perf: Fix perf_enable_on_exec() event scheduling
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
0017960f
PZ
129static void event_function_call(struct perf_event *event,
130 int (*active)(void *),
131 void (*inactive)(void *),
132 void *data)
133{
134 struct perf_event_context *ctx = event->ctx;
135 struct task_struct *task = ctx->task;
136
137 if (!task) {
138 cpu_function_call(event->cpu, active, data);
139 return;
140 }
141
142again:
143 if (!task_function_call(task, active, data))
144 return;
145
146 raw_spin_lock_irq(&ctx->lock);
147 if (ctx->is_active) {
148 /*
149 * Reload the task pointer, it might have been changed by
150 * a concurrent perf_event_context_sched_out().
151 */
152 task = ctx->task;
153 raw_spin_unlock_irq(&ctx->lock);
154 goto again;
155 }
156 inactive(data);
157 raw_spin_unlock_irq(&ctx->lock);
158}
159
f8697762
JO
160#define EVENT_OWNER_KERNEL ((void *) -1)
161
162static bool is_kernel_event(struct perf_event *event)
163{
164 return event->owner == EVENT_OWNER_KERNEL;
165}
166
e5d1367f
SE
167#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
168 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
169 PERF_FLAG_PID_CGROUP |\
170 PERF_FLAG_FD_CLOEXEC)
e5d1367f 171
bce38cd5
SE
172/*
173 * branch priv levels that need permission checks
174 */
175#define PERF_SAMPLE_BRANCH_PERM_PLM \
176 (PERF_SAMPLE_BRANCH_KERNEL |\
177 PERF_SAMPLE_BRANCH_HV)
178
0b3fcf17
SE
179enum event_type_t {
180 EVENT_FLEXIBLE = 0x1,
181 EVENT_PINNED = 0x2,
182 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
183};
184
e5d1367f
SE
185/*
186 * perf_sched_events : >0 events exist
187 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
188 */
c5905afb 189struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 190static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 191static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 192
cdd6c482
IM
193static atomic_t nr_mmap_events __read_mostly;
194static atomic_t nr_comm_events __read_mostly;
195static atomic_t nr_task_events __read_mostly;
948b26b6 196static atomic_t nr_freq_events __read_mostly;
45ac1403 197static atomic_t nr_switch_events __read_mostly;
9ee318a7 198
108b02cf
PZ
199static LIST_HEAD(pmus);
200static DEFINE_MUTEX(pmus_lock);
201static struct srcu_struct pmus_srcu;
202
0764771d 203/*
cdd6c482 204 * perf event paranoia level:
0fbdea19
IM
205 * -1 - not paranoid at all
206 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 207 * 1 - disallow cpu events for unpriv
0fbdea19 208 * 2 - disallow kernel profiling for unpriv
0764771d 209 */
cdd6c482 210int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 211
20443384
FW
212/* Minimum for 512 kiB + 1 user control page */
213int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
214
215/*
cdd6c482 216 * max perf event sample rate
df58ab24 217 */
14c63f17
DH
218#define DEFAULT_MAX_SAMPLE_RATE 100000
219#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
220#define DEFAULT_CPU_TIME_MAX_PERCENT 25
221
222int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
223
224static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
225static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
226
d9494cb4
PZ
227static int perf_sample_allowed_ns __read_mostly =
228 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 229
18ab2cd3 230static void update_perf_cpu_limits(void)
14c63f17
DH
231{
232 u64 tmp = perf_sample_period_ns;
233
234 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 235 do_div(tmp, 100);
d9494cb4 236 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 237}
163ec435 238
9e630205
SE
239static int perf_rotate_context(struct perf_cpu_context *cpuctx);
240
163ec435
PZ
241int perf_proc_update_handler(struct ctl_table *table, int write,
242 void __user *buffer, size_t *lenp,
243 loff_t *ppos)
244{
723478c8 245 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
246
247 if (ret || !write)
248 return ret;
249
250 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
251 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
252 update_perf_cpu_limits();
253
254 return 0;
255}
256
257int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
258
259int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
260 void __user *buffer, size_t *lenp,
261 loff_t *ppos)
262{
263 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
264
265 if (ret || !write)
266 return ret;
267
268 update_perf_cpu_limits();
163ec435
PZ
269
270 return 0;
271}
1ccd1549 272
14c63f17
DH
273/*
274 * perf samples are done in some very critical code paths (NMIs).
275 * If they take too much CPU time, the system can lock up and not
276 * get any real work done. This will drop the sample rate when
277 * we detect that events are taking too long.
278 */
279#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 280static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 281
6a02ad66 282static void perf_duration_warn(struct irq_work *w)
14c63f17 283{
6a02ad66 284 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 285 u64 avg_local_sample_len;
e5302920 286 u64 local_samples_len;
6a02ad66 287
4a32fea9 288 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
291 printk_ratelimited(KERN_WARNING
292 "perf interrupt took too long (%lld > %lld), lowering "
293 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 294 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
295 sysctl_perf_event_sample_rate);
296}
297
298static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
299
300void perf_sample_event_took(u64 sample_len_ns)
301{
d9494cb4 302 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
303 u64 avg_local_sample_len;
304 u64 local_samples_len;
14c63f17 305
d9494cb4 306 if (allowed_ns == 0)
14c63f17
DH
307 return;
308
309 /* decay the counter by 1 average sample */
4a32fea9 310 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
311 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
312 local_samples_len += sample_len_ns;
4a32fea9 313 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
314
315 /*
316 * note: this will be biased artifically low until we have
317 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
318 * from having to maintain a count.
319 */
320 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
321
d9494cb4 322 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
323 return;
324
325 if (max_samples_per_tick <= 1)
326 return;
327
328 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
329 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
330 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
331
14c63f17 332 update_perf_cpu_limits();
6a02ad66 333
cd578abb
PZ
334 if (!irq_work_queue(&perf_duration_work)) {
335 early_printk("perf interrupt took too long (%lld > %lld), lowering "
336 "kernel.perf_event_max_sample_rate to %d\n",
337 avg_local_sample_len, allowed_ns >> 1,
338 sysctl_perf_event_sample_rate);
339 }
14c63f17
DH
340}
341
cdd6c482 342static atomic64_t perf_event_id;
a96bbc16 343
0b3fcf17
SE
344static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
345 enum event_type_t event_type);
346
347static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
348 enum event_type_t event_type,
349 struct task_struct *task);
350
351static void update_context_time(struct perf_event_context *ctx);
352static u64 perf_event_time(struct perf_event *event);
0b3fcf17 353
cdd6c482 354void __weak perf_event_print_debug(void) { }
0793a61d 355
84c79910 356extern __weak const char *perf_pmu_name(void)
0793a61d 357{
84c79910 358 return "pmu";
0793a61d
TG
359}
360
0b3fcf17
SE
361static inline u64 perf_clock(void)
362{
363 return local_clock();
364}
365
34f43927
PZ
366static inline u64 perf_event_clock(struct perf_event *event)
367{
368 return event->clock();
369}
370
e5d1367f
SE
371static inline struct perf_cpu_context *
372__get_cpu_context(struct perf_event_context *ctx)
373{
374 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
375}
376
facc4307
PZ
377static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
378 struct perf_event_context *ctx)
379{
380 raw_spin_lock(&cpuctx->ctx.lock);
381 if (ctx)
382 raw_spin_lock(&ctx->lock);
383}
384
385static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
386 struct perf_event_context *ctx)
387{
388 if (ctx)
389 raw_spin_unlock(&ctx->lock);
390 raw_spin_unlock(&cpuctx->ctx.lock);
391}
392
e5d1367f
SE
393#ifdef CONFIG_CGROUP_PERF
394
e5d1367f
SE
395static inline bool
396perf_cgroup_match(struct perf_event *event)
397{
398 struct perf_event_context *ctx = event->ctx;
399 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
400
ef824fa1
TH
401 /* @event doesn't care about cgroup */
402 if (!event->cgrp)
403 return true;
404
405 /* wants specific cgroup scope but @cpuctx isn't associated with any */
406 if (!cpuctx->cgrp)
407 return false;
408
409 /*
410 * Cgroup scoping is recursive. An event enabled for a cgroup is
411 * also enabled for all its descendant cgroups. If @cpuctx's
412 * cgroup is a descendant of @event's (the test covers identity
413 * case), it's a match.
414 */
415 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
416 event->cgrp->css.cgroup);
e5d1367f
SE
417}
418
e5d1367f
SE
419static inline void perf_detach_cgroup(struct perf_event *event)
420{
4e2ba650 421 css_put(&event->cgrp->css);
e5d1367f
SE
422 event->cgrp = NULL;
423}
424
425static inline int is_cgroup_event(struct perf_event *event)
426{
427 return event->cgrp != NULL;
428}
429
430static inline u64 perf_cgroup_event_time(struct perf_event *event)
431{
432 struct perf_cgroup_info *t;
433
434 t = per_cpu_ptr(event->cgrp->info, event->cpu);
435 return t->time;
436}
437
438static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
439{
440 struct perf_cgroup_info *info;
441 u64 now;
442
443 now = perf_clock();
444
445 info = this_cpu_ptr(cgrp->info);
446
447 info->time += now - info->timestamp;
448 info->timestamp = now;
449}
450
451static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
452{
453 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
454 if (cgrp_out)
455 __update_cgrp_time(cgrp_out);
456}
457
458static inline void update_cgrp_time_from_event(struct perf_event *event)
459{
3f7cce3c
SE
460 struct perf_cgroup *cgrp;
461
e5d1367f 462 /*
3f7cce3c
SE
463 * ensure we access cgroup data only when needed and
464 * when we know the cgroup is pinned (css_get)
e5d1367f 465 */
3f7cce3c 466 if (!is_cgroup_event(event))
e5d1367f
SE
467 return;
468
614e4c4e 469 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
470 /*
471 * Do not update time when cgroup is not active
472 */
473 if (cgrp == event->cgrp)
474 __update_cgrp_time(event->cgrp);
e5d1367f
SE
475}
476
477static inline void
3f7cce3c
SE
478perf_cgroup_set_timestamp(struct task_struct *task,
479 struct perf_event_context *ctx)
e5d1367f
SE
480{
481 struct perf_cgroup *cgrp;
482 struct perf_cgroup_info *info;
483
3f7cce3c
SE
484 /*
485 * ctx->lock held by caller
486 * ensure we do not access cgroup data
487 * unless we have the cgroup pinned (css_get)
488 */
489 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
490 return;
491
614e4c4e 492 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 493 info = this_cpu_ptr(cgrp->info);
3f7cce3c 494 info->timestamp = ctx->timestamp;
e5d1367f
SE
495}
496
497#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
498#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
499
500/*
501 * reschedule events based on the cgroup constraint of task.
502 *
503 * mode SWOUT : schedule out everything
504 * mode SWIN : schedule in based on cgroup for next
505 */
18ab2cd3 506static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
507{
508 struct perf_cpu_context *cpuctx;
509 struct pmu *pmu;
510 unsigned long flags;
511
512 /*
513 * disable interrupts to avoid geting nr_cgroup
514 * changes via __perf_event_disable(). Also
515 * avoids preemption.
516 */
517 local_irq_save(flags);
518
519 /*
520 * we reschedule only in the presence of cgroup
521 * constrained events.
522 */
e5d1367f
SE
523
524 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 525 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
526 if (cpuctx->unique_pmu != pmu)
527 continue; /* ensure we process each cpuctx once */
e5d1367f 528
e5d1367f
SE
529 /*
530 * perf_cgroup_events says at least one
531 * context on this CPU has cgroup events.
532 *
533 * ctx->nr_cgroups reports the number of cgroup
534 * events for a context.
535 */
536 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
537 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
538 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
539
540 if (mode & PERF_CGROUP_SWOUT) {
541 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
542 /*
543 * must not be done before ctxswout due
544 * to event_filter_match() in event_sched_out()
545 */
546 cpuctx->cgrp = NULL;
547 }
548
549 if (mode & PERF_CGROUP_SWIN) {
e566b76e 550 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
551 /*
552 * set cgrp before ctxsw in to allow
553 * event_filter_match() to not have to pass
554 * task around
614e4c4e
SE
555 * we pass the cpuctx->ctx to perf_cgroup_from_task()
556 * because cgorup events are only per-cpu
e5d1367f 557 */
614e4c4e 558 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
559 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
560 }
facc4307
PZ
561 perf_pmu_enable(cpuctx->ctx.pmu);
562 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 563 }
e5d1367f
SE
564 }
565
e5d1367f
SE
566 local_irq_restore(flags);
567}
568
a8d757ef
SE
569static inline void perf_cgroup_sched_out(struct task_struct *task,
570 struct task_struct *next)
e5d1367f 571{
a8d757ef
SE
572 struct perf_cgroup *cgrp1;
573 struct perf_cgroup *cgrp2 = NULL;
574
ddaaf4e2 575 rcu_read_lock();
a8d757ef
SE
576 /*
577 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
578 * we do not need to pass the ctx here because we know
579 * we are holding the rcu lock
a8d757ef 580 */
614e4c4e 581 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 582 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
583
584 /*
585 * only schedule out current cgroup events if we know
586 * that we are switching to a different cgroup. Otherwise,
587 * do no touch the cgroup events.
588 */
589 if (cgrp1 != cgrp2)
590 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
591
592 rcu_read_unlock();
e5d1367f
SE
593}
594
a8d757ef
SE
595static inline void perf_cgroup_sched_in(struct task_struct *prev,
596 struct task_struct *task)
e5d1367f 597{
a8d757ef
SE
598 struct perf_cgroup *cgrp1;
599 struct perf_cgroup *cgrp2 = NULL;
600
ddaaf4e2 601 rcu_read_lock();
a8d757ef
SE
602 /*
603 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
604 * we do not need to pass the ctx here because we know
605 * we are holding the rcu lock
a8d757ef 606 */
614e4c4e 607 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 608 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
609
610 /*
611 * only need to schedule in cgroup events if we are changing
612 * cgroup during ctxsw. Cgroup events were not scheduled
613 * out of ctxsw out if that was not the case.
614 */
615 if (cgrp1 != cgrp2)
616 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
617
618 rcu_read_unlock();
e5d1367f
SE
619}
620
621static inline int perf_cgroup_connect(int fd, struct perf_event *event,
622 struct perf_event_attr *attr,
623 struct perf_event *group_leader)
624{
625 struct perf_cgroup *cgrp;
626 struct cgroup_subsys_state *css;
2903ff01
AV
627 struct fd f = fdget(fd);
628 int ret = 0;
e5d1367f 629
2903ff01 630 if (!f.file)
e5d1367f
SE
631 return -EBADF;
632
b583043e 633 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 634 &perf_event_cgrp_subsys);
3db272c0
LZ
635 if (IS_ERR(css)) {
636 ret = PTR_ERR(css);
637 goto out;
638 }
e5d1367f
SE
639
640 cgrp = container_of(css, struct perf_cgroup, css);
641 event->cgrp = cgrp;
642
643 /*
644 * all events in a group must monitor
645 * the same cgroup because a task belongs
646 * to only one perf cgroup at a time
647 */
648 if (group_leader && group_leader->cgrp != cgrp) {
649 perf_detach_cgroup(event);
650 ret = -EINVAL;
e5d1367f 651 }
3db272c0 652out:
2903ff01 653 fdput(f);
e5d1367f
SE
654 return ret;
655}
656
657static inline void
658perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
659{
660 struct perf_cgroup_info *t;
661 t = per_cpu_ptr(event->cgrp->info, event->cpu);
662 event->shadow_ctx_time = now - t->timestamp;
663}
664
665static inline void
666perf_cgroup_defer_enabled(struct perf_event *event)
667{
668 /*
669 * when the current task's perf cgroup does not match
670 * the event's, we need to remember to call the
671 * perf_mark_enable() function the first time a task with
672 * a matching perf cgroup is scheduled in.
673 */
674 if (is_cgroup_event(event) && !perf_cgroup_match(event))
675 event->cgrp_defer_enabled = 1;
676}
677
678static inline void
679perf_cgroup_mark_enabled(struct perf_event *event,
680 struct perf_event_context *ctx)
681{
682 struct perf_event *sub;
683 u64 tstamp = perf_event_time(event);
684
685 if (!event->cgrp_defer_enabled)
686 return;
687
688 event->cgrp_defer_enabled = 0;
689
690 event->tstamp_enabled = tstamp - event->total_time_enabled;
691 list_for_each_entry(sub, &event->sibling_list, group_entry) {
692 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
693 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
694 sub->cgrp_defer_enabled = 0;
695 }
696 }
697}
698#else /* !CONFIG_CGROUP_PERF */
699
700static inline bool
701perf_cgroup_match(struct perf_event *event)
702{
703 return true;
704}
705
706static inline void perf_detach_cgroup(struct perf_event *event)
707{}
708
709static inline int is_cgroup_event(struct perf_event *event)
710{
711 return 0;
712}
713
714static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
715{
716 return 0;
717}
718
719static inline void update_cgrp_time_from_event(struct perf_event *event)
720{
721}
722
723static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
724{
725}
726
a8d757ef
SE
727static inline void perf_cgroup_sched_out(struct task_struct *task,
728 struct task_struct *next)
e5d1367f
SE
729{
730}
731
a8d757ef
SE
732static inline void perf_cgroup_sched_in(struct task_struct *prev,
733 struct task_struct *task)
e5d1367f
SE
734{
735}
736
737static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
738 struct perf_event_attr *attr,
739 struct perf_event *group_leader)
740{
741 return -EINVAL;
742}
743
744static inline void
3f7cce3c
SE
745perf_cgroup_set_timestamp(struct task_struct *task,
746 struct perf_event_context *ctx)
e5d1367f
SE
747{
748}
749
750void
751perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
752{
753}
754
755static inline void
756perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
757{
758}
759
760static inline u64 perf_cgroup_event_time(struct perf_event *event)
761{
762 return 0;
763}
764
765static inline void
766perf_cgroup_defer_enabled(struct perf_event *event)
767{
768}
769
770static inline void
771perf_cgroup_mark_enabled(struct perf_event *event,
772 struct perf_event_context *ctx)
773{
774}
775#endif
776
9e630205
SE
777/*
778 * set default to be dependent on timer tick just
779 * like original code
780 */
781#define PERF_CPU_HRTIMER (1000 / HZ)
782/*
783 * function must be called with interrupts disbled
784 */
272325c4 785static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
786{
787 struct perf_cpu_context *cpuctx;
9e630205
SE
788 int rotations = 0;
789
790 WARN_ON(!irqs_disabled());
791
792 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
793 rotations = perf_rotate_context(cpuctx);
794
4cfafd30
PZ
795 raw_spin_lock(&cpuctx->hrtimer_lock);
796 if (rotations)
9e630205 797 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
798 else
799 cpuctx->hrtimer_active = 0;
800 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 801
4cfafd30 802 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
803}
804
272325c4 805static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 806{
272325c4 807 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 808 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 809 u64 interval;
9e630205
SE
810
811 /* no multiplexing needed for SW PMU */
812 if (pmu->task_ctx_nr == perf_sw_context)
813 return;
814
62b85639
SE
815 /*
816 * check default is sane, if not set then force to
817 * default interval (1/tick)
818 */
272325c4
PZ
819 interval = pmu->hrtimer_interval_ms;
820 if (interval < 1)
821 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 822
272325c4 823 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 824
4cfafd30
PZ
825 raw_spin_lock_init(&cpuctx->hrtimer_lock);
826 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 827 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
828}
829
272325c4 830static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 831{
272325c4 832 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 833 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 834 unsigned long flags;
9e630205
SE
835
836 /* not for SW PMU */
837 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 838 return 0;
9e630205 839
4cfafd30
PZ
840 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
841 if (!cpuctx->hrtimer_active) {
842 cpuctx->hrtimer_active = 1;
843 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
844 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
845 }
846 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 847
272325c4 848 return 0;
9e630205
SE
849}
850
33696fc0 851void perf_pmu_disable(struct pmu *pmu)
9e35ad38 852{
33696fc0
PZ
853 int *count = this_cpu_ptr(pmu->pmu_disable_count);
854 if (!(*count)++)
855 pmu->pmu_disable(pmu);
9e35ad38 856}
9e35ad38 857
33696fc0 858void perf_pmu_enable(struct pmu *pmu)
9e35ad38 859{
33696fc0
PZ
860 int *count = this_cpu_ptr(pmu->pmu_disable_count);
861 if (!--(*count))
862 pmu->pmu_enable(pmu);
9e35ad38 863}
9e35ad38 864
2fde4f94 865static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
866
867/*
2fde4f94
MR
868 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
869 * perf_event_task_tick() are fully serialized because they're strictly cpu
870 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
871 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 872 */
2fde4f94 873static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 874{
2fde4f94 875 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 876
e9d2b064 877 WARN_ON(!irqs_disabled());
b5ab4cd5 878
2fde4f94
MR
879 WARN_ON(!list_empty(&ctx->active_ctx_list));
880
881 list_add(&ctx->active_ctx_list, head);
882}
883
884static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
885{
886 WARN_ON(!irqs_disabled());
887
888 WARN_ON(list_empty(&ctx->active_ctx_list));
889
890 list_del_init(&ctx->active_ctx_list);
9e35ad38 891}
9e35ad38 892
cdd6c482 893static void get_ctx(struct perf_event_context *ctx)
a63eaf34 894{
e5289d4a 895 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
896}
897
4af57ef2
YZ
898static void free_ctx(struct rcu_head *head)
899{
900 struct perf_event_context *ctx;
901
902 ctx = container_of(head, struct perf_event_context, rcu_head);
903 kfree(ctx->task_ctx_data);
904 kfree(ctx);
905}
906
cdd6c482 907static void put_ctx(struct perf_event_context *ctx)
a63eaf34 908{
564c2b21
PM
909 if (atomic_dec_and_test(&ctx->refcount)) {
910 if (ctx->parent_ctx)
911 put_ctx(ctx->parent_ctx);
c93f7669
PM
912 if (ctx->task)
913 put_task_struct(ctx->task);
4af57ef2 914 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 915 }
a63eaf34
PM
916}
917
f63a8daa
PZ
918/*
919 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
920 * perf_pmu_migrate_context() we need some magic.
921 *
922 * Those places that change perf_event::ctx will hold both
923 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
924 *
8b10c5e2
PZ
925 * Lock ordering is by mutex address. There are two other sites where
926 * perf_event_context::mutex nests and those are:
927 *
928 * - perf_event_exit_task_context() [ child , 0 ]
929 * __perf_event_exit_task()
930 * sync_child_event()
931 * put_event() [ parent, 1 ]
932 *
933 * - perf_event_init_context() [ parent, 0 ]
934 * inherit_task_group()
935 * inherit_group()
936 * inherit_event()
937 * perf_event_alloc()
938 * perf_init_event()
939 * perf_try_init_event() [ child , 1 ]
940 *
941 * While it appears there is an obvious deadlock here -- the parent and child
942 * nesting levels are inverted between the two. This is in fact safe because
943 * life-time rules separate them. That is an exiting task cannot fork, and a
944 * spawning task cannot (yet) exit.
945 *
946 * But remember that that these are parent<->child context relations, and
947 * migration does not affect children, therefore these two orderings should not
948 * interact.
f63a8daa
PZ
949 *
950 * The change in perf_event::ctx does not affect children (as claimed above)
951 * because the sys_perf_event_open() case will install a new event and break
952 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
953 * concerned with cpuctx and that doesn't have children.
954 *
955 * The places that change perf_event::ctx will issue:
956 *
957 * perf_remove_from_context();
958 * synchronize_rcu();
959 * perf_install_in_context();
960 *
961 * to affect the change. The remove_from_context() + synchronize_rcu() should
962 * quiesce the event, after which we can install it in the new location. This
963 * means that only external vectors (perf_fops, prctl) can perturb the event
964 * while in transit. Therefore all such accessors should also acquire
965 * perf_event_context::mutex to serialize against this.
966 *
967 * However; because event->ctx can change while we're waiting to acquire
968 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
969 * function.
970 *
971 * Lock order:
972 * task_struct::perf_event_mutex
973 * perf_event_context::mutex
974 * perf_event_context::lock
975 * perf_event::child_mutex;
976 * perf_event::mmap_mutex
977 * mmap_sem
978 */
a83fe28e
PZ
979static struct perf_event_context *
980perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
981{
982 struct perf_event_context *ctx;
983
984again:
985 rcu_read_lock();
986 ctx = ACCESS_ONCE(event->ctx);
987 if (!atomic_inc_not_zero(&ctx->refcount)) {
988 rcu_read_unlock();
989 goto again;
990 }
991 rcu_read_unlock();
992
a83fe28e 993 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
994 if (event->ctx != ctx) {
995 mutex_unlock(&ctx->mutex);
996 put_ctx(ctx);
997 goto again;
998 }
999
1000 return ctx;
1001}
1002
a83fe28e
PZ
1003static inline struct perf_event_context *
1004perf_event_ctx_lock(struct perf_event *event)
1005{
1006 return perf_event_ctx_lock_nested(event, 0);
1007}
1008
f63a8daa
PZ
1009static void perf_event_ctx_unlock(struct perf_event *event,
1010 struct perf_event_context *ctx)
1011{
1012 mutex_unlock(&ctx->mutex);
1013 put_ctx(ctx);
1014}
1015
211de6eb
PZ
1016/*
1017 * This must be done under the ctx->lock, such as to serialize against
1018 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1019 * calling scheduler related locks and ctx->lock nests inside those.
1020 */
1021static __must_check struct perf_event_context *
1022unclone_ctx(struct perf_event_context *ctx)
71a851b4 1023{
211de6eb
PZ
1024 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1025
1026 lockdep_assert_held(&ctx->lock);
1027
1028 if (parent_ctx)
71a851b4 1029 ctx->parent_ctx = NULL;
5a3126d4 1030 ctx->generation++;
211de6eb
PZ
1031
1032 return parent_ctx;
71a851b4
PZ
1033}
1034
6844c09d
ACM
1035static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1036{
1037 /*
1038 * only top level events have the pid namespace they were created in
1039 */
1040 if (event->parent)
1041 event = event->parent;
1042
1043 return task_tgid_nr_ns(p, event->ns);
1044}
1045
1046static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1047{
1048 /*
1049 * only top level events have the pid namespace they were created in
1050 */
1051 if (event->parent)
1052 event = event->parent;
1053
1054 return task_pid_nr_ns(p, event->ns);
1055}
1056
7f453c24 1057/*
cdd6c482 1058 * If we inherit events we want to return the parent event id
7f453c24
PZ
1059 * to userspace.
1060 */
cdd6c482 1061static u64 primary_event_id(struct perf_event *event)
7f453c24 1062{
cdd6c482 1063 u64 id = event->id;
7f453c24 1064
cdd6c482
IM
1065 if (event->parent)
1066 id = event->parent->id;
7f453c24
PZ
1067
1068 return id;
1069}
1070
25346b93 1071/*
cdd6c482 1072 * Get the perf_event_context for a task and lock it.
25346b93
PM
1073 * This has to cope with with the fact that until it is locked,
1074 * the context could get moved to another task.
1075 */
cdd6c482 1076static struct perf_event_context *
8dc85d54 1077perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1078{
cdd6c482 1079 struct perf_event_context *ctx;
25346b93 1080
9ed6060d 1081retry:
058ebd0e
PZ
1082 /*
1083 * One of the few rules of preemptible RCU is that one cannot do
1084 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1085 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1086 * rcu_read_unlock_special().
1087 *
1088 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1089 * side critical section has interrupts disabled.
058ebd0e 1090 */
2fd59077 1091 local_irq_save(*flags);
058ebd0e 1092 rcu_read_lock();
8dc85d54 1093 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1094 if (ctx) {
1095 /*
1096 * If this context is a clone of another, it might
1097 * get swapped for another underneath us by
cdd6c482 1098 * perf_event_task_sched_out, though the
25346b93
PM
1099 * rcu_read_lock() protects us from any context
1100 * getting freed. Lock the context and check if it
1101 * got swapped before we could get the lock, and retry
1102 * if so. If we locked the right context, then it
1103 * can't get swapped on us any more.
1104 */
2fd59077 1105 raw_spin_lock(&ctx->lock);
8dc85d54 1106 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1107 raw_spin_unlock(&ctx->lock);
058ebd0e 1108 rcu_read_unlock();
2fd59077 1109 local_irq_restore(*flags);
25346b93
PM
1110 goto retry;
1111 }
b49a9e7e
PZ
1112
1113 if (!atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1114 raw_spin_unlock(&ctx->lock);
b49a9e7e
PZ
1115 ctx = NULL;
1116 }
25346b93
PM
1117 }
1118 rcu_read_unlock();
2fd59077
PM
1119 if (!ctx)
1120 local_irq_restore(*flags);
25346b93
PM
1121 return ctx;
1122}
1123
1124/*
1125 * Get the context for a task and increment its pin_count so it
1126 * can't get swapped to another task. This also increments its
1127 * reference count so that the context can't get freed.
1128 */
8dc85d54
PZ
1129static struct perf_event_context *
1130perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1131{
cdd6c482 1132 struct perf_event_context *ctx;
25346b93
PM
1133 unsigned long flags;
1134
8dc85d54 1135 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1136 if (ctx) {
1137 ++ctx->pin_count;
e625cce1 1138 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1139 }
1140 return ctx;
1141}
1142
cdd6c482 1143static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1144{
1145 unsigned long flags;
1146
e625cce1 1147 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1148 --ctx->pin_count;
e625cce1 1149 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1150}
1151
f67218c3
PZ
1152/*
1153 * Update the record of the current time in a context.
1154 */
1155static void update_context_time(struct perf_event_context *ctx)
1156{
1157 u64 now = perf_clock();
1158
1159 ctx->time += now - ctx->timestamp;
1160 ctx->timestamp = now;
1161}
1162
4158755d
SE
1163static u64 perf_event_time(struct perf_event *event)
1164{
1165 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1166
1167 if (is_cgroup_event(event))
1168 return perf_cgroup_event_time(event);
1169
4158755d
SE
1170 return ctx ? ctx->time : 0;
1171}
1172
f67218c3
PZ
1173/*
1174 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1175 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1176 */
1177static void update_event_times(struct perf_event *event)
1178{
1179 struct perf_event_context *ctx = event->ctx;
1180 u64 run_end;
1181
1182 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1183 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1184 return;
e5d1367f
SE
1185 /*
1186 * in cgroup mode, time_enabled represents
1187 * the time the event was enabled AND active
1188 * tasks were in the monitored cgroup. This is
1189 * independent of the activity of the context as
1190 * there may be a mix of cgroup and non-cgroup events.
1191 *
1192 * That is why we treat cgroup events differently
1193 * here.
1194 */
1195 if (is_cgroup_event(event))
46cd6a7f 1196 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1197 else if (ctx->is_active)
1198 run_end = ctx->time;
acd1d7c1
PZ
1199 else
1200 run_end = event->tstamp_stopped;
1201
1202 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1203
1204 if (event->state == PERF_EVENT_STATE_INACTIVE)
1205 run_end = event->tstamp_stopped;
1206 else
4158755d 1207 run_end = perf_event_time(event);
f67218c3
PZ
1208
1209 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1210
f67218c3
PZ
1211}
1212
96c21a46
PZ
1213/*
1214 * Update total_time_enabled and total_time_running for all events in a group.
1215 */
1216static void update_group_times(struct perf_event *leader)
1217{
1218 struct perf_event *event;
1219
1220 update_event_times(leader);
1221 list_for_each_entry(event, &leader->sibling_list, group_entry)
1222 update_event_times(event);
1223}
1224
889ff015
FW
1225static struct list_head *
1226ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1227{
1228 if (event->attr.pinned)
1229 return &ctx->pinned_groups;
1230 else
1231 return &ctx->flexible_groups;
1232}
1233
fccc714b 1234/*
cdd6c482 1235 * Add a event from the lists for its context.
fccc714b
PZ
1236 * Must be called with ctx->mutex and ctx->lock held.
1237 */
04289bb9 1238static void
cdd6c482 1239list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1240{
c994d613
PZ
1241 lockdep_assert_held(&ctx->lock);
1242
8a49542c
PZ
1243 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1244 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1245
1246 /*
8a49542c
PZ
1247 * If we're a stand alone event or group leader, we go to the context
1248 * list, group events are kept attached to the group so that
1249 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1250 */
8a49542c 1251 if (event->group_leader == event) {
889ff015
FW
1252 struct list_head *list;
1253
d6f962b5
FW
1254 if (is_software_event(event))
1255 event->group_flags |= PERF_GROUP_SOFTWARE;
1256
889ff015
FW
1257 list = ctx_group_list(event, ctx);
1258 list_add_tail(&event->group_entry, list);
5c148194 1259 }
592903cd 1260
08309379 1261 if (is_cgroup_event(event))
e5d1367f 1262 ctx->nr_cgroups++;
e5d1367f 1263
cdd6c482
IM
1264 list_add_rcu(&event->event_entry, &ctx->event_list);
1265 ctx->nr_events++;
1266 if (event->attr.inherit_stat)
bfbd3381 1267 ctx->nr_stat++;
5a3126d4
PZ
1268
1269 ctx->generation++;
04289bb9
IM
1270}
1271
0231bb53
JO
1272/*
1273 * Initialize event state based on the perf_event_attr::disabled.
1274 */
1275static inline void perf_event__state_init(struct perf_event *event)
1276{
1277 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1278 PERF_EVENT_STATE_INACTIVE;
1279}
1280
a723968c 1281static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1282{
1283 int entry = sizeof(u64); /* value */
1284 int size = 0;
1285 int nr = 1;
1286
1287 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1288 size += sizeof(u64);
1289
1290 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1291 size += sizeof(u64);
1292
1293 if (event->attr.read_format & PERF_FORMAT_ID)
1294 entry += sizeof(u64);
1295
1296 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1297 nr += nr_siblings;
c320c7b7
ACM
1298 size += sizeof(u64);
1299 }
1300
1301 size += entry * nr;
1302 event->read_size = size;
1303}
1304
a723968c 1305static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1306{
1307 struct perf_sample_data *data;
c320c7b7
ACM
1308 u16 size = 0;
1309
c320c7b7
ACM
1310 if (sample_type & PERF_SAMPLE_IP)
1311 size += sizeof(data->ip);
1312
6844c09d
ACM
1313 if (sample_type & PERF_SAMPLE_ADDR)
1314 size += sizeof(data->addr);
1315
1316 if (sample_type & PERF_SAMPLE_PERIOD)
1317 size += sizeof(data->period);
1318
c3feedf2
AK
1319 if (sample_type & PERF_SAMPLE_WEIGHT)
1320 size += sizeof(data->weight);
1321
6844c09d
ACM
1322 if (sample_type & PERF_SAMPLE_READ)
1323 size += event->read_size;
1324
d6be9ad6
SE
1325 if (sample_type & PERF_SAMPLE_DATA_SRC)
1326 size += sizeof(data->data_src.val);
1327
fdfbbd07
AK
1328 if (sample_type & PERF_SAMPLE_TRANSACTION)
1329 size += sizeof(data->txn);
1330
6844c09d
ACM
1331 event->header_size = size;
1332}
1333
a723968c
PZ
1334/*
1335 * Called at perf_event creation and when events are attached/detached from a
1336 * group.
1337 */
1338static void perf_event__header_size(struct perf_event *event)
1339{
1340 __perf_event_read_size(event,
1341 event->group_leader->nr_siblings);
1342 __perf_event_header_size(event, event->attr.sample_type);
1343}
1344
6844c09d
ACM
1345static void perf_event__id_header_size(struct perf_event *event)
1346{
1347 struct perf_sample_data *data;
1348 u64 sample_type = event->attr.sample_type;
1349 u16 size = 0;
1350
c320c7b7
ACM
1351 if (sample_type & PERF_SAMPLE_TID)
1352 size += sizeof(data->tid_entry);
1353
1354 if (sample_type & PERF_SAMPLE_TIME)
1355 size += sizeof(data->time);
1356
ff3d527c
AH
1357 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1358 size += sizeof(data->id);
1359
c320c7b7
ACM
1360 if (sample_type & PERF_SAMPLE_ID)
1361 size += sizeof(data->id);
1362
1363 if (sample_type & PERF_SAMPLE_STREAM_ID)
1364 size += sizeof(data->stream_id);
1365
1366 if (sample_type & PERF_SAMPLE_CPU)
1367 size += sizeof(data->cpu_entry);
1368
6844c09d 1369 event->id_header_size = size;
c320c7b7
ACM
1370}
1371
a723968c
PZ
1372static bool perf_event_validate_size(struct perf_event *event)
1373{
1374 /*
1375 * The values computed here will be over-written when we actually
1376 * attach the event.
1377 */
1378 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1379 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1380 perf_event__id_header_size(event);
1381
1382 /*
1383 * Sum the lot; should not exceed the 64k limit we have on records.
