tools/perf: Fix sorting for 64bit entries
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
0793a61d 42
76369139
FW
43#include "internal.h"
44
4e193bd4
TB
45#include <asm/irq_regs.h>
46
fe4b04fa 47struct remote_function_call {
e7e7ee2e
IM
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
fe4b04fa
PZ
52};
53
54static void remote_function(void *data)
55{
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66}
67
68/**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81static int
82task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83{
84 struct remote_function_call data = {
e7e7ee2e
IM
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95}
96
97/**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107{
108 struct remote_function_call data = {
e7e7ee2e
IM
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118}
119
e5d1367f
SE
120#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
bce38cd5
SE
124/*
125 * branch priv levels that need permission checks
126 */
127#define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
0b3fcf17
SE
131enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135};
136
e5d1367f
SE
137/*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
c5905afb 141struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 142static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 143static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 144
cdd6c482
IM
145static atomic_t nr_mmap_events __read_mostly;
146static atomic_t nr_comm_events __read_mostly;
147static atomic_t nr_task_events __read_mostly;
948b26b6 148static atomic_t nr_freq_events __read_mostly;
9ee318a7 149
108b02cf
PZ
150static LIST_HEAD(pmus);
151static DEFINE_MUTEX(pmus_lock);
152static struct srcu_struct pmus_srcu;
153
0764771d 154/*
cdd6c482 155 * perf event paranoia level:
0fbdea19
IM
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 158 * 1 - disallow cpu events for unpriv
0fbdea19 159 * 2 - disallow kernel profiling for unpriv
0764771d 160 */
cdd6c482 161int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 162
20443384
FW
163/* Minimum for 512 kiB + 1 user control page */
164int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
165
166/*
cdd6c482 167 * max perf event sample rate
df58ab24 168 */
14c63f17
DH
169#define DEFAULT_MAX_SAMPLE_RATE 100000
170#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171#define DEFAULT_CPU_TIME_MAX_PERCENT 25
172
173int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
174
175static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
177
178static atomic_t perf_sample_allowed_ns __read_mostly =
179 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
180
181void update_perf_cpu_limits(void)
182{
183 u64 tmp = perf_sample_period_ns;
184
185 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 186 do_div(tmp, 100);
14c63f17
DH
187 atomic_set(&perf_sample_allowed_ns, tmp);
188}
163ec435 189
9e630205
SE
190static int perf_rotate_context(struct perf_cpu_context *cpuctx);
191
163ec435
PZ
192int perf_proc_update_handler(struct ctl_table *table, int write,
193 void __user *buffer, size_t *lenp,
194 loff_t *ppos)
195{
196 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
197
198 if (ret || !write)
199 return ret;
200
201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 update_perf_cpu_limits();
204
205 return 0;
206}
207
208int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
209
210int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
214 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 update_perf_cpu_limits();
163ec435
PZ
220
221 return 0;
222}
1ccd1549 223
14c63f17
DH
224/*
225 * perf samples are done in some very critical code paths (NMIs).
226 * If they take too much CPU time, the system can lock up and not
227 * get any real work done. This will drop the sample rate when
228 * we detect that events are taking too long.
229 */
230#define NR_ACCUMULATED_SAMPLES 128
231DEFINE_PER_CPU(u64, running_sample_length);
232
233void perf_sample_event_took(u64 sample_len_ns)
234{
235 u64 avg_local_sample_len;
e5302920 236 u64 local_samples_len;
14c63f17
DH
237
238 if (atomic_read(&perf_sample_allowed_ns) == 0)
239 return;
240
241 /* decay the counter by 1 average sample */
242 local_samples_len = __get_cpu_var(running_sample_length);
243 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
244 local_samples_len += sample_len_ns;
245 __get_cpu_var(running_sample_length) = local_samples_len;
246
247 /*
248 * note: this will be biased artifically low until we have
249 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
250 * from having to maintain a count.
251 */
252 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
253
254 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
255 return;
256
257 if (max_samples_per_tick <= 1)
258 return;
259
260 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
261 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
262 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
263
264 printk_ratelimited(KERN_WARNING
265 "perf samples too long (%lld > %d), lowering "
266 "kernel.perf_event_max_sample_rate to %d\n",
267 avg_local_sample_len,
268 atomic_read(&perf_sample_allowed_ns),
269 sysctl_perf_event_sample_rate);
270
271 update_perf_cpu_limits();
272}
273
cdd6c482 274static atomic64_t perf_event_id;
a96bbc16 275
0b3fcf17
SE
276static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 enum event_type_t event_type);
278
279static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
280 enum event_type_t event_type,
281 struct task_struct *task);
282
283static void update_context_time(struct perf_event_context *ctx);
284static u64 perf_event_time(struct perf_event *event);
0b3fcf17 285
cdd6c482 286void __weak perf_event_print_debug(void) { }
0793a61d 287
84c79910 288extern __weak const char *perf_pmu_name(void)
0793a61d 289{
84c79910 290 return "pmu";
0793a61d
TG
291}
292
0b3fcf17
SE
293static inline u64 perf_clock(void)
294{
295 return local_clock();
296}
297
e5d1367f
SE
298static inline struct perf_cpu_context *
299__get_cpu_context(struct perf_event_context *ctx)
300{
301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
302}
303
facc4307
PZ
304static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 struct perf_event_context *ctx)
306{
307 raw_spin_lock(&cpuctx->ctx.lock);
308 if (ctx)
309 raw_spin_lock(&ctx->lock);
310}
311
312static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 struct perf_event_context *ctx)
314{
315 if (ctx)
316 raw_spin_unlock(&ctx->lock);
317 raw_spin_unlock(&cpuctx->ctx.lock);
318}
319
e5d1367f
SE
320#ifdef CONFIG_CGROUP_PERF
321
877c6856
LZ
322/*
323 * perf_cgroup_info keeps track of time_enabled for a cgroup.
324 * This is a per-cpu dynamically allocated data structure.
325 */
326struct perf_cgroup_info {
327 u64 time;
328 u64 timestamp;
329};
330
331struct perf_cgroup {
332 struct cgroup_subsys_state css;
86e213e1 333 struct perf_cgroup_info __percpu *info;
877c6856
LZ
334};
335
3f7cce3c
SE
336/*
337 * Must ensure cgroup is pinned (css_get) before calling
338 * this function. In other words, we cannot call this function
339 * if there is no cgroup event for the current CPU context.
340 */
e5d1367f
SE
341static inline struct perf_cgroup *
342perf_cgroup_from_task(struct task_struct *task)
343{
8af01f56
TH
344 return container_of(task_css(task, perf_subsys_id),
345 struct perf_cgroup, css);
e5d1367f
SE
346}
347
348static inline bool
349perf_cgroup_match(struct perf_event *event)
350{
351 struct perf_event_context *ctx = event->ctx;
352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
353
ef824fa1
TH
354 /* @event doesn't care about cgroup */
355 if (!event->cgrp)
356 return true;
357
358 /* wants specific cgroup scope but @cpuctx isn't associated with any */
359 if (!cpuctx->cgrp)
360 return false;
361
362 /*
363 * Cgroup scoping is recursive. An event enabled for a cgroup is
364 * also enabled for all its descendant cgroups. If @cpuctx's
365 * cgroup is a descendant of @event's (the test covers identity
366 * case), it's a match.
367 */
368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 event->cgrp->css.cgroup);
e5d1367f
SE
370}
371
9c5da09d 372static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 373{
9c5da09d 374 return css_tryget(&event->cgrp->css);
e5d1367f
SE
375}
376
377static inline void perf_put_cgroup(struct perf_event *event)
378{
379 css_put(&event->cgrp->css);
380}
381
382static inline void perf_detach_cgroup(struct perf_event *event)
383{
384 perf_put_cgroup(event);
385 event->cgrp = NULL;
386}
387
388static inline int is_cgroup_event(struct perf_event *event)
389{
390 return event->cgrp != NULL;
391}
392
393static inline u64 perf_cgroup_event_time(struct perf_event *event)
394{
395 struct perf_cgroup_info *t;
396
397 t = per_cpu_ptr(event->cgrp->info, event->cpu);
398 return t->time;
399}
400
401static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
402{
403 struct perf_cgroup_info *info;
404 u64 now;
405
406 now = perf_clock();
407
408 info = this_cpu_ptr(cgrp->info);
409
410 info->time += now - info->timestamp;
411 info->timestamp = now;
412}
413
414static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
415{
416 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
417 if (cgrp_out)
418 __update_cgrp_time(cgrp_out);
419}
420
421static inline void update_cgrp_time_from_event(struct perf_event *event)
422{
3f7cce3c
SE
423 struct perf_cgroup *cgrp;
424
e5d1367f 425 /*
3f7cce3c
SE
426 * ensure we access cgroup data only when needed and
427 * when we know the cgroup is pinned (css_get)
e5d1367f 428 */
3f7cce3c 429 if (!is_cgroup_event(event))
e5d1367f
SE
430 return;
431
3f7cce3c
SE
432 cgrp = perf_cgroup_from_task(current);
433 /*
434 * Do not update time when cgroup is not active
435 */
436 if (cgrp == event->cgrp)
437 __update_cgrp_time(event->cgrp);
e5d1367f
SE
438}
439
440static inline void
3f7cce3c
SE
441perf_cgroup_set_timestamp(struct task_struct *task,
442 struct perf_event_context *ctx)
e5d1367f
SE
443{
444 struct perf_cgroup *cgrp;
445 struct perf_cgroup_info *info;
446
3f7cce3c
SE
447 /*
448 * ctx->lock held by caller
449 * ensure we do not access cgroup data
450 * unless we have the cgroup pinned (css_get)
451 */
452 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
453 return;
454
455 cgrp = perf_cgroup_from_task(task);
456 info = this_cpu_ptr(cgrp->info);
3f7cce3c 457 info->timestamp = ctx->timestamp;
e5d1367f
SE
458}
459
460#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
461#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
462
463/*
464 * reschedule events based on the cgroup constraint of task.
465 *
466 * mode SWOUT : schedule out everything
467 * mode SWIN : schedule in based on cgroup for next
468 */
469void perf_cgroup_switch(struct task_struct *task, int mode)
470{
471 struct perf_cpu_context *cpuctx;
472 struct pmu *pmu;
473 unsigned long flags;
474
475 /*
476 * disable interrupts to avoid geting nr_cgroup
477 * changes via __perf_event_disable(). Also
478 * avoids preemption.
479 */
480 local_irq_save(flags);
481
482 /*
483 * we reschedule only in the presence of cgroup
484 * constrained events.
485 */
486 rcu_read_lock();
487
488 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
490 if (cpuctx->unique_pmu != pmu)
491 continue; /* ensure we process each cpuctx once */
e5d1367f 492
e5d1367f
SE
493 /*
494 * perf_cgroup_events says at least one
495 * context on this CPU has cgroup events.
496 *
497 * ctx->nr_cgroups reports the number of cgroup
498 * events for a context.
499 */
500 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
501 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
503
504 if (mode & PERF_CGROUP_SWOUT) {
505 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
506 /*
507 * must not be done before ctxswout due
508 * to event_filter_match() in event_sched_out()
509 */
510 cpuctx->cgrp = NULL;
511 }
512
513 if (mode & PERF_CGROUP_SWIN) {
e566b76e 514 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
515 /*
516 * set cgrp before ctxsw in to allow
517 * event_filter_match() to not have to pass
518 * task around
e5d1367f
SE
519 */
520 cpuctx->cgrp = perf_cgroup_from_task(task);
521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
522 }
facc4307
PZ
523 perf_pmu_enable(cpuctx->ctx.pmu);
524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 525 }
e5d1367f
SE
526 }
527
528 rcu_read_unlock();
529
530 local_irq_restore(flags);
531}
532
a8d757ef
SE
533static inline void perf_cgroup_sched_out(struct task_struct *task,
534 struct task_struct *next)
e5d1367f 535{
a8d757ef
SE
536 struct perf_cgroup *cgrp1;
537 struct perf_cgroup *cgrp2 = NULL;
538
539 /*
540 * we come here when we know perf_cgroup_events > 0
541 */
542 cgrp1 = perf_cgroup_from_task(task);
543
544 /*
545 * next is NULL when called from perf_event_enable_on_exec()
546 * that will systematically cause a cgroup_switch()
547 */
548 if (next)
549 cgrp2 = perf_cgroup_from_task(next);
550
551 /*
552 * only schedule out current cgroup events if we know
553 * that we are switching to a different cgroup. Otherwise,
554 * do no touch the cgroup events.
555 */
556 if (cgrp1 != cgrp2)
557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
558}
559
a8d757ef
SE
560static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 struct task_struct *task)
e5d1367f 562{
a8d757ef
SE
563 struct perf_cgroup *cgrp1;
564 struct perf_cgroup *cgrp2 = NULL;
565
566 /*
567 * we come here when we know perf_cgroup_events > 0
568 */
569 cgrp1 = perf_cgroup_from_task(task);
570
571 /* prev can never be NULL */
572 cgrp2 = perf_cgroup_from_task(prev);
573
574 /*
575 * only need to schedule in cgroup events if we are changing
576 * cgroup during ctxsw. Cgroup events were not scheduled
577 * out of ctxsw out if that was not the case.
578 */
579 if (cgrp1 != cgrp2)
580 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
581}
582
583static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
586{
587 struct perf_cgroup *cgrp;
588 struct cgroup_subsys_state *css;
2903ff01
AV
589 struct fd f = fdget(fd);
590 int ret = 0;
e5d1367f 591
2903ff01 592 if (!f.file)
e5d1367f
SE
593 return -EBADF;
594
b77d7b60
TH
595 rcu_read_lock();
596
35cf0836 597 css = css_from_dir(f.file->f_dentry, &perf_subsys);
3db272c0
LZ
598 if (IS_ERR(css)) {
599 ret = PTR_ERR(css);
600 goto out;
601 }
e5d1367f
SE
602
603 cgrp = container_of(css, struct perf_cgroup, css);
604 event->cgrp = cgrp;
605
f75e18cb 606 /* must be done before we fput() the file */
9c5da09d
SQ
607 if (!perf_tryget_cgroup(event)) {
608 event->cgrp = NULL;
609 ret = -ENOENT;
610 goto out;
611 }
f75e18cb 612
e5d1367f
SE
613 /*
614 * all events in a group must monitor
615 * the same cgroup because a task belongs
616 * to only one perf cgroup at a time
617 */
618 if (group_leader && group_leader->cgrp != cgrp) {
619 perf_detach_cgroup(event);
620 ret = -EINVAL;
e5d1367f 621 }
3db272c0 622out:
b77d7b60 623 rcu_read_unlock();
2903ff01 624 fdput(f);
e5d1367f
SE
625 return ret;
626}
627
628static inline void
629perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
630{
631 struct perf_cgroup_info *t;
632 t = per_cpu_ptr(event->cgrp->info, event->cpu);
633 event->shadow_ctx_time = now - t->timestamp;
634}
635
636static inline void
637perf_cgroup_defer_enabled(struct perf_event *event)
638{
639 /*
640 * when the current task's perf cgroup does not match
641 * the event's, we need to remember to call the
642 * perf_mark_enable() function the first time a task with
643 * a matching perf cgroup is scheduled in.
644 */
645 if (is_cgroup_event(event) && !perf_cgroup_match(event))
646 event->cgrp_defer_enabled = 1;
647}
648
649static inline void
650perf_cgroup_mark_enabled(struct perf_event *event,
651 struct perf_event_context *ctx)
652{
653 struct perf_event *sub;
654 u64 tstamp = perf_event_time(event);
655
656 if (!event->cgrp_defer_enabled)
657 return;
658
659 event->cgrp_defer_enabled = 0;
660
661 event->tstamp_enabled = tstamp - event->total_time_enabled;
662 list_for_each_entry(sub, &event->sibling_list, group_entry) {
663 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
664 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
665 sub->cgrp_defer_enabled = 0;
666 }
667 }
668}
669#else /* !CONFIG_CGROUP_PERF */
670
671static inline bool
672perf_cgroup_match(struct perf_event *event)
673{
674 return true;
675}
676
677static inline void perf_detach_cgroup(struct perf_event *event)
678{}
679
680static inline int is_cgroup_event(struct perf_event *event)
681{
682 return 0;
683}
684
685static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
686{
687 return 0;
688}
689
690static inline void update_cgrp_time_from_event(struct perf_event *event)
691{
692}
693
694static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
695{
696}
697
a8d757ef
SE
698static inline void perf_cgroup_sched_out(struct task_struct *task,
699 struct task_struct *next)
e5d1367f
SE
700{
701}
702
a8d757ef
SE
703static inline void perf_cgroup_sched_in(struct task_struct *prev,
704 struct task_struct *task)
e5d1367f
SE
705{
706}
707
708static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
709 struct perf_event_attr *attr,
710 struct perf_event *group_leader)
711{
712 return -EINVAL;
713}
714
715static inline void
3f7cce3c
SE
716perf_cgroup_set_timestamp(struct task_struct *task,
717 struct perf_event_context *ctx)
e5d1367f
SE
718{
719}
720
721void
722perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
723{
724}
725
726static inline void
727perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
728{
729}
730
731static inline u64 perf_cgroup_event_time(struct perf_event *event)
732{
733 return 0;
734}
735
736static inline void
737perf_cgroup_defer_enabled(struct perf_event *event)
738{
739}
740
741static inline void
742perf_cgroup_mark_enabled(struct perf_event *event,
743 struct perf_event_context *ctx)
744{
745}
746#endif
747
9e630205
SE
748/*
749 * set default to be dependent on timer tick just
750 * like original code
751 */
752#define PERF_CPU_HRTIMER (1000 / HZ)
753/*
754 * function must be called with interrupts disbled
755 */
756static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
757{
758 struct perf_cpu_context *cpuctx;
759 enum hrtimer_restart ret = HRTIMER_NORESTART;
760 int rotations = 0;
761
762 WARN_ON(!irqs_disabled());
763
764 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
765
766 rotations = perf_rotate_context(cpuctx);
767
768 /*
769 * arm timer if needed
770 */
771 if (rotations) {
772 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
773 ret = HRTIMER_RESTART;
774 }
775
776 return ret;
777}
778
779/* CPU is going down */
780void perf_cpu_hrtimer_cancel(int cpu)
781{
782 struct perf_cpu_context *cpuctx;
783 struct pmu *pmu;
784 unsigned long flags;
785
786 if (WARN_ON(cpu != smp_processor_id()))
787 return;
788
789 local_irq_save(flags);
790
791 rcu_read_lock();
792
793 list_for_each_entry_rcu(pmu, &pmus, entry) {
794 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
795
796 if (pmu->task_ctx_nr == perf_sw_context)
797 continue;
798
799 hrtimer_cancel(&cpuctx->hrtimer);
800 }
801
802 rcu_read_unlock();
803
804 local_irq_restore(flags);
805}
806
807static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
808{
809 struct hrtimer *hr = &cpuctx->hrtimer;
810 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 811 int timer;
9e630205
SE
812
813 /* no multiplexing needed for SW PMU */
814 if (pmu->task_ctx_nr == perf_sw_context)
815 return;
816
62b85639
SE
817 /*
818 * check default is sane, if not set then force to
819 * default interval (1/tick)
820 */
821 timer = pmu->hrtimer_interval_ms;
822 if (timer < 1)
823 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
824
825 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
826
827 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
828 hr->function = perf_cpu_hrtimer_handler;
829}
830
831static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
832{
833 struct hrtimer *hr = &cpuctx->hrtimer;
834 struct pmu *pmu = cpuctx->ctx.pmu;
835
836 /* not for SW PMU */
837 if (pmu->task_ctx_nr == perf_sw_context)
838 return;
839
840 if (hrtimer_active(hr))
841 return;
842
843 if (!hrtimer_callback_running(hr))
844 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
845 0, HRTIMER_MODE_REL_PINNED, 0);
846}
847
33696fc0 848void perf_pmu_disable(struct pmu *pmu)
9e35ad38 849{
33696fc0
PZ
850 int *count = this_cpu_ptr(pmu->pmu_disable_count);
851 if (!(*count)++)
852 pmu->pmu_disable(pmu);
9e35ad38 853}
9e35ad38 854
33696fc0 855void perf_pmu_enable(struct pmu *pmu)
9e35ad38 856{
33696fc0
PZ
857 int *count = this_cpu_ptr(pmu->pmu_disable_count);
858 if (!--(*count))
859 pmu->pmu_enable(pmu);
9e35ad38 860}
9e35ad38 861
e9d2b064
PZ
862static DEFINE_PER_CPU(struct list_head, rotation_list);
863
864/*
865 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
866 * because they're strictly cpu affine and rotate_start is called with IRQs
867 * disabled, while rotate_context is called from IRQ context.
868 */
108b02cf 869static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 870{
108b02cf 871 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 872 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 873
e9d2b064 874 WARN_ON(!irqs_disabled());
b5ab4cd5 875
d84153d6 876 if (list_empty(&cpuctx->rotation_list))
e9d2b064 877 list_add(&cpuctx->rotation_list, head);
9e35ad38 878}
9e35ad38 879
cdd6c482 880static void get_ctx(struct perf_event_context *ctx)
a63eaf34 881{
e5289d4a 882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
883}
884
cdd6c482 885static void put_ctx(struct perf_event_context *ctx)
a63eaf34 886{
564c2b21
PM
887 if (atomic_dec_and_test(&ctx->refcount)) {
888 if (ctx->parent_ctx)
889 put_ctx(ctx->parent_ctx);
c93f7669
PM
890 if (ctx->task)
891 put_task_struct(ctx->task);
cb796ff3 892 kfree_rcu(ctx, rcu_head);
564c2b21 893 }
a63eaf34
PM
894}
895
cdd6c482 896static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
897{
898 if (ctx->parent_ctx) {
899 put_ctx(ctx->parent_ctx);
900 ctx->parent_ctx = NULL;
901 }
902}
903
6844c09d
ACM
904static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
905{
906 /*
907 * only top level events have the pid namespace they were created in
908 */
909 if (event->parent)
910 event = event->parent;
911
912 return task_tgid_nr_ns(p, event->ns);
913}
914
915static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
916{
917 /*
918 * only top level events have the pid namespace they were created in
919 */
920 if (event->parent)
921 event = event->parent;
922
923 return task_pid_nr_ns(p, event->ns);
924}
925
7f453c24 926/*
cdd6c482 927 * If we inherit events we want to return the parent event id
7f453c24
PZ
928 * to userspace.
929 */
cdd6c482 930static u64 primary_event_id(struct perf_event *event)
7f453c24 931{
cdd6c482 932 u64 id = event->id;
7f453c24 933
cdd6c482
IM
934 if (event->parent)
935 id = event->parent->id;
7f453c24
PZ
936
937 return id;
938}
939
25346b93 940/*
cdd6c482 941 * Get the perf_event_context for a task and lock it.
25346b93
PM
942 * This has to cope with with the fact that until it is locked,
943 * the context could get moved to another task.
944 */
cdd6c482 945static struct perf_event_context *
8dc85d54 946perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 947{
cdd6c482 948 struct perf_event_context *ctx;
25346b93 949
9ed6060d 950retry:
058ebd0e
PZ
951 /*
952 * One of the few rules of preemptible RCU is that one cannot do
953 * rcu_read_unlock() while holding a scheduler (or nested) lock when
954 * part of the read side critical section was preemptible -- see
955 * rcu_read_unlock_special().
956 *
957 * Since ctx->lock nests under rq->lock we must ensure the entire read
958 * side critical section is non-preemptible.
959 */
960 preempt_disable();
961 rcu_read_lock();
8dc85d54 962 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
963 if (ctx) {
964 /*
965 * If this context is a clone of another, it might
966 * get swapped for another underneath us by
cdd6c482 967 * perf_event_task_sched_out, though the
25346b93
PM
968 * rcu_read_lock() protects us from any context
969 * getting freed. Lock the context and check if it
970 * got swapped before we could get the lock, and retry
971 * if so. If we locked the right context, then it
972 * can't get swapped on us any more.
973 */
e625cce1 974 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 975 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 976 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
977 rcu_read_unlock();
978 preempt_enable();
25346b93
PM
979 goto retry;
980 }
b49a9e7e
PZ
981
982 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 983 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
984 ctx = NULL;
985 }
25346b93
PM
986 }
987 rcu_read_unlock();
058ebd0e 988 preempt_enable();
25346b93
PM
989 return ctx;
990}
991
992/*
993 * Get the context for a task and increment its pin_count so it
994 * can't get swapped to another task. This also increments its
995 * reference count so that the context can't get freed.
996 */
8dc85d54
PZ
997static struct perf_event_context *
998perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 999{
cdd6c482 1000 struct perf_event_context *ctx;
25346b93
PM
1001 unsigned long flags;
1002
8dc85d54 1003 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1004 if (ctx) {
1005 ++ctx->pin_count;
e625cce1 1006 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1007 }
1008 return ctx;
1009}
1010
cdd6c482 1011static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1012{
1013 unsigned long flags;
1014
e625cce1 1015 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1016 --ctx->pin_count;
e625cce1 1017 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1018}
1019
f67218c3
PZ
1020/*
1021 * Update the record of the current time in a context.
1022 */
1023static void update_context_time(struct perf_event_context *ctx)
1024{
1025 u64 now = perf_clock();
1026
1027 ctx->time += now - ctx->timestamp;
1028 ctx->timestamp = now;
1029}
1030
4158755d
SE
1031static u64 perf_event_time(struct perf_event *event)
1032{
1033 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1034
1035 if (is_cgroup_event(event))
1036 return perf_cgroup_event_time(event);
1037
4158755d
SE
1038 return ctx ? ctx->time : 0;
1039}
1040
f67218c3
PZ
1041/*
1042 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1043 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1044 */
1045static void update_event_times(struct perf_event *event)
1046{
1047 struct perf_event_context *ctx = event->ctx;
1048 u64 run_end;
1049
1050 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1051 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1052 return;
e5d1367f
SE
1053 /*
1054 * in cgroup mode, time_enabled represents
1055 * the time the event was enabled AND active
1056 * tasks were in the monitored cgroup. This is
1057 * independent of the activity of the context as
1058 * there may be a mix of cgroup and non-cgroup events.
1059 *
1060 * That is why we treat cgroup events differently
1061 * here.
1062 */
1063 if (is_cgroup_event(event))
46cd6a7f 1064 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1065 else if (ctx->is_active)
1066 run_end = ctx->time;
acd1d7c1
PZ
1067 else
1068 run_end = event->tstamp_stopped;
1069
1070 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1071
1072 if (event->state == PERF_EVENT_STATE_INACTIVE)
1073 run_end = event->tstamp_stopped;
1074 else
4158755d 1075 run_end = perf_event_time(event);
f67218c3
PZ
1076
1077 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1078
f67218c3
PZ
1079}
1080
96c21a46
PZ
1081/*
1082 * Update total_time_enabled and total_time_running for all events in a group.
1083 */
1084static void update_group_times(struct perf_event *leader)
1085{
1086 struct perf_event *event;
1087
1088 update_event_times(leader);
1089 list_for_each_entry(event, &leader->sibling_list, group_entry)
1090 update_event_times(event);
1091}
1092
889ff015
FW
1093static struct list_head *
1094ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1095{
1096 if (event->attr.pinned)
1097 return &ctx->pinned_groups;
1098 else
1099 return &ctx->flexible_groups;
1100}
1101
fccc714b 1102/*
cdd6c482 1103 * Add a event from the lists for its context.
fccc714b
PZ
1104 * Must be called with ctx->mutex and ctx->lock held.
1105 */
04289bb9 1106static void
cdd6c482 1107list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1108{
8a49542c
PZ
1109 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1110 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1111
1112 /*
8a49542c
PZ
1113 * If we're a stand alone event or group leader, we go to the context
1114 * list, group events are kept attached to the group so that
1115 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1116 */
8a49542c 1117 if (event->group_leader == event) {
889ff015
FW
1118 struct list_head *list;
1119
d6f962b5
FW
1120 if (is_software_event(event))
1121 event->group_flags |= PERF_GROUP_SOFTWARE;
1122
889ff015
FW
1123 list = ctx_group_list(event, ctx);
1124 list_add_tail(&event->group_entry, list);
5c148194 1125 }
592903cd 1126
08309379 1127 if (is_cgroup_event(event))
e5d1367f 1128 ctx->nr_cgroups++;
e5d1367f 1129
d010b332
SE
1130 if (has_branch_stack(event))
1131 ctx->nr_branch_stack++;
1132
cdd6c482 1133 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1134 if (!ctx->nr_events)
108b02cf 1135 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1136 ctx->nr_events++;
1137 if (event->attr.inherit_stat)
bfbd3381 1138 ctx->nr_stat++;
04289bb9
IM
1139}
1140
0231bb53
JO
1141/*
1142 * Initialize event state based on the perf_event_attr::disabled.
1143 */
1144static inline void perf_event__state_init(struct perf_event *event)
1145{
1146 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1147 PERF_EVENT_STATE_INACTIVE;
1148}
1149
c320c7b7
ACM
1150/*
1151 * Called at perf_event creation and when events are attached/detached from a
1152 * group.
1153 */
1154static void perf_event__read_size(struct perf_event *event)
1155{
1156 int entry = sizeof(u64); /* value */
1157 int size = 0;
1158 int nr = 1;
1159
1160 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1161 size += sizeof(u64);
1162
1163 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1164 size += sizeof(u64);
1165
1166 if (event->attr.read_format & PERF_FORMAT_ID)
1167 entry += sizeof(u64);
1168
1169 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1170 nr += event->group_leader->nr_siblings;
1171 size += sizeof(u64);
1172 }
1173
1174 size += entry * nr;
1175 event->read_size = size;
1176}
1177
1178static void perf_event__header_size(struct perf_event *event)
1179{
1180 struct perf_sample_data *data;
1181 u64 sample_type = event->attr.sample_type;
1182 u16 size = 0;
1183
1184 perf_event__read_size(event);
1185
1186 if (sample_type & PERF_SAMPLE_IP)
1187 size += sizeof(data->ip);
1188
6844c09d
ACM
1189 if (sample_type & PERF_SAMPLE_ADDR)
1190 size += sizeof(data->addr);
1191
1192 if (sample_type & PERF_SAMPLE_PERIOD)
1193 size += sizeof(data->period);
1194
c3feedf2
AK
1195 if (sample_type & PERF_SAMPLE_WEIGHT)
1196 size += sizeof(data->weight);
1197
6844c09d
ACM
1198 if (sample_type & PERF_SAMPLE_READ)
1199 size += event->read_size;
1200
d6be9ad6
SE
1201 if (sample_type & PERF_SAMPLE_DATA_SRC)
1202 size += sizeof(data->data_src.val);
1203
6844c09d
ACM
1204 event->header_size = size;
1205}
1206
1207static void perf_event__id_header_size(struct perf_event *event)
1208{
1209 struct perf_sample_data *data;
1210 u64 sample_type = event->attr.sample_type;
1211 u16 size = 0;
1212
c320c7b7
ACM
1213 if (sample_type & PERF_SAMPLE_TID)
1214 size += sizeof(data->tid_entry);
1215
1216 if (sample_type & PERF_SAMPLE_TIME)
1217 size += sizeof(data->time);
1218
ff3d527c
AH
1219 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1220 size += sizeof(data->id);
1221
c320c7b7
ACM
1222 if (sample_type & PERF_SAMPLE_ID)
1223 size += sizeof(data->id);
1224
1225 if (sample_type & PERF_SAMPLE_STREAM_ID)
1226 size += sizeof(data->stream_id);
1227
1228 if (sample_type & PERF_SAMPLE_CPU)
1229 size += sizeof(data->cpu_entry);
1230
6844c09d 1231 event->id_header_size = size;
c320c7b7
ACM
1232}
1233
8a49542c
PZ
1234static void perf_group_attach(struct perf_event *event)
1235{
c320c7b7 1236 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1237
74c3337c
PZ
1238 /*
1239 * We can have double attach due to group movement in perf_event_open.
