perf: Make perf_cgroup_from_task() global
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
6fb2915d 39#include <linux/ftrace_event.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
0793a61d 45
76369139
FW
46#include "internal.h"
47
4e193bd4
TB
48#include <asm/irq_regs.h>
49
fadfe7be
JO
50static struct workqueue_struct *perf_wq;
51
fe4b04fa 52struct remote_function_call {
e7e7ee2e
IM
53 struct task_struct *p;
54 int (*func)(void *info);
55 void *info;
56 int ret;
fe4b04fa
PZ
57};
58
59static void remote_function(void *data)
60{
61 struct remote_function_call *tfc = data;
62 struct task_struct *p = tfc->p;
63
64 if (p) {
65 tfc->ret = -EAGAIN;
66 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67 return;
68 }
69
70 tfc->ret = tfc->func(tfc->info);
71}
72
73/**
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p: the task to evaluate
76 * @func: the function to be called
77 * @info: the function call argument
78 *
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
81 *
82 * returns: @func return value, or
83 * -ESRCH - when the process isn't running
84 * -EAGAIN - when the process moved away
85 */
86static int
87task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88{
89 struct remote_function_call data = {
e7e7ee2e
IM
90 .p = p,
91 .func = func,
92 .info = info,
93 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
94 };
95
96 if (task_curr(p))
97 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98
99 return data.ret;
100}
101
102/**
103 * cpu_function_call - call a function on the cpu
104 * @func: the function to be called
105 * @info: the function call argument
106 *
107 * Calls the function @func on the remote cpu.
108 *
109 * returns: @func return value or -ENXIO when the cpu is offline
110 */
111static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112{
113 struct remote_function_call data = {
e7e7ee2e
IM
114 .p = NULL,
115 .func = func,
116 .info = info,
117 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
118 };
119
120 smp_call_function_single(cpu, remote_function, &data, 1);
121
122 return data.ret;
123}
124
f8697762
JO
125#define EVENT_OWNER_KERNEL ((void *) -1)
126
127static bool is_kernel_event(struct perf_event *event)
128{
129 return event->owner == EVENT_OWNER_KERNEL;
130}
131
e5d1367f
SE
132#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
134 PERF_FLAG_PID_CGROUP |\
135 PERF_FLAG_FD_CLOEXEC)
e5d1367f 136
bce38cd5
SE
137/*
138 * branch priv levels that need permission checks
139 */
140#define PERF_SAMPLE_BRANCH_PERM_PLM \
141 (PERF_SAMPLE_BRANCH_KERNEL |\
142 PERF_SAMPLE_BRANCH_HV)
143
0b3fcf17
SE
144enum event_type_t {
145 EVENT_FLEXIBLE = 0x1,
146 EVENT_PINNED = 0x2,
147 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148};
149
e5d1367f
SE
150/*
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153 */
c5905afb 154struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 155static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 156static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 157
cdd6c482
IM
158static atomic_t nr_mmap_events __read_mostly;
159static atomic_t nr_comm_events __read_mostly;
160static atomic_t nr_task_events __read_mostly;
948b26b6 161static atomic_t nr_freq_events __read_mostly;
9ee318a7 162
108b02cf
PZ
163static LIST_HEAD(pmus);
164static DEFINE_MUTEX(pmus_lock);
165static struct srcu_struct pmus_srcu;
166
0764771d 167/*
cdd6c482 168 * perf event paranoia level:
0fbdea19
IM
169 * -1 - not paranoid at all
170 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 171 * 1 - disallow cpu events for unpriv
0fbdea19 172 * 2 - disallow kernel profiling for unpriv
0764771d 173 */
cdd6c482 174int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 175
20443384
FW
176/* Minimum for 512 kiB + 1 user control page */
177int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
178
179/*
cdd6c482 180 * max perf event sample rate
df58ab24 181 */
14c63f17
DH
182#define DEFAULT_MAX_SAMPLE_RATE 100000
183#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184#define DEFAULT_CPU_TIME_MAX_PERCENT 25
185
186int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
187
188static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
190
d9494cb4
PZ
191static int perf_sample_allowed_ns __read_mostly =
192 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
193
194void update_perf_cpu_limits(void)
195{
196 u64 tmp = perf_sample_period_ns;
197
198 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 199 do_div(tmp, 100);
d9494cb4 200 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 201}
163ec435 202
9e630205
SE
203static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204
163ec435
PZ
205int perf_proc_update_handler(struct ctl_table *table, int write,
206 void __user *buffer, size_t *lenp,
207 loff_t *ppos)
208{
723478c8 209 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
210
211 if (ret || !write)
212 return ret;
213
214 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
215 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 update_perf_cpu_limits();
217
218 return 0;
219}
220
221int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222
223int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 void __user *buffer, size_t *lenp,
225 loff_t *ppos)
226{
227 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228
229 if (ret || !write)
230 return ret;
231
232 update_perf_cpu_limits();
163ec435
PZ
233
234 return 0;
235}
1ccd1549 236
14c63f17
DH
237/*
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done. This will drop the sample rate when
241 * we detect that events are taking too long.
242 */
243#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 244static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 245
6a02ad66 246static void perf_duration_warn(struct irq_work *w)
14c63f17 247{
6a02ad66 248 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 249 u64 avg_local_sample_len;
e5302920 250 u64 local_samples_len;
6a02ad66 251
4a32fea9 252 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
255 printk_ratelimited(KERN_WARNING
256 "perf interrupt took too long (%lld > %lld), lowering "
257 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 258 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
259 sysctl_perf_event_sample_rate);
260}
261
262static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263
264void perf_sample_event_took(u64 sample_len_ns)
265{
d9494cb4 266 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
267 u64 avg_local_sample_len;
268 u64 local_samples_len;
14c63f17 269
d9494cb4 270 if (allowed_ns == 0)
14c63f17
DH
271 return;
272
273 /* decay the counter by 1 average sample */
4a32fea9 274 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
275 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 local_samples_len += sample_len_ns;
4a32fea9 277 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
278
279 /*
280 * note: this will be biased artifically low until we have
281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
282 * from having to maintain a count.
283 */
284 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285
d9494cb4 286 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
287 return;
288
289 if (max_samples_per_tick <= 1)
290 return;
291
292 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295
14c63f17 296 update_perf_cpu_limits();
6a02ad66 297
cd578abb
PZ
298 if (!irq_work_queue(&perf_duration_work)) {
299 early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 "kernel.perf_event_max_sample_rate to %d\n",
301 avg_local_sample_len, allowed_ns >> 1,
302 sysctl_perf_event_sample_rate);
303 }
14c63f17
DH
304}
305
cdd6c482 306static atomic64_t perf_event_id;
a96bbc16 307
0b3fcf17
SE
308static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 enum event_type_t event_type);
310
311static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
312 enum event_type_t event_type,
313 struct task_struct *task);
314
315static void update_context_time(struct perf_event_context *ctx);
316static u64 perf_event_time(struct perf_event *event);
0b3fcf17 317
cdd6c482 318void __weak perf_event_print_debug(void) { }
0793a61d 319
84c79910 320extern __weak const char *perf_pmu_name(void)
0793a61d 321{
84c79910 322 return "pmu";
0793a61d
TG
323}
324
0b3fcf17
SE
325static inline u64 perf_clock(void)
326{
327 return local_clock();
328}
329
e5d1367f
SE
330static inline struct perf_cpu_context *
331__get_cpu_context(struct perf_event_context *ctx)
332{
333 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334}
335
facc4307
PZ
336static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 struct perf_event_context *ctx)
338{
339 raw_spin_lock(&cpuctx->ctx.lock);
340 if (ctx)
341 raw_spin_lock(&ctx->lock);
342}
343
344static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 struct perf_event_context *ctx)
346{
347 if (ctx)
348 raw_spin_unlock(&ctx->lock);
349 raw_spin_unlock(&cpuctx->ctx.lock);
350}
351
e5d1367f
SE
352#ifdef CONFIG_CGROUP_PERF
353
e5d1367f
SE
354static inline bool
355perf_cgroup_match(struct perf_event *event)
356{
357 struct perf_event_context *ctx = event->ctx;
358 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
359
ef824fa1
TH
360 /* @event doesn't care about cgroup */
361 if (!event->cgrp)
362 return true;
363
364 /* wants specific cgroup scope but @cpuctx isn't associated with any */
365 if (!cpuctx->cgrp)
366 return false;
367
368 /*
369 * Cgroup scoping is recursive. An event enabled for a cgroup is
370 * also enabled for all its descendant cgroups. If @cpuctx's
371 * cgroup is a descendant of @event's (the test covers identity
372 * case), it's a match.
373 */
374 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
375 event->cgrp->css.cgroup);
e5d1367f
SE
376}
377
e5d1367f
SE
378static inline void perf_detach_cgroup(struct perf_event *event)
379{
4e2ba650 380 css_put(&event->cgrp->css);
e5d1367f
SE
381 event->cgrp = NULL;
382}
383
384static inline int is_cgroup_event(struct perf_event *event)
385{
386 return event->cgrp != NULL;
387}
388
389static inline u64 perf_cgroup_event_time(struct perf_event *event)
390{
391 struct perf_cgroup_info *t;
392
393 t = per_cpu_ptr(event->cgrp->info, event->cpu);
394 return t->time;
395}
396
397static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
398{
399 struct perf_cgroup_info *info;
400 u64 now;
401
402 now = perf_clock();
403
404 info = this_cpu_ptr(cgrp->info);
405
406 info->time += now - info->timestamp;
407 info->timestamp = now;
408}
409
410static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
411{
412 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
413 if (cgrp_out)
414 __update_cgrp_time(cgrp_out);
415}
416
417static inline void update_cgrp_time_from_event(struct perf_event *event)
418{
3f7cce3c
SE
419 struct perf_cgroup *cgrp;
420
e5d1367f 421 /*
3f7cce3c
SE
422 * ensure we access cgroup data only when needed and
423 * when we know the cgroup is pinned (css_get)
e5d1367f 424 */
3f7cce3c 425 if (!is_cgroup_event(event))
e5d1367f
SE
426 return;
427
3f7cce3c
SE
428 cgrp = perf_cgroup_from_task(current);
429 /*
430 * Do not update time when cgroup is not active
431 */
432 if (cgrp == event->cgrp)
433 __update_cgrp_time(event->cgrp);
e5d1367f
SE
434}
435
436static inline void
3f7cce3c
SE
437perf_cgroup_set_timestamp(struct task_struct *task,
438 struct perf_event_context *ctx)
e5d1367f
SE
439{
440 struct perf_cgroup *cgrp;
441 struct perf_cgroup_info *info;
442
3f7cce3c
SE
443 /*
444 * ctx->lock held by caller
445 * ensure we do not access cgroup data
446 * unless we have the cgroup pinned (css_get)
447 */
448 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
449 return;
450
451 cgrp = perf_cgroup_from_task(task);
452 info = this_cpu_ptr(cgrp->info);
3f7cce3c 453 info->timestamp = ctx->timestamp;
e5d1367f
SE
454}
455
456#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
457#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
458
459/*
460 * reschedule events based on the cgroup constraint of task.
461 *
462 * mode SWOUT : schedule out everything
463 * mode SWIN : schedule in based on cgroup for next
464 */
465void perf_cgroup_switch(struct task_struct *task, int mode)
466{
467 struct perf_cpu_context *cpuctx;
468 struct pmu *pmu;
469 unsigned long flags;
470
471 /*
472 * disable interrupts to avoid geting nr_cgroup
473 * changes via __perf_event_disable(). Also
474 * avoids preemption.
475 */
476 local_irq_save(flags);
477
478 /*
479 * we reschedule only in the presence of cgroup
480 * constrained events.
481 */
482 rcu_read_lock();
483
484 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 485 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
486 if (cpuctx->unique_pmu != pmu)
487 continue; /* ensure we process each cpuctx once */
e5d1367f 488
e5d1367f
SE
489 /*
490 * perf_cgroup_events says at least one
491 * context on this CPU has cgroup events.
492 *
493 * ctx->nr_cgroups reports the number of cgroup
494 * events for a context.
495 */
496 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
497 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
498 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
499
500 if (mode & PERF_CGROUP_SWOUT) {
501 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
502 /*
503 * must not be done before ctxswout due
504 * to event_filter_match() in event_sched_out()
505 */
506 cpuctx->cgrp = NULL;
507 }
508
509 if (mode & PERF_CGROUP_SWIN) {
e566b76e 510 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
511 /*
512 * set cgrp before ctxsw in to allow
513 * event_filter_match() to not have to pass
514 * task around
e5d1367f
SE
515 */
516 cpuctx->cgrp = perf_cgroup_from_task(task);
517 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
518 }
facc4307
PZ
519 perf_pmu_enable(cpuctx->ctx.pmu);
520 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 521 }
e5d1367f
SE
522 }
523
524 rcu_read_unlock();
525
526 local_irq_restore(flags);
527}
528
a8d757ef
SE
529static inline void perf_cgroup_sched_out(struct task_struct *task,
530 struct task_struct *next)
e5d1367f 531{
a8d757ef
SE
532 struct perf_cgroup *cgrp1;
533 struct perf_cgroup *cgrp2 = NULL;
534
535 /*
536 * we come here when we know perf_cgroup_events > 0
537 */
538 cgrp1 = perf_cgroup_from_task(task);
539
540 /*
541 * next is NULL when called from perf_event_enable_on_exec()
542 * that will systematically cause a cgroup_switch()
543 */
544 if (next)
545 cgrp2 = perf_cgroup_from_task(next);
546
547 /*
548 * only schedule out current cgroup events if we know
549 * that we are switching to a different cgroup. Otherwise,
550 * do no touch the cgroup events.
551 */
552 if (cgrp1 != cgrp2)
553 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
554}
555
a8d757ef
SE
556static inline void perf_cgroup_sched_in(struct task_struct *prev,
557 struct task_struct *task)
e5d1367f 558{
a8d757ef
SE
559 struct perf_cgroup *cgrp1;
560 struct perf_cgroup *cgrp2 = NULL;
561
562 /*
563 * we come here when we know perf_cgroup_events > 0
564 */
565 cgrp1 = perf_cgroup_from_task(task);
566
567 /* prev can never be NULL */
568 cgrp2 = perf_cgroup_from_task(prev);
569
570 /*
571 * only need to schedule in cgroup events if we are changing
572 * cgroup during ctxsw. Cgroup events were not scheduled
573 * out of ctxsw out if that was not the case.
574 */
575 if (cgrp1 != cgrp2)
576 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
577}
578
579static inline int perf_cgroup_connect(int fd, struct perf_event *event,
580 struct perf_event_attr *attr,
581 struct perf_event *group_leader)
582{
583 struct perf_cgroup *cgrp;
584 struct cgroup_subsys_state *css;
2903ff01
AV
585 struct fd f = fdget(fd);
586 int ret = 0;
e5d1367f 587
2903ff01 588 if (!f.file)
e5d1367f
SE
589 return -EBADF;
590
b583043e 591 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 592 &perf_event_cgrp_subsys);
3db272c0
LZ
593 if (IS_ERR(css)) {
594 ret = PTR_ERR(css);
595 goto out;
596 }
e5d1367f
SE
597
598 cgrp = container_of(css, struct perf_cgroup, css);
599 event->cgrp = cgrp;
600
601 /*
602 * all events in a group must monitor
603 * the same cgroup because a task belongs
604 * to only one perf cgroup at a time
605 */
606 if (group_leader && group_leader->cgrp != cgrp) {
607 perf_detach_cgroup(event);
608 ret = -EINVAL;
e5d1367f 609 }
3db272c0 610out:
2903ff01 611 fdput(f);
e5d1367f
SE
612 return ret;
613}
614
615static inline void
616perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
617{
618 struct perf_cgroup_info *t;
619 t = per_cpu_ptr(event->cgrp->info, event->cpu);
620 event->shadow_ctx_time = now - t->timestamp;
621}
622
623static inline void
624perf_cgroup_defer_enabled(struct perf_event *event)
625{
626 /*
627 * when the current task's perf cgroup does not match
628 * the event's, we need to remember to call the
629 * perf_mark_enable() function the first time a task with
630 * a matching perf cgroup is scheduled in.
631 */
632 if (is_cgroup_event(event) && !perf_cgroup_match(event))
633 event->cgrp_defer_enabled = 1;
634}
635
636static inline void
637perf_cgroup_mark_enabled(struct perf_event *event,
638 struct perf_event_context *ctx)
639{
640 struct perf_event *sub;
641 u64 tstamp = perf_event_time(event);
642
643 if (!event->cgrp_defer_enabled)
644 return;
645
646 event->cgrp_defer_enabled = 0;
647
648 event->tstamp_enabled = tstamp - event->total_time_enabled;
649 list_for_each_entry(sub, &event->sibling_list, group_entry) {
650 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
651 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
652 sub->cgrp_defer_enabled = 0;
653 }
654 }
655}
656#else /* !CONFIG_CGROUP_PERF */
657
658static inline bool
659perf_cgroup_match(struct perf_event *event)
660{
661 return true;
662}
663
664static inline void perf_detach_cgroup(struct perf_event *event)
665{}
666
667static inline int is_cgroup_event(struct perf_event *event)
668{
669 return 0;
670}
671
672static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
673{
674 return 0;
675}
676
677static inline void update_cgrp_time_from_event(struct perf_event *event)
678{
679}
680
681static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
682{
683}
684
a8d757ef
SE
685static inline void perf_cgroup_sched_out(struct task_struct *task,
686 struct task_struct *next)
e5d1367f
SE
687{
688}
689
a8d757ef
SE
690static inline void perf_cgroup_sched_in(struct task_struct *prev,
691 struct task_struct *task)
e5d1367f
SE
692{
693}
694
695static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
696 struct perf_event_attr *attr,
697 struct perf_event *group_leader)
698{
699 return -EINVAL;
700}
701
702static inline void
3f7cce3c
SE
703perf_cgroup_set_timestamp(struct task_struct *task,
704 struct perf_event_context *ctx)
e5d1367f
SE
705{
706}
707
708void
709perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
710{
711}
712
713static inline void
714perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
715{
716}
717
718static inline u64 perf_cgroup_event_time(struct perf_event *event)
719{
720 return 0;
721}
722
723static inline void
724perf_cgroup_defer_enabled(struct perf_event *event)
725{
726}
727
728static inline void
729perf_cgroup_mark_enabled(struct perf_event *event,
730 struct perf_event_context *ctx)
731{
732}
733#endif
734
9e630205
SE
735/*
736 * set default to be dependent on timer tick just
737 * like original code
738 */
739#define PERF_CPU_HRTIMER (1000 / HZ)
740/*
741 * function must be called with interrupts disbled
742 */
743static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
744{
745 struct perf_cpu_context *cpuctx;
746 enum hrtimer_restart ret = HRTIMER_NORESTART;
747 int rotations = 0;
748
749 WARN_ON(!irqs_disabled());
750
751 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
752
753 rotations = perf_rotate_context(cpuctx);
754
755 /*
756 * arm timer if needed
757 */
758 if (rotations) {
759 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
760 ret = HRTIMER_RESTART;
761 }
762
763 return ret;
764}
765
766/* CPU is going down */
767void perf_cpu_hrtimer_cancel(int cpu)
768{
769 struct perf_cpu_context *cpuctx;
770 struct pmu *pmu;
771 unsigned long flags;
772
773 if (WARN_ON(cpu != smp_processor_id()))
774 return;
775
776 local_irq_save(flags);
777
778 rcu_read_lock();
779
780 list_for_each_entry_rcu(pmu, &pmus, entry) {
781 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
782
783 if (pmu->task_ctx_nr == perf_sw_context)
784 continue;
785
786 hrtimer_cancel(&cpuctx->hrtimer);
787 }
788
789 rcu_read_unlock();
790
791 local_irq_restore(flags);
792}
793
794static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
795{
796 struct hrtimer *hr = &cpuctx->hrtimer;
797 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 798 int timer;
9e630205
SE
799
800 /* no multiplexing needed for SW PMU */
801 if (pmu->task_ctx_nr == perf_sw_context)
802 return;
803
62b85639
SE
804 /*
805 * check default is sane, if not set then force to
806 * default interval (1/tick)
807 */
808 timer = pmu->hrtimer_interval_ms;
809 if (timer < 1)
810 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
811
812 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
813
814 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
815 hr->function = perf_cpu_hrtimer_handler;
816}
817
818static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
819{
820 struct hrtimer *hr = &cpuctx->hrtimer;
821 struct pmu *pmu = cpuctx->ctx.pmu;
822
823 /* not for SW PMU */
824 if (pmu->task_ctx_nr == perf_sw_context)
825 return;
826
827 if (hrtimer_active(hr))
828 return;
829
830 if (!hrtimer_callback_running(hr))
831 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
832 0, HRTIMER_MODE_REL_PINNED, 0);
833}
834
33696fc0 835void perf_pmu_disable(struct pmu *pmu)
9e35ad38 836{
33696fc0
PZ
837 int *count = this_cpu_ptr(pmu->pmu_disable_count);
838 if (!(*count)++)
839 pmu->pmu_disable(pmu);
9e35ad38 840}
9e35ad38 841
33696fc0 842void perf_pmu_enable(struct pmu *pmu)
9e35ad38 843{
33696fc0
PZ
844 int *count = this_cpu_ptr(pmu->pmu_disable_count);
845 if (!--(*count))
846 pmu->pmu_enable(pmu);
9e35ad38 847}
9e35ad38 848
2fde4f94 849static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
850
851/*
2fde4f94
MR
852 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
853 * perf_event_task_tick() are fully serialized because they're strictly cpu
854 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
855 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 856 */
2fde4f94 857static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 858{
2fde4f94 859 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 860
e9d2b064 861 WARN_ON(!irqs_disabled());
b5ab4cd5 862
2fde4f94
MR
863 WARN_ON(!list_empty(&ctx->active_ctx_list));
864
865 list_add(&ctx->active_ctx_list, head);
866}
867
868static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
869{
870 WARN_ON(!irqs_disabled());
871
872 WARN_ON(list_empty(&ctx->active_ctx_list));
873
874 list_del_init(&ctx->active_ctx_list);
9e35ad38 875}
9e35ad38 876
cdd6c482 877static void get_ctx(struct perf_event_context *ctx)
a63eaf34 878{
e5289d4a 879 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
880}
881
4af57ef2
YZ
882static void free_ctx(struct rcu_head *head)
883{
884 struct perf_event_context *ctx;
885
886 ctx = container_of(head, struct perf_event_context, rcu_head);
887 kfree(ctx->task_ctx_data);
888 kfree(ctx);
889}
890
cdd6c482 891static void put_ctx(struct perf_event_context *ctx)
a63eaf34 892{
564c2b21
PM
893 if (atomic_dec_and_test(&ctx->refcount)) {
894 if (ctx->parent_ctx)
895 put_ctx(ctx->parent_ctx);
c93f7669
PM
896 if (ctx->task)
897 put_task_struct(ctx->task);
4af57ef2 898 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 899 }
a63eaf34
PM
900}
901
f63a8daa
PZ
902/*
903 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
904 * perf_pmu_migrate_context() we need some magic.
905 *
906 * Those places that change perf_event::ctx will hold both
907 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
908 *
909 * Lock ordering is by mutex address. There is one other site where
910 * perf_event_context::mutex nests and that is put_event(). But remember that
911 * that is a parent<->child context relation, and migration does not affect
912 * children, therefore these two orderings should not interact.
913 *
914 * The change in perf_event::ctx does not affect children (as claimed above)
915 * because the sys_perf_event_open() case will install a new event and break
916 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
917 * concerned with cpuctx and that doesn't have children.
918 *
919 * The places that change perf_event::ctx will issue:
920 *
921 * perf_remove_from_context();
922 * synchronize_rcu();
923 * perf_install_in_context();
924 *
925 * to affect the change. The remove_from_context() + synchronize_rcu() should
926 * quiesce the event, after which we can install it in the new location. This
927 * means that only external vectors (perf_fops, prctl) can perturb the event
928 * while in transit. Therefore all such accessors should also acquire
929 * perf_event_context::mutex to serialize against this.
930 *
931 * However; because event->ctx can change while we're waiting to acquire
932 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
933 * function.
934 *
935 * Lock order:
936 * task_struct::perf_event_mutex
937 * perf_event_context::mutex
938 * perf_event_context::lock
939 * perf_event::child_mutex;
940 * perf_event::mmap_mutex
941 * mmap_sem
942 */
a83fe28e
PZ
943static struct perf_event_context *
944perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
945{
946 struct perf_event_context *ctx;
947
948again:
949 rcu_read_lock();
950 ctx = ACCESS_ONCE(event->ctx);
951 if (!atomic_inc_not_zero(&ctx->refcount)) {
952 rcu_read_unlock();
953 goto again;
954 }
955 rcu_read_unlock();
956
a83fe28e 957 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
958 if (event->ctx != ctx) {
959 mutex_unlock(&ctx->mutex);
960 put_ctx(ctx);
961 goto again;
962 }
963
964 return ctx;
965}
966
a83fe28e
PZ
967static inline struct perf_event_context *
968perf_event_ctx_lock(struct perf_event *event)
969{
970 return perf_event_ctx_lock_nested(event, 0);
971}
972
f63a8daa
PZ
973static void perf_event_ctx_unlock(struct perf_event *event,
974 struct perf_event_context *ctx)
975{
976 mutex_unlock(&ctx->mutex);
977 put_ctx(ctx);
978}
979
211de6eb
PZ
980/*
981 * This must be done under the ctx->lock, such as to serialize against
982 * context_equiv(), therefore we cannot call put_ctx() since that might end up
983 * calling scheduler related locks and ctx->lock nests inside those.
984 */
985static __must_check struct perf_event_context *
986unclone_ctx(struct perf_event_context *ctx)
71a851b4 987{
211de6eb
PZ
988 struct perf_event_context *parent_ctx = ctx->parent_ctx;
989
990 lockdep_assert_held(&ctx->lock);
991
992 if (parent_ctx)
71a851b4 993 ctx->parent_ctx = NULL;
5a3126d4 994 ctx->generation++;
211de6eb
PZ
995
996 return parent_ctx;
71a851b4
PZ
997}
998
6844c09d
ACM
999static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1000{
1001 /*
1002 * only top level events have the pid namespace they were created in
1003 */
1004 if (event->parent)
1005 event = event->parent;
1006
1007 return task_tgid_nr_ns(p, event->ns);
1008}
1009
1010static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1011{
1012 /*
1013 * only top level events have the pid namespace they were created in
1014 */
1015 if (event->parent)
1016 event = event->parent;
1017
1018 return task_pid_nr_ns(p, event->ns);
1019}
1020
7f453c24 1021/*
cdd6c482 1022 * If we inherit events we want to return the parent event id
7f453c24
PZ
1023 * to userspace.
1024 */
cdd6c482 1025static u64 primary_event_id(struct perf_event *event)
7f453c24 1026{
cdd6c482 1027 u64 id = event->id;
7f453c24 1028
cdd6c482
IM
1029 if (event->parent)
1030 id = event->parent->id;
7f453c24
PZ
1031
1032 return id;
1033}
1034
25346b93 1035/*
cdd6c482 1036 * Get the perf_event_context for a task and lock it.
25346b93
PM
1037 * This has to cope with with the fact that until it is locked,
1038 * the context could get moved to another task.
1039 */
cdd6c482 1040static struct perf_event_context *
8dc85d54 1041perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1042{
cdd6c482 1043 struct perf_event_context *ctx;
25346b93 1044
9ed6060d 1045retry:
058ebd0e
PZ
1046 /*
1047 * One of the few rules of preemptible RCU is that one cannot do
1048 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1049 * part of the read side critical section was preemptible -- see
1050 * rcu_read_unlock_special().
1051 *
1052 * Since ctx->lock nests under rq->lock we must ensure the entire read
1053 * side critical section is non-preemptible.
1054 */
1055 preempt_disable();
1056 rcu_read_lock();
8dc85d54 1057 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1058 if (ctx) {
1059 /*
1060 * If this context is a clone of another, it might
1061 * get swapped for another underneath us by
cdd6c482 1062 * perf_event_task_sched_out, though the
25346b93
PM
1063 * rcu_read_lock() protects us from any context
1064 * getting freed. Lock the context and check if it
1065 * got swapped before we could get the lock, and retry
1066 * if so. If we locked the right context, then it
1067 * can't get swapped on us any more.
1068 */
e625cce1 1069 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 1070 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1071 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1072 rcu_read_unlock();
1073 preempt_enable();
25346b93
PM
1074 goto retry;
1075 }
b49a9e7e
PZ
1076
1077 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1078 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1079 ctx = NULL;
1080 }
25346b93
PM
1081 }
1082 rcu_read_unlock();
058ebd0e 1083 preempt_enable();
25346b93
PM
1084 return ctx;
1085}
1086
1087/*
1088 * Get the context for a task and increment its pin_count so it
1089 * can't get swapped to another task. This also increments its
1090 * reference count so that the context can't get freed.
1091 */
8dc85d54
PZ
1092static struct perf_event_context *
1093perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1094{
cdd6c482 1095 struct perf_event_context *ctx;
25346b93
PM
1096 unsigned long flags;
1097
8dc85d54 1098 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1099 if (ctx) {
1100 ++ctx->pin_count;
e625cce1 1101 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1102 }
1103 return ctx;
1104}
1105
cdd6c482 1106static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1107{
1108 unsigned long flags;
1109
e625cce1 1110 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1111 --ctx->pin_count;
e625cce1 1112 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1113}
1114
f67218c3
PZ
1115/*
1116 * Update the record of the current time in a context.
1117 */
1118static void update_context_time(struct perf_event_context *ctx)
1119{
1120 u64 now = perf_clock();
1121
1122 ctx->time += now - ctx->timestamp;
1123 ctx->timestamp = now;
1124}
1125
4158755d
SE
1126static u64 perf_event_time(struct perf_event *event)
1127{
1128 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1129
1130 if (is_cgroup_event(event))
1131 return perf_cgroup_event_time(event);
1132
4158755d
SE
1133 return ctx ? ctx->time : 0;
1134}
1135
f67218c3
PZ
1136/*
1137 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1138 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1139 */
1140static void update_event_times(struct perf_event *event)
1141{
1142 struct perf_event_context *ctx = event->ctx;
1143 u64 run_end;
1144
1145 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1146 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1147 return;
e5d1367f
SE
1148 /*
1149 * in cgroup mode, time_enabled represents
1150 * the time the event was enabled AND active
1151 * tasks were in the monitored cgroup. This is
1152 * independent of the activity of the context as
1153 * there may be a mix of cgroup and non-cgroup events.
1154 *
1155 * That is why we treat cgroup events differently
1156 * here.
1157 */
1158 if (is_cgroup_event(event))
46cd6a7f 1159 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1160 else if (ctx->is_active)
1161 run_end = ctx->time;
acd1d7c1
PZ
1162 else
1163 run_end = event->tstamp_stopped;
1164
1165 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1166
1167 if (event->state == PERF_EVENT_STATE_INACTIVE)
1168 run_end = event->tstamp_stopped;
1169 else
4158755d 1170 run_end = perf_event_time(event);
f67218c3
PZ
1171
1172 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1173
f67218c3
PZ
1174}
1175
96c21a46
PZ
1176/*
1177 * Update total_time_enabled and total_time_running for all events in a group.
1178 */
1179static void update_group_times(struct perf_event *leader)
1180{
1181 struct perf_event *event;
1182
1183 update_event_times(leader);
1184 list_for_each_entry(event, &leader->sibling_list, group_entry)
1185 update_event_times(event);
1186}
1187
889ff015
FW
1188static struct list_head *
1189ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1190{
1191 if (event->attr.pinned)
1192 return &ctx->pinned_groups;
1193 else
1194 return &ctx->flexible_groups;
1195}
1196
fccc714b 1197/*
cdd6c482 1198 * Add a event from the lists for its context.
fccc714b
PZ
1199 * Must be called with ctx->mutex and ctx->lock held.
1200 */
04289bb9 1201static void
cdd6c482 1202list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1203{
8a49542c
PZ
1204 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1205 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1206
1207 /*
8a49542c
PZ
1208 * If we're a stand alone event or group leader, we go to the context
1209 * list, group events are kept attached to the group so that
1210 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1211 */
8a49542c 1212 if (event->group_leader == event) {
889ff015
FW
1213 struct list_head *list;
1214
d6f962b5
FW
1215 if (is_software_event(event))
1216 event->group_flags |= PERF_GROUP_SOFTWARE;
1217
889ff015
FW
1218 list = ctx_group_list(event, ctx);
1219 list_add_tail(&event->group_entry, list);
5c148194 1220 }
592903cd 1221
08309379 1222 if (is_cgroup_event(event))
e5d1367f 1223 ctx->nr_cgroups++;
e5d1367f 1224
cdd6c482
IM
1225 list_add_rcu(&event->event_entry, &ctx->event_list);
1226 ctx->nr_events++;
1227 if (event->attr.inherit_stat)
bfbd3381 1228 ctx->nr_stat++;
5a3126d4
PZ
1229
1230 ctx->generation++;
04289bb9
IM
1231}
1232
0231bb53
JO
1233/*
1234 * Initialize event state based on the perf_event_attr::disabled.
1235 */
1236static inline void perf_event__state_init(struct perf_event *event)
1237{
1238 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1239 PERF_EVENT_STATE_INACTIVE;
1240}
1241
c320c7b7
ACM
1242/*
1243 * Called at perf_event creation and when events are attached/detached from a
1244 * group.
