perf: Disable IRQs across RCU RS CS that acquires scheduler lock
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
f8697762
JO
129#define EVENT_OWNER_KERNEL ((void *) -1)
130
131static bool is_kernel_event(struct perf_event *event)
132{
133 return event->owner == EVENT_OWNER_KERNEL;
134}
135
e5d1367f
SE
136#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
e5d1367f 140
bce38cd5
SE
141/*
142 * branch priv levels that need permission checks
143 */
144#define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
0b3fcf17
SE
148enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152};
153
e5d1367f
SE
154/*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
c5905afb 158struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 159static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 160static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 161
cdd6c482
IM
162static atomic_t nr_mmap_events __read_mostly;
163static atomic_t nr_comm_events __read_mostly;
164static atomic_t nr_task_events __read_mostly;
948b26b6 165static atomic_t nr_freq_events __read_mostly;
45ac1403 166static atomic_t nr_switch_events __read_mostly;
9ee318a7 167
108b02cf
PZ
168static LIST_HEAD(pmus);
169static DEFINE_MUTEX(pmus_lock);
170static struct srcu_struct pmus_srcu;
171
0764771d 172/*
cdd6c482 173 * perf event paranoia level:
0fbdea19
IM
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 176 * 1 - disallow cpu events for unpriv
0fbdea19 177 * 2 - disallow kernel profiling for unpriv
0764771d 178 */
cdd6c482 179int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 180
20443384
FW
181/* Minimum for 512 kiB + 1 user control page */
182int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
183
184/*
cdd6c482 185 * max perf event sample rate
df58ab24 186 */
14c63f17
DH
187#define DEFAULT_MAX_SAMPLE_RATE 100000
188#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189#define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
d9494cb4
PZ
196static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 198
18ab2cd3 199static void update_perf_cpu_limits(void)
14c63f17
DH
200{
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 204 do_div(tmp, 100);
d9494cb4 205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 206}
163ec435 207
9e630205
SE
208static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
163ec435
PZ
210int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
723478c8 214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224}
225
226int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231{
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
163ec435
PZ
238
239 return 0;
240}
1ccd1549 241
14c63f17
DH
242/*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 249static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 250
6a02ad66 251static void perf_duration_warn(struct irq_work *w)
14c63f17 252{
6a02ad66 253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 254 u64 avg_local_sample_len;
e5302920 255 u64 local_samples_len;
6a02ad66 256
4a32fea9 257 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 263 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
264 sysctl_perf_event_sample_rate);
265}
266
267static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269void perf_sample_event_took(u64 sample_len_ns)
270{
d9494cb4 271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
14c63f17 274
d9494cb4 275 if (allowed_ns == 0)
14c63f17
DH
276 return;
277
278 /* decay the counter by 1 average sample */
4a32fea9 279 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
4a32fea9 282 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
d9494cb4 291 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
14c63f17 301 update_perf_cpu_limits();
6a02ad66 302
cd578abb
PZ
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
14c63f17
DH
309}
310
cdd6c482 311static atomic64_t perf_event_id;
a96bbc16 312
0b3fcf17
SE
313static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320static void update_context_time(struct perf_event_context *ctx);
321static u64 perf_event_time(struct perf_event *event);
0b3fcf17 322
cdd6c482 323void __weak perf_event_print_debug(void) { }
0793a61d 324
84c79910 325extern __weak const char *perf_pmu_name(void)
0793a61d 326{
84c79910 327 return "pmu";
0793a61d
TG
328}
329
0b3fcf17
SE
330static inline u64 perf_clock(void)
331{
332 return local_clock();
333}
334
34f43927
PZ
335static inline u64 perf_event_clock(struct perf_event *event)
336{
337 return event->clock();
338}
339
e5d1367f
SE
340static inline struct perf_cpu_context *
341__get_cpu_context(struct perf_event_context *ctx)
342{
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344}
345
facc4307
PZ
346static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348{
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352}
353
354static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356{
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360}
361
e5d1367f
SE
362#ifdef CONFIG_CGROUP_PERF
363
e5d1367f
SE
364static inline bool
365perf_cgroup_match(struct perf_event *event)
366{
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
ef824fa1
TH
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
e5d1367f
SE
386}
387
e5d1367f
SE
388static inline void perf_detach_cgroup(struct perf_event *event)
389{
4e2ba650 390 css_put(&event->cgrp->css);
e5d1367f
SE
391 event->cgrp = NULL;
392}
393
394static inline int is_cgroup_event(struct perf_event *event)
395{
396 return event->cgrp != NULL;
397}
398
399static inline u64 perf_cgroup_event_time(struct perf_event *event)
400{
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405}
406
407static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408{
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418}
419
420static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421{
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425}
426
427static inline void update_cgrp_time_from_event(struct perf_event *event)
428{
3f7cce3c
SE
429 struct perf_cgroup *cgrp;
430
e5d1367f 431 /*
3f7cce3c
SE
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
e5d1367f 434 */
3f7cce3c 435 if (!is_cgroup_event(event))
e5d1367f
SE
436 return;
437
3f7cce3c
SE
438 cgrp = perf_cgroup_from_task(current);
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
e5d1367f
SE
444}
445
446static inline void
3f7cce3c
SE
447perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
e5d1367f
SE
449{
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
3f7cce3c
SE
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
459 return;
460
461 cgrp = perf_cgroup_from_task(task);
462 info = this_cpu_ptr(cgrp->info);
3f7cce3c 463 info->timestamp = ctx->timestamp;
e5d1367f
SE
464}
465
466#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469/*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
18ab2cd3 475static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
476{
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
492 rcu_read_lock();
493
494 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 495 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
496 if (cpuctx->unique_pmu != pmu)
497 continue; /* ensure we process each cpuctx once */
e5d1367f 498
e5d1367f
SE
499 /*
500 * perf_cgroup_events says at least one
501 * context on this CPU has cgroup events.
502 *
503 * ctx->nr_cgroups reports the number of cgroup
504 * events for a context.
505 */
506 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
507 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
509
510 if (mode & PERF_CGROUP_SWOUT) {
511 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 /*
513 * must not be done before ctxswout due
514 * to event_filter_match() in event_sched_out()
515 */
516 cpuctx->cgrp = NULL;
517 }
518
519 if (mode & PERF_CGROUP_SWIN) {
e566b76e 520 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
521 /*
522 * set cgrp before ctxsw in to allow
523 * event_filter_match() to not have to pass
524 * task around
e5d1367f
SE
525 */
526 cpuctx->cgrp = perf_cgroup_from_task(task);
527 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 }
facc4307
PZ
529 perf_pmu_enable(cpuctx->ctx.pmu);
530 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 531 }
e5d1367f
SE
532 }
533
534 rcu_read_unlock();
535
536 local_irq_restore(flags);
537}
538
a8d757ef
SE
539static inline void perf_cgroup_sched_out(struct task_struct *task,
540 struct task_struct *next)
e5d1367f 541{
a8d757ef
SE
542 struct perf_cgroup *cgrp1;
543 struct perf_cgroup *cgrp2 = NULL;
544
545 /*
546 * we come here when we know perf_cgroup_events > 0
547 */
548 cgrp1 = perf_cgroup_from_task(task);
549
550 /*
551 * next is NULL when called from perf_event_enable_on_exec()
552 * that will systematically cause a cgroup_switch()
553 */
554 if (next)
555 cgrp2 = perf_cgroup_from_task(next);
556
557 /*
558 * only schedule out current cgroup events if we know
559 * that we are switching to a different cgroup. Otherwise,
560 * do no touch the cgroup events.
561 */
562 if (cgrp1 != cgrp2)
563 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
564}
565
a8d757ef
SE
566static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 struct task_struct *task)
e5d1367f 568{
a8d757ef
SE
569 struct perf_cgroup *cgrp1;
570 struct perf_cgroup *cgrp2 = NULL;
571
572 /*
573 * we come here when we know perf_cgroup_events > 0
574 */
575 cgrp1 = perf_cgroup_from_task(task);
576
577 /* prev can never be NULL */
578 cgrp2 = perf_cgroup_from_task(prev);
579
580 /*
581 * only need to schedule in cgroup events if we are changing
582 * cgroup during ctxsw. Cgroup events were not scheduled
583 * out of ctxsw out if that was not the case.
584 */
585 if (cgrp1 != cgrp2)
586 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
587}
588
589static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 struct perf_event_attr *attr,
591 struct perf_event *group_leader)
592{
593 struct perf_cgroup *cgrp;
594 struct cgroup_subsys_state *css;
2903ff01
AV
595 struct fd f = fdget(fd);
596 int ret = 0;
e5d1367f 597
2903ff01 598 if (!f.file)
e5d1367f
SE
599 return -EBADF;
600
b583043e 601 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 602 &perf_event_cgrp_subsys);
3db272c0
LZ
603 if (IS_ERR(css)) {
604 ret = PTR_ERR(css);
605 goto out;
606 }
e5d1367f
SE
607
608 cgrp = container_of(css, struct perf_cgroup, css);
609 event->cgrp = cgrp;
610
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
e5d1367f 619 }
3db272c0 620out:
2903ff01 621 fdput(f);
e5d1367f
SE
622 return ret;
623}
624
625static inline void
626perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627{
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631}
632
633static inline void
634perf_cgroup_defer_enabled(struct perf_event *event)
635{
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644}
645
646static inline void
647perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649{
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665}
666#else /* !CONFIG_CGROUP_PERF */
667
668static inline bool
669perf_cgroup_match(struct perf_event *event)
670{
671 return true;
672}
673
674static inline void perf_detach_cgroup(struct perf_event *event)
675{}
676
677static inline int is_cgroup_event(struct perf_event *event)
678{
679 return 0;
680}
681
682static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683{
684 return 0;
685}
686
687static inline void update_cgrp_time_from_event(struct perf_event *event)
688{
689}
690
691static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692{
693}
694
a8d757ef
SE
695static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
e5d1367f
SE
697{
698}
699
a8d757ef
SE
700static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
e5d1367f
SE
702{
703}
704
705static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708{
709 return -EINVAL;
710}
711
712static inline void
3f7cce3c
SE
713perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
e5d1367f
SE
715{
716}
717
718void
719perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720{
721}
722
723static inline void
724perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725{
726}
727
728static inline u64 perf_cgroup_event_time(struct perf_event *event)
729{
730 return 0;
731}
732
733static inline void
734perf_cgroup_defer_enabled(struct perf_event *event)
735{
736}
737
738static inline void
739perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741{
742}
743#endif
744
9e630205
SE
745/*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749#define PERF_CPU_HRTIMER (1000 / HZ)
750/*
751 * function must be called with interrupts disbled
752 */
272325c4 753static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
754{
755 struct perf_cpu_context *cpuctx;
9e630205
SE
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
761 rotations = perf_rotate_context(cpuctx);
762
4cfafd30
PZ
763 raw_spin_lock(&cpuctx->hrtimer_lock);
764 if (rotations)
9e630205 765 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
766 else
767 cpuctx->hrtimer_active = 0;
768 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 769
4cfafd30 770 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
771}
772
272325c4 773static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 774{
272325c4 775 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 776 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 777 u64 interval;
9e630205
SE
778
779 /* no multiplexing needed for SW PMU */
780 if (pmu->task_ctx_nr == perf_sw_context)
781 return;
782
62b85639
SE
783 /*
784 * check default is sane, if not set then force to
785 * default interval (1/tick)
786 */
272325c4
PZ
787 interval = pmu->hrtimer_interval_ms;
788 if (interval < 1)
789 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 790
272325c4 791 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 792
4cfafd30
PZ
793 raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 795 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
796}
797
272325c4 798static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 799{
272325c4 800 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 801 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 802 unsigned long flags;
9e630205
SE
803
804 /* not for SW PMU */
805 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 806 return 0;
9e630205 807
4cfafd30
PZ
808 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 if (!cpuctx->hrtimer_active) {
810 cpuctx->hrtimer_active = 1;
811 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 }
814 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 815
272325c4 816 return 0;
9e630205
SE
817}
818
33696fc0 819void perf_pmu_disable(struct pmu *pmu)
9e35ad38 820{
33696fc0
PZ
821 int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 if (!(*count)++)
823 pmu->pmu_disable(pmu);
9e35ad38 824}
9e35ad38 825
33696fc0 826void perf_pmu_enable(struct pmu *pmu)
9e35ad38 827{
33696fc0
PZ
828 int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 if (!--(*count))
830 pmu->pmu_enable(pmu);
9e35ad38 831}
9e35ad38 832
2fde4f94 833static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
834
835/*
2fde4f94
MR
836 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837 * perf_event_task_tick() are fully serialized because they're strictly cpu
838 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 840 */
2fde4f94 841static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 842{
2fde4f94 843 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 844
e9d2b064 845 WARN_ON(!irqs_disabled());
b5ab4cd5 846
2fde4f94
MR
847 WARN_ON(!list_empty(&ctx->active_ctx_list));
848
849 list_add(&ctx->active_ctx_list, head);
850}
851
852static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853{
854 WARN_ON(!irqs_disabled());
855
856 WARN_ON(list_empty(&ctx->active_ctx_list));
857
858 list_del_init(&ctx->active_ctx_list);
9e35ad38 859}
9e35ad38 860
cdd6c482 861static void get_ctx(struct perf_event_context *ctx)
a63eaf34 862{
e5289d4a 863 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
864}
865
4af57ef2
YZ
866static void free_ctx(struct rcu_head *head)
867{
868 struct perf_event_context *ctx;
869
870 ctx = container_of(head, struct perf_event_context, rcu_head);
871 kfree(ctx->task_ctx_data);
872 kfree(ctx);
873}
874
cdd6c482 875static void put_ctx(struct perf_event_context *ctx)
a63eaf34 876{
564c2b21
PM
877 if (atomic_dec_and_test(&ctx->refcount)) {
878 if (ctx->parent_ctx)
879 put_ctx(ctx->parent_ctx);
c93f7669
PM
880 if (ctx->task)
881 put_task_struct(ctx->task);
4af57ef2 882 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 883 }
a63eaf34
PM
884}
885
f63a8daa
PZ
886/*
887 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888 * perf_pmu_migrate_context() we need some magic.
889 *
890 * Those places that change perf_event::ctx will hold both
891 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892 *
8b10c5e2
PZ
893 * Lock ordering is by mutex address. There are two other sites where
894 * perf_event_context::mutex nests and those are:
895 *
896 * - perf_event_exit_task_context() [ child , 0 ]
897 * __perf_event_exit_task()
898 * sync_child_event()
899 * put_event() [ parent, 1 ]
900 *
901 * - perf_event_init_context() [ parent, 0 ]
902 * inherit_task_group()
903 * inherit_group()
904 * inherit_event()
905 * perf_event_alloc()
906 * perf_init_event()
907 * perf_try_init_event() [ child , 1 ]
908 *
909 * While it appears there is an obvious deadlock here -- the parent and child
910 * nesting levels are inverted between the two. This is in fact safe because
911 * life-time rules separate them. That is an exiting task cannot fork, and a
912 * spawning task cannot (yet) exit.
913 *
914 * But remember that that these are parent<->child context relations, and
915 * migration does not affect children, therefore these two orderings should not
916 * interact.
f63a8daa
PZ
917 *
918 * The change in perf_event::ctx does not affect children (as claimed above)
919 * because the sys_perf_event_open() case will install a new event and break
920 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921 * concerned with cpuctx and that doesn't have children.
922 *
923 * The places that change perf_event::ctx will issue:
924 *
925 * perf_remove_from_context();
926 * synchronize_rcu();
927 * perf_install_in_context();
928 *
929 * to affect the change. The remove_from_context() + synchronize_rcu() should
930 * quiesce the event, after which we can install it in the new location. This
931 * means that only external vectors (perf_fops, prctl) can perturb the event
932 * while in transit. Therefore all such accessors should also acquire
933 * perf_event_context::mutex to serialize against this.
934 *
935 * However; because event->ctx can change while we're waiting to acquire
936 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937 * function.
938 *
939 * Lock order:
940 * task_struct::perf_event_mutex
941 * perf_event_context::mutex
942 * perf_event_context::lock
943 * perf_event::child_mutex;
944 * perf_event::mmap_mutex
945 * mmap_sem
946 */
a83fe28e
PZ
947static struct perf_event_context *
948perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
949{
950 struct perf_event_context *ctx;
951
952again:
953 rcu_read_lock();
954 ctx = ACCESS_ONCE(event->ctx);
955 if (!atomic_inc_not_zero(&ctx->refcount)) {
956 rcu_read_unlock();
957 goto again;
958 }
959 rcu_read_unlock();
960
a83fe28e 961 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
962 if (event->ctx != ctx) {
963 mutex_unlock(&ctx->mutex);
964 put_ctx(ctx);
965 goto again;
966 }
967
968 return ctx;
969}
970
a83fe28e
PZ
971static inline struct perf_event_context *
972perf_event_ctx_lock(struct perf_event *event)
973{
974 return perf_event_ctx_lock_nested(event, 0);
975}
976
f63a8daa
PZ
977static void perf_event_ctx_unlock(struct perf_event *event,
978 struct perf_event_context *ctx)
979{
980 mutex_unlock(&ctx->mutex);
981 put_ctx(ctx);
982}
983
211de6eb
PZ
984/*
985 * This must be done under the ctx->lock, such as to serialize against
986 * context_equiv(), therefore we cannot call put_ctx() since that might end up
987 * calling scheduler related locks and ctx->lock nests inside those.
988 */
989static __must_check struct perf_event_context *
990unclone_ctx(struct perf_event_context *ctx)
71a851b4 991{
211de6eb
PZ
992 struct perf_event_context *parent_ctx = ctx->parent_ctx;
993
994 lockdep_assert_held(&ctx->lock);
995
996 if (parent_ctx)
71a851b4 997 ctx->parent_ctx = NULL;
5a3126d4 998 ctx->generation++;
211de6eb
PZ
999
1000 return parent_ctx;
71a851b4
PZ
1001}
1002
6844c09d
ACM
1003static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004{
1005 /*
1006 * only top level events have the pid namespace they were created in
1007 */
1008 if (event->parent)
1009 event = event->parent;
1010
1011 return task_tgid_nr_ns(p, event->ns);
1012}
1013
1014static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015{
1016 /*
1017 * only top level events have the pid namespace they were created in
1018 */
1019 if (event->parent)
1020 event = event->parent;
1021
1022 return task_pid_nr_ns(p, event->ns);
1023}
1024
7f453c24 1025/*
cdd6c482 1026 * If we inherit events we want to return the parent event id
7f453c24
PZ
1027 * to userspace.
1028 */
cdd6c482 1029static u64 primary_event_id(struct perf_event *event)
7f453c24 1030{
cdd6c482 1031 u64 id = event->id;
7f453c24 1032
cdd6c482
IM
1033 if (event->parent)
1034 id = event->parent->id;
7f453c24
PZ
1035
1036 return id;
1037}
1038
25346b93 1039/*
cdd6c482 1040 * Get the perf_event_context for a task and lock it.
25346b93
PM
1041 * This has to cope with with the fact that until it is locked,
1042 * the context could get moved to another task.
1043 */
cdd6c482 1044static struct perf_event_context *
8dc85d54 1045perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1046{
cdd6c482 1047 struct perf_event_context *ctx;
25346b93 1048
9ed6060d 1049retry:
058ebd0e
PZ
1050 /*
1051 * One of the few rules of preemptible RCU is that one cannot do
1052 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1053 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1054 * rcu_read_unlock_special().
1055 *
1056 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1057 * side critical section has interrupts disabled.
058ebd0e 1058 */
2fd59077 1059 local_irq_save(*flags);
058ebd0e 1060 rcu_read_lock();
8dc85d54 1061 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1062 if (ctx) {
1063 /*
1064 * If this context is a clone of another, it might
1065 * get swapped for another underneath us by
cdd6c482 1066 * perf_event_task_sched_out, though the
25346b93
PM
1067 * rcu_read_lock() protects us from any context
1068 * getting freed. Lock the context and check if it
1069 * got swapped before we could get the lock, and retry
1070 * if so. If we locked the right context, then it
1071 * can't get swapped on us any more.
1072 */
2fd59077 1073 raw_spin_lock(&ctx->lock);
8dc85d54 1074 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1075 raw_spin_unlock(&ctx->lock);
058ebd0e 1076 rcu_read_unlock();
2fd59077 1077 local_irq_restore(*flags);
25346b93
PM
1078 goto retry;
1079 }
b49a9e7e
PZ
1080
1081 if (!atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1082 raw_spin_unlock(&ctx->lock);
b49a9e7e
PZ
1083 ctx = NULL;
1084 }
25346b93
PM
1085 }
1086 rcu_read_unlock();
2fd59077
PM
1087 if (!ctx)
1088 local_irq_restore(*flags);
25346b93
PM
1089 return ctx;
1090}
1091
1092/*
1093 * Get the context for a task and increment its pin_count so it
1094 * can't get swapped to another task. This also increments its
1095 * reference count so that the context can't get freed.
1096 */
8dc85d54
PZ
1097static struct perf_event_context *
1098perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1099{
cdd6c482 1100 struct perf_event_context *ctx;
25346b93
PM
1101 unsigned long flags;
1102
8dc85d54 1103 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1104 if (ctx) {
1105 ++ctx->pin_count;
e625cce1 1106 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1107 }
1108 return ctx;
1109}
1110
cdd6c482 1111static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1112{
1113 unsigned long flags;
1114
e625cce1 1115 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1116 --ctx->pin_count;
e625cce1 1117 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1118}
1119
f67218c3
PZ
1120/*
1121 * Update the record of the current time in a context.
1122 */
1123static void update_context_time(struct perf_event_context *ctx)
1124{
1125 u64 now = perf_clock();
1126
1127 ctx->time += now - ctx->timestamp;
1128 ctx->timestamp = now;
1129}
1130
4158755d
SE
1131static u64 perf_event_time(struct perf_event *event)
1132{
1133 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1134
1135 if (is_cgroup_event(event))
1136 return perf_cgroup_event_time(event);
1137
4158755d
SE
1138 return ctx ? ctx->time : 0;
1139}
1140
f67218c3
PZ
1141/*
1142 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1143 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1144 */
1145static void update_event_times(struct perf_event *event)
1146{
1147 struct perf_event_context *ctx = event->ctx;
1148 u64 run_end;
1149
1150 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1151 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1152 return;
e5d1367f
SE
1153 /*
1154 * in cgroup mode, time_enabled represents
1155 * the time the event was enabled AND active
1156 * tasks were in the monitored cgroup. This is
1157 * independent of the activity of the context as
1158 * there may be a mix of cgroup and non-cgroup events.
1159 *
1160 * That is why we treat cgroup events differently
1161 * here.
1162 */
1163 if (is_cgroup_event(event))
46cd6a7f 1164 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1165 else if (ctx->is_active)
1166 run_end = ctx->time;
acd1d7c1
PZ
1167 else
1168 run_end = event->tstamp_stopped;
1169
1170 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1171
1172 if (event->state == PERF_EVENT_STATE_INACTIVE)
1173 run_end = event->tstamp_stopped;
1174 else
4158755d 1175 run_end = perf_event_time(event);
f67218c3
PZ
1176
1177 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1178
f67218c3
PZ
1179}
1180
96c21a46
PZ
1181/*
1182 * Update total_time_enabled and total_time_running for all events in a group.
1183 */
1184static void update_group_times(struct perf_event *leader)
1185{
1186 struct perf_event *event;
1187
1188 update_event_times(leader);
1189 list_for_each_entry(event, &leader->sibling_list, group_entry)
1190 update_event_times(event);
1191}
1192
889ff015
FW
1193static struct list_head *
1194ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1195{
1196 if (event->attr.pinned)
1197 return &ctx->pinned_groups;
1198 else
1199 return &ctx->flexible_groups;
1200}
1201
fccc714b 1202/*
cdd6c482 1203 * Add a event from the lists for its context.
fccc714b
PZ
1204 * Must be called with ctx->mutex and ctx->lock held.
1205 */
04289bb9 1206static void
cdd6c482 1207list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1208{
8a49542c
PZ
1209 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1210 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1211
1212 /*
8a49542c
PZ
1213 * If we're a stand alone event or group leader, we go to the context
1214 * list, group events are kept attached to the group so that
1215 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1216 */
8a49542c 1217 if (event->group_leader == event) {
889ff015
FW
1218 struct list_head *list;
1219
d6f962b5
FW
1220 if (is_software_event(event))
1221 event->group_flags |= PERF_GROUP_SOFTWARE;
1222
889ff015
FW
1223 list = ctx_group_list(event, ctx);
1224 list_add_tail(&event->group_entry, list);
5c148194 1225 }
592903cd 1226
08309379 1227 if (is_cgroup_event(event))
e5d1367f 1228 ctx->nr_cgroups++;
e5d1367f 1229
cdd6c482
IM
1230 list_add_rcu(&event->event_entry, &ctx->event_list);
1231 ctx->nr_events++;
1232 if (event->attr.inherit_stat)
bfbd3381 1233 ctx->nr_stat++;
5a3126d4
PZ
1234
1235 ctx->generation++;
04289bb9
IM
1236}
1237
0231bb53
JO
1238/*
1239 * Initialize event state based on the perf_event_attr::disabled.
1240 */
1241static inline void perf_event__state_init(struct perf_event *event)
1242{
1243 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1244 PERF_EVENT_STATE_INACTIVE;
1245}
1246
a723968c 1247static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1248{
1249 int entry = sizeof(u64); /* value */
1250 int size = 0;
1251 int nr = 1;
1252
1253 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1254 size += sizeof(u64);
1255
1256 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1257 size += sizeof(u64);
1258
1259 if (event->attr.read_format & PERF_FORMAT_ID)
1260 entry += sizeof(u64);
1261
1262 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1263 nr += nr_siblings;
c320c7b7
ACM
1264 size += sizeof(u64);
1265 }
1266
1267 size += entry * nr;
1268 event->read_size = size;
1269}
1270
a723968c 1271static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1272{
1273 struct perf_sample_data *data;
c320c7b7
ACM
1274 u16 size = 0;
1275
c320c7b7
ACM
1276 if (sample_type & PERF_SAMPLE_IP)
1277 size += sizeof(data->ip);
1278
6844c09d
ACM
1279 if (sample_type & PERF_SAMPLE_ADDR)
1280 size += sizeof(data->addr);
1281
1282 if (sample_type & PERF_SAMPLE_PERIOD)
1283 size += sizeof(data->period);
1284
c3feedf2
AK
1285 if (sample_type & PERF_SAMPLE_WEIGHT)
1286 size += sizeof(data->weight);
1287
6844c09d
ACM
1288 if (sample_type & PERF_SAMPLE_READ)
1289 size += event->read_size;
1290
d6be9ad6
SE
1291 if (sample_type & PERF_SAMPLE_DATA_SRC)
1292 size += sizeof(data->data_src.val);
1293
fdfbbd07
AK
1294 if (sample_type & PERF_SAMPLE_TRANSACTION)
1295 size += sizeof(data->txn);
1296
6844c09d
ACM
1297 event->header_size = size;
1298}
1299
a723968c
PZ
1300/*
1301 * Called at perf_event creation and when events are attached/detached from a
1302 * group.
1303 */
1304static void perf_event__header_size(struct perf_event *event)
1305{
1306 __perf_event_read_size(event,
1307 event->group_leader->nr_siblings);
1308 __perf_event_header_size(event, event->attr.sample_type);
1309}
1310
6844c09d
ACM
1311static void perf_event__id_header_size(struct perf_event *event)
1312{
1313 struct perf_sample_data *data;
1314 u64 sample_type = event->attr.sample_type;
1315 u16 size = 0;
1316
c320c7b7
ACM
1317 if (sample_type & PERF_SAMPLE_TID)
1318 size += sizeof(data->tid_entry);
1319
1320 if (sample_type & PERF_SAMPLE_TIME)
1321 size += sizeof(data->time);
1322
ff3d527c
AH
1323 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1324 size += sizeof(data->id);
1325
c320c7b7
ACM
1326 if (sample_type & PERF_SAMPLE_ID)
1327 size += sizeof(data->id);
1328
1329 if (sample_type & PERF_SAMPLE_STREAM_ID)
1330 size += sizeof(data->stream_id);
1331
1332 if (sample_type & PERF_SAMPLE_CPU)
1333 size += sizeof(data->cpu_entry);
1334
6844c09d 1335 event->id_header_size = size;
c320c7b7
ACM
1336}
1337
a723968c
PZ
1338static bool perf_event_validate_size(struct perf_event *event)
1339{
1340 /*
1341 * The values computed here will be over-written when we actually
1342 * attach the event.
1343 */
1344 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1345 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1346 perf_event__id_header_size(event);
1347
1348 /*
1349 * Sum the lot; should not exceed the 64k limit we have on records.
1350 * Conservative limit to allow for callchains and other variable fields.
1351 */
1352 if (event->read_size + event->header_size +
1353 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1354 return false;
1355
1356 return true;
1357}
1358
8a49542c
PZ
1359static void perf_group_attach(struct perf_event *event)
1360{
c320c7b7 1361 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1362
74c3337c
PZ
1363 /*
1364 * We can have double attach due to group movement in perf_event_open.
1365 */
1366 if (event->attach_state & PERF_ATTACH_GROUP)
1367 return;
1368
8a49542c
PZ
1369 event->attach_state |= PERF_ATTACH_GROUP;
1370
1371 if (group_leader == event)
1372 return;
1373
652884fe
PZ
1374 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1375
8a49542c
PZ
1376 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1377 !is_software_event(event))
1378 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1379
1380 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1381 group_leader->nr_siblings++;
c320c7b7
ACM
1382
1383 perf_event__header_size(group_leader);
1384
1385 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1386 perf_event__header_size(pos);
8a49542c
PZ
1387}
1388
a63eaf34 1389/*
cdd6c482 1390 * Remove a event from the lists for its context.
fccc714b 1391 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1392 */
04289bb9 1393static void
cdd6c482 1394list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1395{
68cacd29 1396 struct perf_cpu_context *cpuctx;
652884fe
PZ
1397
1398 WARN_ON_ONCE(event->ctx != ctx);
1399 lockdep_assert_held(&ctx->lock);
1400
8a49542c
PZ
1401 /*
1402 * We can have double detach due to exit/hot-unplug + close.
1403 */
1404 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1405 return;
8a49542c
PZ
1406
1407 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1408
68cacd29 1409 if (is_cgroup_event(event)) {
e5d1367f 1410 ctx->nr_cgroups--;
68cacd29
SE
1411 cpuctx = __get_cpu_context(ctx);
1412 /*
1413 * if there are no more cgroup events
1414 * then cler cgrp to avoid stale pointer
1415 * in update_cgrp_time_from_cpuctx()
1416 */
1417 if (!ctx->nr_cgroups)
1418 cpuctx->cgrp = NULL;
1419 }
e5d1367f 1420
cdd6c482
IM
1421 ctx->nr_events--;
1422 if (event->attr.inherit_stat)
bfbd3381 1423 ctx->nr_stat--;
8bc20959 1424
cdd6c482 1425 list_del_rcu(&event->event_entry);
04289bb9 1426
8a49542c
PZ
1427 if (event->group_leader == event)
1428 list_del_init(&event->group_entry);
5c148194 1429
96c21a46 1430 update_group_times(event);
b2e74a26
SE
1431
1432 /*
1433 * If event was in error state, then keep it
1434 * that way, otherwise bogus counts will be
1435 * returned on read(). The only way to get out
1436 * of error state is by explicit re-enabling
1437 * of the event
1438 */
1439 if (event->state > PERF_EVENT_STATE_OFF)
1440 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1441
1442 ctx->generation++;
050735b0
PZ
1443}
1444
8a49542c 1445static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1446{
1447 struct perf_event *sibling, *tmp;
8a49542c
PZ
1448 struct list_head *list = NULL;
1449
1450 /*
1451 * We can have double detach due to exit/hot-unplug + close.
1452 */
1453 if (!(event->attach_state & PERF_ATTACH_GROUP))
1454 return;
1455
1456 event->attach_state &= ~PERF_ATTACH_GROUP;
1457
1458 /*
1459 * If this is a sibling, remove it from its group.
1460 */
1461 if (event->group_leader != event) {
1462 list_del_init(&event->group_entry);
1463 event->group_leader->nr_siblings--;
c320c7b7 1464 goto out;
8a49542c
PZ
1465 }
1466
1467 if (!list_empty(&event->group_entry))
1468 list = &event->group_entry;
2e2af50b 1469
04289bb9 1470 /*
cdd6c482
IM
1471 * If this was a group event with sibling events then
1472 * upgrade the siblings to singleton events by adding them
8a49542c 1473 * to whatever list we are on.
04289bb9 1474 */
cdd6c482 1475 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1476 if (list)
1477 list_move_tail(&sibling->group_entry, list);
04289bb9 1478 sibling->group_leader = sibling;
d6f962b5
FW
1479
1480 /* Inherit group flags from the previous leader */
1481 sibling->group_flags = event->group_flags;
652884fe
PZ
1482
1483 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1484 }
c320c7b7
ACM
1485
1486out:
1487 perf_event__header_size(event->group_leader);
1488
1489 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1490 perf_event__header_size(tmp);
04289bb9
IM
1491}
1492
fadfe7be
JO
1493/*
1494 * User event without the task.
1495 */
1496static bool is_orphaned_event(struct perf_event *event)
1497{
1498 return event && !is_kernel_event(event) && !event->owner;
1499}
1500
1501/*
1502 * Event has a parent but parent's task finished and it's
1503 * alive only because of children holding refference.
1504 */
1505static bool is_orphaned_child(struct perf_event *event)
1506{
1507 return is_orphaned_event(event->parent);
1508}
1509
1510static void orphans_remove_work(struct work_struct *work);
1511
1512static void schedule_orphans_remove(struct perf_event_context *ctx)
1513{
1514 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1515 return;
1516
1517 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1518 get_ctx(ctx);
1519 ctx->orphans_remove_sched = true;
1520 }
1521}
1522
1523static int __init perf_workqueue_init(void)
1524{
1525 perf_wq = create_singlethread_workqueue("perf");
1526 WARN(!perf_wq, "failed to create perf workqueue\n");
1527 return perf_wq ? 0 : -1;
1528}
1529
1530core_initcall(perf_workqueue_init);
1531
66eb579e
MR
1532static inline int pmu_filter_match(struct perf_event *event)
1533{
1534 struct pmu *pmu = event->pmu;
1535 return pmu->filter_match ? pmu->filter_match(event) : 1;
1536}
1537
fa66f07a
SE
1538static inline int
1539event_filter_match(struct perf_event *event)
1540{
e5d1367f 1541 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1542 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1543}
1544
9ffcfa6f
SE
1545static void
1546event_sched_out(struct perf_event *event,
3b6f9e5c 1547 struct perf_cpu_context *cpuctx,
cdd6c482 1548 struct perf_event_context *ctx)
3b6f9e5c 1549{
4158755d 1550 u64 tstamp = perf_event_time(event);
fa66f07a 1551 u64 delta;
652884fe
PZ
1552
1553 WARN_ON_ONCE(event->ctx != ctx);
1554 lockdep_assert_held(&ctx->lock);
1555
fa66f07a
SE
1556 /*
1557 * An event which could not be activated because of
1558 * filter mismatch still needs to have its timings
1559 * maintained, otherwise bogus information is return
1560 * via read() for time_enabled, time_running:
1561 */
1562 if (event->state == PERF_EVENT_STATE_INACTIVE
1563 && !event_filter_match(event)) {
e5d1367f 1564 delta = tstamp - event->tstamp_stopped;
fa66f07a 1565 event->tstamp_running += delta;
4158755d 1566 event->tstamp_stopped = tstamp;
fa66f07a
SE
1567 }
1568
cdd6c482 1569 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1570 return;
3b6f9e5c 1571
44377277
AS
1572 perf_pmu_disable(event->pmu);
1573
cdd6c482
IM
1574 event->state = PERF_EVENT_STATE_INACTIVE;
1575 if (event->pending_disable) {
1576 event->pending_disable = 0;
1577 event->state = PERF_EVENT_STATE_OFF;
970892a9 1578 }
4158755d 1579 event->tstamp_stopped = tstamp;
a4eaf7f1 1580 event->pmu->del(event, 0);
cdd6c482 1581 event->oncpu = -1;
3b6f9e5c 1582
cdd6c482 1583 if (!is_software_event(event))
3b6f9e5c 1584 cpuctx->active_oncpu--;
2fde4f94
MR
1585 if (!--ctx->nr_active)
1586 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1587 if (event->attr.freq && event->attr.sample_freq)
1588 ctx->nr_freq--;
cdd6c482 1589 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1590 cpuctx->exclusive = 0;
44377277 1591
fadfe7be
JO
1592 if (is_orphaned_child(event))
1593 schedule_orphans_remove(ctx);
1594
44377277 1595 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1596}
1597
d859e29f 1598static void
cdd6c482 1599group_sched_out(struct perf_event *group_event,
d859e29f 1600 struct perf_cpu_context *cpuctx,
cdd6c482 1601 struct perf_event_context *ctx)
d859e29f 1602{
cdd6c482 1603 struct perf_event *event;
fa66f07a 1604 int state = group_event->state;
d859e29f 1605
cdd6c482 1606 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1607
1608 /*
1609 * Schedule out siblings (if any):
1610 */
cdd6c482
IM
1611 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1612 event_sched_out(event, cpuctx, ctx);
d859e29f 1613
fa66f07a 1614 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1615 cpuctx->exclusive = 0;
1616}
1617
46ce0fe9
PZ
1618struct remove_event {
1619 struct perf_event *event;
1620 bool detach_group;
1621};
1622
0793a61d 1623/*
cdd6c482 1624 * Cross CPU call to remove a performance event
0793a61d 1625 *
cdd6c482 1626 * We disable the event on the hardware level first. After that we
0793a61d
TG
1627 * remove it from the context list.