1384 * Conservative limit to allow for callchains and other variable fields.
1385 */
1386 if (event->read_size + event->header_size +
1387 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1388 return false;
1389
1390 return true;
1391}
1392
8a49542c
PZ
1393static void perf_group_attach(struct perf_event *event)
1394{
c320c7b7 1395 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1396
74c3337c
PZ
1397 /*
1398 * We can have double attach due to group movement in perf_event_open.
1399 */
1400 if (event->attach_state & PERF_ATTACH_GROUP)
1401 return;
1402
8a49542c
PZ
1403 event->attach_state |= PERF_ATTACH_GROUP;
1404
1405 if (group_leader == event)
1406 return;
1407
652884fe
PZ
1408 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1409
8a49542c
PZ
1410 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1411 !is_software_event(event))
1412 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1413
1414 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1415 group_leader->nr_siblings++;
c320c7b7
ACM
1416
1417 perf_event__header_size(group_leader);
1418
1419 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1420 perf_event__header_size(pos);
8a49542c
PZ
1421}
1422
a63eaf34 1423/*
cdd6c482 1424 * Remove a event from the lists for its context.
fccc714b 1425 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1426 */
04289bb9 1427static void
cdd6c482 1428list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1429{
68cacd29 1430 struct perf_cpu_context *cpuctx;
652884fe
PZ
1431
1432 WARN_ON_ONCE(event->ctx != ctx);
1433 lockdep_assert_held(&ctx->lock);
1434
8a49542c
PZ
1435 /*
1436 * We can have double detach due to exit/hot-unplug + close.
1437 */
1438 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1439 return;
8a49542c
PZ
1440
1441 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1442
68cacd29 1443 if (is_cgroup_event(event)) {
e5d1367f 1444 ctx->nr_cgroups--;
70a01657
PZ
1445 /*
1446 * Because cgroup events are always per-cpu events, this will
1447 * always be called from the right CPU.
1448 */
68cacd29
SE
1449 cpuctx = __get_cpu_context(ctx);
1450 /*
70a01657
PZ
1451 * If there are no more cgroup events then clear cgrp to avoid
1452 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1453 */
1454 if (!ctx->nr_cgroups)
1455 cpuctx->cgrp = NULL;
1456 }
e5d1367f 1457
cdd6c482
IM
1458 ctx->nr_events--;
1459 if (event->attr.inherit_stat)
bfbd3381 1460 ctx->nr_stat--;
8bc20959 1461
cdd6c482 1462 list_del_rcu(&event->event_entry);
04289bb9 1463
8a49542c
PZ
1464 if (event->group_leader == event)
1465 list_del_init(&event->group_entry);
5c148194 1466
96c21a46 1467 update_group_times(event);
b2e74a26
SE
1468
1469 /*
1470 * If event was in error state, then keep it
1471 * that way, otherwise bogus counts will be
1472 * returned on read(). The only way to get out
1473 * of error state is by explicit re-enabling
1474 * of the event
1475 */
1476 if (event->state > PERF_EVENT_STATE_OFF)
1477 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1478
1479 ctx->generation++;
050735b0
PZ
1480}
1481
8a49542c 1482static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1483{
1484 struct perf_event *sibling, *tmp;
8a49542c
PZ
1485 struct list_head *list = NULL;
1486
1487 /*
1488 * We can have double detach due to exit/hot-unplug + close.
1489 */
1490 if (!(event->attach_state & PERF_ATTACH_GROUP))
1491 return;
1492
1493 event->attach_state &= ~PERF_ATTACH_GROUP;
1494
1495 /*
1496 * If this is a sibling, remove it from its group.
1497 */
1498 if (event->group_leader != event) {
1499 list_del_init(&event->group_entry);
1500 event->group_leader->nr_siblings--;
c320c7b7 1501 goto out;
8a49542c
PZ
1502 }
1503
1504 if (!list_empty(&event->group_entry))
1505 list = &event->group_entry;
2e2af50b 1506
04289bb9 1507 /*
cdd6c482
IM
1508 * If this was a group event with sibling events then
1509 * upgrade the siblings to singleton events by adding them
8a49542c 1510 * to whatever list we are on.
04289bb9 1511 */
cdd6c482 1512 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1513 if (list)
1514 list_move_tail(&sibling->group_entry, list);
04289bb9 1515 sibling->group_leader = sibling;
d6f962b5
FW
1516
1517 /* Inherit group flags from the previous leader */
1518 sibling->group_flags = event->group_flags;
652884fe
PZ
1519
1520 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1521 }
c320c7b7
ACM
1522
1523out:
1524 perf_event__header_size(event->group_leader);
1525
1526 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1527 perf_event__header_size(tmp);
04289bb9
IM
1528}
1529
fadfe7be
JO
1530/*
1531 * User event without the task.
1532 */
1533static bool is_orphaned_event(struct perf_event *event)
1534{
1535 return event && !is_kernel_event(event) && !event->owner;
1536}
1537
1538/*
1539 * Event has a parent but parent's task finished and it's
1540 * alive only because of children holding refference.
1541 */
1542static bool is_orphaned_child(struct perf_event *event)
1543{
1544 return is_orphaned_event(event->parent);
1545}
1546
1547static void orphans_remove_work(struct work_struct *work);
1548
1549static void schedule_orphans_remove(struct perf_event_context *ctx)
1550{
1551 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1552 return;
1553
1554 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1555 get_ctx(ctx);
1556 ctx->orphans_remove_sched = true;
1557 }
1558}
1559
1560static int __init perf_workqueue_init(void)
1561{
1562 perf_wq = create_singlethread_workqueue("perf");
1563 WARN(!perf_wq, "failed to create perf workqueue\n");
1564 return perf_wq ? 0 : -1;
1565}
1566
1567core_initcall(perf_workqueue_init);
1568
66eb579e
MR
1569static inline int pmu_filter_match(struct perf_event *event)
1570{
1571 struct pmu *pmu = event->pmu;
1572 return pmu->filter_match ? pmu->filter_match(event) : 1;
1573}
1574
fa66f07a
SE
1575static inline int
1576event_filter_match(struct perf_event *event)
1577{
e5d1367f 1578 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1579 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1580}
1581
9ffcfa6f
SE
1582static void
1583event_sched_out(struct perf_event *event,
3b6f9e5c 1584 struct perf_cpu_context *cpuctx,
cdd6c482 1585 struct perf_event_context *ctx)
3b6f9e5c 1586{
4158755d 1587 u64 tstamp = perf_event_time(event);
fa66f07a 1588 u64 delta;
652884fe
PZ
1589
1590 WARN_ON_ONCE(event->ctx != ctx);
1591 lockdep_assert_held(&ctx->lock);
1592
fa66f07a
SE
1593 /*
1594 * An event which could not be activated because of
1595 * filter mismatch still needs to have its timings
1596 * maintained, otherwise bogus information is return
1597 * via read() for time_enabled, time_running:
1598 */
1599 if (event->state == PERF_EVENT_STATE_INACTIVE
1600 && !event_filter_match(event)) {
e5d1367f 1601 delta = tstamp - event->tstamp_stopped;
fa66f07a 1602 event->tstamp_running += delta;
4158755d 1603 event->tstamp_stopped = tstamp;
fa66f07a
SE
1604 }
1605
cdd6c482 1606 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1607 return;
3b6f9e5c 1608
44377277
AS
1609 perf_pmu_disable(event->pmu);
1610
cdd6c482
IM
1611 event->state = PERF_EVENT_STATE_INACTIVE;
1612 if (event->pending_disable) {
1613 event->pending_disable = 0;
1614 event->state = PERF_EVENT_STATE_OFF;
970892a9 1615 }
4158755d 1616 event->tstamp_stopped = tstamp;
a4eaf7f1 1617 event->pmu->del(event, 0);
cdd6c482 1618 event->oncpu = -1;
3b6f9e5c 1619
cdd6c482 1620 if (!is_software_event(event))
3b6f9e5c 1621 cpuctx->active_oncpu--;
2fde4f94
MR
1622 if (!--ctx->nr_active)
1623 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1624 if (event->attr.freq && event->attr.sample_freq)
1625 ctx->nr_freq--;
cdd6c482 1626 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1627 cpuctx->exclusive = 0;
44377277 1628
fadfe7be
JO
1629 if (is_orphaned_child(event))
1630 schedule_orphans_remove(ctx);
1631
44377277 1632 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1633}
1634
d859e29f 1635static void
cdd6c482 1636group_sched_out(struct perf_event *group_event,
d859e29f 1637 struct perf_cpu_context *cpuctx,
cdd6c482 1638 struct perf_event_context *ctx)
d859e29f 1639{
cdd6c482 1640 struct perf_event *event;
fa66f07a 1641 int state = group_event->state;
d859e29f 1642
cdd6c482 1643 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1644
1645 /*
1646 * Schedule out siblings (if any):
1647 */
cdd6c482
IM
1648 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1649 event_sched_out(event, cpuctx, ctx);
d859e29f 1650
fa66f07a 1651 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1652 cpuctx->exclusive = 0;
1653}
1654
46ce0fe9
PZ
1655struct remove_event {
1656 struct perf_event *event;
1657 bool detach_group;
1658};
1659
0017960f
PZ
1660static void ___perf_remove_from_context(void *info)
1661{
1662 struct remove_event *re = info;
1663 struct perf_event *event = re->event;
1664 struct perf_event_context *ctx = event->ctx;
1665
1666 if (re->detach_group)
1667 perf_group_detach(event);
1668 list_del_event(event, ctx);
1669}
1670
0793a61d 1671/*
cdd6c482 1672 * Cross CPU call to remove a performance event
0793a61d 1673 *
cdd6c482 1674 * We disable the event on the hardware level first. After that we
0793a61d
TG
1675 * remove it from the context list.
1676 */
fe4b04fa 1677static int __perf_remove_from_context(void *info)
0793a61d 1678{
46ce0fe9
PZ
1679 struct remove_event *re = info;
1680 struct perf_event *event = re->event;
cdd6c482 1681 struct perf_event_context *ctx = event->ctx;
108b02cf 1682 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1683
e625cce1 1684 raw_spin_lock(&ctx->lock);
cdd6c482 1685 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1686 if (re->detach_group)
1687 perf_group_detach(event);
cdd6c482 1688 list_del_event(event, ctx);
64ce3126
PZ
1689 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1690 ctx->is_active = 0;
1691 cpuctx->task_ctx = NULL;
1692 }
e625cce1 1693 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1694
1695 return 0;
0793a61d
TG
1696}
1697
0793a61d 1698/*
cdd6c482 1699 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1700 *
cdd6c482 1701 * CPU events are removed with a smp call. For task events we only
0793a61d 1702 * call when the task is on a CPU.
c93f7669 1703 *
cdd6c482
IM
1704 * If event->ctx is a cloned context, callers must make sure that
1705 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1706 * remains valid. This is OK when called from perf_release since
1707 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1708 * When called from perf_event_exit_task, it's OK because the
c93f7669 1709 * context has been detached from its task.
0793a61d 1710 */
46ce0fe9 1711static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1712{
cdd6c482 1713 struct perf_event_context *ctx = event->ctx;
46ce0fe9
PZ
1714 struct remove_event re = {
1715 .event = event,
1716 .detach_group = detach_group,
1717 };
0793a61d 1718
fe4b04fa
PZ
1719 lockdep_assert_held(&ctx->mutex);
1720
0017960f
PZ
1721 event_function_call(event, __perf_remove_from_context,
1722 ___perf_remove_from_context, &re);
0793a61d
TG
1723}
1724
d859e29f 1725/*
cdd6c482 1726 * Cross CPU call to disable a performance event
d859e29f 1727 */
500ad2d8 1728int __perf_event_disable(void *info)
d859e29f 1729{
cdd6c482 1730 struct perf_event *event = info;
cdd6c482 1731 struct perf_event_context *ctx = event->ctx;
108b02cf 1732 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1733
1734 /*
cdd6c482
IM
1735 * If this is a per-task event, need to check whether this
1736 * event's task is the current task on this cpu.
fe4b04fa
PZ
1737 *
1738 * Can trigger due to concurrent perf_event_context_sched_out()
1739 * flipping contexts around.
d859e29f 1740 */
665c2142 1741 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1742 return -EINVAL;
d859e29f 1743
e625cce1 1744 raw_spin_lock(&ctx->lock);
d859e29f
PM
1745
1746 /*
cdd6c482 1747 * If the event is on, turn it off.
d859e29f
PM
1748 * If it is in error state, leave it in error state.
1749 */
cdd6c482 1750 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1751 update_context_time(ctx);
e5d1367f 1752 update_cgrp_time_from_event(event);
cdd6c482
IM
1753 update_group_times(event);
1754 if (event == event->group_leader)
1755 group_sched_out(event, cpuctx, ctx);
d859e29f 1756 else
cdd6c482
IM
1757 event_sched_out(event, cpuctx, ctx);
1758 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1759 }
1760
e625cce1 1761 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1762
1763 return 0;
d859e29f
PM
1764}
1765
7b648018
PZ
1766void ___perf_event_disable(void *info)
1767{
1768 struct perf_event *event = info;
1769
1770 /*
1771 * Since we have the lock this context can't be scheduled
1772 * in, so we can change the state safely.
1773 */
1774 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1775 update_group_times(event);
1776 event->state = PERF_EVENT_STATE_OFF;
1777 }
1778}
1779
d859e29f 1780/*
cdd6c482 1781 * Disable a event.
c93f7669 1782 *
cdd6c482
IM
1783 * If event->ctx is a cloned context, callers must make sure that
1784 * every task struct that event->ctx->task could possibly point to
c93f7669 1785 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1786 * perf_event_for_each_child or perf_event_for_each because they
1787 * hold the top-level event's child_mutex, so any descendant that
1788 * goes to exit will block in sync_child_event.
1789 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1790 * is the current context on this CPU and preemption is disabled,
cdd6c482 1791 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1792 */
f63a8daa 1793static void _perf_event_disable(struct perf_event *event)
d859e29f 1794{
cdd6c482 1795 struct perf_event_context *ctx = event->ctx;
d859e29f 1796
e625cce1 1797 raw_spin_lock_irq(&ctx->lock);
7b648018 1798 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1799 raw_spin_unlock_irq(&ctx->lock);
7b648018 1800 return;
53cfbf59 1801 }
e625cce1 1802 raw_spin_unlock_irq(&ctx->lock);
7b648018
PZ
1803
1804 event_function_call(event, __perf_event_disable,
1805 ___perf_event_disable, event);
d859e29f 1806}
f63a8daa
PZ
1807
1808/*
1809 * Strictly speaking kernel users cannot create groups and therefore this
1810 * interface does not need the perf_event_ctx_lock() magic.
1811 */
1812void perf_event_disable(struct perf_event *event)
1813{
1814 struct perf_event_context *ctx;
1815
1816 ctx = perf_event_ctx_lock(event);
1817 _perf_event_disable(event);
1818 perf_event_ctx_unlock(event, ctx);
1819}
dcfce4a0 1820EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1821
e5d1367f
SE
1822static void perf_set_shadow_time(struct perf_event *event,
1823 struct perf_event_context *ctx,
1824 u64 tstamp)
1825{
1826 /*
1827 * use the correct time source for the time snapshot
1828 *
1829 * We could get by without this by leveraging the
1830 * fact that to get to this function, the caller
1831 * has most likely already called update_context_time()
1832 * and update_cgrp_time_xx() and thus both timestamp
1833 * are identical (or very close). Given that tstamp is,
1834 * already adjusted for cgroup, we could say that:
1835 * tstamp - ctx->timestamp
1836 * is equivalent to
1837 * tstamp - cgrp->timestamp.
1838 *
1839 * Then, in perf_output_read(), the calculation would
1840 * work with no changes because:
1841 * - event is guaranteed scheduled in
1842 * - no scheduled out in between
1843 * - thus the timestamp would be the same
1844 *
1845 * But this is a bit hairy.
1846 *
1847 * So instead, we have an explicit cgroup call to remain
1848 * within the time time source all along. We believe it
1849 * is cleaner and simpler to understand.
1850 */
1851 if (is_cgroup_event(event))
1852 perf_cgroup_set_shadow_time(event, tstamp);
1853 else
1854 event->shadow_ctx_time = tstamp - ctx->timestamp;
1855}
1856
4fe757dd
PZ
1857#define MAX_INTERRUPTS (~0ULL)
1858
1859static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1860static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1861
235c7fc7 1862static int
9ffcfa6f 1863event_sched_in(struct perf_event *event,
235c7fc7 1864 struct perf_cpu_context *cpuctx,
6e37738a 1865 struct perf_event_context *ctx)
235c7fc7 1866{
4158755d 1867 u64 tstamp = perf_event_time(event);
44377277 1868 int ret = 0;
4158755d 1869
63342411
PZ
1870 lockdep_assert_held(&ctx->lock);
1871
cdd6c482 1872 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1873 return 0;
1874
cdd6c482 1875 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1876 event->oncpu = smp_processor_id();
4fe757dd
PZ
1877
1878 /*
1879 * Unthrottle events, since we scheduled we might have missed several
1880 * ticks already, also for a heavily scheduling task there is little
1881 * guarantee it'll get a tick in a timely manner.
1882 */
1883 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1884 perf_log_throttle(event, 1);
1885 event->hw.interrupts = 0;
1886 }
1887
235c7fc7
IM
1888 /*
1889 * The new state must be visible before we turn it on in the hardware:
1890 */
1891 smp_wmb();
1892
44377277
AS
1893 perf_pmu_disable(event->pmu);
1894
72f669c0
SL
1895 perf_set_shadow_time(event, ctx, tstamp);
1896
ec0d7729
AS
1897 perf_log_itrace_start(event);
1898
a4eaf7f1 1899 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1900 event->state = PERF_EVENT_STATE_INACTIVE;
1901 event->oncpu = -1;
44377277
AS
1902 ret = -EAGAIN;
1903 goto out;
235c7fc7
IM
1904 }
1905
00a2916f
PZ
1906 event->tstamp_running += tstamp - event->tstamp_stopped;
1907
cdd6c482 1908 if (!is_software_event(event))
3b6f9e5c 1909 cpuctx->active_oncpu++;
2fde4f94
MR
1910 if (!ctx->nr_active++)
1911 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1912 if (event->attr.freq && event->attr.sample_freq)
1913 ctx->nr_freq++;
235c7fc7 1914
cdd6c482 1915 if (event->attr.exclusive)
3b6f9e5c
PM
1916 cpuctx->exclusive = 1;
1917
fadfe7be
JO
1918 if (is_orphaned_child(event))
1919 schedule_orphans_remove(ctx);
1920
44377277
AS
1921out:
1922 perf_pmu_enable(event->pmu);
1923
1924 return ret;
235c7fc7
IM
1925}
1926
6751b71e 1927static int
cdd6c482 1928group_sched_in(struct perf_event *group_event,
6751b71e 1929 struct perf_cpu_context *cpuctx,
6e37738a 1930 struct perf_event_context *ctx)
6751b71e 1931{
6bde9b6c 1932 struct perf_event *event, *partial_group = NULL;
4a234593 1933 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1934 u64 now = ctx->time;
1935 bool simulate = false;
6751b71e 1936
cdd6c482 1937 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1938 return 0;
1939
fbbe0701 1940 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1941
9ffcfa6f 1942 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1943 pmu->cancel_txn(pmu);
272325c4 1944 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1945 return -EAGAIN;
90151c35 1946 }
6751b71e
PM
1947
1948 /*
1949 * Schedule in siblings as one group (if any):
1950 */
cdd6c482 1951 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1952 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1953 partial_group = event;
6751b71e
PM
1954 goto group_error;
1955 }
1956 }
1957
9ffcfa6f 1958 if (!pmu->commit_txn(pmu))
6e85158c 1959 return 0;
9ffcfa6f 1960
6751b71e
PM
1961group_error:
1962 /*
1963 * Groups can be scheduled in as one unit only, so undo any
1964 * partial group before returning:
d7842da4
SE
1965 * The events up to the failed event are scheduled out normally,
1966 * tstamp_stopped will be updated.
1967 *
1968 * The failed events and the remaining siblings need to have
1969 * their timings updated as if they had gone thru event_sched_in()
1970 * and event_sched_out(). This is required to get consistent timings
1971 * across the group. This also takes care of the case where the group
1972 * could never be scheduled by ensuring tstamp_stopped is set to mark
1973 * the time the event was actually stopped, such that time delta
1974 * calculation in update_event_times() is correct.
6751b71e 1975 */
cdd6c482
IM
1976 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1977 if (event == partial_group)
d7842da4
SE
1978 simulate = true;
1979
1980 if (simulate) {
1981 event->tstamp_running += now - event->tstamp_stopped;
1982 event->tstamp_stopped = now;
1983 } else {
1984 event_sched_out(event, cpuctx, ctx);
1985 }
6751b71e 1986 }
9ffcfa6f 1987 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1988
ad5133b7 1989 pmu->cancel_txn(pmu);
90151c35 1990
272325c4 1991 perf_mux_hrtimer_restart(cpuctx);
9e630205 1992
6751b71e
PM
1993 return -EAGAIN;
1994}
1995
3b6f9e5c 1996/*
cdd6c482 1997 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1998 */
cdd6c482 1999static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2000 struct perf_cpu_context *cpuctx,
2001 int can_add_hw)
2002{
2003 /*
cdd6c482 2004 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2005 */
d6f962b5 2006 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2007 return 1;
2008 /*
2009 * If an exclusive group is already on, no other hardware
cdd6c482 2010 * events can go on.
3b6f9e5c
PM
2011 */
2012 if (cpuctx->exclusive)
2013 return 0;
2014 /*
2015 * If this group is exclusive and there are already
cdd6c482 2016 * events on the CPU, it can't go on.
3b6f9e5c 2017 */
cdd6c482 2018 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2019 return 0;
2020 /*
2021 * Otherwise, try to add it if all previous groups were able
2022 * to go on.
2023 */
2024 return can_add_hw;
2025}
2026
cdd6c482
IM
2027static void add_event_to_ctx(struct perf_event *event,
2028 struct perf_event_context *ctx)
53cfbf59 2029{
4158755d
SE
2030 u64 tstamp = perf_event_time(event);
2031
cdd6c482 2032 list_add_event(event, ctx);
8a49542c 2033 perf_group_attach(event);
4158755d
SE
2034 event->tstamp_enabled = tstamp;
2035 event->tstamp_running = tstamp;
2036 event->tstamp_stopped = tstamp;
53cfbf59
PM
2037}
2038
3e349507
PZ
2039static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2040 struct perf_event_context *ctx);
2c29ef0f
PZ
2041static void
2042ctx_sched_in(struct perf_event_context *ctx,
2043 struct perf_cpu_context *cpuctx,
2044 enum event_type_t event_type,
2045 struct task_struct *task);
fe4b04fa 2046
dce5855b
PZ
2047static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2048 struct perf_event_context *ctx,
2049 struct task_struct *task)
2050{
2051 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2052 if (ctx)
2053 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2054 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2055 if (ctx)
2056 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2057}
2058
0017960f
PZ
2059static void ___perf_install_in_context(void *info)
2060{
2061 struct perf_event *event = info;
2062 struct perf_event_context *ctx = event->ctx;
2063
2064 /*
2065 * Since the task isn't running, its safe to add the event, us holding
2066 * the ctx->lock ensures the task won't get scheduled in.
2067 */
2068 add_event_to_ctx(event, ctx);
2069}
2070
3e349507
PZ
2071static void ctx_resched(struct perf_cpu_context *cpuctx,
2072 struct perf_event_context *task_ctx)
2073{
2074 perf_pmu_disable(cpuctx->ctx.pmu);
2075 if (task_ctx)
2076 task_ctx_sched_out(cpuctx, task_ctx);
2077 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2078 perf_event_sched_in(cpuctx, task_ctx, current);
2079 perf_pmu_enable(cpuctx->ctx.pmu);
2080}
2081
0793a61d 2082/*
cdd6c482 2083 * Cross CPU call to install and enable a performance event
682076ae
PZ
2084 *
2085 * Must be called with ctx->mutex held
0793a61d 2086 */
fe4b04fa 2087static int __perf_install_in_context(void *info)
0793a61d 2088{
cdd6c482
IM
2089 struct perf_event *event = info;
2090 struct perf_event_context *ctx = event->ctx;
108b02cf 2091 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2092 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2093 struct task_struct *task = current;
2094
b58f6b0d 2095 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2096 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2097
2098 /*
2c29ef0f 2099 * If there was an active task_ctx schedule it out.
0793a61d 2100 */
b58f6b0d 2101 if (task_ctx)
3e349507 2102 task_ctx_sched_out(cpuctx, task_ctx);
b58f6b0d
PZ
2103
2104 /*
2105 * If the context we're installing events in is not the
2106 * active task_ctx, flip them.
2107 */
2108 if (ctx->task && task_ctx != ctx) {
2109 if (task_ctx)
2110 raw_spin_unlock(&task_ctx->lock);
2111 raw_spin_lock(&ctx->lock);
2112 task_ctx = ctx;
2113 }
2114
2115 if (task_ctx) {
2116 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2117 task = task_ctx->task;
2118 }
b58f6b0d 2119
2c29ef0f 2120 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2121
4af4998b 2122 update_context_time(ctx);
e5d1367f
SE
2123 /*
2124 * update cgrp time only if current cgrp
2125 * matches event->cgrp. Must be done before
2126 * calling add_event_to_ctx()
2127 */
2128 update_cgrp_time_from_event(event);
0793a61d 2129
cdd6c482 2130 add_event_to_ctx(event, ctx);
0793a61d 2131
d859e29f 2132 /*
2c29ef0f 2133 * Schedule everything back in
d859e29f 2134 */
dce5855b 2135 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2136
2137 perf_pmu_enable(cpuctx->ctx.pmu);
2138 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2139
2140 return 0;
0793a61d
TG
2141}
2142
2143/*
cdd6c482 2144 * Attach a performance event to a context
0793a61d
TG
2145 */
2146static void
cdd6c482
IM
2147perf_install_in_context(struct perf_event_context *ctx,
2148 struct perf_event *event,
0793a61d
TG
2149 int cpu)
2150{
fe4b04fa
PZ
2151 lockdep_assert_held(&ctx->mutex);
2152
c3f00c70 2153 event->ctx = ctx;
0cda4c02
YZ
2154 if (event->cpu != -1)
2155 event->cpu = cpu;
c3f00c70 2156
0017960f
PZ
2157 event_function_call(event, __perf_install_in_context,
2158 ___perf_install_in_context, event);
0793a61d
TG
2159}
2160
fa289bec 2161/*
cdd6c482 2162 * Put a event into inactive state and update time fields.
fa289bec
PM
2163 * Enabling the leader of a group effectively enables all
2164 * the group members that aren't explicitly disabled, so we
2165 * have to update their ->tstamp_enabled also.
2166 * Note: this works for group members as well as group leaders
2167 * since the non-leader members' sibling_lists will be empty.
2168 */
1d9b482e 2169static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2170{
cdd6c482 2171 struct perf_event *sub;
4158755d 2172 u64 tstamp = perf_event_time(event);
fa289bec 2173
cdd6c482 2174 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2175 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2176 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2177 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2178 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2179 }
fa289bec
PM
2180}
2181
d859e29f 2182/*
cdd6c482 2183 * Cross CPU call to enable a performance event
d859e29f 2184 */
fe4b04fa 2185static int __perf_event_enable(void *info)
04289bb9 2186{
cdd6c482 2187 struct perf_event *event = info;
cdd6c482
IM
2188 struct perf_event_context *ctx = event->ctx;
2189 struct perf_event *leader = event->group_leader;
108b02cf 2190 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2191 int err;
04289bb9 2192
06f41796
JO
2193 /*
2194 * There's a time window between 'ctx->is_active' check
2195 * in perf_event_enable function and this place having:
2196 * - IRQs on
2197 * - ctx->lock unlocked
2198 *
2199 * where the task could be killed and 'ctx' deactivated
2200 * by perf_event_exit_task.
2201 */
2202 if (!ctx->is_active)
fe4b04fa 2203 return -EINVAL;
3cbed429 2204
e625cce1 2205 raw_spin_lock(&ctx->lock);
4af4998b 2206 update_context_time(ctx);
d859e29f 2207
cdd6c482 2208 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2209 goto unlock;
e5d1367f
SE
2210
2211 /*
2212 * set current task's cgroup time reference point
2213 */
3f7cce3c 2214 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2215
1d9b482e 2216 __perf_event_mark_enabled(event);
04289bb9 2217
e5d1367f
SE
2218 if (!event_filter_match(event)) {
2219 if (is_cgroup_event(event))
2220 perf_cgroup_defer_enabled(event);
f4c4176f 2221 goto unlock;
e5d1367f 2222 }
f4c4176f 2223
04289bb9 2224 /*
cdd6c482 2225 * If the event is in a group and isn't the group leader,
d859e29f 2226 * then don't put it on unless the group is on.
04289bb9 2227 */
cdd6c482 2228 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2229 goto unlock;
3b6f9e5c 2230
cdd6c482 2231 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2232 err = -EEXIST;
e758a33d 2233 } else {
cdd6c482 2234 if (event == leader)
6e37738a 2235 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2236 else
6e37738a 2237 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2238 }
d859e29f
PM
2239
2240 if (err) {
2241 /*
cdd6c482 2242 * If this event can't go on and it's part of a
d859e29f
PM
2243 * group, then the whole group has to come off.
2244 */
9e630205 2245 if (leader != event) {
d859e29f 2246 group_sched_out(leader, cpuctx, ctx);
272325c4 2247 perf_mux_hrtimer_restart(cpuctx);
9e630205 2248 }
0d48696f 2249 if (leader->attr.pinned) {
53cfbf59 2250 update_group_times(leader);
cdd6c482 2251 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2252 }
d859e29f
PM
2253 }
2254
9ed6060d 2255unlock:
e625cce1 2256 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2257
2258 return 0;
d859e29f
PM
2259}
2260
7b648018
PZ
2261void ___perf_event_enable(void *info)
2262{
2263 __perf_event_mark_enabled((struct perf_event *)info);
2264}
2265
d859e29f 2266/*
cdd6c482 2267 * Enable a event.
c93f7669 2268 *
cdd6c482
IM
2269 * If event->ctx is a cloned context, callers must make sure that
2270 * every task struct that event->ctx->task could possibly point to
c93f7669 2271 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2272 * perf_event_for_each_child or perf_event_for_each as described
2273 * for perf_event_disable.
d859e29f 2274 */
f63a8daa 2275static void _perf_event_enable(struct perf_event *event)
d859e29f 2276{
cdd6c482 2277 struct perf_event_context *ctx = event->ctx;
d859e29f 2278
7b648018
PZ
2279 raw_spin_lock_irq(&ctx->lock);
2280 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
2281 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2282 return;
2283 }
2284
d859e29f 2285 /*
cdd6c482 2286 * If the event is in error state, clear that first.
7b648018
PZ
2287 *
2288 * That way, if we see the event in error state below, we know that it
2289 * has gone back into error state, as distinct from the task having
2290 * been scheduled away before the cross-call arrived.
d859e29f 2291 */
cdd6c482
IM
2292 if (event->state == PERF_EVENT_STATE_ERROR)
2293 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2294 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2295
7b648018
PZ
2296 event_function_call(event, __perf_event_enable,
2297 ___perf_event_enable, event);
d859e29f 2298}
f63a8daa
PZ
2299
2300/*
2301 * See perf_event_disable();
2302 */
2303void perf_event_enable(struct perf_event *event)
2304{
2305 struct perf_event_context *ctx;
2306
2307 ctx = perf_event_ctx_lock(event);
2308 _perf_event_enable(event);
2309 perf_event_ctx_unlock(event, ctx);
2310}
dcfce4a0 2311EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2312
f63a8daa 2313static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2314{
2023b359 2315 /*
cdd6c482 2316 * not supported on inherited events
2023b359 2317 */
2e939d1d 2318 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2319 return -EINVAL;
2320
cdd6c482 2321 atomic_add(refresh, &event->event_limit);
f63a8daa 2322 _perf_event_enable(event);
2023b359
PZ
2323
2324 return 0;
79f14641 2325}
f63a8daa
PZ
2326
2327/*
2328 * See perf_event_disable()
2329 */
2330int perf_event_refresh(struct perf_event *event, int refresh)
2331{
2332 struct perf_event_context *ctx;
2333 int ret;
2334
2335 ctx = perf_event_ctx_lock(event);
2336 ret = _perf_event_refresh(event, refresh);
2337 perf_event_ctx_unlock(event, ctx);
2338
2339 return ret;
2340}
26ca5c11 2341EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2342
5b0311e1
FW
2343static void ctx_sched_out(struct perf_event_context *ctx,
2344 struct perf_cpu_context *cpuctx,
2345 enum event_type_t event_type)
235c7fc7 2346{
db24d33e 2347 int is_active = ctx->is_active;
c994d613
PZ
2348 struct perf_event *event;
2349
2350 lockdep_assert_held(&ctx->lock);
235c7fc7 2351
db24d33e 2352 ctx->is_active &= ~event_type;
cdd6c482 2353 if (likely(!ctx->nr_events))
facc4307
PZ
2354 return;
2355
4af4998b 2356 update_context_time(ctx);
e5d1367f 2357 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2358 if (!ctx->nr_active)
facc4307 2359 return;
5b0311e1 2360
075e0b00 2361 perf_pmu_disable(ctx->pmu);
db24d33e 2362 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2363 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2364 group_sched_out(event, cpuctx, ctx);
9ed6060d 2365 }
889ff015 2366
db24d33e 2367 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2368 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2369 group_sched_out(event, cpuctx, ctx);
9ed6060d 2370 }
1b9a644f 2371 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2372}
2373
564c2b21 2374/*
5a3126d4
PZ
2375 * Test whether two contexts are equivalent, i.e. whether they have both been
2376 * cloned from the same version of the same context.
2377 *
2378 * Equivalence is measured using a generation number in the context that is
2379 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2380 * and list_del_event().
564c2b21 2381 */
cdd6c482
IM
2382static int context_equiv(struct perf_event_context *ctx1,
2383 struct perf_event_context *ctx2)
564c2b21 2384{
211de6eb
PZ
2385 lockdep_assert_held(&ctx1->lock);
2386 lockdep_assert_held(&ctx2->lock);
2387
5a3126d4
PZ
2388 /* Pinning disables the swap optimization */
2389 if (ctx1->pin_count || ctx2->pin_count)
2390 return 0;
2391
2392 /* If ctx1 is the parent of ctx2 */
2393 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2394 return 1;
2395
2396 /* If ctx2 is the parent of ctx1 */
2397 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2398 return 1;
2399
2400 /*
2401 * If ctx1 and ctx2 have the same parent; we flatten the parent
2402 * hierarchy, see perf_event_init_context().
2403 */
2404 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2405 ctx1->parent_gen == ctx2->parent_gen)
2406 return 1;
2407
2408 /* Unmatched */
2409 return 0;
564c2b21
PM
2410}
2411
cdd6c482
IM
2412static void __perf_event_sync_stat(struct perf_event *event,
2413 struct perf_event *next_event)
bfbd3381
PZ
2414{
2415 u64 value;
2416
cdd6c482 2417 if (!event->attr.inherit_stat)
bfbd3381
PZ
2418 return;
2419
2420 /*
cdd6c482 2421 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2422 * because we're in the middle of a context switch and have IRQs
2423 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2424 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2425 * don't need to use it.
2426 */
cdd6c482
IM
2427 switch (event->state) {
2428 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2429 event->pmu->read(event);
2430 /* fall-through */
bfbd3381 2431
cdd6c482
IM
2432 case PERF_EVENT_STATE_INACTIVE:
2433 update_event_times(event);
bfbd3381
PZ
2434 break;
2435
2436 default:
2437 break;
2438 }
2439
2440 /*
cdd6c482 2441 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2442 * values when we flip the contexts.