1240 */
1241 if (event->attach_state & PERF_ATTACH_GROUP)
1242 return;
1243
8a49542c
PZ
1244 event->attach_state |= PERF_ATTACH_GROUP;
1245
1246 if (group_leader == event)
1247 return;
1248
1249 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1250 !is_software_event(event))
1251 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1252
1253 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1254 group_leader->nr_siblings++;
c320c7b7
ACM
1255
1256 perf_event__header_size(group_leader);
1257
1258 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1259 perf_event__header_size(pos);
8a49542c
PZ
1260}
1261
a63eaf34 1262/*
cdd6c482 1263 * Remove a event from the lists for its context.
fccc714b 1264 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1265 */
04289bb9 1266static void
cdd6c482 1267list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1268{
68cacd29 1269 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1270 /*
1271 * We can have double detach due to exit/hot-unplug + close.
1272 */
1273 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1274 return;
8a49542c
PZ
1275
1276 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1277
68cacd29 1278 if (is_cgroup_event(event)) {
e5d1367f 1279 ctx->nr_cgroups--;
68cacd29
SE
1280 cpuctx = __get_cpu_context(ctx);
1281 /*
1282 * if there are no more cgroup events
1283 * then cler cgrp to avoid stale pointer
1284 * in update_cgrp_time_from_cpuctx()
1285 */
1286 if (!ctx->nr_cgroups)
1287 cpuctx->cgrp = NULL;
1288 }
e5d1367f 1289
d010b332
SE
1290 if (has_branch_stack(event))
1291 ctx->nr_branch_stack--;
1292
cdd6c482
IM
1293 ctx->nr_events--;
1294 if (event->attr.inherit_stat)
bfbd3381 1295 ctx->nr_stat--;
8bc20959 1296
cdd6c482 1297 list_del_rcu(&event->event_entry);
04289bb9 1298
8a49542c
PZ
1299 if (event->group_leader == event)
1300 list_del_init(&event->group_entry);
5c148194 1301
96c21a46 1302 update_group_times(event);
b2e74a26
SE
1303
1304 /*
1305 * If event was in error state, then keep it
1306 * that way, otherwise bogus counts will be
1307 * returned on read(). The only way to get out
1308 * of error state is by explicit re-enabling
1309 * of the event
1310 */
1311 if (event->state > PERF_EVENT_STATE_OFF)
1312 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1313}
1314
8a49542c 1315static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1316{
1317 struct perf_event *sibling, *tmp;
8a49542c
PZ
1318 struct list_head *list = NULL;
1319
1320 /*
1321 * We can have double detach due to exit/hot-unplug + close.
1322 */
1323 if (!(event->attach_state & PERF_ATTACH_GROUP))
1324 return;
1325
1326 event->attach_state &= ~PERF_ATTACH_GROUP;
1327
1328 /*
1329 * If this is a sibling, remove it from its group.
1330 */
1331 if (event->group_leader != event) {
1332 list_del_init(&event->group_entry);
1333 event->group_leader->nr_siblings--;
c320c7b7 1334 goto out;
8a49542c
PZ
1335 }
1336
1337 if (!list_empty(&event->group_entry))
1338 list = &event->group_entry;
2e2af50b 1339
04289bb9 1340 /*
cdd6c482
IM
1341 * If this was a group event with sibling events then
1342 * upgrade the siblings to singleton events by adding them
8a49542c 1343 * to whatever list we are on.
04289bb9 1344 */
cdd6c482 1345 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1346 if (list)
1347 list_move_tail(&sibling->group_entry, list);
04289bb9 1348 sibling->group_leader = sibling;
d6f962b5
FW
1349
1350 /* Inherit group flags from the previous leader */
1351 sibling->group_flags = event->group_flags;
04289bb9 1352 }
c320c7b7
ACM
1353
1354out:
1355 perf_event__header_size(event->group_leader);
1356
1357 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1358 perf_event__header_size(tmp);
04289bb9
IM
1359}
1360
fa66f07a
SE
1361static inline int
1362event_filter_match(struct perf_event *event)
1363{
e5d1367f
SE
1364 return (event->cpu == -1 || event->cpu == smp_processor_id())
1365 && perf_cgroup_match(event);
fa66f07a
SE
1366}
1367
9ffcfa6f
SE
1368static void
1369event_sched_out(struct perf_event *event,
3b6f9e5c 1370 struct perf_cpu_context *cpuctx,
cdd6c482 1371 struct perf_event_context *ctx)
3b6f9e5c 1372{
4158755d 1373 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1374 u64 delta;
1375 /*
1376 * An event which could not be activated because of
1377 * filter mismatch still needs to have its timings
1378 * maintained, otherwise bogus information is return
1379 * via read() for time_enabled, time_running:
1380 */
1381 if (event->state == PERF_EVENT_STATE_INACTIVE
1382 && !event_filter_match(event)) {
e5d1367f 1383 delta = tstamp - event->tstamp_stopped;
fa66f07a 1384 event->tstamp_running += delta;
4158755d 1385 event->tstamp_stopped = tstamp;
fa66f07a
SE
1386 }
1387
cdd6c482 1388 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1389 return;
3b6f9e5c 1390
cdd6c482
IM
1391 event->state = PERF_EVENT_STATE_INACTIVE;
1392 if (event->pending_disable) {
1393 event->pending_disable = 0;
1394 event->state = PERF_EVENT_STATE_OFF;
970892a9 1395 }
4158755d 1396 event->tstamp_stopped = tstamp;
a4eaf7f1 1397 event->pmu->del(event, 0);
cdd6c482 1398 event->oncpu = -1;
3b6f9e5c 1399
cdd6c482 1400 if (!is_software_event(event))
3b6f9e5c
PM
1401 cpuctx->active_oncpu--;
1402 ctx->nr_active--;
0f5a2601
PZ
1403 if (event->attr.freq && event->attr.sample_freq)
1404 ctx->nr_freq--;
cdd6c482 1405 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1406 cpuctx->exclusive = 0;
1407}
1408
d859e29f 1409static void
cdd6c482 1410group_sched_out(struct perf_event *group_event,
d859e29f 1411 struct perf_cpu_context *cpuctx,
cdd6c482 1412 struct perf_event_context *ctx)
d859e29f 1413{
cdd6c482 1414 struct perf_event *event;
fa66f07a 1415 int state = group_event->state;
d859e29f 1416
cdd6c482 1417 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1418
1419 /*
1420 * Schedule out siblings (if any):
1421 */
cdd6c482
IM
1422 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1423 event_sched_out(event, cpuctx, ctx);
d859e29f 1424
fa66f07a 1425 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1426 cpuctx->exclusive = 0;
1427}
1428
0793a61d 1429/*
cdd6c482 1430 * Cross CPU call to remove a performance event
0793a61d 1431 *
cdd6c482 1432 * We disable the event on the hardware level first. After that we
0793a61d
TG
1433 * remove it from the context list.
1434 */
fe4b04fa 1435static int __perf_remove_from_context(void *info)
0793a61d 1436{
cdd6c482
IM
1437 struct perf_event *event = info;
1438 struct perf_event_context *ctx = event->ctx;
108b02cf 1439 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1440
e625cce1 1441 raw_spin_lock(&ctx->lock);
cdd6c482 1442 event_sched_out(event, cpuctx, ctx);
cdd6c482 1443 list_del_event(event, ctx);
64ce3126
PZ
1444 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1445 ctx->is_active = 0;
1446 cpuctx->task_ctx = NULL;
1447 }
e625cce1 1448 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1449
1450 return 0;
0793a61d
TG
1451}
1452
1453
1454/*
cdd6c482 1455 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1456 *
cdd6c482 1457 * CPU events are removed with a smp call. For task events we only
0793a61d 1458 * call when the task is on a CPU.
c93f7669 1459 *
cdd6c482
IM
1460 * If event->ctx is a cloned context, callers must make sure that
1461 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1462 * remains valid. This is OK when called from perf_release since
1463 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1464 * When called from perf_event_exit_task, it's OK because the
c93f7669 1465 * context has been detached from its task.
0793a61d 1466 */
fe4b04fa 1467static void perf_remove_from_context(struct perf_event *event)
0793a61d 1468{
cdd6c482 1469 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1470 struct task_struct *task = ctx->task;
1471
fe4b04fa
PZ
1472 lockdep_assert_held(&ctx->mutex);
1473
0793a61d
TG
1474 if (!task) {
1475 /*
cdd6c482 1476 * Per cpu events are removed via an smp call and
af901ca1 1477 * the removal is always successful.
0793a61d 1478 */
fe4b04fa 1479 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1480 return;
1481 }
1482
1483retry:
fe4b04fa
PZ
1484 if (!task_function_call(task, __perf_remove_from_context, event))
1485 return;
0793a61d 1486
e625cce1 1487 raw_spin_lock_irq(&ctx->lock);
0793a61d 1488 /*
fe4b04fa
PZ
1489 * If we failed to find a running task, but find the context active now
1490 * that we've acquired the ctx->lock, retry.
0793a61d 1491 */
fe4b04fa 1492 if (ctx->is_active) {
e625cce1 1493 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1494 goto retry;
1495 }
1496
1497 /*
fe4b04fa
PZ
1498 * Since the task isn't running, its safe to remove the event, us
1499 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1500 */
fe4b04fa 1501 list_del_event(event, ctx);
e625cce1 1502 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1503}
1504
d859e29f 1505/*
cdd6c482 1506 * Cross CPU call to disable a performance event
d859e29f 1507 */
500ad2d8 1508int __perf_event_disable(void *info)
d859e29f 1509{
cdd6c482 1510 struct perf_event *event = info;
cdd6c482 1511 struct perf_event_context *ctx = event->ctx;
108b02cf 1512 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1513
1514 /*
cdd6c482
IM
1515 * If this is a per-task event, need to check whether this
1516 * event's task is the current task on this cpu.
fe4b04fa
PZ
1517 *
1518 * Can trigger due to concurrent perf_event_context_sched_out()
1519 * flipping contexts around.
d859e29f 1520 */
665c2142 1521 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1522 return -EINVAL;
d859e29f 1523
e625cce1 1524 raw_spin_lock(&ctx->lock);
d859e29f
PM
1525
1526 /*
cdd6c482 1527 * If the event is on, turn it off.
d859e29f
PM
1528 * If it is in error state, leave it in error state.
1529 */
cdd6c482 1530 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1531 update_context_time(ctx);
e5d1367f 1532 update_cgrp_time_from_event(event);
cdd6c482
IM
1533 update_group_times(event);
1534 if (event == event->group_leader)
1535 group_sched_out(event, cpuctx, ctx);
d859e29f 1536 else
cdd6c482
IM
1537 event_sched_out(event, cpuctx, ctx);
1538 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1539 }
1540
e625cce1 1541 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1542
1543 return 0;
d859e29f
PM
1544}
1545
1546/*
cdd6c482 1547 * Disable a event.
c93f7669 1548 *
cdd6c482
IM
1549 * If event->ctx is a cloned context, callers must make sure that
1550 * every task struct that event->ctx->task could possibly point to
c93f7669 1551 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1552 * perf_event_for_each_child or perf_event_for_each because they
1553 * hold the top-level event's child_mutex, so any descendant that
1554 * goes to exit will block in sync_child_event.
1555 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1556 * is the current context on this CPU and preemption is disabled,
cdd6c482 1557 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1558 */
44234adc 1559void perf_event_disable(struct perf_event *event)
d859e29f 1560{
cdd6c482 1561 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1562 struct task_struct *task = ctx->task;
1563
1564 if (!task) {
1565 /*
cdd6c482 1566 * Disable the event on the cpu that it's on
d859e29f 1567 */
fe4b04fa 1568 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1569 return;
1570 }
1571
9ed6060d 1572retry:
fe4b04fa
PZ
1573 if (!task_function_call(task, __perf_event_disable, event))
1574 return;
d859e29f 1575
e625cce1 1576 raw_spin_lock_irq(&ctx->lock);
d859e29f 1577 /*
cdd6c482 1578 * If the event is still active, we need to retry the cross-call.
d859e29f 1579 */
cdd6c482 1580 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1581 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1582 /*
1583 * Reload the task pointer, it might have been changed by
1584 * a concurrent perf_event_context_sched_out().
1585 */
1586 task = ctx->task;
d859e29f
PM
1587 goto retry;
1588 }
1589
1590 /*
1591 * Since we have the lock this context can't be scheduled
1592 * in, so we can change the state safely.
1593 */
cdd6c482
IM
1594 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1595 update_group_times(event);
1596 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1597 }
e625cce1 1598 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1599}
dcfce4a0 1600EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1601
e5d1367f
SE
1602static void perf_set_shadow_time(struct perf_event *event,
1603 struct perf_event_context *ctx,
1604 u64 tstamp)
1605{
1606 /*
1607 * use the correct time source for the time snapshot
1608 *
1609 * We could get by without this by leveraging the
1610 * fact that to get to this function, the caller
1611 * has most likely already called update_context_time()
1612 * and update_cgrp_time_xx() and thus both timestamp
1613 * are identical (or very close). Given that tstamp is,
1614 * already adjusted for cgroup, we could say that:
1615 * tstamp - ctx->timestamp
1616 * is equivalent to
1617 * tstamp - cgrp->timestamp.
1618 *
1619 * Then, in perf_output_read(), the calculation would
1620 * work with no changes because:
1621 * - event is guaranteed scheduled in
1622 * - no scheduled out in between
1623 * - thus the timestamp would be the same
1624 *
1625 * But this is a bit hairy.
1626 *
1627 * So instead, we have an explicit cgroup call to remain
1628 * within the time time source all along. We believe it
1629 * is cleaner and simpler to understand.
1630 */
1631 if (is_cgroup_event(event))
1632 perf_cgroup_set_shadow_time(event, tstamp);
1633 else
1634 event->shadow_ctx_time = tstamp - ctx->timestamp;
1635}
1636
4fe757dd
PZ
1637#define MAX_INTERRUPTS (~0ULL)
1638
1639static void perf_log_throttle(struct perf_event *event, int enable);
1640
235c7fc7 1641static int
9ffcfa6f 1642event_sched_in(struct perf_event *event,
235c7fc7 1643 struct perf_cpu_context *cpuctx,
6e37738a 1644 struct perf_event_context *ctx)
235c7fc7 1645{
4158755d
SE
1646 u64 tstamp = perf_event_time(event);
1647
cdd6c482 1648 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1649 return 0;
1650
cdd6c482 1651 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1652 event->oncpu = smp_processor_id();
4fe757dd
PZ
1653
1654 /*
1655 * Unthrottle events, since we scheduled we might have missed several
1656 * ticks already, also for a heavily scheduling task there is little
1657 * guarantee it'll get a tick in a timely manner.
1658 */
1659 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1660 perf_log_throttle(event, 1);
1661 event->hw.interrupts = 0;
1662 }
1663
235c7fc7
IM
1664 /*
1665 * The new state must be visible before we turn it on in the hardware:
1666 */
1667 smp_wmb();
1668
a4eaf7f1 1669 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1670 event->state = PERF_EVENT_STATE_INACTIVE;
1671 event->oncpu = -1;
235c7fc7
IM
1672 return -EAGAIN;
1673 }
1674
4158755d 1675 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1676
e5d1367f 1677 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1678
cdd6c482 1679 if (!is_software_event(event))
3b6f9e5c 1680 cpuctx->active_oncpu++;
235c7fc7 1681 ctx->nr_active++;
0f5a2601
PZ
1682 if (event->attr.freq && event->attr.sample_freq)
1683 ctx->nr_freq++;
235c7fc7 1684
cdd6c482 1685 if (event->attr.exclusive)
3b6f9e5c
PM
1686 cpuctx->exclusive = 1;
1687
235c7fc7
IM
1688 return 0;
1689}
1690
6751b71e 1691static int
cdd6c482 1692group_sched_in(struct perf_event *group_event,
6751b71e 1693 struct perf_cpu_context *cpuctx,
6e37738a 1694 struct perf_event_context *ctx)
6751b71e 1695{
6bde9b6c 1696 struct perf_event *event, *partial_group = NULL;
51b0fe39 1697 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1698 u64 now = ctx->time;
1699 bool simulate = false;
6751b71e 1700
cdd6c482 1701 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1702 return 0;
1703
ad5133b7 1704 pmu->start_txn(pmu);
6bde9b6c 1705
9ffcfa6f 1706 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1707 pmu->cancel_txn(pmu);
9e630205 1708 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1709 return -EAGAIN;
90151c35 1710 }
6751b71e
PM
1711
1712 /*
1713 * Schedule in siblings as one group (if any):
1714 */
cdd6c482 1715 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1716 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1717 partial_group = event;
6751b71e
PM
1718 goto group_error;
1719 }
1720 }
1721
9ffcfa6f 1722 if (!pmu->commit_txn(pmu))
6e85158c 1723 return 0;
9ffcfa6f 1724
6751b71e
PM
1725group_error:
1726 /*
1727 * Groups can be scheduled in as one unit only, so undo any
1728 * partial group before returning:
d7842da4
SE
1729 * The events up to the failed event are scheduled out normally,
1730 * tstamp_stopped will be updated.
1731 *
1732 * The failed events and the remaining siblings need to have
1733 * their timings updated as if they had gone thru event_sched_in()
1734 * and event_sched_out(). This is required to get consistent timings
1735 * across the group. This also takes care of the case where the group
1736 * could never be scheduled by ensuring tstamp_stopped is set to mark
1737 * the time the event was actually stopped, such that time delta
1738 * calculation in update_event_times() is correct.
6751b71e 1739 */
cdd6c482
IM
1740 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1741 if (event == partial_group)
d7842da4
SE
1742 simulate = true;
1743
1744 if (simulate) {
1745 event->tstamp_running += now - event->tstamp_stopped;
1746 event->tstamp_stopped = now;
1747 } else {
1748 event_sched_out(event, cpuctx, ctx);
1749 }
6751b71e 1750 }
9ffcfa6f 1751 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1752
ad5133b7 1753 pmu->cancel_txn(pmu);
90151c35 1754
9e630205
SE
1755 perf_cpu_hrtimer_restart(cpuctx);
1756
6751b71e
PM
1757 return -EAGAIN;
1758}
1759
3b6f9e5c 1760/*
cdd6c482 1761 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1762 */
cdd6c482 1763static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1764 struct perf_cpu_context *cpuctx,
1765 int can_add_hw)
1766{
1767 /*
cdd6c482 1768 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1769 */
d6f962b5 1770 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1771 return 1;
1772 /*
1773 * If an exclusive group is already on, no other hardware
cdd6c482 1774 * events can go on.
3b6f9e5c
PM
1775 */
1776 if (cpuctx->exclusive)
1777 return 0;
1778 /*
1779 * If this group is exclusive and there are already
cdd6c482 1780 * events on the CPU, it can't go on.
3b6f9e5c 1781 */
cdd6c482 1782 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1783 return 0;
1784 /*
1785 * Otherwise, try to add it if all previous groups were able
1786 * to go on.
1787 */
1788 return can_add_hw;
1789}
1790
cdd6c482
IM
1791static void add_event_to_ctx(struct perf_event *event,
1792 struct perf_event_context *ctx)
53cfbf59 1793{
4158755d
SE
1794 u64 tstamp = perf_event_time(event);
1795
cdd6c482 1796 list_add_event(event, ctx);
8a49542c 1797 perf_group_attach(event);
4158755d
SE
1798 event->tstamp_enabled = tstamp;
1799 event->tstamp_running = tstamp;
1800 event->tstamp_stopped = tstamp;
53cfbf59
PM
1801}
1802
2c29ef0f
PZ
1803static void task_ctx_sched_out(struct perf_event_context *ctx);
1804static void
1805ctx_sched_in(struct perf_event_context *ctx,
1806 struct perf_cpu_context *cpuctx,
1807 enum event_type_t event_type,
1808 struct task_struct *task);
fe4b04fa 1809
dce5855b
PZ
1810static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1811 struct perf_event_context *ctx,
1812 struct task_struct *task)
1813{
1814 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1815 if (ctx)
1816 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1817 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1818 if (ctx)
1819 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1820}
1821
0793a61d 1822/*
cdd6c482 1823 * Cross CPU call to install and enable a performance event
682076ae
PZ
1824 *
1825 * Must be called with ctx->mutex held
0793a61d 1826 */
fe4b04fa 1827static int __perf_install_in_context(void *info)
0793a61d 1828{
cdd6c482
IM
1829 struct perf_event *event = info;
1830 struct perf_event_context *ctx = event->ctx;
108b02cf 1831 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1832 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1833 struct task_struct *task = current;
1834
b58f6b0d 1835 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1836 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1837
1838 /*
2c29ef0f 1839 * If there was an active task_ctx schedule it out.
0793a61d 1840 */
b58f6b0d 1841 if (task_ctx)
2c29ef0f 1842 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1843
1844 /*
1845 * If the context we're installing events in is not the
1846 * active task_ctx, flip them.
1847 */
1848 if (ctx->task && task_ctx != ctx) {
1849 if (task_ctx)
1850 raw_spin_unlock(&task_ctx->lock);
1851 raw_spin_lock(&ctx->lock);
1852 task_ctx = ctx;
1853 }
1854
1855 if (task_ctx) {
1856 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1857 task = task_ctx->task;
1858 }
b58f6b0d 1859
2c29ef0f 1860 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1861
4af4998b 1862 update_context_time(ctx);
e5d1367f
SE
1863 /*
1864 * update cgrp time only if current cgrp
1865 * matches event->cgrp. Must be done before
1866 * calling add_event_to_ctx()
1867 */
1868 update_cgrp_time_from_event(event);
0793a61d 1869
cdd6c482 1870 add_event_to_ctx(event, ctx);
0793a61d 1871
d859e29f 1872 /*
2c29ef0f 1873 * Schedule everything back in
d859e29f 1874 */
dce5855b 1875 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1876
1877 perf_pmu_enable(cpuctx->ctx.pmu);
1878 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1879
1880 return 0;
0793a61d
TG
1881}
1882
1883/*
cdd6c482 1884 * Attach a performance event to a context
0793a61d 1885 *
cdd6c482
IM
1886 * First we add the event to the list with the hardware enable bit
1887 * in event->hw_config cleared.
0793a61d 1888 *
cdd6c482 1889 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1890 * call to enable it in the task context. The task might have been
1891 * scheduled away, but we check this in the smp call again.
1892 */
1893static void
cdd6c482
IM
1894perf_install_in_context(struct perf_event_context *ctx,
1895 struct perf_event *event,
0793a61d
TG
1896 int cpu)
1897{
1898 struct task_struct *task = ctx->task;
1899
fe4b04fa
PZ
1900 lockdep_assert_held(&ctx->mutex);
1901
c3f00c70 1902 event->ctx = ctx;
0cda4c02
YZ
1903 if (event->cpu != -1)
1904 event->cpu = cpu;
c3f00c70 1905
0793a61d
TG
1906 if (!task) {
1907 /*
cdd6c482 1908 * Per cpu events are installed via an smp call and
af901ca1 1909 * the install is always successful.
0793a61d 1910 */
fe4b04fa 1911 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1912 return;
1913 }
1914
0793a61d 1915retry:
fe4b04fa
PZ
1916 if (!task_function_call(task, __perf_install_in_context, event))
1917 return;
0793a61d 1918
e625cce1 1919 raw_spin_lock_irq(&ctx->lock);
0793a61d 1920 /*
fe4b04fa
PZ
1921 * If we failed to find a running task, but find the context active now
1922 * that we've acquired the ctx->lock, retry.
0793a61d 1923 */
fe4b04fa 1924 if (ctx->is_active) {
e625cce1 1925 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1926 goto retry;
1927 }
1928
1929 /*
fe4b04fa
PZ
1930 * Since the task isn't running, its safe to add the event, us holding
1931 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1932 */
fe4b04fa 1933 add_event_to_ctx(event, ctx);
e625cce1 1934 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1935}
1936
fa289bec 1937/*
cdd6c482 1938 * Put a event into inactive state and update time fields.
fa289bec
PM
1939 * Enabling the leader of a group effectively enables all
1940 * the group members that aren't explicitly disabled, so we
1941 * have to update their ->tstamp_enabled also.
1942 * Note: this works for group members as well as group leaders
1943 * since the non-leader members' sibling_lists will be empty.
1944 */
1d9b482e 1945static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1946{
cdd6c482 1947 struct perf_event *sub;
4158755d 1948 u64 tstamp = perf_event_time(event);
fa289bec 1949
cdd6c482 1950 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1951 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1952 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1953 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1954 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1955 }
fa289bec
PM
1956}
1957
d859e29f 1958/*
cdd6c482 1959 * Cross CPU call to enable a performance event
d859e29f 1960 */
fe4b04fa 1961static int __perf_event_enable(void *info)
04289bb9 1962{
cdd6c482 1963 struct perf_event *event = info;
cdd6c482
IM
1964 struct perf_event_context *ctx = event->ctx;
1965 struct perf_event *leader = event->group_leader;
108b02cf 1966 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1967 int err;
04289bb9 1968
06f41796
JO
1969 /*
1970 * There's a time window between 'ctx->is_active' check
1971 * in perf_event_enable function and this place having:
1972 * - IRQs on
1973 * - ctx->lock unlocked
1974 *
1975 * where the task could be killed and 'ctx' deactivated
1976 * by perf_event_exit_task.
1977 */
1978 if (!ctx->is_active)
fe4b04fa 1979 return -EINVAL;
3cbed429 1980
e625cce1 1981 raw_spin_lock(&ctx->lock);
4af4998b 1982 update_context_time(ctx);
d859e29f 1983
cdd6c482 1984 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1985 goto unlock;
e5d1367f
SE
1986
1987 /*
1988 * set current task's cgroup time reference point
1989 */
3f7cce3c 1990 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1991
1d9b482e 1992 __perf_event_mark_enabled(event);
04289bb9 1993
e5d1367f
SE
1994 if (!event_filter_match(event)) {
1995 if (is_cgroup_event(event))
1996 perf_cgroup_defer_enabled(event);
f4c4176f 1997 goto unlock;
e5d1367f 1998 }
f4c4176f 1999
04289bb9 2000 /*
cdd6c482 2001 * If the event is in a group and isn't the group leader,
d859e29f 2002 * then don't put it on unless the group is on.
04289bb9 2003 */
cdd6c482 2004 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2005 goto unlock;
3b6f9e5c 2006
cdd6c482 2007 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2008 err = -EEXIST;
e758a33d 2009 } else {
cdd6c482 2010 if (event == leader)
6e37738a 2011 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2012 else
6e37738a 2013 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2014 }
d859e29f
PM
2015
2016 if (err) {
2017 /*
cdd6c482 2018 * If this event can't go on and it's part of a
d859e29f
PM
2019 * group, then the whole group has to come off.
2020 */
9e630205 2021 if (leader != event) {
d859e29f 2022 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2023 perf_cpu_hrtimer_restart(cpuctx);
2024 }
0d48696f 2025 if (leader->attr.pinned) {
53cfbf59 2026 update_group_times(leader);
cdd6c482 2027 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2028 }
d859e29f
PM
2029 }
2030
9ed6060d 2031unlock:
e625cce1 2032 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2033
2034 return 0;
d859e29f
PM
2035}
2036
2037/*
cdd6c482 2038 * Enable a event.
c93f7669 2039 *
cdd6c482
IM
2040 * If event->ctx is a cloned context, callers must make sure that
2041 * every task struct that event->ctx->task could possibly point to
c93f7669 2042 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2043 * perf_event_for_each_child or perf_event_for_each as described
2044 * for perf_event_disable.
d859e29f 2045 */
44234adc 2046void perf_event_enable(struct perf_event *event)
d859e29f 2047{
cdd6c482 2048 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2049 struct task_struct *task = ctx->task;
2050
2051 if (!task) {
2052 /*
cdd6c482 2053 * Enable the event on the cpu that it's on
d859e29f 2054 */
fe4b04fa 2055 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2056 return;
2057 }
2058
e625cce1 2059 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2060 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2061 goto out;
2062
2063 /*
cdd6c482
IM
2064 * If the event is in error state, clear that first.
2065 * That way, if we see the event in error state below, we
d859e29f
PM
2066 * know that it has gone back into error state, as distinct
2067 * from the task having been scheduled away before the
2068 * cross-call arrived.
2069 */
cdd6c482
IM
2070 if (event->state == PERF_EVENT_STATE_ERROR)
2071 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2072
9ed6060d 2073retry:
fe4b04fa 2074 if (!ctx->is_active) {
1d9b482e 2075 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2076 goto out;
2077 }
2078
e625cce1 2079 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2080
2081 if (!task_function_call(task, __perf_event_enable, event))
2082 return;
d859e29f 2083
e625cce1 2084 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2085
2086 /*
cdd6c482 2087 * If the context is active and the event is still off,
d859e29f
PM
2088 * we need to retry the cross-call.
2089 */
fe4b04fa
PZ
2090 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2091 /*
2092 * task could have been flipped by a concurrent
2093 * perf_event_context_sched_out()
2094 */
2095 task = ctx->task;
d859e29f 2096 goto retry;
fe4b04fa 2097 }
fa289bec 2098
9ed6060d 2099out:
e625cce1 2100 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2101}
dcfce4a0 2102EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2103
26ca5c11 2104int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2105{
2023b359 2106 /*
cdd6c482 2107 * not supported on inherited events
2023b359 2108 */
2e939d1d 2109 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2110 return -EINVAL;
2111
cdd6c482
IM
2112 atomic_add(refresh, &event->event_limit);
2113 perf_event_enable(event);
2023b359
PZ
2114
2115 return 0;
79f14641 2116}
26ca5c11 2117EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2118
5b0311e1
FW
2119static void ctx_sched_out(struct perf_event_context *ctx,
2120 struct perf_cpu_context *cpuctx,
2121 enum event_type_t event_type)
235c7fc7 2122{
cdd6c482 2123 struct perf_event *event;
db24d33e 2124 int is_active = ctx->is_active;
235c7fc7 2125
db24d33e 2126 ctx->is_active &= ~event_type;
cdd6c482 2127 if (likely(!ctx->nr_events))
facc4307
PZ
2128 return;
2129
4af4998b 2130 update_context_time(ctx);
e5d1367f 2131 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2132 if (!ctx->nr_active)
facc4307 2133 return;
5b0311e1 2134
075e0b00 2135 perf_pmu_disable(ctx->pmu);
db24d33e 2136 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2137 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2138 group_sched_out(event, cpuctx, ctx);
9ed6060d 2139 }
889ff015 2140
db24d33e 2141 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2142 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2143 group_sched_out(event, cpuctx, ctx);
9ed6060d 2144 }
1b9a644f 2145 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2146}
2147
564c2b21
PM
2148/*
2149 * Test whether two contexts are equivalent, i.e. whether they
2150 * have both been cloned from the same version of the same context
cdd6c482
IM
2151 * and they both have the same number of enabled events.