1628 */
fe4b04fa 1629static int __perf_remove_from_context(void *info)
0793a61d 1630{
46ce0fe9
PZ
1631 struct remove_event *re = info;
1632 struct perf_event *event = re->event;
cdd6c482 1633 struct perf_event_context *ctx = event->ctx;
108b02cf 1634 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1635
e625cce1 1636 raw_spin_lock(&ctx->lock);
cdd6c482 1637 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1638 if (re->detach_group)
1639 perf_group_detach(event);
cdd6c482 1640 list_del_event(event, ctx);
64ce3126
PZ
1641 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1642 ctx->is_active = 0;
1643 cpuctx->task_ctx = NULL;
1644 }
e625cce1 1645 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1646
1647 return 0;
0793a61d
TG
1648}
1649
1650
1651/*
cdd6c482 1652 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1653 *
cdd6c482 1654 * CPU events are removed with a smp call. For task events we only
0793a61d 1655 * call when the task is on a CPU.
c93f7669 1656 *
cdd6c482
IM
1657 * If event->ctx is a cloned context, callers must make sure that
1658 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1659 * remains valid. This is OK when called from perf_release since
1660 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1661 * When called from perf_event_exit_task, it's OK because the
c93f7669 1662 * context has been detached from its task.
0793a61d 1663 */
46ce0fe9 1664static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1665{
cdd6c482 1666 struct perf_event_context *ctx = event->ctx;
0793a61d 1667 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1668 struct remove_event re = {
1669 .event = event,
1670 .detach_group = detach_group,
1671 };
0793a61d 1672
fe4b04fa
PZ
1673 lockdep_assert_held(&ctx->mutex);
1674
0793a61d
TG
1675 if (!task) {
1676 /*
226424ee
MR
1677 * Per cpu events are removed via an smp call. The removal can
1678 * fail if the CPU is currently offline, but in that case we
1679 * already called __perf_remove_from_context from
1680 * perf_event_exit_cpu.
0793a61d 1681 */
46ce0fe9 1682 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1683 return;
1684 }
1685
1686retry:
46ce0fe9 1687 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1688 return;
0793a61d 1689
e625cce1 1690 raw_spin_lock_irq(&ctx->lock);
0793a61d 1691 /*
fe4b04fa
PZ
1692 * If we failed to find a running task, but find the context active now
1693 * that we've acquired the ctx->lock, retry.
0793a61d 1694 */
fe4b04fa 1695 if (ctx->is_active) {
e625cce1 1696 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1697 /*
1698 * Reload the task pointer, it might have been changed by
1699 * a concurrent perf_event_context_sched_out().
1700 */
1701 task = ctx->task;
0793a61d
TG
1702 goto retry;
1703 }
1704
1705 /*
fe4b04fa
PZ
1706 * Since the task isn't running, its safe to remove the event, us
1707 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1708 */
46ce0fe9
PZ
1709 if (detach_group)
1710 perf_group_detach(event);
fe4b04fa 1711 list_del_event(event, ctx);
e625cce1 1712 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1713}
1714
d859e29f 1715/*
cdd6c482 1716 * Cross CPU call to disable a performance event
d859e29f 1717 */
500ad2d8 1718int __perf_event_disable(void *info)
d859e29f 1719{
cdd6c482 1720 struct perf_event *event = info;
cdd6c482 1721 struct perf_event_context *ctx = event->ctx;
108b02cf 1722 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1723
1724 /*
cdd6c482
IM
1725 * If this is a per-task event, need to check whether this
1726 * event's task is the current task on this cpu.
fe4b04fa
PZ
1727 *
1728 * Can trigger due to concurrent perf_event_context_sched_out()
1729 * flipping contexts around.
d859e29f 1730 */
665c2142 1731 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1732 return -EINVAL;
d859e29f 1733
e625cce1 1734 raw_spin_lock(&ctx->lock);
d859e29f
PM
1735
1736 /*
cdd6c482 1737 * If the event is on, turn it off.
d859e29f
PM
1738 * If it is in error state, leave it in error state.
1739 */
cdd6c482 1740 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1741 update_context_time(ctx);
e5d1367f 1742 update_cgrp_time_from_event(event);
cdd6c482
IM
1743 update_group_times(event);
1744 if (event == event->group_leader)
1745 group_sched_out(event, cpuctx, ctx);
d859e29f 1746 else
cdd6c482
IM
1747 event_sched_out(event, cpuctx, ctx);
1748 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1749 }
1750
e625cce1 1751 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1752
1753 return 0;
d859e29f
PM
1754}
1755
1756/*
cdd6c482 1757 * Disable a event.
c93f7669 1758 *
cdd6c482
IM
1759 * If event->ctx is a cloned context, callers must make sure that
1760 * every task struct that event->ctx->task could possibly point to
c93f7669 1761 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1762 * perf_event_for_each_child or perf_event_for_each because they
1763 * hold the top-level event's child_mutex, so any descendant that
1764 * goes to exit will block in sync_child_event.
1765 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1766 * is the current context on this CPU and preemption is disabled,
cdd6c482 1767 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1768 */
f63a8daa 1769static void _perf_event_disable(struct perf_event *event)
d859e29f 1770{
cdd6c482 1771 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1772 struct task_struct *task = ctx->task;
1773
1774 if (!task) {
1775 /*
cdd6c482 1776 * Disable the event on the cpu that it's on
d859e29f 1777 */
fe4b04fa 1778 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1779 return;
1780 }
1781
9ed6060d 1782retry:
fe4b04fa
PZ
1783 if (!task_function_call(task, __perf_event_disable, event))
1784 return;
d859e29f 1785
e625cce1 1786 raw_spin_lock_irq(&ctx->lock);
d859e29f 1787 /*
cdd6c482 1788 * If the event is still active, we need to retry the cross-call.
d859e29f 1789 */
cdd6c482 1790 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1791 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1792 /*
1793 * Reload the task pointer, it might have been changed by
1794 * a concurrent perf_event_context_sched_out().
1795 */
1796 task = ctx->task;
d859e29f
PM
1797 goto retry;
1798 }
1799
1800 /*
1801 * Since we have the lock this context can't be scheduled
1802 * in, so we can change the state safely.
1803 */
cdd6c482
IM
1804 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1805 update_group_times(event);
1806 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1807 }
e625cce1 1808 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1809}
f63a8daa
PZ
1810
1811/*
1812 * Strictly speaking kernel users cannot create groups and therefore this
1813 * interface does not need the perf_event_ctx_lock() magic.
1814 */
1815void perf_event_disable(struct perf_event *event)
1816{
1817 struct perf_event_context *ctx;
1818
1819 ctx = perf_event_ctx_lock(event);
1820 _perf_event_disable(event);
1821 perf_event_ctx_unlock(event, ctx);
1822}
dcfce4a0 1823EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1824
e5d1367f
SE
1825static void perf_set_shadow_time(struct perf_event *event,
1826 struct perf_event_context *ctx,
1827 u64 tstamp)
1828{
1829 /*
1830 * use the correct time source for the time snapshot
1831 *
1832 * We could get by without this by leveraging the
1833 * fact that to get to this function, the caller
1834 * has most likely already called update_context_time()
1835 * and update_cgrp_time_xx() and thus both timestamp
1836 * are identical (or very close). Given that tstamp is,
1837 * already adjusted for cgroup, we could say that:
1838 * tstamp - ctx->timestamp
1839 * is equivalent to
1840 * tstamp - cgrp->timestamp.
1841 *
1842 * Then, in perf_output_read(), the calculation would
1843 * work with no changes because:
1844 * - event is guaranteed scheduled in
1845 * - no scheduled out in between
1846 * - thus the timestamp would be the same
1847 *
1848 * But this is a bit hairy.
1849 *
1850 * So instead, we have an explicit cgroup call to remain
1851 * within the time time source all along. We believe it
1852 * is cleaner and simpler to understand.
1853 */
1854 if (is_cgroup_event(event))
1855 perf_cgroup_set_shadow_time(event, tstamp);
1856 else
1857 event->shadow_ctx_time = tstamp - ctx->timestamp;
1858}
1859
4fe757dd
PZ
1860#define MAX_INTERRUPTS (~0ULL)
1861
1862static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1863static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1864
235c7fc7 1865static int
9ffcfa6f 1866event_sched_in(struct perf_event *event,
235c7fc7 1867 struct perf_cpu_context *cpuctx,
6e37738a 1868 struct perf_event_context *ctx)
235c7fc7 1869{
4158755d 1870 u64 tstamp = perf_event_time(event);
44377277 1871 int ret = 0;
4158755d 1872
63342411
PZ
1873 lockdep_assert_held(&ctx->lock);
1874
cdd6c482 1875 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1876 return 0;
1877
cdd6c482 1878 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1879 event->oncpu = smp_processor_id();
4fe757dd
PZ
1880
1881 /*
1882 * Unthrottle events, since we scheduled we might have missed several
1883 * ticks already, also for a heavily scheduling task there is little
1884 * guarantee it'll get a tick in a timely manner.
1885 */
1886 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1887 perf_log_throttle(event, 1);
1888 event->hw.interrupts = 0;
1889 }
1890
235c7fc7
IM
1891 /*
1892 * The new state must be visible before we turn it on in the hardware:
1893 */
1894 smp_wmb();
1895
44377277
AS
1896 perf_pmu_disable(event->pmu);
1897
72f669c0
SL
1898 perf_set_shadow_time(event, ctx, tstamp);
1899
ec0d7729
AS
1900 perf_log_itrace_start(event);
1901
a4eaf7f1 1902 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1903 event->state = PERF_EVENT_STATE_INACTIVE;
1904 event->oncpu = -1;
44377277
AS
1905 ret = -EAGAIN;
1906 goto out;
235c7fc7
IM
1907 }
1908
00a2916f
PZ
1909 event->tstamp_running += tstamp - event->tstamp_stopped;
1910
cdd6c482 1911 if (!is_software_event(event))
3b6f9e5c 1912 cpuctx->active_oncpu++;
2fde4f94
MR
1913 if (!ctx->nr_active++)
1914 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1915 if (event->attr.freq && event->attr.sample_freq)
1916 ctx->nr_freq++;
235c7fc7 1917
cdd6c482 1918 if (event->attr.exclusive)
3b6f9e5c
PM
1919 cpuctx->exclusive = 1;
1920
fadfe7be
JO
1921 if (is_orphaned_child(event))
1922 schedule_orphans_remove(ctx);
1923
44377277
AS
1924out:
1925 perf_pmu_enable(event->pmu);
1926
1927 return ret;
235c7fc7
IM
1928}
1929
6751b71e 1930static int
cdd6c482 1931group_sched_in(struct perf_event *group_event,
6751b71e 1932 struct perf_cpu_context *cpuctx,
6e37738a 1933 struct perf_event_context *ctx)
6751b71e 1934{
6bde9b6c 1935 struct perf_event *event, *partial_group = NULL;
4a234593 1936 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1937 u64 now = ctx->time;
1938 bool simulate = false;
6751b71e 1939
cdd6c482 1940 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1941 return 0;
1942
fbbe0701 1943 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1944
9ffcfa6f 1945 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1946 pmu->cancel_txn(pmu);
272325c4 1947 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1948 return -EAGAIN;
90151c35 1949 }
6751b71e
PM
1950
1951 /*
1952 * Schedule in siblings as one group (if any):
1953 */
cdd6c482 1954 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1955 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1956 partial_group = event;
6751b71e
PM
1957 goto group_error;
1958 }
1959 }
1960
9ffcfa6f 1961 if (!pmu->commit_txn(pmu))
6e85158c 1962 return 0;
9ffcfa6f 1963
6751b71e
PM
1964group_error:
1965 /*
1966 * Groups can be scheduled in as one unit only, so undo any
1967 * partial group before returning:
d7842da4
SE
1968 * The events up to the failed event are scheduled out normally,
1969 * tstamp_stopped will be updated.
1970 *
1971 * The failed events and the remaining siblings need to have
1972 * their timings updated as if they had gone thru event_sched_in()
1973 * and event_sched_out(). This is required to get consistent timings
1974 * across the group. This also takes care of the case where the group
1975 * could never be scheduled by ensuring tstamp_stopped is set to mark
1976 * the time the event was actually stopped, such that time delta
1977 * calculation in update_event_times() is correct.
6751b71e 1978 */
cdd6c482
IM
1979 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1980 if (event == partial_group)
d7842da4
SE
1981 simulate = true;
1982
1983 if (simulate) {
1984 event->tstamp_running += now - event->tstamp_stopped;
1985 event->tstamp_stopped = now;
1986 } else {
1987 event_sched_out(event, cpuctx, ctx);
1988 }
6751b71e 1989 }
9ffcfa6f 1990 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1991
ad5133b7 1992 pmu->cancel_txn(pmu);
90151c35 1993
272325c4 1994 perf_mux_hrtimer_restart(cpuctx);
9e630205 1995
6751b71e
PM
1996 return -EAGAIN;
1997}
1998
3b6f9e5c 1999/*
cdd6c482 2000 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2001 */
cdd6c482 2002static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2003 struct perf_cpu_context *cpuctx,
2004 int can_add_hw)
2005{
2006 /*
cdd6c482 2007 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2008 */
d6f962b5 2009 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2010 return 1;
2011 /*
2012 * If an exclusive group is already on, no other hardware
cdd6c482 2013 * events can go on.
3b6f9e5c
PM
2014 */
2015 if (cpuctx->exclusive)
2016 return 0;
2017 /*
2018 * If this group is exclusive and there are already
cdd6c482 2019 * events on the CPU, it can't go on.
3b6f9e5c 2020 */
cdd6c482 2021 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2022 return 0;
2023 /*
2024 * Otherwise, try to add it if all previous groups were able
2025 * to go on.
2026 */
2027 return can_add_hw;
2028}
2029
cdd6c482
IM
2030static void add_event_to_ctx(struct perf_event *event,
2031 struct perf_event_context *ctx)
53cfbf59 2032{
4158755d
SE
2033 u64 tstamp = perf_event_time(event);
2034
cdd6c482 2035 list_add_event(event, ctx);
8a49542c 2036 perf_group_attach(event);
4158755d
SE
2037 event->tstamp_enabled = tstamp;
2038 event->tstamp_running = tstamp;
2039 event->tstamp_stopped = tstamp;
53cfbf59
PM
2040}
2041
2c29ef0f
PZ
2042static void task_ctx_sched_out(struct perf_event_context *ctx);
2043static void
2044ctx_sched_in(struct perf_event_context *ctx,
2045 struct perf_cpu_context *cpuctx,
2046 enum event_type_t event_type,
2047 struct task_struct *task);
fe4b04fa 2048
dce5855b
PZ
2049static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2050 struct perf_event_context *ctx,
2051 struct task_struct *task)
2052{
2053 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2054 if (ctx)
2055 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2056 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2057 if (ctx)
2058 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2059}
2060
0793a61d 2061/*
cdd6c482 2062 * Cross CPU call to install and enable a performance event
682076ae
PZ
2063 *
2064 * Must be called with ctx->mutex held
0793a61d 2065 */
fe4b04fa 2066static int __perf_install_in_context(void *info)
0793a61d 2067{
cdd6c482
IM
2068 struct perf_event *event = info;
2069 struct perf_event_context *ctx = event->ctx;
108b02cf 2070 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2071 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2072 struct task_struct *task = current;
2073
b58f6b0d 2074 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2075 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2076
2077 /*
2c29ef0f 2078 * If there was an active task_ctx schedule it out.
0793a61d 2079 */
b58f6b0d 2080 if (task_ctx)
2c29ef0f 2081 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2082
2083 /*
2084 * If the context we're installing events in is not the
2085 * active task_ctx, flip them.
2086 */
2087 if (ctx->task && task_ctx != ctx) {
2088 if (task_ctx)
2089 raw_spin_unlock(&task_ctx->lock);
2090 raw_spin_lock(&ctx->lock);
2091 task_ctx = ctx;
2092 }
2093
2094 if (task_ctx) {
2095 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2096 task = task_ctx->task;
2097 }
b58f6b0d 2098
2c29ef0f 2099 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2100
4af4998b 2101 update_context_time(ctx);
e5d1367f
SE
2102 /*
2103 * update cgrp time only if current cgrp
2104 * matches event->cgrp. Must be done before
2105 * calling add_event_to_ctx()
2106 */
2107 update_cgrp_time_from_event(event);
0793a61d 2108
cdd6c482 2109 add_event_to_ctx(event, ctx);
0793a61d 2110
d859e29f 2111 /*
2c29ef0f 2112 * Schedule everything back in
d859e29f 2113 */
dce5855b 2114 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2115
2116 perf_pmu_enable(cpuctx->ctx.pmu);
2117 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2118
2119 return 0;
0793a61d
TG
2120}
2121
2122/*
cdd6c482 2123 * Attach a performance event to a context
0793a61d 2124 *
cdd6c482
IM
2125 * First we add the event to the list with the hardware enable bit
2126 * in event->hw_config cleared.
0793a61d 2127 *
cdd6c482 2128 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2129 * call to enable it in the task context. The task might have been
2130 * scheduled away, but we check this in the smp call again.
2131 */
2132static void
cdd6c482
IM
2133perf_install_in_context(struct perf_event_context *ctx,
2134 struct perf_event *event,
0793a61d
TG
2135 int cpu)
2136{
2137 struct task_struct *task = ctx->task;
2138
fe4b04fa
PZ
2139 lockdep_assert_held(&ctx->mutex);
2140
c3f00c70 2141 event->ctx = ctx;
0cda4c02
YZ
2142 if (event->cpu != -1)
2143 event->cpu = cpu;
c3f00c70 2144
0793a61d
TG
2145 if (!task) {
2146 /*
cdd6c482 2147 * Per cpu events are installed via an smp call and
af901ca1 2148 * the install is always successful.
0793a61d 2149 */
fe4b04fa 2150 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2151 return;
2152 }
2153
0793a61d 2154retry:
fe4b04fa
PZ
2155 if (!task_function_call(task, __perf_install_in_context, event))
2156 return;
0793a61d 2157
e625cce1 2158 raw_spin_lock_irq(&ctx->lock);
0793a61d 2159 /*
fe4b04fa
PZ
2160 * If we failed to find a running task, but find the context active now
2161 * that we've acquired the ctx->lock, retry.
0793a61d 2162 */
fe4b04fa 2163 if (ctx->is_active) {
e625cce1 2164 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2165 /*
2166 * Reload the task pointer, it might have been changed by
2167 * a concurrent perf_event_context_sched_out().
2168 */
2169 task = ctx->task;
0793a61d
TG
2170 goto retry;
2171 }
2172
2173 /*
fe4b04fa
PZ
2174 * Since the task isn't running, its safe to add the event, us holding
2175 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2176 */
fe4b04fa 2177 add_event_to_ctx(event, ctx);
e625cce1 2178 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2179}
2180
fa289bec 2181/*
cdd6c482 2182 * Put a event into inactive state and update time fields.
fa289bec
PM
2183 * Enabling the leader of a group effectively enables all
2184 * the group members that aren't explicitly disabled, so we
2185 * have to update their ->tstamp_enabled also.
2186 * Note: this works for group members as well as group leaders
2187 * since the non-leader members' sibling_lists will be empty.
2188 */
1d9b482e 2189static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2190{
cdd6c482 2191 struct perf_event *sub;
4158755d 2192 u64 tstamp = perf_event_time(event);
fa289bec 2193
cdd6c482 2194 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2195 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2196 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2197 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2198 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2199 }
fa289bec
PM
2200}
2201
d859e29f 2202/*
cdd6c482 2203 * Cross CPU call to enable a performance event
d859e29f 2204 */
fe4b04fa 2205static int __perf_event_enable(void *info)
04289bb9 2206{
cdd6c482 2207 struct perf_event *event = info;
cdd6c482
IM
2208 struct perf_event_context *ctx = event->ctx;
2209 struct perf_event *leader = event->group_leader;
108b02cf 2210 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2211 int err;
04289bb9 2212
06f41796
JO
2213 /*
2214 * There's a time window between 'ctx->is_active' check
2215 * in perf_event_enable function and this place having:
2216 * - IRQs on
2217 * - ctx->lock unlocked
2218 *
2219 * where the task could be killed and 'ctx' deactivated
2220 * by perf_event_exit_task.
2221 */
2222 if (!ctx->is_active)
fe4b04fa 2223 return -EINVAL;
3cbed429 2224
e625cce1 2225 raw_spin_lock(&ctx->lock);
4af4998b 2226 update_context_time(ctx);
d859e29f 2227
cdd6c482 2228 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2229 goto unlock;
e5d1367f
SE
2230
2231 /*
2232 * set current task's cgroup time reference point
2233 */
3f7cce3c 2234 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2235
1d9b482e 2236 __perf_event_mark_enabled(event);
04289bb9 2237
e5d1367f
SE
2238 if (!event_filter_match(event)) {
2239 if (is_cgroup_event(event))
2240 perf_cgroup_defer_enabled(event);
f4c4176f 2241 goto unlock;
e5d1367f 2242 }
f4c4176f 2243
04289bb9 2244 /*
cdd6c482 2245 * If the event is in a group and isn't the group leader,
d859e29f 2246 * then don't put it on unless the group is on.
04289bb9 2247 */
cdd6c482 2248 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2249 goto unlock;
3b6f9e5c 2250
cdd6c482 2251 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2252 err = -EEXIST;
e758a33d 2253 } else {
cdd6c482 2254 if (event == leader)
6e37738a 2255 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2256 else
6e37738a 2257 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2258 }
d859e29f
PM
2259
2260 if (err) {
2261 /*
cdd6c482 2262 * If this event can't go on and it's part of a
d859e29f
PM
2263 * group, then the whole group has to come off.
2264 */
9e630205 2265 if (leader != event) {
d859e29f 2266 group_sched_out(leader, cpuctx, ctx);
272325c4 2267 perf_mux_hrtimer_restart(cpuctx);
9e630205 2268 }
0d48696f 2269 if (leader->attr.pinned) {
53cfbf59 2270 update_group_times(leader);
cdd6c482 2271 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2272 }
d859e29f
PM
2273 }
2274
9ed6060d 2275unlock:
e625cce1 2276 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2277
2278 return 0;
d859e29f
PM
2279}
2280
2281/*
cdd6c482 2282 * Enable a event.
c93f7669 2283 *
cdd6c482
IM
2284 * If event->ctx is a cloned context, callers must make sure that
2285 * every task struct that event->ctx->task could possibly point to
c93f7669 2286 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2287 * perf_event_for_each_child or perf_event_for_each as described
2288 * for perf_event_disable.
d859e29f 2289 */
f63a8daa 2290static void _perf_event_enable(struct perf_event *event)
d859e29f 2291{
cdd6c482 2292 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2293 struct task_struct *task = ctx->task;
2294
2295 if (!task) {
2296 /*
cdd6c482 2297 * Enable the event on the cpu that it's on
d859e29f 2298 */
fe4b04fa 2299 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2300 return;
2301 }
2302
e625cce1 2303 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2304 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2305 goto out;
2306
2307 /*
cdd6c482
IM
2308 * If the event is in error state, clear that first.
2309 * That way, if we see the event in error state below, we
d859e29f
PM
2310 * know that it has gone back into error state, as distinct
2311 * from the task having been scheduled away before the
2312 * cross-call arrived.
2313 */
cdd6c482
IM
2314 if (event->state == PERF_EVENT_STATE_ERROR)
2315 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2316
9ed6060d 2317retry:
fe4b04fa 2318 if (!ctx->is_active) {
1d9b482e 2319 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2320 goto out;
2321 }
2322
e625cce1 2323 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2324
2325 if (!task_function_call(task, __perf_event_enable, event))
2326 return;
d859e29f 2327
e625cce1 2328 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2329
2330 /*
cdd6c482 2331 * If the context is active and the event is still off,
d859e29f
PM
2332 * we need to retry the cross-call.
2333 */
fe4b04fa
PZ
2334 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2335 /*
2336 * task could have been flipped by a concurrent
2337 * perf_event_context_sched_out()
2338 */
2339 task = ctx->task;
d859e29f 2340 goto retry;
fe4b04fa 2341 }
fa289bec 2342
9ed6060d 2343out:
e625cce1 2344 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2345}
f63a8daa
PZ
2346
2347/*
2348 * See perf_event_disable();
2349 */
2350void perf_event_enable(struct perf_event *event)
2351{
2352 struct perf_event_context *ctx;
2353
2354 ctx = perf_event_ctx_lock(event);
2355 _perf_event_enable(event);
2356 perf_event_ctx_unlock(event, ctx);
2357}
dcfce4a0 2358EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2359
f63a8daa 2360static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2361{
2023b359 2362 /*
cdd6c482 2363 * not supported on inherited events
2023b359 2364 */
2e939d1d 2365 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2366 return -EINVAL;
2367
cdd6c482 2368 atomic_add(refresh, &event->event_limit);
f63a8daa 2369 _perf_event_enable(event);
2023b359
PZ
2370
2371 return 0;
79f14641 2372}
f63a8daa
PZ
2373
2374/*
2375 * See perf_event_disable()
2376 */
2377int perf_event_refresh(struct perf_event *event, int refresh)
2378{
2379 struct perf_event_context *ctx;
2380 int ret;
2381
2382 ctx = perf_event_ctx_lock(event);
2383 ret = _perf_event_refresh(event, refresh);
2384 perf_event_ctx_unlock(event, ctx);
2385
2386 return ret;
2387}
26ca5c11 2388EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2389
5b0311e1
FW
2390static void ctx_sched_out(struct perf_event_context *ctx,
2391 struct perf_cpu_context *cpuctx,
2392 enum event_type_t event_type)
235c7fc7 2393{
cdd6c482 2394 struct perf_event *event;
db24d33e 2395 int is_active = ctx->is_active;
235c7fc7 2396
db24d33e 2397 ctx->is_active &= ~event_type;
cdd6c482 2398 if (likely(!ctx->nr_events))
facc4307
PZ
2399 return;
2400
4af4998b 2401 update_context_time(ctx);
e5d1367f 2402 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2403 if (!ctx->nr_active)
facc4307 2404 return;
5b0311e1 2405
075e0b00 2406 perf_pmu_disable(ctx->pmu);
db24d33e 2407 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2408 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2409 group_sched_out(event, cpuctx, ctx);
9ed6060d 2410 }
889ff015 2411
db24d33e 2412 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2413 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2414 group_sched_out(event, cpuctx, ctx);
9ed6060d 2415 }
1b9a644f 2416 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2417}
2418
564c2b21 2419/*
5a3126d4
PZ
2420 * Test whether two contexts are equivalent, i.e. whether they have both been
2421 * cloned from the same version of the same context.
2422 *
2423 * Equivalence is measured using a generation number in the context that is
2424 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2425 * and list_del_event().
564c2b21 2426 */
cdd6c482
IM
2427static int context_equiv(struct perf_event_context *ctx1,
2428 struct perf_event_context *ctx2)
564c2b21 2429{
211de6eb
PZ
2430 lockdep_assert_held(&ctx1->lock);
2431 lockdep_assert_held(&ctx2->lock);
2432
5a3126d4
PZ
2433 /* Pinning disables the swap optimization */
2434 if (ctx1->pin_count || ctx2->pin_count)
2435 return 0;
2436
2437 /* If ctx1 is the parent of ctx2 */
2438 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2439 return 1;
2440
2441 /* If ctx2 is the parent of ctx1 */
2442 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2443 return 1;
2444
2445 /*
2446 * If ctx1 and ctx2 have the same parent; we flatten the parent
2447 * hierarchy, see perf_event_init_context().
2448 */
2449 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2450 ctx1->parent_gen == ctx2->parent_gen)
2451 return 1;
2452
2453 /* Unmatched */
2454 return 0;
564c2b21
PM
2455}
2456
cdd6c482
IM
2457static void __perf_event_sync_stat(struct perf_event *event,
2458 struct perf_event *next_event)
bfbd3381
PZ
2459{
2460 u64 value;
2461
cdd6c482 2462 if (!event->attr.inherit_stat)
bfbd3381
PZ
2463 return;
2464
2465 /*
cdd6c482 2466 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2467 * because we're in the middle of a context switch and have IRQs
2468 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2469 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2470 * don't need to use it.
2471 */
cdd6c482
IM
2472 switch (event->state) {
2473 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2474 event->pmu->read(event);
2475 /* fall-through */
bfbd3381 2476
cdd6c482
IM
2477 case PERF_EVENT_STATE_INACTIVE:
2478 update_event_times(event);
bfbd3381
PZ
2479 break;
2480
2481 default:
2482 break;
2483 }
2484
2485 /*
cdd6c482 2486 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2487 * values when we flip the contexts.
2488 */
e7850595
PZ
2489 value = local64_read(&next_event->count);
2490 value = local64_xchg(&event->count, value);
2491 local64_set(&next_event->count, value);
bfbd3381 2492
cdd6c482
IM
2493 swap(event->total_time_enabled, next_event->total_time_enabled);
2494 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2495
bfbd3381 2496 /*
19d2e755 2497 * Since we swizzled the values, update the user visible data too.
bfbd3381 2498 */
cdd6c482
IM
2499 perf_event_update_userpage(event);
2500 perf_event_update_userpage(next_event);
bfbd3381
PZ
2501}
2502
cdd6c482
IM
2503static void perf_event_sync_stat(struct perf_event_context *ctx,
2504 struct perf_event_context *next_ctx)
bfbd3381 2505{
cdd6c482 2506 struct perf_event *event, *next_event;
bfbd3381
PZ
2507
2508 if (!ctx->nr_stat)
2509 return;
2510
02ffdbc8
PZ
2511 update_context_time(ctx);
2512
cdd6c482
IM
2513 event = list_first_entry(&ctx->event_list,
2514 struct perf_event, event_entry);
bfbd3381 2515
cdd6c482
IM
2516 next_event = list_first_entry(&next_ctx->event_list,
2517 struct perf_event, event_entry);
bfbd3381 2518
cdd6c482
IM
2519 while (&event->event_entry != &ctx->event_list &&
2520 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2521
cdd6c482 2522 __perf_event_sync_stat(event, next_event);
bfbd3381 2523
cdd6c482
IM
2524 event = list_next_entry(event, event_entry);
2525 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2526 }
2527}
2528
fe4b04fa
PZ
2529static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2530 struct task_struct *next)
0793a61d 2531{
8dc85d54 2532 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2533 struct perf_event_context *next_ctx;
5a3126d4 2534 struct perf_event_context *parent, *next_parent;
108b02cf 2535 struct perf_cpu_context *cpuctx;
c93f7669 2536 int do_switch = 1;
0793a61d 2537
108b02cf
PZ
2538 if (likely(!ctx))
2539 return;
10989fb2 2540
108b02cf
PZ
2541 cpuctx = __get_cpu_context(ctx);
2542 if (!cpuctx->task_ctx)
0793a61d
TG
2543 return;
2544
c93f7669 2545 rcu_read_lock();
8dc85d54 2546 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2547 if (!next_ctx)
2548 goto unlock;
2549
2550 parent = rcu_dereference(ctx->parent_ctx);
2551 next_parent = rcu_dereference(next_ctx->parent_ctx);
2552
2553 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2554 if (!parent && !next_parent)
5a3126d4
PZ
2555 goto unlock;
2556
2557 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2558 /*
2559 * Looks like the two contexts are clones, so we might be
2560 * able to optimize the context switch. We lock both
2561 * contexts and check that they are clones under the
2562 * lock (including re-checking that neither has been
2563 * uncloned in the meantime). It doesn't matter which
2564 * order we take the locks because no other cpu could
2565 * be trying to lock both of these tasks.
2566 */
e625cce1
TG
2567 raw_spin_lock(&ctx->lock);
2568 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2569 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2570 /*
2571 * XXX do we need a memory barrier of sorts
cdd6c482 2572 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2573 */
8dc85d54
PZ
2574 task->perf_event_ctxp[ctxn] = next_ctx;
2575 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2576 ctx->task = next;
2577 next_ctx->task = task;
5a158c3c
YZ
2578
2579 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2580
c93f7669 2581 do_switch = 0;
bfbd3381 2582
cdd6c482 2583 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2584 }
e625cce1
TG
2585 raw_spin_unlock(&next_ctx->lock);
2586 raw_spin_unlock(&ctx->lock);
564c2b21 2587 }
5a3126d4 2588unlock:
c93f7669 2589 rcu_read_unlock();
564c2b21 2590
c93f7669 2591 if (do_switch) {
facc4307 2592 raw_spin_lock(&ctx->lock);
5b0311e1 2593 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2594 cpuctx->task_ctx = NULL;
facc4307 2595 raw_spin_unlock(&ctx->lock);
c93f7669 2596 }
0793a61d
TG
2597}
2598
ba532500
YZ
2599void perf_sched_cb_dec(struct pmu *pmu)
2600{
2601 this_cpu_dec(perf_sched_cb_usages);
2602}
2603
2604void perf_sched_cb_inc(struct pmu *pmu)
2605{
2606 this_cpu_inc(perf_sched_cb_usages);
2607}
2608
2609/*
2610 * This function provides the context switch callback to the lower code
2611 * layer. It is invoked ONLY when the context switch callback is enabled.
2612 */
2613static void perf_pmu_sched_task(struct task_struct *prev,
2614 struct task_struct *next,
2615 bool sched_in)
2616{
2617 struct perf_cpu_context *cpuctx;
2618 struct pmu *pmu;
2619 unsigned long flags;
2620
2621 if (prev == next)
2622 return;
2623
2624 local_irq_save(flags);
2625
2626 rcu_read_lock();
2627
2628 list_for_each_entry_rcu(pmu, &pmus, entry) {
2629 if (pmu->sched_task) {
2630 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2631
2632 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2633
2634 perf_pmu_disable(pmu);
2635
2636 pmu->sched_task(cpuctx->task_ctx, sched_in);
2637
2638 perf_pmu_enable(pmu);
2639
2640 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2641 }
2642 }
2643
2644 rcu_read_unlock();
2645
2646 local_irq_restore(flags);
2647}
2648
45ac1403
AH
2649static void perf_event_switch(struct task_struct *task,
2650 struct task_struct *next_prev, bool sched_in);
2651
8dc85d54
PZ
2652#define for_each_task_context_nr(ctxn) \
2653 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2654
2655/*
2656 * Called from scheduler to remove the events of the current task,
2657 * with interrupts disabled.