2443 */
e7850595
PZ
2444 value = local64_read(&next_event->count);
2445 value = local64_xchg(&event->count, value);
2446 local64_set(&next_event->count, value);
bfbd3381 2447
cdd6c482
IM
2448 swap(event->total_time_enabled, next_event->total_time_enabled);
2449 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2450
bfbd3381 2451 /*
19d2e755 2452 * Since we swizzled the values, update the user visible data too.
bfbd3381 2453 */
cdd6c482
IM
2454 perf_event_update_userpage(event);
2455 perf_event_update_userpage(next_event);
bfbd3381
PZ
2456}
2457
cdd6c482
IM
2458static void perf_event_sync_stat(struct perf_event_context *ctx,
2459 struct perf_event_context *next_ctx)
bfbd3381 2460{
cdd6c482 2461 struct perf_event *event, *next_event;
bfbd3381
PZ
2462
2463 if (!ctx->nr_stat)
2464 return;
2465
02ffdbc8
PZ
2466 update_context_time(ctx);
2467
cdd6c482
IM
2468 event = list_first_entry(&ctx->event_list,
2469 struct perf_event, event_entry);
bfbd3381 2470
cdd6c482
IM
2471 next_event = list_first_entry(&next_ctx->event_list,
2472 struct perf_event, event_entry);
bfbd3381 2473
cdd6c482
IM
2474 while (&event->event_entry != &ctx->event_list &&
2475 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2476
cdd6c482 2477 __perf_event_sync_stat(event, next_event);
bfbd3381 2478
cdd6c482
IM
2479 event = list_next_entry(event, event_entry);
2480 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2481 }
2482}
2483
fe4b04fa
PZ
2484static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2485 struct task_struct *next)
0793a61d 2486{
8dc85d54 2487 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2488 struct perf_event_context *next_ctx;
5a3126d4 2489 struct perf_event_context *parent, *next_parent;
108b02cf 2490 struct perf_cpu_context *cpuctx;
c93f7669 2491 int do_switch = 1;
0793a61d 2492
108b02cf
PZ
2493 if (likely(!ctx))
2494 return;
10989fb2 2495
108b02cf
PZ
2496 cpuctx = __get_cpu_context(ctx);
2497 if (!cpuctx->task_ctx)
0793a61d
TG
2498 return;
2499
c93f7669 2500 rcu_read_lock();
8dc85d54 2501 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2502 if (!next_ctx)
2503 goto unlock;
2504
2505 parent = rcu_dereference(ctx->parent_ctx);
2506 next_parent = rcu_dereference(next_ctx->parent_ctx);
2507
2508 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2509 if (!parent && !next_parent)
5a3126d4
PZ
2510 goto unlock;
2511
2512 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2513 /*
2514 * Looks like the two contexts are clones, so we might be
2515 * able to optimize the context switch. We lock both
2516 * contexts and check that they are clones under the
2517 * lock (including re-checking that neither has been
2518 * uncloned in the meantime). It doesn't matter which
2519 * order we take the locks because no other cpu could
2520 * be trying to lock both of these tasks.
2521 */
e625cce1
TG
2522 raw_spin_lock(&ctx->lock);
2523 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2524 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2525 /*
2526 * XXX do we need a memory barrier of sorts
cdd6c482 2527 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2528 */
8dc85d54
PZ
2529 task->perf_event_ctxp[ctxn] = next_ctx;
2530 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2531 ctx->task = next;
2532 next_ctx->task = task;
5a158c3c
YZ
2533
2534 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2535
c93f7669 2536 do_switch = 0;
bfbd3381 2537
cdd6c482 2538 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2539 }
e625cce1
TG
2540 raw_spin_unlock(&next_ctx->lock);
2541 raw_spin_unlock(&ctx->lock);
564c2b21 2542 }
5a3126d4 2543unlock:
c93f7669 2544 rcu_read_unlock();
564c2b21 2545
c93f7669 2546 if (do_switch) {
facc4307 2547 raw_spin_lock(&ctx->lock);
5b0311e1 2548 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2549 cpuctx->task_ctx = NULL;
facc4307 2550 raw_spin_unlock(&ctx->lock);
c93f7669 2551 }
0793a61d
TG
2552}
2553
ba532500
YZ
2554void perf_sched_cb_dec(struct pmu *pmu)
2555{
2556 this_cpu_dec(perf_sched_cb_usages);
2557}
2558
2559void perf_sched_cb_inc(struct pmu *pmu)
2560{
2561 this_cpu_inc(perf_sched_cb_usages);
2562}
2563
2564/*
2565 * This function provides the context switch callback to the lower code
2566 * layer. It is invoked ONLY when the context switch callback is enabled.
2567 */
2568static void perf_pmu_sched_task(struct task_struct *prev,
2569 struct task_struct *next,
2570 bool sched_in)
2571{
2572 struct perf_cpu_context *cpuctx;
2573 struct pmu *pmu;
2574 unsigned long flags;
2575
2576 if (prev == next)
2577 return;
2578
2579 local_irq_save(flags);
2580
2581 rcu_read_lock();
2582
2583 list_for_each_entry_rcu(pmu, &pmus, entry) {
2584 if (pmu->sched_task) {
2585 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2586
2587 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2588
2589 perf_pmu_disable(pmu);
2590
2591 pmu->sched_task(cpuctx->task_ctx, sched_in);
2592
2593 perf_pmu_enable(pmu);
2594
2595 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2596 }
2597 }
2598
2599 rcu_read_unlock();
2600
2601 local_irq_restore(flags);
2602}
2603
45ac1403
AH
2604static void perf_event_switch(struct task_struct *task,
2605 struct task_struct *next_prev, bool sched_in);
2606
8dc85d54
PZ
2607#define for_each_task_context_nr(ctxn) \
2608 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2609
2610/*
2611 * Called from scheduler to remove the events of the current task,
2612 * with interrupts disabled.
2613 *
2614 * We stop each event and update the event value in event->count.
2615 *
2616 * This does not protect us against NMI, but disable()
2617 * sets the disabled bit in the control field of event _before_
2618 * accessing the event control register. If a NMI hits, then it will
2619 * not restart the event.
2620 */
ab0cce56
JO
2621void __perf_event_task_sched_out(struct task_struct *task,
2622 struct task_struct *next)
8dc85d54
PZ
2623{
2624 int ctxn;
2625
ba532500
YZ
2626 if (__this_cpu_read(perf_sched_cb_usages))
2627 perf_pmu_sched_task(task, next, false);
2628
45ac1403
AH
2629 if (atomic_read(&nr_switch_events))
2630 perf_event_switch(task, next, false);
2631
8dc85d54
PZ
2632 for_each_task_context_nr(ctxn)
2633 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2634
2635 /*
2636 * if cgroup events exist on this CPU, then we need
2637 * to check if we have to switch out PMU state.
2638 * cgroup event are system-wide mode only
2639 */
4a32fea9 2640 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2641 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2642}
2643
3e349507
PZ
2644static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2645 struct perf_event_context *ctx)
a08b159f 2646{
a63eaf34
PM
2647 if (!cpuctx->task_ctx)
2648 return;
012b84da
IM
2649
2650 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2651 return;
2652
04dc2dbb 2653 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2654 cpuctx->task_ctx = NULL;
2655}
2656
5b0311e1
FW
2657/*
2658 * Called with IRQs disabled
2659 */
2660static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2661 enum event_type_t event_type)
2662{
2663 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2664}
2665
235c7fc7 2666static void
5b0311e1 2667ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2668 struct perf_cpu_context *cpuctx)
0793a61d 2669{
cdd6c482 2670 struct perf_event *event;
0793a61d 2671
889ff015
FW
2672 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2673 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2674 continue;
5632ab12 2675 if (!event_filter_match(event))
3b6f9e5c
PM
2676 continue;
2677
e5d1367f
SE
2678 /* may need to reset tstamp_enabled */
2679 if (is_cgroup_event(event))
2680 perf_cgroup_mark_enabled(event, ctx);
2681
8c9ed8e1 2682 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2683 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2684
2685 /*
2686 * If this pinned group hasn't been scheduled,
2687 * put it in error state.
2688 */
cdd6c482
IM
2689 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2690 update_group_times(event);
2691 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2692 }
3b6f9e5c 2693 }
5b0311e1
FW
2694}
2695
2696static void
2697ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2698 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2699{
2700 struct perf_event *event;
2701 int can_add_hw = 1;
3b6f9e5c 2702
889ff015
FW
2703 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2704 /* Ignore events in OFF or ERROR state */
2705 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2706 continue;
04289bb9
IM
2707 /*
2708 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2709 * of events:
04289bb9 2710 */
5632ab12 2711 if (!event_filter_match(event))
0793a61d
TG
2712 continue;
2713
e5d1367f
SE
2714 /* may need to reset tstamp_enabled */
2715 if (is_cgroup_event(event))
2716 perf_cgroup_mark_enabled(event, ctx);
2717
9ed6060d 2718 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2719 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2720 can_add_hw = 0;
9ed6060d 2721 }
0793a61d 2722 }
5b0311e1
FW
2723}
2724
2725static void
2726ctx_sched_in(struct perf_event_context *ctx,
2727 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2728 enum event_type_t event_type,
2729 struct task_struct *task)
5b0311e1 2730{
db24d33e 2731 int is_active = ctx->is_active;
c994d613
PZ
2732 u64 now;
2733
2734 lockdep_assert_held(&ctx->lock);
e5d1367f 2735
db24d33e 2736 ctx->is_active |= event_type;
5b0311e1 2737 if (likely(!ctx->nr_events))
facc4307 2738 return;
5b0311e1 2739
e5d1367f
SE
2740 now = perf_clock();
2741 ctx->timestamp = now;
3f7cce3c 2742 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2743 /*
2744 * First go through the list and put on any pinned groups
2745 * in order to give them the best chance of going on.
2746 */
db24d33e 2747 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2748 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2749
2750 /* Then walk through the lower prio flexible groups */
db24d33e 2751 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2752 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2753}
2754
329c0e01 2755static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2756 enum event_type_t event_type,
2757 struct task_struct *task)
329c0e01
FW
2758{
2759 struct perf_event_context *ctx = &cpuctx->ctx;
2760
e5d1367f 2761 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2762}
2763
e5d1367f
SE
2764static void perf_event_context_sched_in(struct perf_event_context *ctx,
2765 struct task_struct *task)
235c7fc7 2766{
108b02cf 2767 struct perf_cpu_context *cpuctx;
235c7fc7 2768
108b02cf 2769 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2770 if (cpuctx->task_ctx == ctx)
2771 return;
2772
facc4307 2773 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2774 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2775 /*
2776 * We want to keep the following priority order:
2777 * cpu pinned (that don't need to move), task pinned,
2778 * cpu flexible, task flexible.
2779 */
2780 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2781
1d5f003f
GN
2782 if (ctx->nr_events)
2783 cpuctx->task_ctx = ctx;
9b33fa6b 2784
86b47c25
GN
2785 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2786
facc4307
PZ
2787 perf_pmu_enable(ctx->pmu);
2788 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2789}
2790
8dc85d54
PZ
2791/*
2792 * Called from scheduler to add the events of the current task
2793 * with interrupts disabled.
2794 *
2795 * We restore the event value and then enable it.
2796 *
2797 * This does not protect us against NMI, but enable()
2798 * sets the enabled bit in the control field of event _before_
2799 * accessing the event control register. If a NMI hits, then it will
2800 * keep the event running.
2801 */
ab0cce56
JO
2802void __perf_event_task_sched_in(struct task_struct *prev,
2803 struct task_struct *task)
8dc85d54
PZ
2804{
2805 struct perf_event_context *ctx;
2806 int ctxn;
2807
7e41d177
PZ
2808 /*
2809 * If cgroup events exist on this CPU, then we need to check if we have
2810 * to switch in PMU state; cgroup event are system-wide mode only.
2811 *
2812 * Since cgroup events are CPU events, we must schedule these in before
2813 * we schedule in the task events.
2814 */
2815 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2816 perf_cgroup_sched_in(prev, task);
2817
8dc85d54
PZ
2818 for_each_task_context_nr(ctxn) {
2819 ctx = task->perf_event_ctxp[ctxn];
2820 if (likely(!ctx))
2821 continue;
2822
e5d1367f 2823 perf_event_context_sched_in(ctx, task);
8dc85d54 2824 }
d010b332 2825
45ac1403
AH
2826 if (atomic_read(&nr_switch_events))
2827 perf_event_switch(task, prev, true);
2828
ba532500
YZ
2829 if (__this_cpu_read(perf_sched_cb_usages))
2830 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2831}
2832
abd50713
PZ
2833static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2834{
2835 u64 frequency = event->attr.sample_freq;
2836 u64 sec = NSEC_PER_SEC;
2837 u64 divisor, dividend;
2838
2839 int count_fls, nsec_fls, frequency_fls, sec_fls;
2840
2841 count_fls = fls64(count);
2842 nsec_fls = fls64(nsec);
2843 frequency_fls = fls64(frequency);
2844 sec_fls = 30;
2845
2846 /*
2847 * We got @count in @nsec, with a target of sample_freq HZ
2848 * the target period becomes:
2849 *
2850 * @count * 10^9
2851 * period = -------------------
2852 * @nsec * sample_freq
2853 *
2854 */
2855
2856 /*
2857 * Reduce accuracy by one bit such that @a and @b converge
2858 * to a similar magnitude.
2859 */
fe4b04fa 2860#define REDUCE_FLS(a, b) \
abd50713
PZ
2861do { \
2862 if (a##_fls > b##_fls) { \
2863 a >>= 1; \
2864 a##_fls--; \
2865 } else { \
2866 b >>= 1; \
2867 b##_fls--; \
2868 } \
2869} while (0)
2870
2871 /*
2872 * Reduce accuracy until either term fits in a u64, then proceed with
2873 * the other, so that finally we can do a u64/u64 division.
2874 */
2875 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2876 REDUCE_FLS(nsec, frequency);
2877 REDUCE_FLS(sec, count);
2878 }
2879
2880 if (count_fls + sec_fls > 64) {
2881 divisor = nsec * frequency;
2882
2883 while (count_fls + sec_fls > 64) {
2884 REDUCE_FLS(count, sec);
2885 divisor >>= 1;
2886 }
2887
2888 dividend = count * sec;
2889 } else {
2890 dividend = count * sec;
2891
2892 while (nsec_fls + frequency_fls > 64) {
2893 REDUCE_FLS(nsec, frequency);
2894 dividend >>= 1;
2895 }
2896
2897 divisor = nsec * frequency;
2898 }
2899
f6ab91ad
PZ
2900 if (!divisor)
2901 return dividend;
2902
abd50713
PZ
2903 return div64_u64(dividend, divisor);
2904}
2905
e050e3f0
SE
2906static DEFINE_PER_CPU(int, perf_throttled_count);
2907static DEFINE_PER_CPU(u64, perf_throttled_seq);
2908
f39d47ff 2909static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2910{
cdd6c482 2911 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2912 s64 period, sample_period;
bd2b5b12
PZ
2913 s64 delta;
2914
abd50713 2915 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2916
2917 delta = (s64)(period - hwc->sample_period);
2918 delta = (delta + 7) / 8; /* low pass filter */
2919
2920 sample_period = hwc->sample_period + delta;
2921
2922 if (!sample_period)
2923 sample_period = 1;
2924
bd2b5b12 2925 hwc->sample_period = sample_period;
abd50713 2926
e7850595 2927 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2928 if (disable)
2929 event->pmu->stop(event, PERF_EF_UPDATE);
2930
e7850595 2931 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2932
2933 if (disable)
2934 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2935 }
bd2b5b12
PZ
2936}
2937
e050e3f0
SE
2938/*
2939 * combine freq adjustment with unthrottling to avoid two passes over the
2940 * events. At the same time, make sure, having freq events does not change
2941 * the rate of unthrottling as that would introduce bias.
2942 */
2943static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2944 int needs_unthr)
60db5e09 2945{
cdd6c482
IM
2946 struct perf_event *event;
2947 struct hw_perf_event *hwc;
e050e3f0 2948 u64 now, period = TICK_NSEC;
abd50713 2949 s64 delta;
60db5e09 2950
e050e3f0
SE
2951 /*
2952 * only need to iterate over all events iff:
2953 * - context have events in frequency mode (needs freq adjust)
2954 * - there are events to unthrottle on this cpu
2955 */
2956 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2957 return;
2958
e050e3f0 2959 raw_spin_lock(&ctx->lock);
f39d47ff 2960 perf_pmu_disable(ctx->pmu);
e050e3f0 2961
03541f8b 2962 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2963 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2964 continue;
2965
5632ab12 2966 if (!event_filter_match(event))
5d27c23d
PZ
2967 continue;
2968
44377277
AS
2969 perf_pmu_disable(event->pmu);
2970
cdd6c482 2971 hwc = &event->hw;
6a24ed6c 2972
ae23bff1 2973 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2974 hwc->interrupts = 0;
cdd6c482 2975 perf_log_throttle(event, 1);
a4eaf7f1 2976 event->pmu->start(event, 0);
a78ac325
PZ
2977 }
2978
cdd6c482 2979 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2980 goto next;
60db5e09 2981
e050e3f0
SE
2982 /*
2983 * stop the event and update event->count
2984 */
2985 event->pmu->stop(event, PERF_EF_UPDATE);
2986
e7850595 2987 now = local64_read(&event->count);
abd50713
PZ
2988 delta = now - hwc->freq_count_stamp;
2989 hwc->freq_count_stamp = now;
60db5e09 2990
e050e3f0
SE
2991 /*
2992 * restart the event
2993 * reload only if value has changed
f39d47ff
SE
2994 * we have stopped the event so tell that
2995 * to perf_adjust_period() to avoid stopping it
2996 * twice.
e050e3f0 2997 */
abd50713 2998 if (delta > 0)
f39d47ff 2999 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3000
3001 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3002 next:
3003 perf_pmu_enable(event->pmu);
60db5e09 3004 }
e050e3f0 3005
f39d47ff 3006 perf_pmu_enable(ctx->pmu);
e050e3f0 3007 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3008}
3009
235c7fc7 3010/*
cdd6c482 3011 * Round-robin a context's events:
235c7fc7 3012 */
cdd6c482 3013static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3014{
dddd3379
TG
3015 /*
3016 * Rotate the first entry last of non-pinned groups. Rotation might be
3017 * disabled by the inheritance code.
3018 */
3019 if (!ctx->rotate_disable)
3020 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3021}
3022
9e630205 3023static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3024{
8dc85d54 3025 struct perf_event_context *ctx = NULL;
2fde4f94 3026 int rotate = 0;
7fc23a53 3027
b5ab4cd5 3028 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3029 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3030 rotate = 1;
3031 }
235c7fc7 3032
8dc85d54 3033 ctx = cpuctx->task_ctx;
b5ab4cd5 3034 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3035 if (ctx->nr_events != ctx->nr_active)
3036 rotate = 1;
3037 }
9717e6cd 3038
e050e3f0 3039 if (!rotate)
0f5a2601
PZ
3040 goto done;
3041
facc4307 3042 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3043 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3044
e050e3f0
SE
3045 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3046 if (ctx)
3047 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3048
e050e3f0
SE
3049 rotate_ctx(&cpuctx->ctx);
3050 if (ctx)
3051 rotate_ctx(ctx);
235c7fc7 3052
e050e3f0 3053 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3054
0f5a2601
PZ
3055 perf_pmu_enable(cpuctx->ctx.pmu);
3056 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3057done:
9e630205
SE
3058
3059 return rotate;
e9d2b064
PZ
3060}
3061
026249ef
FW
3062#ifdef CONFIG_NO_HZ_FULL
3063bool perf_event_can_stop_tick(void)
3064{
948b26b6 3065 if (atomic_read(&nr_freq_events) ||
d84153d6 3066 __this_cpu_read(perf_throttled_count))
026249ef 3067 return false;
d84153d6
FW
3068 else
3069 return true;
026249ef
FW
3070}
3071#endif
3072
e9d2b064
PZ
3073void perf_event_task_tick(void)
3074{
2fde4f94
MR
3075 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3076 struct perf_event_context *ctx, *tmp;
e050e3f0 3077 int throttled;
b5ab4cd5 3078
e9d2b064
PZ
3079 WARN_ON(!irqs_disabled());
3080
e050e3f0
SE
3081 __this_cpu_inc(perf_throttled_seq);
3082 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3083
2fde4f94 3084 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3085 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3086}
3087
889ff015
FW
3088static int event_enable_on_exec(struct perf_event *event,
3089 struct perf_event_context *ctx)
3090{
3091 if (!event->attr.enable_on_exec)
3092 return 0;
3093
3094 event->attr.enable_on_exec = 0;
3095 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3096 return 0;
3097
1d9b482e 3098 __perf_event_mark_enabled(event);
889ff015
FW
3099
3100 return 1;
3101}
3102
57e7986e 3103/*
cdd6c482 3104 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3105 * This expects task == current.
3106 */
c1274499 3107static void perf_event_enable_on_exec(int ctxn)
57e7986e 3108{
c1274499 3109 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3110 struct perf_cpu_context *cpuctx;
cdd6c482 3111 struct perf_event *event;
57e7986e
PM
3112 unsigned long flags;
3113 int enabled = 0;
3114
3115 local_irq_save(flags);
c1274499 3116 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3117 if (!ctx || !ctx->nr_events)
57e7986e
PM
3118 goto out;
3119
3e349507
PZ
3120 cpuctx = __get_cpu_context(ctx);
3121 perf_ctx_lock(cpuctx, ctx);
3122 list_for_each_entry(event, &ctx->event_list, event_entry)
3123 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3124
3125 /*
3e349507 3126 * Unclone and reschedule this context if we enabled any event.
57e7986e 3127 */
3e349507 3128 if (enabled) {
211de6eb 3129 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3130 ctx_resched(cpuctx, ctx);
3131 }
3132 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3133
9ed6060d 3134out:
57e7986e 3135 local_irq_restore(flags);
211de6eb
PZ
3136
3137 if (clone_ctx)
3138 put_ctx(clone_ctx);
57e7986e
PM
3139}
3140
e041e328
PZ
3141void perf_event_exec(void)
3142{
e041e328
PZ
3143 int ctxn;
3144
3145 rcu_read_lock();
c1274499
PZ
3146 for_each_task_context_nr(ctxn)
3147 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3148 rcu_read_unlock();
3149}
3150
0492d4c5
PZ
3151struct perf_read_data {
3152 struct perf_event *event;
3153 bool group;
7d88962e 3154 int ret;
0492d4c5
PZ
3155};
3156
0793a61d 3157/*
cdd6c482 3158 * Cross CPU call to read the hardware event
0793a61d 3159 */
cdd6c482 3160static void __perf_event_read(void *info)
0793a61d 3161{
0492d4c5
PZ
3162 struct perf_read_data *data = info;
3163 struct perf_event *sub, *event = data->event;
cdd6c482 3164 struct perf_event_context *ctx = event->ctx;
108b02cf 3165 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3166 struct pmu *pmu = event->pmu;
621a01ea 3167
e1ac3614
PM
3168 /*
3169 * If this is a task context, we need to check whether it is
3170 * the current task context of this cpu. If not it has been
3171 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3172 * event->count would have been updated to a recent sample
3173 * when the event was scheduled out.
e1ac3614
PM
3174 */
3175 if (ctx->task && cpuctx->task_ctx != ctx)
3176 return;
3177
e625cce1 3178 raw_spin_lock(&ctx->lock);
e5d1367f 3179 if (ctx->is_active) {
542e72fc 3180 update_context_time(ctx);
e5d1367f
SE
3181 update_cgrp_time_from_event(event);
3182 }
0492d4c5 3183
cdd6c482 3184 update_event_times(event);
4a00c16e
SB
3185 if (event->state != PERF_EVENT_STATE_ACTIVE)
3186 goto unlock;
0492d4c5 3187
4a00c16e
SB
3188 if (!data->group) {
3189 pmu->read(event);
3190 data->ret = 0;
0492d4c5 3191 goto unlock;
4a00c16e
SB
3192 }
3193
3194 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3195
3196 pmu->read(event);
0492d4c5
PZ
3197
3198 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3199 update_event_times(sub);
4a00c16e
SB
3200 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3201 /*
3202 * Use sibling's PMU rather than @event's since
3203 * sibling could be on different (eg: software) PMU.
3204 */
0492d4c5 3205 sub->pmu->read(sub);
4a00c16e 3206 }
0492d4c5 3207 }
4a00c16e
SB
3208
3209 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3210
3211unlock:
e625cce1 3212 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3213}
3214
b5e58793
PZ
3215static inline u64 perf_event_count(struct perf_event *event)
3216{
eacd3ecc
MF
3217 if (event->pmu->count)
3218 return event->pmu->count(event);
3219
3220 return __perf_event_count(event);
b5e58793
PZ
3221}
3222
ffe8690c
KX
3223/*
3224 * NMI-safe method to read a local event, that is an event that
3225 * is:
3226 * - either for the current task, or for this CPU
3227 * - does not have inherit set, for inherited task events
3228 * will not be local and we cannot read them atomically
3229 * - must not have a pmu::count method
3230 */
3231u64 perf_event_read_local(struct perf_event *event)
3232{
3233 unsigned long flags;
3234 u64 val;
3235
3236 /*
3237 * Disabling interrupts avoids all counter scheduling (context
3238 * switches, timer based rotation and IPIs).
3239 */
3240 local_irq_save(flags);
3241
3242 /* If this is a per-task event, it must be for current */
3243 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3244 event->hw.target != current);
3245
3246 /* If this is a per-CPU event, it must be for this CPU */
3247 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3248 event->cpu != smp_processor_id());
3249
3250 /*
3251 * It must not be an event with inherit set, we cannot read
3252 * all child counters from atomic context.
3253 */
3254 WARN_ON_ONCE(event->attr.inherit);
3255
3256 /*
3257 * It must not have a pmu::count method, those are not
3258 * NMI safe.
3259 */
3260 WARN_ON_ONCE(event->pmu->count);
3261
3262 /*
3263 * If the event is currently on this CPU, its either a per-task event,
3264 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3265 * oncpu == -1).
3266 */
3267 if (event->oncpu == smp_processor_id())
3268 event->pmu->read(event);
3269
3270 val = local64_read(&event->count);
3271 local_irq_restore(flags);
3272
3273 return val;
3274}
3275
7d88962e 3276static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3277{
7d88962e
SB
3278 int ret = 0;
3279
0793a61d 3280 /*
cdd6c482
IM
3281 * If event is enabled and currently active on a CPU, update the
3282 * value in the event structure:
0793a61d 3283 */
cdd6c482 3284 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3285 struct perf_read_data data = {
3286 .event = event,
3287 .group = group,
7d88962e 3288 .ret = 0,
0492d4c5 3289 };
cdd6c482 3290 smp_call_function_single(event->oncpu,
0492d4c5 3291 __perf_event_read, &data, 1);
7d88962e 3292 ret = data.ret;
cdd6c482 3293 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3294 struct perf_event_context *ctx = event->ctx;
3295 unsigned long flags;
3296
e625cce1 3297 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3298 /*
3299 * may read while context is not active
3300 * (e.g., thread is blocked), in that case
3301 * we cannot update context time
3302 */
e5d1367f 3303 if (ctx->is_active) {
c530ccd9 3304 update_context_time(ctx);
e5d1367f
SE
3305 update_cgrp_time_from_event(event);
3306 }
0492d4c5
PZ
3307 if (group)
3308 update_group_times(event);
3309 else
3310 update_event_times(event);
e625cce1 3311 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3312 }
7d88962e
SB
3313
3314 return ret;
0793a61d
TG
3315}
3316
a63eaf34 3317/*
cdd6c482 3318 * Initialize the perf_event context in a task_struct:
a63eaf34 3319 */
eb184479 3320static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3321{
e625cce1 3322 raw_spin_lock_init(&ctx->lock);
a63eaf34 3323 mutex_init(&ctx->mutex);
2fde4f94 3324 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3325 INIT_LIST_HEAD(&ctx->pinned_groups);
3326 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3327 INIT_LIST_HEAD(&ctx->event_list);
3328 atomic_set(&ctx->refcount, 1);
fadfe7be 3329 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3330}
3331
3332static struct perf_event_context *
3333alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3334{
3335 struct perf_event_context *ctx;
3336
3337 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3338 if (!ctx)
3339 return NULL;
3340
3341 __perf_event_init_context(ctx);
3342 if (task) {
3343 ctx->task = task;
3344 get_task_struct(task);
0793a61d 3345 }
eb184479
PZ
3346 ctx->pmu = pmu;
3347
3348 return ctx;
a63eaf34
PM
3349}
3350
2ebd4ffb
MH
3351static struct task_struct *
3352find_lively_task_by_vpid(pid_t vpid)
3353{
3354 struct task_struct *task;
3355 int err;
0793a61d
TG
3356
3357 rcu_read_lock();
2ebd4ffb 3358 if (!vpid)
0793a61d
TG
3359 task = current;
3360 else
2ebd4ffb 3361 task = find_task_by_vpid(vpid);
0793a61d
TG
3362 if (task)
3363 get_task_struct(task);
3364 rcu_read_unlock();
3365
3366 if (!task)
3367 return ERR_PTR(-ESRCH);
3368
0793a61d 3369 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3370 err = -EACCES;
3371 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3372 goto errout;
3373
2ebd4ffb
MH
3374 return task;
3375errout:
3376 put_task_struct(task);
3377 return ERR_PTR(err);
3378
3379}
3380
fe4b04fa
PZ
3381/*
3382 * Returns a matching context with refcount and pincount.
3383 */
108b02cf 3384static struct perf_event_context *
4af57ef2
YZ
3385find_get_context(struct pmu *pmu, struct task_struct *task,
3386 struct perf_event *event)
0793a61d 3387{
211de6eb 3388 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3389 struct perf_cpu_context *cpuctx;
4af57ef2 3390 void *task_ctx_data = NULL;
25346b93 3391 unsigned long flags;
8dc85d54 3392 int ctxn, err;
4af57ef2 3393 int cpu = event->cpu;
0793a61d 3394
22a4ec72 3395 if (!task) {
cdd6c482 3396 /* Must be root to operate on a CPU event: */
0764771d 3397 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3398 return ERR_PTR(-EACCES);
3399
0793a61d 3400 /*
cdd6c482 3401 * We could be clever and allow to attach a event to an
0793a61d
TG
3402 * offline CPU and activate it when the CPU comes up, but
3403 * that's for later.
3404 */
f6325e30 3405 if (!cpu_online(cpu))
0793a61d
TG
3406 return ERR_PTR(-ENODEV);
3407
108b02cf 3408 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3409 ctx = &cpuctx->ctx;
c93f7669 3410 get_ctx(ctx);
fe4b04fa 3411 ++ctx->pin_count;
0793a61d 3412
0793a61d
TG
3413 return ctx;
3414 }
3415
8dc85d54
PZ
3416 err = -EINVAL;
3417 ctxn = pmu->task_ctx_nr;
3418 if (ctxn < 0)
3419 goto errout;
3420
4af57ef2
YZ
3421 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3422 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3423 if (!task_ctx_data) {
3424 err = -ENOMEM;
3425 goto errout;
3426 }
3427 }
3428
9ed6060d 3429retry:
8dc85d54 3430 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3431 if (ctx) {
211de6eb 3432 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3433 ++ctx->pin_count;
4af57ef2
YZ
3434
3435 if (task_ctx_data && !ctx->task_ctx_data) {
3436 ctx->task_ctx_data = task_ctx_data;
3437 task_ctx_data = NULL;
3438 }
e625cce1 3439 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3440
3441 if (clone_ctx)
3442 put_ctx(clone_ctx);
9137fb28 3443 } else {
eb184479 3444 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3445 err = -ENOMEM;
3446 if (!ctx)
3447 goto errout;
eb184479 3448
4af57ef2
YZ
3449 if (task_ctx_data) {
3450 ctx->task_ctx_data = task_ctx_data;
3451 task_ctx_data = NULL;
3452 }
3453
dbe08d82
ON
3454 err = 0;
3455 mutex_lock(&task->perf_event_mutex);
3456 /*
3457 * If it has already passed perf_event_exit_task().
3458 * we must see PF_EXITING, it takes this mutex too.
3459 */
3460 if (task->flags & PF_EXITING)
3461 err = -ESRCH;
3462 else if (task->perf_event_ctxp[ctxn])
3463 err = -EAGAIN;
fe4b04fa 3464 else {
9137fb28 3465 get_ctx(ctx);
fe4b04fa 3466 ++ctx->pin_count;
dbe08d82 3467 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3468 }
dbe08d82
ON
3469 mutex_unlock(&task->perf_event_mutex);
3470
3471 if (unlikely(err)) {
9137fb28 3472 put_ctx(ctx);
dbe08d82
ON
3473
3474 if (err == -EAGAIN)
3475 goto retry;
3476 goto errout;
a63eaf34
PM
3477 }
3478 }
3479
4af57ef2 3480 kfree(task_ctx_data);
0793a61d 3481 return ctx;
c93f7669 3482
9ed6060d 3483errout:
4af57ef2 3484 kfree(task_ctx_data);
c93f7669 3485 return ERR_PTR(err);
0793a61d
TG
3486}
3487
6fb2915d 3488static void perf_event_free_filter(struct perf_event *event);
2541517c 3489static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3490
cdd6c482 3491static void free_event_rcu(struct rcu_head *head)
592903cd 3492{
cdd6c482 3493 struct perf_event *event;
592903cd 3494
cdd6c482
IM
3495 event = container_of(head, struct perf_event, rcu_head);
3496 if (event->ns)
3497 put_pid_ns(event->ns);
6fb2915d 3498 perf_event_free_filter(event);
cdd6c482 3499 kfree(event);
592903cd
PZ
3500}
3501
b69cf536
PZ
3502static void ring_buffer_attach(struct perf_event *event,
3503 struct ring_buffer *rb);
925d519a 3504
4beb31f3 3505static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3506{
4beb31f3
FW
3507 if (event->parent)
3508 return;
3509
4beb31f3
FW
3510 if (is_cgroup_event(event))
3511 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3512}
925d519a 3513
4beb31f3
FW
3514static void unaccount_event(struct perf_event *event)
3515{
3516 if (event->parent)
3517 return;
3518
3519 if (event->attach_state & PERF_ATTACH_TASK)
3520 static_key_slow_dec_deferred(&perf_sched_events);
3521 if (event->attr.mmap || event->attr.mmap_data)
3522 atomic_dec(&nr_mmap_events);
3523 if (event->attr.comm)
3524 atomic_dec(&nr_comm_events);
3525 if (event->attr.task)
3526 atomic_dec(&nr_task_events);
948b26b6
FW
3527 if (event->attr.freq)
3528 atomic_dec(&nr_freq_events);
45ac1403
AH
3529 if (event->attr.context_switch) {
3530 static_key_slow_dec_deferred(&perf_sched_events);
3531 atomic_dec(&nr_switch_events);
3532 }
4beb31f3
FW
3533 if (is_cgroup_event(event))
3534 static_key_slow_dec_deferred(&perf_sched_events);
3535 if (has_branch_stack(event))
3536 static_key_slow_dec_deferred(&perf_sched_events);
3537
3538 unaccount_event_cpu(event, event->cpu);
3539}
925d519a 3540
bed5b25a
AS
3541/*
3542 * The following implement mutual exclusion of events on "exclusive" pmus
3543 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3544 * at a time, so we disallow creating events that might conflict, namely:
3545 *
3546 * 1) cpu-wide events in the presence of per-task events,
3547 * 2) per-task events in the presence of cpu-wide events,
3548 * 3) two matching events on the same context.
3549 *
3550 * The former two cases are handled in the allocation path (perf_event_alloc(),
3551 * __free_event()), the latter -- before the first perf_install_in_context().
3552 */
3553static int exclusive_event_init(struct perf_event *event)
3554{
3555 struct pmu *pmu = event->pmu;
3556
3557 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3558 return 0;
3559
3560 /*
3561 * Prevent co-existence of per-task and cpu-wide events on the
3562 * same exclusive pmu.
3563 *
3564 * Negative pmu::exclusive_cnt means there are cpu-wide
3565 * events on this "exclusive" pmu, positive means there are
3566 * per-task events.
3567 *
3568 * Since this is called in perf_event_alloc() path, event::ctx
3569 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3570 * to mean "per-task event", because unlike other attach states it
3571 * never gets cleared.
3572 */
3573 if (event->attach_state & PERF_ATTACH_TASK) {
3574 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3575 return -EBUSY;
3576 } else {
3577 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3578 return -EBUSY;
3579 }
3580
3581 return 0;
3582}
3583
3584static void exclusive_event_destroy(struct perf_event *event)
3585{
3586 struct pmu *pmu = event->pmu;
3587
3588 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3589 return;
3590
3591 /* see comment in exclusive_event_init() */
3592 if (event->attach_state & PERF_ATTACH_TASK)
3593 atomic_dec(&pmu->exclusive_cnt);
3594 else
3595 atomic_inc(&pmu->exclusive_cnt);
3596}
3597
3598static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3599{
3600 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3601 (e1->cpu == e2->cpu ||
3602 e1->cpu == -1 ||
3603 e2->cpu == -1))
3604 return true;
3605 return false;
3606}
3607
3608/* Called under the same ctx::mutex as perf_install_in_context() */
3609static bool exclusive_event_installable(struct perf_event *event,
3610 struct perf_event_context *ctx)
3611{
3612 struct perf_event *iter_event;
3613 struct pmu *pmu = event->pmu;
3614
3615 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3616 return true;
3617
3618 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3619 if (exclusive_event_match(iter_event, event))
3620 return false;
3621 }
3622
3623 return true;
3624}
3625
766d6c07
FW
3626static void __free_event(struct perf_event *event)
3627{
cdd6c482 3628 if (!event->parent) {
927c7a9e
FW
3629 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3630 put_callchain_buffers();
f344011c 3631 }
9ee318a7 3632
dead9f29
AS
3633 perf_event_free_bpf_prog(event);
3634
766d6c07
FW
3635 if (event->destroy)
3636 event->destroy(event);
3637
3638 if (event->ctx)
3639 put_ctx(event->ctx);
3640
bed5b25a
AS
3641 if (event->pmu) {
3642 exclusive_event_destroy(event);
c464c76e 3643 module_put(event->pmu->module);
bed5b25a 3644 }
c464c76e 3645
766d6c07
FW
3646 call_rcu(&event->rcu_head, free_event_rcu);
3647}
683ede43
PZ
3648
3649static void _free_event(struct perf_event *event)
f1600952 3650{
e360adbe 3651 irq_work_sync(&event->pending);
925d519a 3652
4beb31f3 3653 unaccount_event(event);
9ee318a7 3654
76369139 3655 if (event->rb) {
9bb5d40c
PZ
3656 /*
3657 * Can happen when we close an event with re-directed output.
