x86: Add a comment clarifying LDT context switching
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
0793a61d 45
76369139
FW
46#include "internal.h"
47
4e193bd4
TB
48#include <asm/irq_regs.h>
49
fadfe7be
JO
50static struct workqueue_struct *perf_wq;
51
fe4b04fa 52struct remote_function_call {
e7e7ee2e
IM
53 struct task_struct *p;
54 int (*func)(void *info);
55 void *info;
56 int ret;
fe4b04fa
PZ
57};
58
59static void remote_function(void *data)
60{
61 struct remote_function_call *tfc = data;
62 struct task_struct *p = tfc->p;
63
64 if (p) {
65 tfc->ret = -EAGAIN;
66 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67 return;
68 }
69
70 tfc->ret = tfc->func(tfc->info);
71}
72
73/**
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p: the task to evaluate
76 * @func: the function to be called
77 * @info: the function call argument
78 *
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
81 *
82 * returns: @func return value, or
83 * -ESRCH - when the process isn't running
84 * -EAGAIN - when the process moved away
85 */
86static int
87task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88{
89 struct remote_function_call data = {
e7e7ee2e
IM
90 .p = p,
91 .func = func,
92 .info = info,
93 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
94 };
95
96 if (task_curr(p))
97 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98
99 return data.ret;
100}
101
102/**
103 * cpu_function_call - call a function on the cpu
104 * @func: the function to be called
105 * @info: the function call argument
106 *
107 * Calls the function @func on the remote cpu.
108 *
109 * returns: @func return value or -ENXIO when the cpu is offline
110 */
111static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112{
113 struct remote_function_call data = {
e7e7ee2e
IM
114 .p = NULL,
115 .func = func,
116 .info = info,
117 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
118 };
119
120 smp_call_function_single(cpu, remote_function, &data, 1);
121
122 return data.ret;
123}
124
f8697762
JO
125#define EVENT_OWNER_KERNEL ((void *) -1)
126
127static bool is_kernel_event(struct perf_event *event)
128{
129 return event->owner == EVENT_OWNER_KERNEL;
130}
131
e5d1367f
SE
132#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
134 PERF_FLAG_PID_CGROUP |\
135 PERF_FLAG_FD_CLOEXEC)
e5d1367f 136
bce38cd5
SE
137/*
138 * branch priv levels that need permission checks
139 */
140#define PERF_SAMPLE_BRANCH_PERM_PLM \
141 (PERF_SAMPLE_BRANCH_KERNEL |\
142 PERF_SAMPLE_BRANCH_HV)
143
0b3fcf17
SE
144enum event_type_t {
145 EVENT_FLEXIBLE = 0x1,
146 EVENT_PINNED = 0x2,
147 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148};
149
e5d1367f
SE
150/*
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153 */
c5905afb 154struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 155static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 156static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 157
cdd6c482
IM
158static atomic_t nr_mmap_events __read_mostly;
159static atomic_t nr_comm_events __read_mostly;
160static atomic_t nr_task_events __read_mostly;
948b26b6 161static atomic_t nr_freq_events __read_mostly;
9ee318a7 162
108b02cf
PZ
163static LIST_HEAD(pmus);
164static DEFINE_MUTEX(pmus_lock);
165static struct srcu_struct pmus_srcu;
166
0764771d 167/*
cdd6c482 168 * perf event paranoia level:
0fbdea19
IM
169 * -1 - not paranoid at all
170 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 171 * 1 - disallow cpu events for unpriv
0fbdea19 172 * 2 - disallow kernel profiling for unpriv
0764771d 173 */
cdd6c482 174int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 175
20443384
FW
176/* Minimum for 512 kiB + 1 user control page */
177int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
178
179/*
cdd6c482 180 * max perf event sample rate
df58ab24 181 */
14c63f17
DH
182#define DEFAULT_MAX_SAMPLE_RATE 100000
183#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184#define DEFAULT_CPU_TIME_MAX_PERCENT 25
185
186int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
187
188static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
190
d9494cb4
PZ
191static int perf_sample_allowed_ns __read_mostly =
192 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
193
194void update_perf_cpu_limits(void)
195{
196 u64 tmp = perf_sample_period_ns;
197
198 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 199 do_div(tmp, 100);
d9494cb4 200 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 201}
163ec435 202
9e630205
SE
203static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204
163ec435
PZ
205int perf_proc_update_handler(struct ctl_table *table, int write,
206 void __user *buffer, size_t *lenp,
207 loff_t *ppos)
208{
723478c8 209 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
210
211 if (ret || !write)
212 return ret;
213
214 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
215 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 update_perf_cpu_limits();
217
218 return 0;
219}
220
221int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222
223int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 void __user *buffer, size_t *lenp,
225 loff_t *ppos)
226{
227 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228
229 if (ret || !write)
230 return ret;
231
232 update_perf_cpu_limits();
163ec435
PZ
233
234 return 0;
235}
1ccd1549 236
14c63f17
DH
237/*
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done. This will drop the sample rate when
241 * we detect that events are taking too long.
242 */
243#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 244static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 245
6a02ad66 246static void perf_duration_warn(struct irq_work *w)
14c63f17 247{
6a02ad66 248 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 249 u64 avg_local_sample_len;
e5302920 250 u64 local_samples_len;
6a02ad66 251
4a32fea9 252 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
255 printk_ratelimited(KERN_WARNING
256 "perf interrupt took too long (%lld > %lld), lowering "
257 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 258 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
259 sysctl_perf_event_sample_rate);
260}
261
262static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263
264void perf_sample_event_took(u64 sample_len_ns)
265{
d9494cb4 266 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
267 u64 avg_local_sample_len;
268 u64 local_samples_len;
14c63f17 269
d9494cb4 270 if (allowed_ns == 0)
14c63f17
DH
271 return;
272
273 /* decay the counter by 1 average sample */
4a32fea9 274 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
275 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 local_samples_len += sample_len_ns;
4a32fea9 277 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
278
279 /*
280 * note: this will be biased artifically low until we have
281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
282 * from having to maintain a count.
283 */
284 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285
d9494cb4 286 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
287 return;
288
289 if (max_samples_per_tick <= 1)
290 return;
291
292 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295
14c63f17 296 update_perf_cpu_limits();
6a02ad66 297
cd578abb
PZ
298 if (!irq_work_queue(&perf_duration_work)) {
299 early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 "kernel.perf_event_max_sample_rate to %d\n",
301 avg_local_sample_len, allowed_ns >> 1,
302 sysctl_perf_event_sample_rate);
303 }
14c63f17
DH
304}
305
cdd6c482 306static atomic64_t perf_event_id;
a96bbc16 307
0b3fcf17
SE
308static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 enum event_type_t event_type);
310
311static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
312 enum event_type_t event_type,
313 struct task_struct *task);
314
315static void update_context_time(struct perf_event_context *ctx);
316static u64 perf_event_time(struct perf_event *event);
0b3fcf17 317
cdd6c482 318void __weak perf_event_print_debug(void) { }
0793a61d 319
84c79910 320extern __weak const char *perf_pmu_name(void)
0793a61d 321{
84c79910 322 return "pmu";
0793a61d
TG
323}
324
0b3fcf17
SE
325static inline u64 perf_clock(void)
326{
327 return local_clock();
328}
329
e5d1367f
SE
330static inline struct perf_cpu_context *
331__get_cpu_context(struct perf_event_context *ctx)
332{
333 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334}
335
facc4307
PZ
336static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 struct perf_event_context *ctx)
338{
339 raw_spin_lock(&cpuctx->ctx.lock);
340 if (ctx)
341 raw_spin_lock(&ctx->lock);
342}
343
344static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 struct perf_event_context *ctx)
346{
347 if (ctx)
348 raw_spin_unlock(&ctx->lock);
349 raw_spin_unlock(&cpuctx->ctx.lock);
350}
351
e5d1367f
SE
352#ifdef CONFIG_CGROUP_PERF
353
877c6856
LZ
354/*
355 * perf_cgroup_info keeps track of time_enabled for a cgroup.
356 * This is a per-cpu dynamically allocated data structure.
357 */
358struct perf_cgroup_info {
359 u64 time;
360 u64 timestamp;
361};
362
363struct perf_cgroup {
364 struct cgroup_subsys_state css;
86e213e1 365 struct perf_cgroup_info __percpu *info;
877c6856
LZ
366};
367
3f7cce3c
SE
368/*
369 * Must ensure cgroup is pinned (css_get) before calling
370 * this function. In other words, we cannot call this function
371 * if there is no cgroup event for the current CPU context.
372 */
e5d1367f
SE
373static inline struct perf_cgroup *
374perf_cgroup_from_task(struct task_struct *task)
375{
073219e9 376 return container_of(task_css(task, perf_event_cgrp_id),
8af01f56 377 struct perf_cgroup, css);
e5d1367f
SE
378}
379
380static inline bool
381perf_cgroup_match(struct perf_event *event)
382{
383 struct perf_event_context *ctx = event->ctx;
384 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
385
ef824fa1
TH
386 /* @event doesn't care about cgroup */
387 if (!event->cgrp)
388 return true;
389
390 /* wants specific cgroup scope but @cpuctx isn't associated with any */
391 if (!cpuctx->cgrp)
392 return false;
393
394 /*
395 * Cgroup scoping is recursive. An event enabled for a cgroup is
396 * also enabled for all its descendant cgroups. If @cpuctx's
397 * cgroup is a descendant of @event's (the test covers identity
398 * case), it's a match.
399 */
400 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
401 event->cgrp->css.cgroup);
e5d1367f
SE
402}
403
e5d1367f
SE
404static inline void perf_detach_cgroup(struct perf_event *event)
405{
4e2ba650 406 css_put(&event->cgrp->css);
e5d1367f
SE
407 event->cgrp = NULL;
408}
409
410static inline int is_cgroup_event(struct perf_event *event)
411{
412 return event->cgrp != NULL;
413}
414
415static inline u64 perf_cgroup_event_time(struct perf_event *event)
416{
417 struct perf_cgroup_info *t;
418
419 t = per_cpu_ptr(event->cgrp->info, event->cpu);
420 return t->time;
421}
422
423static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
424{
425 struct perf_cgroup_info *info;
426 u64 now;
427
428 now = perf_clock();
429
430 info = this_cpu_ptr(cgrp->info);
431
432 info->time += now - info->timestamp;
433 info->timestamp = now;
434}
435
436static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
437{
438 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
439 if (cgrp_out)
440 __update_cgrp_time(cgrp_out);
441}
442
443static inline void update_cgrp_time_from_event(struct perf_event *event)
444{
3f7cce3c
SE
445 struct perf_cgroup *cgrp;
446
e5d1367f 447 /*
3f7cce3c
SE
448 * ensure we access cgroup data only when needed and
449 * when we know the cgroup is pinned (css_get)
e5d1367f 450 */
3f7cce3c 451 if (!is_cgroup_event(event))
e5d1367f
SE
452 return;
453
3f7cce3c
SE
454 cgrp = perf_cgroup_from_task(current);
455 /*
456 * Do not update time when cgroup is not active
457 */
458 if (cgrp == event->cgrp)
459 __update_cgrp_time(event->cgrp);
e5d1367f
SE
460}
461
462static inline void
3f7cce3c
SE
463perf_cgroup_set_timestamp(struct task_struct *task,
464 struct perf_event_context *ctx)
e5d1367f
SE
465{
466 struct perf_cgroup *cgrp;
467 struct perf_cgroup_info *info;
468
3f7cce3c
SE
469 /*
470 * ctx->lock held by caller
471 * ensure we do not access cgroup data
472 * unless we have the cgroup pinned (css_get)
473 */
474 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
475 return;
476
477 cgrp = perf_cgroup_from_task(task);
478 info = this_cpu_ptr(cgrp->info);
3f7cce3c 479 info->timestamp = ctx->timestamp;
e5d1367f
SE
480}
481
482#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
483#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
484
485/*
486 * reschedule events based on the cgroup constraint of task.
487 *
488 * mode SWOUT : schedule out everything
489 * mode SWIN : schedule in based on cgroup for next
490 */
491void perf_cgroup_switch(struct task_struct *task, int mode)
492{
493 struct perf_cpu_context *cpuctx;
494 struct pmu *pmu;
495 unsigned long flags;
496
497 /*
498 * disable interrupts to avoid geting nr_cgroup
499 * changes via __perf_event_disable(). Also
500 * avoids preemption.
501 */
502 local_irq_save(flags);
503
504 /*
505 * we reschedule only in the presence of cgroup
506 * constrained events.
507 */
508 rcu_read_lock();
509
510 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 511 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
512 if (cpuctx->unique_pmu != pmu)
513 continue; /* ensure we process each cpuctx once */
e5d1367f 514
e5d1367f
SE
515 /*
516 * perf_cgroup_events says at least one
517 * context on this CPU has cgroup events.
518 *
519 * ctx->nr_cgroups reports the number of cgroup
520 * events for a context.
521 */
522 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
523 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
524 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
525
526 if (mode & PERF_CGROUP_SWOUT) {
527 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
528 /*
529 * must not be done before ctxswout due
530 * to event_filter_match() in event_sched_out()
531 */
532 cpuctx->cgrp = NULL;
533 }
534
535 if (mode & PERF_CGROUP_SWIN) {
e566b76e 536 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
537 /*
538 * set cgrp before ctxsw in to allow
539 * event_filter_match() to not have to pass
540 * task around
e5d1367f
SE
541 */
542 cpuctx->cgrp = perf_cgroup_from_task(task);
543 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
544 }
facc4307
PZ
545 perf_pmu_enable(cpuctx->ctx.pmu);
546 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 547 }
e5d1367f
SE
548 }
549
550 rcu_read_unlock();
551
552 local_irq_restore(flags);
553}
554
a8d757ef
SE
555static inline void perf_cgroup_sched_out(struct task_struct *task,
556 struct task_struct *next)
e5d1367f 557{
a8d757ef
SE
558 struct perf_cgroup *cgrp1;
559 struct perf_cgroup *cgrp2 = NULL;
560
561 /*
562 * we come here when we know perf_cgroup_events > 0
563 */
564 cgrp1 = perf_cgroup_from_task(task);
565
566 /*
567 * next is NULL when called from perf_event_enable_on_exec()
568 * that will systematically cause a cgroup_switch()
569 */
570 if (next)
571 cgrp2 = perf_cgroup_from_task(next);
572
573 /*
574 * only schedule out current cgroup events if we know
575 * that we are switching to a different cgroup. Otherwise,
576 * do no touch the cgroup events.
577 */
578 if (cgrp1 != cgrp2)
579 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
580}
581
a8d757ef
SE
582static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
e5d1367f 584{
a8d757ef
SE
585 struct perf_cgroup *cgrp1;
586 struct perf_cgroup *cgrp2 = NULL;
587
588 /*
589 * we come here when we know perf_cgroup_events > 0
590 */
591 cgrp1 = perf_cgroup_from_task(task);
592
593 /* prev can never be NULL */
594 cgrp2 = perf_cgroup_from_task(prev);
595
596 /*
597 * only need to schedule in cgroup events if we are changing
598 * cgroup during ctxsw. Cgroup events were not scheduled
599 * out of ctxsw out if that was not the case.
600 */
601 if (cgrp1 != cgrp2)
602 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
603}
604
605static inline int perf_cgroup_connect(int fd, struct perf_event *event,
606 struct perf_event_attr *attr,
607 struct perf_event *group_leader)
608{
609 struct perf_cgroup *cgrp;
610 struct cgroup_subsys_state *css;
2903ff01
AV
611 struct fd f = fdget(fd);
612 int ret = 0;
e5d1367f 613
2903ff01 614 if (!f.file)
e5d1367f
SE
615 return -EBADF;
616
b583043e 617 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 618 &perf_event_cgrp_subsys);
3db272c0
LZ
619 if (IS_ERR(css)) {
620 ret = PTR_ERR(css);
621 goto out;
622 }
e5d1367f
SE
623
624 cgrp = container_of(css, struct perf_cgroup, css);
625 event->cgrp = cgrp;
626
627 /*
628 * all events in a group must monitor
629 * the same cgroup because a task belongs
630 * to only one perf cgroup at a time
631 */
632 if (group_leader && group_leader->cgrp != cgrp) {
633 perf_detach_cgroup(event);
634 ret = -EINVAL;
e5d1367f 635 }
3db272c0 636out:
2903ff01 637 fdput(f);
e5d1367f
SE
638 return ret;
639}
640
641static inline void
642perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
643{
644 struct perf_cgroup_info *t;
645 t = per_cpu_ptr(event->cgrp->info, event->cpu);
646 event->shadow_ctx_time = now - t->timestamp;
647}
648
649static inline void
650perf_cgroup_defer_enabled(struct perf_event *event)
651{
652 /*
653 * when the current task's perf cgroup does not match
654 * the event's, we need to remember to call the
655 * perf_mark_enable() function the first time a task with
656 * a matching perf cgroup is scheduled in.
657 */
658 if (is_cgroup_event(event) && !perf_cgroup_match(event))
659 event->cgrp_defer_enabled = 1;
660}
661
662static inline void
663perf_cgroup_mark_enabled(struct perf_event *event,
664 struct perf_event_context *ctx)
665{
666 struct perf_event *sub;
667 u64 tstamp = perf_event_time(event);
668
669 if (!event->cgrp_defer_enabled)
670 return;
671
672 event->cgrp_defer_enabled = 0;
673
674 event->tstamp_enabled = tstamp - event->total_time_enabled;
675 list_for_each_entry(sub, &event->sibling_list, group_entry) {
676 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
677 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
678 sub->cgrp_defer_enabled = 0;
679 }
680 }
681}
682#else /* !CONFIG_CGROUP_PERF */
683
684static inline bool
685perf_cgroup_match(struct perf_event *event)
686{
687 return true;
688}
689
690static inline void perf_detach_cgroup(struct perf_event *event)
691{}
692
693static inline int is_cgroup_event(struct perf_event *event)
694{
695 return 0;
696}
697
698static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
699{
700 return 0;
701}
702
703static inline void update_cgrp_time_from_event(struct perf_event *event)
704{
705}
706
707static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
708{
709}
710
a8d757ef
SE
711static inline void perf_cgroup_sched_out(struct task_struct *task,
712 struct task_struct *next)
e5d1367f
SE
713{
714}
715
a8d757ef
SE
716static inline void perf_cgroup_sched_in(struct task_struct *prev,
717 struct task_struct *task)
e5d1367f
SE
718{
719}
720
721static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
722 struct perf_event_attr *attr,
723 struct perf_event *group_leader)
724{
725 return -EINVAL;
726}
727
728static inline void
3f7cce3c
SE
729perf_cgroup_set_timestamp(struct task_struct *task,
730 struct perf_event_context *ctx)
e5d1367f
SE
731{
732}
733
734void
735perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
736{
737}
738
739static inline void
740perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
741{
742}
743
744static inline u64 perf_cgroup_event_time(struct perf_event *event)
745{
746 return 0;
747}
748
749static inline void
750perf_cgroup_defer_enabled(struct perf_event *event)
751{
752}
753
754static inline void
755perf_cgroup_mark_enabled(struct perf_event *event,
756 struct perf_event_context *ctx)
757{
758}
759#endif
760
9e630205
SE
761/*
762 * set default to be dependent on timer tick just
763 * like original code
764 */
765#define PERF_CPU_HRTIMER (1000 / HZ)
766/*
767 * function must be called with interrupts disbled
768 */
769static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
770{
771 struct perf_cpu_context *cpuctx;
772 enum hrtimer_restart ret = HRTIMER_NORESTART;
773 int rotations = 0;
774
775 WARN_ON(!irqs_disabled());
776
777 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
778
779 rotations = perf_rotate_context(cpuctx);
780
781 /*
782 * arm timer if needed
783 */
784 if (rotations) {
785 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
786 ret = HRTIMER_RESTART;
787 }
788
789 return ret;
790}
791
792/* CPU is going down */
793void perf_cpu_hrtimer_cancel(int cpu)
794{
795 struct perf_cpu_context *cpuctx;
796 struct pmu *pmu;
797 unsigned long flags;
798
799 if (WARN_ON(cpu != smp_processor_id()))
800 return;
801
802 local_irq_save(flags);
803
804 rcu_read_lock();
805
806 list_for_each_entry_rcu(pmu, &pmus, entry) {
807 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
808
809 if (pmu->task_ctx_nr == perf_sw_context)
810 continue;
811
812 hrtimer_cancel(&cpuctx->hrtimer);
813 }
814
815 rcu_read_unlock();
816
817 local_irq_restore(flags);
818}
819
820static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
821{
822 struct hrtimer *hr = &cpuctx->hrtimer;
823 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 824 int timer;
9e630205
SE
825
826 /* no multiplexing needed for SW PMU */
827 if (pmu->task_ctx_nr == perf_sw_context)
828 return;
829
62b85639
SE
830 /*
831 * check default is sane, if not set then force to
832 * default interval (1/tick)
833 */
834 timer = pmu->hrtimer_interval_ms;
835 if (timer < 1)
836 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
837
838 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
839
840 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
841 hr->function = perf_cpu_hrtimer_handler;
842}
843
844static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
845{
846 struct hrtimer *hr = &cpuctx->hrtimer;
847 struct pmu *pmu = cpuctx->ctx.pmu;
848
849 /* not for SW PMU */
850 if (pmu->task_ctx_nr == perf_sw_context)
851 return;
852
853 if (hrtimer_active(hr))
854 return;
855
856 if (!hrtimer_callback_running(hr))
857 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
858 0, HRTIMER_MODE_REL_PINNED, 0);
859}
860
33696fc0 861void perf_pmu_disable(struct pmu *pmu)
9e35ad38 862{
33696fc0
PZ
863 int *count = this_cpu_ptr(pmu->pmu_disable_count);
864 if (!(*count)++)
865 pmu->pmu_disable(pmu);
9e35ad38 866}
9e35ad38 867
33696fc0 868void perf_pmu_enable(struct pmu *pmu)
9e35ad38 869{
33696fc0
PZ
870 int *count = this_cpu_ptr(pmu->pmu_disable_count);
871 if (!--(*count))
872 pmu->pmu_enable(pmu);
9e35ad38 873}
9e35ad38 874
2fde4f94 875static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
876
877/*
2fde4f94
MR
878 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
879 * perf_event_task_tick() are fully serialized because they're strictly cpu
880 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
881 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 882 */
2fde4f94 883static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 884{
2fde4f94 885 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 886
e9d2b064 887 WARN_ON(!irqs_disabled());
b5ab4cd5 888
2fde4f94
MR
889 WARN_ON(!list_empty(&ctx->active_ctx_list));
890
891 list_add(&ctx->active_ctx_list, head);
892}
893
894static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
895{
896 WARN_ON(!irqs_disabled());
897
898 WARN_ON(list_empty(&ctx->active_ctx_list));
899
900 list_del_init(&ctx->active_ctx_list);
9e35ad38 901}
9e35ad38 902
cdd6c482 903static void get_ctx(struct perf_event_context *ctx)
a63eaf34 904{
e5289d4a 905 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
906}
907
cdd6c482 908static void put_ctx(struct perf_event_context *ctx)
a63eaf34 909{
564c2b21
PM
910 if (atomic_dec_and_test(&ctx->refcount)) {
911 if (ctx->parent_ctx)
912 put_ctx(ctx->parent_ctx);
c93f7669
PM
913 if (ctx->task)
914 put_task_struct(ctx->task);
cb796ff3 915 kfree_rcu(ctx, rcu_head);
564c2b21 916 }
a63eaf34
PM
917}
918
f63a8daa
PZ
919/*
920 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
921 * perf_pmu_migrate_context() we need some magic.
922 *
923 * Those places that change perf_event::ctx will hold both
924 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
925 *
926 * Lock ordering is by mutex address. There is one other site where
927 * perf_event_context::mutex nests and that is put_event(). But remember that
928 * that is a parent<->child context relation, and migration does not affect
929 * children, therefore these two orderings should not interact.
930 *
931 * The change in perf_event::ctx does not affect children (as claimed above)
932 * because the sys_perf_event_open() case will install a new event and break
933 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
934 * concerned with cpuctx and that doesn't have children.
935 *
936 * The places that change perf_event::ctx will issue:
937 *
938 * perf_remove_from_context();
939 * synchronize_rcu();
940 * perf_install_in_context();
941 *
942 * to affect the change. The remove_from_context() + synchronize_rcu() should
943 * quiesce the event, after which we can install it in the new location. This
944 * means that only external vectors (perf_fops, prctl) can perturb the event
945 * while in transit. Therefore all such accessors should also acquire
946 * perf_event_context::mutex to serialize against this.
947 *
948 * However; because event->ctx can change while we're waiting to acquire
949 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
950 * function.
951 *
952 * Lock order:
953 * task_struct::perf_event_mutex
954 * perf_event_context::mutex
955 * perf_event_context::lock
956 * perf_event::child_mutex;
957 * perf_event::mmap_mutex
958 * mmap_sem
959 */
a83fe28e
PZ
960static struct perf_event_context *
961perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
962{
963 struct perf_event_context *ctx;
964
965again:
966 rcu_read_lock();
967 ctx = ACCESS_ONCE(event->ctx);
968 if (!atomic_inc_not_zero(&ctx->refcount)) {
969 rcu_read_unlock();
970 goto again;
971 }
972 rcu_read_unlock();
973
a83fe28e 974 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
975 if (event->ctx != ctx) {
976 mutex_unlock(&ctx->mutex);
977 put_ctx(ctx);
978 goto again;
979 }
980
981 return ctx;
982}
983
a83fe28e
PZ
984static inline struct perf_event_context *
985perf_event_ctx_lock(struct perf_event *event)
986{
987 return perf_event_ctx_lock_nested(event, 0);
988}
989
f63a8daa
PZ
990static void perf_event_ctx_unlock(struct perf_event *event,
991 struct perf_event_context *ctx)
992{
993 mutex_unlock(&ctx->mutex);
994 put_ctx(ctx);
995}
996
211de6eb
PZ
997/*
998 * This must be done under the ctx->lock, such as to serialize against
999 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1000 * calling scheduler related locks and ctx->lock nests inside those.
1001 */
1002static __must_check struct perf_event_context *
1003unclone_ctx(struct perf_event_context *ctx)
71a851b4 1004{
211de6eb
PZ
1005 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1006
1007 lockdep_assert_held(&ctx->lock);
1008
1009 if (parent_ctx)
71a851b4 1010 ctx->parent_ctx = NULL;
5a3126d4 1011 ctx->generation++;
211de6eb
PZ
1012
1013 return parent_ctx;
71a851b4
PZ
1014}
1015
6844c09d
ACM
1016static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1017{
1018 /*
1019 * only top level events have the pid namespace they were created in
1020 */
1021 if (event->parent)
1022 event = event->parent;
1023
1024 return task_tgid_nr_ns(p, event->ns);
1025}
1026
1027static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1028{
1029 /*
1030 * only top level events have the pid namespace they were created in
1031 */
1032 if (event->parent)
1033 event = event->parent;
1034
1035 return task_pid_nr_ns(p, event->ns);
1036}
1037
7f453c24 1038/*
cdd6c482 1039 * If we inherit events we want to return the parent event id
7f453c24
PZ
1040 * to userspace.
1041 */
cdd6c482 1042static u64 primary_event_id(struct perf_event *event)
7f453c24 1043{
cdd6c482 1044 u64 id = event->id;
7f453c24 1045
cdd6c482
IM
1046 if (event->parent)
1047 id = event->parent->id;
7f453c24
PZ
1048
1049 return id;
1050}
1051
25346b93 1052/*
cdd6c482 1053 * Get the perf_event_context for a task and lock it.
25346b93
PM
1054 * This has to cope with with the fact that until it is locked,
1055 * the context could get moved to another task.
1056 */
cdd6c482 1057static struct perf_event_context *
8dc85d54 1058perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1059{
cdd6c482 1060 struct perf_event_context *ctx;
25346b93 1061
9ed6060d 1062retry:
058ebd0e
PZ
1063 /*
1064 * One of the few rules of preemptible RCU is that one cannot do
1065 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1066 * part of the read side critical section was preemptible -- see
1067 * rcu_read_unlock_special().
1068 *
1069 * Since ctx->lock nests under rq->lock we must ensure the entire read
1070 * side critical section is non-preemptible.
1071 */
1072 preempt_disable();
1073 rcu_read_lock();
8dc85d54 1074 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1075 if (ctx) {
1076 /*
1077 * If this context is a clone of another, it might
1078 * get swapped for another underneath us by
cdd6c482 1079 * perf_event_task_sched_out, though the
25346b93
PM
1080 * rcu_read_lock() protects us from any context
1081 * getting freed. Lock the context and check if it
1082 * got swapped before we could get the lock, and retry
1083 * if so. If we locked the right context, then it
1084 * can't get swapped on us any more.
1085 */
e625cce1 1086 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 1087 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1088 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1089 rcu_read_unlock();
1090 preempt_enable();
25346b93
PM
1091 goto retry;
1092 }
b49a9e7e
PZ
1093
1094 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1095 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1096 ctx = NULL;
1097 }
25346b93
PM
1098 }
1099 rcu_read_unlock();
058ebd0e 1100 preempt_enable();
25346b93
PM
1101 return ctx;
1102}
1103
1104/*
1105 * Get the context for a task and increment its pin_count so it
1106 * can't get swapped to another task. This also increments its
1107 * reference count so that the context can't get freed.
1108 */
8dc85d54
PZ
1109static struct perf_event_context *
1110perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1111{
cdd6c482 1112 struct perf_event_context *ctx;
25346b93
PM
1113 unsigned long flags;
1114
8dc85d54 1115 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1116 if (ctx) {
1117 ++ctx->pin_count;
e625cce1 1118 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1119 }
1120 return ctx;
1121}
1122
cdd6c482 1123static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1124{
1125 unsigned long flags;
1126
e625cce1 1127 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1128 --ctx->pin_count;
e625cce1 1129 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1130}
1131
f67218c3
PZ
1132/*
1133 * Update the record of the current time in a context.
1134 */
1135static void update_context_time(struct perf_event_context *ctx)
1136{
1137 u64 now = perf_clock();
1138
1139 ctx->time += now - ctx->timestamp;
1140 ctx->timestamp = now;
1141}
1142
4158755d
SE
1143static u64 perf_event_time(struct perf_event *event)
1144{
1145 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1146
1147 if (is_cgroup_event(event))
1148 return perf_cgroup_event_time(event);
1149
4158755d
SE
1150 return ctx ? ctx->time : 0;
1151}
1152
f67218c3
PZ
1153/*
1154 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1155 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1156 */
1157static void update_event_times(struct perf_event *event)
1158{
1159 struct perf_event_context *ctx = event->ctx;
1160 u64 run_end;
1161
1162 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1163 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1164 return;
e5d1367f
SE
1165 /*
1166 * in cgroup mode, time_enabled represents
1167 * the time the event was enabled AND active
1168 * tasks were in the monitored cgroup. This is
1169 * independent of the activity of the context as
1170 * there may be a mix of cgroup and non-cgroup events.
1171 *
1172 * That is why we treat cgroup events differently
1173 * here.
1174 */
1175 if (is_cgroup_event(event))
46cd6a7f 1176 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1177 else if (ctx->is_active)
1178 run_end = ctx->time;
acd1d7c1
PZ
1179 else
1180 run_end = event->tstamp_stopped;
1181
1182 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1183
1184 if (event->state == PERF_EVENT_STATE_INACTIVE)
1185 run_end = event->tstamp_stopped;
1186 else
4158755d 1187 run_end = perf_event_time(event);
f67218c3
PZ
1188
1189 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1190
f67218c3
PZ
1191}
1192
96c21a46
PZ
1193/*
1194 * Update total_time_enabled and total_time_running for all events in a group.
1195 */
1196static void update_group_times(struct perf_event *leader)
1197{
1198 struct perf_event *event;
1199
1200 update_event_times(leader);
1201 list_for_each_entry(event, &leader->sibling_list, group_entry)
1202 update_event_times(event);
1203}
1204
889ff015
FW
1205static struct list_head *
1206ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1207{
1208 if (event->attr.pinned)
1209 return &ctx->pinned_groups;
1210 else
1211 return &ctx->flexible_groups;
1212}
1213
fccc714b 1214/*
cdd6c482 1215 * Add a event from the lists for its context.
fccc714b
PZ
1216 * Must be called with ctx->mutex and ctx->lock held.
1217 */
04289bb9 1218static void
cdd6c482 1219list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1220{
8a49542c
PZ
1221 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1222 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1223
1224 /*
8a49542c
PZ
1225 * If we're a stand alone event or group leader, we go to the context
1226 * list, group events are kept attached to the group so that
1227 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1228 */
8a49542c 1229 if (event->group_leader == event) {
889ff015
FW
1230 struct list_head *list;
1231
d6f962b5
FW
1232 if (is_software_event(event))
1233 event->group_flags |= PERF_GROUP_SOFTWARE;
1234
889ff015
FW
1235 list = ctx_group_list(event, ctx);
1236 list_add_tail(&event->group_entry, list);
5c148194 1237 }
592903cd 1238
08309379 1239 if (is_cgroup_event(event))
e5d1367f 1240 ctx->nr_cgroups++;
e5d1367f 1241
d010b332
SE
1242 if (has_branch_stack(event))
1243 ctx->nr_branch_stack++;
1244
cdd6c482
IM
1245 list_add_rcu(&event->event_entry, &ctx->event_list);
1246 ctx->nr_events++;
1247 if (event->attr.inherit_stat)
bfbd3381 1248 ctx->nr_stat++;
5a3126d4
PZ
1249
1250 ctx->generation++;
04289bb9
IM
1251}
1252
0231bb53
JO
1253/*
1254 * Initialize event state based on the perf_event_attr::disabled.