1245 */
1246static void perf_event__read_size(struct perf_event *event)
1247{
1248 int entry = sizeof(u64); /* value */
1249 int size = 0;
1250 int nr = 1;
1251
1252 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1253 size += sizeof(u64);
1254
1255 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1256 size += sizeof(u64);
1257
1258 if (event->attr.read_format & PERF_FORMAT_ID)
1259 entry += sizeof(u64);
1260
1261 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1262 nr += event->group_leader->nr_siblings;
1263 size += sizeof(u64);
1264 }
1265
1266 size += entry * nr;
1267 event->read_size = size;
1268}
1269
1270static void perf_event__header_size(struct perf_event *event)
1271{
1272 struct perf_sample_data *data;
1273 u64 sample_type = event->attr.sample_type;
1274 u16 size = 0;
1275
1276 perf_event__read_size(event);
1277
1278 if (sample_type & PERF_SAMPLE_IP)
1279 size += sizeof(data->ip);
1280
6844c09d
ACM
1281 if (sample_type & PERF_SAMPLE_ADDR)
1282 size += sizeof(data->addr);
1283
1284 if (sample_type & PERF_SAMPLE_PERIOD)
1285 size += sizeof(data->period);
1286
c3feedf2
AK
1287 if (sample_type & PERF_SAMPLE_WEIGHT)
1288 size += sizeof(data->weight);
1289
6844c09d
ACM
1290 if (sample_type & PERF_SAMPLE_READ)
1291 size += event->read_size;
1292
d6be9ad6
SE
1293 if (sample_type & PERF_SAMPLE_DATA_SRC)
1294 size += sizeof(data->data_src.val);
1295
fdfbbd07
AK
1296 if (sample_type & PERF_SAMPLE_TRANSACTION)
1297 size += sizeof(data->txn);
1298
6844c09d
ACM
1299 event->header_size = size;
1300}
1301
1302static void perf_event__id_header_size(struct perf_event *event)
1303{
1304 struct perf_sample_data *data;
1305 u64 sample_type = event->attr.sample_type;
1306 u16 size = 0;
1307
c320c7b7
ACM
1308 if (sample_type & PERF_SAMPLE_TID)
1309 size += sizeof(data->tid_entry);
1310
1311 if (sample_type & PERF_SAMPLE_TIME)
1312 size += sizeof(data->time);
1313
ff3d527c
AH
1314 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1315 size += sizeof(data->id);
1316
c320c7b7
ACM
1317 if (sample_type & PERF_SAMPLE_ID)
1318 size += sizeof(data->id);
1319
1320 if (sample_type & PERF_SAMPLE_STREAM_ID)
1321 size += sizeof(data->stream_id);
1322
1323 if (sample_type & PERF_SAMPLE_CPU)
1324 size += sizeof(data->cpu_entry);
1325
6844c09d 1326 event->id_header_size = size;
c320c7b7
ACM
1327}
1328
8a49542c
PZ
1329static void perf_group_attach(struct perf_event *event)
1330{
c320c7b7 1331 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1332
74c3337c
PZ
1333 /*
1334 * We can have double attach due to group movement in perf_event_open.
1335 */
1336 if (event->attach_state & PERF_ATTACH_GROUP)
1337 return;
1338
8a49542c
PZ
1339 event->attach_state |= PERF_ATTACH_GROUP;
1340
1341 if (group_leader == event)
1342 return;
1343
652884fe
PZ
1344 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1345
8a49542c
PZ
1346 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1347 !is_software_event(event))
1348 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1349
1350 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1351 group_leader->nr_siblings++;
c320c7b7
ACM
1352
1353 perf_event__header_size(group_leader);
1354
1355 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1356 perf_event__header_size(pos);
8a49542c
PZ
1357}
1358
a63eaf34 1359/*
cdd6c482 1360 * Remove a event from the lists for its context.
fccc714b 1361 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1362 */
04289bb9 1363static void
cdd6c482 1364list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1365{
68cacd29 1366 struct perf_cpu_context *cpuctx;
652884fe
PZ
1367
1368 WARN_ON_ONCE(event->ctx != ctx);
1369 lockdep_assert_held(&ctx->lock);
1370
8a49542c
PZ
1371 /*
1372 * We can have double detach due to exit/hot-unplug + close.
1373 */
1374 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1375 return;
8a49542c
PZ
1376
1377 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1378
68cacd29 1379 if (is_cgroup_event(event)) {
e5d1367f 1380 ctx->nr_cgroups--;
68cacd29
SE
1381 cpuctx = __get_cpu_context(ctx);
1382 /*
1383 * if there are no more cgroup events
1384 * then cler cgrp to avoid stale pointer
1385 * in update_cgrp_time_from_cpuctx()
1386 */
1387 if (!ctx->nr_cgroups)
1388 cpuctx->cgrp = NULL;
1389 }
e5d1367f 1390
cdd6c482
IM
1391 ctx->nr_events--;
1392 if (event->attr.inherit_stat)
bfbd3381 1393 ctx->nr_stat--;
8bc20959 1394
cdd6c482 1395 list_del_rcu(&event->event_entry);
04289bb9 1396
8a49542c
PZ
1397 if (event->group_leader == event)
1398 list_del_init(&event->group_entry);
5c148194 1399
96c21a46 1400 update_group_times(event);
b2e74a26
SE
1401
1402 /*
1403 * If event was in error state, then keep it
1404 * that way, otherwise bogus counts will be
1405 * returned on read(). The only way to get out
1406 * of error state is by explicit re-enabling
1407 * of the event
1408 */
1409 if (event->state > PERF_EVENT_STATE_OFF)
1410 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1411
1412 ctx->generation++;
050735b0
PZ
1413}
1414
8a49542c 1415static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1416{
1417 struct perf_event *sibling, *tmp;
8a49542c
PZ
1418 struct list_head *list = NULL;
1419
1420 /*
1421 * We can have double detach due to exit/hot-unplug + close.
1422 */
1423 if (!(event->attach_state & PERF_ATTACH_GROUP))
1424 return;
1425
1426 event->attach_state &= ~PERF_ATTACH_GROUP;
1427
1428 /*
1429 * If this is a sibling, remove it from its group.
1430 */
1431 if (event->group_leader != event) {
1432 list_del_init(&event->group_entry);
1433 event->group_leader->nr_siblings--;
c320c7b7 1434 goto out;
8a49542c
PZ
1435 }
1436
1437 if (!list_empty(&event->group_entry))
1438 list = &event->group_entry;
2e2af50b 1439
04289bb9 1440 /*
cdd6c482
IM
1441 * If this was a group event with sibling events then
1442 * upgrade the siblings to singleton events by adding them
8a49542c 1443 * to whatever list we are on.
04289bb9 1444 */
cdd6c482 1445 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1446 if (list)
1447 list_move_tail(&sibling->group_entry, list);
04289bb9 1448 sibling->group_leader = sibling;
d6f962b5
FW
1449
1450 /* Inherit group flags from the previous leader */
1451 sibling->group_flags = event->group_flags;
652884fe
PZ
1452
1453 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1454 }
c320c7b7
ACM
1455
1456out:
1457 perf_event__header_size(event->group_leader);
1458
1459 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1460 perf_event__header_size(tmp);
04289bb9
IM
1461}
1462
fadfe7be
JO
1463/*
1464 * User event without the task.
1465 */
1466static bool is_orphaned_event(struct perf_event *event)
1467{
1468 return event && !is_kernel_event(event) && !event->owner;
1469}
1470
1471/*
1472 * Event has a parent but parent's task finished and it's
1473 * alive only because of children holding refference.
1474 */
1475static bool is_orphaned_child(struct perf_event *event)
1476{
1477 return is_orphaned_event(event->parent);
1478}
1479
1480static void orphans_remove_work(struct work_struct *work);
1481
1482static void schedule_orphans_remove(struct perf_event_context *ctx)
1483{
1484 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1485 return;
1486
1487 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1488 get_ctx(ctx);
1489 ctx->orphans_remove_sched = true;
1490 }
1491}
1492
1493static int __init perf_workqueue_init(void)
1494{
1495 perf_wq = create_singlethread_workqueue("perf");
1496 WARN(!perf_wq, "failed to create perf workqueue\n");
1497 return perf_wq ? 0 : -1;
1498}
1499
1500core_initcall(perf_workqueue_init);
1501
fa66f07a
SE
1502static inline int
1503event_filter_match(struct perf_event *event)
1504{
e5d1367f
SE
1505 return (event->cpu == -1 || event->cpu == smp_processor_id())
1506 && perf_cgroup_match(event);
fa66f07a
SE
1507}
1508
9ffcfa6f
SE
1509static void
1510event_sched_out(struct perf_event *event,
3b6f9e5c 1511 struct perf_cpu_context *cpuctx,
cdd6c482 1512 struct perf_event_context *ctx)
3b6f9e5c 1513{
4158755d 1514 u64 tstamp = perf_event_time(event);
fa66f07a 1515 u64 delta;
652884fe
PZ
1516
1517 WARN_ON_ONCE(event->ctx != ctx);
1518 lockdep_assert_held(&ctx->lock);
1519
fa66f07a
SE
1520 /*
1521 * An event which could not be activated because of
1522 * filter mismatch still needs to have its timings
1523 * maintained, otherwise bogus information is return
1524 * via read() for time_enabled, time_running:
1525 */
1526 if (event->state == PERF_EVENT_STATE_INACTIVE
1527 && !event_filter_match(event)) {
e5d1367f 1528 delta = tstamp - event->tstamp_stopped;
fa66f07a 1529 event->tstamp_running += delta;
4158755d 1530 event->tstamp_stopped = tstamp;
fa66f07a
SE
1531 }
1532
cdd6c482 1533 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1534 return;
3b6f9e5c 1535
44377277
AS
1536 perf_pmu_disable(event->pmu);
1537
cdd6c482
IM
1538 event->state = PERF_EVENT_STATE_INACTIVE;
1539 if (event->pending_disable) {
1540 event->pending_disable = 0;
1541 event->state = PERF_EVENT_STATE_OFF;
970892a9 1542 }
4158755d 1543 event->tstamp_stopped = tstamp;
a4eaf7f1 1544 event->pmu->del(event, 0);
cdd6c482 1545 event->oncpu = -1;
3b6f9e5c 1546
cdd6c482 1547 if (!is_software_event(event))
3b6f9e5c 1548 cpuctx->active_oncpu--;
2fde4f94
MR
1549 if (!--ctx->nr_active)
1550 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1551 if (event->attr.freq && event->attr.sample_freq)
1552 ctx->nr_freq--;
cdd6c482 1553 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1554 cpuctx->exclusive = 0;
44377277 1555
fadfe7be
JO
1556 if (is_orphaned_child(event))
1557 schedule_orphans_remove(ctx);
1558
44377277 1559 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1560}
1561
d859e29f 1562static void
cdd6c482 1563group_sched_out(struct perf_event *group_event,
d859e29f 1564 struct perf_cpu_context *cpuctx,
cdd6c482 1565 struct perf_event_context *ctx)
d859e29f 1566{
cdd6c482 1567 struct perf_event *event;
fa66f07a 1568 int state = group_event->state;
d859e29f 1569
cdd6c482 1570 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1571
1572 /*
1573 * Schedule out siblings (if any):
1574 */
cdd6c482
IM
1575 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1576 event_sched_out(event, cpuctx, ctx);
d859e29f 1577
fa66f07a 1578 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1579 cpuctx->exclusive = 0;
1580}
1581
46ce0fe9
PZ
1582struct remove_event {
1583 struct perf_event *event;
1584 bool detach_group;
1585};
1586
0793a61d 1587/*
cdd6c482 1588 * Cross CPU call to remove a performance event
0793a61d 1589 *
cdd6c482 1590 * We disable the event on the hardware level first. After that we
0793a61d
TG
1591 * remove it from the context list.
1592 */
fe4b04fa 1593static int __perf_remove_from_context(void *info)
0793a61d 1594{
46ce0fe9
PZ
1595 struct remove_event *re = info;
1596 struct perf_event *event = re->event;
cdd6c482 1597 struct perf_event_context *ctx = event->ctx;
108b02cf 1598 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1599
e625cce1 1600 raw_spin_lock(&ctx->lock);
cdd6c482 1601 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1602 if (re->detach_group)
1603 perf_group_detach(event);
cdd6c482 1604 list_del_event(event, ctx);
64ce3126
PZ
1605 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1606 ctx->is_active = 0;
1607 cpuctx->task_ctx = NULL;
1608 }
e625cce1 1609 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1610
1611 return 0;
0793a61d
TG
1612}
1613
1614
1615/*
cdd6c482 1616 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1617 *
cdd6c482 1618 * CPU events are removed with a smp call. For task events we only
0793a61d 1619 * call when the task is on a CPU.
c93f7669 1620 *
cdd6c482
IM
1621 * If event->ctx is a cloned context, callers must make sure that
1622 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1623 * remains valid. This is OK when called from perf_release since
1624 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1625 * When called from perf_event_exit_task, it's OK because the
c93f7669 1626 * context has been detached from its task.
0793a61d 1627 */
46ce0fe9 1628static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1629{
cdd6c482 1630 struct perf_event_context *ctx = event->ctx;
0793a61d 1631 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1632 struct remove_event re = {
1633 .event = event,
1634 .detach_group = detach_group,
1635 };
0793a61d 1636
fe4b04fa
PZ
1637 lockdep_assert_held(&ctx->mutex);
1638
0793a61d
TG
1639 if (!task) {
1640 /*
226424ee
MR
1641 * Per cpu events are removed via an smp call. The removal can
1642 * fail if the CPU is currently offline, but in that case we
1643 * already called __perf_remove_from_context from
1644 * perf_event_exit_cpu.
0793a61d 1645 */
46ce0fe9 1646 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1647 return;
1648 }
1649
1650retry:
46ce0fe9 1651 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1652 return;
0793a61d 1653
e625cce1 1654 raw_spin_lock_irq(&ctx->lock);
0793a61d 1655 /*
fe4b04fa
PZ
1656 * If we failed to find a running task, but find the context active now
1657 * that we've acquired the ctx->lock, retry.
0793a61d 1658 */
fe4b04fa 1659 if (ctx->is_active) {
e625cce1 1660 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1661 /*
1662 * Reload the task pointer, it might have been changed by
1663 * a concurrent perf_event_context_sched_out().
1664 */
1665 task = ctx->task;
0793a61d
TG
1666 goto retry;
1667 }
1668
1669 /*
fe4b04fa
PZ
1670 * Since the task isn't running, its safe to remove the event, us
1671 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1672 */
46ce0fe9
PZ
1673 if (detach_group)
1674 perf_group_detach(event);
fe4b04fa 1675 list_del_event(event, ctx);
e625cce1 1676 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1677}
1678
d859e29f 1679/*
cdd6c482 1680 * Cross CPU call to disable a performance event
d859e29f 1681 */
500ad2d8 1682int __perf_event_disable(void *info)
d859e29f 1683{
cdd6c482 1684 struct perf_event *event = info;
cdd6c482 1685 struct perf_event_context *ctx = event->ctx;
108b02cf 1686 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1687
1688 /*
cdd6c482
IM
1689 * If this is a per-task event, need to check whether this
1690 * event's task is the current task on this cpu.
fe4b04fa
PZ
1691 *
1692 * Can trigger due to concurrent perf_event_context_sched_out()
1693 * flipping contexts around.
d859e29f 1694 */
665c2142 1695 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1696 return -EINVAL;
d859e29f 1697
e625cce1 1698 raw_spin_lock(&ctx->lock);
d859e29f
PM
1699
1700 /*
cdd6c482 1701 * If the event is on, turn it off.
d859e29f
PM
1702 * If it is in error state, leave it in error state.
1703 */
cdd6c482 1704 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1705 update_context_time(ctx);
e5d1367f 1706 update_cgrp_time_from_event(event);
cdd6c482
IM
1707 update_group_times(event);
1708 if (event == event->group_leader)
1709 group_sched_out(event, cpuctx, ctx);
d859e29f 1710 else
cdd6c482
IM
1711 event_sched_out(event, cpuctx, ctx);
1712 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1713 }
1714
e625cce1 1715 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1716
1717 return 0;
d859e29f
PM
1718}
1719
1720/*
cdd6c482 1721 * Disable a event.
c93f7669 1722 *
cdd6c482
IM
1723 * If event->ctx is a cloned context, callers must make sure that
1724 * every task struct that event->ctx->task could possibly point to
c93f7669 1725 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1726 * perf_event_for_each_child or perf_event_for_each because they
1727 * hold the top-level event's child_mutex, so any descendant that
1728 * goes to exit will block in sync_child_event.
1729 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1730 * is the current context on this CPU and preemption is disabled,
cdd6c482 1731 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1732 */
f63a8daa 1733static void _perf_event_disable(struct perf_event *event)
d859e29f 1734{
cdd6c482 1735 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1736 struct task_struct *task = ctx->task;
1737
1738 if (!task) {
1739 /*
cdd6c482 1740 * Disable the event on the cpu that it's on
d859e29f 1741 */
fe4b04fa 1742 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1743 return;
1744 }
1745
9ed6060d 1746retry:
fe4b04fa
PZ
1747 if (!task_function_call(task, __perf_event_disable, event))
1748 return;
d859e29f 1749
e625cce1 1750 raw_spin_lock_irq(&ctx->lock);
d859e29f 1751 /*
cdd6c482 1752 * If the event is still active, we need to retry the cross-call.
d859e29f 1753 */
cdd6c482 1754 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1755 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1756 /*
1757 * Reload the task pointer, it might have been changed by
1758 * a concurrent perf_event_context_sched_out().
1759 */
1760 task = ctx->task;
d859e29f
PM
1761 goto retry;
1762 }
1763
1764 /*
1765 * Since we have the lock this context can't be scheduled
1766 * in, so we can change the state safely.
1767 */
cdd6c482
IM
1768 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1769 update_group_times(event);
1770 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1771 }
e625cce1 1772 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1773}
f63a8daa
PZ
1774
1775/*
1776 * Strictly speaking kernel users cannot create groups and therefore this
1777 * interface does not need the perf_event_ctx_lock() magic.
1778 */
1779void perf_event_disable(struct perf_event *event)
1780{
1781 struct perf_event_context *ctx;
1782
1783 ctx = perf_event_ctx_lock(event);
1784 _perf_event_disable(event);
1785 perf_event_ctx_unlock(event, ctx);
1786}
dcfce4a0 1787EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1788
e5d1367f
SE
1789static void perf_set_shadow_time(struct perf_event *event,
1790 struct perf_event_context *ctx,
1791 u64 tstamp)
1792{
1793 /*
1794 * use the correct time source for the time snapshot
1795 *
1796 * We could get by without this by leveraging the
1797 * fact that to get to this function, the caller
1798 * has most likely already called update_context_time()
1799 * and update_cgrp_time_xx() and thus both timestamp
1800 * are identical (or very close). Given that tstamp is,
1801 * already adjusted for cgroup, we could say that:
1802 * tstamp - ctx->timestamp
1803 * is equivalent to
1804 * tstamp - cgrp->timestamp.
1805 *
1806 * Then, in perf_output_read(), the calculation would
1807 * work with no changes because:
1808 * - event is guaranteed scheduled in
1809 * - no scheduled out in between
1810 * - thus the timestamp would be the same
1811 *
1812 * But this is a bit hairy.
1813 *
1814 * So instead, we have an explicit cgroup call to remain
1815 * within the time time source all along. We believe it
1816 * is cleaner and simpler to understand.
1817 */
1818 if (is_cgroup_event(event))
1819 perf_cgroup_set_shadow_time(event, tstamp);
1820 else
1821 event->shadow_ctx_time = tstamp - ctx->timestamp;
1822}
1823
4fe757dd
PZ
1824#define MAX_INTERRUPTS (~0ULL)
1825
1826static void perf_log_throttle(struct perf_event *event, int enable);
1827
235c7fc7 1828static int
9ffcfa6f 1829event_sched_in(struct perf_event *event,
235c7fc7 1830 struct perf_cpu_context *cpuctx,
6e37738a 1831 struct perf_event_context *ctx)
235c7fc7 1832{
4158755d 1833 u64 tstamp = perf_event_time(event);
44377277 1834 int ret = 0;
4158755d 1835
63342411
PZ
1836 lockdep_assert_held(&ctx->lock);
1837
cdd6c482 1838 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1839 return 0;
1840
cdd6c482 1841 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1842 event->oncpu = smp_processor_id();
4fe757dd
PZ
1843
1844 /*
1845 * Unthrottle events, since we scheduled we might have missed several
1846 * ticks already, also for a heavily scheduling task there is little
1847 * guarantee it'll get a tick in a timely manner.
1848 */
1849 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1850 perf_log_throttle(event, 1);
1851 event->hw.interrupts = 0;
1852 }
1853
235c7fc7
IM
1854 /*
1855 * The new state must be visible before we turn it on in the hardware:
1856 */
1857 smp_wmb();
1858
44377277
AS
1859 perf_pmu_disable(event->pmu);
1860
72f669c0
SL
1861 event->tstamp_running += tstamp - event->tstamp_stopped;
1862
1863 perf_set_shadow_time(event, ctx, tstamp);
1864
a4eaf7f1 1865 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1866 event->state = PERF_EVENT_STATE_INACTIVE;
1867 event->oncpu = -1;
44377277
AS
1868 ret = -EAGAIN;
1869 goto out;
235c7fc7
IM
1870 }
1871
cdd6c482 1872 if (!is_software_event(event))
3b6f9e5c 1873 cpuctx->active_oncpu++;
2fde4f94
MR
1874 if (!ctx->nr_active++)
1875 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1876 if (event->attr.freq && event->attr.sample_freq)
1877 ctx->nr_freq++;
235c7fc7 1878
cdd6c482 1879 if (event->attr.exclusive)
3b6f9e5c
PM
1880 cpuctx->exclusive = 1;
1881
fadfe7be
JO
1882 if (is_orphaned_child(event))
1883 schedule_orphans_remove(ctx);
1884
44377277
AS
1885out:
1886 perf_pmu_enable(event->pmu);
1887
1888 return ret;
235c7fc7
IM
1889}
1890
6751b71e 1891static int
cdd6c482 1892group_sched_in(struct perf_event *group_event,
6751b71e 1893 struct perf_cpu_context *cpuctx,
6e37738a 1894 struct perf_event_context *ctx)
6751b71e 1895{
6bde9b6c 1896 struct perf_event *event, *partial_group = NULL;
4a234593 1897 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1898 u64 now = ctx->time;
1899 bool simulate = false;
6751b71e 1900
cdd6c482 1901 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1902 return 0;
1903
ad5133b7 1904 pmu->start_txn(pmu);
6bde9b6c 1905
9ffcfa6f 1906 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1907 pmu->cancel_txn(pmu);
9e630205 1908 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1909 return -EAGAIN;
90151c35 1910 }
6751b71e
PM
1911
1912 /*
1913 * Schedule in siblings as one group (if any):
1914 */
cdd6c482 1915 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1916 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1917 partial_group = event;
6751b71e
PM
1918 goto group_error;
1919 }
1920 }
1921
9ffcfa6f 1922 if (!pmu->commit_txn(pmu))
6e85158c 1923 return 0;
9ffcfa6f 1924
6751b71e
PM
1925group_error:
1926 /*
1927 * Groups can be scheduled in as one unit only, so undo any
1928 * partial group before returning:
d7842da4
SE
1929 * The events up to the failed event are scheduled out normally,
1930 * tstamp_stopped will be updated.
1931 *
1932 * The failed events and the remaining siblings need to have
1933 * their timings updated as if they had gone thru event_sched_in()
1934 * and event_sched_out(). This is required to get consistent timings
1935 * across the group. This also takes care of the case where the group
1936 * could never be scheduled by ensuring tstamp_stopped is set to mark
1937 * the time the event was actually stopped, such that time delta
1938 * calculation in update_event_times() is correct.
6751b71e 1939 */
cdd6c482
IM
1940 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1941 if (event == partial_group)
d7842da4
SE
1942 simulate = true;
1943
1944 if (simulate) {
1945 event->tstamp_running += now - event->tstamp_stopped;
1946 event->tstamp_stopped = now;
1947 } else {
1948 event_sched_out(event, cpuctx, ctx);
1949 }
6751b71e 1950 }
9ffcfa6f 1951 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1952
ad5133b7 1953 pmu->cancel_txn(pmu);
90151c35 1954
9e630205
SE
1955 perf_cpu_hrtimer_restart(cpuctx);
1956
6751b71e
PM
1957 return -EAGAIN;
1958}
1959
3b6f9e5c 1960/*
cdd6c482 1961 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1962 */
cdd6c482 1963static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1964 struct perf_cpu_context *cpuctx,
1965 int can_add_hw)
1966{
1967 /*
cdd6c482 1968 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1969 */
d6f962b5 1970 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1971 return 1;
1972 /*
1973 * If an exclusive group is already on, no other hardware
cdd6c482 1974 * events can go on.
3b6f9e5c
PM
1975 */
1976 if (cpuctx->exclusive)
1977 return 0;
1978 /*
1979 * If this group is exclusive and there are already
cdd6c482 1980 * events on the CPU, it can't go on.
3b6f9e5c 1981 */
cdd6c482 1982 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1983 return 0;
1984 /*
1985 * Otherwise, try to add it if all previous groups were able
1986 * to go on.
1987 */
1988 return can_add_hw;
1989}
1990
cdd6c482
IM
1991static void add_event_to_ctx(struct perf_event *event,
1992 struct perf_event_context *ctx)
53cfbf59 1993{
4158755d
SE
1994 u64 tstamp = perf_event_time(event);
1995
cdd6c482 1996 list_add_event(event, ctx);
8a49542c 1997 perf_group_attach(event);
4158755d
SE
1998 event->tstamp_enabled = tstamp;
1999 event->tstamp_running = tstamp;
2000 event->tstamp_stopped = tstamp;
53cfbf59
PM
2001}
2002
2c29ef0f
PZ
2003static void task_ctx_sched_out(struct perf_event_context *ctx);
2004static void
2005ctx_sched_in(struct perf_event_context *ctx,
2006 struct perf_cpu_context *cpuctx,
2007 enum event_type_t event_type,
2008 struct task_struct *task);
fe4b04fa 2009
dce5855b
PZ
2010static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2011 struct perf_event_context *ctx,
2012 struct task_struct *task)
2013{
2014 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2015 if (ctx)
2016 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2017 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2018 if (ctx)
2019 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2020}
2021
0793a61d 2022/*
cdd6c482 2023 * Cross CPU call to install and enable a performance event
682076ae
PZ
2024 *
2025 * Must be called with ctx->mutex held
0793a61d 2026 */
fe4b04fa 2027static int __perf_install_in_context(void *info)
0793a61d 2028{
cdd6c482
IM
2029 struct perf_event *event = info;
2030 struct perf_event_context *ctx = event->ctx;
108b02cf 2031 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2032 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2033 struct task_struct *task = current;
2034
b58f6b0d 2035 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2036 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2037
2038 /*
2c29ef0f 2039 * If there was an active task_ctx schedule it out.
0793a61d 2040 */
b58f6b0d 2041 if (task_ctx)
2c29ef0f 2042 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2043
2044 /*
2045 * If the context we're installing events in is not the
2046 * active task_ctx, flip them.
2047 */
2048 if (ctx->task && task_ctx != ctx) {
2049 if (task_ctx)
2050 raw_spin_unlock(&task_ctx->lock);
2051 raw_spin_lock(&ctx->lock);
2052 task_ctx = ctx;
2053 }
2054
2055 if (task_ctx) {
2056 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2057 task = task_ctx->task;
2058 }
b58f6b0d 2059
2c29ef0f 2060 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2061
4af4998b 2062 update_context_time(ctx);
e5d1367f
SE
2063 /*
2064 * update cgrp time only if current cgrp
2065 * matches event->cgrp. Must be done before
2066 * calling add_event_to_ctx()
2067 */
2068 update_cgrp_time_from_event(event);
0793a61d 2069
cdd6c482 2070 add_event_to_ctx(event, ctx);
0793a61d 2071
d859e29f 2072 /*
2c29ef0f 2073 * Schedule everything back in
d859e29f 2074 */
dce5855b 2075 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2076
2077 perf_pmu_enable(cpuctx->ctx.pmu);
2078 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2079
2080 return 0;
0793a61d
TG
2081}
2082
2083/*
cdd6c482 2084 * Attach a performance event to a context
0793a61d 2085 *
cdd6c482
IM
2086 * First we add the event to the list with the hardware enable bit
2087 * in event->hw_config cleared.
0793a61d 2088 *
cdd6c482 2089 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2090 * call to enable it in the task context. The task might have been
2091 * scheduled away, but we check this in the smp call again.
2092 */
2093static void
cdd6c482
IM
2094perf_install_in_context(struct perf_event_context *ctx,
2095 struct perf_event *event,
0793a61d
TG
2096 int cpu)
2097{
2098 struct task_struct *task = ctx->task;
2099
fe4b04fa
PZ
2100 lockdep_assert_held(&ctx->mutex);
2101
c3f00c70 2102 event->ctx = ctx;
0cda4c02
YZ
2103 if (event->cpu != -1)
2104 event->cpu = cpu;
c3f00c70 2105
0793a61d
TG
2106 if (!task) {
2107 /*
cdd6c482 2108 * Per cpu events are installed via an smp call and
af901ca1 2109 * the install is always successful.
0793a61d 2110 */
fe4b04fa 2111 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2112 return;
2113 }
2114
0793a61d 2115retry:
fe4b04fa
PZ
2116 if (!task_function_call(task, __perf_install_in_context, event))
2117 return;
0793a61d 2118
e625cce1 2119 raw_spin_lock_irq(&ctx->lock);
0793a61d 2120 /*
fe4b04fa
PZ
2121 * If we failed to find a running task, but find the context active now
2122 * that we've acquired the ctx->lock, retry.
0793a61d 2123 */
fe4b04fa 2124 if (ctx->is_active) {
e625cce1 2125 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2126 /*
2127 * Reload the task pointer, it might have been changed by
2128 * a concurrent perf_event_context_sched_out().
2129 */
2130 task = ctx->task;
0793a61d
TG
2131 goto retry;
2132 }
2133
2134 /*
fe4b04fa
PZ
2135 * Since the task isn't running, its safe to add the event, us holding
2136 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2137 */
fe4b04fa 2138 add_event_to_ctx(event, ctx);
e625cce1 2139 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2140}
2141
fa289bec 2142/*
cdd6c482 2143 * Put a event into inactive state and update time fields.
fa289bec
PM
2144 * Enabling the leader of a group effectively enables all
2145 * the group members that aren't explicitly disabled, so we
2146 * have to update their ->tstamp_enabled also.
2147 * Note: this works for group members as well as group leaders
2148 * since the non-leader members' sibling_lists will be empty.
2149 */
1d9b482e 2150static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2151{
cdd6c482 2152 struct perf_event *sub;
4158755d 2153 u64 tstamp = perf_event_time(event);
fa289bec 2154
cdd6c482 2155 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2156 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2157 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2158 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2159 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2160 }
fa289bec
PM
2161}
2162
d859e29f 2163/*
cdd6c482 2164 * Cross CPU call to enable a performance event
d859e29f 2165 */
fe4b04fa 2166static int __perf_event_enable(void *info)
04289bb9 2167{
cdd6c482 2168 struct perf_event *event = info;
cdd6c482
IM
2169 struct perf_event_context *ctx = event->ctx;
2170 struct perf_event *leader = event->group_leader;
108b02cf 2171 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2172 int err;
04289bb9 2173
06f41796
JO
2174 /*
2175 * There's a time window between 'ctx->is_active' check
2176 * in perf_event_enable function and this place having:
2177 * - IRQs on
2178 * - ctx->lock unlocked
2179 *
2180 * where the task could be killed and 'ctx' deactivated
2181 * by perf_event_exit_task.
2182 */
2183 if (!ctx->is_active)
fe4b04fa 2184 return -EINVAL;
3cbed429 2185
e625cce1 2186 raw_spin_lock(&ctx->lock);
4af4998b 2187 update_context_time(ctx);
d859e29f 2188
cdd6c482 2189 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2190 goto unlock;
e5d1367f
SE
2191
2192 /*
2193 * set current task's cgroup time reference point
2194 */
3f7cce3c 2195 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2196
1d9b482e 2197 __perf_event_mark_enabled(event);
04289bb9 2198
e5d1367f
SE
2199 if (!event_filter_match(event)) {
2200 if (is_cgroup_event(event))
2201 perf_cgroup_defer_enabled(event);
f4c4176f 2202 goto unlock;
e5d1367f 2203 }
f4c4176f 2204
04289bb9 2205 /*
cdd6c482 2206 * If the event is in a group and isn't the group leader,
d859e29f 2207 * then don't put it on unless the group is on.
04289bb9 2208 */
cdd6c482 2209 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2210 goto unlock;
3b6f9e5c 2211
cdd6c482 2212 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2213 err = -EEXIST;
e758a33d 2214 } else {
cdd6c482 2215 if (event == leader)
6e37738a 2216 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2217 else
6e37738a 2218 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2219 }
d859e29f
PM
2220
2221 if (err) {
2222 /*
cdd6c482 2223 * If this event can't go on and it's part of a
d859e29f
PM
2224 * group, then the whole group has to come off.
2225 */
9e630205 2226 if (leader != event) {
d859e29f 2227 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2228 perf_cpu_hrtimer_restart(cpuctx);
2229 }
0d48696f 2230 if (leader->attr.pinned) {
53cfbf59 2231 update_group_times(leader);
cdd6c482 2232 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2233 }
d859e29f
PM
2234 }
2235
9ed6060d 2236unlock:
e625cce1 2237 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2238
2239 return 0;
d859e29f
PM
2240}
2241
2242/*
cdd6c482 2243 * Enable a event.
c93f7669 2244 *
cdd6c482
IM
2245 * If event->ctx is a cloned context, callers must make sure that
2246 * every task struct that event->ctx->task could possibly point to
c93f7669 2247 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2248 * perf_event_for_each_child or perf_event_for_each as described
2249 * for perf_event_disable.
d859e29f 2250 */
f63a8daa 2251static void _perf_event_enable(struct perf_event *event)
d859e29f 2252{
cdd6c482 2253 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2254 struct task_struct *task = ctx->task;
2255
2256 if (!task) {
2257 /*
cdd6c482 2258 * Enable the event on the cpu that it's on
d859e29f 2259 */
fe4b04fa 2260 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2261 return;
2262 }
2263
e625cce1 2264 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2265 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2266 goto out;
2267
2268 /*
cdd6c482
IM
2269 * If the event is in error state, clear that first.