2152 * If the number of enabled events is the same, then the set
2153 * of enabled events should be the same, because these are both
2154 * inherited contexts, therefore we can't access individual events
564c2b21 2155 * in them directly with an fd; we can only enable/disable all
cdd6c482 2156 * events via prctl, or enable/disable all events in a family
564c2b21
PM
2157 * via ioctl, which will have the same effect on both contexts.
2158 */
cdd6c482
IM
2159static int context_equiv(struct perf_event_context *ctx1,
2160 struct perf_event_context *ctx2)
564c2b21
PM
2161{
2162 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 2163 && ctx1->parent_gen == ctx2->parent_gen
25346b93 2164 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
2165}
2166
cdd6c482
IM
2167static void __perf_event_sync_stat(struct perf_event *event,
2168 struct perf_event *next_event)
bfbd3381
PZ
2169{
2170 u64 value;
2171
cdd6c482 2172 if (!event->attr.inherit_stat)
bfbd3381
PZ
2173 return;
2174
2175 /*
cdd6c482 2176 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2177 * because we're in the middle of a context switch and have IRQs
2178 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2179 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2180 * don't need to use it.
2181 */
cdd6c482
IM
2182 switch (event->state) {
2183 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2184 event->pmu->read(event);
2185 /* fall-through */
bfbd3381 2186
cdd6c482
IM
2187 case PERF_EVENT_STATE_INACTIVE:
2188 update_event_times(event);
bfbd3381
PZ
2189 break;
2190
2191 default:
2192 break;
2193 }
2194
2195 /*
cdd6c482 2196 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2197 * values when we flip the contexts.
2198 */
e7850595
PZ
2199 value = local64_read(&next_event->count);
2200 value = local64_xchg(&event->count, value);
2201 local64_set(&next_event->count, value);
bfbd3381 2202
cdd6c482
IM
2203 swap(event->total_time_enabled, next_event->total_time_enabled);
2204 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2205
bfbd3381 2206 /*
19d2e755 2207 * Since we swizzled the values, update the user visible data too.
bfbd3381 2208 */
cdd6c482
IM
2209 perf_event_update_userpage(event);
2210 perf_event_update_userpage(next_event);
bfbd3381
PZ
2211}
2212
2213#define list_next_entry(pos, member) \
2214 list_entry(pos->member.next, typeof(*pos), member)
2215
cdd6c482
IM
2216static void perf_event_sync_stat(struct perf_event_context *ctx,
2217 struct perf_event_context *next_ctx)
bfbd3381 2218{
cdd6c482 2219 struct perf_event *event, *next_event;
bfbd3381
PZ
2220
2221 if (!ctx->nr_stat)
2222 return;
2223
02ffdbc8
PZ
2224 update_context_time(ctx);
2225
cdd6c482
IM
2226 event = list_first_entry(&ctx->event_list,
2227 struct perf_event, event_entry);
bfbd3381 2228
cdd6c482
IM
2229 next_event = list_first_entry(&next_ctx->event_list,
2230 struct perf_event, event_entry);
bfbd3381 2231
cdd6c482
IM
2232 while (&event->event_entry != &ctx->event_list &&
2233 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2234
cdd6c482 2235 __perf_event_sync_stat(event, next_event);
bfbd3381 2236
cdd6c482
IM
2237 event = list_next_entry(event, event_entry);
2238 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2239 }
2240}
2241
fe4b04fa
PZ
2242static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2243 struct task_struct *next)
0793a61d 2244{
8dc85d54 2245 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
2246 struct perf_event_context *next_ctx;
2247 struct perf_event_context *parent;
108b02cf 2248 struct perf_cpu_context *cpuctx;
c93f7669 2249 int do_switch = 1;
0793a61d 2250
108b02cf
PZ
2251 if (likely(!ctx))
2252 return;
10989fb2 2253
108b02cf
PZ
2254 cpuctx = __get_cpu_context(ctx);
2255 if (!cpuctx->task_ctx)
0793a61d
TG
2256 return;
2257
c93f7669
PM
2258 rcu_read_lock();
2259 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 2260 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
2261 if (parent && next_ctx &&
2262 rcu_dereference(next_ctx->parent_ctx) == parent) {
2263 /*
2264 * Looks like the two contexts are clones, so we might be
2265 * able to optimize the context switch. We lock both
2266 * contexts and check that they are clones under the
2267 * lock (including re-checking that neither has been
2268 * uncloned in the meantime). It doesn't matter which
2269 * order we take the locks because no other cpu could
2270 * be trying to lock both of these tasks.
2271 */
e625cce1
TG
2272 raw_spin_lock(&ctx->lock);
2273 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2274 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2275 /*
2276 * XXX do we need a memory barrier of sorts
cdd6c482 2277 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2278 */
8dc85d54
PZ
2279 task->perf_event_ctxp[ctxn] = next_ctx;
2280 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2281 ctx->task = next;
2282 next_ctx->task = task;
2283 do_switch = 0;
bfbd3381 2284
cdd6c482 2285 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2286 }
e625cce1
TG
2287 raw_spin_unlock(&next_ctx->lock);
2288 raw_spin_unlock(&ctx->lock);
564c2b21 2289 }
c93f7669 2290 rcu_read_unlock();
564c2b21 2291
c93f7669 2292 if (do_switch) {
facc4307 2293 raw_spin_lock(&ctx->lock);
5b0311e1 2294 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2295 cpuctx->task_ctx = NULL;
facc4307 2296 raw_spin_unlock(&ctx->lock);
c93f7669 2297 }
0793a61d
TG
2298}
2299
8dc85d54
PZ
2300#define for_each_task_context_nr(ctxn) \
2301 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2302
2303/*
2304 * Called from scheduler to remove the events of the current task,
2305 * with interrupts disabled.
2306 *
2307 * We stop each event and update the event value in event->count.
2308 *
2309 * This does not protect us against NMI, but disable()
2310 * sets the disabled bit in the control field of event _before_
2311 * accessing the event control register. If a NMI hits, then it will
2312 * not restart the event.
2313 */
ab0cce56
JO
2314void __perf_event_task_sched_out(struct task_struct *task,
2315 struct task_struct *next)
8dc85d54
PZ
2316{
2317 int ctxn;
2318
8dc85d54
PZ
2319 for_each_task_context_nr(ctxn)
2320 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2321
2322 /*
2323 * if cgroup events exist on this CPU, then we need
2324 * to check if we have to switch out PMU state.
2325 * cgroup event are system-wide mode only
2326 */
2327 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2328 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2329}
2330
04dc2dbb 2331static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2332{
108b02cf 2333 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2334
a63eaf34
PM
2335 if (!cpuctx->task_ctx)
2336 return;
012b84da
IM
2337
2338 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2339 return;
2340
04dc2dbb 2341 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2342 cpuctx->task_ctx = NULL;
2343}
2344
5b0311e1
FW
2345/*
2346 * Called with IRQs disabled
2347 */
2348static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2349 enum event_type_t event_type)
2350{
2351 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2352}
2353
235c7fc7 2354static void
5b0311e1 2355ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2356 struct perf_cpu_context *cpuctx)
0793a61d 2357{
cdd6c482 2358 struct perf_event *event;
0793a61d 2359
889ff015
FW
2360 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2361 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2362 continue;
5632ab12 2363 if (!event_filter_match(event))
3b6f9e5c
PM
2364 continue;
2365
e5d1367f
SE
2366 /* may need to reset tstamp_enabled */
2367 if (is_cgroup_event(event))
2368 perf_cgroup_mark_enabled(event, ctx);
2369
8c9ed8e1 2370 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2371 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2372
2373 /*
2374 * If this pinned group hasn't been scheduled,
2375 * put it in error state.
2376 */
cdd6c482
IM
2377 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2378 update_group_times(event);
2379 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2380 }
3b6f9e5c 2381 }
5b0311e1
FW
2382}
2383
2384static void
2385ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2386 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2387{
2388 struct perf_event *event;
2389 int can_add_hw = 1;
3b6f9e5c 2390
889ff015
FW
2391 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2392 /* Ignore events in OFF or ERROR state */
2393 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2394 continue;
04289bb9
IM
2395 /*
2396 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2397 * of events:
04289bb9 2398 */
5632ab12 2399 if (!event_filter_match(event))
0793a61d
TG
2400 continue;
2401
e5d1367f
SE
2402 /* may need to reset tstamp_enabled */
2403 if (is_cgroup_event(event))
2404 perf_cgroup_mark_enabled(event, ctx);
2405
9ed6060d 2406 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2407 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2408 can_add_hw = 0;
9ed6060d 2409 }
0793a61d 2410 }
5b0311e1
FW
2411}
2412
2413static void
2414ctx_sched_in(struct perf_event_context *ctx,
2415 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2416 enum event_type_t event_type,
2417 struct task_struct *task)
5b0311e1 2418{
e5d1367f 2419 u64 now;
db24d33e 2420 int is_active = ctx->is_active;
e5d1367f 2421
db24d33e 2422 ctx->is_active |= event_type;
5b0311e1 2423 if (likely(!ctx->nr_events))
facc4307 2424 return;
5b0311e1 2425
e5d1367f
SE
2426 now = perf_clock();
2427 ctx->timestamp = now;
3f7cce3c 2428 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2429 /*
2430 * First go through the list and put on any pinned groups
2431 * in order to give them the best chance of going on.
2432 */
db24d33e 2433 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2434 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2435
2436 /* Then walk through the lower prio flexible groups */
db24d33e 2437 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2438 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2439}
2440
329c0e01 2441static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2442 enum event_type_t event_type,
2443 struct task_struct *task)
329c0e01
FW
2444{
2445 struct perf_event_context *ctx = &cpuctx->ctx;
2446
e5d1367f 2447 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2448}
2449
e5d1367f
SE
2450static void perf_event_context_sched_in(struct perf_event_context *ctx,
2451 struct task_struct *task)
235c7fc7 2452{
108b02cf 2453 struct perf_cpu_context *cpuctx;
235c7fc7 2454
108b02cf 2455 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2456 if (cpuctx->task_ctx == ctx)
2457 return;
2458
facc4307 2459 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2460 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2461 /*
2462 * We want to keep the following priority order:
2463 * cpu pinned (that don't need to move), task pinned,
2464 * cpu flexible, task flexible.
2465 */
2466 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2467
1d5f003f
GN
2468 if (ctx->nr_events)
2469 cpuctx->task_ctx = ctx;
9b33fa6b 2470
86b47c25
GN
2471 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2472
facc4307
PZ
2473 perf_pmu_enable(ctx->pmu);
2474 perf_ctx_unlock(cpuctx, ctx);
2475
b5ab4cd5
PZ
2476 /*
2477 * Since these rotations are per-cpu, we need to ensure the
2478 * cpu-context we got scheduled on is actually rotating.
2479 */
108b02cf 2480 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2481}
2482
d010b332
SE
2483/*
2484 * When sampling the branck stack in system-wide, it may be necessary
2485 * to flush the stack on context switch. This happens when the branch
2486 * stack does not tag its entries with the pid of the current task.
2487 * Otherwise it becomes impossible to associate a branch entry with a
2488 * task. This ambiguity is more likely to appear when the branch stack
2489 * supports priv level filtering and the user sets it to monitor only
2490 * at the user level (which could be a useful measurement in system-wide
2491 * mode). In that case, the risk is high of having a branch stack with
2492 * branch from multiple tasks. Flushing may mean dropping the existing
2493 * entries or stashing them somewhere in the PMU specific code layer.
2494 *
2495 * This function provides the context switch callback to the lower code
2496 * layer. It is invoked ONLY when there is at least one system-wide context
2497 * with at least one active event using taken branch sampling.
2498 */
2499static void perf_branch_stack_sched_in(struct task_struct *prev,
2500 struct task_struct *task)
2501{
2502 struct perf_cpu_context *cpuctx;
2503 struct pmu *pmu;
2504 unsigned long flags;
2505
2506 /* no need to flush branch stack if not changing task */
2507 if (prev == task)
2508 return;
2509
2510 local_irq_save(flags);
2511
2512 rcu_read_lock();
2513
2514 list_for_each_entry_rcu(pmu, &pmus, entry) {
2515 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2516
2517 /*
2518 * check if the context has at least one
2519 * event using PERF_SAMPLE_BRANCH_STACK
2520 */
2521 if (cpuctx->ctx.nr_branch_stack > 0
2522 && pmu->flush_branch_stack) {
2523
2524 pmu = cpuctx->ctx.pmu;
2525
2526 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2527
2528 perf_pmu_disable(pmu);
2529
2530 pmu->flush_branch_stack();
2531
2532 perf_pmu_enable(pmu);
2533
2534 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2535 }
2536 }
2537
2538 rcu_read_unlock();
2539
2540 local_irq_restore(flags);
2541}
2542
8dc85d54
PZ
2543/*
2544 * Called from scheduler to add the events of the current task
2545 * with interrupts disabled.
2546 *
2547 * We restore the event value and then enable it.
2548 *
2549 * This does not protect us against NMI, but enable()
2550 * sets the enabled bit in the control field of event _before_
2551 * accessing the event control register. If a NMI hits, then it will
2552 * keep the event running.
2553 */
ab0cce56
JO
2554void __perf_event_task_sched_in(struct task_struct *prev,
2555 struct task_struct *task)
8dc85d54
PZ
2556{
2557 struct perf_event_context *ctx;
2558 int ctxn;
2559
2560 for_each_task_context_nr(ctxn) {
2561 ctx = task->perf_event_ctxp[ctxn];
2562 if (likely(!ctx))
2563 continue;
2564
e5d1367f 2565 perf_event_context_sched_in(ctx, task);
8dc85d54 2566 }
e5d1367f
SE
2567 /*
2568 * if cgroup events exist on this CPU, then we need
2569 * to check if we have to switch in PMU state.
2570 * cgroup event are system-wide mode only
2571 */
2572 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2573 perf_cgroup_sched_in(prev, task);
d010b332
SE
2574
2575 /* check for system-wide branch_stack events */
2576 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2577 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2578}
2579
abd50713
PZ
2580static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2581{
2582 u64 frequency = event->attr.sample_freq;
2583 u64 sec = NSEC_PER_SEC;
2584 u64 divisor, dividend;
2585
2586 int count_fls, nsec_fls, frequency_fls, sec_fls;
2587
2588 count_fls = fls64(count);
2589 nsec_fls = fls64(nsec);
2590 frequency_fls = fls64(frequency);
2591 sec_fls = 30;
2592
2593 /*
2594 * We got @count in @nsec, with a target of sample_freq HZ
2595 * the target period becomes:
2596 *
2597 * @count * 10^9
2598 * period = -------------------
2599 * @nsec * sample_freq
2600 *
2601 */
2602
2603 /*
2604 * Reduce accuracy by one bit such that @a and @b converge
2605 * to a similar magnitude.
2606 */
fe4b04fa 2607#define REDUCE_FLS(a, b) \
abd50713
PZ
2608do { \
2609 if (a##_fls > b##_fls) { \
2610 a >>= 1; \
2611 a##_fls--; \
2612 } else { \
2613 b >>= 1; \
2614 b##_fls--; \
2615 } \
2616} while (0)
2617
2618 /*
2619 * Reduce accuracy until either term fits in a u64, then proceed with
2620 * the other, so that finally we can do a u64/u64 division.
2621 */
2622 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2623 REDUCE_FLS(nsec, frequency);
2624 REDUCE_FLS(sec, count);
2625 }
2626
2627 if (count_fls + sec_fls > 64) {
2628 divisor = nsec * frequency;
2629
2630 while (count_fls + sec_fls > 64) {
2631 REDUCE_FLS(count, sec);
2632 divisor >>= 1;
2633 }
2634
2635 dividend = count * sec;
2636 } else {
2637 dividend = count * sec;
2638
2639 while (nsec_fls + frequency_fls > 64) {
2640 REDUCE_FLS(nsec, frequency);
2641 dividend >>= 1;
2642 }
2643
2644 divisor = nsec * frequency;
2645 }
2646
f6ab91ad
PZ
2647 if (!divisor)
2648 return dividend;
2649
abd50713
PZ
2650 return div64_u64(dividend, divisor);
2651}
2652
e050e3f0
SE
2653static DEFINE_PER_CPU(int, perf_throttled_count);
2654static DEFINE_PER_CPU(u64, perf_throttled_seq);
2655
f39d47ff 2656static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2657{
cdd6c482 2658 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2659 s64 period, sample_period;
bd2b5b12
PZ
2660 s64 delta;
2661
abd50713 2662 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2663
2664 delta = (s64)(period - hwc->sample_period);
2665 delta = (delta + 7) / 8; /* low pass filter */
2666
2667 sample_period = hwc->sample_period + delta;
2668
2669 if (!sample_period)
2670 sample_period = 1;
2671
bd2b5b12 2672 hwc->sample_period = sample_period;
abd50713 2673
e7850595 2674 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2675 if (disable)
2676 event->pmu->stop(event, PERF_EF_UPDATE);
2677
e7850595 2678 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2679
2680 if (disable)
2681 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2682 }
bd2b5b12
PZ
2683}
2684
e050e3f0
SE
2685/*
2686 * combine freq adjustment with unthrottling to avoid two passes over the
2687 * events. At the same time, make sure, having freq events does not change
2688 * the rate of unthrottling as that would introduce bias.
2689 */
2690static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2691 int needs_unthr)
60db5e09 2692{
cdd6c482
IM
2693 struct perf_event *event;
2694 struct hw_perf_event *hwc;
e050e3f0 2695 u64 now, period = TICK_NSEC;
abd50713 2696 s64 delta;
60db5e09 2697
e050e3f0
SE
2698 /*
2699 * only need to iterate over all events iff:
2700 * - context have events in frequency mode (needs freq adjust)
2701 * - there are events to unthrottle on this cpu
2702 */
2703 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2704 return;
2705
e050e3f0 2706 raw_spin_lock(&ctx->lock);
f39d47ff 2707 perf_pmu_disable(ctx->pmu);
e050e3f0 2708
03541f8b 2709 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2710 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2711 continue;
2712
5632ab12 2713 if (!event_filter_match(event))
5d27c23d
PZ
2714 continue;
2715
cdd6c482 2716 hwc = &event->hw;
6a24ed6c 2717
ae23bff1 2718 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2719 hwc->interrupts = 0;
cdd6c482 2720 perf_log_throttle(event, 1);
a4eaf7f1 2721 event->pmu->start(event, 0);
a78ac325
PZ
2722 }
2723
cdd6c482 2724 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2725 continue;
2726
e050e3f0
SE
2727 /*
2728 * stop the event and update event->count
2729 */
2730 event->pmu->stop(event, PERF_EF_UPDATE);
2731
e7850595 2732 now = local64_read(&event->count);
abd50713
PZ
2733 delta = now - hwc->freq_count_stamp;
2734 hwc->freq_count_stamp = now;
60db5e09 2735
e050e3f0
SE
2736 /*
2737 * restart the event
2738 * reload only if value has changed
f39d47ff
SE
2739 * we have stopped the event so tell that
2740 * to perf_adjust_period() to avoid stopping it
2741 * twice.
e050e3f0 2742 */
abd50713 2743 if (delta > 0)
f39d47ff 2744 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2745
2746 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2747 }
e050e3f0 2748
f39d47ff 2749 perf_pmu_enable(ctx->pmu);
e050e3f0 2750 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2751}
2752
235c7fc7 2753/*
cdd6c482 2754 * Round-robin a context's events:
235c7fc7 2755 */
cdd6c482 2756static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2757{
dddd3379
TG
2758 /*
2759 * Rotate the first entry last of non-pinned groups. Rotation might be
2760 * disabled by the inheritance code.
2761 */
2762 if (!ctx->rotate_disable)
2763 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2764}
2765
b5ab4cd5 2766/*
e9d2b064
PZ
2767 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2768 * because they're strictly cpu affine and rotate_start is called with IRQs
2769 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2770 */
9e630205 2771static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2772{
8dc85d54 2773 struct perf_event_context *ctx = NULL;
e050e3f0 2774 int rotate = 0, remove = 1;
7fc23a53 2775
b5ab4cd5 2776 if (cpuctx->ctx.nr_events) {
e9d2b064 2777 remove = 0;
b5ab4cd5
PZ
2778 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2779 rotate = 1;
2780 }
235c7fc7 2781
8dc85d54 2782 ctx = cpuctx->task_ctx;
b5ab4cd5 2783 if (ctx && ctx->nr_events) {
e9d2b064 2784 remove = 0;
b5ab4cd5
PZ
2785 if (ctx->nr_events != ctx->nr_active)
2786 rotate = 1;
2787 }
9717e6cd 2788
e050e3f0 2789 if (!rotate)
0f5a2601
PZ
2790 goto done;
2791
facc4307 2792 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2793 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2794
e050e3f0
SE
2795 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2796 if (ctx)
2797 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2798
e050e3f0
SE
2799 rotate_ctx(&cpuctx->ctx);
2800 if (ctx)
2801 rotate_ctx(ctx);
235c7fc7 2802
e050e3f0 2803 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2804
0f5a2601
PZ
2805 perf_pmu_enable(cpuctx->ctx.pmu);
2806 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2807done:
e9d2b064
PZ
2808 if (remove)
2809 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2810
2811 return rotate;
e9d2b064
PZ
2812}
2813
026249ef
FW
2814#ifdef CONFIG_NO_HZ_FULL
2815bool perf_event_can_stop_tick(void)
2816{
948b26b6 2817 if (atomic_read(&nr_freq_events) ||
d84153d6 2818 __this_cpu_read(perf_throttled_count))
026249ef 2819 return false;
d84153d6
FW
2820 else
2821 return true;
026249ef
FW
2822}
2823#endif
2824
e9d2b064
PZ
2825void perf_event_task_tick(void)
2826{
2827 struct list_head *head = &__get_cpu_var(rotation_list);
2828 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2829 struct perf_event_context *ctx;
2830 int throttled;
b5ab4cd5 2831
e9d2b064
PZ
2832 WARN_ON(!irqs_disabled());
2833
e050e3f0
SE
2834 __this_cpu_inc(perf_throttled_seq);
2835 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2836
e9d2b064 2837 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2838 ctx = &cpuctx->ctx;
2839 perf_adjust_freq_unthr_context(ctx, throttled);
2840
2841 ctx = cpuctx->task_ctx;
2842 if (ctx)
2843 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2844 }
0793a61d
TG
2845}
2846
889ff015
FW
2847static int event_enable_on_exec(struct perf_event *event,
2848 struct perf_event_context *ctx)
2849{
2850 if (!event->attr.enable_on_exec)
2851 return 0;
2852
2853 event->attr.enable_on_exec = 0;
2854 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2855 return 0;
2856
1d9b482e 2857 __perf_event_mark_enabled(event);
889ff015
FW
2858
2859 return 1;
2860}
2861
57e7986e 2862/*
cdd6c482 2863 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2864 * This expects task == current.
2865 */
8dc85d54 2866static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2867{
cdd6c482 2868 struct perf_event *event;
57e7986e
PM
2869 unsigned long flags;
2870 int enabled = 0;
889ff015 2871 int ret;
57e7986e
PM
2872
2873 local_irq_save(flags);
cdd6c482 2874 if (!ctx || !ctx->nr_events)
57e7986e
PM
2875 goto out;
2876
e566b76e
SE
2877 /*
2878 * We must ctxsw out cgroup events to avoid conflict
2879 * when invoking perf_task_event_sched_in() later on
2880 * in this function. Otherwise we end up trying to
2881 * ctxswin cgroup events which are already scheduled
2882 * in.
2883 */
a8d757ef 2884 perf_cgroup_sched_out(current, NULL);
57e7986e 2885
e625cce1 2886 raw_spin_lock(&ctx->lock);
04dc2dbb 2887 task_ctx_sched_out(ctx);
57e7986e 2888
b79387ef 2889 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2890 ret = event_enable_on_exec(event, ctx);
2891 if (ret)
2892 enabled = 1;
57e7986e
PM
2893 }
2894
2895 /*
cdd6c482 2896 * Unclone this context if we enabled any event.
57e7986e 2897 */
71a851b4
PZ
2898 if (enabled)
2899 unclone_ctx(ctx);
57e7986e 2900
e625cce1 2901 raw_spin_unlock(&ctx->lock);
57e7986e 2902
e566b76e
SE
2903 /*
2904 * Also calls ctxswin for cgroup events, if any:
2905 */
e5d1367f 2906 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2907out:
57e7986e
PM
2908 local_irq_restore(flags);
2909}
2910
0793a61d 2911/*
cdd6c482 2912 * Cross CPU call to read the hardware event
0793a61d 2913 */
cdd6c482 2914static void __perf_event_read(void *info)
0793a61d 2915{
cdd6c482
IM
2916 struct perf_event *event = info;
2917 struct perf_event_context *ctx = event->ctx;
108b02cf 2918 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2919
e1ac3614
PM
2920 /*
2921 * If this is a task context, we need to check whether it is
2922 * the current task context of this cpu. If not it has been
2923 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2924 * event->count would have been updated to a recent sample
2925 * when the event was scheduled out.
e1ac3614
PM
2926 */
2927 if (ctx->task && cpuctx->task_ctx != ctx)
2928 return;
2929
e625cce1 2930 raw_spin_lock(&ctx->lock);
e5d1367f 2931 if (ctx->is_active) {
542e72fc 2932 update_context_time(ctx);
e5d1367f
SE
2933 update_cgrp_time_from_event(event);
2934 }
cdd6c482 2935 update_event_times(event);
542e72fc
PZ
2936 if (event->state == PERF_EVENT_STATE_ACTIVE)
2937 event->pmu->read(event);
e625cce1 2938 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2939}
2940
b5e58793
PZ
2941static inline u64 perf_event_count(struct perf_event *event)
2942{
e7850595 2943 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2944}
2945
cdd6c482 2946static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2947{
2948 /*
cdd6c482
IM
2949 * If event is enabled and currently active on a CPU, update the
2950 * value in the event structure:
0793a61d 2951 */
cdd6c482
IM
2952 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2953 smp_call_function_single(event->oncpu,
2954 __perf_event_read, event, 1);
2955 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2956 struct perf_event_context *ctx = event->ctx;
2957 unsigned long flags;
2958
e625cce1 2959 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2960 /*
2961 * may read while context is not active
2962 * (e.g., thread is blocked), in that case
2963 * we cannot update context time
2964 */
e5d1367f 2965 if (ctx->is_active) {
c530ccd9 2966 update_context_time(ctx);
e5d1367f
SE
2967 update_cgrp_time_from_event(event);
2968 }
cdd6c482 2969 update_event_times(event);
e625cce1 2970 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2971 }
2972
b5e58793 2973 return perf_event_count(event);
0793a61d
TG
2974}
2975
a63eaf34 2976/*
cdd6c482 2977 * Initialize the perf_event context in a task_struct:
a63eaf34 2978 */
eb184479 2979static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2980{
e625cce1 2981 raw_spin_lock_init(&ctx->lock);
a63eaf34 2982 mutex_init(&ctx->mutex);
889ff015
FW
2983 INIT_LIST_HEAD(&ctx->pinned_groups);
2984 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2985 INIT_LIST_HEAD(&ctx->event_list);
2986 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2987}
2988
2989static struct perf_event_context *
2990alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2991{
2992 struct perf_event_context *ctx;
2993
2994 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2995 if (!ctx)
2996 return NULL;
2997
2998 __perf_event_init_context(ctx);
2999 if (task) {
3000 ctx->task = task;
3001 get_task_struct(task);
0793a61d 3002 }
eb184479
PZ
3003 ctx->pmu = pmu;
3004
3005 return ctx;
a63eaf34
PM
3006}
3007
2ebd4ffb
MH
3008static struct task_struct *
3009find_lively_task_by_vpid(pid_t vpid)
3010{
3011 struct task_struct *task;
3012 int err;
0793a61d
TG
3013
3014 rcu_read_lock();
2ebd4ffb 3015 if (!vpid)
0793a61d
TG
3016 task = current;
3017 else
2ebd4ffb 3018 task = find_task_by_vpid(vpid);
0793a61d
TG
3019 if (task)
3020 get_task_struct(task);
3021 rcu_read_unlock();
3022
3023 if (!task)
3024 return ERR_PTR(-ESRCH);
3025
0793a61d 3026 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3027 err = -EACCES;
3028 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3029 goto errout;
3030
2ebd4ffb
MH
3031 return task;
3032errout:
3033 put_task_struct(task);
3034 return ERR_PTR(err);
3035
3036}
3037
fe4b04fa
PZ
3038/*
3039 * Returns a matching context with refcount and pincount.
3040 */
108b02cf 3041static struct perf_event_context *
38a81da2 3042find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3043{
cdd6c482 3044 struct perf_event_context *ctx;
22a4f650 3045 struct perf_cpu_context *cpuctx;
25346b93 3046 unsigned long flags;
8dc85d54 3047 int ctxn, err;
0793a61d 3048
22a4ec72 3049 if (!task) {
cdd6c482 3050 /* Must be root to operate on a CPU event: */
0764771d 3051 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3052 return ERR_PTR(-EACCES);
3053
0793a61d 3054 /*
cdd6c482 3055 * We could be clever and allow to attach a event to an
0793a61d
TG
3056 * offline CPU and activate it when the CPU comes up, but
3057 * that's for later.
3058 */
f6325e30 3059 if (!cpu_online(cpu))
0793a61d
TG
3060 return ERR_PTR(-ENODEV);
3061
108b02cf 3062 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3063 ctx = &cpuctx->ctx;
c93f7669 3064 get_ctx(ctx);
fe4b04fa 3065 ++ctx->pin_count;
0793a61d 3066
0793a61d
TG
3067 return ctx;
3068 }
3069
8dc85d54
PZ
3070 err = -EINVAL;
3071 ctxn = pmu->task_ctx_nr;
3072 if (ctxn < 0)
3073 goto errout;
3074
9ed6060d 3075retry:
8dc85d54 3076 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3077 if (ctx) {
71a851b4 3078 unclone_ctx(ctx);
fe4b04fa 3079 ++ctx->pin_count;
e625cce1 3080 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 3081 } else {
eb184479 3082 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3083 err = -ENOMEM;
3084 if (!ctx)
3085 goto errout;
eb184479 3086
dbe08d82
ON
3087 err = 0;
3088 mutex_lock(&task->perf_event_mutex);
3089 /*
3090 * If it has already passed perf_event_exit_task().
3091 * we must see PF_EXITING, it takes this mutex too.