1255 */
1256static inline void perf_event__state_init(struct perf_event *event)
1257{
1258 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1259 PERF_EVENT_STATE_INACTIVE;
1260}
1261
c320c7b7
ACM
1262/*
1263 * Called at perf_event creation and when events are attached/detached from a
1264 * group.
1265 */
1266static void perf_event__read_size(struct perf_event *event)
1267{
1268 int entry = sizeof(u64); /* value */
1269 int size = 0;
1270 int nr = 1;
1271
1272 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1273 size += sizeof(u64);
1274
1275 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1276 size += sizeof(u64);
1277
1278 if (event->attr.read_format & PERF_FORMAT_ID)
1279 entry += sizeof(u64);
1280
1281 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1282 nr += event->group_leader->nr_siblings;
1283 size += sizeof(u64);
1284 }
1285
1286 size += entry * nr;
1287 event->read_size = size;
1288}
1289
1290static void perf_event__header_size(struct perf_event *event)
1291{
1292 struct perf_sample_data *data;
1293 u64 sample_type = event->attr.sample_type;
1294 u16 size = 0;
1295
1296 perf_event__read_size(event);
1297
1298 if (sample_type & PERF_SAMPLE_IP)
1299 size += sizeof(data->ip);
1300
6844c09d
ACM
1301 if (sample_type & PERF_SAMPLE_ADDR)
1302 size += sizeof(data->addr);
1303
1304 if (sample_type & PERF_SAMPLE_PERIOD)
1305 size += sizeof(data->period);
1306
c3feedf2
AK
1307 if (sample_type & PERF_SAMPLE_WEIGHT)
1308 size += sizeof(data->weight);
1309
6844c09d
ACM
1310 if (sample_type & PERF_SAMPLE_READ)
1311 size += event->read_size;
1312
d6be9ad6
SE
1313 if (sample_type & PERF_SAMPLE_DATA_SRC)
1314 size += sizeof(data->data_src.val);
1315
fdfbbd07
AK
1316 if (sample_type & PERF_SAMPLE_TRANSACTION)
1317 size += sizeof(data->txn);
1318
6844c09d
ACM
1319 event->header_size = size;
1320}
1321
1322static void perf_event__id_header_size(struct perf_event *event)
1323{
1324 struct perf_sample_data *data;
1325 u64 sample_type = event->attr.sample_type;
1326 u16 size = 0;
1327
c320c7b7
ACM
1328 if (sample_type & PERF_SAMPLE_TID)
1329 size += sizeof(data->tid_entry);
1330
1331 if (sample_type & PERF_SAMPLE_TIME)
1332 size += sizeof(data->time);
1333
ff3d527c
AH
1334 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1335 size += sizeof(data->id);
1336
c320c7b7
ACM
1337 if (sample_type & PERF_SAMPLE_ID)
1338 size += sizeof(data->id);
1339
1340 if (sample_type & PERF_SAMPLE_STREAM_ID)
1341 size += sizeof(data->stream_id);
1342
1343 if (sample_type & PERF_SAMPLE_CPU)
1344 size += sizeof(data->cpu_entry);
1345
6844c09d 1346 event->id_header_size = size;
c320c7b7
ACM
1347}
1348
8a49542c
PZ
1349static void perf_group_attach(struct perf_event *event)
1350{
c320c7b7 1351 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1352
74c3337c
PZ
1353 /*
1354 * We can have double attach due to group movement in perf_event_open.
1355 */
1356 if (event->attach_state & PERF_ATTACH_GROUP)
1357 return;
1358
8a49542c
PZ
1359 event->attach_state |= PERF_ATTACH_GROUP;
1360
1361 if (group_leader == event)
1362 return;
1363
652884fe
PZ
1364 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1365
8a49542c
PZ
1366 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1367 !is_software_event(event))
1368 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1369
1370 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1371 group_leader->nr_siblings++;
c320c7b7
ACM
1372
1373 perf_event__header_size(group_leader);
1374
1375 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1376 perf_event__header_size(pos);
8a49542c
PZ
1377}
1378
a63eaf34 1379/*
cdd6c482 1380 * Remove a event from the lists for its context.
fccc714b 1381 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1382 */
04289bb9 1383static void
cdd6c482 1384list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1385{
68cacd29 1386 struct perf_cpu_context *cpuctx;
652884fe
PZ
1387
1388 WARN_ON_ONCE(event->ctx != ctx);
1389 lockdep_assert_held(&ctx->lock);
1390
8a49542c
PZ
1391 /*
1392 * We can have double detach due to exit/hot-unplug + close.
1393 */
1394 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1395 return;
8a49542c
PZ
1396
1397 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1398
68cacd29 1399 if (is_cgroup_event(event)) {
e5d1367f 1400 ctx->nr_cgroups--;
68cacd29
SE
1401 cpuctx = __get_cpu_context(ctx);
1402 /*
1403 * if there are no more cgroup events
1404 * then cler cgrp to avoid stale pointer
1405 * in update_cgrp_time_from_cpuctx()
1406 */
1407 if (!ctx->nr_cgroups)
1408 cpuctx->cgrp = NULL;
1409 }
e5d1367f 1410
d010b332
SE
1411 if (has_branch_stack(event))
1412 ctx->nr_branch_stack--;
1413
cdd6c482
IM
1414 ctx->nr_events--;
1415 if (event->attr.inherit_stat)
bfbd3381 1416 ctx->nr_stat--;
8bc20959 1417
cdd6c482 1418 list_del_rcu(&event->event_entry);
04289bb9 1419
8a49542c
PZ
1420 if (event->group_leader == event)
1421 list_del_init(&event->group_entry);
5c148194 1422
96c21a46 1423 update_group_times(event);
b2e74a26
SE
1424
1425 /*
1426 * If event was in error state, then keep it
1427 * that way, otherwise bogus counts will be
1428 * returned on read(). The only way to get out
1429 * of error state is by explicit re-enabling
1430 * of the event
1431 */
1432 if (event->state > PERF_EVENT_STATE_OFF)
1433 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1434
1435 ctx->generation++;
050735b0
PZ
1436}
1437
8a49542c 1438static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1439{
1440 struct perf_event *sibling, *tmp;
8a49542c
PZ
1441 struct list_head *list = NULL;
1442
1443 /*
1444 * We can have double detach due to exit/hot-unplug + close.
1445 */
1446 if (!(event->attach_state & PERF_ATTACH_GROUP))
1447 return;
1448
1449 event->attach_state &= ~PERF_ATTACH_GROUP;
1450
1451 /*
1452 * If this is a sibling, remove it from its group.
1453 */
1454 if (event->group_leader != event) {
1455 list_del_init(&event->group_entry);
1456 event->group_leader->nr_siblings--;
c320c7b7 1457 goto out;
8a49542c
PZ
1458 }
1459
1460 if (!list_empty(&event->group_entry))
1461 list = &event->group_entry;
2e2af50b 1462
04289bb9 1463 /*
cdd6c482
IM
1464 * If this was a group event with sibling events then
1465 * upgrade the siblings to singleton events by adding them
8a49542c 1466 * to whatever list we are on.
04289bb9 1467 */
cdd6c482 1468 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1469 if (list)
1470 list_move_tail(&sibling->group_entry, list);
04289bb9 1471 sibling->group_leader = sibling;
d6f962b5
FW
1472
1473 /* Inherit group flags from the previous leader */
1474 sibling->group_flags = event->group_flags;
652884fe
PZ
1475
1476 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1477 }
c320c7b7
ACM
1478
1479out:
1480 perf_event__header_size(event->group_leader);
1481
1482 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1483 perf_event__header_size(tmp);
04289bb9
IM
1484}
1485
fadfe7be
JO
1486/*
1487 * User event without the task.
1488 */
1489static bool is_orphaned_event(struct perf_event *event)
1490{
1491 return event && !is_kernel_event(event) && !event->owner;
1492}
1493
1494/*
1495 * Event has a parent but parent's task finished and it's
1496 * alive only because of children holding refference.
1497 */
1498static bool is_orphaned_child(struct perf_event *event)
1499{
1500 return is_orphaned_event(event->parent);
1501}
1502
1503static void orphans_remove_work(struct work_struct *work);
1504
1505static void schedule_orphans_remove(struct perf_event_context *ctx)
1506{
1507 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1508 return;
1509
1510 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1511 get_ctx(ctx);
1512 ctx->orphans_remove_sched = true;
1513 }
1514}
1515
1516static int __init perf_workqueue_init(void)
1517{
1518 perf_wq = create_singlethread_workqueue("perf");
1519 WARN(!perf_wq, "failed to create perf workqueue\n");
1520 return perf_wq ? 0 : -1;
1521}
1522
1523core_initcall(perf_workqueue_init);
1524
fa66f07a
SE
1525static inline int
1526event_filter_match(struct perf_event *event)
1527{
e5d1367f
SE
1528 return (event->cpu == -1 || event->cpu == smp_processor_id())
1529 && perf_cgroup_match(event);
fa66f07a
SE
1530}
1531
9ffcfa6f
SE
1532static void
1533event_sched_out(struct perf_event *event,
3b6f9e5c 1534 struct perf_cpu_context *cpuctx,
cdd6c482 1535 struct perf_event_context *ctx)
3b6f9e5c 1536{
4158755d 1537 u64 tstamp = perf_event_time(event);
fa66f07a 1538 u64 delta;
652884fe
PZ
1539
1540 WARN_ON_ONCE(event->ctx != ctx);
1541 lockdep_assert_held(&ctx->lock);
1542
fa66f07a
SE
1543 /*
1544 * An event which could not be activated because of
1545 * filter mismatch still needs to have its timings
1546 * maintained, otherwise bogus information is return
1547 * via read() for time_enabled, time_running:
1548 */
1549 if (event->state == PERF_EVENT_STATE_INACTIVE
1550 && !event_filter_match(event)) {
e5d1367f 1551 delta = tstamp - event->tstamp_stopped;
fa66f07a 1552 event->tstamp_running += delta;
4158755d 1553 event->tstamp_stopped = tstamp;
fa66f07a
SE
1554 }
1555
cdd6c482 1556 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1557 return;
3b6f9e5c 1558
44377277
AS
1559 perf_pmu_disable(event->pmu);
1560
cdd6c482
IM
1561 event->state = PERF_EVENT_STATE_INACTIVE;
1562 if (event->pending_disable) {
1563 event->pending_disable = 0;
1564 event->state = PERF_EVENT_STATE_OFF;
970892a9 1565 }
4158755d 1566 event->tstamp_stopped = tstamp;
a4eaf7f1 1567 event->pmu->del(event, 0);
cdd6c482 1568 event->oncpu = -1;
3b6f9e5c 1569
cdd6c482 1570 if (!is_software_event(event))
3b6f9e5c 1571 cpuctx->active_oncpu--;
2fde4f94
MR
1572 if (!--ctx->nr_active)
1573 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1574 if (event->attr.freq && event->attr.sample_freq)
1575 ctx->nr_freq--;
cdd6c482 1576 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1577 cpuctx->exclusive = 0;
44377277 1578
fadfe7be
JO
1579 if (is_orphaned_child(event))
1580 schedule_orphans_remove(ctx);
1581
44377277 1582 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1583}
1584
d859e29f 1585static void
cdd6c482 1586group_sched_out(struct perf_event *group_event,
d859e29f 1587 struct perf_cpu_context *cpuctx,
cdd6c482 1588 struct perf_event_context *ctx)
d859e29f 1589{
cdd6c482 1590 struct perf_event *event;
fa66f07a 1591 int state = group_event->state;
d859e29f 1592
cdd6c482 1593 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1594
1595 /*
1596 * Schedule out siblings (if any):
1597 */
cdd6c482
IM
1598 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1599 event_sched_out(event, cpuctx, ctx);
d859e29f 1600
fa66f07a 1601 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1602 cpuctx->exclusive = 0;
1603}
1604
46ce0fe9
PZ
1605struct remove_event {
1606 struct perf_event *event;
1607 bool detach_group;
1608};
1609
0793a61d 1610/*
cdd6c482 1611 * Cross CPU call to remove a performance event
0793a61d 1612 *
cdd6c482 1613 * We disable the event on the hardware level first. After that we
0793a61d
TG
1614 * remove it from the context list.
1615 */
fe4b04fa 1616static int __perf_remove_from_context(void *info)
0793a61d 1617{
46ce0fe9
PZ
1618 struct remove_event *re = info;
1619 struct perf_event *event = re->event;
cdd6c482 1620 struct perf_event_context *ctx = event->ctx;
108b02cf 1621 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1622
e625cce1 1623 raw_spin_lock(&ctx->lock);
cdd6c482 1624 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1625 if (re->detach_group)
1626 perf_group_detach(event);
cdd6c482 1627 list_del_event(event, ctx);
64ce3126
PZ
1628 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1629 ctx->is_active = 0;
1630 cpuctx->task_ctx = NULL;
1631 }
e625cce1 1632 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1633
1634 return 0;
0793a61d
TG
1635}
1636
1637
1638/*
cdd6c482 1639 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1640 *
cdd6c482 1641 * CPU events are removed with a smp call. For task events we only
0793a61d 1642 * call when the task is on a CPU.
c93f7669 1643 *
cdd6c482
IM
1644 * If event->ctx is a cloned context, callers must make sure that
1645 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1646 * remains valid. This is OK when called from perf_release since
1647 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1648 * When called from perf_event_exit_task, it's OK because the
c93f7669 1649 * context has been detached from its task.
0793a61d 1650 */
46ce0fe9 1651static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1652{
cdd6c482 1653 struct perf_event_context *ctx = event->ctx;
0793a61d 1654 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1655 struct remove_event re = {
1656 .event = event,
1657 .detach_group = detach_group,
1658 };
0793a61d 1659
fe4b04fa
PZ
1660 lockdep_assert_held(&ctx->mutex);
1661
0793a61d
TG
1662 if (!task) {
1663 /*
226424ee
MR
1664 * Per cpu events are removed via an smp call. The removal can
1665 * fail if the CPU is currently offline, but in that case we
1666 * already called __perf_remove_from_context from
1667 * perf_event_exit_cpu.
0793a61d 1668 */
46ce0fe9 1669 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1670 return;
1671 }
1672
1673retry:
46ce0fe9 1674 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1675 return;
0793a61d 1676
e625cce1 1677 raw_spin_lock_irq(&ctx->lock);
0793a61d 1678 /*
fe4b04fa
PZ
1679 * If we failed to find a running task, but find the context active now
1680 * that we've acquired the ctx->lock, retry.
0793a61d 1681 */
fe4b04fa 1682 if (ctx->is_active) {
e625cce1 1683 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1684 /*
1685 * Reload the task pointer, it might have been changed by
1686 * a concurrent perf_event_context_sched_out().
1687 */
1688 task = ctx->task;
0793a61d
TG
1689 goto retry;
1690 }
1691
1692 /*
fe4b04fa
PZ
1693 * Since the task isn't running, its safe to remove the event, us
1694 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1695 */
46ce0fe9
PZ
1696 if (detach_group)
1697 perf_group_detach(event);
fe4b04fa 1698 list_del_event(event, ctx);
e625cce1 1699 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1700}
1701
d859e29f 1702/*
cdd6c482 1703 * Cross CPU call to disable a performance event
d859e29f 1704 */
500ad2d8 1705int __perf_event_disable(void *info)
d859e29f 1706{
cdd6c482 1707 struct perf_event *event = info;
cdd6c482 1708 struct perf_event_context *ctx = event->ctx;
108b02cf 1709 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1710
1711 /*
cdd6c482
IM
1712 * If this is a per-task event, need to check whether this
1713 * event's task is the current task on this cpu.
fe4b04fa
PZ
1714 *
1715 * Can trigger due to concurrent perf_event_context_sched_out()
1716 * flipping contexts around.
d859e29f 1717 */
665c2142 1718 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1719 return -EINVAL;
d859e29f 1720
e625cce1 1721 raw_spin_lock(&ctx->lock);
d859e29f
PM
1722
1723 /*
cdd6c482 1724 * If the event is on, turn it off.
d859e29f
PM
1725 * If it is in error state, leave it in error state.
1726 */
cdd6c482 1727 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1728 update_context_time(ctx);
e5d1367f 1729 update_cgrp_time_from_event(event);
cdd6c482
IM
1730 update_group_times(event);
1731 if (event == event->group_leader)
1732 group_sched_out(event, cpuctx, ctx);
d859e29f 1733 else
cdd6c482
IM
1734 event_sched_out(event, cpuctx, ctx);
1735 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1736 }
1737
e625cce1 1738 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1739
1740 return 0;
d859e29f
PM
1741}
1742
1743/*
cdd6c482 1744 * Disable a event.
c93f7669 1745 *
cdd6c482
IM
1746 * If event->ctx is a cloned context, callers must make sure that
1747 * every task struct that event->ctx->task could possibly point to
c93f7669 1748 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1749 * perf_event_for_each_child or perf_event_for_each because they
1750 * hold the top-level event's child_mutex, so any descendant that
1751 * goes to exit will block in sync_child_event.
1752 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1753 * is the current context on this CPU and preemption is disabled,
cdd6c482 1754 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1755 */
f63a8daa 1756static void _perf_event_disable(struct perf_event *event)
d859e29f 1757{
cdd6c482 1758 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1759 struct task_struct *task = ctx->task;
1760
1761 if (!task) {
1762 /*
cdd6c482 1763 * Disable the event on the cpu that it's on
d859e29f 1764 */
fe4b04fa 1765 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1766 return;
1767 }
1768
9ed6060d 1769retry:
fe4b04fa
PZ
1770 if (!task_function_call(task, __perf_event_disable, event))
1771 return;
d859e29f 1772
e625cce1 1773 raw_spin_lock_irq(&ctx->lock);
d859e29f 1774 /*
cdd6c482 1775 * If the event is still active, we need to retry the cross-call.
d859e29f 1776 */
cdd6c482 1777 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1778 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1779 /*
1780 * Reload the task pointer, it might have been changed by
1781 * a concurrent perf_event_context_sched_out().
1782 */
1783 task = ctx->task;
d859e29f
PM
1784 goto retry;
1785 }
1786
1787 /*
1788 * Since we have the lock this context can't be scheduled
1789 * in, so we can change the state safely.
1790 */
cdd6c482
IM
1791 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1792 update_group_times(event);
1793 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1794 }
e625cce1 1795 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1796}
f63a8daa
PZ
1797
1798/*
1799 * Strictly speaking kernel users cannot create groups and therefore this
1800 * interface does not need the perf_event_ctx_lock() magic.
1801 */
1802void perf_event_disable(struct perf_event *event)
1803{
1804 struct perf_event_context *ctx;
1805
1806 ctx = perf_event_ctx_lock(event);
1807 _perf_event_disable(event);
1808 perf_event_ctx_unlock(event, ctx);
1809}
dcfce4a0 1810EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1811
e5d1367f
SE
1812static void perf_set_shadow_time(struct perf_event *event,
1813 struct perf_event_context *ctx,
1814 u64 tstamp)
1815{
1816 /*
1817 * use the correct time source for the time snapshot
1818 *
1819 * We could get by without this by leveraging the
1820 * fact that to get to this function, the caller
1821 * has most likely already called update_context_time()
1822 * and update_cgrp_time_xx() and thus both timestamp
1823 * are identical (or very close). Given that tstamp is,
1824 * already adjusted for cgroup, we could say that:
1825 * tstamp - ctx->timestamp
1826 * is equivalent to
1827 * tstamp - cgrp->timestamp.
1828 *
1829 * Then, in perf_output_read(), the calculation would
1830 * work with no changes because:
1831 * - event is guaranteed scheduled in
1832 * - no scheduled out in between
1833 * - thus the timestamp would be the same
1834 *
1835 * But this is a bit hairy.
1836 *
1837 * So instead, we have an explicit cgroup call to remain
1838 * within the time time source all along. We believe it
1839 * is cleaner and simpler to understand.
1840 */
1841 if (is_cgroup_event(event))
1842 perf_cgroup_set_shadow_time(event, tstamp);
1843 else
1844 event->shadow_ctx_time = tstamp - ctx->timestamp;
1845}
1846
4fe757dd
PZ
1847#define MAX_INTERRUPTS (~0ULL)
1848
1849static void perf_log_throttle(struct perf_event *event, int enable);
1850
235c7fc7 1851static int
9ffcfa6f 1852event_sched_in(struct perf_event *event,
235c7fc7 1853 struct perf_cpu_context *cpuctx,
6e37738a 1854 struct perf_event_context *ctx)
235c7fc7 1855{
4158755d 1856 u64 tstamp = perf_event_time(event);
44377277 1857 int ret = 0;
4158755d 1858
63342411
PZ
1859 lockdep_assert_held(&ctx->lock);
1860
cdd6c482 1861 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1862 return 0;
1863
cdd6c482 1864 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1865 event->oncpu = smp_processor_id();
4fe757dd
PZ
1866
1867 /*
1868 * Unthrottle events, since we scheduled we might have missed several
1869 * ticks already, also for a heavily scheduling task there is little
1870 * guarantee it'll get a tick in a timely manner.
1871 */
1872 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1873 perf_log_throttle(event, 1);
1874 event->hw.interrupts = 0;
1875 }
1876
235c7fc7
IM
1877 /*
1878 * The new state must be visible before we turn it on in the hardware:
1879 */
1880 smp_wmb();
1881
44377277
AS
1882 perf_pmu_disable(event->pmu);
1883
a4eaf7f1 1884 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1885 event->state = PERF_EVENT_STATE_INACTIVE;
1886 event->oncpu = -1;
44377277
AS
1887 ret = -EAGAIN;
1888 goto out;
235c7fc7
IM
1889 }
1890
4158755d 1891 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1892
e5d1367f 1893 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1894
cdd6c482 1895 if (!is_software_event(event))
3b6f9e5c 1896 cpuctx->active_oncpu++;
2fde4f94
MR
1897 if (!ctx->nr_active++)
1898 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1899 if (event->attr.freq && event->attr.sample_freq)
1900 ctx->nr_freq++;
235c7fc7 1901
cdd6c482 1902 if (event->attr.exclusive)
3b6f9e5c
PM
1903 cpuctx->exclusive = 1;
1904
fadfe7be
JO
1905 if (is_orphaned_child(event))
1906 schedule_orphans_remove(ctx);
1907
44377277
AS
1908out:
1909 perf_pmu_enable(event->pmu);
1910
1911 return ret;
235c7fc7
IM
1912}
1913
6751b71e 1914static int
cdd6c482 1915group_sched_in(struct perf_event *group_event,
6751b71e 1916 struct perf_cpu_context *cpuctx,
6e37738a 1917 struct perf_event_context *ctx)
6751b71e 1918{
6bde9b6c 1919 struct perf_event *event, *partial_group = NULL;
4a234593 1920 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1921 u64 now = ctx->time;
1922 bool simulate = false;
6751b71e 1923
cdd6c482 1924 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1925 return 0;
1926
ad5133b7 1927 pmu->start_txn(pmu);
6bde9b6c 1928
9ffcfa6f 1929 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1930 pmu->cancel_txn(pmu);
9e630205 1931 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1932 return -EAGAIN;
90151c35 1933 }
6751b71e
PM
1934
1935 /*
1936 * Schedule in siblings as one group (if any):
1937 */
cdd6c482 1938 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1939 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1940 partial_group = event;
6751b71e
PM
1941 goto group_error;
1942 }
1943 }
1944
9ffcfa6f 1945 if (!pmu->commit_txn(pmu))
6e85158c 1946 return 0;
9ffcfa6f 1947
6751b71e
PM
1948group_error:
1949 /*
1950 * Groups can be scheduled in as one unit only, so undo any
1951 * partial group before returning:
d7842da4
SE
1952 * The events up to the failed event are scheduled out normally,
1953 * tstamp_stopped will be updated.
1954 *
1955 * The failed events and the remaining siblings need to have
1956 * their timings updated as if they had gone thru event_sched_in()
1957 * and event_sched_out(). This is required to get consistent timings
1958 * across the group. This also takes care of the case where the group
1959 * could never be scheduled by ensuring tstamp_stopped is set to mark
1960 * the time the event was actually stopped, such that time delta
1961 * calculation in update_event_times() is correct.
6751b71e 1962 */
cdd6c482
IM
1963 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1964 if (event == partial_group)
d7842da4
SE
1965 simulate = true;
1966
1967 if (simulate) {
1968 event->tstamp_running += now - event->tstamp_stopped;
1969 event->tstamp_stopped = now;
1970 } else {
1971 event_sched_out(event, cpuctx, ctx);
1972 }
6751b71e 1973 }
9ffcfa6f 1974 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1975
ad5133b7 1976 pmu->cancel_txn(pmu);
90151c35 1977
9e630205
SE
1978 perf_cpu_hrtimer_restart(cpuctx);
1979
6751b71e
PM
1980 return -EAGAIN;
1981}
1982
3b6f9e5c 1983/*
cdd6c482 1984 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1985 */
cdd6c482 1986static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1987 struct perf_cpu_context *cpuctx,
1988 int can_add_hw)
1989{
1990 /*
cdd6c482 1991 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1992 */
d6f962b5 1993 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1994 return 1;
1995 /*
1996 * If an exclusive group is already on, no other hardware
cdd6c482 1997 * events can go on.
3b6f9e5c
PM
1998 */
1999 if (cpuctx->exclusive)
2000 return 0;
2001 /*
2002 * If this group is exclusive and there are already
cdd6c482 2003 * events on the CPU, it can't go on.
3b6f9e5c 2004 */
cdd6c482 2005 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2006 return 0;
2007 /*
2008 * Otherwise, try to add it if all previous groups were able
2009 * to go on.
2010 */
2011 return can_add_hw;
2012}
2013
cdd6c482
IM
2014static void add_event_to_ctx(struct perf_event *event,
2015 struct perf_event_context *ctx)
53cfbf59 2016{
4158755d
SE
2017 u64 tstamp = perf_event_time(event);
2018
cdd6c482 2019 list_add_event(event, ctx);
8a49542c 2020 perf_group_attach(event);
4158755d
SE
2021 event->tstamp_enabled = tstamp;
2022 event->tstamp_running = tstamp;
2023 event->tstamp_stopped = tstamp;
53cfbf59
PM
2024}
2025
2c29ef0f
PZ
2026static void task_ctx_sched_out(struct perf_event_context *ctx);
2027static void
2028ctx_sched_in(struct perf_event_context *ctx,
2029 struct perf_cpu_context *cpuctx,
2030 enum event_type_t event_type,
2031 struct task_struct *task);
fe4b04fa 2032
dce5855b
PZ
2033static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2034 struct perf_event_context *ctx,
2035 struct task_struct *task)
2036{
2037 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2038 if (ctx)
2039 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2040 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2041 if (ctx)
2042 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2043}
2044
0793a61d 2045/*
cdd6c482 2046 * Cross CPU call to install and enable a performance event
682076ae
PZ
2047 *
2048 * Must be called with ctx->mutex held
0793a61d 2049 */
fe4b04fa 2050static int __perf_install_in_context(void *info)
0793a61d 2051{
cdd6c482
IM
2052 struct perf_event *event = info;
2053 struct perf_event_context *ctx = event->ctx;
108b02cf 2054 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2055 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2056 struct task_struct *task = current;
2057
b58f6b0d 2058 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2059 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2060
2061 /*
2c29ef0f 2062 * If there was an active task_ctx schedule it out.
0793a61d 2063 */
b58f6b0d 2064 if (task_ctx)
2c29ef0f 2065 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2066
2067 /*
2068 * If the context we're installing events in is not the
2069 * active task_ctx, flip them.
2070 */
2071 if (ctx->task && task_ctx != ctx) {
2072 if (task_ctx)
2073 raw_spin_unlock(&task_ctx->lock);
2074 raw_spin_lock(&ctx->lock);
2075 task_ctx = ctx;
2076 }
2077
2078 if (task_ctx) {
2079 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2080 task = task_ctx->task;
2081 }
b58f6b0d 2082
2c29ef0f 2083 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2084
4af4998b 2085 update_context_time(ctx);
e5d1367f
SE
2086 /*
2087 * update cgrp time only if current cgrp
2088 * matches event->cgrp. Must be done before
2089 * calling add_event_to_ctx()
2090 */
2091 update_cgrp_time_from_event(event);
0793a61d 2092
cdd6c482 2093 add_event_to_ctx(event, ctx);
0793a61d 2094
d859e29f 2095 /*
2c29ef0f 2096 * Schedule everything back in
d859e29f 2097 */
dce5855b 2098 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2099
2100 perf_pmu_enable(cpuctx->ctx.pmu);
2101 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2102
2103 return 0;
0793a61d
TG
2104}
2105
2106/*
cdd6c482 2107 * Attach a performance event to a context
0793a61d 2108 *
cdd6c482
IM
2109 * First we add the event to the list with the hardware enable bit
2110 * in event->hw_config cleared.
0793a61d 2111 *
cdd6c482 2112 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2113 * call to enable it in the task context. The task might have been
2114 * scheduled away, but we check this in the smp call again.
2115 */
2116static void
cdd6c482
IM
2117perf_install_in_context(struct perf_event_context *ctx,
2118 struct perf_event *event,
0793a61d
TG
2119 int cpu)
2120{
2121 struct task_struct *task = ctx->task;
2122
fe4b04fa
PZ
2123 lockdep_assert_held(&ctx->mutex);
2124
c3f00c70 2125 event->ctx = ctx;
0cda4c02
YZ
2126 if (event->cpu != -1)
2127 event->cpu = cpu;
c3f00c70 2128
0793a61d
TG
2129 if (!task) {
2130 /*
cdd6c482 2131 * Per cpu events are installed via an smp call and
af901ca1 2132 * the install is always successful.
0793a61d 2133 */
fe4b04fa 2134 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2135 return;
2136 }
2137
0793a61d 2138retry:
fe4b04fa
PZ
2139 if (!task_function_call(task, __perf_install_in_context, event))
2140 return;
0793a61d 2141
e625cce1 2142 raw_spin_lock_irq(&ctx->lock);
0793a61d 2143 /*
fe4b04fa
PZ
2144 * If we failed to find a running task, but find the context active now
2145 * that we've acquired the ctx->lock, retry.
0793a61d 2146 */
fe4b04fa 2147 if (ctx->is_active) {
e625cce1 2148 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2149 /*
2150 * Reload the task pointer, it might have been changed by
2151 * a concurrent perf_event_context_sched_out().
2152 */
2153 task = ctx->task;
0793a61d
TG
2154 goto retry;
2155 }
2156
2157 /*
fe4b04fa
PZ
2158 * Since the task isn't running, its safe to add the event, us holding
2159 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2160 */
fe4b04fa 2161 add_event_to_ctx(event, ctx);
e625cce1 2162 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2163}
2164
fa289bec 2165/*
cdd6c482 2166 * Put a event into inactive state and update time fields.
fa289bec
PM
2167 * Enabling the leader of a group effectively enables all
2168 * the group members that aren't explicitly disabled, so we
2169 * have to update their ->tstamp_enabled also.
2170 * Note: this works for group members as well as group leaders
2171 * since the non-leader members' sibling_lists will be empty.
2172 */
1d9b482e 2173static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2174{
cdd6c482 2175 struct perf_event *sub;
4158755d 2176 u64 tstamp = perf_event_time(event);
fa289bec 2177
cdd6c482 2178 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2179 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2180 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2181 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2182 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2183 }
fa289bec
PM
2184}
2185
d859e29f 2186/*
cdd6c482 2187 * Cross CPU call to enable a performance event
d859e29f 2188 */
fe4b04fa 2189static int __perf_event_enable(void *info)
04289bb9 2190{
cdd6c482 2191 struct perf_event *event = info;
cdd6c482
IM
2192 struct perf_event_context *ctx = event->ctx;
2193 struct perf_event *leader = event->group_leader;
108b02cf 2194 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2195 int err;
04289bb9 2196
06f41796
JO
2197 /*
2198 * There's a time window between 'ctx->is_active' check
2199 * in perf_event_enable function and this place having:
2200 * - IRQs on
2201 * - ctx->lock unlocked
2202 *
2203 * where the task could be killed and 'ctx' deactivated
2204 * by perf_event_exit_task.
2205 */
2206 if (!ctx->is_active)
fe4b04fa 2207 return -EINVAL;
3cbed429 2208
e625cce1 2209 raw_spin_lock(&ctx->lock);
4af4998b 2210 update_context_time(ctx);
d859e29f 2211
cdd6c482 2212 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2213 goto unlock;
e5d1367f
SE
2214
2215 /*
2216 * set current task's cgroup time reference point
2217 */
3f7cce3c 2218 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2219
1d9b482e 2220 __perf_event_mark_enabled(event);
04289bb9 2221
e5d1367f
SE
2222 if (!event_filter_match(event)) {
2223 if (is_cgroup_event(event))
2224 perf_cgroup_defer_enabled(event);
f4c4176f 2225 goto unlock;
e5d1367f 2226 }
f4c4176f 2227
04289bb9 2228 /*
cdd6c482 2229 * If the event is in a group and isn't the group leader,
d859e29f 2230 * then don't put it on unless the group is on.
04289bb9 2231 */
cdd6c482 2232 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2233 goto unlock;
3b6f9e5c 2234
cdd6c482 2235 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2236 err = -EEXIST;
e758a33d 2237 } else {
cdd6c482 2238 if (event == leader)
6e37738a 2239 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2240 else
6e37738a 2241 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2242 }
d859e29f
PM
2243
2244 if (err) {
2245 /*
cdd6c482 2246 * If this event can't go on and it's part of a
d859e29f
PM
2247 * group, then the whole group has to come off.