2270 * That way, if we see the event in error state below, we
d859e29f
PM
2271 * know that it has gone back into error state, as distinct
2272 * from the task having been scheduled away before the
2273 * cross-call arrived.
2274 */
cdd6c482
IM
2275 if (event->state == PERF_EVENT_STATE_ERROR)
2276 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2277
9ed6060d 2278retry:
fe4b04fa 2279 if (!ctx->is_active) {
1d9b482e 2280 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2281 goto out;
2282 }
2283
e625cce1 2284 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2285
2286 if (!task_function_call(task, __perf_event_enable, event))
2287 return;
d859e29f 2288
e625cce1 2289 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2290
2291 /*
cdd6c482 2292 * If the context is active and the event is still off,
d859e29f
PM
2293 * we need to retry the cross-call.
2294 */
fe4b04fa
PZ
2295 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2296 /*
2297 * task could have been flipped by a concurrent
2298 * perf_event_context_sched_out()
2299 */
2300 task = ctx->task;
d859e29f 2301 goto retry;
fe4b04fa 2302 }
fa289bec 2303
9ed6060d 2304out:
e625cce1 2305 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2306}
f63a8daa
PZ
2307
2308/*
2309 * See perf_event_disable();
2310 */
2311void perf_event_enable(struct perf_event *event)
2312{
2313 struct perf_event_context *ctx;
2314
2315 ctx = perf_event_ctx_lock(event);
2316 _perf_event_enable(event);
2317 perf_event_ctx_unlock(event, ctx);
2318}
dcfce4a0 2319EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2320
f63a8daa 2321static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2322{
2023b359 2323 /*
cdd6c482 2324 * not supported on inherited events
2023b359 2325 */
2e939d1d 2326 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2327 return -EINVAL;
2328
cdd6c482 2329 atomic_add(refresh, &event->event_limit);
f63a8daa 2330 _perf_event_enable(event);
2023b359
PZ
2331
2332 return 0;
79f14641 2333}
f63a8daa
PZ
2334
2335/*
2336 * See perf_event_disable()
2337 */
2338int perf_event_refresh(struct perf_event *event, int refresh)
2339{
2340 struct perf_event_context *ctx;
2341 int ret;
2342
2343 ctx = perf_event_ctx_lock(event);
2344 ret = _perf_event_refresh(event, refresh);
2345 perf_event_ctx_unlock(event, ctx);
2346
2347 return ret;
2348}
26ca5c11 2349EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2350
5b0311e1
FW
2351static void ctx_sched_out(struct perf_event_context *ctx,
2352 struct perf_cpu_context *cpuctx,
2353 enum event_type_t event_type)
235c7fc7 2354{
cdd6c482 2355 struct perf_event *event;
db24d33e 2356 int is_active = ctx->is_active;
235c7fc7 2357
db24d33e 2358 ctx->is_active &= ~event_type;
cdd6c482 2359 if (likely(!ctx->nr_events))
facc4307
PZ
2360 return;
2361
4af4998b 2362 update_context_time(ctx);
e5d1367f 2363 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2364 if (!ctx->nr_active)
facc4307 2365 return;
5b0311e1 2366
075e0b00 2367 perf_pmu_disable(ctx->pmu);
db24d33e 2368 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2369 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2370 group_sched_out(event, cpuctx, ctx);
9ed6060d 2371 }
889ff015 2372
db24d33e 2373 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2374 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2375 group_sched_out(event, cpuctx, ctx);
9ed6060d 2376 }
1b9a644f 2377 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2378}
2379
564c2b21 2380/*
5a3126d4
PZ
2381 * Test whether two contexts are equivalent, i.e. whether they have both been
2382 * cloned from the same version of the same context.
2383 *
2384 * Equivalence is measured using a generation number in the context that is
2385 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2386 * and list_del_event().
564c2b21 2387 */
cdd6c482
IM
2388static int context_equiv(struct perf_event_context *ctx1,
2389 struct perf_event_context *ctx2)
564c2b21 2390{
211de6eb
PZ
2391 lockdep_assert_held(&ctx1->lock);
2392 lockdep_assert_held(&ctx2->lock);
2393
5a3126d4
PZ
2394 /* Pinning disables the swap optimization */
2395 if (ctx1->pin_count || ctx2->pin_count)
2396 return 0;
2397
2398 /* If ctx1 is the parent of ctx2 */
2399 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2400 return 1;
2401
2402 /* If ctx2 is the parent of ctx1 */
2403 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2404 return 1;
2405
2406 /*
2407 * If ctx1 and ctx2 have the same parent; we flatten the parent
2408 * hierarchy, see perf_event_init_context().
2409 */
2410 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2411 ctx1->parent_gen == ctx2->parent_gen)
2412 return 1;
2413
2414 /* Unmatched */
2415 return 0;
564c2b21
PM
2416}
2417
cdd6c482
IM
2418static void __perf_event_sync_stat(struct perf_event *event,
2419 struct perf_event *next_event)
bfbd3381
PZ
2420{
2421 u64 value;
2422
cdd6c482 2423 if (!event->attr.inherit_stat)
bfbd3381
PZ
2424 return;
2425
2426 /*
cdd6c482 2427 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2428 * because we're in the middle of a context switch and have IRQs
2429 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2430 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2431 * don't need to use it.
2432 */
cdd6c482
IM
2433 switch (event->state) {
2434 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2435 event->pmu->read(event);
2436 /* fall-through */
bfbd3381 2437
cdd6c482
IM
2438 case PERF_EVENT_STATE_INACTIVE:
2439 update_event_times(event);
bfbd3381
PZ
2440 break;
2441
2442 default:
2443 break;
2444 }
2445
2446 /*
cdd6c482 2447 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2448 * values when we flip the contexts.
2449 */
e7850595
PZ
2450 value = local64_read(&next_event->count);
2451 value = local64_xchg(&event->count, value);
2452 local64_set(&next_event->count, value);
bfbd3381 2453
cdd6c482
IM
2454 swap(event->total_time_enabled, next_event->total_time_enabled);
2455 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2456
bfbd3381 2457 /*
19d2e755 2458 * Since we swizzled the values, update the user visible data too.
bfbd3381 2459 */
cdd6c482
IM
2460 perf_event_update_userpage(event);
2461 perf_event_update_userpage(next_event);
bfbd3381
PZ
2462}
2463
cdd6c482
IM
2464static void perf_event_sync_stat(struct perf_event_context *ctx,
2465 struct perf_event_context *next_ctx)
bfbd3381 2466{
cdd6c482 2467 struct perf_event *event, *next_event;
bfbd3381
PZ
2468
2469 if (!ctx->nr_stat)
2470 return;
2471
02ffdbc8
PZ
2472 update_context_time(ctx);
2473
cdd6c482
IM
2474 event = list_first_entry(&ctx->event_list,
2475 struct perf_event, event_entry);
bfbd3381 2476
cdd6c482
IM
2477 next_event = list_first_entry(&next_ctx->event_list,
2478 struct perf_event, event_entry);
bfbd3381 2479
cdd6c482
IM
2480 while (&event->event_entry != &ctx->event_list &&
2481 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2482
cdd6c482 2483 __perf_event_sync_stat(event, next_event);
bfbd3381 2484
cdd6c482
IM
2485 event = list_next_entry(event, event_entry);
2486 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2487 }
2488}
2489
fe4b04fa
PZ
2490static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2491 struct task_struct *next)
0793a61d 2492{
8dc85d54 2493 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2494 struct perf_event_context *next_ctx;
5a3126d4 2495 struct perf_event_context *parent, *next_parent;
108b02cf 2496 struct perf_cpu_context *cpuctx;
c93f7669 2497 int do_switch = 1;
0793a61d 2498
108b02cf
PZ
2499 if (likely(!ctx))
2500 return;
10989fb2 2501
108b02cf
PZ
2502 cpuctx = __get_cpu_context(ctx);
2503 if (!cpuctx->task_ctx)
0793a61d
TG
2504 return;
2505
c93f7669 2506 rcu_read_lock();
8dc85d54 2507 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2508 if (!next_ctx)
2509 goto unlock;
2510
2511 parent = rcu_dereference(ctx->parent_ctx);
2512 next_parent = rcu_dereference(next_ctx->parent_ctx);
2513
2514 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2515 if (!parent && !next_parent)
5a3126d4
PZ
2516 goto unlock;
2517
2518 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2519 /*
2520 * Looks like the two contexts are clones, so we might be
2521 * able to optimize the context switch. We lock both
2522 * contexts and check that they are clones under the
2523 * lock (including re-checking that neither has been
2524 * uncloned in the meantime). It doesn't matter which
2525 * order we take the locks because no other cpu could
2526 * be trying to lock both of these tasks.
2527 */
e625cce1
TG
2528 raw_spin_lock(&ctx->lock);
2529 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2530 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2531 /*
2532 * XXX do we need a memory barrier of sorts
cdd6c482 2533 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2534 */
8dc85d54
PZ
2535 task->perf_event_ctxp[ctxn] = next_ctx;
2536 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2537 ctx->task = next;
2538 next_ctx->task = task;
5a158c3c
YZ
2539
2540 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2541
c93f7669 2542 do_switch = 0;
bfbd3381 2543
cdd6c482 2544 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2545 }
e625cce1
TG
2546 raw_spin_unlock(&next_ctx->lock);
2547 raw_spin_unlock(&ctx->lock);
564c2b21 2548 }
5a3126d4 2549unlock:
c93f7669 2550 rcu_read_unlock();
564c2b21 2551
c93f7669 2552 if (do_switch) {
facc4307 2553 raw_spin_lock(&ctx->lock);
5b0311e1 2554 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2555 cpuctx->task_ctx = NULL;
facc4307 2556 raw_spin_unlock(&ctx->lock);
c93f7669 2557 }
0793a61d
TG
2558}
2559
ba532500
YZ
2560void perf_sched_cb_dec(struct pmu *pmu)
2561{
2562 this_cpu_dec(perf_sched_cb_usages);
2563}
2564
2565void perf_sched_cb_inc(struct pmu *pmu)
2566{
2567 this_cpu_inc(perf_sched_cb_usages);
2568}
2569
2570/*
2571 * This function provides the context switch callback to the lower code
2572 * layer. It is invoked ONLY when the context switch callback is enabled.
2573 */
2574static void perf_pmu_sched_task(struct task_struct *prev,
2575 struct task_struct *next,
2576 bool sched_in)
2577{
2578 struct perf_cpu_context *cpuctx;
2579 struct pmu *pmu;
2580 unsigned long flags;
2581
2582 if (prev == next)
2583 return;
2584
2585 local_irq_save(flags);
2586
2587 rcu_read_lock();
2588
2589 list_for_each_entry_rcu(pmu, &pmus, entry) {
2590 if (pmu->sched_task) {
2591 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2592
2593 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2594
2595 perf_pmu_disable(pmu);
2596
2597 pmu->sched_task(cpuctx->task_ctx, sched_in);
2598
2599 perf_pmu_enable(pmu);
2600
2601 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2602 }
2603 }
2604
2605 rcu_read_unlock();
2606
2607 local_irq_restore(flags);
2608}
2609
8dc85d54
PZ
2610#define for_each_task_context_nr(ctxn) \
2611 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2612
2613/*
2614 * Called from scheduler to remove the events of the current task,
2615 * with interrupts disabled.
2616 *
2617 * We stop each event and update the event value in event->count.
2618 *
2619 * This does not protect us against NMI, but disable()
2620 * sets the disabled bit in the control field of event _before_
2621 * accessing the event control register. If a NMI hits, then it will
2622 * not restart the event.
2623 */
ab0cce56
JO
2624void __perf_event_task_sched_out(struct task_struct *task,
2625 struct task_struct *next)
8dc85d54
PZ
2626{
2627 int ctxn;
2628
ba532500
YZ
2629 if (__this_cpu_read(perf_sched_cb_usages))
2630 perf_pmu_sched_task(task, next, false);
2631
8dc85d54
PZ
2632 for_each_task_context_nr(ctxn)
2633 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2634
2635 /*
2636 * if cgroup events exist on this CPU, then we need
2637 * to check if we have to switch out PMU state.
2638 * cgroup event are system-wide mode only
2639 */
4a32fea9 2640 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2641 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2642}
2643
04dc2dbb 2644static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2645{
108b02cf 2646 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2647
a63eaf34
PM
2648 if (!cpuctx->task_ctx)
2649 return;
012b84da
IM
2650
2651 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2652 return;
2653
04dc2dbb 2654 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2655 cpuctx->task_ctx = NULL;
2656}
2657
5b0311e1
FW
2658/*
2659 * Called with IRQs disabled
2660 */
2661static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2662 enum event_type_t event_type)
2663{
2664 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2665}
2666
235c7fc7 2667static void
5b0311e1 2668ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2669 struct perf_cpu_context *cpuctx)
0793a61d 2670{
cdd6c482 2671 struct perf_event *event;
0793a61d 2672
889ff015
FW
2673 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2674 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2675 continue;
5632ab12 2676 if (!event_filter_match(event))
3b6f9e5c
PM
2677 continue;
2678
e5d1367f
SE
2679 /* may need to reset tstamp_enabled */
2680 if (is_cgroup_event(event))
2681 perf_cgroup_mark_enabled(event, ctx);
2682
8c9ed8e1 2683 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2684 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2685
2686 /*
2687 * If this pinned group hasn't been scheduled,
2688 * put it in error state.
2689 */
cdd6c482
IM
2690 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2691 update_group_times(event);
2692 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2693 }
3b6f9e5c 2694 }
5b0311e1
FW
2695}
2696
2697static void
2698ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2699 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2700{
2701 struct perf_event *event;
2702 int can_add_hw = 1;
3b6f9e5c 2703
889ff015
FW
2704 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2705 /* Ignore events in OFF or ERROR state */
2706 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2707 continue;
04289bb9
IM
2708 /*
2709 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2710 * of events:
04289bb9 2711 */
5632ab12 2712 if (!event_filter_match(event))
0793a61d
TG
2713 continue;
2714
e5d1367f
SE
2715 /* may need to reset tstamp_enabled */
2716 if (is_cgroup_event(event))
2717 perf_cgroup_mark_enabled(event, ctx);
2718
9ed6060d 2719 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2720 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2721 can_add_hw = 0;
9ed6060d 2722 }
0793a61d 2723 }
5b0311e1
FW
2724}
2725
2726static void
2727ctx_sched_in(struct perf_event_context *ctx,
2728 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2729 enum event_type_t event_type,
2730 struct task_struct *task)
5b0311e1 2731{
e5d1367f 2732 u64 now;
db24d33e 2733 int is_active = ctx->is_active;
e5d1367f 2734
db24d33e 2735 ctx->is_active |= event_type;
5b0311e1 2736 if (likely(!ctx->nr_events))
facc4307 2737 return;
5b0311e1 2738
e5d1367f
SE
2739 now = perf_clock();
2740 ctx->timestamp = now;
3f7cce3c 2741 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2742 /*
2743 * First go through the list and put on any pinned groups
2744 * in order to give them the best chance of going on.
2745 */
db24d33e 2746 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2747 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2748
2749 /* Then walk through the lower prio flexible groups */
db24d33e 2750 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2751 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2752}
2753
329c0e01 2754static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2755 enum event_type_t event_type,
2756 struct task_struct *task)
329c0e01
FW
2757{
2758 struct perf_event_context *ctx = &cpuctx->ctx;
2759
e5d1367f 2760 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2761}
2762
e5d1367f
SE
2763static void perf_event_context_sched_in(struct perf_event_context *ctx,
2764 struct task_struct *task)
235c7fc7 2765{
108b02cf 2766 struct perf_cpu_context *cpuctx;
235c7fc7 2767
108b02cf 2768 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2769 if (cpuctx->task_ctx == ctx)
2770 return;
2771
facc4307 2772 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2773 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2774 /*
2775 * We want to keep the following priority order:
2776 * cpu pinned (that don't need to move), task pinned,
2777 * cpu flexible, task flexible.
2778 */
2779 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2780
1d5f003f
GN
2781 if (ctx->nr_events)
2782 cpuctx->task_ctx = ctx;
9b33fa6b 2783
86b47c25
GN
2784 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2785
facc4307
PZ
2786 perf_pmu_enable(ctx->pmu);
2787 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2788}
2789
8dc85d54
PZ
2790/*
2791 * Called from scheduler to add the events of the current task
2792 * with interrupts disabled.
2793 *
2794 * We restore the event value and then enable it.
2795 *
2796 * This does not protect us against NMI, but enable()
2797 * sets the enabled bit in the control field of event _before_
2798 * accessing the event control register. If a NMI hits, then it will
2799 * keep the event running.
2800 */
ab0cce56
JO
2801void __perf_event_task_sched_in(struct task_struct *prev,
2802 struct task_struct *task)
8dc85d54
PZ
2803{
2804 struct perf_event_context *ctx;
2805 int ctxn;
2806
2807 for_each_task_context_nr(ctxn) {
2808 ctx = task->perf_event_ctxp[ctxn];
2809 if (likely(!ctx))
2810 continue;
2811
e5d1367f 2812 perf_event_context_sched_in(ctx, task);
8dc85d54 2813 }
e5d1367f
SE
2814 /*
2815 * if cgroup events exist on this CPU, then we need
2816 * to check if we have to switch in PMU state.
2817 * cgroup event are system-wide mode only
2818 */
4a32fea9 2819 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2820 perf_cgroup_sched_in(prev, task);
d010b332 2821
ba532500
YZ
2822 if (__this_cpu_read(perf_sched_cb_usages))
2823 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2824}
2825
abd50713
PZ
2826static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2827{
2828 u64 frequency = event->attr.sample_freq;
2829 u64 sec = NSEC_PER_SEC;
2830 u64 divisor, dividend;
2831
2832 int count_fls, nsec_fls, frequency_fls, sec_fls;
2833
2834 count_fls = fls64(count);
2835 nsec_fls = fls64(nsec);
2836 frequency_fls = fls64(frequency);
2837 sec_fls = 30;
2838
2839 /*
2840 * We got @count in @nsec, with a target of sample_freq HZ
2841 * the target period becomes:
2842 *
2843 * @count * 10^9
2844 * period = -------------------
2845 * @nsec * sample_freq
2846 *
2847 */
2848
2849 /*
2850 * Reduce accuracy by one bit such that @a and @b converge
2851 * to a similar magnitude.
2852 */
fe4b04fa 2853#define REDUCE_FLS(a, b) \
abd50713
PZ
2854do { \
2855 if (a##_fls > b##_fls) { \
2856 a >>= 1; \
2857 a##_fls--; \
2858 } else { \
2859 b >>= 1; \
2860 b##_fls--; \
2861 } \
2862} while (0)
2863
2864 /*
2865 * Reduce accuracy until either term fits in a u64, then proceed with
2866 * the other, so that finally we can do a u64/u64 division.
2867 */
2868 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2869 REDUCE_FLS(nsec, frequency);
2870 REDUCE_FLS(sec, count);
2871 }
2872
2873 if (count_fls + sec_fls > 64) {
2874 divisor = nsec * frequency;
2875
2876 while (count_fls + sec_fls > 64) {
2877 REDUCE_FLS(count, sec);
2878 divisor >>= 1;
2879 }
2880
2881 dividend = count * sec;
2882 } else {
2883 dividend = count * sec;
2884
2885 while (nsec_fls + frequency_fls > 64) {
2886 REDUCE_FLS(nsec, frequency);
2887 dividend >>= 1;
2888 }
2889
2890 divisor = nsec * frequency;
2891 }
2892
f6ab91ad
PZ
2893 if (!divisor)
2894 return dividend;
2895
abd50713
PZ
2896 return div64_u64(dividend, divisor);
2897}
2898
e050e3f0
SE
2899static DEFINE_PER_CPU(int, perf_throttled_count);
2900static DEFINE_PER_CPU(u64, perf_throttled_seq);
2901
f39d47ff 2902static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2903{
cdd6c482 2904 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2905 s64 period, sample_period;
bd2b5b12
PZ
2906 s64 delta;
2907
abd50713 2908 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2909
2910 delta = (s64)(period - hwc->sample_period);
2911 delta = (delta + 7) / 8; /* low pass filter */
2912
2913 sample_period = hwc->sample_period + delta;
2914
2915 if (!sample_period)
2916 sample_period = 1;
2917
bd2b5b12 2918 hwc->sample_period = sample_period;
abd50713 2919
e7850595 2920 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2921 if (disable)
2922 event->pmu->stop(event, PERF_EF_UPDATE);
2923
e7850595 2924 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2925
2926 if (disable)
2927 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2928 }
bd2b5b12
PZ
2929}
2930
e050e3f0
SE
2931/*
2932 * combine freq adjustment with unthrottling to avoid two passes over the
2933 * events. At the same time, make sure, having freq events does not change
2934 * the rate of unthrottling as that would introduce bias.
2935 */
2936static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2937 int needs_unthr)
60db5e09 2938{
cdd6c482
IM
2939 struct perf_event *event;
2940 struct hw_perf_event *hwc;
e050e3f0 2941 u64 now, period = TICK_NSEC;
abd50713 2942 s64 delta;
60db5e09 2943
e050e3f0
SE
2944 /*
2945 * only need to iterate over all events iff:
2946 * - context have events in frequency mode (needs freq adjust)
2947 * - there are events to unthrottle on this cpu
2948 */
2949 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2950 return;
2951
e050e3f0 2952 raw_spin_lock(&ctx->lock);
f39d47ff 2953 perf_pmu_disable(ctx->pmu);
e050e3f0 2954
03541f8b 2955 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2956 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2957 continue;
2958
5632ab12 2959 if (!event_filter_match(event))
5d27c23d
PZ
2960 continue;
2961
44377277
AS
2962 perf_pmu_disable(event->pmu);
2963
cdd6c482 2964 hwc = &event->hw;
6a24ed6c 2965
ae23bff1 2966 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2967 hwc->interrupts = 0;
cdd6c482 2968 perf_log_throttle(event, 1);
a4eaf7f1 2969 event->pmu->start(event, 0);
a78ac325
PZ
2970 }
2971
cdd6c482 2972 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2973 goto next;
60db5e09 2974
e050e3f0
SE
2975 /*
2976 * stop the event and update event->count
2977 */
2978 event->pmu->stop(event, PERF_EF_UPDATE);
2979
e7850595 2980 now = local64_read(&event->count);
abd50713
PZ
2981 delta = now - hwc->freq_count_stamp;
2982 hwc->freq_count_stamp = now;
60db5e09 2983
e050e3f0
SE
2984 /*
2985 * restart the event
2986 * reload only if value has changed
f39d47ff
SE
2987 * we have stopped the event so tell that
2988 * to perf_adjust_period() to avoid stopping it
2989 * twice.
e050e3f0 2990 */
abd50713 2991 if (delta > 0)
f39d47ff 2992 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2993
2994 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
2995 next:
2996 perf_pmu_enable(event->pmu);
60db5e09 2997 }
e050e3f0 2998
f39d47ff 2999 perf_pmu_enable(ctx->pmu);
e050e3f0 3000 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3001}
3002
235c7fc7 3003/*
cdd6c482 3004 * Round-robin a context's events:
235c7fc7 3005 */
cdd6c482 3006static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3007{
dddd3379
TG
3008 /*
3009 * Rotate the first entry last of non-pinned groups. Rotation might be
3010 * disabled by the inheritance code.
3011 */
3012 if (!ctx->rotate_disable)
3013 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3014}
3015
9e630205 3016static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3017{
8dc85d54 3018 struct perf_event_context *ctx = NULL;
2fde4f94 3019 int rotate = 0;
7fc23a53 3020
b5ab4cd5 3021 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3022 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3023 rotate = 1;
3024 }
235c7fc7 3025
8dc85d54 3026 ctx = cpuctx->task_ctx;
b5ab4cd5 3027 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3028 if (ctx->nr_events != ctx->nr_active)
3029 rotate = 1;
3030 }
9717e6cd 3031
e050e3f0 3032 if (!rotate)
0f5a2601
PZ
3033 goto done;
3034
facc4307 3035 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3036 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3037
e050e3f0
SE
3038 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3039 if (ctx)
3040 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3041
e050e3f0
SE
3042 rotate_ctx(&cpuctx->ctx);
3043 if (ctx)
3044 rotate_ctx(ctx);
235c7fc7 3045
e050e3f0 3046 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3047
0f5a2601
PZ
3048 perf_pmu_enable(cpuctx->ctx.pmu);
3049 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3050done:
9e630205
SE
3051
3052 return rotate;
e9d2b064
PZ
3053}
3054
026249ef
FW
3055#ifdef CONFIG_NO_HZ_FULL
3056bool perf_event_can_stop_tick(void)
3057{
948b26b6 3058 if (atomic_read(&nr_freq_events) ||
d84153d6 3059 __this_cpu_read(perf_throttled_count))
026249ef 3060 return false;
d84153d6
FW
3061 else
3062 return true;
026249ef
FW
3063}
3064#endif
3065
e9d2b064
PZ
3066void perf_event_task_tick(void)
3067{
2fde4f94
MR
3068 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3069 struct perf_event_context *ctx, *tmp;
e050e3f0 3070 int throttled;
b5ab4cd5 3071
e9d2b064
PZ
3072 WARN_ON(!irqs_disabled());
3073
e050e3f0
SE
3074 __this_cpu_inc(perf_throttled_seq);
3075 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3076
2fde4f94 3077 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3078 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3079}
3080
889ff015
FW
3081static int event_enable_on_exec(struct perf_event *event,
3082 struct perf_event_context *ctx)
3083{
3084 if (!event->attr.enable_on_exec)
3085 return 0;
3086
3087 event->attr.enable_on_exec = 0;
3088 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3089 return 0;
3090
1d9b482e 3091 __perf_event_mark_enabled(event);
889ff015
FW
3092
3093 return 1;
3094}
3095
57e7986e 3096/*
cdd6c482 3097 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3098 * This expects task == current.
3099 */
8dc85d54 3100static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3101{
211de6eb 3102 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3103 struct perf_event *event;
57e7986e
PM
3104 unsigned long flags;
3105 int enabled = 0;
889ff015 3106 int ret;
57e7986e
PM
3107
3108 local_irq_save(flags);
cdd6c482 3109 if (!ctx || !ctx->nr_events)
57e7986e
PM
3110 goto out;
3111
e566b76e
SE
3112 /*
3113 * We must ctxsw out cgroup events to avoid conflict
3114 * when invoking perf_task_event_sched_in() later on
3115 * in this function. Otherwise we end up trying to
3116 * ctxswin cgroup events which are already scheduled
3117 * in.
3118 */
a8d757ef 3119 perf_cgroup_sched_out(current, NULL);
57e7986e 3120
e625cce1 3121 raw_spin_lock(&ctx->lock);
04dc2dbb 3122 task_ctx_sched_out(ctx);
57e7986e 3123
b79387ef 3124 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3125 ret = event_enable_on_exec(event, ctx);
3126 if (ret)
3127 enabled = 1;
57e7986e
PM
3128 }
3129
3130 /*
cdd6c482 3131 * Unclone this context if we enabled any event.
57e7986e 3132 */
71a851b4 3133 if (enabled)
211de6eb 3134 clone_ctx = unclone_ctx(ctx);
57e7986e 3135
e625cce1 3136 raw_spin_unlock(&ctx->lock);
57e7986e 3137
e566b76e
SE
3138 /*
3139 * Also calls ctxswin for cgroup events, if any:
3140 */
e5d1367f 3141 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3142out:
57e7986e 3143 local_irq_restore(flags);
211de6eb
PZ
3144
3145 if (clone_ctx)
3146 put_ctx(clone_ctx);
57e7986e
PM
3147}
3148
e041e328
PZ
3149void perf_event_exec(void)
3150{
3151 struct perf_event_context *ctx;
3152 int ctxn;
3153
3154 rcu_read_lock();
3155 for_each_task_context_nr(ctxn) {
3156 ctx = current->perf_event_ctxp[ctxn];
3157 if (!ctx)
3158 continue;
3159
3160 perf_event_enable_on_exec(ctx);
3161 }
3162 rcu_read_unlock();
3163}
3164
0793a61d 3165/*
cdd6c482 3166 * Cross CPU call to read the hardware event
0793a61d 3167 */
cdd6c482 3168static void __perf_event_read(void *info)
0793a61d 3169{
cdd6c482
IM
3170 struct perf_event *event = info;
3171 struct perf_event_context *ctx = event->ctx;
108b02cf 3172 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3173
e1ac3614
PM
3174 /*
3175 * If this is a task context, we need to check whether it is
3176 * the current task context of this cpu. If not it has been
3177 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3178 * event->count would have been updated to a recent sample
3179 * when the event was scheduled out.
e1ac3614
PM
3180 */
3181 if (ctx->task && cpuctx->task_ctx != ctx)
3182 return;
3183
e625cce1 3184 raw_spin_lock(&ctx->lock);
e5d1367f 3185 if (ctx->is_active) {
542e72fc 3186 update_context_time(ctx);
e5d1367f
SE
3187 update_cgrp_time_from_event(event);
3188 }
cdd6c482 3189 update_event_times(event);
542e72fc
PZ
3190 if (event->state == PERF_EVENT_STATE_ACTIVE)
3191 event->pmu->read(event);
e625cce1 3192 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3193}
3194
b5e58793
PZ
3195static inline u64 perf_event_count(struct perf_event *event)
3196{
e7850595 3197 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3198}
3199
cdd6c482 3200static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3201{
3202 /*
cdd6c482
IM
3203 * If event is enabled and currently active on a CPU, update the
3204 * value in the event structure:
0793a61d 3205 */
cdd6c482
IM
3206 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3207 smp_call_function_single(event->oncpu,
3208 __perf_event_read, event, 1);
3209 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3210 struct perf_event_context *ctx = event->ctx;
3211 unsigned long flags;
3212
e625cce1 3213 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3214 /*
3215 * may read while context is not active
3216 * (e.g., thread is blocked), in that case
3217 * we cannot update context time
3218 */
e5d1367f 3219 if (ctx->is_active) {
c530ccd9 3220 update_context_time(ctx);
e5d1367f
SE
3221 update_cgrp_time_from_event(event);
3222 }
cdd6c482 3223 update_event_times(event);
e625cce1 3224 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3225 }
3226
b5e58793 3227 return perf_event_count(event);
0793a61d
TG
3228}
3229
a63eaf34 3230/*
cdd6c482 3231 * Initialize the perf_event context in a task_struct:
a63eaf34 3232 */
eb184479 3233static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3234{
e625cce1 3235 raw_spin_lock_init(&ctx->lock);
a63eaf34 3236 mutex_init(&ctx->mutex);
2fde4f94 3237 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3238 INIT_LIST_HEAD(&ctx->pinned_groups);
3239 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3240 INIT_LIST_HEAD(&ctx->event_list);
3241 atomic_set(&ctx->refcount, 1);
fadfe7be 3242 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3243}
3244
3245static struct perf_event_context *
3246alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3247{
3248 struct perf_event_context *ctx;
3249
3250 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3251 if (!ctx)
3252 return NULL;
3253
3254 __perf_event_init_context(ctx);
3255 if (task) {
3256 ctx->task = task;
3257 get_task_struct(task);
0793a61d 3258 }
eb184479
PZ
3259 ctx->pmu = pmu;
3260
3261 return ctx;
a63eaf34
PM
3262}
3263
2ebd4ffb
MH
3264static struct task_struct *
3265find_lively_task_by_vpid(pid_t vpid)
3266{
3267 struct task_struct *task;
3268 int err;
0793a61d
TG
3269
3270 rcu_read_lock();
2ebd4ffb 3271 if (!vpid)
0793a61d
TG
3272 task = current;
3273 else
2ebd4ffb 3274 task = find_task_by_vpid(vpid);
0793a61d
TG
3275 if (task)
3276 get_task_struct(task);
3277 rcu_read_unlock();
3278
3279 if (!task)
3280 return ERR_PTR(-ESRCH);
3281
0793a61d 3282 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3283 err = -EACCES;
3284 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3285 goto errout;
3286
2ebd4ffb
MH
3287 return task;
3288errout:
3289 put_task_struct(task);
3290 return ERR_PTR(err);
3291
3292}
3293
fe4b04fa
PZ
3294/*
3295 * Returns a matching context with refcount and pincount.
3296 */
108b02cf 3297static struct perf_event_context *
4af57ef2
YZ
3298find_get_context(struct pmu *pmu, struct task_struct *task,
3299 struct perf_event *event)
0793a61d 3300{
211de6eb 3301 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3302 struct perf_cpu_context *cpuctx;
4af57ef2 3303 void *task_ctx_data = NULL;
25346b93 3304 unsigned long flags;
8dc85d54 3305 int ctxn, err;
4af57ef2 3306 int cpu = event->cpu;
0793a61d 3307
22a4ec72 3308 if (!task) {
cdd6c482 3309 /* Must be root to operate on a CPU event: */
0764771d 3310 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3311 return ERR_PTR(-EACCES);
3312
0793a61d 3313 /*
cdd6c482 3314 * We could be clever and allow to attach a event to an
0793a61d
TG
3315 * offline CPU and activate it when the CPU comes up, but
3316 * that's for later.
