perf/x86: Add Silvermont (22nm Atom) support
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
0793a61d 42
76369139
FW
43#include "internal.h"
44
4e193bd4
TB
45#include <asm/irq_regs.h>
46
fe4b04fa 47struct remote_function_call {
e7e7ee2e
IM
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
fe4b04fa
PZ
52};
53
54static void remote_function(void *data)
55{
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66}
67
68/**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81static int
82task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83{
84 struct remote_function_call data = {
e7e7ee2e
IM
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95}
96
97/**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107{
108 struct remote_function_call data = {
e7e7ee2e
IM
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118}
119
e5d1367f
SE
120#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
bce38cd5
SE
124/*
125 * branch priv levels that need permission checks
126 */
127#define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
0b3fcf17
SE
131enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135};
136
e5d1367f
SE
137/*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
c5905afb 141struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 142static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 143static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 144
cdd6c482
IM
145static atomic_t nr_mmap_events __read_mostly;
146static atomic_t nr_comm_events __read_mostly;
147static atomic_t nr_task_events __read_mostly;
948b26b6 148static atomic_t nr_freq_events __read_mostly;
9ee318a7 149
108b02cf
PZ
150static LIST_HEAD(pmus);
151static DEFINE_MUTEX(pmus_lock);
152static struct srcu_struct pmus_srcu;
153
0764771d 154/*
cdd6c482 155 * perf event paranoia level:
0fbdea19
IM
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 158 * 1 - disallow cpu events for unpriv
0fbdea19 159 * 2 - disallow kernel profiling for unpriv
0764771d 160 */
cdd6c482 161int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 162
20443384
FW
163/* Minimum for 512 kiB + 1 user control page */
164int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
165
166/*
cdd6c482 167 * max perf event sample rate
df58ab24 168 */
14c63f17
DH
169#define DEFAULT_MAX_SAMPLE_RATE 100000
170#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171#define DEFAULT_CPU_TIME_MAX_PERCENT 25
172
173int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
174
175static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
177
178static atomic_t perf_sample_allowed_ns __read_mostly =
179 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
180
181void update_perf_cpu_limits(void)
182{
183 u64 tmp = perf_sample_period_ns;
184
185 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 186 do_div(tmp, 100);
14c63f17
DH
187 atomic_set(&perf_sample_allowed_ns, tmp);
188}
163ec435 189
9e630205
SE
190static int perf_rotate_context(struct perf_cpu_context *cpuctx);
191
163ec435
PZ
192int perf_proc_update_handler(struct ctl_table *table, int write,
193 void __user *buffer, size_t *lenp,
194 loff_t *ppos)
195{
196 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
197
198 if (ret || !write)
199 return ret;
200
201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 update_perf_cpu_limits();
204
205 return 0;
206}
207
208int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
209
210int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
214 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 update_perf_cpu_limits();
163ec435
PZ
220
221 return 0;
222}
1ccd1549 223
14c63f17
DH
224/*
225 * perf samples are done in some very critical code paths (NMIs).
226 * If they take too much CPU time, the system can lock up and not
227 * get any real work done. This will drop the sample rate when
228 * we detect that events are taking too long.
229 */
230#define NR_ACCUMULATED_SAMPLES 128
231DEFINE_PER_CPU(u64, running_sample_length);
232
233void perf_sample_event_took(u64 sample_len_ns)
234{
235 u64 avg_local_sample_len;
e5302920 236 u64 local_samples_len;
14c63f17
DH
237
238 if (atomic_read(&perf_sample_allowed_ns) == 0)
239 return;
240
241 /* decay the counter by 1 average sample */
242 local_samples_len = __get_cpu_var(running_sample_length);
243 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
244 local_samples_len += sample_len_ns;
245 __get_cpu_var(running_sample_length) = local_samples_len;
246
247 /*
248 * note: this will be biased artifically low until we have
249 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
250 * from having to maintain a count.
251 */
252 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
253
254 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
255 return;
256
257 if (max_samples_per_tick <= 1)
258 return;
259
260 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
261 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
262 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
263
264 printk_ratelimited(KERN_WARNING
265 "perf samples too long (%lld > %d), lowering "
266 "kernel.perf_event_max_sample_rate to %d\n",
267 avg_local_sample_len,
268 atomic_read(&perf_sample_allowed_ns),
269 sysctl_perf_event_sample_rate);
270
271 update_perf_cpu_limits();
272}
273
cdd6c482 274static atomic64_t perf_event_id;
a96bbc16 275
0b3fcf17
SE
276static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 enum event_type_t event_type);
278
279static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
280 enum event_type_t event_type,
281 struct task_struct *task);
282
283static void update_context_time(struct perf_event_context *ctx);
284static u64 perf_event_time(struct perf_event *event);
0b3fcf17 285
cdd6c482 286void __weak perf_event_print_debug(void) { }
0793a61d 287
84c79910 288extern __weak const char *perf_pmu_name(void)
0793a61d 289{
84c79910 290 return "pmu";
0793a61d
TG
291}
292
0b3fcf17
SE
293static inline u64 perf_clock(void)
294{
295 return local_clock();
296}
297
e5d1367f
SE
298static inline struct perf_cpu_context *
299__get_cpu_context(struct perf_event_context *ctx)
300{
301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
302}
303
facc4307
PZ
304static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 struct perf_event_context *ctx)
306{
307 raw_spin_lock(&cpuctx->ctx.lock);
308 if (ctx)
309 raw_spin_lock(&ctx->lock);
310}
311
312static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 struct perf_event_context *ctx)
314{
315 if (ctx)
316 raw_spin_unlock(&ctx->lock);
317 raw_spin_unlock(&cpuctx->ctx.lock);
318}
319
e5d1367f
SE
320#ifdef CONFIG_CGROUP_PERF
321
877c6856
LZ
322/*
323 * perf_cgroup_info keeps track of time_enabled for a cgroup.
324 * This is a per-cpu dynamically allocated data structure.
325 */
326struct perf_cgroup_info {
327 u64 time;
328 u64 timestamp;
329};
330
331struct perf_cgroup {
332 struct cgroup_subsys_state css;
86e213e1 333 struct perf_cgroup_info __percpu *info;
877c6856
LZ
334};
335
3f7cce3c
SE
336/*
337 * Must ensure cgroup is pinned (css_get) before calling
338 * this function. In other words, we cannot call this function
339 * if there is no cgroup event for the current CPU context.
340 */
e5d1367f
SE
341static inline struct perf_cgroup *
342perf_cgroup_from_task(struct task_struct *task)
343{
344 return container_of(task_subsys_state(task, perf_subsys_id),
345 struct perf_cgroup, css);
346}
347
348static inline bool
349perf_cgroup_match(struct perf_event *event)
350{
351 struct perf_event_context *ctx = event->ctx;
352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
353
ef824fa1
TH
354 /* @event doesn't care about cgroup */
355 if (!event->cgrp)
356 return true;
357
358 /* wants specific cgroup scope but @cpuctx isn't associated with any */
359 if (!cpuctx->cgrp)
360 return false;
361
362 /*
363 * Cgroup scoping is recursive. An event enabled for a cgroup is
364 * also enabled for all its descendant cgroups. If @cpuctx's
365 * cgroup is a descendant of @event's (the test covers identity
366 * case), it's a match.