2248 */
9e630205 2249 if (leader != event) {
d859e29f 2250 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2251 perf_cpu_hrtimer_restart(cpuctx);
2252 }
0d48696f 2253 if (leader->attr.pinned) {
53cfbf59 2254 update_group_times(leader);
cdd6c482 2255 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2256 }
d859e29f
PM
2257 }
2258
9ed6060d 2259unlock:
e625cce1 2260 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2261
2262 return 0;
d859e29f
PM
2263}
2264
2265/*
cdd6c482 2266 * Enable a event.
c93f7669 2267 *
cdd6c482
IM
2268 * If event->ctx is a cloned context, callers must make sure that
2269 * every task struct that event->ctx->task could possibly point to
c93f7669 2270 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2271 * perf_event_for_each_child or perf_event_for_each as described
2272 * for perf_event_disable.
d859e29f 2273 */
f63a8daa 2274static void _perf_event_enable(struct perf_event *event)
d859e29f 2275{
cdd6c482 2276 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2277 struct task_struct *task = ctx->task;
2278
2279 if (!task) {
2280 /*
cdd6c482 2281 * Enable the event on the cpu that it's on
d859e29f 2282 */
fe4b04fa 2283 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2284 return;
2285 }
2286
e625cce1 2287 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2288 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2289 goto out;
2290
2291 /*
cdd6c482
IM
2292 * If the event is in error state, clear that first.
2293 * That way, if we see the event in error state below, we
d859e29f
PM
2294 * know that it has gone back into error state, as distinct
2295 * from the task having been scheduled away before the
2296 * cross-call arrived.
2297 */
cdd6c482
IM
2298 if (event->state == PERF_EVENT_STATE_ERROR)
2299 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2300
9ed6060d 2301retry:
fe4b04fa 2302 if (!ctx->is_active) {
1d9b482e 2303 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2304 goto out;
2305 }
2306
e625cce1 2307 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2308
2309 if (!task_function_call(task, __perf_event_enable, event))
2310 return;
d859e29f 2311
e625cce1 2312 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2313
2314 /*
cdd6c482 2315 * If the context is active and the event is still off,
d859e29f
PM
2316 * we need to retry the cross-call.
2317 */
fe4b04fa
PZ
2318 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2319 /*
2320 * task could have been flipped by a concurrent
2321 * perf_event_context_sched_out()
2322 */
2323 task = ctx->task;
d859e29f 2324 goto retry;
fe4b04fa 2325 }
fa289bec 2326
9ed6060d 2327out:
e625cce1 2328 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2329}
f63a8daa
PZ
2330
2331/*
2332 * See perf_event_disable();
2333 */
2334void perf_event_enable(struct perf_event *event)
2335{
2336 struct perf_event_context *ctx;
2337
2338 ctx = perf_event_ctx_lock(event);
2339 _perf_event_enable(event);
2340 perf_event_ctx_unlock(event, ctx);
2341}
dcfce4a0 2342EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2343
f63a8daa 2344static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2345{
2023b359 2346 /*
cdd6c482 2347 * not supported on inherited events
2023b359 2348 */
2e939d1d 2349 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2350 return -EINVAL;
2351
cdd6c482 2352 atomic_add(refresh, &event->event_limit);
f63a8daa 2353 _perf_event_enable(event);
2023b359
PZ
2354
2355 return 0;
79f14641 2356}
f63a8daa
PZ
2357
2358/*
2359 * See perf_event_disable()
2360 */
2361int perf_event_refresh(struct perf_event *event, int refresh)
2362{
2363 struct perf_event_context *ctx;
2364 int ret;
2365
2366 ctx = perf_event_ctx_lock(event);
2367 ret = _perf_event_refresh(event, refresh);
2368 perf_event_ctx_unlock(event, ctx);
2369
2370 return ret;
2371}
26ca5c11 2372EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2373
5b0311e1
FW
2374static void ctx_sched_out(struct perf_event_context *ctx,
2375 struct perf_cpu_context *cpuctx,
2376 enum event_type_t event_type)
235c7fc7 2377{
cdd6c482 2378 struct perf_event *event;
db24d33e 2379 int is_active = ctx->is_active;
235c7fc7 2380
db24d33e 2381 ctx->is_active &= ~event_type;
cdd6c482 2382 if (likely(!ctx->nr_events))
facc4307
PZ
2383 return;
2384
4af4998b 2385 update_context_time(ctx);
e5d1367f 2386 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2387 if (!ctx->nr_active)
facc4307 2388 return;
5b0311e1 2389
075e0b00 2390 perf_pmu_disable(ctx->pmu);
db24d33e 2391 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2392 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2393 group_sched_out(event, cpuctx, ctx);
9ed6060d 2394 }
889ff015 2395
db24d33e 2396 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2397 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2398 group_sched_out(event, cpuctx, ctx);
9ed6060d 2399 }
1b9a644f 2400 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2401}
2402
564c2b21 2403/*
5a3126d4
PZ
2404 * Test whether two contexts are equivalent, i.e. whether they have both been
2405 * cloned from the same version of the same context.
2406 *
2407 * Equivalence is measured using a generation number in the context that is
2408 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2409 * and list_del_event().
564c2b21 2410 */
cdd6c482
IM
2411static int context_equiv(struct perf_event_context *ctx1,
2412 struct perf_event_context *ctx2)
564c2b21 2413{
211de6eb
PZ
2414 lockdep_assert_held(&ctx1->lock);
2415 lockdep_assert_held(&ctx2->lock);
2416
5a3126d4
PZ
2417 /* Pinning disables the swap optimization */
2418 if (ctx1->pin_count || ctx2->pin_count)
2419 return 0;
2420
2421 /* If ctx1 is the parent of ctx2 */
2422 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2423 return 1;
2424
2425 /* If ctx2 is the parent of ctx1 */
2426 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2427 return 1;
2428
2429 /*
2430 * If ctx1 and ctx2 have the same parent; we flatten the parent
2431 * hierarchy, see perf_event_init_context().
2432 */
2433 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2434 ctx1->parent_gen == ctx2->parent_gen)
2435 return 1;
2436
2437 /* Unmatched */
2438 return 0;
564c2b21
PM
2439}
2440
cdd6c482
IM
2441static void __perf_event_sync_stat(struct perf_event *event,
2442 struct perf_event *next_event)
bfbd3381
PZ
2443{
2444 u64 value;
2445
cdd6c482 2446 if (!event->attr.inherit_stat)
bfbd3381
PZ
2447 return;
2448
2449 /*
cdd6c482 2450 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2451 * because we're in the middle of a context switch and have IRQs
2452 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2453 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2454 * don't need to use it.
2455 */
cdd6c482
IM
2456 switch (event->state) {
2457 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2458 event->pmu->read(event);
2459 /* fall-through */
bfbd3381 2460
cdd6c482
IM
2461 case PERF_EVENT_STATE_INACTIVE:
2462 update_event_times(event);
bfbd3381
PZ
2463 break;
2464
2465 default:
2466 break;
2467 }
2468
2469 /*
cdd6c482 2470 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2471 * values when we flip the contexts.
2472 */
e7850595
PZ
2473 value = local64_read(&next_event->count);
2474 value = local64_xchg(&event->count, value);
2475 local64_set(&next_event->count, value);
bfbd3381 2476
cdd6c482
IM
2477 swap(event->total_time_enabled, next_event->total_time_enabled);
2478 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2479
bfbd3381 2480 /*
19d2e755 2481 * Since we swizzled the values, update the user visible data too.
bfbd3381 2482 */
cdd6c482
IM
2483 perf_event_update_userpage(event);
2484 perf_event_update_userpage(next_event);
bfbd3381
PZ
2485}
2486
cdd6c482
IM
2487static void perf_event_sync_stat(struct perf_event_context *ctx,
2488 struct perf_event_context *next_ctx)
bfbd3381 2489{
cdd6c482 2490 struct perf_event *event, *next_event;
bfbd3381
PZ
2491
2492 if (!ctx->nr_stat)
2493 return;
2494
02ffdbc8
PZ
2495 update_context_time(ctx);
2496
cdd6c482
IM
2497 event = list_first_entry(&ctx->event_list,
2498 struct perf_event, event_entry);
bfbd3381 2499
cdd6c482
IM
2500 next_event = list_first_entry(&next_ctx->event_list,
2501 struct perf_event, event_entry);
bfbd3381 2502
cdd6c482
IM
2503 while (&event->event_entry != &ctx->event_list &&
2504 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2505
cdd6c482 2506 __perf_event_sync_stat(event, next_event);
bfbd3381 2507
cdd6c482
IM
2508 event = list_next_entry(event, event_entry);
2509 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2510 }
2511}
2512
fe4b04fa
PZ
2513static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2514 struct task_struct *next)
0793a61d 2515{
8dc85d54 2516 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2517 struct perf_event_context *next_ctx;
5a3126d4 2518 struct perf_event_context *parent, *next_parent;
108b02cf 2519 struct perf_cpu_context *cpuctx;
c93f7669 2520 int do_switch = 1;
0793a61d 2521
108b02cf
PZ
2522 if (likely(!ctx))
2523 return;
10989fb2 2524
108b02cf
PZ
2525 cpuctx = __get_cpu_context(ctx);
2526 if (!cpuctx->task_ctx)
0793a61d
TG
2527 return;
2528
c93f7669 2529 rcu_read_lock();
8dc85d54 2530 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2531 if (!next_ctx)
2532 goto unlock;
2533
2534 parent = rcu_dereference(ctx->parent_ctx);
2535 next_parent = rcu_dereference(next_ctx->parent_ctx);
2536
2537 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2538 if (!parent && !next_parent)
5a3126d4
PZ
2539 goto unlock;
2540
2541 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2542 /*
2543 * Looks like the two contexts are clones, so we might be
2544 * able to optimize the context switch. We lock both
2545 * contexts and check that they are clones under the
2546 * lock (including re-checking that neither has been
2547 * uncloned in the meantime). It doesn't matter which
2548 * order we take the locks because no other cpu could
2549 * be trying to lock both of these tasks.
2550 */
e625cce1
TG
2551 raw_spin_lock(&ctx->lock);
2552 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2553 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2554 /*
2555 * XXX do we need a memory barrier of sorts
cdd6c482 2556 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2557 */
8dc85d54
PZ
2558 task->perf_event_ctxp[ctxn] = next_ctx;
2559 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2560 ctx->task = next;
2561 next_ctx->task = task;
2562 do_switch = 0;
bfbd3381 2563
cdd6c482 2564 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2565 }
e625cce1
TG
2566 raw_spin_unlock(&next_ctx->lock);
2567 raw_spin_unlock(&ctx->lock);
564c2b21 2568 }
5a3126d4 2569unlock:
c93f7669 2570 rcu_read_unlock();
564c2b21 2571
c93f7669 2572 if (do_switch) {
facc4307 2573 raw_spin_lock(&ctx->lock);
5b0311e1 2574 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2575 cpuctx->task_ctx = NULL;
facc4307 2576 raw_spin_unlock(&ctx->lock);
c93f7669 2577 }
0793a61d
TG
2578}
2579
8dc85d54
PZ
2580#define for_each_task_context_nr(ctxn) \
2581 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2582
2583/*
2584 * Called from scheduler to remove the events of the current task,
2585 * with interrupts disabled.
2586 *
2587 * We stop each event and update the event value in event->count.
2588 *
2589 * This does not protect us against NMI, but disable()
2590 * sets the disabled bit in the control field of event _before_
2591 * accessing the event control register. If a NMI hits, then it will
2592 * not restart the event.
2593 */
ab0cce56
JO
2594void __perf_event_task_sched_out(struct task_struct *task,
2595 struct task_struct *next)
8dc85d54
PZ
2596{
2597 int ctxn;
2598
8dc85d54
PZ
2599 for_each_task_context_nr(ctxn)
2600 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2601
2602 /*
2603 * if cgroup events exist on this CPU, then we need
2604 * to check if we have to switch out PMU state.
2605 * cgroup event are system-wide mode only
2606 */
4a32fea9 2607 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2608 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2609}
2610
04dc2dbb 2611static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2612{
108b02cf 2613 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2614
a63eaf34
PM
2615 if (!cpuctx->task_ctx)
2616 return;
012b84da
IM
2617
2618 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2619 return;
2620
04dc2dbb 2621 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2622 cpuctx->task_ctx = NULL;
2623}
2624
5b0311e1
FW
2625/*
2626 * Called with IRQs disabled
2627 */
2628static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2629 enum event_type_t event_type)
2630{
2631 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2632}
2633
235c7fc7 2634static void
5b0311e1 2635ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2636 struct perf_cpu_context *cpuctx)
0793a61d 2637{
cdd6c482 2638 struct perf_event *event;
0793a61d 2639
889ff015
FW
2640 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2641 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2642 continue;
5632ab12 2643 if (!event_filter_match(event))
3b6f9e5c
PM
2644 continue;
2645
e5d1367f
SE
2646 /* may need to reset tstamp_enabled */
2647 if (is_cgroup_event(event))
2648 perf_cgroup_mark_enabled(event, ctx);
2649
8c9ed8e1 2650 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2651 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2652
2653 /*
2654 * If this pinned group hasn't been scheduled,
2655 * put it in error state.
2656 */
cdd6c482
IM
2657 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2658 update_group_times(event);
2659 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2660 }
3b6f9e5c 2661 }
5b0311e1
FW
2662}
2663
2664static void
2665ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2666 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2667{
2668 struct perf_event *event;
2669 int can_add_hw = 1;
3b6f9e5c 2670
889ff015
FW
2671 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2672 /* Ignore events in OFF or ERROR state */
2673 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2674 continue;
04289bb9
IM
2675 /*
2676 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2677 * of events:
04289bb9 2678 */
5632ab12 2679 if (!event_filter_match(event))
0793a61d
TG
2680 continue;
2681
e5d1367f
SE
2682 /* may need to reset tstamp_enabled */
2683 if (is_cgroup_event(event))
2684 perf_cgroup_mark_enabled(event, ctx);
2685
9ed6060d 2686 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2687 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2688 can_add_hw = 0;
9ed6060d 2689 }
0793a61d 2690 }
5b0311e1
FW
2691}
2692
2693static void
2694ctx_sched_in(struct perf_event_context *ctx,
2695 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2696 enum event_type_t event_type,
2697 struct task_struct *task)
5b0311e1 2698{
e5d1367f 2699 u64 now;
db24d33e 2700 int is_active = ctx->is_active;
e5d1367f 2701
db24d33e 2702 ctx->is_active |= event_type;
5b0311e1 2703 if (likely(!ctx->nr_events))
facc4307 2704 return;
5b0311e1 2705
e5d1367f
SE
2706 now = perf_clock();
2707 ctx->timestamp = now;
3f7cce3c 2708 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2709 /*
2710 * First go through the list and put on any pinned groups
2711 * in order to give them the best chance of going on.
2712 */
db24d33e 2713 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2714 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2715
2716 /* Then walk through the lower prio flexible groups */
db24d33e 2717 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2718 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2719}
2720
329c0e01 2721static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2722 enum event_type_t event_type,
2723 struct task_struct *task)
329c0e01
FW
2724{
2725 struct perf_event_context *ctx = &cpuctx->ctx;
2726
e5d1367f 2727 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2728}
2729
e5d1367f
SE
2730static void perf_event_context_sched_in(struct perf_event_context *ctx,
2731 struct task_struct *task)
235c7fc7 2732{
108b02cf 2733 struct perf_cpu_context *cpuctx;
235c7fc7 2734
108b02cf 2735 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2736 if (cpuctx->task_ctx == ctx)
2737 return;
2738
facc4307 2739 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2740 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2741 /*
2742 * We want to keep the following priority order:
2743 * cpu pinned (that don't need to move), task pinned,
2744 * cpu flexible, task flexible.
2745 */
2746 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2747
1d5f003f
GN
2748 if (ctx->nr_events)
2749 cpuctx->task_ctx = ctx;
9b33fa6b 2750
86b47c25
GN
2751 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2752
facc4307
PZ
2753 perf_pmu_enable(ctx->pmu);
2754 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2755}
2756
d010b332
SE
2757/*
2758 * When sampling the branck stack in system-wide, it may be necessary
2759 * to flush the stack on context switch. This happens when the branch
2760 * stack does not tag its entries with the pid of the current task.
2761 * Otherwise it becomes impossible to associate a branch entry with a
2762 * task. This ambiguity is more likely to appear when the branch stack
2763 * supports priv level filtering and the user sets it to monitor only
2764 * at the user level (which could be a useful measurement in system-wide
2765 * mode). In that case, the risk is high of having a branch stack with
2766 * branch from multiple tasks. Flushing may mean dropping the existing
2767 * entries or stashing them somewhere in the PMU specific code layer.
2768 *
2769 * This function provides the context switch callback to the lower code
2770 * layer. It is invoked ONLY when there is at least one system-wide context
2771 * with at least one active event using taken branch sampling.
2772 */
2773static void perf_branch_stack_sched_in(struct task_struct *prev,
2774 struct task_struct *task)
2775{
2776 struct perf_cpu_context *cpuctx;
2777 struct pmu *pmu;
2778 unsigned long flags;
2779
2780 /* no need to flush branch stack if not changing task */
2781 if (prev == task)
2782 return;
2783
2784 local_irq_save(flags);
2785
2786 rcu_read_lock();
2787
2788 list_for_each_entry_rcu(pmu, &pmus, entry) {
2789 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2790
2791 /*
2792 * check if the context has at least one
2793 * event using PERF_SAMPLE_BRANCH_STACK
2794 */
2795 if (cpuctx->ctx.nr_branch_stack > 0
2796 && pmu->flush_branch_stack) {
2797
d010b332
SE
2798 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2799
2800 perf_pmu_disable(pmu);
2801
2802 pmu->flush_branch_stack();
2803
2804 perf_pmu_enable(pmu);
2805
2806 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2807 }
2808 }
2809
2810 rcu_read_unlock();
2811
2812 local_irq_restore(flags);
2813}
2814
8dc85d54
PZ
2815/*
2816 * Called from scheduler to add the events of the current task
2817 * with interrupts disabled.
2818 *
2819 * We restore the event value and then enable it.
2820 *
2821 * This does not protect us against NMI, but enable()
2822 * sets the enabled bit in the control field of event _before_
2823 * accessing the event control register. If a NMI hits, then it will
2824 * keep the event running.
2825 */
ab0cce56
JO
2826void __perf_event_task_sched_in(struct task_struct *prev,
2827 struct task_struct *task)
8dc85d54
PZ
2828{
2829 struct perf_event_context *ctx;
2830 int ctxn;
2831
2832 for_each_task_context_nr(ctxn) {
2833 ctx = task->perf_event_ctxp[ctxn];
2834 if (likely(!ctx))
2835 continue;
2836
e5d1367f 2837 perf_event_context_sched_in(ctx, task);
8dc85d54 2838 }
e5d1367f
SE
2839 /*
2840 * if cgroup events exist on this CPU, then we need
2841 * to check if we have to switch in PMU state.
2842 * cgroup event are system-wide mode only
2843 */
4a32fea9 2844 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2845 perf_cgroup_sched_in(prev, task);
d010b332
SE
2846
2847 /* check for system-wide branch_stack events */
4a32fea9 2848 if (atomic_read(this_cpu_ptr(&perf_branch_stack_events)))
d010b332 2849 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2850}
2851
abd50713
PZ
2852static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2853{
2854 u64 frequency = event->attr.sample_freq;
2855 u64 sec = NSEC_PER_SEC;
2856 u64 divisor, dividend;
2857
2858 int count_fls, nsec_fls, frequency_fls, sec_fls;
2859
2860 count_fls = fls64(count);
2861 nsec_fls = fls64(nsec);
2862 frequency_fls = fls64(frequency);
2863 sec_fls = 30;
2864
2865 /*
2866 * We got @count in @nsec, with a target of sample_freq HZ
2867 * the target period becomes:
2868 *
2869 * @count * 10^9
2870 * period = -------------------
2871 * @nsec * sample_freq
2872 *
2873 */
2874
2875 /*
2876 * Reduce accuracy by one bit such that @a and @b converge
2877 * to a similar magnitude.
2878 */
fe4b04fa 2879#define REDUCE_FLS(a, b) \
abd50713
PZ
2880do { \
2881 if (a##_fls > b##_fls) { \
2882 a >>= 1; \
2883 a##_fls--; \
2884 } else { \
2885 b >>= 1; \
2886 b##_fls--; \
2887 } \
2888} while (0)
2889
2890 /*
2891 * Reduce accuracy until either term fits in a u64, then proceed with
2892 * the other, so that finally we can do a u64/u64 division.
2893 */
2894 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2895 REDUCE_FLS(nsec, frequency);
2896 REDUCE_FLS(sec, count);
2897 }
2898
2899 if (count_fls + sec_fls > 64) {
2900 divisor = nsec * frequency;
2901
2902 while (count_fls + sec_fls > 64) {
2903 REDUCE_FLS(count, sec);
2904 divisor >>= 1;
2905 }
2906
2907 dividend = count * sec;
2908 } else {
2909 dividend = count * sec;
2910
2911 while (nsec_fls + frequency_fls > 64) {
2912 REDUCE_FLS(nsec, frequency);
2913 dividend >>= 1;
2914 }
2915
2916 divisor = nsec * frequency;
2917 }
2918
f6ab91ad
PZ
2919 if (!divisor)
2920 return dividend;
2921
abd50713
PZ
2922 return div64_u64(dividend, divisor);
2923}
2924
e050e3f0
SE
2925static DEFINE_PER_CPU(int, perf_throttled_count);
2926static DEFINE_PER_CPU(u64, perf_throttled_seq);
2927
f39d47ff 2928static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2929{
cdd6c482 2930 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2931 s64 period, sample_period;
bd2b5b12
PZ
2932 s64 delta;
2933
abd50713 2934 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2935
2936 delta = (s64)(period - hwc->sample_period);
2937 delta = (delta + 7) / 8; /* low pass filter */
2938
2939 sample_period = hwc->sample_period + delta;
2940
2941 if (!sample_period)
2942 sample_period = 1;
2943
bd2b5b12 2944 hwc->sample_period = sample_period;
abd50713 2945
e7850595 2946 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2947 if (disable)
2948 event->pmu->stop(event, PERF_EF_UPDATE);
2949
e7850595 2950 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2951
2952 if (disable)
2953 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2954 }
bd2b5b12
PZ
2955}
2956
e050e3f0
SE
2957/*
2958 * combine freq adjustment with unthrottling to avoid two passes over the
2959 * events. At the same time, make sure, having freq events does not change
2960 * the rate of unthrottling as that would introduce bias.
2961 */
2962static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2963 int needs_unthr)
60db5e09 2964{
cdd6c482
IM
2965 struct perf_event *event;
2966 struct hw_perf_event *hwc;
e050e3f0 2967 u64 now, period = TICK_NSEC;
abd50713 2968 s64 delta;
60db5e09 2969
e050e3f0
SE
2970 /*
2971 * only need to iterate over all events iff:
2972 * - context have events in frequency mode (needs freq adjust)
2973 * - there are events to unthrottle on this cpu
2974 */
2975 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2976 return;
2977
e050e3f0 2978 raw_spin_lock(&ctx->lock);
f39d47ff 2979 perf_pmu_disable(ctx->pmu);
e050e3f0 2980
03541f8b 2981 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2982 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2983 continue;
2984
5632ab12 2985 if (!event_filter_match(event))
5d27c23d
PZ
2986 continue;
2987
44377277
AS
2988 perf_pmu_disable(event->pmu);
2989
cdd6c482 2990 hwc = &event->hw;
6a24ed6c 2991
ae23bff1 2992 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2993 hwc->interrupts = 0;
cdd6c482 2994 perf_log_throttle(event, 1);
a4eaf7f1 2995 event->pmu->start(event, 0);
a78ac325
PZ
2996 }
2997
cdd6c482 2998 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2999 goto next;
60db5e09 3000
e050e3f0
SE
3001 /*
3002 * stop the event and update event->count
3003 */
3004 event->pmu->stop(event, PERF_EF_UPDATE);
3005
e7850595 3006 now = local64_read(&event->count);
abd50713
PZ
3007 delta = now - hwc->freq_count_stamp;
3008 hwc->freq_count_stamp = now;
60db5e09 3009
e050e3f0
SE
3010 /*
3011 * restart the event
3012 * reload only if value has changed
f39d47ff
SE
3013 * we have stopped the event so tell that
3014 * to perf_adjust_period() to avoid stopping it
3015 * twice.
e050e3f0 3016 */
abd50713 3017 if (delta > 0)
f39d47ff 3018 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3019
3020 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3021 next:
3022 perf_pmu_enable(event->pmu);
60db5e09 3023 }
e050e3f0 3024
f39d47ff 3025 perf_pmu_enable(ctx->pmu);
e050e3f0 3026 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3027}
3028
235c7fc7 3029/*
cdd6c482 3030 * Round-robin a context's events:
235c7fc7 3031 */
cdd6c482 3032static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3033{
dddd3379
TG
3034 /*
3035 * Rotate the first entry last of non-pinned groups. Rotation might be
3036 * disabled by the inheritance code.
3037 */
3038 if (!ctx->rotate_disable)
3039 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3040}
3041
9e630205 3042static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3043{
8dc85d54 3044 struct perf_event_context *ctx = NULL;
2fde4f94 3045 int rotate = 0;
7fc23a53 3046
b5ab4cd5 3047 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3048 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3049 rotate = 1;
3050 }
235c7fc7 3051
8dc85d54 3052 ctx = cpuctx->task_ctx;
b5ab4cd5 3053 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3054 if (ctx->nr_events != ctx->nr_active)
3055 rotate = 1;
3056 }
9717e6cd 3057
e050e3f0 3058 if (!rotate)
0f5a2601
PZ
3059 goto done;
3060
facc4307 3061 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3062 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3063
e050e3f0
SE
3064 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3065 if (ctx)
3066 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3067
e050e3f0
SE
3068 rotate_ctx(&cpuctx->ctx);
3069 if (ctx)
3070 rotate_ctx(ctx);
235c7fc7 3071
e050e3f0 3072 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3073
0f5a2601
PZ
3074 perf_pmu_enable(cpuctx->ctx.pmu);
3075 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3076done:
9e630205
SE
3077
3078 return rotate;
e9d2b064
PZ
3079}
3080
026249ef
FW
3081#ifdef CONFIG_NO_HZ_FULL
3082bool perf_event_can_stop_tick(void)
3083{
948b26b6 3084 if (atomic_read(&nr_freq_events) ||
d84153d6 3085 __this_cpu_read(perf_throttled_count))
026249ef 3086 return false;
d84153d6
FW
3087 else
3088 return true;
026249ef
FW
3089}
3090#endif
3091
e9d2b064
PZ
3092void perf_event_task_tick(void)
3093{
2fde4f94
MR
3094 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3095 struct perf_event_context *ctx, *tmp;
e050e3f0 3096 int throttled;
b5ab4cd5 3097
e9d2b064
PZ
3098 WARN_ON(!irqs_disabled());
3099
e050e3f0
SE
3100 __this_cpu_inc(perf_throttled_seq);
3101 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3102
2fde4f94 3103 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3104 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3105}
3106
889ff015
FW
3107static int event_enable_on_exec(struct perf_event *event,
3108 struct perf_event_context *ctx)
3109{
3110 if (!event->attr.enable_on_exec)
3111 return 0;
3112
3113 event->attr.enable_on_exec = 0;
3114 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3115 return 0;
3116
1d9b482e 3117 __perf_event_mark_enabled(event);
889ff015
FW
3118
3119 return 1;
3120}
3121
57e7986e 3122/*
cdd6c482 3123 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3124 * This expects task == current.
3125 */
8dc85d54 3126static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3127{
211de6eb 3128 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3129 struct perf_event *event;
57e7986e
PM
3130 unsigned long flags;
3131 int enabled = 0;
889ff015 3132 int ret;
57e7986e
PM
3133
3134 local_irq_save(flags);
cdd6c482 3135 if (!ctx || !ctx->nr_events)
57e7986e
PM
3136 goto out;
3137
e566b76e
SE
3138 /*
3139 * We must ctxsw out cgroup events to avoid conflict
3140 * when invoking perf_task_event_sched_in() later on
3141 * in this function. Otherwise we end up trying to
3142 * ctxswin cgroup events which are already scheduled
3143 * in.
3144 */
a8d757ef 3145 perf_cgroup_sched_out(current, NULL);
57e7986e 3146
e625cce1 3147 raw_spin_lock(&ctx->lock);
04dc2dbb 3148 task_ctx_sched_out(ctx);
57e7986e 3149
b79387ef 3150 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3151 ret = event_enable_on_exec(event, ctx);
3152 if (ret)
3153 enabled = 1;
57e7986e
PM
3154 }
3155
3156 /*
cdd6c482 3157 * Unclone this context if we enabled any event.
57e7986e 3158 */
71a851b4 3159 if (enabled)
211de6eb 3160 clone_ctx = unclone_ctx(ctx);
57e7986e 3161
e625cce1 3162 raw_spin_unlock(&ctx->lock);
57e7986e 3163
e566b76e
SE
3164 /*
3165 * Also calls ctxswin for cgroup events, if any:
3166 */
e5d1367f 3167 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3168out:
57e7986e 3169 local_irq_restore(flags);
211de6eb
PZ
3170
3171 if (clone_ctx)
3172 put_ctx(clone_ctx);
57e7986e
PM
3173}
3174
e041e328
PZ
3175void perf_event_exec(void)
3176{
3177 struct perf_event_context *ctx;
3178 int ctxn;
3179
3180 rcu_read_lock();
3181 for_each_task_context_nr(ctxn) {
3182 ctx = current->perf_event_ctxp[ctxn];
3183 if (!ctx)
3184 continue;
3185
3186 perf_event_enable_on_exec(ctx);
3187 }
3188 rcu_read_unlock();
3189}
3190
0793a61d 3191/*
cdd6c482 3192 * Cross CPU call to read the hardware event
0793a61d 3193 */
cdd6c482 3194static void __perf_event_read(void *info)
0793a61d 3195{
cdd6c482
IM
3196 struct perf_event *event = info;
3197 struct perf_event_context *ctx = event->ctx;
108b02cf 3198 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3199
e1ac3614
PM
3200 /*
3201 * If this is a task context, we need to check whether it is
3202 * the current task context of this cpu. If not it has been
3203 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3204 * event->count would have been updated to a recent sample
3205 * when the event was scheduled out.
e1ac3614
PM
3206 */
3207 if (ctx->task && cpuctx->task_ctx != ctx)
3208 return;
3209
e625cce1 3210 raw_spin_lock(&ctx->lock);
e5d1367f 3211 if (ctx->is_active) {
542e72fc 3212 update_context_time(ctx);
e5d1367f
SE
3213 update_cgrp_time_from_event(event);
3214 }
cdd6c482 3215 update_event_times(event);
542e72fc
PZ
3216 if (event->state == PERF_EVENT_STATE_ACTIVE)
3217 event->pmu->read(event);
e625cce1 3218 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3219}
3220
b5e58793
PZ
3221static inline u64 perf_event_count(struct perf_event *event)
3222{
e7850595 3223 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3224}
3225
cdd6c482 3226static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3227{
3228 /*
cdd6c482
IM
3229 * If event is enabled and currently active on a CPU, update the
3230 * value in the event structure:
0793a61d 3231 */
cdd6c482
IM
3232 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3233 smp_call_function_single(event->oncpu,
3234 __perf_event_read, event, 1);
3235 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3236 struct perf_event_context *ctx = event->ctx;
3237 unsigned long flags;
3238
e625cce1 3239 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3240 /*
3241 * may read while context is not active
3242 * (e.g., thread is blocked), in that case
3243 * we cannot update context time
3244 */
e5d1367f 3245 if (ctx->is_active) {
c530ccd9 3246 update_context_time(ctx);
e5d1367f
SE
3247 update_cgrp_time_from_event(event);
3248 }
cdd6c482 3249 update_event_times(event);
e625cce1 3250 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3251 }
3252
b5e58793 3253 return perf_event_count(event);
0793a61d
TG
3254}
3255
a63eaf34 3256/*
cdd6c482 3257 * Initialize the perf_event context in a task_struct:
a63eaf34 3258 */
eb184479 3259static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3260{
e625cce1 3261 raw_spin_lock_init(&ctx->lock);
a63eaf34 3262 mutex_init(&ctx->mutex);
2fde4f94 3263 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3264 INIT_LIST_HEAD(&ctx->pinned_groups);
3265 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3266 INIT_LIST_HEAD(&ctx->event_list);
3267 atomic_set(&ctx->refcount, 1);
fadfe7be 3268 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3269}
3270
3271static struct perf_event_context *
3272alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3273{
3274 struct perf_event_context *ctx;
3275
3276 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3277 if (!ctx)
3278 return NULL;
3279
3280 __perf_event_init_context(ctx);
3281 if (task) {
3282 ctx->task = task;
3283 get_task_struct(task);
0793a61d 3284 }
eb184479
PZ
3285 ctx->pmu = pmu;
3286
3287 return ctx;
a63eaf34
PM
3288}
3289
2ebd4ffb
MH
3290static struct task_struct *
3291find_lively_task_by_vpid(pid_t vpid)
3292{
3293 struct task_struct *task;
3294 int err;
0793a61d
TG
3295
3296 rcu_read_lock();
2ebd4ffb 3297 if (!vpid)
0793a61d
TG
3298 task = current;
3299 else
2ebd4ffb 3300 task = find_task_by_vpid(vpid);
0793a61d
TG
3301 if (task)
3302 get_task_struct(task);
3303 rcu_read_unlock();
3304
3305 if (!task)
3306 return ERR_PTR(-ESRCH);
3307
0793a61d 3308 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3309 err = -EACCES;
3310 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3311 goto errout;
3312
2ebd4ffb
MH
3313 return task;
3314errout:
3315 put_task_struct(task);
3316 return ERR_PTR(err);
3317
3318}
3319
fe4b04fa
PZ
3320/*
3321 * Returns a matching context with refcount and pincount.