2658 *
2659 * We stop each event and update the event value in event->count.
2660 *
2661 * This does not protect us against NMI, but disable()
2662 * sets the disabled bit in the control field of event _before_
2663 * accessing the event control register. If a NMI hits, then it will
2664 * not restart the event.
2665 */
ab0cce56
JO
2666void __perf_event_task_sched_out(struct task_struct *task,
2667 struct task_struct *next)
8dc85d54
PZ
2668{
2669 int ctxn;
2670
ba532500
YZ
2671 if (__this_cpu_read(perf_sched_cb_usages))
2672 perf_pmu_sched_task(task, next, false);
2673
45ac1403
AH
2674 if (atomic_read(&nr_switch_events))
2675 perf_event_switch(task, next, false);
2676
8dc85d54
PZ
2677 for_each_task_context_nr(ctxn)
2678 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2679
2680 /*
2681 * if cgroup events exist on this CPU, then we need
2682 * to check if we have to switch out PMU state.
2683 * cgroup event are system-wide mode only
2684 */
4a32fea9 2685 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2686 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2687}
2688
04dc2dbb 2689static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2690{
108b02cf 2691 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2692
a63eaf34
PM
2693 if (!cpuctx->task_ctx)
2694 return;
012b84da
IM
2695
2696 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2697 return;
2698
04dc2dbb 2699 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2700 cpuctx->task_ctx = NULL;
2701}
2702
5b0311e1
FW
2703/*
2704 * Called with IRQs disabled
2705 */
2706static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2707 enum event_type_t event_type)
2708{
2709 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2710}
2711
235c7fc7 2712static void
5b0311e1 2713ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2714 struct perf_cpu_context *cpuctx)
0793a61d 2715{
cdd6c482 2716 struct perf_event *event;
0793a61d 2717
889ff015
FW
2718 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2719 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2720 continue;
5632ab12 2721 if (!event_filter_match(event))
3b6f9e5c
PM
2722 continue;
2723
e5d1367f
SE
2724 /* may need to reset tstamp_enabled */
2725 if (is_cgroup_event(event))
2726 perf_cgroup_mark_enabled(event, ctx);
2727
8c9ed8e1 2728 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2729 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2730
2731 /*
2732 * If this pinned group hasn't been scheduled,
2733 * put it in error state.
2734 */
cdd6c482
IM
2735 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2736 update_group_times(event);
2737 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2738 }
3b6f9e5c 2739 }
5b0311e1
FW
2740}
2741
2742static void
2743ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2744 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2745{
2746 struct perf_event *event;
2747 int can_add_hw = 1;
3b6f9e5c 2748
889ff015
FW
2749 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2750 /* Ignore events in OFF or ERROR state */
2751 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2752 continue;
04289bb9
IM
2753 /*
2754 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2755 * of events:
04289bb9 2756 */
5632ab12 2757 if (!event_filter_match(event))
0793a61d
TG
2758 continue;
2759
e5d1367f
SE
2760 /* may need to reset tstamp_enabled */
2761 if (is_cgroup_event(event))
2762 perf_cgroup_mark_enabled(event, ctx);
2763
9ed6060d 2764 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2765 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2766 can_add_hw = 0;
9ed6060d 2767 }
0793a61d 2768 }
5b0311e1
FW
2769}
2770
2771static void
2772ctx_sched_in(struct perf_event_context *ctx,
2773 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2774 enum event_type_t event_type,
2775 struct task_struct *task)
5b0311e1 2776{
e5d1367f 2777 u64 now;
db24d33e 2778 int is_active = ctx->is_active;
e5d1367f 2779
db24d33e 2780 ctx->is_active |= event_type;
5b0311e1 2781 if (likely(!ctx->nr_events))
facc4307 2782 return;
5b0311e1 2783
e5d1367f
SE
2784 now = perf_clock();
2785 ctx->timestamp = now;
3f7cce3c 2786 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2787 /*
2788 * First go through the list and put on any pinned groups
2789 * in order to give them the best chance of going on.
2790 */
db24d33e 2791 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2792 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2793
2794 /* Then walk through the lower prio flexible groups */
db24d33e 2795 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2796 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2797}
2798
329c0e01 2799static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2800 enum event_type_t event_type,
2801 struct task_struct *task)
329c0e01
FW
2802{
2803 struct perf_event_context *ctx = &cpuctx->ctx;
2804
e5d1367f 2805 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2806}
2807
e5d1367f
SE
2808static void perf_event_context_sched_in(struct perf_event_context *ctx,
2809 struct task_struct *task)
235c7fc7 2810{
108b02cf 2811 struct perf_cpu_context *cpuctx;
235c7fc7 2812
108b02cf 2813 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2814 if (cpuctx->task_ctx == ctx)
2815 return;
2816
facc4307 2817 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2818 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2819 /*
2820 * We want to keep the following priority order:
2821 * cpu pinned (that don't need to move), task pinned,
2822 * cpu flexible, task flexible.
2823 */
2824 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2825
1d5f003f
GN
2826 if (ctx->nr_events)
2827 cpuctx->task_ctx = ctx;
9b33fa6b 2828
86b47c25
GN
2829 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2830
facc4307
PZ
2831 perf_pmu_enable(ctx->pmu);
2832 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2833}
2834
8dc85d54
PZ
2835/*
2836 * Called from scheduler to add the events of the current task
2837 * with interrupts disabled.
2838 *
2839 * We restore the event value and then enable it.
2840 *
2841 * This does not protect us against NMI, but enable()
2842 * sets the enabled bit in the control field of event _before_
2843 * accessing the event control register. If a NMI hits, then it will
2844 * keep the event running.
2845 */
ab0cce56
JO
2846void __perf_event_task_sched_in(struct task_struct *prev,
2847 struct task_struct *task)
8dc85d54
PZ
2848{
2849 struct perf_event_context *ctx;
2850 int ctxn;
2851
2852 for_each_task_context_nr(ctxn) {
2853 ctx = task->perf_event_ctxp[ctxn];
2854 if (likely(!ctx))
2855 continue;
2856
e5d1367f 2857 perf_event_context_sched_in(ctx, task);
8dc85d54 2858 }
e5d1367f
SE
2859 /*
2860 * if cgroup events exist on this CPU, then we need
2861 * to check if we have to switch in PMU state.
2862 * cgroup event are system-wide mode only
2863 */
4a32fea9 2864 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2865 perf_cgroup_sched_in(prev, task);
d010b332 2866
45ac1403
AH
2867 if (atomic_read(&nr_switch_events))
2868 perf_event_switch(task, prev, true);
2869
ba532500
YZ
2870 if (__this_cpu_read(perf_sched_cb_usages))
2871 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2872}
2873
abd50713
PZ
2874static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2875{
2876 u64 frequency = event->attr.sample_freq;
2877 u64 sec = NSEC_PER_SEC;
2878 u64 divisor, dividend;
2879
2880 int count_fls, nsec_fls, frequency_fls, sec_fls;
2881
2882 count_fls = fls64(count);
2883 nsec_fls = fls64(nsec);
2884 frequency_fls = fls64(frequency);
2885 sec_fls = 30;
2886
2887 /*
2888 * We got @count in @nsec, with a target of sample_freq HZ
2889 * the target period becomes:
2890 *
2891 * @count * 10^9
2892 * period = -------------------
2893 * @nsec * sample_freq
2894 *
2895 */
2896
2897 /*
2898 * Reduce accuracy by one bit such that @a and @b converge
2899 * to a similar magnitude.
2900 */
fe4b04fa 2901#define REDUCE_FLS(a, b) \
abd50713
PZ
2902do { \
2903 if (a##_fls > b##_fls) { \
2904 a >>= 1; \
2905 a##_fls--; \
2906 } else { \
2907 b >>= 1; \
2908 b##_fls--; \
2909 } \
2910} while (0)
2911
2912 /*
2913 * Reduce accuracy until either term fits in a u64, then proceed with
2914 * the other, so that finally we can do a u64/u64 division.
2915 */
2916 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2917 REDUCE_FLS(nsec, frequency);
2918 REDUCE_FLS(sec, count);
2919 }
2920
2921 if (count_fls + sec_fls > 64) {
2922 divisor = nsec * frequency;
2923
2924 while (count_fls + sec_fls > 64) {
2925 REDUCE_FLS(count, sec);
2926 divisor >>= 1;
2927 }
2928
2929 dividend = count * sec;
2930 } else {
2931 dividend = count * sec;
2932
2933 while (nsec_fls + frequency_fls > 64) {
2934 REDUCE_FLS(nsec, frequency);
2935 dividend >>= 1;
2936 }
2937
2938 divisor = nsec * frequency;
2939 }
2940
f6ab91ad
PZ
2941 if (!divisor)
2942 return dividend;
2943
abd50713
PZ
2944 return div64_u64(dividend, divisor);
2945}
2946
e050e3f0
SE
2947static DEFINE_PER_CPU(int, perf_throttled_count);
2948static DEFINE_PER_CPU(u64, perf_throttled_seq);
2949
f39d47ff 2950static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2951{
cdd6c482 2952 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2953 s64 period, sample_period;
bd2b5b12
PZ
2954 s64 delta;
2955
abd50713 2956 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2957
2958 delta = (s64)(period - hwc->sample_period);
2959 delta = (delta + 7) / 8; /* low pass filter */
2960
2961 sample_period = hwc->sample_period + delta;
2962
2963 if (!sample_period)
2964 sample_period = 1;
2965
bd2b5b12 2966 hwc->sample_period = sample_period;
abd50713 2967
e7850595 2968 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2969 if (disable)
2970 event->pmu->stop(event, PERF_EF_UPDATE);
2971
e7850595 2972 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2973
2974 if (disable)
2975 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2976 }
bd2b5b12
PZ
2977}
2978
e050e3f0
SE
2979/*
2980 * combine freq adjustment with unthrottling to avoid two passes over the
2981 * events. At the same time, make sure, having freq events does not change
2982 * the rate of unthrottling as that would introduce bias.
2983 */
2984static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2985 int needs_unthr)
60db5e09 2986{
cdd6c482
IM
2987 struct perf_event *event;
2988 struct hw_perf_event *hwc;
e050e3f0 2989 u64 now, period = TICK_NSEC;
abd50713 2990 s64 delta;
60db5e09 2991
e050e3f0
SE
2992 /*
2993 * only need to iterate over all events iff:
2994 * - context have events in frequency mode (needs freq adjust)
2995 * - there are events to unthrottle on this cpu
2996 */
2997 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2998 return;
2999
e050e3f0 3000 raw_spin_lock(&ctx->lock);
f39d47ff 3001 perf_pmu_disable(ctx->pmu);
e050e3f0 3002
03541f8b 3003 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3004 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3005 continue;
3006
5632ab12 3007 if (!event_filter_match(event))
5d27c23d
PZ
3008 continue;
3009
44377277
AS
3010 perf_pmu_disable(event->pmu);
3011
cdd6c482 3012 hwc = &event->hw;
6a24ed6c 3013
ae23bff1 3014 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3015 hwc->interrupts = 0;
cdd6c482 3016 perf_log_throttle(event, 1);
a4eaf7f1 3017 event->pmu->start(event, 0);
a78ac325
PZ
3018 }
3019
cdd6c482 3020 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3021 goto next;
60db5e09 3022
e050e3f0
SE
3023 /*
3024 * stop the event and update event->count
3025 */
3026 event->pmu->stop(event, PERF_EF_UPDATE);
3027
e7850595 3028 now = local64_read(&event->count);
abd50713
PZ
3029 delta = now - hwc->freq_count_stamp;
3030 hwc->freq_count_stamp = now;
60db5e09 3031
e050e3f0
SE
3032 /*
3033 * restart the event
3034 * reload only if value has changed
f39d47ff
SE
3035 * we have stopped the event so tell that
3036 * to perf_adjust_period() to avoid stopping it
3037 * twice.
e050e3f0 3038 */
abd50713 3039 if (delta > 0)
f39d47ff 3040 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3041
3042 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3043 next:
3044 perf_pmu_enable(event->pmu);
60db5e09 3045 }
e050e3f0 3046
f39d47ff 3047 perf_pmu_enable(ctx->pmu);
e050e3f0 3048 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3049}
3050
235c7fc7 3051/*
cdd6c482 3052 * Round-robin a context's events:
235c7fc7 3053 */
cdd6c482 3054static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3055{
dddd3379
TG
3056 /*
3057 * Rotate the first entry last of non-pinned groups. Rotation might be
3058 * disabled by the inheritance code.
3059 */
3060 if (!ctx->rotate_disable)
3061 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3062}
3063
9e630205 3064static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3065{
8dc85d54 3066 struct perf_event_context *ctx = NULL;
2fde4f94 3067 int rotate = 0;
7fc23a53 3068
b5ab4cd5 3069 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3070 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3071 rotate = 1;
3072 }
235c7fc7 3073
8dc85d54 3074 ctx = cpuctx->task_ctx;
b5ab4cd5 3075 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3076 if (ctx->nr_events != ctx->nr_active)
3077 rotate = 1;
3078 }
9717e6cd 3079
e050e3f0 3080 if (!rotate)
0f5a2601
PZ
3081 goto done;
3082
facc4307 3083 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3084 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3085
e050e3f0
SE
3086 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3087 if (ctx)
3088 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3089
e050e3f0
SE
3090 rotate_ctx(&cpuctx->ctx);
3091 if (ctx)
3092 rotate_ctx(ctx);
235c7fc7 3093
e050e3f0 3094 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3095
0f5a2601
PZ
3096 perf_pmu_enable(cpuctx->ctx.pmu);
3097 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3098done:
9e630205
SE
3099
3100 return rotate;
e9d2b064
PZ
3101}
3102
026249ef
FW
3103#ifdef CONFIG_NO_HZ_FULL
3104bool perf_event_can_stop_tick(void)
3105{
948b26b6 3106 if (atomic_read(&nr_freq_events) ||
d84153d6 3107 __this_cpu_read(perf_throttled_count))
026249ef 3108 return false;
d84153d6
FW
3109 else
3110 return true;
026249ef
FW
3111}
3112#endif
3113
e9d2b064
PZ
3114void perf_event_task_tick(void)
3115{
2fde4f94
MR
3116 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3117 struct perf_event_context *ctx, *tmp;
e050e3f0 3118 int throttled;
b5ab4cd5 3119
e9d2b064
PZ
3120 WARN_ON(!irqs_disabled());
3121
e050e3f0
SE
3122 __this_cpu_inc(perf_throttled_seq);
3123 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3124
2fde4f94 3125 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3126 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3127}
3128
889ff015
FW
3129static int event_enable_on_exec(struct perf_event *event,
3130 struct perf_event_context *ctx)
3131{
3132 if (!event->attr.enable_on_exec)
3133 return 0;
3134
3135 event->attr.enable_on_exec = 0;
3136 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3137 return 0;
3138
1d9b482e 3139 __perf_event_mark_enabled(event);
889ff015
FW
3140
3141 return 1;
3142}
3143
57e7986e 3144/*
cdd6c482 3145 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3146 * This expects task == current.
3147 */
8dc85d54 3148static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3149{
211de6eb 3150 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3151 struct perf_event *event;
57e7986e
PM
3152 unsigned long flags;
3153 int enabled = 0;
889ff015 3154 int ret;
57e7986e
PM
3155
3156 local_irq_save(flags);
cdd6c482 3157 if (!ctx || !ctx->nr_events)
57e7986e
PM
3158 goto out;
3159
e566b76e
SE
3160 /*
3161 * We must ctxsw out cgroup events to avoid conflict
3162 * when invoking perf_task_event_sched_in() later on
3163 * in this function. Otherwise we end up trying to
3164 * ctxswin cgroup events which are already scheduled
3165 * in.
3166 */
a8d757ef 3167 perf_cgroup_sched_out(current, NULL);
57e7986e 3168
e625cce1 3169 raw_spin_lock(&ctx->lock);
04dc2dbb 3170 task_ctx_sched_out(ctx);
57e7986e 3171
b79387ef 3172 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3173 ret = event_enable_on_exec(event, ctx);
3174 if (ret)
3175 enabled = 1;
57e7986e
PM
3176 }
3177
3178 /*
cdd6c482 3179 * Unclone this context if we enabled any event.
57e7986e 3180 */
71a851b4 3181 if (enabled)
211de6eb 3182 clone_ctx = unclone_ctx(ctx);
57e7986e 3183
e625cce1 3184 raw_spin_unlock(&ctx->lock);
57e7986e 3185
e566b76e
SE
3186 /*
3187 * Also calls ctxswin for cgroup events, if any:
3188 */
e5d1367f 3189 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3190out:
57e7986e 3191 local_irq_restore(flags);
211de6eb
PZ
3192
3193 if (clone_ctx)
3194 put_ctx(clone_ctx);
57e7986e
PM
3195}
3196
e041e328
PZ
3197void perf_event_exec(void)
3198{
3199 struct perf_event_context *ctx;
3200 int ctxn;
3201
3202 rcu_read_lock();
3203 for_each_task_context_nr(ctxn) {
3204 ctx = current->perf_event_ctxp[ctxn];
3205 if (!ctx)
3206 continue;
3207
3208 perf_event_enable_on_exec(ctx);
3209 }
3210 rcu_read_unlock();
3211}
3212
0492d4c5
PZ
3213struct perf_read_data {
3214 struct perf_event *event;
3215 bool group;
7d88962e 3216 int ret;
0492d4c5
PZ
3217};
3218
0793a61d 3219/*
cdd6c482 3220 * Cross CPU call to read the hardware event
0793a61d 3221 */
cdd6c482 3222static void __perf_event_read(void *info)
0793a61d 3223{
0492d4c5
PZ
3224 struct perf_read_data *data = info;
3225 struct perf_event *sub, *event = data->event;
cdd6c482 3226 struct perf_event_context *ctx = event->ctx;
108b02cf 3227 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3228 struct pmu *pmu = event->pmu;
621a01ea 3229
e1ac3614
PM
3230 /*
3231 * If this is a task context, we need to check whether it is
3232 * the current task context of this cpu. If not it has been
3233 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3234 * event->count would have been updated to a recent sample
3235 * when the event was scheduled out.
e1ac3614
PM
3236 */
3237 if (ctx->task && cpuctx->task_ctx != ctx)
3238 return;
3239
e625cce1 3240 raw_spin_lock(&ctx->lock);
e5d1367f 3241 if (ctx->is_active) {
542e72fc 3242 update_context_time(ctx);
e5d1367f
SE
3243 update_cgrp_time_from_event(event);
3244 }
0492d4c5 3245
cdd6c482 3246 update_event_times(event);
4a00c16e
SB
3247 if (event->state != PERF_EVENT_STATE_ACTIVE)
3248 goto unlock;
0492d4c5 3249
4a00c16e
SB
3250 if (!data->group) {
3251 pmu->read(event);
3252 data->ret = 0;
0492d4c5 3253 goto unlock;
4a00c16e
SB
3254 }
3255
3256 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3257
3258 pmu->read(event);
0492d4c5
PZ
3259
3260 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3261 update_event_times(sub);
4a00c16e
SB
3262 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3263 /*
3264 * Use sibling's PMU rather than @event's since
3265 * sibling could be on different (eg: software) PMU.
3266 */
0492d4c5 3267 sub->pmu->read(sub);
4a00c16e 3268 }
0492d4c5 3269 }
4a00c16e
SB
3270
3271 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3272
3273unlock:
e625cce1 3274 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3275}
3276
b5e58793
PZ
3277static inline u64 perf_event_count(struct perf_event *event)
3278{
eacd3ecc
MF
3279 if (event->pmu->count)
3280 return event->pmu->count(event);
3281
3282 return __perf_event_count(event);
b5e58793
PZ
3283}
3284
ffe8690c
KX
3285/*
3286 * NMI-safe method to read a local event, that is an event that
3287 * is:
3288 * - either for the current task, or for this CPU
3289 * - does not have inherit set, for inherited task events
3290 * will not be local and we cannot read them atomically
3291 * - must not have a pmu::count method
3292 */
3293u64 perf_event_read_local(struct perf_event *event)
3294{
3295 unsigned long flags;
3296 u64 val;
3297
3298 /*
3299 * Disabling interrupts avoids all counter scheduling (context
3300 * switches, timer based rotation and IPIs).
3301 */
3302 local_irq_save(flags);
3303
3304 /* If this is a per-task event, it must be for current */
3305 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3306 event->hw.target != current);
3307
3308 /* If this is a per-CPU event, it must be for this CPU */
3309 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3310 event->cpu != smp_processor_id());
3311
3312 /*
3313 * It must not be an event with inherit set, we cannot read
3314 * all child counters from atomic context.
3315 */
3316 WARN_ON_ONCE(event->attr.inherit);
3317
3318 /*
3319 * It must not have a pmu::count method, those are not
3320 * NMI safe.
3321 */
3322 WARN_ON_ONCE(event->pmu->count);
3323
3324 /*
3325 * If the event is currently on this CPU, its either a per-task event,
3326 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3327 * oncpu == -1).
3328 */
3329 if (event->oncpu == smp_processor_id())
3330 event->pmu->read(event);
3331
3332 val = local64_read(&event->count);
3333 local_irq_restore(flags);
3334
3335 return val;
3336}
3337
7d88962e 3338static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3339{
7d88962e
SB
3340 int ret = 0;
3341
0793a61d 3342 /*
cdd6c482
IM
3343 * If event is enabled and currently active on a CPU, update the
3344 * value in the event structure:
0793a61d 3345 */
cdd6c482 3346 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3347 struct perf_read_data data = {
3348 .event = event,
3349 .group = group,
7d88962e 3350 .ret = 0,
0492d4c5 3351 };
cdd6c482 3352 smp_call_function_single(event->oncpu,
0492d4c5 3353 __perf_event_read, &data, 1);
7d88962e 3354 ret = data.ret;
cdd6c482 3355 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3356 struct perf_event_context *ctx = event->ctx;
3357 unsigned long flags;
3358
e625cce1 3359 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3360 /*
3361 * may read while context is not active
3362 * (e.g., thread is blocked), in that case
3363 * we cannot update context time
3364 */
e5d1367f 3365 if (ctx->is_active) {
c530ccd9 3366 update_context_time(ctx);
e5d1367f
SE
3367 update_cgrp_time_from_event(event);
3368 }
0492d4c5
PZ
3369 if (group)
3370 update_group_times(event);
3371 else
3372 update_event_times(event);
e625cce1 3373 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3374 }
7d88962e
SB
3375
3376 return ret;
0793a61d
TG
3377}
3378
a63eaf34 3379/*
cdd6c482 3380 * Initialize the perf_event context in a task_struct:
a63eaf34 3381 */
eb184479 3382static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3383{
e625cce1 3384 raw_spin_lock_init(&ctx->lock);
a63eaf34 3385 mutex_init(&ctx->mutex);
2fde4f94 3386 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3387 INIT_LIST_HEAD(&ctx->pinned_groups);
3388 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3389 INIT_LIST_HEAD(&ctx->event_list);
3390 atomic_set(&ctx->refcount, 1);
fadfe7be 3391 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3392}
3393
3394static struct perf_event_context *
3395alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3396{
3397 struct perf_event_context *ctx;
3398
3399 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3400 if (!ctx)
3401 return NULL;
3402
3403 __perf_event_init_context(ctx);
3404 if (task) {
3405 ctx->task = task;
3406 get_task_struct(task);
0793a61d 3407 }
eb184479
PZ
3408 ctx->pmu = pmu;
3409
3410 return ctx;
a63eaf34
PM
3411}
3412
2ebd4ffb
MH
3413static struct task_struct *
3414find_lively_task_by_vpid(pid_t vpid)
3415{
3416 struct task_struct *task;
3417 int err;
0793a61d
TG
3418
3419 rcu_read_lock();
2ebd4ffb 3420 if (!vpid)
0793a61d
TG
3421 task = current;
3422 else
2ebd4ffb 3423 task = find_task_by_vpid(vpid);
0793a61d
TG
3424 if (task)
3425 get_task_struct(task);
3426 rcu_read_unlock();
3427
3428 if (!task)
3429 return ERR_PTR(-ESRCH);
3430
0793a61d 3431 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3432 err = -EACCES;
3433 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3434 goto errout;
3435
2ebd4ffb
MH
3436 return task;
3437errout:
3438 put_task_struct(task);
3439 return ERR_PTR(err);
3440
3441}
3442
fe4b04fa
PZ
3443/*
3444 * Returns a matching context with refcount and pincount.
3445 */
108b02cf 3446static struct perf_event_context *
4af57ef2
YZ
3447find_get_context(struct pmu *pmu, struct task_struct *task,
3448 struct perf_event *event)
0793a61d 3449{
211de6eb 3450 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3451 struct perf_cpu_context *cpuctx;
4af57ef2 3452 void *task_ctx_data = NULL;
25346b93 3453 unsigned long flags;
8dc85d54 3454 int ctxn, err;
4af57ef2 3455 int cpu = event->cpu;
0793a61d 3456
22a4ec72 3457 if (!task) {
cdd6c482 3458 /* Must be root to operate on a CPU event: */
0764771d 3459 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3460 return ERR_PTR(-EACCES);
3461
0793a61d 3462 /*
cdd6c482 3463 * We could be clever and allow to attach a event to an
0793a61d
TG
3464 * offline CPU and activate it when the CPU comes up, but
3465 * that's for later.
3466 */
f6325e30 3467 if (!cpu_online(cpu))
0793a61d
TG
3468 return ERR_PTR(-ENODEV);
3469
108b02cf 3470 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3471 ctx = &cpuctx->ctx;
c93f7669 3472 get_ctx(ctx);
fe4b04fa 3473 ++ctx->pin_count;
0793a61d 3474
0793a61d
TG
3475 return ctx;
3476 }
3477
8dc85d54
PZ
3478 err = -EINVAL;
3479 ctxn = pmu->task_ctx_nr;
3480 if (ctxn < 0)
3481 goto errout;
3482
4af57ef2
YZ
3483 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3484 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3485 if (!task_ctx_data) {
3486 err = -ENOMEM;
3487 goto errout;
3488 }
3489 }
3490
9ed6060d 3491retry:
8dc85d54 3492 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3493 if (ctx) {
211de6eb 3494 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3495 ++ctx->pin_count;
4af57ef2
YZ
3496
3497 if (task_ctx_data && !ctx->task_ctx_data) {
3498 ctx->task_ctx_data = task_ctx_data;
3499 task_ctx_data = NULL;
3500 }
e625cce1 3501 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3502
3503 if (clone_ctx)
3504 put_ctx(clone_ctx);
9137fb28 3505 } else {
eb184479 3506 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3507 err = -ENOMEM;
3508 if (!ctx)
3509 goto errout;
eb184479 3510
4af57ef2
YZ
3511 if (task_ctx_data) {
3512 ctx->task_ctx_data = task_ctx_data;
3513 task_ctx_data = NULL;
3514 }
3515
dbe08d82
ON
3516 err = 0;
3517 mutex_lock(&task->perf_event_mutex);
3518 /*
3519 * If it has already passed perf_event_exit_task().
3520 * we must see PF_EXITING, it takes this mutex too.
3521 */
3522 if (task->flags & PF_EXITING)
3523 err = -ESRCH;
3524 else if (task->perf_event_ctxp[ctxn])
3525 err = -EAGAIN;
fe4b04fa 3526 else {
9137fb28 3527 get_ctx(ctx);
fe4b04fa 3528 ++ctx->pin_count;
dbe08d82 3529 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3530 }
dbe08d82
ON
3531 mutex_unlock(&task->perf_event_mutex);
3532
3533 if (unlikely(err)) {
9137fb28 3534 put_ctx(ctx);
dbe08d82
ON
3535
3536 if (err == -EAGAIN)
3537 goto retry;
3538 goto errout;
a63eaf34
PM
3539 }
3540 }
3541
4af57ef2 3542 kfree(task_ctx_data);
0793a61d 3543 return ctx;
c93f7669 3544
9ed6060d 3545errout:
4af57ef2 3546 kfree(task_ctx_data);
c93f7669 3547 return ERR_PTR(err);
0793a61d
TG
3548}
3549
6fb2915d 3550static void perf_event_free_filter(struct perf_event *event);
2541517c 3551static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3552
cdd6c482 3553static void free_event_rcu(struct rcu_head *head)
592903cd 3554{
cdd6c482 3555 struct perf_event *event;
592903cd 3556
cdd6c482
IM
3557 event = container_of(head, struct perf_event, rcu_head);
3558 if (event->ns)
3559 put_pid_ns(event->ns);
6fb2915d 3560 perf_event_free_filter(event);
cdd6c482 3561 kfree(event);
592903cd
PZ
3562}
3563
b69cf536
PZ
3564static void ring_buffer_attach(struct perf_event *event,
3565 struct ring_buffer *rb);
925d519a 3566
4beb31f3 3567static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3568{
4beb31f3
FW
3569 if (event->parent)
3570 return;
3571
4beb31f3
FW
3572 if (is_cgroup_event(event))
3573 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3574}
925d519a 3575
4beb31f3
FW
3576static void unaccount_event(struct perf_event *event)
3577{
3578 if (event->parent)
3579 return;
3580
3581 if (event->attach_state & PERF_ATTACH_TASK)
3582 static_key_slow_dec_deferred(&perf_sched_events);
3583 if (event->attr.mmap || event->attr.mmap_data)
3584 atomic_dec(&nr_mmap_events);
3585 if (event->attr.comm)
3586 atomic_dec(&nr_comm_events);
3587 if (event->attr.task)
3588 atomic_dec(&nr_task_events);
948b26b6
FW
3589 if (event->attr.freq)
3590 atomic_dec(&nr_freq_events);
45ac1403
AH
3591 if (event->attr.context_switch) {
3592 static_key_slow_dec_deferred(&perf_sched_events);
3593 atomic_dec(&nr_switch_events);
3594 }
4beb31f3
FW
3595 if (is_cgroup_event(event))
3596 static_key_slow_dec_deferred(&perf_sched_events);
3597 if (has_branch_stack(event))
3598 static_key_slow_dec_deferred(&perf_sched_events);
3599
3600 unaccount_event_cpu(event, event->cpu);
3601}
925d519a 3602
bed5b25a
AS
3603/*
3604 * The following implement mutual exclusion of events on "exclusive" pmus
3605 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3606 * at a time, so we disallow creating events that might conflict, namely:
3607 *
3608 * 1) cpu-wide events in the presence of per-task events,
3609 * 2) per-task events in the presence of cpu-wide events,
3610 * 3) two matching events on the same context.
3611 *
3612 * The former two cases are handled in the allocation path (perf_event_alloc(),
3613 * __free_event()), the latter -- before the first perf_install_in_context().
3614 */
3615static int exclusive_event_init(struct perf_event *event)
3616{
3617 struct pmu *pmu = event->pmu;
3618
3619 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3620 return 0;
3621
3622 /*
3623 * Prevent co-existence of per-task and cpu-wide events on the
3624 * same exclusive pmu.
3625 *
3626 * Negative pmu::exclusive_cnt means there are cpu-wide
3627 * events on this "exclusive" pmu, positive means there are
3628 * per-task events.
3629 *
3630 * Since this is called in perf_event_alloc() path, event::ctx
3631 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3632 * to mean "per-task event", because unlike other attach states it
3633 * never gets cleared.
3634 */
3635 if (event->attach_state & PERF_ATTACH_TASK) {
3636 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3637 return -EBUSY;
3638 } else {
3639 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3640 return -EBUSY;
3641 }
3642
3643 return 0;
3644}
3645
3646static void exclusive_event_destroy(struct perf_event *event)
3647{
3648 struct pmu *pmu = event->pmu;
3649
3650 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3651 return;
3652
3653 /* see comment in exclusive_event_init() */
3654 if (event->attach_state & PERF_ATTACH_TASK)
3655 atomic_dec(&pmu->exclusive_cnt);
3656 else
3657 atomic_inc(&pmu->exclusive_cnt);
3658}
3659
3660static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3661{
3662 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3663 (e1->cpu == e2->cpu ||
3664 e1->cpu == -1 ||
3665 e2->cpu == -1))
3666 return true;
3667 return false;
3668}
3669
3670/* Called under the same ctx::mutex as perf_install_in_context() */
3671static bool exclusive_event_installable(struct perf_event *event,
3672 struct perf_event_context *ctx)
3673{
3674 struct perf_event *iter_event;
3675 struct pmu *pmu = event->pmu;
3676
3677 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3678 return true;
3679
3680 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3681 if (exclusive_event_match(iter_event, event))
3682 return false;
3683 }
3684
3685 return true;
3686}
3687
766d6c07
FW
3688static void __free_event(struct perf_event *event)
3689{
cdd6c482 3690 if (!event->parent) {
927c7a9e
FW
3691 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3692 put_callchain_buffers();
f344011c 3693 }
9ee318a7 3694
dead9f29
AS
3695 perf_event_free_bpf_prog(event);
3696
766d6c07
FW
3697 if (event->destroy)
3698 event->destroy(event);
3699
3700 if (event->ctx)
3701 put_ctx(event->ctx);
3702
bed5b25a
AS
3703 if (event->pmu) {
3704 exclusive_event_destroy(event);
c464c76e 3705 module_put(event->pmu->module);
bed5b25a 3706 }
c464c76e 3707
766d6c07
FW
3708 call_rcu(&event->rcu_head, free_event_rcu);
3709}
683ede43
PZ
3710
3711static void _free_event(struct perf_event *event)
f1600952 3712{
e360adbe 3713 irq_work_sync(&event->pending);
925d519a 3714
4beb31f3 3715 unaccount_event(event);
9ee318a7 3716
76369139 3717 if (event->rb) {
9bb5d40c
PZ
3718 /*
3719 * Can happen when we close an event with re-directed output.
3720 *
3721 * Since we have a 0 refcount, perf_mmap_close() will skip
3722 * over us; possibly making our ring_buffer_put() the last.
3723 */
3724 mutex_lock(&event->mmap_mutex);
b69cf536 3725 ring_buffer_attach(event, NULL);
9bb5d40c 3726 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3727 }
3728
e5d1367f
SE
3729 if (is_cgroup_event(event))
3730 perf_detach_cgroup(event);
3731
766d6c07 3732 __free_event(event);
f1600952
PZ
3733}
3734
683ede43
PZ
3735/*
3736 * Used to free events which have a known refcount of 1, such as in error paths
3737 * where the event isn't exposed yet and inherited events.
3738 */
3739static void free_event(struct perf_event *event)
0793a61d 3740{
683ede43
PZ
3741 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3742 "unexpected event refcount: %ld; ptr=%p\n",
3743 atomic_long_read(&event->refcount), event)) {
3744 /* leak to avoid use-after-free */
3745 return;
3746 }
0793a61d 3747
683ede43 3748 _free_event(event);
0793a61d
TG
3749}
3750
a66a3052 3751/*
f8697762 3752 * Remove user event from the owner task.
a66a3052 3753 */
f8697762 3754static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3755{
8882135b 3756 struct task_struct *owner;
fb0459d7 3757
8882135b
PZ
3758 rcu_read_lock();
3759 owner = ACCESS_ONCE(event->owner);
3760 /*
3761 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3762 * !owner it means the list deletion is complete and we can indeed
3763 * free this event, otherwise we need to serialize on
3764 * owner->perf_event_mutex.
3765 */
3766 smp_read_barrier_depends();
3767 if (owner) {
3768 /*
3769 * Since delayed_put_task_struct() also drops the last
3770 * task reference we can safely take a new reference
3771 * while holding the rcu_read_lock().
3772 */
3773 get_task_struct(owner);
3774 }
3775 rcu_read_unlock();
3776
3777 if (owner) {
f63a8daa
PZ
3778 /*
3779 * If we're here through perf_event_exit_task() we're already
3780 * holding ctx->mutex which would be an inversion wrt. the
3781 * normal lock order.
3782 *
3783 * However we can safely take this lock because its the child
3784 * ctx->mutex.