367 */
368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 event->cgrp->css.cgroup);
e5d1367f
SE
370}
371
9c5da09d 372static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 373{
9c5da09d 374 return css_tryget(&event->cgrp->css);
e5d1367f
SE
375}
376
377static inline void perf_put_cgroup(struct perf_event *event)
378{
379 css_put(&event->cgrp->css);
380}
381
382static inline void perf_detach_cgroup(struct perf_event *event)
383{
384 perf_put_cgroup(event);
385 event->cgrp = NULL;
386}
387
388static inline int is_cgroup_event(struct perf_event *event)
389{
390 return event->cgrp != NULL;
391}
392
393static inline u64 perf_cgroup_event_time(struct perf_event *event)
394{
395 struct perf_cgroup_info *t;
396
397 t = per_cpu_ptr(event->cgrp->info, event->cpu);
398 return t->time;
399}
400
401static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
402{
403 struct perf_cgroup_info *info;
404 u64 now;
405
406 now = perf_clock();
407
408 info = this_cpu_ptr(cgrp->info);
409
410 info->time += now - info->timestamp;
411 info->timestamp = now;
412}
413
414static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
415{
416 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
417 if (cgrp_out)
418 __update_cgrp_time(cgrp_out);
419}
420
421static inline void update_cgrp_time_from_event(struct perf_event *event)
422{
3f7cce3c
SE
423 struct perf_cgroup *cgrp;
424
e5d1367f 425 /*
3f7cce3c
SE
426 * ensure we access cgroup data only when needed and
427 * when we know the cgroup is pinned (css_get)
e5d1367f 428 */
3f7cce3c 429 if (!is_cgroup_event(event))
e5d1367f
SE
430 return;
431
3f7cce3c
SE
432 cgrp = perf_cgroup_from_task(current);
433 /*
434 * Do not update time when cgroup is not active
435 */
436 if (cgrp == event->cgrp)
437 __update_cgrp_time(event->cgrp);
e5d1367f
SE
438}
439
440static inline void
3f7cce3c
SE
441perf_cgroup_set_timestamp(struct task_struct *task,
442 struct perf_event_context *ctx)
e5d1367f
SE
443{
444 struct perf_cgroup *cgrp;
445 struct perf_cgroup_info *info;
446
3f7cce3c
SE
447 /*
448 * ctx->lock held by caller
449 * ensure we do not access cgroup data
450 * unless we have the cgroup pinned (css_get)
451 */
452 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
453 return;
454
455 cgrp = perf_cgroup_from_task(task);
456 info = this_cpu_ptr(cgrp->info);
3f7cce3c 457 info->timestamp = ctx->timestamp;
e5d1367f
SE
458}
459
460#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
461#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
462
463/*
464 * reschedule events based on the cgroup constraint of task.
465 *
466 * mode SWOUT : schedule out everything
467 * mode SWIN : schedule in based on cgroup for next
468 */
469void perf_cgroup_switch(struct task_struct *task, int mode)
470{
471 struct perf_cpu_context *cpuctx;
472 struct pmu *pmu;
473 unsigned long flags;
474
475 /*
476 * disable interrupts to avoid geting nr_cgroup
477 * changes via __perf_event_disable(). Also
478 * avoids preemption.
479 */
480 local_irq_save(flags);
481
482 /*
483 * we reschedule only in the presence of cgroup
484 * constrained events.
485 */
486 rcu_read_lock();
487
488 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
490 if (cpuctx->unique_pmu != pmu)
491 continue; /* ensure we process each cpuctx once */
e5d1367f 492
e5d1367f
SE
493 /*
494 * perf_cgroup_events says at least one
495 * context on this CPU has cgroup events.
496 *
497 * ctx->nr_cgroups reports the number of cgroup
498 * events for a context.
499 */
500 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
501 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
503
504 if (mode & PERF_CGROUP_SWOUT) {
505 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
506 /*
507 * must not be done before ctxswout due
508 * to event_filter_match() in event_sched_out()
509 */
510 cpuctx->cgrp = NULL;
511 }
512
513 if (mode & PERF_CGROUP_SWIN) {
e566b76e 514 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
515 /*
516 * set cgrp before ctxsw in to allow
517 * event_filter_match() to not have to pass
518 * task around
e5d1367f
SE
519 */
520 cpuctx->cgrp = perf_cgroup_from_task(task);
521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
522 }
facc4307
PZ
523 perf_pmu_enable(cpuctx->ctx.pmu);
524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 525 }
e5d1367f
SE
526 }
527
528 rcu_read_unlock();
529
530 local_irq_restore(flags);
531}
532
a8d757ef
SE
533static inline void perf_cgroup_sched_out(struct task_struct *task,
534 struct task_struct *next)
e5d1367f 535{
a8d757ef
SE
536 struct perf_cgroup *cgrp1;
537 struct perf_cgroup *cgrp2 = NULL;
538
539 /*
540 * we come here when we know perf_cgroup_events > 0
541 */
542 cgrp1 = perf_cgroup_from_task(task);
543
544 /*
545 * next is NULL when called from perf_event_enable_on_exec()
546 * that will systematically cause a cgroup_switch()
547 */
548 if (next)
549 cgrp2 = perf_cgroup_from_task(next);
550
551 /*
552 * only schedule out current cgroup events if we know
553 * that we are switching to a different cgroup. Otherwise,
554 * do no touch the cgroup events.
555 */
556 if (cgrp1 != cgrp2)
557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
558}
559
a8d757ef
SE
560static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 struct task_struct *task)
e5d1367f 562{
a8d757ef
SE
563 struct perf_cgroup *cgrp1;
564 struct perf_cgroup *cgrp2 = NULL;
565
566 /*
567 * we come here when we know perf_cgroup_events > 0
568 */
569 cgrp1 = perf_cgroup_from_task(task);
570
571 /* prev can never be NULL */
572 cgrp2 = perf_cgroup_from_task(prev);
573
574 /*
575 * only need to schedule in cgroup events if we are changing
576 * cgroup during ctxsw. Cgroup events were not scheduled
577 * out of ctxsw out if that was not the case.
578 */
579 if (cgrp1 != cgrp2)
580 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
581}
582
583static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 struct perf_event_attr *attr,
585 struct perf_event *group_leader)
586{
587 struct perf_cgroup *cgrp;
588 struct cgroup_subsys_state *css;
2903ff01
AV
589 struct fd f = fdget(fd);
590 int ret = 0;
e5d1367f 591
2903ff01 592 if (!f.file)
e5d1367f
SE
593 return -EBADF;
594
2903ff01 595 css = cgroup_css_from_dir(f.file, perf_subsys_id);
3db272c0
LZ
596 if (IS_ERR(css)) {
597 ret = PTR_ERR(css);
598 goto out;
599 }
e5d1367f
SE
600
601 cgrp = container_of(css, struct perf_cgroup, css);
602 event->cgrp = cgrp;
603
f75e18cb 604 /* must be done before we fput() the file */
9c5da09d
SQ
605 if (!perf_tryget_cgroup(event)) {
606 event->cgrp = NULL;
607 ret = -ENOENT;
608 goto out;
609 }
f75e18cb 610
e5d1367f
SE
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
e5d1367f 619 }
3db272c0 620out:
2903ff01 621 fdput(f);
e5d1367f
SE
622 return ret;
623}
624
625static inline void
626perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627{
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631}
632
633static inline void
634perf_cgroup_defer_enabled(struct perf_event *event)
635{
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644}
645
646static inline void
647perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649{
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665}
666#else /* !CONFIG_CGROUP_PERF */
667
668static inline bool
669perf_cgroup_match(struct perf_event *event)
670{
671 return true;
672}
673
674static inline void perf_detach_cgroup(struct perf_event *event)
675{}
676
677static inline int is_cgroup_event(struct perf_event *event)
678{
679 return 0;
680}
681
682static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683{
684 return 0;
685}
686
687static inline void update_cgrp_time_from_event(struct perf_event *event)
688{
689}
690
691static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692{
693}
694
a8d757ef
SE
695static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
e5d1367f
SE
697{
698}
699
a8d757ef
SE
700static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
e5d1367f
SE
702{
703}
704
705static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708{
709 return -EINVAL;
710}
711
712static inline void
3f7cce3c
SE
713perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
e5d1367f
SE
715{
716}
717
718void
719perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720{
721}
722
723static inline void
724perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725{
726}
727
728static inline u64 perf_cgroup_event_time(struct perf_event *event)
729{
730 return 0;
731}
732
733static inline void
734perf_cgroup_defer_enabled(struct perf_event *event)
735{
736}
737
738static inline void
739perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741{
742}
743#endif
744
9e630205
SE
745/*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749#define PERF_CPU_HRTIMER (1000 / HZ)
750/*
751 * function must be called with interrupts disbled
752 */
753static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
754{
755 struct perf_cpu_context *cpuctx;
756 enum hrtimer_restart ret = HRTIMER_NORESTART;
757 int rotations = 0;
758
759 WARN_ON(!irqs_disabled());
760
761 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
762
763 rotations = perf_rotate_context(cpuctx);
764
765 /*
766 * arm timer if needed
767 */
768 if (rotations) {
769 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
770 ret = HRTIMER_RESTART;
771 }
772
773 return ret;
774}
775
776/* CPU is going down */
777void perf_cpu_hrtimer_cancel(int cpu)
778{
779 struct perf_cpu_context *cpuctx;
780 struct pmu *pmu;
781 unsigned long flags;
782
783 if (WARN_ON(cpu != smp_processor_id()))
784 return;
785
786 local_irq_save(flags);
787
788 rcu_read_lock();
789
790 list_for_each_entry_rcu(pmu, &pmus, entry) {
791 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
792
793 if (pmu->task_ctx_nr == perf_sw_context)
794 continue;
795
796 hrtimer_cancel(&cpuctx->hrtimer);
797 }
798
799 rcu_read_unlock();
800
801 local_irq_restore(flags);
802}
803
804static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
805{
806 struct hrtimer *hr = &cpuctx->hrtimer;
807 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 808 int timer;
9e630205
SE
809
810 /* no multiplexing needed for SW PMU */
811 if (pmu->task_ctx_nr == perf_sw_context)
812 return;
813
62b85639
SE
814 /*
815 * check default is sane, if not set then force to
816 * default interval (1/tick)
817 */
818 timer = pmu->hrtimer_interval_ms;
819 if (timer < 1)
820 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
821
822 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
823
824 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
825 hr->function = perf_cpu_hrtimer_handler;
826}
827
828static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
829{
830 struct hrtimer *hr = &cpuctx->hrtimer;
831 struct pmu *pmu = cpuctx->ctx.pmu;
832
833 /* not for SW PMU */
834 if (pmu->task_ctx_nr == perf_sw_context)
835 return;
836
837 if (hrtimer_active(hr))
838 return;
839
840 if (!hrtimer_callback_running(hr))
841 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
842 0, HRTIMER_MODE_REL_PINNED, 0);
843}
844
33696fc0 845void perf_pmu_disable(struct pmu *pmu)
9e35ad38 846{
33696fc0
PZ
847 int *count = this_cpu_ptr(pmu->pmu_disable_count);
848 if (!(*count)++)
849 pmu->pmu_disable(pmu);
9e35ad38 850}
9e35ad38 851
33696fc0 852void perf_pmu_enable(struct pmu *pmu)
9e35ad38 853{
33696fc0
PZ
854 int *count = this_cpu_ptr(pmu->pmu_disable_count);
855 if (!--(*count))
856 pmu->pmu_enable(pmu);
9e35ad38 857}
9e35ad38 858
e9d2b064
PZ
859static DEFINE_PER_CPU(struct list_head, rotation_list);
860
861/*
862 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
863 * because they're strictly cpu affine and rotate_start is called with IRQs
864 * disabled, while rotate_context is called from IRQ context.