3322 */
108b02cf 3323static struct perf_event_context *
38a81da2 3324find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3325{
211de6eb 3326 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3327 struct perf_cpu_context *cpuctx;
25346b93 3328 unsigned long flags;
8dc85d54 3329 int ctxn, err;
0793a61d 3330
22a4ec72 3331 if (!task) {
cdd6c482 3332 /* Must be root to operate on a CPU event: */
0764771d 3333 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3334 return ERR_PTR(-EACCES);
3335
0793a61d 3336 /*
cdd6c482 3337 * We could be clever and allow to attach a event to an
0793a61d
TG
3338 * offline CPU and activate it when the CPU comes up, but
3339 * that's for later.
3340 */
f6325e30 3341 if (!cpu_online(cpu))
0793a61d
TG
3342 return ERR_PTR(-ENODEV);
3343
108b02cf 3344 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3345 ctx = &cpuctx->ctx;
c93f7669 3346 get_ctx(ctx);
fe4b04fa 3347 ++ctx->pin_count;
0793a61d 3348
0793a61d
TG
3349 return ctx;
3350 }
3351
8dc85d54
PZ
3352 err = -EINVAL;
3353 ctxn = pmu->task_ctx_nr;
3354 if (ctxn < 0)
3355 goto errout;
3356
9ed6060d 3357retry:
8dc85d54 3358 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3359 if (ctx) {
211de6eb 3360 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3361 ++ctx->pin_count;
e625cce1 3362 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3363
3364 if (clone_ctx)
3365 put_ctx(clone_ctx);
9137fb28 3366 } else {
eb184479 3367 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3368 err = -ENOMEM;
3369 if (!ctx)
3370 goto errout;
eb184479 3371
dbe08d82
ON
3372 err = 0;
3373 mutex_lock(&task->perf_event_mutex);
3374 /*
3375 * If it has already passed perf_event_exit_task().
3376 * we must see PF_EXITING, it takes this mutex too.
3377 */
3378 if (task->flags & PF_EXITING)
3379 err = -ESRCH;
3380 else if (task->perf_event_ctxp[ctxn])
3381 err = -EAGAIN;
fe4b04fa 3382 else {
9137fb28 3383 get_ctx(ctx);
fe4b04fa 3384 ++ctx->pin_count;
dbe08d82 3385 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3386 }
dbe08d82
ON
3387 mutex_unlock(&task->perf_event_mutex);
3388
3389 if (unlikely(err)) {
9137fb28 3390 put_ctx(ctx);
dbe08d82
ON
3391
3392 if (err == -EAGAIN)
3393 goto retry;
3394 goto errout;
a63eaf34
PM
3395 }
3396 }
3397
0793a61d 3398 return ctx;
c93f7669 3399
9ed6060d 3400errout:
c93f7669 3401 return ERR_PTR(err);
0793a61d
TG
3402}
3403
6fb2915d
LZ
3404static void perf_event_free_filter(struct perf_event *event);
3405
cdd6c482 3406static void free_event_rcu(struct rcu_head *head)
592903cd 3407{
cdd6c482 3408 struct perf_event *event;
592903cd 3409
cdd6c482
IM
3410 event = container_of(head, struct perf_event, rcu_head);
3411 if (event->ns)
3412 put_pid_ns(event->ns);
6fb2915d 3413 perf_event_free_filter(event);
cdd6c482 3414 kfree(event);
592903cd
PZ
3415}
3416
76369139 3417static void ring_buffer_put(struct ring_buffer *rb);
b69cf536
PZ
3418static void ring_buffer_attach(struct perf_event *event,
3419 struct ring_buffer *rb);
925d519a 3420
4beb31f3 3421static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3422{
4beb31f3
FW
3423 if (event->parent)
3424 return;
3425
3426 if (has_branch_stack(event)) {
3427 if (!(event->attach_state & PERF_ATTACH_TASK))
3428 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3429 }
3430 if (is_cgroup_event(event))
3431 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3432}
925d519a 3433
4beb31f3
FW
3434static void unaccount_event(struct perf_event *event)
3435{
3436 if (event->parent)
3437 return;
3438
3439 if (event->attach_state & PERF_ATTACH_TASK)
3440 static_key_slow_dec_deferred(&perf_sched_events);
3441 if (event->attr.mmap || event->attr.mmap_data)
3442 atomic_dec(&nr_mmap_events);
3443 if (event->attr.comm)
3444 atomic_dec(&nr_comm_events);
3445 if (event->attr.task)
3446 atomic_dec(&nr_task_events);
948b26b6
FW
3447 if (event->attr.freq)
3448 atomic_dec(&nr_freq_events);
4beb31f3
FW
3449 if (is_cgroup_event(event))
3450 static_key_slow_dec_deferred(&perf_sched_events);
3451 if (has_branch_stack(event))
3452 static_key_slow_dec_deferred(&perf_sched_events);
3453
3454 unaccount_event_cpu(event, event->cpu);
3455}
925d519a 3456
766d6c07
FW
3457static void __free_event(struct perf_event *event)
3458{
cdd6c482 3459 if (!event->parent) {
927c7a9e
FW
3460 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3461 put_callchain_buffers();
f344011c 3462 }
9ee318a7 3463
766d6c07
FW
3464 if (event->destroy)
3465 event->destroy(event);
3466
3467 if (event->ctx)
3468 put_ctx(event->ctx);
3469
c464c76e
YZ
3470 if (event->pmu)
3471 module_put(event->pmu->module);
3472
766d6c07
FW
3473 call_rcu(&event->rcu_head, free_event_rcu);
3474}
683ede43
PZ
3475
3476static void _free_event(struct perf_event *event)
f1600952 3477{
e360adbe 3478 irq_work_sync(&event->pending);
925d519a 3479
4beb31f3 3480 unaccount_event(event);
9ee318a7 3481
76369139 3482 if (event->rb) {
9bb5d40c
PZ
3483 /*
3484 * Can happen when we close an event with re-directed output.
3485 *
3486 * Since we have a 0 refcount, perf_mmap_close() will skip
3487 * over us; possibly making our ring_buffer_put() the last.
3488 */
3489 mutex_lock(&event->mmap_mutex);
b69cf536 3490 ring_buffer_attach(event, NULL);
9bb5d40c 3491 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3492 }
3493
e5d1367f
SE
3494 if (is_cgroup_event(event))
3495 perf_detach_cgroup(event);
3496
766d6c07 3497 __free_event(event);
f1600952
PZ
3498}
3499
683ede43
PZ
3500/*
3501 * Used to free events which have a known refcount of 1, such as in error paths
3502 * where the event isn't exposed yet and inherited events.
3503 */
3504static void free_event(struct perf_event *event)
0793a61d 3505{
683ede43
PZ
3506 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3507 "unexpected event refcount: %ld; ptr=%p\n",
3508 atomic_long_read(&event->refcount), event)) {
3509 /* leak to avoid use-after-free */
3510 return;
3511 }
0793a61d 3512
683ede43 3513 _free_event(event);
0793a61d
TG
3514}
3515
a66a3052 3516/*
f8697762 3517 * Remove user event from the owner task.
a66a3052 3518 */
f8697762 3519static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3520{
8882135b 3521 struct task_struct *owner;
fb0459d7 3522
8882135b
PZ
3523 rcu_read_lock();
3524 owner = ACCESS_ONCE(event->owner);
3525 /*
3526 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3527 * !owner it means the list deletion is complete and we can indeed
3528 * free this event, otherwise we need to serialize on
3529 * owner->perf_event_mutex.
3530 */
3531 smp_read_barrier_depends();
3532 if (owner) {
3533 /*
3534 * Since delayed_put_task_struct() also drops the last
3535 * task reference we can safely take a new reference
3536 * while holding the rcu_read_lock().
3537 */
3538 get_task_struct(owner);
3539 }
3540 rcu_read_unlock();
3541
3542 if (owner) {
f63a8daa
PZ
3543 /*
3544 * If we're here through perf_event_exit_task() we're already
3545 * holding ctx->mutex which would be an inversion wrt. the
3546 * normal lock order.
3547 *
3548 * However we can safely take this lock because its the child
3549 * ctx->mutex.
3550 */
3551 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3552
8882135b
PZ
3553 /*
3554 * We have to re-check the event->owner field, if it is cleared
3555 * we raced with perf_event_exit_task(), acquiring the mutex
3556 * ensured they're done, and we can proceed with freeing the
3557 * event.
3558 */
3559 if (event->owner)
3560 list_del_init(&event->owner_entry);
3561 mutex_unlock(&owner->perf_event_mutex);
3562 put_task_struct(owner);
3563 }
f8697762
JO
3564}
3565
3566/*
3567 * Called when the last reference to the file is gone.
3568 */
3569static void put_event(struct perf_event *event)
3570{
a83fe28e 3571 struct perf_event_context *ctx;
f8697762
JO
3572
3573 if (!atomic_long_dec_and_test(&event->refcount))
3574 return;
3575
3576 if (!is_kernel_event(event))
3577 perf_remove_from_owner(event);
8882135b 3578
683ede43
PZ
3579 /*
3580 * There are two ways this annotation is useful:
3581 *
3582 * 1) there is a lock recursion from perf_event_exit_task
3583 * see the comment there.
3584 *
3585 * 2) there is a lock-inversion with mmap_sem through
3586 * perf_event_read_group(), which takes faults while
3587 * holding ctx->mutex, however this is called after
3588 * the last filedesc died, so there is no possibility
3589 * to trigger the AB-BA case.
3590 */
a83fe28e
PZ
3591 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3592 WARN_ON_ONCE(ctx->parent_ctx);
683ede43
PZ
3593 perf_remove_from_context(event, true);
3594 mutex_unlock(&ctx->mutex);
3595
3596 _free_event(event);
a6fa941d
AV
3597}
3598
683ede43
PZ
3599int perf_event_release_kernel(struct perf_event *event)
3600{
3601 put_event(event);
3602 return 0;
3603}
3604EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3605
a6fa941d
AV
3606static int perf_release(struct inode *inode, struct file *file)
3607{
3608 put_event(file->private_data);
3609 return 0;
fb0459d7 3610}
fb0459d7 3611
fadfe7be
JO
3612/*
3613 * Remove all orphanes events from the context.
3614 */
3615static void orphans_remove_work(struct work_struct *work)
3616{
3617 struct perf_event_context *ctx;
3618 struct perf_event *event, *tmp;
3619
3620 ctx = container_of(work, struct perf_event_context,
3621 orphans_remove.work);
3622
3623 mutex_lock(&ctx->mutex);
3624 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3625 struct perf_event *parent_event = event->parent;
3626
3627 if (!is_orphaned_child(event))
3628 continue;
3629
3630 perf_remove_from_context(event, true);
3631
3632 mutex_lock(&parent_event->child_mutex);
3633 list_del_init(&event->child_list);
3634 mutex_unlock(&parent_event->child_mutex);
3635
3636 free_event(event);
3637 put_event(parent_event);
3638 }
3639
3640 raw_spin_lock_irq(&ctx->lock);
3641 ctx->orphans_remove_sched = false;
3642 raw_spin_unlock_irq(&ctx->lock);
3643 mutex_unlock(&ctx->mutex);
3644
3645 put_ctx(ctx);
3646}
3647
59ed446f 3648u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3649{
cdd6c482 3650 struct perf_event *child;
e53c0994
PZ
3651 u64 total = 0;
3652
59ed446f
PZ
3653 *enabled = 0;
3654 *running = 0;
3655
6f10581a 3656 mutex_lock(&event->child_mutex);
cdd6c482 3657 total += perf_event_read(event);
59ed446f
PZ
3658 *enabled += event->total_time_enabled +
3659 atomic64_read(&event->child_total_time_enabled);
3660 *running += event->total_time_running +
3661 atomic64_read(&event->child_total_time_running);
3662
3663 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3664 total += perf_event_read(child);
59ed446f
PZ
3665 *enabled += child->total_time_enabled;
3666 *running += child->total_time_running;
3667 }
6f10581a 3668 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3669
3670 return total;
3671}
fb0459d7 3672EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3673
cdd6c482 3674static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3675 u64 read_format, char __user *buf)
3676{
cdd6c482 3677 struct perf_event *leader = event->group_leader, *sub;
6f10581a 3678 struct perf_event_context *ctx = leader->ctx;
f63a8daa 3679 int n = 0, size = 0, ret;
59ed446f 3680 u64 count, enabled, running;
f63a8daa
PZ
3681 u64 values[5];
3682
3683 lockdep_assert_held(&ctx->mutex);
abf4868b 3684
59ed446f 3685 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3686
3687 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3688 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3689 values[n++] = enabled;
3690 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3691 values[n++] = running;
abf4868b
PZ
3692 values[n++] = count;
3693 if (read_format & PERF_FORMAT_ID)
3694 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3695
3696 size = n * sizeof(u64);
3697
3698 if (copy_to_user(buf, values, size))
f63a8daa 3699 return -EFAULT;
3dab77fb 3700
6f10581a 3701 ret = size;
3dab77fb 3702
65abc865 3703 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3704 n = 0;
3dab77fb 3705
59ed446f 3706 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3707 if (read_format & PERF_FORMAT_ID)
3708 values[n++] = primary_event_id(sub);
3709
3710 size = n * sizeof(u64);
3711
184d3da8 3712 if (copy_to_user(buf + ret, values, size)) {
f63a8daa 3713 return -EFAULT;
6f10581a 3714 }
abf4868b
PZ
3715
3716 ret += size;
3dab77fb
PZ
3717 }
3718
abf4868b 3719 return ret;
3dab77fb
PZ
3720}
3721
cdd6c482 3722static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3723 u64 read_format, char __user *buf)
3724{
59ed446f 3725 u64 enabled, running;
3dab77fb
PZ
3726 u64 values[4];
3727 int n = 0;
3728
59ed446f
PZ
3729 values[n++] = perf_event_read_value(event, &enabled, &running);
3730 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3731 values[n++] = enabled;
3732 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3733 values[n++] = running;
3dab77fb 3734 if (read_format & PERF_FORMAT_ID)
cdd6c482 3735 values[n++] = primary_event_id(event);
3dab77fb
PZ
3736
3737 if (copy_to_user(buf, values, n * sizeof(u64)))
3738 return -EFAULT;
3739
3740 return n * sizeof(u64);
3741}
3742
dc633982
JO
3743static bool is_event_hup(struct perf_event *event)
3744{
3745 bool no_children;
3746
3747 if (event->state != PERF_EVENT_STATE_EXIT)
3748 return false;
3749
3750 mutex_lock(&event->child_mutex);
3751 no_children = list_empty(&event->child_list);
3752 mutex_unlock(&event->child_mutex);
3753 return no_children;
3754}
3755
0793a61d 3756/*
cdd6c482 3757 * Read the performance event - simple non blocking version for now
0793a61d
TG
3758 */
3759static ssize_t
cdd6c482 3760perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3761{
cdd6c482 3762 u64 read_format = event->attr.read_format;
3dab77fb 3763 int ret;
0793a61d 3764
3b6f9e5c 3765 /*
cdd6c482 3766 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3767 * error state (i.e. because it was pinned but it couldn't be
3768 * scheduled on to the CPU at some point).
3769 */
cdd6c482 3770 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3771 return 0;
3772
c320c7b7 3773 if (count < event->read_size)
3dab77fb
PZ
3774 return -ENOSPC;
3775
cdd6c482 3776 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3777 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3778 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3779 else
cdd6c482 3780 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3781
3dab77fb 3782 return ret;
0793a61d
TG
3783}
3784
0793a61d
TG
3785static ssize_t
3786perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3787{
cdd6c482 3788 struct perf_event *event = file->private_data;
f63a8daa
PZ
3789 struct perf_event_context *ctx;
3790 int ret;
0793a61d 3791
f63a8daa
PZ
3792 ctx = perf_event_ctx_lock(event);
3793 ret = perf_read_hw(event, buf, count);
3794 perf_event_ctx_unlock(event, ctx);
3795
3796 return ret;
0793a61d
TG
3797}
3798
3799static unsigned int perf_poll(struct file *file, poll_table *wait)
3800{
cdd6c482 3801 struct perf_event *event = file->private_data;
76369139 3802 struct ring_buffer *rb;
61b67684 3803 unsigned int events = POLLHUP;
c7138f37 3804
e708d7ad 3805 poll_wait(file, &event->waitq, wait);
179033b3 3806
dc633982 3807 if (is_event_hup(event))
179033b3 3808 return events;
c7138f37 3809
10c6db11 3810 /*
9bb5d40c
PZ
3811 * Pin the event->rb by taking event->mmap_mutex; otherwise
3812 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3813 */
3814 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3815 rb = event->rb;
3816 if (rb)
76369139 3817 events = atomic_xchg(&rb->poll, 0);
10c6db11 3818 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
3819 return events;
3820}
3821
f63a8daa 3822static void _perf_event_reset(struct perf_event *event)
6de6a7b9 3823{
cdd6c482 3824 (void)perf_event_read(event);
e7850595 3825 local64_set(&event->count, 0);
cdd6c482 3826 perf_event_update_userpage(event);
3df5edad
PZ
3827}
3828
c93f7669 3829/*
cdd6c482
IM
3830 * Holding the top-level event's child_mutex means that any
3831 * descendant process that has inherited this event will block
3832 * in sync_child_event if it goes to exit, thus satisfying the
3833 * task existence requirements of perf_event_enable/disable.
c93f7669 3834 */
cdd6c482
IM
3835static void perf_event_for_each_child(struct perf_event *event,
3836 void (*func)(struct perf_event *))
3df5edad 3837{
cdd6c482 3838 struct perf_event *child;
3df5edad 3839
cdd6c482 3840 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 3841
cdd6c482
IM
3842 mutex_lock(&event->child_mutex);
3843 func(event);
3844 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3845 func(child);
cdd6c482 3846 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3847}
3848
cdd6c482
IM
3849static void perf_event_for_each(struct perf_event *event,
3850 void (*func)(struct perf_event *))
3df5edad 3851{
cdd6c482
IM
3852 struct perf_event_context *ctx = event->ctx;
3853 struct perf_event *sibling;
3df5edad 3854
f63a8daa
PZ
3855 lockdep_assert_held(&ctx->mutex);
3856
cdd6c482 3857 event = event->group_leader;
75f937f2 3858
cdd6c482 3859 perf_event_for_each_child(event, func);
cdd6c482 3860 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3861 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
3862}
3863
cdd6c482 3864static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3865{
cdd6c482 3866 struct perf_event_context *ctx = event->ctx;
bad7192b 3867 int ret = 0, active;
08247e31
PZ
3868 u64 value;
3869
6c7e550f 3870 if (!is_sampling_event(event))
08247e31
PZ
3871 return -EINVAL;
3872
ad0cf347 3873 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3874 return -EFAULT;
3875
3876 if (!value)
3877 return -EINVAL;
3878
e625cce1 3879 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3880 if (event->attr.freq) {
3881 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3882 ret = -EINVAL;
3883 goto unlock;
3884 }
3885
cdd6c482 3886 event->attr.sample_freq = value;
08247e31 3887 } else {
cdd6c482
IM
3888 event->attr.sample_period = value;
3889 event->hw.sample_period = value;
08247e31 3890 }
bad7192b
PZ
3891
3892 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3893 if (active) {
3894 perf_pmu_disable(ctx->pmu);
3895 event->pmu->stop(event, PERF_EF_UPDATE);
3896 }
3897
3898 local64_set(&event->hw.period_left, 0);
3899
3900 if (active) {
3901 event->pmu->start(event, PERF_EF_RELOAD);
3902 perf_pmu_enable(ctx->pmu);
3903 }
3904
08247e31 3905unlock:
e625cce1 3906 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3907
3908 return ret;
3909}
3910
ac9721f3
PZ
3911static const struct file_operations perf_fops;
3912
2903ff01 3913static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3914{
2903ff01
AV
3915 struct fd f = fdget(fd);
3916 if (!f.file)
3917 return -EBADF;
ac9721f3 3918
2903ff01
AV
3919 if (f.file->f_op != &perf_fops) {
3920 fdput(f);
3921 return -EBADF;
ac9721f3 3922 }
2903ff01
AV
3923 *p = f;
3924 return 0;
ac9721f3
PZ
3925}
3926
3927static int perf_event_set_output(struct perf_event *event,
3928 struct perf_event *output_event);
6fb2915d 3929static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3930
f63a8daa 3931static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 3932{
cdd6c482 3933 void (*func)(struct perf_event *);
3df5edad 3934 u32 flags = arg;
d859e29f
PM
3935
3936 switch (cmd) {
cdd6c482 3937 case PERF_EVENT_IOC_ENABLE:
f63a8daa 3938 func = _perf_event_enable;
d859e29f 3939 break;
cdd6c482 3940 case PERF_EVENT_IOC_DISABLE:
f63a8daa 3941 func = _perf_event_disable;
79f14641 3942 break;
cdd6c482 3943 case PERF_EVENT_IOC_RESET:
f63a8daa 3944 func = _perf_event_reset;
6de6a7b9 3945 break;
3df5edad 3946
cdd6c482 3947 case PERF_EVENT_IOC_REFRESH:
f63a8daa 3948 return _perf_event_refresh(event, arg);
08247e31 3949
cdd6c482
IM
3950 case PERF_EVENT_IOC_PERIOD:
3951 return perf_event_period(event, (u64 __user *)arg);
08247e31 3952
cf4957f1
JO
3953 case PERF_EVENT_IOC_ID:
3954 {
3955 u64 id = primary_event_id(event);
3956
3957 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3958 return -EFAULT;
3959 return 0;
3960 }
3961
cdd6c482 3962 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3963 {
ac9721f3 3964 int ret;
ac9721f3 3965 if (arg != -1) {
2903ff01
AV
3966 struct perf_event *output_event;
3967 struct fd output;
3968 ret = perf_fget_light(arg, &output);
3969 if (ret)
3970 return ret;
3971 output_event = output.file->private_data;
3972 ret = perf_event_set_output(event, output_event);
3973 fdput(output);
3974 } else {
3975 ret = perf_event_set_output(event, NULL);
ac9721f3 3976 }
ac9721f3
PZ
3977 return ret;
3978 }
a4be7c27 3979
6fb2915d
LZ
3980 case PERF_EVENT_IOC_SET_FILTER:
3981 return perf_event_set_filter(event, (void __user *)arg);
3982
d859e29f 3983 default:
3df5edad 3984 return -ENOTTY;
d859e29f 3985 }
3df5edad
PZ
3986
3987 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3988 perf_event_for_each(event, func);
3df5edad 3989 else
cdd6c482 3990 perf_event_for_each_child(event, func);
3df5edad
PZ
3991
3992 return 0;
d859e29f
PM
3993}
3994
f63a8daa
PZ
3995static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3996{
3997 struct perf_event *event = file->private_data;
3998 struct perf_event_context *ctx;
3999 long ret;
4000
4001 ctx = perf_event_ctx_lock(event);
4002 ret = _perf_ioctl(event, cmd, arg);
4003 perf_event_ctx_unlock(event, ctx);
4004
4005 return ret;
4006}
4007
b3f20785
PM
4008#ifdef CONFIG_COMPAT
4009static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4010 unsigned long arg)
4011{
4012 switch (_IOC_NR(cmd)) {
4013 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4014 case _IOC_NR(PERF_EVENT_IOC_ID):
4015 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4016 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4017 cmd &= ~IOCSIZE_MASK;
4018 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4019 }
4020 break;
4021 }
4022 return perf_ioctl(file, cmd, arg);
4023}
4024#else
4025# define perf_compat_ioctl NULL
4026#endif
4027
cdd6c482 4028int perf_event_task_enable(void)
771d7cde 4029{
f63a8daa 4030 struct perf_event_context *ctx;
cdd6c482 4031 struct perf_event *event;
771d7cde 4032
cdd6c482 4033 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4034 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4035 ctx = perf_event_ctx_lock(event);
4036 perf_event_for_each_child(event, _perf_event_enable);
4037 perf_event_ctx_unlock(event, ctx);
4038 }
cdd6c482 4039 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4040
4041 return 0;
4042}
4043
cdd6c482 4044int perf_event_task_disable(void)
771d7cde 4045{
f63a8daa 4046 struct perf_event_context *ctx;
cdd6c482 4047 struct perf_event *event;
771d7cde 4048
cdd6c482 4049 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4050 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4051 ctx = perf_event_ctx_lock(event);
4052 perf_event_for_each_child(event, _perf_event_disable);
4053 perf_event_ctx_unlock(event, ctx);
4054 }
cdd6c482 4055 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4056
4057 return 0;
4058}
4059
cdd6c482 4060static int perf_event_index(struct perf_event *event)
194002b2 4061{
a4eaf7f1
PZ
4062 if (event->hw.state & PERF_HES_STOPPED)
4063 return 0;
4064
cdd6c482 4065 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4066 return 0;
4067
35edc2a5 4068 return event->pmu->event_idx(event);
194002b2
PZ
4069}
4070
c4794295 4071static void calc_timer_values(struct perf_event *event,
e3f3541c 4072 u64 *now,
7f310a5d
EM
4073 u64 *enabled,
4074 u64 *running)
c4794295 4075{
e3f3541c 4076 u64 ctx_time;
c4794295 4077
e3f3541c
PZ
4078 *now = perf_clock();
4079 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4080 *enabled = ctx_time - event->tstamp_enabled;
4081 *running = ctx_time - event->tstamp_running;
4082}
4083
fa731587
PZ
4084static void perf_event_init_userpage(struct perf_event *event)
4085{
4086 struct perf_event_mmap_page *userpg;
4087 struct ring_buffer *rb;
4088
4089 rcu_read_lock();
4090 rb = rcu_dereference(event->rb);
4091 if (!rb)
4092 goto unlock;
4093
4094 userpg = rb->user_page;
4095
4096 /* Allow new userspace to detect that bit 0 is deprecated */
4097 userpg->cap_bit0_is_deprecated = 1;
4098 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4099
4100unlock:
4101 rcu_read_unlock();
4102}
4103
c7206205 4104void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4105{
4106}
4107
38ff667b
PZ
4108/*
4109 * Callers need to ensure there can be no nesting of this function, otherwise
4110 * the seqlock logic goes bad. We can not serialize this because the arch
4111 * code calls this from NMI context.
4112 */
cdd6c482 4113void perf_event_update_userpage(struct perf_event *event)
37d81828 4114{
cdd6c482 4115 struct perf_event_mmap_page *userpg;
76369139 4116 struct ring_buffer *rb;
e3f3541c 4117 u64 enabled, running, now;
38ff667b
PZ
4118
4119 rcu_read_lock();
5ec4c599
PZ
4120 rb = rcu_dereference(event->rb);
4121 if (!rb)
4122 goto unlock;
4123
0d641208
EM
4124 /*
4125 * compute total_time_enabled, total_time_running
4126 * based on snapshot values taken when the event
4127 * was last scheduled in.
4128 *
4129 * we cannot simply called update_context_time()
4130 * because of locking issue as we can be called in
4131 * NMI context
4132 */
e3f3541c 4133 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4134
76369139 4135 userpg = rb->user_page;
7b732a75
PZ
4136 /*
4137 * Disable preemption so as to not let the corresponding user-space
4138 * spin too long if we get preempted.
4139 */
4140 preempt_disable();
37d81828 4141 ++userpg->lock;
92f22a38 4142 barrier();
cdd6c482 4143 userpg->index = perf_event_index(event);
b5e58793 4144 userpg->offset = perf_event_count(event);
365a4038 4145 if (userpg->index)
e7850595 4146 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4147
0d641208 4148 userpg->time_enabled = enabled +
cdd6c482 4149 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4150
0d641208 4151 userpg->time_running = running +
cdd6c482 4152 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4153
c7206205 4154 arch_perf_update_userpage(userpg, now);
e3f3541c 4155
92f22a38 4156 barrier();
37d81828 4157 ++userpg->lock;
7b732a75 4158 preempt_enable();
38ff667b 4159unlock:
7b732a75 4160 rcu_read_unlock();
37d81828
PM
4161}
4162
906010b2
PZ
4163static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4164{
4165 struct perf_event *event = vma->vm_file->private_data;
76369139 4166 struct ring_buffer *rb;
906010b2
PZ
4167 int ret = VM_FAULT_SIGBUS;
4168
4169 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4170 if (vmf->pgoff == 0)
4171 ret = 0;
4172 return ret;
4173 }
4174
4175 rcu_read_lock();
76369139
FW
4176 rb = rcu_dereference(event->rb);
4177 if (!rb)
906010b2
PZ
4178 goto unlock;
4179
4180 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4181 goto unlock;
4182
76369139 4183 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4184 if (!vmf->page)
4185 goto unlock;
4186
4187 get_page(vmf->page);
4188 vmf->page->mapping = vma->vm_file->f_mapping;
4189 vmf->page->index = vmf->pgoff;
4190
4191 ret = 0;
4192unlock:
4193 rcu_read_unlock();
4194
4195 return ret;
4196}
4197
10c6db11
PZ
4198static void ring_buffer_attach(struct perf_event *event,
4199 struct ring_buffer *rb)
4200{
b69cf536 4201 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4202 unsigned long flags;
4203
b69cf536
PZ
4204 if (event->rb) {
4205 /*
4206 * Should be impossible, we set this when removing
4207 * event->rb_entry and wait/clear when adding event->rb_entry.
4208 */
4209 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4210
b69cf536
PZ
4211 old_rb = event->rb;
4212 event->rcu_batches = get_state_synchronize_rcu();
4213 event->rcu_pending = 1;
10c6db11 4214
b69cf536
PZ
4215 spin_lock_irqsave(&old_rb->event_lock, flags);
4216 list_del_rcu(&event->rb_entry);
4217 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4218 }
10c6db11 4219
b69cf536
PZ
4220 if (event->rcu_pending && rb) {
4221 cond_synchronize_rcu(event->rcu_batches);
4222 event->rcu_pending = 0;
4223 }
10c6db11 4224
b69cf536
PZ
4225 if (rb) {
4226 spin_lock_irqsave(&rb->event_lock, flags);
4227 list_add_rcu(&event->rb_entry, &rb->event_list);
4228 spin_unlock_irqrestore(&rb->event_lock, flags);
4229 }
4230
4231 rcu_assign_pointer(event->rb, rb);
4232
4233 if (old_rb) {
4234 ring_buffer_put(old_rb);
4235 /*
4236 * Since we detached before setting the new rb, so that we
4237 * could attach the new rb, we could have missed a wakeup.
4238 * Provide it now.
4239 */
4240 wake_up_all(&event->waitq);
4241 }
10c6db11
PZ
4242}
4243
4244static void ring_buffer_wakeup(struct perf_event *event)
4245{
4246 struct ring_buffer *rb;
4247
4248 rcu_read_lock();
4249 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4250 if (rb) {
4251 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4252 wake_up_all(&event->waitq);
4253 }
10c6db11
PZ
4254 rcu_read_unlock();
4255}
4256
76369139 4257static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 4258{
76369139 4259 struct ring_buffer *rb;
906010b2 4260
76369139
FW
4261 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4262 rb_free(rb);
7b732a75
PZ
4263}
4264
76369139 4265static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4266{
76369139 4267 struct ring_buffer *rb;
7b732a75 4268
ac9721f3 4269 rcu_read_lock();
76369139
FW
4270 rb = rcu_dereference(event->rb);
4271 if (rb) {
4272 if (!atomic_inc_not_zero(&rb->refcount))
4273 rb = NULL;
ac9721f3
PZ
4274 }
4275 rcu_read_unlock();
4276
76369139 4277 return rb;
ac9721f3
PZ
4278}
4279
76369139 4280static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4281{
76369139 4282 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4283 return;
7b732a75 4284
9bb5d40c 4285 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4286
76369139 4287 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4288}
4289
4290static void perf_mmap_open(struct vm_area_struct *vma)
4291{
cdd6c482 4292 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4293
cdd6c482 4294 atomic_inc(&event->mmap_count);
9bb5d40c 4295 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
4296}
4297
9bb5d40c
PZ
4298/*
4299 * A buffer can be mmap()ed multiple times; either directly through the same
4300 * event, or through other events by use of perf_event_set_output().
4301 *
4302 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4303 * the buffer here, where we still have a VM context. This means we need
4304 * to detach all events redirecting to us.
4305 */
7b732a75
PZ
4306static void perf_mmap_close(struct vm_area_struct *vma)
4307{
cdd6c482 4308 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4309
b69cf536 4310 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4311 struct user_struct *mmap_user = rb->mmap_user;
4312 int mmap_locked = rb->mmap_locked;
4313 unsigned long size = perf_data_size(rb);
789f90fc 4314
9bb5d40c
PZ
4315 atomic_dec(&rb->mmap_count);
4316
4317 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4318 goto out_put;
9bb5d40c 4319
b69cf536 4320 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4321 mutex_unlock(&event->mmap_mutex);
4322
4323 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4324 if (atomic_read(&rb->mmap_count))
4325 goto out_put;
ac9721f3 4326
9bb5d40c
PZ
4327 /*
4328 * No other mmap()s, detach from all other events that might redirect
4329 * into the now unreachable buffer. Somewhat complicated by the
4330 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4331 */
4332again:
4333 rcu_read_lock();
4334 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4335 if (!atomic_long_inc_not_zero(&event->refcount)) {
4336 /*
4337 * This event is en-route to free_event() which will
4338 * detach it and remove it from the list.
4339 */
4340 continue;
4341 }
4342 rcu_read_unlock();
789f90fc 4343
9bb5d40c
PZ
4344 mutex_lock(&event->mmap_mutex);
4345 /*
4346 * Check we didn't race with perf_event_set_output() which can
4347 * swizzle the rb from under us while we were waiting to
4348 * acquire mmap_mutex.
4349 *
4350 * If we find a different rb; ignore this event, a next
4351 * iteration will no longer find it on the list. We have to
4352 * still restart the iteration to make sure we're not now
4353 * iterating the wrong list.
4354 */
b69cf536
PZ
4355 if (event->rb == rb)
4356 ring_buffer_attach(event, NULL);
4357
cdd6c482 4358 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4359 put_event(event);
ac9721f3 4360
9bb5d40c
PZ
4361 /*
4362 * Restart the iteration; either we're on the wrong list or
4363 * destroyed its integrity by doing a deletion.