3658 *
3659 * Since we have a 0 refcount, perf_mmap_close() will skip
3660 * over us; possibly making our ring_buffer_put() the last.
3661 */
3662 mutex_lock(&event->mmap_mutex);
b69cf536 3663 ring_buffer_attach(event, NULL);
9bb5d40c 3664 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3665 }
3666
e5d1367f
SE
3667 if (is_cgroup_event(event))
3668 perf_detach_cgroup(event);
3669
766d6c07 3670 __free_event(event);
f1600952
PZ
3671}
3672
683ede43
PZ
3673/*
3674 * Used to free events which have a known refcount of 1, such as in error paths
3675 * where the event isn't exposed yet and inherited events.
3676 */
3677static void free_event(struct perf_event *event)
0793a61d 3678{
683ede43
PZ
3679 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3680 "unexpected event refcount: %ld; ptr=%p\n",
3681 atomic_long_read(&event->refcount), event)) {
3682 /* leak to avoid use-after-free */
3683 return;
3684 }
0793a61d 3685
683ede43 3686 _free_event(event);
0793a61d
TG
3687}
3688
a66a3052 3689/*
f8697762 3690 * Remove user event from the owner task.
a66a3052 3691 */
f8697762 3692static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3693{
8882135b 3694 struct task_struct *owner;
fb0459d7 3695
8882135b
PZ
3696 rcu_read_lock();
3697 owner = ACCESS_ONCE(event->owner);
3698 /*
3699 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3700 * !owner it means the list deletion is complete and we can indeed
3701 * free this event, otherwise we need to serialize on
3702 * owner->perf_event_mutex.
3703 */
3704 smp_read_barrier_depends();
3705 if (owner) {
3706 /*
3707 * Since delayed_put_task_struct() also drops the last
3708 * task reference we can safely take a new reference
3709 * while holding the rcu_read_lock().
3710 */
3711 get_task_struct(owner);
3712 }
3713 rcu_read_unlock();
3714
3715 if (owner) {
f63a8daa
PZ
3716 /*
3717 * If we're here through perf_event_exit_task() we're already
3718 * holding ctx->mutex which would be an inversion wrt. the
3719 * normal lock order.
3720 *
3721 * However we can safely take this lock because its the child
3722 * ctx->mutex.
3723 */
3724 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3725
8882135b
PZ
3726 /*
3727 * We have to re-check the event->owner field, if it is cleared
3728 * we raced with perf_event_exit_task(), acquiring the mutex
3729 * ensured they're done, and we can proceed with freeing the
3730 * event.
3731 */
3732 if (event->owner)
3733 list_del_init(&event->owner_entry);
3734 mutex_unlock(&owner->perf_event_mutex);
3735 put_task_struct(owner);
3736 }
f8697762
JO
3737}
3738
f8697762
JO
3739static void put_event(struct perf_event *event)
3740{
a83fe28e 3741 struct perf_event_context *ctx;
f8697762
JO
3742
3743 if (!atomic_long_dec_and_test(&event->refcount))
3744 return;
3745
3746 if (!is_kernel_event(event))
3747 perf_remove_from_owner(event);
8882135b 3748
683ede43
PZ
3749 /*
3750 * There are two ways this annotation is useful:
3751 *
3752 * 1) there is a lock recursion from perf_event_exit_task
3753 * see the comment there.
3754 *
3755 * 2) there is a lock-inversion with mmap_sem through
b15f495b 3756 * perf_read_group(), which takes faults while
683ede43
PZ
3757 * holding ctx->mutex, however this is called after
3758 * the last filedesc died, so there is no possibility
3759 * to trigger the AB-BA case.
3760 */
a83fe28e
PZ
3761 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3762 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3763 perf_remove_from_context(event, true);
d415a7f1 3764 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3765
3766 _free_event(event);
a6fa941d
AV
3767}
3768
683ede43
PZ
3769int perf_event_release_kernel(struct perf_event *event)
3770{
3771 put_event(event);
3772 return 0;
3773}
3774EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3775
8b10c5e2
PZ
3776/*
3777 * Called when the last reference to the file is gone.
3778 */
a6fa941d
AV
3779static int perf_release(struct inode *inode, struct file *file)
3780{
3781 put_event(file->private_data);
3782 return 0;
fb0459d7 3783}
fb0459d7 3784
fadfe7be
JO
3785/*
3786 * Remove all orphanes events from the context.
3787 */
3788static void orphans_remove_work(struct work_struct *work)
3789{
3790 struct perf_event_context *ctx;
3791 struct perf_event *event, *tmp;
3792
3793 ctx = container_of(work, struct perf_event_context,
3794 orphans_remove.work);
3795
3796 mutex_lock(&ctx->mutex);
3797 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3798 struct perf_event *parent_event = event->parent;
3799
3800 if (!is_orphaned_child(event))
3801 continue;
3802
3803 perf_remove_from_context(event, true);
3804
3805 mutex_lock(&parent_event->child_mutex);
3806 list_del_init(&event->child_list);
3807 mutex_unlock(&parent_event->child_mutex);
3808
3809 free_event(event);
3810 put_event(parent_event);
3811 }
3812
3813 raw_spin_lock_irq(&ctx->lock);
3814 ctx->orphans_remove_sched = false;
3815 raw_spin_unlock_irq(&ctx->lock);
3816 mutex_unlock(&ctx->mutex);
3817
3818 put_ctx(ctx);
3819}
3820
59ed446f 3821u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3822{
cdd6c482 3823 struct perf_event *child;
e53c0994
PZ
3824 u64 total = 0;
3825
59ed446f
PZ
3826 *enabled = 0;
3827 *running = 0;
3828
6f10581a 3829 mutex_lock(&event->child_mutex);
01add3ea 3830
7d88962e 3831 (void)perf_event_read(event, false);
01add3ea
SB
3832 total += perf_event_count(event);
3833
59ed446f
PZ
3834 *enabled += event->total_time_enabled +
3835 atomic64_read(&event->child_total_time_enabled);
3836 *running += event->total_time_running +
3837 atomic64_read(&event->child_total_time_running);
3838
3839 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3840 (void)perf_event_read(child, false);
01add3ea 3841 total += perf_event_count(child);
59ed446f
PZ
3842 *enabled += child->total_time_enabled;
3843 *running += child->total_time_running;
3844 }
6f10581a 3845 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3846
3847 return total;
3848}
fb0459d7 3849EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3850
7d88962e 3851static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3852 u64 read_format, u64 *values)
3dab77fb 3853{
fa8c2693
PZ
3854 struct perf_event *sub;
3855 int n = 1; /* skip @nr */
7d88962e 3856 int ret;
f63a8daa 3857
7d88962e
SB
3858 ret = perf_event_read(leader, true);
3859 if (ret)
3860 return ret;
abf4868b 3861
fa8c2693
PZ
3862 /*
3863 * Since we co-schedule groups, {enabled,running} times of siblings
3864 * will be identical to those of the leader, so we only publish one
3865 * set.
3866 */
3867 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3868 values[n++] += leader->total_time_enabled +
3869 atomic64_read(&leader->child_total_time_enabled);
3870 }
3dab77fb 3871
fa8c2693
PZ
3872 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3873 values[n++] += leader->total_time_running +
3874 atomic64_read(&leader->child_total_time_running);
3875 }
3876
3877 /*
3878 * Write {count,id} tuples for every sibling.
3879 */
3880 values[n++] += perf_event_count(leader);
abf4868b
PZ
3881 if (read_format & PERF_FORMAT_ID)
3882 values[n++] = primary_event_id(leader);
3dab77fb 3883
fa8c2693
PZ
3884 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3885 values[n++] += perf_event_count(sub);
3886 if (read_format & PERF_FORMAT_ID)
3887 values[n++] = primary_event_id(sub);
3888 }
7d88962e
SB
3889
3890 return 0;
fa8c2693 3891}
3dab77fb 3892
fa8c2693
PZ
3893static int perf_read_group(struct perf_event *event,
3894 u64 read_format, char __user *buf)
3895{
3896 struct perf_event *leader = event->group_leader, *child;
3897 struct perf_event_context *ctx = leader->ctx;
7d88962e 3898 int ret;
fa8c2693 3899 u64 *values;
3dab77fb 3900
fa8c2693 3901 lockdep_assert_held(&ctx->mutex);
3dab77fb 3902
fa8c2693
PZ
3903 values = kzalloc(event->read_size, GFP_KERNEL);
3904 if (!values)
3905 return -ENOMEM;
3dab77fb 3906
fa8c2693
PZ
3907 values[0] = 1 + leader->nr_siblings;
3908
3909 /*
3910 * By locking the child_mutex of the leader we effectively
3911 * lock the child list of all siblings.. XXX explain how.
3912 */
3913 mutex_lock(&leader->child_mutex);
abf4868b 3914
7d88962e
SB
3915 ret = __perf_read_group_add(leader, read_format, values);
3916 if (ret)
3917 goto unlock;
3918
3919 list_for_each_entry(child, &leader->child_list, child_list) {
3920 ret = __perf_read_group_add(child, read_format, values);
3921 if (ret)
3922 goto unlock;
3923 }
abf4868b 3924
fa8c2693 3925 mutex_unlock(&leader->child_mutex);
abf4868b 3926
7d88962e 3927 ret = event->read_size;
fa8c2693
PZ
3928 if (copy_to_user(buf, values, event->read_size))
3929 ret = -EFAULT;
7d88962e 3930 goto out;
fa8c2693 3931
7d88962e
SB
3932unlock:
3933 mutex_unlock(&leader->child_mutex);
3934out:
fa8c2693 3935 kfree(values);
abf4868b 3936 return ret;
3dab77fb
PZ
3937}
3938
b15f495b 3939static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
3940 u64 read_format, char __user *buf)
3941{
59ed446f 3942 u64 enabled, running;
3dab77fb
PZ
3943 u64 values[4];
3944 int n = 0;
3945
59ed446f
PZ
3946 values[n++] = perf_event_read_value(event, &enabled, &running);
3947 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3948 values[n++] = enabled;
3949 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3950 values[n++] = running;
3dab77fb 3951 if (read_format & PERF_FORMAT_ID)
cdd6c482 3952 values[n++] = primary_event_id(event);
3dab77fb
PZ
3953
3954 if (copy_to_user(buf, values, n * sizeof(u64)))
3955 return -EFAULT;
3956
3957 return n * sizeof(u64);
3958}
3959
dc633982
JO
3960static bool is_event_hup(struct perf_event *event)
3961{
3962 bool no_children;
3963
3964 if (event->state != PERF_EVENT_STATE_EXIT)
3965 return false;
3966
3967 mutex_lock(&event->child_mutex);
3968 no_children = list_empty(&event->child_list);
3969 mutex_unlock(&event->child_mutex);
3970 return no_children;
3971}
3972
0793a61d 3973/*
cdd6c482 3974 * Read the performance event - simple non blocking version for now
0793a61d
TG
3975 */
3976static ssize_t
b15f495b 3977__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3978{
cdd6c482 3979 u64 read_format = event->attr.read_format;
3dab77fb 3980 int ret;
0793a61d 3981
3b6f9e5c 3982 /*
cdd6c482 3983 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3984 * error state (i.e. because it was pinned but it couldn't be
3985 * scheduled on to the CPU at some point).
3986 */
cdd6c482 3987 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3988 return 0;
3989
c320c7b7 3990 if (count < event->read_size)
3dab77fb
PZ
3991 return -ENOSPC;
3992
cdd6c482 3993 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3994 if (read_format & PERF_FORMAT_GROUP)
b15f495b 3995 ret = perf_read_group(event, read_format, buf);
3dab77fb 3996 else
b15f495b 3997 ret = perf_read_one(event, read_format, buf);
0793a61d 3998
3dab77fb 3999 return ret;
0793a61d
TG
4000}
4001
0793a61d
TG
4002static ssize_t
4003perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4004{
cdd6c482 4005 struct perf_event *event = file->private_data;
f63a8daa
PZ
4006 struct perf_event_context *ctx;
4007 int ret;
0793a61d 4008
f63a8daa 4009 ctx = perf_event_ctx_lock(event);
b15f495b 4010 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4011 perf_event_ctx_unlock(event, ctx);
4012
4013 return ret;
0793a61d
TG
4014}
4015
4016static unsigned int perf_poll(struct file *file, poll_table *wait)
4017{
cdd6c482 4018 struct perf_event *event = file->private_data;
76369139 4019 struct ring_buffer *rb;
61b67684 4020 unsigned int events = POLLHUP;
c7138f37 4021
e708d7ad 4022 poll_wait(file, &event->waitq, wait);
179033b3 4023
dc633982 4024 if (is_event_hup(event))
179033b3 4025 return events;
c7138f37 4026
10c6db11 4027 /*
9bb5d40c
PZ
4028 * Pin the event->rb by taking event->mmap_mutex; otherwise
4029 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4030 */
4031 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4032 rb = event->rb;
4033 if (rb)
76369139 4034 events = atomic_xchg(&rb->poll, 0);
10c6db11 4035 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4036 return events;
4037}
4038
f63a8daa 4039static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4040{
7d88962e 4041 (void)perf_event_read(event, false);
e7850595 4042 local64_set(&event->count, 0);
cdd6c482 4043 perf_event_update_userpage(event);
3df5edad
PZ
4044}
4045
c93f7669 4046/*
cdd6c482
IM
4047 * Holding the top-level event's child_mutex means that any
4048 * descendant process that has inherited this event will block
4049 * in sync_child_event if it goes to exit, thus satisfying the
4050 * task existence requirements of perf_event_enable/disable.
c93f7669 4051 */
cdd6c482
IM
4052static void perf_event_for_each_child(struct perf_event *event,
4053 void (*func)(struct perf_event *))
3df5edad 4054{
cdd6c482 4055 struct perf_event *child;
3df5edad 4056
cdd6c482 4057 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4058
cdd6c482
IM
4059 mutex_lock(&event->child_mutex);
4060 func(event);
4061 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4062 func(child);
cdd6c482 4063 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4064}
4065
cdd6c482
IM
4066static void perf_event_for_each(struct perf_event *event,
4067 void (*func)(struct perf_event *))
3df5edad 4068{
cdd6c482
IM
4069 struct perf_event_context *ctx = event->ctx;
4070 struct perf_event *sibling;
3df5edad 4071
f63a8daa
PZ
4072 lockdep_assert_held(&ctx->mutex);
4073
cdd6c482 4074 event = event->group_leader;
75f937f2 4075
cdd6c482 4076 perf_event_for_each_child(event, func);
cdd6c482 4077 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4078 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4079}
4080
c7999c6f
PZ
4081struct period_event {
4082 struct perf_event *event;
08247e31 4083 u64 value;
c7999c6f 4084};
08247e31 4085
0017960f
PZ
4086static void ___perf_event_period(void *info)
4087{
4088 struct period_event *pe = info;
4089 struct perf_event *event = pe->event;
4090 u64 value = pe->value;
4091
4092 if (event->attr.freq) {
4093 event->attr.sample_freq = value;
4094 } else {
4095 event->attr.sample_period = value;
4096 event->hw.sample_period = value;
4097 }
4098
4099 local64_set(&event->hw.period_left, 0);
4100}
4101
c7999c6f
PZ
4102static int __perf_event_period(void *info)
4103{
4104 struct period_event *pe = info;
4105 struct perf_event *event = pe->event;
4106 struct perf_event_context *ctx = event->ctx;
4107 u64 value = pe->value;
4108 bool active;
08247e31 4109
c7999c6f 4110 raw_spin_lock(&ctx->lock);
cdd6c482 4111 if (event->attr.freq) {
cdd6c482 4112 event->attr.sample_freq = value;
08247e31 4113 } else {
cdd6c482
IM
4114 event->attr.sample_period = value;
4115 event->hw.sample_period = value;
08247e31 4116 }
bad7192b
PZ
4117
4118 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4119 if (active) {
4120 perf_pmu_disable(ctx->pmu);
4121 event->pmu->stop(event, PERF_EF_UPDATE);
4122 }
4123
4124 local64_set(&event->hw.period_left, 0);
4125
4126 if (active) {
4127 event->pmu->start(event, PERF_EF_RELOAD);
4128 perf_pmu_enable(ctx->pmu);
4129 }
c7999c6f 4130 raw_spin_unlock(&ctx->lock);
bad7192b 4131
c7999c6f
PZ
4132 return 0;
4133}
4134
4135static int perf_event_period(struct perf_event *event, u64 __user *arg)
4136{
4137 struct period_event pe = { .event = event, };
c7999c6f
PZ
4138 u64 value;
4139
4140 if (!is_sampling_event(event))
4141 return -EINVAL;
4142
4143 if (copy_from_user(&value, arg, sizeof(value)))
4144 return -EFAULT;
4145
4146 if (!value)
4147 return -EINVAL;
4148
4149 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4150 return -EINVAL;
4151
c7999c6f
PZ
4152 pe.value = value;
4153
0017960f
PZ
4154 event_function_call(event, __perf_event_period,
4155 ___perf_event_period, &pe);
08247e31 4156
c7999c6f 4157 return 0;
08247e31
PZ
4158}
4159
ac9721f3
PZ
4160static const struct file_operations perf_fops;
4161
2903ff01 4162static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4163{
2903ff01
AV
4164 struct fd f = fdget(fd);
4165 if (!f.file)
4166 return -EBADF;
ac9721f3 4167
2903ff01
AV
4168 if (f.file->f_op != &perf_fops) {
4169 fdput(f);
4170 return -EBADF;
ac9721f3 4171 }
2903ff01
AV
4172 *p = f;
4173 return 0;
ac9721f3
PZ
4174}
4175
4176static int perf_event_set_output(struct perf_event *event,
4177 struct perf_event *output_event);
6fb2915d 4178static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4179static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4180
f63a8daa 4181static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4182{
cdd6c482 4183 void (*func)(struct perf_event *);
3df5edad 4184 u32 flags = arg;
d859e29f
PM
4185
4186 switch (cmd) {
cdd6c482 4187 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4188 func = _perf_event_enable;
d859e29f 4189 break;
cdd6c482 4190 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4191 func = _perf_event_disable;
79f14641 4192 break;
cdd6c482 4193 case PERF_EVENT_IOC_RESET:
f63a8daa 4194 func = _perf_event_reset;
6de6a7b9 4195 break;
3df5edad 4196
cdd6c482 4197 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4198 return _perf_event_refresh(event, arg);
08247e31 4199
cdd6c482
IM
4200 case PERF_EVENT_IOC_PERIOD:
4201 return perf_event_period(event, (u64 __user *)arg);
08247e31 4202
cf4957f1
JO
4203 case PERF_EVENT_IOC_ID:
4204 {
4205 u64 id = primary_event_id(event);
4206
4207 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4208 return -EFAULT;
4209 return 0;
4210 }
4211
cdd6c482 4212 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4213 {
ac9721f3 4214 int ret;
ac9721f3 4215 if (arg != -1) {
2903ff01
AV
4216 struct perf_event *output_event;
4217 struct fd output;
4218 ret = perf_fget_light(arg, &output);
4219 if (ret)
4220 return ret;
4221 output_event = output.file->private_data;
4222 ret = perf_event_set_output(event, output_event);
4223 fdput(output);
4224 } else {
4225 ret = perf_event_set_output(event, NULL);
ac9721f3 4226 }
ac9721f3
PZ
4227 return ret;
4228 }
a4be7c27 4229
6fb2915d
LZ
4230 case PERF_EVENT_IOC_SET_FILTER:
4231 return perf_event_set_filter(event, (void __user *)arg);
4232
2541517c
AS
4233 case PERF_EVENT_IOC_SET_BPF:
4234 return perf_event_set_bpf_prog(event, arg);
4235
d859e29f 4236 default:
3df5edad 4237 return -ENOTTY;
d859e29f 4238 }
3df5edad
PZ
4239
4240 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4241 perf_event_for_each(event, func);
3df5edad 4242 else
cdd6c482 4243 perf_event_for_each_child(event, func);
3df5edad
PZ
4244
4245 return 0;
d859e29f
PM
4246}
4247
f63a8daa
PZ
4248static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4249{
4250 struct perf_event *event = file->private_data;
4251 struct perf_event_context *ctx;
4252 long ret;
4253
4254 ctx = perf_event_ctx_lock(event);
4255 ret = _perf_ioctl(event, cmd, arg);
4256 perf_event_ctx_unlock(event, ctx);
4257
4258 return ret;
4259}
4260
b3f20785
PM
4261#ifdef CONFIG_COMPAT
4262static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4263 unsigned long arg)
4264{
4265 switch (_IOC_NR(cmd)) {
4266 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4267 case _IOC_NR(PERF_EVENT_IOC_ID):
4268 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4269 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4270 cmd &= ~IOCSIZE_MASK;
4271 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4272 }
4273 break;
4274 }
4275 return perf_ioctl(file, cmd, arg);
4276}
4277#else
4278# define perf_compat_ioctl NULL
4279#endif
4280
cdd6c482 4281int perf_event_task_enable(void)
771d7cde 4282{
f63a8daa 4283 struct perf_event_context *ctx;
cdd6c482 4284 struct perf_event *event;
771d7cde 4285
cdd6c482 4286 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4287 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4288 ctx = perf_event_ctx_lock(event);
4289 perf_event_for_each_child(event, _perf_event_enable);
4290 perf_event_ctx_unlock(event, ctx);
4291 }
cdd6c482 4292 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4293
4294 return 0;
4295}
4296
cdd6c482 4297int perf_event_task_disable(void)
771d7cde 4298{
f63a8daa 4299 struct perf_event_context *ctx;
cdd6c482 4300 struct perf_event *event;
771d7cde 4301
cdd6c482 4302 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4303 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4304 ctx = perf_event_ctx_lock(event);
4305 perf_event_for_each_child(event, _perf_event_disable);
4306 perf_event_ctx_unlock(event, ctx);
4307 }
cdd6c482 4308 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4309
4310 return 0;
4311}
4312
cdd6c482 4313static int perf_event_index(struct perf_event *event)
194002b2 4314{
a4eaf7f1
PZ
4315 if (event->hw.state & PERF_HES_STOPPED)
4316 return 0;
4317
cdd6c482 4318 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4319 return 0;
4320
35edc2a5 4321 return event->pmu->event_idx(event);
194002b2
PZ
4322}
4323
c4794295 4324static void calc_timer_values(struct perf_event *event,
e3f3541c 4325 u64 *now,
7f310a5d
EM
4326 u64 *enabled,
4327 u64 *running)
c4794295 4328{
e3f3541c 4329 u64 ctx_time;
c4794295 4330
e3f3541c
PZ
4331 *now = perf_clock();
4332 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4333 *enabled = ctx_time - event->tstamp_enabled;
4334 *running = ctx_time - event->tstamp_running;
4335}
4336
fa731587
PZ
4337static void perf_event_init_userpage(struct perf_event *event)
4338{
4339 struct perf_event_mmap_page *userpg;
4340 struct ring_buffer *rb;
4341
4342 rcu_read_lock();
4343 rb = rcu_dereference(event->rb);
4344 if (!rb)
4345 goto unlock;
4346
4347 userpg = rb->user_page;
4348
4349 /* Allow new userspace to detect that bit 0 is deprecated */
4350 userpg->cap_bit0_is_deprecated = 1;
4351 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4352 userpg->data_offset = PAGE_SIZE;
4353 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4354
4355unlock:
4356 rcu_read_unlock();
4357}
4358
c1317ec2
AL
4359void __weak arch_perf_update_userpage(
4360 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4361{
4362}
4363
38ff667b
PZ
4364/*
4365 * Callers need to ensure there can be no nesting of this function, otherwise
4366 * the seqlock logic goes bad. We can not serialize this because the arch
4367 * code calls this from NMI context.
4368 */
cdd6c482 4369void perf_event_update_userpage(struct perf_event *event)
37d81828 4370{
cdd6c482 4371 struct perf_event_mmap_page *userpg;
76369139 4372 struct ring_buffer *rb;
e3f3541c 4373 u64 enabled, running, now;
38ff667b
PZ
4374
4375 rcu_read_lock();
5ec4c599
PZ
4376 rb = rcu_dereference(event->rb);
4377 if (!rb)
4378 goto unlock;
4379
0d641208
EM
4380 /*
4381 * compute total_time_enabled, total_time_running
4382 * based on snapshot values taken when the event
4383 * was last scheduled in.
4384 *
4385 * we cannot simply called update_context_time()
4386 * because of locking issue as we can be called in
4387 * NMI context
4388 */
e3f3541c 4389 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4390
76369139 4391 userpg = rb->user_page;
7b732a75
PZ
4392 /*
4393 * Disable preemption so as to not let the corresponding user-space
4394 * spin too long if we get preempted.
4395 */
4396 preempt_disable();
37d81828 4397 ++userpg->lock;
92f22a38 4398 barrier();
cdd6c482 4399 userpg->index = perf_event_index(event);
b5e58793 4400 userpg->offset = perf_event_count(event);
365a4038 4401 if (userpg->index)
e7850595 4402 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4403
0d641208 4404 userpg->time_enabled = enabled +
cdd6c482 4405 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4406
0d641208 4407 userpg->time_running = running +
cdd6c482 4408 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4409
c1317ec2 4410 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4411
92f22a38 4412 barrier();
37d81828 4413 ++userpg->lock;
7b732a75 4414 preempt_enable();
38ff667b 4415unlock:
7b732a75 4416 rcu_read_unlock();
37d81828
PM
4417}
4418
906010b2
PZ
4419static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4420{
4421 struct perf_event *event = vma->vm_file->private_data;
76369139 4422 struct ring_buffer *rb;
906010b2
PZ
4423 int ret = VM_FAULT_SIGBUS;
4424
4425 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4426 if (vmf->pgoff == 0)
4427 ret = 0;
4428 return ret;
4429 }
4430
4431 rcu_read_lock();
76369139
FW
4432 rb = rcu_dereference(event->rb);
4433 if (!rb)
906010b2
PZ
4434 goto unlock;
4435
4436 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4437 goto unlock;
4438
76369139 4439 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4440 if (!vmf->page)
4441 goto unlock;
4442
4443 get_page(vmf->page);
4444 vmf->page->mapping = vma->vm_file->f_mapping;
4445 vmf->page->index = vmf->pgoff;
4446
4447 ret = 0;
4448unlock:
4449 rcu_read_unlock();
4450
4451 return ret;
4452}
4453
10c6db11
PZ
4454static void ring_buffer_attach(struct perf_event *event,
4455 struct ring_buffer *rb)
4456{
b69cf536 4457 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4458 unsigned long flags;
4459
b69cf536
PZ
4460 if (event->rb) {
4461 /*
4462 * Should be impossible, we set this when removing
4463 * event->rb_entry and wait/clear when adding event->rb_entry.
4464 */
4465 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4466
b69cf536 4467 old_rb = event->rb;
b69cf536
PZ
4468 spin_lock_irqsave(&old_rb->event_lock, flags);
4469 list_del_rcu(&event->rb_entry);
4470 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4471
2f993cf0
ON
4472 event->rcu_batches = get_state_synchronize_rcu();
4473 event->rcu_pending = 1;
b69cf536 4474 }
10c6db11 4475
b69cf536 4476 if (rb) {
2f993cf0
ON
4477 if (event->rcu_pending) {
4478 cond_synchronize_rcu(event->rcu_batches);
4479 event->rcu_pending = 0;
4480 }
4481
b69cf536
PZ
4482 spin_lock_irqsave(&rb->event_lock, flags);
4483 list_add_rcu(&event->rb_entry, &rb->event_list);
4484 spin_unlock_irqrestore(&rb->event_lock, flags);
4485 }
4486
4487 rcu_assign_pointer(event->rb, rb);
4488
4489 if (old_rb) {
4490 ring_buffer_put(old_rb);
4491 /*
4492 * Since we detached before setting the new rb, so that we
4493 * could attach the new rb, we could have missed a wakeup.
4494 * Provide it now.
4495 */
4496 wake_up_all(&event->waitq);
4497 }
10c6db11
PZ
4498}
4499
4500static void ring_buffer_wakeup(struct perf_event *event)
4501{
4502 struct ring_buffer *rb;
4503
4504 rcu_read_lock();
4505 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4506 if (rb) {
4507 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4508 wake_up_all(&event->waitq);
4509 }
10c6db11
PZ
4510 rcu_read_unlock();
4511}
4512
fdc26706 4513struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4514{
76369139 4515 struct ring_buffer *rb;
7b732a75 4516
ac9721f3 4517 rcu_read_lock();
76369139
FW
4518 rb = rcu_dereference(event->rb);
4519 if (rb) {
4520 if (!atomic_inc_not_zero(&rb->refcount))
4521 rb = NULL;
ac9721f3
PZ
4522 }
4523 rcu_read_unlock();
4524
76369139 4525 return rb;
ac9721f3
PZ
4526}
4527
fdc26706 4528void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4529{
76369139 4530 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4531 return;
7b732a75 4532
9bb5d40c 4533 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4534
76369139 4535 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4536}
4537
4538static void perf_mmap_open(struct vm_area_struct *vma)
4539{
cdd6c482 4540 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4541
cdd6c482 4542 atomic_inc(&event->mmap_count);
9bb5d40c 4543 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4544
45bfb2e5
PZ
4545 if (vma->vm_pgoff)
4546 atomic_inc(&event->rb->aux_mmap_count);
4547
1e0fb9ec
AL
4548 if (event->pmu->event_mapped)
4549 event->pmu->event_mapped(event);
7b732a75
PZ
4550}
4551
9bb5d40c
PZ
4552/*
4553 * A buffer can be mmap()ed multiple times; either directly through the same
4554 * event, or through other events by use of perf_event_set_output().
4555 *
4556 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4557 * the buffer here, where we still have a VM context. This means we need
4558 * to detach all events redirecting to us.
4559 */
7b732a75
PZ
4560static void perf_mmap_close(struct vm_area_struct *vma)
4561{
cdd6c482 4562 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4563
b69cf536 4564 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4565 struct user_struct *mmap_user = rb->mmap_user;
4566 int mmap_locked = rb->mmap_locked;
4567 unsigned long size = perf_data_size(rb);
789f90fc 4568
1e0fb9ec
AL
4569 if (event->pmu->event_unmapped)
4570 event->pmu->event_unmapped(event);
4571
45bfb2e5
PZ
4572 /*
4573 * rb->aux_mmap_count will always drop before rb->mmap_count and
4574 * event->mmap_count, so it is ok to use event->mmap_mutex to
4575 * serialize with perf_mmap here.
4576 */
4577 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4578 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4579 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4580 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4581
4582 rb_free_aux(rb);
4583 mutex_unlock(&event->mmap_mutex);
4584 }
4585
9bb5d40c
PZ
4586 atomic_dec(&rb->mmap_count);
4587
4588 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4589 goto out_put;
9bb5d40c 4590
b69cf536 4591 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4592 mutex_unlock(&event->mmap_mutex);
4593
4594 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4595 if (atomic_read(&rb->mmap_count))
4596 goto out_put;
ac9721f3 4597
9bb5d40c
PZ
4598 /*
4599 * No other mmap()s, detach from all other events that might redirect
4600 * into the now unreachable buffer. Somewhat complicated by the
4601 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4602 */
4603again:
4604 rcu_read_lock();
4605 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4606 if (!atomic_long_inc_not_zero(&event->refcount)) {
4607 /*
4608 * This event is en-route to free_event() which will
4609 * detach it and remove it from the list.
4610 */
4611 continue;
4612 }
4613 rcu_read_unlock();
789f90fc 4614
9bb5d40c
PZ
4615 mutex_lock(&event->mmap_mutex);
4616 /*
4617 * Check we didn't race with perf_event_set_output() which can
4618 * swizzle the rb from under us while we were waiting to
4619 * acquire mmap_mutex.
4620 *
4621 * If we find a different rb; ignore this event, a next
4622 * iteration will no longer find it on the list. We have to
4623 * still restart the iteration to make sure we're not now
4624 * iterating the wrong list.
4625 */
b69cf536
PZ
4626 if (event->rb == rb)
4627 ring_buffer_attach(event, NULL);
4628
cdd6c482 4629 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4630 put_event(event);
ac9721f3 4631
9bb5d40c
PZ
4632 /*
4633 * Restart the iteration; either we're on the wrong list or
4634 * destroyed its integrity by doing a deletion.
4635 */
4636 goto again;
7b732a75 4637 }
9bb5d40c
PZ
4638 rcu_read_unlock();
4639
4640 /*
4641 * It could be there's still a few 0-ref events on the list; they'll
4642 * get cleaned up by free_event() -- they'll also still have their
4643 * ref on the rb and will free it whenever they are done with it.
4644 *
4645 * Aside from that, this buffer is 'fully' detached and unmapped,
4646 * undo the VM accounting.
4647 */
4648
4649 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4650 vma->vm_mm->pinned_vm -= mmap_locked;
4651 free_uid(mmap_user);
4652
b69cf536 4653out_put:
9bb5d40c 4654 ring_buffer_put(rb); /* could be last */
37d81828
PM
4655}
4656
f0f37e2f 4657static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4658 .open = perf_mmap_open,
45bfb2e5 4659 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4660 .fault = perf_mmap_fault,
4661 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4662};
4663
4664static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4665{
cdd6c482 4666 struct perf_event *event = file->private_data;
22a4f650 4667 unsigned long user_locked, user_lock_limit;
789f90fc 4668 struct user_struct *user = current_user();
22a4f650 4669 unsigned long locked, lock_limit;
45bfb2e5 4670 struct ring_buffer *rb = NULL;
7b732a75
PZ
4671 unsigned long vma_size;
4672 unsigned long nr_pages;
45bfb2e5 4673 long user_extra = 0, extra = 0;
d57e34fd 4674 int ret = 0, flags = 0;
37d81828 4675
c7920614
PZ
4676 /*
4677 * Don't allow mmap() of inherited per-task counters. This would
4678 * create a performance issue due to all children writing to the
76369139 4679 * same rb.
c7920614
PZ
4680 */
4681 if (event->cpu == -1 && event->attr.inherit)
4682 return -EINVAL;
4683
43a21ea8 4684 if (!(vma->vm_flags & VM_SHARED))
37d81828 4685 return -EINVAL;
7b732a75
PZ
4686
4687 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4688
4689 if (vma->vm_pgoff == 0) {
4690 nr_pages = (vma_size / PAGE_SIZE) - 1;
4691 } else {
4692 /*
4693 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4694 * mapped, all subsequent mappings should have the same size
4695 * and offset. Must be above the normal perf buffer.
4696 */
4697 u64 aux_offset, aux_size;
4698
4699 if (!event->rb)
4700 return -EINVAL;
4701
4702 nr_pages = vma_size / PAGE_SIZE;
4703
4704 mutex_lock(&event->mmap_mutex);
4705 ret = -EINVAL;
4706
4707 rb = event->rb;
4708 if (!rb)
4709 goto aux_unlock;
4710
4711 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4712 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4713
4714 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4715 goto aux_unlock;
4716
4717 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4718 goto aux_unlock;
4719
4720 /* already mapped with a different offset */
4721 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4722 goto aux_unlock;
4723
4724 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4725 goto aux_unlock;
4726
4727 /* already mapped with a different size */
4728 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4729 goto aux_unlock;
4730
4731 if (!is_power_of_2(nr_pages))
4732 goto aux_unlock;
4733
4734 if (!atomic_inc_not_zero(&rb->mmap_count))
4735 goto aux_unlock;
4736
4737 if (rb_has_aux(rb)) {
4738 atomic_inc(&rb->aux_mmap_count);
4739 ret = 0;
4740 goto unlock;
4741 }
4742
4743 atomic_set(&rb->aux_mmap_count, 1);
4744 user_extra = nr_pages;
4745
4746 goto accounting;
4747 }
7b732a75 4748
7730d865 4749 /*
76369139 4750 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4751 * can do bitmasks instead of modulo.