865 */
108b02cf 866static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 867{
108b02cf 868 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 869 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 870
e9d2b064 871 WARN_ON(!irqs_disabled());
b5ab4cd5 872
d84153d6 873 if (list_empty(&cpuctx->rotation_list))
e9d2b064 874 list_add(&cpuctx->rotation_list, head);
9e35ad38 875}
9e35ad38 876
cdd6c482 877static void get_ctx(struct perf_event_context *ctx)
a63eaf34 878{
e5289d4a 879 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
880}
881
cdd6c482 882static void put_ctx(struct perf_event_context *ctx)
a63eaf34 883{
564c2b21
PM
884 if (atomic_dec_and_test(&ctx->refcount)) {
885 if (ctx->parent_ctx)
886 put_ctx(ctx->parent_ctx);
c93f7669
PM
887 if (ctx->task)
888 put_task_struct(ctx->task);
cb796ff3 889 kfree_rcu(ctx, rcu_head);
564c2b21 890 }
a63eaf34
PM
891}
892
cdd6c482 893static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
894{
895 if (ctx->parent_ctx) {
896 put_ctx(ctx->parent_ctx);
897 ctx->parent_ctx = NULL;
898 }
899}
900
6844c09d
ACM
901static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
902{
903 /*
904 * only top level events have the pid namespace they were created in
905 */
906 if (event->parent)
907 event = event->parent;
908
909 return task_tgid_nr_ns(p, event->ns);
910}
911
912static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
913{
914 /*
915 * only top level events have the pid namespace they were created in
916 */
917 if (event->parent)
918 event = event->parent;
919
920 return task_pid_nr_ns(p, event->ns);
921}
922
7f453c24 923/*
cdd6c482 924 * If we inherit events we want to return the parent event id
7f453c24
PZ
925 * to userspace.
926 */
cdd6c482 927static u64 primary_event_id(struct perf_event *event)
7f453c24 928{
cdd6c482 929 u64 id = event->id;
7f453c24 930
cdd6c482
IM
931 if (event->parent)
932 id = event->parent->id;
7f453c24
PZ
933
934 return id;
935}
936
25346b93 937/*
cdd6c482 938 * Get the perf_event_context for a task and lock it.
25346b93
PM
939 * This has to cope with with the fact that until it is locked,
940 * the context could get moved to another task.
941 */
cdd6c482 942static struct perf_event_context *
8dc85d54 943perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 944{
cdd6c482 945 struct perf_event_context *ctx;
25346b93 946
9ed6060d 947retry:
058ebd0e
PZ
948 /*
949 * One of the few rules of preemptible RCU is that one cannot do
950 * rcu_read_unlock() while holding a scheduler (or nested) lock when
951 * part of the read side critical section was preemptible -- see
952 * rcu_read_unlock_special().
953 *
954 * Since ctx->lock nests under rq->lock we must ensure the entire read
955 * side critical section is non-preemptible.
956 */
957 preempt_disable();
958 rcu_read_lock();
8dc85d54 959 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
960 if (ctx) {
961 /*
962 * If this context is a clone of another, it might
963 * get swapped for another underneath us by
cdd6c482 964 * perf_event_task_sched_out, though the
25346b93
PM
965 * rcu_read_lock() protects us from any context
966 * getting freed. Lock the context and check if it
967 * got swapped before we could get the lock, and retry
968 * if so. If we locked the right context, then it
969 * can't get swapped on us any more.
970 */
e625cce1 971 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 972 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 973 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
974 rcu_read_unlock();
975 preempt_enable();
25346b93
PM
976 goto retry;
977 }
b49a9e7e
PZ
978
979 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 980 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
981 ctx = NULL;
982 }
25346b93
PM
983 }
984 rcu_read_unlock();
058ebd0e 985 preempt_enable();
25346b93
PM
986 return ctx;
987}
988
989/*
990 * Get the context for a task and increment its pin_count so it
991 * can't get swapped to another task. This also increments its
992 * reference count so that the context can't get freed.
993 */
8dc85d54
PZ
994static struct perf_event_context *
995perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 996{
cdd6c482 997 struct perf_event_context *ctx;
25346b93
PM
998 unsigned long flags;
999
8dc85d54 1000 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1001 if (ctx) {
1002 ++ctx->pin_count;
e625cce1 1003 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1004 }
1005 return ctx;
1006}
1007
cdd6c482 1008static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1009{
1010 unsigned long flags;
1011
e625cce1 1012 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1013 --ctx->pin_count;
e625cce1 1014 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1015}
1016
f67218c3
PZ
1017/*
1018 * Update the record of the current time in a context.
1019 */
1020static void update_context_time(struct perf_event_context *ctx)
1021{
1022 u64 now = perf_clock();
1023
1024 ctx->time += now - ctx->timestamp;
1025 ctx->timestamp = now;
1026}
1027
4158755d
SE
1028static u64 perf_event_time(struct perf_event *event)
1029{
1030 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1031
1032 if (is_cgroup_event(event))
1033 return perf_cgroup_event_time(event);
1034
4158755d
SE
1035 return ctx ? ctx->time : 0;
1036}
1037
f67218c3
PZ
1038/*
1039 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1040 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1041 */
1042static void update_event_times(struct perf_event *event)
1043{
1044 struct perf_event_context *ctx = event->ctx;
1045 u64 run_end;
1046
1047 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1048 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1049 return;
e5d1367f
SE
1050 /*
1051 * in cgroup mode, time_enabled represents
1052 * the time the event was enabled AND active
1053 * tasks were in the monitored cgroup. This is
1054 * independent of the activity of the context as
1055 * there may be a mix of cgroup and non-cgroup events.
1056 *
1057 * That is why we treat cgroup events differently
1058 * here.
1059 */
1060 if (is_cgroup_event(event))
46cd6a7f 1061 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1062 else if (ctx->is_active)
1063 run_end = ctx->time;
acd1d7c1
PZ
1064 else
1065 run_end = event->tstamp_stopped;
1066
1067 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1068
1069 if (event->state == PERF_EVENT_STATE_INACTIVE)
1070 run_end = event->tstamp_stopped;
1071 else
4158755d 1072 run_end = perf_event_time(event);
f67218c3
PZ
1073
1074 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1075
f67218c3
PZ
1076}
1077
96c21a46
PZ
1078/*
1079 * Update total_time_enabled and total_time_running for all events in a group.