3092 */
3093 if (task->flags & PF_EXITING)
3094 err = -ESRCH;
3095 else if (task->perf_event_ctxp[ctxn])
3096 err = -EAGAIN;
fe4b04fa 3097 else {
9137fb28 3098 get_ctx(ctx);
fe4b04fa 3099 ++ctx->pin_count;
dbe08d82 3100 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3101 }
dbe08d82
ON
3102 mutex_unlock(&task->perf_event_mutex);
3103
3104 if (unlikely(err)) {
9137fb28 3105 put_ctx(ctx);
dbe08d82
ON
3106
3107 if (err == -EAGAIN)
3108 goto retry;
3109 goto errout;
a63eaf34
PM
3110 }
3111 }
3112
0793a61d 3113 return ctx;
c93f7669 3114
9ed6060d 3115errout:
c93f7669 3116 return ERR_PTR(err);
0793a61d
TG
3117}
3118
6fb2915d
LZ
3119static void perf_event_free_filter(struct perf_event *event);
3120
cdd6c482 3121static void free_event_rcu(struct rcu_head *head)
592903cd 3122{
cdd6c482 3123 struct perf_event *event;
592903cd 3124
cdd6c482
IM
3125 event = container_of(head, struct perf_event, rcu_head);
3126 if (event->ns)
3127 put_pid_ns(event->ns);
6fb2915d 3128 perf_event_free_filter(event);
cdd6c482 3129 kfree(event);
592903cd
PZ
3130}
3131
76369139 3132static void ring_buffer_put(struct ring_buffer *rb);
9bb5d40c 3133static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
925d519a 3134
4beb31f3 3135static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3136{
4beb31f3
FW
3137 if (event->parent)
3138 return;
3139
3140 if (has_branch_stack(event)) {
3141 if (!(event->attach_state & PERF_ATTACH_TASK))
3142 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3143 }
3144 if (is_cgroup_event(event))
3145 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3146}
925d519a 3147
4beb31f3
FW
3148static void unaccount_event(struct perf_event *event)
3149{
3150 if (event->parent)
3151 return;
3152
3153 if (event->attach_state & PERF_ATTACH_TASK)
3154 static_key_slow_dec_deferred(&perf_sched_events);
3155 if (event->attr.mmap || event->attr.mmap_data)
3156 atomic_dec(&nr_mmap_events);
3157 if (event->attr.comm)
3158 atomic_dec(&nr_comm_events);
3159 if (event->attr.task)
3160 atomic_dec(&nr_task_events);
948b26b6
FW
3161 if (event->attr.freq)
3162 atomic_dec(&nr_freq_events);
4beb31f3
FW
3163 if (is_cgroup_event(event))
3164 static_key_slow_dec_deferred(&perf_sched_events);
3165 if (has_branch_stack(event))
3166 static_key_slow_dec_deferred(&perf_sched_events);
3167
3168 unaccount_event_cpu(event, event->cpu);
3169}
925d519a 3170
766d6c07
FW
3171static void __free_event(struct perf_event *event)
3172{
cdd6c482 3173 if (!event->parent) {
927c7a9e
FW
3174 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3175 put_callchain_buffers();
f344011c 3176 }
9ee318a7 3177
766d6c07
FW
3178 if (event->destroy)
3179 event->destroy(event);
3180
3181 if (event->ctx)
3182 put_ctx(event->ctx);
3183
3184 call_rcu(&event->rcu_head, free_event_rcu);
3185}
cdd6c482 3186static void free_event(struct perf_event *event)
f1600952 3187{
e360adbe 3188 irq_work_sync(&event->pending);
925d519a 3189
4beb31f3 3190 unaccount_event(event);
9ee318a7 3191
76369139 3192 if (event->rb) {
9bb5d40c
PZ
3193 struct ring_buffer *rb;
3194
3195 /*
3196 * Can happen when we close an event with re-directed output.
3197 *
3198 * Since we have a 0 refcount, perf_mmap_close() will skip
3199 * over us; possibly making our ring_buffer_put() the last.
3200 */
3201 mutex_lock(&event->mmap_mutex);
3202 rb = event->rb;
3203 if (rb) {
3204 rcu_assign_pointer(event->rb, NULL);
3205 ring_buffer_detach(event, rb);
3206 ring_buffer_put(rb); /* could be last */
3207 }
3208 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3209 }
3210
e5d1367f
SE
3211 if (is_cgroup_event(event))
3212 perf_detach_cgroup(event);
3213
0c67b408 3214
766d6c07 3215 __free_event(event);
f1600952
PZ
3216}
3217
a66a3052 3218int perf_event_release_kernel(struct perf_event *event)
0793a61d 3219{
cdd6c482 3220 struct perf_event_context *ctx = event->ctx;
0793a61d 3221
ad3a37de 3222 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
3223 /*
3224 * There are two ways this annotation is useful:
3225 *
3226 * 1) there is a lock recursion from perf_event_exit_task
3227 * see the comment there.
3228 *
3229 * 2) there is a lock-inversion with mmap_sem through
3230 * perf_event_read_group(), which takes faults while
3231 * holding ctx->mutex, however this is called after
3232 * the last filedesc died, so there is no possibility
3233 * to trigger the AB-BA case.
3234 */
3235 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 3236 raw_spin_lock_irq(&ctx->lock);
8a49542c 3237 perf_group_detach(event);
050735b0 3238 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 3239 perf_remove_from_context(event);
d859e29f 3240 mutex_unlock(&ctx->mutex);
0793a61d 3241
cdd6c482 3242 free_event(event);
0793a61d
TG
3243
3244 return 0;
3245}
a66a3052 3246EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 3247
a66a3052
PZ
3248/*
3249 * Called when the last reference to the file is gone.
3250 */
a6fa941d 3251static void put_event(struct perf_event *event)
fb0459d7 3252{
8882135b 3253 struct task_struct *owner;
fb0459d7 3254
a6fa941d
AV
3255 if (!atomic_long_dec_and_test(&event->refcount))
3256 return;
fb0459d7 3257
8882135b
PZ
3258 rcu_read_lock();
3259 owner = ACCESS_ONCE(event->owner);
3260 /*
3261 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3262 * !owner it means the list deletion is complete and we can indeed
3263 * free this event, otherwise we need to serialize on
3264 * owner->perf_event_mutex.
3265 */
3266 smp_read_barrier_depends();
3267 if (owner) {
3268 /*
3269 * Since delayed_put_task_struct() also drops the last
3270 * task reference we can safely take a new reference
3271 * while holding the rcu_read_lock().
3272 */
3273 get_task_struct(owner);
3274 }
3275 rcu_read_unlock();
3276
3277 if (owner) {
3278 mutex_lock(&owner->perf_event_mutex);
3279 /*
3280 * We have to re-check the event->owner field, if it is cleared
3281 * we raced with perf_event_exit_task(), acquiring the mutex
3282 * ensured they're done, and we can proceed with freeing the
3283 * event.
3284 */
3285 if (event->owner)
3286 list_del_init(&event->owner_entry);
3287 mutex_unlock(&owner->perf_event_mutex);
3288 put_task_struct(owner);
3289 }
3290
a6fa941d
AV
3291 perf_event_release_kernel(event);
3292}
3293
3294static int perf_release(struct inode *inode, struct file *file)
3295{
3296 put_event(file->private_data);
3297 return 0;
fb0459d7 3298}
fb0459d7 3299
59ed446f 3300u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3301{
cdd6c482 3302 struct perf_event *child;
e53c0994
PZ
3303 u64 total = 0;
3304
59ed446f
PZ
3305 *enabled = 0;
3306 *running = 0;
3307
6f10581a 3308 mutex_lock(&event->child_mutex);
cdd6c482 3309 total += perf_event_read(event);
59ed446f
PZ
3310 *enabled += event->total_time_enabled +
3311 atomic64_read(&event->child_total_time_enabled);
3312 *running += event->total_time_running +
3313 atomic64_read(&event->child_total_time_running);
3314
3315 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3316 total += perf_event_read(child);
59ed446f
PZ
3317 *enabled += child->total_time_enabled;
3318 *running += child->total_time_running;
3319 }
6f10581a 3320 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3321
3322 return total;
3323}
fb0459d7 3324EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3325
cdd6c482 3326static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3327 u64 read_format, char __user *buf)
3328{
cdd6c482 3329 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3330 int n = 0, size = 0, ret = -EFAULT;
3331 struct perf_event_context *ctx = leader->ctx;
abf4868b 3332 u64 values[5];
59ed446f 3333 u64 count, enabled, running;
abf4868b 3334
6f10581a 3335 mutex_lock(&ctx->mutex);
59ed446f 3336 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3337
3338 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3339 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3340 values[n++] = enabled;
3341 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3342 values[n++] = running;
abf4868b
PZ
3343 values[n++] = count;
3344 if (read_format & PERF_FORMAT_ID)
3345 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3346
3347 size = n * sizeof(u64);
3348
3349 if (copy_to_user(buf, values, size))
6f10581a 3350 goto unlock;
3dab77fb 3351
6f10581a 3352 ret = size;
3dab77fb 3353
65abc865 3354 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3355 n = 0;
3dab77fb 3356
59ed446f 3357 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3358 if (read_format & PERF_FORMAT_ID)
3359 values[n++] = primary_event_id(sub);
3360
3361 size = n * sizeof(u64);
3362
184d3da8 3363 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3364 ret = -EFAULT;
3365 goto unlock;
3366 }
abf4868b
PZ
3367
3368 ret += size;
3dab77fb 3369 }
6f10581a
PZ
3370unlock:
3371 mutex_unlock(&ctx->mutex);
3dab77fb 3372
abf4868b 3373 return ret;
3dab77fb
PZ
3374}
3375
cdd6c482 3376static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3377 u64 read_format, char __user *buf)
3378{
59ed446f 3379 u64 enabled, running;
3dab77fb
PZ
3380 u64 values[4];
3381 int n = 0;
3382
59ed446f
PZ
3383 values[n++] = perf_event_read_value(event, &enabled, &running);
3384 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3385 values[n++] = enabled;
3386 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3387 values[n++] = running;
3dab77fb 3388 if (read_format & PERF_FORMAT_ID)
cdd6c482 3389 values[n++] = primary_event_id(event);
3dab77fb
PZ
3390
3391 if (copy_to_user(buf, values, n * sizeof(u64)))
3392 return -EFAULT;
3393
3394 return n * sizeof(u64);
3395}
3396
0793a61d 3397/*
cdd6c482 3398 * Read the performance event - simple non blocking version for now
0793a61d
TG
3399 */
3400static ssize_t
cdd6c482 3401perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3402{
cdd6c482 3403 u64 read_format = event->attr.read_format;
3dab77fb 3404 int ret;
0793a61d 3405
3b6f9e5c 3406 /*
cdd6c482 3407 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3408 * error state (i.e. because it was pinned but it couldn't be
3409 * scheduled on to the CPU at some point).
3410 */
cdd6c482 3411 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3412 return 0;
3413
c320c7b7 3414 if (count < event->read_size)
3dab77fb
PZ
3415 return -ENOSPC;
3416
cdd6c482 3417 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3418 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3419 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3420 else
cdd6c482 3421 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3422
3dab77fb 3423 return ret;
0793a61d
TG
3424}
3425
0793a61d
TG
3426static ssize_t
3427perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3428{
cdd6c482 3429 struct perf_event *event = file->private_data;
0793a61d 3430
cdd6c482 3431 return perf_read_hw(event, buf, count);
0793a61d
TG
3432}
3433
3434static unsigned int perf_poll(struct file *file, poll_table *wait)
3435{
cdd6c482 3436 struct perf_event *event = file->private_data;
76369139 3437 struct ring_buffer *rb;
c33a0bc4 3438 unsigned int events = POLL_HUP;
c7138f37 3439
10c6db11 3440 /*
9bb5d40c
PZ
3441 * Pin the event->rb by taking event->mmap_mutex; otherwise
3442 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3443 */
3444 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3445 rb = event->rb;
3446 if (rb)
76369139 3447 events = atomic_xchg(&rb->poll, 0);
10c6db11
PZ
3448 mutex_unlock(&event->mmap_mutex);
3449
cdd6c482 3450 poll_wait(file, &event->waitq, wait);
0793a61d 3451
0793a61d
TG
3452 return events;
3453}
3454
cdd6c482 3455static void perf_event_reset(struct perf_event *event)
6de6a7b9 3456{
cdd6c482 3457 (void)perf_event_read(event);
e7850595 3458 local64_set(&event->count, 0);
cdd6c482 3459 perf_event_update_userpage(event);
3df5edad
PZ
3460}
3461
c93f7669 3462/*
cdd6c482
IM
3463 * Holding the top-level event's child_mutex means that any
3464 * descendant process that has inherited this event will block
3465 * in sync_child_event if it goes to exit, thus satisfying the
3466 * task existence requirements of perf_event_enable/disable.
c93f7669 3467 */
cdd6c482
IM
3468static void perf_event_for_each_child(struct perf_event *event,
3469 void (*func)(struct perf_event *))
3df5edad 3470{
cdd6c482 3471 struct perf_event *child;
3df5edad 3472
cdd6c482
IM
3473 WARN_ON_ONCE(event->ctx->parent_ctx);
3474 mutex_lock(&event->child_mutex);
3475 func(event);
3476 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3477 func(child);
cdd6c482 3478 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3479}
3480
cdd6c482
IM
3481static void perf_event_for_each(struct perf_event *event,
3482 void (*func)(struct perf_event *))
3df5edad 3483{
cdd6c482
IM
3484 struct perf_event_context *ctx = event->ctx;
3485 struct perf_event *sibling;
3df5edad 3486
75f937f2
PZ
3487 WARN_ON_ONCE(ctx->parent_ctx);
3488 mutex_lock(&ctx->mutex);
cdd6c482 3489 event = event->group_leader;
75f937f2 3490
cdd6c482 3491 perf_event_for_each_child(event, func);
cdd6c482 3492 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3493 perf_event_for_each_child(sibling, func);
75f937f2 3494 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3495}
3496
cdd6c482 3497static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3498{
cdd6c482 3499 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3500 int ret = 0;
3501 u64 value;
3502
6c7e550f 3503 if (!is_sampling_event(event))
08247e31
PZ
3504 return -EINVAL;
3505
ad0cf347 3506 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3507 return -EFAULT;
3508
3509 if (!value)
3510 return -EINVAL;
3511
e625cce1 3512 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3513 if (event->attr.freq) {
3514 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3515 ret = -EINVAL;
3516 goto unlock;
3517 }
3518
cdd6c482 3519 event->attr.sample_freq = value;
08247e31 3520 } else {
cdd6c482
IM
3521 event->attr.sample_period = value;
3522 event->hw.sample_period = value;
08247e31
PZ
3523 }
3524unlock:
e625cce1 3525 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3526
3527 return ret;
3528}
3529
ac9721f3
PZ
3530static const struct file_operations perf_fops;
3531
2903ff01 3532static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3533{
2903ff01
AV
3534 struct fd f = fdget(fd);
3535 if (!f.file)
3536 return -EBADF;
ac9721f3 3537
2903ff01
AV
3538 if (f.file->f_op != &perf_fops) {
3539 fdput(f);
3540 return -EBADF;
ac9721f3 3541 }
2903ff01
AV
3542 *p = f;
3543 return 0;
ac9721f3
PZ
3544}
3545
3546static int perf_event_set_output(struct perf_event *event,
3547 struct perf_event *output_event);
6fb2915d 3548static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3549
d859e29f
PM
3550static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3551{
cdd6c482
IM
3552 struct perf_event *event = file->private_data;
3553 void (*func)(struct perf_event *);
3df5edad 3554 u32 flags = arg;
d859e29f
PM
3555
3556 switch (cmd) {
cdd6c482
IM
3557 case PERF_EVENT_IOC_ENABLE:
3558 func = perf_event_enable;
d859e29f 3559 break;
cdd6c482
IM
3560 case PERF_EVENT_IOC_DISABLE:
3561 func = perf_event_disable;
79f14641 3562 break;
cdd6c482
IM
3563 case PERF_EVENT_IOC_RESET:
3564 func = perf_event_reset;
6de6a7b9 3565 break;
3df5edad 3566
cdd6c482
IM
3567 case PERF_EVENT_IOC_REFRESH:
3568 return perf_event_refresh(event, arg);
08247e31 3569
cdd6c482
IM
3570 case PERF_EVENT_IOC_PERIOD:
3571 return perf_event_period(event, (u64 __user *)arg);
08247e31 3572
cf4957f1
JO
3573 case PERF_EVENT_IOC_ID:
3574 {
3575 u64 id = primary_event_id(event);
3576
3577 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3578 return -EFAULT;
3579 return 0;
3580 }
3581
cdd6c482 3582 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3583 {
ac9721f3 3584 int ret;
ac9721f3 3585 if (arg != -1) {
2903ff01
AV
3586 struct perf_event *output_event;
3587 struct fd output;
3588 ret = perf_fget_light(arg, &output);
3589 if (ret)
3590 return ret;
3591 output_event = output.file->private_data;
3592 ret = perf_event_set_output(event, output_event);
3593 fdput(output);
3594 } else {
3595 ret = perf_event_set_output(event, NULL);
ac9721f3 3596 }
ac9721f3
PZ
3597 return ret;
3598 }
a4be7c27 3599
6fb2915d
LZ
3600 case PERF_EVENT_IOC_SET_FILTER:
3601 return perf_event_set_filter(event, (void __user *)arg);
3602
d859e29f 3603 default:
3df5edad 3604 return -ENOTTY;
d859e29f 3605 }
3df5edad
PZ
3606
3607 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3608 perf_event_for_each(event, func);
3df5edad 3609 else
cdd6c482 3610 perf_event_for_each_child(event, func);
3df5edad
PZ
3611
3612 return 0;
d859e29f
PM
3613}
3614
cdd6c482 3615int perf_event_task_enable(void)
771d7cde 3616{
cdd6c482 3617 struct perf_event *event;
771d7cde 3618
cdd6c482
IM
3619 mutex_lock(&current->perf_event_mutex);
3620 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3621 perf_event_for_each_child(event, perf_event_enable);
3622 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3623
3624 return 0;
3625}
3626
cdd6c482 3627int perf_event_task_disable(void)
771d7cde 3628{
cdd6c482 3629 struct perf_event *event;
771d7cde 3630
cdd6c482
IM
3631 mutex_lock(&current->perf_event_mutex);
3632 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3633 perf_event_for_each_child(event, perf_event_disable);
3634 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3635
3636 return 0;
3637}
3638
cdd6c482 3639static int perf_event_index(struct perf_event *event)
194002b2 3640{
a4eaf7f1
PZ
3641 if (event->hw.state & PERF_HES_STOPPED)
3642 return 0;
3643
cdd6c482 3644 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3645 return 0;
3646
35edc2a5 3647 return event->pmu->event_idx(event);
194002b2
PZ
3648}
3649
c4794295 3650static void calc_timer_values(struct perf_event *event,
e3f3541c 3651 u64 *now,
7f310a5d
EM
3652 u64 *enabled,
3653 u64 *running)
c4794295 3654{
e3f3541c 3655 u64 ctx_time;
c4794295 3656
e3f3541c
PZ
3657 *now = perf_clock();
3658 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3659 *enabled = ctx_time - event->tstamp_enabled;
3660 *running = ctx_time - event->tstamp_running;
3661}
3662
fa731587
PZ
3663static void perf_event_init_userpage(struct perf_event *event)
3664{
3665 struct perf_event_mmap_page *userpg;
3666 struct ring_buffer *rb;
3667
3668 rcu_read_lock();
3669 rb = rcu_dereference(event->rb);
3670 if (!rb)
3671 goto unlock;
3672
3673 userpg = rb->user_page;
3674
3675 /* Allow new userspace to detect that bit 0 is deprecated */
3676 userpg->cap_bit0_is_deprecated = 1;
3677 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3678
3679unlock:
3680 rcu_read_unlock();
3681}
3682
c7206205 3683void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3684{
3685}
3686
38ff667b
PZ
3687/*
3688 * Callers need to ensure there can be no nesting of this function, otherwise
3689 * the seqlock logic goes bad. We can not serialize this because the arch
3690 * code calls this from NMI context.
3691 */
cdd6c482 3692void perf_event_update_userpage(struct perf_event *event)
37d81828 3693{
cdd6c482 3694 struct perf_event_mmap_page *userpg;
76369139 3695 struct ring_buffer *rb;
e3f3541c 3696 u64 enabled, running, now;
38ff667b
PZ
3697
3698 rcu_read_lock();
5ec4c599
PZ
3699 rb = rcu_dereference(event->rb);
3700 if (!rb)
3701 goto unlock;
3702
0d641208
EM
3703 /*
3704 * compute total_time_enabled, total_time_running
3705 * based on snapshot values taken when the event
3706 * was last scheduled in.
3707 *
3708 * we cannot simply called update_context_time()
3709 * because of locking issue as we can be called in
3710 * NMI context
3711 */
e3f3541c 3712 calc_timer_values(event, &now, &enabled, &running);
38ff667b 3713
76369139 3714 userpg = rb->user_page;
7b732a75
PZ
3715 /*
3716 * Disable preemption so as to not let the corresponding user-space
3717 * spin too long if we get preempted.
3718 */
3719 preempt_disable();
37d81828 3720 ++userpg->lock;
92f22a38 3721 barrier();
cdd6c482 3722 userpg->index = perf_event_index(event);
b5e58793 3723 userpg->offset = perf_event_count(event);
365a4038 3724 if (userpg->index)
e7850595 3725 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3726
0d641208 3727 userpg->time_enabled = enabled +
cdd6c482 3728 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3729
0d641208 3730 userpg->time_running = running +
cdd6c482 3731 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3732
c7206205 3733 arch_perf_update_userpage(userpg, now);
e3f3541c 3734
92f22a38 3735 barrier();
37d81828 3736 ++userpg->lock;
7b732a75 3737 preempt_enable();
38ff667b 3738unlock:
7b732a75 3739 rcu_read_unlock();
37d81828
PM
3740}
3741
906010b2
PZ
3742static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3743{
3744 struct perf_event *event = vma->vm_file->private_data;
76369139 3745 struct ring_buffer *rb;
906010b2
PZ
3746 int ret = VM_FAULT_SIGBUS;
3747
3748 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3749 if (vmf->pgoff == 0)
3750 ret = 0;
3751 return ret;
3752 }
3753
3754 rcu_read_lock();
76369139
FW
3755 rb = rcu_dereference(event->rb);
3756 if (!rb)
906010b2
PZ
3757 goto unlock;
3758
3759 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3760 goto unlock;
3761
76369139 3762 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3763 if (!vmf->page)
3764 goto unlock;
3765
3766 get_page(vmf->page);
3767 vmf->page->mapping = vma->vm_file->f_mapping;
3768 vmf->page->index = vmf->pgoff;
3769
3770 ret = 0;
3771unlock:
3772 rcu_read_unlock();
3773
3774 return ret;
3775}
3776
10c6db11
PZ
3777static void ring_buffer_attach(struct perf_event *event,
3778 struct ring_buffer *rb)
3779{
3780 unsigned long flags;
3781
3782 if (!list_empty(&event->rb_entry))
3783 return;
3784
3785 spin_lock_irqsave(&rb->event_lock, flags);
9bb5d40c
PZ
3786 if (list_empty(&event->rb_entry))
3787 list_add(&event->rb_entry, &rb->event_list);
10c6db11
PZ
3788 spin_unlock_irqrestore(&rb->event_lock, flags);
3789}
3790
9bb5d40c 3791static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
10c6db11
PZ
3792{
3793 unsigned long flags;
3794
3795 if (list_empty(&event->rb_entry))
3796 return;
3797
3798 spin_lock_irqsave(&rb->event_lock, flags);
3799 list_del_init(&event->rb_entry);
3800 wake_up_all(&event->waitq);
3801 spin_unlock_irqrestore(&rb->event_lock, flags);
3802}
3803
3804static void ring_buffer_wakeup(struct perf_event *event)
3805{
3806 struct ring_buffer *rb;
3807
3808 rcu_read_lock();
3809 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
3810 if (rb) {
3811 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3812 wake_up_all(&event->waitq);
3813 }
10c6db11
PZ
3814 rcu_read_unlock();
3815}
3816
76369139 3817static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3818{
76369139 3819 struct ring_buffer *rb;
906010b2 3820
76369139
FW
3821 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3822 rb_free(rb);
7b732a75
PZ
3823}
3824
76369139 3825static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3826{
76369139 3827 struct ring_buffer *rb;
7b732a75 3828
ac9721f3 3829 rcu_read_lock();
76369139
FW
3830 rb = rcu_dereference(event->rb);
3831 if (rb) {
3832 if (!atomic_inc_not_zero(&rb->refcount))
3833 rb = NULL;
ac9721f3
PZ
3834 }
3835 rcu_read_unlock();
3836
76369139 3837 return rb;
ac9721f3
PZ
3838}
3839
76369139 3840static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3841{
76369139 3842 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3843 return;
7b732a75 3844
9bb5d40c 3845 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 3846
76369139 3847 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3848}
3849
3850static void perf_mmap_open(struct vm_area_struct *vma)
3851{
cdd6c482 3852 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3853
cdd6c482 3854 atomic_inc(&event->mmap_count);
9bb5d40c 3855 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
3856}
3857
9bb5d40c
PZ
3858/*
3859 * A buffer can be mmap()ed multiple times; either directly through the same
3860 * event, or through other events by use of perf_event_set_output().
3861 *
3862 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3863 * the buffer here, where we still have a VM context. This means we need
3864 * to detach all events redirecting to us.
3865 */
7b732a75
PZ
3866static void perf_mmap_close(struct vm_area_struct *vma)
3867{
cdd6c482 3868 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3869
9bb5d40c
PZ
3870 struct ring_buffer *rb = event->rb;
3871 struct user_struct *mmap_user = rb->mmap_user;
3872 int mmap_locked = rb->mmap_locked;
3873 unsigned long size = perf_data_size(rb);
789f90fc 3874
9bb5d40c
PZ
3875 atomic_dec(&rb->mmap_count);
3876
3877 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3878 return;
3879
3880 /* Detach current event from the buffer. */
3881 rcu_assign_pointer(event->rb, NULL);
3882 ring_buffer_detach(event, rb);
3883 mutex_unlock(&event->mmap_mutex);
3884
3885 /* If there's still other mmap()s of this buffer, we're done. */
3886 if (atomic_read(&rb->mmap_count)) {
3887 ring_buffer_put(rb); /* can't be last */
3888 return;
3889 }
ac9721f3 3890
9bb5d40c
PZ
3891 /*
3892 * No other mmap()s, detach from all other events that might redirect
3893 * into the now unreachable buffer. Somewhat complicated by the
3894 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3895 */
3896again:
3897 rcu_read_lock();
3898 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3899 if (!atomic_long_inc_not_zero(&event->refcount)) {
3900 /*
3901 * This event is en-route to free_event() which will
3902 * detach it and remove it from the list.
3903 */
3904 continue;
3905 }
3906 rcu_read_unlock();
789f90fc 3907
9bb5d40c
PZ
3908 mutex_lock(&event->mmap_mutex);
3909 /*
3910 * Check we didn't race with perf_event_set_output() which can
3911 * swizzle the rb from under us while we were waiting to
3912 * acquire mmap_mutex.
3913 *
3914 * If we find a different rb; ignore this event, a next
3915 * iteration will no longer find it on the list. We have to
3916 * still restart the iteration to make sure we're not now
3917 * iterating the wrong list.
3918 */
3919 if (event->rb == rb) {
3920 rcu_assign_pointer(event->rb, NULL);
3921 ring_buffer_detach(event, rb);
3922 ring_buffer_put(rb); /* can't be last, we still have one */
26cb63ad 3923 }
cdd6c482 3924 mutex_unlock(&event->mmap_mutex);
9bb5d40c 3925 put_event(event);
ac9721f3 3926
9bb5d40c
PZ
3927 /*
3928 * Restart the iteration; either we're on the wrong list or
3929 * destroyed its integrity by doing a deletion.
3930 */
3931 goto again;
7b732a75 3932 }
9bb5d40c
PZ
3933 rcu_read_unlock();
3934
3935 /*
3936 * It could be there's still a few 0-ref events on the list; they'll
3937 * get cleaned up by free_event() -- they'll also still have their
3938 * ref on the rb and will free it whenever they are done with it.
3939 *
3940 * Aside from that, this buffer is 'fully' detached and unmapped,
3941 * undo the VM accounting.
3942 */
3943
3944 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3945 vma->vm_mm->pinned_vm -= mmap_locked;
3946 free_uid(mmap_user);
3947
3948 ring_buffer_put(rb); /* could be last */
37d81828
PM
3949}
3950
f0f37e2f 3951static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3952 .open = perf_mmap_open,
3953 .close = perf_mmap_close,
3954 .fault = perf_mmap_fault,
3955 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3956};
3957
3958static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3959{
cdd6c482 3960 struct perf_event *event = file->private_data;
22a4f650 3961 unsigned long user_locked, user_lock_limit;
789f90fc 3962 struct user_struct *user = current_user();
22a4f650 3963 unsigned long locked, lock_limit;
76369139 3964 struct ring_buffer *rb;
7b732a75
PZ
3965 unsigned long vma_size;
3966 unsigned long nr_pages;
789f90fc 3967 long user_extra, extra;
d57e34fd 3968 int ret = 0, flags = 0;
37d81828 3969
c7920614
PZ
3970 /*
3971 * Don't allow mmap() of inherited per-task counters. This would
3972 * create a performance issue due to all children writing to the
76369139 3973 * same rb.
c7920614
PZ
3974 */
3975 if (event->cpu == -1 && event->attr.inherit)
3976 return -EINVAL;
3977
43a21ea8 3978 if (!(vma->vm_flags & VM_SHARED))
37d81828 3979 return -EINVAL;
7b732a75
PZ
3980
3981 vma_size = vma->vm_end - vma->vm_start;
3982 nr_pages = (vma_size / PAGE_SIZE) - 1;
3983
7730d865 3984 /*
76369139 3985 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3986 * can do bitmasks instead of modulo.
3987 */
3988 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3989 return -EINVAL;
3990
7b732a75 3991 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3992 return -EINVAL;
3993
7b732a75
PZ
3994 if (vma->vm_pgoff != 0)
3995 return -EINVAL;
37d81828 3996
cdd6c482 3997 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 3998again:
cdd6c482 3999 mutex_lock(&event->mmap_mutex);
76369139 4000 if (event->rb) {
9bb5d40c 4001 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4002 ret = -EINVAL;
9bb5d40c
PZ
4003 goto unlock;
4004 }
4005
4006 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4007 /*
4008 * Raced against perf_mmap_close() through
4009 * perf_event_set_output(). Try again, hope for better
4010 * luck.
4011 */
4012 mutex_unlock(&event->mmap_mutex);
4013 goto again;
4014 }
4015
ebb3c4c4
PZ
4016 goto unlock;
4017 }
4018
789f90fc 4019 user_extra = nr_pages + 1;
cdd6c482 4020 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4021
4022 /*
4023 * Increase the limit linearly with more CPUs:
4024 */
4025 user_lock_limit *= num_online_cpus();
4026
789f90fc 4027 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4028
789f90fc
PZ
4029 extra = 0;
4030 if (user_locked > user_lock_limit)
4031 extra = user_locked - user_lock_limit;
7b732a75 4032
78d7d407 4033 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4034 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4035 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4036
459ec28a
IM
4037 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4038 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4039 ret = -EPERM;
4040 goto unlock;
4041 }
7b732a75 4042
76369139 4043 WARN_ON(event->rb);
906010b2 4044
d57e34fd 4045 if (vma->vm_flags & VM_WRITE)
76369139 4046 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4047
4ec8363d
VW
4048 rb = rb_alloc(nr_pages,
4049 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4050 event->cpu, flags);
4051
76369139 4052 if (!rb) {
ac9721f3 4053 ret = -ENOMEM;
ebb3c4c4 4054 goto unlock;
ac9721f3 4055 }
26cb63ad 4056
9bb5d40c 4057 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4058 rb->mmap_locked = extra;
4059 rb->mmap_user = get_current_user();
43a21ea8 4060
ac9721f3 4061 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4062 vma->vm_mm->pinned_vm += extra;
4063
9bb5d40c 4064 ring_buffer_attach(event, rb);
26cb63ad 4065 rcu_assign_pointer(event->rb, rb);
ac9721f3 4066
fa731587 4067 perf_event_init_userpage(event);
9a0f05cb
PZ
4068 perf_event_update_userpage(event);
4069
ebb3c4c4 4070unlock:
ac9721f3
PZ
4071 if (!ret)
4072 atomic_inc(&event->mmap_count);
cdd6c482 4073 mutex_unlock(&event->mmap_mutex);
37d81828 4074
9bb5d40c
PZ
4075 /*
4076 * Since pinned accounting is per vm we cannot allow fork() to copy our
4077 * vma.