4752 */
2ed11312 4753 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4754 return -EINVAL;
4755
7b732a75 4756 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4757 return -EINVAL;
4758
cdd6c482 4759 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4760again:
cdd6c482 4761 mutex_lock(&event->mmap_mutex);
76369139 4762 if (event->rb) {
9bb5d40c 4763 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4764 ret = -EINVAL;
9bb5d40c
PZ
4765 goto unlock;
4766 }
4767
4768 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4769 /*
4770 * Raced against perf_mmap_close() through
4771 * perf_event_set_output(). Try again, hope for better
4772 * luck.
4773 */
4774 mutex_unlock(&event->mmap_mutex);
4775 goto again;
4776 }
4777
ebb3c4c4
PZ
4778 goto unlock;
4779 }
4780
789f90fc 4781 user_extra = nr_pages + 1;
45bfb2e5
PZ
4782
4783accounting:
cdd6c482 4784 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4785
4786 /*
4787 * Increase the limit linearly with more CPUs:
4788 */
4789 user_lock_limit *= num_online_cpus();
4790
789f90fc 4791 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4792
789f90fc
PZ
4793 if (user_locked > user_lock_limit)
4794 extra = user_locked - user_lock_limit;
7b732a75 4795
78d7d407 4796 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4797 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4798 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4799
459ec28a
IM
4800 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4801 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4802 ret = -EPERM;
4803 goto unlock;
4804 }
7b732a75 4805
45bfb2e5 4806 WARN_ON(!rb && event->rb);
906010b2 4807
d57e34fd 4808 if (vma->vm_flags & VM_WRITE)
76369139 4809 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4810
76369139 4811 if (!rb) {
45bfb2e5
PZ
4812 rb = rb_alloc(nr_pages,
4813 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4814 event->cpu, flags);
26cb63ad 4815
45bfb2e5
PZ
4816 if (!rb) {
4817 ret = -ENOMEM;
4818 goto unlock;
4819 }
43a21ea8 4820
45bfb2e5
PZ
4821 atomic_set(&rb->mmap_count, 1);
4822 rb->mmap_user = get_current_user();
4823 rb->mmap_locked = extra;
26cb63ad 4824
45bfb2e5 4825 ring_buffer_attach(event, rb);
ac9721f3 4826
45bfb2e5
PZ
4827 perf_event_init_userpage(event);
4828 perf_event_update_userpage(event);
4829 } else {
1a594131
AS
4830 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4831 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4832 if (!ret)
4833 rb->aux_mmap_locked = extra;
4834 }
9a0f05cb 4835
ebb3c4c4 4836unlock:
45bfb2e5
PZ
4837 if (!ret) {
4838 atomic_long_add(user_extra, &user->locked_vm);
4839 vma->vm_mm->pinned_vm += extra;
4840
ac9721f3 4841 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4842 } else if (rb) {
4843 atomic_dec(&rb->mmap_count);
4844 }
4845aux_unlock:
cdd6c482 4846 mutex_unlock(&event->mmap_mutex);
37d81828 4847
9bb5d40c
PZ
4848 /*
4849 * Since pinned accounting is per vm we cannot allow fork() to copy our
4850 * vma.
4851 */
26cb63ad 4852 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4853 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4854
1e0fb9ec
AL
4855 if (event->pmu->event_mapped)
4856 event->pmu->event_mapped(event);
4857
7b732a75 4858 return ret;
37d81828
PM
4859}
4860
3c446b3d
PZ
4861static int perf_fasync(int fd, struct file *filp, int on)
4862{
496ad9aa 4863 struct inode *inode = file_inode(filp);
cdd6c482 4864 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4865 int retval;
4866
4867 mutex_lock(&inode->i_mutex);
cdd6c482 4868 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4869 mutex_unlock(&inode->i_mutex);
4870
4871 if (retval < 0)
4872 return retval;
4873
4874 return 0;
4875}
4876
0793a61d 4877static const struct file_operations perf_fops = {
3326c1ce 4878 .llseek = no_llseek,
0793a61d
TG
4879 .release = perf_release,
4880 .read = perf_read,
4881 .poll = perf_poll,
d859e29f 4882 .unlocked_ioctl = perf_ioctl,
b3f20785 4883 .compat_ioctl = perf_compat_ioctl,
37d81828 4884 .mmap = perf_mmap,
3c446b3d 4885 .fasync = perf_fasync,
0793a61d
TG
4886};
4887
925d519a 4888/*
cdd6c482 4889 * Perf event wakeup
925d519a
PZ
4890 *
4891 * If there's data, ensure we set the poll() state and publish everything
4892 * to user-space before waking everybody up.
4893 */
4894
fed66e2c
PZ
4895static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4896{
4897 /* only the parent has fasync state */
4898 if (event->parent)
4899 event = event->parent;
4900 return &event->fasync;
4901}
4902
cdd6c482 4903void perf_event_wakeup(struct perf_event *event)
925d519a 4904{
10c6db11 4905 ring_buffer_wakeup(event);
4c9e2542 4906
cdd6c482 4907 if (event->pending_kill) {
fed66e2c 4908 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4909 event->pending_kill = 0;
4c9e2542 4910 }
925d519a
PZ
4911}
4912
e360adbe 4913static void perf_pending_event(struct irq_work *entry)
79f14641 4914{
cdd6c482
IM
4915 struct perf_event *event = container_of(entry,
4916 struct perf_event, pending);
d525211f
PZ
4917 int rctx;
4918
4919 rctx = perf_swevent_get_recursion_context();
4920 /*
4921 * If we 'fail' here, that's OK, it means recursion is already disabled
4922 * and we won't recurse 'further'.
4923 */
79f14641 4924
cdd6c482
IM
4925 if (event->pending_disable) {
4926 event->pending_disable = 0;
4927 __perf_event_disable(event);
79f14641
PZ
4928 }
4929
cdd6c482
IM
4930 if (event->pending_wakeup) {
4931 event->pending_wakeup = 0;
4932 perf_event_wakeup(event);
79f14641 4933 }
d525211f
PZ
4934
4935 if (rctx >= 0)
4936 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4937}
4938
39447b38
ZY
4939/*
4940 * We assume there is only KVM supporting the callbacks.
4941 * Later on, we might change it to a list if there is
4942 * another virtualization implementation supporting the callbacks.
4943 */
4944struct perf_guest_info_callbacks *perf_guest_cbs;
4945
4946int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4947{
4948 perf_guest_cbs = cbs;
4949 return 0;
4950}
4951EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4952
4953int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4954{
4955 perf_guest_cbs = NULL;
4956 return 0;
4957}
4958EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4959
4018994f
JO
4960static void
4961perf_output_sample_regs(struct perf_output_handle *handle,
4962 struct pt_regs *regs, u64 mask)
4963{
4964 int bit;
4965
4966 for_each_set_bit(bit, (const unsigned long *) &mask,
4967 sizeof(mask) * BITS_PER_BYTE) {
4968 u64 val;
4969
4970 val = perf_reg_value(regs, bit);
4971 perf_output_put(handle, val);
4972 }
4973}
4974
60e2364e 4975static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4976 struct pt_regs *regs,
4977 struct pt_regs *regs_user_copy)
4018994f 4978{
88a7c26a
AL
4979 if (user_mode(regs)) {
4980 regs_user->abi = perf_reg_abi(current);
2565711f 4981 regs_user->regs = regs;
88a7c26a
AL
4982 } else if (current->mm) {
4983 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4984 } else {
4985 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4986 regs_user->regs = NULL;
4018994f
JO
4987 }
4988}
4989
60e2364e
SE
4990static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4991 struct pt_regs *regs)
4992{
4993 regs_intr->regs = regs;
4994 regs_intr->abi = perf_reg_abi(current);
4995}
4996
4997
c5ebcedb
JO
4998/*
4999 * Get remaining task size from user stack pointer.
5000 *
5001 * It'd be better to take stack vma map and limit this more
5002 * precisly, but there's no way to get it safely under interrupt,
5003 * so using TASK_SIZE as limit.
5004 */
5005static u64 perf_ustack_task_size(struct pt_regs *regs)
5006{
5007 unsigned long addr = perf_user_stack_pointer(regs);
5008
5009 if (!addr || addr >= TASK_SIZE)
5010 return 0;
5011
5012 return TASK_SIZE - addr;
5013}
5014
5015static u16
5016perf_sample_ustack_size(u16 stack_size, u16 header_size,
5017 struct pt_regs *regs)
5018{
5019 u64 task_size;
5020
5021 /* No regs, no stack pointer, no dump. */
5022 if (!regs)
5023 return 0;
5024
5025 /*
5026 * Check if we fit in with the requested stack size into the:
5027 * - TASK_SIZE
5028 * If we don't, we limit the size to the TASK_SIZE.
5029 *
5030 * - remaining sample size
5031 * If we don't, we customize the stack size to
5032 * fit in to the remaining sample size.
5033 */
5034
5035 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5036 stack_size = min(stack_size, (u16) task_size);
5037
5038 /* Current header size plus static size and dynamic size. */
5039 header_size += 2 * sizeof(u64);
5040
5041 /* Do we fit in with the current stack dump size? */
5042 if ((u16) (header_size + stack_size) < header_size) {
5043 /*
5044 * If we overflow the maximum size for the sample,
5045 * we customize the stack dump size to fit in.
5046 */
5047 stack_size = USHRT_MAX - header_size - sizeof(u64);
5048 stack_size = round_up(stack_size, sizeof(u64));
5049 }
5050
5051 return stack_size;
5052}
5053
5054static void
5055perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5056 struct pt_regs *regs)
5057{
5058 /* Case of a kernel thread, nothing to dump */
5059 if (!regs) {
5060 u64 size = 0;
5061 perf_output_put(handle, size);
5062 } else {
5063 unsigned long sp;
5064 unsigned int rem;
5065 u64 dyn_size;
5066
5067 /*
5068 * We dump:
5069 * static size
5070 * - the size requested by user or the best one we can fit
5071 * in to the sample max size
5072 * data
5073 * - user stack dump data
5074 * dynamic size
5075 * - the actual dumped size
5076 */
5077
5078 /* Static size. */
5079 perf_output_put(handle, dump_size);
5080
5081 /* Data. */
5082 sp = perf_user_stack_pointer(regs);
5083 rem = __output_copy_user(handle, (void *) sp, dump_size);
5084 dyn_size = dump_size - rem;
5085
5086 perf_output_skip(handle, rem);
5087
5088 /* Dynamic size. */
5089 perf_output_put(handle, dyn_size);
5090 }
5091}
5092
c980d109
ACM
5093static void __perf_event_header__init_id(struct perf_event_header *header,
5094 struct perf_sample_data *data,
5095 struct perf_event *event)
6844c09d
ACM
5096{
5097 u64 sample_type = event->attr.sample_type;
5098
5099 data->type = sample_type;
5100 header->size += event->id_header_size;
5101
5102 if (sample_type & PERF_SAMPLE_TID) {
5103 /* namespace issues */
5104 data->tid_entry.pid = perf_event_pid(event, current);
5105 data->tid_entry.tid = perf_event_tid(event, current);
5106 }
5107
5108 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5109 data->time = perf_event_clock(event);
6844c09d 5110
ff3d527c 5111 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5112 data->id = primary_event_id(event);
5113
5114 if (sample_type & PERF_SAMPLE_STREAM_ID)
5115 data->stream_id = event->id;
5116
5117 if (sample_type & PERF_SAMPLE_CPU) {
5118 data->cpu_entry.cpu = raw_smp_processor_id();
5119 data->cpu_entry.reserved = 0;
5120 }
5121}
5122
76369139
FW
5123void perf_event_header__init_id(struct perf_event_header *header,
5124 struct perf_sample_data *data,
5125 struct perf_event *event)
c980d109
ACM
5126{
5127 if (event->attr.sample_id_all)
5128 __perf_event_header__init_id(header, data, event);
5129}
5130
5131static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5132 struct perf_sample_data *data)
5133{
5134 u64 sample_type = data->type;
5135
5136 if (sample_type & PERF_SAMPLE_TID)
5137 perf_output_put(handle, data->tid_entry);
5138
5139 if (sample_type & PERF_SAMPLE_TIME)
5140 perf_output_put(handle, data->time);
5141
5142 if (sample_type & PERF_SAMPLE_ID)
5143 perf_output_put(handle, data->id);
5144
5145 if (sample_type & PERF_SAMPLE_STREAM_ID)
5146 perf_output_put(handle, data->stream_id);
5147
5148 if (sample_type & PERF_SAMPLE_CPU)
5149 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5150
5151 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5152 perf_output_put(handle, data->id);
c980d109
ACM
5153}
5154
76369139
FW
5155void perf_event__output_id_sample(struct perf_event *event,
5156 struct perf_output_handle *handle,
5157 struct perf_sample_data *sample)
c980d109
ACM
5158{
5159 if (event->attr.sample_id_all)
5160 __perf_event__output_id_sample(handle, sample);
5161}
5162
3dab77fb 5163static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5164 struct perf_event *event,
5165 u64 enabled, u64 running)
3dab77fb 5166{
cdd6c482 5167 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5168 u64 values[4];
5169 int n = 0;
5170
b5e58793 5171 values[n++] = perf_event_count(event);
3dab77fb 5172 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5173 values[n++] = enabled +
cdd6c482 5174 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5175 }
5176 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5177 values[n++] = running +
cdd6c482 5178 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5179 }
5180 if (read_format & PERF_FORMAT_ID)
cdd6c482 5181 values[n++] = primary_event_id(event);
3dab77fb 5182
76369139 5183 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5184}
5185
5186/*
cdd6c482 5187 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5188 */
5189static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5190 struct perf_event *event,
5191 u64 enabled, u64 running)
3dab77fb 5192{
cdd6c482
IM
5193 struct perf_event *leader = event->group_leader, *sub;
5194 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5195 u64 values[5];
5196 int n = 0;
5197
5198 values[n++] = 1 + leader->nr_siblings;
5199
5200 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5201 values[n++] = enabled;
3dab77fb
PZ
5202
5203 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5204 values[n++] = running;
3dab77fb 5205
cdd6c482 5206 if (leader != event)
3dab77fb
PZ
5207 leader->pmu->read(leader);
5208
b5e58793 5209 values[n++] = perf_event_count(leader);
3dab77fb 5210 if (read_format & PERF_FORMAT_ID)
cdd6c482 5211 values[n++] = primary_event_id(leader);
3dab77fb 5212
76369139 5213 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5214
65abc865 5215 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5216 n = 0;
5217
6f5ab001
JO
5218 if ((sub != event) &&
5219 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5220 sub->pmu->read(sub);
5221
b5e58793 5222 values[n++] = perf_event_count(sub);
3dab77fb 5223 if (read_format & PERF_FORMAT_ID)
cdd6c482 5224 values[n++] = primary_event_id(sub);
3dab77fb 5225
76369139 5226 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5227 }
5228}
5229
eed01528
SE
5230#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5231 PERF_FORMAT_TOTAL_TIME_RUNNING)
5232
3dab77fb 5233static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5234 struct perf_event *event)
3dab77fb 5235{
e3f3541c 5236 u64 enabled = 0, running = 0, now;
eed01528
SE
5237 u64 read_format = event->attr.read_format;
5238
5239 /*
5240 * compute total_time_enabled, total_time_running
5241 * based on snapshot values taken when the event
5242 * was last scheduled in.
5243 *
5244 * we cannot simply called update_context_time()
5245 * because of locking issue as we are called in
5246 * NMI context
5247 */
c4794295 5248 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5249 calc_timer_values(event, &now, &enabled, &running);
eed01528 5250
cdd6c482 5251 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5252 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5253 else
eed01528 5254 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5255}
5256
5622f295
MM
5257void perf_output_sample(struct perf_output_handle *handle,
5258 struct perf_event_header *header,
5259 struct perf_sample_data *data,
cdd6c482 5260 struct perf_event *event)
5622f295
MM
5261{
5262 u64 sample_type = data->type;
5263
5264 perf_output_put(handle, *header);
5265
ff3d527c
AH
5266 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5267 perf_output_put(handle, data->id);
5268
5622f295
MM
5269 if (sample_type & PERF_SAMPLE_IP)
5270 perf_output_put(handle, data->ip);
5271
5272 if (sample_type & PERF_SAMPLE_TID)
5273 perf_output_put(handle, data->tid_entry);
5274
5275 if (sample_type & PERF_SAMPLE_TIME)
5276 perf_output_put(handle, data->time);
5277
5278 if (sample_type & PERF_SAMPLE_ADDR)
5279 perf_output_put(handle, data->addr);
5280
5281 if (sample_type & PERF_SAMPLE_ID)
5282 perf_output_put(handle, data->id);
5283
5284 if (sample_type & PERF_SAMPLE_STREAM_ID)
5285 perf_output_put(handle, data->stream_id);
5286
5287 if (sample_type & PERF_SAMPLE_CPU)
5288 perf_output_put(handle, data->cpu_entry);
5289
5290 if (sample_type & PERF_SAMPLE_PERIOD)
5291 perf_output_put(handle, data->period);
5292
5293 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5294 perf_output_read(handle, event);
5622f295
MM
5295
5296 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5297 if (data->callchain) {
5298 int size = 1;
5299
5300 if (data->callchain)
5301 size += data->callchain->nr;
5302
5303 size *= sizeof(u64);
5304
76369139 5305 __output_copy(handle, data->callchain, size);
5622f295
MM
5306 } else {
5307 u64 nr = 0;
5308 perf_output_put(handle, nr);
5309 }
5310 }
5311
5312 if (sample_type & PERF_SAMPLE_RAW) {
5313 if (data->raw) {
fa128e6a
AS
5314 u32 raw_size = data->raw->size;
5315 u32 real_size = round_up(raw_size + sizeof(u32),
5316 sizeof(u64)) - sizeof(u32);
5317 u64 zero = 0;
5318
5319 perf_output_put(handle, real_size);
5320 __output_copy(handle, data->raw->data, raw_size);
5321 if (real_size - raw_size)
5322 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5323 } else {
5324 struct {
5325 u32 size;
5326 u32 data;
5327 } raw = {
5328 .size = sizeof(u32),
5329 .data = 0,
5330 };
5331 perf_output_put(handle, raw);
5332 }
5333 }
a7ac67ea 5334
bce38cd5
SE
5335 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5336 if (data->br_stack) {
5337 size_t size;
5338
5339 size = data->br_stack->nr
5340 * sizeof(struct perf_branch_entry);
5341
5342 perf_output_put(handle, data->br_stack->nr);
5343 perf_output_copy(handle, data->br_stack->entries, size);
5344 } else {
5345 /*
5346 * we always store at least the value of nr
5347 */
5348 u64 nr = 0;
5349 perf_output_put(handle, nr);
5350 }
5351 }
4018994f
JO
5352
5353 if (sample_type & PERF_SAMPLE_REGS_USER) {
5354 u64 abi = data->regs_user.abi;
5355
5356 /*
5357 * If there are no regs to dump, notice it through
5358 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5359 */
5360 perf_output_put(handle, abi);
5361
5362 if (abi) {
5363 u64 mask = event->attr.sample_regs_user;
5364 perf_output_sample_regs(handle,
5365 data->regs_user.regs,
5366 mask);
5367 }
5368 }
c5ebcedb 5369
a5cdd40c 5370 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5371 perf_output_sample_ustack(handle,
5372 data->stack_user_size,
5373 data->regs_user.regs);
a5cdd40c 5374 }
c3feedf2
AK
5375
5376 if (sample_type & PERF_SAMPLE_WEIGHT)
5377 perf_output_put(handle, data->weight);
d6be9ad6
SE
5378
5379 if (sample_type & PERF_SAMPLE_DATA_SRC)
5380 perf_output_put(handle, data->data_src.val);
a5cdd40c 5381
fdfbbd07
AK
5382 if (sample_type & PERF_SAMPLE_TRANSACTION)
5383 perf_output_put(handle, data->txn);
5384
60e2364e
SE
5385 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5386 u64 abi = data->regs_intr.abi;
5387 /*
5388 * If there are no regs to dump, notice it through
5389 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5390 */
5391 perf_output_put(handle, abi);
5392
5393 if (abi) {
5394 u64 mask = event->attr.sample_regs_intr;
5395
5396 perf_output_sample_regs(handle,
5397 data->regs_intr.regs,
5398 mask);
5399 }
5400 }
5401
a5cdd40c
PZ
5402 if (!event->attr.watermark) {
5403 int wakeup_events = event->attr.wakeup_events;
5404
5405 if (wakeup_events) {
5406 struct ring_buffer *rb = handle->rb;
5407 int events = local_inc_return(&rb->events);
5408
5409 if (events >= wakeup_events) {
5410 local_sub(wakeup_events, &rb->events);
5411 local_inc(&rb->wakeup);
5412 }
5413 }
5414 }
5622f295
MM
5415}
5416
5417void perf_prepare_sample(struct perf_event_header *header,
5418 struct perf_sample_data *data,
cdd6c482 5419 struct perf_event *event,
5622f295 5420 struct pt_regs *regs)
7b732a75 5421{
cdd6c482 5422 u64 sample_type = event->attr.sample_type;
7b732a75 5423
cdd6c482 5424 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5425 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5426
5427 header->misc = 0;
5428 header->misc |= perf_misc_flags(regs);
6fab0192 5429
c980d109 5430 __perf_event_header__init_id(header, data, event);
6844c09d 5431
c320c7b7 5432 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5433 data->ip = perf_instruction_pointer(regs);
5434
b23f3325 5435 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5436 int size = 1;
394ee076 5437
e6dab5ff 5438 data->callchain = perf_callchain(event, regs);
5622f295
MM
5439
5440 if (data->callchain)
5441 size += data->callchain->nr;
5442
5443 header->size += size * sizeof(u64);
394ee076
PZ
5444 }
5445
3a43ce68 5446 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5447 int size = sizeof(u32);
5448
5449 if (data->raw)
5450 size += data->raw->size;
5451 else
5452 size += sizeof(u32);
5453
fa128e6a 5454 header->size += round_up(size, sizeof(u64));
7f453c24 5455 }
bce38cd5
SE
5456
5457 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5458 int size = sizeof(u64); /* nr */
5459 if (data->br_stack) {
5460 size += data->br_stack->nr
5461 * sizeof(struct perf_branch_entry);
5462 }
5463 header->size += size;
5464 }
4018994f 5465
2565711f 5466 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5467 perf_sample_regs_user(&data->regs_user, regs,
5468 &data->regs_user_copy);
2565711f 5469
4018994f
JO
5470 if (sample_type & PERF_SAMPLE_REGS_USER) {
5471 /* regs dump ABI info */
5472 int size = sizeof(u64);
5473
4018994f
JO
5474 if (data->regs_user.regs) {
5475 u64 mask = event->attr.sample_regs_user;
5476 size += hweight64(mask) * sizeof(u64);
5477 }
5478
5479 header->size += size;
5480 }
c5ebcedb
JO
5481
5482 if (sample_type & PERF_SAMPLE_STACK_USER) {
5483 /*
5484 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5485 * processed as the last one or have additional check added
5486 * in case new sample type is added, because we could eat
5487 * up the rest of the sample size.
5488 */
c5ebcedb
JO
5489 u16 stack_size = event->attr.sample_stack_user;
5490 u16 size = sizeof(u64);
5491
c5ebcedb 5492 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5493 data->regs_user.regs);
c5ebcedb
JO
5494
5495 /*
5496 * If there is something to dump, add space for the dump
5497 * itself and for the field that tells the dynamic size,
5498 * which is how many have been actually dumped.
5499 */
5500 if (stack_size)
5501 size += sizeof(u64) + stack_size;
5502
5503 data->stack_user_size = stack_size;
5504 header->size += size;
5505 }
60e2364e
SE
5506
5507 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5508 /* regs dump ABI info */
5509 int size = sizeof(u64);
5510
5511 perf_sample_regs_intr(&data->regs_intr, regs);
5512
5513 if (data->regs_intr.regs) {
5514 u64 mask = event->attr.sample_regs_intr;
5515
5516 size += hweight64(mask) * sizeof(u64);
5517 }
5518
5519 header->size += size;
5520 }
5622f295 5521}
7f453c24 5522
21509084
YZ
5523void perf_event_output(struct perf_event *event,
5524 struct perf_sample_data *data,
5525 struct pt_regs *regs)
5622f295
MM
5526{
5527 struct perf_output_handle handle;
5528 struct perf_event_header header;
689802b2 5529
927c7a9e
FW
5530 /* protect the callchain buffers */
5531 rcu_read_lock();
5532
cdd6c482 5533 perf_prepare_sample(&header, data, event, regs);
5c148194 5534
a7ac67ea 5535 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5536 goto exit;
0322cd6e 5537
cdd6c482 5538 perf_output_sample(&handle, &header, data, event);
f413cdb8 5539
8a057d84 5540 perf_output_end(&handle);
927c7a9e
FW
5541
5542exit:
5543 rcu_read_unlock();
0322cd6e
PZ
5544}
5545
38b200d6 5546/*
cdd6c482 5547 * read event_id
38b200d6
PZ
5548 */
5549
5550struct perf_read_event {
5551 struct perf_event_header header;
5552
5553 u32 pid;
5554 u32 tid;
38b200d6
PZ
5555};
5556
5557static void
cdd6c482 5558perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5559 struct task_struct *task)
5560{
5561 struct perf_output_handle handle;
c980d109 5562 struct perf_sample_data sample;
dfc65094 5563 struct perf_read_event read_event = {
38b200d6 5564 .header = {
cdd6c482 5565 .type = PERF_RECORD_READ,
38b200d6 5566 .misc = 0,
c320c7b7 5567 .size = sizeof(read_event) + event->read_size,
38b200d6 5568 },
cdd6c482
IM
5569 .pid = perf_event_pid(event, task),
5570 .tid = perf_event_tid(event, task),
38b200d6 5571 };
3dab77fb 5572 int ret;
38b200d6 5573
c980d109 5574 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5575 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5576 if (ret)
5577 return;
5578
dfc65094 5579 perf_output_put(&handle, read_event);
cdd6c482 5580 perf_output_read(&handle, event);
c980d109 5581 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5582
38b200d6
PZ
5583 perf_output_end(&handle);
5584}
5585
52d857a8
JO
5586typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5587
5588static void
5589perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5590 perf_event_aux_output_cb output,
5591 void *data)
5592{
5593 struct perf_event *event;
5594
5595 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5596 if (event->state < PERF_EVENT_STATE_INACTIVE)
5597 continue;
5598 if (!event_filter_match(event))
5599 continue;
67516844 5600 output(event, data);
52d857a8
JO
5601 }
5602}
5603
4e93ad60
JO
5604static void
5605perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5606 struct perf_event_context *task_ctx)
5607{
5608 rcu_read_lock();
5609 preempt_disable();
5610 perf_event_aux_ctx(task_ctx, output, data);
5611 preempt_enable();
5612 rcu_read_unlock();
5613}
5614
52d857a8 5615static void
67516844 5616perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5617 struct perf_event_context *task_ctx)
5618{
5619 struct perf_cpu_context *cpuctx;
5620 struct perf_event_context *ctx;
5621 struct pmu *pmu;
5622 int ctxn;
5623
4e93ad60
JO
5624 /*
5625 * If we have task_ctx != NULL we only notify
5626 * the task context itself. The task_ctx is set
5627 * only for EXIT events before releasing task
5628 * context.
5629 */
5630 if (task_ctx) {
5631 perf_event_aux_task_ctx(output, data, task_ctx);
5632 return;
5633 }
5634
52d857a8
JO
5635 rcu_read_lock();
5636 list_for_each_entry_rcu(pmu, &pmus, entry) {
5637 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5638 if (cpuctx->unique_pmu != pmu)
5639 goto next;
67516844 5640 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5641 ctxn = pmu->task_ctx_nr;
5642 if (ctxn < 0)
5643 goto next;
5644 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5645 if (ctx)
67516844 5646 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5647next:
5648 put_cpu_ptr(pmu->pmu_cpu_context);
5649 }
52d857a8
JO
5650 rcu_read_unlock();
5651}
5652
60313ebe 5653/*
9f498cc5
PZ
5654 * task tracking -- fork/exit
5655 *
13d7a241 5656 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5657 */
5658
9f498cc5 5659struct perf_task_event {
3a80b4a3 5660 struct task_struct *task;
cdd6c482 5661 struct perf_event_context *task_ctx;
60313ebe
PZ
5662
5663 struct {
5664 struct perf_event_header header;
5665
5666 u32 pid;
5667 u32 ppid;
9f498cc5
PZ
5668 u32 tid;
5669 u32 ptid;
393b2ad8 5670 u64 time;
cdd6c482 5671 } event_id;
60313ebe
PZ
5672};
5673
67516844
JO
5674static int perf_event_task_match(struct perf_event *event)
5675{
13d7a241
SE
5676 return event->attr.comm || event->attr.mmap ||
5677 event->attr.mmap2 || event->attr.mmap_data ||
5678 event->attr.task;
67516844
JO
5679}
5680
cdd6c482 5681static void perf_event_task_output(struct perf_event *event,
52d857a8 5682 void *data)
60313ebe 5683{
52d857a8 5684 struct perf_task_event *task_event = data;
60313ebe 5685 struct perf_output_handle handle;
c980d109 5686 struct perf_sample_data sample;
9f498cc5 5687 struct task_struct *task = task_event->task;
c980d109 5688 int ret, size = task_event->event_id.header.size;
8bb39f9a 5689
67516844
JO
5690 if (!perf_event_task_match(event))
5691 return;
5692
c980d109 5693 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5694
c980d109 5695 ret = perf_output_begin(&handle, event,
a7ac67ea 5696 task_event->event_id.header.size);
ef60777c 5697 if (ret)
c980d109 5698 goto out;
60313ebe 5699
cdd6c482
IM
5700 task_event->event_id.pid = perf_event_pid(event, task);
5701 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5702
cdd6c482
IM
5703 task_event->event_id.tid = perf_event_tid(event, task);
5704 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5705
34f43927
PZ
5706 task_event->event_id.time = perf_event_clock(event);
5707
cdd6c482 5708 perf_output_put(&handle, task_event->event_id);
393b2ad8 5709
c980d109
ACM
5710 perf_event__output_id_sample(event, &handle, &sample);
5711
60313ebe 5712 perf_output_end(&handle);
c980d109
ACM
5713out:
5714 task_event->event_id.header.size = size;
60313ebe
PZ
5715}
5716
cdd6c482
IM
5717static void perf_event_task(struct task_struct *task,
5718 struct perf_event_context *task_ctx,
3a80b4a3 5719 int new)
60313ebe 5720{
9f498cc5 5721 struct perf_task_event task_event;
60313ebe 5722
cdd6c482
IM
5723 if (!atomic_read(&nr_comm_events) &&
5724 !atomic_read(&nr_mmap_events) &&
5725 !atomic_read(&nr_task_events))
60313ebe
PZ
5726 return;
5727
9f498cc5 5728 task_event = (struct perf_task_event){
3a80b4a3
PZ
5729 .task = task,
5730 .task_ctx = task_ctx,
cdd6c482 5731 .event_id = {
60313ebe 5732 .header = {
cdd6c482 5733 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5734 .misc = 0,
cdd6c482 5735 .size = sizeof(task_event.event_id),
60313ebe 5736 },
573402db
PZ
5737 /* .pid */
5738 /* .ppid */
9f498cc5
PZ
5739 /* .tid */
5740 /* .ptid */
34f43927 5741 /* .time */
60313ebe
PZ
5742 },
5743 };
5744
67516844 5745 perf_event_aux(perf_event_task_output,
52d857a8
JO
5746 &task_event,
5747 task_ctx);
9f498cc5
PZ
5748}
5749
cdd6c482 5750void perf_event_fork(struct task_struct *task)
9f498cc5 5751{
cdd6c482 5752 perf_event_task(task, NULL, 1);
60313ebe
PZ
5753}
5754
8d1b2d93
PZ
5755/*
5756 * comm tracking
5757 */
5758
5759struct perf_comm_event {
22a4f650
IM
5760 struct task_struct *task;
5761 char *comm;
8d1b2d93
PZ
5762 int comm_size;
5763
5764 struct {
5765 struct perf_event_header header;
5766
5767 u32 pid;
5768 u32 tid;
cdd6c482 5769 } event_id;
8d1b2d93
PZ
5770};
5771
67516844
JO
5772static int perf_event_comm_match(struct perf_event *event)
5773{
5774 return event->attr.comm;
5775}
5776
cdd6c482 5777static void perf_event_comm_output(struct perf_event *event,
52d857a8 5778 void *data)
8d1b2d93 5779{
52d857a8 5780 struct perf_comm_event *comm_event = data;
8d1b2d93 5781 struct perf_output_handle handle;
c980d109 5782 struct perf_sample_data sample;
cdd6c482 5783 int size = comm_event->event_id.header.size;
c980d109
ACM
5784 int ret;
5785
67516844
JO
5786 if (!perf_event_comm_match(event))
5787 return;
5788
c980d109
ACM
5789 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5790 ret = perf_output_begin(&handle, event,
a7ac67ea 5791 comm_event->event_id.header.size);
8d1b2d93
PZ
5792
5793 if (ret)
c980d109 5794 goto out;
8d1b2d93 5795
cdd6c482
IM
5796 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5797 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5798
cdd6c482 5799 perf_output_put(&handle, comm_event->event_id);
76369139 5800 __output_copy(&handle, comm_event->comm,
8d1b2d93 5801 comm_event->comm_size);
c980d109
ACM
5802
5803 perf_event__output_id_sample(event, &handle, &sample);
5804
8d1b2d93 5805 perf_output_end(&handle);
c980d109
ACM
5806out:
5807 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5808}
5809
cdd6c482 5810static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5811{
413ee3b4 5812 char comm[TASK_COMM_LEN];
8d1b2d93 5813 unsigned int size;
8d1b2d93 5814
413ee3b4 5815 memset(comm, 0, sizeof(comm));
96b02d78 5816 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5817 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5818
5819 comm_event->comm = comm;
5820 comm_event->comm_size = size;
5821
cdd6c482 5822 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5823
67516844 5824 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5825 comm_event,
5826 NULL);
8d1b2d93
PZ
5827}
5828
82b89778 5829void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5830{
9ee318a7
PZ
5831 struct perf_comm_event comm_event;
5832
cdd6c482 5833 if (!atomic_read(&nr_comm_events))
9ee318a7 5834 return;
a63eaf34 5835
9ee318a7 5836 comm_event = (struct perf_comm_event){
8d1b2d93 5837 .task = task,
573402db
PZ
5838 /* .comm */
5839 /* .comm_size */
cdd6c482 5840 .event_id = {
573402db 5841 .header = {
cdd6c482 5842 .type = PERF_RECORD_COMM,
82b89778 5843 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5844 /* .size */
5845 },
5846 /* .pid */
5847 /* .tid */
8d1b2d93
PZ
5848 },
5849 };
5850
cdd6c482 5851 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5852}
5853
0a4a9391
PZ
5854/*
5855 * mmap tracking
5856 */
5857
5858struct perf_mmap_event {
089dd79d
PZ
5859 struct vm_area_struct *vma;
5860
5861 const char *file_name;
5862 int file_size;
13d7a241
SE
5863 int maj, min;
5864 u64 ino;
5865 u64 ino_generation;
f972eb63 5866 u32 prot, flags;
0a4a9391
PZ
5867
5868 struct {
5869 struct perf_event_header header;
5870
5871 u32 pid;
5872 u32 tid;
5873 u64 start;
5874 u64 len;
5875 u64 pgoff;
cdd6c482 5876 } event_id;
0a4a9391
PZ
5877};
5878
67516844
JO
5879static int perf_event_mmap_match(struct perf_event *event,
5880 void *data)
5881{
5882 struct perf_mmap_event *mmap_event = data;
5883 struct vm_area_struct *vma = mmap_event->vma;
5884 int executable = vma->vm_flags & VM_EXEC;
5885
5886 return (!executable && event->attr.mmap_data) ||
13d7a241 5887 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5888}
5889
cdd6c482 5890static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5891 void *data)
0a4a9391 5892{
52d857a8 5893 struct perf_mmap_event *mmap_event = data;
0a4a9391 5894 struct perf_output_handle handle;
c980d109 5895 struct perf_sample_data sample;
cdd6c482 5896 int size = mmap_event->event_id.header.size;
c980d109 5897 int ret;
0a4a9391 5898
67516844
JO
5899 if (!perf_event_mmap_match(event, data))
5900 return;
5901
13d7a241
SE
5902 if (event->attr.mmap2) {
5903 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5904 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5905 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5906 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5907 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5908 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5909 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5910 }
5911
c980d109
ACM
5912 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5913 ret = perf_output_begin(&handle, event,
a7ac67ea 5914 mmap_event->event_id.header.size);
0a4a9391 5915 if (ret)
c980d109 5916 goto out;
0a4a9391 5917
cdd6c482
IM
5918 mmap_event->event_id.pid = perf_event_pid(event, current);
5919 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5920
cdd6c482 5921 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5922
5923 if (event->attr.mmap2) {
5924 perf_output_put(&handle, mmap_event->maj);
5925 perf_output_put(&handle, mmap_event->min);
5926 perf_output_put(&handle, mmap_event->ino);
5927 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5928 perf_output_put(&handle, mmap_event->prot);
5929 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5930 }
5931
76369139 5932 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5933 mmap_event->file_size);
c980d109
ACM
5934
5935 perf_event__output_id_sample(event, &handle, &sample);
5936
78d613eb 5937 perf_output_end(&handle);
c980d109
ACM
5938out:
5939 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5940}
5941
cdd6c482 5942static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5943{
089dd79d
PZ
5944 struct vm_area_struct *vma = mmap_event->vma;
5945 struct file *file = vma->vm_file;
13d7a241
SE
5946 int maj = 0, min = 0;
5947 u64 ino = 0, gen = 0;
f972eb63 5948 u32 prot = 0, flags = 0;
0a4a9391
PZ
5949 unsigned int size;
5950 char tmp[16];
5951 char *buf = NULL;
2c42cfbf 5952 char *name;
413ee3b4 5953
0a4a9391 5954 if (file) {
13d7a241
SE
5955 struct inode *inode;
5956 dev_t dev;
3ea2f2b9 5957
2c42cfbf 5958 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5959 if (!buf) {
c7e548b4
ON
5960 name = "//enomem";
5961 goto cpy_name;
0a4a9391 5962 }
413ee3b4 5963 /*
3ea2f2b9 5964 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5965 * need to add enough zero bytes after the string to handle
5966 * the 64bit alignment we do later.