1080 */
1081static void update_group_times(struct perf_event *leader)
1082{
1083 struct perf_event *event;
1084
1085 update_event_times(leader);
1086 list_for_each_entry(event, &leader->sibling_list, group_entry)
1087 update_event_times(event);
1088}
1089
889ff015
FW
1090static struct list_head *
1091ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1092{
1093 if (event->attr.pinned)
1094 return &ctx->pinned_groups;
1095 else
1096 return &ctx->flexible_groups;
1097}
1098
fccc714b 1099/*
cdd6c482 1100 * Add a event from the lists for its context.
fccc714b
PZ
1101 * Must be called with ctx->mutex and ctx->lock held.
1102 */
04289bb9 1103static void
cdd6c482 1104list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1105{
8a49542c
PZ
1106 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1107 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1108
1109 /*
8a49542c
PZ
1110 * If we're a stand alone event or group leader, we go to the context
1111 * list, group events are kept attached to the group so that
1112 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1113 */
8a49542c 1114 if (event->group_leader == event) {
889ff015
FW
1115 struct list_head *list;
1116
d6f962b5
FW
1117 if (is_software_event(event))
1118 event->group_flags |= PERF_GROUP_SOFTWARE;
1119
889ff015
FW
1120 list = ctx_group_list(event, ctx);
1121 list_add_tail(&event->group_entry, list);
5c148194 1122 }
592903cd 1123
08309379 1124 if (is_cgroup_event(event))
e5d1367f 1125 ctx->nr_cgroups++;
e5d1367f 1126
d010b332
SE
1127 if (has_branch_stack(event))
1128 ctx->nr_branch_stack++;
1129
cdd6c482 1130 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1131 if (!ctx->nr_events)
108b02cf 1132 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1133 ctx->nr_events++;
1134 if (event->attr.inherit_stat)
bfbd3381 1135 ctx->nr_stat++;
04289bb9
IM
1136}
1137
0231bb53
JO
1138/*
1139 * Initialize event state based on the perf_event_attr::disabled.
1140 */
1141static inline void perf_event__state_init(struct perf_event *event)
1142{
1143 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1144 PERF_EVENT_STATE_INACTIVE;
1145}
1146
c320c7b7
ACM
1147/*
1148 * Called at perf_event creation and when events are attached/detached from a
1149 * group.
1150 */
1151static void perf_event__read_size(struct perf_event *event)
1152{
1153 int entry = sizeof(u64); /* value */
1154 int size = 0;
1155 int nr = 1;
1156
1157 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1158 size += sizeof(u64);
1159
1160 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1161 size += sizeof(u64);
1162
1163 if (event->attr.read_format & PERF_FORMAT_ID)
1164 entry += sizeof(u64);
1165
1166 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1167 nr += event->group_leader->nr_siblings;
1168 size += sizeof(u64);
1169 }
1170
1171 size += entry * nr;
1172 event->read_size = size;
1173}
1174
1175static void perf_event__header_size(struct perf_event *event)
1176{
1177 struct perf_sample_data *data;
1178 u64 sample_type = event->attr.sample_type;
1179 u16 size = 0;
1180
1181 perf_event__read_size(event);
1182
1183 if (sample_type & PERF_SAMPLE_IP)
1184 size += sizeof(data->ip);
1185
6844c09d
ACM
1186 if (sample_type & PERF_SAMPLE_ADDR)
1187 size += sizeof(data->addr);
1188
1189 if (sample_type & PERF_SAMPLE_PERIOD)
1190 size += sizeof(data->period);
1191
c3feedf2
AK
1192 if (sample_type & PERF_SAMPLE_WEIGHT)
1193 size += sizeof(data->weight);
1194
6844c09d
ACM
1195 if (sample_type & PERF_SAMPLE_READ)
1196 size += event->read_size;
1197
d6be9ad6
SE
1198 if (sample_type & PERF_SAMPLE_DATA_SRC)
1199 size += sizeof(data->data_src.val);
1200
6844c09d
ACM
1201 event->header_size = size;
1202}
1203
1204static void perf_event__id_header_size(struct perf_event *event)
1205{
1206 struct perf_sample_data *data;
1207 u64 sample_type = event->attr.sample_type;
1208 u16 size = 0;
1209
c320c7b7
ACM
1210 if (sample_type & PERF_SAMPLE_TID)
1211 size += sizeof(data->tid_entry);
1212
1213 if (sample_type & PERF_SAMPLE_TIME)
1214 size += sizeof(data->time);
1215
ff3d527c
AH
1216 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1217 size += sizeof(data->id);
1218
c320c7b7
ACM
1219 if (sample_type & PERF_SAMPLE_ID)
1220 size += sizeof(data->id);
1221
1222 if (sample_type & PERF_SAMPLE_STREAM_ID)
1223 size += sizeof(data->stream_id);
1224
1225 if (sample_type & PERF_SAMPLE_CPU)
1226 size += sizeof(data->cpu_entry);
1227
6844c09d 1228 event->id_header_size = size;
c320c7b7
ACM
1229}
1230
8a49542c
PZ
1231static void perf_group_attach(struct perf_event *event)
1232{
c320c7b7 1233 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1234
74c3337c
PZ
1235 /*
1236 * We can have double attach due to group movement in perf_event_open.
1237 */
1238 if (event->attach_state & PERF_ATTACH_GROUP)
1239 return;
1240
8a49542c
PZ
1241 event->attach_state |= PERF_ATTACH_GROUP;
1242
1243 if (group_leader == event)
1244 return;
1245
1246 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1247 !is_software_event(event))
1248 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1249
1250 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1251 group_leader->nr_siblings++;
c320c7b7
ACM
1252
1253 perf_event__header_size(group_leader);
1254
1255 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1256 perf_event__header_size(pos);
8a49542c
PZ
1257}
1258
a63eaf34 1259/*
cdd6c482 1260 * Remove a event from the lists for its context.
fccc714b 1261 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1262 */
04289bb9 1263static void
cdd6c482 1264list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1265{
68cacd29 1266 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1267 /*
1268 * We can have double detach due to exit/hot-unplug + close.
1269 */
1270 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1271 return;
8a49542c
PZ
1272
1273 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1274
68cacd29 1275 if (is_cgroup_event(event)) {
e5d1367f 1276 ctx->nr_cgroups--;
68cacd29
SE
1277 cpuctx = __get_cpu_context(ctx);
1278 /*
1279 * if there are no more cgroup events
1280 * then cler cgrp to avoid stale pointer
1281 * in update_cgrp_time_from_cpuctx()
1282 */
1283 if (!ctx->nr_cgroups)
1284 cpuctx->cgrp = NULL;
1285 }
e5d1367f 1286
d010b332
SE
1287 if (has_branch_stack(event))
1288 ctx->nr_branch_stack--;
1289
cdd6c482
IM
1290 ctx->nr_events--;
1291 if (event->attr.inherit_stat)
bfbd3381 1292 ctx->nr_stat--;
8bc20959 1293
cdd6c482 1294 list_del_rcu(&event->event_entry);
04289bb9 1295
8a49542c
PZ
1296 if (event->group_leader == event)
1297 list_del_init(&event->group_entry);
5c148194 1298
96c21a46 1299 update_group_times(event);
b2e74a26
SE
1300
1301 /*
1302 * If event was in error state, then keep it
1303 * that way, otherwise bogus counts will be
1304 * returned on read(). The only way to get out
1305 * of error state is by explicit re-enabling
1306 * of the event
1307 */
1308 if (event->state > PERF_EVENT_STATE_OFF)
1309 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1310}
1311
8a49542c 1312static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1313{
1314 struct perf_event *sibling, *tmp;
8a49542c
PZ
1315 struct list_head *list = NULL;
1316
1317 /*
1318 * We can have double detach due to exit/hot-unplug + close.
1319 */
1320 if (!(event->attach_state & PERF_ATTACH_GROUP))
1321 return;
1322
1323 event->attach_state &= ~PERF_ATTACH_GROUP;
1324
1325 /*
1326 * If this is a sibling, remove it from its group.
1327 */
1328 if (event->group_leader != event) {
1329 list_del_init(&event->group_entry);
1330 event->group_leader->nr_siblings--;
c320c7b7 1331 goto out;
8a49542c
PZ
1332 }
1333
1334 if (!list_empty(&event->group_entry))
1335 list = &event->group_entry;
2e2af50b 1336
04289bb9 1337 /*
cdd6c482
IM
1338 * If this was a group event with sibling events then
1339 * upgrade the siblings to singleton events by adding them
8a49542c 1340 * to whatever list we are on.