4364 */
4365 goto again;
7b732a75 4366 }
9bb5d40c
PZ
4367 rcu_read_unlock();
4368
4369 /*
4370 * It could be there's still a few 0-ref events on the list; they'll
4371 * get cleaned up by free_event() -- they'll also still have their
4372 * ref on the rb and will free it whenever they are done with it.
4373 *
4374 * Aside from that, this buffer is 'fully' detached and unmapped,
4375 * undo the VM accounting.
4376 */
4377
4378 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4379 vma->vm_mm->pinned_vm -= mmap_locked;
4380 free_uid(mmap_user);
4381
b69cf536 4382out_put:
9bb5d40c 4383 ring_buffer_put(rb); /* could be last */
37d81828
PM
4384}
4385
f0f37e2f 4386static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
4387 .open = perf_mmap_open,
4388 .close = perf_mmap_close,
4389 .fault = perf_mmap_fault,
4390 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4391};
4392
4393static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4394{
cdd6c482 4395 struct perf_event *event = file->private_data;
22a4f650 4396 unsigned long user_locked, user_lock_limit;
789f90fc 4397 struct user_struct *user = current_user();
22a4f650 4398 unsigned long locked, lock_limit;
76369139 4399 struct ring_buffer *rb;
7b732a75
PZ
4400 unsigned long vma_size;
4401 unsigned long nr_pages;
789f90fc 4402 long user_extra, extra;
d57e34fd 4403 int ret = 0, flags = 0;
37d81828 4404
c7920614
PZ
4405 /*
4406 * Don't allow mmap() of inherited per-task counters. This would
4407 * create a performance issue due to all children writing to the
76369139 4408 * same rb.
c7920614
PZ
4409 */
4410 if (event->cpu == -1 && event->attr.inherit)
4411 return -EINVAL;
4412
43a21ea8 4413 if (!(vma->vm_flags & VM_SHARED))
37d81828 4414 return -EINVAL;
7b732a75
PZ
4415
4416 vma_size = vma->vm_end - vma->vm_start;
4417 nr_pages = (vma_size / PAGE_SIZE) - 1;
4418
7730d865 4419 /*
76369139 4420 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4421 * can do bitmasks instead of modulo.
4422 */
4423 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4424 return -EINVAL;
4425
7b732a75 4426 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4427 return -EINVAL;
4428
7b732a75
PZ
4429 if (vma->vm_pgoff != 0)
4430 return -EINVAL;
37d81828 4431
cdd6c482 4432 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4433again:
cdd6c482 4434 mutex_lock(&event->mmap_mutex);
76369139 4435 if (event->rb) {
9bb5d40c 4436 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4437 ret = -EINVAL;
9bb5d40c
PZ
4438 goto unlock;
4439 }
4440
4441 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4442 /*
4443 * Raced against perf_mmap_close() through
4444 * perf_event_set_output(). Try again, hope for better
4445 * luck.
4446 */
4447 mutex_unlock(&event->mmap_mutex);
4448 goto again;
4449 }
4450
ebb3c4c4
PZ
4451 goto unlock;
4452 }
4453
789f90fc 4454 user_extra = nr_pages + 1;
cdd6c482 4455 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4456
4457 /*
4458 * Increase the limit linearly with more CPUs:
4459 */
4460 user_lock_limit *= num_online_cpus();
4461
789f90fc 4462 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4463
789f90fc
PZ
4464 extra = 0;
4465 if (user_locked > user_lock_limit)
4466 extra = user_locked - user_lock_limit;
7b732a75 4467
78d7d407 4468 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4469 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4470 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4471
459ec28a
IM
4472 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4473 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4474 ret = -EPERM;
4475 goto unlock;
4476 }
7b732a75 4477
76369139 4478 WARN_ON(event->rb);
906010b2 4479
d57e34fd 4480 if (vma->vm_flags & VM_WRITE)
76369139 4481 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4482
4ec8363d
VW
4483 rb = rb_alloc(nr_pages,
4484 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4485 event->cpu, flags);
4486
76369139 4487 if (!rb) {
ac9721f3 4488 ret = -ENOMEM;
ebb3c4c4 4489 goto unlock;
ac9721f3 4490 }
26cb63ad 4491
9bb5d40c 4492 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4493 rb->mmap_locked = extra;
4494 rb->mmap_user = get_current_user();
43a21ea8 4495
ac9721f3 4496 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4497 vma->vm_mm->pinned_vm += extra;
4498
9bb5d40c 4499 ring_buffer_attach(event, rb);
ac9721f3 4500
fa731587 4501 perf_event_init_userpage(event);
9a0f05cb
PZ
4502 perf_event_update_userpage(event);
4503
ebb3c4c4 4504unlock:
ac9721f3
PZ
4505 if (!ret)
4506 atomic_inc(&event->mmap_count);
cdd6c482 4507 mutex_unlock(&event->mmap_mutex);
37d81828 4508
9bb5d40c
PZ
4509 /*
4510 * Since pinned accounting is per vm we cannot allow fork() to copy our
4511 * vma.
4512 */
26cb63ad 4513 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4514 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4515
4516 return ret;
37d81828
PM
4517}
4518
3c446b3d
PZ
4519static int perf_fasync(int fd, struct file *filp, int on)
4520{
496ad9aa 4521 struct inode *inode = file_inode(filp);
cdd6c482 4522 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4523 int retval;
4524
4525 mutex_lock(&inode->i_mutex);
cdd6c482 4526 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4527 mutex_unlock(&inode->i_mutex);
4528
4529 if (retval < 0)
4530 return retval;
4531
4532 return 0;
4533}
4534
0793a61d 4535static const struct file_operations perf_fops = {
3326c1ce 4536 .llseek = no_llseek,
0793a61d
TG
4537 .release = perf_release,
4538 .read = perf_read,
4539 .poll = perf_poll,
d859e29f 4540 .unlocked_ioctl = perf_ioctl,
b3f20785 4541 .compat_ioctl = perf_compat_ioctl,
37d81828 4542 .mmap = perf_mmap,
3c446b3d 4543 .fasync = perf_fasync,
0793a61d
TG
4544};
4545
925d519a 4546/*
cdd6c482 4547 * Perf event wakeup
925d519a
PZ
4548 *
4549 * If there's data, ensure we set the poll() state and publish everything
4550 * to user-space before waking everybody up.
4551 */
4552
cdd6c482 4553void perf_event_wakeup(struct perf_event *event)
925d519a 4554{
10c6db11 4555 ring_buffer_wakeup(event);
4c9e2542 4556
cdd6c482
IM
4557 if (event->pending_kill) {
4558 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4559 event->pending_kill = 0;
4c9e2542 4560 }
925d519a
PZ
4561}
4562
e360adbe 4563static void perf_pending_event(struct irq_work *entry)
79f14641 4564{
cdd6c482
IM
4565 struct perf_event *event = container_of(entry,
4566 struct perf_event, pending);
79f14641 4567
cdd6c482
IM
4568 if (event->pending_disable) {
4569 event->pending_disable = 0;
4570 __perf_event_disable(event);
79f14641
PZ
4571 }
4572
cdd6c482
IM
4573 if (event->pending_wakeup) {
4574 event->pending_wakeup = 0;
4575 perf_event_wakeup(event);
79f14641
PZ
4576 }
4577}
4578
39447b38
ZY
4579/*
4580 * We assume there is only KVM supporting the callbacks.
4581 * Later on, we might change it to a list if there is
4582 * another virtualization implementation supporting the callbacks.
4583 */
4584struct perf_guest_info_callbacks *perf_guest_cbs;
4585
4586int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4587{
4588 perf_guest_cbs = cbs;
4589 return 0;
4590}
4591EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4592
4593int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4594{
4595 perf_guest_cbs = NULL;
4596 return 0;
4597}
4598EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4599
4018994f
JO
4600static void
4601perf_output_sample_regs(struct perf_output_handle *handle,
4602 struct pt_regs *regs, u64 mask)
4603{
4604 int bit;
4605
4606 for_each_set_bit(bit, (const unsigned long *) &mask,
4607 sizeof(mask) * BITS_PER_BYTE) {
4608 u64 val;
4609
4610 val = perf_reg_value(regs, bit);
4611 perf_output_put(handle, val);
4612 }
4613}
4614
60e2364e 4615static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4616 struct pt_regs *regs,
4617 struct pt_regs *regs_user_copy)
4018994f 4618{
88a7c26a
AL
4619 if (user_mode(regs)) {
4620 regs_user->abi = perf_reg_abi(current);
2565711f 4621 regs_user->regs = regs;
88a7c26a
AL
4622 } else if (current->mm) {
4623 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4624 } else {
4625 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4626 regs_user->regs = NULL;
4018994f
JO
4627 }
4628}
4629
60e2364e
SE
4630static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4631 struct pt_regs *regs)
4632{
4633 regs_intr->regs = regs;
4634 regs_intr->abi = perf_reg_abi(current);
4635}
4636
4637
c5ebcedb
JO
4638/*
4639 * Get remaining task size from user stack pointer.
4640 *
4641 * It'd be better to take stack vma map and limit this more
4642 * precisly, but there's no way to get it safely under interrupt,
4643 * so using TASK_SIZE as limit.
4644 */
4645static u64 perf_ustack_task_size(struct pt_regs *regs)
4646{
4647 unsigned long addr = perf_user_stack_pointer(regs);
4648
4649 if (!addr || addr >= TASK_SIZE)
4650 return 0;
4651
4652 return TASK_SIZE - addr;
4653}
4654
4655static u16
4656perf_sample_ustack_size(u16 stack_size, u16 header_size,
4657 struct pt_regs *regs)
4658{
4659 u64 task_size;
4660
4661 /* No regs, no stack pointer, no dump. */
4662 if (!regs)
4663 return 0;
4664
4665 /*
4666 * Check if we fit in with the requested stack size into the:
4667 * - TASK_SIZE
4668 * If we don't, we limit the size to the TASK_SIZE.
4669 *
4670 * - remaining sample size
4671 * If we don't, we customize the stack size to
4672 * fit in to the remaining sample size.
4673 */
4674
4675 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4676 stack_size = min(stack_size, (u16) task_size);
4677
4678 /* Current header size plus static size and dynamic size. */
4679 header_size += 2 * sizeof(u64);
4680
4681 /* Do we fit in with the current stack dump size? */
4682 if ((u16) (header_size + stack_size) < header_size) {
4683 /*
4684 * If we overflow the maximum size for the sample,
4685 * we customize the stack dump size to fit in.
4686 */
4687 stack_size = USHRT_MAX - header_size - sizeof(u64);
4688 stack_size = round_up(stack_size, sizeof(u64));
4689 }
4690
4691 return stack_size;
4692}
4693
4694static void
4695perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4696 struct pt_regs *regs)
4697{
4698 /* Case of a kernel thread, nothing to dump */
4699 if (!regs) {
4700 u64 size = 0;
4701 perf_output_put(handle, size);
4702 } else {
4703 unsigned long sp;
4704 unsigned int rem;
4705 u64 dyn_size;
4706
4707 /*
4708 * We dump:
4709 * static size
4710 * - the size requested by user or the best one we can fit
4711 * in to the sample max size
4712 * data
4713 * - user stack dump data
4714 * dynamic size
4715 * - the actual dumped size
4716 */
4717
4718 /* Static size. */
4719 perf_output_put(handle, dump_size);
4720
4721 /* Data. */
4722 sp = perf_user_stack_pointer(regs);
4723 rem = __output_copy_user(handle, (void *) sp, dump_size);
4724 dyn_size = dump_size - rem;
4725
4726 perf_output_skip(handle, rem);
4727
4728 /* Dynamic size. */
4729 perf_output_put(handle, dyn_size);
4730 }
4731}
4732
c980d109
ACM
4733static void __perf_event_header__init_id(struct perf_event_header *header,
4734 struct perf_sample_data *data,
4735 struct perf_event *event)
6844c09d
ACM
4736{
4737 u64 sample_type = event->attr.sample_type;
4738
4739 data->type = sample_type;
4740 header->size += event->id_header_size;
4741
4742 if (sample_type & PERF_SAMPLE_TID) {
4743 /* namespace issues */
4744 data->tid_entry.pid = perf_event_pid(event, current);
4745 data->tid_entry.tid = perf_event_tid(event, current);
4746 }
4747
4748 if (sample_type & PERF_SAMPLE_TIME)
4749 data->time = perf_clock();
4750
ff3d527c 4751 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4752 data->id = primary_event_id(event);
4753
4754 if (sample_type & PERF_SAMPLE_STREAM_ID)
4755 data->stream_id = event->id;
4756
4757 if (sample_type & PERF_SAMPLE_CPU) {
4758 data->cpu_entry.cpu = raw_smp_processor_id();
4759 data->cpu_entry.reserved = 0;
4760 }
4761}
4762
76369139
FW
4763void perf_event_header__init_id(struct perf_event_header *header,
4764 struct perf_sample_data *data,
4765 struct perf_event *event)
c980d109
ACM
4766{
4767 if (event->attr.sample_id_all)
4768 __perf_event_header__init_id(header, data, event);
4769}
4770
4771static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4772 struct perf_sample_data *data)
4773{
4774 u64 sample_type = data->type;
4775
4776 if (sample_type & PERF_SAMPLE_TID)
4777 perf_output_put(handle, data->tid_entry);
4778
4779 if (sample_type & PERF_SAMPLE_TIME)
4780 perf_output_put(handle, data->time);
4781
4782 if (sample_type & PERF_SAMPLE_ID)
4783 perf_output_put(handle, data->id);
4784
4785 if (sample_type & PERF_SAMPLE_STREAM_ID)
4786 perf_output_put(handle, data->stream_id);
4787
4788 if (sample_type & PERF_SAMPLE_CPU)
4789 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4790
4791 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4792 perf_output_put(handle, data->id);
c980d109
ACM
4793}
4794
76369139
FW
4795void perf_event__output_id_sample(struct perf_event *event,
4796 struct perf_output_handle *handle,
4797 struct perf_sample_data *sample)
c980d109
ACM
4798{
4799 if (event->attr.sample_id_all)
4800 __perf_event__output_id_sample(handle, sample);
4801}
4802
3dab77fb 4803static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4804 struct perf_event *event,
4805 u64 enabled, u64 running)
3dab77fb 4806{
cdd6c482 4807 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4808 u64 values[4];
4809 int n = 0;
4810
b5e58793 4811 values[n++] = perf_event_count(event);
3dab77fb 4812 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4813 values[n++] = enabled +
cdd6c482 4814 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4815 }
4816 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4817 values[n++] = running +
cdd6c482 4818 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4819 }
4820 if (read_format & PERF_FORMAT_ID)
cdd6c482 4821 values[n++] = primary_event_id(event);
3dab77fb 4822
76369139 4823 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4824}
4825
4826/*
cdd6c482 4827 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4828 */
4829static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4830 struct perf_event *event,
4831 u64 enabled, u64 running)
3dab77fb 4832{
cdd6c482
IM
4833 struct perf_event *leader = event->group_leader, *sub;
4834 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4835 u64 values[5];
4836 int n = 0;
4837
4838 values[n++] = 1 + leader->nr_siblings;
4839
4840 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4841 values[n++] = enabled;
3dab77fb
PZ
4842
4843 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4844 values[n++] = running;
3dab77fb 4845
cdd6c482 4846 if (leader != event)
3dab77fb
PZ
4847 leader->pmu->read(leader);
4848
b5e58793 4849 values[n++] = perf_event_count(leader);
3dab77fb 4850 if (read_format & PERF_FORMAT_ID)
cdd6c482 4851 values[n++] = primary_event_id(leader);
3dab77fb 4852
76369139 4853 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4854
65abc865 4855 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4856 n = 0;
4857
6f5ab001
JO
4858 if ((sub != event) &&
4859 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4860 sub->pmu->read(sub);
4861
b5e58793 4862 values[n++] = perf_event_count(sub);
3dab77fb 4863 if (read_format & PERF_FORMAT_ID)
cdd6c482 4864 values[n++] = primary_event_id(sub);
3dab77fb 4865
76369139 4866 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4867 }
4868}
4869
eed01528
SE
4870#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4871 PERF_FORMAT_TOTAL_TIME_RUNNING)
4872
3dab77fb 4873static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4874 struct perf_event *event)
3dab77fb 4875{
e3f3541c 4876 u64 enabled = 0, running = 0, now;
eed01528
SE
4877 u64 read_format = event->attr.read_format;
4878
4879 /*
4880 * compute total_time_enabled, total_time_running
4881 * based on snapshot values taken when the event
4882 * was last scheduled in.
4883 *
4884 * we cannot simply called update_context_time()
4885 * because of locking issue as we are called in
4886 * NMI context
4887 */
c4794295 4888 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4889 calc_timer_values(event, &now, &enabled, &running);
eed01528 4890
cdd6c482 4891 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4892 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4893 else
eed01528 4894 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4895}
4896
5622f295
MM
4897void perf_output_sample(struct perf_output_handle *handle,
4898 struct perf_event_header *header,
4899 struct perf_sample_data *data,
cdd6c482 4900 struct perf_event *event)
5622f295
MM
4901{
4902 u64 sample_type = data->type;
4903
4904 perf_output_put(handle, *header);
4905
ff3d527c
AH
4906 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4907 perf_output_put(handle, data->id);
4908
5622f295
MM
4909 if (sample_type & PERF_SAMPLE_IP)
4910 perf_output_put(handle, data->ip);
4911
4912 if (sample_type & PERF_SAMPLE_TID)
4913 perf_output_put(handle, data->tid_entry);
4914
4915 if (sample_type & PERF_SAMPLE_TIME)
4916 perf_output_put(handle, data->time);
4917
4918 if (sample_type & PERF_SAMPLE_ADDR)
4919 perf_output_put(handle, data->addr);
4920
4921 if (sample_type & PERF_SAMPLE_ID)
4922 perf_output_put(handle, data->id);
4923
4924 if (sample_type & PERF_SAMPLE_STREAM_ID)
4925 perf_output_put(handle, data->stream_id);
4926
4927 if (sample_type & PERF_SAMPLE_CPU)
4928 perf_output_put(handle, data->cpu_entry);
4929
4930 if (sample_type & PERF_SAMPLE_PERIOD)
4931 perf_output_put(handle, data->period);
4932
4933 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4934 perf_output_read(handle, event);
5622f295
MM
4935
4936 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4937 if (data->callchain) {
4938 int size = 1;
4939
4940 if (data->callchain)
4941 size += data->callchain->nr;
4942
4943 size *= sizeof(u64);
4944
76369139 4945 __output_copy(handle, data->callchain, size);
5622f295
MM
4946 } else {
4947 u64 nr = 0;
4948 perf_output_put(handle, nr);
4949 }
4950 }
4951
4952 if (sample_type & PERF_SAMPLE_RAW) {
4953 if (data->raw) {
4954 perf_output_put(handle, data->raw->size);
76369139
FW
4955 __output_copy(handle, data->raw->data,
4956 data->raw->size);
5622f295
MM
4957 } else {
4958 struct {
4959 u32 size;
4960 u32 data;
4961 } raw = {
4962 .size = sizeof(u32),
4963 .data = 0,
4964 };
4965 perf_output_put(handle, raw);
4966 }
4967 }
a7ac67ea 4968
bce38cd5
SE
4969 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4970 if (data->br_stack) {
4971 size_t size;
4972
4973 size = data->br_stack->nr
4974 * sizeof(struct perf_branch_entry);
4975
4976 perf_output_put(handle, data->br_stack->nr);
4977 perf_output_copy(handle, data->br_stack->entries, size);
4978 } else {
4979 /*
4980 * we always store at least the value of nr
4981 */
4982 u64 nr = 0;
4983 perf_output_put(handle, nr);
4984 }
4985 }
4018994f
JO
4986
4987 if (sample_type & PERF_SAMPLE_REGS_USER) {
4988 u64 abi = data->regs_user.abi;
4989
4990 /*
4991 * If there are no regs to dump, notice it through
4992 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4993 */
4994 perf_output_put(handle, abi);
4995
4996 if (abi) {
4997 u64 mask = event->attr.sample_regs_user;
4998 perf_output_sample_regs(handle,
4999 data->regs_user.regs,
5000 mask);
5001 }
5002 }
c5ebcedb 5003
a5cdd40c 5004 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5005 perf_output_sample_ustack(handle,
5006 data->stack_user_size,
5007 data->regs_user.regs);
a5cdd40c 5008 }
c3feedf2
AK
5009
5010 if (sample_type & PERF_SAMPLE_WEIGHT)
5011 perf_output_put(handle, data->weight);
d6be9ad6
SE
5012
5013 if (sample_type & PERF_SAMPLE_DATA_SRC)
5014 perf_output_put(handle, data->data_src.val);
a5cdd40c 5015
fdfbbd07
AK
5016 if (sample_type & PERF_SAMPLE_TRANSACTION)
5017 perf_output_put(handle, data->txn);
5018
60e2364e
SE
5019 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5020 u64 abi = data->regs_intr.abi;
5021 /*
5022 * If there are no regs to dump, notice it through
5023 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5024 */
5025 perf_output_put(handle, abi);
5026
5027 if (abi) {
5028 u64 mask = event->attr.sample_regs_intr;
5029
5030 perf_output_sample_regs(handle,
5031 data->regs_intr.regs,
5032 mask);
5033 }
5034 }
5035
a5cdd40c
PZ
5036 if (!event->attr.watermark) {
5037 int wakeup_events = event->attr.wakeup_events;
5038
5039 if (wakeup_events) {
5040 struct ring_buffer *rb = handle->rb;
5041 int events = local_inc_return(&rb->events);
5042
5043 if (events >= wakeup_events) {
5044 local_sub(wakeup_events, &rb->events);
5045 local_inc(&rb->wakeup);
5046 }
5047 }
5048 }
5622f295
MM
5049}
5050
5051void perf_prepare_sample(struct perf_event_header *header,
5052 struct perf_sample_data *data,
cdd6c482 5053 struct perf_event *event,
5622f295 5054 struct pt_regs *regs)
7b732a75 5055{
cdd6c482 5056 u64 sample_type = event->attr.sample_type;
7b732a75 5057
cdd6c482 5058 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5059 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5060
5061 header->misc = 0;
5062 header->misc |= perf_misc_flags(regs);
6fab0192 5063
c980d109 5064 __perf_event_header__init_id(header, data, event);
6844c09d 5065
c320c7b7 5066 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5067 data->ip = perf_instruction_pointer(regs);
5068
b23f3325 5069 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5070 int size = 1;
394ee076 5071
e6dab5ff 5072 data->callchain = perf_callchain(event, regs);
5622f295
MM
5073
5074 if (data->callchain)
5075 size += data->callchain->nr;
5076
5077 header->size += size * sizeof(u64);
394ee076
PZ
5078 }
5079
3a43ce68 5080 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5081 int size = sizeof(u32);
5082
5083 if (data->raw)
5084 size += data->raw->size;
5085 else
5086 size += sizeof(u32);
5087
5088 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5089 header->size += size;
7f453c24 5090 }
bce38cd5
SE
5091
5092 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5093 int size = sizeof(u64); /* nr */
5094 if (data->br_stack) {
5095 size += data->br_stack->nr
5096 * sizeof(struct perf_branch_entry);
5097 }
5098 header->size += size;
5099 }
4018994f 5100
2565711f 5101 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5102 perf_sample_regs_user(&data->regs_user, regs,
5103 &data->regs_user_copy);
2565711f 5104
4018994f
JO
5105 if (sample_type & PERF_SAMPLE_REGS_USER) {
5106 /* regs dump ABI info */
5107 int size = sizeof(u64);
5108
4018994f
JO
5109 if (data->regs_user.regs) {
5110 u64 mask = event->attr.sample_regs_user;
5111 size += hweight64(mask) * sizeof(u64);
5112 }
5113
5114 header->size += size;
5115 }
c5ebcedb
JO
5116
5117 if (sample_type & PERF_SAMPLE_STACK_USER) {
5118 /*
5119 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5120 * processed as the last one or have additional check added
5121 * in case new sample type is added, because we could eat
5122 * up the rest of the sample size.
5123 */
c5ebcedb
JO
5124 u16 stack_size = event->attr.sample_stack_user;
5125 u16 size = sizeof(u64);
5126
c5ebcedb 5127 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5128 data->regs_user.regs);
c5ebcedb
JO
5129
5130 /*
5131 * If there is something to dump, add space for the dump
5132 * itself and for the field that tells the dynamic size,
5133 * which is how many have been actually dumped.
5134 */
5135 if (stack_size)
5136 size += sizeof(u64) + stack_size;
5137
5138 data->stack_user_size = stack_size;
5139 header->size += size;
5140 }
60e2364e
SE
5141
5142 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5143 /* regs dump ABI info */
5144 int size = sizeof(u64);
5145
5146 perf_sample_regs_intr(&data->regs_intr, regs);
5147
5148 if (data->regs_intr.regs) {
5149 u64 mask = event->attr.sample_regs_intr;
5150
5151 size += hweight64(mask) * sizeof(u64);
5152 }
5153
5154 header->size += size;
5155 }
5622f295 5156}
7f453c24 5157
a8b0ca17 5158static void perf_event_output(struct perf_event *event,
5622f295
MM
5159 struct perf_sample_data *data,
5160 struct pt_regs *regs)
5161{
5162 struct perf_output_handle handle;
5163 struct perf_event_header header;
689802b2 5164
927c7a9e
FW
5165 /* protect the callchain buffers */
5166 rcu_read_lock();
5167
cdd6c482 5168 perf_prepare_sample(&header, data, event, regs);
5c148194 5169
a7ac67ea 5170 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5171 goto exit;
0322cd6e 5172
cdd6c482 5173 perf_output_sample(&handle, &header, data, event);
f413cdb8 5174
8a057d84 5175 perf_output_end(&handle);
927c7a9e
FW
5176
5177exit:
5178 rcu_read_unlock();
0322cd6e
PZ
5179}
5180
38b200d6 5181/*
cdd6c482 5182 * read event_id
38b200d6
PZ
5183 */
5184
5185struct perf_read_event {
5186 struct perf_event_header header;
5187
5188 u32 pid;
5189 u32 tid;
38b200d6
PZ
5190};
5191
5192static void
cdd6c482 5193perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5194 struct task_struct *task)
5195{
5196 struct perf_output_handle handle;
c980d109 5197 struct perf_sample_data sample;
dfc65094 5198 struct perf_read_event read_event = {
38b200d6 5199 .header = {
cdd6c482 5200 .type = PERF_RECORD_READ,
38b200d6 5201 .misc = 0,
c320c7b7 5202 .size = sizeof(read_event) + event->read_size,
38b200d6 5203 },
cdd6c482
IM
5204 .pid = perf_event_pid(event, task),
5205 .tid = perf_event_tid(event, task),
38b200d6 5206 };
3dab77fb 5207 int ret;
38b200d6 5208
c980d109 5209 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5210 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5211 if (ret)
5212 return;
5213
dfc65094 5214 perf_output_put(&handle, read_event);
cdd6c482 5215 perf_output_read(&handle, event);
c980d109 5216 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5217
38b200d6
PZ
5218 perf_output_end(&handle);
5219}
5220
52d857a8
JO
5221typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5222
5223static void
5224perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5225 perf_event_aux_output_cb output,
5226 void *data)
5227{
5228 struct perf_event *event;
5229
5230 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5231 if (event->state < PERF_EVENT_STATE_INACTIVE)
5232 continue;
5233 if (!event_filter_match(event))
5234 continue;
67516844 5235 output(event, data);
52d857a8
JO
5236 }
5237}
5238
5239static void
67516844 5240perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5241 struct perf_event_context *task_ctx)
5242{
5243 struct perf_cpu_context *cpuctx;
5244 struct perf_event_context *ctx;
5245 struct pmu *pmu;
5246 int ctxn;
5247
5248 rcu_read_lock();
5249 list_for_each_entry_rcu(pmu, &pmus, entry) {
5250 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5251 if (cpuctx->unique_pmu != pmu)
5252 goto next;
67516844 5253 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5254 if (task_ctx)
5255 goto next;
5256 ctxn = pmu->task_ctx_nr;
5257 if (ctxn < 0)
5258 goto next;
5259 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5260 if (ctx)
67516844 5261 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5262next:
5263 put_cpu_ptr(pmu->pmu_cpu_context);
5264 }
5265
5266 if (task_ctx) {
5267 preempt_disable();
67516844 5268 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5269 preempt_enable();
5270 }
5271 rcu_read_unlock();
5272}
5273
60313ebe 5274/*
9f498cc5
PZ
5275 * task tracking -- fork/exit
5276 *
13d7a241 5277 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5278 */
5279
9f498cc5 5280struct perf_task_event {
3a80b4a3 5281 struct task_struct *task;
cdd6c482 5282 struct perf_event_context *task_ctx;
60313ebe
PZ
5283
5284 struct {
5285 struct perf_event_header header;
5286
5287 u32 pid;
5288 u32 ppid;
9f498cc5
PZ
5289 u32 tid;
5290 u32 ptid;
393b2ad8 5291 u64 time;
cdd6c482 5292 } event_id;
60313ebe
PZ
5293};
5294
67516844
JO
5295static int perf_event_task_match(struct perf_event *event)
5296{
13d7a241
SE
5297 return event->attr.comm || event->attr.mmap ||
5298 event->attr.mmap2 || event->attr.mmap_data ||
5299 event->attr.task;
67516844
JO
5300}
5301
cdd6c482 5302static void perf_event_task_output(struct perf_event *event,
52d857a8 5303 void *data)
60313ebe 5304{
52d857a8 5305 struct perf_task_event *task_event = data;
60313ebe 5306 struct perf_output_handle handle;
c980d109 5307 struct perf_sample_data sample;
9f498cc5 5308 struct task_struct *task = task_event->task;
c980d109 5309 int ret, size = task_event->event_id.header.size;
8bb39f9a 5310
67516844
JO
5311 if (!perf_event_task_match(event))
5312 return;
5313
c980d109 5314 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5315
c980d109 5316 ret = perf_output_begin(&handle, event,
a7ac67ea 5317 task_event->event_id.header.size);
ef60777c 5318 if (ret)
c980d109 5319 goto out;
60313ebe 5320
cdd6c482
IM
5321 task_event->event_id.pid = perf_event_pid(event, task);
5322 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5323
cdd6c482
IM
5324 task_event->event_id.tid = perf_event_tid(event, task);
5325 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5326
cdd6c482 5327 perf_output_put(&handle, task_event->event_id);
393b2ad8 5328
c980d109
ACM
5329 perf_event__output_id_sample(event, &handle, &sample);
5330
60313ebe 5331 perf_output_end(&handle);
c980d109
ACM
5332out:
5333 task_event->event_id.header.size = size;
60313ebe
PZ
5334}
5335
cdd6c482
IM
5336static void perf_event_task(struct task_struct *task,
5337 struct perf_event_context *task_ctx,
3a80b4a3 5338 int new)
60313ebe 5339{
9f498cc5 5340 struct perf_task_event task_event;
60313ebe 5341
cdd6c482
IM
5342 if (!atomic_read(&nr_comm_events) &&
5343 !atomic_read(&nr_mmap_events) &&
5344 !atomic_read(&nr_task_events))
60313ebe
PZ
5345 return;
5346
9f498cc5 5347 task_event = (struct perf_task_event){
3a80b4a3
PZ
5348 .task = task,
5349 .task_ctx = task_ctx,
cdd6c482 5350 .event_id = {
60313ebe 5351 .header = {
cdd6c482 5352 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5353 .misc = 0,
cdd6c482 5354 .size = sizeof(task_event.event_id),
60313ebe 5355 },
573402db
PZ
5356 /* .pid */
5357 /* .ppid */
9f498cc5
PZ
5358 /* .tid */
5359 /* .ptid */
6f93d0a7 5360 .time = perf_clock(),
60313ebe
PZ
5361 },
5362 };
5363
67516844 5364 perf_event_aux(perf_event_task_output,
52d857a8
JO
5365 &task_event,
5366 task_ctx);
9f498cc5
PZ
5367}
5368
cdd6c482 5369void perf_event_fork(struct task_struct *task)
9f498cc5 5370{
cdd6c482 5371 perf_event_task(task, NULL, 1);
60313ebe
PZ
5372}
5373
8d1b2d93
PZ
5374/*
5375 * comm tracking
5376 */
5377
5378struct perf_comm_event {
22a4f650
IM
5379 struct task_struct *task;
5380 char *comm;
8d1b2d93
PZ
5381 int comm_size;
5382
5383 struct {
5384 struct perf_event_header header;
5385
5386 u32 pid;
5387 u32 tid;
cdd6c482 5388 } event_id;
8d1b2d93
PZ
5389};
5390
67516844
JO
5391static int perf_event_comm_match(struct perf_event *event)
5392{
5393 return event->attr.comm;
5394}
5395
cdd6c482 5396static void perf_event_comm_output(struct perf_event *event,
52d857a8 5397 void *data)
8d1b2d93 5398{
52d857a8 5399 struct perf_comm_event *comm_event = data;
8d1b2d93 5400 struct perf_output_handle handle;
c980d109 5401 struct perf_sample_data sample;
cdd6c482 5402 int size = comm_event->event_id.header.size;
c980d109
ACM
5403 int ret;
5404
67516844
JO
5405 if (!perf_event_comm_match(event))
5406 return;
5407
c980d109
ACM
5408 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5409 ret = perf_output_begin(&handle, event,
a7ac67ea 5410 comm_event->event_id.header.size);
8d1b2d93
PZ
5411
5412 if (ret)
c980d109 5413 goto out;
8d1b2d93 5414
cdd6c482
IM
5415 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5416 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5417
cdd6c482 5418 perf_output_put(&handle, comm_event->event_id);
76369139 5419 __output_copy(&handle, comm_event->comm,
8d1b2d93 5420 comm_event->comm_size);
c980d109
ACM
5421
5422 perf_event__output_id_sample(event, &handle, &sample);
5423
8d1b2d93 5424 perf_output_end(&handle);
c980d109
ACM
5425out:
5426 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5427}
5428
cdd6c482 5429static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5430{
413ee3b4 5431 char comm[TASK_COMM_LEN];
8d1b2d93 5432 unsigned int size;
8d1b2d93 5433
413ee3b4 5434 memset(comm, 0, sizeof(comm));
96b02d78 5435 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5436 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5437
5438 comm_event->comm = comm;
5439 comm_event->comm_size = size;
5440
cdd6c482 5441 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5442
67516844 5443 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5444 comm_event,
5445 NULL);
8d1b2d93
PZ
5446}
5447
82b89778 5448void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5449{
9ee318a7
PZ
5450 struct perf_comm_event comm_event;
5451
cdd6c482 5452 if (!atomic_read(&nr_comm_events))
9ee318a7 5453 return;
a63eaf34 5454
9ee318a7 5455 comm_event = (struct perf_comm_event){
8d1b2d93 5456 .task = task,
573402db
PZ
5457 /* .comm */
5458 /* .comm_size */
cdd6c482 5459 .event_id = {
573402db 5460 .header = {
cdd6c482 5461 .type = PERF_RECORD_COMM,
82b89778 5462 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5463 /* .size */
5464 },
5465 /* .pid */
5466 /* .tid */
8d1b2d93
PZ
5467 },
5468 };
5469
cdd6c482 5470 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5471}
5472
0a4a9391
PZ
5473/*
5474 * mmap tracking
5475 */
5476
5477struct perf_mmap_event {
089dd79d
PZ
5478 struct vm_area_struct *vma;
5479
5480 const char *file_name;
5481 int file_size;
13d7a241
SE
5482 int maj, min;
5483 u64 ino;
5484 u64 ino_generation;
f972eb63 5485 u32 prot, flags;
0a4a9391
PZ
5486
5487 struct {
5488 struct perf_event_header header;
5489
5490 u32 pid;
5491 u32 tid;
5492 u64 start;
5493 u64 len;
5494 u64 pgoff;
cdd6c482 5495 } event_id;
0a4a9391
PZ
5496};
5497
67516844
JO
5498static int perf_event_mmap_match(struct perf_event *event,
5499 void *data)
5500{
5501 struct perf_mmap_event *mmap_event = data;
5502 struct vm_area_struct *vma = mmap_event->vma;
5503 int executable = vma->vm_flags & VM_EXEC;
5504
5505 return (!executable && event->attr.mmap_data) ||
13d7a241 5506 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5507}
5508
cdd6c482 5509static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5510 void *data)
0a4a9391 5511{
52d857a8 5512 struct perf_mmap_event *mmap_event = data;
0a4a9391 5513 struct perf_output_handle handle;
c980d109 5514 struct perf_sample_data sample;
cdd6c482 5515 int size = mmap_event->event_id.header.size;
c980d109 5516 int ret;
0a4a9391 5517
67516844
JO
5518 if (!perf_event_mmap_match(event, data))
5519 return;
5520
13d7a241
SE
5521 if (event->attr.mmap2) {
5522 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5523 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5524 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5525 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5526 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5527 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5528 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5529 }
5530
c980d109
ACM
5531 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5532 ret = perf_output_begin(&handle, event,
a7ac67ea 5533 mmap_event->event_id.header.size);
0a4a9391 5534 if (ret)
c980d109 5535 goto out;
0a4a9391 5536
cdd6c482
IM
5537 mmap_event->event_id.pid = perf_event_pid(event, current);
5538 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5539
cdd6c482 5540 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5541
5542 if (event->attr.mmap2) {
5543 perf_output_put(&handle, mmap_event->maj);
5544 perf_output_put(&handle, mmap_event->min);
5545 perf_output_put(&handle, mmap_event->ino);
5546 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5547 perf_output_put(&handle, mmap_event->prot);
5548 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5549 }
5550
76369139 5551 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5552 mmap_event->file_size);
c980d109
ACM
5553
5554 perf_event__output_id_sample(event, &handle, &sample);
5555
78d613eb 5556 perf_output_end(&handle);
c980d109
ACM
5557out:
5558 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5559}
5560
cdd6c482 5561static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5562{
089dd79d
PZ
5563 struct vm_area_struct *vma = mmap_event->vma;
5564 struct file *file = vma->vm_file;
13d7a241
SE
5565 int maj = 0, min = 0;
5566 u64 ino = 0, gen = 0;
f972eb63 5567 u32 prot = 0, flags = 0;
0a4a9391
PZ
5568 unsigned int size;
5569 char tmp[16];
5570 char *buf = NULL;
2c42cfbf 5571 char *name;
413ee3b4 5572
0a4a9391 5573 if (file) {
13d7a241
SE
5574 struct inode *inode;
5575 dev_t dev;
3ea2f2b9 5576
2c42cfbf 5577 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5578 if (!buf) {
c7e548b4
ON
5579 name = "//enomem";
5580 goto cpy_name;
0a4a9391 5581 }
413ee3b4 5582 /*
3ea2f2b9 5583 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5584 * need to add enough zero bytes after the string to handle
5585 * the 64bit alignment we do later.
