
7342static int
7343perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7344{
7345 int cpu;
7346
7347 for_each_online_cpu(cpu)
7348 perf_event_exit_cpu(cpu);
7349
7350 return NOTIFY_OK;
7351}
7352
7353/*
7354 * Run the perf reboot notifier at the very last possible moment so that
7355 * the generic watchdog code runs as long as possible.
7356 */
7357static struct notifier_block perf_reboot_notifier = {
7358 .notifier_call = perf_reboot,
7359 .priority = INT_MIN,
7360};
7361
0793a61d
TG
7362static int __cpuinit
7363perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7364{
7365 unsigned int cpu = (long)hcpu;
7366
4536e4d1 7367 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7368
7369 case CPU_UP_PREPARE:
5e11637e 7370 case CPU_DOWN_FAILED:
cdd6c482 7371 perf_event_init_cpu(cpu);
0793a61d
TG
7372 break;
7373
5e11637e 7374 case CPU_UP_CANCELED:
0793a61d 7375 case CPU_DOWN_PREPARE:
cdd6c482 7376 perf_event_exit_cpu(cpu);
0793a61d
TG
7377 break;
7378
7379 default:
7380 break;
7381 }
7382
7383 return NOTIFY_OK;
7384}
7385
cdd6c482 7386void __init perf_event_init(void)
0793a61d 7387{
3c502e7a
JW
7388 int ret;
7389
2e80a82a
PZ
7390 idr_init(&pmu_idr);
7391
220b140b 7392 perf_event_init_all_cpus();
b0a873eb 7393 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7394 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7395 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7396 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7397 perf_tp_register();
7398 perf_cpu_notifier(perf_cpu_notify);
c277443c 7399 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7400
7401 ret = init_hw_breakpoint();
7402 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7403
7404 /* do not patch jump label more than once per second */
7405 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7406
7407 /*
7408 * Build time assertion that we keep the data_head at the intended
7409 * location. IOW, validation we got the __reserved[] size right.
7410 */
7411 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7412 != 1024);
0793a61d 7413}
abe43400
PZ
7414
7415static int __init perf_event_sysfs_init(void)
7416{
7417 struct pmu *pmu;
7418 int ret;
7419
7420 mutex_lock(&pmus_lock);
7421
7422 ret = bus_register(&pmu_bus);
7423 if (ret)
7424 goto unlock;
7425
7426 list_for_each_entry(pmu, &pmus, entry) {
7427 if (!pmu->name || pmu->type < 0)
7428 continue;
7429
7430 ret = pmu_dev_alloc(pmu);
7431 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7432 }
7433 pmu_bus_running = 1;
7434 ret = 0;
7435
7436unlock:
7437 mutex_unlock(&pmus_lock);
7438
7439 return ret;
7440}
7441device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7442
7443#ifdef CONFIG_CGROUP_PERF
761b3ef5 7444static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
e5d1367f
SE
7445{
7446 struct perf_cgroup *jc;
e5d1367f 7447
1b15d055 7448 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7449 if (!jc)
7450 return ERR_PTR(-ENOMEM);
7451
e5d1367f
SE
7452 jc->info = alloc_percpu(struct perf_cgroup_info);
7453 if (!jc->info) {
7454 kfree(jc);
7455 return ERR_PTR(-ENOMEM);
7456 }
7457
e5d1367f
SE
7458 return &jc->css;
7459}
7460
761b3ef5 7461static void perf_cgroup_destroy(struct cgroup *cont)
e5d1367f
SE
7462{
7463 struct perf_cgroup *jc;
7464 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7465 struct perf_cgroup, css);
7466 free_percpu(jc->info);
7467 kfree(jc);
7468}
7469
7470static int __perf_cgroup_move(void *info)
7471{
7472 struct task_struct *task = info;
7473 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7474 return 0;
7475}
7476
761b3ef5 7477static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7478{
bb9d97b6
TH
7479 struct task_struct *task;
7480
7481 cgroup_taskset_for_each(task, cgrp, tset)
7482 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7483}
7484
761b3ef5
LZ
7485static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7486 struct task_struct *task)
e5d1367f
SE
7487{
7488 /*
7489 * cgroup_exit() is called in the copy_process() failure path.
7490 * Ignore this case since the task hasn't ran yet, this avoids
7491 * trying to poke a half freed task state from generic code.
7492 */
7493 if (!(task->flags & PF_EXITING))
7494 return;
7495
bb9d97b6 7496 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7497}
7498
7499struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7500 .name = "perf_event",
7501 .subsys_id = perf_subsys_id,
7502 .create = perf_cgroup_create,
7503 .destroy = perf_cgroup_destroy,
7504 .exit = perf_cgroup_exit,
bb9d97b6 7505 .attach = perf_cgroup_attach,
e5d1367f
SE
7506};
7507#endif /* CONFIG_CGROUP_PERF */