04289bb9 1341 */
cdd6c482 1342 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1343 if (list)
1344 list_move_tail(&sibling->group_entry, list);
04289bb9 1345 sibling->group_leader = sibling;
d6f962b5
FW
1346
1347 /* Inherit group flags from the previous leader */
1348 sibling->group_flags = event->group_flags;
04289bb9 1349 }
c320c7b7
ACM
1350
1351out:
1352 perf_event__header_size(event->group_leader);
1353
1354 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1355 perf_event__header_size(tmp);
04289bb9
IM
1356}
1357
fa66f07a
SE
1358static inline int
1359event_filter_match(struct perf_event *event)
1360{
e5d1367f
SE
1361 return (event->cpu == -1 || event->cpu == smp_processor_id())
1362 && perf_cgroup_match(event);
fa66f07a
SE
1363}
1364
9ffcfa6f
SE
1365static void
1366event_sched_out(struct perf_event *event,
3b6f9e5c 1367 struct perf_cpu_context *cpuctx,
cdd6c482 1368 struct perf_event_context *ctx)
3b6f9e5c 1369{
4158755d 1370 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1371 u64 delta;
1372 /*
1373 * An event which could not be activated because of
1374 * filter mismatch still needs to have its timings
1375 * maintained, otherwise bogus information is return
1376 * via read() for time_enabled, time_running:
1377 */
1378 if (event->state == PERF_EVENT_STATE_INACTIVE
1379 && !event_filter_match(event)) {
e5d1367f 1380 delta = tstamp - event->tstamp_stopped;
fa66f07a 1381 event->tstamp_running += delta;
4158755d 1382 event->tstamp_stopped = tstamp;
fa66f07a
SE
1383 }
1384
cdd6c482 1385 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1386 return;
3b6f9e5c 1387
cdd6c482
IM
1388 event->state = PERF_EVENT_STATE_INACTIVE;
1389 if (event->pending_disable) {
1390 event->pending_disable = 0;
1391 event->state = PERF_EVENT_STATE_OFF;
970892a9 1392 }
4158755d 1393 event->tstamp_stopped = tstamp;
a4eaf7f1 1394 event->pmu->del(event, 0);
cdd6c482 1395 event->oncpu = -1;
3b6f9e5c 1396
cdd6c482 1397 if (!is_software_event(event))
3b6f9e5c
PM
1398 cpuctx->active_oncpu--;
1399 ctx->nr_active--;
0f5a2601
PZ
1400 if (event->attr.freq && event->attr.sample_freq)
1401 ctx->nr_freq--;
cdd6c482 1402 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1403 cpuctx->exclusive = 0;
1404}
1405
d859e29f 1406static void
cdd6c482 1407group_sched_out(struct perf_event *group_event,
d859e29f 1408 struct perf_cpu_context *cpuctx,
cdd6c482 1409 struct perf_event_context *ctx)
d859e29f 1410{
cdd6c482 1411 struct perf_event *event;
fa66f07a 1412 int state = group_event->state;
d859e29f 1413
cdd6c482 1414 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1415
1416 /*
1417 * Schedule out siblings (if any):
1418 */
cdd6c482
IM
1419 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1420 event_sched_out(event, cpuctx, ctx);
d859e29f 1421
fa66f07a 1422 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1423 cpuctx->exclusive = 0;
1424}
1425
0793a61d 1426/*
cdd6c482 1427 * Cross CPU call to remove a performance event
0793a61d 1428 *
cdd6c482 1429 * We disable the event on the hardware level first. After that we
0793a61d
TG
1430 * remove it from the context list.
1431 */
fe4b04fa 1432static int __perf_remove_from_context(void *info)
0793a61d 1433{
cdd6c482
IM
1434 struct perf_event *event = info;
1435 struct perf_event_context *ctx = event->ctx;
108b02cf 1436 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1437
e625cce1 1438 raw_spin_lock(&ctx->lock);
cdd6c482 1439 event_sched_out(event, cpuctx, ctx);
cdd6c482 1440 list_del_event(event, ctx);
64ce3126
PZ
1441 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1442 ctx->is_active = 0;
1443 cpuctx->task_ctx = NULL;
1444 }
e625cce1 1445 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1446
1447 return 0;
0793a61d
TG
1448}
1449
1450
1451/*
cdd6c482 1452 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1453 *
cdd6c482 1454 * CPU events are removed with a smp call. For task events we only
0793a61d 1455 * call when the task is on a CPU.
c93f7669 1456 *
cdd6c482
IM
1457 * If event->ctx is a cloned context, callers must make sure that
1458 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1459 * remains valid. This is OK when called from perf_release since
1460 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1461 * When called from perf_event_exit_task, it's OK because the
c93f7669 1462 * context has been detached from its task.
0793a61d 1463 */
fe4b04fa 1464static void perf_remove_from_context(struct perf_event *event)
0793a61d 1465{
cdd6c482 1466 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1467 struct task_struct *task = ctx->task;
1468
fe4b04fa
PZ
1469 lockdep_assert_held(&ctx->mutex);
1470
0793a61d
TG
1471 if (!task) {
1472 /*
cdd6c482 1473 * Per cpu events are removed via an smp call and
af901ca1 1474 * the removal is always successful.
0793a61d 1475 */
fe4b04fa 1476 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1477 return;
1478 }
1479
1480retry:
fe4b04fa
PZ
1481 if (!task_function_call(task, __perf_remove_from_context, event))
1482 return;
0793a61d 1483
e625cce1 1484 raw_spin_lock_irq(&ctx->lock);
0793a61d 1485 /*
fe4b04fa
PZ
1486 * If we failed to find a running task, but find the context active now
1487 * that we've acquired the ctx->lock, retry.
0793a61d 1488 */
fe4b04fa 1489 if (ctx->is_active) {
e625cce1 1490 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1491 goto retry;
1492 }
1493
1494 /*
fe4b04fa
PZ
1495 * Since the task isn't running, its safe to remove the event, us
1496 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1497 */
fe4b04fa 1498 list_del_event(event, ctx);
e625cce1 1499 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1500}
1501
d859e29f 1502/*
cdd6c482 1503 * Cross CPU call to disable a performance event
d859e29f 1504 */
500ad2d8 1505int __perf_event_disable(void *info)
d859e29f 1506{
cdd6c482 1507 struct perf_event *event = info;
cdd6c482 1508 struct perf_event_context *ctx = event->ctx;
108b02cf 1509 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1510
1511 /*
cdd6c482
IM
1512 * If this is a per-task event, need to check whether this
1513 * event's task is the current task on this cpu.
fe4b04fa
PZ
1514 *
1515 * Can trigger due to concurrent perf_event_context_sched_out()
1516 * flipping contexts around.
d859e29f 1517 */
665c2142 1518 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1519 return -EINVAL;
d859e29f 1520
e625cce1 1521 raw_spin_lock(&ctx->lock);
d859e29f
PM
1522
1523 /*
cdd6c482 1524 * If the event is on, turn it off.
d859e29f
PM
1525 * If it is in error state, leave it in error state.
1526 */
cdd6c482 1527 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1528 update_context_time(ctx);
e5d1367f 1529 update_cgrp_time_from_event(event);
cdd6c482
IM
1530 update_group_times(event);
1531 if (event == event->group_leader)
1532 group_sched_out(event, cpuctx, ctx);
d859e29f 1533 else
cdd6c482
IM
1534 event_sched_out(event, cpuctx, ctx);
1535 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1536 }
1537
e625cce1 1538 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1539
1540 return 0;
d859e29f
PM
1541}
1542
1543/*
cdd6c482 1544 * Disable a event.
c93f7669 1545 *
cdd6c482
IM
1546 * If event->ctx is a cloned context, callers must make sure that
1547 * every task struct that event->ctx->task could possibly point to
c93f7669 1548 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1549 * perf_event_for_each_child or perf_event_for_each because they
1550 * hold the top-level event's child_mutex, so any descendant that
1551 * goes to exit will block in sync_child_event.
1552 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1553 * is the current context on this CPU and preemption is disabled,
cdd6c482 1554 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1555 */
44234adc 1556void perf_event_disable(struct perf_event *event)
d859e29f 1557{
cdd6c482 1558 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1559 struct task_struct *task = ctx->task;
1560
1561 if (!task) {
1562 /*
cdd6c482 1563 * Disable the event on the cpu that it's on
d859e29f 1564 */
fe4b04fa 1565 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1566 return;
1567 }
1568
9ed6060d 1569retry:
fe4b04fa
PZ
1570 if (!task_function_call(task, __perf_event_disable, event))
1571 return;
d859e29f 1572
e625cce1 1573 raw_spin_lock_irq(&ctx->lock);
d859e29f 1574 /*
cdd6c482 1575 * If the event is still active, we need to retry the cross-call.
d859e29f 1576 */
cdd6c482 1577 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1578 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1579 /*
1580 * Reload the task pointer, it might have been changed by
1581 * a concurrent perf_event_context_sched_out().