5586 */
3ea2f2b9 5587 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5588 if (IS_ERR(name)) {
c7e548b4
ON
5589 name = "//toolong";
5590 goto cpy_name;
0a4a9391 5591 }
13d7a241
SE
5592 inode = file_inode(vma->vm_file);
5593 dev = inode->i_sb->s_dev;
5594 ino = inode->i_ino;
5595 gen = inode->i_generation;
5596 maj = MAJOR(dev);
5597 min = MINOR(dev);
f972eb63
PZ
5598
5599 if (vma->vm_flags & VM_READ)
5600 prot |= PROT_READ;
5601 if (vma->vm_flags & VM_WRITE)
5602 prot |= PROT_WRITE;
5603 if (vma->vm_flags & VM_EXEC)
5604 prot |= PROT_EXEC;
5605
5606 if (vma->vm_flags & VM_MAYSHARE)
5607 flags = MAP_SHARED;
5608 else
5609 flags = MAP_PRIVATE;
5610
5611 if (vma->vm_flags & VM_DENYWRITE)
5612 flags |= MAP_DENYWRITE;
5613 if (vma->vm_flags & VM_MAYEXEC)
5614 flags |= MAP_EXECUTABLE;
5615 if (vma->vm_flags & VM_LOCKED)
5616 flags |= MAP_LOCKED;
5617 if (vma->vm_flags & VM_HUGETLB)
5618 flags |= MAP_HUGETLB;
5619
c7e548b4 5620 goto got_name;
0a4a9391 5621 } else {
fbe26abe
JO
5622 if (vma->vm_ops && vma->vm_ops->name) {
5623 name = (char *) vma->vm_ops->name(vma);
5624 if (name)
5625 goto cpy_name;
5626 }
5627
2c42cfbf 5628 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5629 if (name)
5630 goto cpy_name;
089dd79d 5631
32c5fb7e 5632 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5633 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5634 name = "[heap]";
5635 goto cpy_name;
32c5fb7e
ON
5636 }
5637 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5638 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5639 name = "[stack]";
5640 goto cpy_name;
089dd79d
PZ
5641 }
5642
c7e548b4
ON
5643 name = "//anon";
5644 goto cpy_name;
0a4a9391
PZ
5645 }
5646
c7e548b4
ON
5647cpy_name:
5648 strlcpy(tmp, name, sizeof(tmp));
5649 name = tmp;
0a4a9391 5650got_name:
2c42cfbf
PZ
5651 /*
5652 * Since our buffer works in 8 byte units we need to align our string
5653 * size to a multiple of 8. However, we must guarantee the tail end is
5654 * zero'd out to avoid leaking random bits to userspace.
5655 */
5656 size = strlen(name)+1;
5657 while (!IS_ALIGNED(size, sizeof(u64)))
5658 name[size++] = '\0';
0a4a9391
PZ
5659
5660 mmap_event->file_name = name;
5661 mmap_event->file_size = size;
13d7a241
SE
5662 mmap_event->maj = maj;
5663 mmap_event->min = min;
5664 mmap_event->ino = ino;
5665 mmap_event->ino_generation = gen;
f972eb63
PZ
5666 mmap_event->prot = prot;
5667 mmap_event->flags = flags;
0a4a9391 5668
2fe85427
SE
5669 if (!(vma->vm_flags & VM_EXEC))
5670 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5671
cdd6c482 5672 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5673
67516844 5674 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5675 mmap_event,
5676 NULL);
665c2142 5677
0a4a9391
PZ
5678 kfree(buf);
5679}
5680
3af9e859 5681void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5682{
9ee318a7
PZ
5683 struct perf_mmap_event mmap_event;
5684
cdd6c482 5685 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5686 return;
5687
5688 mmap_event = (struct perf_mmap_event){
089dd79d 5689 .vma = vma,
573402db
PZ
5690 /* .file_name */
5691 /* .file_size */
cdd6c482 5692 .event_id = {
573402db 5693 .header = {
cdd6c482 5694 .type = PERF_RECORD_MMAP,
39447b38 5695 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5696 /* .size */
5697 },
5698 /* .pid */
5699 /* .tid */
089dd79d
PZ
5700 .start = vma->vm_start,
5701 .len = vma->vm_end - vma->vm_start,
3a0304e9 5702 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5703 },
13d7a241
SE
5704 /* .maj (attr_mmap2 only) */
5705 /* .min (attr_mmap2 only) */
5706 /* .ino (attr_mmap2 only) */
5707 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
5708 /* .prot (attr_mmap2 only) */
5709 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
5710 };
5711
cdd6c482 5712 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5713}
5714
a78ac325
PZ
5715/*
5716 * IRQ throttle logging
5717 */
5718
cdd6c482 5719static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5720{
5721 struct perf_output_handle handle;
c980d109 5722 struct perf_sample_data sample;
a78ac325
PZ
5723 int ret;
5724
5725 struct {
5726 struct perf_event_header header;
5727 u64 time;
cca3f454 5728 u64 id;
7f453c24 5729 u64 stream_id;
a78ac325
PZ
5730 } throttle_event = {
5731 .header = {
cdd6c482 5732 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5733 .misc = 0,
5734 .size = sizeof(throttle_event),
5735 },
def0a9b2 5736 .time = perf_clock(),
cdd6c482
IM
5737 .id = primary_event_id(event),
5738 .stream_id = event->id,
a78ac325
PZ
5739 };
5740
966ee4d6 5741 if (enable)
cdd6c482 5742 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5743
c980d109
ACM
5744 perf_event_header__init_id(&throttle_event.header, &sample, event);
5745
5746 ret = perf_output_begin(&handle, event,
a7ac67ea 5747 throttle_event.header.size);
a78ac325
PZ
5748 if (ret)
5749 return;
5750
5751 perf_output_put(&handle, throttle_event);
c980d109 5752 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5753 perf_output_end(&handle);
5754}
5755
f6c7d5fe 5756/*
cdd6c482 5757 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5758 */
5759
a8b0ca17 5760static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5761 int throttle, struct perf_sample_data *data,
5762 struct pt_regs *regs)
f6c7d5fe 5763{
cdd6c482
IM
5764 int events = atomic_read(&event->event_limit);
5765 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5766 u64 seq;
79f14641
PZ
5767 int ret = 0;
5768
96398826
PZ
5769 /*
5770 * Non-sampling counters might still use the PMI to fold short
5771 * hardware counters, ignore those.
5772 */
5773 if (unlikely(!is_sampling_event(event)))
5774 return 0;
5775
e050e3f0
SE
5776 seq = __this_cpu_read(perf_throttled_seq);
5777 if (seq != hwc->interrupts_seq) {
5778 hwc->interrupts_seq = seq;
5779 hwc->interrupts = 1;
5780 } else {
5781 hwc->interrupts++;
5782 if (unlikely(throttle
5783 && hwc->interrupts >= max_samples_per_tick)) {
5784 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5785 hwc->interrupts = MAX_INTERRUPTS;
5786 perf_log_throttle(event, 0);
d84153d6 5787 tick_nohz_full_kick();
a78ac325
PZ
5788 ret = 1;
5789 }
e050e3f0 5790 }
60db5e09 5791
cdd6c482 5792 if (event->attr.freq) {
def0a9b2 5793 u64 now = perf_clock();
abd50713 5794 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5795
abd50713 5796 hwc->freq_time_stamp = now;
bd2b5b12 5797
abd50713 5798 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5799 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5800 }
5801
2023b359
PZ
5802 /*
5803 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5804 * events
2023b359
PZ
5805 */
5806
cdd6c482
IM
5807 event->pending_kill = POLL_IN;
5808 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5809 ret = 1;
cdd6c482 5810 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5811 event->pending_disable = 1;
5812 irq_work_queue(&event->pending);
79f14641
PZ
5813 }
5814
453f19ee 5815 if (event->overflow_handler)
a8b0ca17 5816 event->overflow_handler(event, data, regs);
453f19ee 5817 else
a8b0ca17 5818 perf_event_output(event, data, regs);
453f19ee 5819
f506b3dc 5820 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5821 event->pending_wakeup = 1;
5822 irq_work_queue(&event->pending);
f506b3dc
PZ
5823 }
5824
79f14641 5825 return ret;
f6c7d5fe
PZ
5826}
5827
a8b0ca17 5828int perf_event_overflow(struct perf_event *event,
5622f295
MM
5829 struct perf_sample_data *data,
5830 struct pt_regs *regs)
850bc73f 5831{
a8b0ca17 5832 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5833}
5834
15dbf27c 5835/*
cdd6c482 5836 * Generic software event infrastructure
15dbf27c
PZ
5837 */
5838
b28ab83c
PZ
5839struct swevent_htable {
5840 struct swevent_hlist *swevent_hlist;
5841 struct mutex hlist_mutex;
5842 int hlist_refcount;
5843
5844 /* Recursion avoidance in each contexts */
5845 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
5846
5847 /* Keeps track of cpu being initialized/exited */
5848 bool online;
b28ab83c
PZ
5849};
5850
5851static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5852
7b4b6658 5853/*
cdd6c482
IM
5854 * We directly increment event->count and keep a second value in
5855 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5856 * is kept in the range [-sample_period, 0] so that we can use the
5857 * sign as trigger.
5858 */
5859
ab573844 5860u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5861{
cdd6c482 5862 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5863 u64 period = hwc->last_period;
5864 u64 nr, offset;
5865 s64 old, val;
5866
5867 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5868
5869again:
e7850595 5870 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5871 if (val < 0)
5872 return 0;
15dbf27c 5873
7b4b6658
PZ
5874 nr = div64_u64(period + val, period);
5875 offset = nr * period;
5876 val -= offset;
e7850595 5877 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5878 goto again;
15dbf27c 5879
7b4b6658 5880 return nr;
15dbf27c
PZ
5881}
5882
0cff784a 5883static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5884 struct perf_sample_data *data,
5622f295 5885 struct pt_regs *regs)
15dbf27c 5886{
cdd6c482 5887 struct hw_perf_event *hwc = &event->hw;
850bc73f 5888 int throttle = 0;
15dbf27c 5889
0cff784a
PZ
5890 if (!overflow)
5891 overflow = perf_swevent_set_period(event);
15dbf27c 5892
7b4b6658
PZ
5893 if (hwc->interrupts == MAX_INTERRUPTS)
5894 return;
15dbf27c 5895
7b4b6658 5896 for (; overflow; overflow--) {
a8b0ca17 5897 if (__perf_event_overflow(event, throttle,
5622f295 5898 data, regs)) {
7b4b6658
PZ
5899 /*
5900 * We inhibit the overflow from happening when
5901 * hwc->interrupts == MAX_INTERRUPTS.
5902 */
5903 break;
5904 }
cf450a73 5905 throttle = 1;
7b4b6658 5906 }
15dbf27c
PZ
5907}
5908
a4eaf7f1 5909static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5910 struct perf_sample_data *data,
5622f295 5911 struct pt_regs *regs)
7b4b6658 5912{
cdd6c482 5913 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5914
e7850595 5915 local64_add(nr, &event->count);
d6d020e9 5916
0cff784a
PZ
5917 if (!regs)
5918 return;
5919
6c7e550f 5920 if (!is_sampling_event(event))
7b4b6658 5921 return;
d6d020e9 5922
5d81e5cf
AV
5923 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5924 data->period = nr;
5925 return perf_swevent_overflow(event, 1, data, regs);
5926 } else
5927 data->period = event->hw.last_period;
5928
0cff784a 5929 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5930 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5931
e7850595 5932 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5933 return;
df1a132b 5934
a8b0ca17 5935 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5936}
5937
f5ffe02e
FW
5938static int perf_exclude_event(struct perf_event *event,
5939 struct pt_regs *regs)
5940{
a4eaf7f1 5941 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5942 return 1;
a4eaf7f1 5943
f5ffe02e
FW
5944 if (regs) {
5945 if (event->attr.exclude_user && user_mode(regs))
5946 return 1;
5947
5948 if (event->attr.exclude_kernel && !user_mode(regs))
5949 return 1;
5950 }
5951
5952 return 0;
5953}
5954
cdd6c482 5955static int perf_swevent_match(struct perf_event *event,
1c432d89 5956 enum perf_type_id type,
6fb2915d
LZ
5957 u32 event_id,
5958 struct perf_sample_data *data,
5959 struct pt_regs *regs)
15dbf27c 5960{
cdd6c482 5961 if (event->attr.type != type)
a21ca2ca 5962 return 0;
f5ffe02e 5963
cdd6c482 5964 if (event->attr.config != event_id)
15dbf27c
PZ
5965 return 0;
5966
f5ffe02e
FW
5967 if (perf_exclude_event(event, regs))
5968 return 0;
15dbf27c
PZ
5969
5970 return 1;
5971}
5972
76e1d904
FW
5973static inline u64 swevent_hash(u64 type, u32 event_id)
5974{
5975 u64 val = event_id | (type << 32);
5976
5977 return hash_64(val, SWEVENT_HLIST_BITS);
5978}
5979
49f135ed
FW
5980static inline struct hlist_head *
5981__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5982{
49f135ed
FW
5983 u64 hash = swevent_hash(type, event_id);
5984
5985 return &hlist->heads[hash];
5986}
76e1d904 5987
49f135ed
FW
5988/* For the read side: events when they trigger */
5989static inline struct hlist_head *
b28ab83c 5990find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5991{
5992 struct swevent_hlist *hlist;
76e1d904 5993
b28ab83c 5994 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5995 if (!hlist)
5996 return NULL;
5997
49f135ed
FW
5998 return __find_swevent_head(hlist, type, event_id);
5999}
6000
6001/* For the event head insertion and removal in the hlist */
6002static inline struct hlist_head *
b28ab83c 6003find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6004{
6005 struct swevent_hlist *hlist;
6006 u32 event_id = event->attr.config;
6007 u64 type = event->attr.type;
6008
6009 /*
6010 * Event scheduling is always serialized against hlist allocation
6011 * and release. Which makes the protected version suitable here.
6012 * The context lock guarantees that.
6013 */
b28ab83c 6014 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6015 lockdep_is_held(&event->ctx->lock));
6016 if (!hlist)
6017 return NULL;
6018
6019 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6020}
6021
6022static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6023 u64 nr,
76e1d904
FW
6024 struct perf_sample_data *data,
6025 struct pt_regs *regs)
15dbf27c 6026{
4a32fea9 6027 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6028 struct perf_event *event;
76e1d904 6029 struct hlist_head *head;
15dbf27c 6030
76e1d904 6031 rcu_read_lock();
b28ab83c 6032 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6033 if (!head)
6034 goto end;
6035
b67bfe0d 6036 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6037 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6038 perf_swevent_event(event, nr, data, regs);
15dbf27c 6039 }
76e1d904
FW
6040end:
6041 rcu_read_unlock();
15dbf27c
PZ
6042}
6043
86038c5e
PZI
6044DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6045
4ed7c92d 6046int perf_swevent_get_recursion_context(void)
96f6d444 6047{
4a32fea9 6048 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6049
b28ab83c 6050 return get_recursion_context(swhash->recursion);
96f6d444 6051}
645e8cc0 6052EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6053
fa9f90be 6054inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6055{
4a32fea9 6056 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6057
b28ab83c 6058 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6059}
15dbf27c 6060
86038c5e 6061void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6062{
a4234bfc 6063 struct perf_sample_data data;
4ed7c92d 6064
86038c5e 6065 if (WARN_ON_ONCE(!regs))
4ed7c92d 6066 return;
a4234bfc 6067
fd0d000b 6068 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6069 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6070}
6071
6072void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6073{
6074 int rctx;
6075
6076 preempt_disable_notrace();
6077 rctx = perf_swevent_get_recursion_context();
6078 if (unlikely(rctx < 0))
6079 goto fail;
6080
6081 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6082
6083 perf_swevent_put_recursion_context(rctx);
86038c5e 6084fail:
1c024eca 6085 preempt_enable_notrace();
b8e83514
PZ
6086}
6087
cdd6c482 6088static void perf_swevent_read(struct perf_event *event)
15dbf27c 6089{
15dbf27c
PZ
6090}
6091
a4eaf7f1 6092static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6093{
4a32fea9 6094 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6095 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6096 struct hlist_head *head;
6097
6c7e550f 6098 if (is_sampling_event(event)) {
7b4b6658 6099 hwc->last_period = hwc->sample_period;
cdd6c482 6100 perf_swevent_set_period(event);
7b4b6658 6101 }
76e1d904 6102
a4eaf7f1
PZ
6103 hwc->state = !(flags & PERF_EF_START);
6104
b28ab83c 6105 head = find_swevent_head(swhash, event);
39af6b16
JO
6106 if (!head) {
6107 /*
6108 * We can race with cpu hotplug code. Do not
6109 * WARN if the cpu just got unplugged.
6110 */
6111 WARN_ON_ONCE(swhash->online);
76e1d904 6112 return -EINVAL;
39af6b16 6113 }
76e1d904
FW
6114
6115 hlist_add_head_rcu(&event->hlist_entry, head);
6116
15dbf27c
PZ
6117 return 0;
6118}
6119
a4eaf7f1 6120static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6121{
76e1d904 6122 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6123}
6124
a4eaf7f1 6125static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6126{
a4eaf7f1 6127 event->hw.state = 0;
d6d020e9 6128}
aa9c4c0f 6129
a4eaf7f1 6130static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6131{
a4eaf7f1 6132 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6133}
6134
49f135ed
FW
6135/* Deref the hlist from the update side */
6136static inline struct swevent_hlist *
b28ab83c 6137swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6138{
b28ab83c
PZ
6139 return rcu_dereference_protected(swhash->swevent_hlist,
6140 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6141}
6142
b28ab83c 6143static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6144{
b28ab83c 6145 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6146
49f135ed 6147 if (!hlist)
76e1d904
FW
6148 return;
6149
70691d4a 6150 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6151 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6152}
6153
6154static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6155{
b28ab83c 6156 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6157
b28ab83c 6158 mutex_lock(&swhash->hlist_mutex);
76e1d904 6159
b28ab83c
PZ
6160 if (!--swhash->hlist_refcount)
6161 swevent_hlist_release(swhash);
76e1d904 6162
b28ab83c 6163 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6164}
6165
6166static void swevent_hlist_put(struct perf_event *event)
6167{
6168 int cpu;
6169
76e1d904
FW
6170 for_each_possible_cpu(cpu)
6171 swevent_hlist_put_cpu(event, cpu);
6172}
6173
6174static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6175{
b28ab83c 6176 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6177 int err = 0;
6178
b28ab83c 6179 mutex_lock(&swhash->hlist_mutex);
76e1d904 6180
b28ab83c 6181 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6182 struct swevent_hlist *hlist;
6183
6184 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6185 if (!hlist) {
6186 err = -ENOMEM;
6187 goto exit;
6188 }
b28ab83c 6189 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6190 }
b28ab83c 6191 swhash->hlist_refcount++;
9ed6060d 6192exit:
b28ab83c 6193 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6194
6195 return err;
6196}
6197
6198static int swevent_hlist_get(struct perf_event *event)
6199{
6200 int err;
6201 int cpu, failed_cpu;
6202
76e1d904
FW
6203 get_online_cpus();
6204 for_each_possible_cpu(cpu) {
6205 err = swevent_hlist_get_cpu(event, cpu);
6206 if (err) {
6207 failed_cpu = cpu;
6208 goto fail;
6209 }
6210 }
6211 put_online_cpus();
6212
6213 return 0;
9ed6060d 6214fail:
76e1d904
FW
6215 for_each_possible_cpu(cpu) {
6216 if (cpu == failed_cpu)
6217 break;
6218 swevent_hlist_put_cpu(event, cpu);
6219 }
6220
6221 put_online_cpus();
6222 return err;
6223}
6224
c5905afb 6225struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6226
b0a873eb
PZ
6227static void sw_perf_event_destroy(struct perf_event *event)
6228{
6229 u64 event_id = event->attr.config;
95476b64 6230
b0a873eb
PZ
6231 WARN_ON(event->parent);
6232
c5905afb 6233 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6234 swevent_hlist_put(event);
6235}
6236
6237static int perf_swevent_init(struct perf_event *event)
6238{
8176cced 6239 u64 event_id = event->attr.config;
b0a873eb
PZ
6240
6241 if (event->attr.type != PERF_TYPE_SOFTWARE)
6242 return -ENOENT;
6243
2481c5fa
SE
6244 /*
6245 * no branch sampling for software events
6246 */
6247 if (has_branch_stack(event))
6248 return -EOPNOTSUPP;
6249
b0a873eb
PZ
6250 switch (event_id) {
6251 case PERF_COUNT_SW_CPU_CLOCK:
6252 case PERF_COUNT_SW_TASK_CLOCK:
6253 return -ENOENT;
6254
6255 default:
6256 break;
6257 }
6258
ce677831 6259 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6260 return -ENOENT;
6261
6262 if (!event->parent) {
6263 int err;
6264
6265 err = swevent_hlist_get(event);
6266 if (err)
6267 return err;
6268
c5905afb 6269 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6270 event->destroy = sw_perf_event_destroy;
6271 }
6272
6273 return 0;
6274}
6275
6276static struct pmu perf_swevent = {
89a1e187 6277 .task_ctx_nr = perf_sw_context,
95476b64 6278
b0a873eb 6279 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6280 .add = perf_swevent_add,
6281 .del = perf_swevent_del,
6282 .start = perf_swevent_start,
6283 .stop = perf_swevent_stop,
1c024eca 6284 .read = perf_swevent_read,
1c024eca
PZ
6285};
6286
b0a873eb
PZ
6287#ifdef CONFIG_EVENT_TRACING
6288
1c024eca
PZ
6289static int perf_tp_filter_match(struct perf_event *event,
6290 struct perf_sample_data *data)
6291{
6292 void *record = data->raw->data;
6293
6294 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6295 return 1;
6296 return 0;
6297}
6298
6299static int perf_tp_event_match(struct perf_event *event,
6300 struct perf_sample_data *data,
6301 struct pt_regs *regs)
6302{
a0f7d0f7
FW
6303 if (event->hw.state & PERF_HES_STOPPED)
6304 return 0;
580d607c
PZ
6305 /*
6306 * All tracepoints are from kernel-space.
6307 */
6308 if (event->attr.exclude_kernel)
1c024eca
PZ
6309 return 0;
6310
6311 if (!perf_tp_filter_match(event, data))
6312 return 0;
6313
6314 return 1;
6315}
6316
6317void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6318 struct pt_regs *regs, struct hlist_head *head, int rctx,
6319 struct task_struct *task)
95476b64
FW
6320{
6321 struct perf_sample_data data;
1c024eca 6322 struct perf_event *event;
1c024eca 6323
95476b64
FW
6324 struct perf_raw_record raw = {
6325 .size = entry_size,
6326 .data = record,
6327 };
6328
fd0d000b 6329 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6330 data.raw = &raw;
6331
b67bfe0d 6332 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6333 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6334 perf_swevent_event(event, count, &data, regs);
4f41c013 6335 }
ecc55f84 6336
e6dab5ff
AV
6337 /*
6338 * If we got specified a target task, also iterate its context and
6339 * deliver this event there too.
6340 */
6341 if (task && task != current) {
6342 struct perf_event_context *ctx;
6343 struct trace_entry *entry = record;
6344
6345 rcu_read_lock();
6346 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6347 if (!ctx)
6348 goto unlock;
6349
6350 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6351 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6352 continue;
6353 if (event->attr.config != entry->type)
6354 continue;
6355 if (perf_tp_event_match(event, &data, regs))
6356 perf_swevent_event(event, count, &data, regs);
6357 }
6358unlock:
6359 rcu_read_unlock();
6360 }
6361
ecc55f84 6362 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6363}
6364EXPORT_SYMBOL_GPL(perf_tp_event);
6365
cdd6c482 6366static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6367{
1c024eca 6368 perf_trace_destroy(event);
e077df4f
PZ
6369}
6370
b0a873eb 6371static int perf_tp_event_init(struct perf_event *event)
e077df4f 6372{
76e1d904
FW
6373 int err;
6374
b0a873eb
PZ
6375 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6376 return -ENOENT;
6377
2481c5fa
SE
6378 /*
6379 * no branch sampling for tracepoint events
6380 */
6381 if (has_branch_stack(event))
6382 return -EOPNOTSUPP;
6383
1c024eca
PZ
6384 err = perf_trace_init(event);
6385 if (err)
b0a873eb 6386 return err;
e077df4f 6387
cdd6c482 6388 event->destroy = tp_perf_event_destroy;
e077df4f 6389
b0a873eb
PZ
6390 return 0;
6391}
6392
6393static struct pmu perf_tracepoint = {
89a1e187
PZ
6394 .task_ctx_nr = perf_sw_context,
6395
b0a873eb 6396 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6397 .add = perf_trace_add,
6398 .del = perf_trace_del,
6399 .start = perf_swevent_start,
6400 .stop = perf_swevent_stop,
b0a873eb 6401 .read = perf_swevent_read,
b0a873eb
PZ
6402};
6403
6404static inline void perf_tp_register(void)
6405{
2e80a82a 6406 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6407}
6fb2915d
LZ
6408
6409static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6410{
6411 char *filter_str;
6412 int ret;
6413
6414 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6415 return -EINVAL;
6416
6417 filter_str = strndup_user(arg, PAGE_SIZE);
6418 if (IS_ERR(filter_str))
6419 return PTR_ERR(filter_str);
6420
6421 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6422
6423 kfree(filter_str);
6424 return ret;
6425}
6426
6427static void perf_event_free_filter(struct perf_event *event)
6428{
6429 ftrace_profile_free_filter(event);
6430}
6431
e077df4f 6432#else
6fb2915d 6433
b0a873eb 6434static inline void perf_tp_register(void)
e077df4f 6435{
e077df4f 6436}
6fb2915d
LZ
6437
6438static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6439{
6440 return -ENOENT;
6441}
6442
6443static void perf_event_free_filter(struct perf_event *event)
6444{
6445}
6446
07b139c8 6447#endif /* CONFIG_EVENT_TRACING */
e077df4f 6448
24f1e32c 6449#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6450void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6451{
f5ffe02e
FW
6452 struct perf_sample_data sample;
6453 struct pt_regs *regs = data;
6454
fd0d000b 6455 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6456
a4eaf7f1 6457 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6458 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6459}
6460#endif
6461
b0a873eb
PZ
6462/*
6463 * hrtimer based swevent callback
6464 */
f29ac756 6465
b0a873eb 6466static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6467{
b0a873eb
PZ
6468 enum hrtimer_restart ret = HRTIMER_RESTART;
6469 struct perf_sample_data data;
6470 struct pt_regs *regs;
6471 struct perf_event *event;
6472 u64 period;
f29ac756 6473
b0a873eb 6474 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6475
6476 if (event->state != PERF_EVENT_STATE_ACTIVE)
6477 return HRTIMER_NORESTART;
6478
b0a873eb 6479 event->pmu->read(event);
f344011c 6480
fd0d000b 6481 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6482 regs = get_irq_regs();
6483
6484 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6485 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6486 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6487 ret = HRTIMER_NORESTART;
6488 }
24f1e32c 6489
b0a873eb
PZ
6490 period = max_t(u64, 10000, event->hw.sample_period);
6491 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6492
b0a873eb 6493 return ret;
f29ac756
PZ
6494}
6495
b0a873eb 6496static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6497{
b0a873eb 6498 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6499 s64 period;
6500
6501 if (!is_sampling_event(event))
6502 return;
f5ffe02e 6503
5d508e82
FBH
6504 period = local64_read(&hwc->period_left);
6505 if (period) {
6506 if (period < 0)
6507 period = 10000;
fa407f35 6508
5d508e82
FBH
6509 local64_set(&hwc->period_left, 0);
6510 } else {
6511 period = max_t(u64, 10000, hwc->sample_period);
6512 }
6513 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6514 ns_to_ktime(period), 0,
b5ab4cd5 6515 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6516}
b0a873eb
PZ
6517
6518static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6519{
b0a873eb
PZ
6520 struct hw_perf_event *hwc = &event->hw;
6521
6c7e550f 6522 if (is_sampling_event(event)) {
b0a873eb 6523 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6524 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6525
6526 hrtimer_cancel(&hwc->hrtimer);
6527 }
24f1e32c
FW
6528}
6529
ba3dd36c
PZ
6530static void perf_swevent_init_hrtimer(struct perf_event *event)
6531{
6532 struct hw_perf_event *hwc = &event->hw;
6533
6534 if (!is_sampling_event(event))
6535 return;
6536
6537 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6538 hwc->hrtimer.function = perf_swevent_hrtimer;
6539
6540 /*
6541 * Since hrtimers have a fixed rate, we can do a static freq->period
6542 * mapping and avoid the whole period adjust feedback stuff.