3785 */
3786 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3787
8882135b
PZ
3788 /*
3789 * We have to re-check the event->owner field, if it is cleared
3790 * we raced with perf_event_exit_task(), acquiring the mutex
3791 * ensured they're done, and we can proceed with freeing the
3792 * event.
3793 */
3794 if (event->owner)
3795 list_del_init(&event->owner_entry);
3796 mutex_unlock(&owner->perf_event_mutex);
3797 put_task_struct(owner);
3798 }
f8697762
JO
3799}
3800
f8697762
JO
3801static void put_event(struct perf_event *event)
3802{
a83fe28e 3803 struct perf_event_context *ctx;
f8697762
JO
3804
3805 if (!atomic_long_dec_and_test(&event->refcount))
3806 return;
3807
3808 if (!is_kernel_event(event))
3809 perf_remove_from_owner(event);
8882135b 3810
683ede43
PZ
3811 /*
3812 * There are two ways this annotation is useful:
3813 *
3814 * 1) there is a lock recursion from perf_event_exit_task
3815 * see the comment there.
3816 *
3817 * 2) there is a lock-inversion with mmap_sem through
b15f495b 3818 * perf_read_group(), which takes faults while
683ede43
PZ
3819 * holding ctx->mutex, however this is called after
3820 * the last filedesc died, so there is no possibility
3821 * to trigger the AB-BA case.
3822 */
a83fe28e
PZ
3823 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3824 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3825 perf_remove_from_context(event, true);
d415a7f1 3826 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3827
3828 _free_event(event);
a6fa941d
AV
3829}
3830
683ede43
PZ
3831int perf_event_release_kernel(struct perf_event *event)
3832{
3833 put_event(event);
3834 return 0;
3835}
3836EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3837
8b10c5e2
PZ
3838/*
3839 * Called when the last reference to the file is gone.
3840 */
a6fa941d
AV
3841static int perf_release(struct inode *inode, struct file *file)
3842{
3843 put_event(file->private_data);
3844 return 0;
fb0459d7 3845}
fb0459d7 3846
fadfe7be
JO
3847/*
3848 * Remove all orphanes events from the context.
3849 */
3850static void orphans_remove_work(struct work_struct *work)
3851{
3852 struct perf_event_context *ctx;
3853 struct perf_event *event, *tmp;
3854
3855 ctx = container_of(work, struct perf_event_context,
3856 orphans_remove.work);
3857
3858 mutex_lock(&ctx->mutex);
3859 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3860 struct perf_event *parent_event = event->parent;
3861
3862 if (!is_orphaned_child(event))
3863 continue;
3864
3865 perf_remove_from_context(event, true);
3866
3867 mutex_lock(&parent_event->child_mutex);
3868 list_del_init(&event->child_list);
3869 mutex_unlock(&parent_event->child_mutex);
3870
3871 free_event(event);
3872 put_event(parent_event);
3873 }
3874
3875 raw_spin_lock_irq(&ctx->lock);
3876 ctx->orphans_remove_sched = false;
3877 raw_spin_unlock_irq(&ctx->lock);
3878 mutex_unlock(&ctx->mutex);
3879
3880 put_ctx(ctx);
3881}
3882
59ed446f 3883u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3884{
cdd6c482 3885 struct perf_event *child;
e53c0994
PZ
3886 u64 total = 0;
3887
59ed446f
PZ
3888 *enabled = 0;
3889 *running = 0;
3890
6f10581a 3891 mutex_lock(&event->child_mutex);
01add3ea 3892
7d88962e 3893 (void)perf_event_read(event, false);
01add3ea
SB
3894 total += perf_event_count(event);
3895
59ed446f
PZ
3896 *enabled += event->total_time_enabled +
3897 atomic64_read(&event->child_total_time_enabled);
3898 *running += event->total_time_running +
3899 atomic64_read(&event->child_total_time_running);
3900
3901 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3902 (void)perf_event_read(child, false);
01add3ea 3903 total += perf_event_count(child);
59ed446f
PZ
3904 *enabled += child->total_time_enabled;
3905 *running += child->total_time_running;
3906 }
6f10581a 3907 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3908
3909 return total;
3910}
fb0459d7 3911EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3912
7d88962e 3913static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3914 u64 read_format, u64 *values)
3dab77fb 3915{
fa8c2693
PZ
3916 struct perf_event *sub;
3917 int n = 1; /* skip @nr */
7d88962e 3918 int ret;
f63a8daa 3919
7d88962e
SB
3920 ret = perf_event_read(leader, true);
3921 if (ret)
3922 return ret;
abf4868b 3923
fa8c2693
PZ
3924 /*
3925 * Since we co-schedule groups, {enabled,running} times of siblings
3926 * will be identical to those of the leader, so we only publish one
3927 * set.
3928 */
3929 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3930 values[n++] += leader->total_time_enabled +
3931 atomic64_read(&leader->child_total_time_enabled);
3932 }
3dab77fb 3933
fa8c2693
PZ
3934 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3935 values[n++] += leader->total_time_running +
3936 atomic64_read(&leader->child_total_time_running);
3937 }
3938
3939 /*
3940 * Write {count,id} tuples for every sibling.
3941 */
3942 values[n++] += perf_event_count(leader);
abf4868b
PZ
3943 if (read_format & PERF_FORMAT_ID)
3944 values[n++] = primary_event_id(leader);
3dab77fb 3945
fa8c2693
PZ
3946 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3947 values[n++] += perf_event_count(sub);
3948 if (read_format & PERF_FORMAT_ID)
3949 values[n++] = primary_event_id(sub);
3950 }
7d88962e
SB
3951
3952 return 0;
fa8c2693 3953}
3dab77fb 3954
fa8c2693
PZ
3955static int perf_read_group(struct perf_event *event,
3956 u64 read_format, char __user *buf)
3957{
3958 struct perf_event *leader = event->group_leader, *child;
3959 struct perf_event_context *ctx = leader->ctx;
7d88962e 3960 int ret;
fa8c2693 3961 u64 *values;
3dab77fb 3962
fa8c2693 3963 lockdep_assert_held(&ctx->mutex);
3dab77fb 3964
fa8c2693
PZ
3965 values = kzalloc(event->read_size, GFP_KERNEL);
3966 if (!values)
3967 return -ENOMEM;
3dab77fb 3968
fa8c2693
PZ
3969 values[0] = 1 + leader->nr_siblings;
3970
3971 /*
3972 * By locking the child_mutex of the leader we effectively
3973 * lock the child list of all siblings.. XXX explain how.
3974 */
3975 mutex_lock(&leader->child_mutex);
abf4868b 3976
7d88962e
SB
3977 ret = __perf_read_group_add(leader, read_format, values);
3978 if (ret)
3979 goto unlock;
3980
3981 list_for_each_entry(child, &leader->child_list, child_list) {
3982 ret = __perf_read_group_add(child, read_format, values);
3983 if (ret)
3984 goto unlock;
3985 }
abf4868b 3986
fa8c2693 3987 mutex_unlock(&leader->child_mutex);
abf4868b 3988
7d88962e 3989 ret = event->read_size;
fa8c2693
PZ
3990 if (copy_to_user(buf, values, event->read_size))
3991 ret = -EFAULT;
7d88962e 3992 goto out;
fa8c2693 3993
7d88962e
SB
3994unlock:
3995 mutex_unlock(&leader->child_mutex);
3996out:
fa8c2693 3997 kfree(values);
abf4868b 3998 return ret;
3dab77fb
PZ
3999}
4000
b15f495b 4001static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4002 u64 read_format, char __user *buf)
4003{
59ed446f 4004 u64 enabled, running;
3dab77fb
PZ
4005 u64 values[4];
4006 int n = 0;
4007
59ed446f
PZ
4008 values[n++] = perf_event_read_value(event, &enabled, &running);
4009 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4010 values[n++] = enabled;
4011 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4012 values[n++] = running;
3dab77fb 4013 if (read_format & PERF_FORMAT_ID)
cdd6c482 4014 values[n++] = primary_event_id(event);
3dab77fb
PZ
4015
4016 if (copy_to_user(buf, values, n * sizeof(u64)))
4017 return -EFAULT;
4018
4019 return n * sizeof(u64);
4020}
4021
dc633982
JO
4022static bool is_event_hup(struct perf_event *event)
4023{
4024 bool no_children;
4025
4026 if (event->state != PERF_EVENT_STATE_EXIT)
4027 return false;
4028
4029 mutex_lock(&event->child_mutex);
4030 no_children = list_empty(&event->child_list);
4031 mutex_unlock(&event->child_mutex);
4032 return no_children;
4033}
4034
0793a61d 4035/*
cdd6c482 4036 * Read the performance event - simple non blocking version for now
0793a61d
TG
4037 */
4038static ssize_t
b15f495b 4039__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4040{
cdd6c482 4041 u64 read_format = event->attr.read_format;
3dab77fb 4042 int ret;
0793a61d 4043
3b6f9e5c 4044 /*
cdd6c482 4045 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4046 * error state (i.e. because it was pinned but it couldn't be
4047 * scheduled on to the CPU at some point).
4048 */
cdd6c482 4049 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4050 return 0;
4051
c320c7b7 4052 if (count < event->read_size)
3dab77fb
PZ
4053 return -ENOSPC;
4054
cdd6c482 4055 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4056 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4057 ret = perf_read_group(event, read_format, buf);
3dab77fb 4058 else
b15f495b 4059 ret = perf_read_one(event, read_format, buf);
0793a61d 4060
3dab77fb 4061 return ret;
0793a61d
TG
4062}
4063
0793a61d
TG
4064static ssize_t
4065perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4066{
cdd6c482 4067 struct perf_event *event = file->private_data;
f63a8daa
PZ
4068 struct perf_event_context *ctx;
4069 int ret;
0793a61d 4070
f63a8daa 4071 ctx = perf_event_ctx_lock(event);
b15f495b 4072 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4073 perf_event_ctx_unlock(event, ctx);
4074
4075 return ret;
0793a61d
TG
4076}
4077
4078static unsigned int perf_poll(struct file *file, poll_table *wait)
4079{
cdd6c482 4080 struct perf_event *event = file->private_data;
76369139 4081 struct ring_buffer *rb;
61b67684 4082 unsigned int events = POLLHUP;
c7138f37 4083
e708d7ad 4084 poll_wait(file, &event->waitq, wait);
179033b3 4085
dc633982 4086 if (is_event_hup(event))
179033b3 4087 return events;
c7138f37 4088
10c6db11 4089 /*
9bb5d40c
PZ
4090 * Pin the event->rb by taking event->mmap_mutex; otherwise
4091 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4092 */
4093 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4094 rb = event->rb;
4095 if (rb)
76369139 4096 events = atomic_xchg(&rb->poll, 0);
10c6db11 4097 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4098 return events;
4099}
4100
f63a8daa 4101static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4102{
7d88962e 4103 (void)perf_event_read(event, false);
e7850595 4104 local64_set(&event->count, 0);
cdd6c482 4105 perf_event_update_userpage(event);
3df5edad
PZ
4106}
4107
c93f7669 4108/*
cdd6c482
IM
4109 * Holding the top-level event's child_mutex means that any
4110 * descendant process that has inherited this event will block
4111 * in sync_child_event if it goes to exit, thus satisfying the
4112 * task existence requirements of perf_event_enable/disable.
c93f7669 4113 */
cdd6c482
IM
4114static void perf_event_for_each_child(struct perf_event *event,
4115 void (*func)(struct perf_event *))
3df5edad 4116{
cdd6c482 4117 struct perf_event *child;
3df5edad 4118
cdd6c482 4119 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4120
cdd6c482
IM
4121 mutex_lock(&event->child_mutex);
4122 func(event);
4123 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4124 func(child);
cdd6c482 4125 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4126}
4127
cdd6c482
IM
4128static void perf_event_for_each(struct perf_event *event,
4129 void (*func)(struct perf_event *))
3df5edad 4130{
cdd6c482
IM
4131 struct perf_event_context *ctx = event->ctx;
4132 struct perf_event *sibling;
3df5edad 4133
f63a8daa
PZ
4134 lockdep_assert_held(&ctx->mutex);
4135
cdd6c482 4136 event = event->group_leader;
75f937f2 4137
cdd6c482 4138 perf_event_for_each_child(event, func);
cdd6c482 4139 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4140 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4141}
4142
c7999c6f
PZ
4143struct period_event {
4144 struct perf_event *event;
08247e31 4145 u64 value;
c7999c6f 4146};
08247e31 4147
c7999c6f
PZ
4148static int __perf_event_period(void *info)
4149{
4150 struct period_event *pe = info;
4151 struct perf_event *event = pe->event;
4152 struct perf_event_context *ctx = event->ctx;
4153 u64 value = pe->value;
4154 bool active;
08247e31 4155
c7999c6f 4156 raw_spin_lock(&ctx->lock);
cdd6c482 4157 if (event->attr.freq) {
cdd6c482 4158 event->attr.sample_freq = value;
08247e31 4159 } else {
cdd6c482
IM
4160 event->attr.sample_period = value;
4161 event->hw.sample_period = value;
08247e31 4162 }
bad7192b
PZ
4163
4164 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4165 if (active) {
4166 perf_pmu_disable(ctx->pmu);
4167 event->pmu->stop(event, PERF_EF_UPDATE);
4168 }
4169
4170 local64_set(&event->hw.period_left, 0);
4171
4172 if (active) {
4173 event->pmu->start(event, PERF_EF_RELOAD);
4174 perf_pmu_enable(ctx->pmu);
4175 }
c7999c6f 4176 raw_spin_unlock(&ctx->lock);
bad7192b 4177
c7999c6f
PZ
4178 return 0;
4179}
4180
4181static int perf_event_period(struct perf_event *event, u64 __user *arg)
4182{
4183 struct period_event pe = { .event = event, };
4184 struct perf_event_context *ctx = event->ctx;
4185 struct task_struct *task;
4186 u64 value;
4187
4188 if (!is_sampling_event(event))
4189 return -EINVAL;
4190
4191 if (copy_from_user(&value, arg, sizeof(value)))
4192 return -EFAULT;
4193
4194 if (!value)
4195 return -EINVAL;
4196
4197 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4198 return -EINVAL;
4199
4200 task = ctx->task;
4201 pe.value = value;
4202
4203 if (!task) {
4204 cpu_function_call(event->cpu, __perf_event_period, &pe);
4205 return 0;
4206 }
4207
4208retry:
4209 if (!task_function_call(task, __perf_event_period, &pe))
4210 return 0;
4211
4212 raw_spin_lock_irq(&ctx->lock);
4213 if (ctx->is_active) {
4214 raw_spin_unlock_irq(&ctx->lock);
4215 task = ctx->task;
4216 goto retry;
4217 }
4218
4219 __perf_event_period(&pe);
e625cce1 4220 raw_spin_unlock_irq(&ctx->lock);
08247e31 4221
c7999c6f 4222 return 0;
08247e31
PZ
4223}
4224
ac9721f3
PZ
4225static const struct file_operations perf_fops;
4226
2903ff01 4227static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4228{
2903ff01
AV
4229 struct fd f = fdget(fd);
4230 if (!f.file)
4231 return -EBADF;
ac9721f3 4232
2903ff01
AV
4233 if (f.file->f_op != &perf_fops) {
4234 fdput(f);
4235 return -EBADF;
ac9721f3 4236 }
2903ff01
AV
4237 *p = f;
4238 return 0;
ac9721f3
PZ
4239}
4240
4241static int perf_event_set_output(struct perf_event *event,
4242 struct perf_event *output_event);
6fb2915d 4243static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4244static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4245
f63a8daa 4246static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4247{
cdd6c482 4248 void (*func)(struct perf_event *);
3df5edad 4249 u32 flags = arg;
d859e29f
PM
4250
4251 switch (cmd) {
cdd6c482 4252 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4253 func = _perf_event_enable;
d859e29f 4254 break;
cdd6c482 4255 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4256 func = _perf_event_disable;
79f14641 4257 break;
cdd6c482 4258 case PERF_EVENT_IOC_RESET:
f63a8daa 4259 func = _perf_event_reset;
6de6a7b9 4260 break;
3df5edad 4261
cdd6c482 4262 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4263 return _perf_event_refresh(event, arg);
08247e31 4264
cdd6c482
IM
4265 case PERF_EVENT_IOC_PERIOD:
4266 return perf_event_period(event, (u64 __user *)arg);
08247e31 4267
cf4957f1
JO
4268 case PERF_EVENT_IOC_ID:
4269 {
4270 u64 id = primary_event_id(event);
4271
4272 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4273 return -EFAULT;
4274 return 0;
4275 }
4276
cdd6c482 4277 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4278 {
ac9721f3 4279 int ret;
ac9721f3 4280 if (arg != -1) {
2903ff01
AV
4281 struct perf_event *output_event;
4282 struct fd output;
4283 ret = perf_fget_light(arg, &output);
4284 if (ret)
4285 return ret;
4286 output_event = output.file->private_data;
4287 ret = perf_event_set_output(event, output_event);
4288 fdput(output);
4289 } else {
4290 ret = perf_event_set_output(event, NULL);
ac9721f3 4291 }
ac9721f3
PZ
4292 return ret;
4293 }
a4be7c27 4294
6fb2915d
LZ
4295 case PERF_EVENT_IOC_SET_FILTER:
4296 return perf_event_set_filter(event, (void __user *)arg);
4297
2541517c
AS
4298 case PERF_EVENT_IOC_SET_BPF:
4299 return perf_event_set_bpf_prog(event, arg);
4300
d859e29f 4301 default:
3df5edad 4302 return -ENOTTY;
d859e29f 4303 }
3df5edad
PZ
4304
4305 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4306 perf_event_for_each(event, func);
3df5edad 4307 else
cdd6c482 4308 perf_event_for_each_child(event, func);
3df5edad
PZ
4309
4310 return 0;
d859e29f
PM
4311}
4312
f63a8daa
PZ
4313static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4314{
4315 struct perf_event *event = file->private_data;
4316 struct perf_event_context *ctx;
4317 long ret;
4318
4319 ctx = perf_event_ctx_lock(event);
4320 ret = _perf_ioctl(event, cmd, arg);
4321 perf_event_ctx_unlock(event, ctx);
4322
4323 return ret;
4324}
4325
b3f20785
PM
4326#ifdef CONFIG_COMPAT
4327static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4328 unsigned long arg)
4329{
4330 switch (_IOC_NR(cmd)) {
4331 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4332 case _IOC_NR(PERF_EVENT_IOC_ID):
4333 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4334 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4335 cmd &= ~IOCSIZE_MASK;
4336 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4337 }
4338 break;
4339 }
4340 return perf_ioctl(file, cmd, arg);
4341}
4342#else
4343# define perf_compat_ioctl NULL
4344#endif
4345
cdd6c482 4346int perf_event_task_enable(void)
771d7cde 4347{
f63a8daa 4348 struct perf_event_context *ctx;
cdd6c482 4349 struct perf_event *event;
771d7cde 4350
cdd6c482 4351 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4352 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4353 ctx = perf_event_ctx_lock(event);
4354 perf_event_for_each_child(event, _perf_event_enable);
4355 perf_event_ctx_unlock(event, ctx);
4356 }
cdd6c482 4357 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4358
4359 return 0;
4360}
4361
cdd6c482 4362int perf_event_task_disable(void)
771d7cde 4363{
f63a8daa 4364 struct perf_event_context *ctx;
cdd6c482 4365 struct perf_event *event;
771d7cde 4366
cdd6c482 4367 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4368 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4369 ctx = perf_event_ctx_lock(event);
4370 perf_event_for_each_child(event, _perf_event_disable);
4371 perf_event_ctx_unlock(event, ctx);
4372 }
cdd6c482 4373 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4374
4375 return 0;
4376}
4377
cdd6c482 4378static int perf_event_index(struct perf_event *event)
194002b2 4379{
a4eaf7f1
PZ
4380 if (event->hw.state & PERF_HES_STOPPED)
4381 return 0;
4382
cdd6c482 4383 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4384 return 0;
4385
35edc2a5 4386 return event->pmu->event_idx(event);
194002b2
PZ
4387}
4388
c4794295 4389static void calc_timer_values(struct perf_event *event,
e3f3541c 4390 u64 *now,
7f310a5d
EM
4391 u64 *enabled,
4392 u64 *running)
c4794295 4393{
e3f3541c 4394 u64 ctx_time;
c4794295 4395
e3f3541c
PZ
4396 *now = perf_clock();
4397 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4398 *enabled = ctx_time - event->tstamp_enabled;
4399 *running = ctx_time - event->tstamp_running;
4400}
4401
fa731587
PZ
4402static void perf_event_init_userpage(struct perf_event *event)
4403{
4404 struct perf_event_mmap_page *userpg;
4405 struct ring_buffer *rb;
4406
4407 rcu_read_lock();
4408 rb = rcu_dereference(event->rb);
4409 if (!rb)
4410 goto unlock;
4411
4412 userpg = rb->user_page;
4413
4414 /* Allow new userspace to detect that bit 0 is deprecated */
4415 userpg->cap_bit0_is_deprecated = 1;
4416 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4417 userpg->data_offset = PAGE_SIZE;
4418 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4419
4420unlock:
4421 rcu_read_unlock();
4422}
4423
c1317ec2
AL
4424void __weak arch_perf_update_userpage(
4425 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4426{
4427}
4428
38ff667b
PZ
4429/*
4430 * Callers need to ensure there can be no nesting of this function, otherwise
4431 * the seqlock logic goes bad. We can not serialize this because the arch
4432 * code calls this from NMI context.
4433 */
cdd6c482 4434void perf_event_update_userpage(struct perf_event *event)
37d81828 4435{
cdd6c482 4436 struct perf_event_mmap_page *userpg;
76369139 4437 struct ring_buffer *rb;
e3f3541c 4438 u64 enabled, running, now;
38ff667b
PZ
4439
4440 rcu_read_lock();
5ec4c599
PZ
4441 rb = rcu_dereference(event->rb);
4442 if (!rb)
4443 goto unlock;
4444
0d641208
EM
4445 /*
4446 * compute total_time_enabled, total_time_running
4447 * based on snapshot values taken when the event
4448 * was last scheduled in.
4449 *
4450 * we cannot simply called update_context_time()
4451 * because of locking issue as we can be called in
4452 * NMI context
4453 */
e3f3541c 4454 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4455
76369139 4456 userpg = rb->user_page;
7b732a75
PZ
4457 /*
4458 * Disable preemption so as to not let the corresponding user-space
4459 * spin too long if we get preempted.
4460 */
4461 preempt_disable();
37d81828 4462 ++userpg->lock;
92f22a38 4463 barrier();
cdd6c482 4464 userpg->index = perf_event_index(event);
b5e58793 4465 userpg->offset = perf_event_count(event);
365a4038 4466 if (userpg->index)
e7850595 4467 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4468
0d641208 4469 userpg->time_enabled = enabled +
cdd6c482 4470 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4471
0d641208 4472 userpg->time_running = running +
cdd6c482 4473 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4474
c1317ec2 4475 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4476
92f22a38 4477 barrier();
37d81828 4478 ++userpg->lock;
7b732a75 4479 preempt_enable();
38ff667b 4480unlock:
7b732a75 4481 rcu_read_unlock();
37d81828
PM
4482}
4483
906010b2
PZ
4484static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4485{
4486 struct perf_event *event = vma->vm_file->private_data;
76369139 4487 struct ring_buffer *rb;
906010b2
PZ
4488 int ret = VM_FAULT_SIGBUS;
4489
4490 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4491 if (vmf->pgoff == 0)
4492 ret = 0;
4493 return ret;
4494 }
4495
4496 rcu_read_lock();
76369139
FW
4497 rb = rcu_dereference(event->rb);
4498 if (!rb)
906010b2
PZ
4499 goto unlock;
4500
4501 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4502 goto unlock;
4503
76369139 4504 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4505 if (!vmf->page)
4506 goto unlock;
4507
4508 get_page(vmf->page);
4509 vmf->page->mapping = vma->vm_file->f_mapping;
4510 vmf->page->index = vmf->pgoff;
4511
4512 ret = 0;
4513unlock:
4514 rcu_read_unlock();
4515
4516 return ret;
4517}
4518
10c6db11
PZ
4519static void ring_buffer_attach(struct perf_event *event,
4520 struct ring_buffer *rb)
4521{
b69cf536 4522 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4523 unsigned long flags;
4524
b69cf536
PZ
4525 if (event->rb) {
4526 /*
4527 * Should be impossible, we set this when removing
4528 * event->rb_entry and wait/clear when adding event->rb_entry.
4529 */
4530 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4531
b69cf536 4532 old_rb = event->rb;
b69cf536
PZ
4533 spin_lock_irqsave(&old_rb->event_lock, flags);
4534 list_del_rcu(&event->rb_entry);
4535 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4536
2f993cf0
ON
4537 event->rcu_batches = get_state_synchronize_rcu();
4538 event->rcu_pending = 1;
b69cf536 4539 }
10c6db11 4540
b69cf536 4541 if (rb) {
2f993cf0
ON
4542 if (event->rcu_pending) {
4543 cond_synchronize_rcu(event->rcu_batches);
4544 event->rcu_pending = 0;
4545 }
4546
b69cf536
PZ
4547 spin_lock_irqsave(&rb->event_lock, flags);
4548 list_add_rcu(&event->rb_entry, &rb->event_list);
4549 spin_unlock_irqrestore(&rb->event_lock, flags);
4550 }
4551
4552 rcu_assign_pointer(event->rb, rb);
4553
4554 if (old_rb) {
4555 ring_buffer_put(old_rb);
4556 /*
4557 * Since we detached before setting the new rb, so that we
4558 * could attach the new rb, we could have missed a wakeup.
4559 * Provide it now.
4560 */
4561 wake_up_all(&event->waitq);
4562 }
10c6db11
PZ
4563}
4564
4565static void ring_buffer_wakeup(struct perf_event *event)
4566{
4567 struct ring_buffer *rb;
4568
4569 rcu_read_lock();
4570 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4571 if (rb) {
4572 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4573 wake_up_all(&event->waitq);
4574 }
10c6db11
PZ
4575 rcu_read_unlock();
4576}
4577
fdc26706 4578struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4579{
76369139 4580 struct ring_buffer *rb;
7b732a75 4581
ac9721f3 4582 rcu_read_lock();
76369139
FW
4583 rb = rcu_dereference(event->rb);
4584 if (rb) {
4585 if (!atomic_inc_not_zero(&rb->refcount))
4586 rb = NULL;
ac9721f3
PZ
4587 }
4588 rcu_read_unlock();
4589
76369139 4590 return rb;
ac9721f3
PZ
4591}
4592
fdc26706 4593void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4594{
76369139 4595 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4596 return;
7b732a75 4597
9bb5d40c 4598 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4599
76369139 4600 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4601}
4602
4603static void perf_mmap_open(struct vm_area_struct *vma)
4604{
cdd6c482 4605 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4606
cdd6c482 4607 atomic_inc(&event->mmap_count);
9bb5d40c 4608 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4609
45bfb2e5
PZ
4610 if (vma->vm_pgoff)
4611 atomic_inc(&event->rb->aux_mmap_count);
4612
1e0fb9ec
AL
4613 if (event->pmu->event_mapped)
4614 event->pmu->event_mapped(event);
7b732a75
PZ
4615}
4616
9bb5d40c
PZ
4617/*
4618 * A buffer can be mmap()ed multiple times; either directly through the same
4619 * event, or through other events by use of perf_event_set_output().
4620 *
4621 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4622 * the buffer here, where we still have a VM context. This means we need
4623 * to detach all events redirecting to us.
4624 */
7b732a75
PZ
4625static void perf_mmap_close(struct vm_area_struct *vma)
4626{
cdd6c482 4627 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4628
b69cf536 4629 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4630 struct user_struct *mmap_user = rb->mmap_user;
4631 int mmap_locked = rb->mmap_locked;
4632 unsigned long size = perf_data_size(rb);
789f90fc 4633
1e0fb9ec
AL
4634 if (event->pmu->event_unmapped)
4635 event->pmu->event_unmapped(event);
4636
45bfb2e5
PZ
4637 /*
4638 * rb->aux_mmap_count will always drop before rb->mmap_count and
4639 * event->mmap_count, so it is ok to use event->mmap_mutex to
4640 * serialize with perf_mmap here.
4641 */
4642 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4643 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4644 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4645 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4646
4647 rb_free_aux(rb);
4648 mutex_unlock(&event->mmap_mutex);
4649 }
4650
9bb5d40c
PZ
4651 atomic_dec(&rb->mmap_count);
4652
4653 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4654 goto out_put;
9bb5d40c 4655
b69cf536 4656 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4657 mutex_unlock(&event->mmap_mutex);
4658
4659 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4660 if (atomic_read(&rb->mmap_count))
4661 goto out_put;
ac9721f3 4662
9bb5d40c
PZ
4663 /*
4664 * No other mmap()s, detach from all other events that might redirect
4665 * into the now unreachable buffer. Somewhat complicated by the
4666 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4667 */
4668again:
4669 rcu_read_lock();
4670 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4671 if (!atomic_long_inc_not_zero(&event->refcount)) {
4672 /*
4673 * This event is en-route to free_event() which will
4674 * detach it and remove it from the list.
4675 */
4676 continue;
4677 }
4678 rcu_read_unlock();
789f90fc 4679
9bb5d40c
PZ
4680 mutex_lock(&event->mmap_mutex);
4681 /*
4682 * Check we didn't race with perf_event_set_output() which can
4683 * swizzle the rb from under us while we were waiting to
4684 * acquire mmap_mutex.
4685 *
4686 * If we find a different rb; ignore this event, a next
4687 * iteration will no longer find it on the list. We have to
4688 * still restart the iteration to make sure we're not now
4689 * iterating the wrong list.
4690 */
b69cf536
PZ
4691 if (event->rb == rb)
4692 ring_buffer_attach(event, NULL);
4693
cdd6c482 4694 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4695 put_event(event);
ac9721f3 4696
9bb5d40c
PZ
4697 /*
4698 * Restart the iteration; either we're on the wrong list or
4699 * destroyed its integrity by doing a deletion.
4700 */
4701 goto again;
7b732a75 4702 }
9bb5d40c
PZ
4703 rcu_read_unlock();
4704
4705 /*
4706 * It could be there's still a few 0-ref events on the list; they'll
4707 * get cleaned up by free_event() -- they'll also still have their
4708 * ref on the rb and will free it whenever they are done with it.
4709 *
4710 * Aside from that, this buffer is 'fully' detached and unmapped,
4711 * undo the VM accounting.
4712 */
4713
4714 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4715 vma->vm_mm->pinned_vm -= mmap_locked;
4716 free_uid(mmap_user);
4717
b69cf536 4718out_put:
9bb5d40c 4719 ring_buffer_put(rb); /* could be last */
37d81828
PM
4720}
4721
f0f37e2f 4722static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4723 .open = perf_mmap_open,
45bfb2e5 4724 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4725 .fault = perf_mmap_fault,
4726 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4727};
4728
4729static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4730{
cdd6c482 4731 struct perf_event *event = file->private_data;
22a4f650 4732 unsigned long user_locked, user_lock_limit;
789f90fc 4733 struct user_struct *user = current_user();
22a4f650 4734 unsigned long locked, lock_limit;
45bfb2e5 4735 struct ring_buffer *rb = NULL;
7b732a75
PZ
4736 unsigned long vma_size;
4737 unsigned long nr_pages;
45bfb2e5 4738 long user_extra = 0, extra = 0;
d57e34fd 4739 int ret = 0, flags = 0;
37d81828 4740
c7920614
PZ
4741 /*
4742 * Don't allow mmap() of inherited per-task counters. This would
4743 * create a performance issue due to all children writing to the
76369139 4744 * same rb.
c7920614
PZ
4745 */
4746 if (event->cpu == -1 && event->attr.inherit)
4747 return -EINVAL;
4748
43a21ea8 4749 if (!(vma->vm_flags & VM_SHARED))
37d81828 4750 return -EINVAL;
7b732a75
PZ
4751
4752 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4753
4754 if (vma->vm_pgoff == 0) {
4755 nr_pages = (vma_size / PAGE_SIZE) - 1;
4756 } else {
4757 /*
4758 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4759 * mapped, all subsequent mappings should have the same size
4760 * and offset. Must be above the normal perf buffer.
4761 */
4762 u64 aux_offset, aux_size;
4763
4764 if (!event->rb)
4765 return -EINVAL;
4766
4767 nr_pages = vma_size / PAGE_SIZE;
4768
4769 mutex_lock(&event->mmap_mutex);
4770 ret = -EINVAL;
4771
4772 rb = event->rb;
4773 if (!rb)
4774 goto aux_unlock;
4775
4776 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4777 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4778
4779 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4780 goto aux_unlock;
4781
4782 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4783 goto aux_unlock;
4784
4785 /* already mapped with a different offset */
4786 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4787 goto aux_unlock;
4788
4789 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4790 goto aux_unlock;
4791
4792 /* already mapped with a different size */
4793 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4794 goto aux_unlock;
4795
4796 if (!is_power_of_2(nr_pages))
4797 goto aux_unlock;
4798
4799 if (!atomic_inc_not_zero(&rb->mmap_count))
4800 goto aux_unlock;
4801
4802 if (rb_has_aux(rb)) {
4803 atomic_inc(&rb->aux_mmap_count);
4804 ret = 0;
4805 goto unlock;
4806 }
4807
4808 atomic_set(&rb->aux_mmap_count, 1);
4809 user_extra = nr_pages;
4810
4811 goto accounting;
4812 }
7b732a75 4813
7730d865 4814 /*
76369139 4815 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4816 * can do bitmasks instead of modulo.
4817 */
2ed11312 4818 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4819 return -EINVAL;
4820
7b732a75 4821 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4822 return -EINVAL;
4823
cdd6c482 4824 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4825again:
cdd6c482 4826 mutex_lock(&event->mmap_mutex);
76369139 4827 if (event->rb) {
9bb5d40c 4828 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4829 ret = -EINVAL;
9bb5d40c
PZ
4830 goto unlock;
4831 }
4832
4833 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4834 /*
4835 * Raced against perf_mmap_close() through
4836 * perf_event_set_output(). Try again, hope for better
4837 * luck.
4838 */
4839 mutex_unlock(&event->mmap_mutex);
4840 goto again;
4841 }
4842
ebb3c4c4
PZ
4843 goto unlock;
4844 }
4845
789f90fc 4846 user_extra = nr_pages + 1;
45bfb2e5
PZ
4847
4848accounting:
cdd6c482 4849 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4850
4851 /*
4852 * Increase the limit linearly with more CPUs:
4853 */
4854 user_lock_limit *= num_online_cpus();
4855
789f90fc 4856 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4857
789f90fc
PZ
4858 if (user_locked > user_lock_limit)
4859 extra = user_locked - user_lock_limit;
7b732a75 4860
78d7d407 4861 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4862 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4863 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4864
459ec28a
IM
4865 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4866 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4867 ret = -EPERM;
4868 goto unlock;
4869 }
7b732a75 4870
45bfb2e5 4871 WARN_ON(!rb && event->rb);
906010b2 4872
d57e34fd 4873 if (vma->vm_flags & VM_WRITE)
76369139 4874 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4875
76369139 4876 if (!rb) {
45bfb2e5
PZ
4877 rb = rb_alloc(nr_pages,
4878 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4879 event->cpu, flags);
26cb63ad 4880
45bfb2e5
PZ
4881 if (!rb) {
4882 ret = -ENOMEM;
4883 goto unlock;
4884 }
43a21ea8 4885
45bfb2e5
PZ
4886 atomic_set(&rb->mmap_count, 1);
4887 rb->mmap_user = get_current_user();
4888 rb->mmap_locked = extra;
26cb63ad 4889
45bfb2e5 4890 ring_buffer_attach(event, rb);
ac9721f3 4891
45bfb2e5
PZ
4892 perf_event_init_userpage(event);
4893 perf_event_update_userpage(event);
4894 } else {
1a594131
AS
4895 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4896 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4897 if (!ret)
4898 rb->aux_mmap_locked = extra;
4899 }
9a0f05cb 4900
ebb3c4c4 4901unlock:
45bfb2e5
PZ
4902 if (!ret) {
4903 atomic_long_add(user_extra, &user->locked_vm);
4904 vma->vm_mm->pinned_vm += extra;
4905
ac9721f3 4906 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4907 } else if (rb) {
4908 atomic_dec(&rb->mmap_count);
4909 }
4910aux_unlock:
cdd6c482 4911 mutex_unlock(&event->mmap_mutex);
37d81828 4912
9bb5d40c
PZ
4913 /*
4914 * Since pinned accounting is per vm we cannot allow fork() to copy our
4915 * vma.