4078 */
26cb63ad 4079 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4080 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4081
4082 return ret;
37d81828
PM
4083}
4084
3c446b3d
PZ
4085static int perf_fasync(int fd, struct file *filp, int on)
4086{
496ad9aa 4087 struct inode *inode = file_inode(filp);
cdd6c482 4088 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4089 int retval;
4090
4091 mutex_lock(&inode->i_mutex);
cdd6c482 4092 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4093 mutex_unlock(&inode->i_mutex);
4094
4095 if (retval < 0)
4096 return retval;
4097
4098 return 0;
4099}
4100
0793a61d 4101static const struct file_operations perf_fops = {
3326c1ce 4102 .llseek = no_llseek,
0793a61d
TG
4103 .release = perf_release,
4104 .read = perf_read,
4105 .poll = perf_poll,
d859e29f
PM
4106 .unlocked_ioctl = perf_ioctl,
4107 .compat_ioctl = perf_ioctl,
37d81828 4108 .mmap = perf_mmap,
3c446b3d 4109 .fasync = perf_fasync,
0793a61d
TG
4110};
4111
925d519a 4112/*
cdd6c482 4113 * Perf event wakeup
925d519a
PZ
4114 *
4115 * If there's data, ensure we set the poll() state and publish everything
4116 * to user-space before waking everybody up.
4117 */
4118
cdd6c482 4119void perf_event_wakeup(struct perf_event *event)
925d519a 4120{
10c6db11 4121 ring_buffer_wakeup(event);
4c9e2542 4122
cdd6c482
IM
4123 if (event->pending_kill) {
4124 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4125 event->pending_kill = 0;
4c9e2542 4126 }
925d519a
PZ
4127}
4128
e360adbe 4129static void perf_pending_event(struct irq_work *entry)
79f14641 4130{
cdd6c482
IM
4131 struct perf_event *event = container_of(entry,
4132 struct perf_event, pending);
79f14641 4133
cdd6c482
IM
4134 if (event->pending_disable) {
4135 event->pending_disable = 0;
4136 __perf_event_disable(event);
79f14641
PZ
4137 }
4138
cdd6c482
IM
4139 if (event->pending_wakeup) {
4140 event->pending_wakeup = 0;
4141 perf_event_wakeup(event);
79f14641
PZ
4142 }
4143}
4144
39447b38
ZY
4145/*
4146 * We assume there is only KVM supporting the callbacks.
4147 * Later on, we might change it to a list if there is
4148 * another virtualization implementation supporting the callbacks.
4149 */
4150struct perf_guest_info_callbacks *perf_guest_cbs;
4151
4152int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4153{
4154 perf_guest_cbs = cbs;
4155 return 0;
4156}
4157EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4158
4159int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4160{
4161 perf_guest_cbs = NULL;
4162 return 0;
4163}
4164EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4165
4018994f
JO
4166static void
4167perf_output_sample_regs(struct perf_output_handle *handle,
4168 struct pt_regs *regs, u64 mask)
4169{
4170 int bit;
4171
4172 for_each_set_bit(bit, (const unsigned long *) &mask,
4173 sizeof(mask) * BITS_PER_BYTE) {
4174 u64 val;
4175
4176 val = perf_reg_value(regs, bit);
4177 perf_output_put(handle, val);
4178 }
4179}
4180
4181static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4182 struct pt_regs *regs)
4183{
4184 if (!user_mode(regs)) {
4185 if (current->mm)
4186 regs = task_pt_regs(current);
4187 else
4188 regs = NULL;
4189 }
4190
4191 if (regs) {
4192 regs_user->regs = regs;
4193 regs_user->abi = perf_reg_abi(current);
4194 }
4195}
4196
c5ebcedb
JO
4197/*
4198 * Get remaining task size from user stack pointer.
4199 *
4200 * It'd be better to take stack vma map and limit this more
4201 * precisly, but there's no way to get it safely under interrupt,
4202 * so using TASK_SIZE as limit.
4203 */
4204static u64 perf_ustack_task_size(struct pt_regs *regs)
4205{
4206 unsigned long addr = perf_user_stack_pointer(regs);
4207
4208 if (!addr || addr >= TASK_SIZE)
4209 return 0;
4210
4211 return TASK_SIZE - addr;
4212}
4213
4214static u16
4215perf_sample_ustack_size(u16 stack_size, u16 header_size,
4216 struct pt_regs *regs)
4217{
4218 u64 task_size;
4219
4220 /* No regs, no stack pointer, no dump. */
4221 if (!regs)
4222 return 0;
4223
4224 /*
4225 * Check if we fit in with the requested stack size into the:
4226 * - TASK_SIZE
4227 * If we don't, we limit the size to the TASK_SIZE.
4228 *
4229 * - remaining sample size
4230 * If we don't, we customize the stack size to
4231 * fit in to the remaining sample size.
4232 */
4233
4234 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4235 stack_size = min(stack_size, (u16) task_size);
4236
4237 /* Current header size plus static size and dynamic size. */
4238 header_size += 2 * sizeof(u64);
4239
4240 /* Do we fit in with the current stack dump size? */
4241 if ((u16) (header_size + stack_size) < header_size) {
4242 /*
4243 * If we overflow the maximum size for the sample,
4244 * we customize the stack dump size to fit in.
4245 */
4246 stack_size = USHRT_MAX - header_size - sizeof(u64);
4247 stack_size = round_up(stack_size, sizeof(u64));
4248 }
4249
4250 return stack_size;
4251}
4252
4253static void
4254perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4255 struct pt_regs *regs)
4256{
4257 /* Case of a kernel thread, nothing to dump */
4258 if (!regs) {
4259 u64 size = 0;
4260 perf_output_put(handle, size);
4261 } else {
4262 unsigned long sp;
4263 unsigned int rem;
4264 u64 dyn_size;
4265
4266 /*
4267 * We dump:
4268 * static size
4269 * - the size requested by user or the best one we can fit
4270 * in to the sample max size
4271 * data
4272 * - user stack dump data
4273 * dynamic size
4274 * - the actual dumped size
4275 */
4276
4277 /* Static size. */
4278 perf_output_put(handle, dump_size);
4279
4280 /* Data. */
4281 sp = perf_user_stack_pointer(regs);
4282 rem = __output_copy_user(handle, (void *) sp, dump_size);
4283 dyn_size = dump_size - rem;
4284
4285 perf_output_skip(handle, rem);
4286
4287 /* Dynamic size. */
4288 perf_output_put(handle, dyn_size);
4289 }
4290}
4291
c980d109
ACM
4292static void __perf_event_header__init_id(struct perf_event_header *header,
4293 struct perf_sample_data *data,
4294 struct perf_event *event)
6844c09d
ACM
4295{
4296 u64 sample_type = event->attr.sample_type;
4297
4298 data->type = sample_type;
4299 header->size += event->id_header_size;
4300
4301 if (sample_type & PERF_SAMPLE_TID) {
4302 /* namespace issues */
4303 data->tid_entry.pid = perf_event_pid(event, current);
4304 data->tid_entry.tid = perf_event_tid(event, current);
4305 }
4306
4307 if (sample_type & PERF_SAMPLE_TIME)
4308 data->time = perf_clock();
4309
ff3d527c 4310 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4311 data->id = primary_event_id(event);
4312
4313 if (sample_type & PERF_SAMPLE_STREAM_ID)
4314 data->stream_id = event->id;
4315
4316 if (sample_type & PERF_SAMPLE_CPU) {
4317 data->cpu_entry.cpu = raw_smp_processor_id();
4318 data->cpu_entry.reserved = 0;
4319 }
4320}
4321
76369139
FW
4322void perf_event_header__init_id(struct perf_event_header *header,
4323 struct perf_sample_data *data,
4324 struct perf_event *event)
c980d109
ACM
4325{
4326 if (event->attr.sample_id_all)
4327 __perf_event_header__init_id(header, data, event);
4328}
4329
4330static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4331 struct perf_sample_data *data)
4332{
4333 u64 sample_type = data->type;
4334
4335 if (sample_type & PERF_SAMPLE_TID)
4336 perf_output_put(handle, data->tid_entry);
4337
4338 if (sample_type & PERF_SAMPLE_TIME)
4339 perf_output_put(handle, data->time);
4340
4341 if (sample_type & PERF_SAMPLE_ID)
4342 perf_output_put(handle, data->id);
4343
4344 if (sample_type & PERF_SAMPLE_STREAM_ID)
4345 perf_output_put(handle, data->stream_id);
4346
4347 if (sample_type & PERF_SAMPLE_CPU)
4348 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4349
4350 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4351 perf_output_put(handle, data->id);
c980d109
ACM
4352}
4353
76369139
FW
4354void perf_event__output_id_sample(struct perf_event *event,
4355 struct perf_output_handle *handle,
4356 struct perf_sample_data *sample)
c980d109
ACM
4357{
4358 if (event->attr.sample_id_all)
4359 __perf_event__output_id_sample(handle, sample);
4360}
4361
3dab77fb 4362static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4363 struct perf_event *event,
4364 u64 enabled, u64 running)
3dab77fb 4365{
cdd6c482 4366 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4367 u64 values[4];
4368 int n = 0;
4369
b5e58793 4370 values[n++] = perf_event_count(event);
3dab77fb 4371 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4372 values[n++] = enabled +
cdd6c482 4373 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4374 }
4375 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4376 values[n++] = running +
cdd6c482 4377 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4378 }
4379 if (read_format & PERF_FORMAT_ID)
cdd6c482 4380 values[n++] = primary_event_id(event);
3dab77fb 4381
76369139 4382 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4383}
4384
4385/*
cdd6c482 4386 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4387 */
4388static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4389 struct perf_event *event,
4390 u64 enabled, u64 running)
3dab77fb 4391{
cdd6c482
IM
4392 struct perf_event *leader = event->group_leader, *sub;
4393 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4394 u64 values[5];
4395 int n = 0;
4396
4397 values[n++] = 1 + leader->nr_siblings;
4398
4399 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4400 values[n++] = enabled;
3dab77fb
PZ
4401
4402 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4403 values[n++] = running;
3dab77fb 4404
cdd6c482 4405 if (leader != event)
3dab77fb
PZ
4406 leader->pmu->read(leader);
4407
b5e58793 4408 values[n++] = perf_event_count(leader);
3dab77fb 4409 if (read_format & PERF_FORMAT_ID)
cdd6c482 4410 values[n++] = primary_event_id(leader);
3dab77fb 4411
76369139 4412 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4413
65abc865 4414 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4415 n = 0;
4416
6f5ab001
JO
4417 if ((sub != event) &&
4418 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4419 sub->pmu->read(sub);
4420
b5e58793 4421 values[n++] = perf_event_count(sub);
3dab77fb 4422 if (read_format & PERF_FORMAT_ID)
cdd6c482 4423 values[n++] = primary_event_id(sub);
3dab77fb 4424
76369139 4425 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4426 }
4427}
4428
eed01528
SE
4429#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4430 PERF_FORMAT_TOTAL_TIME_RUNNING)
4431
3dab77fb 4432static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4433 struct perf_event *event)
3dab77fb 4434{
e3f3541c 4435 u64 enabled = 0, running = 0, now;
eed01528
SE
4436 u64 read_format = event->attr.read_format;
4437
4438 /*
4439 * compute total_time_enabled, total_time_running
4440 * based on snapshot values taken when the event
4441 * was last scheduled in.
4442 *
4443 * we cannot simply called update_context_time()
4444 * because of locking issue as we are called in
4445 * NMI context
4446 */
c4794295 4447 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4448 calc_timer_values(event, &now, &enabled, &running);
eed01528 4449
cdd6c482 4450 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4451 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4452 else
eed01528 4453 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4454}
4455
5622f295
MM
4456void perf_output_sample(struct perf_output_handle *handle,
4457 struct perf_event_header *header,
4458 struct perf_sample_data *data,
cdd6c482 4459 struct perf_event *event)
5622f295
MM
4460{
4461 u64 sample_type = data->type;
4462
4463 perf_output_put(handle, *header);
4464
ff3d527c
AH
4465 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4466 perf_output_put(handle, data->id);
4467
5622f295
MM
4468 if (sample_type & PERF_SAMPLE_IP)
4469 perf_output_put(handle, data->ip);
4470
4471 if (sample_type & PERF_SAMPLE_TID)
4472 perf_output_put(handle, data->tid_entry);
4473
4474 if (sample_type & PERF_SAMPLE_TIME)
4475 perf_output_put(handle, data->time);
4476
4477 if (sample_type & PERF_SAMPLE_ADDR)
4478 perf_output_put(handle, data->addr);
4479
4480 if (sample_type & PERF_SAMPLE_ID)
4481 perf_output_put(handle, data->id);
4482
4483 if (sample_type & PERF_SAMPLE_STREAM_ID)
4484 perf_output_put(handle, data->stream_id);
4485
4486 if (sample_type & PERF_SAMPLE_CPU)
4487 perf_output_put(handle, data->cpu_entry);
4488
4489 if (sample_type & PERF_SAMPLE_PERIOD)
4490 perf_output_put(handle, data->period);
4491
4492 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4493 perf_output_read(handle, event);
5622f295
MM
4494
4495 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4496 if (data->callchain) {
4497 int size = 1;
4498
4499 if (data->callchain)
4500 size += data->callchain->nr;
4501
4502 size *= sizeof(u64);
4503
76369139 4504 __output_copy(handle, data->callchain, size);
5622f295
MM
4505 } else {
4506 u64 nr = 0;
4507 perf_output_put(handle, nr);
4508 }
4509 }
4510
4511 if (sample_type & PERF_SAMPLE_RAW) {
4512 if (data->raw) {
4513 perf_output_put(handle, data->raw->size);
76369139
FW
4514 __output_copy(handle, data->raw->data,
4515 data->raw->size);
5622f295
MM
4516 } else {
4517 struct {
4518 u32 size;
4519 u32 data;
4520 } raw = {
4521 .size = sizeof(u32),
4522 .data = 0,
4523 };
4524 perf_output_put(handle, raw);
4525 }
4526 }
a7ac67ea 4527
bce38cd5
SE
4528 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4529 if (data->br_stack) {
4530 size_t size;
4531
4532 size = data->br_stack->nr
4533 * sizeof(struct perf_branch_entry);
4534
4535 perf_output_put(handle, data->br_stack->nr);
4536 perf_output_copy(handle, data->br_stack->entries, size);
4537 } else {
4538 /*
4539 * we always store at least the value of nr
4540 */
4541 u64 nr = 0;
4542 perf_output_put(handle, nr);
4543 }
4544 }
4018994f
JO
4545
4546 if (sample_type & PERF_SAMPLE_REGS_USER) {
4547 u64 abi = data->regs_user.abi;
4548
4549 /*
4550 * If there are no regs to dump, notice it through
4551 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4552 */
4553 perf_output_put(handle, abi);
4554
4555 if (abi) {
4556 u64 mask = event->attr.sample_regs_user;
4557 perf_output_sample_regs(handle,
4558 data->regs_user.regs,
4559 mask);
4560 }
4561 }
c5ebcedb 4562
a5cdd40c 4563 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
4564 perf_output_sample_ustack(handle,
4565 data->stack_user_size,
4566 data->regs_user.regs);
a5cdd40c 4567 }
c3feedf2
AK
4568
4569 if (sample_type & PERF_SAMPLE_WEIGHT)
4570 perf_output_put(handle, data->weight);
d6be9ad6
SE
4571
4572 if (sample_type & PERF_SAMPLE_DATA_SRC)
4573 perf_output_put(handle, data->data_src.val);
a5cdd40c
PZ
4574
4575 if (!event->attr.watermark) {
4576 int wakeup_events = event->attr.wakeup_events;
4577
4578 if (wakeup_events) {
4579 struct ring_buffer *rb = handle->rb;
4580 int events = local_inc_return(&rb->events);
4581
4582 if (events >= wakeup_events) {
4583 local_sub(wakeup_events, &rb->events);
4584 local_inc(&rb->wakeup);
4585 }
4586 }
4587 }
5622f295
MM
4588}
4589
4590void perf_prepare_sample(struct perf_event_header *header,
4591 struct perf_sample_data *data,
cdd6c482 4592 struct perf_event *event,
5622f295 4593 struct pt_regs *regs)
7b732a75 4594{
cdd6c482 4595 u64 sample_type = event->attr.sample_type;
7b732a75 4596
cdd6c482 4597 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4598 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4599
4600 header->misc = 0;
4601 header->misc |= perf_misc_flags(regs);
6fab0192 4602
c980d109 4603 __perf_event_header__init_id(header, data, event);
6844c09d 4604
c320c7b7 4605 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4606 data->ip = perf_instruction_pointer(regs);
4607
b23f3325 4608 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4609 int size = 1;
394ee076 4610
e6dab5ff 4611 data->callchain = perf_callchain(event, regs);
5622f295
MM
4612
4613 if (data->callchain)
4614 size += data->callchain->nr;
4615
4616 header->size += size * sizeof(u64);
394ee076
PZ
4617 }
4618
3a43ce68 4619 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4620 int size = sizeof(u32);
4621
4622 if (data->raw)
4623 size += data->raw->size;
4624 else
4625 size += sizeof(u32);
4626
4627 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4628 header->size += size;
7f453c24 4629 }
bce38cd5
SE
4630
4631 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4632 int size = sizeof(u64); /* nr */
4633 if (data->br_stack) {
4634 size += data->br_stack->nr
4635 * sizeof(struct perf_branch_entry);
4636 }
4637 header->size += size;
4638 }
4018994f
JO
4639
4640 if (sample_type & PERF_SAMPLE_REGS_USER) {
4641 /* regs dump ABI info */
4642 int size = sizeof(u64);
4643
4644 perf_sample_regs_user(&data->regs_user, regs);
4645
4646 if (data->regs_user.regs) {
4647 u64 mask = event->attr.sample_regs_user;
4648 size += hweight64(mask) * sizeof(u64);
4649 }
4650
4651 header->size += size;
4652 }
c5ebcedb
JO
4653
4654 if (sample_type & PERF_SAMPLE_STACK_USER) {
4655 /*
4656 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4657 * processed as the last one or have additional check added
4658 * in case new sample type is added, because we could eat
4659 * up the rest of the sample size.
4660 */
4661 struct perf_regs_user *uregs = &data->regs_user;
4662 u16 stack_size = event->attr.sample_stack_user;
4663 u16 size = sizeof(u64);
4664
4665 if (!uregs->abi)
4666 perf_sample_regs_user(uregs, regs);
4667
4668 stack_size = perf_sample_ustack_size(stack_size, header->size,
4669 uregs->regs);
4670
4671 /*
4672 * If there is something to dump, add space for the dump
4673 * itself and for the field that tells the dynamic size,
4674 * which is how many have been actually dumped.
4675 */
4676 if (stack_size)
4677 size += sizeof(u64) + stack_size;
4678
4679 data->stack_user_size = stack_size;
4680 header->size += size;
4681 }
5622f295 4682}
7f453c24 4683
a8b0ca17 4684static void perf_event_output(struct perf_event *event,
5622f295
MM
4685 struct perf_sample_data *data,
4686 struct pt_regs *regs)
4687{
4688 struct perf_output_handle handle;
4689 struct perf_event_header header;
689802b2 4690
927c7a9e
FW
4691 /* protect the callchain buffers */
4692 rcu_read_lock();
4693
cdd6c482 4694 perf_prepare_sample(&header, data, event, regs);
5c148194 4695
a7ac67ea 4696 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4697 goto exit;
0322cd6e 4698
cdd6c482 4699 perf_output_sample(&handle, &header, data, event);
f413cdb8 4700
8a057d84 4701 perf_output_end(&handle);
927c7a9e
FW
4702
4703exit:
4704 rcu_read_unlock();
0322cd6e
PZ
4705}
4706
38b200d6 4707/*
cdd6c482 4708 * read event_id
38b200d6
PZ
4709 */
4710
4711struct perf_read_event {
4712 struct perf_event_header header;
4713
4714 u32 pid;
4715 u32 tid;
38b200d6
PZ
4716};
4717
4718static void
cdd6c482 4719perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4720 struct task_struct *task)
4721{
4722 struct perf_output_handle handle;
c980d109 4723 struct perf_sample_data sample;
dfc65094 4724 struct perf_read_event read_event = {
38b200d6 4725 .header = {
cdd6c482 4726 .type = PERF_RECORD_READ,
38b200d6 4727 .misc = 0,
c320c7b7 4728 .size = sizeof(read_event) + event->read_size,
38b200d6 4729 },
cdd6c482
IM
4730 .pid = perf_event_pid(event, task),
4731 .tid = perf_event_tid(event, task),
38b200d6 4732 };
3dab77fb 4733 int ret;
38b200d6 4734
c980d109 4735 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4736 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4737 if (ret)
4738 return;
4739
dfc65094 4740 perf_output_put(&handle, read_event);
cdd6c482 4741 perf_output_read(&handle, event);
c980d109 4742 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4743
38b200d6
PZ
4744 perf_output_end(&handle);
4745}
4746
52d857a8
JO
4747typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4748
4749static void
4750perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
4751 perf_event_aux_output_cb output,
4752 void *data)
4753{
4754 struct perf_event *event;
4755
4756 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4757 if (event->state < PERF_EVENT_STATE_INACTIVE)
4758 continue;
4759 if (!event_filter_match(event))
4760 continue;
67516844 4761 output(event, data);
52d857a8
JO
4762 }
4763}
4764
4765static void
67516844 4766perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
4767 struct perf_event_context *task_ctx)
4768{
4769 struct perf_cpu_context *cpuctx;
4770 struct perf_event_context *ctx;
4771 struct pmu *pmu;
4772 int ctxn;
4773
4774 rcu_read_lock();
4775 list_for_each_entry_rcu(pmu, &pmus, entry) {
4776 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4777 if (cpuctx->unique_pmu != pmu)
4778 goto next;
67516844 4779 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
4780 if (task_ctx)
4781 goto next;
4782 ctxn = pmu->task_ctx_nr;
4783 if (ctxn < 0)
4784 goto next;
4785 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4786 if (ctx)
67516844 4787 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
4788next:
4789 put_cpu_ptr(pmu->pmu_cpu_context);
4790 }
4791
4792 if (task_ctx) {
4793 preempt_disable();
67516844 4794 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
4795 preempt_enable();
4796 }
4797 rcu_read_unlock();
4798}
4799
60313ebe 4800/*
9f498cc5
PZ
4801 * task tracking -- fork/exit
4802 *
13d7a241 4803 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
4804 */
4805
9f498cc5 4806struct perf_task_event {
3a80b4a3 4807 struct task_struct *task;
cdd6c482 4808 struct perf_event_context *task_ctx;
60313ebe
PZ
4809
4810 struct {
4811 struct perf_event_header header;
4812
4813 u32 pid;
4814 u32 ppid;
9f498cc5
PZ
4815 u32 tid;
4816 u32 ptid;
393b2ad8 4817 u64 time;
cdd6c482 4818 } event_id;
60313ebe
PZ
4819};
4820
67516844
JO
4821static int perf_event_task_match(struct perf_event *event)
4822{
13d7a241
SE
4823 return event->attr.comm || event->attr.mmap ||
4824 event->attr.mmap2 || event->attr.mmap_data ||
4825 event->attr.task;
67516844
JO
4826}
4827
cdd6c482 4828static void perf_event_task_output(struct perf_event *event,
52d857a8 4829 void *data)
60313ebe 4830{
52d857a8 4831 struct perf_task_event *task_event = data;
60313ebe 4832 struct perf_output_handle handle;
c980d109 4833 struct perf_sample_data sample;
9f498cc5 4834 struct task_struct *task = task_event->task;
c980d109 4835 int ret, size = task_event->event_id.header.size;
8bb39f9a 4836
67516844
JO
4837 if (!perf_event_task_match(event))
4838 return;
4839
c980d109 4840 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4841
c980d109 4842 ret = perf_output_begin(&handle, event,
a7ac67ea 4843 task_event->event_id.header.size);
ef60777c 4844 if (ret)
c980d109 4845 goto out;
60313ebe 4846
cdd6c482
IM
4847 task_event->event_id.pid = perf_event_pid(event, task);
4848 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4849
cdd6c482
IM
4850 task_event->event_id.tid = perf_event_tid(event, task);
4851 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4852
cdd6c482 4853 perf_output_put(&handle, task_event->event_id);
393b2ad8 4854
c980d109
ACM
4855 perf_event__output_id_sample(event, &handle, &sample);
4856
60313ebe 4857 perf_output_end(&handle);
c980d109
ACM
4858out:
4859 task_event->event_id.header.size = size;
60313ebe
PZ
4860}
4861
cdd6c482
IM
4862static void perf_event_task(struct task_struct *task,
4863 struct perf_event_context *task_ctx,
3a80b4a3 4864 int new)
60313ebe 4865{
9f498cc5 4866 struct perf_task_event task_event;
60313ebe 4867
cdd6c482
IM
4868 if (!atomic_read(&nr_comm_events) &&
4869 !atomic_read(&nr_mmap_events) &&
4870 !atomic_read(&nr_task_events))
60313ebe
PZ
4871 return;
4872
9f498cc5 4873 task_event = (struct perf_task_event){
3a80b4a3
PZ
4874 .task = task,
4875 .task_ctx = task_ctx,
cdd6c482 4876 .event_id = {
60313ebe 4877 .header = {
cdd6c482 4878 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4879 .misc = 0,
cdd6c482 4880 .size = sizeof(task_event.event_id),
60313ebe 4881 },
573402db
PZ
4882 /* .pid */
4883 /* .ppid */
9f498cc5
PZ
4884 /* .tid */
4885 /* .ptid */
6f93d0a7 4886 .time = perf_clock(),
60313ebe
PZ
4887 },
4888 };
4889
67516844 4890 perf_event_aux(perf_event_task_output,
52d857a8
JO
4891 &task_event,
4892 task_ctx);
9f498cc5
PZ
4893}
4894
cdd6c482 4895void perf_event_fork(struct task_struct *task)
9f498cc5 4896{
cdd6c482 4897 perf_event_task(task, NULL, 1);
60313ebe
PZ
4898}
4899
8d1b2d93
PZ
4900/*
4901 * comm tracking
4902 */
4903
4904struct perf_comm_event {
22a4f650
IM
4905 struct task_struct *task;
4906 char *comm;
8d1b2d93
PZ
4907 int comm_size;
4908
4909 struct {
4910 struct perf_event_header header;
4911
4912 u32 pid;
4913 u32 tid;
cdd6c482 4914 } event_id;
8d1b2d93
PZ
4915};
4916
67516844
JO
4917static int perf_event_comm_match(struct perf_event *event)
4918{
4919 return event->attr.comm;
4920}
4921
cdd6c482 4922static void perf_event_comm_output(struct perf_event *event,
52d857a8 4923 void *data)
8d1b2d93 4924{
52d857a8 4925 struct perf_comm_event *comm_event = data;
8d1b2d93 4926 struct perf_output_handle handle;
c980d109 4927 struct perf_sample_data sample;
cdd6c482 4928 int size = comm_event->event_id.header.size;
c980d109
ACM
4929 int ret;
4930
67516844
JO
4931 if (!perf_event_comm_match(event))
4932 return;
4933
c980d109
ACM
4934 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4935 ret = perf_output_begin(&handle, event,
a7ac67ea 4936 comm_event->event_id.header.size);
8d1b2d93
PZ
4937
4938 if (ret)
c980d109 4939 goto out;
8d1b2d93 4940
cdd6c482
IM
4941 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4942 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4943
cdd6c482 4944 perf_output_put(&handle, comm_event->event_id);
76369139 4945 __output_copy(&handle, comm_event->comm,
8d1b2d93 4946 comm_event->comm_size);
c980d109
ACM
4947
4948 perf_event__output_id_sample(event, &handle, &sample);
4949
8d1b2d93 4950 perf_output_end(&handle);
c980d109
ACM
4951out:
4952 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4953}
4954
cdd6c482 4955static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 4956{
413ee3b4 4957 char comm[TASK_COMM_LEN];
8d1b2d93 4958 unsigned int size;
8d1b2d93 4959
413ee3b4 4960 memset(comm, 0, sizeof(comm));
96b02d78 4961 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4962 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4963
4964 comm_event->comm = comm;
4965 comm_event->comm_size = size;
4966
cdd6c482 4967 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 4968
67516844 4969 perf_event_aux(perf_event_comm_output,
52d857a8
JO
4970 comm_event,
4971 NULL);
8d1b2d93
PZ
4972}
4973
cdd6c482 4974void perf_event_comm(struct task_struct *task)
8d1b2d93 4975{
9ee318a7 4976 struct perf_comm_event comm_event;
8dc85d54
PZ
4977 struct perf_event_context *ctx;
4978 int ctxn;
9ee318a7 4979
c79aa0d9 4980 rcu_read_lock();
8dc85d54
PZ
4981 for_each_task_context_nr(ctxn) {
4982 ctx = task->perf_event_ctxp[ctxn];
4983 if (!ctx)
4984 continue;
9ee318a7 4985
8dc85d54
PZ
4986 perf_event_enable_on_exec(ctx);
4987 }
c79aa0d9 4988 rcu_read_unlock();
9ee318a7 4989
cdd6c482 4990 if (!atomic_read(&nr_comm_events))
9ee318a7 4991 return;
a63eaf34 4992
9ee318a7 4993 comm_event = (struct perf_comm_event){
8d1b2d93 4994 .task = task,
573402db
PZ
4995 /* .comm */
4996 /* .comm_size */
cdd6c482 4997 .event_id = {
573402db 4998 .header = {
cdd6c482 4999 .type = PERF_RECORD_COMM,
573402db
PZ
5000 .misc = 0,
5001 /* .size */
5002 },
5003 /* .pid */
5004 /* .tid */
8d1b2d93
PZ
5005 },
5006 };
5007
cdd6c482 5008 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5009}
5010
0a4a9391
PZ
5011/*
5012 * mmap tracking
5013 */
5014
5015struct perf_mmap_event {
089dd79d
PZ
5016 struct vm_area_struct *vma;
5017
5018 const char *file_name;
5019 int file_size;
13d7a241
SE
5020 int maj, min;
5021 u64 ino;
5022 u64 ino_generation;
0a4a9391
PZ
5023
5024 struct {
5025 struct perf_event_header header;
5026
5027 u32 pid;
5028 u32 tid;
5029 u64 start;
5030 u64 len;
5031 u64 pgoff;
cdd6c482 5032 } event_id;
0a4a9391
PZ
5033};
5034
67516844
JO
5035static int perf_event_mmap_match(struct perf_event *event,
5036 void *data)
5037{
5038 struct perf_mmap_event *mmap_event = data;
5039 struct vm_area_struct *vma = mmap_event->vma;
5040 int executable = vma->vm_flags & VM_EXEC;
5041
5042 return (!executable && event->attr.mmap_data) ||
13d7a241 5043 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5044}
5045
cdd6c482 5046static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5047 void *data)
0a4a9391 5048{
52d857a8 5049 struct perf_mmap_event *mmap_event = data;
0a4a9391 5050 struct perf_output_handle handle;
c980d109 5051 struct perf_sample_data sample;
cdd6c482 5052 int size = mmap_event->event_id.header.size;
c980d109 5053 int ret;
0a4a9391 5054
67516844
JO
5055 if (!perf_event_mmap_match(event, data))
5056 return;
5057
13d7a241
SE
5058 if (event->attr.mmap2) {
5059 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5060 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5061 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5062 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5063 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
13d7a241
SE
5064 }
5065
c980d109
ACM
5066 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5067 ret = perf_output_begin(&handle, event,
a7ac67ea 5068 mmap_event->event_id.header.size);
0a4a9391 5069 if (ret)
c980d109 5070 goto out;
0a4a9391 5071
cdd6c482
IM
5072 mmap_event->event_id.pid = perf_event_pid(event, current);
5073 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5074
cdd6c482 5075 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5076
5077 if (event->attr.mmap2) {
5078 perf_output_put(&handle, mmap_event->maj);
5079 perf_output_put(&handle, mmap_event->min);
5080 perf_output_put(&handle, mmap_event->ino);
5081 perf_output_put(&handle, mmap_event->ino_generation);
5082 }
5083
76369139 5084 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5085 mmap_event->file_size);
c980d109
ACM
5086
5087 perf_event__output_id_sample(event, &handle, &sample);
5088
78d613eb 5089 perf_output_end(&handle);
c980d109
ACM
5090out:
5091 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5092}
5093
cdd6c482 5094static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5095{
089dd79d
PZ
5096 struct vm_area_struct *vma = mmap_event->vma;
5097 struct file *file = vma->vm_file;
13d7a241
SE
5098 int maj = 0, min = 0;
5099 u64 ino = 0, gen = 0;
0a4a9391
PZ
5100 unsigned int size;
5101 char tmp[16];
5102 char *buf = NULL;
089dd79d 5103 const char *name;
0a4a9391 5104
413ee3b4
AB
5105 memset(tmp, 0, sizeof(tmp));
5106
0a4a9391 5107 if (file) {
13d7a241
SE
5108 struct inode *inode;
5109 dev_t dev;
413ee3b4 5110 /*
76369139 5111 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
5112 * need to add enough zero bytes after the string to handle
5113 * the 64bit alignment we do later.