6543 */
6544 if (event->attr.freq) {
6545 long freq = event->attr.sample_freq;
6546
6547 event->attr.sample_period = NSEC_PER_SEC / freq;
6548 hwc->sample_period = event->attr.sample_period;
6549 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6550 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6551 event->attr.freq = 0;
6552 }
6553}
6554
b0a873eb
PZ
6555/*
6556 * Software event: cpu wall time clock
6557 */
6558
6559static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6560{
b0a873eb
PZ
6561 s64 prev;
6562 u64 now;
6563
a4eaf7f1 6564 now = local_clock();
b0a873eb
PZ
6565 prev = local64_xchg(&event->hw.prev_count, now);
6566 local64_add(now - prev, &event->count);
24f1e32c 6567}
24f1e32c 6568
a4eaf7f1 6569static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6570{
a4eaf7f1 6571 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6572 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6573}
6574
a4eaf7f1 6575static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6576{
b0a873eb
PZ
6577 perf_swevent_cancel_hrtimer(event);
6578 cpu_clock_event_update(event);
6579}
f29ac756 6580
a4eaf7f1
PZ
6581static int cpu_clock_event_add(struct perf_event *event, int flags)
6582{
6583 if (flags & PERF_EF_START)
6584 cpu_clock_event_start(event, flags);
6585
6586 return 0;
6587}
6588
6589static void cpu_clock_event_del(struct perf_event *event, int flags)
6590{
6591 cpu_clock_event_stop(event, flags);
6592}
6593
b0a873eb
PZ
6594static void cpu_clock_event_read(struct perf_event *event)
6595{
6596 cpu_clock_event_update(event);
6597}
f344011c 6598
b0a873eb
PZ
6599static int cpu_clock_event_init(struct perf_event *event)
6600{
6601 if (event->attr.type != PERF_TYPE_SOFTWARE)
6602 return -ENOENT;
6603
6604 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6605 return -ENOENT;
6606
2481c5fa
SE
6607 /*
6608 * no branch sampling for software events
6609 */
6610 if (has_branch_stack(event))
6611 return -EOPNOTSUPP;
6612
ba3dd36c
PZ
6613 perf_swevent_init_hrtimer(event);
6614
b0a873eb 6615 return 0;
f29ac756
PZ
6616}
6617
b0a873eb 6618static struct pmu perf_cpu_clock = {
89a1e187
PZ
6619 .task_ctx_nr = perf_sw_context,
6620
b0a873eb 6621 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6622 .add = cpu_clock_event_add,
6623 .del = cpu_clock_event_del,
6624 .start = cpu_clock_event_start,
6625 .stop = cpu_clock_event_stop,
b0a873eb
PZ
6626 .read = cpu_clock_event_read,
6627};
6628
6629/*
6630 * Software event: task time clock
6631 */
6632
6633static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6634{
b0a873eb
PZ
6635 u64 prev;
6636 s64 delta;
5c92d124 6637
b0a873eb
PZ
6638 prev = local64_xchg(&event->hw.prev_count, now);
6639 delta = now - prev;
6640 local64_add(delta, &event->count);
6641}
5c92d124 6642
a4eaf7f1 6643static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6644{
a4eaf7f1 6645 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6646 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6647}
6648
a4eaf7f1 6649static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6650{
6651 perf_swevent_cancel_hrtimer(event);
6652 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6653}
6654
6655static int task_clock_event_add(struct perf_event *event, int flags)
6656{
6657 if (flags & PERF_EF_START)
6658 task_clock_event_start(event, flags);
b0a873eb 6659
a4eaf7f1
PZ
6660 return 0;
6661}
6662
6663static void task_clock_event_del(struct perf_event *event, int flags)
6664{
6665 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6666}
6667
6668static void task_clock_event_read(struct perf_event *event)
6669{
768a06e2
PZ
6670 u64 now = perf_clock();
6671 u64 delta = now - event->ctx->timestamp;
6672 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6673
6674 task_clock_event_update(event, time);
6675}
6676
6677static int task_clock_event_init(struct perf_event *event)
6fb2915d 6678{
b0a873eb
PZ
6679 if (event->attr.type != PERF_TYPE_SOFTWARE)
6680 return -ENOENT;
6681
6682 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6683 return -ENOENT;
6684
2481c5fa
SE
6685 /*
6686 * no branch sampling for software events
6687 */
6688 if (has_branch_stack(event))
6689 return -EOPNOTSUPP;
6690
ba3dd36c
PZ
6691 perf_swevent_init_hrtimer(event);
6692
b0a873eb 6693 return 0;
6fb2915d
LZ
6694}
6695
b0a873eb 6696static struct pmu perf_task_clock = {
89a1e187
PZ
6697 .task_ctx_nr = perf_sw_context,
6698
b0a873eb 6699 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6700 .add = task_clock_event_add,
6701 .del = task_clock_event_del,
6702 .start = task_clock_event_start,
6703 .stop = task_clock_event_stop,
b0a873eb
PZ
6704 .read = task_clock_event_read,
6705};
6fb2915d 6706
ad5133b7 6707static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6708{
e077df4f 6709}
6fb2915d 6710
ad5133b7 6711static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6712{
ad5133b7 6713 return 0;
6fb2915d
LZ
6714}
6715
ad5133b7 6716static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6717{
ad5133b7 6718 perf_pmu_disable(pmu);
6fb2915d
LZ
6719}
6720
ad5133b7
PZ
6721static int perf_pmu_commit_txn(struct pmu *pmu)
6722{
6723 perf_pmu_enable(pmu);
6724 return 0;
6725}
e077df4f 6726
ad5133b7 6727static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6728{
ad5133b7 6729 perf_pmu_enable(pmu);
24f1e32c
FW
6730}
6731
35edc2a5
PZ
6732static int perf_event_idx_default(struct perf_event *event)
6733{
c719f560 6734 return 0;
35edc2a5
PZ
6735}
6736
8dc85d54
PZ
6737/*
6738 * Ensures all contexts with the same task_ctx_nr have the same
6739 * pmu_cpu_context too.
6740 */
9e317041 6741static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 6742{
8dc85d54 6743 struct pmu *pmu;
b326e956 6744
8dc85d54
PZ
6745 if (ctxn < 0)
6746 return NULL;
24f1e32c 6747
8dc85d54
PZ
6748 list_for_each_entry(pmu, &pmus, entry) {
6749 if (pmu->task_ctx_nr == ctxn)
6750 return pmu->pmu_cpu_context;
6751 }
24f1e32c 6752
8dc85d54 6753 return NULL;
24f1e32c
FW
6754}
6755
51676957 6756static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6757{
51676957
PZ
6758 int cpu;
6759
6760 for_each_possible_cpu(cpu) {
6761 struct perf_cpu_context *cpuctx;
6762
6763 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6764
3f1f3320
PZ
6765 if (cpuctx->unique_pmu == old_pmu)
6766 cpuctx->unique_pmu = pmu;
51676957
PZ
6767 }
6768}
6769
6770static void free_pmu_context(struct pmu *pmu)
6771{
6772 struct pmu *i;
f5ffe02e 6773
8dc85d54 6774 mutex_lock(&pmus_lock);
0475f9ea 6775 /*
8dc85d54 6776 * Like a real lame refcount.
0475f9ea 6777 */
51676957
PZ
6778 list_for_each_entry(i, &pmus, entry) {
6779 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6780 update_pmu_context(i, pmu);
8dc85d54 6781 goto out;
51676957 6782 }
8dc85d54 6783 }
d6d020e9 6784
51676957 6785 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6786out:
6787 mutex_unlock(&pmus_lock);
24f1e32c 6788}
2e80a82a 6789static struct idr pmu_idr;
d6d020e9 6790
abe43400
PZ
6791static ssize_t
6792type_show(struct device *dev, struct device_attribute *attr, char *page)
6793{
6794 struct pmu *pmu = dev_get_drvdata(dev);
6795
6796 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6797}
90826ca7 6798static DEVICE_ATTR_RO(type);
abe43400 6799
62b85639
SE
6800static ssize_t
6801perf_event_mux_interval_ms_show(struct device *dev,
6802 struct device_attribute *attr,
6803 char *page)
6804{
6805 struct pmu *pmu = dev_get_drvdata(dev);
6806
6807 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6808}
6809
6810static ssize_t
6811perf_event_mux_interval_ms_store(struct device *dev,
6812 struct device_attribute *attr,
6813 const char *buf, size_t count)
6814{
6815 struct pmu *pmu = dev_get_drvdata(dev);
6816 int timer, cpu, ret;
6817
6818 ret = kstrtoint(buf, 0, &timer);
6819 if (ret)
6820 return ret;
6821
6822 if (timer < 1)
6823 return -EINVAL;
6824
6825 /* same value, noting to do */
6826 if (timer == pmu->hrtimer_interval_ms)
6827 return count;
6828
6829 pmu->hrtimer_interval_ms = timer;
6830
6831 /* update all cpuctx for this PMU */
6832 for_each_possible_cpu(cpu) {
6833 struct perf_cpu_context *cpuctx;
6834 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6835 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6836
6837 if (hrtimer_active(&cpuctx->hrtimer))
6838 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6839 }
6840
6841 return count;
6842}
90826ca7 6843static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 6844
90826ca7
GKH
6845static struct attribute *pmu_dev_attrs[] = {
6846 &dev_attr_type.attr,
6847 &dev_attr_perf_event_mux_interval_ms.attr,
6848 NULL,
abe43400 6849};
90826ca7 6850ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
6851
6852static int pmu_bus_running;
6853static struct bus_type pmu_bus = {
6854 .name = "event_source",
90826ca7 6855 .dev_groups = pmu_dev_groups,
abe43400
PZ
6856};
6857
6858static void pmu_dev_release(struct device *dev)
6859{
6860 kfree(dev);
6861}
6862
6863static int pmu_dev_alloc(struct pmu *pmu)
6864{
6865 int ret = -ENOMEM;
6866
6867 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6868 if (!pmu->dev)
6869 goto out;
6870
0c9d42ed 6871 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6872 device_initialize(pmu->dev);
6873 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6874 if (ret)
6875 goto free_dev;
6876
6877 dev_set_drvdata(pmu->dev, pmu);
6878 pmu->dev->bus = &pmu_bus;
6879 pmu->dev->release = pmu_dev_release;
6880 ret = device_add(pmu->dev);
6881 if (ret)
6882 goto free_dev;
6883
6884out:
6885 return ret;
6886
6887free_dev:
6888 put_device(pmu->dev);
6889 goto out;
6890}
6891
547e9fd7 6892static struct lock_class_key cpuctx_mutex;
facc4307 6893static struct lock_class_key cpuctx_lock;
547e9fd7 6894
03d8e80b 6895int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6896{
108b02cf 6897 int cpu, ret;
24f1e32c 6898
b0a873eb 6899 mutex_lock(&pmus_lock);
33696fc0
PZ
6900 ret = -ENOMEM;
6901 pmu->pmu_disable_count = alloc_percpu(int);
6902 if (!pmu->pmu_disable_count)
6903 goto unlock;
f29ac756 6904
2e80a82a
PZ
6905 pmu->type = -1;
6906 if (!name)
6907 goto skip_type;
6908 pmu->name = name;
6909
6910 if (type < 0) {
0e9c3be2
TH
6911 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6912 if (type < 0) {
6913 ret = type;
2e80a82a
PZ
6914 goto free_pdc;
6915 }
6916 }
6917 pmu->type = type;
6918
abe43400
PZ
6919 if (pmu_bus_running) {
6920 ret = pmu_dev_alloc(pmu);
6921 if (ret)
6922 goto free_idr;
6923 }
6924
2e80a82a 6925skip_type:
8dc85d54
PZ
6926 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6927 if (pmu->pmu_cpu_context)
6928 goto got_cpu_context;
f29ac756 6929
c4814202 6930 ret = -ENOMEM;
108b02cf
PZ
6931 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6932 if (!pmu->pmu_cpu_context)
abe43400 6933 goto free_dev;
f344011c 6934
108b02cf
PZ
6935 for_each_possible_cpu(cpu) {
6936 struct perf_cpu_context *cpuctx;
6937
6938 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6939 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6940 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6941 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 6942 cpuctx->ctx.pmu = pmu;
9e630205
SE
6943
6944 __perf_cpu_hrtimer_init(cpuctx, cpu);
6945
3f1f3320 6946 cpuctx->unique_pmu = pmu;
108b02cf 6947 }
76e1d904 6948
8dc85d54 6949got_cpu_context:
ad5133b7
PZ
6950 if (!pmu->start_txn) {
6951 if (pmu->pmu_enable) {
6952 /*
6953 * If we have pmu_enable/pmu_disable calls, install
6954 * transaction stubs that use that to try and batch
6955 * hardware accesses.
6956 */
6957 pmu->start_txn = perf_pmu_start_txn;
6958 pmu->commit_txn = perf_pmu_commit_txn;
6959 pmu->cancel_txn = perf_pmu_cancel_txn;
6960 } else {
6961 pmu->start_txn = perf_pmu_nop_void;
6962 pmu->commit_txn = perf_pmu_nop_int;
6963 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6964 }
5c92d124 6965 }
15dbf27c 6966
ad5133b7
PZ
6967 if (!pmu->pmu_enable) {
6968 pmu->pmu_enable = perf_pmu_nop_void;
6969 pmu->pmu_disable = perf_pmu_nop_void;
6970 }
6971
35edc2a5
PZ
6972 if (!pmu->event_idx)
6973 pmu->event_idx = perf_event_idx_default;
6974
b0a873eb 6975 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6976 ret = 0;
6977unlock:
b0a873eb
PZ
6978 mutex_unlock(&pmus_lock);
6979
33696fc0 6980 return ret;
108b02cf 6981
abe43400
PZ
6982free_dev:
6983 device_del(pmu->dev);
6984 put_device(pmu->dev);
6985
2e80a82a
PZ
6986free_idr:
6987 if (pmu->type >= PERF_TYPE_MAX)
6988 idr_remove(&pmu_idr, pmu->type);
6989
108b02cf
PZ
6990free_pdc:
6991 free_percpu(pmu->pmu_disable_count);
6992 goto unlock;
f29ac756 6993}
c464c76e 6994EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 6995
b0a873eb 6996void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6997{
b0a873eb
PZ
6998 mutex_lock(&pmus_lock);
6999 list_del_rcu(&pmu->entry);
7000 mutex_unlock(&pmus_lock);
5c92d124 7001
0475f9ea 7002 /*
cde8e884
PZ
7003 * We dereference the pmu list under both SRCU and regular RCU, so
7004 * synchronize against both of those.
0475f9ea 7005 */
b0a873eb 7006 synchronize_srcu(&pmus_srcu);
cde8e884 7007 synchronize_rcu();
d6d020e9 7008
33696fc0 7009 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7010 if (pmu->type >= PERF_TYPE_MAX)
7011 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7012 device_del(pmu->dev);
7013 put_device(pmu->dev);
51676957 7014 free_pmu_context(pmu);
b0a873eb 7015}
c464c76e 7016EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7017
cc34b98b
MR
7018static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7019{
7020 int ret;
7021
7022 if (!try_module_get(pmu->module))
7023 return -ENODEV;
7024 event->pmu = pmu;
7025 ret = pmu->event_init(event);
7026 if (ret)
7027 module_put(pmu->module);
7028
7029 return ret;
7030}
7031
b0a873eb
PZ
7032struct pmu *perf_init_event(struct perf_event *event)
7033{
7034 struct pmu *pmu = NULL;
7035 int idx;
940c5b29 7036 int ret;
b0a873eb
PZ
7037
7038 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7039
7040 rcu_read_lock();
7041 pmu = idr_find(&pmu_idr, event->attr.type);
7042 rcu_read_unlock();
940c5b29 7043 if (pmu) {
cc34b98b 7044 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7045 if (ret)
7046 pmu = ERR_PTR(ret);
2e80a82a 7047 goto unlock;
940c5b29 7048 }
2e80a82a 7049
b0a873eb 7050 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7051 ret = perf_try_init_event(pmu, event);
b0a873eb 7052 if (!ret)
e5f4d339 7053 goto unlock;
76e1d904 7054
b0a873eb
PZ
7055 if (ret != -ENOENT) {
7056 pmu = ERR_PTR(ret);
e5f4d339 7057 goto unlock;
f344011c 7058 }
5c92d124 7059 }
e5f4d339
PZ
7060 pmu = ERR_PTR(-ENOENT);
7061unlock:
b0a873eb 7062 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7063
4aeb0b42 7064 return pmu;
5c92d124
IM
7065}
7066
4beb31f3
FW
7067static void account_event_cpu(struct perf_event *event, int cpu)
7068{
7069 if (event->parent)
7070 return;
7071
7072 if (has_branch_stack(event)) {
7073 if (!(event->attach_state & PERF_ATTACH_TASK))
7074 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
7075 }
7076 if (is_cgroup_event(event))
7077 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7078}
7079
766d6c07
FW
7080static void account_event(struct perf_event *event)
7081{
4beb31f3
FW
7082 if (event->parent)
7083 return;
7084
766d6c07
FW
7085 if (event->attach_state & PERF_ATTACH_TASK)
7086 static_key_slow_inc(&perf_sched_events.key);
7087 if (event->attr.mmap || event->attr.mmap_data)
7088 atomic_inc(&nr_mmap_events);
7089 if (event->attr.comm)
7090 atomic_inc(&nr_comm_events);
7091 if (event->attr.task)
7092 atomic_inc(&nr_task_events);
948b26b6
FW
7093 if (event->attr.freq) {
7094 if (atomic_inc_return(&nr_freq_events) == 1)
7095 tick_nohz_full_kick_all();
7096 }
4beb31f3 7097 if (has_branch_stack(event))
766d6c07 7098 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7099 if (is_cgroup_event(event))
766d6c07 7100 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7101
7102 account_event_cpu(event, event->cpu);
766d6c07
FW
7103}
7104
0793a61d 7105/*
cdd6c482 7106 * Allocate and initialize a event structure
0793a61d 7107 */
cdd6c482 7108static struct perf_event *
c3f00c70 7109perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7110 struct task_struct *task,
7111 struct perf_event *group_leader,
7112 struct perf_event *parent_event,
4dc0da86
AK
7113 perf_overflow_handler_t overflow_handler,
7114 void *context)
0793a61d 7115{
51b0fe39 7116 struct pmu *pmu;
cdd6c482
IM
7117 struct perf_event *event;
7118 struct hw_perf_event *hwc;
90983b16 7119 long err = -EINVAL;
0793a61d 7120
66832eb4
ON
7121 if ((unsigned)cpu >= nr_cpu_ids) {
7122 if (!task || cpu != -1)
7123 return ERR_PTR(-EINVAL);
7124 }
7125
c3f00c70 7126 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7127 if (!event)
d5d2bc0d 7128 return ERR_PTR(-ENOMEM);
0793a61d 7129
04289bb9 7130 /*
cdd6c482 7131 * Single events are their own group leaders, with an
04289bb9
IM
7132 * empty sibling list:
7133 */
7134 if (!group_leader)
cdd6c482 7135 group_leader = event;
04289bb9 7136
cdd6c482
IM
7137 mutex_init(&event->child_mutex);
7138 INIT_LIST_HEAD(&event->child_list);
fccc714b 7139
cdd6c482
IM
7140 INIT_LIST_HEAD(&event->group_entry);
7141 INIT_LIST_HEAD(&event->event_entry);
7142 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7143 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7144 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7145 INIT_HLIST_NODE(&event->hlist_entry);
7146
10c6db11 7147
cdd6c482 7148 init_waitqueue_head(&event->waitq);
e360adbe 7149 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7150
cdd6c482 7151 mutex_init(&event->mmap_mutex);
7b732a75 7152
a6fa941d 7153 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7154 event->cpu = cpu;
7155 event->attr = *attr;
7156 event->group_leader = group_leader;
7157 event->pmu = NULL;
cdd6c482 7158 event->oncpu = -1;
a96bbc16 7159
cdd6c482 7160 event->parent = parent_event;
b84fbc9f 7161
17cf22c3 7162 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7163 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7164
cdd6c482 7165 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7166
d580ff86
PZ
7167 if (task) {
7168 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
7169
7170 if (attr->type == PERF_TYPE_TRACEPOINT)
7171 event->hw.tp_target = task;
d580ff86
PZ
7172#ifdef CONFIG_HAVE_HW_BREAKPOINT
7173 /*
7174 * hw_breakpoint is a bit difficult here..
7175 */
f22c1bb6 7176 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
7177 event->hw.bp_target = task;
7178#endif
7179 }
7180
4dc0da86 7181 if (!overflow_handler && parent_event) {
b326e956 7182 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7183 context = parent_event->overflow_handler_context;
7184 }
66832eb4 7185
b326e956 7186 event->overflow_handler = overflow_handler;
4dc0da86 7187 event->overflow_handler_context = context;
97eaf530 7188
0231bb53 7189 perf_event__state_init(event);
a86ed508 7190
4aeb0b42 7191 pmu = NULL;
b8e83514 7192
cdd6c482 7193 hwc = &event->hw;
bd2b5b12 7194 hwc->sample_period = attr->sample_period;
0d48696f 7195 if (attr->freq && attr->sample_freq)
bd2b5b12 7196 hwc->sample_period = 1;
eced1dfc 7197 hwc->last_period = hwc->sample_period;
bd2b5b12 7198
e7850595 7199 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7200
2023b359 7201 /*
cdd6c482 7202 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7203 */
3dab77fb 7204 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7205 goto err_ns;
2023b359 7206
b0a873eb 7207 pmu = perf_init_event(event);
4aeb0b42 7208 if (!pmu)
90983b16
FW
7209 goto err_ns;
7210 else if (IS_ERR(pmu)) {
4aeb0b42 7211 err = PTR_ERR(pmu);
90983b16 7212 goto err_ns;
621a01ea 7213 }
d5d2bc0d 7214
cdd6c482 7215 if (!event->parent) {
927c7a9e
FW
7216 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7217 err = get_callchain_buffers();
90983b16
FW
7218 if (err)
7219 goto err_pmu;
d010b332 7220 }
f344011c 7221 }
9ee318a7 7222
cdd6c482 7223 return event;
90983b16
FW
7224
7225err_pmu:
7226 if (event->destroy)
7227 event->destroy(event);
c464c76e 7228 module_put(pmu->module);
90983b16
FW
7229err_ns:
7230 if (event->ns)
7231 put_pid_ns(event->ns);
7232 kfree(event);
7233
7234 return ERR_PTR(err);
0793a61d
TG
7235}
7236
cdd6c482
IM
7237static int perf_copy_attr(struct perf_event_attr __user *uattr,
7238 struct perf_event_attr *attr)
974802ea 7239{
974802ea 7240 u32 size;
cdf8073d 7241 int ret;
974802ea
PZ
7242
7243 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7244 return -EFAULT;
7245
7246 /*
7247 * zero the full structure, so that a short copy will be nice.
7248 */
7249 memset(attr, 0, sizeof(*attr));
7250
7251 ret = get_user(size, &uattr->size);
7252 if (ret)
7253 return ret;
7254
7255 if (size > PAGE_SIZE) /* silly large */
7256 goto err_size;
7257
7258 if (!size) /* abi compat */
7259 size = PERF_ATTR_SIZE_VER0;
7260
7261 if (size < PERF_ATTR_SIZE_VER0)
7262 goto err_size;
7263
7264 /*
7265 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7266 * ensure all the unknown bits are 0 - i.e. new
7267 * user-space does not rely on any kernel feature
7268 * extensions we dont know about yet.
974802ea
PZ
7269 */
7270 if (size > sizeof(*attr)) {
cdf8073d
IS
7271 unsigned char __user *addr;
7272 unsigned char __user *end;
7273 unsigned char val;
974802ea 7274
cdf8073d
IS
7275 addr = (void __user *)uattr + sizeof(*attr);
7276 end = (void __user *)uattr + size;
974802ea 7277
cdf8073d 7278 for (; addr < end; addr++) {
974802ea
PZ
7279 ret = get_user(val, addr);
7280 if (ret)
7281 return ret;
7282 if (val)
7283 goto err_size;
7284 }
b3e62e35 7285 size = sizeof(*attr);
974802ea
PZ
7286 }
7287
7288 ret = copy_from_user(attr, uattr, size);
7289 if (ret)
7290 return -EFAULT;
7291
cd757645 7292 if (attr->__reserved_1)
974802ea
PZ
7293 return -EINVAL;
7294
7295 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7296 return -EINVAL;
7297
7298 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7299 return -EINVAL;
7300
bce38cd5
SE
7301 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7302 u64 mask = attr->branch_sample_type;
7303
7304 /* only using defined bits */
7305 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7306 return -EINVAL;
7307
7308 /* at least one branch bit must be set */
7309 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7310 return -EINVAL;
7311
bce38cd5
SE
7312 /* propagate priv level, when not set for branch */
7313 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7314
7315 /* exclude_kernel checked on syscall entry */
7316 if (!attr->exclude_kernel)
7317 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7318
7319 if (!attr->exclude_user)
7320 mask |= PERF_SAMPLE_BRANCH_USER;
7321
7322 if (!attr->exclude_hv)
7323 mask |= PERF_SAMPLE_BRANCH_HV;
7324 /*
7325 * adjust user setting (for HW filter setup)
7326 */
7327 attr->branch_sample_type = mask;
7328 }
e712209a
SE
7329 /* privileged levels capture (kernel, hv): check permissions */
7330 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7331 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7332 return -EACCES;
bce38cd5 7333 }
4018994f 7334
c5ebcedb 7335 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7336 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7337 if (ret)
7338 return ret;
7339 }
7340
7341 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7342 if (!arch_perf_have_user_stack_dump())
7343 return -ENOSYS;
7344
7345 /*
7346 * We have __u32 type for the size, but so far
7347 * we can only use __u16 as maximum due to the
7348 * __u16 sample size limit.
7349 */
7350 if (attr->sample_stack_user >= USHRT_MAX)
7351 ret = -EINVAL;
7352 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7353 ret = -EINVAL;
7354 }
4018994f 7355
60e2364e
SE
7356 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7357 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
7358out:
7359 return ret;
7360
7361err_size:
7362 put_user(sizeof(*attr), &uattr->size);
7363 ret = -E2BIG;
7364 goto out;
7365}
7366
ac9721f3
PZ
7367static int
7368perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7369{
b69cf536 7370 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7371 int ret = -EINVAL;
7372
ac9721f3 7373 if (!output_event)
a4be7c27
PZ
7374 goto set;
7375
ac9721f3
PZ
7376 /* don't allow circular references */
7377 if (event == output_event)
a4be7c27
PZ
7378 goto out;
7379
0f139300
PZ
7380 /*
7381 * Don't allow cross-cpu buffers
7382 */
7383 if (output_event->cpu != event->cpu)
7384 goto out;
7385
7386 /*
76369139 7387 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7388 */
7389 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7390 goto out;
7391
a4be7c27 7392set:
cdd6c482 7393 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7394 /* Can't redirect output if we've got an active mmap() */
7395 if (atomic_read(&event->mmap_count))
7396 goto unlock;
a4be7c27 7397
ac9721f3 7398 if (output_event) {
76369139
FW
7399 /* get the rb we want to redirect to */
7400 rb = ring_buffer_get(output_event);
7401 if (!rb)
ac9721f3 7402 goto unlock;
a4be7c27
PZ
7403 }
7404
b69cf536 7405 ring_buffer_attach(event, rb);
9bb5d40c 7406
a4be7c27 7407 ret = 0;
ac9721f3
PZ
7408unlock:
7409 mutex_unlock(&event->mmap_mutex);
7410
a4be7c27 7411out:
a4be7c27
PZ
7412 return ret;
7413}
7414
f63a8daa
PZ
7415static void mutex_lock_double(struct mutex *a, struct mutex *b)
7416{
7417 if (b < a)
7418 swap(a, b);
7419
7420 mutex_lock(a);
7421 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7422}
7423
0793a61d 7424/**
cdd6c482 7425 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7426 *
cdd6c482 7427 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7428 * @pid: target pid
9f66a381 7429 * @cpu: target cpu
cdd6c482 7430 * @group_fd: group leader event fd
0793a61d 7431 */
cdd6c482
IM
7432SYSCALL_DEFINE5(perf_event_open,
7433 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7434 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7435{
b04243ef
PZ
7436 struct perf_event *group_leader = NULL, *output_event = NULL;
7437 struct perf_event *event, *sibling;
cdd6c482 7438 struct perf_event_attr attr;
f63a8daa 7439 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 7440 struct file *event_file = NULL;
2903ff01 7441 struct fd group = {NULL, 0};
38a81da2 7442 struct task_struct *task = NULL;
89a1e187 7443 struct pmu *pmu;
ea635c64 7444 int event_fd;
b04243ef 7445 int move_group = 0;
dc86cabe 7446 int err;
a21b0b35 7447 int f_flags = O_RDWR;
0793a61d 7448
2743a5b0 7449 /* for future expandability... */
e5d1367f 7450 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7451 return -EINVAL;
7452
dc86cabe
IM
7453 err = perf_copy_attr(attr_uptr, &attr);
7454 if (err)
7455 return err;
eab656ae 7456
0764771d
PZ
7457 if (!attr.exclude_kernel) {
7458 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7459 return -EACCES;
7460 }
7461
df58ab24 7462 if (attr.freq) {
cdd6c482 7463 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 7464 return -EINVAL;
0819b2e3
PZ
7465 } else {
7466 if (attr.sample_period & (1ULL << 63))
7467 return -EINVAL;
df58ab24
PZ
7468 }
7469
e5d1367f
SE
7470 /*
7471 * In cgroup mode, the pid argument is used to pass the fd
7472 * opened to the cgroup directory in cgroupfs. The cpu argument
7473 * designates the cpu on which to monitor threads from that
7474 * cgroup.
7475 */
7476 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7477 return -EINVAL;
7478
a21b0b35
YD
7479 if (flags & PERF_FLAG_FD_CLOEXEC)
7480 f_flags |= O_CLOEXEC;
7481
7482 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7483 if (event_fd < 0)
7484 return event_fd;
7485
ac9721f3 7486 if (group_fd != -1) {
2903ff01
AV
7487 err = perf_fget_light(group_fd, &group);
7488 if (err)
d14b12d7 7489 goto err_fd;
2903ff01 7490 group_leader = group.file->private_data;
ac9721f3
PZ
7491 if (flags & PERF_FLAG_FD_OUTPUT)
7492 output_event = group_leader;
7493 if (flags & PERF_FLAG_FD_NO_GROUP)
7494 group_leader = NULL;
7495 }
7496
e5d1367f 7497 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7498 task = find_lively_task_by_vpid(pid);
7499 if (IS_ERR(task)) {
7500 err = PTR_ERR(task);
7501 goto err_group_fd;
7502 }
7503 }
7504
1f4ee503
PZ
7505 if (task && group_leader &&
7506 group_leader->attr.inherit != attr.inherit) {
7507 err = -EINVAL;
7508 goto err_task;
7509 }
7510
fbfc623f
YZ
7511 get_online_cpus();
7512
4dc0da86
AK
7513 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7514 NULL, NULL);
d14b12d7
SE
7515 if (IS_ERR(event)) {
7516 err = PTR_ERR(event);
1f4ee503 7517 goto err_cpus;
d14b12d7
SE
7518 }
7519
e5d1367f
SE
7520 if (flags & PERF_FLAG_PID_CGROUP) {
7521 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
7522 if (err) {
7523 __free_event(event);
1f4ee503 7524 goto err_cpus;
766d6c07 7525 }
e5d1367f
SE
7526 }
7527
53b25335
VW
7528 if (is_sampling_event(event)) {
7529 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7530 err = -ENOTSUPP;
7531 goto err_alloc;
7532 }
7533 }
7534
766d6c07
FW
7535 account_event(event);
7536
89a1e187
PZ
7537 /*
7538 * Special case software events and allow them to be part of
7539 * any hardware group.
7540 */
7541 pmu = event->pmu;
b04243ef
PZ
7542
7543 if (group_leader &&
7544 (is_software_event(event) != is_software_event(group_leader))) {
7545 if (is_software_event(event)) {
7546 /*
7547 * If event and group_leader are not both a software
7548 * event, and event is, then group leader is not.
7549 *
7550 * Allow the addition of software events to !software
7551 * groups, this is safe because software events never
7552 * fail to schedule.
7553 */
7554 pmu = group_leader->pmu;
7555 } else if (is_software_event(group_leader) &&
7556 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7557 /*
7558 * In case the group is a pure software group, and we
7559 * try to add a hardware event, move the whole group to
7560 * the hardware context.
7561 */
7562 move_group = 1;
7563 }
7564 }
89a1e187
PZ
7565
7566 /*
7567 * Get the target context (task or percpu):
7568 */
e2d37cd2 7569 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
7570 if (IS_ERR(ctx)) {
7571 err = PTR_ERR(ctx);
c6be5a5c 7572 goto err_alloc;
89a1e187
PZ
7573 }
7574
fd1edb3a
PZ
7575 if (task) {
7576 put_task_struct(task);
7577 task = NULL;
7578 }
7579
ccff286d 7580 /*
cdd6c482 7581 * Look up the group leader (we will attach this event to it):
04289bb9 7582 */
ac9721f3 7583 if (group_leader) {
dc86cabe 7584 err = -EINVAL;
04289bb9 7585
04289bb9 7586 /*
ccff286d
IM
7587 * Do not allow a recursive hierarchy (this new sibling
7588 * becoming part of another group-sibling):
7589 */
7590 if (group_leader->group_leader != group_leader)
c3f00c70 7591 goto err_context;
ccff286d
IM
7592 /*
7593 * Do not allow to attach to a group in a different
7594 * task or CPU context:
04289bb9 7595 */
b04243ef 7596 if (move_group) {
c3c87e77
PZ
7597 /*
7598 * Make sure we're both on the same task, or both
7599 * per-cpu events.