3317 */
f6325e30 3318 if (!cpu_online(cpu))
0793a61d
TG
3319 return ERR_PTR(-ENODEV);
3320
108b02cf 3321 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3322 ctx = &cpuctx->ctx;
c93f7669 3323 get_ctx(ctx);
fe4b04fa 3324 ++ctx->pin_count;
0793a61d 3325
0793a61d
TG
3326 return ctx;
3327 }
3328
8dc85d54
PZ
3329 err = -EINVAL;
3330 ctxn = pmu->task_ctx_nr;
3331 if (ctxn < 0)
3332 goto errout;
3333
4af57ef2
YZ
3334 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3335 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3336 if (!task_ctx_data) {
3337 err = -ENOMEM;
3338 goto errout;
3339 }
3340 }
3341
9ed6060d 3342retry:
8dc85d54 3343 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3344 if (ctx) {
211de6eb 3345 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3346 ++ctx->pin_count;
4af57ef2
YZ
3347
3348 if (task_ctx_data && !ctx->task_ctx_data) {
3349 ctx->task_ctx_data = task_ctx_data;
3350 task_ctx_data = NULL;
3351 }
e625cce1 3352 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3353
3354 if (clone_ctx)
3355 put_ctx(clone_ctx);
9137fb28 3356 } else {
eb184479 3357 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3358 err = -ENOMEM;
3359 if (!ctx)
3360 goto errout;
eb184479 3361
4af57ef2
YZ
3362 if (task_ctx_data) {
3363 ctx->task_ctx_data = task_ctx_data;
3364 task_ctx_data = NULL;
3365 }
3366
dbe08d82
ON
3367 err = 0;
3368 mutex_lock(&task->perf_event_mutex);
3369 /*
3370 * If it has already passed perf_event_exit_task().
3371 * we must see PF_EXITING, it takes this mutex too.
3372 */
3373 if (task->flags & PF_EXITING)
3374 err = -ESRCH;
3375 else if (task->perf_event_ctxp[ctxn])
3376 err = -EAGAIN;
fe4b04fa 3377 else {
9137fb28 3378 get_ctx(ctx);
fe4b04fa 3379 ++ctx->pin_count;
dbe08d82 3380 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3381 }
dbe08d82
ON
3382 mutex_unlock(&task->perf_event_mutex);
3383
3384 if (unlikely(err)) {
9137fb28 3385 put_ctx(ctx);
dbe08d82
ON
3386
3387 if (err == -EAGAIN)
3388 goto retry;
3389 goto errout;
a63eaf34
PM
3390 }
3391 }
3392
4af57ef2 3393 kfree(task_ctx_data);
0793a61d 3394 return ctx;
c93f7669 3395
9ed6060d 3396errout:
4af57ef2 3397 kfree(task_ctx_data);
c93f7669 3398 return ERR_PTR(err);
0793a61d
TG
3399}
3400
6fb2915d
LZ
3401static void perf_event_free_filter(struct perf_event *event);
3402
cdd6c482 3403static void free_event_rcu(struct rcu_head *head)
592903cd 3404{
cdd6c482 3405 struct perf_event *event;
592903cd 3406
cdd6c482
IM
3407 event = container_of(head, struct perf_event, rcu_head);
3408 if (event->ns)
3409 put_pid_ns(event->ns);
6fb2915d 3410 perf_event_free_filter(event);
cdd6c482 3411 kfree(event);
592903cd
PZ
3412}
3413
76369139 3414static void ring_buffer_put(struct ring_buffer *rb);
b69cf536
PZ
3415static void ring_buffer_attach(struct perf_event *event,
3416 struct ring_buffer *rb);
925d519a 3417
4beb31f3 3418static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3419{
4beb31f3
FW
3420 if (event->parent)
3421 return;
3422
4beb31f3
FW
3423 if (is_cgroup_event(event))
3424 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3425}
925d519a 3426
4beb31f3
FW
3427static void unaccount_event(struct perf_event *event)
3428{
3429 if (event->parent)
3430 return;
3431
3432 if (event->attach_state & PERF_ATTACH_TASK)
3433 static_key_slow_dec_deferred(&perf_sched_events);
3434 if (event->attr.mmap || event->attr.mmap_data)
3435 atomic_dec(&nr_mmap_events);
3436 if (event->attr.comm)
3437 atomic_dec(&nr_comm_events);
3438 if (event->attr.task)
3439 atomic_dec(&nr_task_events);
948b26b6
FW
3440 if (event->attr.freq)
3441 atomic_dec(&nr_freq_events);
4beb31f3
FW
3442 if (is_cgroup_event(event))
3443 static_key_slow_dec_deferred(&perf_sched_events);
3444 if (has_branch_stack(event))
3445 static_key_slow_dec_deferred(&perf_sched_events);
3446
3447 unaccount_event_cpu(event, event->cpu);
3448}
925d519a 3449
766d6c07
FW
3450static void __free_event(struct perf_event *event)
3451{
cdd6c482 3452 if (!event->parent) {
927c7a9e
FW
3453 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3454 put_callchain_buffers();
f344011c 3455 }
9ee318a7 3456
766d6c07
FW
3457 if (event->destroy)
3458 event->destroy(event);
3459
3460 if (event->ctx)
3461 put_ctx(event->ctx);
3462
c464c76e
YZ
3463 if (event->pmu)
3464 module_put(event->pmu->module);
3465
766d6c07
FW
3466 call_rcu(&event->rcu_head, free_event_rcu);
3467}
683ede43
PZ
3468
3469static void _free_event(struct perf_event *event)
f1600952 3470{
e360adbe 3471 irq_work_sync(&event->pending);
925d519a 3472
4beb31f3 3473 unaccount_event(event);
9ee318a7 3474
76369139 3475 if (event->rb) {
9bb5d40c
PZ
3476 /*
3477 * Can happen when we close an event with re-directed output.
3478 *
3479 * Since we have a 0 refcount, perf_mmap_close() will skip
3480 * over us; possibly making our ring_buffer_put() the last.
3481 */
3482 mutex_lock(&event->mmap_mutex);
b69cf536 3483 ring_buffer_attach(event, NULL);
9bb5d40c 3484 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3485 }
3486
e5d1367f
SE
3487 if (is_cgroup_event(event))
3488 perf_detach_cgroup(event);
3489
766d6c07 3490 __free_event(event);
f1600952
PZ
3491}
3492
683ede43
PZ
3493/*
3494 * Used to free events which have a known refcount of 1, such as in error paths
3495 * where the event isn't exposed yet and inherited events.
3496 */
3497static void free_event(struct perf_event *event)
0793a61d 3498{
683ede43
PZ
3499 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3500 "unexpected event refcount: %ld; ptr=%p\n",
3501 atomic_long_read(&event->refcount), event)) {
3502 /* leak to avoid use-after-free */
3503 return;
3504 }
0793a61d 3505
683ede43 3506 _free_event(event);
0793a61d
TG
3507}
3508
a66a3052 3509/*
f8697762 3510 * Remove user event from the owner task.
a66a3052 3511 */
f8697762 3512static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3513{
8882135b 3514 struct task_struct *owner;
fb0459d7 3515
8882135b
PZ
3516 rcu_read_lock();
3517 owner = ACCESS_ONCE(event->owner);
3518 /*
3519 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3520 * !owner it means the list deletion is complete and we can indeed
3521 * free this event, otherwise we need to serialize on
3522 * owner->perf_event_mutex.
3523 */
3524 smp_read_barrier_depends();
3525 if (owner) {
3526 /*
3527 * Since delayed_put_task_struct() also drops the last
3528 * task reference we can safely take a new reference
3529 * while holding the rcu_read_lock().
3530 */
3531 get_task_struct(owner);
3532 }
3533 rcu_read_unlock();
3534
3535 if (owner) {
f63a8daa
PZ
3536 /*
3537 * If we're here through perf_event_exit_task() we're already
3538 * holding ctx->mutex which would be an inversion wrt. the
3539 * normal lock order.
3540 *
3541 * However we can safely take this lock because its the child
3542 * ctx->mutex.
3543 */
3544 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3545
8882135b
PZ
3546 /*
3547 * We have to re-check the event->owner field, if it is cleared
3548 * we raced with perf_event_exit_task(), acquiring the mutex
3549 * ensured they're done, and we can proceed with freeing the
3550 * event.
3551 */
3552 if (event->owner)
3553 list_del_init(&event->owner_entry);
3554 mutex_unlock(&owner->perf_event_mutex);
3555 put_task_struct(owner);
3556 }
f8697762
JO
3557}
3558
3559/*
3560 * Called when the last reference to the file is gone.
3561 */
3562static void put_event(struct perf_event *event)
3563{
a83fe28e 3564 struct perf_event_context *ctx;
f8697762
JO
3565
3566 if (!atomic_long_dec_and_test(&event->refcount))
3567 return;
3568
3569 if (!is_kernel_event(event))
3570 perf_remove_from_owner(event);
8882135b 3571
683ede43
PZ
3572 /*
3573 * There are two ways this annotation is useful:
3574 *
3575 * 1) there is a lock recursion from perf_event_exit_task
3576 * see the comment there.
3577 *
3578 * 2) there is a lock-inversion with mmap_sem through
3579 * perf_event_read_group(), which takes faults while
3580 * holding ctx->mutex, however this is called after
3581 * the last filedesc died, so there is no possibility
3582 * to trigger the AB-BA case.
3583 */
a83fe28e
PZ
3584 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3585 WARN_ON_ONCE(ctx->parent_ctx);
683ede43
PZ
3586 perf_remove_from_context(event, true);
3587 mutex_unlock(&ctx->mutex);
3588
3589 _free_event(event);
a6fa941d
AV
3590}
3591
683ede43
PZ
3592int perf_event_release_kernel(struct perf_event *event)
3593{
3594 put_event(event);
3595 return 0;
3596}
3597EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3598
a6fa941d
AV
3599static int perf_release(struct inode *inode, struct file *file)
3600{
3601 put_event(file->private_data);
3602 return 0;
fb0459d7 3603}
fb0459d7 3604
fadfe7be
JO
3605/*
3606 * Remove all orphanes events from the context.
3607 */
3608static void orphans_remove_work(struct work_struct *work)
3609{
3610 struct perf_event_context *ctx;
3611 struct perf_event *event, *tmp;
3612
3613 ctx = container_of(work, struct perf_event_context,
3614 orphans_remove.work);
3615
3616 mutex_lock(&ctx->mutex);
3617 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3618 struct perf_event *parent_event = event->parent;
3619
3620 if (!is_orphaned_child(event))
3621 continue;
3622
3623 perf_remove_from_context(event, true);
3624
3625 mutex_lock(&parent_event->child_mutex);
3626 list_del_init(&event->child_list);
3627 mutex_unlock(&parent_event->child_mutex);
3628
3629 free_event(event);
3630 put_event(parent_event);
3631 }
3632
3633 raw_spin_lock_irq(&ctx->lock);
3634 ctx->orphans_remove_sched = false;
3635 raw_spin_unlock_irq(&ctx->lock);
3636 mutex_unlock(&ctx->mutex);
3637
3638 put_ctx(ctx);
3639}
3640
59ed446f 3641u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3642{
cdd6c482 3643 struct perf_event *child;
e53c0994
PZ
3644 u64 total = 0;
3645
59ed446f
PZ
3646 *enabled = 0;
3647 *running = 0;
3648
6f10581a 3649 mutex_lock(&event->child_mutex);
cdd6c482 3650 total += perf_event_read(event);
59ed446f
PZ
3651 *enabled += event->total_time_enabled +
3652 atomic64_read(&event->child_total_time_enabled);
3653 *running += event->total_time_running +
3654 atomic64_read(&event->child_total_time_running);
3655
3656 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3657 total += perf_event_read(child);
59ed446f
PZ
3658 *enabled += child->total_time_enabled;
3659 *running += child->total_time_running;
3660 }
6f10581a 3661 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3662
3663 return total;
3664}
fb0459d7 3665EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3666
cdd6c482 3667static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3668 u64 read_format, char __user *buf)
3669{
cdd6c482 3670 struct perf_event *leader = event->group_leader, *sub;
6f10581a 3671 struct perf_event_context *ctx = leader->ctx;
f63a8daa 3672 int n = 0, size = 0, ret;
59ed446f 3673 u64 count, enabled, running;
f63a8daa
PZ
3674 u64 values[5];
3675
3676 lockdep_assert_held(&ctx->mutex);
abf4868b 3677
59ed446f 3678 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3679
3680 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3681 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3682 values[n++] = enabled;
3683 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3684 values[n++] = running;
abf4868b
PZ
3685 values[n++] = count;
3686 if (read_format & PERF_FORMAT_ID)
3687 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3688
3689 size = n * sizeof(u64);
3690
3691 if (copy_to_user(buf, values, size))
f63a8daa 3692 return -EFAULT;
3dab77fb 3693
6f10581a 3694 ret = size;
3dab77fb 3695
65abc865 3696 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3697 n = 0;
3dab77fb 3698
59ed446f 3699 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3700 if (read_format & PERF_FORMAT_ID)
3701 values[n++] = primary_event_id(sub);
3702
3703 size = n * sizeof(u64);
3704
184d3da8 3705 if (copy_to_user(buf + ret, values, size)) {
f63a8daa 3706 return -EFAULT;
6f10581a 3707 }
abf4868b
PZ
3708
3709 ret += size;
3dab77fb
PZ
3710 }
3711
abf4868b 3712 return ret;
3dab77fb
PZ
3713}
3714
cdd6c482 3715static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3716 u64 read_format, char __user *buf)
3717{
59ed446f 3718 u64 enabled, running;
3dab77fb
PZ
3719 u64 values[4];
3720 int n = 0;
3721
59ed446f
PZ
3722 values[n++] = perf_event_read_value(event, &enabled, &running);
3723 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3724 values[n++] = enabled;
3725 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3726 values[n++] = running;
3dab77fb 3727 if (read_format & PERF_FORMAT_ID)
cdd6c482 3728 values[n++] = primary_event_id(event);
3dab77fb
PZ
3729
3730 if (copy_to_user(buf, values, n * sizeof(u64)))
3731 return -EFAULT;
3732
3733 return n * sizeof(u64);
3734}
3735
dc633982
JO
3736static bool is_event_hup(struct perf_event *event)
3737{
3738 bool no_children;
3739
3740 if (event->state != PERF_EVENT_STATE_EXIT)
3741 return false;
3742
3743 mutex_lock(&event->child_mutex);
3744 no_children = list_empty(&event->child_list);
3745 mutex_unlock(&event->child_mutex);
3746 return no_children;
3747}
3748
0793a61d 3749/*
cdd6c482 3750 * Read the performance event - simple non blocking version for now
0793a61d
TG
3751 */
3752static ssize_t
cdd6c482 3753perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3754{
cdd6c482 3755 u64 read_format = event->attr.read_format;
3dab77fb 3756 int ret;
0793a61d 3757
3b6f9e5c 3758 /*
cdd6c482 3759 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3760 * error state (i.e. because it was pinned but it couldn't be
3761 * scheduled on to the CPU at some point).
3762 */
cdd6c482 3763 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3764 return 0;
3765
c320c7b7 3766 if (count < event->read_size)
3dab77fb
PZ
3767 return -ENOSPC;
3768
cdd6c482 3769 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3770 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3771 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3772 else
cdd6c482 3773 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3774
3dab77fb 3775 return ret;
0793a61d
TG
3776}
3777
0793a61d
TG
3778static ssize_t
3779perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3780{
cdd6c482 3781 struct perf_event *event = file->private_data;
f63a8daa
PZ
3782 struct perf_event_context *ctx;
3783 int ret;
0793a61d 3784
f63a8daa
PZ
3785 ctx = perf_event_ctx_lock(event);
3786 ret = perf_read_hw(event, buf, count);
3787 perf_event_ctx_unlock(event, ctx);
3788
3789 return ret;
0793a61d
TG
3790}
3791
3792static unsigned int perf_poll(struct file *file, poll_table *wait)
3793{
cdd6c482 3794 struct perf_event *event = file->private_data;
76369139 3795 struct ring_buffer *rb;
61b67684 3796 unsigned int events = POLLHUP;
c7138f37 3797
e708d7ad 3798 poll_wait(file, &event->waitq, wait);
179033b3 3799
dc633982 3800 if (is_event_hup(event))
179033b3 3801 return events;
c7138f37 3802
10c6db11 3803 /*
9bb5d40c
PZ
3804 * Pin the event->rb by taking event->mmap_mutex; otherwise
3805 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3806 */
3807 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3808 rb = event->rb;
3809 if (rb)
76369139 3810 events = atomic_xchg(&rb->poll, 0);
10c6db11 3811 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
3812 return events;
3813}
3814
f63a8daa 3815static void _perf_event_reset(struct perf_event *event)
6de6a7b9 3816{
cdd6c482 3817 (void)perf_event_read(event);
e7850595 3818 local64_set(&event->count, 0);
cdd6c482 3819 perf_event_update_userpage(event);
3df5edad
PZ
3820}
3821
c93f7669 3822/*
cdd6c482
IM
3823 * Holding the top-level event's child_mutex means that any
3824 * descendant process that has inherited this event will block
3825 * in sync_child_event if it goes to exit, thus satisfying the
3826 * task existence requirements of perf_event_enable/disable.
c93f7669 3827 */
cdd6c482
IM
3828static void perf_event_for_each_child(struct perf_event *event,
3829 void (*func)(struct perf_event *))
3df5edad 3830{
cdd6c482 3831 struct perf_event *child;
3df5edad 3832
cdd6c482 3833 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 3834
cdd6c482
IM
3835 mutex_lock(&event->child_mutex);
3836 func(event);
3837 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3838 func(child);
cdd6c482 3839 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3840}
3841
cdd6c482
IM
3842static void perf_event_for_each(struct perf_event *event,
3843 void (*func)(struct perf_event *))
3df5edad 3844{
cdd6c482
IM
3845 struct perf_event_context *ctx = event->ctx;
3846 struct perf_event *sibling;
3df5edad 3847
f63a8daa
PZ
3848 lockdep_assert_held(&ctx->mutex);
3849
cdd6c482 3850 event = event->group_leader;
75f937f2 3851
cdd6c482 3852 perf_event_for_each_child(event, func);
cdd6c482 3853 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3854 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
3855}
3856
cdd6c482 3857static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3858{
cdd6c482 3859 struct perf_event_context *ctx = event->ctx;
bad7192b 3860 int ret = 0, active;
08247e31
PZ
3861 u64 value;
3862
6c7e550f 3863 if (!is_sampling_event(event))
08247e31
PZ
3864 return -EINVAL;
3865
ad0cf347 3866 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3867 return -EFAULT;
3868
3869 if (!value)
3870 return -EINVAL;
3871
e625cce1 3872 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3873 if (event->attr.freq) {
3874 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3875 ret = -EINVAL;
3876 goto unlock;
3877 }
3878
cdd6c482 3879 event->attr.sample_freq = value;
08247e31 3880 } else {
cdd6c482
IM
3881 event->attr.sample_period = value;
3882 event->hw.sample_period = value;
08247e31 3883 }
bad7192b
PZ
3884
3885 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3886 if (active) {
3887 perf_pmu_disable(ctx->pmu);
3888 event->pmu->stop(event, PERF_EF_UPDATE);
3889 }
3890
3891 local64_set(&event->hw.period_left, 0);
3892
3893 if (active) {
3894 event->pmu->start(event, PERF_EF_RELOAD);
3895 perf_pmu_enable(ctx->pmu);
3896 }
3897
08247e31 3898unlock:
e625cce1 3899 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3900
3901 return ret;
3902}
3903
ac9721f3
PZ
3904static const struct file_operations perf_fops;
3905
2903ff01 3906static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3907{
2903ff01
AV
3908 struct fd f = fdget(fd);
3909 if (!f.file)
3910 return -EBADF;
ac9721f3 3911
2903ff01
AV
3912 if (f.file->f_op != &perf_fops) {
3913 fdput(f);
3914 return -EBADF;
ac9721f3 3915 }
2903ff01
AV
3916 *p = f;
3917 return 0;
ac9721f3
PZ
3918}
3919
3920static int perf_event_set_output(struct perf_event *event,
3921 struct perf_event *output_event);
6fb2915d 3922static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3923
f63a8daa 3924static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 3925{
cdd6c482 3926 void (*func)(struct perf_event *);
3df5edad 3927 u32 flags = arg;
d859e29f
PM
3928
3929 switch (cmd) {
cdd6c482 3930 case PERF_EVENT_IOC_ENABLE:
f63a8daa 3931 func = _perf_event_enable;
d859e29f 3932 break;
cdd6c482 3933 case PERF_EVENT_IOC_DISABLE:
f63a8daa 3934 func = _perf_event_disable;
79f14641 3935 break;
cdd6c482 3936 case PERF_EVENT_IOC_RESET:
f63a8daa 3937 func = _perf_event_reset;
6de6a7b9 3938 break;
3df5edad 3939
cdd6c482 3940 case PERF_EVENT_IOC_REFRESH:
f63a8daa 3941 return _perf_event_refresh(event, arg);
08247e31 3942
cdd6c482
IM
3943 case PERF_EVENT_IOC_PERIOD:
3944 return perf_event_period(event, (u64 __user *)arg);
08247e31 3945
cf4957f1
JO
3946 case PERF_EVENT_IOC_ID:
3947 {
3948 u64 id = primary_event_id(event);
3949
3950 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3951 return -EFAULT;
3952 return 0;
3953 }
3954
cdd6c482 3955 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3956 {
ac9721f3 3957 int ret;
ac9721f3 3958 if (arg != -1) {
2903ff01
AV
3959 struct perf_event *output_event;
3960 struct fd output;
3961 ret = perf_fget_light(arg, &output);
3962 if (ret)
3963 return ret;
3964 output_event = output.file->private_data;
3965 ret = perf_event_set_output(event, output_event);
3966 fdput(output);
3967 } else {
3968 ret = perf_event_set_output(event, NULL);
ac9721f3 3969 }
ac9721f3
PZ
3970 return ret;
3971 }
a4be7c27 3972
6fb2915d
LZ
3973 case PERF_EVENT_IOC_SET_FILTER:
3974 return perf_event_set_filter(event, (void __user *)arg);
3975
d859e29f 3976 default:
3df5edad 3977 return -ENOTTY;
d859e29f 3978 }
3df5edad
PZ
3979
3980 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3981 perf_event_for_each(event, func);
3df5edad 3982 else
cdd6c482 3983 perf_event_for_each_child(event, func);
3df5edad
PZ
3984
3985 return 0;
d859e29f
PM
3986}
3987
f63a8daa
PZ
3988static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3989{
3990 struct perf_event *event = file->private_data;
3991 struct perf_event_context *ctx;
3992 long ret;
3993
3994 ctx = perf_event_ctx_lock(event);
3995 ret = _perf_ioctl(event, cmd, arg);
3996 perf_event_ctx_unlock(event, ctx);
3997
3998 return ret;
3999}
4000
b3f20785
PM
4001#ifdef CONFIG_COMPAT
4002static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4003 unsigned long arg)
4004{
4005 switch (_IOC_NR(cmd)) {
4006 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4007 case _IOC_NR(PERF_EVENT_IOC_ID):
4008 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4009 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4010 cmd &= ~IOCSIZE_MASK;
4011 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4012 }
4013 break;
4014 }
4015 return perf_ioctl(file, cmd, arg);
4016}
4017#else
4018# define perf_compat_ioctl NULL
4019#endif
4020
cdd6c482 4021int perf_event_task_enable(void)
771d7cde 4022{
f63a8daa 4023 struct perf_event_context *ctx;
cdd6c482 4024 struct perf_event *event;
771d7cde 4025
cdd6c482 4026 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4027 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4028 ctx = perf_event_ctx_lock(event);
4029 perf_event_for_each_child(event, _perf_event_enable);
4030 perf_event_ctx_unlock(event, ctx);
4031 }
cdd6c482 4032 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4033
4034 return 0;
4035}
4036
cdd6c482 4037int perf_event_task_disable(void)
771d7cde 4038{
f63a8daa 4039 struct perf_event_context *ctx;
cdd6c482 4040 struct perf_event *event;
771d7cde 4041
cdd6c482 4042 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4043 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4044 ctx = perf_event_ctx_lock(event);
4045 perf_event_for_each_child(event, _perf_event_disable);
4046 perf_event_ctx_unlock(event, ctx);
4047 }
cdd6c482 4048 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4049
4050 return 0;
4051}
4052
cdd6c482 4053static int perf_event_index(struct perf_event *event)
194002b2 4054{
a4eaf7f1
PZ
4055 if (event->hw.state & PERF_HES_STOPPED)
4056 return 0;
4057
cdd6c482 4058 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4059 return 0;
4060
35edc2a5 4061 return event->pmu->event_idx(event);
194002b2
PZ
4062}
4063
c4794295 4064static void calc_timer_values(struct perf_event *event,
e3f3541c 4065 u64 *now,
7f310a5d
EM
4066 u64 *enabled,
4067 u64 *running)
c4794295 4068{
e3f3541c 4069 u64 ctx_time;
c4794295 4070
e3f3541c
PZ
4071 *now = perf_clock();
4072 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4073 *enabled = ctx_time - event->tstamp_enabled;
4074 *running = ctx_time - event->tstamp_running;
4075}
4076
fa731587
PZ
4077static void perf_event_init_userpage(struct perf_event *event)
4078{
4079 struct perf_event_mmap_page *userpg;
4080 struct ring_buffer *rb;
4081
4082 rcu_read_lock();
4083 rb = rcu_dereference(event->rb);
4084 if (!rb)
4085 goto unlock;
4086
4087 userpg = rb->user_page;
4088
4089 /* Allow new userspace to detect that bit 0 is deprecated */
4090 userpg->cap_bit0_is_deprecated = 1;
4091 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4092
4093unlock:
4094 rcu_read_unlock();
4095}
4096
c1317ec2
AL
4097void __weak arch_perf_update_userpage(
4098 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4099{
4100}
4101
38ff667b
PZ
4102/*
4103 * Callers need to ensure there can be no nesting of this function, otherwise
4104 * the seqlock logic goes bad. We can not serialize this because the arch
4105 * code calls this from NMI context.
4106 */
cdd6c482 4107void perf_event_update_userpage(struct perf_event *event)
37d81828 4108{
cdd6c482 4109 struct perf_event_mmap_page *userpg;
76369139 4110 struct ring_buffer *rb;
e3f3541c 4111 u64 enabled, running, now;
38ff667b
PZ
4112
4113 rcu_read_lock();
5ec4c599
PZ
4114 rb = rcu_dereference(event->rb);
4115 if (!rb)
4116 goto unlock;
4117
0d641208
EM
4118 /*
4119 * compute total_time_enabled, total_time_running
4120 * based on snapshot values taken when the event
4121 * was last scheduled in.
4122 *
4123 * we cannot simply called update_context_time()
4124 * because of locking issue as we can be called in
4125 * NMI context
4126 */
e3f3541c 4127 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4128
76369139 4129 userpg = rb->user_page;
7b732a75
PZ
4130 /*
4131 * Disable preemption so as to not let the corresponding user-space
4132 * spin too long if we get preempted.
4133 */
4134 preempt_disable();
37d81828 4135 ++userpg->lock;
92f22a38 4136 barrier();
cdd6c482 4137 userpg->index = perf_event_index(event);
b5e58793 4138 userpg->offset = perf_event_count(event);
365a4038 4139 if (userpg->index)
e7850595 4140 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4141
0d641208 4142 userpg->time_enabled = enabled +
cdd6c482 4143 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4144
0d641208 4145 userpg->time_running = running +
cdd6c482 4146 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4147
c1317ec2 4148 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4149
92f22a38 4150 barrier();
37d81828 4151 ++userpg->lock;
7b732a75 4152 preempt_enable();
38ff667b 4153unlock:
7b732a75 4154 rcu_read_unlock();
37d81828
PM
4155}
4156
906010b2
PZ
4157static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4158{
4159 struct perf_event *event = vma->vm_file->private_data;
76369139 4160 struct ring_buffer *rb;
906010b2
PZ
4161 int ret = VM_FAULT_SIGBUS;
4162
4163 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4164 if (vmf->pgoff == 0)
4165 ret = 0;
4166 return ret;
4167 }
4168
4169 rcu_read_lock();
76369139
FW
4170 rb = rcu_dereference(event->rb);
4171 if (!rb)
906010b2
PZ
4172 goto unlock;
4173
4174 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4175 goto unlock;
4176
76369139 4177 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4178 if (!vmf->page)
4179 goto unlock;
4180
4181 get_page(vmf->page);
4182 vmf->page->mapping = vma->vm_file->f_mapping;
4183 vmf->page->index = vmf->pgoff;
4184
4185 ret = 0;
4186unlock:
4187 rcu_read_unlock();
4188
4189 return ret;
4190}
4191
10c6db11
PZ
4192static void ring_buffer_attach(struct perf_event *event,
4193 struct ring_buffer *rb)
4194{
b69cf536 4195 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4196 unsigned long flags;
4197
b69cf536
PZ
4198 if (event->rb) {
4199 /*
4200 * Should be impossible, we set this when removing
4201 * event->rb_entry and wait/clear when adding event->rb_entry.
4202 */
4203 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4204
b69cf536
PZ
4205 old_rb = event->rb;
4206 event->rcu_batches = get_state_synchronize_rcu();
4207 event->rcu_pending = 1;
10c6db11 4208
b69cf536
PZ
4209 spin_lock_irqsave(&old_rb->event_lock, flags);
4210 list_del_rcu(&event->rb_entry);
4211 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4212 }
10c6db11 4213
b69cf536
PZ
4214 if (event->rcu_pending && rb) {
4215 cond_synchronize_rcu(event->rcu_batches);
4216 event->rcu_pending = 0;
4217 }
10c6db11 4218
b69cf536
PZ
4219 if (rb) {
4220 spin_lock_irqsave(&rb->event_lock, flags);
4221 list_add_rcu(&event->rb_entry, &rb->event_list);
4222 spin_unlock_irqrestore(&rb->event_lock, flags);
4223 }
4224
4225 rcu_assign_pointer(event->rb, rb);
4226
4227 if (old_rb) {
4228 ring_buffer_put(old_rb);
4229 /*
4230 * Since we detached before setting the new rb, so that we
4231 * could attach the new rb, we could have missed a wakeup.
4232 * Provide it now.
4233 */
4234 wake_up_all(&event->waitq);
4235 }
10c6db11
PZ
4236}
4237
4238static void ring_buffer_wakeup(struct perf_event *event)
4239{
4240 struct ring_buffer *rb;
4241
4242 rcu_read_lock();
4243 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4244 if (rb) {
4245 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4246 wake_up_all(&event->waitq);
4247 }
10c6db11
PZ
4248 rcu_read_unlock();
4249}
4250
76369139 4251static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 4252{
76369139 4253 struct ring_buffer *rb;
906010b2 4254
76369139
FW
4255 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4256 rb_free(rb);
7b732a75
PZ
4257}
4258
76369139 4259static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4260{
76369139 4261 struct ring_buffer *rb;
7b732a75 4262
ac9721f3 4263 rcu_read_lock();
76369139
FW
4264 rb = rcu_dereference(event->rb);
4265 if (rb) {
4266 if (!atomic_inc_not_zero(&rb->refcount))
4267 rb = NULL;
ac9721f3
PZ
4268 }
4269 rcu_read_unlock();
4270
76369139 4271 return rb;
ac9721f3
PZ
4272}
4273
76369139 4274static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4275{
76369139 4276 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4277 return;
7b732a75 4278
9bb5d40c 4279 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4280
76369139 4281 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4282}
4283
4284static void perf_mmap_open(struct vm_area_struct *vma)
4285{
cdd6c482 4286 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4287
cdd6c482 4288 atomic_inc(&event->mmap_count);
9bb5d40c 4289 atomic_inc(&event->rb->mmap_count);
1e0fb9ec
AL
4290
4291 if (event->pmu->event_mapped)
4292 event->pmu->event_mapped(event);
7b732a75
PZ
4293}
4294
9bb5d40c
PZ
4295/*
4296 * A buffer can be mmap()ed multiple times; either directly through the same
4297 * event, or through other events by use of perf_event_set_output().
4298 *
4299 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4300 * the buffer here, where we still have a VM context. This means we need
4301 * to detach all events redirecting to us.
4302 */
7b732a75
PZ
4303static void perf_mmap_close(struct vm_area_struct *vma)
4304{
cdd6c482 4305 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4306
b69cf536 4307 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4308 struct user_struct *mmap_user = rb->mmap_user;
4309 int mmap_locked = rb->mmap_locked;
4310 unsigned long size = perf_data_size(rb);
789f90fc 4311
1e0fb9ec
AL
4312 if (event->pmu->event_unmapped)
4313 event->pmu->event_unmapped(event);
4314
9bb5d40c
PZ
4315 atomic_dec(&rb->mmap_count);
4316
4317 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4318 goto out_put;
9bb5d40c 4319
b69cf536 4320 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4321 mutex_unlock(&event->mmap_mutex);
4322
4323 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4324 if (atomic_read(&rb->mmap_count))
4325 goto out_put;
ac9721f3 4326
9bb5d40c
PZ
4327 /*
4328 * No other mmap()s, detach from all other events that might redirect
4329 * into the now unreachable buffer. Somewhat complicated by the
4330 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4331 */
4332again:
4333 rcu_read_lock();
4334 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4335 if (!atomic_long_inc_not_zero(&event->refcount)) {
4336 /*
4337 * This event is en-route to free_event() which will
4338 * detach it and remove it from the list.
4339 */
4340 continue;
4341 }
4342 rcu_read_unlock();
789f90fc 4343
9bb5d40c
PZ
4344 mutex_lock(&event->mmap_mutex);
4345 /*
4346 * Check we didn't race with perf_event_set_output() which can
4347 * swizzle the rb from under us while we were waiting to
4348 * acquire mmap_mutex.
4349 *
4350 * If we find a different rb; ignore this event, a next
4351 * iteration will no longer find it on the list. We have to
4352 * still restart the iteration to make sure we're not now
4353 * iterating the wrong list.
4354 */
b69cf536
PZ
4355 if (event->rb == rb)
4356 ring_buffer_attach(event, NULL);
4357
cdd6c482 4358 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4359 put_event(event);
ac9721f3 4360
9bb5d40c
PZ
4361 /*
4362 * Restart the iteration; either we're on the wrong list or
4363 * destroyed its integrity by doing a deletion.