1582 */
1583 task = ctx->task;
d859e29f
PM
1584 goto retry;
1585 }
1586
1587 /*
1588 * Since we have the lock this context can't be scheduled
1589 * in, so we can change the state safely.
1590 */
cdd6c482
IM
1591 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1592 update_group_times(event);
1593 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1594 }
e625cce1 1595 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1596}
dcfce4a0 1597EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1598
e5d1367f
SE
1599static void perf_set_shadow_time(struct perf_event *event,
1600 struct perf_event_context *ctx,
1601 u64 tstamp)
1602{
1603 /*
1604 * use the correct time source for the time snapshot
1605 *
1606 * We could get by without this by leveraging the
1607 * fact that to get to this function, the caller
1608 * has most likely already called update_context_time()
1609 * and update_cgrp_time_xx() and thus both timestamp
1610 * are identical (or very close). Given that tstamp is,
1611 * already adjusted for cgroup, we could say that:
1612 * tstamp - ctx->timestamp
1613 * is equivalent to
1614 * tstamp - cgrp->timestamp.
1615 *
1616 * Then, in perf_output_read(), the calculation would
1617 * work with no changes because:
1618 * - event is guaranteed scheduled in
1619 * - no scheduled out in between
1620 * - thus the timestamp would be the same
1621 *
1622 * But this is a bit hairy.
1623 *
1624 * So instead, we have an explicit cgroup call to remain
1625 * within the time time source all along. We believe it
1626 * is cleaner and simpler to understand.
1627 */
1628 if (is_cgroup_event(event))
1629 perf_cgroup_set_shadow_time(event, tstamp);
1630 else
1631 event->shadow_ctx_time = tstamp - ctx->timestamp;
1632}
1633
4fe757dd
PZ
1634#define MAX_INTERRUPTS (~0ULL)
1635
1636static void perf_log_throttle(struct perf_event *event, int enable);
1637
235c7fc7 1638static int
9ffcfa6f 1639event_sched_in(struct perf_event *event,
235c7fc7 1640 struct perf_cpu_context *cpuctx,
6e37738a 1641 struct perf_event_context *ctx)
235c7fc7 1642{
4158755d
SE
1643 u64 tstamp = perf_event_time(event);
1644
cdd6c482 1645 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1646 return 0;
1647
cdd6c482 1648 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1649 event->oncpu = smp_processor_id();
4fe757dd
PZ
1650
1651 /*
1652 * Unthrottle events, since we scheduled we might have missed several
1653 * ticks already, also for a heavily scheduling task there is little
1654 * guarantee it'll get a tick in a timely manner.
1655 */
1656 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1657 perf_log_throttle(event, 1);
1658 event->hw.interrupts = 0;
1659 }
1660
235c7fc7
IM
1661 /*
1662 * The new state must be visible before we turn it on in the hardware:
1663 */
1664 smp_wmb();
1665
a4eaf7f1 1666 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1667 event->state = PERF_EVENT_STATE_INACTIVE;
1668 event->oncpu = -1;
235c7fc7
IM
1669 return -EAGAIN;
1670 }
1671
4158755d 1672 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1673
e5d1367f 1674 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1675
cdd6c482 1676 if (!is_software_event(event))
3b6f9e5c 1677 cpuctx->active_oncpu++;
235c7fc7 1678 ctx->nr_active++;
0f5a2601
PZ
1679 if (event->attr.freq && event->attr.sample_freq)
1680 ctx->nr_freq++;
235c7fc7 1681
cdd6c482 1682 if (event->attr.exclusive)
3b6f9e5c
PM
1683 cpuctx->exclusive = 1;
1684
235c7fc7
IM
1685 return 0;
1686}
1687
6751b71e 1688static int
cdd6c482 1689group_sched_in(struct perf_event *group_event,
6751b71e 1690 struct perf_cpu_context *cpuctx,
6e37738a 1691 struct perf_event_context *ctx)
6751b71e 1692{
6bde9b6c 1693 struct perf_event *event, *partial_group = NULL;
51b0fe39 1694 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1695 u64 now = ctx->time;
1696 bool simulate = false;
6751b71e 1697
cdd6c482 1698 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1699 return 0;
1700
ad5133b7 1701 pmu->start_txn(pmu);
6bde9b6c 1702
9ffcfa6f 1703 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1704 pmu->cancel_txn(pmu);
9e630205 1705 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1706 return -EAGAIN;
90151c35 1707 }
6751b71e
PM
1708
1709 /*
1710 * Schedule in siblings as one group (if any):
1711 */
cdd6c482 1712 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1713 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1714 partial_group = event;
6751b71e
PM
1715 goto group_error;
1716 }
1717 }
1718
9ffcfa6f 1719 if (!pmu->commit_txn(pmu))
6e85158c 1720 return 0;
9ffcfa6f 1721
6751b71e
PM
1722group_error:
1723 /*
1724 * Groups can be scheduled in as one unit only, so undo any
1725 * partial group before returning:
d7842da4
SE
1726 * The events up to the failed event are scheduled out normally,
1727 * tstamp_stopped will be updated.
1728 *
1729 * The failed events and the remaining siblings need to have
1730 * their timings updated as if they had gone thru event_sched_in()
1731 * and event_sched_out(). This is required to get consistent timings
1732 * across the group. This also takes care of the case where the group
1733 * could never be scheduled by ensuring tstamp_stopped is set to mark
1734 * the time the event was actually stopped, such that time delta
1735 * calculation in update_event_times() is correct.
6751b71e 1736 */
cdd6c482
IM
1737 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1738 if (event == partial_group)
d7842da4
SE
1739 simulate = true;
1740
1741 if (simulate) {
1742 event->tstamp_running += now - event->tstamp_stopped;
1743 event->tstamp_stopped = now;
1744 } else {
1745 event_sched_out(event, cpuctx, ctx);
1746 }
6751b71e 1747 }
9ffcfa6f 1748 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1749
ad5133b7 1750 pmu->cancel_txn(pmu);
90151c35 1751
9e630205
SE
1752 perf_cpu_hrtimer_restart(cpuctx);
1753
6751b71e
PM
1754 return -EAGAIN;
1755}
1756
3b6f9e5c 1757/*
cdd6c482 1758 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1759 */
cdd6c482 1760static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1761 struct perf_cpu_context *cpuctx,
1762 int can_add_hw)
1763{
1764 /*
cdd6c482 1765 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1766 */
d6f962b5 1767 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1768 return 1;
1769 /*
1770 * If an exclusive group is already on, no other hardware
cdd6c482 1771 * events can go on.
3b6f9e5c
PM
1772 */
1773 if (cpuctx->exclusive)
1774 return 0;
1775 /*
1776 * If this group is exclusive and there are already
cdd6c482 1777 * events on the CPU, it can't go on.
3b6f9e5c 1778 */
cdd6c482 1779 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1780 return 0;
1781 /*
1782 * Otherwise, try to add it if all previous groups were able
1783 * to go on.
1784 */
1785 return can_add_hw;
1786}
1787
cdd6c482
IM
1788static void add_event_to_ctx(struct perf_event *event,
1789 struct perf_event_context *ctx)
53cfbf59 1790{
4158755d
SE
1791 u64 tstamp = perf_event_time(event);
1792
cdd6c482 1793 list_add_event(event, ctx);
8a49542c 1794 perf_group_attach(event);
4158755d
SE
1795 event->tstamp_enabled = tstamp;
1796 event->tstamp_running = tstamp;
1797 event->tstamp_stopped = tstamp;
53cfbf59
PM
1798}
1799
2c29ef0f
PZ
1800static void task_ctx_sched_out(struct perf_event_context *ctx);
1801static void
1802ctx_sched_in(struct perf_event_context *ctx,
1803 struct perf_cpu_context *cpuctx,
1804 enum event_type_t event_type,
1805 struct task_struct *task);
fe4b04fa 1806
dce5855b
PZ
1807static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1808 struct perf_event_context *ctx,
1809 struct task_struct *task)
1810{
1811 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1812 if (ctx)
1813 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1814 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1815 if (ctx)
1816 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1817}
1818
0793a61d 1819/*
cdd6c482 1820 * Cross CPU call to install and enable a performance event
682076ae
PZ
1821 *
1822 * Must be called with ctx->mutex held
0793a61d 1823 */
fe4b04fa 1824static int __perf_install_in_context(void *info)
0793a61d 1825{
cdd6c482
IM
1826 struct perf_event *event = info;
1827 struct perf_event_context *ctx = event->ctx;
108b02cf 1828 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1829 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1830 struct task_struct *task = current;
1831
b58f6b0d 1832 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1833 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1834
1835 /*
2c29ef0f 1836 * If there was an active task_ctx schedule it out.