5114 */
5115 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
5116 if (!buf) {
5117 name = strncpy(tmp, "//enomem", sizeof(tmp));
5118 goto got_name;
5119 }
d3d21c41 5120 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
5121 if (IS_ERR(name)) {
5122 name = strncpy(tmp, "//toolong", sizeof(tmp));
5123 goto got_name;
5124 }
13d7a241
SE
5125 inode = file_inode(vma->vm_file);
5126 dev = inode->i_sb->s_dev;
5127 ino = inode->i_ino;
5128 gen = inode->i_generation;
5129 maj = MAJOR(dev);
5130 min = MINOR(dev);
5131
0a4a9391 5132 } else {
413ee3b4
AB
5133 if (arch_vma_name(mmap_event->vma)) {
5134 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
c97847d2
CG
5135 sizeof(tmp) - 1);
5136 tmp[sizeof(tmp) - 1] = '\0';
089dd79d 5137 goto got_name;
413ee3b4 5138 }
089dd79d
PZ
5139
5140 if (!vma->vm_mm) {
5141 name = strncpy(tmp, "[vdso]", sizeof(tmp));
5142 goto got_name;
3af9e859
EM
5143 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5144 vma->vm_end >= vma->vm_mm->brk) {
5145 name = strncpy(tmp, "[heap]", sizeof(tmp));
5146 goto got_name;
5147 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5148 vma->vm_end >= vma->vm_mm->start_stack) {
5149 name = strncpy(tmp, "[stack]", sizeof(tmp));
5150 goto got_name;
089dd79d
PZ
5151 }
5152
0a4a9391
PZ
5153 name = strncpy(tmp, "//anon", sizeof(tmp));
5154 goto got_name;
5155 }
5156
5157got_name:
888fcee0 5158 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
5159
5160 mmap_event->file_name = name;
5161 mmap_event->file_size = size;
13d7a241
SE
5162 mmap_event->maj = maj;
5163 mmap_event->min = min;
5164 mmap_event->ino = ino;
5165 mmap_event->ino_generation = gen;
0a4a9391 5166
2fe85427
SE
5167 if (!(vma->vm_flags & VM_EXEC))
5168 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5169
cdd6c482 5170 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5171
67516844 5172 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5173 mmap_event,
5174 NULL);
665c2142 5175
0a4a9391
PZ
5176 kfree(buf);
5177}
5178
3af9e859 5179void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5180{
9ee318a7
PZ
5181 struct perf_mmap_event mmap_event;
5182
cdd6c482 5183 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5184 return;
5185
5186 mmap_event = (struct perf_mmap_event){
089dd79d 5187 .vma = vma,
573402db
PZ
5188 /* .file_name */
5189 /* .file_size */
cdd6c482 5190 .event_id = {
573402db 5191 .header = {
cdd6c482 5192 .type = PERF_RECORD_MMAP,
39447b38 5193 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5194 /* .size */
5195 },
5196 /* .pid */
5197 /* .tid */
089dd79d
PZ
5198 .start = vma->vm_start,
5199 .len = vma->vm_end - vma->vm_start,
3a0304e9 5200 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5201 },
13d7a241
SE
5202 /* .maj (attr_mmap2 only) */
5203 /* .min (attr_mmap2 only) */
5204 /* .ino (attr_mmap2 only) */
5205 /* .ino_generation (attr_mmap2 only) */
0a4a9391
PZ
5206 };
5207
cdd6c482 5208 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5209}
5210
a78ac325
PZ
5211/*
5212 * IRQ throttle logging
5213 */
5214
cdd6c482 5215static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5216{
5217 struct perf_output_handle handle;
c980d109 5218 struct perf_sample_data sample;
a78ac325
PZ
5219 int ret;
5220
5221 struct {
5222 struct perf_event_header header;
5223 u64 time;
cca3f454 5224 u64 id;
7f453c24 5225 u64 stream_id;
a78ac325
PZ
5226 } throttle_event = {
5227 .header = {
cdd6c482 5228 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5229 .misc = 0,
5230 .size = sizeof(throttle_event),
5231 },
def0a9b2 5232 .time = perf_clock(),
cdd6c482
IM
5233 .id = primary_event_id(event),
5234 .stream_id = event->id,
a78ac325
PZ
5235 };
5236
966ee4d6 5237 if (enable)
cdd6c482 5238 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5239
c980d109
ACM
5240 perf_event_header__init_id(&throttle_event.header, &sample, event);
5241
5242 ret = perf_output_begin(&handle, event,
a7ac67ea 5243 throttle_event.header.size);
a78ac325
PZ
5244 if (ret)
5245 return;
5246
5247 perf_output_put(&handle, throttle_event);
c980d109 5248 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5249 perf_output_end(&handle);
5250}
5251
f6c7d5fe 5252/*
cdd6c482 5253 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5254 */
5255
a8b0ca17 5256static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5257 int throttle, struct perf_sample_data *data,
5258 struct pt_regs *regs)
f6c7d5fe 5259{
cdd6c482
IM
5260 int events = atomic_read(&event->event_limit);
5261 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5262 u64 seq;
79f14641
PZ
5263 int ret = 0;
5264
96398826
PZ
5265 /*
5266 * Non-sampling counters might still use the PMI to fold short
5267 * hardware counters, ignore those.
5268 */
5269 if (unlikely(!is_sampling_event(event)))
5270 return 0;
5271
e050e3f0
SE
5272 seq = __this_cpu_read(perf_throttled_seq);
5273 if (seq != hwc->interrupts_seq) {
5274 hwc->interrupts_seq = seq;
5275 hwc->interrupts = 1;
5276 } else {
5277 hwc->interrupts++;
5278 if (unlikely(throttle
5279 && hwc->interrupts >= max_samples_per_tick)) {
5280 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5281 hwc->interrupts = MAX_INTERRUPTS;
5282 perf_log_throttle(event, 0);
d84153d6 5283 tick_nohz_full_kick();
a78ac325
PZ
5284 ret = 1;
5285 }
e050e3f0 5286 }
60db5e09 5287
cdd6c482 5288 if (event->attr.freq) {
def0a9b2 5289 u64 now = perf_clock();
abd50713 5290 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5291
abd50713 5292 hwc->freq_time_stamp = now;
bd2b5b12 5293
abd50713 5294 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5295 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5296 }
5297
2023b359
PZ
5298 /*
5299 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5300 * events
2023b359
PZ
5301 */
5302
cdd6c482
IM
5303 event->pending_kill = POLL_IN;
5304 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5305 ret = 1;
cdd6c482 5306 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5307 event->pending_disable = 1;
5308 irq_work_queue(&event->pending);
79f14641
PZ
5309 }
5310
453f19ee 5311 if (event->overflow_handler)
a8b0ca17 5312 event->overflow_handler(event, data, regs);
453f19ee 5313 else
a8b0ca17 5314 perf_event_output(event, data, regs);
453f19ee 5315
f506b3dc 5316 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5317 event->pending_wakeup = 1;
5318 irq_work_queue(&event->pending);
f506b3dc
PZ
5319 }
5320
79f14641 5321 return ret;
f6c7d5fe
PZ
5322}
5323
a8b0ca17 5324int perf_event_overflow(struct perf_event *event,
5622f295
MM
5325 struct perf_sample_data *data,
5326 struct pt_regs *regs)
850bc73f 5327{
a8b0ca17 5328 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5329}
5330
15dbf27c 5331/*
cdd6c482 5332 * Generic software event infrastructure
15dbf27c
PZ
5333 */
5334
b28ab83c
PZ
5335struct swevent_htable {
5336 struct swevent_hlist *swevent_hlist;
5337 struct mutex hlist_mutex;
5338 int hlist_refcount;
5339
5340 /* Recursion avoidance in each contexts */
5341 int recursion[PERF_NR_CONTEXTS];
5342};
5343
5344static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5345
7b4b6658 5346/*
cdd6c482
IM
5347 * We directly increment event->count and keep a second value in
5348 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5349 * is kept in the range [-sample_period, 0] so that we can use the
5350 * sign as trigger.
5351 */
5352
ab573844 5353u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5354{
cdd6c482 5355 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5356 u64 period = hwc->last_period;
5357 u64 nr, offset;
5358 s64 old, val;
5359
5360 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5361
5362again:
e7850595 5363 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5364 if (val < 0)
5365 return 0;
15dbf27c 5366
7b4b6658
PZ
5367 nr = div64_u64(period + val, period);
5368 offset = nr * period;
5369 val -= offset;
e7850595 5370 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5371 goto again;
15dbf27c 5372
7b4b6658 5373 return nr;
15dbf27c
PZ
5374}
5375
0cff784a 5376static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5377 struct perf_sample_data *data,
5622f295 5378 struct pt_regs *regs)
15dbf27c 5379{
cdd6c482 5380 struct hw_perf_event *hwc = &event->hw;
850bc73f 5381 int throttle = 0;
15dbf27c 5382
0cff784a
PZ
5383 if (!overflow)
5384 overflow = perf_swevent_set_period(event);
15dbf27c 5385
7b4b6658
PZ
5386 if (hwc->interrupts == MAX_INTERRUPTS)
5387 return;
15dbf27c 5388
7b4b6658 5389 for (; overflow; overflow--) {
a8b0ca17 5390 if (__perf_event_overflow(event, throttle,
5622f295 5391 data, regs)) {
7b4b6658
PZ
5392 /*
5393 * We inhibit the overflow from happening when
5394 * hwc->interrupts == MAX_INTERRUPTS.
5395 */
5396 break;
5397 }
cf450a73 5398 throttle = 1;
7b4b6658 5399 }
15dbf27c
PZ
5400}
5401
a4eaf7f1 5402static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5403 struct perf_sample_data *data,
5622f295 5404 struct pt_regs *regs)
7b4b6658 5405{
cdd6c482 5406 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5407
e7850595 5408 local64_add(nr, &event->count);
d6d020e9 5409
0cff784a
PZ
5410 if (!regs)
5411 return;
5412
6c7e550f 5413 if (!is_sampling_event(event))
7b4b6658 5414 return;
d6d020e9 5415
5d81e5cf
AV
5416 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5417 data->period = nr;
5418 return perf_swevent_overflow(event, 1, data, regs);
5419 } else
5420 data->period = event->hw.last_period;
5421
0cff784a 5422 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5423 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5424
e7850595 5425 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5426 return;
df1a132b 5427
a8b0ca17 5428 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5429}
5430
f5ffe02e
FW
5431static int perf_exclude_event(struct perf_event *event,
5432 struct pt_regs *regs)
5433{
a4eaf7f1 5434 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5435 return 1;
a4eaf7f1 5436
f5ffe02e
FW
5437 if (regs) {
5438 if (event->attr.exclude_user && user_mode(regs))
5439 return 1;
5440
5441 if (event->attr.exclude_kernel && !user_mode(regs))
5442 return 1;
5443 }
5444
5445 return 0;
5446}
5447
cdd6c482 5448static int perf_swevent_match(struct perf_event *event,
1c432d89 5449 enum perf_type_id type,
6fb2915d
LZ
5450 u32 event_id,
5451 struct perf_sample_data *data,
5452 struct pt_regs *regs)
15dbf27c 5453{
cdd6c482 5454 if (event->attr.type != type)
a21ca2ca 5455 return 0;
f5ffe02e 5456
cdd6c482 5457 if (event->attr.config != event_id)
15dbf27c
PZ
5458 return 0;
5459
f5ffe02e
FW
5460 if (perf_exclude_event(event, regs))
5461 return 0;
15dbf27c
PZ
5462
5463 return 1;
5464}
5465
76e1d904
FW
5466static inline u64 swevent_hash(u64 type, u32 event_id)
5467{
5468 u64 val = event_id | (type << 32);
5469
5470 return hash_64(val, SWEVENT_HLIST_BITS);
5471}
5472
49f135ed
FW
5473static inline struct hlist_head *
5474__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5475{
49f135ed
FW
5476 u64 hash = swevent_hash(type, event_id);
5477
5478 return &hlist->heads[hash];
5479}
76e1d904 5480
49f135ed
FW
5481/* For the read side: events when they trigger */
5482static inline struct hlist_head *
b28ab83c 5483find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5484{
5485 struct swevent_hlist *hlist;
76e1d904 5486
b28ab83c 5487 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5488 if (!hlist)
5489 return NULL;
5490
49f135ed
FW
5491 return __find_swevent_head(hlist, type, event_id);
5492}
5493
5494/* For the event head insertion and removal in the hlist */
5495static inline struct hlist_head *
b28ab83c 5496find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5497{
5498 struct swevent_hlist *hlist;
5499 u32 event_id = event->attr.config;
5500 u64 type = event->attr.type;
5501
5502 /*
5503 * Event scheduling is always serialized against hlist allocation
5504 * and release. Which makes the protected version suitable here.
5505 * The context lock guarantees that.
5506 */
b28ab83c 5507 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5508 lockdep_is_held(&event->ctx->lock));
5509 if (!hlist)
5510 return NULL;
5511
5512 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5513}
5514
5515static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5516 u64 nr,
76e1d904
FW
5517 struct perf_sample_data *data,
5518 struct pt_regs *regs)
15dbf27c 5519{
b28ab83c 5520 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5521 struct perf_event *event;
76e1d904 5522 struct hlist_head *head;
15dbf27c 5523
76e1d904 5524 rcu_read_lock();
b28ab83c 5525 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5526 if (!head)
5527 goto end;
5528
b67bfe0d 5529 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5530 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5531 perf_swevent_event(event, nr, data, regs);
15dbf27c 5532 }
76e1d904
FW
5533end:
5534 rcu_read_unlock();
15dbf27c
PZ
5535}
5536
4ed7c92d 5537int perf_swevent_get_recursion_context(void)
96f6d444 5538{
b28ab83c 5539 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5540
b28ab83c 5541 return get_recursion_context(swhash->recursion);
96f6d444 5542}
645e8cc0 5543EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5544
fa9f90be 5545inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5546{
b28ab83c 5547 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5548
b28ab83c 5549 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5550}
15dbf27c 5551
a8b0ca17 5552void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5553{
a4234bfc 5554 struct perf_sample_data data;
4ed7c92d
PZ
5555 int rctx;
5556
1c024eca 5557 preempt_disable_notrace();
4ed7c92d
PZ
5558 rctx = perf_swevent_get_recursion_context();
5559 if (rctx < 0)
5560 return;
a4234bfc 5561
fd0d000b 5562 perf_sample_data_init(&data, addr, 0);
92bf309a 5563
a8b0ca17 5564 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5565
5566 perf_swevent_put_recursion_context(rctx);
1c024eca 5567 preempt_enable_notrace();
b8e83514
PZ
5568}
5569
cdd6c482 5570static void perf_swevent_read(struct perf_event *event)
15dbf27c 5571{
15dbf27c
PZ
5572}
5573
a4eaf7f1 5574static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5575{
b28ab83c 5576 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5577 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5578 struct hlist_head *head;
5579
6c7e550f 5580 if (is_sampling_event(event)) {
7b4b6658 5581 hwc->last_period = hwc->sample_period;
cdd6c482 5582 perf_swevent_set_period(event);
7b4b6658 5583 }
76e1d904 5584
a4eaf7f1
PZ
5585 hwc->state = !(flags & PERF_EF_START);
5586
b28ab83c 5587 head = find_swevent_head(swhash, event);
76e1d904
FW
5588 if (WARN_ON_ONCE(!head))
5589 return -EINVAL;
5590
5591 hlist_add_head_rcu(&event->hlist_entry, head);
5592
15dbf27c
PZ
5593 return 0;
5594}
5595
a4eaf7f1 5596static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5597{
76e1d904 5598 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5599}
5600
a4eaf7f1 5601static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5602{
a4eaf7f1 5603 event->hw.state = 0;
d6d020e9 5604}
aa9c4c0f 5605
a4eaf7f1 5606static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5607{
a4eaf7f1 5608 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5609}
5610
49f135ed
FW
5611/* Deref the hlist from the update side */
5612static inline struct swevent_hlist *
b28ab83c 5613swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5614{
b28ab83c
PZ
5615 return rcu_dereference_protected(swhash->swevent_hlist,
5616 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5617}
5618
b28ab83c 5619static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5620{
b28ab83c 5621 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5622
49f135ed 5623 if (!hlist)
76e1d904
FW
5624 return;
5625
b28ab83c 5626 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5627 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5628}
5629
5630static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5631{
b28ab83c 5632 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5633
b28ab83c 5634 mutex_lock(&swhash->hlist_mutex);
76e1d904 5635
b28ab83c
PZ
5636 if (!--swhash->hlist_refcount)
5637 swevent_hlist_release(swhash);
76e1d904 5638
b28ab83c 5639 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5640}
5641
5642static void swevent_hlist_put(struct perf_event *event)
5643{
5644 int cpu;
5645
5646 if (event->cpu != -1) {
5647 swevent_hlist_put_cpu(event, event->cpu);
5648 return;
5649 }
5650
5651 for_each_possible_cpu(cpu)
5652 swevent_hlist_put_cpu(event, cpu);
5653}
5654
5655static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5656{
b28ab83c 5657 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5658 int err = 0;
5659
b28ab83c 5660 mutex_lock(&swhash->hlist_mutex);
76e1d904 5661
b28ab83c 5662 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5663 struct swevent_hlist *hlist;
5664
5665 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5666 if (!hlist) {
5667 err = -ENOMEM;
5668 goto exit;
5669 }
b28ab83c 5670 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5671 }
b28ab83c 5672 swhash->hlist_refcount++;
9ed6060d 5673exit:
b28ab83c 5674 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5675
5676 return err;
5677}
5678
5679static int swevent_hlist_get(struct perf_event *event)
5680{
5681 int err;
5682 int cpu, failed_cpu;
5683
5684 if (event->cpu != -1)
5685 return swevent_hlist_get_cpu(event, event->cpu);
5686
5687 get_online_cpus();
5688 for_each_possible_cpu(cpu) {
5689 err = swevent_hlist_get_cpu(event, cpu);
5690 if (err) {
5691 failed_cpu = cpu;
5692 goto fail;
5693 }
5694 }
5695 put_online_cpus();
5696
5697 return 0;
9ed6060d 5698fail:
76e1d904
FW
5699 for_each_possible_cpu(cpu) {
5700 if (cpu == failed_cpu)
5701 break;
5702 swevent_hlist_put_cpu(event, cpu);
5703 }
5704
5705 put_online_cpus();
5706 return err;
5707}
5708
c5905afb 5709struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5710
b0a873eb
PZ
5711static void sw_perf_event_destroy(struct perf_event *event)
5712{
5713 u64 event_id = event->attr.config;
95476b64 5714
b0a873eb
PZ
5715 WARN_ON(event->parent);
5716
c5905afb 5717 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5718 swevent_hlist_put(event);
5719}
5720
5721static int perf_swevent_init(struct perf_event *event)
5722{
8176cced 5723 u64 event_id = event->attr.config;
b0a873eb
PZ
5724
5725 if (event->attr.type != PERF_TYPE_SOFTWARE)
5726 return -ENOENT;
5727
2481c5fa
SE
5728 /*
5729 * no branch sampling for software events
5730 */
5731 if (has_branch_stack(event))
5732 return -EOPNOTSUPP;
5733
b0a873eb
PZ
5734 switch (event_id) {
5735 case PERF_COUNT_SW_CPU_CLOCK:
5736 case PERF_COUNT_SW_TASK_CLOCK:
5737 return -ENOENT;
5738
5739 default:
5740 break;
5741 }
5742
ce677831 5743 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5744 return -ENOENT;
5745
5746 if (!event->parent) {
5747 int err;
5748
5749 err = swevent_hlist_get(event);
5750 if (err)
5751 return err;
5752
c5905afb 5753 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5754 event->destroy = sw_perf_event_destroy;
5755 }
5756
5757 return 0;
5758}
5759
35edc2a5
PZ
5760static int perf_swevent_event_idx(struct perf_event *event)
5761{
5762 return 0;
5763}
5764
b0a873eb 5765static struct pmu perf_swevent = {
89a1e187 5766 .task_ctx_nr = perf_sw_context,
95476b64 5767
b0a873eb 5768 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5769 .add = perf_swevent_add,
5770 .del = perf_swevent_del,
5771 .start = perf_swevent_start,
5772 .stop = perf_swevent_stop,
1c024eca 5773 .read = perf_swevent_read,
35edc2a5
PZ
5774
5775 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5776};
5777
b0a873eb
PZ
5778#ifdef CONFIG_EVENT_TRACING
5779
1c024eca
PZ
5780static int perf_tp_filter_match(struct perf_event *event,
5781 struct perf_sample_data *data)
5782{
5783 void *record = data->raw->data;
5784
5785 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5786 return 1;
5787 return 0;
5788}
5789
5790static int perf_tp_event_match(struct perf_event *event,
5791 struct perf_sample_data *data,
5792 struct pt_regs *regs)
5793{
a0f7d0f7
FW
5794 if (event->hw.state & PERF_HES_STOPPED)
5795 return 0;
580d607c
PZ
5796 /*
5797 * All tracepoints are from kernel-space.
5798 */
5799 if (event->attr.exclude_kernel)
1c024eca
PZ
5800 return 0;
5801
5802 if (!perf_tp_filter_match(event, data))
5803 return 0;
5804
5805 return 1;
5806}
5807
5808void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5809 struct pt_regs *regs, struct hlist_head *head, int rctx,
5810 struct task_struct *task)
95476b64
FW
5811{
5812 struct perf_sample_data data;
1c024eca 5813 struct perf_event *event;
1c024eca 5814
95476b64
FW
5815 struct perf_raw_record raw = {
5816 .size = entry_size,
5817 .data = record,
5818 };
5819
fd0d000b 5820 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5821 data.raw = &raw;
5822
b67bfe0d 5823 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5824 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5825 perf_swevent_event(event, count, &data, regs);
4f41c013 5826 }
ecc55f84 5827
e6dab5ff
AV
5828 /*
5829 * If we got specified a target task, also iterate its context and
5830 * deliver this event there too.
5831 */
5832 if (task && task != current) {
5833 struct perf_event_context *ctx;
5834 struct trace_entry *entry = record;
5835
5836 rcu_read_lock();
5837 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5838 if (!ctx)
5839 goto unlock;
5840
5841 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5842 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5843 continue;
5844 if (event->attr.config != entry->type)
5845 continue;
5846 if (perf_tp_event_match(event, &data, regs))
5847 perf_swevent_event(event, count, &data, regs);
5848 }
5849unlock:
5850 rcu_read_unlock();
5851 }
5852
ecc55f84 5853 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5854}
5855EXPORT_SYMBOL_GPL(perf_tp_event);
5856
cdd6c482 5857static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5858{
1c024eca 5859 perf_trace_destroy(event);
e077df4f
PZ
5860}
5861
b0a873eb 5862static int perf_tp_event_init(struct perf_event *event)
e077df4f 5863{
76e1d904
FW
5864 int err;
5865
b0a873eb
PZ
5866 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5867 return -ENOENT;
5868
2481c5fa
SE
5869 /*
5870 * no branch sampling for tracepoint events
5871 */
5872 if (has_branch_stack(event))
5873 return -EOPNOTSUPP;
5874
1c024eca
PZ
5875 err = perf_trace_init(event);
5876 if (err)
b0a873eb 5877 return err;
e077df4f 5878
cdd6c482 5879 event->destroy = tp_perf_event_destroy;
e077df4f 5880
b0a873eb
PZ
5881 return 0;
5882}
5883
5884static struct pmu perf_tracepoint = {
89a1e187
PZ
5885 .task_ctx_nr = perf_sw_context,
5886
b0a873eb 5887 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5888 .add = perf_trace_add,
5889 .del = perf_trace_del,
5890 .start = perf_swevent_start,
5891 .stop = perf_swevent_stop,
b0a873eb 5892 .read = perf_swevent_read,
35edc2a5
PZ
5893
5894 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5895};
5896
5897static inline void perf_tp_register(void)
5898{
2e80a82a 5899 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5900}
6fb2915d
LZ
5901
5902static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5903{
5904 char *filter_str;
5905 int ret;
5906
5907 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5908 return -EINVAL;
5909
5910 filter_str = strndup_user(arg, PAGE_SIZE);
5911 if (IS_ERR(filter_str))
5912 return PTR_ERR(filter_str);
5913
5914 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5915
5916 kfree(filter_str);
5917 return ret;
5918}
5919
5920static void perf_event_free_filter(struct perf_event *event)
5921{
5922 ftrace_profile_free_filter(event);
5923}
5924
e077df4f 5925#else
6fb2915d 5926
b0a873eb 5927static inline void perf_tp_register(void)
e077df4f 5928{
e077df4f 5929}
6fb2915d
LZ
5930
5931static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5932{
5933 return -ENOENT;
5934}
5935
5936static void perf_event_free_filter(struct perf_event *event)
5937{
5938}
5939
07b139c8 5940#endif /* CONFIG_EVENT_TRACING */
e077df4f 5941
24f1e32c 5942#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5943void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5944{
f5ffe02e
FW
5945 struct perf_sample_data sample;
5946 struct pt_regs *regs = data;
5947
fd0d000b 5948 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5949
a4eaf7f1 5950 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5951 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5952}
5953#endif
5954
b0a873eb
PZ
5955/*
5956 * hrtimer based swevent callback
5957 */
f29ac756 5958
b0a873eb 5959static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5960{
b0a873eb
PZ
5961 enum hrtimer_restart ret = HRTIMER_RESTART;
5962 struct perf_sample_data data;
5963 struct pt_regs *regs;
5964 struct perf_event *event;
5965 u64 period;
f29ac756 5966
b0a873eb 5967 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5968
5969 if (event->state != PERF_EVENT_STATE_ACTIVE)
5970 return HRTIMER_NORESTART;
5971
b0a873eb 5972 event->pmu->read(event);
f344011c 5973
fd0d000b 5974 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5975 regs = get_irq_regs();
5976
5977 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5978 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5979 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5980 ret = HRTIMER_NORESTART;
5981 }
24f1e32c 5982
b0a873eb
PZ
5983 period = max_t(u64, 10000, event->hw.sample_period);
5984 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5985
b0a873eb 5986 return ret;
f29ac756
PZ
5987}
5988
b0a873eb 5989static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5990{
b0a873eb 5991 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5992 s64 period;
5993
5994 if (!is_sampling_event(event))
5995 return;
f5ffe02e 5996
5d508e82
FBH
5997 period = local64_read(&hwc->period_left);
5998 if (period) {
5999 if (period < 0)
6000 period = 10000;
fa407f35 6001
5d508e82
FBH
6002 local64_set(&hwc->period_left, 0);
6003 } else {
6004 period = max_t(u64, 10000, hwc->sample_period);
6005 }
6006 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6007 ns_to_ktime(period), 0,
b5ab4cd5 6008 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6009}
b0a873eb
PZ
6010
6011static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6012{
b0a873eb
PZ
6013 struct hw_perf_event *hwc = &event->hw;
6014
6c7e550f 6015 if (is_sampling_event(event)) {
b0a873eb 6016 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6017 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6018
6019 hrtimer_cancel(&hwc->hrtimer);
6020 }
24f1e32c
FW
6021}
6022
ba3dd36c
PZ
6023static void perf_swevent_init_hrtimer(struct perf_event *event)
6024{
6025 struct hw_perf_event *hwc = &event->hw;
6026
6027 if (!is_sampling_event(event))
6028 return;
6029
6030 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6031 hwc->hrtimer.function = perf_swevent_hrtimer;
6032
6033 /*
6034 * Since hrtimers have a fixed rate, we can do a static freq->period
6035 * mapping and avoid the whole period adjust feedback stuff.