4916 */
26cb63ad 4917 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4918 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4919
1e0fb9ec
AL
4920 if (event->pmu->event_mapped)
4921 event->pmu->event_mapped(event);
4922
7b732a75 4923 return ret;
37d81828
PM
4924}
4925
3c446b3d
PZ
4926static int perf_fasync(int fd, struct file *filp, int on)
4927{
496ad9aa 4928 struct inode *inode = file_inode(filp);
cdd6c482 4929 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4930 int retval;
4931
4932 mutex_lock(&inode->i_mutex);
cdd6c482 4933 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4934 mutex_unlock(&inode->i_mutex);
4935
4936 if (retval < 0)
4937 return retval;
4938
4939 return 0;
4940}
4941
0793a61d 4942static const struct file_operations perf_fops = {
3326c1ce 4943 .llseek = no_llseek,
0793a61d
TG
4944 .release = perf_release,
4945 .read = perf_read,
4946 .poll = perf_poll,
d859e29f 4947 .unlocked_ioctl = perf_ioctl,
b3f20785 4948 .compat_ioctl = perf_compat_ioctl,
37d81828 4949 .mmap = perf_mmap,
3c446b3d 4950 .fasync = perf_fasync,
0793a61d
TG
4951};
4952
925d519a 4953/*
cdd6c482 4954 * Perf event wakeup
925d519a
PZ
4955 *
4956 * If there's data, ensure we set the poll() state and publish everything
4957 * to user-space before waking everybody up.
4958 */
4959
fed66e2c
PZ
4960static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4961{
4962 /* only the parent has fasync state */
4963 if (event->parent)
4964 event = event->parent;
4965 return &event->fasync;
4966}
4967
cdd6c482 4968void perf_event_wakeup(struct perf_event *event)
925d519a 4969{
10c6db11 4970 ring_buffer_wakeup(event);
4c9e2542 4971
cdd6c482 4972 if (event->pending_kill) {
fed66e2c 4973 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4974 event->pending_kill = 0;
4c9e2542 4975 }
925d519a
PZ
4976}
4977
e360adbe 4978static void perf_pending_event(struct irq_work *entry)
79f14641 4979{
cdd6c482
IM
4980 struct perf_event *event = container_of(entry,
4981 struct perf_event, pending);
d525211f
PZ
4982 int rctx;
4983
4984 rctx = perf_swevent_get_recursion_context();
4985 /*
4986 * If we 'fail' here, that's OK, it means recursion is already disabled
4987 * and we won't recurse 'further'.
4988 */
79f14641 4989
cdd6c482
IM
4990 if (event->pending_disable) {
4991 event->pending_disable = 0;
4992 __perf_event_disable(event);
79f14641
PZ
4993 }
4994
cdd6c482
IM
4995 if (event->pending_wakeup) {
4996 event->pending_wakeup = 0;
4997 perf_event_wakeup(event);
79f14641 4998 }
d525211f
PZ
4999
5000 if (rctx >= 0)
5001 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5002}
5003
39447b38
ZY
5004/*
5005 * We assume there is only KVM supporting the callbacks.
5006 * Later on, we might change it to a list if there is
5007 * another virtualization implementation supporting the callbacks.
5008 */
5009struct perf_guest_info_callbacks *perf_guest_cbs;
5010
5011int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5012{
5013 perf_guest_cbs = cbs;
5014 return 0;
5015}
5016EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5017
5018int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5019{
5020 perf_guest_cbs = NULL;
5021 return 0;
5022}
5023EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5024
4018994f
JO
5025static void
5026perf_output_sample_regs(struct perf_output_handle *handle,
5027 struct pt_regs *regs, u64 mask)
5028{
5029 int bit;
5030
5031 for_each_set_bit(bit, (const unsigned long *) &mask,
5032 sizeof(mask) * BITS_PER_BYTE) {
5033 u64 val;
5034
5035 val = perf_reg_value(regs, bit);
5036 perf_output_put(handle, val);
5037 }
5038}
5039
60e2364e 5040static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5041 struct pt_regs *regs,
5042 struct pt_regs *regs_user_copy)
4018994f 5043{
88a7c26a
AL
5044 if (user_mode(regs)) {
5045 regs_user->abi = perf_reg_abi(current);
2565711f 5046 regs_user->regs = regs;
88a7c26a
AL
5047 } else if (current->mm) {
5048 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5049 } else {
5050 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5051 regs_user->regs = NULL;
4018994f
JO
5052 }
5053}
5054
60e2364e
SE
5055static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5056 struct pt_regs *regs)
5057{
5058 regs_intr->regs = regs;
5059 regs_intr->abi = perf_reg_abi(current);
5060}
5061
5062
c5ebcedb
JO
5063/*
5064 * Get remaining task size from user stack pointer.
5065 *
5066 * It'd be better to take stack vma map and limit this more
5067 * precisly, but there's no way to get it safely under interrupt,
5068 * so using TASK_SIZE as limit.
5069 */
5070static u64 perf_ustack_task_size(struct pt_regs *regs)
5071{
5072 unsigned long addr = perf_user_stack_pointer(regs);
5073
5074 if (!addr || addr >= TASK_SIZE)
5075 return 0;
5076
5077 return TASK_SIZE - addr;
5078}
5079
5080static u16
5081perf_sample_ustack_size(u16 stack_size, u16 header_size,
5082 struct pt_regs *regs)
5083{
5084 u64 task_size;
5085
5086 /* No regs, no stack pointer, no dump. */
5087 if (!regs)
5088 return 0;
5089
5090 /*
5091 * Check if we fit in with the requested stack size into the:
5092 * - TASK_SIZE
5093 * If we don't, we limit the size to the TASK_SIZE.
5094 *
5095 * - remaining sample size
5096 * If we don't, we customize the stack size to
5097 * fit in to the remaining sample size.
5098 */
5099
5100 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5101 stack_size = min(stack_size, (u16) task_size);
5102
5103 /* Current header size plus static size and dynamic size. */
5104 header_size += 2 * sizeof(u64);
5105
5106 /* Do we fit in with the current stack dump size? */
5107 if ((u16) (header_size + stack_size) < header_size) {
5108 /*
5109 * If we overflow the maximum size for the sample,
5110 * we customize the stack dump size to fit in.
5111 */
5112 stack_size = USHRT_MAX - header_size - sizeof(u64);
5113 stack_size = round_up(stack_size, sizeof(u64));
5114 }
5115
5116 return stack_size;
5117}
5118
5119static void
5120perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5121 struct pt_regs *regs)
5122{
5123 /* Case of a kernel thread, nothing to dump */
5124 if (!regs) {
5125 u64 size = 0;
5126 perf_output_put(handle, size);
5127 } else {
5128 unsigned long sp;
5129 unsigned int rem;
5130 u64 dyn_size;
5131
5132 /*
5133 * We dump:
5134 * static size
5135 * - the size requested by user or the best one we can fit
5136 * in to the sample max size
5137 * data
5138 * - user stack dump data
5139 * dynamic size
5140 * - the actual dumped size
5141 */
5142
5143 /* Static size. */
5144 perf_output_put(handle, dump_size);
5145
5146 /* Data. */
5147 sp = perf_user_stack_pointer(regs);
5148 rem = __output_copy_user(handle, (void *) sp, dump_size);
5149 dyn_size = dump_size - rem;
5150
5151 perf_output_skip(handle, rem);
5152
5153 /* Dynamic size. */
5154 perf_output_put(handle, dyn_size);
5155 }
5156}
5157
c980d109
ACM
5158static void __perf_event_header__init_id(struct perf_event_header *header,
5159 struct perf_sample_data *data,
5160 struct perf_event *event)
6844c09d
ACM
5161{
5162 u64 sample_type = event->attr.sample_type;
5163
5164 data->type = sample_type;
5165 header->size += event->id_header_size;
5166
5167 if (sample_type & PERF_SAMPLE_TID) {
5168 /* namespace issues */
5169 data->tid_entry.pid = perf_event_pid(event, current);
5170 data->tid_entry.tid = perf_event_tid(event, current);
5171 }
5172
5173 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5174 data->time = perf_event_clock(event);
6844c09d 5175
ff3d527c 5176 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5177 data->id = primary_event_id(event);
5178
5179 if (sample_type & PERF_SAMPLE_STREAM_ID)
5180 data->stream_id = event->id;
5181
5182 if (sample_type & PERF_SAMPLE_CPU) {
5183 data->cpu_entry.cpu = raw_smp_processor_id();
5184 data->cpu_entry.reserved = 0;
5185 }
5186}
5187
76369139
FW
5188void perf_event_header__init_id(struct perf_event_header *header,
5189 struct perf_sample_data *data,
5190 struct perf_event *event)
c980d109
ACM
5191{
5192 if (event->attr.sample_id_all)
5193 __perf_event_header__init_id(header, data, event);
5194}
5195
5196static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5197 struct perf_sample_data *data)
5198{
5199 u64 sample_type = data->type;
5200
5201 if (sample_type & PERF_SAMPLE_TID)
5202 perf_output_put(handle, data->tid_entry);
5203
5204 if (sample_type & PERF_SAMPLE_TIME)
5205 perf_output_put(handle, data->time);
5206
5207 if (sample_type & PERF_SAMPLE_ID)
5208 perf_output_put(handle, data->id);
5209
5210 if (sample_type & PERF_SAMPLE_STREAM_ID)
5211 perf_output_put(handle, data->stream_id);
5212
5213 if (sample_type & PERF_SAMPLE_CPU)
5214 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5215
5216 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5217 perf_output_put(handle, data->id);
c980d109
ACM
5218}
5219
76369139
FW
5220void perf_event__output_id_sample(struct perf_event *event,
5221 struct perf_output_handle *handle,
5222 struct perf_sample_data *sample)
c980d109
ACM
5223{
5224 if (event->attr.sample_id_all)
5225 __perf_event__output_id_sample(handle, sample);
5226}
5227
3dab77fb 5228static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5229 struct perf_event *event,
5230 u64 enabled, u64 running)
3dab77fb 5231{
cdd6c482 5232 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5233 u64 values[4];
5234 int n = 0;
5235
b5e58793 5236 values[n++] = perf_event_count(event);
3dab77fb 5237 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5238 values[n++] = enabled +
cdd6c482 5239 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5240 }
5241 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5242 values[n++] = running +
cdd6c482 5243 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5244 }
5245 if (read_format & PERF_FORMAT_ID)
cdd6c482 5246 values[n++] = primary_event_id(event);
3dab77fb 5247
76369139 5248 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5249}
5250
5251/*
cdd6c482 5252 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5253 */
5254static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5255 struct perf_event *event,
5256 u64 enabled, u64 running)
3dab77fb 5257{
cdd6c482
IM
5258 struct perf_event *leader = event->group_leader, *sub;
5259 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5260 u64 values[5];
5261 int n = 0;
5262
5263 values[n++] = 1 + leader->nr_siblings;
5264
5265 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5266 values[n++] = enabled;
3dab77fb
PZ
5267
5268 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5269 values[n++] = running;
3dab77fb 5270
cdd6c482 5271 if (leader != event)
3dab77fb
PZ
5272 leader->pmu->read(leader);
5273
b5e58793 5274 values[n++] = perf_event_count(leader);
3dab77fb 5275 if (read_format & PERF_FORMAT_ID)
cdd6c482 5276 values[n++] = primary_event_id(leader);
3dab77fb 5277
76369139 5278 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5279
65abc865 5280 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5281 n = 0;
5282
6f5ab001
JO
5283 if ((sub != event) &&
5284 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5285 sub->pmu->read(sub);
5286
b5e58793 5287 values[n++] = perf_event_count(sub);
3dab77fb 5288 if (read_format & PERF_FORMAT_ID)
cdd6c482 5289 values[n++] = primary_event_id(sub);
3dab77fb 5290
76369139 5291 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5292 }
5293}
5294
eed01528
SE
5295#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5296 PERF_FORMAT_TOTAL_TIME_RUNNING)
5297
3dab77fb 5298static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5299 struct perf_event *event)
3dab77fb 5300{
e3f3541c 5301 u64 enabled = 0, running = 0, now;
eed01528
SE
5302 u64 read_format = event->attr.read_format;
5303
5304 /*
5305 * compute total_time_enabled, total_time_running
5306 * based on snapshot values taken when the event
5307 * was last scheduled in.
5308 *
5309 * we cannot simply called update_context_time()
5310 * because of locking issue as we are called in
5311 * NMI context
5312 */
c4794295 5313 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5314 calc_timer_values(event, &now, &enabled, &running);
eed01528 5315
cdd6c482 5316 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5317 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5318 else
eed01528 5319 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5320}
5321
5622f295
MM
5322void perf_output_sample(struct perf_output_handle *handle,
5323 struct perf_event_header *header,
5324 struct perf_sample_data *data,
cdd6c482 5325 struct perf_event *event)
5622f295
MM
5326{
5327 u64 sample_type = data->type;
5328
5329 perf_output_put(handle, *header);
5330
ff3d527c
AH
5331 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5332 perf_output_put(handle, data->id);
5333
5622f295
MM
5334 if (sample_type & PERF_SAMPLE_IP)
5335 perf_output_put(handle, data->ip);
5336
5337 if (sample_type & PERF_SAMPLE_TID)
5338 perf_output_put(handle, data->tid_entry);
5339
5340 if (sample_type & PERF_SAMPLE_TIME)
5341 perf_output_put(handle, data->time);
5342
5343 if (sample_type & PERF_SAMPLE_ADDR)
5344 perf_output_put(handle, data->addr);
5345
5346 if (sample_type & PERF_SAMPLE_ID)
5347 perf_output_put(handle, data->id);
5348
5349 if (sample_type & PERF_SAMPLE_STREAM_ID)
5350 perf_output_put(handle, data->stream_id);
5351
5352 if (sample_type & PERF_SAMPLE_CPU)
5353 perf_output_put(handle, data->cpu_entry);
5354
5355 if (sample_type & PERF_SAMPLE_PERIOD)
5356 perf_output_put(handle, data->period);
5357
5358 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5359 perf_output_read(handle, event);
5622f295
MM
5360
5361 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5362 if (data->callchain) {
5363 int size = 1;
5364
5365 if (data->callchain)
5366 size += data->callchain->nr;
5367
5368 size *= sizeof(u64);
5369
76369139 5370 __output_copy(handle, data->callchain, size);
5622f295
MM
5371 } else {
5372 u64 nr = 0;
5373 perf_output_put(handle, nr);
5374 }
5375 }
5376
5377 if (sample_type & PERF_SAMPLE_RAW) {
5378 if (data->raw) {
5379 perf_output_put(handle, data->raw->size);
76369139
FW
5380 __output_copy(handle, data->raw->data,
5381 data->raw->size);
5622f295
MM
5382 } else {
5383 struct {
5384 u32 size;
5385 u32 data;
5386 } raw = {
5387 .size = sizeof(u32),
5388 .data = 0,
5389 };
5390 perf_output_put(handle, raw);
5391 }
5392 }
a7ac67ea 5393
bce38cd5
SE
5394 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5395 if (data->br_stack) {
5396 size_t size;
5397
5398 size = data->br_stack->nr
5399 * sizeof(struct perf_branch_entry);
5400
5401 perf_output_put(handle, data->br_stack->nr);
5402 perf_output_copy(handle, data->br_stack->entries, size);
5403 } else {
5404 /*
5405 * we always store at least the value of nr
5406 */
5407 u64 nr = 0;
5408 perf_output_put(handle, nr);
5409 }
5410 }
4018994f
JO
5411
5412 if (sample_type & PERF_SAMPLE_REGS_USER) {
5413 u64 abi = data->regs_user.abi;
5414
5415 /*
5416 * If there are no regs to dump, notice it through
5417 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5418 */
5419 perf_output_put(handle, abi);
5420
5421 if (abi) {
5422 u64 mask = event->attr.sample_regs_user;
5423 perf_output_sample_regs(handle,
5424 data->regs_user.regs,
5425 mask);
5426 }
5427 }
c5ebcedb 5428
a5cdd40c 5429 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5430 perf_output_sample_ustack(handle,
5431 data->stack_user_size,
5432 data->regs_user.regs);
a5cdd40c 5433 }
c3feedf2
AK
5434
5435 if (sample_type & PERF_SAMPLE_WEIGHT)
5436 perf_output_put(handle, data->weight);
d6be9ad6
SE
5437
5438 if (sample_type & PERF_SAMPLE_DATA_SRC)
5439 perf_output_put(handle, data->data_src.val);
a5cdd40c 5440
fdfbbd07
AK
5441 if (sample_type & PERF_SAMPLE_TRANSACTION)
5442 perf_output_put(handle, data->txn);
5443
60e2364e
SE
5444 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5445 u64 abi = data->regs_intr.abi;
5446 /*
5447 * If there are no regs to dump, notice it through
5448 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5449 */
5450 perf_output_put(handle, abi);
5451
5452 if (abi) {
5453 u64 mask = event->attr.sample_regs_intr;
5454
5455 perf_output_sample_regs(handle,
5456 data->regs_intr.regs,
5457 mask);
5458 }
5459 }
5460
a5cdd40c
PZ
5461 if (!event->attr.watermark) {
5462 int wakeup_events = event->attr.wakeup_events;
5463
5464 if (wakeup_events) {
5465 struct ring_buffer *rb = handle->rb;
5466 int events = local_inc_return(&rb->events);
5467
5468 if (events >= wakeup_events) {
5469 local_sub(wakeup_events, &rb->events);
5470 local_inc(&rb->wakeup);
5471 }
5472 }
5473 }
5622f295
MM
5474}
5475
5476void perf_prepare_sample(struct perf_event_header *header,
5477 struct perf_sample_data *data,
cdd6c482 5478 struct perf_event *event,
5622f295 5479 struct pt_regs *regs)
7b732a75 5480{
cdd6c482 5481 u64 sample_type = event->attr.sample_type;
7b732a75 5482
cdd6c482 5483 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5484 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5485
5486 header->misc = 0;
5487 header->misc |= perf_misc_flags(regs);
6fab0192 5488
c980d109 5489 __perf_event_header__init_id(header, data, event);
6844c09d 5490
c320c7b7 5491 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5492 data->ip = perf_instruction_pointer(regs);
5493
b23f3325 5494 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5495 int size = 1;
394ee076 5496
e6dab5ff 5497 data->callchain = perf_callchain(event, regs);
5622f295
MM
5498
5499 if (data->callchain)
5500 size += data->callchain->nr;
5501
5502 header->size += size * sizeof(u64);
394ee076
PZ
5503 }
5504
3a43ce68 5505 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5506 int size = sizeof(u32);
5507
5508 if (data->raw)
5509 size += data->raw->size;
5510 else
5511 size += sizeof(u32);
5512
5513 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5514 header->size += size;
7f453c24 5515 }
bce38cd5
SE
5516
5517 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5518 int size = sizeof(u64); /* nr */
5519 if (data->br_stack) {
5520 size += data->br_stack->nr
5521 * sizeof(struct perf_branch_entry);
5522 }
5523 header->size += size;
5524 }
4018994f 5525
2565711f 5526 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5527 perf_sample_regs_user(&data->regs_user, regs,
5528 &data->regs_user_copy);
2565711f 5529
4018994f
JO
5530 if (sample_type & PERF_SAMPLE_REGS_USER) {
5531 /* regs dump ABI info */
5532 int size = sizeof(u64);
5533
4018994f
JO
5534 if (data->regs_user.regs) {
5535 u64 mask = event->attr.sample_regs_user;
5536 size += hweight64(mask) * sizeof(u64);
5537 }
5538
5539 header->size += size;
5540 }
c5ebcedb
JO
5541
5542 if (sample_type & PERF_SAMPLE_STACK_USER) {
5543 /*
5544 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5545 * processed as the last one or have additional check added
5546 * in case new sample type is added, because we could eat
5547 * up the rest of the sample size.
5548 */
c5ebcedb
JO
5549 u16 stack_size = event->attr.sample_stack_user;
5550 u16 size = sizeof(u64);
5551
c5ebcedb 5552 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5553 data->regs_user.regs);
c5ebcedb
JO
5554
5555 /*
5556 * If there is something to dump, add space for the dump
5557 * itself and for the field that tells the dynamic size,
5558 * which is how many have been actually dumped.
5559 */
5560 if (stack_size)
5561 size += sizeof(u64) + stack_size;
5562
5563 data->stack_user_size = stack_size;
5564 header->size += size;
5565 }
60e2364e
SE
5566
5567 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5568 /* regs dump ABI info */
5569 int size = sizeof(u64);
5570
5571 perf_sample_regs_intr(&data->regs_intr, regs);
5572
5573 if (data->regs_intr.regs) {
5574 u64 mask = event->attr.sample_regs_intr;
5575
5576 size += hweight64(mask) * sizeof(u64);
5577 }
5578
5579 header->size += size;
5580 }
5622f295 5581}
7f453c24 5582
21509084
YZ
5583void perf_event_output(struct perf_event *event,
5584 struct perf_sample_data *data,
5585 struct pt_regs *regs)
5622f295
MM
5586{
5587 struct perf_output_handle handle;
5588 struct perf_event_header header;
689802b2 5589
927c7a9e
FW
5590 /* protect the callchain buffers */
5591 rcu_read_lock();
5592
cdd6c482 5593 perf_prepare_sample(&header, data, event, regs);
5c148194 5594
a7ac67ea 5595 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5596 goto exit;
0322cd6e 5597
cdd6c482 5598 perf_output_sample(&handle, &header, data, event);
f413cdb8 5599
8a057d84 5600 perf_output_end(&handle);
927c7a9e
FW
5601
5602exit:
5603 rcu_read_unlock();
0322cd6e
PZ
5604}
5605
38b200d6 5606/*
cdd6c482 5607 * read event_id
38b200d6
PZ
5608 */
5609
5610struct perf_read_event {
5611 struct perf_event_header header;
5612
5613 u32 pid;
5614 u32 tid;
38b200d6
PZ
5615};
5616
5617static void
cdd6c482 5618perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5619 struct task_struct *task)
5620{
5621 struct perf_output_handle handle;
c980d109 5622 struct perf_sample_data sample;
dfc65094 5623 struct perf_read_event read_event = {
38b200d6 5624 .header = {
cdd6c482 5625 .type = PERF_RECORD_READ,
38b200d6 5626 .misc = 0,
c320c7b7 5627 .size = sizeof(read_event) + event->read_size,
38b200d6 5628 },
cdd6c482
IM
5629 .pid = perf_event_pid(event, task),
5630 .tid = perf_event_tid(event, task),
38b200d6 5631 };
3dab77fb 5632 int ret;
38b200d6 5633
c980d109 5634 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5635 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5636 if (ret)
5637 return;
5638
dfc65094 5639 perf_output_put(&handle, read_event);
cdd6c482 5640 perf_output_read(&handle, event);
c980d109 5641 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5642
38b200d6
PZ
5643 perf_output_end(&handle);
5644}
5645
52d857a8
JO
5646typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5647
5648static void
5649perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5650 perf_event_aux_output_cb output,
5651 void *data)
5652{
5653 struct perf_event *event;
5654
5655 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5656 if (event->state < PERF_EVENT_STATE_INACTIVE)
5657 continue;
5658 if (!event_filter_match(event))
5659 continue;
67516844 5660 output(event, data);
52d857a8
JO
5661 }
5662}
5663
5664static void
67516844 5665perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5666 struct perf_event_context *task_ctx)
5667{
5668 struct perf_cpu_context *cpuctx;
5669 struct perf_event_context *ctx;
5670 struct pmu *pmu;
5671 int ctxn;
5672
5673 rcu_read_lock();
5674 list_for_each_entry_rcu(pmu, &pmus, entry) {
5675 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5676 if (cpuctx->unique_pmu != pmu)
5677 goto next;
67516844 5678 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5679 if (task_ctx)
5680 goto next;
5681 ctxn = pmu->task_ctx_nr;
5682 if (ctxn < 0)
5683 goto next;
5684 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5685 if (ctx)
67516844 5686 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5687next:
5688 put_cpu_ptr(pmu->pmu_cpu_context);
5689 }
5690
5691 if (task_ctx) {
5692 preempt_disable();
67516844 5693 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5694 preempt_enable();
5695 }
5696 rcu_read_unlock();
5697}
5698
60313ebe 5699/*
9f498cc5
PZ
5700 * task tracking -- fork/exit
5701 *
13d7a241 5702 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5703 */
5704
9f498cc5 5705struct perf_task_event {
3a80b4a3 5706 struct task_struct *task;
cdd6c482 5707 struct perf_event_context *task_ctx;
60313ebe
PZ
5708
5709 struct {
5710 struct perf_event_header header;
5711
5712 u32 pid;
5713 u32 ppid;
9f498cc5
PZ
5714 u32 tid;
5715 u32 ptid;
393b2ad8 5716 u64 time;
cdd6c482 5717 } event_id;
60313ebe
PZ
5718};
5719
67516844
JO
5720static int perf_event_task_match(struct perf_event *event)
5721{
13d7a241
SE
5722 return event->attr.comm || event->attr.mmap ||
5723 event->attr.mmap2 || event->attr.mmap_data ||
5724 event->attr.task;
67516844
JO
5725}
5726
cdd6c482 5727static void perf_event_task_output(struct perf_event *event,
52d857a8 5728 void *data)
60313ebe 5729{
52d857a8 5730 struct perf_task_event *task_event = data;
60313ebe 5731 struct perf_output_handle handle;
c980d109 5732 struct perf_sample_data sample;
9f498cc5 5733 struct task_struct *task = task_event->task;
c980d109 5734 int ret, size = task_event->event_id.header.size;
8bb39f9a 5735
67516844
JO
5736 if (!perf_event_task_match(event))
5737 return;
5738
c980d109 5739 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5740
c980d109 5741 ret = perf_output_begin(&handle, event,
a7ac67ea 5742 task_event->event_id.header.size);
ef60777c 5743 if (ret)
c980d109 5744 goto out;
60313ebe 5745
cdd6c482
IM
5746 task_event->event_id.pid = perf_event_pid(event, task);
5747 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5748
cdd6c482
IM
5749 task_event->event_id.tid = perf_event_tid(event, task);
5750 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5751
34f43927
PZ
5752 task_event->event_id.time = perf_event_clock(event);
5753
cdd6c482 5754 perf_output_put(&handle, task_event->event_id);
393b2ad8 5755
c980d109
ACM
5756 perf_event__output_id_sample(event, &handle, &sample);
5757
60313ebe 5758 perf_output_end(&handle);
c980d109
ACM
5759out:
5760 task_event->event_id.header.size = size;
60313ebe
PZ
5761}
5762
cdd6c482
IM
5763static void perf_event_task(struct task_struct *task,
5764 struct perf_event_context *task_ctx,
3a80b4a3 5765 int new)
60313ebe 5766{
9f498cc5 5767 struct perf_task_event task_event;
60313ebe 5768
cdd6c482
IM
5769 if (!atomic_read(&nr_comm_events) &&
5770 !atomic_read(&nr_mmap_events) &&
5771 !atomic_read(&nr_task_events))
60313ebe
PZ
5772 return;
5773
9f498cc5 5774 task_event = (struct perf_task_event){
3a80b4a3
PZ
5775 .task = task,
5776 .task_ctx = task_ctx,
cdd6c482 5777 .event_id = {
60313ebe 5778 .header = {
cdd6c482 5779 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5780 .misc = 0,
cdd6c482 5781 .size = sizeof(task_event.event_id),
60313ebe 5782 },
573402db
PZ
5783 /* .pid */
5784 /* .ppid */
9f498cc5
PZ
5785 /* .tid */
5786 /* .ptid */
34f43927 5787 /* .time */
60313ebe
PZ
5788 },
5789 };
5790
67516844 5791 perf_event_aux(perf_event_task_output,
52d857a8
JO
5792 &task_event,
5793 task_ctx);
9f498cc5
PZ
5794}
5795
cdd6c482 5796void perf_event_fork(struct task_struct *task)
9f498cc5 5797{
cdd6c482 5798 perf_event_task(task, NULL, 1);
60313ebe
PZ
5799}
5800
8d1b2d93
PZ
5801/*
5802 * comm tracking
5803 */
5804
5805struct perf_comm_event {
22a4f650
IM
5806 struct task_struct *task;
5807 char *comm;
8d1b2d93
PZ
5808 int comm_size;
5809
5810 struct {
5811 struct perf_event_header header;
5812
5813 u32 pid;
5814 u32 tid;
cdd6c482 5815 } event_id;
8d1b2d93
PZ
5816};
5817
67516844
JO
5818static int perf_event_comm_match(struct perf_event *event)
5819{
5820 return event->attr.comm;
5821}
5822
cdd6c482 5823static void perf_event_comm_output(struct perf_event *event,
52d857a8 5824 void *data)
8d1b2d93 5825{
52d857a8 5826 struct perf_comm_event *comm_event = data;
8d1b2d93 5827 struct perf_output_handle handle;
c980d109 5828 struct perf_sample_data sample;
cdd6c482 5829 int size = comm_event->event_id.header.size;
c980d109
ACM
5830 int ret;
5831
67516844
JO
5832 if (!perf_event_comm_match(event))
5833 return;
5834
c980d109
ACM
5835 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5836 ret = perf_output_begin(&handle, event,
a7ac67ea 5837 comm_event->event_id.header.size);
8d1b2d93
PZ
5838
5839 if (ret)
c980d109 5840 goto out;
8d1b2d93 5841
cdd6c482
IM
5842 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5843 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5844
cdd6c482 5845 perf_output_put(&handle, comm_event->event_id);
76369139 5846 __output_copy(&handle, comm_event->comm,
8d1b2d93 5847 comm_event->comm_size);
c980d109
ACM
5848
5849 perf_event__output_id_sample(event, &handle, &sample);
5850
8d1b2d93 5851 perf_output_end(&handle);
c980d109
ACM
5852out:
5853 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5854}
5855
cdd6c482 5856static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5857{
413ee3b4 5858 char comm[TASK_COMM_LEN];
8d1b2d93 5859 unsigned int size;
8d1b2d93 5860
413ee3b4 5861 memset(comm, 0, sizeof(comm));
96b02d78 5862 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5863 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5864
5865 comm_event->comm = comm;
5866 comm_event->comm_size = size;
5867
cdd6c482 5868 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5869
67516844 5870 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5871 comm_event,
5872 NULL);
8d1b2d93
PZ
5873}
5874
82b89778 5875void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5876{
9ee318a7
PZ
5877 struct perf_comm_event comm_event;
5878
cdd6c482 5879 if (!atomic_read(&nr_comm_events))
9ee318a7 5880 return;
a63eaf34 5881
9ee318a7 5882 comm_event = (struct perf_comm_event){
8d1b2d93 5883 .task = task,
573402db
PZ
5884 /* .comm */
5885 /* .comm_size */
cdd6c482 5886 .event_id = {
573402db 5887 .header = {
cdd6c482 5888 .type = PERF_RECORD_COMM,
82b89778 5889 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5890 /* .size */
5891 },
5892 /* .pid */
5893 /* .tid */
8d1b2d93
PZ
5894 },
5895 };
5896
cdd6c482 5897 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5898}
5899
0a4a9391
PZ
5900/*
5901 * mmap tracking
5902 */
5903
5904struct perf_mmap_event {
089dd79d
PZ
5905 struct vm_area_struct *vma;
5906
5907 const char *file_name;
5908 int file_size;
13d7a241
SE
5909 int maj, min;
5910 u64 ino;
5911 u64 ino_generation;
f972eb63 5912 u32 prot, flags;
0a4a9391
PZ
5913
5914 struct {
5915 struct perf_event_header header;
5916
5917 u32 pid;
5918 u32 tid;
5919 u64 start;
5920 u64 len;
5921 u64 pgoff;
cdd6c482 5922 } event_id;
0a4a9391
PZ
5923};
5924
67516844
JO
5925static int perf_event_mmap_match(struct perf_event *event,
5926 void *data)
5927{
5928 struct perf_mmap_event *mmap_event = data;
5929 struct vm_area_struct *vma = mmap_event->vma;
5930 int executable = vma->vm_flags & VM_EXEC;
5931
5932 return (!executable && event->attr.mmap_data) ||
13d7a241 5933 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5934}
5935
cdd6c482 5936static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5937 void *data)
0a4a9391 5938{
52d857a8 5939 struct perf_mmap_event *mmap_event = data;
0a4a9391 5940 struct perf_output_handle handle;
c980d109 5941 struct perf_sample_data sample;
cdd6c482 5942 int size = mmap_event->event_id.header.size;
c980d109 5943 int ret;
0a4a9391 5944
67516844
JO
5945 if (!perf_event_mmap_match(event, data))
5946 return;
5947
13d7a241
SE
5948 if (event->attr.mmap2) {
5949 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5950 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5951 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5952 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5953 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5954 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5955 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5956 }
5957
c980d109
ACM
5958 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5959 ret = perf_output_begin(&handle, event,
a7ac67ea 5960 mmap_event->event_id.header.size);
0a4a9391 5961 if (ret)
c980d109 5962 goto out;
0a4a9391 5963
cdd6c482
IM
5964 mmap_event->event_id.pid = perf_event_pid(event, current);
5965 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5966
cdd6c482 5967 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5968
5969 if (event->attr.mmap2) {
5970 perf_output_put(&handle, mmap_event->maj);
5971 perf_output_put(&handle, mmap_event->min);
5972 perf_output_put(&handle, mmap_event->ino);
5973 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5974 perf_output_put(&handle, mmap_event->prot);
5975 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5976 }
5977
76369139 5978 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5979 mmap_event->file_size);
c980d109
ACM
5980
5981 perf_event__output_id_sample(event, &handle, &sample);
5982
78d613eb 5983 perf_output_end(&handle);
c980d109
ACM
5984out:
5985 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5986}
5987
cdd6c482 5988static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5989{
089dd79d
PZ
5990 struct vm_area_struct *vma = mmap_event->vma;
5991 struct file *file = vma->vm_file;
13d7a241
SE
5992 int maj = 0, min = 0;
5993 u64 ino = 0, gen = 0;
f972eb63 5994 u32 prot = 0, flags = 0;
0a4a9391
PZ
5995 unsigned int size;
5996 char tmp[16];
5997 char *buf = NULL;
2c42cfbf 5998 char *name;
413ee3b4 5999
0a4a9391 6000 if (file) {
13d7a241
SE
6001 struct inode *inode;
6002 dev_t dev;
3ea2f2b9 6003
2c42cfbf 6004 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6005 if (!buf) {
c7e548b4
ON
6006 name = "//enomem";
6007 goto cpy_name;
0a4a9391 6008 }
413ee3b4 6009 /*
3ea2f2b9 6010 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6011 * need to add enough zero bytes after the string to handle
6012 * the 64bit alignment we do later.