4364 */
4365 goto again;
7b732a75 4366 }
9bb5d40c
PZ
4367 rcu_read_unlock();
4368
4369 /*
4370 * It could be there's still a few 0-ref events on the list; they'll
4371 * get cleaned up by free_event() -- they'll also still have their
4372 * ref on the rb and will free it whenever they are done with it.
4373 *
4374 * Aside from that, this buffer is 'fully' detached and unmapped,
4375 * undo the VM accounting.
4376 */
4377
4378 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4379 vma->vm_mm->pinned_vm -= mmap_locked;
4380 free_uid(mmap_user);
4381
b69cf536 4382out_put:
9bb5d40c 4383 ring_buffer_put(rb); /* could be last */
37d81828
PM
4384}
4385
f0f37e2f 4386static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
4387 .open = perf_mmap_open,
4388 .close = perf_mmap_close,
4389 .fault = perf_mmap_fault,
4390 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4391};
4392
4393static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4394{
cdd6c482 4395 struct perf_event *event = file->private_data;
22a4f650 4396 unsigned long user_locked, user_lock_limit;
789f90fc 4397 struct user_struct *user = current_user();
22a4f650 4398 unsigned long locked, lock_limit;
76369139 4399 struct ring_buffer *rb;
7b732a75
PZ
4400 unsigned long vma_size;
4401 unsigned long nr_pages;
789f90fc 4402 long user_extra, extra;
d57e34fd 4403 int ret = 0, flags = 0;
37d81828 4404
c7920614
PZ
4405 /*
4406 * Don't allow mmap() of inherited per-task counters. This would
4407 * create a performance issue due to all children writing to the
76369139 4408 * same rb.
c7920614
PZ
4409 */
4410 if (event->cpu == -1 && event->attr.inherit)
4411 return -EINVAL;
4412
43a21ea8 4413 if (!(vma->vm_flags & VM_SHARED))
37d81828 4414 return -EINVAL;
7b732a75
PZ
4415
4416 vma_size = vma->vm_end - vma->vm_start;
4417 nr_pages = (vma_size / PAGE_SIZE) - 1;
4418
7730d865 4419 /*
76369139 4420 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4421 * can do bitmasks instead of modulo.
4422 */
74390aa5 4423 if (!is_power_of_2(nr_pages))
37d81828
PM
4424 return -EINVAL;
4425
7b732a75 4426 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4427 return -EINVAL;
4428
7b732a75
PZ
4429 if (vma->vm_pgoff != 0)
4430 return -EINVAL;
37d81828 4431
cdd6c482 4432 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4433again:
cdd6c482 4434 mutex_lock(&event->mmap_mutex);
76369139 4435 if (event->rb) {
9bb5d40c 4436 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4437 ret = -EINVAL;
9bb5d40c
PZ
4438 goto unlock;
4439 }
4440
4441 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4442 /*
4443 * Raced against perf_mmap_close() through
4444 * perf_event_set_output(). Try again, hope for better
4445 * luck.
4446 */
4447 mutex_unlock(&event->mmap_mutex);
4448 goto again;
4449 }
4450
ebb3c4c4
PZ
4451 goto unlock;
4452 }
4453
789f90fc 4454 user_extra = nr_pages + 1;
cdd6c482 4455 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4456
4457 /*
4458 * Increase the limit linearly with more CPUs:
4459 */
4460 user_lock_limit *= num_online_cpus();
4461
789f90fc 4462 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4463
789f90fc
PZ
4464 extra = 0;
4465 if (user_locked > user_lock_limit)
4466 extra = user_locked - user_lock_limit;
7b732a75 4467
78d7d407 4468 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4469 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4470 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4471
459ec28a
IM
4472 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4473 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4474 ret = -EPERM;
4475 goto unlock;
4476 }
7b732a75 4477
76369139 4478 WARN_ON(event->rb);
906010b2 4479
d57e34fd 4480 if (vma->vm_flags & VM_WRITE)
76369139 4481 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4482
4ec8363d
VW
4483 rb = rb_alloc(nr_pages,
4484 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4485 event->cpu, flags);
4486
76369139 4487 if (!rb) {
ac9721f3 4488 ret = -ENOMEM;
ebb3c4c4 4489 goto unlock;
ac9721f3 4490 }
26cb63ad 4491
9bb5d40c 4492 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4493 rb->mmap_locked = extra;
4494 rb->mmap_user = get_current_user();
43a21ea8 4495
ac9721f3 4496 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4497 vma->vm_mm->pinned_vm += extra;
4498
9bb5d40c 4499 ring_buffer_attach(event, rb);
ac9721f3 4500
fa731587 4501 perf_event_init_userpage(event);
9a0f05cb
PZ
4502 perf_event_update_userpage(event);
4503
ebb3c4c4 4504unlock:
ac9721f3
PZ
4505 if (!ret)
4506 atomic_inc(&event->mmap_count);
cdd6c482 4507 mutex_unlock(&event->mmap_mutex);
37d81828 4508
9bb5d40c
PZ
4509 /*
4510 * Since pinned accounting is per vm we cannot allow fork() to copy our
4511 * vma.
4512 */
26cb63ad 4513 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4514 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4515
1e0fb9ec
AL
4516 if (event->pmu->event_mapped)
4517 event->pmu->event_mapped(event);
4518
7b732a75 4519 return ret;
37d81828
PM
4520}
4521
3c446b3d
PZ
4522static int perf_fasync(int fd, struct file *filp, int on)
4523{
496ad9aa 4524 struct inode *inode = file_inode(filp);
cdd6c482 4525 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4526 int retval;
4527
4528 mutex_lock(&inode->i_mutex);
cdd6c482 4529 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4530 mutex_unlock(&inode->i_mutex);
4531
4532 if (retval < 0)
4533 return retval;
4534
4535 return 0;
4536}
4537
0793a61d 4538static const struct file_operations perf_fops = {
3326c1ce 4539 .llseek = no_llseek,
0793a61d
TG
4540 .release = perf_release,
4541 .read = perf_read,
4542 .poll = perf_poll,
d859e29f 4543 .unlocked_ioctl = perf_ioctl,
b3f20785 4544 .compat_ioctl = perf_compat_ioctl,
37d81828 4545 .mmap = perf_mmap,
3c446b3d 4546 .fasync = perf_fasync,
0793a61d
TG
4547};
4548
925d519a 4549/*
cdd6c482 4550 * Perf event wakeup
925d519a
PZ
4551 *
4552 * If there's data, ensure we set the poll() state and publish everything
4553 * to user-space before waking everybody up.
4554 */
4555
cdd6c482 4556void perf_event_wakeup(struct perf_event *event)
925d519a 4557{
10c6db11 4558 ring_buffer_wakeup(event);
4c9e2542 4559
cdd6c482
IM
4560 if (event->pending_kill) {
4561 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4562 event->pending_kill = 0;
4c9e2542 4563 }
925d519a
PZ
4564}
4565
e360adbe 4566static void perf_pending_event(struct irq_work *entry)
79f14641 4567{
cdd6c482
IM
4568 struct perf_event *event = container_of(entry,
4569 struct perf_event, pending);
79f14641 4570
cdd6c482
IM
4571 if (event->pending_disable) {
4572 event->pending_disable = 0;
4573 __perf_event_disable(event);
79f14641
PZ
4574 }
4575
cdd6c482
IM
4576 if (event->pending_wakeup) {
4577 event->pending_wakeup = 0;
4578 perf_event_wakeup(event);
79f14641
PZ
4579 }
4580}
4581
39447b38
ZY
4582/*
4583 * We assume there is only KVM supporting the callbacks.
4584 * Later on, we might change it to a list if there is
4585 * another virtualization implementation supporting the callbacks.
4586 */
4587struct perf_guest_info_callbacks *perf_guest_cbs;
4588
4589int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4590{
4591 perf_guest_cbs = cbs;
4592 return 0;
4593}
4594EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4595
4596int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4597{
4598 perf_guest_cbs = NULL;
4599 return 0;
4600}
4601EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4602
4018994f
JO
4603static void
4604perf_output_sample_regs(struct perf_output_handle *handle,
4605 struct pt_regs *regs, u64 mask)
4606{
4607 int bit;
4608
4609 for_each_set_bit(bit, (const unsigned long *) &mask,
4610 sizeof(mask) * BITS_PER_BYTE) {
4611 u64 val;
4612
4613 val = perf_reg_value(regs, bit);
4614 perf_output_put(handle, val);
4615 }
4616}
4617
60e2364e 4618static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4619 struct pt_regs *regs,
4620 struct pt_regs *regs_user_copy)
4018994f 4621{
88a7c26a
AL
4622 if (user_mode(regs)) {
4623 regs_user->abi = perf_reg_abi(current);
2565711f 4624 regs_user->regs = regs;
88a7c26a
AL
4625 } else if (current->mm) {
4626 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4627 } else {
4628 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4629 regs_user->regs = NULL;
4018994f
JO
4630 }
4631}
4632
60e2364e
SE
4633static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4634 struct pt_regs *regs)
4635{
4636 regs_intr->regs = regs;
4637 regs_intr->abi = perf_reg_abi(current);
4638}
4639
4640
c5ebcedb
JO
4641/*
4642 * Get remaining task size from user stack pointer.
4643 *
4644 * It'd be better to take stack vma map and limit this more
4645 * precisly, but there's no way to get it safely under interrupt,
4646 * so using TASK_SIZE as limit.
4647 */
4648static u64 perf_ustack_task_size(struct pt_regs *regs)
4649{
4650 unsigned long addr = perf_user_stack_pointer(regs);
4651
4652 if (!addr || addr >= TASK_SIZE)
4653 return 0;
4654
4655 return TASK_SIZE - addr;
4656}
4657
4658static u16
4659perf_sample_ustack_size(u16 stack_size, u16 header_size,
4660 struct pt_regs *regs)
4661{
4662 u64 task_size;
4663
4664 /* No regs, no stack pointer, no dump. */
4665 if (!regs)
4666 return 0;
4667
4668 /*
4669 * Check if we fit in with the requested stack size into the:
4670 * - TASK_SIZE
4671 * If we don't, we limit the size to the TASK_SIZE.
4672 *
4673 * - remaining sample size
4674 * If we don't, we customize the stack size to
4675 * fit in to the remaining sample size.
4676 */
4677
4678 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4679 stack_size = min(stack_size, (u16) task_size);
4680
4681 /* Current header size plus static size and dynamic size. */
4682 header_size += 2 * sizeof(u64);
4683
4684 /* Do we fit in with the current stack dump size? */
4685 if ((u16) (header_size + stack_size) < header_size) {
4686 /*
4687 * If we overflow the maximum size for the sample,
4688 * we customize the stack dump size to fit in.
4689 */
4690 stack_size = USHRT_MAX - header_size - sizeof(u64);
4691 stack_size = round_up(stack_size, sizeof(u64));
4692 }
4693
4694 return stack_size;
4695}
4696
4697static void
4698perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4699 struct pt_regs *regs)
4700{
4701 /* Case of a kernel thread, nothing to dump */
4702 if (!regs) {
4703 u64 size = 0;
4704 perf_output_put(handle, size);
4705 } else {
4706 unsigned long sp;
4707 unsigned int rem;
4708 u64 dyn_size;
4709
4710 /*
4711 * We dump:
4712 * static size
4713 * - the size requested by user or the best one we can fit
4714 * in to the sample max size
4715 * data
4716 * - user stack dump data
4717 * dynamic size
4718 * - the actual dumped size
4719 */
4720
4721 /* Static size. */
4722 perf_output_put(handle, dump_size);
4723
4724 /* Data. */
4725 sp = perf_user_stack_pointer(regs);
4726 rem = __output_copy_user(handle, (void *) sp, dump_size);
4727 dyn_size = dump_size - rem;
4728
4729 perf_output_skip(handle, rem);
4730
4731 /* Dynamic size. */
4732 perf_output_put(handle, dyn_size);
4733 }
4734}
4735
c980d109
ACM
4736static void __perf_event_header__init_id(struct perf_event_header *header,
4737 struct perf_sample_data *data,
4738 struct perf_event *event)
6844c09d
ACM
4739{
4740 u64 sample_type = event->attr.sample_type;
4741
4742 data->type = sample_type;
4743 header->size += event->id_header_size;
4744
4745 if (sample_type & PERF_SAMPLE_TID) {
4746 /* namespace issues */
4747 data->tid_entry.pid = perf_event_pid(event, current);
4748 data->tid_entry.tid = perf_event_tid(event, current);
4749 }
4750
4751 if (sample_type & PERF_SAMPLE_TIME)
4752 data->time = perf_clock();
4753
ff3d527c 4754 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4755 data->id = primary_event_id(event);
4756
4757 if (sample_type & PERF_SAMPLE_STREAM_ID)
4758 data->stream_id = event->id;
4759
4760 if (sample_type & PERF_SAMPLE_CPU) {
4761 data->cpu_entry.cpu = raw_smp_processor_id();
4762 data->cpu_entry.reserved = 0;
4763 }
4764}
4765
76369139
FW
4766void perf_event_header__init_id(struct perf_event_header *header,
4767 struct perf_sample_data *data,
4768 struct perf_event *event)
c980d109
ACM
4769{
4770 if (event->attr.sample_id_all)
4771 __perf_event_header__init_id(header, data, event);
4772}
4773
4774static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4775 struct perf_sample_data *data)
4776{
4777 u64 sample_type = data->type;
4778
4779 if (sample_type & PERF_SAMPLE_TID)
4780 perf_output_put(handle, data->tid_entry);
4781
4782 if (sample_type & PERF_SAMPLE_TIME)
4783 perf_output_put(handle, data->time);
4784
4785 if (sample_type & PERF_SAMPLE_ID)
4786 perf_output_put(handle, data->id);
4787
4788 if (sample_type & PERF_SAMPLE_STREAM_ID)
4789 perf_output_put(handle, data->stream_id);
4790
4791 if (sample_type & PERF_SAMPLE_CPU)
4792 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4793
4794 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4795 perf_output_put(handle, data->id);
c980d109
ACM
4796}
4797
76369139
FW
4798void perf_event__output_id_sample(struct perf_event *event,
4799 struct perf_output_handle *handle,
4800 struct perf_sample_data *sample)
c980d109
ACM
4801{
4802 if (event->attr.sample_id_all)
4803 __perf_event__output_id_sample(handle, sample);
4804}
4805
3dab77fb 4806static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4807 struct perf_event *event,
4808 u64 enabled, u64 running)
3dab77fb 4809{
cdd6c482 4810 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4811 u64 values[4];
4812 int n = 0;
4813
b5e58793 4814 values[n++] = perf_event_count(event);
3dab77fb 4815 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4816 values[n++] = enabled +
cdd6c482 4817 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4818 }
4819 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4820 values[n++] = running +
cdd6c482 4821 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4822 }
4823 if (read_format & PERF_FORMAT_ID)
cdd6c482 4824 values[n++] = primary_event_id(event);
3dab77fb 4825
76369139 4826 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4827}
4828
4829/*
cdd6c482 4830 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4831 */
4832static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4833 struct perf_event *event,
4834 u64 enabled, u64 running)
3dab77fb 4835{
cdd6c482
IM
4836 struct perf_event *leader = event->group_leader, *sub;
4837 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4838 u64 values[5];
4839 int n = 0;
4840
4841 values[n++] = 1 + leader->nr_siblings;
4842
4843 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4844 values[n++] = enabled;
3dab77fb
PZ
4845
4846 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4847 values[n++] = running;
3dab77fb 4848
cdd6c482 4849 if (leader != event)
3dab77fb
PZ
4850 leader->pmu->read(leader);
4851
b5e58793 4852 values[n++] = perf_event_count(leader);
3dab77fb 4853 if (read_format & PERF_FORMAT_ID)
cdd6c482 4854 values[n++] = primary_event_id(leader);
3dab77fb 4855
76369139 4856 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4857
65abc865 4858 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4859 n = 0;
4860
6f5ab001
JO
4861 if ((sub != event) &&
4862 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4863 sub->pmu->read(sub);
4864
b5e58793 4865 values[n++] = perf_event_count(sub);
3dab77fb 4866 if (read_format & PERF_FORMAT_ID)
cdd6c482 4867 values[n++] = primary_event_id(sub);
3dab77fb 4868
76369139 4869 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4870 }
4871}
4872
eed01528
SE
4873#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4874 PERF_FORMAT_TOTAL_TIME_RUNNING)
4875
3dab77fb 4876static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4877 struct perf_event *event)
3dab77fb 4878{
e3f3541c 4879 u64 enabled = 0, running = 0, now;
eed01528
SE
4880 u64 read_format = event->attr.read_format;
4881
4882 /*
4883 * compute total_time_enabled, total_time_running
4884 * based on snapshot values taken when the event
4885 * was last scheduled in.
4886 *
4887 * we cannot simply called update_context_time()
4888 * because of locking issue as we are called in
4889 * NMI context
4890 */
c4794295 4891 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4892 calc_timer_values(event, &now, &enabled, &running);
eed01528 4893
cdd6c482 4894 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4895 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4896 else
eed01528 4897 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4898}
4899
5622f295
MM
4900void perf_output_sample(struct perf_output_handle *handle,
4901 struct perf_event_header *header,
4902 struct perf_sample_data *data,
cdd6c482 4903 struct perf_event *event)
5622f295
MM
4904{
4905 u64 sample_type = data->type;
4906
4907 perf_output_put(handle, *header);
4908
ff3d527c
AH
4909 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4910 perf_output_put(handle, data->id);
4911
5622f295
MM
4912 if (sample_type & PERF_SAMPLE_IP)
4913 perf_output_put(handle, data->ip);
4914
4915 if (sample_type & PERF_SAMPLE_TID)
4916 perf_output_put(handle, data->tid_entry);
4917
4918 if (sample_type & PERF_SAMPLE_TIME)
4919 perf_output_put(handle, data->time);
4920
4921 if (sample_type & PERF_SAMPLE_ADDR)
4922 perf_output_put(handle, data->addr);
4923
4924 if (sample_type & PERF_SAMPLE_ID)
4925 perf_output_put(handle, data->id);
4926
4927 if (sample_type & PERF_SAMPLE_STREAM_ID)
4928 perf_output_put(handle, data->stream_id);
4929
4930 if (sample_type & PERF_SAMPLE_CPU)
4931 perf_output_put(handle, data->cpu_entry);
4932
4933 if (sample_type & PERF_SAMPLE_PERIOD)
4934 perf_output_put(handle, data->period);
4935
4936 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4937 perf_output_read(handle, event);
5622f295
MM
4938
4939 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4940 if (data->callchain) {
4941 int size = 1;
4942
4943 if (data->callchain)
4944 size += data->callchain->nr;
4945
4946 size *= sizeof(u64);
4947
76369139 4948 __output_copy(handle, data->callchain, size);
5622f295
MM
4949 } else {
4950 u64 nr = 0;
4951 perf_output_put(handle, nr);
4952 }
4953 }
4954
4955 if (sample_type & PERF_SAMPLE_RAW) {
4956 if (data->raw) {
4957 perf_output_put(handle, data->raw->size);
76369139
FW
4958 __output_copy(handle, data->raw->data,
4959 data->raw->size);
5622f295
MM
4960 } else {
4961 struct {
4962 u32 size;
4963 u32 data;
4964 } raw = {
4965 .size = sizeof(u32),
4966 .data = 0,
4967 };
4968 perf_output_put(handle, raw);
4969 }
4970 }
a7ac67ea 4971
bce38cd5
SE
4972 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4973 if (data->br_stack) {
4974 size_t size;
4975
4976 size = data->br_stack->nr
4977 * sizeof(struct perf_branch_entry);
4978
4979 perf_output_put(handle, data->br_stack->nr);
4980 perf_output_copy(handle, data->br_stack->entries, size);
4981 } else {
4982 /*
4983 * we always store at least the value of nr
4984 */
4985 u64 nr = 0;
4986 perf_output_put(handle, nr);
4987 }
4988 }
4018994f
JO
4989
4990 if (sample_type & PERF_SAMPLE_REGS_USER) {
4991 u64 abi = data->regs_user.abi;
4992
4993 /*
4994 * If there are no regs to dump, notice it through
4995 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4996 */
4997 perf_output_put(handle, abi);
4998
4999 if (abi) {
5000 u64 mask = event->attr.sample_regs_user;
5001 perf_output_sample_regs(handle,
5002 data->regs_user.regs,
5003 mask);
5004 }
5005 }
c5ebcedb 5006
a5cdd40c 5007 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5008 perf_output_sample_ustack(handle,
5009 data->stack_user_size,
5010 data->regs_user.regs);
a5cdd40c 5011 }
c3feedf2
AK
5012
5013 if (sample_type & PERF_SAMPLE_WEIGHT)
5014 perf_output_put(handle, data->weight);
d6be9ad6
SE
5015
5016 if (sample_type & PERF_SAMPLE_DATA_SRC)
5017 perf_output_put(handle, data->data_src.val);
a5cdd40c 5018
fdfbbd07
AK
5019 if (sample_type & PERF_SAMPLE_TRANSACTION)
5020 perf_output_put(handle, data->txn);
5021
60e2364e
SE
5022 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5023 u64 abi = data->regs_intr.abi;
5024 /*
5025 * If there are no regs to dump, notice it through
5026 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5027 */
5028 perf_output_put(handle, abi);
5029
5030 if (abi) {
5031 u64 mask = event->attr.sample_regs_intr;
5032
5033 perf_output_sample_regs(handle,
5034 data->regs_intr.regs,
5035 mask);
5036 }
5037 }
5038
a5cdd40c
PZ
5039 if (!event->attr.watermark) {
5040 int wakeup_events = event->attr.wakeup_events;
5041
5042 if (wakeup_events) {
5043 struct ring_buffer *rb = handle->rb;
5044 int events = local_inc_return(&rb->events);
5045
5046 if (events >= wakeup_events) {
5047 local_sub(wakeup_events, &rb->events);
5048 local_inc(&rb->wakeup);
5049 }
5050 }
5051 }
5622f295
MM
5052}
5053
5054void perf_prepare_sample(struct perf_event_header *header,
5055 struct perf_sample_data *data,
cdd6c482 5056 struct perf_event *event,
5622f295 5057 struct pt_regs *regs)
7b732a75 5058{
cdd6c482 5059 u64 sample_type = event->attr.sample_type;
7b732a75 5060
cdd6c482 5061 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5062 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5063
5064 header->misc = 0;
5065 header->misc |= perf_misc_flags(regs);
6fab0192 5066
c980d109 5067 __perf_event_header__init_id(header, data, event);
6844c09d 5068
c320c7b7 5069 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5070 data->ip = perf_instruction_pointer(regs);
5071
b23f3325 5072 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5073 int size = 1;
394ee076 5074
e6dab5ff 5075 data->callchain = perf_callchain(event, regs);
5622f295
MM
5076
5077 if (data->callchain)
5078 size += data->callchain->nr;
5079
5080 header->size += size * sizeof(u64);
394ee076
PZ
5081 }
5082
3a43ce68 5083 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5084 int size = sizeof(u32);
5085
5086 if (data->raw)
5087 size += data->raw->size;
5088 else
5089 size += sizeof(u32);
5090
5091 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5092 header->size += size;
7f453c24 5093 }
bce38cd5
SE
5094
5095 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5096 int size = sizeof(u64); /* nr */
5097 if (data->br_stack) {
5098 size += data->br_stack->nr
5099 * sizeof(struct perf_branch_entry);
5100 }
5101 header->size += size;
5102 }
4018994f 5103
2565711f 5104 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5105 perf_sample_regs_user(&data->regs_user, regs,
5106 &data->regs_user_copy);
2565711f 5107
4018994f
JO
5108 if (sample_type & PERF_SAMPLE_REGS_USER) {
5109 /* regs dump ABI info */
5110 int size = sizeof(u64);
5111
4018994f
JO
5112 if (data->regs_user.regs) {
5113 u64 mask = event->attr.sample_regs_user;
5114 size += hweight64(mask) * sizeof(u64);
5115 }
5116
5117 header->size += size;
5118 }
c5ebcedb
JO
5119
5120 if (sample_type & PERF_SAMPLE_STACK_USER) {
5121 /*
5122 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5123 * processed as the last one or have additional check added
5124 * in case new sample type is added, because we could eat
5125 * up the rest of the sample size.
5126 */
c5ebcedb
JO
5127 u16 stack_size = event->attr.sample_stack_user;
5128 u16 size = sizeof(u64);
5129
c5ebcedb 5130 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5131 data->regs_user.regs);
c5ebcedb
JO
5132
5133 /*
5134 * If there is something to dump, add space for the dump
5135 * itself and for the field that tells the dynamic size,
5136 * which is how many have been actually dumped.
5137 */
5138 if (stack_size)
5139 size += sizeof(u64) + stack_size;
5140
5141 data->stack_user_size = stack_size;
5142 header->size += size;
5143 }
60e2364e
SE
5144
5145 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5146 /* regs dump ABI info */
5147 int size = sizeof(u64);
5148
5149 perf_sample_regs_intr(&data->regs_intr, regs);
5150
5151 if (data->regs_intr.regs) {
5152 u64 mask = event->attr.sample_regs_intr;
5153
5154 size += hweight64(mask) * sizeof(u64);
5155 }
5156
5157 header->size += size;
5158 }
5622f295 5159}
7f453c24 5160
a8b0ca17 5161static void perf_event_output(struct perf_event *event,
5622f295
MM
5162 struct perf_sample_data *data,
5163 struct pt_regs *regs)
5164{
5165 struct perf_output_handle handle;
5166 struct perf_event_header header;
689802b2 5167
927c7a9e
FW
5168 /* protect the callchain buffers */
5169 rcu_read_lock();
5170
cdd6c482 5171 perf_prepare_sample(&header, data, event, regs);
5c148194 5172
a7ac67ea 5173 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5174 goto exit;
0322cd6e 5175
cdd6c482 5176 perf_output_sample(&handle, &header, data, event);
f413cdb8 5177
8a057d84 5178 perf_output_end(&handle);
927c7a9e
FW
5179
5180exit:
5181 rcu_read_unlock();
0322cd6e
PZ
5182}
5183
38b200d6 5184/*
cdd6c482 5185 * read event_id
38b200d6
PZ
5186 */
5187
5188struct perf_read_event {
5189 struct perf_event_header header;
5190
5191 u32 pid;
5192 u32 tid;
38b200d6
PZ
5193};
5194
5195static void
cdd6c482 5196perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5197 struct task_struct *task)
5198{
5199 struct perf_output_handle handle;
c980d109 5200 struct perf_sample_data sample;
dfc65094 5201 struct perf_read_event read_event = {
38b200d6 5202 .header = {
cdd6c482 5203 .type = PERF_RECORD_READ,
38b200d6 5204 .misc = 0,
c320c7b7 5205 .size = sizeof(read_event) + event->read_size,
38b200d6 5206 },
cdd6c482
IM
5207 .pid = perf_event_pid(event, task),
5208 .tid = perf_event_tid(event, task),
38b200d6 5209 };
3dab77fb 5210 int ret;
38b200d6 5211
c980d109 5212 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5213 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5214 if (ret)
5215 return;
5216
dfc65094 5217 perf_output_put(&handle, read_event);
cdd6c482 5218 perf_output_read(&handle, event);
c980d109 5219 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5220
38b200d6
PZ
5221 perf_output_end(&handle);
5222}
5223
52d857a8
JO
5224typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5225
5226static void
5227perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5228 perf_event_aux_output_cb output,
5229 void *data)
5230{
5231 struct perf_event *event;
5232
5233 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5234 if (event->state < PERF_EVENT_STATE_INACTIVE)
5235 continue;
5236 if (!event_filter_match(event))
5237 continue;
67516844 5238 output(event, data);
52d857a8
JO
5239 }
5240}
5241
5242static void
67516844 5243perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5244 struct perf_event_context *task_ctx)
5245{
5246 struct perf_cpu_context *cpuctx;
5247 struct perf_event_context *ctx;
5248 struct pmu *pmu;
5249 int ctxn;
5250
5251 rcu_read_lock();
5252 list_for_each_entry_rcu(pmu, &pmus, entry) {
5253 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5254 if (cpuctx->unique_pmu != pmu)
5255 goto next;
67516844 5256 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5257 if (task_ctx)
5258 goto next;
5259 ctxn = pmu->task_ctx_nr;
5260 if (ctxn < 0)
5261 goto next;
5262 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5263 if (ctx)
67516844 5264 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5265next:
5266 put_cpu_ptr(pmu->pmu_cpu_context);
5267 }
5268
5269 if (task_ctx) {
5270 preempt_disable();
67516844 5271 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5272 preempt_enable();
5273 }
5274 rcu_read_unlock();
5275}
5276
60313ebe 5277/*
9f498cc5
PZ
5278 * task tracking -- fork/exit
5279 *
13d7a241 5280 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5281 */
5282
9f498cc5 5283struct perf_task_event {
3a80b4a3 5284 struct task_struct *task;
cdd6c482 5285 struct perf_event_context *task_ctx;
60313ebe
PZ
5286
5287 struct {
5288 struct perf_event_header header;
5289
5290 u32 pid;
5291 u32 ppid;
9f498cc5
PZ
5292 u32 tid;
5293 u32 ptid;
393b2ad8 5294 u64 time;
cdd6c482 5295 } event_id;
60313ebe
PZ
5296};
5297
67516844
JO
5298static int perf_event_task_match(struct perf_event *event)
5299{
13d7a241
SE
5300 return event->attr.comm || event->attr.mmap ||
5301 event->attr.mmap2 || event->attr.mmap_data ||
5302 event->attr.task;
67516844
JO
5303}
5304
cdd6c482 5305static void perf_event_task_output(struct perf_event *event,
52d857a8 5306 void *data)
60313ebe 5307{
52d857a8 5308 struct perf_task_event *task_event = data;
60313ebe 5309 struct perf_output_handle handle;
c980d109 5310 struct perf_sample_data sample;
9f498cc5 5311 struct task_struct *task = task_event->task;
c980d109 5312 int ret, size = task_event->event_id.header.size;
8bb39f9a 5313
67516844
JO
5314 if (!perf_event_task_match(event))
5315 return;
5316
c980d109 5317 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5318
c980d109 5319 ret = perf_output_begin(&handle, event,
a7ac67ea 5320 task_event->event_id.header.size);
ef60777c 5321 if (ret)
c980d109 5322 goto out;
60313ebe 5323
cdd6c482
IM
5324 task_event->event_id.pid = perf_event_pid(event, task);
5325 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5326
cdd6c482
IM
5327 task_event->event_id.tid = perf_event_tid(event, task);
5328 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5329
cdd6c482 5330 perf_output_put(&handle, task_event->event_id);
393b2ad8 5331
c980d109
ACM
5332 perf_event__output_id_sample(event, &handle, &sample);
5333
60313ebe 5334 perf_output_end(&handle);
c980d109
ACM
5335out:
5336 task_event->event_id.header.size = size;
60313ebe
PZ
5337}
5338
cdd6c482
IM
5339static void perf_event_task(struct task_struct *task,
5340 struct perf_event_context *task_ctx,
3a80b4a3 5341 int new)
60313ebe 5342{
9f498cc5 5343 struct perf_task_event task_event;
60313ebe 5344
cdd6c482
IM
5345 if (!atomic_read(&nr_comm_events) &&
5346 !atomic_read(&nr_mmap_events) &&
5347 !atomic_read(&nr_task_events))
60313ebe
PZ
5348 return;
5349
9f498cc5 5350 task_event = (struct perf_task_event){
3a80b4a3
PZ
5351 .task = task,
5352 .task_ctx = task_ctx,
cdd6c482 5353 .event_id = {
60313ebe 5354 .header = {
cdd6c482 5355 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5356 .misc = 0,
cdd6c482 5357 .size = sizeof(task_event.event_id),
60313ebe 5358 },
573402db
PZ
5359 /* .pid */
5360 /* .ppid */
9f498cc5
PZ
5361 /* .tid */
5362 /* .ptid */
6f93d0a7 5363 .time = perf_clock(),
60313ebe
PZ
5364 },
5365 };
5366
67516844 5367 perf_event_aux(perf_event_task_output,
52d857a8
JO
5368 &task_event,
5369 task_ctx);
9f498cc5
PZ
5370}
5371
cdd6c482 5372void perf_event_fork(struct task_struct *task)
9f498cc5 5373{
cdd6c482 5374 perf_event_task(task, NULL, 1);
60313ebe
PZ
5375}
5376
8d1b2d93
PZ
5377/*
5378 * comm tracking
5379 */
5380
5381struct perf_comm_event {
22a4f650
IM
5382 struct task_struct *task;
5383 char *comm;
8d1b2d93
PZ
5384 int comm_size;
5385
5386 struct {
5387 struct perf_event_header header;
5388
5389 u32 pid;
5390 u32 tid;
cdd6c482 5391 } event_id;
8d1b2d93
PZ
5392};
5393
67516844
JO
5394static int perf_event_comm_match(struct perf_event *event)
5395{
5396 return event->attr.comm;
5397}
5398
cdd6c482 5399static void perf_event_comm_output(struct perf_event *event,
52d857a8 5400 void *data)
8d1b2d93 5401{
52d857a8 5402 struct perf_comm_event *comm_event = data;
8d1b2d93 5403 struct perf_output_handle handle;
c980d109 5404 struct perf_sample_data sample;
cdd6c482 5405 int size = comm_event->event_id.header.size;
c980d109
ACM
5406 int ret;
5407
67516844
JO
5408 if (!perf_event_comm_match(event))
5409 return;
5410
c980d109
ACM
5411 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5412 ret = perf_output_begin(&handle, event,
a7ac67ea 5413 comm_event->event_id.header.size);
8d1b2d93
PZ
5414
5415 if (ret)
c980d109 5416 goto out;
8d1b2d93 5417
cdd6c482
IM
5418 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5419 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5420
cdd6c482 5421 perf_output_put(&handle, comm_event->event_id);
76369139 5422 __output_copy(&handle, comm_event->comm,
8d1b2d93 5423 comm_event->comm_size);
c980d109
ACM
5424
5425 perf_event__output_id_sample(event, &handle, &sample);
5426
8d1b2d93 5427 perf_output_end(&handle);
c980d109
ACM
5428out:
5429 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5430}
5431
cdd6c482 5432static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5433{
413ee3b4 5434 char comm[TASK_COMM_LEN];
8d1b2d93 5435 unsigned int size;
8d1b2d93 5436
413ee3b4 5437 memset(comm, 0, sizeof(comm));
96b02d78 5438 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5439 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5440
5441 comm_event->comm = comm;
5442 comm_event->comm_size = size;
5443
cdd6c482 5444 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5445
67516844 5446 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5447 comm_event,
5448 NULL);
8d1b2d93
PZ
5449}
5450
82b89778 5451void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5452{
9ee318a7
PZ
5453 struct perf_comm_event comm_event;
5454
cdd6c482 5455 if (!atomic_read(&nr_comm_events))
9ee318a7 5456 return;
a63eaf34 5457
9ee318a7 5458 comm_event = (struct perf_comm_event){
8d1b2d93 5459 .task = task,
573402db
PZ
5460 /* .comm */
5461 /* .comm_size */
cdd6c482 5462 .event_id = {
573402db 5463 .header = {
cdd6c482 5464 .type = PERF_RECORD_COMM,
82b89778 5465 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5466 /* .size */
5467 },
5468 /* .pid */
5469 /* .tid */
8d1b2d93
PZ
5470 },
5471 };
5472
cdd6c482 5473 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5474}
5475
0a4a9391
PZ
5476/*
5477 * mmap tracking
5478 */
5479
5480struct perf_mmap_event {
089dd79d
PZ
5481 struct vm_area_struct *vma;
5482
5483 const char *file_name;
5484 int file_size;
13d7a241
SE
5485 int maj, min;
5486 u64 ino;
5487 u64 ino_generation;
f972eb63 5488 u32 prot, flags;
0a4a9391
PZ
5489
5490 struct {
5491 struct perf_event_header header;
5492
5493 u32 pid;
5494 u32 tid;
5495 u64 start;
5496 u64 len;
5497 u64 pgoff;
cdd6c482 5498 } event_id;
0a4a9391
PZ
5499};
5500
67516844
JO
5501static int perf_event_mmap_match(struct perf_event *event,
5502 void *data)
5503{
5504 struct perf_mmap_event *mmap_event = data;
5505 struct vm_area_struct *vma = mmap_event->vma;
5506 int executable = vma->vm_flags & VM_EXEC;
5507
5508 return (!executable && event->attr.mmap_data) ||
13d7a241 5509 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5510}
5511
cdd6c482 5512static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5513 void *data)
0a4a9391 5514{
52d857a8 5515 struct perf_mmap_event *mmap_event = data;
0a4a9391 5516 struct perf_output_handle handle;
c980d109 5517 struct perf_sample_data sample;
cdd6c482 5518 int size = mmap_event->event_id.header.size;
c980d109 5519 int ret;
0a4a9391 5520
67516844
JO
5521 if (!perf_event_mmap_match(event, data))
5522 return;
5523
13d7a241
SE
5524 if (event->attr.mmap2) {
5525 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5526 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5527 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5528 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5529 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5530 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5531 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5532 }
5533
c980d109
ACM
5534 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5535 ret = perf_output_begin(&handle, event,
a7ac67ea 5536 mmap_event->event_id.header.size);
0a4a9391 5537 if (ret)
c980d109 5538 goto out;
0a4a9391 5539
cdd6c482
IM
5540 mmap_event->event_id.pid = perf_event_pid(event, current);
5541 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5542
cdd6c482 5543 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5544
5545 if (event->attr.mmap2) {
5546 perf_output_put(&handle, mmap_event->maj);
5547 perf_output_put(&handle, mmap_event->min);
5548 perf_output_put(&handle, mmap_event->ino);
5549 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5550 perf_output_put(&handle, mmap_event->prot);
5551 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5552 }
5553
76369139 5554 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5555 mmap_event->file_size);
c980d109
ACM
5556
5557 perf_event__output_id_sample(event, &handle, &sample);
5558
78d613eb 5559 perf_output_end(&handle);
c980d109
ACM
5560out:
5561 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5562}
5563
cdd6c482 5564static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5565{
089dd79d
PZ
5566 struct vm_area_struct *vma = mmap_event->vma;
5567 struct file *file = vma->vm_file;
13d7a241
SE
5568 int maj = 0, min = 0;
5569 u64 ino = 0, gen = 0;
f972eb63 5570 u32 prot = 0, flags = 0;
0a4a9391
PZ
5571 unsigned int size;
5572 char tmp[16];
5573 char *buf = NULL;
2c42cfbf 5574 char *name;
413ee3b4 5575
0a4a9391 5576 if (file) {
13d7a241
SE
5577 struct inode *inode;
5578 dev_t dev;
3ea2f2b9 5579
2c42cfbf 5580 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5581 if (!buf) {
c7e548b4
ON
5582 name = "//enomem";
5583 goto cpy_name;
0a4a9391 5584 }
413ee3b4 5585 /*
3ea2f2b9 5586 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5587 * need to add enough zero bytes after the string to handle
5588 * the 64bit alignment we do later.