5967 */
9bf39ab2 5968 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 5969 if (IS_ERR(name)) {
c7e548b4
ON
5970 name = "//toolong";
5971 goto cpy_name;
0a4a9391 5972 }
13d7a241
SE
5973 inode = file_inode(vma->vm_file);
5974 dev = inode->i_sb->s_dev;
5975 ino = inode->i_ino;
5976 gen = inode->i_generation;
5977 maj = MAJOR(dev);
5978 min = MINOR(dev);
f972eb63
PZ
5979
5980 if (vma->vm_flags & VM_READ)
5981 prot |= PROT_READ;
5982 if (vma->vm_flags & VM_WRITE)
5983 prot |= PROT_WRITE;
5984 if (vma->vm_flags & VM_EXEC)
5985 prot |= PROT_EXEC;
5986
5987 if (vma->vm_flags & VM_MAYSHARE)
5988 flags = MAP_SHARED;
5989 else
5990 flags = MAP_PRIVATE;
5991
5992 if (vma->vm_flags & VM_DENYWRITE)
5993 flags |= MAP_DENYWRITE;
5994 if (vma->vm_flags & VM_MAYEXEC)
5995 flags |= MAP_EXECUTABLE;
5996 if (vma->vm_flags & VM_LOCKED)
5997 flags |= MAP_LOCKED;
5998 if (vma->vm_flags & VM_HUGETLB)
5999 flags |= MAP_HUGETLB;
6000
c7e548b4 6001 goto got_name;
0a4a9391 6002 } else {
fbe26abe
JO
6003 if (vma->vm_ops && vma->vm_ops->name) {
6004 name = (char *) vma->vm_ops->name(vma);
6005 if (name)
6006 goto cpy_name;
6007 }
6008
2c42cfbf 6009 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6010 if (name)
6011 goto cpy_name;
089dd79d 6012
32c5fb7e 6013 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6014 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6015 name = "[heap]";
6016 goto cpy_name;
32c5fb7e
ON
6017 }
6018 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6019 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6020 name = "[stack]";
6021 goto cpy_name;
089dd79d
PZ
6022 }
6023
c7e548b4
ON
6024 name = "//anon";
6025 goto cpy_name;
0a4a9391
PZ
6026 }
6027
c7e548b4
ON
6028cpy_name:
6029 strlcpy(tmp, name, sizeof(tmp));
6030 name = tmp;
0a4a9391 6031got_name:
2c42cfbf
PZ
6032 /*
6033 * Since our buffer works in 8 byte units we need to align our string
6034 * size to a multiple of 8. However, we must guarantee the tail end is
6035 * zero'd out to avoid leaking random bits to userspace.
6036 */
6037 size = strlen(name)+1;
6038 while (!IS_ALIGNED(size, sizeof(u64)))
6039 name[size++] = '\0';
0a4a9391
PZ
6040
6041 mmap_event->file_name = name;
6042 mmap_event->file_size = size;
13d7a241
SE
6043 mmap_event->maj = maj;
6044 mmap_event->min = min;
6045 mmap_event->ino = ino;
6046 mmap_event->ino_generation = gen;
f972eb63
PZ
6047 mmap_event->prot = prot;
6048 mmap_event->flags = flags;
0a4a9391 6049
2fe85427
SE
6050 if (!(vma->vm_flags & VM_EXEC))
6051 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6052
cdd6c482 6053 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6054
67516844 6055 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6056 mmap_event,
6057 NULL);
665c2142 6058
0a4a9391
PZ
6059 kfree(buf);
6060}
6061
3af9e859 6062void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6063{
9ee318a7
PZ
6064 struct perf_mmap_event mmap_event;
6065
cdd6c482 6066 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6067 return;
6068
6069 mmap_event = (struct perf_mmap_event){
089dd79d 6070 .vma = vma,
573402db
PZ
6071 /* .file_name */
6072 /* .file_size */
cdd6c482 6073 .event_id = {
573402db 6074 .header = {
cdd6c482 6075 .type = PERF_RECORD_MMAP,
39447b38 6076 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6077 /* .size */
6078 },
6079 /* .pid */
6080 /* .tid */
089dd79d
PZ
6081 .start = vma->vm_start,
6082 .len = vma->vm_end - vma->vm_start,
3a0304e9 6083 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6084 },
13d7a241
SE
6085 /* .maj (attr_mmap2 only) */
6086 /* .min (attr_mmap2 only) */
6087 /* .ino (attr_mmap2 only) */
6088 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6089 /* .prot (attr_mmap2 only) */
6090 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6091 };
6092
cdd6c482 6093 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6094}
6095
68db7e98
AS
6096void perf_event_aux_event(struct perf_event *event, unsigned long head,
6097 unsigned long size, u64 flags)
6098{
6099 struct perf_output_handle handle;
6100 struct perf_sample_data sample;
6101 struct perf_aux_event {
6102 struct perf_event_header header;
6103 u64 offset;
6104 u64 size;
6105 u64 flags;
6106 } rec = {
6107 .header = {
6108 .type = PERF_RECORD_AUX,
6109 .misc = 0,
6110 .size = sizeof(rec),
6111 },
6112 .offset = head,
6113 .size = size,
6114 .flags = flags,
6115 };
6116 int ret;
6117
6118 perf_event_header__init_id(&rec.header, &sample, event);
6119 ret = perf_output_begin(&handle, event, rec.header.size);
6120
6121 if (ret)
6122 return;
6123
6124 perf_output_put(&handle, rec);
6125 perf_event__output_id_sample(event, &handle, &sample);
6126
6127 perf_output_end(&handle);
6128}
6129
f38b0dbb
KL
6130/*
6131 * Lost/dropped samples logging
6132 */
6133void perf_log_lost_samples(struct perf_event *event, u64 lost)
6134{
6135 struct perf_output_handle handle;
6136 struct perf_sample_data sample;
6137 int ret;
6138
6139 struct {
6140 struct perf_event_header header;
6141 u64 lost;
6142 } lost_samples_event = {
6143 .header = {
6144 .type = PERF_RECORD_LOST_SAMPLES,
6145 .misc = 0,
6146 .size = sizeof(lost_samples_event),
6147 },
6148 .lost = lost,
6149 };
6150
6151 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6152
6153 ret = perf_output_begin(&handle, event,
6154 lost_samples_event.header.size);
6155 if (ret)
6156 return;
6157
6158 perf_output_put(&handle, lost_samples_event);
6159 perf_event__output_id_sample(event, &handle, &sample);
6160 perf_output_end(&handle);
6161}
6162
45ac1403
AH
6163/*
6164 * context_switch tracking
6165 */
6166
6167struct perf_switch_event {
6168 struct task_struct *task;
6169 struct task_struct *next_prev;
6170
6171 struct {
6172 struct perf_event_header header;
6173 u32 next_prev_pid;
6174 u32 next_prev_tid;
6175 } event_id;
6176};
6177
6178static int perf_event_switch_match(struct perf_event *event)
6179{
6180 return event->attr.context_switch;
6181}
6182
6183static void perf_event_switch_output(struct perf_event *event, void *data)
6184{
6185 struct perf_switch_event *se = data;
6186 struct perf_output_handle handle;
6187 struct perf_sample_data sample;
6188 int ret;
6189
6190 if (!perf_event_switch_match(event))
6191 return;
6192
6193 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6194 if (event->ctx->task) {
6195 se->event_id.header.type = PERF_RECORD_SWITCH;
6196 se->event_id.header.size = sizeof(se->event_id.header);
6197 } else {
6198 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6199 se->event_id.header.size = sizeof(se->event_id);
6200 se->event_id.next_prev_pid =
6201 perf_event_pid(event, se->next_prev);
6202 se->event_id.next_prev_tid =
6203 perf_event_tid(event, se->next_prev);
6204 }
6205
6206 perf_event_header__init_id(&se->event_id.header, &sample, event);
6207
6208 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6209 if (ret)
6210 return;
6211
6212 if (event->ctx->task)
6213 perf_output_put(&handle, se->event_id.header);
6214 else
6215 perf_output_put(&handle, se->event_id);
6216
6217 perf_event__output_id_sample(event, &handle, &sample);
6218
6219 perf_output_end(&handle);
6220}
6221
6222static void perf_event_switch(struct task_struct *task,
6223 struct task_struct *next_prev, bool sched_in)
6224{
6225 struct perf_switch_event switch_event;
6226
6227 /* N.B. caller checks nr_switch_events != 0 */
6228
6229 switch_event = (struct perf_switch_event){
6230 .task = task,
6231 .next_prev = next_prev,
6232 .event_id = {
6233 .header = {
6234 /* .type */
6235 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6236 /* .size */
6237 },
6238 /* .next_prev_pid */
6239 /* .next_prev_tid */
6240 },
6241 };
6242
6243 perf_event_aux(perf_event_switch_output,
6244 &switch_event,
6245 NULL);
6246}
6247
a78ac325
PZ
6248/*
6249 * IRQ throttle logging
6250 */
6251
cdd6c482 6252static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6253{
6254 struct perf_output_handle handle;
c980d109 6255 struct perf_sample_data sample;
a78ac325
PZ
6256 int ret;
6257
6258 struct {
6259 struct perf_event_header header;
6260 u64 time;
cca3f454 6261 u64 id;
7f453c24 6262 u64 stream_id;
a78ac325
PZ
6263 } throttle_event = {
6264 .header = {
cdd6c482 6265 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6266 .misc = 0,
6267 .size = sizeof(throttle_event),
6268 },
34f43927 6269 .time = perf_event_clock(event),
cdd6c482
IM
6270 .id = primary_event_id(event),
6271 .stream_id = event->id,
a78ac325
PZ
6272 };
6273
966ee4d6 6274 if (enable)
cdd6c482 6275 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6276
c980d109
ACM
6277 perf_event_header__init_id(&throttle_event.header, &sample, event);
6278
6279 ret = perf_output_begin(&handle, event,
a7ac67ea 6280 throttle_event.header.size);
a78ac325
PZ
6281 if (ret)
6282 return;
6283
6284 perf_output_put(&handle, throttle_event);
c980d109 6285 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6286 perf_output_end(&handle);
6287}
6288
ec0d7729
AS
6289static void perf_log_itrace_start(struct perf_event *event)
6290{
6291 struct perf_output_handle handle;
6292 struct perf_sample_data sample;
6293 struct perf_aux_event {
6294 struct perf_event_header header;
6295 u32 pid;
6296 u32 tid;
6297 } rec;
6298 int ret;
6299
6300 if (event->parent)
6301 event = event->parent;
6302
6303 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6304 event->hw.itrace_started)
6305 return;
6306
ec0d7729
AS
6307 rec.header.type = PERF_RECORD_ITRACE_START;
6308 rec.header.misc = 0;
6309 rec.header.size = sizeof(rec);
6310 rec.pid = perf_event_pid(event, current);
6311 rec.tid = perf_event_tid(event, current);
6312
6313 perf_event_header__init_id(&rec.header, &sample, event);
6314 ret = perf_output_begin(&handle, event, rec.header.size);
6315
6316 if (ret)
6317 return;
6318
6319 perf_output_put(&handle, rec);
6320 perf_event__output_id_sample(event, &handle, &sample);
6321
6322 perf_output_end(&handle);
6323}
6324
f6c7d5fe 6325/*
cdd6c482 6326 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6327 */
6328
a8b0ca17 6329static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6330 int throttle, struct perf_sample_data *data,
6331 struct pt_regs *regs)
f6c7d5fe 6332{
cdd6c482
IM
6333 int events = atomic_read(&event->event_limit);
6334 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6335 u64 seq;
79f14641
PZ
6336 int ret = 0;
6337
96398826
PZ
6338 /*
6339 * Non-sampling counters might still use the PMI to fold short
6340 * hardware counters, ignore those.
6341 */
6342 if (unlikely(!is_sampling_event(event)))
6343 return 0;
6344
e050e3f0
SE
6345 seq = __this_cpu_read(perf_throttled_seq);
6346 if (seq != hwc->interrupts_seq) {
6347 hwc->interrupts_seq = seq;
6348 hwc->interrupts = 1;
6349 } else {
6350 hwc->interrupts++;
6351 if (unlikely(throttle
6352 && hwc->interrupts >= max_samples_per_tick)) {
6353 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6354 hwc->interrupts = MAX_INTERRUPTS;
6355 perf_log_throttle(event, 0);
d84153d6 6356 tick_nohz_full_kick();
a78ac325
PZ
6357 ret = 1;
6358 }
e050e3f0 6359 }
60db5e09 6360
cdd6c482 6361 if (event->attr.freq) {
def0a9b2 6362 u64 now = perf_clock();
abd50713 6363 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6364
abd50713 6365 hwc->freq_time_stamp = now;
bd2b5b12 6366
abd50713 6367 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6368 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6369 }
6370
2023b359
PZ
6371 /*
6372 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6373 * events
2023b359
PZ
6374 */
6375
cdd6c482
IM
6376 event->pending_kill = POLL_IN;
6377 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6378 ret = 1;
cdd6c482 6379 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6380 event->pending_disable = 1;
6381 irq_work_queue(&event->pending);
79f14641
PZ
6382 }
6383
453f19ee 6384 if (event->overflow_handler)
a8b0ca17 6385 event->overflow_handler(event, data, regs);
453f19ee 6386 else
a8b0ca17 6387 perf_event_output(event, data, regs);
453f19ee 6388
fed66e2c 6389 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6390 event->pending_wakeup = 1;
6391 irq_work_queue(&event->pending);
f506b3dc
PZ
6392 }
6393
79f14641 6394 return ret;
f6c7d5fe
PZ
6395}
6396
a8b0ca17 6397int perf_event_overflow(struct perf_event *event,
5622f295
MM
6398 struct perf_sample_data *data,
6399 struct pt_regs *regs)
850bc73f 6400{
a8b0ca17 6401 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6402}
6403
15dbf27c 6404/*
cdd6c482 6405 * Generic software event infrastructure
15dbf27c
PZ
6406 */
6407
b28ab83c
PZ
6408struct swevent_htable {
6409 struct swevent_hlist *swevent_hlist;
6410 struct mutex hlist_mutex;
6411 int hlist_refcount;
6412
6413 /* Recursion avoidance in each contexts */
6414 int recursion[PERF_NR_CONTEXTS];
6415};
6416
6417static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6418
7b4b6658 6419/*
cdd6c482
IM
6420 * We directly increment event->count and keep a second value in
6421 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6422 * is kept in the range [-sample_period, 0] so that we can use the
6423 * sign as trigger.
6424 */
6425
ab573844 6426u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6427{
cdd6c482 6428 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6429 u64 period = hwc->last_period;
6430 u64 nr, offset;
6431 s64 old, val;
6432
6433 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6434
6435again:
e7850595 6436 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6437 if (val < 0)
6438 return 0;
15dbf27c 6439
7b4b6658
PZ
6440 nr = div64_u64(period + val, period);
6441 offset = nr * period;
6442 val -= offset;
e7850595 6443 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6444 goto again;
15dbf27c 6445
7b4b6658 6446 return nr;
15dbf27c
PZ
6447}
6448
0cff784a 6449static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6450 struct perf_sample_data *data,
5622f295 6451 struct pt_regs *regs)
15dbf27c 6452{
cdd6c482 6453 struct hw_perf_event *hwc = &event->hw;
850bc73f 6454 int throttle = 0;
15dbf27c 6455
0cff784a
PZ
6456 if (!overflow)
6457 overflow = perf_swevent_set_period(event);
15dbf27c 6458
7b4b6658
PZ
6459 if (hwc->interrupts == MAX_INTERRUPTS)
6460 return;
15dbf27c 6461
7b4b6658 6462 for (; overflow; overflow--) {
a8b0ca17 6463 if (__perf_event_overflow(event, throttle,
5622f295 6464 data, regs)) {
7b4b6658
PZ
6465 /*
6466 * We inhibit the overflow from happening when
6467 * hwc->interrupts == MAX_INTERRUPTS.
6468 */
6469 break;
6470 }
cf450a73 6471 throttle = 1;
7b4b6658 6472 }
15dbf27c
PZ
6473}
6474
a4eaf7f1 6475static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6476 struct perf_sample_data *data,
5622f295 6477 struct pt_regs *regs)
7b4b6658 6478{
cdd6c482 6479 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6480
e7850595 6481 local64_add(nr, &event->count);
d6d020e9 6482
0cff784a
PZ
6483 if (!regs)
6484 return;
6485
6c7e550f 6486 if (!is_sampling_event(event))
7b4b6658 6487 return;
d6d020e9 6488
5d81e5cf
AV
6489 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6490 data->period = nr;
6491 return perf_swevent_overflow(event, 1, data, regs);
6492 } else
6493 data->period = event->hw.last_period;
6494
0cff784a 6495 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6496 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6497
e7850595 6498 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6499 return;
df1a132b 6500
a8b0ca17 6501 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6502}
6503
f5ffe02e
FW
6504static int perf_exclude_event(struct perf_event *event,
6505 struct pt_regs *regs)
6506{
a4eaf7f1 6507 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6508 return 1;
a4eaf7f1 6509
f5ffe02e
FW
6510 if (regs) {
6511 if (event->attr.exclude_user && user_mode(regs))
6512 return 1;
6513
6514 if (event->attr.exclude_kernel && !user_mode(regs))
6515 return 1;
6516 }
6517
6518 return 0;
6519}
6520
cdd6c482 6521static int perf_swevent_match(struct perf_event *event,
1c432d89 6522 enum perf_type_id type,
6fb2915d
LZ
6523 u32 event_id,
6524 struct perf_sample_data *data,
6525 struct pt_regs *regs)
15dbf27c 6526{
cdd6c482 6527 if (event->attr.type != type)
a21ca2ca 6528 return 0;
f5ffe02e 6529
cdd6c482 6530 if (event->attr.config != event_id)
15dbf27c
PZ
6531 return 0;
6532
f5ffe02e
FW
6533 if (perf_exclude_event(event, regs))
6534 return 0;
15dbf27c
PZ
6535
6536 return 1;
6537}
6538
76e1d904
FW
6539static inline u64 swevent_hash(u64 type, u32 event_id)
6540{
6541 u64 val = event_id | (type << 32);
6542
6543 return hash_64(val, SWEVENT_HLIST_BITS);
6544}
6545
49f135ed
FW
6546static inline struct hlist_head *
6547__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6548{
49f135ed
FW
6549 u64 hash = swevent_hash(type, event_id);
6550
6551 return &hlist->heads[hash];
6552}
76e1d904 6553
49f135ed
FW
6554/* For the read side: events when they trigger */
6555static inline struct hlist_head *
b28ab83c 6556find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6557{
6558 struct swevent_hlist *hlist;
76e1d904 6559
b28ab83c 6560 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6561 if (!hlist)
6562 return NULL;
6563
49f135ed
FW
6564 return __find_swevent_head(hlist, type, event_id);
6565}
6566
6567/* For the event head insertion and removal in the hlist */
6568static inline struct hlist_head *
b28ab83c 6569find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6570{
6571 struct swevent_hlist *hlist;
6572 u32 event_id = event->attr.config;
6573 u64 type = event->attr.type;
6574
6575 /*
6576 * Event scheduling is always serialized against hlist allocation
6577 * and release. Which makes the protected version suitable here.
6578 * The context lock guarantees that.
6579 */
b28ab83c 6580 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6581 lockdep_is_held(&event->ctx->lock));
6582 if (!hlist)
6583 return NULL;
6584
6585 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6586}
6587
6588static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6589 u64 nr,
76e1d904
FW
6590 struct perf_sample_data *data,
6591 struct pt_regs *regs)
15dbf27c 6592{
4a32fea9 6593 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6594 struct perf_event *event;
76e1d904 6595 struct hlist_head *head;
15dbf27c 6596
76e1d904 6597 rcu_read_lock();
b28ab83c 6598 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6599 if (!head)
6600 goto end;
6601
b67bfe0d 6602 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6603 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6604 perf_swevent_event(event, nr, data, regs);
15dbf27c 6605 }
76e1d904
FW
6606end:
6607 rcu_read_unlock();
15dbf27c
PZ
6608}
6609
86038c5e
PZI
6610DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6611
4ed7c92d 6612int perf_swevent_get_recursion_context(void)
96f6d444 6613{
4a32fea9 6614 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6615
b28ab83c 6616 return get_recursion_context(swhash->recursion);
96f6d444 6617}
645e8cc0 6618EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6619
fa9f90be 6620inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6621{
4a32fea9 6622 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6623
b28ab83c 6624 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6625}
15dbf27c 6626
86038c5e 6627void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6628{
a4234bfc 6629 struct perf_sample_data data;
4ed7c92d 6630
86038c5e 6631 if (WARN_ON_ONCE(!regs))
4ed7c92d 6632 return;
a4234bfc 6633
fd0d000b 6634 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6635 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6636}
6637
6638void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6639{
6640 int rctx;
6641
6642 preempt_disable_notrace();
6643 rctx = perf_swevent_get_recursion_context();
6644 if (unlikely(rctx < 0))
6645 goto fail;
6646
6647 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6648
6649 perf_swevent_put_recursion_context(rctx);
86038c5e 6650fail:
1c024eca 6651 preempt_enable_notrace();
b8e83514
PZ
6652}
6653
cdd6c482 6654static void perf_swevent_read(struct perf_event *event)
15dbf27c 6655{
15dbf27c
PZ
6656}
6657
a4eaf7f1 6658static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6659{
4a32fea9 6660 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6661 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6662 struct hlist_head *head;
6663
6c7e550f 6664 if (is_sampling_event(event)) {
7b4b6658 6665 hwc->last_period = hwc->sample_period;
cdd6c482 6666 perf_swevent_set_period(event);
7b4b6658 6667 }
76e1d904 6668
a4eaf7f1
PZ
6669 hwc->state = !(flags & PERF_EF_START);
6670
b28ab83c 6671 head = find_swevent_head(swhash, event);
12ca6ad2 6672 if (WARN_ON_ONCE(!head))
76e1d904
FW
6673 return -EINVAL;
6674
6675 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6676 perf_event_update_userpage(event);
76e1d904 6677
15dbf27c
PZ
6678 return 0;
6679}
6680
a4eaf7f1 6681static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6682{
76e1d904 6683 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6684}
6685
a4eaf7f1 6686static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6687{
a4eaf7f1 6688 event->hw.state = 0;
d6d020e9 6689}
aa9c4c0f 6690
a4eaf7f1 6691static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6692{
a4eaf7f1 6693 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6694}
6695
49f135ed
FW
6696/* Deref the hlist from the update side */
6697static inline struct swevent_hlist *
b28ab83c 6698swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6699{
b28ab83c
PZ
6700 return rcu_dereference_protected(swhash->swevent_hlist,
6701 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6702}
6703
b28ab83c 6704static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6705{
b28ab83c 6706 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6707
49f135ed 6708 if (!hlist)
76e1d904
FW
6709 return;
6710
70691d4a 6711 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6712 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6713}
6714
6715static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6716{
b28ab83c 6717 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6718
b28ab83c 6719 mutex_lock(&swhash->hlist_mutex);
76e1d904 6720
b28ab83c
PZ
6721 if (!--swhash->hlist_refcount)
6722 swevent_hlist_release(swhash);
76e1d904 6723
b28ab83c 6724 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6725}
6726
6727static void swevent_hlist_put(struct perf_event *event)
6728{
6729 int cpu;
6730
76e1d904
FW
6731 for_each_possible_cpu(cpu)
6732 swevent_hlist_put_cpu(event, cpu);
6733}
6734
6735static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6736{
b28ab83c 6737 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6738 int err = 0;
6739
b28ab83c 6740 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6741 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6742 struct swevent_hlist *hlist;
6743
6744 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6745 if (!hlist) {
6746 err = -ENOMEM;
6747 goto exit;
6748 }
b28ab83c 6749 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6750 }
b28ab83c 6751 swhash->hlist_refcount++;
9ed6060d 6752exit:
b28ab83c 6753 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6754
6755 return err;
6756}
6757
6758static int swevent_hlist_get(struct perf_event *event)
6759{
6760 int err;
6761 int cpu, failed_cpu;
6762
76e1d904
FW
6763 get_online_cpus();
6764 for_each_possible_cpu(cpu) {
6765 err = swevent_hlist_get_cpu(event, cpu);
6766 if (err) {
6767 failed_cpu = cpu;
6768 goto fail;
6769 }
6770 }
6771 put_online_cpus();
6772
6773 return 0;
9ed6060d 6774fail:
76e1d904
FW
6775 for_each_possible_cpu(cpu) {
6776 if (cpu == failed_cpu)
6777 break;
6778 swevent_hlist_put_cpu(event, cpu);
6779 }
6780
6781 put_online_cpus();
6782 return err;
6783}
6784
c5905afb 6785struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6786
b0a873eb
PZ
6787static void sw_perf_event_destroy(struct perf_event *event)
6788{
6789 u64 event_id = event->attr.config;
95476b64 6790
b0a873eb
PZ
6791 WARN_ON(event->parent);
6792
c5905afb 6793 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6794 swevent_hlist_put(event);
6795}
6796
6797static int perf_swevent_init(struct perf_event *event)
6798{
8176cced 6799 u64 event_id = event->attr.config;
b0a873eb
PZ
6800
6801 if (event->attr.type != PERF_TYPE_SOFTWARE)
6802 return -ENOENT;
6803
2481c5fa
SE
6804 /*
6805 * no branch sampling for software events
6806 */
6807 if (has_branch_stack(event))
6808 return -EOPNOTSUPP;
6809
b0a873eb
PZ
6810 switch (event_id) {
6811 case PERF_COUNT_SW_CPU_CLOCK:
6812 case PERF_COUNT_SW_TASK_CLOCK:
6813 return -ENOENT;
6814
6815 default:
6816 break;
6817 }
6818
ce677831 6819 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6820 return -ENOENT;
6821
6822 if (!event->parent) {
6823 int err;
6824
6825 err = swevent_hlist_get(event);
6826 if (err)
6827 return err;
6828
c5905afb 6829 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6830 event->destroy = sw_perf_event_destroy;
6831 }
6832
6833 return 0;
6834}
6835
6836static struct pmu perf_swevent = {
89a1e187 6837 .task_ctx_nr = perf_sw_context,
95476b64 6838
34f43927
PZ
6839 .capabilities = PERF_PMU_CAP_NO_NMI,
6840
b0a873eb 6841 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6842 .add = perf_swevent_add,
6843 .del = perf_swevent_del,
6844 .start = perf_swevent_start,
6845 .stop = perf_swevent_stop,
1c024eca 6846 .read = perf_swevent_read,
1c024eca
PZ
6847};
6848
b0a873eb
PZ
6849#ifdef CONFIG_EVENT_TRACING
6850
1c024eca
PZ
6851static int perf_tp_filter_match(struct perf_event *event,
6852 struct perf_sample_data *data)
6853{
6854 void *record = data->raw->data;
6855
b71b437e
PZ
6856 /* only top level events have filters set */
6857 if (event->parent)
6858 event = event->parent;
6859
1c024eca
PZ
6860 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6861 return 1;
6862 return 0;
6863}
6864
6865static int perf_tp_event_match(struct perf_event *event,
6866 struct perf_sample_data *data,
6867 struct pt_regs *regs)
6868{
a0f7d0f7
FW
6869 if (event->hw.state & PERF_HES_STOPPED)
6870 return 0;
580d607c
PZ
6871 /*
6872 * All tracepoints are from kernel-space.
6873 */
6874 if (event->attr.exclude_kernel)
1c024eca
PZ
6875 return 0;
6876
6877 if (!perf_tp_filter_match(event, data))
6878 return 0;
6879
6880 return 1;
6881}
6882
6883void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6884 struct pt_regs *regs, struct hlist_head *head, int rctx,
6885 struct task_struct *task)
95476b64
FW
6886{
6887 struct perf_sample_data data;
1c024eca 6888 struct perf_event *event;
1c024eca 6889
95476b64
FW
6890 struct perf_raw_record raw = {
6891 .size = entry_size,
6892 .data = record,
6893 };
6894
fd0d000b 6895 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6896 data.raw = &raw;
6897
b67bfe0d 6898 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6899 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6900 perf_swevent_event(event, count, &data, regs);
4f41c013 6901 }
ecc55f84 6902
e6dab5ff
AV
6903 /*
6904 * If we got specified a target task, also iterate its context and
6905 * deliver this event there too.
6906 */
6907 if (task && task != current) {
6908 struct perf_event_context *ctx;
6909 struct trace_entry *entry = record;
6910
6911 rcu_read_lock();
6912 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6913 if (!ctx)
6914 goto unlock;
6915
6916 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6917 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6918 continue;
6919 if (event->attr.config != entry->type)
6920 continue;
6921 if (perf_tp_event_match(event, &data, regs))
6922 perf_swevent_event(event, count, &data, regs);
6923 }
6924unlock:
6925 rcu_read_unlock();
6926 }
6927
ecc55f84 6928 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6929}
6930EXPORT_SYMBOL_GPL(perf_tp_event);
6931
cdd6c482 6932static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6933{
1c024eca 6934 perf_trace_destroy(event);
e077df4f
PZ
6935}
6936
b0a873eb 6937static int perf_tp_event_init(struct perf_event *event)
e077df4f 6938{
76e1d904
FW
6939 int err;
6940
b0a873eb
PZ
6941 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6942 return -ENOENT;
6943
2481c5fa
SE
6944 /*
6945 * no branch sampling for tracepoint events
6946 */
6947 if (has_branch_stack(event))
6948 return -EOPNOTSUPP;
6949
1c024eca
PZ
6950 err = perf_trace_init(event);
6951 if (err)
b0a873eb 6952 return err;
e077df4f 6953
cdd6c482 6954 event->destroy = tp_perf_event_destroy;
e077df4f 6955
b0a873eb
PZ
6956 return 0;
6957}
6958
6959static struct pmu perf_tracepoint = {
89a1e187
PZ
6960 .task_ctx_nr = perf_sw_context,
6961
b0a873eb 6962 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6963 .add = perf_trace_add,
6964 .del = perf_trace_del,
6965 .start = perf_swevent_start,
6966 .stop = perf_swevent_stop,
b0a873eb 6967 .read = perf_swevent_read,
b0a873eb
PZ
6968};
6969
6970static inline void perf_tp_register(void)
6971{
2e80a82a 6972 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6973}
6fb2915d
LZ
6974
6975static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6976{
6977 char *filter_str;
6978 int ret;
6979
6980 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6981 return -EINVAL;
6982
6983 filter_str = strndup_user(arg, PAGE_SIZE);
6984 if (IS_ERR(filter_str))
6985 return PTR_ERR(filter_str);
6986
6987 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6988
6989 kfree(filter_str);
6990 return ret;
6991}
6992
6993static void perf_event_free_filter(struct perf_event *event)
6994{
6995 ftrace_profile_free_filter(event);
6996}
6997
2541517c
AS
6998static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6999{
7000 struct bpf_prog *prog;
7001
7002 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7003 return -EINVAL;
7004
7005 if (event->tp_event->prog)
7006 return -EEXIST;
7007
04a22fae
WN
7008 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7009 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7010 return -EINVAL;
7011
7012 prog = bpf_prog_get(prog_fd);
7013 if (IS_ERR(prog))
7014 return PTR_ERR(prog);
7015
6c373ca8 7016 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7017 /* valid fd, but invalid bpf program type */
7018 bpf_prog_put(prog);
7019 return -EINVAL;
7020 }
7021
7022 event->tp_event->prog = prog;
7023
7024 return 0;
7025}
7026
7027static void perf_event_free_bpf_prog(struct perf_event *event)
7028{
7029 struct bpf_prog *prog;
7030
7031 if (!event->tp_event)
7032 return;
7033
7034 prog = event->tp_event->prog;
7035 if (prog) {
7036 event->tp_event->prog = NULL;
7037 bpf_prog_put(prog);
7038 }
7039}
7040
e077df4f 7041#else
6fb2915d 7042
b0a873eb 7043static inline void perf_tp_register(void)
e077df4f 7044{
e077df4f 7045}
6fb2915d
LZ
7046
7047static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7048{
7049 return -ENOENT;
7050}
7051
7052static void perf_event_free_filter(struct perf_event *event)
7053{
7054}
7055
2541517c
AS
7056static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7057{
7058 return -ENOENT;
7059}
7060
7061static void perf_event_free_bpf_prog(struct perf_event *event)
7062{
7063}
07b139c8 7064#endif /* CONFIG_EVENT_TRACING */
e077df4f 7065
24f1e32c 7066#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7067void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7068{
f5ffe02e
FW
7069 struct perf_sample_data sample;
7070 struct pt_regs *regs = data;
7071
fd0d000b 7072 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7073
a4eaf7f1 7074 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7075 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7076}
7077#endif
7078
b0a873eb
PZ
7079/*
7080 * hrtimer based swevent callback
7081 */
f29ac756 7082
b0a873eb 7083static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7084{
b0a873eb
PZ
7085 enum hrtimer_restart ret = HRTIMER_RESTART;
7086 struct perf_sample_data data;
7087 struct pt_regs *regs;
7088 struct perf_event *event;
7089 u64 period;
f29ac756 7090
b0a873eb 7091 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7092
7093 if (event->state != PERF_EVENT_STATE_ACTIVE)
7094 return HRTIMER_NORESTART;
7095
b0a873eb 7096 event->pmu->read(event);
f344011c 7097
fd0d000b 7098 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7099 regs = get_irq_regs();
7100
7101 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7102 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7103 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7104 ret = HRTIMER_NORESTART;
7105 }
24f1e32c 7106
b0a873eb
PZ
7107 period = max_t(u64, 10000, event->hw.sample_period);
7108 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7109
b0a873eb 7110 return ret;
f29ac756
PZ
7111}
7112
b0a873eb 7113static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7114{
b0a873eb 7115 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7116 s64 period;
7117
7118 if (!is_sampling_event(event))
7119 return;
f5ffe02e 7120
5d508e82
FBH
7121 period = local64_read(&hwc->period_left);
7122 if (period) {
7123 if (period < 0)
7124 period = 10000;
fa407f35 7125
5d508e82
FBH
7126 local64_set(&hwc->period_left, 0);
7127 } else {
7128 period = max_t(u64, 10000, hwc->sample_period);
7129 }
3497d206
TG
7130 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7131 HRTIMER_MODE_REL_PINNED);
24f1e32c 7132}
b0a873eb
PZ
7133
7134static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7135{
b0a873eb
PZ
7136 struct hw_perf_event *hwc = &event->hw;
7137
6c7e550f 7138 if (is_sampling_event(event)) {
b0a873eb 7139 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7140 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7141
7142 hrtimer_cancel(&hwc->hrtimer);
7143 }
24f1e32c
FW
7144}
7145
ba3dd36c
PZ
7146static void perf_swevent_init_hrtimer(struct perf_event *event)
7147{
7148 struct hw_perf_event *hwc = &event->hw;
7149
7150 if (!is_sampling_event(event))
7151 return;
7152
7153 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7154 hwc->hrtimer.function = perf_swevent_hrtimer;
7155
7156 /*
7157 * Since hrtimers have a fixed rate, we can do a static freq->period
7158 * mapping and avoid the whole period adjust feedback stuff.