6036 */
6037 if (event->attr.freq) {
6038 long freq = event->attr.sample_freq;
6039
6040 event->attr.sample_period = NSEC_PER_SEC / freq;
6041 hwc->sample_period = event->attr.sample_period;
6042 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6043 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6044 event->attr.freq = 0;
6045 }
6046}
6047
b0a873eb
PZ
6048/*
6049 * Software event: cpu wall time clock
6050 */
6051
6052static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6053{
b0a873eb
PZ
6054 s64 prev;
6055 u64 now;
6056
a4eaf7f1 6057 now = local_clock();
b0a873eb
PZ
6058 prev = local64_xchg(&event->hw.prev_count, now);
6059 local64_add(now - prev, &event->count);
24f1e32c 6060}
24f1e32c 6061
a4eaf7f1 6062static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6063{
a4eaf7f1 6064 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6065 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6066}
6067
a4eaf7f1 6068static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6069{
b0a873eb
PZ
6070 perf_swevent_cancel_hrtimer(event);
6071 cpu_clock_event_update(event);
6072}
f29ac756 6073
a4eaf7f1
PZ
6074static int cpu_clock_event_add(struct perf_event *event, int flags)
6075{
6076 if (flags & PERF_EF_START)
6077 cpu_clock_event_start(event, flags);
6078
6079 return 0;
6080}
6081
6082static void cpu_clock_event_del(struct perf_event *event, int flags)
6083{
6084 cpu_clock_event_stop(event, flags);
6085}
6086
b0a873eb
PZ
6087static void cpu_clock_event_read(struct perf_event *event)
6088{
6089 cpu_clock_event_update(event);
6090}
f344011c 6091
b0a873eb
PZ
6092static int cpu_clock_event_init(struct perf_event *event)
6093{
6094 if (event->attr.type != PERF_TYPE_SOFTWARE)
6095 return -ENOENT;
6096
6097 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6098 return -ENOENT;
6099
2481c5fa
SE
6100 /*
6101 * no branch sampling for software events
6102 */
6103 if (has_branch_stack(event))
6104 return -EOPNOTSUPP;
6105
ba3dd36c
PZ
6106 perf_swevent_init_hrtimer(event);
6107
b0a873eb 6108 return 0;
f29ac756
PZ
6109}
6110
b0a873eb 6111static struct pmu perf_cpu_clock = {
89a1e187
PZ
6112 .task_ctx_nr = perf_sw_context,
6113
b0a873eb 6114 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6115 .add = cpu_clock_event_add,
6116 .del = cpu_clock_event_del,
6117 .start = cpu_clock_event_start,
6118 .stop = cpu_clock_event_stop,
b0a873eb 6119 .read = cpu_clock_event_read,
35edc2a5
PZ
6120
6121 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6122};
6123
6124/*
6125 * Software event: task time clock
6126 */
6127
6128static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6129{
b0a873eb
PZ
6130 u64 prev;
6131 s64 delta;
5c92d124 6132
b0a873eb
PZ
6133 prev = local64_xchg(&event->hw.prev_count, now);
6134 delta = now - prev;
6135 local64_add(delta, &event->count);
6136}
5c92d124 6137
a4eaf7f1 6138static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6139{
a4eaf7f1 6140 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6141 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6142}
6143
a4eaf7f1 6144static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6145{
6146 perf_swevent_cancel_hrtimer(event);
6147 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6148}
6149
6150static int task_clock_event_add(struct perf_event *event, int flags)
6151{
6152 if (flags & PERF_EF_START)
6153 task_clock_event_start(event, flags);
b0a873eb 6154
a4eaf7f1
PZ
6155 return 0;
6156}
6157
6158static void task_clock_event_del(struct perf_event *event, int flags)
6159{
6160 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6161}
6162
6163static void task_clock_event_read(struct perf_event *event)
6164{
768a06e2
PZ
6165 u64 now = perf_clock();
6166 u64 delta = now - event->ctx->timestamp;
6167 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6168
6169 task_clock_event_update(event, time);
6170}
6171
6172static int task_clock_event_init(struct perf_event *event)
6fb2915d 6173{
b0a873eb
PZ
6174 if (event->attr.type != PERF_TYPE_SOFTWARE)
6175 return -ENOENT;
6176
6177 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6178 return -ENOENT;
6179
2481c5fa
SE
6180 /*
6181 * no branch sampling for software events
6182 */
6183 if (has_branch_stack(event))
6184 return -EOPNOTSUPP;
6185
ba3dd36c
PZ
6186 perf_swevent_init_hrtimer(event);
6187
b0a873eb 6188 return 0;
6fb2915d
LZ
6189}
6190
b0a873eb 6191static struct pmu perf_task_clock = {
89a1e187
PZ
6192 .task_ctx_nr = perf_sw_context,
6193
b0a873eb 6194 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6195 .add = task_clock_event_add,
6196 .del = task_clock_event_del,
6197 .start = task_clock_event_start,
6198 .stop = task_clock_event_stop,
b0a873eb 6199 .read = task_clock_event_read,
35edc2a5
PZ
6200
6201 .event_idx = perf_swevent_event_idx,
b0a873eb 6202};
6fb2915d 6203
ad5133b7 6204static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6205{
e077df4f 6206}
6fb2915d 6207
ad5133b7 6208static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6209{
ad5133b7 6210 return 0;
6fb2915d
LZ
6211}
6212
ad5133b7 6213static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6214{
ad5133b7 6215 perf_pmu_disable(pmu);
6fb2915d
LZ
6216}
6217
ad5133b7
PZ
6218static int perf_pmu_commit_txn(struct pmu *pmu)
6219{
6220 perf_pmu_enable(pmu);
6221 return 0;
6222}
e077df4f 6223
ad5133b7 6224static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6225{
ad5133b7 6226 perf_pmu_enable(pmu);
24f1e32c
FW
6227}
6228
35edc2a5
PZ
6229static int perf_event_idx_default(struct perf_event *event)
6230{
6231 return event->hw.idx + 1;
6232}
6233
8dc85d54
PZ
6234/*
6235 * Ensures all contexts with the same task_ctx_nr have the same
6236 * pmu_cpu_context too.
6237 */
6238static void *find_pmu_context(int ctxn)
24f1e32c 6239{
8dc85d54 6240 struct pmu *pmu;
b326e956 6241
8dc85d54
PZ
6242 if (ctxn < 0)
6243 return NULL;
24f1e32c 6244
8dc85d54
PZ
6245 list_for_each_entry(pmu, &pmus, entry) {
6246 if (pmu->task_ctx_nr == ctxn)
6247 return pmu->pmu_cpu_context;
6248 }
24f1e32c 6249
8dc85d54 6250 return NULL;
24f1e32c
FW
6251}
6252
51676957 6253static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6254{
51676957
PZ
6255 int cpu;
6256
6257 for_each_possible_cpu(cpu) {
6258 struct perf_cpu_context *cpuctx;
6259
6260 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6261
3f1f3320
PZ
6262 if (cpuctx->unique_pmu == old_pmu)
6263 cpuctx->unique_pmu = pmu;
51676957
PZ
6264 }
6265}
6266
6267static void free_pmu_context(struct pmu *pmu)
6268{
6269 struct pmu *i;
f5ffe02e 6270
8dc85d54 6271 mutex_lock(&pmus_lock);
0475f9ea 6272 /*
8dc85d54 6273 * Like a real lame refcount.
0475f9ea 6274 */
51676957
PZ
6275 list_for_each_entry(i, &pmus, entry) {
6276 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6277 update_pmu_context(i, pmu);
8dc85d54 6278 goto out;
51676957 6279 }
8dc85d54 6280 }
d6d020e9 6281
51676957 6282 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6283out:
6284 mutex_unlock(&pmus_lock);
24f1e32c 6285}
2e80a82a 6286static struct idr pmu_idr;
d6d020e9 6287
abe43400
PZ
6288static ssize_t
6289type_show(struct device *dev, struct device_attribute *attr, char *page)
6290{
6291 struct pmu *pmu = dev_get_drvdata(dev);
6292
6293 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6294}
6295
62b85639
SE
6296static ssize_t
6297perf_event_mux_interval_ms_show(struct device *dev,
6298 struct device_attribute *attr,
6299 char *page)
6300{
6301 struct pmu *pmu = dev_get_drvdata(dev);
6302
6303 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6304}
6305
6306static ssize_t
6307perf_event_mux_interval_ms_store(struct device *dev,
6308 struct device_attribute *attr,
6309 const char *buf, size_t count)
6310{
6311 struct pmu *pmu = dev_get_drvdata(dev);
6312 int timer, cpu, ret;
6313
6314 ret = kstrtoint(buf, 0, &timer);
6315 if (ret)
6316 return ret;
6317
6318 if (timer < 1)
6319 return -EINVAL;
6320
6321 /* same value, noting to do */
6322 if (timer == pmu->hrtimer_interval_ms)
6323 return count;
6324
6325 pmu->hrtimer_interval_ms = timer;
6326
6327 /* update all cpuctx for this PMU */
6328 for_each_possible_cpu(cpu) {
6329 struct perf_cpu_context *cpuctx;
6330 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6331 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6332
6333 if (hrtimer_active(&cpuctx->hrtimer))
6334 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6335 }
6336
6337 return count;
6338}
6339
abe43400 6340static struct device_attribute pmu_dev_attrs[] = {
62b85639
SE
6341 __ATTR_RO(type),
6342 __ATTR_RW(perf_event_mux_interval_ms),
6343 __ATTR_NULL,
abe43400
PZ
6344};
6345
6346static int pmu_bus_running;
6347static struct bus_type pmu_bus = {
6348 .name = "event_source",
6349 .dev_attrs = pmu_dev_attrs,
6350};
6351
6352static void pmu_dev_release(struct device *dev)
6353{
6354 kfree(dev);
6355}
6356
6357static int pmu_dev_alloc(struct pmu *pmu)
6358{
6359 int ret = -ENOMEM;
6360
6361 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6362 if (!pmu->dev)
6363 goto out;
6364
0c9d42ed 6365 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6366 device_initialize(pmu->dev);
6367 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6368 if (ret)
6369 goto free_dev;
6370
6371 dev_set_drvdata(pmu->dev, pmu);
6372 pmu->dev->bus = &pmu_bus;
6373 pmu->dev->release = pmu_dev_release;
6374 ret = device_add(pmu->dev);
6375 if (ret)
6376 goto free_dev;
6377
6378out:
6379 return ret;
6380
6381free_dev:
6382 put_device(pmu->dev);
6383 goto out;
6384}
6385
547e9fd7 6386static struct lock_class_key cpuctx_mutex;
facc4307 6387static struct lock_class_key cpuctx_lock;
547e9fd7 6388
03d8e80b 6389int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6390{
108b02cf 6391 int cpu, ret;
24f1e32c 6392
b0a873eb 6393 mutex_lock(&pmus_lock);
33696fc0
PZ
6394 ret = -ENOMEM;
6395 pmu->pmu_disable_count = alloc_percpu(int);
6396 if (!pmu->pmu_disable_count)
6397 goto unlock;
f29ac756 6398
2e80a82a
PZ
6399 pmu->type = -1;
6400 if (!name)
6401 goto skip_type;
6402 pmu->name = name;
6403
6404 if (type < 0) {
0e9c3be2
TH
6405 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6406 if (type < 0) {
6407 ret = type;
2e80a82a
PZ
6408 goto free_pdc;
6409 }
6410 }
6411 pmu->type = type;
6412
abe43400
PZ
6413 if (pmu_bus_running) {
6414 ret = pmu_dev_alloc(pmu);
6415 if (ret)
6416 goto free_idr;
6417 }
6418
2e80a82a 6419skip_type:
8dc85d54
PZ
6420 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6421 if (pmu->pmu_cpu_context)
6422 goto got_cpu_context;
f29ac756 6423
c4814202 6424 ret = -ENOMEM;
108b02cf
PZ
6425 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6426 if (!pmu->pmu_cpu_context)
abe43400 6427 goto free_dev;
f344011c 6428
108b02cf
PZ
6429 for_each_possible_cpu(cpu) {
6430 struct perf_cpu_context *cpuctx;
6431
6432 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6433 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6434 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6435 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6436 cpuctx->ctx.type = cpu_context;
108b02cf 6437 cpuctx->ctx.pmu = pmu;
9e630205
SE
6438
6439 __perf_cpu_hrtimer_init(cpuctx, cpu);
6440
e9d2b064 6441 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6442 cpuctx->unique_pmu = pmu;
108b02cf 6443 }
76e1d904 6444
8dc85d54 6445got_cpu_context:
ad5133b7
PZ
6446 if (!pmu->start_txn) {
6447 if (pmu->pmu_enable) {
6448 /*
6449 * If we have pmu_enable/pmu_disable calls, install
6450 * transaction stubs that use that to try and batch
6451 * hardware accesses.
6452 */
6453 pmu->start_txn = perf_pmu_start_txn;
6454 pmu->commit_txn = perf_pmu_commit_txn;
6455 pmu->cancel_txn = perf_pmu_cancel_txn;
6456 } else {
6457 pmu->start_txn = perf_pmu_nop_void;
6458 pmu->commit_txn = perf_pmu_nop_int;
6459 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6460 }
5c92d124 6461 }
15dbf27c 6462
ad5133b7
PZ
6463 if (!pmu->pmu_enable) {
6464 pmu->pmu_enable = perf_pmu_nop_void;
6465 pmu->pmu_disable = perf_pmu_nop_void;
6466 }
6467
35edc2a5
PZ
6468 if (!pmu->event_idx)
6469 pmu->event_idx = perf_event_idx_default;
6470
b0a873eb 6471 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6472 ret = 0;
6473unlock:
b0a873eb
PZ
6474 mutex_unlock(&pmus_lock);
6475
33696fc0 6476 return ret;
108b02cf 6477
abe43400
PZ
6478free_dev:
6479 device_del(pmu->dev);
6480 put_device(pmu->dev);
6481
2e80a82a
PZ
6482free_idr:
6483 if (pmu->type >= PERF_TYPE_MAX)
6484 idr_remove(&pmu_idr, pmu->type);
6485
108b02cf
PZ
6486free_pdc:
6487 free_percpu(pmu->pmu_disable_count);
6488 goto unlock;
f29ac756
PZ
6489}
6490
b0a873eb 6491void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6492{
b0a873eb
PZ
6493 mutex_lock(&pmus_lock);
6494 list_del_rcu(&pmu->entry);
6495 mutex_unlock(&pmus_lock);
5c92d124 6496
0475f9ea 6497 /*
cde8e884
PZ
6498 * We dereference the pmu list under both SRCU and regular RCU, so
6499 * synchronize against both of those.
0475f9ea 6500 */
b0a873eb 6501 synchronize_srcu(&pmus_srcu);
cde8e884 6502 synchronize_rcu();
d6d020e9 6503
33696fc0 6504 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6505 if (pmu->type >= PERF_TYPE_MAX)
6506 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6507 device_del(pmu->dev);
6508 put_device(pmu->dev);
51676957 6509 free_pmu_context(pmu);
b0a873eb 6510}
d6d020e9 6511
b0a873eb
PZ
6512struct pmu *perf_init_event(struct perf_event *event)
6513{
6514 struct pmu *pmu = NULL;
6515 int idx;
940c5b29 6516 int ret;
b0a873eb
PZ
6517
6518 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6519
6520 rcu_read_lock();
6521 pmu = idr_find(&pmu_idr, event->attr.type);
6522 rcu_read_unlock();
940c5b29 6523 if (pmu) {
7e5b2a01 6524 event->pmu = pmu;
940c5b29
LM
6525 ret = pmu->event_init(event);
6526 if (ret)
6527 pmu = ERR_PTR(ret);
2e80a82a 6528 goto unlock;
940c5b29 6529 }
2e80a82a 6530
b0a873eb 6531 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 6532 event->pmu = pmu;
940c5b29 6533 ret = pmu->event_init(event);
b0a873eb 6534 if (!ret)
e5f4d339 6535 goto unlock;
76e1d904 6536
b0a873eb
PZ
6537 if (ret != -ENOENT) {
6538 pmu = ERR_PTR(ret);
e5f4d339 6539 goto unlock;
f344011c 6540 }
5c92d124 6541 }
e5f4d339
PZ
6542 pmu = ERR_PTR(-ENOENT);
6543unlock:
b0a873eb 6544 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6545
4aeb0b42 6546 return pmu;
5c92d124
IM
6547}
6548
4beb31f3
FW
6549static void account_event_cpu(struct perf_event *event, int cpu)
6550{
6551 if (event->parent)
6552 return;
6553
6554 if (has_branch_stack(event)) {
6555 if (!(event->attach_state & PERF_ATTACH_TASK))
6556 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6557 }
6558 if (is_cgroup_event(event))
6559 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6560}
6561
766d6c07
FW
6562static void account_event(struct perf_event *event)
6563{
4beb31f3
FW
6564 if (event->parent)
6565 return;
6566
766d6c07
FW
6567 if (event->attach_state & PERF_ATTACH_TASK)
6568 static_key_slow_inc(&perf_sched_events.key);
6569 if (event->attr.mmap || event->attr.mmap_data)
6570 atomic_inc(&nr_mmap_events);
6571 if (event->attr.comm)
6572 atomic_inc(&nr_comm_events);
6573 if (event->attr.task)
6574 atomic_inc(&nr_task_events);
948b26b6
FW
6575 if (event->attr.freq) {
6576 if (atomic_inc_return(&nr_freq_events) == 1)
6577 tick_nohz_full_kick_all();
6578 }
4beb31f3 6579 if (has_branch_stack(event))
766d6c07 6580 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 6581 if (is_cgroup_event(event))
766d6c07 6582 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
6583
6584 account_event_cpu(event, event->cpu);
766d6c07
FW
6585}
6586
0793a61d 6587/*
cdd6c482 6588 * Allocate and initialize a event structure
0793a61d 6589 */
cdd6c482 6590static struct perf_event *
c3f00c70 6591perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6592 struct task_struct *task,
6593 struct perf_event *group_leader,
6594 struct perf_event *parent_event,
4dc0da86
AK
6595 perf_overflow_handler_t overflow_handler,
6596 void *context)
0793a61d 6597{
51b0fe39 6598 struct pmu *pmu;
cdd6c482
IM
6599 struct perf_event *event;
6600 struct hw_perf_event *hwc;
90983b16 6601 long err = -EINVAL;
0793a61d 6602
66832eb4
ON
6603 if ((unsigned)cpu >= nr_cpu_ids) {
6604 if (!task || cpu != -1)
6605 return ERR_PTR(-EINVAL);
6606 }
6607
c3f00c70 6608 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6609 if (!event)
d5d2bc0d 6610 return ERR_PTR(-ENOMEM);
0793a61d 6611
04289bb9 6612 /*
cdd6c482 6613 * Single events are their own group leaders, with an
04289bb9
IM
6614 * empty sibling list:
6615 */
6616 if (!group_leader)
cdd6c482 6617 group_leader = event;
04289bb9 6618
cdd6c482
IM
6619 mutex_init(&event->child_mutex);
6620 INIT_LIST_HEAD(&event->child_list);
fccc714b 6621
cdd6c482
IM
6622 INIT_LIST_HEAD(&event->group_entry);
6623 INIT_LIST_HEAD(&event->event_entry);
6624 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
6625 INIT_LIST_HEAD(&event->rb_entry);
6626
cdd6c482 6627 init_waitqueue_head(&event->waitq);
e360adbe 6628 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6629
cdd6c482 6630 mutex_init(&event->mmap_mutex);
7b732a75 6631
a6fa941d 6632 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6633 event->cpu = cpu;
6634 event->attr = *attr;
6635 event->group_leader = group_leader;
6636 event->pmu = NULL;
cdd6c482 6637 event->oncpu = -1;
a96bbc16 6638
cdd6c482 6639 event->parent = parent_event;
b84fbc9f 6640
17cf22c3 6641 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6642 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6643
cdd6c482 6644 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6645
d580ff86
PZ
6646 if (task) {
6647 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6648
6649 if (attr->type == PERF_TYPE_TRACEPOINT)
6650 event->hw.tp_target = task;
d580ff86
PZ
6651#ifdef CONFIG_HAVE_HW_BREAKPOINT
6652 /*
6653 * hw_breakpoint is a bit difficult here..
6654 */
f22c1bb6 6655 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6656 event->hw.bp_target = task;
6657#endif
6658 }
6659
4dc0da86 6660 if (!overflow_handler && parent_event) {
b326e956 6661 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6662 context = parent_event->overflow_handler_context;
6663 }
66832eb4 6664
b326e956 6665 event->overflow_handler = overflow_handler;
4dc0da86 6666 event->overflow_handler_context = context;
97eaf530 6667
0231bb53 6668 perf_event__state_init(event);
a86ed508 6669
4aeb0b42 6670 pmu = NULL;
b8e83514 6671
cdd6c482 6672 hwc = &event->hw;
bd2b5b12 6673 hwc->sample_period = attr->sample_period;
0d48696f 6674 if (attr->freq && attr->sample_freq)
bd2b5b12 6675 hwc->sample_period = 1;
eced1dfc 6676 hwc->last_period = hwc->sample_period;
bd2b5b12 6677
e7850595 6678 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6679
2023b359 6680 /*
cdd6c482 6681 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6682 */
3dab77fb 6683 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 6684 goto err_ns;
2023b359 6685
b0a873eb 6686 pmu = perf_init_event(event);
4aeb0b42 6687 if (!pmu)
90983b16
FW
6688 goto err_ns;
6689 else if (IS_ERR(pmu)) {
4aeb0b42 6690 err = PTR_ERR(pmu);
90983b16 6691 goto err_ns;
621a01ea 6692 }
d5d2bc0d 6693
cdd6c482 6694 if (!event->parent) {
927c7a9e
FW
6695 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6696 err = get_callchain_buffers();
90983b16
FW
6697 if (err)
6698 goto err_pmu;
d010b332 6699 }
f344011c 6700 }
9ee318a7 6701
cdd6c482 6702 return event;
90983b16
FW
6703
6704err_pmu:
6705 if (event->destroy)
6706 event->destroy(event);
6707err_ns:
6708 if (event->ns)
6709 put_pid_ns(event->ns);
6710 kfree(event);
6711
6712 return ERR_PTR(err);
0793a61d
TG
6713}
6714
cdd6c482
IM
6715static int perf_copy_attr(struct perf_event_attr __user *uattr,
6716 struct perf_event_attr *attr)
974802ea 6717{
974802ea 6718 u32 size;
cdf8073d 6719 int ret;
974802ea
PZ
6720
6721 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6722 return -EFAULT;
6723
6724 /*
6725 * zero the full structure, so that a short copy will be nice.
6726 */
6727 memset(attr, 0, sizeof(*attr));
6728
6729 ret = get_user(size, &uattr->size);
6730 if (ret)
6731 return ret;
6732
6733 if (size > PAGE_SIZE) /* silly large */
6734 goto err_size;
6735
6736 if (!size) /* abi compat */
6737 size = PERF_ATTR_SIZE_VER0;
6738
6739 if (size < PERF_ATTR_SIZE_VER0)
6740 goto err_size;
6741
6742 /*
6743 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6744 * ensure all the unknown bits are 0 - i.e. new
6745 * user-space does not rely on any kernel feature
6746 * extensions we dont know about yet.
974802ea
PZ
6747 */
6748 if (size > sizeof(*attr)) {
cdf8073d
IS
6749 unsigned char __user *addr;
6750 unsigned char __user *end;
6751 unsigned char val;
974802ea 6752
cdf8073d
IS
6753 addr = (void __user *)uattr + sizeof(*attr);
6754 end = (void __user *)uattr + size;
974802ea 6755
cdf8073d 6756 for (; addr < end; addr++) {
974802ea
PZ
6757 ret = get_user(val, addr);
6758 if (ret)
6759 return ret;
6760 if (val)
6761 goto err_size;
6762 }
b3e62e35 6763 size = sizeof(*attr);
974802ea
PZ
6764 }
6765
6766 ret = copy_from_user(attr, uattr, size);
6767 if (ret)
6768 return -EFAULT;
6769
cd757645 6770 if (attr->__reserved_1)
974802ea
PZ
6771 return -EINVAL;
6772
6773 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6774 return -EINVAL;
6775
6776 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6777 return -EINVAL;
6778
bce38cd5
SE
6779 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6780 u64 mask = attr->branch_sample_type;
6781
6782 /* only using defined bits */
6783 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6784 return -EINVAL;
6785
6786 /* at least one branch bit must be set */
6787 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6788 return -EINVAL;
6789
bce38cd5
SE
6790 /* propagate priv level, when not set for branch */
6791 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6792
6793 /* exclude_kernel checked on syscall entry */
6794 if (!attr->exclude_kernel)
6795 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6796
6797 if (!attr->exclude_user)
6798 mask |= PERF_SAMPLE_BRANCH_USER;
6799
6800 if (!attr->exclude_hv)
6801 mask |= PERF_SAMPLE_BRANCH_HV;
6802 /*
6803 * adjust user setting (for HW filter setup)
6804 */
6805 attr->branch_sample_type = mask;
6806 }
e712209a
SE
6807 /* privileged levels capture (kernel, hv): check permissions */
6808 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
6809 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6810 return -EACCES;
bce38cd5 6811 }
4018994f 6812
c5ebcedb 6813 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6814 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6815 if (ret)
6816 return ret;
6817 }
6818
6819 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6820 if (!arch_perf_have_user_stack_dump())
6821 return -ENOSYS;
6822
6823 /*
6824 * We have __u32 type for the size, but so far
6825 * we can only use __u16 as maximum due to the
6826 * __u16 sample size limit.
6827 */
6828 if (attr->sample_stack_user >= USHRT_MAX)
6829 ret = -EINVAL;
6830 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6831 ret = -EINVAL;
6832 }
4018994f 6833
974802ea
PZ
6834out:
6835 return ret;
6836
6837err_size:
6838 put_user(sizeof(*attr), &uattr->size);
6839 ret = -E2BIG;
6840 goto out;
6841}
6842
ac9721f3
PZ
6843static int
6844perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6845{
76369139 6846 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6847 int ret = -EINVAL;
6848
ac9721f3 6849 if (!output_event)
a4be7c27
PZ
6850 goto set;
6851
ac9721f3
PZ
6852 /* don't allow circular references */
6853 if (event == output_event)
a4be7c27
PZ
6854 goto out;
6855
0f139300
PZ
6856 /*
6857 * Don't allow cross-cpu buffers
6858 */
6859 if (output_event->cpu != event->cpu)
6860 goto out;
6861
6862 /*
76369139 6863 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6864 */
6865 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6866 goto out;
6867
a4be7c27 6868set:
cdd6c482 6869 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6870 /* Can't redirect output if we've got an active mmap() */
6871 if (atomic_read(&event->mmap_count))
6872 goto unlock;
a4be7c27 6873
9bb5d40c
PZ
6874 old_rb = event->rb;
6875
ac9721f3 6876 if (output_event) {
76369139
FW
6877 /* get the rb we want to redirect to */
6878 rb = ring_buffer_get(output_event);
6879 if (!rb)
ac9721f3 6880 goto unlock;
a4be7c27
PZ
6881 }
6882
10c6db11
PZ
6883 if (old_rb)
6884 ring_buffer_detach(event, old_rb);
9bb5d40c
PZ
6885
6886 if (rb)
6887 ring_buffer_attach(event, rb);
6888
6889 rcu_assign_pointer(event->rb, rb);
6890
6891 if (old_rb) {
6892 ring_buffer_put(old_rb);
6893 /*
6894 * Since we detached before setting the new rb, so that we
6895 * could attach the new rb, we could have missed a wakeup.
6896 * Provide it now.
6897 */
6898 wake_up_all(&event->waitq);
6899 }
6900
a4be7c27 6901 ret = 0;
ac9721f3
PZ
6902unlock:
6903 mutex_unlock(&event->mmap_mutex);
6904
a4be7c27 6905out:
a4be7c27
PZ
6906 return ret;
6907}
6908
0793a61d 6909/**
cdd6c482 6910 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6911 *
cdd6c482 6912 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6913 * @pid: target pid
9f66a381 6914 * @cpu: target cpu
cdd6c482 6915 * @group_fd: group leader event fd
0793a61d 6916 */
cdd6c482
IM
6917SYSCALL_DEFINE5(perf_event_open,
6918 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6919 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6920{
b04243ef
PZ
6921 struct perf_event *group_leader = NULL, *output_event = NULL;
6922 struct perf_event *event, *sibling;
cdd6c482
IM
6923 struct perf_event_attr attr;
6924 struct perf_event_context *ctx;
6925 struct file *event_file = NULL;
2903ff01 6926 struct fd group = {NULL, 0};
38a81da2 6927 struct task_struct *task = NULL;
89a1e187 6928 struct pmu *pmu;
ea635c64 6929 int event_fd;
b04243ef 6930 int move_group = 0;
dc86cabe 6931 int err;
0793a61d 6932
2743a5b0 6933 /* for future expandability... */
e5d1367f 6934 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6935 return -EINVAL;
6936
dc86cabe
IM
6937 err = perf_copy_attr(attr_uptr, &attr);
6938 if (err)
6939 return err;
eab656ae 6940
0764771d
PZ
6941 if (!attr.exclude_kernel) {
6942 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6943 return -EACCES;
6944 }
6945
df58ab24 6946 if (attr.freq) {
cdd6c482 6947 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6948 return -EINVAL;
6949 }
6950
e5d1367f
SE
6951 /*
6952 * In cgroup mode, the pid argument is used to pass the fd
6953 * opened to the cgroup directory in cgroupfs. The cpu argument
6954 * designates the cpu on which to monitor threads from that
6955 * cgroup.
6956 */
6957 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6958 return -EINVAL;
6959
ab72a702 6960 event_fd = get_unused_fd();
ea635c64
AV
6961 if (event_fd < 0)
6962 return event_fd;
6963
ac9721f3 6964 if (group_fd != -1) {
2903ff01
AV
6965 err = perf_fget_light(group_fd, &group);
6966 if (err)
d14b12d7 6967 goto err_fd;
2903ff01 6968 group_leader = group.file->private_data;
ac9721f3
PZ
6969 if (flags & PERF_FLAG_FD_OUTPUT)
6970 output_event = group_leader;
6971 if (flags & PERF_FLAG_FD_NO_GROUP)
6972 group_leader = NULL;
6973 }
6974
e5d1367f 6975 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6976 task = find_lively_task_by_vpid(pid);
6977 if (IS_ERR(task)) {
6978 err = PTR_ERR(task);
6979 goto err_group_fd;
6980 }
6981 }
6982
fbfc623f
YZ
6983 get_online_cpus();
6984
4dc0da86
AK
6985 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6986 NULL, NULL);
d14b12d7
SE
6987 if (IS_ERR(event)) {
6988 err = PTR_ERR(event);
c6be5a5c 6989 goto err_task;
d14b12d7
SE
6990 }
6991
e5d1367f
SE
6992 if (flags & PERF_FLAG_PID_CGROUP) {
6993 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
6994 if (err) {
6995 __free_event(event);
6996 goto err_task;
6997 }
e5d1367f
SE
6998 }
6999
766d6c07
FW
7000 account_event(event);
7001
89a1e187
PZ
7002 /*
7003 * Special case software events and allow them to be part of
7004 * any hardware group.
7005 */
7006 pmu = event->pmu;
b04243ef
PZ
7007
7008 if (group_leader &&
7009 (is_software_event(event) != is_software_event(group_leader))) {
7010 if (is_software_event(event)) {
7011 /*
7012 * If event and group_leader are not both a software
7013 * event, and event is, then group leader is not.
7014 *
7015 * Allow the addition of software events to !software
7016 * groups, this is safe because software events never
7017 * fail to schedule.
7018 */
7019 pmu = group_leader->pmu;
7020 } else if (is_software_event(group_leader) &&
7021 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7022 /*
7023 * In case the group is a pure software group, and we
7024 * try to add a hardware event, move the whole group to
7025 * the hardware context.