6013 */
9bf39ab2 6014 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6015 if (IS_ERR(name)) {
c7e548b4
ON
6016 name = "//toolong";
6017 goto cpy_name;
0a4a9391 6018 }
13d7a241
SE
6019 inode = file_inode(vma->vm_file);
6020 dev = inode->i_sb->s_dev;
6021 ino = inode->i_ino;
6022 gen = inode->i_generation;
6023 maj = MAJOR(dev);
6024 min = MINOR(dev);
f972eb63
PZ
6025
6026 if (vma->vm_flags & VM_READ)
6027 prot |= PROT_READ;
6028 if (vma->vm_flags & VM_WRITE)
6029 prot |= PROT_WRITE;
6030 if (vma->vm_flags & VM_EXEC)
6031 prot |= PROT_EXEC;
6032
6033 if (vma->vm_flags & VM_MAYSHARE)
6034 flags = MAP_SHARED;
6035 else
6036 flags = MAP_PRIVATE;
6037
6038 if (vma->vm_flags & VM_DENYWRITE)
6039 flags |= MAP_DENYWRITE;
6040 if (vma->vm_flags & VM_MAYEXEC)
6041 flags |= MAP_EXECUTABLE;
6042 if (vma->vm_flags & VM_LOCKED)
6043 flags |= MAP_LOCKED;
6044 if (vma->vm_flags & VM_HUGETLB)
6045 flags |= MAP_HUGETLB;
6046
c7e548b4 6047 goto got_name;
0a4a9391 6048 } else {
fbe26abe
JO
6049 if (vma->vm_ops && vma->vm_ops->name) {
6050 name = (char *) vma->vm_ops->name(vma);
6051 if (name)
6052 goto cpy_name;
6053 }
6054
2c42cfbf 6055 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6056 if (name)
6057 goto cpy_name;
089dd79d 6058
32c5fb7e 6059 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6060 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6061 name = "[heap]";
6062 goto cpy_name;
32c5fb7e
ON
6063 }
6064 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6065 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6066 name = "[stack]";
6067 goto cpy_name;
089dd79d
PZ
6068 }
6069
c7e548b4
ON
6070 name = "//anon";
6071 goto cpy_name;
0a4a9391
PZ
6072 }
6073
c7e548b4
ON
6074cpy_name:
6075 strlcpy(tmp, name, sizeof(tmp));
6076 name = tmp;
0a4a9391 6077got_name:
2c42cfbf
PZ
6078 /*
6079 * Since our buffer works in 8 byte units we need to align our string
6080 * size to a multiple of 8. However, we must guarantee the tail end is
6081 * zero'd out to avoid leaking random bits to userspace.
6082 */
6083 size = strlen(name)+1;
6084 while (!IS_ALIGNED(size, sizeof(u64)))
6085 name[size++] = '\0';
0a4a9391
PZ
6086
6087 mmap_event->file_name = name;
6088 mmap_event->file_size = size;
13d7a241
SE
6089 mmap_event->maj = maj;
6090 mmap_event->min = min;
6091 mmap_event->ino = ino;
6092 mmap_event->ino_generation = gen;
f972eb63
PZ
6093 mmap_event->prot = prot;
6094 mmap_event->flags = flags;
0a4a9391 6095
2fe85427
SE
6096 if (!(vma->vm_flags & VM_EXEC))
6097 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6098
cdd6c482 6099 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6100
67516844 6101 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6102 mmap_event,
6103 NULL);
665c2142 6104
0a4a9391
PZ
6105 kfree(buf);
6106}
6107
3af9e859 6108void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6109{
9ee318a7
PZ
6110 struct perf_mmap_event mmap_event;
6111
cdd6c482 6112 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6113 return;
6114
6115 mmap_event = (struct perf_mmap_event){
089dd79d 6116 .vma = vma,
573402db
PZ
6117 /* .file_name */
6118 /* .file_size */
cdd6c482 6119 .event_id = {
573402db 6120 .header = {
cdd6c482 6121 .type = PERF_RECORD_MMAP,
39447b38 6122 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6123 /* .size */
6124 },
6125 /* .pid */
6126 /* .tid */
089dd79d
PZ
6127 .start = vma->vm_start,
6128 .len = vma->vm_end - vma->vm_start,
3a0304e9 6129 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6130 },
13d7a241
SE
6131 /* .maj (attr_mmap2 only) */
6132 /* .min (attr_mmap2 only) */
6133 /* .ino (attr_mmap2 only) */
6134 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6135 /* .prot (attr_mmap2 only) */
6136 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6137 };
6138
cdd6c482 6139 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6140}
6141
68db7e98
AS
6142void perf_event_aux_event(struct perf_event *event, unsigned long head,
6143 unsigned long size, u64 flags)
6144{
6145 struct perf_output_handle handle;
6146 struct perf_sample_data sample;
6147 struct perf_aux_event {
6148 struct perf_event_header header;
6149 u64 offset;
6150 u64 size;
6151 u64 flags;
6152 } rec = {
6153 .header = {
6154 .type = PERF_RECORD_AUX,
6155 .misc = 0,
6156 .size = sizeof(rec),
6157 },
6158 .offset = head,
6159 .size = size,
6160 .flags = flags,
6161 };
6162 int ret;
6163
6164 perf_event_header__init_id(&rec.header, &sample, event);
6165 ret = perf_output_begin(&handle, event, rec.header.size);
6166
6167 if (ret)
6168 return;
6169
6170 perf_output_put(&handle, rec);
6171 perf_event__output_id_sample(event, &handle, &sample);
6172
6173 perf_output_end(&handle);
6174}
6175
f38b0dbb
KL
6176/*
6177 * Lost/dropped samples logging
6178 */
6179void perf_log_lost_samples(struct perf_event *event, u64 lost)
6180{
6181 struct perf_output_handle handle;
6182 struct perf_sample_data sample;
6183 int ret;
6184
6185 struct {
6186 struct perf_event_header header;
6187 u64 lost;
6188 } lost_samples_event = {
6189 .header = {
6190 .type = PERF_RECORD_LOST_SAMPLES,
6191 .misc = 0,
6192 .size = sizeof(lost_samples_event),
6193 },
6194 .lost = lost,
6195 };
6196
6197 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6198
6199 ret = perf_output_begin(&handle, event,
6200 lost_samples_event.header.size);
6201 if (ret)
6202 return;
6203
6204 perf_output_put(&handle, lost_samples_event);
6205 perf_event__output_id_sample(event, &handle, &sample);
6206 perf_output_end(&handle);
6207}
6208
45ac1403
AH
6209/*
6210 * context_switch tracking
6211 */
6212
6213struct perf_switch_event {
6214 struct task_struct *task;
6215 struct task_struct *next_prev;
6216
6217 struct {
6218 struct perf_event_header header;
6219 u32 next_prev_pid;
6220 u32 next_prev_tid;
6221 } event_id;
6222};
6223
6224static int perf_event_switch_match(struct perf_event *event)
6225{
6226 return event->attr.context_switch;
6227}
6228
6229static void perf_event_switch_output(struct perf_event *event, void *data)
6230{
6231 struct perf_switch_event *se = data;
6232 struct perf_output_handle handle;
6233 struct perf_sample_data sample;
6234 int ret;
6235
6236 if (!perf_event_switch_match(event))
6237 return;
6238
6239 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6240 if (event->ctx->task) {
6241 se->event_id.header.type = PERF_RECORD_SWITCH;
6242 se->event_id.header.size = sizeof(se->event_id.header);
6243 } else {
6244 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6245 se->event_id.header.size = sizeof(se->event_id);
6246 se->event_id.next_prev_pid =
6247 perf_event_pid(event, se->next_prev);
6248 se->event_id.next_prev_tid =
6249 perf_event_tid(event, se->next_prev);
6250 }
6251
6252 perf_event_header__init_id(&se->event_id.header, &sample, event);
6253
6254 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6255 if (ret)
6256 return;
6257
6258 if (event->ctx->task)
6259 perf_output_put(&handle, se->event_id.header);
6260 else
6261 perf_output_put(&handle, se->event_id);
6262
6263 perf_event__output_id_sample(event, &handle, &sample);
6264
6265 perf_output_end(&handle);
6266}
6267
6268static void perf_event_switch(struct task_struct *task,
6269 struct task_struct *next_prev, bool sched_in)
6270{
6271 struct perf_switch_event switch_event;
6272
6273 /* N.B. caller checks nr_switch_events != 0 */
6274
6275 switch_event = (struct perf_switch_event){
6276 .task = task,
6277 .next_prev = next_prev,
6278 .event_id = {
6279 .header = {
6280 /* .type */
6281 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6282 /* .size */
6283 },
6284 /* .next_prev_pid */
6285 /* .next_prev_tid */
6286 },
6287 };
6288
6289 perf_event_aux(perf_event_switch_output,
6290 &switch_event,
6291 NULL);
6292}
6293
a78ac325
PZ
6294/*
6295 * IRQ throttle logging
6296 */
6297
cdd6c482 6298static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6299{
6300 struct perf_output_handle handle;
c980d109 6301 struct perf_sample_data sample;
a78ac325
PZ
6302 int ret;
6303
6304 struct {
6305 struct perf_event_header header;
6306 u64 time;
cca3f454 6307 u64 id;
7f453c24 6308 u64 stream_id;
a78ac325
PZ
6309 } throttle_event = {
6310 .header = {
cdd6c482 6311 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6312 .misc = 0,
6313 .size = sizeof(throttle_event),
6314 },
34f43927 6315 .time = perf_event_clock(event),
cdd6c482
IM
6316 .id = primary_event_id(event),
6317 .stream_id = event->id,
a78ac325
PZ
6318 };
6319
966ee4d6 6320 if (enable)
cdd6c482 6321 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6322
c980d109
ACM
6323 perf_event_header__init_id(&throttle_event.header, &sample, event);
6324
6325 ret = perf_output_begin(&handle, event,
a7ac67ea 6326 throttle_event.header.size);
a78ac325
PZ
6327 if (ret)
6328 return;
6329
6330 perf_output_put(&handle, throttle_event);
c980d109 6331 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6332 perf_output_end(&handle);
6333}
6334
ec0d7729
AS
6335static void perf_log_itrace_start(struct perf_event *event)
6336{
6337 struct perf_output_handle handle;
6338 struct perf_sample_data sample;
6339 struct perf_aux_event {
6340 struct perf_event_header header;
6341 u32 pid;
6342 u32 tid;
6343 } rec;
6344 int ret;
6345
6346 if (event->parent)
6347 event = event->parent;
6348
6349 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6350 event->hw.itrace_started)
6351 return;
6352
ec0d7729
AS
6353 rec.header.type = PERF_RECORD_ITRACE_START;
6354 rec.header.misc = 0;
6355 rec.header.size = sizeof(rec);
6356 rec.pid = perf_event_pid(event, current);
6357 rec.tid = perf_event_tid(event, current);
6358
6359 perf_event_header__init_id(&rec.header, &sample, event);
6360 ret = perf_output_begin(&handle, event, rec.header.size);
6361
6362 if (ret)
6363 return;
6364
6365 perf_output_put(&handle, rec);
6366 perf_event__output_id_sample(event, &handle, &sample);
6367
6368 perf_output_end(&handle);
6369}
6370
f6c7d5fe 6371/*
cdd6c482 6372 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6373 */
6374
a8b0ca17 6375static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6376 int throttle, struct perf_sample_data *data,
6377 struct pt_regs *regs)
f6c7d5fe 6378{
cdd6c482
IM
6379 int events = atomic_read(&event->event_limit);
6380 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6381 u64 seq;
79f14641
PZ
6382 int ret = 0;
6383
96398826
PZ
6384 /*
6385 * Non-sampling counters might still use the PMI to fold short
6386 * hardware counters, ignore those.
6387 */
6388 if (unlikely(!is_sampling_event(event)))
6389 return 0;
6390
e050e3f0
SE
6391 seq = __this_cpu_read(perf_throttled_seq);
6392 if (seq != hwc->interrupts_seq) {
6393 hwc->interrupts_seq = seq;
6394 hwc->interrupts = 1;
6395 } else {
6396 hwc->interrupts++;
6397 if (unlikely(throttle
6398 && hwc->interrupts >= max_samples_per_tick)) {
6399 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6400 hwc->interrupts = MAX_INTERRUPTS;
6401 perf_log_throttle(event, 0);
d84153d6 6402 tick_nohz_full_kick();
a78ac325
PZ
6403 ret = 1;
6404 }
e050e3f0 6405 }
60db5e09 6406
cdd6c482 6407 if (event->attr.freq) {
def0a9b2 6408 u64 now = perf_clock();
abd50713 6409 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6410
abd50713 6411 hwc->freq_time_stamp = now;
bd2b5b12 6412
abd50713 6413 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6414 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6415 }
6416
2023b359
PZ
6417 /*
6418 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6419 * events
2023b359
PZ
6420 */
6421
cdd6c482
IM
6422 event->pending_kill = POLL_IN;
6423 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6424 ret = 1;
cdd6c482 6425 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6426 event->pending_disable = 1;
6427 irq_work_queue(&event->pending);
79f14641
PZ
6428 }
6429
453f19ee 6430 if (event->overflow_handler)
a8b0ca17 6431 event->overflow_handler(event, data, regs);
453f19ee 6432 else
a8b0ca17 6433 perf_event_output(event, data, regs);
453f19ee 6434
fed66e2c 6435 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6436 event->pending_wakeup = 1;
6437 irq_work_queue(&event->pending);
f506b3dc
PZ
6438 }
6439
79f14641 6440 return ret;
f6c7d5fe
PZ
6441}
6442
a8b0ca17 6443int perf_event_overflow(struct perf_event *event,
5622f295
MM
6444 struct perf_sample_data *data,
6445 struct pt_regs *regs)
850bc73f 6446{
a8b0ca17 6447 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6448}
6449
15dbf27c 6450/*
cdd6c482 6451 * Generic software event infrastructure
15dbf27c
PZ
6452 */
6453
b28ab83c
PZ
6454struct swevent_htable {
6455 struct swevent_hlist *swevent_hlist;
6456 struct mutex hlist_mutex;
6457 int hlist_refcount;
6458
6459 /* Recursion avoidance in each contexts */
6460 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
6461
6462 /* Keeps track of cpu being initialized/exited */
6463 bool online;
b28ab83c
PZ
6464};
6465
6466static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6467
7b4b6658 6468/*
cdd6c482
IM
6469 * We directly increment event->count and keep a second value in
6470 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6471 * is kept in the range [-sample_period, 0] so that we can use the
6472 * sign as trigger.
6473 */
6474
ab573844 6475u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6476{
cdd6c482 6477 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6478 u64 period = hwc->last_period;
6479 u64 nr, offset;
6480 s64 old, val;
6481
6482 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6483
6484again:
e7850595 6485 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6486 if (val < 0)
6487 return 0;
15dbf27c 6488
7b4b6658
PZ
6489 nr = div64_u64(period + val, period);
6490 offset = nr * period;
6491 val -= offset;
e7850595 6492 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6493 goto again;
15dbf27c 6494
7b4b6658 6495 return nr;
15dbf27c
PZ
6496}
6497
0cff784a 6498static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6499 struct perf_sample_data *data,
5622f295 6500 struct pt_regs *regs)
15dbf27c 6501{
cdd6c482 6502 struct hw_perf_event *hwc = &event->hw;
850bc73f 6503 int throttle = 0;
15dbf27c 6504
0cff784a
PZ
6505 if (!overflow)
6506 overflow = perf_swevent_set_period(event);
15dbf27c 6507
7b4b6658
PZ
6508 if (hwc->interrupts == MAX_INTERRUPTS)
6509 return;
15dbf27c 6510
7b4b6658 6511 for (; overflow; overflow--) {
a8b0ca17 6512 if (__perf_event_overflow(event, throttle,
5622f295 6513 data, regs)) {
7b4b6658
PZ
6514 /*
6515 * We inhibit the overflow from happening when
6516 * hwc->interrupts == MAX_INTERRUPTS.
6517 */
6518 break;
6519 }
cf450a73 6520 throttle = 1;
7b4b6658 6521 }
15dbf27c
PZ
6522}
6523
a4eaf7f1 6524static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6525 struct perf_sample_data *data,
5622f295 6526 struct pt_regs *regs)
7b4b6658 6527{
cdd6c482 6528 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6529
e7850595 6530 local64_add(nr, &event->count);
d6d020e9 6531
0cff784a
PZ
6532 if (!regs)
6533 return;
6534
6c7e550f 6535 if (!is_sampling_event(event))
7b4b6658 6536 return;
d6d020e9 6537
5d81e5cf
AV
6538 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6539 data->period = nr;
6540 return perf_swevent_overflow(event, 1, data, regs);
6541 } else
6542 data->period = event->hw.last_period;
6543
0cff784a 6544 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6545 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6546
e7850595 6547 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6548 return;
df1a132b 6549
a8b0ca17 6550 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6551}
6552
f5ffe02e
FW
6553static int perf_exclude_event(struct perf_event *event,
6554 struct pt_regs *regs)
6555{
a4eaf7f1 6556 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6557 return 1;
a4eaf7f1 6558
f5ffe02e
FW
6559 if (regs) {
6560 if (event->attr.exclude_user && user_mode(regs))
6561 return 1;
6562
6563 if (event->attr.exclude_kernel && !user_mode(regs))
6564 return 1;
6565 }
6566
6567 return 0;
6568}
6569
cdd6c482 6570static int perf_swevent_match(struct perf_event *event,
1c432d89 6571 enum perf_type_id type,
6fb2915d
LZ
6572 u32 event_id,
6573 struct perf_sample_data *data,
6574 struct pt_regs *regs)
15dbf27c 6575{
cdd6c482 6576 if (event->attr.type != type)
a21ca2ca 6577 return 0;
f5ffe02e 6578
cdd6c482 6579 if (event->attr.config != event_id)
15dbf27c
PZ
6580 return 0;
6581
f5ffe02e
FW
6582 if (perf_exclude_event(event, regs))
6583 return 0;
15dbf27c
PZ
6584
6585 return 1;
6586}
6587
76e1d904
FW
6588static inline u64 swevent_hash(u64 type, u32 event_id)
6589{
6590 u64 val = event_id | (type << 32);
6591
6592 return hash_64(val, SWEVENT_HLIST_BITS);
6593}
6594
49f135ed
FW
6595static inline struct hlist_head *
6596__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6597{
49f135ed
FW
6598 u64 hash = swevent_hash(type, event_id);
6599
6600 return &hlist->heads[hash];
6601}
76e1d904 6602
49f135ed
FW
6603/* For the read side: events when they trigger */
6604static inline struct hlist_head *
b28ab83c 6605find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6606{
6607 struct swevent_hlist *hlist;
76e1d904 6608
b28ab83c 6609 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6610 if (!hlist)
6611 return NULL;
6612
49f135ed
FW
6613 return __find_swevent_head(hlist, type, event_id);
6614}
6615
6616/* For the event head insertion and removal in the hlist */
6617static inline struct hlist_head *
b28ab83c 6618find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6619{
6620 struct swevent_hlist *hlist;
6621 u32 event_id = event->attr.config;
6622 u64 type = event->attr.type;
6623
6624 /*
6625 * Event scheduling is always serialized against hlist allocation
6626 * and release. Which makes the protected version suitable here.
6627 * The context lock guarantees that.
6628 */
b28ab83c 6629 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6630 lockdep_is_held(&event->ctx->lock));
6631 if (!hlist)
6632 return NULL;
6633
6634 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6635}
6636
6637static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6638 u64 nr,
76e1d904
FW
6639 struct perf_sample_data *data,
6640 struct pt_regs *regs)
15dbf27c 6641{
4a32fea9 6642 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6643 struct perf_event *event;
76e1d904 6644 struct hlist_head *head;
15dbf27c 6645
76e1d904 6646 rcu_read_lock();
b28ab83c 6647 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6648 if (!head)
6649 goto end;
6650
b67bfe0d 6651 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6652 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6653 perf_swevent_event(event, nr, data, regs);
15dbf27c 6654 }
76e1d904
FW
6655end:
6656 rcu_read_unlock();
15dbf27c
PZ
6657}
6658
86038c5e
PZI
6659DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6660
4ed7c92d 6661int perf_swevent_get_recursion_context(void)
96f6d444 6662{
4a32fea9 6663 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6664
b28ab83c 6665 return get_recursion_context(swhash->recursion);
96f6d444 6666}
645e8cc0 6667EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6668
fa9f90be 6669inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6670{
4a32fea9 6671 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6672
b28ab83c 6673 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6674}
15dbf27c 6675
86038c5e 6676void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6677{
a4234bfc 6678 struct perf_sample_data data;
4ed7c92d 6679
86038c5e 6680 if (WARN_ON_ONCE(!regs))
4ed7c92d 6681 return;
a4234bfc 6682
fd0d000b 6683 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6684 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6685}
6686
6687void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6688{
6689 int rctx;
6690
6691 preempt_disable_notrace();
6692 rctx = perf_swevent_get_recursion_context();
6693 if (unlikely(rctx < 0))
6694 goto fail;
6695
6696 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6697
6698 perf_swevent_put_recursion_context(rctx);
86038c5e 6699fail:
1c024eca 6700 preempt_enable_notrace();
b8e83514
PZ
6701}
6702
cdd6c482 6703static void perf_swevent_read(struct perf_event *event)
15dbf27c 6704{
15dbf27c
PZ
6705}
6706
a4eaf7f1 6707static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6708{
4a32fea9 6709 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6710 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6711 struct hlist_head *head;
6712
6c7e550f 6713 if (is_sampling_event(event)) {
7b4b6658 6714 hwc->last_period = hwc->sample_period;
cdd6c482 6715 perf_swevent_set_period(event);
7b4b6658 6716 }
76e1d904 6717
a4eaf7f1
PZ
6718 hwc->state = !(flags & PERF_EF_START);
6719
b28ab83c 6720 head = find_swevent_head(swhash, event);
39af6b16
JO
6721 if (!head) {
6722 /*
6723 * We can race with cpu hotplug code. Do not
6724 * WARN if the cpu just got unplugged.
6725 */
6726 WARN_ON_ONCE(swhash->online);
76e1d904 6727 return -EINVAL;
39af6b16 6728 }
76e1d904
FW
6729
6730 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6731 perf_event_update_userpage(event);
76e1d904 6732
15dbf27c
PZ
6733 return 0;
6734}
6735
a4eaf7f1 6736static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6737{
76e1d904 6738 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6739}
6740
a4eaf7f1 6741static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6742{
a4eaf7f1 6743 event->hw.state = 0;
d6d020e9 6744}
aa9c4c0f 6745
a4eaf7f1 6746static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6747{
a4eaf7f1 6748 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6749}
6750
49f135ed
FW
6751/* Deref the hlist from the update side */
6752static inline struct swevent_hlist *
b28ab83c 6753swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6754{
b28ab83c
PZ
6755 return rcu_dereference_protected(swhash->swevent_hlist,
6756 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6757}
6758
b28ab83c 6759static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6760{
b28ab83c 6761 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6762
49f135ed 6763 if (!hlist)
76e1d904
FW
6764 return;
6765
70691d4a 6766 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6767 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6768}
6769
6770static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6771{
b28ab83c 6772 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6773
b28ab83c 6774 mutex_lock(&swhash->hlist_mutex);
76e1d904 6775
b28ab83c
PZ
6776 if (!--swhash->hlist_refcount)
6777 swevent_hlist_release(swhash);
76e1d904 6778
b28ab83c 6779 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6780}
6781
6782static void swevent_hlist_put(struct perf_event *event)
6783{
6784 int cpu;
6785
76e1d904
FW
6786 for_each_possible_cpu(cpu)
6787 swevent_hlist_put_cpu(event, cpu);
6788}
6789
6790static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6791{
b28ab83c 6792 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6793 int err = 0;
6794
b28ab83c 6795 mutex_lock(&swhash->hlist_mutex);
76e1d904 6796
b28ab83c 6797 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6798 struct swevent_hlist *hlist;
6799
6800 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6801 if (!hlist) {
6802 err = -ENOMEM;
6803 goto exit;
6804 }
b28ab83c 6805 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6806 }
b28ab83c 6807 swhash->hlist_refcount++;
9ed6060d 6808exit:
b28ab83c 6809 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6810
6811 return err;
6812}
6813
6814static int swevent_hlist_get(struct perf_event *event)
6815{
6816 int err;
6817 int cpu, failed_cpu;
6818
76e1d904
FW
6819 get_online_cpus();
6820 for_each_possible_cpu(cpu) {
6821 err = swevent_hlist_get_cpu(event, cpu);
6822 if (err) {
6823 failed_cpu = cpu;
6824 goto fail;
6825 }
6826 }
6827 put_online_cpus();
6828
6829 return 0;
9ed6060d 6830fail:
76e1d904
FW
6831 for_each_possible_cpu(cpu) {
6832 if (cpu == failed_cpu)
6833 break;
6834 swevent_hlist_put_cpu(event, cpu);
6835 }
6836
6837 put_online_cpus();
6838 return err;
6839}
6840
c5905afb 6841struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6842
b0a873eb
PZ
6843static void sw_perf_event_destroy(struct perf_event *event)
6844{
6845 u64 event_id = event->attr.config;
95476b64 6846
b0a873eb
PZ
6847 WARN_ON(event->parent);
6848
c5905afb 6849 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6850 swevent_hlist_put(event);
6851}
6852
6853static int perf_swevent_init(struct perf_event *event)
6854{
8176cced 6855 u64 event_id = event->attr.config;
b0a873eb
PZ
6856
6857 if (event->attr.type != PERF_TYPE_SOFTWARE)
6858 return -ENOENT;
6859
2481c5fa
SE
6860 /*
6861 * no branch sampling for software events
6862 */
6863 if (has_branch_stack(event))
6864 return -EOPNOTSUPP;
6865
b0a873eb
PZ
6866 switch (event_id) {
6867 case PERF_COUNT_SW_CPU_CLOCK:
6868 case PERF_COUNT_SW_TASK_CLOCK:
6869 return -ENOENT;
6870
6871 default:
6872 break;
6873 }
6874
ce677831 6875 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6876 return -ENOENT;
6877
6878 if (!event->parent) {
6879 int err;
6880
6881 err = swevent_hlist_get(event);
6882 if (err)
6883 return err;
6884
c5905afb 6885 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6886 event->destroy = sw_perf_event_destroy;
6887 }
6888
6889 return 0;
6890}
6891
6892static struct pmu perf_swevent = {
89a1e187 6893 .task_ctx_nr = perf_sw_context,
95476b64 6894
34f43927
PZ
6895 .capabilities = PERF_PMU_CAP_NO_NMI,
6896
b0a873eb 6897 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6898 .add = perf_swevent_add,
6899 .del = perf_swevent_del,
6900 .start = perf_swevent_start,
6901 .stop = perf_swevent_stop,
1c024eca 6902 .read = perf_swevent_read,
1c024eca
PZ
6903};
6904
b0a873eb
PZ
6905#ifdef CONFIG_EVENT_TRACING
6906
1c024eca
PZ
6907static int perf_tp_filter_match(struct perf_event *event,
6908 struct perf_sample_data *data)
6909{
6910 void *record = data->raw->data;
6911
6912 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6913 return 1;
6914 return 0;
6915}
6916
6917static int perf_tp_event_match(struct perf_event *event,
6918 struct perf_sample_data *data,
6919 struct pt_regs *regs)
6920{
a0f7d0f7
FW
6921 if (event->hw.state & PERF_HES_STOPPED)
6922 return 0;
580d607c
PZ
6923 /*
6924 * All tracepoints are from kernel-space.
6925 */
6926 if (event->attr.exclude_kernel)
1c024eca
PZ
6927 return 0;
6928
6929 if (!perf_tp_filter_match(event, data))
6930 return 0;
6931
6932 return 1;
6933}
6934
6935void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6936 struct pt_regs *regs, struct hlist_head *head, int rctx,
6937 struct task_struct *task)
95476b64
FW
6938{
6939 struct perf_sample_data data;
1c024eca 6940 struct perf_event *event;
1c024eca 6941
95476b64
FW
6942 struct perf_raw_record raw = {
6943 .size = entry_size,
6944 .data = record,
6945 };
6946
fd0d000b 6947 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6948 data.raw = &raw;
6949
b67bfe0d 6950 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6951 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6952 perf_swevent_event(event, count, &data, regs);
4f41c013 6953 }
ecc55f84 6954
e6dab5ff
AV
6955 /*
6956 * If we got specified a target task, also iterate its context and
6957 * deliver this event there too.
6958 */
6959 if (task && task != current) {
6960 struct perf_event_context *ctx;
6961 struct trace_entry *entry = record;
6962
6963 rcu_read_lock();
6964 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6965 if (!ctx)
6966 goto unlock;
6967
6968 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6969 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6970 continue;
6971 if (event->attr.config != entry->type)
6972 continue;
6973 if (perf_tp_event_match(event, &data, regs))
6974 perf_swevent_event(event, count, &data, regs);
6975 }
6976unlock:
6977 rcu_read_unlock();
6978 }
6979
ecc55f84 6980 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6981}
6982EXPORT_SYMBOL_GPL(perf_tp_event);
6983
cdd6c482 6984static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6985{
1c024eca 6986 perf_trace_destroy(event);
e077df4f
PZ
6987}
6988
b0a873eb 6989static int perf_tp_event_init(struct perf_event *event)
e077df4f 6990{
76e1d904
FW
6991 int err;
6992
b0a873eb
PZ
6993 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6994 return -ENOENT;
6995
2481c5fa
SE
6996 /*
6997 * no branch sampling for tracepoint events
6998 */
6999 if (has_branch_stack(event))
7000 return -EOPNOTSUPP;
7001
1c024eca
PZ
7002 err = perf_trace_init(event);
7003 if (err)
b0a873eb 7004 return err;
e077df4f 7005
cdd6c482 7006 event->destroy = tp_perf_event_destroy;
e077df4f 7007
b0a873eb
PZ
7008 return 0;
7009}
7010
7011static struct pmu perf_tracepoint = {
89a1e187
PZ
7012 .task_ctx_nr = perf_sw_context,
7013
b0a873eb 7014 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7015 .add = perf_trace_add,
7016 .del = perf_trace_del,
7017 .start = perf_swevent_start,
7018 .stop = perf_swevent_stop,
b0a873eb 7019 .read = perf_swevent_read,
b0a873eb
PZ
7020};
7021
7022static inline void perf_tp_register(void)
7023{
2e80a82a 7024 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7025}
6fb2915d
LZ
7026
7027static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7028{
7029 char *filter_str;
7030 int ret;
7031
7032 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7033 return -EINVAL;
7034
7035 filter_str = strndup_user(arg, PAGE_SIZE);
7036 if (IS_ERR(filter_str))
7037 return PTR_ERR(filter_str);
7038
7039 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7040
7041 kfree(filter_str);
7042 return ret;
7043}
7044
7045static void perf_event_free_filter(struct perf_event *event)
7046{
7047 ftrace_profile_free_filter(event);
7048}
7049
2541517c
AS
7050static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7051{
7052 struct bpf_prog *prog;
7053
7054 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7055 return -EINVAL;
7056
7057 if (event->tp_event->prog)
7058 return -EEXIST;
7059
04a22fae
WN
7060 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7061 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7062 return -EINVAL;
7063
7064 prog = bpf_prog_get(prog_fd);
7065 if (IS_ERR(prog))
7066 return PTR_ERR(prog);
7067
6c373ca8 7068 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7069 /* valid fd, but invalid bpf program type */
7070 bpf_prog_put(prog);
7071 return -EINVAL;
7072 }
7073
7074 event->tp_event->prog = prog;
7075
7076 return 0;
7077}
7078
7079static void perf_event_free_bpf_prog(struct perf_event *event)
7080{
7081 struct bpf_prog *prog;
7082
7083 if (!event->tp_event)
7084 return;
7085
7086 prog = event->tp_event->prog;
7087 if (prog) {
7088 event->tp_event->prog = NULL;
7089 bpf_prog_put(prog);
7090 }
7091}
7092
e077df4f 7093#else
6fb2915d 7094
b0a873eb 7095static inline void perf_tp_register(void)
e077df4f 7096{
e077df4f 7097}
6fb2915d
LZ
7098
7099static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7100{
7101 return -ENOENT;
7102}
7103
7104static void perf_event_free_filter(struct perf_event *event)
7105{
7106}
7107
2541517c
AS
7108static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7109{
7110 return -ENOENT;
7111}
7112
7113static void perf_event_free_bpf_prog(struct perf_event *event)
7114{
7115}
07b139c8 7116#endif /* CONFIG_EVENT_TRACING */
e077df4f 7117
24f1e32c 7118#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7119void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7120{
f5ffe02e
FW
7121 struct perf_sample_data sample;
7122 struct pt_regs *regs = data;
7123
fd0d000b 7124 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7125
a4eaf7f1 7126 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7127 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7128}
7129#endif
7130
b0a873eb
PZ
7131/*
7132 * hrtimer based swevent callback
7133 */
f29ac756 7134
b0a873eb 7135static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7136{
b0a873eb
PZ
7137 enum hrtimer_restart ret = HRTIMER_RESTART;
7138 struct perf_sample_data data;
7139 struct pt_regs *regs;
7140 struct perf_event *event;
7141 u64 period;
f29ac756 7142
b0a873eb 7143 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7144
7145 if (event->state != PERF_EVENT_STATE_ACTIVE)
7146 return HRTIMER_NORESTART;
7147
b0a873eb 7148 event->pmu->read(event);
f344011c 7149
fd0d000b 7150 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7151 regs = get_irq_regs();
7152
7153 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7154 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7155 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7156 ret = HRTIMER_NORESTART;
7157 }
24f1e32c 7158
b0a873eb
PZ
7159 period = max_t(u64, 10000, event->hw.sample_period);
7160 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7161
b0a873eb 7162 return ret;
f29ac756
PZ
7163}
7164
b0a873eb 7165static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7166{
b0a873eb 7167 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7168 s64 period;
7169
7170 if (!is_sampling_event(event))
7171 return;
f5ffe02e 7172
5d508e82
FBH
7173 period = local64_read(&hwc->period_left);
7174 if (period) {
7175 if (period < 0)
7176 period = 10000;
fa407f35 7177
5d508e82
FBH
7178 local64_set(&hwc->period_left, 0);
7179 } else {
7180 period = max_t(u64, 10000, hwc->sample_period);
7181 }
3497d206
TG
7182 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7183 HRTIMER_MODE_REL_PINNED);
24f1e32c 7184}
b0a873eb
PZ
7185
7186static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7187{
b0a873eb
PZ
7188 struct hw_perf_event *hwc = &event->hw;
7189
6c7e550f 7190 if (is_sampling_event(event)) {
b0a873eb 7191 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7192 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7193
7194 hrtimer_cancel(&hwc->hrtimer);
7195 }
24f1e32c
FW
7196}
7197
ba3dd36c
PZ
7198static void perf_swevent_init_hrtimer(struct perf_event *event)
7199{
7200 struct hw_perf_event *hwc = &event->hw;
7201
7202 if (!is_sampling_event(event))
7203 return;
7204
7205 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7206 hwc->hrtimer.function = perf_swevent_hrtimer;
7207
7208 /*
7209 * Since hrtimers have a fixed rate, we can do a static freq->period
7210 * mapping and avoid the whole period adjust feedback stuff.