7159 */
7160 if (event->attr.freq) {
7161 long freq = event->attr.sample_freq;
7162
7163 event->attr.sample_period = NSEC_PER_SEC / freq;
7164 hwc->sample_period = event->attr.sample_period;
7165 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7166 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7167 event->attr.freq = 0;
7168 }
7169}
7170
b0a873eb
PZ
7171/*
7172 * Software event: cpu wall time clock
7173 */
7174
7175static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7176{
b0a873eb
PZ
7177 s64 prev;
7178 u64 now;
7179
a4eaf7f1 7180 now = local_clock();
b0a873eb
PZ
7181 prev = local64_xchg(&event->hw.prev_count, now);
7182 local64_add(now - prev, &event->count);
24f1e32c 7183}
24f1e32c 7184
a4eaf7f1 7185static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7186{
a4eaf7f1 7187 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7188 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7189}
7190
a4eaf7f1 7191static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7192{
b0a873eb
PZ
7193 perf_swevent_cancel_hrtimer(event);
7194 cpu_clock_event_update(event);
7195}
f29ac756 7196
a4eaf7f1
PZ
7197static int cpu_clock_event_add(struct perf_event *event, int flags)
7198{
7199 if (flags & PERF_EF_START)
7200 cpu_clock_event_start(event, flags);
6a694a60 7201 perf_event_update_userpage(event);
a4eaf7f1
PZ
7202
7203 return 0;
7204}
7205
7206static void cpu_clock_event_del(struct perf_event *event, int flags)
7207{
7208 cpu_clock_event_stop(event, flags);
7209}
7210
b0a873eb
PZ
7211static void cpu_clock_event_read(struct perf_event *event)
7212{
7213 cpu_clock_event_update(event);
7214}
f344011c 7215
b0a873eb
PZ
7216static int cpu_clock_event_init(struct perf_event *event)
7217{
7218 if (event->attr.type != PERF_TYPE_SOFTWARE)
7219 return -ENOENT;
7220
7221 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7222 return -ENOENT;
7223
2481c5fa
SE
7224 /*
7225 * no branch sampling for software events
7226 */
7227 if (has_branch_stack(event))
7228 return -EOPNOTSUPP;
7229
ba3dd36c
PZ
7230 perf_swevent_init_hrtimer(event);
7231
b0a873eb 7232 return 0;
f29ac756
PZ
7233}
7234
b0a873eb 7235static struct pmu perf_cpu_clock = {
89a1e187
PZ
7236 .task_ctx_nr = perf_sw_context,
7237
34f43927
PZ
7238 .capabilities = PERF_PMU_CAP_NO_NMI,
7239
b0a873eb 7240 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7241 .add = cpu_clock_event_add,
7242 .del = cpu_clock_event_del,
7243 .start = cpu_clock_event_start,
7244 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7245 .read = cpu_clock_event_read,
7246};
7247
7248/*
7249 * Software event: task time clock
7250 */
7251
7252static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7253{
b0a873eb
PZ
7254 u64 prev;
7255 s64 delta;
5c92d124 7256
b0a873eb
PZ
7257 prev = local64_xchg(&event->hw.prev_count, now);
7258 delta = now - prev;
7259 local64_add(delta, &event->count);
7260}
5c92d124 7261
a4eaf7f1 7262static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7263{
a4eaf7f1 7264 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7265 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7266}
7267
a4eaf7f1 7268static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7269{
7270 perf_swevent_cancel_hrtimer(event);
7271 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7272}
7273
7274static int task_clock_event_add(struct perf_event *event, int flags)
7275{
7276 if (flags & PERF_EF_START)
7277 task_clock_event_start(event, flags);
6a694a60 7278 perf_event_update_userpage(event);
b0a873eb 7279
a4eaf7f1
PZ
7280 return 0;
7281}
7282
7283static void task_clock_event_del(struct perf_event *event, int flags)
7284{
7285 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7286}
7287
7288static void task_clock_event_read(struct perf_event *event)
7289{
768a06e2
PZ
7290 u64 now = perf_clock();
7291 u64 delta = now - event->ctx->timestamp;
7292 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7293
7294 task_clock_event_update(event, time);
7295}
7296
7297static int task_clock_event_init(struct perf_event *event)
6fb2915d 7298{
b0a873eb
PZ
7299 if (event->attr.type != PERF_TYPE_SOFTWARE)
7300 return -ENOENT;
7301
7302 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7303 return -ENOENT;
7304
2481c5fa
SE
7305 /*
7306 * no branch sampling for software events
7307 */
7308 if (has_branch_stack(event))
7309 return -EOPNOTSUPP;
7310
ba3dd36c
PZ
7311 perf_swevent_init_hrtimer(event);
7312
b0a873eb 7313 return 0;
6fb2915d
LZ
7314}
7315
b0a873eb 7316static struct pmu perf_task_clock = {
89a1e187
PZ
7317 .task_ctx_nr = perf_sw_context,
7318
34f43927
PZ
7319 .capabilities = PERF_PMU_CAP_NO_NMI,
7320
b0a873eb 7321 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7322 .add = task_clock_event_add,
7323 .del = task_clock_event_del,
7324 .start = task_clock_event_start,
7325 .stop = task_clock_event_stop,
b0a873eb
PZ
7326 .read = task_clock_event_read,
7327};
6fb2915d 7328
ad5133b7 7329static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7330{
e077df4f 7331}
6fb2915d 7332
fbbe0701
SB
7333static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7334{
7335}
7336
ad5133b7 7337static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7338{
ad5133b7 7339 return 0;
6fb2915d
LZ
7340}
7341
18ab2cd3 7342static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7343
7344static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7345{
fbbe0701
SB
7346 __this_cpu_write(nop_txn_flags, flags);
7347
7348 if (flags & ~PERF_PMU_TXN_ADD)
7349 return;
7350
ad5133b7 7351 perf_pmu_disable(pmu);
6fb2915d
LZ
7352}
7353
ad5133b7
PZ
7354static int perf_pmu_commit_txn(struct pmu *pmu)
7355{
fbbe0701
SB
7356 unsigned int flags = __this_cpu_read(nop_txn_flags);
7357
7358 __this_cpu_write(nop_txn_flags, 0);
7359
7360 if (flags & ~PERF_PMU_TXN_ADD)
7361 return 0;
7362
ad5133b7
PZ
7363 perf_pmu_enable(pmu);
7364 return 0;
7365}
e077df4f 7366
ad5133b7 7367static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7368{
fbbe0701
SB
7369 unsigned int flags = __this_cpu_read(nop_txn_flags);
7370
7371 __this_cpu_write(nop_txn_flags, 0);
7372
7373 if (flags & ~PERF_PMU_TXN_ADD)
7374 return;
7375
ad5133b7 7376 perf_pmu_enable(pmu);
24f1e32c
FW
7377}
7378
35edc2a5
PZ
7379static int perf_event_idx_default(struct perf_event *event)
7380{
c719f560 7381 return 0;
35edc2a5
PZ
7382}
7383
8dc85d54
PZ
7384/*
7385 * Ensures all contexts with the same task_ctx_nr have the same
7386 * pmu_cpu_context too.
7387 */
9e317041 7388static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7389{
8dc85d54 7390 struct pmu *pmu;
b326e956 7391
8dc85d54
PZ
7392 if (ctxn < 0)
7393 return NULL;
24f1e32c 7394
8dc85d54
PZ
7395 list_for_each_entry(pmu, &pmus, entry) {
7396 if (pmu->task_ctx_nr == ctxn)
7397 return pmu->pmu_cpu_context;
7398 }
24f1e32c 7399
8dc85d54 7400 return NULL;
24f1e32c
FW
7401}
7402
51676957 7403static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7404{
51676957
PZ
7405 int cpu;
7406
7407 for_each_possible_cpu(cpu) {
7408 struct perf_cpu_context *cpuctx;
7409
7410 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7411
3f1f3320
PZ
7412 if (cpuctx->unique_pmu == old_pmu)
7413 cpuctx->unique_pmu = pmu;
51676957
PZ
7414 }
7415}
7416
7417static void free_pmu_context(struct pmu *pmu)
7418{
7419 struct pmu *i;
f5ffe02e 7420
8dc85d54 7421 mutex_lock(&pmus_lock);
0475f9ea 7422 /*
8dc85d54 7423 * Like a real lame refcount.
0475f9ea 7424 */
51676957
PZ
7425 list_for_each_entry(i, &pmus, entry) {
7426 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7427 update_pmu_context(i, pmu);
8dc85d54 7428 goto out;
51676957 7429 }
8dc85d54 7430 }
d6d020e9 7431
51676957 7432 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7433out:
7434 mutex_unlock(&pmus_lock);
24f1e32c 7435}
2e80a82a 7436static struct idr pmu_idr;
d6d020e9 7437
abe43400
PZ
7438static ssize_t
7439type_show(struct device *dev, struct device_attribute *attr, char *page)
7440{
7441 struct pmu *pmu = dev_get_drvdata(dev);
7442
7443 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7444}
90826ca7 7445static DEVICE_ATTR_RO(type);
abe43400 7446
62b85639
SE
7447static ssize_t
7448perf_event_mux_interval_ms_show(struct device *dev,
7449 struct device_attribute *attr,
7450 char *page)
7451{
7452 struct pmu *pmu = dev_get_drvdata(dev);
7453
7454 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7455}
7456
272325c4
PZ
7457static DEFINE_MUTEX(mux_interval_mutex);
7458
62b85639
SE
7459static ssize_t
7460perf_event_mux_interval_ms_store(struct device *dev,
7461 struct device_attribute *attr,
7462 const char *buf, size_t count)
7463{
7464 struct pmu *pmu = dev_get_drvdata(dev);
7465 int timer, cpu, ret;
7466
7467 ret = kstrtoint(buf, 0, &timer);
7468 if (ret)
7469 return ret;
7470
7471 if (timer < 1)
7472 return -EINVAL;
7473
7474 /* same value, noting to do */
7475 if (timer == pmu->hrtimer_interval_ms)
7476 return count;
7477
272325c4 7478 mutex_lock(&mux_interval_mutex);
62b85639
SE
7479 pmu->hrtimer_interval_ms = timer;
7480
7481 /* update all cpuctx for this PMU */
272325c4
PZ
7482 get_online_cpus();
7483 for_each_online_cpu(cpu) {
62b85639
SE
7484 struct perf_cpu_context *cpuctx;
7485 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7486 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7487
272325c4
PZ
7488 cpu_function_call(cpu,
7489 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7490 }
272325c4
PZ
7491 put_online_cpus();
7492 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7493
7494 return count;
7495}
90826ca7 7496static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7497
90826ca7
GKH
7498static struct attribute *pmu_dev_attrs[] = {
7499 &dev_attr_type.attr,
7500 &dev_attr_perf_event_mux_interval_ms.attr,
7501 NULL,
abe43400 7502};
90826ca7 7503ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7504
7505static int pmu_bus_running;
7506static struct bus_type pmu_bus = {
7507 .name = "event_source",
90826ca7 7508 .dev_groups = pmu_dev_groups,
abe43400
PZ
7509};
7510
7511static void pmu_dev_release(struct device *dev)
7512{
7513 kfree(dev);
7514}
7515
7516static int pmu_dev_alloc(struct pmu *pmu)
7517{
7518 int ret = -ENOMEM;
7519
7520 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7521 if (!pmu->dev)
7522 goto out;
7523
0c9d42ed 7524 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7525 device_initialize(pmu->dev);
7526 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7527 if (ret)
7528 goto free_dev;
7529
7530 dev_set_drvdata(pmu->dev, pmu);
7531 pmu->dev->bus = &pmu_bus;
7532 pmu->dev->release = pmu_dev_release;
7533 ret = device_add(pmu->dev);
7534 if (ret)
7535 goto free_dev;
7536
7537out:
7538 return ret;
7539
7540free_dev:
7541 put_device(pmu->dev);
7542 goto out;
7543}
7544
547e9fd7 7545static struct lock_class_key cpuctx_mutex;
facc4307 7546static struct lock_class_key cpuctx_lock;
547e9fd7 7547
03d8e80b 7548int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7549{
108b02cf 7550 int cpu, ret;
24f1e32c 7551
b0a873eb 7552 mutex_lock(&pmus_lock);
33696fc0
PZ
7553 ret = -ENOMEM;
7554 pmu->pmu_disable_count = alloc_percpu(int);
7555 if (!pmu->pmu_disable_count)
7556 goto unlock;
f29ac756 7557
2e80a82a
PZ
7558 pmu->type = -1;
7559 if (!name)
7560 goto skip_type;
7561 pmu->name = name;
7562
7563 if (type < 0) {
0e9c3be2
TH
7564 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7565 if (type < 0) {
7566 ret = type;
2e80a82a
PZ
7567 goto free_pdc;
7568 }
7569 }
7570 pmu->type = type;
7571
abe43400
PZ
7572 if (pmu_bus_running) {
7573 ret = pmu_dev_alloc(pmu);
7574 if (ret)
7575 goto free_idr;
7576 }
7577
2e80a82a 7578skip_type:
8dc85d54
PZ
7579 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7580 if (pmu->pmu_cpu_context)
7581 goto got_cpu_context;
f29ac756 7582
c4814202 7583 ret = -ENOMEM;
108b02cf
PZ
7584 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7585 if (!pmu->pmu_cpu_context)
abe43400 7586 goto free_dev;
f344011c 7587
108b02cf
PZ
7588 for_each_possible_cpu(cpu) {
7589 struct perf_cpu_context *cpuctx;
7590
7591 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7592 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7593 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7594 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7595 cpuctx->ctx.pmu = pmu;
9e630205 7596
272325c4 7597 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7598
3f1f3320 7599 cpuctx->unique_pmu = pmu;
108b02cf 7600 }
76e1d904 7601
8dc85d54 7602got_cpu_context:
ad5133b7
PZ
7603 if (!pmu->start_txn) {
7604 if (pmu->pmu_enable) {
7605 /*
7606 * If we have pmu_enable/pmu_disable calls, install
7607 * transaction stubs that use that to try and batch
7608 * hardware accesses.
7609 */
7610 pmu->start_txn = perf_pmu_start_txn;
7611 pmu->commit_txn = perf_pmu_commit_txn;
7612 pmu->cancel_txn = perf_pmu_cancel_txn;
7613 } else {
fbbe0701 7614 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7615 pmu->commit_txn = perf_pmu_nop_int;
7616 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7617 }
5c92d124 7618 }
15dbf27c 7619
ad5133b7
PZ
7620 if (!pmu->pmu_enable) {
7621 pmu->pmu_enable = perf_pmu_nop_void;
7622 pmu->pmu_disable = perf_pmu_nop_void;
7623 }
7624
35edc2a5
PZ
7625 if (!pmu->event_idx)
7626 pmu->event_idx = perf_event_idx_default;
7627
b0a873eb 7628 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7629 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7630 ret = 0;
7631unlock:
b0a873eb
PZ
7632 mutex_unlock(&pmus_lock);
7633
33696fc0 7634 return ret;
108b02cf 7635
abe43400
PZ
7636free_dev:
7637 device_del(pmu->dev);
7638 put_device(pmu->dev);
7639
2e80a82a
PZ
7640free_idr:
7641 if (pmu->type >= PERF_TYPE_MAX)
7642 idr_remove(&pmu_idr, pmu->type);
7643
108b02cf
PZ
7644free_pdc:
7645 free_percpu(pmu->pmu_disable_count);
7646 goto unlock;
f29ac756 7647}
c464c76e 7648EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7649
b0a873eb 7650void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7651{
b0a873eb
PZ
7652 mutex_lock(&pmus_lock);
7653 list_del_rcu(&pmu->entry);
7654 mutex_unlock(&pmus_lock);
5c92d124 7655
0475f9ea 7656 /*
cde8e884
PZ
7657 * We dereference the pmu list under both SRCU and regular RCU, so
7658 * synchronize against both of those.
0475f9ea 7659 */
b0a873eb 7660 synchronize_srcu(&pmus_srcu);
cde8e884 7661 synchronize_rcu();
d6d020e9 7662
33696fc0 7663 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7664 if (pmu->type >= PERF_TYPE_MAX)
7665 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7666 device_del(pmu->dev);
7667 put_device(pmu->dev);
51676957 7668 free_pmu_context(pmu);
b0a873eb 7669}
c464c76e 7670EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7671
cc34b98b
MR
7672static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7673{
ccd41c86 7674 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7675 int ret;
7676
7677 if (!try_module_get(pmu->module))
7678 return -ENODEV;
ccd41c86
PZ
7679
7680 if (event->group_leader != event) {
8b10c5e2
PZ
7681 /*
7682 * This ctx->mutex can nest when we're called through
7683 * inheritance. See the perf_event_ctx_lock_nested() comment.
7684 */
7685 ctx = perf_event_ctx_lock_nested(event->group_leader,
7686 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7687 BUG_ON(!ctx);
7688 }
7689
cc34b98b
MR
7690 event->pmu = pmu;
7691 ret = pmu->event_init(event);
ccd41c86
PZ
7692
7693 if (ctx)
7694 perf_event_ctx_unlock(event->group_leader, ctx);
7695
cc34b98b
MR
7696 if (ret)
7697 module_put(pmu->module);
7698
7699 return ret;
7700}
7701
18ab2cd3 7702static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7703{
7704 struct pmu *pmu = NULL;
7705 int idx;
940c5b29 7706 int ret;
b0a873eb
PZ
7707
7708 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7709
7710 rcu_read_lock();
7711 pmu = idr_find(&pmu_idr, event->attr.type);
7712 rcu_read_unlock();
940c5b29 7713 if (pmu) {
cc34b98b 7714 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7715 if (ret)
7716 pmu = ERR_PTR(ret);
2e80a82a 7717 goto unlock;
940c5b29 7718 }
2e80a82a 7719
b0a873eb 7720 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7721 ret = perf_try_init_event(pmu, event);
b0a873eb 7722 if (!ret)
e5f4d339 7723 goto unlock;
76e1d904 7724
b0a873eb
PZ
7725 if (ret != -ENOENT) {
7726 pmu = ERR_PTR(ret);
e5f4d339 7727 goto unlock;
f344011c 7728 }
5c92d124 7729 }
e5f4d339
PZ
7730 pmu = ERR_PTR(-ENOENT);
7731unlock:
b0a873eb 7732 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7733
4aeb0b42 7734 return pmu;
5c92d124
IM
7735}
7736
4beb31f3
FW
7737static void account_event_cpu(struct perf_event *event, int cpu)
7738{
7739 if (event->parent)
7740 return;
7741
4beb31f3
FW
7742 if (is_cgroup_event(event))
7743 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7744}
7745
766d6c07
FW
7746static void account_event(struct perf_event *event)
7747{
4beb31f3
FW
7748 if (event->parent)
7749 return;
7750
766d6c07
FW
7751 if (event->attach_state & PERF_ATTACH_TASK)
7752 static_key_slow_inc(&perf_sched_events.key);
7753 if (event->attr.mmap || event->attr.mmap_data)
7754 atomic_inc(&nr_mmap_events);
7755 if (event->attr.comm)
7756 atomic_inc(&nr_comm_events);
7757 if (event->attr.task)
7758 atomic_inc(&nr_task_events);
948b26b6
FW
7759 if (event->attr.freq) {
7760 if (atomic_inc_return(&nr_freq_events) == 1)
7761 tick_nohz_full_kick_all();
7762 }
45ac1403
AH
7763 if (event->attr.context_switch) {
7764 atomic_inc(&nr_switch_events);
7765 static_key_slow_inc(&perf_sched_events.key);
7766 }
4beb31f3 7767 if (has_branch_stack(event))
766d6c07 7768 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7769 if (is_cgroup_event(event))
766d6c07 7770 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7771
7772 account_event_cpu(event, event->cpu);
766d6c07
FW
7773}
7774
0793a61d 7775/*
cdd6c482 7776 * Allocate and initialize a event structure
0793a61d 7777 */
cdd6c482 7778static struct perf_event *
c3f00c70 7779perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7780 struct task_struct *task,
7781 struct perf_event *group_leader,
7782 struct perf_event *parent_event,
4dc0da86 7783 perf_overflow_handler_t overflow_handler,
79dff51e 7784 void *context, int cgroup_fd)
0793a61d 7785{
51b0fe39 7786 struct pmu *pmu;
cdd6c482
IM
7787 struct perf_event *event;
7788 struct hw_perf_event *hwc;
90983b16 7789 long err = -EINVAL;
0793a61d 7790
66832eb4
ON
7791 if ((unsigned)cpu >= nr_cpu_ids) {
7792 if (!task || cpu != -1)
7793 return ERR_PTR(-EINVAL);
7794 }
7795
c3f00c70 7796 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7797 if (!event)
d5d2bc0d 7798 return ERR_PTR(-ENOMEM);
0793a61d 7799
04289bb9 7800 /*
cdd6c482 7801 * Single events are their own group leaders, with an
04289bb9
IM
7802 * empty sibling list:
7803 */
7804 if (!group_leader)
cdd6c482 7805 group_leader = event;
04289bb9 7806
cdd6c482
IM
7807 mutex_init(&event->child_mutex);
7808 INIT_LIST_HEAD(&event->child_list);
fccc714b 7809
cdd6c482
IM
7810 INIT_LIST_HEAD(&event->group_entry);
7811 INIT_LIST_HEAD(&event->event_entry);
7812 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7813 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7814 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7815 INIT_HLIST_NODE(&event->hlist_entry);
7816
10c6db11 7817
cdd6c482 7818 init_waitqueue_head(&event->waitq);
e360adbe 7819 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7820
cdd6c482 7821 mutex_init(&event->mmap_mutex);
7b732a75 7822
a6fa941d 7823 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7824 event->cpu = cpu;
7825 event->attr = *attr;
7826 event->group_leader = group_leader;
7827 event->pmu = NULL;
cdd6c482 7828 event->oncpu = -1;
a96bbc16 7829
cdd6c482 7830 event->parent = parent_event;
b84fbc9f 7831
17cf22c3 7832 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7833 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7834
cdd6c482 7835 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7836
d580ff86
PZ
7837 if (task) {
7838 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7839 /*
50f16a8b
PZ
7840 * XXX pmu::event_init needs to know what task to account to
7841 * and we cannot use the ctx information because we need the
7842 * pmu before we get a ctx.
d580ff86 7843 */
50f16a8b 7844 event->hw.target = task;
d580ff86
PZ
7845 }
7846
34f43927
PZ
7847 event->clock = &local_clock;
7848 if (parent_event)
7849 event->clock = parent_event->clock;
7850
4dc0da86 7851 if (!overflow_handler && parent_event) {
b326e956 7852 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7853 context = parent_event->overflow_handler_context;
7854 }
66832eb4 7855
b326e956 7856 event->overflow_handler = overflow_handler;
4dc0da86 7857 event->overflow_handler_context = context;
97eaf530 7858
0231bb53 7859 perf_event__state_init(event);
a86ed508 7860
4aeb0b42 7861 pmu = NULL;
b8e83514 7862
cdd6c482 7863 hwc = &event->hw;
bd2b5b12 7864 hwc->sample_period = attr->sample_period;
0d48696f 7865 if (attr->freq && attr->sample_freq)
bd2b5b12 7866 hwc->sample_period = 1;
eced1dfc 7867 hwc->last_period = hwc->sample_period;
bd2b5b12 7868
e7850595 7869 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7870
2023b359 7871 /*
cdd6c482 7872 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7873 */
3dab77fb 7874 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7875 goto err_ns;
a46a2300
YZ
7876
7877 if (!has_branch_stack(event))
7878 event->attr.branch_sample_type = 0;
2023b359 7879
79dff51e
MF
7880 if (cgroup_fd != -1) {
7881 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7882 if (err)
7883 goto err_ns;
7884 }
7885
b0a873eb 7886 pmu = perf_init_event(event);
4aeb0b42 7887 if (!pmu)
90983b16
FW
7888 goto err_ns;
7889 else if (IS_ERR(pmu)) {
4aeb0b42 7890 err = PTR_ERR(pmu);
90983b16 7891 goto err_ns;
621a01ea 7892 }
d5d2bc0d 7893
bed5b25a
AS
7894 err = exclusive_event_init(event);
7895 if (err)
7896 goto err_pmu;
7897
cdd6c482 7898 if (!event->parent) {
927c7a9e
FW
7899 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7900 err = get_callchain_buffers();
90983b16 7901 if (err)
bed5b25a 7902 goto err_per_task;
d010b332 7903 }
f344011c 7904 }
9ee318a7 7905
cdd6c482 7906 return event;
90983b16 7907
bed5b25a
AS
7908err_per_task:
7909 exclusive_event_destroy(event);
7910
90983b16
FW
7911err_pmu:
7912 if (event->destroy)
7913 event->destroy(event);
c464c76e 7914 module_put(pmu->module);
90983b16 7915err_ns:
79dff51e
MF
7916 if (is_cgroup_event(event))
7917 perf_detach_cgroup(event);
90983b16
FW
7918 if (event->ns)
7919 put_pid_ns(event->ns);
7920 kfree(event);
7921
7922 return ERR_PTR(err);
0793a61d
TG
7923}
7924
cdd6c482
IM
7925static int perf_copy_attr(struct perf_event_attr __user *uattr,
7926 struct perf_event_attr *attr)
974802ea 7927{
974802ea 7928 u32 size;
cdf8073d 7929 int ret;
974802ea
PZ
7930
7931 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7932 return -EFAULT;
7933
7934 /*
7935 * zero the full structure, so that a short copy will be nice.
7936 */
7937 memset(attr, 0, sizeof(*attr));
7938
7939 ret = get_user(size, &uattr->size);
7940 if (ret)
7941 return ret;
7942
7943 if (size > PAGE_SIZE) /* silly large */
7944 goto err_size;
7945
7946 if (!size) /* abi compat */
7947 size = PERF_ATTR_SIZE_VER0;
7948
7949 if (size < PERF_ATTR_SIZE_VER0)
7950 goto err_size;
7951
7952 /*
7953 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7954 * ensure all the unknown bits are 0 - i.e. new
7955 * user-space does not rely on any kernel feature
7956 * extensions we dont know about yet.
974802ea
PZ
7957 */
7958 if (size > sizeof(*attr)) {
cdf8073d
IS
7959 unsigned char __user *addr;
7960 unsigned char __user *end;
7961 unsigned char val;
974802ea 7962
cdf8073d
IS
7963 addr = (void __user *)uattr + sizeof(*attr);
7964 end = (void __user *)uattr + size;
974802ea 7965
cdf8073d 7966 for (; addr < end; addr++) {
974802ea
PZ
7967 ret = get_user(val, addr);
7968 if (ret)
7969 return ret;
7970 if (val)
7971 goto err_size;
7972 }
b3e62e35 7973 size = sizeof(*attr);
974802ea
PZ
7974 }
7975
7976 ret = copy_from_user(attr, uattr, size);
7977 if (ret)
7978 return -EFAULT;
7979
cd757645 7980 if (attr->__reserved_1)
974802ea
PZ
7981 return -EINVAL;
7982
7983 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7984 return -EINVAL;
7985
7986 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7987 return -EINVAL;
7988
bce38cd5
SE
7989 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7990 u64 mask = attr->branch_sample_type;
7991
7992 /* only using defined bits */
7993 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7994 return -EINVAL;
7995
7996 /* at least one branch bit must be set */
7997 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7998 return -EINVAL;
7999
bce38cd5
SE
8000 /* propagate priv level, when not set for branch */
8001 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8002
8003 /* exclude_kernel checked on syscall entry */
8004 if (!attr->exclude_kernel)
8005 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8006
8007 if (!attr->exclude_user)
8008 mask |= PERF_SAMPLE_BRANCH_USER;
8009
8010 if (!attr->exclude_hv)
8011 mask |= PERF_SAMPLE_BRANCH_HV;
8012 /*
8013 * adjust user setting (for HW filter setup)
8014 */
8015 attr->branch_sample_type = mask;
8016 }
e712209a
SE
8017 /* privileged levels capture (kernel, hv): check permissions */
8018 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8019 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8020 return -EACCES;
bce38cd5 8021 }
4018994f 8022
c5ebcedb 8023 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8024 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8025 if (ret)
8026 return ret;
8027 }
8028
8029 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8030 if (!arch_perf_have_user_stack_dump())
8031 return -ENOSYS;
8032
8033 /*
8034 * We have __u32 type for the size, but so far
8035 * we can only use __u16 as maximum due to the
8036 * __u16 sample size limit.
8037 */
8038 if (attr->sample_stack_user >= USHRT_MAX)
8039 ret = -EINVAL;
8040 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8041 ret = -EINVAL;
8042 }
4018994f 8043
60e2364e
SE
8044 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8045 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8046out:
8047 return ret;
8048
8049err_size:
8050 put_user(sizeof(*attr), &uattr->size);
8051 ret = -E2BIG;
8052 goto out;
8053}
8054
ac9721f3
PZ
8055static int
8056perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8057{
b69cf536 8058 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8059 int ret = -EINVAL;
8060
ac9721f3 8061 if (!output_event)
a4be7c27
PZ
8062 goto set;
8063
ac9721f3
PZ
8064 /* don't allow circular references */
8065 if (event == output_event)
a4be7c27
PZ
8066 goto out;
8067
0f139300
PZ
8068 /*
8069 * Don't allow cross-cpu buffers
8070 */
8071 if (output_event->cpu != event->cpu)
8072 goto out;
8073
8074 /*
76369139 8075 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8076 */
8077 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8078 goto out;
8079
34f43927
PZ
8080 /*
8081 * Mixing clocks in the same buffer is trouble you don't need.
8082 */
8083 if (output_event->clock != event->clock)
8084 goto out;
8085
45bfb2e5
PZ
8086 /*
8087 * If both events generate aux data, they must be on the same PMU
8088 */
8089 if (has_aux(event) && has_aux(output_event) &&
8090 event->pmu != output_event->pmu)
8091 goto out;
8092
a4be7c27 8093set:
cdd6c482 8094 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8095 /* Can't redirect output if we've got an active mmap() */
8096 if (atomic_read(&event->mmap_count))
8097 goto unlock;
a4be7c27 8098
ac9721f3 8099 if (output_event) {
76369139
FW
8100 /* get the rb we want to redirect to */
8101 rb = ring_buffer_get(output_event);
8102 if (!rb)
ac9721f3 8103 goto unlock;
a4be7c27
PZ
8104 }
8105
b69cf536 8106 ring_buffer_attach(event, rb);
9bb5d40c 8107
a4be7c27 8108 ret = 0;
ac9721f3
PZ
8109unlock:
8110 mutex_unlock(&event->mmap_mutex);
8111
a4be7c27 8112out:
a4be7c27
PZ
8113 return ret;
8114}
8115
f63a8daa
PZ
8116static void mutex_lock_double(struct mutex *a, struct mutex *b)
8117{
8118 if (b < a)
8119 swap(a, b);
8120
8121 mutex_lock(a);
8122 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8123}
8124
34f43927
PZ
8125static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8126{
8127 bool nmi_safe = false;
8128
8129 switch (clk_id) {
8130 case CLOCK_MONOTONIC:
8131 event->clock = &ktime_get_mono_fast_ns;
8132 nmi_safe = true;
8133 break;
8134
8135 case CLOCK_MONOTONIC_RAW:
8136 event->clock = &ktime_get_raw_fast_ns;
8137 nmi_safe = true;
8138 break;
8139
8140 case CLOCK_REALTIME:
8141 event->clock = &ktime_get_real_ns;
8142 break;
8143
8144 case CLOCK_BOOTTIME:
8145 event->clock = &ktime_get_boot_ns;
8146 break;
8147
8148 case CLOCK_TAI:
8149 event->clock = &ktime_get_tai_ns;
8150 break;
8151
8152 default:
8153 return -EINVAL;
8154 }
8155
8156 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8157 return -EINVAL;
8158
8159 return 0;
8160}
8161
0793a61d 8162/**
cdd6c482 8163 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8164 *
cdd6c482 8165 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8166 * @pid: target pid
9f66a381 8167 * @cpu: target cpu
cdd6c482 8168 * @group_fd: group leader event fd
0793a61d 8169 */
cdd6c482
IM
8170SYSCALL_DEFINE5(perf_event_open,
8171 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8172 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8173{
b04243ef
PZ
8174 struct perf_event *group_leader = NULL, *output_event = NULL;
8175 struct perf_event *event, *sibling;
cdd6c482 8176 struct perf_event_attr attr;
f63a8daa 8177 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8178 struct file *event_file = NULL;
2903ff01 8179 struct fd group = {NULL, 0};
38a81da2 8180 struct task_struct *task = NULL;
89a1e187 8181 struct pmu *pmu;
ea635c64 8182 int event_fd;
b04243ef 8183 int move_group = 0;
dc86cabe 8184 int err;
a21b0b35 8185 int f_flags = O_RDWR;
79dff51e 8186 int cgroup_fd = -1;
0793a61d 8187
2743a5b0 8188 /* for future expandability... */
e5d1367f 8189 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8190 return -EINVAL;
8191
dc86cabe
IM
8192 err = perf_copy_attr(attr_uptr, &attr);
8193 if (err)
8194 return err;
eab656ae 8195
0764771d
PZ
8196 if (!attr.exclude_kernel) {
8197 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8198 return -EACCES;
8199 }
8200
df58ab24 8201 if (attr.freq) {
cdd6c482 8202 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8203 return -EINVAL;
0819b2e3
PZ
8204 } else {
8205 if (attr.sample_period & (1ULL << 63))
8206 return -EINVAL;
df58ab24
PZ
8207 }
8208
e5d1367f
SE
8209 /*
8210 * In cgroup mode, the pid argument is used to pass the fd
8211 * opened to the cgroup directory in cgroupfs. The cpu argument
8212 * designates the cpu on which to monitor threads from that
8213 * cgroup.
8214 */
8215 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8216 return -EINVAL;
8217
a21b0b35
YD
8218 if (flags & PERF_FLAG_FD_CLOEXEC)
8219 f_flags |= O_CLOEXEC;
8220
8221 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8222 if (event_fd < 0)
8223 return event_fd;
8224
ac9721f3 8225 if (group_fd != -1) {
2903ff01
AV
8226 err = perf_fget_light(group_fd, &group);
8227 if (err)
d14b12d7 8228 goto err_fd;
2903ff01 8229 group_leader = group.file->private_data;
ac9721f3
PZ
8230 if (flags & PERF_FLAG_FD_OUTPUT)
8231 output_event = group_leader;
8232 if (flags & PERF_FLAG_FD_NO_GROUP)
8233 group_leader = NULL;
8234 }
8235
e5d1367f 8236 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8237 task = find_lively_task_by_vpid(pid);
8238 if (IS_ERR(task)) {
8239 err = PTR_ERR(task);
8240 goto err_group_fd;
8241 }
8242 }
8243
1f4ee503
PZ
8244 if (task && group_leader &&
8245 group_leader->attr.inherit != attr.inherit) {
8246 err = -EINVAL;
8247 goto err_task;
8248 }
8249
fbfc623f
YZ
8250 get_online_cpus();
8251
79dff51e
MF
8252 if (flags & PERF_FLAG_PID_CGROUP)
8253 cgroup_fd = pid;
8254
4dc0da86 8255 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8256 NULL, NULL, cgroup_fd);
d14b12d7
SE
8257 if (IS_ERR(event)) {
8258 err = PTR_ERR(event);
1f4ee503 8259 goto err_cpus;
d14b12d7
SE
8260 }
8261
53b25335
VW
8262 if (is_sampling_event(event)) {
8263 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8264 err = -ENOTSUPP;
8265 goto err_alloc;
8266 }
8267 }
8268
766d6c07
FW
8269 account_event(event);
8270
89a1e187
PZ
8271 /*
8272 * Special case software events and allow them to be part of
8273 * any hardware group.
8274 */
8275 pmu = event->pmu;
b04243ef 8276
34f43927
PZ
8277 if (attr.use_clockid) {
8278 err = perf_event_set_clock(event, attr.clockid);
8279 if (err)
8280 goto err_alloc;
8281 }
8282
b04243ef
PZ
8283 if (group_leader &&
8284 (is_software_event(event) != is_software_event(group_leader))) {
8285 if (is_software_event(event)) {
8286 /*
8287 * If event and group_leader are not both a software
8288 * event, and event is, then group leader is not.
8289 *
8290 * Allow the addition of software events to !software
8291 * groups, this is safe because software events never
8292 * fail to schedule.