7026 */
7027 move_group = 1;
7028 }
7029 }
89a1e187
PZ
7030
7031 /*
7032 * Get the target context (task or percpu):
7033 */
e2d37cd2 7034 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
7035 if (IS_ERR(ctx)) {
7036 err = PTR_ERR(ctx);
c6be5a5c 7037 goto err_alloc;
89a1e187
PZ
7038 }
7039
fd1edb3a
PZ
7040 if (task) {
7041 put_task_struct(task);
7042 task = NULL;
7043 }
7044
ccff286d 7045 /*
cdd6c482 7046 * Look up the group leader (we will attach this event to it):
04289bb9 7047 */
ac9721f3 7048 if (group_leader) {
dc86cabe 7049 err = -EINVAL;
04289bb9 7050
04289bb9 7051 /*
ccff286d
IM
7052 * Do not allow a recursive hierarchy (this new sibling
7053 * becoming part of another group-sibling):
7054 */
7055 if (group_leader->group_leader != group_leader)
c3f00c70 7056 goto err_context;
ccff286d
IM
7057 /*
7058 * Do not allow to attach to a group in a different
7059 * task or CPU context:
04289bb9 7060 */
b04243ef
PZ
7061 if (move_group) {
7062 if (group_leader->ctx->type != ctx->type)
7063 goto err_context;
7064 } else {
7065 if (group_leader->ctx != ctx)
7066 goto err_context;
7067 }
7068
3b6f9e5c
PM
7069 /*
7070 * Only a group leader can be exclusive or pinned
7071 */
0d48696f 7072 if (attr.exclusive || attr.pinned)
c3f00c70 7073 goto err_context;
ac9721f3
PZ
7074 }
7075
7076 if (output_event) {
7077 err = perf_event_set_output(event, output_event);
7078 if (err)
c3f00c70 7079 goto err_context;
ac9721f3 7080 }
0793a61d 7081
ea635c64
AV
7082 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7083 if (IS_ERR(event_file)) {
7084 err = PTR_ERR(event_file);
c3f00c70 7085 goto err_context;
ea635c64 7086 }
9b51f66d 7087
b04243ef
PZ
7088 if (move_group) {
7089 struct perf_event_context *gctx = group_leader->ctx;
7090
7091 mutex_lock(&gctx->mutex);
fe4b04fa 7092 perf_remove_from_context(group_leader);
0231bb53
JO
7093
7094 /*
7095 * Removing from the context ends up with disabled
7096 * event. What we want here is event in the initial
7097 * startup state, ready to be add into new context.
7098 */
7099 perf_event__state_init(group_leader);
b04243ef
PZ
7100 list_for_each_entry(sibling, &group_leader->sibling_list,
7101 group_entry) {
fe4b04fa 7102 perf_remove_from_context(sibling);
0231bb53 7103 perf_event__state_init(sibling);
b04243ef
PZ
7104 put_ctx(gctx);
7105 }
7106 mutex_unlock(&gctx->mutex);
7107 put_ctx(gctx);
ea635c64 7108 }
9b51f66d 7109
ad3a37de 7110 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 7111 mutex_lock(&ctx->mutex);
b04243ef
PZ
7112
7113 if (move_group) {
0cda4c02 7114 synchronize_rcu();
e2d37cd2 7115 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
7116 get_ctx(ctx);
7117 list_for_each_entry(sibling, &group_leader->sibling_list,
7118 group_entry) {
e2d37cd2 7119 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
7120 get_ctx(ctx);
7121 }
7122 }
7123
e2d37cd2 7124 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 7125 ++ctx->generation;
fe4b04fa 7126 perf_unpin_context(ctx);
d859e29f 7127 mutex_unlock(&ctx->mutex);
9b51f66d 7128
fbfc623f
YZ
7129 put_online_cpus();
7130
cdd6c482 7131 event->owner = current;
8882135b 7132
cdd6c482
IM
7133 mutex_lock(&current->perf_event_mutex);
7134 list_add_tail(&event->owner_entry, &current->perf_event_list);
7135 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7136
c320c7b7
ACM
7137 /*
7138 * Precalculate sample_data sizes
7139 */
7140 perf_event__header_size(event);
6844c09d 7141 perf_event__id_header_size(event);
c320c7b7 7142
8a49542c
PZ
7143 /*
7144 * Drop the reference on the group_event after placing the
7145 * new event on the sibling_list. This ensures destruction
7146 * of the group leader will find the pointer to itself in
7147 * perf_group_detach().
7148 */
2903ff01 7149 fdput(group);
ea635c64
AV
7150 fd_install(event_fd, event_file);
7151 return event_fd;
0793a61d 7152
c3f00c70 7153err_context:
fe4b04fa 7154 perf_unpin_context(ctx);
ea635c64 7155 put_ctx(ctx);
c6be5a5c 7156err_alloc:
ea635c64 7157 free_event(event);
e7d0bc04 7158err_task:
fbfc623f 7159 put_online_cpus();
e7d0bc04
PZ
7160 if (task)
7161 put_task_struct(task);
89a1e187 7162err_group_fd:
2903ff01 7163 fdput(group);
ea635c64
AV
7164err_fd:
7165 put_unused_fd(event_fd);
dc86cabe 7166 return err;
0793a61d
TG
7167}
7168
fb0459d7
AV
7169/**
7170 * perf_event_create_kernel_counter
7171 *
7172 * @attr: attributes of the counter to create
7173 * @cpu: cpu in which the counter is bound
38a81da2 7174 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7175 */
7176struct perf_event *
7177perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7178 struct task_struct *task,
4dc0da86
AK
7179 perf_overflow_handler_t overflow_handler,
7180 void *context)
fb0459d7 7181{
fb0459d7 7182 struct perf_event_context *ctx;
c3f00c70 7183 struct perf_event *event;
fb0459d7 7184 int err;
d859e29f 7185
fb0459d7
AV
7186 /*
7187 * Get the target context (task or percpu):
7188 */
d859e29f 7189
4dc0da86
AK
7190 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7191 overflow_handler, context);
c3f00c70
PZ
7192 if (IS_ERR(event)) {
7193 err = PTR_ERR(event);
7194 goto err;
7195 }
d859e29f 7196
766d6c07
FW
7197 account_event(event);
7198
38a81da2 7199 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7200 if (IS_ERR(ctx)) {
7201 err = PTR_ERR(ctx);
c3f00c70 7202 goto err_free;
d859e29f 7203 }
fb0459d7 7204
fb0459d7
AV
7205 WARN_ON_ONCE(ctx->parent_ctx);
7206 mutex_lock(&ctx->mutex);
7207 perf_install_in_context(ctx, event, cpu);
7208 ++ctx->generation;
fe4b04fa 7209 perf_unpin_context(ctx);
fb0459d7
AV
7210 mutex_unlock(&ctx->mutex);
7211
fb0459d7
AV
7212 return event;
7213
c3f00c70
PZ
7214err_free:
7215 free_event(event);
7216err:
c6567f64 7217 return ERR_PTR(err);
9b51f66d 7218}
fb0459d7 7219EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7220
0cda4c02
YZ
7221void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7222{
7223 struct perf_event_context *src_ctx;
7224 struct perf_event_context *dst_ctx;
7225 struct perf_event *event, *tmp;
7226 LIST_HEAD(events);
7227
7228 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7229 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7230
7231 mutex_lock(&src_ctx->mutex);
7232 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7233 event_entry) {
7234 perf_remove_from_context(event);
9a545de0 7235 unaccount_event_cpu(event, src_cpu);
0cda4c02 7236 put_ctx(src_ctx);
9886167d 7237 list_add(&event->migrate_entry, &events);
0cda4c02
YZ
7238 }
7239 mutex_unlock(&src_ctx->mutex);
7240
7241 synchronize_rcu();
7242
7243 mutex_lock(&dst_ctx->mutex);
9886167d
PZ
7244 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7245 list_del(&event->migrate_entry);
0cda4c02
YZ
7246 if (event->state >= PERF_EVENT_STATE_OFF)
7247 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7248 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7249 perf_install_in_context(dst_ctx, event, dst_cpu);
7250 get_ctx(dst_ctx);
7251 }
7252 mutex_unlock(&dst_ctx->mutex);
7253}
7254EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7255
cdd6c482 7256static void sync_child_event(struct perf_event *child_event,
38b200d6 7257 struct task_struct *child)
d859e29f 7258{
cdd6c482 7259 struct perf_event *parent_event = child_event->parent;
8bc20959 7260 u64 child_val;
d859e29f 7261
cdd6c482
IM
7262 if (child_event->attr.inherit_stat)
7263 perf_event_read_event(child_event, child);
38b200d6 7264
b5e58793 7265 child_val = perf_event_count(child_event);
d859e29f
PM
7266
7267 /*
7268 * Add back the child's count to the parent's count:
7269 */
a6e6dea6 7270 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7271 atomic64_add(child_event->total_time_enabled,
7272 &parent_event->child_total_time_enabled);
7273 atomic64_add(child_event->total_time_running,
7274 &parent_event->child_total_time_running);
d859e29f
PM
7275
7276 /*
cdd6c482 7277 * Remove this event from the parent's list
d859e29f 7278 */
cdd6c482
IM
7279 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7280 mutex_lock(&parent_event->child_mutex);
7281 list_del_init(&child_event->child_list);
7282 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
7283
7284 /*
cdd6c482 7285 * Release the parent event, if this was the last
d859e29f
PM
7286 * reference to it.
7287 */
a6fa941d 7288 put_event(parent_event);
d859e29f
PM
7289}
7290
9b51f66d 7291static void
cdd6c482
IM
7292__perf_event_exit_task(struct perf_event *child_event,
7293 struct perf_event_context *child_ctx,
38b200d6 7294 struct task_struct *child)
9b51f66d 7295{
38b435b1
PZ
7296 if (child_event->parent) {
7297 raw_spin_lock_irq(&child_ctx->lock);
7298 perf_group_detach(child_event);
7299 raw_spin_unlock_irq(&child_ctx->lock);
7300 }
9b51f66d 7301
fe4b04fa 7302 perf_remove_from_context(child_event);
0cc0c027 7303
9b51f66d 7304 /*
38b435b1 7305 * It can happen that the parent exits first, and has events
9b51f66d 7306 * that are still around due to the child reference. These
38b435b1 7307 * events need to be zapped.
9b51f66d 7308 */
38b435b1 7309 if (child_event->parent) {
cdd6c482
IM
7310 sync_child_event(child_event, child);
7311 free_event(child_event);
4bcf349a 7312 }
9b51f66d
IM
7313}
7314
8dc85d54 7315static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7316{
cdd6c482
IM
7317 struct perf_event *child_event, *tmp;
7318 struct perf_event_context *child_ctx;
a63eaf34 7319 unsigned long flags;
9b51f66d 7320
8dc85d54 7321 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7322 perf_event_task(child, NULL, 0);
9b51f66d 7323 return;
9f498cc5 7324 }
9b51f66d 7325
a63eaf34 7326 local_irq_save(flags);
ad3a37de
PM
7327 /*
7328 * We can't reschedule here because interrupts are disabled,
7329 * and either child is current or it is a task that can't be
7330 * scheduled, so we are now safe from rescheduling changing
7331 * our context.
7332 */
806839b2 7333 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7334
7335 /*
7336 * Take the context lock here so that if find_get_context is
cdd6c482 7337 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7338 * incremented the context's refcount before we do put_ctx below.
7339 */
e625cce1 7340 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7341 task_ctx_sched_out(child_ctx);
8dc85d54 7342 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
7343 /*
7344 * If this context is a clone; unclone it so it can't get
7345 * swapped to another process while we're removing all
cdd6c482 7346 * the events from it.
71a851b4
PZ
7347 */
7348 unclone_ctx(child_ctx);
5e942bb3 7349 update_context_time(child_ctx);
e625cce1 7350 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
7351
7352 /*
cdd6c482
IM
7353 * Report the task dead after unscheduling the events so that we
7354 * won't get any samples after PERF_RECORD_EXIT. We can however still
7355 * get a few PERF_RECORD_READ events.
9f498cc5 7356 */
cdd6c482 7357 perf_event_task(child, child_ctx, 0);
a63eaf34 7358
66fff224
PZ
7359 /*
7360 * We can recurse on the same lock type through:
7361 *
cdd6c482
IM
7362 * __perf_event_exit_task()
7363 * sync_child_event()
a6fa941d
AV
7364 * put_event()
7365 * mutex_lock(&ctx->mutex)
66fff224
PZ
7366 *
7367 * But since its the parent context it won't be the same instance.
7368 */
a0507c84 7369 mutex_lock(&child_ctx->mutex);
a63eaf34 7370
8bc20959 7371again:
889ff015
FW
7372 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7373 group_entry)
7374 __perf_event_exit_task(child_event, child_ctx, child);
7375
7376 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 7377 group_entry)
cdd6c482 7378 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
7379
7380 /*
cdd6c482 7381 * If the last event was a group event, it will have appended all
8bc20959
PZ
7382 * its siblings to the list, but we obtained 'tmp' before that which
7383 * will still point to the list head terminating the iteration.
7384 */
889ff015
FW
7385 if (!list_empty(&child_ctx->pinned_groups) ||
7386 !list_empty(&child_ctx->flexible_groups))
8bc20959 7387 goto again;
a63eaf34
PM
7388
7389 mutex_unlock(&child_ctx->mutex);
7390
7391 put_ctx(child_ctx);
9b51f66d
IM
7392}
7393
8dc85d54
PZ
7394/*
7395 * When a child task exits, feed back event values to parent events.
7396 */
7397void perf_event_exit_task(struct task_struct *child)
7398{
8882135b 7399 struct perf_event *event, *tmp;
8dc85d54
PZ
7400 int ctxn;
7401
8882135b
PZ
7402 mutex_lock(&child->perf_event_mutex);
7403 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7404 owner_entry) {
7405 list_del_init(&event->owner_entry);
7406
7407 /*
7408 * Ensure the list deletion is visible before we clear
7409 * the owner, closes a race against perf_release() where
7410 * we need to serialize on the owner->perf_event_mutex.
7411 */
7412 smp_wmb();
7413 event->owner = NULL;
7414 }
7415 mutex_unlock(&child->perf_event_mutex);
7416
8dc85d54
PZ
7417 for_each_task_context_nr(ctxn)
7418 perf_event_exit_task_context(child, ctxn);
7419}
7420
889ff015
FW
7421static void perf_free_event(struct perf_event *event,
7422 struct perf_event_context *ctx)
7423{
7424 struct perf_event *parent = event->parent;
7425
7426 if (WARN_ON_ONCE(!parent))
7427 return;
7428
7429 mutex_lock(&parent->child_mutex);
7430 list_del_init(&event->child_list);
7431 mutex_unlock(&parent->child_mutex);
7432
a6fa941d 7433 put_event(parent);
889ff015 7434
8a49542c 7435 perf_group_detach(event);
889ff015
FW
7436 list_del_event(event, ctx);
7437 free_event(event);
7438}
7439
bbbee908
PZ
7440/*
7441 * free an unexposed, unused context as created by inheritance by
8dc85d54 7442 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7443 */
cdd6c482 7444void perf_event_free_task(struct task_struct *task)
bbbee908 7445{
8dc85d54 7446 struct perf_event_context *ctx;
cdd6c482 7447 struct perf_event *event, *tmp;
8dc85d54 7448 int ctxn;
bbbee908 7449
8dc85d54
PZ
7450 for_each_task_context_nr(ctxn) {
7451 ctx = task->perf_event_ctxp[ctxn];
7452 if (!ctx)
7453 continue;
bbbee908 7454
8dc85d54 7455 mutex_lock(&ctx->mutex);
bbbee908 7456again:
8dc85d54
PZ
7457 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7458 group_entry)
7459 perf_free_event(event, ctx);
bbbee908 7460
8dc85d54
PZ
7461 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7462 group_entry)
7463 perf_free_event(event, ctx);
bbbee908 7464
8dc85d54
PZ
7465 if (!list_empty(&ctx->pinned_groups) ||
7466 !list_empty(&ctx->flexible_groups))
7467 goto again;
bbbee908 7468
8dc85d54 7469 mutex_unlock(&ctx->mutex);
bbbee908 7470
8dc85d54
PZ
7471 put_ctx(ctx);
7472 }
889ff015
FW
7473}
7474
4e231c79
PZ
7475void perf_event_delayed_put(struct task_struct *task)
7476{
7477 int ctxn;
7478
7479 for_each_task_context_nr(ctxn)
7480 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7481}
7482
97dee4f3
PZ
7483/*
7484 * inherit a event from parent task to child task:
7485 */
7486static struct perf_event *
7487inherit_event(struct perf_event *parent_event,
7488 struct task_struct *parent,
7489 struct perf_event_context *parent_ctx,
7490 struct task_struct *child,
7491 struct perf_event *group_leader,
7492 struct perf_event_context *child_ctx)
7493{
7494 struct perf_event *child_event;
cee010ec 7495 unsigned long flags;
97dee4f3
PZ
7496
7497 /*
7498 * Instead of creating recursive hierarchies of events,
7499 * we link inherited events back to the original parent,
7500 * which has a filp for sure, which we use as the reference
7501 * count:
7502 */
7503 if (parent_event->parent)
7504 parent_event = parent_event->parent;
7505
7506 child_event = perf_event_alloc(&parent_event->attr,
7507 parent_event->cpu,
d580ff86 7508 child,
97dee4f3 7509 group_leader, parent_event,
4dc0da86 7510 NULL, NULL);
97dee4f3
PZ
7511 if (IS_ERR(child_event))
7512 return child_event;
a6fa941d
AV
7513
7514 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7515 free_event(child_event);
7516 return NULL;
7517 }
7518
97dee4f3
PZ
7519 get_ctx(child_ctx);
7520
7521 /*
7522 * Make the child state follow the state of the parent event,
7523 * not its attr.disabled bit. We hold the parent's mutex,
7524 * so we won't race with perf_event_{en, dis}able_family.
7525 */
7526 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7527 child_event->state = PERF_EVENT_STATE_INACTIVE;
7528 else
7529 child_event->state = PERF_EVENT_STATE_OFF;
7530
7531 if (parent_event->attr.freq) {
7532 u64 sample_period = parent_event->hw.sample_period;
7533 struct hw_perf_event *hwc = &child_event->hw;
7534
7535 hwc->sample_period = sample_period;
7536 hwc->last_period = sample_period;
7537
7538 local64_set(&hwc->period_left, sample_period);
7539 }
7540
7541 child_event->ctx = child_ctx;
7542 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7543 child_event->overflow_handler_context
7544 = parent_event->overflow_handler_context;
97dee4f3 7545
614b6780
TG
7546 /*
7547 * Precalculate sample_data sizes
7548 */
7549 perf_event__header_size(child_event);
6844c09d 7550 perf_event__id_header_size(child_event);
614b6780 7551
97dee4f3
PZ
7552 /*
7553 * Link it up in the child's context:
7554 */
cee010ec 7555 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7556 add_event_to_ctx(child_event, child_ctx);
cee010ec 7557 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7558
97dee4f3
PZ
7559 /*
7560 * Link this into the parent event's child list
7561 */
7562 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7563 mutex_lock(&parent_event->child_mutex);
7564 list_add_tail(&child_event->child_list, &parent_event->child_list);
7565 mutex_unlock(&parent_event->child_mutex);
7566
7567 return child_event;
7568}
7569
7570static int inherit_group(struct perf_event *parent_event,
7571 struct task_struct *parent,
7572 struct perf_event_context *parent_ctx,
7573 struct task_struct *child,
7574 struct perf_event_context *child_ctx)
7575{
7576 struct perf_event *leader;
7577 struct perf_event *sub;
7578 struct perf_event *child_ctr;
7579
7580 leader = inherit_event(parent_event, parent, parent_ctx,
7581 child, NULL, child_ctx);
7582 if (IS_ERR(leader))
7583 return PTR_ERR(leader);
7584 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7585 child_ctr = inherit_event(sub, parent, parent_ctx,
7586 child, leader, child_ctx);
7587 if (IS_ERR(child_ctr))
7588 return PTR_ERR(child_ctr);
7589 }
7590 return 0;
889ff015
FW
7591}
7592
7593static int
7594inherit_task_group(struct perf_event *event, struct task_struct *parent,
7595 struct perf_event_context *parent_ctx,
8dc85d54 7596 struct task_struct *child, int ctxn,
889ff015
FW
7597 int *inherited_all)
7598{
7599 int ret;
8dc85d54 7600 struct perf_event_context *child_ctx;
889ff015
FW
7601
7602 if (!event->attr.inherit) {
7603 *inherited_all = 0;
7604 return 0;
bbbee908
PZ
7605 }
7606
fe4b04fa 7607 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7608 if (!child_ctx) {
7609 /*
7610 * This is executed from the parent task context, so
7611 * inherit events that have been marked for cloning.
7612 * First allocate and initialize a context for the
7613 * child.
7614 */
bbbee908 7615
734df5ab 7616 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
7617 if (!child_ctx)
7618 return -ENOMEM;
bbbee908 7619
8dc85d54 7620 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7621 }
7622
7623 ret = inherit_group(event, parent, parent_ctx,
7624 child, child_ctx);
7625
7626 if (ret)
7627 *inherited_all = 0;
7628
7629 return ret;
bbbee908
PZ
7630}
7631
9b51f66d 7632/*
cdd6c482 7633 * Initialize the perf_event context in task_struct
9b51f66d 7634 */
8dc85d54 7635int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7636{
889ff015 7637 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7638 struct perf_event_context *cloned_ctx;
7639 struct perf_event *event;
9b51f66d 7640 struct task_struct *parent = current;
564c2b21 7641 int inherited_all = 1;
dddd3379 7642 unsigned long flags;
6ab423e0 7643 int ret = 0;
9b51f66d 7644
8dc85d54 7645 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7646 return 0;
7647
ad3a37de 7648 /*
25346b93
PM
7649 * If the parent's context is a clone, pin it so it won't get
7650 * swapped under us.
ad3a37de 7651 */
8dc85d54 7652 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 7653
ad3a37de
PM
7654 /*
7655 * No need to check if parent_ctx != NULL here; since we saw
7656 * it non-NULL earlier, the only reason for it to become NULL
7657 * is if we exit, and since we're currently in the middle of
7658 * a fork we can't be exiting at the same time.
7659 */
ad3a37de 7660
9b51f66d
IM
7661 /*
7662 * Lock the parent list. No need to lock the child - not PID
7663 * hashed yet and not running, so nobody can access it.
7664 */
d859e29f 7665 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7666
7667 /*
7668 * We dont have to disable NMIs - we are only looking at
7669 * the list, not manipulating it:
7670 */
889ff015 7671 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7672 ret = inherit_task_group(event, parent, parent_ctx,
7673 child, ctxn, &inherited_all);
889ff015
FW
7674 if (ret)
7675 break;
7676 }
b93f7978 7677
dddd3379
TG
7678 /*
7679 * We can't hold ctx->lock when iterating the ->flexible_group list due
7680 * to allocations, but we need to prevent rotation because
7681 * rotate_ctx() will change the list from interrupt context.
7682 */
7683 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7684 parent_ctx->rotate_disable = 1;
7685 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7686
889ff015 7687 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7688 ret = inherit_task_group(event, parent, parent_ctx,
7689 child, ctxn, &inherited_all);
889ff015 7690 if (ret)
9b51f66d 7691 break;
564c2b21
PM
7692 }
7693
dddd3379
TG
7694 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7695 parent_ctx->rotate_disable = 0;
dddd3379 7696
8dc85d54 7697 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7698
05cbaa28 7699 if (child_ctx && inherited_all) {
564c2b21
PM
7700 /*
7701 * Mark the child context as a clone of the parent
7702 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7703 *
7704 * Note that if the parent is a clone, the holding of
7705 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7706 */
c5ed5145 7707 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7708 if (cloned_ctx) {
7709 child_ctx->parent_ctx = cloned_ctx;
25346b93 7710 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7711 } else {
7712 child_ctx->parent_ctx = parent_ctx;
7713 child_ctx->parent_gen = parent_ctx->generation;
7714 }
7715 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7716 }
7717
c5ed5145 7718 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7719 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7720
25346b93 7721 perf_unpin_context(parent_ctx);
fe4b04fa 7722 put_ctx(parent_ctx);
ad3a37de 7723
6ab423e0 7724 return ret;
9b51f66d
IM
7725}
7726
8dc85d54
PZ
7727/*
7728 * Initialize the perf_event context in task_struct
7729 */
7730int perf_event_init_task(struct task_struct *child)
7731{
7732 int ctxn, ret;
7733
8550d7cb
ON
7734 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7735 mutex_init(&child->perf_event_mutex);
7736 INIT_LIST_HEAD(&child->perf_event_list);
7737
8dc85d54
PZ
7738 for_each_task_context_nr(ctxn) {
7739 ret = perf_event_init_context(child, ctxn);
7740 if (ret)
7741 return ret;
7742 }
7743
7744 return 0;
7745}
7746
220b140b
PM
7747static void __init perf_event_init_all_cpus(void)
7748{
b28ab83c 7749 struct swevent_htable *swhash;
220b140b 7750 int cpu;
220b140b
PM
7751
7752 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7753 swhash = &per_cpu(swevent_htable, cpu);
7754 mutex_init(&swhash->hlist_mutex);
e9d2b064 7755 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7756 }
7757}
7758
0db0628d 7759static void perf_event_init_cpu(int cpu)
0793a61d 7760{
108b02cf 7761 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7762
b28ab83c 7763 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7764 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7765 struct swevent_hlist *hlist;
7766
b28ab83c
PZ
7767 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7768 WARN_ON(!hlist);
7769 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7770 }
b28ab83c 7771 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7772}
7773
c277443c 7774#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7775static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7776{
e9d2b064
PZ
7777 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7778
7779 WARN_ON(!irqs_disabled());
7780
7781 list_del_init(&cpuctx->rotation_list);
7782}
7783
108b02cf 7784static void __perf_event_exit_context(void *__info)
0793a61d 7785{
108b02cf 7786 struct perf_event_context *ctx = __info;
cdd6c482 7787 struct perf_event *event, *tmp;
0793a61d 7788
108b02cf 7789 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7790
889ff015 7791 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7792 __perf_remove_from_context(event);
889ff015 7793 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7794 __perf_remove_from_context(event);
0793a61d 7795}
108b02cf
PZ
7796
7797static void perf_event_exit_cpu_context(int cpu)
7798{
7799 struct perf_event_context *ctx;
7800 struct pmu *pmu;
7801 int idx;
7802
7803 idx = srcu_read_lock(&pmus_srcu);
7804 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7805 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7806
7807 mutex_lock(&ctx->mutex);
7808 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7809 mutex_unlock(&ctx->mutex);
7810 }
7811 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7812}
7813
cdd6c482 7814static void perf_event_exit_cpu(int cpu)
0793a61d 7815{
b28ab83c 7816 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7817
b28ab83c
PZ
7818 mutex_lock(&swhash->hlist_mutex);
7819 swevent_hlist_release(swhash);
7820 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7821
108b02cf 7822 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7823}
7824#else
cdd6c482 7825static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7826#endif
7827
c277443c
PZ
7828static int
7829perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7830{
7831 int cpu;
7832
7833 for_each_online_cpu(cpu)
7834 perf_event_exit_cpu(cpu);
7835
7836 return NOTIFY_OK;
7837}
7838
7839/*
7840 * Run the perf reboot notifier at the very last possible moment so that
7841 * the generic watchdog code runs as long as possible.
7842 */
7843static struct notifier_block perf_reboot_notifier = {
7844 .notifier_call = perf_reboot,
7845 .priority = INT_MIN,
7846};
7847
0db0628d 7848static int
0793a61d
TG
7849perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7850{
7851 unsigned int cpu = (long)hcpu;
7852
4536e4d1 7853 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7854
7855 case CPU_UP_PREPARE:
5e11637e 7856 case CPU_DOWN_FAILED:
cdd6c482 7857 perf_event_init_cpu(cpu);
0793a61d
TG
7858 break;
7859
5e11637e 7860 case CPU_UP_CANCELED:
0793a61d 7861 case CPU_DOWN_PREPARE:
cdd6c482 7862 perf_event_exit_cpu(cpu);
0793a61d 7863 break;
0793a61d
TG
7864 default:
7865 break;
7866 }
7867
7868 return NOTIFY_OK;
7869}
7870
cdd6c482 7871void __init perf_event_init(void)
0793a61d 7872{
3c502e7a
JW
7873 int ret;
7874
2e80a82a
PZ
7875 idr_init(&pmu_idr);
7876
220b140b 7877 perf_event_init_all_cpus();
b0a873eb 7878 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7879 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7880 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7881 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7882 perf_tp_register();
7883 perf_cpu_notifier(perf_cpu_notify);
c277443c 7884 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7885
7886 ret = init_hw_breakpoint();
7887 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7888
7889 /* do not patch jump label more than once per second */
7890 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7891
7892 /*
7893 * Build time assertion that we keep the data_head at the intended
7894 * location. IOW, validation we got the __reserved[] size right.
7895 */
7896 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7897 != 1024);
0793a61d 7898}
abe43400
PZ
7899
7900static int __init perf_event_sysfs_init(void)
7901{
7902 struct pmu *pmu;
7903 int ret;
7904
7905 mutex_lock(&pmus_lock);
7906
7907 ret = bus_register(&pmu_bus);
7908 if (ret)
7909 goto unlock;
7910
7911 list_for_each_entry(pmu, &pmus, entry) {
7912 if (!pmu->name || pmu->type < 0)
7913 continue;
7914
7915 ret = pmu_dev_alloc(pmu);
7916 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7917 }
7918 pmu_bus_running = 1;
7919 ret = 0;
7920
7921unlock:
7922 mutex_unlock(&pmus_lock);
7923
7924 return ret;
7925}
7926device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7927
7928#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
7929static struct cgroup_subsys_state *
7930perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
7931{
7932 struct perf_cgroup *jc;
e5d1367f 7933
1b15d055 7934 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7935 if (!jc)
7936 return ERR_PTR(-ENOMEM);
7937
e5d1367f
SE
7938 jc->info = alloc_percpu(struct perf_cgroup_info);
7939 if (!jc->info) {
7940 kfree(jc);
7941 return ERR_PTR(-ENOMEM);
7942 }
7943
e5d1367f
SE
7944 return &jc->css;
7945}
7946
eb95419b 7947static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 7948{
eb95419b
TH
7949 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
7950
e5d1367f
SE
7951 free_percpu(jc->info);
7952 kfree(jc);
7953}
7954
7955static int __perf_cgroup_move(void *info)
7956{
7957 struct task_struct *task = info;
7958 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7959 return 0;
7960}
7961
eb95419b
TH
7962static void perf_cgroup_attach(struct cgroup_subsys_state *css,
7963 struct cgroup_taskset *tset)
e5d1367f 7964{
bb9d97b6
TH
7965 struct task_struct *task;
7966
d99c8727 7967 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7968 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7969}
7970
eb95419b
TH
7971static void perf_cgroup_exit(struct cgroup_subsys_state *css,
7972 struct cgroup_subsys_state *old_css,
761b3ef5 7973 struct task_struct *task)
e5d1367f
SE
7974{
7975 /*
7976 * cgroup_exit() is called in the copy_process() failure path.
7977 * Ignore this case since the task hasn't ran yet, this avoids
7978 * trying to poke a half freed task state from generic code.
7979 */
7980 if (!(task->flags & PF_EXITING))
7981 return;
7982
bb9d97b6 7983 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7984}
7985
7986struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7987 .name = "perf_event",
7988 .subsys_id = perf_subsys_id,
92fb9748
TH
7989 .css_alloc = perf_cgroup_css_alloc,
7990 .css_free = perf_cgroup_css_free,
e7e7ee2e 7991 .exit = perf_cgroup_exit,
bb9d97b6 7992 .attach = perf_cgroup_attach,
e5d1367f
SE
7993};
7994#endif /* CONFIG_CGROUP_PERF */