7600 */
7601 if (group_leader->ctx->task != ctx->task)
7602 goto err_context;
7603
7604 /*
7605 * Make sure we're both events for the same CPU;
7606 * grouping events for different CPUs is broken; since
7607 * you can never concurrently schedule them anyhow.
7608 */
7609 if (group_leader->cpu != event->cpu)
b04243ef
PZ
7610 goto err_context;
7611 } else {
7612 if (group_leader->ctx != ctx)
7613 goto err_context;
7614 }
7615
3b6f9e5c
PM
7616 /*
7617 * Only a group leader can be exclusive or pinned
7618 */
0d48696f 7619 if (attr.exclusive || attr.pinned)
c3f00c70 7620 goto err_context;
ac9721f3
PZ
7621 }
7622
7623 if (output_event) {
7624 err = perf_event_set_output(event, output_event);
7625 if (err)
c3f00c70 7626 goto err_context;
ac9721f3 7627 }
0793a61d 7628
a21b0b35
YD
7629 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7630 f_flags);
ea635c64
AV
7631 if (IS_ERR(event_file)) {
7632 err = PTR_ERR(event_file);
c3f00c70 7633 goto err_context;
ea635c64 7634 }
9b51f66d 7635
b04243ef 7636 if (move_group) {
f63a8daa
PZ
7637 gctx = group_leader->ctx;
7638
7639 /*
7640 * See perf_event_ctx_lock() for comments on the details
7641 * of swizzling perf_event::ctx.
7642 */
7643 mutex_lock_double(&gctx->mutex, &ctx->mutex);
b04243ef 7644
46ce0fe9 7645 perf_remove_from_context(group_leader, false);
0231bb53 7646
b04243ef
PZ
7647 list_for_each_entry(sibling, &group_leader->sibling_list,
7648 group_entry) {
46ce0fe9 7649 perf_remove_from_context(sibling, false);
b04243ef
PZ
7650 put_ctx(gctx);
7651 }
f63a8daa
PZ
7652 } else {
7653 mutex_lock(&ctx->mutex);
ea635c64 7654 }
9b51f66d 7655
ad3a37de 7656 WARN_ON_ONCE(ctx->parent_ctx);
b04243ef
PZ
7657
7658 if (move_group) {
f63a8daa
PZ
7659 /*
7660 * Wait for everybody to stop referencing the events through
7661 * the old lists, before installing it on new lists.
7662 */
0cda4c02 7663 synchronize_rcu();
f63a8daa 7664
8f95b435
PZI
7665 /*
7666 * Install the group siblings before the group leader.
7667 *
7668 * Because a group leader will try and install the entire group
7669 * (through the sibling list, which is still in-tact), we can
7670 * end up with siblings installed in the wrong context.
7671 *
7672 * By installing siblings first we NO-OP because they're not
7673 * reachable through the group lists.
7674 */
b04243ef
PZ
7675 list_for_each_entry(sibling, &group_leader->sibling_list,
7676 group_entry) {
8f95b435 7677 perf_event__state_init(sibling);
9fc81d87 7678 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
7679 get_ctx(ctx);
7680 }
8f95b435
PZI
7681
7682 /*
7683 * Removing from the context ends up with disabled
7684 * event. What we want here is event in the initial
7685 * startup state, ready to be add into new context.
7686 */
7687 perf_event__state_init(group_leader);
7688 perf_install_in_context(ctx, group_leader, group_leader->cpu);
7689 get_ctx(ctx);
b04243ef
PZ
7690 }
7691
e2d37cd2 7692 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 7693 perf_unpin_context(ctx);
f63a8daa
PZ
7694
7695 if (move_group) {
7696 mutex_unlock(&gctx->mutex);
7697 put_ctx(gctx);
7698 }
d859e29f 7699 mutex_unlock(&ctx->mutex);
9b51f66d 7700
fbfc623f
YZ
7701 put_online_cpus();
7702
cdd6c482 7703 event->owner = current;
8882135b 7704
cdd6c482
IM
7705 mutex_lock(&current->perf_event_mutex);
7706 list_add_tail(&event->owner_entry, &current->perf_event_list);
7707 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7708
c320c7b7
ACM
7709 /*
7710 * Precalculate sample_data sizes
7711 */
7712 perf_event__header_size(event);
6844c09d 7713 perf_event__id_header_size(event);
c320c7b7 7714
8a49542c
PZ
7715 /*
7716 * Drop the reference on the group_event after placing the
7717 * new event on the sibling_list. This ensures destruction
7718 * of the group leader will find the pointer to itself in
7719 * perf_group_detach().
7720 */
2903ff01 7721 fdput(group);
ea635c64
AV
7722 fd_install(event_fd, event_file);
7723 return event_fd;
0793a61d 7724
c3f00c70 7725err_context:
fe4b04fa 7726 perf_unpin_context(ctx);
ea635c64 7727 put_ctx(ctx);
c6be5a5c 7728err_alloc:
ea635c64 7729 free_event(event);
1f4ee503 7730err_cpus:
fbfc623f 7731 put_online_cpus();
1f4ee503 7732err_task:
e7d0bc04
PZ
7733 if (task)
7734 put_task_struct(task);
89a1e187 7735err_group_fd:
2903ff01 7736 fdput(group);
ea635c64
AV
7737err_fd:
7738 put_unused_fd(event_fd);
dc86cabe 7739 return err;
0793a61d
TG
7740}
7741
fb0459d7
AV
7742/**
7743 * perf_event_create_kernel_counter
7744 *
7745 * @attr: attributes of the counter to create
7746 * @cpu: cpu in which the counter is bound
38a81da2 7747 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7748 */
7749struct perf_event *
7750perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7751 struct task_struct *task,
4dc0da86
AK
7752 perf_overflow_handler_t overflow_handler,
7753 void *context)
fb0459d7 7754{
fb0459d7 7755 struct perf_event_context *ctx;
c3f00c70 7756 struct perf_event *event;
fb0459d7 7757 int err;
d859e29f 7758
fb0459d7
AV
7759 /*
7760 * Get the target context (task or percpu):
7761 */
d859e29f 7762
4dc0da86
AK
7763 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7764 overflow_handler, context);
c3f00c70
PZ
7765 if (IS_ERR(event)) {
7766 err = PTR_ERR(event);
7767 goto err;
7768 }
d859e29f 7769
f8697762
JO
7770 /* Mark owner so we could distinguish it from user events. */
7771 event->owner = EVENT_OWNER_KERNEL;
7772
766d6c07
FW
7773 account_event(event);
7774
38a81da2 7775 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7776 if (IS_ERR(ctx)) {
7777 err = PTR_ERR(ctx);
c3f00c70 7778 goto err_free;
d859e29f 7779 }
fb0459d7 7780
fb0459d7
AV
7781 WARN_ON_ONCE(ctx->parent_ctx);
7782 mutex_lock(&ctx->mutex);
7783 perf_install_in_context(ctx, event, cpu);
fe4b04fa 7784 perf_unpin_context(ctx);
fb0459d7
AV
7785 mutex_unlock(&ctx->mutex);
7786
fb0459d7
AV
7787 return event;
7788
c3f00c70
PZ
7789err_free:
7790 free_event(event);
7791err:
c6567f64 7792 return ERR_PTR(err);
9b51f66d 7793}
fb0459d7 7794EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7795
0cda4c02
YZ
7796void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7797{
7798 struct perf_event_context *src_ctx;
7799 struct perf_event_context *dst_ctx;
7800 struct perf_event *event, *tmp;
7801 LIST_HEAD(events);
7802
7803 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7804 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7805
f63a8daa
PZ
7806 /*
7807 * See perf_event_ctx_lock() for comments on the details
7808 * of swizzling perf_event::ctx.
7809 */
7810 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
7811 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7812 event_entry) {
46ce0fe9 7813 perf_remove_from_context(event, false);
9a545de0 7814 unaccount_event_cpu(event, src_cpu);
0cda4c02 7815 put_ctx(src_ctx);
9886167d 7816 list_add(&event->migrate_entry, &events);
0cda4c02 7817 }
0cda4c02 7818
8f95b435
PZI
7819 /*
7820 * Wait for the events to quiesce before re-instating them.
7821 */
0cda4c02
YZ
7822 synchronize_rcu();
7823
8f95b435
PZI
7824 /*
7825 * Re-instate events in 2 passes.
7826 *
7827 * Skip over group leaders and only install siblings on this first
7828 * pass, siblings will not get enabled without a leader, however a
7829 * leader will enable its siblings, even if those are still on the old
7830 * context.
7831 */
7832 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7833 if (event->group_leader == event)
7834 continue;
7835
7836 list_del(&event->migrate_entry);
7837 if (event->state >= PERF_EVENT_STATE_OFF)
7838 event->state = PERF_EVENT_STATE_INACTIVE;
7839 account_event_cpu(event, dst_cpu);
7840 perf_install_in_context(dst_ctx, event, dst_cpu);
7841 get_ctx(dst_ctx);
7842 }
7843
7844 /*
7845 * Once all the siblings are setup properly, install the group leaders
7846 * to make it go.
7847 */
9886167d
PZ
7848 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7849 list_del(&event->migrate_entry);
0cda4c02
YZ
7850 if (event->state >= PERF_EVENT_STATE_OFF)
7851 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7852 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7853 perf_install_in_context(dst_ctx, event, dst_cpu);
7854 get_ctx(dst_ctx);
7855 }
7856 mutex_unlock(&dst_ctx->mutex);
f63a8daa 7857 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
7858}
7859EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7860
cdd6c482 7861static void sync_child_event(struct perf_event *child_event,
38b200d6 7862 struct task_struct *child)
d859e29f 7863{
cdd6c482 7864 struct perf_event *parent_event = child_event->parent;
8bc20959 7865 u64 child_val;
d859e29f 7866
cdd6c482
IM
7867 if (child_event->attr.inherit_stat)
7868 perf_event_read_event(child_event, child);
38b200d6 7869
b5e58793 7870 child_val = perf_event_count(child_event);
d859e29f
PM
7871
7872 /*
7873 * Add back the child's count to the parent's count:
7874 */
a6e6dea6 7875 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7876 atomic64_add(child_event->total_time_enabled,
7877 &parent_event->child_total_time_enabled);
7878 atomic64_add(child_event->total_time_running,
7879 &parent_event->child_total_time_running);
d859e29f
PM
7880
7881 /*
cdd6c482 7882 * Remove this event from the parent's list
d859e29f 7883 */
cdd6c482
IM
7884 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7885 mutex_lock(&parent_event->child_mutex);
7886 list_del_init(&child_event->child_list);
7887 mutex_unlock(&parent_event->child_mutex);
d859e29f 7888
dc633982
JO
7889 /*
7890 * Make sure user/parent get notified, that we just
7891 * lost one event.
7892 */
7893 perf_event_wakeup(parent_event);
7894
d859e29f 7895 /*
cdd6c482 7896 * Release the parent event, if this was the last
d859e29f
PM
7897 * reference to it.
7898 */
a6fa941d 7899 put_event(parent_event);
d859e29f
PM
7900}
7901
9b51f66d 7902static void
cdd6c482
IM
7903__perf_event_exit_task(struct perf_event *child_event,
7904 struct perf_event_context *child_ctx,
38b200d6 7905 struct task_struct *child)
9b51f66d 7906{
1903d50c
PZ
7907 /*
7908 * Do not destroy the 'original' grouping; because of the context
7909 * switch optimization the original events could've ended up in a
7910 * random child task.
7911 *
7912 * If we were to destroy the original group, all group related
7913 * operations would cease to function properly after this random
7914 * child dies.
7915 *
7916 * Do destroy all inherited groups, we don't care about those
7917 * and being thorough is better.
7918 */
7919 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 7920
9b51f66d 7921 /*
38b435b1 7922 * It can happen that the parent exits first, and has events
9b51f66d 7923 * that are still around due to the child reference. These
38b435b1 7924 * events need to be zapped.
9b51f66d 7925 */
38b435b1 7926 if (child_event->parent) {
cdd6c482
IM
7927 sync_child_event(child_event, child);
7928 free_event(child_event);
179033b3
JO
7929 } else {
7930 child_event->state = PERF_EVENT_STATE_EXIT;
7931 perf_event_wakeup(child_event);
4bcf349a 7932 }
9b51f66d
IM
7933}
7934
8dc85d54 7935static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7936{
ebf905fc 7937 struct perf_event *child_event, *next;
211de6eb 7938 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 7939 unsigned long flags;
9b51f66d 7940
8dc85d54 7941 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7942 perf_event_task(child, NULL, 0);
9b51f66d 7943 return;
9f498cc5 7944 }
9b51f66d 7945
a63eaf34 7946 local_irq_save(flags);
ad3a37de
PM
7947 /*
7948 * We can't reschedule here because interrupts are disabled,
7949 * and either child is current or it is a task that can't be
7950 * scheduled, so we are now safe from rescheduling changing
7951 * our context.
7952 */
806839b2 7953 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7954
7955 /*
7956 * Take the context lock here so that if find_get_context is
cdd6c482 7957 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7958 * incremented the context's refcount before we do put_ctx below.
7959 */
e625cce1 7960 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7961 task_ctx_sched_out(child_ctx);
8dc85d54 7962 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 7963
71a851b4
PZ
7964 /*
7965 * If this context is a clone; unclone it so it can't get
7966 * swapped to another process while we're removing all
cdd6c482 7967 * the events from it.
71a851b4 7968 */
211de6eb 7969 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 7970 update_context_time(child_ctx);
e625cce1 7971 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 7972
211de6eb
PZ
7973 if (clone_ctx)
7974 put_ctx(clone_ctx);
4a1c0f26 7975
9f498cc5 7976 /*
cdd6c482
IM
7977 * Report the task dead after unscheduling the events so that we
7978 * won't get any samples after PERF_RECORD_EXIT. We can however still
7979 * get a few PERF_RECORD_READ events.
9f498cc5 7980 */
cdd6c482 7981 perf_event_task(child, child_ctx, 0);
a63eaf34 7982
66fff224
PZ
7983 /*
7984 * We can recurse on the same lock type through:
7985 *
cdd6c482
IM
7986 * __perf_event_exit_task()
7987 * sync_child_event()
a6fa941d
AV
7988 * put_event()
7989 * mutex_lock(&ctx->mutex)
66fff224
PZ
7990 *
7991 * But since its the parent context it won't be the same instance.
7992 */
a0507c84 7993 mutex_lock(&child_ctx->mutex);
a63eaf34 7994
ebf905fc 7995 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 7996 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 7997
a63eaf34
PM
7998 mutex_unlock(&child_ctx->mutex);
7999
8000 put_ctx(child_ctx);
9b51f66d
IM
8001}
8002
8dc85d54
PZ
8003/*
8004 * When a child task exits, feed back event values to parent events.
8005 */
8006void perf_event_exit_task(struct task_struct *child)
8007{
8882135b 8008 struct perf_event *event, *tmp;
8dc85d54
PZ
8009 int ctxn;
8010
8882135b
PZ
8011 mutex_lock(&child->perf_event_mutex);
8012 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8013 owner_entry) {
8014 list_del_init(&event->owner_entry);
8015
8016 /*
8017 * Ensure the list deletion is visible before we clear
8018 * the owner, closes a race against perf_release() where
8019 * we need to serialize on the owner->perf_event_mutex.
8020 */
8021 smp_wmb();
8022 event->owner = NULL;
8023 }
8024 mutex_unlock(&child->perf_event_mutex);
8025
8dc85d54
PZ
8026 for_each_task_context_nr(ctxn)
8027 perf_event_exit_task_context(child, ctxn);
8028}
8029
889ff015
FW
8030static void perf_free_event(struct perf_event *event,
8031 struct perf_event_context *ctx)
8032{
8033 struct perf_event *parent = event->parent;
8034
8035 if (WARN_ON_ONCE(!parent))
8036 return;
8037
8038 mutex_lock(&parent->child_mutex);
8039 list_del_init(&event->child_list);
8040 mutex_unlock(&parent->child_mutex);
8041
a6fa941d 8042 put_event(parent);
889ff015 8043
652884fe 8044 raw_spin_lock_irq(&ctx->lock);
8a49542c 8045 perf_group_detach(event);
889ff015 8046 list_del_event(event, ctx);
652884fe 8047 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8048 free_event(event);
8049}
8050
bbbee908 8051/*
652884fe 8052 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8053 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8054 *
8055 * Not all locks are strictly required, but take them anyway to be nice and
8056 * help out with the lockdep assertions.
bbbee908 8057 */
cdd6c482 8058void perf_event_free_task(struct task_struct *task)
bbbee908 8059{
8dc85d54 8060 struct perf_event_context *ctx;
cdd6c482 8061 struct perf_event *event, *tmp;
8dc85d54 8062 int ctxn;
bbbee908 8063
8dc85d54
PZ
8064 for_each_task_context_nr(ctxn) {
8065 ctx = task->perf_event_ctxp[ctxn];
8066 if (!ctx)
8067 continue;
bbbee908 8068
8dc85d54 8069 mutex_lock(&ctx->mutex);
bbbee908 8070again:
8dc85d54
PZ
8071 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8072 group_entry)
8073 perf_free_event(event, ctx);
bbbee908 8074
8dc85d54
PZ
8075 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8076 group_entry)
8077 perf_free_event(event, ctx);
bbbee908 8078
8dc85d54
PZ
8079 if (!list_empty(&ctx->pinned_groups) ||
8080 !list_empty(&ctx->flexible_groups))
8081 goto again;
bbbee908 8082
8dc85d54 8083 mutex_unlock(&ctx->mutex);
bbbee908 8084
8dc85d54
PZ
8085 put_ctx(ctx);
8086 }
889ff015
FW
8087}
8088
4e231c79
PZ
8089void perf_event_delayed_put(struct task_struct *task)
8090{
8091 int ctxn;
8092
8093 for_each_task_context_nr(ctxn)
8094 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8095}
8096
97dee4f3
PZ
8097/*
8098 * inherit a event from parent task to child task:
8099 */
8100static struct perf_event *
8101inherit_event(struct perf_event *parent_event,
8102 struct task_struct *parent,
8103 struct perf_event_context *parent_ctx,
8104 struct task_struct *child,
8105 struct perf_event *group_leader,
8106 struct perf_event_context *child_ctx)
8107{
1929def9 8108 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8109 struct perf_event *child_event;
cee010ec 8110 unsigned long flags;
97dee4f3
PZ
8111
8112 /*
8113 * Instead of creating recursive hierarchies of events,
8114 * we link inherited events back to the original parent,
8115 * which has a filp for sure, which we use as the reference
8116 * count:
8117 */
8118 if (parent_event->parent)
8119 parent_event = parent_event->parent;
8120
8121 child_event = perf_event_alloc(&parent_event->attr,
8122 parent_event->cpu,
d580ff86 8123 child,
97dee4f3 8124 group_leader, parent_event,
4dc0da86 8125 NULL, NULL);
97dee4f3
PZ
8126 if (IS_ERR(child_event))
8127 return child_event;
a6fa941d 8128
fadfe7be
JO
8129 if (is_orphaned_event(parent_event) ||
8130 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8131 free_event(child_event);
8132 return NULL;
8133 }
8134
97dee4f3
PZ
8135 get_ctx(child_ctx);
8136
8137 /*
8138 * Make the child state follow the state of the parent event,
8139 * not its attr.disabled bit. We hold the parent's mutex,
8140 * so we won't race with perf_event_{en, dis}able_family.
8141 */
1929def9 8142 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8143 child_event->state = PERF_EVENT_STATE_INACTIVE;
8144 else
8145 child_event->state = PERF_EVENT_STATE_OFF;
8146
8147 if (parent_event->attr.freq) {
8148 u64 sample_period = parent_event->hw.sample_period;
8149 struct hw_perf_event *hwc = &child_event->hw;
8150
8151 hwc->sample_period = sample_period;
8152 hwc->last_period = sample_period;
8153
8154 local64_set(&hwc->period_left, sample_period);
8155 }
8156
8157 child_event->ctx = child_ctx;
8158 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8159 child_event->overflow_handler_context
8160 = parent_event->overflow_handler_context;
97dee4f3 8161
614b6780
TG
8162 /*
8163 * Precalculate sample_data sizes
8164 */
8165 perf_event__header_size(child_event);
6844c09d 8166 perf_event__id_header_size(child_event);
614b6780 8167
97dee4f3
PZ
8168 /*
8169 * Link it up in the child's context:
8170 */
cee010ec 8171 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8172 add_event_to_ctx(child_event, child_ctx);
cee010ec 8173 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8174
97dee4f3
PZ
8175 /*
8176 * Link this into the parent event's child list
8177 */
8178 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8179 mutex_lock(&parent_event->child_mutex);
8180 list_add_tail(&child_event->child_list, &parent_event->child_list);
8181 mutex_unlock(&parent_event->child_mutex);
8182
8183 return child_event;
8184}
8185
8186static int inherit_group(struct perf_event *parent_event,
8187 struct task_struct *parent,
8188 struct perf_event_context *parent_ctx,
8189 struct task_struct *child,
8190 struct perf_event_context *child_ctx)
8191{
8192 struct perf_event *leader;
8193 struct perf_event *sub;
8194 struct perf_event *child_ctr;
8195
8196 leader = inherit_event(parent_event, parent, parent_ctx,
8197 child, NULL, child_ctx);
8198 if (IS_ERR(leader))
8199 return PTR_ERR(leader);
8200 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8201 child_ctr = inherit_event(sub, parent, parent_ctx,
8202 child, leader, child_ctx);
8203 if (IS_ERR(child_ctr))
8204 return PTR_ERR(child_ctr);
8205 }
8206 return 0;
889ff015
FW
8207}
8208
8209static int
8210inherit_task_group(struct perf_event *event, struct task_struct *parent,
8211 struct perf_event_context *parent_ctx,
8dc85d54 8212 struct task_struct *child, int ctxn,
889ff015
FW
8213 int *inherited_all)
8214{
8215 int ret;
8dc85d54 8216 struct perf_event_context *child_ctx;
889ff015
FW
8217
8218 if (!event->attr.inherit) {
8219 *inherited_all = 0;
8220 return 0;
bbbee908
PZ
8221 }
8222
fe4b04fa 8223 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
8224 if (!child_ctx) {
8225 /*
8226 * This is executed from the parent task context, so
8227 * inherit events that have been marked for cloning.
8228 * First allocate and initialize a context for the
8229 * child.
8230 */
bbbee908 8231
734df5ab 8232 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
8233 if (!child_ctx)
8234 return -ENOMEM;
bbbee908 8235
8dc85d54 8236 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
8237 }
8238
8239 ret = inherit_group(event, parent, parent_ctx,
8240 child, child_ctx);
8241
8242 if (ret)
8243 *inherited_all = 0;
8244
8245 return ret;
bbbee908
PZ
8246}
8247
9b51f66d 8248/*
cdd6c482 8249 * Initialize the perf_event context in task_struct
9b51f66d 8250 */
985c8dcb 8251static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 8252{
889ff015 8253 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
8254 struct perf_event_context *cloned_ctx;
8255 struct perf_event *event;
9b51f66d 8256 struct task_struct *parent = current;
564c2b21 8257 int inherited_all = 1;
dddd3379 8258 unsigned long flags;
6ab423e0 8259 int ret = 0;
9b51f66d 8260
8dc85d54 8261 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
8262 return 0;
8263
ad3a37de 8264 /*
25346b93
PM
8265 * If the parent's context is a clone, pin it so it won't get
8266 * swapped under us.
ad3a37de 8267 */
8dc85d54 8268 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
8269 if (!parent_ctx)
8270 return 0;
25346b93 8271
ad3a37de
PM
8272 /*
8273 * No need to check if parent_ctx != NULL here; since we saw
8274 * it non-NULL earlier, the only reason for it to become NULL
8275 * is if we exit, and since we're currently in the middle of
8276 * a fork we can't be exiting at the same time.
8277 */
ad3a37de 8278
9b51f66d
IM
8279 /*
8280 * Lock the parent list. No need to lock the child - not PID
8281 * hashed yet and not running, so nobody can access it.
8282 */
d859e29f 8283 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
8284
8285 /*
8286 * We dont have to disable NMIs - we are only looking at
8287 * the list, not manipulating it:
8288 */
889ff015 8289 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
8290 ret = inherit_task_group(event, parent, parent_ctx,
8291 child, ctxn, &inherited_all);
889ff015
FW
8292 if (ret)
8293 break;
8294 }
b93f7978 8295
dddd3379
TG
8296 /*
8297 * We can't hold ctx->lock when iterating the ->flexible_group list due
8298 * to allocations, but we need to prevent rotation because
8299 * rotate_ctx() will change the list from interrupt context.
8300 */
8301 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8302 parent_ctx->rotate_disable = 1;
8303 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8304
889ff015 8305 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
8306 ret = inherit_task_group(event, parent, parent_ctx,
8307 child, ctxn, &inherited_all);
889ff015 8308 if (ret)
9b51f66d 8309 break;
564c2b21
PM
8310 }
8311
dddd3379
TG
8312 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8313 parent_ctx->rotate_disable = 0;
dddd3379 8314
8dc85d54 8315 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 8316
05cbaa28 8317 if (child_ctx && inherited_all) {
564c2b21
PM
8318 /*
8319 * Mark the child context as a clone of the parent
8320 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
8321 *
8322 * Note that if the parent is a clone, the holding of
8323 * parent_ctx->lock avoids it from being uncloned.
564c2b21 8324 */
c5ed5145 8325 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
8326 if (cloned_ctx) {
8327 child_ctx->parent_ctx = cloned_ctx;
25346b93 8328 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
8329 } else {
8330 child_ctx->parent_ctx = parent_ctx;
8331 child_ctx->parent_gen = parent_ctx->generation;
8332 }
8333 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
8334 }
8335
c5ed5145 8336 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 8337 mutex_unlock(&parent_ctx->mutex);
6ab423e0 8338
25346b93 8339 perf_unpin_context(parent_ctx);
fe4b04fa 8340 put_ctx(parent_ctx);
ad3a37de 8341
6ab423e0 8342 return ret;
9b51f66d
IM
8343}
8344
8dc85d54
PZ
8345/*
8346 * Initialize the perf_event context in task_struct
8347 */
8348int perf_event_init_task(struct task_struct *child)
8349{
8350 int ctxn, ret;
8351
8550d7cb
ON
8352 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8353 mutex_init(&child->perf_event_mutex);
8354 INIT_LIST_HEAD(&child->perf_event_list);
8355
8dc85d54
PZ
8356 for_each_task_context_nr(ctxn) {
8357 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
8358 if (ret) {
8359 perf_event_free_task(child);
8dc85d54 8360 return ret;
6c72e350 8361 }
8dc85d54
PZ
8362 }
8363
8364 return 0;
8365}
8366
220b140b
PM
8367static void __init perf_event_init_all_cpus(void)
8368{
b28ab83c 8369 struct swevent_htable *swhash;
220b140b 8370 int cpu;
220b140b
PM
8371
8372 for_each_possible_cpu(cpu) {
b28ab83c
PZ
8373 swhash = &per_cpu(swevent_htable, cpu);
8374 mutex_init(&swhash->hlist_mutex);
2fde4f94 8375 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
8376 }
8377}
8378
0db0628d 8379static void perf_event_init_cpu(int cpu)
0793a61d 8380{
108b02cf 8381 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 8382
b28ab83c 8383 mutex_lock(&swhash->hlist_mutex);
39af6b16 8384 swhash->online = true;
4536e4d1 8385 if (swhash->hlist_refcount > 0) {
76e1d904
FW
8386 struct swevent_hlist *hlist;
8387
b28ab83c
PZ
8388 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8389 WARN_ON(!hlist);
8390 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8391 }
b28ab83c 8392 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8393}
8394
c277443c 8395#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
108b02cf 8396static void __perf_event_exit_context(void *__info)
0793a61d 8397{
226424ee 8398 struct remove_event re = { .detach_group = true };
108b02cf 8399 struct perf_event_context *ctx = __info;
0793a61d 8400
e3703f8c 8401 rcu_read_lock();
46ce0fe9
PZ
8402 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8403 __perf_remove_from_context(&re);
e3703f8c 8404 rcu_read_unlock();
0793a61d 8405}
108b02cf
PZ
8406
8407static void perf_event_exit_cpu_context(int cpu)
8408{
8409 struct perf_event_context *ctx;
8410 struct pmu *pmu;
8411 int idx;
8412
8413 idx = srcu_read_lock(&pmus_srcu);
8414 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 8415 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
8416
8417 mutex_lock(&ctx->mutex);
8418 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8419 mutex_unlock(&ctx->mutex);
8420 }
8421 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
8422}
8423
cdd6c482 8424static void perf_event_exit_cpu(int cpu)
0793a61d 8425{
b28ab83c 8426 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 8427
e3703f8c
PZ
8428 perf_event_exit_cpu_context(cpu);
8429
b28ab83c 8430 mutex_lock(&swhash->hlist_mutex);
39af6b16 8431 swhash->online = false;
b28ab83c
PZ
8432 swevent_hlist_release(swhash);
8433 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8434}
8435#else
cdd6c482 8436static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
8437#endif
8438
c277443c
PZ
8439static int
8440perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8441{
8442 int cpu;
8443
8444 for_each_online_cpu(cpu)
8445 perf_event_exit_cpu(cpu);
8446
8447 return NOTIFY_OK;
8448}
8449
8450/*
8451 * Run the perf reboot notifier at the very last possible moment so that
8452 * the generic watchdog code runs as long as possible.
8453 */
8454static struct notifier_block perf_reboot_notifier = {
8455 .notifier_call = perf_reboot,
8456 .priority = INT_MIN,
8457};
8458
0db0628d 8459static int
0793a61d
TG
8460perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8461{
8462 unsigned int cpu = (long)hcpu;
8463
4536e4d1 8464 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
8465
8466 case CPU_UP_PREPARE:
5e11637e 8467 case CPU_DOWN_FAILED:
cdd6c482 8468 perf_event_init_cpu(cpu);
0793a61d
TG
8469 break;
8470
5e11637e 8471 case CPU_UP_CANCELED:
0793a61d 8472 case CPU_DOWN_PREPARE:
cdd6c482 8473 perf_event_exit_cpu(cpu);
0793a61d 8474 break;
0793a61d
TG
8475 default:
8476 break;
8477 }
8478
8479 return NOTIFY_OK;
8480}
8481
cdd6c482 8482void __init perf_event_init(void)
0793a61d 8483{
3c502e7a
JW
8484 int ret;
8485
2e80a82a
PZ
8486 idr_init(&pmu_idr);
8487
220b140b 8488 perf_event_init_all_cpus();
b0a873eb 8489 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
8490 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8491 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8492 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
8493 perf_tp_register();
8494 perf_cpu_notifier(perf_cpu_notify);
c277443c 8495 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
8496
8497 ret = init_hw_breakpoint();
8498 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
8499
8500 /* do not patch jump label more than once per second */
8501 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
8502
8503 /*
8504 * Build time assertion that we keep the data_head at the intended
8505 * location. IOW, validation we got the __reserved[] size right.
8506 */
8507 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8508 != 1024);
0793a61d 8509}
abe43400
PZ
8510
8511static int __init perf_event_sysfs_init(void)
8512{
8513 struct pmu *pmu;
8514 int ret;
8515
8516 mutex_lock(&pmus_lock);
8517
8518 ret = bus_register(&pmu_bus);
8519 if (ret)
8520 goto unlock;
8521
8522 list_for_each_entry(pmu, &pmus, entry) {
8523 if (!pmu->name || pmu->type < 0)
8524 continue;
8525
8526 ret = pmu_dev_alloc(pmu);
8527 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8528 }
8529 pmu_bus_running = 1;
8530 ret = 0;
8531
8532unlock:
8533 mutex_unlock(&pmus_lock);
8534
8535 return ret;
8536}
8537device_initcall(perf_event_sysfs_init);
e5d1367f
SE
8538
8539#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
8540static struct cgroup_subsys_state *
8541perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
8542{
8543 struct perf_cgroup *jc;
e5d1367f 8544
1b15d055 8545 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
8546 if (!jc)
8547 return ERR_PTR(-ENOMEM);
8548
e5d1367f
SE
8549 jc->info = alloc_percpu(struct perf_cgroup_info);
8550 if (!jc->info) {
8551 kfree(jc);
8552 return ERR_PTR(-ENOMEM);
8553 }
8554
e5d1367f
SE
8555 return &jc->css;
8556}
8557
eb95419b 8558static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 8559{
eb95419b
TH
8560 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8561
e5d1367f
SE
8562 free_percpu(jc->info);
8563 kfree(jc);
8564}
8565
8566static int __perf_cgroup_move(void *info)
8567{
8568 struct task_struct *task = info;
8569 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8570 return 0;
8571}
8572
eb95419b
TH
8573static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8574 struct cgroup_taskset *tset)
e5d1367f 8575{
bb9d97b6
TH
8576 struct task_struct *task;
8577
924f0d9a 8578 cgroup_taskset_for_each(task, tset)
bb9d97b6 8579 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8580}
8581
eb95419b
TH
8582static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8583 struct cgroup_subsys_state *old_css,
761b3ef5 8584 struct task_struct *task)
e5d1367f
SE
8585{
8586 /*
8587 * cgroup_exit() is called in the copy_process() failure path.
8588 * Ignore this case since the task hasn't ran yet, this avoids
8589 * trying to poke a half freed task state from generic code.
8590 */
8591 if (!(task->flags & PF_EXITING))
8592 return;
8593
bb9d97b6 8594 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8595}
8596
073219e9 8597struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
8598 .css_alloc = perf_cgroup_css_alloc,
8599 .css_free = perf_cgroup_css_free,
e7e7ee2e 8600 .exit = perf_cgroup_exit,
bb9d97b6 8601 .attach = perf_cgroup_attach,
e5d1367f
SE
8602};
8603#endif /* CONFIG_CGROUP_PERF */