5589 */
3ea2f2b9 5590 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5591 if (IS_ERR(name)) {
c7e548b4
ON
5592 name = "//toolong";
5593 goto cpy_name;
0a4a9391 5594 }
13d7a241
SE
5595 inode = file_inode(vma->vm_file);
5596 dev = inode->i_sb->s_dev;
5597 ino = inode->i_ino;
5598 gen = inode->i_generation;
5599 maj = MAJOR(dev);
5600 min = MINOR(dev);
f972eb63
PZ
5601
5602 if (vma->vm_flags & VM_READ)
5603 prot |= PROT_READ;
5604 if (vma->vm_flags & VM_WRITE)
5605 prot |= PROT_WRITE;
5606 if (vma->vm_flags & VM_EXEC)
5607 prot |= PROT_EXEC;
5608
5609 if (vma->vm_flags & VM_MAYSHARE)
5610 flags = MAP_SHARED;
5611 else
5612 flags = MAP_PRIVATE;
5613
5614 if (vma->vm_flags & VM_DENYWRITE)
5615 flags |= MAP_DENYWRITE;
5616 if (vma->vm_flags & VM_MAYEXEC)
5617 flags |= MAP_EXECUTABLE;
5618 if (vma->vm_flags & VM_LOCKED)
5619 flags |= MAP_LOCKED;
5620 if (vma->vm_flags & VM_HUGETLB)
5621 flags |= MAP_HUGETLB;
5622
c7e548b4 5623 goto got_name;
0a4a9391 5624 } else {
fbe26abe
JO
5625 if (vma->vm_ops && vma->vm_ops->name) {
5626 name = (char *) vma->vm_ops->name(vma);
5627 if (name)
5628 goto cpy_name;
5629 }
5630
2c42cfbf 5631 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5632 if (name)
5633 goto cpy_name;
089dd79d 5634
32c5fb7e 5635 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5636 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5637 name = "[heap]";
5638 goto cpy_name;
32c5fb7e
ON
5639 }
5640 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5641 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5642 name = "[stack]";
5643 goto cpy_name;
089dd79d
PZ
5644 }
5645
c7e548b4
ON
5646 name = "//anon";
5647 goto cpy_name;
0a4a9391
PZ
5648 }
5649
c7e548b4
ON
5650cpy_name:
5651 strlcpy(tmp, name, sizeof(tmp));
5652 name = tmp;
0a4a9391 5653got_name:
2c42cfbf
PZ
5654 /*
5655 * Since our buffer works in 8 byte units we need to align our string
5656 * size to a multiple of 8. However, we must guarantee the tail end is
5657 * zero'd out to avoid leaking random bits to userspace.
5658 */
5659 size = strlen(name)+1;
5660 while (!IS_ALIGNED(size, sizeof(u64)))
5661 name[size++] = '\0';
0a4a9391
PZ
5662
5663 mmap_event->file_name = name;
5664 mmap_event->file_size = size;
13d7a241
SE
5665 mmap_event->maj = maj;
5666 mmap_event->min = min;
5667 mmap_event->ino = ino;
5668 mmap_event->ino_generation = gen;
f972eb63
PZ
5669 mmap_event->prot = prot;
5670 mmap_event->flags = flags;
0a4a9391 5671
2fe85427
SE
5672 if (!(vma->vm_flags & VM_EXEC))
5673 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5674
cdd6c482 5675 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5676
67516844 5677 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5678 mmap_event,
5679 NULL);
665c2142 5680
0a4a9391
PZ
5681 kfree(buf);
5682}
5683
3af9e859 5684void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5685{
9ee318a7
PZ
5686 struct perf_mmap_event mmap_event;
5687
cdd6c482 5688 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5689 return;
5690
5691 mmap_event = (struct perf_mmap_event){
089dd79d 5692 .vma = vma,
573402db
PZ
5693 /* .file_name */
5694 /* .file_size */
cdd6c482 5695 .event_id = {
573402db 5696 .header = {
cdd6c482 5697 .type = PERF_RECORD_MMAP,
39447b38 5698 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5699 /* .size */
5700 },
5701 /* .pid */
5702 /* .tid */
089dd79d
PZ
5703 .start = vma->vm_start,
5704 .len = vma->vm_end - vma->vm_start,
3a0304e9 5705 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5706 },
13d7a241
SE
5707 /* .maj (attr_mmap2 only) */
5708 /* .min (attr_mmap2 only) */
5709 /* .ino (attr_mmap2 only) */
5710 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
5711 /* .prot (attr_mmap2 only) */
5712 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
5713 };
5714
cdd6c482 5715 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5716}
5717
a78ac325
PZ
5718/*
5719 * IRQ throttle logging
5720 */
5721
cdd6c482 5722static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5723{
5724 struct perf_output_handle handle;
c980d109 5725 struct perf_sample_data sample;
a78ac325
PZ
5726 int ret;
5727
5728 struct {
5729 struct perf_event_header header;
5730 u64 time;
cca3f454 5731 u64 id;
7f453c24 5732 u64 stream_id;
a78ac325
PZ
5733 } throttle_event = {
5734 .header = {
cdd6c482 5735 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5736 .misc = 0,
5737 .size = sizeof(throttle_event),
5738 },
def0a9b2 5739 .time = perf_clock(),
cdd6c482
IM
5740 .id = primary_event_id(event),
5741 .stream_id = event->id,
a78ac325
PZ
5742 };
5743
966ee4d6 5744 if (enable)
cdd6c482 5745 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5746
c980d109
ACM
5747 perf_event_header__init_id(&throttle_event.header, &sample, event);
5748
5749 ret = perf_output_begin(&handle, event,
a7ac67ea 5750 throttle_event.header.size);
a78ac325
PZ
5751 if (ret)
5752 return;
5753
5754 perf_output_put(&handle, throttle_event);
c980d109 5755 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5756 perf_output_end(&handle);
5757}
5758
f6c7d5fe 5759/*
cdd6c482 5760 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5761 */
5762
a8b0ca17 5763static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5764 int throttle, struct perf_sample_data *data,
5765 struct pt_regs *regs)
f6c7d5fe 5766{
cdd6c482
IM
5767 int events = atomic_read(&event->event_limit);
5768 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5769 u64 seq;
79f14641
PZ
5770 int ret = 0;
5771
96398826
PZ
5772 /*
5773 * Non-sampling counters might still use the PMI to fold short
5774 * hardware counters, ignore those.
5775 */
5776 if (unlikely(!is_sampling_event(event)))
5777 return 0;
5778
e050e3f0
SE
5779 seq = __this_cpu_read(perf_throttled_seq);
5780 if (seq != hwc->interrupts_seq) {
5781 hwc->interrupts_seq = seq;
5782 hwc->interrupts = 1;
5783 } else {
5784 hwc->interrupts++;
5785 if (unlikely(throttle
5786 && hwc->interrupts >= max_samples_per_tick)) {
5787 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5788 hwc->interrupts = MAX_INTERRUPTS;
5789 perf_log_throttle(event, 0);
d84153d6 5790 tick_nohz_full_kick();
a78ac325
PZ
5791 ret = 1;
5792 }
e050e3f0 5793 }
60db5e09 5794
cdd6c482 5795 if (event->attr.freq) {
def0a9b2 5796 u64 now = perf_clock();
abd50713 5797 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5798
abd50713 5799 hwc->freq_time_stamp = now;
bd2b5b12 5800
abd50713 5801 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5802 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5803 }
5804
2023b359
PZ
5805 /*
5806 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5807 * events
2023b359
PZ
5808 */
5809
cdd6c482
IM
5810 event->pending_kill = POLL_IN;
5811 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5812 ret = 1;
cdd6c482 5813 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5814 event->pending_disable = 1;
5815 irq_work_queue(&event->pending);
79f14641
PZ
5816 }
5817
453f19ee 5818 if (event->overflow_handler)
a8b0ca17 5819 event->overflow_handler(event, data, regs);
453f19ee 5820 else
a8b0ca17 5821 perf_event_output(event, data, regs);
453f19ee 5822
f506b3dc 5823 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5824 event->pending_wakeup = 1;
5825 irq_work_queue(&event->pending);
f506b3dc
PZ
5826 }
5827
79f14641 5828 return ret;
f6c7d5fe
PZ
5829}
5830
a8b0ca17 5831int perf_event_overflow(struct perf_event *event,
5622f295
MM
5832 struct perf_sample_data *data,
5833 struct pt_regs *regs)
850bc73f 5834{
a8b0ca17 5835 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5836}
5837
15dbf27c 5838/*
cdd6c482 5839 * Generic software event infrastructure
15dbf27c
PZ
5840 */
5841
b28ab83c
PZ
5842struct swevent_htable {
5843 struct swevent_hlist *swevent_hlist;
5844 struct mutex hlist_mutex;
5845 int hlist_refcount;
5846
5847 /* Recursion avoidance in each contexts */
5848 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
5849
5850 /* Keeps track of cpu being initialized/exited */
5851 bool online;
b28ab83c
PZ
5852};
5853
5854static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5855
7b4b6658 5856/*
cdd6c482
IM
5857 * We directly increment event->count and keep a second value in
5858 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5859 * is kept in the range [-sample_period, 0] so that we can use the
5860 * sign as trigger.
5861 */
5862
ab573844 5863u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5864{
cdd6c482 5865 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5866 u64 period = hwc->last_period;
5867 u64 nr, offset;
5868 s64 old, val;
5869
5870 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5871
5872again:
e7850595 5873 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5874 if (val < 0)
5875 return 0;
15dbf27c 5876
7b4b6658
PZ
5877 nr = div64_u64(period + val, period);
5878 offset = nr * period;
5879 val -= offset;
e7850595 5880 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5881 goto again;
15dbf27c 5882
7b4b6658 5883 return nr;
15dbf27c
PZ
5884}
5885
0cff784a 5886static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5887 struct perf_sample_data *data,
5622f295 5888 struct pt_regs *regs)
15dbf27c 5889{
cdd6c482 5890 struct hw_perf_event *hwc = &event->hw;
850bc73f 5891 int throttle = 0;
15dbf27c 5892
0cff784a
PZ
5893 if (!overflow)
5894 overflow = perf_swevent_set_period(event);
15dbf27c 5895
7b4b6658
PZ
5896 if (hwc->interrupts == MAX_INTERRUPTS)
5897 return;
15dbf27c 5898
7b4b6658 5899 for (; overflow; overflow--) {
a8b0ca17 5900 if (__perf_event_overflow(event, throttle,
5622f295 5901 data, regs)) {
7b4b6658
PZ
5902 /*
5903 * We inhibit the overflow from happening when
5904 * hwc->interrupts == MAX_INTERRUPTS.
5905 */
5906 break;
5907 }
cf450a73 5908 throttle = 1;
7b4b6658 5909 }
15dbf27c
PZ
5910}
5911
a4eaf7f1 5912static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5913 struct perf_sample_data *data,
5622f295 5914 struct pt_regs *regs)
7b4b6658 5915{
cdd6c482 5916 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5917
e7850595 5918 local64_add(nr, &event->count);
d6d020e9 5919
0cff784a
PZ
5920 if (!regs)
5921 return;
5922
6c7e550f 5923 if (!is_sampling_event(event))
7b4b6658 5924 return;
d6d020e9 5925
5d81e5cf
AV
5926 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5927 data->period = nr;
5928 return perf_swevent_overflow(event, 1, data, regs);
5929 } else
5930 data->period = event->hw.last_period;
5931
0cff784a 5932 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5933 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5934
e7850595 5935 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5936 return;
df1a132b 5937
a8b0ca17 5938 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5939}
5940
f5ffe02e
FW
5941static int perf_exclude_event(struct perf_event *event,
5942 struct pt_regs *regs)
5943{
a4eaf7f1 5944 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5945 return 1;
a4eaf7f1 5946
f5ffe02e
FW
5947 if (regs) {
5948 if (event->attr.exclude_user && user_mode(regs))
5949 return 1;
5950
5951 if (event->attr.exclude_kernel && !user_mode(regs))
5952 return 1;
5953 }
5954
5955 return 0;
5956}
5957
cdd6c482 5958static int perf_swevent_match(struct perf_event *event,
1c432d89 5959 enum perf_type_id type,
6fb2915d
LZ
5960 u32 event_id,
5961 struct perf_sample_data *data,
5962 struct pt_regs *regs)
15dbf27c 5963{
cdd6c482 5964 if (event->attr.type != type)
a21ca2ca 5965 return 0;
f5ffe02e 5966
cdd6c482 5967 if (event->attr.config != event_id)
15dbf27c
PZ
5968 return 0;
5969
f5ffe02e
FW
5970 if (perf_exclude_event(event, regs))
5971 return 0;
15dbf27c
PZ
5972
5973 return 1;
5974}
5975
76e1d904
FW
5976static inline u64 swevent_hash(u64 type, u32 event_id)
5977{
5978 u64 val = event_id | (type << 32);
5979
5980 return hash_64(val, SWEVENT_HLIST_BITS);
5981}
5982
49f135ed
FW
5983static inline struct hlist_head *
5984__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5985{
49f135ed
FW
5986 u64 hash = swevent_hash(type, event_id);
5987
5988 return &hlist->heads[hash];
5989}
76e1d904 5990
49f135ed
FW
5991/* For the read side: events when they trigger */
5992static inline struct hlist_head *
b28ab83c 5993find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5994{
5995 struct swevent_hlist *hlist;
76e1d904 5996
b28ab83c 5997 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5998 if (!hlist)
5999 return NULL;
6000
49f135ed
FW
6001 return __find_swevent_head(hlist, type, event_id);
6002}
6003
6004/* For the event head insertion and removal in the hlist */
6005static inline struct hlist_head *
b28ab83c 6006find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6007{
6008 struct swevent_hlist *hlist;
6009 u32 event_id = event->attr.config;
6010 u64 type = event->attr.type;
6011
6012 /*
6013 * Event scheduling is always serialized against hlist allocation
6014 * and release. Which makes the protected version suitable here.
6015 * The context lock guarantees that.
6016 */
b28ab83c 6017 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6018 lockdep_is_held(&event->ctx->lock));
6019 if (!hlist)
6020 return NULL;
6021
6022 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6023}
6024
6025static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6026 u64 nr,
76e1d904
FW
6027 struct perf_sample_data *data,
6028 struct pt_regs *regs)
15dbf27c 6029{
4a32fea9 6030 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6031 struct perf_event *event;
76e1d904 6032 struct hlist_head *head;
15dbf27c 6033
76e1d904 6034 rcu_read_lock();
b28ab83c 6035 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6036 if (!head)
6037 goto end;
6038
b67bfe0d 6039 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6040 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6041 perf_swevent_event(event, nr, data, regs);
15dbf27c 6042 }
76e1d904
FW
6043end:
6044 rcu_read_unlock();
15dbf27c
PZ
6045}
6046
86038c5e
PZI
6047DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6048
4ed7c92d 6049int perf_swevent_get_recursion_context(void)
96f6d444 6050{
4a32fea9 6051 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6052
b28ab83c 6053 return get_recursion_context(swhash->recursion);
96f6d444 6054}
645e8cc0 6055EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6056
fa9f90be 6057inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6058{
4a32fea9 6059 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6060
b28ab83c 6061 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6062}
15dbf27c 6063
86038c5e 6064void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6065{
a4234bfc 6066 struct perf_sample_data data;
4ed7c92d 6067
86038c5e 6068 if (WARN_ON_ONCE(!regs))
4ed7c92d 6069 return;
a4234bfc 6070
fd0d000b 6071 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6072 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6073}
6074
6075void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6076{
6077 int rctx;
6078
6079 preempt_disable_notrace();
6080 rctx = perf_swevent_get_recursion_context();
6081 if (unlikely(rctx < 0))
6082 goto fail;
6083
6084 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6085
6086 perf_swevent_put_recursion_context(rctx);
86038c5e 6087fail:
1c024eca 6088 preempt_enable_notrace();
b8e83514
PZ
6089}
6090
cdd6c482 6091static void perf_swevent_read(struct perf_event *event)
15dbf27c 6092{
15dbf27c
PZ
6093}
6094
a4eaf7f1 6095static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6096{
4a32fea9 6097 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6098 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6099 struct hlist_head *head;
6100
6c7e550f 6101 if (is_sampling_event(event)) {
7b4b6658 6102 hwc->last_period = hwc->sample_period;
cdd6c482 6103 perf_swevent_set_period(event);
7b4b6658 6104 }
76e1d904 6105
a4eaf7f1
PZ
6106 hwc->state = !(flags & PERF_EF_START);
6107
b28ab83c 6108 head = find_swevent_head(swhash, event);
39af6b16
JO
6109 if (!head) {
6110 /*
6111 * We can race with cpu hotplug code. Do not
6112 * WARN if the cpu just got unplugged.
6113 */
6114 WARN_ON_ONCE(swhash->online);
76e1d904 6115 return -EINVAL;
39af6b16 6116 }
76e1d904
FW
6117
6118 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6119 perf_event_update_userpage(event);
76e1d904 6120
15dbf27c
PZ
6121 return 0;
6122}
6123
a4eaf7f1 6124static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6125{
76e1d904 6126 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6127}
6128
a4eaf7f1 6129static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6130{
a4eaf7f1 6131 event->hw.state = 0;
d6d020e9 6132}
aa9c4c0f 6133
a4eaf7f1 6134static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6135{
a4eaf7f1 6136 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6137}
6138
49f135ed
FW
6139/* Deref the hlist from the update side */
6140static inline struct swevent_hlist *
b28ab83c 6141swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6142{
b28ab83c
PZ
6143 return rcu_dereference_protected(swhash->swevent_hlist,
6144 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6145}
6146
b28ab83c 6147static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6148{
b28ab83c 6149 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6150
49f135ed 6151 if (!hlist)
76e1d904
FW
6152 return;
6153
70691d4a 6154 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6155 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6156}
6157
6158static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6159{
b28ab83c 6160 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6161
b28ab83c 6162 mutex_lock(&swhash->hlist_mutex);
76e1d904 6163
b28ab83c
PZ
6164 if (!--swhash->hlist_refcount)
6165 swevent_hlist_release(swhash);
76e1d904 6166
b28ab83c 6167 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6168}
6169
6170static void swevent_hlist_put(struct perf_event *event)
6171{
6172 int cpu;
6173
76e1d904
FW
6174 for_each_possible_cpu(cpu)
6175 swevent_hlist_put_cpu(event, cpu);
6176}
6177
6178static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6179{
b28ab83c 6180 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6181 int err = 0;
6182
b28ab83c 6183 mutex_lock(&swhash->hlist_mutex);
76e1d904 6184
b28ab83c 6185 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6186 struct swevent_hlist *hlist;
6187
6188 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6189 if (!hlist) {
6190 err = -ENOMEM;
6191 goto exit;
6192 }
b28ab83c 6193 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6194 }
b28ab83c 6195 swhash->hlist_refcount++;
9ed6060d 6196exit:
b28ab83c 6197 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6198
6199 return err;
6200}
6201
6202static int swevent_hlist_get(struct perf_event *event)
6203{
6204 int err;
6205 int cpu, failed_cpu;
6206
76e1d904
FW
6207 get_online_cpus();
6208 for_each_possible_cpu(cpu) {
6209 err = swevent_hlist_get_cpu(event, cpu);
6210 if (err) {
6211 failed_cpu = cpu;
6212 goto fail;
6213 }
6214 }
6215 put_online_cpus();
6216
6217 return 0;
9ed6060d 6218fail:
76e1d904
FW
6219 for_each_possible_cpu(cpu) {
6220 if (cpu == failed_cpu)
6221 break;
6222 swevent_hlist_put_cpu(event, cpu);
6223 }
6224
6225 put_online_cpus();
6226 return err;
6227}
6228
c5905afb 6229struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6230
b0a873eb
PZ
6231static void sw_perf_event_destroy(struct perf_event *event)
6232{
6233 u64 event_id = event->attr.config;
95476b64 6234
b0a873eb
PZ
6235 WARN_ON(event->parent);
6236
c5905afb 6237 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6238 swevent_hlist_put(event);
6239}
6240
6241static int perf_swevent_init(struct perf_event *event)
6242{
8176cced 6243 u64 event_id = event->attr.config;
b0a873eb
PZ
6244
6245 if (event->attr.type != PERF_TYPE_SOFTWARE)
6246 return -ENOENT;
6247
2481c5fa
SE
6248 /*
6249 * no branch sampling for software events
6250 */
6251 if (has_branch_stack(event))
6252 return -EOPNOTSUPP;
6253
b0a873eb
PZ
6254 switch (event_id) {
6255 case PERF_COUNT_SW_CPU_CLOCK:
6256 case PERF_COUNT_SW_TASK_CLOCK:
6257 return -ENOENT;
6258
6259 default:
6260 break;
6261 }
6262
ce677831 6263 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6264 return -ENOENT;
6265
6266 if (!event->parent) {
6267 int err;
6268
6269 err = swevent_hlist_get(event);
6270 if (err)
6271 return err;
6272
c5905afb 6273 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6274 event->destroy = sw_perf_event_destroy;
6275 }
6276
6277 return 0;
6278}
6279
6280static struct pmu perf_swevent = {
89a1e187 6281 .task_ctx_nr = perf_sw_context,
95476b64 6282
b0a873eb 6283 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6284 .add = perf_swevent_add,
6285 .del = perf_swevent_del,
6286 .start = perf_swevent_start,
6287 .stop = perf_swevent_stop,
1c024eca 6288 .read = perf_swevent_read,
1c024eca
PZ
6289};
6290
b0a873eb
PZ
6291#ifdef CONFIG_EVENT_TRACING
6292
1c024eca
PZ
6293static int perf_tp_filter_match(struct perf_event *event,
6294 struct perf_sample_data *data)
6295{
6296 void *record = data->raw->data;
6297
6298 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6299 return 1;
6300 return 0;
6301}
6302
6303static int perf_tp_event_match(struct perf_event *event,
6304 struct perf_sample_data *data,
6305 struct pt_regs *regs)
6306{
a0f7d0f7
FW
6307 if (event->hw.state & PERF_HES_STOPPED)
6308 return 0;
580d607c
PZ
6309 /*
6310 * All tracepoints are from kernel-space.
6311 */
6312 if (event->attr.exclude_kernel)
1c024eca
PZ
6313 return 0;
6314
6315 if (!perf_tp_filter_match(event, data))
6316 return 0;
6317
6318 return 1;
6319}
6320
6321void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6322 struct pt_regs *regs, struct hlist_head *head, int rctx,
6323 struct task_struct *task)
95476b64
FW
6324{
6325 struct perf_sample_data data;
1c024eca 6326 struct perf_event *event;
1c024eca 6327
95476b64
FW
6328 struct perf_raw_record raw = {
6329 .size = entry_size,
6330 .data = record,
6331 };
6332
fd0d000b 6333 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6334 data.raw = &raw;
6335
b67bfe0d 6336 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6337 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6338 perf_swevent_event(event, count, &data, regs);
4f41c013 6339 }
ecc55f84 6340
e6dab5ff
AV
6341 /*
6342 * If we got specified a target task, also iterate its context and
6343 * deliver this event there too.
6344 */
6345 if (task && task != current) {
6346 struct perf_event_context *ctx;
6347 struct trace_entry *entry = record;
6348
6349 rcu_read_lock();
6350 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6351 if (!ctx)
6352 goto unlock;
6353
6354 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6355 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6356 continue;
6357 if (event->attr.config != entry->type)
6358 continue;
6359 if (perf_tp_event_match(event, &data, regs))
6360 perf_swevent_event(event, count, &data, regs);
6361 }
6362unlock:
6363 rcu_read_unlock();
6364 }
6365
ecc55f84 6366 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6367}
6368EXPORT_SYMBOL_GPL(perf_tp_event);
6369
cdd6c482 6370static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6371{
1c024eca 6372 perf_trace_destroy(event);
e077df4f
PZ
6373}
6374
b0a873eb 6375static int perf_tp_event_init(struct perf_event *event)
e077df4f 6376{
76e1d904
FW
6377 int err;
6378
b0a873eb
PZ
6379 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6380 return -ENOENT;
6381
2481c5fa
SE
6382 /*
6383 * no branch sampling for tracepoint events
6384 */
6385 if (has_branch_stack(event))
6386 return -EOPNOTSUPP;
6387
1c024eca
PZ
6388 err = perf_trace_init(event);
6389 if (err)
b0a873eb 6390 return err;
e077df4f 6391
cdd6c482 6392 event->destroy = tp_perf_event_destroy;
e077df4f 6393
b0a873eb
PZ
6394 return 0;
6395}
6396
6397static struct pmu perf_tracepoint = {
89a1e187
PZ
6398 .task_ctx_nr = perf_sw_context,
6399
b0a873eb 6400 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6401 .add = perf_trace_add,
6402 .del = perf_trace_del,
6403 .start = perf_swevent_start,
6404 .stop = perf_swevent_stop,
b0a873eb 6405 .read = perf_swevent_read,
b0a873eb
PZ
6406};
6407
6408static inline void perf_tp_register(void)
6409{
2e80a82a 6410 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6411}
6fb2915d
LZ
6412
6413static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6414{
6415 char *filter_str;
6416 int ret;
6417
6418 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6419 return -EINVAL;
6420
6421 filter_str = strndup_user(arg, PAGE_SIZE);
6422 if (IS_ERR(filter_str))
6423 return PTR_ERR(filter_str);
6424
6425 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6426
6427 kfree(filter_str);
6428 return ret;
6429}
6430
6431static void perf_event_free_filter(struct perf_event *event)
6432{
6433 ftrace_profile_free_filter(event);
6434}
6435
e077df4f 6436#else
6fb2915d 6437
b0a873eb 6438static inline void perf_tp_register(void)
e077df4f 6439{
e077df4f 6440}
6fb2915d
LZ
6441
6442static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6443{
6444 return -ENOENT;
6445}
6446
6447static void perf_event_free_filter(struct perf_event *event)
6448{
6449}
6450
07b139c8 6451#endif /* CONFIG_EVENT_TRACING */
e077df4f 6452
24f1e32c 6453#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6454void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6455{
f5ffe02e
FW
6456 struct perf_sample_data sample;
6457 struct pt_regs *regs = data;
6458
fd0d000b 6459 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6460
a4eaf7f1 6461 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6462 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6463}
6464#endif
6465
b0a873eb
PZ
6466/*
6467 * hrtimer based swevent callback
6468 */
f29ac756 6469
b0a873eb 6470static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6471{
b0a873eb
PZ
6472 enum hrtimer_restart ret = HRTIMER_RESTART;
6473 struct perf_sample_data data;
6474 struct pt_regs *regs;
6475 struct perf_event *event;
6476 u64 period;
f29ac756 6477
b0a873eb 6478 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6479
6480 if (event->state != PERF_EVENT_STATE_ACTIVE)
6481 return HRTIMER_NORESTART;
6482
b0a873eb 6483 event->pmu->read(event);
f344011c 6484
fd0d000b 6485 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6486 regs = get_irq_regs();
6487
6488 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6489 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6490 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6491 ret = HRTIMER_NORESTART;
6492 }
24f1e32c 6493
b0a873eb
PZ
6494 period = max_t(u64, 10000, event->hw.sample_period);
6495 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6496
b0a873eb 6497 return ret;
f29ac756
PZ
6498}
6499
b0a873eb 6500static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6501{
b0a873eb 6502 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6503 s64 period;
6504
6505 if (!is_sampling_event(event))
6506 return;
f5ffe02e 6507
5d508e82
FBH
6508 period = local64_read(&hwc->period_left);
6509 if (period) {
6510 if (period < 0)
6511 period = 10000;
fa407f35 6512
5d508e82
FBH
6513 local64_set(&hwc->period_left, 0);
6514 } else {
6515 period = max_t(u64, 10000, hwc->sample_period);
6516 }
6517 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6518 ns_to_ktime(period), 0,
b5ab4cd5 6519 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6520}
b0a873eb
PZ
6521
6522static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6523{
b0a873eb
PZ
6524 struct hw_perf_event *hwc = &event->hw;
6525
6c7e550f 6526 if (is_sampling_event(event)) {
b0a873eb 6527 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6528 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6529
6530 hrtimer_cancel(&hwc->hrtimer);
6531 }
24f1e32c
FW
6532}
6533
ba3dd36c
PZ
6534static void perf_swevent_init_hrtimer(struct perf_event *event)
6535{
6536 struct hw_perf_event *hwc = &event->hw;
6537
6538 if (!is_sampling_event(event))
6539 return;
6540
6541 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6542 hwc->hrtimer.function = perf_swevent_hrtimer;
6543
6544 /*
6545 * Since hrtimers have a fixed rate, we can do a static freq->period
6546 * mapping and avoid the whole period adjust feedback stuff.