7211 */
7212 if (event->attr.freq) {
7213 long freq = event->attr.sample_freq;
7214
7215 event->attr.sample_period = NSEC_PER_SEC / freq;
7216 hwc->sample_period = event->attr.sample_period;
7217 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7218 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7219 event->attr.freq = 0;
7220 }
7221}
7222
b0a873eb
PZ
7223/*
7224 * Software event: cpu wall time clock
7225 */
7226
7227static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7228{
b0a873eb
PZ
7229 s64 prev;
7230 u64 now;
7231
a4eaf7f1 7232 now = local_clock();
b0a873eb
PZ
7233 prev = local64_xchg(&event->hw.prev_count, now);
7234 local64_add(now - prev, &event->count);
24f1e32c 7235}
24f1e32c 7236
a4eaf7f1 7237static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7238{
a4eaf7f1 7239 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7240 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7241}
7242
a4eaf7f1 7243static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7244{
b0a873eb
PZ
7245 perf_swevent_cancel_hrtimer(event);
7246 cpu_clock_event_update(event);
7247}
f29ac756 7248
a4eaf7f1
PZ
7249static int cpu_clock_event_add(struct perf_event *event, int flags)
7250{
7251 if (flags & PERF_EF_START)
7252 cpu_clock_event_start(event, flags);
6a694a60 7253 perf_event_update_userpage(event);
a4eaf7f1
PZ
7254
7255 return 0;
7256}
7257
7258static void cpu_clock_event_del(struct perf_event *event, int flags)
7259{
7260 cpu_clock_event_stop(event, flags);
7261}
7262
b0a873eb
PZ
7263static void cpu_clock_event_read(struct perf_event *event)
7264{
7265 cpu_clock_event_update(event);
7266}
f344011c 7267
b0a873eb
PZ
7268static int cpu_clock_event_init(struct perf_event *event)
7269{
7270 if (event->attr.type != PERF_TYPE_SOFTWARE)
7271 return -ENOENT;
7272
7273 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7274 return -ENOENT;
7275
2481c5fa
SE
7276 /*
7277 * no branch sampling for software events
7278 */
7279 if (has_branch_stack(event))
7280 return -EOPNOTSUPP;
7281
ba3dd36c
PZ
7282 perf_swevent_init_hrtimer(event);
7283
b0a873eb 7284 return 0;
f29ac756
PZ
7285}
7286
b0a873eb 7287static struct pmu perf_cpu_clock = {
89a1e187
PZ
7288 .task_ctx_nr = perf_sw_context,
7289
34f43927
PZ
7290 .capabilities = PERF_PMU_CAP_NO_NMI,
7291
b0a873eb 7292 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7293 .add = cpu_clock_event_add,
7294 .del = cpu_clock_event_del,
7295 .start = cpu_clock_event_start,
7296 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7297 .read = cpu_clock_event_read,
7298};
7299
7300/*
7301 * Software event: task time clock
7302 */
7303
7304static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7305{
b0a873eb
PZ
7306 u64 prev;
7307 s64 delta;
5c92d124 7308
b0a873eb
PZ
7309 prev = local64_xchg(&event->hw.prev_count, now);
7310 delta = now - prev;
7311 local64_add(delta, &event->count);
7312}
5c92d124 7313
a4eaf7f1 7314static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7315{
a4eaf7f1 7316 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7317 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7318}
7319
a4eaf7f1 7320static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7321{
7322 perf_swevent_cancel_hrtimer(event);
7323 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7324}
7325
7326static int task_clock_event_add(struct perf_event *event, int flags)
7327{
7328 if (flags & PERF_EF_START)
7329 task_clock_event_start(event, flags);
6a694a60 7330 perf_event_update_userpage(event);
b0a873eb 7331
a4eaf7f1
PZ
7332 return 0;
7333}
7334
7335static void task_clock_event_del(struct perf_event *event, int flags)
7336{
7337 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7338}
7339
7340static void task_clock_event_read(struct perf_event *event)
7341{
768a06e2
PZ
7342 u64 now = perf_clock();
7343 u64 delta = now - event->ctx->timestamp;
7344 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7345
7346 task_clock_event_update(event, time);
7347}
7348
7349static int task_clock_event_init(struct perf_event *event)
6fb2915d 7350{
b0a873eb
PZ
7351 if (event->attr.type != PERF_TYPE_SOFTWARE)
7352 return -ENOENT;
7353
7354 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7355 return -ENOENT;
7356
2481c5fa
SE
7357 /*
7358 * no branch sampling for software events
7359 */
7360 if (has_branch_stack(event))
7361 return -EOPNOTSUPP;
7362
ba3dd36c
PZ
7363 perf_swevent_init_hrtimer(event);
7364
b0a873eb 7365 return 0;
6fb2915d
LZ
7366}
7367
b0a873eb 7368static struct pmu perf_task_clock = {
89a1e187
PZ
7369 .task_ctx_nr = perf_sw_context,
7370
34f43927
PZ
7371 .capabilities = PERF_PMU_CAP_NO_NMI,
7372
b0a873eb 7373 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7374 .add = task_clock_event_add,
7375 .del = task_clock_event_del,
7376 .start = task_clock_event_start,
7377 .stop = task_clock_event_stop,
b0a873eb
PZ
7378 .read = task_clock_event_read,
7379};
6fb2915d 7380
ad5133b7 7381static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7382{
e077df4f 7383}
6fb2915d 7384
fbbe0701
SB
7385static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7386{
7387}
7388
ad5133b7 7389static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7390{
ad5133b7 7391 return 0;
6fb2915d
LZ
7392}
7393
18ab2cd3 7394static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7395
7396static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7397{
fbbe0701
SB
7398 __this_cpu_write(nop_txn_flags, flags);
7399
7400 if (flags & ~PERF_PMU_TXN_ADD)
7401 return;
7402
ad5133b7 7403 perf_pmu_disable(pmu);
6fb2915d
LZ
7404}
7405
ad5133b7
PZ
7406static int perf_pmu_commit_txn(struct pmu *pmu)
7407{
fbbe0701
SB
7408 unsigned int flags = __this_cpu_read(nop_txn_flags);
7409
7410 __this_cpu_write(nop_txn_flags, 0);
7411
7412 if (flags & ~PERF_PMU_TXN_ADD)
7413 return 0;
7414
ad5133b7
PZ
7415 perf_pmu_enable(pmu);
7416 return 0;
7417}
e077df4f 7418
ad5133b7 7419static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7420{
fbbe0701
SB
7421 unsigned int flags = __this_cpu_read(nop_txn_flags);
7422
7423 __this_cpu_write(nop_txn_flags, 0);
7424
7425 if (flags & ~PERF_PMU_TXN_ADD)
7426 return;
7427
ad5133b7 7428 perf_pmu_enable(pmu);
24f1e32c
FW
7429}
7430
35edc2a5
PZ
7431static int perf_event_idx_default(struct perf_event *event)
7432{
c719f560 7433 return 0;
35edc2a5
PZ
7434}
7435
8dc85d54
PZ
7436/*
7437 * Ensures all contexts with the same task_ctx_nr have the same
7438 * pmu_cpu_context too.
7439 */
9e317041 7440static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7441{
8dc85d54 7442 struct pmu *pmu;
b326e956 7443
8dc85d54
PZ
7444 if (ctxn < 0)
7445 return NULL;
24f1e32c 7446
8dc85d54
PZ
7447 list_for_each_entry(pmu, &pmus, entry) {
7448 if (pmu->task_ctx_nr == ctxn)
7449 return pmu->pmu_cpu_context;
7450 }
24f1e32c 7451
8dc85d54 7452 return NULL;
24f1e32c
FW
7453}
7454
51676957 7455static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7456{
51676957
PZ
7457 int cpu;
7458
7459 for_each_possible_cpu(cpu) {
7460 struct perf_cpu_context *cpuctx;
7461
7462 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7463
3f1f3320
PZ
7464 if (cpuctx->unique_pmu == old_pmu)
7465 cpuctx->unique_pmu = pmu;
51676957
PZ
7466 }
7467}
7468
7469static void free_pmu_context(struct pmu *pmu)
7470{
7471 struct pmu *i;
f5ffe02e 7472
8dc85d54 7473 mutex_lock(&pmus_lock);
0475f9ea 7474 /*
8dc85d54 7475 * Like a real lame refcount.
0475f9ea 7476 */
51676957
PZ
7477 list_for_each_entry(i, &pmus, entry) {
7478 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7479 update_pmu_context(i, pmu);
8dc85d54 7480 goto out;
51676957 7481 }
8dc85d54 7482 }
d6d020e9 7483
51676957 7484 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7485out:
7486 mutex_unlock(&pmus_lock);
24f1e32c 7487}
2e80a82a 7488static struct idr pmu_idr;
d6d020e9 7489
abe43400
PZ
7490static ssize_t
7491type_show(struct device *dev, struct device_attribute *attr, char *page)
7492{
7493 struct pmu *pmu = dev_get_drvdata(dev);
7494
7495 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7496}
90826ca7 7497static DEVICE_ATTR_RO(type);
abe43400 7498
62b85639
SE
7499static ssize_t
7500perf_event_mux_interval_ms_show(struct device *dev,
7501 struct device_attribute *attr,
7502 char *page)
7503{
7504 struct pmu *pmu = dev_get_drvdata(dev);
7505
7506 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7507}
7508
272325c4
PZ
7509static DEFINE_MUTEX(mux_interval_mutex);
7510
62b85639
SE
7511static ssize_t
7512perf_event_mux_interval_ms_store(struct device *dev,
7513 struct device_attribute *attr,
7514 const char *buf, size_t count)
7515{
7516 struct pmu *pmu = dev_get_drvdata(dev);
7517 int timer, cpu, ret;
7518
7519 ret = kstrtoint(buf, 0, &timer);
7520 if (ret)
7521 return ret;
7522
7523 if (timer < 1)
7524 return -EINVAL;
7525
7526 /* same value, noting to do */
7527 if (timer == pmu->hrtimer_interval_ms)
7528 return count;
7529
272325c4 7530 mutex_lock(&mux_interval_mutex);
62b85639
SE
7531 pmu->hrtimer_interval_ms = timer;
7532
7533 /* update all cpuctx for this PMU */
272325c4
PZ
7534 get_online_cpus();
7535 for_each_online_cpu(cpu) {
62b85639
SE
7536 struct perf_cpu_context *cpuctx;
7537 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7538 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7539
272325c4
PZ
7540 cpu_function_call(cpu,
7541 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7542 }
272325c4
PZ
7543 put_online_cpus();
7544 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7545
7546 return count;
7547}
90826ca7 7548static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7549
90826ca7
GKH
7550static struct attribute *pmu_dev_attrs[] = {
7551 &dev_attr_type.attr,
7552 &dev_attr_perf_event_mux_interval_ms.attr,
7553 NULL,
abe43400 7554};
90826ca7 7555ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7556
7557static int pmu_bus_running;
7558static struct bus_type pmu_bus = {
7559 .name = "event_source",
90826ca7 7560 .dev_groups = pmu_dev_groups,
abe43400
PZ
7561};
7562
7563static void pmu_dev_release(struct device *dev)
7564{
7565 kfree(dev);
7566}
7567
7568static int pmu_dev_alloc(struct pmu *pmu)
7569{
7570 int ret = -ENOMEM;
7571
7572 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7573 if (!pmu->dev)
7574 goto out;
7575
0c9d42ed 7576 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7577 device_initialize(pmu->dev);
7578 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7579 if (ret)
7580 goto free_dev;
7581
7582 dev_set_drvdata(pmu->dev, pmu);
7583 pmu->dev->bus = &pmu_bus;
7584 pmu->dev->release = pmu_dev_release;
7585 ret = device_add(pmu->dev);
7586 if (ret)
7587 goto free_dev;
7588
7589out:
7590 return ret;
7591
7592free_dev:
7593 put_device(pmu->dev);
7594 goto out;
7595}
7596
547e9fd7 7597static struct lock_class_key cpuctx_mutex;
facc4307 7598static struct lock_class_key cpuctx_lock;
547e9fd7 7599
03d8e80b 7600int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7601{
108b02cf 7602 int cpu, ret;
24f1e32c 7603
b0a873eb 7604 mutex_lock(&pmus_lock);
33696fc0
PZ
7605 ret = -ENOMEM;
7606 pmu->pmu_disable_count = alloc_percpu(int);
7607 if (!pmu->pmu_disable_count)
7608 goto unlock;
f29ac756 7609
2e80a82a
PZ
7610 pmu->type = -1;
7611 if (!name)
7612 goto skip_type;
7613 pmu->name = name;
7614
7615 if (type < 0) {
0e9c3be2
TH
7616 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7617 if (type < 0) {
7618 ret = type;
2e80a82a
PZ
7619 goto free_pdc;
7620 }
7621 }
7622 pmu->type = type;
7623
abe43400
PZ
7624 if (pmu_bus_running) {
7625 ret = pmu_dev_alloc(pmu);
7626 if (ret)
7627 goto free_idr;
7628 }
7629
2e80a82a 7630skip_type:
8dc85d54
PZ
7631 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7632 if (pmu->pmu_cpu_context)
7633 goto got_cpu_context;
f29ac756 7634
c4814202 7635 ret = -ENOMEM;
108b02cf
PZ
7636 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7637 if (!pmu->pmu_cpu_context)
abe43400 7638 goto free_dev;
f344011c 7639
108b02cf
PZ
7640 for_each_possible_cpu(cpu) {
7641 struct perf_cpu_context *cpuctx;
7642
7643 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7644 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7645 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7646 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7647 cpuctx->ctx.pmu = pmu;
9e630205 7648
272325c4 7649 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7650
3f1f3320 7651 cpuctx->unique_pmu = pmu;
108b02cf 7652 }
76e1d904 7653
8dc85d54 7654got_cpu_context:
ad5133b7
PZ
7655 if (!pmu->start_txn) {
7656 if (pmu->pmu_enable) {
7657 /*
7658 * If we have pmu_enable/pmu_disable calls, install
7659 * transaction stubs that use that to try and batch
7660 * hardware accesses.
7661 */
7662 pmu->start_txn = perf_pmu_start_txn;
7663 pmu->commit_txn = perf_pmu_commit_txn;
7664 pmu->cancel_txn = perf_pmu_cancel_txn;
7665 } else {
fbbe0701 7666 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7667 pmu->commit_txn = perf_pmu_nop_int;
7668 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7669 }
5c92d124 7670 }
15dbf27c 7671
ad5133b7
PZ
7672 if (!pmu->pmu_enable) {
7673 pmu->pmu_enable = perf_pmu_nop_void;
7674 pmu->pmu_disable = perf_pmu_nop_void;
7675 }
7676
35edc2a5
PZ
7677 if (!pmu->event_idx)
7678 pmu->event_idx = perf_event_idx_default;
7679
b0a873eb 7680 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7681 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7682 ret = 0;
7683unlock:
b0a873eb
PZ
7684 mutex_unlock(&pmus_lock);
7685
33696fc0 7686 return ret;
108b02cf 7687
abe43400
PZ
7688free_dev:
7689 device_del(pmu->dev);
7690 put_device(pmu->dev);
7691
2e80a82a
PZ
7692free_idr:
7693 if (pmu->type >= PERF_TYPE_MAX)
7694 idr_remove(&pmu_idr, pmu->type);
7695
108b02cf
PZ
7696free_pdc:
7697 free_percpu(pmu->pmu_disable_count);
7698 goto unlock;
f29ac756 7699}
c464c76e 7700EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7701
b0a873eb 7702void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7703{
b0a873eb
PZ
7704 mutex_lock(&pmus_lock);
7705 list_del_rcu(&pmu->entry);
7706 mutex_unlock(&pmus_lock);
5c92d124 7707
0475f9ea 7708 /*
cde8e884
PZ
7709 * We dereference the pmu list under both SRCU and regular RCU, so
7710 * synchronize against both of those.
0475f9ea 7711 */
b0a873eb 7712 synchronize_srcu(&pmus_srcu);
cde8e884 7713 synchronize_rcu();
d6d020e9 7714
33696fc0 7715 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7716 if (pmu->type >= PERF_TYPE_MAX)
7717 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7718 device_del(pmu->dev);
7719 put_device(pmu->dev);
51676957 7720 free_pmu_context(pmu);
b0a873eb 7721}
c464c76e 7722EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7723
cc34b98b
MR
7724static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7725{
ccd41c86 7726 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7727 int ret;
7728
7729 if (!try_module_get(pmu->module))
7730 return -ENODEV;
ccd41c86
PZ
7731
7732 if (event->group_leader != event) {
8b10c5e2
PZ
7733 /*
7734 * This ctx->mutex can nest when we're called through
7735 * inheritance. See the perf_event_ctx_lock_nested() comment.
7736 */
7737 ctx = perf_event_ctx_lock_nested(event->group_leader,
7738 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7739 BUG_ON(!ctx);
7740 }
7741
cc34b98b
MR
7742 event->pmu = pmu;
7743 ret = pmu->event_init(event);
ccd41c86
PZ
7744
7745 if (ctx)
7746 perf_event_ctx_unlock(event->group_leader, ctx);
7747
cc34b98b
MR
7748 if (ret)
7749 module_put(pmu->module);
7750
7751 return ret;
7752}
7753
18ab2cd3 7754static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7755{
7756 struct pmu *pmu = NULL;
7757 int idx;
940c5b29 7758 int ret;
b0a873eb
PZ
7759
7760 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7761
7762 rcu_read_lock();
7763 pmu = idr_find(&pmu_idr, event->attr.type);
7764 rcu_read_unlock();
940c5b29 7765 if (pmu) {
cc34b98b 7766 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7767 if (ret)
7768 pmu = ERR_PTR(ret);
2e80a82a 7769 goto unlock;
940c5b29 7770 }
2e80a82a 7771
b0a873eb 7772 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7773 ret = perf_try_init_event(pmu, event);
b0a873eb 7774 if (!ret)
e5f4d339 7775 goto unlock;
76e1d904 7776
b0a873eb
PZ
7777 if (ret != -ENOENT) {
7778 pmu = ERR_PTR(ret);
e5f4d339 7779 goto unlock;
f344011c 7780 }
5c92d124 7781 }
e5f4d339
PZ
7782 pmu = ERR_PTR(-ENOENT);
7783unlock:
b0a873eb 7784 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7785
4aeb0b42 7786 return pmu;
5c92d124
IM
7787}
7788
4beb31f3
FW
7789static void account_event_cpu(struct perf_event *event, int cpu)
7790{
7791 if (event->parent)
7792 return;
7793
4beb31f3
FW
7794 if (is_cgroup_event(event))
7795 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7796}
7797
766d6c07
FW
7798static void account_event(struct perf_event *event)
7799{
4beb31f3
FW
7800 if (event->parent)
7801 return;
7802
766d6c07
FW
7803 if (event->attach_state & PERF_ATTACH_TASK)
7804 static_key_slow_inc(&perf_sched_events.key);
7805 if (event->attr.mmap || event->attr.mmap_data)
7806 atomic_inc(&nr_mmap_events);
7807 if (event->attr.comm)
7808 atomic_inc(&nr_comm_events);
7809 if (event->attr.task)
7810 atomic_inc(&nr_task_events);
948b26b6
FW
7811 if (event->attr.freq) {
7812 if (atomic_inc_return(&nr_freq_events) == 1)
7813 tick_nohz_full_kick_all();
7814 }
45ac1403
AH
7815 if (event->attr.context_switch) {
7816 atomic_inc(&nr_switch_events);
7817 static_key_slow_inc(&perf_sched_events.key);
7818 }
4beb31f3 7819 if (has_branch_stack(event))
766d6c07 7820 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7821 if (is_cgroup_event(event))
766d6c07 7822 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7823
7824 account_event_cpu(event, event->cpu);
766d6c07
FW
7825}
7826
0793a61d 7827/*
cdd6c482 7828 * Allocate and initialize a event structure
0793a61d 7829 */
cdd6c482 7830static struct perf_event *
c3f00c70 7831perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7832 struct task_struct *task,
7833 struct perf_event *group_leader,
7834 struct perf_event *parent_event,
4dc0da86 7835 perf_overflow_handler_t overflow_handler,
79dff51e 7836 void *context, int cgroup_fd)
0793a61d 7837{
51b0fe39 7838 struct pmu *pmu;
cdd6c482
IM
7839 struct perf_event *event;
7840 struct hw_perf_event *hwc;
90983b16 7841 long err = -EINVAL;
0793a61d 7842
66832eb4
ON
7843 if ((unsigned)cpu >= nr_cpu_ids) {
7844 if (!task || cpu != -1)
7845 return ERR_PTR(-EINVAL);
7846 }
7847
c3f00c70 7848 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7849 if (!event)
d5d2bc0d 7850 return ERR_PTR(-ENOMEM);
0793a61d 7851
04289bb9 7852 /*
cdd6c482 7853 * Single events are their own group leaders, with an
04289bb9
IM
7854 * empty sibling list:
7855 */
7856 if (!group_leader)
cdd6c482 7857 group_leader = event;
04289bb9 7858
cdd6c482
IM
7859 mutex_init(&event->child_mutex);
7860 INIT_LIST_HEAD(&event->child_list);
fccc714b 7861
cdd6c482
IM
7862 INIT_LIST_HEAD(&event->group_entry);
7863 INIT_LIST_HEAD(&event->event_entry);
7864 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7865 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7866 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7867 INIT_HLIST_NODE(&event->hlist_entry);
7868
10c6db11 7869
cdd6c482 7870 init_waitqueue_head(&event->waitq);
e360adbe 7871 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7872
cdd6c482 7873 mutex_init(&event->mmap_mutex);
7b732a75 7874
a6fa941d 7875 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7876 event->cpu = cpu;
7877 event->attr = *attr;
7878 event->group_leader = group_leader;
7879 event->pmu = NULL;
cdd6c482 7880 event->oncpu = -1;
a96bbc16 7881
cdd6c482 7882 event->parent = parent_event;
b84fbc9f 7883
17cf22c3 7884 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7885 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7886
cdd6c482 7887 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7888
d580ff86
PZ
7889 if (task) {
7890 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7891 /*
50f16a8b
PZ
7892 * XXX pmu::event_init needs to know what task to account to
7893 * and we cannot use the ctx information because we need the
7894 * pmu before we get a ctx.
d580ff86 7895 */
50f16a8b 7896 event->hw.target = task;
d580ff86
PZ
7897 }
7898
34f43927
PZ
7899 event->clock = &local_clock;
7900 if (parent_event)
7901 event->clock = parent_event->clock;
7902
4dc0da86 7903 if (!overflow_handler && parent_event) {
b326e956 7904 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7905 context = parent_event->overflow_handler_context;
7906 }
66832eb4 7907
b326e956 7908 event->overflow_handler = overflow_handler;
4dc0da86 7909 event->overflow_handler_context = context;
97eaf530 7910
0231bb53 7911 perf_event__state_init(event);
a86ed508 7912
4aeb0b42 7913 pmu = NULL;
b8e83514 7914
cdd6c482 7915 hwc = &event->hw;
bd2b5b12 7916 hwc->sample_period = attr->sample_period;
0d48696f 7917 if (attr->freq && attr->sample_freq)
bd2b5b12 7918 hwc->sample_period = 1;
eced1dfc 7919 hwc->last_period = hwc->sample_period;
bd2b5b12 7920
e7850595 7921 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7922
2023b359 7923 /*
cdd6c482 7924 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7925 */
3dab77fb 7926 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7927 goto err_ns;
a46a2300
YZ
7928
7929 if (!has_branch_stack(event))
7930 event->attr.branch_sample_type = 0;
2023b359 7931
79dff51e
MF
7932 if (cgroup_fd != -1) {
7933 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7934 if (err)
7935 goto err_ns;
7936 }
7937
b0a873eb 7938 pmu = perf_init_event(event);
4aeb0b42 7939 if (!pmu)
90983b16
FW
7940 goto err_ns;
7941 else if (IS_ERR(pmu)) {
4aeb0b42 7942 err = PTR_ERR(pmu);
90983b16 7943 goto err_ns;
621a01ea 7944 }
d5d2bc0d 7945
bed5b25a
AS
7946 err = exclusive_event_init(event);
7947 if (err)
7948 goto err_pmu;
7949
cdd6c482 7950 if (!event->parent) {
927c7a9e
FW
7951 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7952 err = get_callchain_buffers();
90983b16 7953 if (err)
bed5b25a 7954 goto err_per_task;
d010b332 7955 }
f344011c 7956 }
9ee318a7 7957
cdd6c482 7958 return event;
90983b16 7959
bed5b25a
AS
7960err_per_task:
7961 exclusive_event_destroy(event);
7962
90983b16
FW
7963err_pmu:
7964 if (event->destroy)
7965 event->destroy(event);
c464c76e 7966 module_put(pmu->module);
90983b16 7967err_ns:
79dff51e
MF
7968 if (is_cgroup_event(event))
7969 perf_detach_cgroup(event);
90983b16
FW
7970 if (event->ns)
7971 put_pid_ns(event->ns);
7972 kfree(event);
7973
7974 return ERR_PTR(err);
0793a61d
TG
7975}
7976
cdd6c482
IM
7977static int perf_copy_attr(struct perf_event_attr __user *uattr,
7978 struct perf_event_attr *attr)
974802ea 7979{
974802ea 7980 u32 size;
cdf8073d 7981 int ret;
974802ea
PZ
7982
7983 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7984 return -EFAULT;
7985
7986 /*
7987 * zero the full structure, so that a short copy will be nice.
7988 */
7989 memset(attr, 0, sizeof(*attr));
7990
7991 ret = get_user(size, &uattr->size);
7992 if (ret)
7993 return ret;
7994
7995 if (size > PAGE_SIZE) /* silly large */
7996 goto err_size;
7997
7998 if (!size) /* abi compat */
7999 size = PERF_ATTR_SIZE_VER0;
8000
8001 if (size < PERF_ATTR_SIZE_VER0)
8002 goto err_size;
8003
8004 /*
8005 * If we're handed a bigger struct than we know of,
cdf8073d
IS
8006 * ensure all the unknown bits are 0 - i.e. new
8007 * user-space does not rely on any kernel feature
8008 * extensions we dont know about yet.
974802ea
PZ
8009 */
8010 if (size > sizeof(*attr)) {
cdf8073d
IS
8011 unsigned char __user *addr;
8012 unsigned char __user *end;
8013 unsigned char val;
974802ea 8014
cdf8073d
IS
8015 addr = (void __user *)uattr + sizeof(*attr);
8016 end = (void __user *)uattr + size;
974802ea 8017
cdf8073d 8018 for (; addr < end; addr++) {
974802ea
PZ
8019 ret = get_user(val, addr);
8020 if (ret)
8021 return ret;
8022 if (val)
8023 goto err_size;
8024 }
b3e62e35 8025 size = sizeof(*attr);
974802ea
PZ
8026 }
8027
8028 ret = copy_from_user(attr, uattr, size);
8029 if (ret)
8030 return -EFAULT;
8031
cd757645 8032 if (attr->__reserved_1)
974802ea
PZ
8033 return -EINVAL;
8034
8035 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8036 return -EINVAL;
8037
8038 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8039 return -EINVAL;
8040
bce38cd5
SE
8041 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8042 u64 mask = attr->branch_sample_type;
8043
8044 /* only using defined bits */
8045 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8046 return -EINVAL;
8047
8048 /* at least one branch bit must be set */
8049 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8050 return -EINVAL;
8051
bce38cd5
SE
8052 /* propagate priv level, when not set for branch */
8053 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8054
8055 /* exclude_kernel checked on syscall entry */
8056 if (!attr->exclude_kernel)
8057 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8058
8059 if (!attr->exclude_user)
8060 mask |= PERF_SAMPLE_BRANCH_USER;
8061
8062 if (!attr->exclude_hv)
8063 mask |= PERF_SAMPLE_BRANCH_HV;
8064 /*
8065 * adjust user setting (for HW filter setup)
8066 */
8067 attr->branch_sample_type = mask;
8068 }
e712209a
SE
8069 /* privileged levels capture (kernel, hv): check permissions */
8070 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8071 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8072 return -EACCES;
bce38cd5 8073 }
4018994f 8074
c5ebcedb 8075 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8076 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8077 if (ret)
8078 return ret;
8079 }
8080
8081 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8082 if (!arch_perf_have_user_stack_dump())
8083 return -ENOSYS;
8084
8085 /*
8086 * We have __u32 type for the size, but so far
8087 * we can only use __u16 as maximum due to the
8088 * __u16 sample size limit.
8089 */
8090 if (attr->sample_stack_user >= USHRT_MAX)
8091 ret = -EINVAL;
8092 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8093 ret = -EINVAL;
8094 }
4018994f 8095
60e2364e
SE
8096 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8097 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8098out:
8099 return ret;
8100
8101err_size:
8102 put_user(sizeof(*attr), &uattr->size);
8103 ret = -E2BIG;
8104 goto out;
8105}
8106
ac9721f3
PZ
8107static int
8108perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8109{
b69cf536 8110 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8111 int ret = -EINVAL;
8112
ac9721f3 8113 if (!output_event)
a4be7c27
PZ
8114 goto set;
8115
ac9721f3
PZ
8116 /* don't allow circular references */
8117 if (event == output_event)
a4be7c27
PZ
8118 goto out;
8119
0f139300
PZ
8120 /*
8121 * Don't allow cross-cpu buffers
8122 */
8123 if (output_event->cpu != event->cpu)
8124 goto out;
8125
8126 /*
76369139 8127 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8128 */
8129 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8130 goto out;
8131
34f43927
PZ
8132 /*
8133 * Mixing clocks in the same buffer is trouble you don't need.
8134 */
8135 if (output_event->clock != event->clock)
8136 goto out;
8137
45bfb2e5
PZ
8138 /*
8139 * If both events generate aux data, they must be on the same PMU
8140 */
8141 if (has_aux(event) && has_aux(output_event) &&
8142 event->pmu != output_event->pmu)
8143 goto out;
8144
a4be7c27 8145set:
cdd6c482 8146 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8147 /* Can't redirect output if we've got an active mmap() */
8148 if (atomic_read(&event->mmap_count))
8149 goto unlock;
a4be7c27 8150
ac9721f3 8151 if (output_event) {
76369139
FW
8152 /* get the rb we want to redirect to */
8153 rb = ring_buffer_get(output_event);
8154 if (!rb)
ac9721f3 8155 goto unlock;
a4be7c27
PZ
8156 }
8157
b69cf536 8158 ring_buffer_attach(event, rb);
9bb5d40c 8159
a4be7c27 8160 ret = 0;
ac9721f3
PZ
8161unlock:
8162 mutex_unlock(&event->mmap_mutex);
8163
a4be7c27 8164out:
a4be7c27
PZ
8165 return ret;
8166}
8167
f63a8daa
PZ
8168static void mutex_lock_double(struct mutex *a, struct mutex *b)
8169{
8170 if (b < a)
8171 swap(a, b);
8172
8173 mutex_lock(a);
8174 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8175}
8176
34f43927
PZ
8177static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8178{
8179 bool nmi_safe = false;
8180
8181 switch (clk_id) {
8182 case CLOCK_MONOTONIC:
8183 event->clock = &ktime_get_mono_fast_ns;
8184 nmi_safe = true;
8185 break;
8186
8187 case CLOCK_MONOTONIC_RAW:
8188 event->clock = &ktime_get_raw_fast_ns;
8189 nmi_safe = true;
8190 break;
8191
8192 case CLOCK_REALTIME:
8193 event->clock = &ktime_get_real_ns;
8194 break;
8195
8196 case CLOCK_BOOTTIME:
8197 event->clock = &ktime_get_boot_ns;
8198 break;
8199
8200 case CLOCK_TAI:
8201 event->clock = &ktime_get_tai_ns;
8202 break;
8203
8204 default:
8205 return -EINVAL;
8206 }
8207
8208 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8209 return -EINVAL;
8210
8211 return 0;
8212}
8213
0793a61d 8214/**
cdd6c482 8215 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8216 *
cdd6c482 8217 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8218 * @pid: target pid
9f66a381 8219 * @cpu: target cpu
cdd6c482 8220 * @group_fd: group leader event fd
0793a61d 8221 */
cdd6c482
IM
8222SYSCALL_DEFINE5(perf_event_open,
8223 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8224 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8225{
b04243ef
PZ
8226 struct perf_event *group_leader = NULL, *output_event = NULL;
8227 struct perf_event *event, *sibling;
cdd6c482 8228 struct perf_event_attr attr;
f63a8daa 8229 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8230 struct file *event_file = NULL;
2903ff01 8231 struct fd group = {NULL, 0};
38a81da2 8232 struct task_struct *task = NULL;
89a1e187 8233 struct pmu *pmu;
ea635c64 8234 int event_fd;
b04243ef 8235 int move_group = 0;
dc86cabe 8236 int err;
a21b0b35 8237 int f_flags = O_RDWR;
79dff51e 8238 int cgroup_fd = -1;
0793a61d 8239
2743a5b0 8240 /* for future expandability... */
e5d1367f 8241 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8242 return -EINVAL;
8243
dc86cabe
IM
8244 err = perf_copy_attr(attr_uptr, &attr);
8245 if (err)
8246 return err;
eab656ae 8247
0764771d
PZ
8248 if (!attr.exclude_kernel) {
8249 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8250 return -EACCES;
8251 }
8252
df58ab24 8253 if (attr.freq) {
cdd6c482 8254 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8255 return -EINVAL;
0819b2e3
PZ
8256 } else {
8257 if (attr.sample_period & (1ULL << 63))
8258 return -EINVAL;
df58ab24
PZ
8259 }
8260
e5d1367f
SE
8261 /*
8262 * In cgroup mode, the pid argument is used to pass the fd
8263 * opened to the cgroup directory in cgroupfs. The cpu argument
8264 * designates the cpu on which to monitor threads from that
8265 * cgroup.
8266 */
8267 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8268 return -EINVAL;
8269
a21b0b35
YD
8270 if (flags & PERF_FLAG_FD_CLOEXEC)
8271 f_flags |= O_CLOEXEC;
8272
8273 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8274 if (event_fd < 0)
8275 return event_fd;
8276
ac9721f3 8277 if (group_fd != -1) {
2903ff01
AV
8278 err = perf_fget_light(group_fd, &group);
8279 if (err)
d14b12d7 8280 goto err_fd;
2903ff01 8281 group_leader = group.file->private_data;
ac9721f3
PZ
8282 if (flags & PERF_FLAG_FD_OUTPUT)
8283 output_event = group_leader;
8284 if (flags & PERF_FLAG_FD_NO_GROUP)
8285 group_leader = NULL;
8286 }
8287
e5d1367f 8288 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8289 task = find_lively_task_by_vpid(pid);
8290 if (IS_ERR(task)) {
8291 err = PTR_ERR(task);
8292 goto err_group_fd;
8293 }
8294 }
8295
1f4ee503
PZ
8296 if (task && group_leader &&
8297 group_leader->attr.inherit != attr.inherit) {
8298 err = -EINVAL;
8299 goto err_task;
8300 }
8301
fbfc623f
YZ
8302 get_online_cpus();
8303
79dff51e
MF
8304 if (flags & PERF_FLAG_PID_CGROUP)
8305 cgroup_fd = pid;
8306
4dc0da86 8307 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8308 NULL, NULL, cgroup_fd);
d14b12d7
SE
8309 if (IS_ERR(event)) {
8310 err = PTR_ERR(event);
1f4ee503 8311 goto err_cpus;
d14b12d7
SE
8312 }
8313
53b25335
VW
8314 if (is_sampling_event(event)) {
8315 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8316 err = -ENOTSUPP;
8317 goto err_alloc;
8318 }
8319 }
8320
766d6c07
FW
8321 account_event(event);
8322
89a1e187
PZ
8323 /*
8324 * Special case software events and allow them to be part of
8325 * any hardware group.
8326 */
8327 pmu = event->pmu;
b04243ef 8328
34f43927
PZ
8329 if (attr.use_clockid) {
8330 err = perf_event_set_clock(event, attr.clockid);
8331 if (err)
8332 goto err_alloc;
8333 }
8334
b04243ef
PZ
8335 if (group_leader &&
8336 (is_software_event(event) != is_software_event(group_leader))) {
8337 if (is_software_event(event)) {
8338 /*
8339 * If event and group_leader are not both a software
8340 * event, and event is, then group leader is not.
8341 *
8342 * Allow the addition of software events to !software
8343 * groups, this is safe because software events never
8344 * fail to schedule.
8345 */
8346 pmu = group_leader->pmu;
8347 } else if (is_software_event(group_leader) &&
8348 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8349 /*
8350 * In case the group is a pure software group, and we
8351 * try to add a hardware event, move the whole group to
8352 * the hardware context.