0793a61d 1837 */
b58f6b0d 1838 if (task_ctx)
2c29ef0f 1839 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1840
1841 /*
1842 * If the context we're installing events in is not the
1843 * active task_ctx, flip them.
1844 */
1845 if (ctx->task && task_ctx != ctx) {
1846 if (task_ctx)
1847 raw_spin_unlock(&task_ctx->lock);
1848 raw_spin_lock(&ctx->lock);
1849 task_ctx = ctx;
1850 }
1851
1852 if (task_ctx) {
1853 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1854 task = task_ctx->task;
1855 }
b58f6b0d 1856
2c29ef0f 1857 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1858
4af4998b 1859 update_context_time(ctx);
e5d1367f
SE
1860 /*
1861 * update cgrp time only if current cgrp
1862 * matches event->cgrp. Must be done before
1863 * calling add_event_to_ctx()
1864 */
1865 update_cgrp_time_from_event(event);
0793a61d 1866
cdd6c482 1867 add_event_to_ctx(event, ctx);
0793a61d 1868
d859e29f 1869 /*
2c29ef0f 1870 * Schedule everything back in
d859e29f 1871 */
dce5855b 1872 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1873
1874 perf_pmu_enable(cpuctx->ctx.pmu);
1875 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1876
1877 return 0;
0793a61d
TG
1878}
1879
1880/*
cdd6c482 1881 * Attach a performance event to a context
0793a61d 1882 *
cdd6c482
IM
1883 * First we add the event to the list with the hardware enable bit
1884 * in event->hw_config cleared.
0793a61d 1885 *
cdd6c482 1886 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1887 * call to enable it in the task context. The task might have been
1888 * scheduled away, but we check this in the smp call again.
1889 */
1890static void
cdd6c482
IM
1891perf_install_in_context(struct perf_event_context *ctx,
1892 struct perf_event *event,
0793a61d
TG
1893 int cpu)
1894{
1895 struct task_struct *task = ctx->task;
1896
fe4b04fa
PZ
1897 lockdep_assert_held(&ctx->mutex);
1898
c3f00c70 1899 event->ctx = ctx;
0cda4c02
YZ
1900 if (event->cpu != -1)
1901 event->cpu = cpu;
c3f00c70 1902
0793a61d
TG
1903 if (!task) {
1904 /*
cdd6c482 1905 * Per cpu events are installed via an smp call and
af901ca1 1906 * the install is always successful.
0793a61d 1907 */
fe4b04fa 1908 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1909 return;
1910 }
1911
0793a61d 1912retry:
fe4b04fa
PZ
1913 if (!task_function_call(task, __perf_install_in_context, event))
1914 return;
0793a61d 1915
e625cce1 1916 raw_spin_lock_irq(&ctx->lock);
0793a61d 1917 /*
fe4b04fa
PZ
1918 * If we failed to find a running task, but find the context active now
1919 * that we've acquired the ctx->lock, retry.
0793a61d 1920 */
fe4b04fa 1921 if (ctx->is_active) {
e625cce1 1922 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1923 goto retry;
1924 }
1925
1926 /*
fe4b04fa
PZ
1927 * Since the task isn't running, its safe to add the event, us holding
1928 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1929 */
fe4b04fa 1930 add_event_to_ctx(event, ctx);
e625cce1 1931 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1932}
1933
fa289bec 1934/*
cdd6c482 1935 * Put a event into inactive state and update time fields.
fa289bec
PM
1936 * Enabling the leader of a group effectively enables all
1937 * the group members that aren't explicitly disabled, so we
1938 * have to update their ->tstamp_enabled also.
1939 * Note: this works for group members as well as group leaders
1940 * since the non-leader members' sibling_lists will be empty.
1941 */
1d9b482e 1942static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1943{
cdd6c482 1944 struct perf_event *sub;
4158755d 1945 u64 tstamp = perf_event_time(event);
fa289bec 1946
cdd6c482 1947 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1948 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1949 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1950 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1951 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1952 }
fa289bec
PM
1953}
1954
d859e29f 1955/*
cdd6c482 1956 * Cross CPU call to enable a performance event
d859e29f 1957 */
fe4b04fa 1958static int __perf_event_enable(void *info)
04289bb9 1959{
cdd6c482 1960 struct perf_event *event = info;
cdd6c482
IM
1961 struct perf_event_context *ctx = event->ctx;
1962 struct perf_event *leader = event->group_leader;
108b02cf 1963 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1964 int err;
04289bb9 1965
06f41796
JO
1966 /*
1967 * There's a time window between 'ctx->is_active' check
1968 * in perf_event_enable function and this place having:
1969 * - IRQs on
1970 * - ctx->lock unlocked
1971 *
1972 * where the task could be killed and 'ctx' deactivated
1973 * by perf_event_exit_task.
1974 */
1975 if (!ctx->is_active)
fe4b04fa 1976 return -EINVAL;
3cbed429 1977
e625cce1 1978 raw_spin_lock(&ctx->lock);
4af4998b 1979 update_context_time(ctx);
d859e29f 1980
cdd6c482 1981 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1982 goto unlock;
e5d1367f
SE
1983
1984 /*
1985 * set current task's cgroup time reference point
1986 */
3f7cce3c 1987 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1988
1d9b482e 1989 __perf_event_mark_enabled(event);
04289bb9 1990
e5d1367f
SE
1991 if (!event_filter_match(event)) {
1992 if (is_cgroup_event(event))
1993 perf_cgroup_defer_enabled(event);
f4c4176f 1994 goto unlock;
e5d1367f 1995 }
f4c4176f 1996
04289bb9 1997 /*
cdd6c482 1998 * If the event is in a group and isn't the group leader,
d859e29f 1999 * then don't put it on unless the group is on.
04289bb9 2000 */
cdd6c482 2001 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2002 goto unlock;
3b6f9e5c 2003
cdd6c482 2004 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2005 err = -EEXIST;
e758a33d 2006 } else {
cdd6c482 2007 if (event == leader)
6e37738a 2008 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2009 else
6e37738a 2010 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2011 }
d859e29f
PM
2012
2013 if (err) {
2014 /*
cdd6c482 2015 * If this event can't go on and it's part of a
d859e29f
PM
2016 * group, then the whole group has to come off.
2017 */
9e630205 2018 if (leader != event) {
d859e29f 2019 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2020 perf_cpu_hrtimer_restart(cpuctx);
2021 }
0d48696f 2022 if (leader->attr.pinned) {
53cfbf59 2023 update_group_times(leader);
cdd6c482 2024 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2025 }
d859e29f
PM
2026 }
2027
9ed6060d 2028unlock:
e625cce1 2029 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2030
2031 return 0;
d859e29f
PM
2032}
2033
2034/*
cdd6c482 2035 * Enable a event.
c93f7669 2036 *
cdd6c482
IM
2037 * If event->ctx is a cloned context, callers must make sure that
2038 * every task struct that event->ctx->task could possibly point to
c93f7669 2039 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2040 * perf_event_for_each_child or perf_event_for_each as described
2041 * for perf_event_disable.
d859e29f 2042 */
44234adc 2043void perf_event_enable(struct perf_event *event)
d859e29f 2044{
cdd6c482 2045 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2046 struct task_struct *task = ctx->task;
2047
2048 if (!task) {
2049 /*
cdd6c482 2050 * Enable the event on the cpu that it's on
d859e29f 2051 */
fe4b04fa 2052 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2053 return;
2054 }
2055
e625cce1 2056 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2057 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2058 goto out;
2059
2060 /*
cdd6c482
IM
2061 * If the event is in error state, clear that first.
2062 * That way, if we see the event in error state below, we
d859e29f
PM
2063 * know that it has gone back into error state, as distinct
2064 * from the task having been scheduled away before the
2065 * cross-call arrived.