6547 */
6548 if (event->attr.freq) {
6549 long freq = event->attr.sample_freq;
6550
6551 event->attr.sample_period = NSEC_PER_SEC / freq;
6552 hwc->sample_period = event->attr.sample_period;
6553 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6554 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6555 event->attr.freq = 0;
6556 }
6557}
6558
b0a873eb
PZ
6559/*
6560 * Software event: cpu wall time clock
6561 */
6562
6563static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6564{
b0a873eb
PZ
6565 s64 prev;
6566 u64 now;
6567
a4eaf7f1 6568 now = local_clock();
b0a873eb
PZ
6569 prev = local64_xchg(&event->hw.prev_count, now);
6570 local64_add(now - prev, &event->count);
24f1e32c 6571}
24f1e32c 6572
a4eaf7f1 6573static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6574{
a4eaf7f1 6575 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6576 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6577}
6578
a4eaf7f1 6579static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6580{
b0a873eb
PZ
6581 perf_swevent_cancel_hrtimer(event);
6582 cpu_clock_event_update(event);
6583}
f29ac756 6584
a4eaf7f1
PZ
6585static int cpu_clock_event_add(struct perf_event *event, int flags)
6586{
6587 if (flags & PERF_EF_START)
6588 cpu_clock_event_start(event, flags);
6a694a60 6589 perf_event_update_userpage(event);
a4eaf7f1
PZ
6590
6591 return 0;
6592}
6593
6594static void cpu_clock_event_del(struct perf_event *event, int flags)
6595{
6596 cpu_clock_event_stop(event, flags);
6597}
6598
b0a873eb
PZ
6599static void cpu_clock_event_read(struct perf_event *event)
6600{
6601 cpu_clock_event_update(event);
6602}
f344011c 6603
b0a873eb
PZ
6604static int cpu_clock_event_init(struct perf_event *event)
6605{
6606 if (event->attr.type != PERF_TYPE_SOFTWARE)
6607 return -ENOENT;
6608
6609 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6610 return -ENOENT;
6611
2481c5fa
SE
6612 /*
6613 * no branch sampling for software events
6614 */
6615 if (has_branch_stack(event))
6616 return -EOPNOTSUPP;
6617
ba3dd36c
PZ
6618 perf_swevent_init_hrtimer(event);
6619
b0a873eb 6620 return 0;
f29ac756
PZ
6621}
6622
b0a873eb 6623static struct pmu perf_cpu_clock = {
89a1e187
PZ
6624 .task_ctx_nr = perf_sw_context,
6625
b0a873eb 6626 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6627 .add = cpu_clock_event_add,
6628 .del = cpu_clock_event_del,
6629 .start = cpu_clock_event_start,
6630 .stop = cpu_clock_event_stop,
b0a873eb
PZ
6631 .read = cpu_clock_event_read,
6632};
6633
6634/*
6635 * Software event: task time clock
6636 */
6637
6638static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6639{
b0a873eb
PZ
6640 u64 prev;
6641 s64 delta;
5c92d124 6642
b0a873eb
PZ
6643 prev = local64_xchg(&event->hw.prev_count, now);
6644 delta = now - prev;
6645 local64_add(delta, &event->count);
6646}
5c92d124 6647
a4eaf7f1 6648static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6649{
a4eaf7f1 6650 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6651 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6652}
6653
a4eaf7f1 6654static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6655{
6656 perf_swevent_cancel_hrtimer(event);
6657 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6658}
6659
6660static int task_clock_event_add(struct perf_event *event, int flags)
6661{
6662 if (flags & PERF_EF_START)
6663 task_clock_event_start(event, flags);
6a694a60 6664 perf_event_update_userpage(event);
b0a873eb 6665
a4eaf7f1
PZ
6666 return 0;
6667}
6668
6669static void task_clock_event_del(struct perf_event *event, int flags)
6670{
6671 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6672}
6673
6674static void task_clock_event_read(struct perf_event *event)
6675{
768a06e2
PZ
6676 u64 now = perf_clock();
6677 u64 delta = now - event->ctx->timestamp;
6678 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6679
6680 task_clock_event_update(event, time);
6681}
6682
6683static int task_clock_event_init(struct perf_event *event)
6fb2915d 6684{
b0a873eb
PZ
6685 if (event->attr.type != PERF_TYPE_SOFTWARE)
6686 return -ENOENT;
6687
6688 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6689 return -ENOENT;
6690
2481c5fa
SE
6691 /*
6692 * no branch sampling for software events
6693 */
6694 if (has_branch_stack(event))
6695 return -EOPNOTSUPP;
6696
ba3dd36c
PZ
6697 perf_swevent_init_hrtimer(event);
6698
b0a873eb 6699 return 0;
6fb2915d
LZ
6700}
6701
b0a873eb 6702static struct pmu perf_task_clock = {
89a1e187
PZ
6703 .task_ctx_nr = perf_sw_context,
6704
b0a873eb 6705 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6706 .add = task_clock_event_add,
6707 .del = task_clock_event_del,
6708 .start = task_clock_event_start,
6709 .stop = task_clock_event_stop,
b0a873eb
PZ
6710 .read = task_clock_event_read,
6711};
6fb2915d 6712
ad5133b7 6713static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6714{
e077df4f 6715}
6fb2915d 6716
ad5133b7 6717static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6718{
ad5133b7 6719 return 0;
6fb2915d
LZ
6720}
6721
ad5133b7 6722static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6723{
ad5133b7 6724 perf_pmu_disable(pmu);
6fb2915d
LZ
6725}
6726
ad5133b7
PZ
6727static int perf_pmu_commit_txn(struct pmu *pmu)
6728{
6729 perf_pmu_enable(pmu);
6730 return 0;
6731}
e077df4f 6732
ad5133b7 6733static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6734{
ad5133b7 6735 perf_pmu_enable(pmu);
24f1e32c
FW
6736}
6737
35edc2a5
PZ
6738static int perf_event_idx_default(struct perf_event *event)
6739{
c719f560 6740 return 0;
35edc2a5
PZ
6741}
6742
8dc85d54
PZ
6743/*
6744 * Ensures all contexts with the same task_ctx_nr have the same
6745 * pmu_cpu_context too.
6746 */
9e317041 6747static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 6748{
8dc85d54 6749 struct pmu *pmu;
b326e956 6750
8dc85d54
PZ
6751 if (ctxn < 0)
6752 return NULL;
24f1e32c 6753
8dc85d54
PZ
6754 list_for_each_entry(pmu, &pmus, entry) {
6755 if (pmu->task_ctx_nr == ctxn)
6756 return pmu->pmu_cpu_context;
6757 }
24f1e32c 6758
8dc85d54 6759 return NULL;
24f1e32c
FW
6760}
6761
51676957 6762static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6763{
51676957
PZ
6764 int cpu;
6765
6766 for_each_possible_cpu(cpu) {
6767 struct perf_cpu_context *cpuctx;
6768
6769 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6770
3f1f3320
PZ
6771 if (cpuctx->unique_pmu == old_pmu)
6772 cpuctx->unique_pmu = pmu;
51676957
PZ
6773 }
6774}
6775
6776static void free_pmu_context(struct pmu *pmu)
6777{
6778 struct pmu *i;
f5ffe02e 6779
8dc85d54 6780 mutex_lock(&pmus_lock);
0475f9ea 6781 /*
8dc85d54 6782 * Like a real lame refcount.
0475f9ea 6783 */
51676957
PZ
6784 list_for_each_entry(i, &pmus, entry) {
6785 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6786 update_pmu_context(i, pmu);
8dc85d54 6787 goto out;
51676957 6788 }
8dc85d54 6789 }
d6d020e9 6790
51676957 6791 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6792out:
6793 mutex_unlock(&pmus_lock);
24f1e32c 6794}
2e80a82a 6795static struct idr pmu_idr;
d6d020e9 6796
abe43400
PZ
6797static ssize_t
6798type_show(struct device *dev, struct device_attribute *attr, char *page)
6799{
6800 struct pmu *pmu = dev_get_drvdata(dev);
6801
6802 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6803}
90826ca7 6804static DEVICE_ATTR_RO(type);
abe43400 6805
62b85639
SE
6806static ssize_t
6807perf_event_mux_interval_ms_show(struct device *dev,
6808 struct device_attribute *attr,
6809 char *page)
6810{
6811 struct pmu *pmu = dev_get_drvdata(dev);
6812
6813 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6814}
6815
6816static ssize_t
6817perf_event_mux_interval_ms_store(struct device *dev,
6818 struct device_attribute *attr,
6819 const char *buf, size_t count)
6820{
6821 struct pmu *pmu = dev_get_drvdata(dev);
6822 int timer, cpu, ret;
6823
6824 ret = kstrtoint(buf, 0, &timer);
6825 if (ret)
6826 return ret;
6827
6828 if (timer < 1)
6829 return -EINVAL;
6830
6831 /* same value, noting to do */
6832 if (timer == pmu->hrtimer_interval_ms)
6833 return count;
6834
6835 pmu->hrtimer_interval_ms = timer;
6836
6837 /* update all cpuctx for this PMU */
6838 for_each_possible_cpu(cpu) {
6839 struct perf_cpu_context *cpuctx;
6840 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6841 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6842
6843 if (hrtimer_active(&cpuctx->hrtimer))
6844 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6845 }
6846
6847 return count;
6848}
90826ca7 6849static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 6850
90826ca7
GKH
6851static struct attribute *pmu_dev_attrs[] = {
6852 &dev_attr_type.attr,
6853 &dev_attr_perf_event_mux_interval_ms.attr,
6854 NULL,
abe43400 6855};
90826ca7 6856ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
6857
6858static int pmu_bus_running;
6859static struct bus_type pmu_bus = {
6860 .name = "event_source",
90826ca7 6861 .dev_groups = pmu_dev_groups,
abe43400
PZ
6862};
6863
6864static void pmu_dev_release(struct device *dev)
6865{
6866 kfree(dev);
6867}
6868
6869static int pmu_dev_alloc(struct pmu *pmu)
6870{
6871 int ret = -ENOMEM;
6872
6873 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6874 if (!pmu->dev)
6875 goto out;
6876
0c9d42ed 6877 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6878 device_initialize(pmu->dev);
6879 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6880 if (ret)
6881 goto free_dev;
6882
6883 dev_set_drvdata(pmu->dev, pmu);
6884 pmu->dev->bus = &pmu_bus;
6885 pmu->dev->release = pmu_dev_release;
6886 ret = device_add(pmu->dev);
6887 if (ret)
6888 goto free_dev;
6889
6890out:
6891 return ret;
6892
6893free_dev:
6894 put_device(pmu->dev);
6895 goto out;
6896}
6897
547e9fd7 6898static struct lock_class_key cpuctx_mutex;
facc4307 6899static struct lock_class_key cpuctx_lock;
547e9fd7 6900
03d8e80b 6901int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6902{
108b02cf 6903 int cpu, ret;
24f1e32c 6904
b0a873eb 6905 mutex_lock(&pmus_lock);
33696fc0
PZ
6906 ret = -ENOMEM;
6907 pmu->pmu_disable_count = alloc_percpu(int);
6908 if (!pmu->pmu_disable_count)
6909 goto unlock;
f29ac756 6910
2e80a82a
PZ
6911 pmu->type = -1;
6912 if (!name)
6913 goto skip_type;
6914 pmu->name = name;
6915
6916 if (type < 0) {
0e9c3be2
TH
6917 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6918 if (type < 0) {
6919 ret = type;
2e80a82a
PZ
6920 goto free_pdc;
6921 }
6922 }
6923 pmu->type = type;
6924
abe43400
PZ
6925 if (pmu_bus_running) {
6926 ret = pmu_dev_alloc(pmu);
6927 if (ret)
6928 goto free_idr;
6929 }
6930
2e80a82a 6931skip_type:
8dc85d54
PZ
6932 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6933 if (pmu->pmu_cpu_context)
6934 goto got_cpu_context;
f29ac756 6935
c4814202 6936 ret = -ENOMEM;
108b02cf
PZ
6937 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6938 if (!pmu->pmu_cpu_context)
abe43400 6939 goto free_dev;
f344011c 6940
108b02cf
PZ
6941 for_each_possible_cpu(cpu) {
6942 struct perf_cpu_context *cpuctx;
6943
6944 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6945 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6946 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6947 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 6948 cpuctx->ctx.pmu = pmu;
9e630205
SE
6949
6950 __perf_cpu_hrtimer_init(cpuctx, cpu);
6951
3f1f3320 6952 cpuctx->unique_pmu = pmu;
108b02cf 6953 }
76e1d904 6954
8dc85d54 6955got_cpu_context:
ad5133b7
PZ
6956 if (!pmu->start_txn) {
6957 if (pmu->pmu_enable) {
6958 /*
6959 * If we have pmu_enable/pmu_disable calls, install
6960 * transaction stubs that use that to try and batch
6961 * hardware accesses.
6962 */
6963 pmu->start_txn = perf_pmu_start_txn;
6964 pmu->commit_txn = perf_pmu_commit_txn;
6965 pmu->cancel_txn = perf_pmu_cancel_txn;
6966 } else {
6967 pmu->start_txn = perf_pmu_nop_void;
6968 pmu->commit_txn = perf_pmu_nop_int;
6969 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6970 }
5c92d124 6971 }
15dbf27c 6972
ad5133b7
PZ
6973 if (!pmu->pmu_enable) {
6974 pmu->pmu_enable = perf_pmu_nop_void;
6975 pmu->pmu_disable = perf_pmu_nop_void;
6976 }
6977
35edc2a5
PZ
6978 if (!pmu->event_idx)
6979 pmu->event_idx = perf_event_idx_default;
6980
b0a873eb 6981 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6982 ret = 0;
6983unlock:
b0a873eb
PZ
6984 mutex_unlock(&pmus_lock);
6985
33696fc0 6986 return ret;
108b02cf 6987
abe43400
PZ
6988free_dev:
6989 device_del(pmu->dev);
6990 put_device(pmu->dev);
6991
2e80a82a
PZ
6992free_idr:
6993 if (pmu->type >= PERF_TYPE_MAX)
6994 idr_remove(&pmu_idr, pmu->type);
6995
108b02cf
PZ
6996free_pdc:
6997 free_percpu(pmu->pmu_disable_count);
6998 goto unlock;
f29ac756 6999}
c464c76e 7000EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7001
b0a873eb 7002void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7003{
b0a873eb
PZ
7004 mutex_lock(&pmus_lock);
7005 list_del_rcu(&pmu->entry);
7006 mutex_unlock(&pmus_lock);
5c92d124 7007
0475f9ea 7008 /*
cde8e884
PZ
7009 * We dereference the pmu list under both SRCU and regular RCU, so
7010 * synchronize against both of those.
0475f9ea 7011 */
b0a873eb 7012 synchronize_srcu(&pmus_srcu);
cde8e884 7013 synchronize_rcu();
d6d020e9 7014
33696fc0 7015 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7016 if (pmu->type >= PERF_TYPE_MAX)
7017 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7018 device_del(pmu->dev);
7019 put_device(pmu->dev);
51676957 7020 free_pmu_context(pmu);
b0a873eb 7021}
c464c76e 7022EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7023
cc34b98b
MR
7024static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7025{
7026 int ret;
7027
7028 if (!try_module_get(pmu->module))
7029 return -ENODEV;
7030 event->pmu = pmu;
7031 ret = pmu->event_init(event);
7032 if (ret)
7033 module_put(pmu->module);
7034
7035 return ret;
7036}
7037
b0a873eb
PZ
7038struct pmu *perf_init_event(struct perf_event *event)
7039{
7040 struct pmu *pmu = NULL;
7041 int idx;
940c5b29 7042 int ret;
b0a873eb
PZ
7043
7044 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7045
7046 rcu_read_lock();
7047 pmu = idr_find(&pmu_idr, event->attr.type);
7048 rcu_read_unlock();
940c5b29 7049 if (pmu) {
cc34b98b 7050 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7051 if (ret)
7052 pmu = ERR_PTR(ret);
2e80a82a 7053 goto unlock;
940c5b29 7054 }
2e80a82a 7055
b0a873eb 7056 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7057 ret = perf_try_init_event(pmu, event);
b0a873eb 7058 if (!ret)
e5f4d339 7059 goto unlock;
76e1d904 7060
b0a873eb
PZ
7061 if (ret != -ENOENT) {
7062 pmu = ERR_PTR(ret);
e5f4d339 7063 goto unlock;
f344011c 7064 }
5c92d124 7065 }
e5f4d339
PZ
7066 pmu = ERR_PTR(-ENOENT);
7067unlock:
b0a873eb 7068 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7069
4aeb0b42 7070 return pmu;
5c92d124
IM
7071}
7072
4beb31f3
FW
7073static void account_event_cpu(struct perf_event *event, int cpu)
7074{
7075 if (event->parent)
7076 return;
7077
4beb31f3
FW
7078 if (is_cgroup_event(event))
7079 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7080}
7081
766d6c07
FW
7082static void account_event(struct perf_event *event)
7083{
4beb31f3
FW
7084 if (event->parent)
7085 return;
7086
766d6c07
FW
7087 if (event->attach_state & PERF_ATTACH_TASK)
7088 static_key_slow_inc(&perf_sched_events.key);
7089 if (event->attr.mmap || event->attr.mmap_data)
7090 atomic_inc(&nr_mmap_events);
7091 if (event->attr.comm)
7092 atomic_inc(&nr_comm_events);
7093 if (event->attr.task)
7094 atomic_inc(&nr_task_events);
948b26b6
FW
7095 if (event->attr.freq) {
7096 if (atomic_inc_return(&nr_freq_events) == 1)
7097 tick_nohz_full_kick_all();
7098 }
4beb31f3 7099 if (has_branch_stack(event))
766d6c07 7100 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7101 if (is_cgroup_event(event))
766d6c07 7102 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7103
7104 account_event_cpu(event, event->cpu);
766d6c07
FW
7105}
7106
0793a61d 7107/*
cdd6c482 7108 * Allocate and initialize a event structure
0793a61d 7109 */
cdd6c482 7110static struct perf_event *
c3f00c70 7111perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7112 struct task_struct *task,
7113 struct perf_event *group_leader,
7114 struct perf_event *parent_event,
4dc0da86
AK
7115 perf_overflow_handler_t overflow_handler,
7116 void *context)
0793a61d 7117{
51b0fe39 7118 struct pmu *pmu;
cdd6c482
IM
7119 struct perf_event *event;
7120 struct hw_perf_event *hwc;
90983b16 7121 long err = -EINVAL;
0793a61d 7122
66832eb4
ON
7123 if ((unsigned)cpu >= nr_cpu_ids) {
7124 if (!task || cpu != -1)
7125 return ERR_PTR(-EINVAL);
7126 }
7127
c3f00c70 7128 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7129 if (!event)
d5d2bc0d 7130 return ERR_PTR(-ENOMEM);
0793a61d 7131
04289bb9 7132 /*
cdd6c482 7133 * Single events are their own group leaders, with an
04289bb9
IM
7134 * empty sibling list:
7135 */
7136 if (!group_leader)
cdd6c482 7137 group_leader = event;
04289bb9 7138
cdd6c482
IM
7139 mutex_init(&event->child_mutex);
7140 INIT_LIST_HEAD(&event->child_list);
fccc714b 7141
cdd6c482
IM
7142 INIT_LIST_HEAD(&event->group_entry);
7143 INIT_LIST_HEAD(&event->event_entry);
7144 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7145 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7146 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7147 INIT_HLIST_NODE(&event->hlist_entry);
7148
10c6db11 7149
cdd6c482 7150 init_waitqueue_head(&event->waitq);
e360adbe 7151 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7152
cdd6c482 7153 mutex_init(&event->mmap_mutex);
7b732a75 7154
a6fa941d 7155 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7156 event->cpu = cpu;
7157 event->attr = *attr;
7158 event->group_leader = group_leader;
7159 event->pmu = NULL;
cdd6c482 7160 event->oncpu = -1;
a96bbc16 7161
cdd6c482 7162 event->parent = parent_event;
b84fbc9f 7163
17cf22c3 7164 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7165 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7166
cdd6c482 7167 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7168
d580ff86
PZ
7169 if (task) {
7170 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
7171
7172 if (attr->type == PERF_TYPE_TRACEPOINT)
7173 event->hw.tp_target = task;
d580ff86
PZ
7174#ifdef CONFIG_HAVE_HW_BREAKPOINT
7175 /*
7176 * hw_breakpoint is a bit difficult here..
7177 */
f22c1bb6 7178 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
7179 event->hw.bp_target = task;
7180#endif
7181 }
7182
4dc0da86 7183 if (!overflow_handler && parent_event) {
b326e956 7184 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7185 context = parent_event->overflow_handler_context;
7186 }
66832eb4 7187
b326e956 7188 event->overflow_handler = overflow_handler;
4dc0da86 7189 event->overflow_handler_context = context;
97eaf530 7190
0231bb53 7191 perf_event__state_init(event);
a86ed508 7192
4aeb0b42 7193 pmu = NULL;
b8e83514 7194
cdd6c482 7195 hwc = &event->hw;
bd2b5b12 7196 hwc->sample_period = attr->sample_period;
0d48696f 7197 if (attr->freq && attr->sample_freq)
bd2b5b12 7198 hwc->sample_period = 1;
eced1dfc 7199 hwc->last_period = hwc->sample_period;
bd2b5b12 7200
e7850595 7201 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7202
2023b359 7203 /*
cdd6c482 7204 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7205 */
3dab77fb 7206 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7207 goto err_ns;
a46a2300
YZ
7208
7209 if (!has_branch_stack(event))
7210 event->attr.branch_sample_type = 0;
2023b359 7211
b0a873eb 7212 pmu = perf_init_event(event);
4aeb0b42 7213 if (!pmu)
90983b16
FW
7214 goto err_ns;
7215 else if (IS_ERR(pmu)) {
4aeb0b42 7216 err = PTR_ERR(pmu);
90983b16 7217 goto err_ns;
621a01ea 7218 }
d5d2bc0d 7219
cdd6c482 7220 if (!event->parent) {
927c7a9e
FW
7221 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7222 err = get_callchain_buffers();
90983b16
FW
7223 if (err)
7224 goto err_pmu;
d010b332 7225 }
f344011c 7226 }
9ee318a7 7227
cdd6c482 7228 return event;
90983b16
FW
7229
7230err_pmu:
7231 if (event->destroy)
7232 event->destroy(event);
c464c76e 7233 module_put(pmu->module);
90983b16
FW
7234err_ns:
7235 if (event->ns)
7236 put_pid_ns(event->ns);
7237 kfree(event);
7238
7239 return ERR_PTR(err);
0793a61d
TG
7240}
7241
cdd6c482
IM
7242static int perf_copy_attr(struct perf_event_attr __user *uattr,
7243 struct perf_event_attr *attr)
974802ea 7244{
974802ea 7245 u32 size;
cdf8073d 7246 int ret;
974802ea
PZ
7247
7248 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7249 return -EFAULT;
7250
7251 /*
7252 * zero the full structure, so that a short copy will be nice.
7253 */
7254 memset(attr, 0, sizeof(*attr));
7255
7256 ret = get_user(size, &uattr->size);
7257 if (ret)
7258 return ret;
7259
7260 if (size > PAGE_SIZE) /* silly large */
7261 goto err_size;
7262
7263 if (!size) /* abi compat */
7264 size = PERF_ATTR_SIZE_VER0;
7265
7266 if (size < PERF_ATTR_SIZE_VER0)
7267 goto err_size;
7268
7269 /*
7270 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7271 * ensure all the unknown bits are 0 - i.e. new
7272 * user-space does not rely on any kernel feature
7273 * extensions we dont know about yet.
974802ea
PZ
7274 */
7275 if (size > sizeof(*attr)) {
cdf8073d
IS
7276 unsigned char __user *addr;
7277 unsigned char __user *end;
7278 unsigned char val;
974802ea 7279
cdf8073d
IS
7280 addr = (void __user *)uattr + sizeof(*attr);
7281 end = (void __user *)uattr + size;
974802ea 7282
cdf8073d 7283 for (; addr < end; addr++) {
974802ea
PZ
7284 ret = get_user(val, addr);
7285 if (ret)
7286 return ret;
7287 if (val)
7288 goto err_size;
7289 }
b3e62e35 7290 size = sizeof(*attr);
974802ea
PZ
7291 }
7292
7293 ret = copy_from_user(attr, uattr, size);
7294 if (ret)
7295 return -EFAULT;
7296
cd757645 7297 if (attr->__reserved_1)
974802ea
PZ
7298 return -EINVAL;
7299
7300 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7301 return -EINVAL;
7302
7303 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7304 return -EINVAL;
7305
bce38cd5
SE
7306 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7307 u64 mask = attr->branch_sample_type;
7308
7309 /* only using defined bits */
7310 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7311 return -EINVAL;
7312
7313 /* at least one branch bit must be set */
7314 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7315 return -EINVAL;
7316
bce38cd5
SE
7317 /* propagate priv level, when not set for branch */
7318 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7319
7320 /* exclude_kernel checked on syscall entry */
7321 if (!attr->exclude_kernel)
7322 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7323
7324 if (!attr->exclude_user)
7325 mask |= PERF_SAMPLE_BRANCH_USER;
7326
7327 if (!attr->exclude_hv)
7328 mask |= PERF_SAMPLE_BRANCH_HV;
7329 /*
7330 * adjust user setting (for HW filter setup)
7331 */
7332 attr->branch_sample_type = mask;
7333 }
e712209a
SE
7334 /* privileged levels capture (kernel, hv): check permissions */
7335 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7336 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7337 return -EACCES;
bce38cd5 7338 }
4018994f 7339
c5ebcedb 7340 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7341 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7342 if (ret)
7343 return ret;
7344 }
7345
7346 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7347 if (!arch_perf_have_user_stack_dump())
7348 return -ENOSYS;
7349
7350 /*
7351 * We have __u32 type for the size, but so far
7352 * we can only use __u16 as maximum due to the
7353 * __u16 sample size limit.
7354 */
7355 if (attr->sample_stack_user >= USHRT_MAX)
7356 ret = -EINVAL;
7357 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7358 ret = -EINVAL;
7359 }
4018994f 7360
60e2364e
SE
7361 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7362 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
7363out:
7364 return ret;
7365
7366err_size:
7367 put_user(sizeof(*attr), &uattr->size);
7368 ret = -E2BIG;
7369 goto out;
7370}
7371
ac9721f3
PZ
7372static int
7373perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7374{
b69cf536 7375 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7376 int ret = -EINVAL;
7377
ac9721f3 7378 if (!output_event)
a4be7c27
PZ
7379 goto set;
7380
ac9721f3
PZ
7381 /* don't allow circular references */
7382 if (event == output_event)
a4be7c27
PZ
7383 goto out;
7384
0f139300
PZ
7385 /*
7386 * Don't allow cross-cpu buffers
7387 */
7388 if (output_event->cpu != event->cpu)
7389 goto out;
7390
7391 /*
76369139 7392 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7393 */
7394 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7395 goto out;
7396
a4be7c27 7397set:
cdd6c482 7398 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7399 /* Can't redirect output if we've got an active mmap() */
7400 if (atomic_read(&event->mmap_count))
7401 goto unlock;
a4be7c27 7402
ac9721f3 7403 if (output_event) {
76369139
FW
7404 /* get the rb we want to redirect to */
7405 rb = ring_buffer_get(output_event);
7406 if (!rb)
ac9721f3 7407 goto unlock;
a4be7c27
PZ
7408 }
7409
b69cf536 7410 ring_buffer_attach(event, rb);
9bb5d40c 7411
a4be7c27 7412 ret = 0;
ac9721f3
PZ
7413unlock:
7414 mutex_unlock(&event->mmap_mutex);
7415
a4be7c27 7416out:
a4be7c27
PZ
7417 return ret;
7418}
7419
f63a8daa
PZ
7420static void mutex_lock_double(struct mutex *a, struct mutex *b)
7421{
7422 if (b < a)
7423 swap(a, b);
7424
7425 mutex_lock(a);
7426 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7427}
7428
0793a61d 7429/**
cdd6c482 7430 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7431 *
cdd6c482 7432 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7433 * @pid: target pid
9f66a381 7434 * @cpu: target cpu
cdd6c482 7435 * @group_fd: group leader event fd
0793a61d 7436 */
cdd6c482
IM
7437SYSCALL_DEFINE5(perf_event_open,
7438 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7439 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7440{
b04243ef
PZ
7441 struct perf_event *group_leader = NULL, *output_event = NULL;
7442 struct perf_event *event, *sibling;
cdd6c482 7443 struct perf_event_attr attr;
f63a8daa 7444 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 7445 struct file *event_file = NULL;
2903ff01 7446 struct fd group = {NULL, 0};
38a81da2 7447 struct task_struct *task = NULL;
89a1e187 7448 struct pmu *pmu;
ea635c64 7449 int event_fd;
b04243ef 7450 int move_group = 0;
dc86cabe 7451 int err;
a21b0b35 7452 int f_flags = O_RDWR;
0793a61d 7453
2743a5b0 7454 /* for future expandability... */
e5d1367f 7455 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7456 return -EINVAL;
7457
dc86cabe
IM
7458 err = perf_copy_attr(attr_uptr, &attr);
7459 if (err)
7460 return err;
eab656ae 7461
0764771d
PZ
7462 if (!attr.exclude_kernel) {
7463 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7464 return -EACCES;
7465 }
7466
df58ab24 7467 if (attr.freq) {
cdd6c482 7468 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 7469 return -EINVAL;
0819b2e3
PZ
7470 } else {
7471 if (attr.sample_period & (1ULL << 63))
7472 return -EINVAL;
df58ab24
PZ
7473 }
7474
e5d1367f
SE
7475 /*
7476 * In cgroup mode, the pid argument is used to pass the fd
7477 * opened to the cgroup directory in cgroupfs. The cpu argument
7478 * designates the cpu on which to monitor threads from that
7479 * cgroup.
7480 */
7481 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7482 return -EINVAL;
7483
a21b0b35
YD
7484 if (flags & PERF_FLAG_FD_CLOEXEC)
7485 f_flags |= O_CLOEXEC;
7486
7487 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7488 if (event_fd < 0)
7489 return event_fd;
7490
ac9721f3 7491 if (group_fd != -1) {
2903ff01
AV
7492 err = perf_fget_light(group_fd, &group);
7493 if (err)
d14b12d7 7494 goto err_fd;
2903ff01 7495 group_leader = group.file->private_data;
ac9721f3
PZ
7496 if (flags & PERF_FLAG_FD_OUTPUT)
7497 output_event = group_leader;
7498 if (flags & PERF_FLAG_FD_NO_GROUP)
7499 group_leader = NULL;
7500 }
7501
e5d1367f 7502 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7503 task = find_lively_task_by_vpid(pid);
7504 if (IS_ERR(task)) {
7505 err = PTR_ERR(task);
7506 goto err_group_fd;
7507 }
7508 }
7509
1f4ee503
PZ
7510 if (task && group_leader &&
7511 group_leader->attr.inherit != attr.inherit) {
7512 err = -EINVAL;
7513 goto err_task;
7514 }
7515
fbfc623f
YZ
7516 get_online_cpus();
7517
4dc0da86
AK
7518 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7519 NULL, NULL);
d14b12d7
SE
7520 if (IS_ERR(event)) {
7521 err = PTR_ERR(event);
1f4ee503 7522 goto err_cpus;
d14b12d7
SE
7523 }
7524
e5d1367f
SE
7525 if (flags & PERF_FLAG_PID_CGROUP) {
7526 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
7527 if (err) {
7528 __free_event(event);
1f4ee503 7529 goto err_cpus;
766d6c07 7530 }
e5d1367f
SE
7531 }
7532
53b25335
VW
7533 if (is_sampling_event(event)) {
7534 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7535 err = -ENOTSUPP;
7536 goto err_alloc;
7537 }
7538 }
7539
766d6c07
FW
7540 account_event(event);
7541
89a1e187
PZ
7542 /*
7543 * Special case software events and allow them to be part of
7544 * any hardware group.
7545 */
7546 pmu = event->pmu;
b04243ef
PZ
7547
7548 if (group_leader &&
7549 (is_software_event(event) != is_software_event(group_leader))) {
7550 if (is_software_event(event)) {
7551 /*
7552 * If event and group_leader are not both a software
7553 * event, and event is, then group leader is not.
7554 *
7555 * Allow the addition of software events to !software
7556 * groups, this is safe because software events never
7557 * fail to schedule.
7558 */
7559 pmu = group_leader->pmu;
7560 } else if (is_software_event(group_leader) &&
7561 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7562 /*
7563 * In case the group is a pure software group, and we
7564 * try to add a hardware event, move the whole group to
7565 * the hardware context.
7566 */
7567 move_group = 1;
7568 }
7569 }
89a1e187
PZ
7570
7571 /*
7572 * Get the target context (task or percpu):
7573 */
4af57ef2 7574 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
7575 if (IS_ERR(ctx)) {
7576 err = PTR_ERR(ctx);
c6be5a5c 7577 goto err_alloc;
89a1e187
PZ
7578 }
7579
fd1edb3a
PZ
7580 if (task) {
7581 put_task_struct(task);
7582 task = NULL;
7583 }
7584
ccff286d 7585 /*
cdd6c482 7586 * Look up the group leader (we will attach this event to it):
04289bb9 7587 */
ac9721f3 7588 if (group_leader) {
dc86cabe 7589 err = -EINVAL;
04289bb9 7590
04289bb9 7591 /*
ccff286d
IM
7592 * Do not allow a recursive hierarchy (this new sibling
7593 * becoming part of another group-sibling):
7594 */
7595 if (group_leader->group_leader != group_leader)
c3f00c70 7596 goto err_context;
ccff286d
IM
7597 /*
7598 * Do not allow to attach to a group in a different
7599 * task or CPU context:
04289bb9 7600 */
b04243ef 7601 if (move_group) {
c3c87e77
PZ
7602 /*
7603 * Make sure we're both on the same task, or both
7604 * per-cpu events.