8293 */
8294 pmu = group_leader->pmu;
8295 } else if (is_software_event(group_leader) &&
8296 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8297 /*
8298 * In case the group is a pure software group, and we
8299 * try to add a hardware event, move the whole group to
8300 * the hardware context.
8301 */
8302 move_group = 1;
8303 }
8304 }
89a1e187
PZ
8305
8306 /*
8307 * Get the target context (task or percpu):
8308 */
4af57ef2 8309 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8310 if (IS_ERR(ctx)) {
8311 err = PTR_ERR(ctx);
c6be5a5c 8312 goto err_alloc;
89a1e187
PZ
8313 }
8314
bed5b25a
AS
8315 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8316 err = -EBUSY;
8317 goto err_context;
8318 }
8319
fd1edb3a
PZ
8320 if (task) {
8321 put_task_struct(task);
8322 task = NULL;
8323 }
8324
ccff286d 8325 /*
cdd6c482 8326 * Look up the group leader (we will attach this event to it):
04289bb9 8327 */
ac9721f3 8328 if (group_leader) {
dc86cabe 8329 err = -EINVAL;
04289bb9 8330
04289bb9 8331 /*
ccff286d
IM
8332 * Do not allow a recursive hierarchy (this new sibling
8333 * becoming part of another group-sibling):
8334 */
8335 if (group_leader->group_leader != group_leader)
c3f00c70 8336 goto err_context;
34f43927
PZ
8337
8338 /* All events in a group should have the same clock */
8339 if (group_leader->clock != event->clock)
8340 goto err_context;
8341
ccff286d
IM
8342 /*
8343 * Do not allow to attach to a group in a different
8344 * task or CPU context:
04289bb9 8345 */
b04243ef 8346 if (move_group) {
c3c87e77
PZ
8347 /*
8348 * Make sure we're both on the same task, or both
8349 * per-cpu events.
8350 */
8351 if (group_leader->ctx->task != ctx->task)
8352 goto err_context;
8353
8354 /*
8355 * Make sure we're both events for the same CPU;
8356 * grouping events for different CPUs is broken; since
8357 * you can never concurrently schedule them anyhow.
8358 */
8359 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8360 goto err_context;
8361 } else {
8362 if (group_leader->ctx != ctx)
8363 goto err_context;
8364 }
8365
3b6f9e5c
PM
8366 /*
8367 * Only a group leader can be exclusive or pinned
8368 */
0d48696f 8369 if (attr.exclusive || attr.pinned)
c3f00c70 8370 goto err_context;
ac9721f3
PZ
8371 }
8372
8373 if (output_event) {
8374 err = perf_event_set_output(event, output_event);
8375 if (err)
c3f00c70 8376 goto err_context;
ac9721f3 8377 }
0793a61d 8378
a21b0b35
YD
8379 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8380 f_flags);
ea635c64
AV
8381 if (IS_ERR(event_file)) {
8382 err = PTR_ERR(event_file);
c3f00c70 8383 goto err_context;
ea635c64 8384 }
9b51f66d 8385
b04243ef 8386 if (move_group) {
f63a8daa 8387 gctx = group_leader->ctx;
f55fc2a5
PZ
8388 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8389 } else {
8390 mutex_lock(&ctx->mutex);
8391 }
8392
a723968c
PZ
8393 if (!perf_event_validate_size(event)) {
8394 err = -E2BIG;
8395 goto err_locked;
8396 }
8397
f55fc2a5
PZ
8398 /*
8399 * Must be under the same ctx::mutex as perf_install_in_context(),
8400 * because we need to serialize with concurrent event creation.
8401 */
8402 if (!exclusive_event_installable(event, ctx)) {
8403 /* exclusive and group stuff are assumed mutually exclusive */
8404 WARN_ON_ONCE(move_group);
f63a8daa 8405
f55fc2a5
PZ
8406 err = -EBUSY;
8407 goto err_locked;
8408 }
f63a8daa 8409
f55fc2a5
PZ
8410 WARN_ON_ONCE(ctx->parent_ctx);
8411
8412 if (move_group) {
f63a8daa
PZ
8413 /*
8414 * See perf_event_ctx_lock() for comments on the details
8415 * of swizzling perf_event::ctx.
8416 */
46ce0fe9 8417 perf_remove_from_context(group_leader, false);
0231bb53 8418
b04243ef
PZ
8419 list_for_each_entry(sibling, &group_leader->sibling_list,
8420 group_entry) {
46ce0fe9 8421 perf_remove_from_context(sibling, false);
b04243ef
PZ
8422 put_ctx(gctx);
8423 }
b04243ef 8424
f63a8daa
PZ
8425 /*
8426 * Wait for everybody to stop referencing the events through
8427 * the old lists, before installing it on new lists.
8428 */
0cda4c02 8429 synchronize_rcu();
f63a8daa 8430
8f95b435
PZI
8431 /*
8432 * Install the group siblings before the group leader.
8433 *
8434 * Because a group leader will try and install the entire group
8435 * (through the sibling list, which is still in-tact), we can
8436 * end up with siblings installed in the wrong context.
8437 *
8438 * By installing siblings first we NO-OP because they're not
8439 * reachable through the group lists.
8440 */
b04243ef
PZ
8441 list_for_each_entry(sibling, &group_leader->sibling_list,
8442 group_entry) {
8f95b435 8443 perf_event__state_init(sibling);
9fc81d87 8444 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8445 get_ctx(ctx);
8446 }
8f95b435
PZI
8447
8448 /*
8449 * Removing from the context ends up with disabled
8450 * event. What we want here is event in the initial
8451 * startup state, ready to be add into new context.
8452 */
8453 perf_event__state_init(group_leader);
8454 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8455 get_ctx(ctx);
b04243ef 8456
f55fc2a5
PZ
8457 /*
8458 * Now that all events are installed in @ctx, nothing
8459 * references @gctx anymore, so drop the last reference we have
8460 * on it.
8461 */
8462 put_ctx(gctx);
bed5b25a
AS
8463 }
8464
f73e22ab
PZ
8465 /*
8466 * Precalculate sample_data sizes; do while holding ctx::mutex such
8467 * that we're serialized against further additions and before
8468 * perf_install_in_context() which is the point the event is active and
8469 * can use these values.
8470 */
8471 perf_event__header_size(event);
8472 perf_event__id_header_size(event);
8473
e2d37cd2 8474 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8475 perf_unpin_context(ctx);
f63a8daa 8476
f55fc2a5 8477 if (move_group)
f63a8daa 8478 mutex_unlock(&gctx->mutex);
d859e29f 8479 mutex_unlock(&ctx->mutex);
9b51f66d 8480
fbfc623f
YZ
8481 put_online_cpus();
8482
cdd6c482 8483 event->owner = current;
8882135b 8484
cdd6c482
IM
8485 mutex_lock(&current->perf_event_mutex);
8486 list_add_tail(&event->owner_entry, &current->perf_event_list);
8487 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8488
8a49542c
PZ
8489 /*
8490 * Drop the reference on the group_event after placing the
8491 * new event on the sibling_list. This ensures destruction
8492 * of the group leader will find the pointer to itself in
8493 * perf_group_detach().
8494 */
2903ff01 8495 fdput(group);
ea635c64
AV
8496 fd_install(event_fd, event_file);
8497 return event_fd;
0793a61d 8498
f55fc2a5
PZ
8499err_locked:
8500 if (move_group)
8501 mutex_unlock(&gctx->mutex);
8502 mutex_unlock(&ctx->mutex);
8503/* err_file: */
8504 fput(event_file);
c3f00c70 8505err_context:
fe4b04fa 8506 perf_unpin_context(ctx);
ea635c64 8507 put_ctx(ctx);
c6be5a5c 8508err_alloc:
ea635c64 8509 free_event(event);
1f4ee503 8510err_cpus:
fbfc623f 8511 put_online_cpus();
1f4ee503 8512err_task:
e7d0bc04
PZ
8513 if (task)
8514 put_task_struct(task);
89a1e187 8515err_group_fd:
2903ff01 8516 fdput(group);
ea635c64
AV
8517err_fd:
8518 put_unused_fd(event_fd);
dc86cabe 8519 return err;
0793a61d
TG
8520}
8521
fb0459d7
AV
8522/**
8523 * perf_event_create_kernel_counter
8524 *
8525 * @attr: attributes of the counter to create
8526 * @cpu: cpu in which the counter is bound
38a81da2 8527 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8528 */
8529struct perf_event *
8530perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8531 struct task_struct *task,
4dc0da86
AK
8532 perf_overflow_handler_t overflow_handler,
8533 void *context)
fb0459d7 8534{
fb0459d7 8535 struct perf_event_context *ctx;
c3f00c70 8536 struct perf_event *event;
fb0459d7 8537 int err;
d859e29f 8538
fb0459d7
AV
8539 /*
8540 * Get the target context (task or percpu):
8541 */
d859e29f 8542
4dc0da86 8543 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8544 overflow_handler, context, -1);
c3f00c70
PZ
8545 if (IS_ERR(event)) {
8546 err = PTR_ERR(event);
8547 goto err;
8548 }
d859e29f 8549
f8697762
JO
8550 /* Mark owner so we could distinguish it from user events. */
8551 event->owner = EVENT_OWNER_KERNEL;
8552
766d6c07
FW
8553 account_event(event);
8554
4af57ef2 8555 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8556 if (IS_ERR(ctx)) {
8557 err = PTR_ERR(ctx);
c3f00c70 8558 goto err_free;
d859e29f 8559 }
fb0459d7 8560
fb0459d7
AV
8561 WARN_ON_ONCE(ctx->parent_ctx);
8562 mutex_lock(&ctx->mutex);
bed5b25a
AS
8563 if (!exclusive_event_installable(event, ctx)) {
8564 mutex_unlock(&ctx->mutex);
8565 perf_unpin_context(ctx);
8566 put_ctx(ctx);
8567 err = -EBUSY;
8568 goto err_free;
8569 }
8570
fb0459d7 8571 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8572 perf_unpin_context(ctx);
fb0459d7
AV
8573 mutex_unlock(&ctx->mutex);
8574
fb0459d7
AV
8575 return event;
8576
c3f00c70
PZ
8577err_free:
8578 free_event(event);
8579err:
c6567f64 8580 return ERR_PTR(err);
9b51f66d 8581}
fb0459d7 8582EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8583
0cda4c02
YZ
8584void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8585{
8586 struct perf_event_context *src_ctx;
8587 struct perf_event_context *dst_ctx;
8588 struct perf_event *event, *tmp;
8589 LIST_HEAD(events);
8590
8591 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8592 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8593
f63a8daa
PZ
8594 /*
8595 * See perf_event_ctx_lock() for comments on the details
8596 * of swizzling perf_event::ctx.
8597 */
8598 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8599 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8600 event_entry) {
46ce0fe9 8601 perf_remove_from_context(event, false);
9a545de0 8602 unaccount_event_cpu(event, src_cpu);
0cda4c02 8603 put_ctx(src_ctx);
9886167d 8604 list_add(&event->migrate_entry, &events);
0cda4c02 8605 }
0cda4c02 8606
8f95b435
PZI
8607 /*
8608 * Wait for the events to quiesce before re-instating them.
8609 */
0cda4c02
YZ
8610 synchronize_rcu();
8611
8f95b435
PZI
8612 /*
8613 * Re-instate events in 2 passes.
8614 *
8615 * Skip over group leaders and only install siblings on this first
8616 * pass, siblings will not get enabled without a leader, however a
8617 * leader will enable its siblings, even if those are still on the old
8618 * context.
8619 */
8620 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8621 if (event->group_leader == event)
8622 continue;
8623
8624 list_del(&event->migrate_entry);
8625 if (event->state >= PERF_EVENT_STATE_OFF)
8626 event->state = PERF_EVENT_STATE_INACTIVE;
8627 account_event_cpu(event, dst_cpu);
8628 perf_install_in_context(dst_ctx, event, dst_cpu);
8629 get_ctx(dst_ctx);
8630 }
8631
8632 /*
8633 * Once all the siblings are setup properly, install the group leaders
8634 * to make it go.
8635 */
9886167d
PZ
8636 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8637 list_del(&event->migrate_entry);
0cda4c02
YZ
8638 if (event->state >= PERF_EVENT_STATE_OFF)
8639 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8640 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8641 perf_install_in_context(dst_ctx, event, dst_cpu);
8642 get_ctx(dst_ctx);
8643 }
8644 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8645 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8646}
8647EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8648
cdd6c482 8649static void sync_child_event(struct perf_event *child_event,
38b200d6 8650 struct task_struct *child)
d859e29f 8651{
cdd6c482 8652 struct perf_event *parent_event = child_event->parent;
8bc20959 8653 u64 child_val;
d859e29f 8654
cdd6c482
IM
8655 if (child_event->attr.inherit_stat)
8656 perf_event_read_event(child_event, child);
38b200d6 8657
b5e58793 8658 child_val = perf_event_count(child_event);
d859e29f
PM
8659
8660 /*
8661 * Add back the child's count to the parent's count:
8662 */
a6e6dea6 8663 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8664 atomic64_add(child_event->total_time_enabled,
8665 &parent_event->child_total_time_enabled);
8666 atomic64_add(child_event->total_time_running,
8667 &parent_event->child_total_time_running);
d859e29f
PM
8668
8669 /*
cdd6c482 8670 * Remove this event from the parent's list
d859e29f 8671 */
cdd6c482
IM
8672 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8673 mutex_lock(&parent_event->child_mutex);
8674 list_del_init(&child_event->child_list);
8675 mutex_unlock(&parent_event->child_mutex);
d859e29f 8676
dc633982
JO
8677 /*
8678 * Make sure user/parent get notified, that we just
8679 * lost one event.
8680 */
8681 perf_event_wakeup(parent_event);
8682
d859e29f 8683 /*
cdd6c482 8684 * Release the parent event, if this was the last
d859e29f
PM
8685 * reference to it.
8686 */
a6fa941d 8687 put_event(parent_event);
d859e29f
PM
8688}
8689
9b51f66d 8690static void
cdd6c482
IM
8691__perf_event_exit_task(struct perf_event *child_event,
8692 struct perf_event_context *child_ctx,
38b200d6 8693 struct task_struct *child)
9b51f66d 8694{
1903d50c
PZ
8695 /*
8696 * Do not destroy the 'original' grouping; because of the context
8697 * switch optimization the original events could've ended up in a
8698 * random child task.
8699 *
8700 * If we were to destroy the original group, all group related
8701 * operations would cease to function properly after this random
8702 * child dies.
8703 *
8704 * Do destroy all inherited groups, we don't care about those
8705 * and being thorough is better.
8706 */
8707 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8708
9b51f66d 8709 /*
38b435b1 8710 * It can happen that the parent exits first, and has events
9b51f66d 8711 * that are still around due to the child reference. These
38b435b1 8712 * events need to be zapped.
9b51f66d 8713 */
38b435b1 8714 if (child_event->parent) {
cdd6c482
IM
8715 sync_child_event(child_event, child);
8716 free_event(child_event);
179033b3
JO
8717 } else {
8718 child_event->state = PERF_EVENT_STATE_EXIT;
8719 perf_event_wakeup(child_event);
4bcf349a 8720 }
9b51f66d
IM
8721}
8722
8dc85d54 8723static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8724{
ebf905fc 8725 struct perf_event *child_event, *next;
211de6eb 8726 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8727 unsigned long flags;
9b51f66d 8728
4e93ad60 8729 if (likely(!child->perf_event_ctxp[ctxn]))
9b51f66d
IM
8730 return;
8731
a63eaf34 8732 local_irq_save(flags);
ad3a37de
PM
8733 /*
8734 * We can't reschedule here because interrupts are disabled,
8735 * and either child is current or it is a task that can't be
8736 * scheduled, so we are now safe from rescheduling changing
8737 * our context.
8738 */
806839b2 8739 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8740
8741 /*
8742 * Take the context lock here so that if find_get_context is
cdd6c482 8743 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8744 * incremented the context's refcount before we do put_ctx below.
8745 */
e625cce1 8746 raw_spin_lock(&child_ctx->lock);
3e349507 8747 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8dc85d54 8748 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8749
71a851b4
PZ
8750 /*
8751 * If this context is a clone; unclone it so it can't get
8752 * swapped to another process while we're removing all
cdd6c482 8753 * the events from it.
71a851b4 8754 */
211de6eb 8755 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8756 update_context_time(child_ctx);
e625cce1 8757 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8758
211de6eb
PZ
8759 if (clone_ctx)
8760 put_ctx(clone_ctx);
4a1c0f26 8761
9f498cc5 8762 /*
cdd6c482
IM
8763 * Report the task dead after unscheduling the events so that we
8764 * won't get any samples after PERF_RECORD_EXIT. We can however still
8765 * get a few PERF_RECORD_READ events.
9f498cc5 8766 */
cdd6c482 8767 perf_event_task(child, child_ctx, 0);
a63eaf34 8768
66fff224
PZ
8769 /*
8770 * We can recurse on the same lock type through:
8771 *
cdd6c482
IM
8772 * __perf_event_exit_task()
8773 * sync_child_event()
a6fa941d
AV
8774 * put_event()
8775 * mutex_lock(&ctx->mutex)
66fff224
PZ
8776 *
8777 * But since its the parent context it won't be the same instance.
8778 */
a0507c84 8779 mutex_lock(&child_ctx->mutex);
a63eaf34 8780
ebf905fc 8781 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8782 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8783
a63eaf34
PM
8784 mutex_unlock(&child_ctx->mutex);
8785
8786 put_ctx(child_ctx);
9b51f66d
IM
8787}
8788
8dc85d54
PZ
8789/*
8790 * When a child task exits, feed back event values to parent events.
8791 */
8792void perf_event_exit_task(struct task_struct *child)
8793{
8882135b 8794 struct perf_event *event, *tmp;
8dc85d54
PZ
8795 int ctxn;
8796
8882135b
PZ
8797 mutex_lock(&child->perf_event_mutex);
8798 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8799 owner_entry) {
8800 list_del_init(&event->owner_entry);
8801
8802 /*
8803 * Ensure the list deletion is visible before we clear
8804 * the owner, closes a race against perf_release() where
8805 * we need to serialize on the owner->perf_event_mutex.
8806 */
8807 smp_wmb();
8808 event->owner = NULL;
8809 }
8810 mutex_unlock(&child->perf_event_mutex);
8811
8dc85d54
PZ
8812 for_each_task_context_nr(ctxn)
8813 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
8814
8815 /*
8816 * The perf_event_exit_task_context calls perf_event_task
8817 * with child's task_ctx, which generates EXIT events for
8818 * child contexts and sets child->perf_event_ctxp[] to NULL.
8819 * At this point we need to send EXIT events to cpu contexts.
8820 */
8821 perf_event_task(child, NULL, 0);
8dc85d54
PZ
8822}
8823
889ff015
FW
8824static void perf_free_event(struct perf_event *event,
8825 struct perf_event_context *ctx)
8826{
8827 struct perf_event *parent = event->parent;
8828
8829 if (WARN_ON_ONCE(!parent))
8830 return;
8831
8832 mutex_lock(&parent->child_mutex);
8833 list_del_init(&event->child_list);
8834 mutex_unlock(&parent->child_mutex);
8835
a6fa941d 8836 put_event(parent);
889ff015 8837
652884fe 8838 raw_spin_lock_irq(&ctx->lock);
8a49542c 8839 perf_group_detach(event);
889ff015 8840 list_del_event(event, ctx);
652884fe 8841 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8842 free_event(event);
8843}
8844
bbbee908 8845/*
652884fe 8846 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8847 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8848 *
8849 * Not all locks are strictly required, but take them anyway to be nice and
8850 * help out with the lockdep assertions.
bbbee908 8851 */
cdd6c482 8852void perf_event_free_task(struct task_struct *task)
bbbee908 8853{
8dc85d54 8854 struct perf_event_context *ctx;
cdd6c482 8855 struct perf_event *event, *tmp;
8dc85d54 8856 int ctxn;
bbbee908 8857
8dc85d54
PZ
8858 for_each_task_context_nr(ctxn) {
8859 ctx = task->perf_event_ctxp[ctxn];
8860 if (!ctx)
8861 continue;
bbbee908 8862
8dc85d54 8863 mutex_lock(&ctx->mutex);
bbbee908 8864again:
8dc85d54
PZ
8865 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8866 group_entry)
8867 perf_free_event(event, ctx);
bbbee908 8868
8dc85d54
PZ
8869 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8870 group_entry)
8871 perf_free_event(event, ctx);
bbbee908 8872
8dc85d54
PZ
8873 if (!list_empty(&ctx->pinned_groups) ||
8874 !list_empty(&ctx->flexible_groups))
8875 goto again;
bbbee908 8876
8dc85d54 8877 mutex_unlock(&ctx->mutex);
bbbee908 8878
8dc85d54
PZ
8879 put_ctx(ctx);
8880 }
889ff015
FW
8881}
8882
4e231c79
PZ
8883void perf_event_delayed_put(struct task_struct *task)
8884{
8885 int ctxn;
8886
8887 for_each_task_context_nr(ctxn)
8888 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8889}
8890
ffe8690c
KX
8891struct perf_event *perf_event_get(unsigned int fd)
8892{
8893 int err;
8894 struct fd f;
8895 struct perf_event *event;
8896
8897 err = perf_fget_light(fd, &f);
8898 if (err)
8899 return ERR_PTR(err);
8900
8901 event = f.file->private_data;
8902 atomic_long_inc(&event->refcount);
8903 fdput(f);
8904
8905 return event;
8906}
8907
8908const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8909{
8910 if (!event)
8911 return ERR_PTR(-EINVAL);
8912
8913 return &event->attr;
8914}
8915
97dee4f3
PZ
8916/*
8917 * inherit a event from parent task to child task:
8918 */
8919static struct perf_event *
8920inherit_event(struct perf_event *parent_event,
8921 struct task_struct *parent,
8922 struct perf_event_context *parent_ctx,
8923 struct task_struct *child,
8924 struct perf_event *group_leader,
8925 struct perf_event_context *child_ctx)
8926{
1929def9 8927 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8928 struct perf_event *child_event;
cee010ec 8929 unsigned long flags;
97dee4f3
PZ
8930
8931 /*
8932 * Instead of creating recursive hierarchies of events,
8933 * we link inherited events back to the original parent,
8934 * which has a filp for sure, which we use as the reference
8935 * count:
8936 */
8937 if (parent_event->parent)
8938 parent_event = parent_event->parent;
8939
8940 child_event = perf_event_alloc(&parent_event->attr,
8941 parent_event->cpu,
d580ff86 8942 child,
97dee4f3 8943 group_leader, parent_event,
79dff51e 8944 NULL, NULL, -1);
97dee4f3
PZ
8945 if (IS_ERR(child_event))
8946 return child_event;
a6fa941d 8947
fadfe7be
JO
8948 if (is_orphaned_event(parent_event) ||
8949 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8950 free_event(child_event);
8951 return NULL;
8952 }
8953
97dee4f3
PZ
8954 get_ctx(child_ctx);
8955
8956 /*
8957 * Make the child state follow the state of the parent event,
8958 * not its attr.disabled bit. We hold the parent's mutex,
8959 * so we won't race with perf_event_{en, dis}able_family.
8960 */
1929def9 8961 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8962 child_event->state = PERF_EVENT_STATE_INACTIVE;
8963 else
8964 child_event->state = PERF_EVENT_STATE_OFF;
8965
8966 if (parent_event->attr.freq) {
8967 u64 sample_period = parent_event->hw.sample_period;
8968 struct hw_perf_event *hwc = &child_event->hw;
8969
8970 hwc->sample_period = sample_period;
8971 hwc->last_period = sample_period;
8972
8973 local64_set(&hwc->period_left, sample_period);
8974 }
8975
8976 child_event->ctx = child_ctx;
8977 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8978 child_event->overflow_handler_context
8979 = parent_event->overflow_handler_context;
97dee4f3 8980
614b6780
TG
8981 /*
8982 * Precalculate sample_data sizes
8983 */
8984 perf_event__header_size(child_event);
6844c09d 8985 perf_event__id_header_size(child_event);
614b6780 8986
97dee4f3
PZ
8987 /*
8988 * Link it up in the child's context:
8989 */
cee010ec 8990 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8991 add_event_to_ctx(child_event, child_ctx);
cee010ec 8992 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8993
97dee4f3
PZ
8994 /*
8995 * Link this into the parent event's child list
8996 */
8997 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8998 mutex_lock(&parent_event->child_mutex);
8999 list_add_tail(&child_event->child_list, &parent_event->child_list);
9000 mutex_unlock(&parent_event->child_mutex);
9001
9002 return child_event;
9003}
9004
9005static int inherit_group(struct perf_event *parent_event,
9006 struct task_struct *parent,
9007 struct perf_event_context *parent_ctx,
9008 struct task_struct *child,
9009 struct perf_event_context *child_ctx)
9010{
9011 struct perf_event *leader;
9012 struct perf_event *sub;
9013 struct perf_event *child_ctr;
9014
9015 leader = inherit_event(parent_event, parent, parent_ctx,
9016 child, NULL, child_ctx);
9017 if (IS_ERR(leader))
9018 return PTR_ERR(leader);
9019 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9020 child_ctr = inherit_event(sub, parent, parent_ctx,
9021 child, leader, child_ctx);
9022 if (IS_ERR(child_ctr))
9023 return PTR_ERR(child_ctr);
9024 }
9025 return 0;
889ff015
FW
9026}
9027
9028static int
9029inherit_task_group(struct perf_event *event, struct task_struct *parent,
9030 struct perf_event_context *parent_ctx,
8dc85d54 9031 struct task_struct *child, int ctxn,
889ff015
FW
9032 int *inherited_all)
9033{
9034 int ret;
8dc85d54 9035 struct perf_event_context *child_ctx;
889ff015
FW
9036
9037 if (!event->attr.inherit) {
9038 *inherited_all = 0;
9039 return 0;
bbbee908
PZ
9040 }
9041
fe4b04fa 9042 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9043 if (!child_ctx) {
9044 /*
9045 * This is executed from the parent task context, so
9046 * inherit events that have been marked for cloning.
9047 * First allocate and initialize a context for the
9048 * child.
9049 */
bbbee908 9050
734df5ab 9051 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9052 if (!child_ctx)
9053 return -ENOMEM;
bbbee908 9054
8dc85d54 9055 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9056 }
9057
9058 ret = inherit_group(event, parent, parent_ctx,
9059 child, child_ctx);
9060
9061 if (ret)
9062 *inherited_all = 0;
9063
9064 return ret;
bbbee908
PZ
9065}
9066
9b51f66d 9067/*
cdd6c482 9068 * Initialize the perf_event context in task_struct
9b51f66d 9069 */
985c8dcb 9070static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9071{
889ff015 9072 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9073 struct perf_event_context *cloned_ctx;
9074 struct perf_event *event;
9b51f66d 9075 struct task_struct *parent = current;
564c2b21 9076 int inherited_all = 1;
dddd3379 9077 unsigned long flags;
6ab423e0 9078 int ret = 0;
9b51f66d 9079
8dc85d54 9080 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9081 return 0;
9082
ad3a37de 9083 /*
25346b93
PM
9084 * If the parent's context is a clone, pin it so it won't get
9085 * swapped under us.
ad3a37de 9086 */
8dc85d54 9087 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9088 if (!parent_ctx)
9089 return 0;
25346b93 9090
ad3a37de
PM
9091 /*
9092 * No need to check if parent_ctx != NULL here; since we saw
9093 * it non-NULL earlier, the only reason for it to become NULL
9094 * is if we exit, and since we're currently in the middle of
9095 * a fork we can't be exiting at the same time.
9096 */
ad3a37de 9097
9b51f66d
IM
9098 /*
9099 * Lock the parent list. No need to lock the child - not PID
9100 * hashed yet and not running, so nobody can access it.
9101 */
d859e29f 9102 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9103
9104 /*
9105 * We dont have to disable NMIs - we are only looking at
9106 * the list, not manipulating it:
9107 */
889ff015 9108 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9109 ret = inherit_task_group(event, parent, parent_ctx,
9110 child, ctxn, &inherited_all);
889ff015
FW
9111 if (ret)
9112 break;
9113 }
b93f7978 9114
dddd3379
TG
9115 /*
9116 * We can't hold ctx->lock when iterating the ->flexible_group list due
9117 * to allocations, but we need to prevent rotation because
9118 * rotate_ctx() will change the list from interrupt context.
9119 */
9120 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9121 parent_ctx->rotate_disable = 1;
9122 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9123
889ff015 9124 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9125 ret = inherit_task_group(event, parent, parent_ctx,
9126 child, ctxn, &inherited_all);
889ff015 9127 if (ret)
9b51f66d 9128 break;
564c2b21
PM
9129 }
9130
dddd3379
TG
9131 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9132 parent_ctx->rotate_disable = 0;
dddd3379 9133
8dc85d54 9134 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9135
05cbaa28 9136 if (child_ctx && inherited_all) {
564c2b21
PM
9137 /*
9138 * Mark the child context as a clone of the parent
9139 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9140 *
9141 * Note that if the parent is a clone, the holding of
9142 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9143 */
c5ed5145 9144 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9145 if (cloned_ctx) {
9146 child_ctx->parent_ctx = cloned_ctx;
25346b93 9147 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9148 } else {
9149 child_ctx->parent_ctx = parent_ctx;
9150 child_ctx->parent_gen = parent_ctx->generation;
9151 }
9152 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9153 }
9154
c5ed5145 9155 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9156 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9157
25346b93 9158 perf_unpin_context(parent_ctx);
fe4b04fa 9159 put_ctx(parent_ctx);
ad3a37de 9160
6ab423e0 9161 return ret;
9b51f66d
IM
9162}
9163
8dc85d54
PZ
9164/*
9165 * Initialize the perf_event context in task_struct
9166 */
9167int perf_event_init_task(struct task_struct *child)
9168{
9169 int ctxn, ret;
9170
8550d7cb
ON
9171 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9172 mutex_init(&child->perf_event_mutex);
9173 INIT_LIST_HEAD(&child->perf_event_list);
9174
8dc85d54
PZ
9175 for_each_task_context_nr(ctxn) {
9176 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9177 if (ret) {
9178 perf_event_free_task(child);
8dc85d54 9179 return ret;
6c72e350 9180 }
8dc85d54
PZ
9181 }
9182
9183 return 0;
9184}
9185
220b140b
PM
9186static void __init perf_event_init_all_cpus(void)
9187{
b28ab83c 9188 struct swevent_htable *swhash;
220b140b 9189 int cpu;
220b140b
PM
9190
9191 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9192 swhash = &per_cpu(swevent_htable, cpu);
9193 mutex_init(&swhash->hlist_mutex);
2fde4f94 9194 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9195 }
9196}
9197
0db0628d 9198static void perf_event_init_cpu(int cpu)
0793a61d 9199{
108b02cf 9200 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9201
b28ab83c 9202 mutex_lock(&swhash->hlist_mutex);
4536e4d1 9203 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9204 struct swevent_hlist *hlist;
9205
b28ab83c
PZ
9206 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9207 WARN_ON(!hlist);
9208 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9209 }
b28ab83c 9210 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9211}
9212
2965faa5 9213#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9214static void __perf_event_exit_context(void *__info)
0793a61d 9215{
226424ee 9216 struct remove_event re = { .detach_group = true };
108b02cf 9217 struct perf_event_context *ctx = __info;
0793a61d 9218
e3703f8c 9219 rcu_read_lock();
46ce0fe9
PZ
9220 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9221 __perf_remove_from_context(&re);
e3703f8c 9222 rcu_read_unlock();
0793a61d 9223}
108b02cf
PZ
9224
9225static void perf_event_exit_cpu_context(int cpu)
9226{
9227 struct perf_event_context *ctx;
9228 struct pmu *pmu;
9229 int idx;
9230
9231 idx = srcu_read_lock(&pmus_srcu);
9232 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9233 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9234
9235 mutex_lock(&ctx->mutex);
9236 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9237 mutex_unlock(&ctx->mutex);
9238 }
9239 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9240}
9241
cdd6c482 9242static void perf_event_exit_cpu(int cpu)
0793a61d 9243{
e3703f8c 9244 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9245}
9246#else
cdd6c482 9247static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9248#endif
9249
c277443c
PZ
9250static int
9251perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9252{
9253 int cpu;
9254
9255 for_each_online_cpu(cpu)
9256 perf_event_exit_cpu(cpu);
9257
9258 return NOTIFY_OK;
9259}
9260
9261/*
9262 * Run the perf reboot notifier at the very last possible moment so that
9263 * the generic watchdog code runs as long as possible.
9264 */
9265static struct notifier_block perf_reboot_notifier = {
9266 .notifier_call = perf_reboot,
9267 .priority = INT_MIN,
9268};
9269
0db0628d 9270static int
0793a61d
TG
9271perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9272{
9273 unsigned int cpu = (long)hcpu;
9274
4536e4d1 9275 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9276
9277 case CPU_UP_PREPARE:
5e11637e 9278 case CPU_DOWN_FAILED:
cdd6c482 9279 perf_event_init_cpu(cpu);
0793a61d
TG
9280 break;
9281
5e11637e 9282 case CPU_UP_CANCELED:
0793a61d 9283 case CPU_DOWN_PREPARE:
cdd6c482 9284 perf_event_exit_cpu(cpu);
0793a61d 9285 break;
0793a61d
TG
9286 default:
9287 break;
9288 }
9289
9290 return NOTIFY_OK;
9291}
9292
cdd6c482 9293void __init perf_event_init(void)
0793a61d 9294{
3c502e7a
JW
9295 int ret;
9296
2e80a82a
PZ
9297 idr_init(&pmu_idr);
9298
220b140b 9299 perf_event_init_all_cpus();
b0a873eb 9300 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9301 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9302 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9303 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9304 perf_tp_register();
9305 perf_cpu_notifier(perf_cpu_notify);
c277443c 9306 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9307
9308 ret = init_hw_breakpoint();
9309 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9310
9311 /* do not patch jump label more than once per second */
9312 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9313
9314 /*
9315 * Build time assertion that we keep the data_head at the intended
9316 * location. IOW, validation we got the __reserved[] size right.
9317 */
9318 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9319 != 1024);
0793a61d 9320}
abe43400 9321
fd979c01
CS
9322ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9323 char *page)
9324{
9325 struct perf_pmu_events_attr *pmu_attr =
9326 container_of(attr, struct perf_pmu_events_attr, attr);
9327
9328 if (pmu_attr->event_str)
9329 return sprintf(page, "%s\n", pmu_attr->event_str);
9330
9331 return 0;
9332}
9333
abe43400
PZ
9334static int __init perf_event_sysfs_init(void)
9335{
9336 struct pmu *pmu;
9337 int ret;
9338
9339 mutex_lock(&pmus_lock);
9340
9341 ret = bus_register(&pmu_bus);
9342 if (ret)
9343 goto unlock;
9344
9345 list_for_each_entry(pmu, &pmus, entry) {
9346 if (!pmu->name || pmu->type < 0)
9347 continue;
9348
9349 ret = pmu_dev_alloc(pmu);
9350 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9351 }
9352 pmu_bus_running = 1;
9353 ret = 0;
9354
9355unlock:
9356 mutex_unlock(&pmus_lock);
9357
9358 return ret;
9359}
9360device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9361
9362#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9363static struct cgroup_subsys_state *
9364perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9365{
9366 struct perf_cgroup *jc;
e5d1367f 9367
1b15d055 9368 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9369 if (!jc)
9370 return ERR_PTR(-ENOMEM);
9371
e5d1367f
SE
9372 jc->info = alloc_percpu(struct perf_cgroup_info);
9373 if (!jc->info) {
9374 kfree(jc);
9375 return ERR_PTR(-ENOMEM);
9376 }
9377
e5d1367f
SE
9378 return &jc->css;
9379}
9380
eb95419b 9381static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9382{
eb95419b
TH
9383 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9384
e5d1367f
SE
9385 free_percpu(jc->info);
9386 kfree(jc);
9387}
9388
9389static int __perf_cgroup_move(void *info)
9390{
9391 struct task_struct *task = info;
ddaaf4e2 9392 rcu_read_lock();
e5d1367f 9393 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9394 rcu_read_unlock();
e5d1367f
SE
9395 return 0;
9396}
9397
1f7dd3e5 9398static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9399{
bb9d97b6 9400 struct task_struct *task;
1f7dd3e5 9401 struct cgroup_subsys_state *css;
bb9d97b6 9402
1f7dd3e5 9403 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9404 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9405}
9406
073219e9 9407struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9408 .css_alloc = perf_cgroup_css_alloc,
9409 .css_free = perf_cgroup_css_free,
bb9d97b6 9410 .attach = perf_cgroup_attach,
e5d1367f
SE
9411};
9412#endif /* CONFIG_CGROUP_PERF */