8353 */
8354 move_group = 1;
8355 }
8356 }
89a1e187
PZ
8357
8358 /*
8359 * Get the target context (task or percpu):
8360 */
4af57ef2 8361 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8362 if (IS_ERR(ctx)) {
8363 err = PTR_ERR(ctx);
c6be5a5c 8364 goto err_alloc;
89a1e187
PZ
8365 }
8366
bed5b25a
AS
8367 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8368 err = -EBUSY;
8369 goto err_context;
8370 }
8371
fd1edb3a
PZ
8372 if (task) {
8373 put_task_struct(task);
8374 task = NULL;
8375 }
8376
ccff286d 8377 /*
cdd6c482 8378 * Look up the group leader (we will attach this event to it):
04289bb9 8379 */
ac9721f3 8380 if (group_leader) {
dc86cabe 8381 err = -EINVAL;
04289bb9 8382
04289bb9 8383 /*
ccff286d
IM
8384 * Do not allow a recursive hierarchy (this new sibling
8385 * becoming part of another group-sibling):
8386 */
8387 if (group_leader->group_leader != group_leader)
c3f00c70 8388 goto err_context;
34f43927
PZ
8389
8390 /* All events in a group should have the same clock */
8391 if (group_leader->clock != event->clock)
8392 goto err_context;
8393
ccff286d
IM
8394 /*
8395 * Do not allow to attach to a group in a different
8396 * task or CPU context:
04289bb9 8397 */
b04243ef 8398 if (move_group) {
c3c87e77
PZ
8399 /*
8400 * Make sure we're both on the same task, or both
8401 * per-cpu events.
8402 */
8403 if (group_leader->ctx->task != ctx->task)
8404 goto err_context;
8405
8406 /*
8407 * Make sure we're both events for the same CPU;
8408 * grouping events for different CPUs is broken; since
8409 * you can never concurrently schedule them anyhow.
8410 */
8411 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8412 goto err_context;
8413 } else {
8414 if (group_leader->ctx != ctx)
8415 goto err_context;
8416 }
8417
3b6f9e5c
PM
8418 /*
8419 * Only a group leader can be exclusive or pinned
8420 */
0d48696f 8421 if (attr.exclusive || attr.pinned)
c3f00c70 8422 goto err_context;
ac9721f3
PZ
8423 }
8424
8425 if (output_event) {
8426 err = perf_event_set_output(event, output_event);
8427 if (err)
c3f00c70 8428 goto err_context;
ac9721f3 8429 }
0793a61d 8430
a21b0b35
YD
8431 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8432 f_flags);
ea635c64
AV
8433 if (IS_ERR(event_file)) {
8434 err = PTR_ERR(event_file);
c3f00c70 8435 goto err_context;
ea635c64 8436 }
9b51f66d 8437
b04243ef 8438 if (move_group) {
f63a8daa 8439 gctx = group_leader->ctx;
f55fc2a5
PZ
8440 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8441 } else {
8442 mutex_lock(&ctx->mutex);
8443 }
8444
a723968c
PZ
8445 if (!perf_event_validate_size(event)) {
8446 err = -E2BIG;
8447 goto err_locked;
8448 }
8449
f55fc2a5
PZ
8450 /*
8451 * Must be under the same ctx::mutex as perf_install_in_context(),
8452 * because we need to serialize with concurrent event creation.
8453 */
8454 if (!exclusive_event_installable(event, ctx)) {
8455 /* exclusive and group stuff are assumed mutually exclusive */
8456 WARN_ON_ONCE(move_group);
f63a8daa 8457
f55fc2a5
PZ
8458 err = -EBUSY;
8459 goto err_locked;
8460 }
f63a8daa 8461
f55fc2a5
PZ
8462 WARN_ON_ONCE(ctx->parent_ctx);
8463
8464 if (move_group) {
f63a8daa
PZ
8465 /*
8466 * See perf_event_ctx_lock() for comments on the details
8467 * of swizzling perf_event::ctx.
8468 */
46ce0fe9 8469 perf_remove_from_context(group_leader, false);
0231bb53 8470
b04243ef
PZ
8471 list_for_each_entry(sibling, &group_leader->sibling_list,
8472 group_entry) {
46ce0fe9 8473 perf_remove_from_context(sibling, false);
b04243ef
PZ
8474 put_ctx(gctx);
8475 }
b04243ef 8476
f63a8daa
PZ
8477 /*
8478 * Wait for everybody to stop referencing the events through
8479 * the old lists, before installing it on new lists.
8480 */
0cda4c02 8481 synchronize_rcu();
f63a8daa 8482
8f95b435
PZI
8483 /*
8484 * Install the group siblings before the group leader.
8485 *
8486 * Because a group leader will try and install the entire group
8487 * (through the sibling list, which is still in-tact), we can
8488 * end up with siblings installed in the wrong context.
8489 *
8490 * By installing siblings first we NO-OP because they're not
8491 * reachable through the group lists.
8492 */
b04243ef
PZ
8493 list_for_each_entry(sibling, &group_leader->sibling_list,
8494 group_entry) {
8f95b435 8495 perf_event__state_init(sibling);
9fc81d87 8496 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8497 get_ctx(ctx);
8498 }
8f95b435
PZI
8499
8500 /*
8501 * Removing from the context ends up with disabled
8502 * event. What we want here is event in the initial
8503 * startup state, ready to be add into new context.
8504 */
8505 perf_event__state_init(group_leader);
8506 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8507 get_ctx(ctx);
b04243ef 8508
f55fc2a5
PZ
8509 /*
8510 * Now that all events are installed in @ctx, nothing
8511 * references @gctx anymore, so drop the last reference we have
8512 * on it.
8513 */
8514 put_ctx(gctx);
bed5b25a
AS
8515 }
8516
f73e22ab
PZ
8517 /*
8518 * Precalculate sample_data sizes; do while holding ctx::mutex such
8519 * that we're serialized against further additions and before
8520 * perf_install_in_context() which is the point the event is active and
8521 * can use these values.
8522 */
8523 perf_event__header_size(event);
8524 perf_event__id_header_size(event);
8525
e2d37cd2 8526 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8527 perf_unpin_context(ctx);
f63a8daa 8528
f55fc2a5 8529 if (move_group)
f63a8daa 8530 mutex_unlock(&gctx->mutex);
d859e29f 8531 mutex_unlock(&ctx->mutex);
9b51f66d 8532
fbfc623f
YZ
8533 put_online_cpus();
8534
cdd6c482 8535 event->owner = current;
8882135b 8536
cdd6c482
IM
8537 mutex_lock(&current->perf_event_mutex);
8538 list_add_tail(&event->owner_entry, &current->perf_event_list);
8539 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8540
8a49542c
PZ
8541 /*
8542 * Drop the reference on the group_event after placing the
8543 * new event on the sibling_list. This ensures destruction
8544 * of the group leader will find the pointer to itself in
8545 * perf_group_detach().
8546 */
2903ff01 8547 fdput(group);
ea635c64
AV
8548 fd_install(event_fd, event_file);
8549 return event_fd;
0793a61d 8550
f55fc2a5
PZ
8551err_locked:
8552 if (move_group)
8553 mutex_unlock(&gctx->mutex);
8554 mutex_unlock(&ctx->mutex);
8555/* err_file: */
8556 fput(event_file);
c3f00c70 8557err_context:
fe4b04fa 8558 perf_unpin_context(ctx);
ea635c64 8559 put_ctx(ctx);
c6be5a5c 8560err_alloc:
ea635c64 8561 free_event(event);
1f4ee503 8562err_cpus:
fbfc623f 8563 put_online_cpus();
1f4ee503 8564err_task:
e7d0bc04
PZ
8565 if (task)
8566 put_task_struct(task);
89a1e187 8567err_group_fd:
2903ff01 8568 fdput(group);
ea635c64
AV
8569err_fd:
8570 put_unused_fd(event_fd);
dc86cabe 8571 return err;
0793a61d
TG
8572}
8573
fb0459d7
AV
8574/**
8575 * perf_event_create_kernel_counter
8576 *
8577 * @attr: attributes of the counter to create
8578 * @cpu: cpu in which the counter is bound
38a81da2 8579 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8580 */
8581struct perf_event *
8582perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8583 struct task_struct *task,
4dc0da86
AK
8584 perf_overflow_handler_t overflow_handler,
8585 void *context)
fb0459d7 8586{
fb0459d7 8587 struct perf_event_context *ctx;
c3f00c70 8588 struct perf_event *event;
fb0459d7 8589 int err;
d859e29f 8590
fb0459d7
AV
8591 /*
8592 * Get the target context (task or percpu):
8593 */
d859e29f 8594
4dc0da86 8595 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8596 overflow_handler, context, -1);
c3f00c70
PZ
8597 if (IS_ERR(event)) {
8598 err = PTR_ERR(event);
8599 goto err;
8600 }
d859e29f 8601
f8697762
JO
8602 /* Mark owner so we could distinguish it from user events. */
8603 event->owner = EVENT_OWNER_KERNEL;
8604
766d6c07
FW
8605 account_event(event);
8606
4af57ef2 8607 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8608 if (IS_ERR(ctx)) {
8609 err = PTR_ERR(ctx);
c3f00c70 8610 goto err_free;
d859e29f 8611 }
fb0459d7 8612
fb0459d7
AV
8613 WARN_ON_ONCE(ctx->parent_ctx);
8614 mutex_lock(&ctx->mutex);
bed5b25a
AS
8615 if (!exclusive_event_installable(event, ctx)) {
8616 mutex_unlock(&ctx->mutex);
8617 perf_unpin_context(ctx);
8618 put_ctx(ctx);
8619 err = -EBUSY;
8620 goto err_free;
8621 }
8622
fb0459d7 8623 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8624 perf_unpin_context(ctx);
fb0459d7
AV
8625 mutex_unlock(&ctx->mutex);
8626
fb0459d7
AV
8627 return event;
8628
c3f00c70
PZ
8629err_free:
8630 free_event(event);
8631err:
c6567f64 8632 return ERR_PTR(err);
9b51f66d 8633}
fb0459d7 8634EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8635
0cda4c02
YZ
8636void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8637{
8638 struct perf_event_context *src_ctx;
8639 struct perf_event_context *dst_ctx;
8640 struct perf_event *event, *tmp;
8641 LIST_HEAD(events);
8642
8643 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8644 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8645
f63a8daa
PZ
8646 /*
8647 * See perf_event_ctx_lock() for comments on the details
8648 * of swizzling perf_event::ctx.
8649 */
8650 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8651 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8652 event_entry) {
46ce0fe9 8653 perf_remove_from_context(event, false);
9a545de0 8654 unaccount_event_cpu(event, src_cpu);
0cda4c02 8655 put_ctx(src_ctx);
9886167d 8656 list_add(&event->migrate_entry, &events);
0cda4c02 8657 }
0cda4c02 8658
8f95b435
PZI
8659 /*
8660 * Wait for the events to quiesce before re-instating them.
8661 */
0cda4c02
YZ
8662 synchronize_rcu();
8663
8f95b435
PZI
8664 /*
8665 * Re-instate events in 2 passes.
8666 *
8667 * Skip over group leaders and only install siblings on this first
8668 * pass, siblings will not get enabled without a leader, however a
8669 * leader will enable its siblings, even if those are still on the old
8670 * context.
8671 */
8672 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8673 if (event->group_leader == event)
8674 continue;
8675
8676 list_del(&event->migrate_entry);
8677 if (event->state >= PERF_EVENT_STATE_OFF)
8678 event->state = PERF_EVENT_STATE_INACTIVE;
8679 account_event_cpu(event, dst_cpu);
8680 perf_install_in_context(dst_ctx, event, dst_cpu);
8681 get_ctx(dst_ctx);
8682 }
8683
8684 /*
8685 * Once all the siblings are setup properly, install the group leaders
8686 * to make it go.
8687 */
9886167d
PZ
8688 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8689 list_del(&event->migrate_entry);
0cda4c02
YZ
8690 if (event->state >= PERF_EVENT_STATE_OFF)
8691 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8692 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8693 perf_install_in_context(dst_ctx, event, dst_cpu);
8694 get_ctx(dst_ctx);
8695 }
8696 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8697 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8698}
8699EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8700
cdd6c482 8701static void sync_child_event(struct perf_event *child_event,
38b200d6 8702 struct task_struct *child)
d859e29f 8703{
cdd6c482 8704 struct perf_event *parent_event = child_event->parent;
8bc20959 8705 u64 child_val;
d859e29f 8706
cdd6c482
IM
8707 if (child_event->attr.inherit_stat)
8708 perf_event_read_event(child_event, child);
38b200d6 8709
b5e58793 8710 child_val = perf_event_count(child_event);
d859e29f
PM
8711
8712 /*
8713 * Add back the child's count to the parent's count:
8714 */
a6e6dea6 8715 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8716 atomic64_add(child_event->total_time_enabled,
8717 &parent_event->child_total_time_enabled);
8718 atomic64_add(child_event->total_time_running,
8719 &parent_event->child_total_time_running);
d859e29f
PM
8720
8721 /*
cdd6c482 8722 * Remove this event from the parent's list
d859e29f 8723 */
cdd6c482
IM
8724 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8725 mutex_lock(&parent_event->child_mutex);
8726 list_del_init(&child_event->child_list);
8727 mutex_unlock(&parent_event->child_mutex);
d859e29f 8728
dc633982
JO
8729 /*
8730 * Make sure user/parent get notified, that we just
8731 * lost one event.
8732 */
8733 perf_event_wakeup(parent_event);
8734
d859e29f 8735 /*
cdd6c482 8736 * Release the parent event, if this was the last
d859e29f
PM
8737 * reference to it.
8738 */
a6fa941d 8739 put_event(parent_event);
d859e29f
PM
8740}
8741
9b51f66d 8742static void
cdd6c482
IM
8743__perf_event_exit_task(struct perf_event *child_event,
8744 struct perf_event_context *child_ctx,
38b200d6 8745 struct task_struct *child)
9b51f66d 8746{
1903d50c
PZ
8747 /*
8748 * Do not destroy the 'original' grouping; because of the context
8749 * switch optimization the original events could've ended up in a
8750 * random child task.
8751 *
8752 * If we were to destroy the original group, all group related
8753 * operations would cease to function properly after this random
8754 * child dies.
8755 *
8756 * Do destroy all inherited groups, we don't care about those
8757 * and being thorough is better.
8758 */
8759 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8760
9b51f66d 8761 /*
38b435b1 8762 * It can happen that the parent exits first, and has events
9b51f66d 8763 * that are still around due to the child reference. These
38b435b1 8764 * events need to be zapped.
9b51f66d 8765 */
38b435b1 8766 if (child_event->parent) {
cdd6c482
IM
8767 sync_child_event(child_event, child);
8768 free_event(child_event);
179033b3
JO
8769 } else {
8770 child_event->state = PERF_EVENT_STATE_EXIT;
8771 perf_event_wakeup(child_event);
4bcf349a 8772 }
9b51f66d
IM
8773}
8774
8dc85d54 8775static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8776{
ebf905fc 8777 struct perf_event *child_event, *next;
211de6eb 8778 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8779 unsigned long flags;
9b51f66d 8780
8dc85d54 8781 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 8782 perf_event_task(child, NULL, 0);
9b51f66d 8783 return;
9f498cc5 8784 }
9b51f66d 8785
a63eaf34 8786 local_irq_save(flags);
ad3a37de
PM
8787 /*
8788 * We can't reschedule here because interrupts are disabled,
8789 * and either child is current or it is a task that can't be
8790 * scheduled, so we are now safe from rescheduling changing
8791 * our context.
8792 */
806839b2 8793 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8794
8795 /*
8796 * Take the context lock here so that if find_get_context is
cdd6c482 8797 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8798 * incremented the context's refcount before we do put_ctx below.
8799 */
e625cce1 8800 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8801 task_ctx_sched_out(child_ctx);
8dc85d54 8802 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8803
71a851b4
PZ
8804 /*
8805 * If this context is a clone; unclone it so it can't get
8806 * swapped to another process while we're removing all
cdd6c482 8807 * the events from it.
71a851b4 8808 */
211de6eb 8809 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8810 update_context_time(child_ctx);
e625cce1 8811 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8812
211de6eb
PZ
8813 if (clone_ctx)
8814 put_ctx(clone_ctx);
4a1c0f26 8815
9f498cc5 8816 /*
cdd6c482
IM
8817 * Report the task dead after unscheduling the events so that we
8818 * won't get any samples after PERF_RECORD_EXIT. We can however still
8819 * get a few PERF_RECORD_READ events.
9f498cc5 8820 */
cdd6c482 8821 perf_event_task(child, child_ctx, 0);
a63eaf34 8822
66fff224
PZ
8823 /*
8824 * We can recurse on the same lock type through:
8825 *
cdd6c482
IM
8826 * __perf_event_exit_task()
8827 * sync_child_event()
a6fa941d
AV
8828 * put_event()
8829 * mutex_lock(&ctx->mutex)
66fff224
PZ
8830 *
8831 * But since its the parent context it won't be the same instance.
8832 */
a0507c84 8833 mutex_lock(&child_ctx->mutex);
a63eaf34 8834
ebf905fc 8835 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8836 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8837
a63eaf34
PM
8838 mutex_unlock(&child_ctx->mutex);
8839
8840 put_ctx(child_ctx);
9b51f66d
IM
8841}
8842
8dc85d54
PZ
8843/*
8844 * When a child task exits, feed back event values to parent events.
8845 */
8846void perf_event_exit_task(struct task_struct *child)
8847{
8882135b 8848 struct perf_event *event, *tmp;
8dc85d54
PZ
8849 int ctxn;
8850
8882135b
PZ
8851 mutex_lock(&child->perf_event_mutex);
8852 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8853 owner_entry) {
8854 list_del_init(&event->owner_entry);
8855
8856 /*
8857 * Ensure the list deletion is visible before we clear
8858 * the owner, closes a race against perf_release() where
8859 * we need to serialize on the owner->perf_event_mutex.
8860 */
8861 smp_wmb();
8862 event->owner = NULL;
8863 }
8864 mutex_unlock(&child->perf_event_mutex);
8865
8dc85d54
PZ
8866 for_each_task_context_nr(ctxn)
8867 perf_event_exit_task_context(child, ctxn);
8868}
8869
889ff015
FW
8870static void perf_free_event(struct perf_event *event,
8871 struct perf_event_context *ctx)
8872{
8873 struct perf_event *parent = event->parent;
8874
8875 if (WARN_ON_ONCE(!parent))
8876 return;
8877
8878 mutex_lock(&parent->child_mutex);
8879 list_del_init(&event->child_list);
8880 mutex_unlock(&parent->child_mutex);
8881
a6fa941d 8882 put_event(parent);
889ff015 8883
652884fe 8884 raw_spin_lock_irq(&ctx->lock);
8a49542c 8885 perf_group_detach(event);
889ff015 8886 list_del_event(event, ctx);
652884fe 8887 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8888 free_event(event);
8889}
8890
bbbee908 8891/*
652884fe 8892 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8893 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8894 *
8895 * Not all locks are strictly required, but take them anyway to be nice and
8896 * help out with the lockdep assertions.
bbbee908 8897 */
cdd6c482 8898void perf_event_free_task(struct task_struct *task)
bbbee908 8899{
8dc85d54 8900 struct perf_event_context *ctx;
cdd6c482 8901 struct perf_event *event, *tmp;
8dc85d54 8902 int ctxn;
bbbee908 8903
8dc85d54
PZ
8904 for_each_task_context_nr(ctxn) {
8905 ctx = task->perf_event_ctxp[ctxn];
8906 if (!ctx)
8907 continue;
bbbee908 8908
8dc85d54 8909 mutex_lock(&ctx->mutex);
bbbee908 8910again:
8dc85d54
PZ
8911 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8912 group_entry)
8913 perf_free_event(event, ctx);
bbbee908 8914
8dc85d54
PZ
8915 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8916 group_entry)
8917 perf_free_event(event, ctx);
bbbee908 8918
8dc85d54
PZ
8919 if (!list_empty(&ctx->pinned_groups) ||
8920 !list_empty(&ctx->flexible_groups))
8921 goto again;
bbbee908 8922
8dc85d54 8923 mutex_unlock(&ctx->mutex);
bbbee908 8924
8dc85d54
PZ
8925 put_ctx(ctx);
8926 }
889ff015
FW
8927}
8928
4e231c79
PZ
8929void perf_event_delayed_put(struct task_struct *task)
8930{
8931 int ctxn;
8932
8933 for_each_task_context_nr(ctxn)
8934 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8935}
8936
ffe8690c
KX
8937struct perf_event *perf_event_get(unsigned int fd)
8938{
8939 int err;
8940 struct fd f;
8941 struct perf_event *event;
8942
8943 err = perf_fget_light(fd, &f);
8944 if (err)
8945 return ERR_PTR(err);
8946
8947 event = f.file->private_data;
8948 atomic_long_inc(&event->refcount);
8949 fdput(f);
8950
8951 return event;
8952}
8953
8954const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8955{
8956 if (!event)
8957 return ERR_PTR(-EINVAL);
8958
8959 return &event->attr;
8960}
8961
97dee4f3
PZ
8962/*
8963 * inherit a event from parent task to child task:
8964 */
8965static struct perf_event *
8966inherit_event(struct perf_event *parent_event,
8967 struct task_struct *parent,
8968 struct perf_event_context *parent_ctx,
8969 struct task_struct *child,
8970 struct perf_event *group_leader,
8971 struct perf_event_context *child_ctx)
8972{
1929def9 8973 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8974 struct perf_event *child_event;
cee010ec 8975 unsigned long flags;
97dee4f3
PZ
8976
8977 /*
8978 * Instead of creating recursive hierarchies of events,
8979 * we link inherited events back to the original parent,
8980 * which has a filp for sure, which we use as the reference
8981 * count:
8982 */
8983 if (parent_event->parent)
8984 parent_event = parent_event->parent;
8985
8986 child_event = perf_event_alloc(&parent_event->attr,
8987 parent_event->cpu,
d580ff86 8988 child,
97dee4f3 8989 group_leader, parent_event,
79dff51e 8990 NULL, NULL, -1);
97dee4f3
PZ
8991 if (IS_ERR(child_event))
8992 return child_event;
a6fa941d 8993
fadfe7be
JO
8994 if (is_orphaned_event(parent_event) ||
8995 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8996 free_event(child_event);
8997 return NULL;
8998 }
8999
97dee4f3
PZ
9000 get_ctx(child_ctx);
9001
9002 /*
9003 * Make the child state follow the state of the parent event,
9004 * not its attr.disabled bit. We hold the parent's mutex,
9005 * so we won't race with perf_event_{en, dis}able_family.
9006 */
1929def9 9007 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
9008 child_event->state = PERF_EVENT_STATE_INACTIVE;
9009 else
9010 child_event->state = PERF_EVENT_STATE_OFF;
9011
9012 if (parent_event->attr.freq) {
9013 u64 sample_period = parent_event->hw.sample_period;
9014 struct hw_perf_event *hwc = &child_event->hw;
9015
9016 hwc->sample_period = sample_period;
9017 hwc->last_period = sample_period;
9018
9019 local64_set(&hwc->period_left, sample_period);
9020 }
9021
9022 child_event->ctx = child_ctx;
9023 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9024 child_event->overflow_handler_context
9025 = parent_event->overflow_handler_context;
97dee4f3 9026
614b6780
TG
9027 /*
9028 * Precalculate sample_data sizes
9029 */
9030 perf_event__header_size(child_event);
6844c09d 9031 perf_event__id_header_size(child_event);
614b6780 9032
97dee4f3
PZ
9033 /*
9034 * Link it up in the child's context:
9035 */
cee010ec 9036 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9037 add_event_to_ctx(child_event, child_ctx);
cee010ec 9038 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9039
97dee4f3
PZ
9040 /*
9041 * Link this into the parent event's child list
9042 */
9043 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9044 mutex_lock(&parent_event->child_mutex);
9045 list_add_tail(&child_event->child_list, &parent_event->child_list);
9046 mutex_unlock(&parent_event->child_mutex);
9047
9048 return child_event;
9049}
9050
9051static int inherit_group(struct perf_event *parent_event,
9052 struct task_struct *parent,
9053 struct perf_event_context *parent_ctx,
9054 struct task_struct *child,
9055 struct perf_event_context *child_ctx)
9056{
9057 struct perf_event *leader;
9058 struct perf_event *sub;
9059 struct perf_event *child_ctr;
9060
9061 leader = inherit_event(parent_event, parent, parent_ctx,
9062 child, NULL, child_ctx);
9063 if (IS_ERR(leader))
9064 return PTR_ERR(leader);
9065 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9066 child_ctr = inherit_event(sub, parent, parent_ctx,
9067 child, leader, child_ctx);
9068 if (IS_ERR(child_ctr))
9069 return PTR_ERR(child_ctr);
9070 }
9071 return 0;
889ff015
FW
9072}
9073
9074static int
9075inherit_task_group(struct perf_event *event, struct task_struct *parent,
9076 struct perf_event_context *parent_ctx,
8dc85d54 9077 struct task_struct *child, int ctxn,
889ff015
FW
9078 int *inherited_all)
9079{
9080 int ret;
8dc85d54 9081 struct perf_event_context *child_ctx;
889ff015
FW
9082
9083 if (!event->attr.inherit) {
9084 *inherited_all = 0;
9085 return 0;
bbbee908
PZ
9086 }
9087
fe4b04fa 9088 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9089 if (!child_ctx) {
9090 /*
9091 * This is executed from the parent task context, so
9092 * inherit events that have been marked for cloning.
9093 * First allocate and initialize a context for the
9094 * child.
9095 */
bbbee908 9096
734df5ab 9097 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9098 if (!child_ctx)
9099 return -ENOMEM;
bbbee908 9100
8dc85d54 9101 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9102 }
9103
9104 ret = inherit_group(event, parent, parent_ctx,
9105 child, child_ctx);
9106
9107 if (ret)
9108 *inherited_all = 0;
9109
9110 return ret;
bbbee908
PZ
9111}
9112
9b51f66d 9113/*
cdd6c482 9114 * Initialize the perf_event context in task_struct
9b51f66d 9115 */
985c8dcb 9116static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9117{
889ff015 9118 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9119 struct perf_event_context *cloned_ctx;
9120 struct perf_event *event;
9b51f66d 9121 struct task_struct *parent = current;
564c2b21 9122 int inherited_all = 1;
dddd3379 9123 unsigned long flags;
6ab423e0 9124 int ret = 0;
9b51f66d 9125
8dc85d54 9126 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9127 return 0;
9128
ad3a37de 9129 /*
25346b93
PM
9130 * If the parent's context is a clone, pin it so it won't get
9131 * swapped under us.
ad3a37de 9132 */
8dc85d54 9133 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9134 if (!parent_ctx)
9135 return 0;
25346b93 9136
ad3a37de
PM
9137 /*
9138 * No need to check if parent_ctx != NULL here; since we saw
9139 * it non-NULL earlier, the only reason for it to become NULL
9140 * is if we exit, and since we're currently in the middle of
9141 * a fork we can't be exiting at the same time.
9142 */
ad3a37de 9143
9b51f66d
IM
9144 /*
9145 * Lock the parent list. No need to lock the child - not PID
9146 * hashed yet and not running, so nobody can access it.
9147 */
d859e29f 9148 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9149
9150 /*
9151 * We dont have to disable NMIs - we are only looking at
9152 * the list, not manipulating it:
9153 */
889ff015 9154 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9155 ret = inherit_task_group(event, parent, parent_ctx,
9156 child, ctxn, &inherited_all);
889ff015
FW
9157 if (ret)
9158 break;
9159 }
b93f7978 9160
dddd3379
TG
9161 /*
9162 * We can't hold ctx->lock when iterating the ->flexible_group list due
9163 * to allocations, but we need to prevent rotation because
9164 * rotate_ctx() will change the list from interrupt context.
9165 */
9166 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9167 parent_ctx->rotate_disable = 1;
9168 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9169
889ff015 9170 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9171 ret = inherit_task_group(event, parent, parent_ctx,
9172 child, ctxn, &inherited_all);
889ff015 9173 if (ret)
9b51f66d 9174 break;
564c2b21
PM
9175 }
9176
dddd3379
TG
9177 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9178 parent_ctx->rotate_disable = 0;
dddd3379 9179
8dc85d54 9180 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9181
05cbaa28 9182 if (child_ctx && inherited_all) {
564c2b21
PM
9183 /*
9184 * Mark the child context as a clone of the parent
9185 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9186 *
9187 * Note that if the parent is a clone, the holding of
9188 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9189 */
c5ed5145 9190 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9191 if (cloned_ctx) {
9192 child_ctx->parent_ctx = cloned_ctx;
25346b93 9193 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9194 } else {
9195 child_ctx->parent_ctx = parent_ctx;
9196 child_ctx->parent_gen = parent_ctx->generation;
9197 }
9198 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9199 }
9200
c5ed5145 9201 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9202 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9203
25346b93 9204 perf_unpin_context(parent_ctx);
fe4b04fa 9205 put_ctx(parent_ctx);
ad3a37de 9206
6ab423e0 9207 return ret;
9b51f66d
IM
9208}
9209
8dc85d54
PZ
9210/*
9211 * Initialize the perf_event context in task_struct
9212 */
9213int perf_event_init_task(struct task_struct *child)
9214{
9215 int ctxn, ret;
9216
8550d7cb
ON
9217 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9218 mutex_init(&child->perf_event_mutex);
9219 INIT_LIST_HEAD(&child->perf_event_list);
9220
8dc85d54
PZ
9221 for_each_task_context_nr(ctxn) {
9222 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9223 if (ret) {
9224 perf_event_free_task(child);
8dc85d54 9225 return ret;
6c72e350 9226 }
8dc85d54
PZ
9227 }
9228
9229 return 0;
9230}
9231
220b140b
PM
9232static void __init perf_event_init_all_cpus(void)
9233{
b28ab83c 9234 struct swevent_htable *swhash;
220b140b 9235 int cpu;
220b140b
PM
9236
9237 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9238 swhash = &per_cpu(swevent_htable, cpu);
9239 mutex_init(&swhash->hlist_mutex);
2fde4f94 9240 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9241 }
9242}
9243
0db0628d 9244static void perf_event_init_cpu(int cpu)
0793a61d 9245{
108b02cf 9246 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9247
b28ab83c 9248 mutex_lock(&swhash->hlist_mutex);
39af6b16 9249 swhash->online = true;
4536e4d1 9250 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9251 struct swevent_hlist *hlist;
9252
b28ab83c
PZ
9253 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9254 WARN_ON(!hlist);
9255 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9256 }
b28ab83c 9257 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9258}
9259
2965faa5 9260#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9261static void __perf_event_exit_context(void *__info)
0793a61d 9262{
226424ee 9263 struct remove_event re = { .detach_group = true };
108b02cf 9264 struct perf_event_context *ctx = __info;
0793a61d 9265
e3703f8c 9266 rcu_read_lock();
46ce0fe9
PZ
9267 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9268 __perf_remove_from_context(&re);
e3703f8c 9269 rcu_read_unlock();
0793a61d 9270}
108b02cf
PZ
9271
9272static void perf_event_exit_cpu_context(int cpu)
9273{
9274 struct perf_event_context *ctx;
9275 struct pmu *pmu;
9276 int idx;
9277
9278 idx = srcu_read_lock(&pmus_srcu);
9279 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9280 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9281
9282 mutex_lock(&ctx->mutex);
9283 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9284 mutex_unlock(&ctx->mutex);
9285 }
9286 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9287}
9288
cdd6c482 9289static void perf_event_exit_cpu(int cpu)
0793a61d 9290{
b28ab83c 9291 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 9292
e3703f8c
PZ
9293 perf_event_exit_cpu_context(cpu);
9294
b28ab83c 9295 mutex_lock(&swhash->hlist_mutex);
39af6b16 9296 swhash->online = false;
b28ab83c
PZ
9297 swevent_hlist_release(swhash);
9298 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9299}
9300#else
cdd6c482 9301static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9302#endif
9303
c277443c
PZ
9304static int
9305perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9306{
9307 int cpu;
9308
9309 for_each_online_cpu(cpu)
9310 perf_event_exit_cpu(cpu);
9311
9312 return NOTIFY_OK;
9313}
9314
9315/*
9316 * Run the perf reboot notifier at the very last possible moment so that
9317 * the generic watchdog code runs as long as possible.
9318 */
9319static struct notifier_block perf_reboot_notifier = {
9320 .notifier_call = perf_reboot,
9321 .priority = INT_MIN,
9322};
9323
0db0628d 9324static int
0793a61d
TG
9325perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9326{
9327 unsigned int cpu = (long)hcpu;
9328
4536e4d1 9329 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9330
9331 case CPU_UP_PREPARE:
5e11637e 9332 case CPU_DOWN_FAILED:
cdd6c482 9333 perf_event_init_cpu(cpu);
0793a61d
TG
9334 break;
9335
5e11637e 9336 case CPU_UP_CANCELED:
0793a61d 9337 case CPU_DOWN_PREPARE:
cdd6c482 9338 perf_event_exit_cpu(cpu);
0793a61d 9339 break;
0793a61d
TG
9340 default:
9341 break;
9342 }
9343
9344 return NOTIFY_OK;
9345}
9346
cdd6c482 9347void __init perf_event_init(void)
0793a61d 9348{
3c502e7a
JW
9349 int ret;
9350
2e80a82a
PZ
9351 idr_init(&pmu_idr);
9352
220b140b 9353 perf_event_init_all_cpus();
b0a873eb 9354 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9355 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9356 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9357 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9358 perf_tp_register();
9359 perf_cpu_notifier(perf_cpu_notify);
c277443c 9360 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9361
9362 ret = init_hw_breakpoint();
9363 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9364
9365 /* do not patch jump label more than once per second */
9366 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9367
9368 /*
9369 * Build time assertion that we keep the data_head at the intended
9370 * location. IOW, validation we got the __reserved[] size right.
9371 */
9372 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9373 != 1024);
0793a61d 9374}
abe43400 9375
fd979c01
CS
9376ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9377 char *page)
9378{
9379 struct perf_pmu_events_attr *pmu_attr =
9380 container_of(attr, struct perf_pmu_events_attr, attr);
9381
9382 if (pmu_attr->event_str)
9383 return sprintf(page, "%s\n", pmu_attr->event_str);
9384
9385 return 0;
9386}
9387
abe43400
PZ
9388static int __init perf_event_sysfs_init(void)
9389{
9390 struct pmu *pmu;
9391 int ret;
9392
9393 mutex_lock(&pmus_lock);
9394
9395 ret = bus_register(&pmu_bus);
9396 if (ret)
9397 goto unlock;
9398
9399 list_for_each_entry(pmu, &pmus, entry) {
9400 if (!pmu->name || pmu->type < 0)
9401 continue;
9402
9403 ret = pmu_dev_alloc(pmu);
9404 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9405 }
9406 pmu_bus_running = 1;
9407 ret = 0;
9408
9409unlock:
9410 mutex_unlock(&pmus_lock);
9411
9412 return ret;
9413}
9414device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9415
9416#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9417static struct cgroup_subsys_state *
9418perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9419{
9420 struct perf_cgroup *jc;
e5d1367f 9421
1b15d055 9422 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9423 if (!jc)
9424 return ERR_PTR(-ENOMEM);
9425
e5d1367f
SE
9426 jc->info = alloc_percpu(struct perf_cgroup_info);
9427 if (!jc->info) {
9428 kfree(jc);
9429 return ERR_PTR(-ENOMEM);
9430 }
9431
e5d1367f
SE
9432 return &jc->css;
9433}
9434
eb95419b 9435static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9436{
eb95419b
TH
9437 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9438
e5d1367f
SE
9439 free_percpu(jc->info);
9440 kfree(jc);
9441}
9442
9443static int __perf_cgroup_move(void *info)
9444{
9445 struct task_struct *task = info;
9446 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9447 return 0;
9448}
9449
eb95419b
TH
9450static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9451 struct cgroup_taskset *tset)
e5d1367f 9452{
bb9d97b6
TH
9453 struct task_struct *task;
9454
924f0d9a 9455 cgroup_taskset_for_each(task, tset)
bb9d97b6 9456 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9457}
9458
eb95419b
TH
9459static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9460 struct cgroup_subsys_state *old_css,
761b3ef5 9461 struct task_struct *task)
e5d1367f 9462{
bb9d97b6 9463 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9464}
9465
073219e9 9466struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9467 .css_alloc = perf_cgroup_css_alloc,
9468 .css_free = perf_cgroup_css_free,
e7e7ee2e 9469 .exit = perf_cgroup_exit,
bb9d97b6 9470 .attach = perf_cgroup_attach,
e5d1367f
SE
9471};
9472#endif /* CONFIG_CGROUP_PERF */