7605 */
7606 if (group_leader->ctx->task != ctx->task)
7607 goto err_context;
7608
7609 /*
7610 * Make sure we're both events for the same CPU;
7611 * grouping events for different CPUs is broken; since
7612 * you can never concurrently schedule them anyhow.
7613 */
7614 if (group_leader->cpu != event->cpu)
b04243ef
PZ
7615 goto err_context;
7616 } else {
7617 if (group_leader->ctx != ctx)
7618 goto err_context;
7619 }
7620
3b6f9e5c
PM
7621 /*
7622 * Only a group leader can be exclusive or pinned
7623 */
0d48696f 7624 if (attr.exclusive || attr.pinned)
c3f00c70 7625 goto err_context;
ac9721f3
PZ
7626 }
7627
7628 if (output_event) {
7629 err = perf_event_set_output(event, output_event);
7630 if (err)
c3f00c70 7631 goto err_context;
ac9721f3 7632 }
0793a61d 7633
a21b0b35
YD
7634 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7635 f_flags);
ea635c64
AV
7636 if (IS_ERR(event_file)) {
7637 err = PTR_ERR(event_file);
c3f00c70 7638 goto err_context;
ea635c64 7639 }
9b51f66d 7640
b04243ef 7641 if (move_group) {
f63a8daa
PZ
7642 gctx = group_leader->ctx;
7643
7644 /*
7645 * See perf_event_ctx_lock() for comments on the details
7646 * of swizzling perf_event::ctx.
7647 */
7648 mutex_lock_double(&gctx->mutex, &ctx->mutex);
b04243ef 7649
46ce0fe9 7650 perf_remove_from_context(group_leader, false);
0231bb53 7651
b04243ef
PZ
7652 list_for_each_entry(sibling, &group_leader->sibling_list,
7653 group_entry) {
46ce0fe9 7654 perf_remove_from_context(sibling, false);
b04243ef
PZ
7655 put_ctx(gctx);
7656 }
f63a8daa
PZ
7657 } else {
7658 mutex_lock(&ctx->mutex);
ea635c64 7659 }
9b51f66d 7660
ad3a37de 7661 WARN_ON_ONCE(ctx->parent_ctx);
b04243ef
PZ
7662
7663 if (move_group) {
f63a8daa
PZ
7664 /*
7665 * Wait for everybody to stop referencing the events through
7666 * the old lists, before installing it on new lists.
7667 */
0cda4c02 7668 synchronize_rcu();
f63a8daa 7669
8f95b435
PZI
7670 /*
7671 * Install the group siblings before the group leader.
7672 *
7673 * Because a group leader will try and install the entire group
7674 * (through the sibling list, which is still in-tact), we can
7675 * end up with siblings installed in the wrong context.
7676 *
7677 * By installing siblings first we NO-OP because they're not
7678 * reachable through the group lists.
7679 */
b04243ef
PZ
7680 list_for_each_entry(sibling, &group_leader->sibling_list,
7681 group_entry) {
8f95b435 7682 perf_event__state_init(sibling);
9fc81d87 7683 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
7684 get_ctx(ctx);
7685 }
8f95b435
PZI
7686
7687 /*
7688 * Removing from the context ends up with disabled
7689 * event. What we want here is event in the initial
7690 * startup state, ready to be add into new context.
7691 */
7692 perf_event__state_init(group_leader);
7693 perf_install_in_context(ctx, group_leader, group_leader->cpu);
7694 get_ctx(ctx);
b04243ef
PZ
7695 }
7696
e2d37cd2 7697 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 7698 perf_unpin_context(ctx);
f63a8daa
PZ
7699
7700 if (move_group) {
7701 mutex_unlock(&gctx->mutex);
7702 put_ctx(gctx);
7703 }
d859e29f 7704 mutex_unlock(&ctx->mutex);
9b51f66d 7705
fbfc623f
YZ
7706 put_online_cpus();
7707
cdd6c482 7708 event->owner = current;
8882135b 7709
cdd6c482
IM
7710 mutex_lock(&current->perf_event_mutex);
7711 list_add_tail(&event->owner_entry, &current->perf_event_list);
7712 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7713
c320c7b7
ACM
7714 /*
7715 * Precalculate sample_data sizes
7716 */
7717 perf_event__header_size(event);
6844c09d 7718 perf_event__id_header_size(event);
c320c7b7 7719
8a49542c
PZ
7720 /*
7721 * Drop the reference on the group_event after placing the
7722 * new event on the sibling_list. This ensures destruction
7723 * of the group leader will find the pointer to itself in
7724 * perf_group_detach().
7725 */
2903ff01 7726 fdput(group);
ea635c64
AV
7727 fd_install(event_fd, event_file);
7728 return event_fd;
0793a61d 7729
c3f00c70 7730err_context:
fe4b04fa 7731 perf_unpin_context(ctx);
ea635c64 7732 put_ctx(ctx);
c6be5a5c 7733err_alloc:
ea635c64 7734 free_event(event);
1f4ee503 7735err_cpus:
fbfc623f 7736 put_online_cpus();
1f4ee503 7737err_task:
e7d0bc04
PZ
7738 if (task)
7739 put_task_struct(task);
89a1e187 7740err_group_fd:
2903ff01 7741 fdput(group);
ea635c64
AV
7742err_fd:
7743 put_unused_fd(event_fd);
dc86cabe 7744 return err;
0793a61d
TG
7745}
7746
fb0459d7
AV
7747/**
7748 * perf_event_create_kernel_counter
7749 *
7750 * @attr: attributes of the counter to create
7751 * @cpu: cpu in which the counter is bound
38a81da2 7752 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7753 */
7754struct perf_event *
7755perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7756 struct task_struct *task,
4dc0da86
AK
7757 perf_overflow_handler_t overflow_handler,
7758 void *context)
fb0459d7 7759{
fb0459d7 7760 struct perf_event_context *ctx;
c3f00c70 7761 struct perf_event *event;
fb0459d7 7762 int err;
d859e29f 7763
fb0459d7
AV
7764 /*
7765 * Get the target context (task or percpu):
7766 */
d859e29f 7767
4dc0da86
AK
7768 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7769 overflow_handler, context);
c3f00c70
PZ
7770 if (IS_ERR(event)) {
7771 err = PTR_ERR(event);
7772 goto err;
7773 }
d859e29f 7774
f8697762
JO
7775 /* Mark owner so we could distinguish it from user events. */
7776 event->owner = EVENT_OWNER_KERNEL;
7777
766d6c07
FW
7778 account_event(event);
7779
4af57ef2 7780 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
7781 if (IS_ERR(ctx)) {
7782 err = PTR_ERR(ctx);
c3f00c70 7783 goto err_free;
d859e29f 7784 }
fb0459d7 7785
fb0459d7
AV
7786 WARN_ON_ONCE(ctx->parent_ctx);
7787 mutex_lock(&ctx->mutex);
7788 perf_install_in_context(ctx, event, cpu);
fe4b04fa 7789 perf_unpin_context(ctx);
fb0459d7
AV
7790 mutex_unlock(&ctx->mutex);
7791
fb0459d7
AV
7792 return event;
7793
c3f00c70
PZ
7794err_free:
7795 free_event(event);
7796err:
c6567f64 7797 return ERR_PTR(err);
9b51f66d 7798}
fb0459d7 7799EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7800
0cda4c02
YZ
7801void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7802{
7803 struct perf_event_context *src_ctx;
7804 struct perf_event_context *dst_ctx;
7805 struct perf_event *event, *tmp;
7806 LIST_HEAD(events);
7807
7808 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7809 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7810
f63a8daa
PZ
7811 /*
7812 * See perf_event_ctx_lock() for comments on the details
7813 * of swizzling perf_event::ctx.
7814 */
7815 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
7816 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7817 event_entry) {
46ce0fe9 7818 perf_remove_from_context(event, false);
9a545de0 7819 unaccount_event_cpu(event, src_cpu);
0cda4c02 7820 put_ctx(src_ctx);
9886167d 7821 list_add(&event->migrate_entry, &events);
0cda4c02 7822 }
0cda4c02 7823
8f95b435
PZI
7824 /*
7825 * Wait for the events to quiesce before re-instating them.
7826 */
0cda4c02
YZ
7827 synchronize_rcu();
7828
8f95b435
PZI
7829 /*
7830 * Re-instate events in 2 passes.
7831 *
7832 * Skip over group leaders and only install siblings on this first
7833 * pass, siblings will not get enabled without a leader, however a
7834 * leader will enable its siblings, even if those are still on the old
7835 * context.
7836 */
7837 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7838 if (event->group_leader == event)
7839 continue;
7840
7841 list_del(&event->migrate_entry);
7842 if (event->state >= PERF_EVENT_STATE_OFF)
7843 event->state = PERF_EVENT_STATE_INACTIVE;
7844 account_event_cpu(event, dst_cpu);
7845 perf_install_in_context(dst_ctx, event, dst_cpu);
7846 get_ctx(dst_ctx);
7847 }
7848
7849 /*
7850 * Once all the siblings are setup properly, install the group leaders
7851 * to make it go.
7852 */
9886167d
PZ
7853 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7854 list_del(&event->migrate_entry);
0cda4c02
YZ
7855 if (event->state >= PERF_EVENT_STATE_OFF)
7856 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7857 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7858 perf_install_in_context(dst_ctx, event, dst_cpu);
7859 get_ctx(dst_ctx);
7860 }
7861 mutex_unlock(&dst_ctx->mutex);
f63a8daa 7862 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
7863}
7864EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7865
cdd6c482 7866static void sync_child_event(struct perf_event *child_event,
38b200d6 7867 struct task_struct *child)
d859e29f 7868{
cdd6c482 7869 struct perf_event *parent_event = child_event->parent;
8bc20959 7870 u64 child_val;
d859e29f 7871
cdd6c482
IM
7872 if (child_event->attr.inherit_stat)
7873 perf_event_read_event(child_event, child);
38b200d6 7874
b5e58793 7875 child_val = perf_event_count(child_event);
d859e29f
PM
7876
7877 /*
7878 * Add back the child's count to the parent's count:
7879 */
a6e6dea6 7880 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7881 atomic64_add(child_event->total_time_enabled,
7882 &parent_event->child_total_time_enabled);
7883 atomic64_add(child_event->total_time_running,
7884 &parent_event->child_total_time_running);
d859e29f
PM
7885
7886 /*
cdd6c482 7887 * Remove this event from the parent's list
d859e29f 7888 */
cdd6c482
IM
7889 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7890 mutex_lock(&parent_event->child_mutex);
7891 list_del_init(&child_event->child_list);
7892 mutex_unlock(&parent_event->child_mutex);
d859e29f 7893
dc633982
JO
7894 /*
7895 * Make sure user/parent get notified, that we just
7896 * lost one event.
7897 */
7898 perf_event_wakeup(parent_event);
7899
d859e29f 7900 /*
cdd6c482 7901 * Release the parent event, if this was the last
d859e29f
PM
7902 * reference to it.
7903 */
a6fa941d 7904 put_event(parent_event);
d859e29f
PM
7905}
7906
9b51f66d 7907static void
cdd6c482
IM
7908__perf_event_exit_task(struct perf_event *child_event,
7909 struct perf_event_context *child_ctx,
38b200d6 7910 struct task_struct *child)
9b51f66d 7911{
1903d50c
PZ
7912 /*
7913 * Do not destroy the 'original' grouping; because of the context
7914 * switch optimization the original events could've ended up in a
7915 * random child task.
7916 *
7917 * If we were to destroy the original group, all group related
7918 * operations would cease to function properly after this random
7919 * child dies.
7920 *
7921 * Do destroy all inherited groups, we don't care about those
7922 * and being thorough is better.
7923 */
7924 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 7925
9b51f66d 7926 /*
38b435b1 7927 * It can happen that the parent exits first, and has events
9b51f66d 7928 * that are still around due to the child reference. These
38b435b1 7929 * events need to be zapped.
9b51f66d 7930 */
38b435b1 7931 if (child_event->parent) {
cdd6c482
IM
7932 sync_child_event(child_event, child);
7933 free_event(child_event);
179033b3
JO
7934 } else {
7935 child_event->state = PERF_EVENT_STATE_EXIT;
7936 perf_event_wakeup(child_event);
4bcf349a 7937 }
9b51f66d
IM
7938}
7939
8dc85d54 7940static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7941{
ebf905fc 7942 struct perf_event *child_event, *next;
211de6eb 7943 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 7944 unsigned long flags;
9b51f66d 7945
8dc85d54 7946 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7947 perf_event_task(child, NULL, 0);
9b51f66d 7948 return;
9f498cc5 7949 }
9b51f66d 7950
a63eaf34 7951 local_irq_save(flags);
ad3a37de
PM
7952 /*
7953 * We can't reschedule here because interrupts are disabled,
7954 * and either child is current or it is a task that can't be
7955 * scheduled, so we are now safe from rescheduling changing
7956 * our context.
7957 */
806839b2 7958 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7959
7960 /*
7961 * Take the context lock here so that if find_get_context is
cdd6c482 7962 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7963 * incremented the context's refcount before we do put_ctx below.
7964 */
e625cce1 7965 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7966 task_ctx_sched_out(child_ctx);
8dc85d54 7967 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 7968
71a851b4
PZ
7969 /*
7970 * If this context is a clone; unclone it so it can't get
7971 * swapped to another process while we're removing all
cdd6c482 7972 * the events from it.
71a851b4 7973 */
211de6eb 7974 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 7975 update_context_time(child_ctx);
e625cce1 7976 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 7977
211de6eb
PZ
7978 if (clone_ctx)
7979 put_ctx(clone_ctx);
4a1c0f26 7980
9f498cc5 7981 /*
cdd6c482
IM
7982 * Report the task dead after unscheduling the events so that we
7983 * won't get any samples after PERF_RECORD_EXIT. We can however still
7984 * get a few PERF_RECORD_READ events.
9f498cc5 7985 */
cdd6c482 7986 perf_event_task(child, child_ctx, 0);
a63eaf34 7987
66fff224
PZ
7988 /*
7989 * We can recurse on the same lock type through:
7990 *
cdd6c482
IM
7991 * __perf_event_exit_task()
7992 * sync_child_event()
a6fa941d
AV
7993 * put_event()
7994 * mutex_lock(&ctx->mutex)
66fff224
PZ
7995 *
7996 * But since its the parent context it won't be the same instance.
7997 */
a0507c84 7998 mutex_lock(&child_ctx->mutex);
a63eaf34 7999
ebf905fc 8000 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8001 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8002
a63eaf34
PM
8003 mutex_unlock(&child_ctx->mutex);
8004
8005 put_ctx(child_ctx);
9b51f66d
IM
8006}
8007
8dc85d54
PZ
8008/*
8009 * When a child task exits, feed back event values to parent events.
8010 */
8011void perf_event_exit_task(struct task_struct *child)
8012{
8882135b 8013 struct perf_event *event, *tmp;
8dc85d54
PZ
8014 int ctxn;
8015
8882135b
PZ
8016 mutex_lock(&child->perf_event_mutex);
8017 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8018 owner_entry) {
8019 list_del_init(&event->owner_entry);
8020
8021 /*
8022 * Ensure the list deletion is visible before we clear
8023 * the owner, closes a race against perf_release() where
8024 * we need to serialize on the owner->perf_event_mutex.
8025 */
8026 smp_wmb();
8027 event->owner = NULL;
8028 }
8029 mutex_unlock(&child->perf_event_mutex);
8030
8dc85d54
PZ
8031 for_each_task_context_nr(ctxn)
8032 perf_event_exit_task_context(child, ctxn);
8033}
8034
889ff015
FW
8035static void perf_free_event(struct perf_event *event,
8036 struct perf_event_context *ctx)
8037{
8038 struct perf_event *parent = event->parent;
8039
8040 if (WARN_ON_ONCE(!parent))
8041 return;
8042
8043 mutex_lock(&parent->child_mutex);
8044 list_del_init(&event->child_list);
8045 mutex_unlock(&parent->child_mutex);
8046
a6fa941d 8047 put_event(parent);
889ff015 8048
652884fe 8049 raw_spin_lock_irq(&ctx->lock);
8a49542c 8050 perf_group_detach(event);
889ff015 8051 list_del_event(event, ctx);
652884fe 8052 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8053 free_event(event);
8054}
8055
bbbee908 8056/*
652884fe 8057 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8058 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8059 *
8060 * Not all locks are strictly required, but take them anyway to be nice and
8061 * help out with the lockdep assertions.
bbbee908 8062 */
cdd6c482 8063void perf_event_free_task(struct task_struct *task)
bbbee908 8064{
8dc85d54 8065 struct perf_event_context *ctx;
cdd6c482 8066 struct perf_event *event, *tmp;
8dc85d54 8067 int ctxn;
bbbee908 8068
8dc85d54
PZ
8069 for_each_task_context_nr(ctxn) {
8070 ctx = task->perf_event_ctxp[ctxn];
8071 if (!ctx)
8072 continue;
bbbee908 8073
8dc85d54 8074 mutex_lock(&ctx->mutex);
bbbee908 8075again:
8dc85d54
PZ
8076 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8077 group_entry)
8078 perf_free_event(event, ctx);
bbbee908 8079
8dc85d54
PZ
8080 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8081 group_entry)
8082 perf_free_event(event, ctx);
bbbee908 8083
8dc85d54
PZ
8084 if (!list_empty(&ctx->pinned_groups) ||
8085 !list_empty(&ctx->flexible_groups))
8086 goto again;
bbbee908 8087
8dc85d54 8088 mutex_unlock(&ctx->mutex);
bbbee908 8089
8dc85d54
PZ
8090 put_ctx(ctx);
8091 }
889ff015
FW
8092}
8093
4e231c79
PZ
8094void perf_event_delayed_put(struct task_struct *task)
8095{
8096 int ctxn;
8097
8098 for_each_task_context_nr(ctxn)
8099 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8100}
8101
97dee4f3
PZ
8102/*
8103 * inherit a event from parent task to child task:
8104 */
8105static struct perf_event *
8106inherit_event(struct perf_event *parent_event,
8107 struct task_struct *parent,
8108 struct perf_event_context *parent_ctx,
8109 struct task_struct *child,
8110 struct perf_event *group_leader,
8111 struct perf_event_context *child_ctx)
8112{
1929def9 8113 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8114 struct perf_event *child_event;
cee010ec 8115 unsigned long flags;
97dee4f3
PZ
8116
8117 /*
8118 * Instead of creating recursive hierarchies of events,
8119 * we link inherited events back to the original parent,
8120 * which has a filp for sure, which we use as the reference
8121 * count:
8122 */
8123 if (parent_event->parent)
8124 parent_event = parent_event->parent;
8125
8126 child_event = perf_event_alloc(&parent_event->attr,
8127 parent_event->cpu,
d580ff86 8128 child,
97dee4f3 8129 group_leader, parent_event,
4dc0da86 8130 NULL, NULL);
97dee4f3
PZ
8131 if (IS_ERR(child_event))
8132 return child_event;
a6fa941d 8133
fadfe7be
JO
8134 if (is_orphaned_event(parent_event) ||
8135 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8136 free_event(child_event);
8137 return NULL;
8138 }
8139
97dee4f3
PZ
8140 get_ctx(child_ctx);
8141
8142 /*
8143 * Make the child state follow the state of the parent event,
8144 * not its attr.disabled bit. We hold the parent's mutex,
8145 * so we won't race with perf_event_{en, dis}able_family.
8146 */
1929def9 8147 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8148 child_event->state = PERF_EVENT_STATE_INACTIVE;
8149 else
8150 child_event->state = PERF_EVENT_STATE_OFF;
8151
8152 if (parent_event->attr.freq) {
8153 u64 sample_period = parent_event->hw.sample_period;
8154 struct hw_perf_event *hwc = &child_event->hw;
8155
8156 hwc->sample_period = sample_period;
8157 hwc->last_period = sample_period;
8158
8159 local64_set(&hwc->period_left, sample_period);
8160 }
8161
8162 child_event->ctx = child_ctx;
8163 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8164 child_event->overflow_handler_context
8165 = parent_event->overflow_handler_context;
97dee4f3 8166
614b6780
TG
8167 /*
8168 * Precalculate sample_data sizes
8169 */
8170 perf_event__header_size(child_event);
6844c09d 8171 perf_event__id_header_size(child_event);
614b6780 8172
97dee4f3
PZ
8173 /*
8174 * Link it up in the child's context:
8175 */
cee010ec 8176 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8177 add_event_to_ctx(child_event, child_ctx);
cee010ec 8178 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8179
97dee4f3
PZ
8180 /*
8181 * Link this into the parent event's child list
8182 */
8183 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8184 mutex_lock(&parent_event->child_mutex);
8185 list_add_tail(&child_event->child_list, &parent_event->child_list);
8186 mutex_unlock(&parent_event->child_mutex);
8187
8188 return child_event;
8189}
8190
8191static int inherit_group(struct perf_event *parent_event,
8192 struct task_struct *parent,
8193 struct perf_event_context *parent_ctx,
8194 struct task_struct *child,
8195 struct perf_event_context *child_ctx)
8196{
8197 struct perf_event *leader;
8198 struct perf_event *sub;
8199 struct perf_event *child_ctr;
8200
8201 leader = inherit_event(parent_event, parent, parent_ctx,
8202 child, NULL, child_ctx);
8203 if (IS_ERR(leader))
8204 return PTR_ERR(leader);
8205 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8206 child_ctr = inherit_event(sub, parent, parent_ctx,
8207 child, leader, child_ctx);
8208 if (IS_ERR(child_ctr))
8209 return PTR_ERR(child_ctr);
8210 }
8211 return 0;
889ff015
FW
8212}
8213
8214static int
8215inherit_task_group(struct perf_event *event, struct task_struct *parent,
8216 struct perf_event_context *parent_ctx,
8dc85d54 8217 struct task_struct *child, int ctxn,
889ff015
FW
8218 int *inherited_all)
8219{
8220 int ret;
8dc85d54 8221 struct perf_event_context *child_ctx;
889ff015
FW
8222
8223 if (!event->attr.inherit) {
8224 *inherited_all = 0;
8225 return 0;
bbbee908
PZ
8226 }
8227
fe4b04fa 8228 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
8229 if (!child_ctx) {
8230 /*
8231 * This is executed from the parent task context, so
8232 * inherit events that have been marked for cloning.
8233 * First allocate and initialize a context for the
8234 * child.
8235 */
bbbee908 8236
734df5ab 8237 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
8238 if (!child_ctx)
8239 return -ENOMEM;
bbbee908 8240
8dc85d54 8241 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
8242 }
8243
8244 ret = inherit_group(event, parent, parent_ctx,
8245 child, child_ctx);
8246
8247 if (ret)
8248 *inherited_all = 0;
8249
8250 return ret;
bbbee908
PZ
8251}
8252
9b51f66d 8253/*
cdd6c482 8254 * Initialize the perf_event context in task_struct
9b51f66d 8255 */
985c8dcb 8256static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 8257{
889ff015 8258 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
8259 struct perf_event_context *cloned_ctx;
8260 struct perf_event *event;
9b51f66d 8261 struct task_struct *parent = current;
564c2b21 8262 int inherited_all = 1;
dddd3379 8263 unsigned long flags;
6ab423e0 8264 int ret = 0;
9b51f66d 8265
8dc85d54 8266 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
8267 return 0;
8268
ad3a37de 8269 /*
25346b93
PM
8270 * If the parent's context is a clone, pin it so it won't get
8271 * swapped under us.
ad3a37de 8272 */
8dc85d54 8273 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
8274 if (!parent_ctx)
8275 return 0;
25346b93 8276
ad3a37de
PM
8277 /*
8278 * No need to check if parent_ctx != NULL here; since we saw
8279 * it non-NULL earlier, the only reason for it to become NULL
8280 * is if we exit, and since we're currently in the middle of
8281 * a fork we can't be exiting at the same time.
8282 */
ad3a37de 8283
9b51f66d
IM
8284 /*
8285 * Lock the parent list. No need to lock the child - not PID
8286 * hashed yet and not running, so nobody can access it.
8287 */
d859e29f 8288 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
8289
8290 /*
8291 * We dont have to disable NMIs - we are only looking at
8292 * the list, not manipulating it:
8293 */
889ff015 8294 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
8295 ret = inherit_task_group(event, parent, parent_ctx,
8296 child, ctxn, &inherited_all);
889ff015
FW
8297 if (ret)
8298 break;
8299 }
b93f7978 8300
dddd3379
TG
8301 /*
8302 * We can't hold ctx->lock when iterating the ->flexible_group list due
8303 * to allocations, but we need to prevent rotation because
8304 * rotate_ctx() will change the list from interrupt context.
8305 */
8306 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8307 parent_ctx->rotate_disable = 1;
8308 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8309
889ff015 8310 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
8311 ret = inherit_task_group(event, parent, parent_ctx,
8312 child, ctxn, &inherited_all);
889ff015 8313 if (ret)
9b51f66d 8314 break;
564c2b21
PM
8315 }
8316
dddd3379
TG
8317 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8318 parent_ctx->rotate_disable = 0;
dddd3379 8319
8dc85d54 8320 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 8321
05cbaa28 8322 if (child_ctx && inherited_all) {
564c2b21
PM
8323 /*
8324 * Mark the child context as a clone of the parent
8325 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
8326 *
8327 * Note that if the parent is a clone, the holding of
8328 * parent_ctx->lock avoids it from being uncloned.
564c2b21 8329 */
c5ed5145 8330 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
8331 if (cloned_ctx) {
8332 child_ctx->parent_ctx = cloned_ctx;
25346b93 8333 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
8334 } else {
8335 child_ctx->parent_ctx = parent_ctx;
8336 child_ctx->parent_gen = parent_ctx->generation;
8337 }
8338 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
8339 }
8340
c5ed5145 8341 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 8342 mutex_unlock(&parent_ctx->mutex);
6ab423e0 8343
25346b93 8344 perf_unpin_context(parent_ctx);
fe4b04fa 8345 put_ctx(parent_ctx);
ad3a37de 8346
6ab423e0 8347 return ret;
9b51f66d
IM
8348}
8349
8dc85d54
PZ
8350/*
8351 * Initialize the perf_event context in task_struct
8352 */
8353int perf_event_init_task(struct task_struct *child)
8354{
8355 int ctxn, ret;
8356
8550d7cb
ON
8357 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8358 mutex_init(&child->perf_event_mutex);
8359 INIT_LIST_HEAD(&child->perf_event_list);
8360
8dc85d54
PZ
8361 for_each_task_context_nr(ctxn) {
8362 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
8363 if (ret) {
8364 perf_event_free_task(child);
8dc85d54 8365 return ret;
6c72e350 8366 }
8dc85d54
PZ
8367 }
8368
8369 return 0;
8370}
8371
220b140b
PM
8372static void __init perf_event_init_all_cpus(void)
8373{
b28ab83c 8374 struct swevent_htable *swhash;
220b140b 8375 int cpu;
220b140b
PM
8376
8377 for_each_possible_cpu(cpu) {
b28ab83c
PZ
8378 swhash = &per_cpu(swevent_htable, cpu);
8379 mutex_init(&swhash->hlist_mutex);
2fde4f94 8380 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
8381 }
8382}
8383
0db0628d 8384static void perf_event_init_cpu(int cpu)
0793a61d 8385{
108b02cf 8386 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 8387
b28ab83c 8388 mutex_lock(&swhash->hlist_mutex);
39af6b16 8389 swhash->online = true;
4536e4d1 8390 if (swhash->hlist_refcount > 0) {
76e1d904
FW
8391 struct swevent_hlist *hlist;
8392
b28ab83c
PZ
8393 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8394 WARN_ON(!hlist);
8395 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8396 }
b28ab83c 8397 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8398}
8399
c277443c 8400#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
108b02cf 8401static void __perf_event_exit_context(void *__info)
0793a61d 8402{
226424ee 8403 struct remove_event re = { .detach_group = true };
108b02cf 8404 struct perf_event_context *ctx = __info;
0793a61d 8405
e3703f8c 8406 rcu_read_lock();
46ce0fe9
PZ
8407 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8408 __perf_remove_from_context(&re);
e3703f8c 8409 rcu_read_unlock();
0793a61d 8410}
108b02cf
PZ
8411
8412static void perf_event_exit_cpu_context(int cpu)
8413{
8414 struct perf_event_context *ctx;
8415 struct pmu *pmu;
8416 int idx;
8417
8418 idx = srcu_read_lock(&pmus_srcu);
8419 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 8420 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
8421
8422 mutex_lock(&ctx->mutex);
8423 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8424 mutex_unlock(&ctx->mutex);
8425 }
8426 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
8427}
8428
cdd6c482 8429static void perf_event_exit_cpu(int cpu)
0793a61d 8430{
b28ab83c 8431 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 8432
e3703f8c
PZ
8433 perf_event_exit_cpu_context(cpu);
8434
b28ab83c 8435 mutex_lock(&swhash->hlist_mutex);
39af6b16 8436 swhash->online = false;
b28ab83c
PZ
8437 swevent_hlist_release(swhash);
8438 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8439}
8440#else
cdd6c482 8441static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
8442#endif
8443
c277443c
PZ
8444static int
8445perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8446{
8447 int cpu;
8448
8449 for_each_online_cpu(cpu)
8450 perf_event_exit_cpu(cpu);
8451
8452 return NOTIFY_OK;
8453}
8454
8455/*
8456 * Run the perf reboot notifier at the very last possible moment so that
8457 * the generic watchdog code runs as long as possible.
8458 */
8459static struct notifier_block perf_reboot_notifier = {
8460 .notifier_call = perf_reboot,
8461 .priority = INT_MIN,
8462};
8463
0db0628d 8464static int
0793a61d
TG
8465perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8466{
8467 unsigned int cpu = (long)hcpu;
8468
4536e4d1 8469 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
8470
8471 case CPU_UP_PREPARE:
5e11637e 8472 case CPU_DOWN_FAILED:
cdd6c482 8473 perf_event_init_cpu(cpu);
0793a61d
TG
8474 break;
8475
5e11637e 8476 case CPU_UP_CANCELED:
0793a61d 8477 case CPU_DOWN_PREPARE:
cdd6c482 8478 perf_event_exit_cpu(cpu);
0793a61d 8479 break;
0793a61d
TG
8480 default:
8481 break;
8482 }
8483
8484 return NOTIFY_OK;
8485}
8486
cdd6c482 8487void __init perf_event_init(void)
0793a61d 8488{
3c502e7a
JW
8489 int ret;
8490
2e80a82a
PZ
8491 idr_init(&pmu_idr);
8492
220b140b 8493 perf_event_init_all_cpus();
b0a873eb 8494 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
8495 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8496 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8497 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
8498 perf_tp_register();
8499 perf_cpu_notifier(perf_cpu_notify);
c277443c 8500 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
8501
8502 ret = init_hw_breakpoint();
8503 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
8504
8505 /* do not patch jump label more than once per second */
8506 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
8507
8508 /*
8509 * Build time assertion that we keep the data_head at the intended
8510 * location. IOW, validation we got the __reserved[] size right.
8511 */
8512 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8513 != 1024);
0793a61d 8514}
abe43400
PZ
8515
8516static int __init perf_event_sysfs_init(void)
8517{
8518 struct pmu *pmu;
8519 int ret;
8520
8521 mutex_lock(&pmus_lock);
8522
8523 ret = bus_register(&pmu_bus);
8524 if (ret)
8525 goto unlock;
8526
8527 list_for_each_entry(pmu, &pmus, entry) {
8528 if (!pmu->name || pmu->type < 0)
8529 continue;
8530
8531 ret = pmu_dev_alloc(pmu);
8532 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8533 }
8534 pmu_bus_running = 1;
8535 ret = 0;
8536
8537unlock:
8538 mutex_unlock(&pmus_lock);
8539
8540 return ret;
8541}
8542device_initcall(perf_event_sysfs_init);
e5d1367f
SE
8543
8544#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
8545static struct cgroup_subsys_state *
8546perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
8547{
8548 struct perf_cgroup *jc;
e5d1367f 8549
1b15d055 8550 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
8551 if (!jc)
8552 return ERR_PTR(-ENOMEM);
8553
e5d1367f
SE
8554 jc->info = alloc_percpu(struct perf_cgroup_info);
8555 if (!jc->info) {
8556 kfree(jc);
8557 return ERR_PTR(-ENOMEM);
8558 }
8559
e5d1367f
SE
8560 return &jc->css;
8561}
8562
eb95419b 8563static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 8564{
eb95419b
TH
8565 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8566
e5d1367f
SE
8567 free_percpu(jc->info);
8568 kfree(jc);
8569}
8570
8571static int __perf_cgroup_move(void *info)
8572{
8573 struct task_struct *task = info;
8574 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8575 return 0;
8576}
8577
eb95419b
TH
8578static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8579 struct cgroup_taskset *tset)
e5d1367f 8580{
bb9d97b6
TH
8581 struct task_struct *task;
8582
924f0d9a 8583 cgroup_taskset_for_each(task, tset)
bb9d97b6 8584 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8585}
8586
eb95419b
TH
8587static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8588 struct cgroup_subsys_state *old_css,
761b3ef5 8589 struct task_struct *task)
e5d1367f
SE
8590{
8591 /*
8592 * cgroup_exit() is called in the copy_process() failure path.
8593 * Ignore this case since the task hasn't ran yet, this avoids
8594 * trying to poke a half freed task state from generic code.
8595 */
8596 if (!(task->flags & PF_EXITING))
8597 return;
8598
bb9d97b6 8599 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8600}
8601
073219e9 8602struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
8603 .css_alloc = perf_cgroup_css_alloc,
8604 .css_free = perf_cgroup_css_free,
e7e7ee2e 8605 .exit = perf_cgroup_exit,
bb9d97b6 8606 .attach = perf_cgroup_attach,
e5d1367f
SE
8607};
8608#endif /* CONFIG_CGROUP_PERF */