2066 */
cdd6c482
IM
2067 if (event->state == PERF_EVENT_STATE_ERROR)
2068 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2069
9ed6060d 2070retry:
fe4b04fa 2071 if (!ctx->is_active) {
1d9b482e 2072 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2073 goto out;
2074 }
2075
e625cce1 2076 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2077
2078 if (!task_function_call(task, __perf_event_enable, event))
2079 return;
d859e29f 2080
e625cce1 2081 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2082
2083 /*
cdd6c482 2084 * If the context is active and the event is still off,
d859e29f
PM
2085 * we need to retry the cross-call.
2086 */
fe4b04fa
PZ
2087 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2088 /*
2089 * task could have been flipped by a concurrent
2090 * perf_event_context_sched_out()
2091 */
2092 task = ctx->task;
d859e29f 2093 goto retry;
fe4b04fa 2094 }
fa289bec 2095
9ed6060d 2096out:
e625cce1 2097 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2098}
dcfce4a0 2099EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2100
26ca5c11 2101int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2102{
2023b359 2103 /*
cdd6c482 2104 * not supported on inherited events
2023b359 2105 */
2e939d1d 2106 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2107 return -EINVAL;
2108
cdd6c482
IM
2109 atomic_add(refresh, &event->event_limit);
2110 perf_event_enable(event);
2023b359
PZ
2111
2112 return 0;
79f14641 2113}
26ca5c11 2114EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2115
5b0311e1
FW
2116static void ctx_sched_out(struct perf_event_context *ctx,
2117 struct perf_cpu_context *cpuctx,
2118 enum event_type_t event_type)
235c7fc7 2119{
cdd6c482 2120 struct perf_event *event;
db24d33e 2121 int is_active = ctx->is_active;
235c7fc7 2122
db24d33e 2123 ctx->is_active &= ~event_type;
cdd6c482 2124 if (likely(!ctx->nr_events))
facc4307
PZ
2125 return;
2126
4af4998b 2127 update_context_time(ctx);
e5d1367f 2128 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2129 if (!ctx->nr_active)
facc4307 2130 return;
5b0311e1 2131
075e0b00 2132 perf_pmu_disable(ctx->pmu);
db24d33e 2133 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2134 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2135 group_sched_out(event, cpuctx, ctx);
9ed6060d 2136 }
889ff015 2137
db24d33e 2138 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2139 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2140 group_sched_out(event, cpuctx, ctx);
9ed6060d 2141 }
1b9a644f 2142 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2143}
2144
564c2b21
PM
2145/*
2146 * Test whether two contexts are equivalent, i.e. whether they
2147 * have both been cloned from the same version of the same context
cdd6c482
IM
2148 * and they both have the same number of enabled events.
2149 * If the number of enabled events is the same, then the set
2150 * of enabled events should be the same, because these are both
2151 * inherited contexts, therefore we can't access individual events
564c2b21 2152 * in them directly with an fd; we can only enable/disable all
cdd6c482 2153 * events via prctl, or enable/disable all events in a family
564c2b21
PM
2154 * via ioctl, which will have the same effect on both contexts.
2155 */
cdd6c482
IM
2156static int context_equiv(struct perf_event_context *ctx1,
2157 struct perf_event_context *ctx2)
564c2b21
PM
2158{
2159 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 2160 && ctx1->parent_gen == ctx2->parent_gen
25346b93 2161 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
2162}
2163
cdd6c482
IM
2164static void __perf_event_sync_stat(struct perf_event *event,
2165 struct perf_event *next_event)
bfbd3381
PZ
2166{
2167 u64 value;
2168
cdd6c482 2169 if (!event->attr.inherit_stat)
bfbd3381
PZ
2170 return;
2171
2172 /*
cdd6c482 2173 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2174 * because we're in the middle of a context switch and have IRQs
2175 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2176 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2177 * don't need to use it.
2178 */
cdd6c482
IM
2179 switch (event->state) {
2180 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2181 event->pmu->read(event);
2182 /* fall-through */
bfbd3381 2183
cdd6c482
IM
2184 case PERF_EVENT_STATE_INACTIVE:
2185 update_event_times(event);
bfbd3381
PZ
2186 break;
2187
2188 default:
2189 break;
2190 }
2191
2192 /*
cdd6c482 2193 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2194 * values when we flip the contexts.
2195 */
e7850595
PZ
2196 value = local64_read(&next_event->count);
2197 value = local64_xchg(&event->count, value);
2198 local64_set(&next_event->count, value);
bfbd3381 2199
cdd6c482
IM
2200 swap(event->total_time_enabled, next_event->total_time_enabled);
2201 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2202
bfbd3381 2203 /*
19d2e755 2204 * Since we swizzled the values, update the user visible data too.
bfbd3381 2205 */
cdd6c482
IM
2206 perf_event_update_userpage(event);
2207 perf_event_update_userpage(next_event);
bfbd3381
PZ
2208}
2209
2210#define list_next_entry(pos, member) \
2211 list_entry(pos->member.next, typeof(*pos), member)
2212
cdd6c482
IM
2213static void perf_event_sync_stat(struct perf_event_context *ctx,
2214 struct perf_event_context *next_ctx)
bfbd3381 2215{
cdd6c482 2216 struct perf_event *event, *next_event;
bfbd3381
PZ
2217
2218 if (!ctx->nr_stat)
2219 return;
2220
02ffdbc8
PZ
2221 update_context_time(ctx);
2222
cdd6c482
IM
2223 event = list_first_entry(&ctx->event_list,
2224 struct perf_event, event_entry);
bfbd3381 2225
cdd6c482
IM
2226 next_event = list_first_entry(&next_ctx->event_list,
2227 struct perf_event, event_entry);
bfbd3381 2228
cdd6c482
IM
2229 while (&event->event_entry != &ctx->event_list &&
2230 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2231
cdd6c482 2232 __perf_event_sync_stat(event, next_event);
bfbd3381 2233
cdd6c482
IM
2234 event = list_next_entry(event, event_entry);
2235 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2236 }
2237}
2238
fe4b04fa
PZ
2239static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2240 struct task_struct *next)
0793a61d 2241{
8dc85d54 2242 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
2243 struct perf_event_context *next_ctx;
2244 struct perf_event_context *parent;
108b02cf 2245 struct perf_cpu_context *cpuctx;
c93f7669 2246 int do_switch = 1;
0793a61d 2247
108b02cf
PZ
2248 if (likely(!ctx))
2249 return;
10989fb2 2250
108b02cf
PZ
2251 cpuctx = __get_cpu_context(ctx);
2252 if (!cpuctx->task_ctx)
0793a61d
TG
2253 return;
2254
c93f7669
PM
2255 rcu_read_lock();
2256 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 2257 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
2258 if (parent && next_ctx &&
2259 rcu_dereference(next_ctx->parent_ctx) == parent) {
2260 /*
2261 * Looks like the two contexts are clones, so we might be
2262 * able to optimize the context switch. We lock both
2263 * contexts and check that they are clones under the
2264 * lock (including re-checking that neither has been
2265 * uncloned in the meantime). It doesn't matter which
2266 * order we take the locks because no other cpu could
2267 * be trying to lock both of these tasks.
2268 */
e625cce1
TG
2269 raw_spin_lock(&ctx->lock);
2270 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2271 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2272 /*
2273 * XXX do we need a memory barrier of sorts
cdd6c482 2274 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2275 */
8dc85d54
PZ
2276 task->perf_event_ctxp[ctxn] = next_ctx;
2277 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2278 ctx->task = next;
2279 next_ctx->task = task;
2280 do_switch = 0;
bfbd3381 2281
cdd6c482 2282 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2283 }
e625cce1
TG
2284 raw_spin_unlock(&next_ctx->lock);
2285 raw_spin_unlock(&ctx->lock);
564c2b21 2286 }
c93f7669 2287 rcu_read_unlock();
564c2b21 2288
c93f7669 2289 if (do_switch) {
facc4307 2290 raw_spin_lock(&ctx->lock);
5b0311e1 2291 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2292 cpuctx->task_ctx = NULL;
facc4307 2293 raw_spin_unlock(&ctx->lock);
c93f7669 2294 }
0793a61d
TG
2295}
2296
8dc85d54
PZ
2297#define for_each_task_context_nr(ctxn) \
2298 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2299
2300/*
2301 * Called from scheduler to remove the events of the current task,
2302 * with interrupts disabled.
2303 *
2304 * We stop each event and update the event value in event->count.
2305 *
2306 * This does not protect us against NMI, but disable()
2307 * sets the disabled bit in the control field of event _before_
2308 * accessing the event control register. If a NMI hits, then it will
2309 * not restart the event.
2310 */
ab0cce56
JO
2311void __perf_event_task_sched_out(struct task_struct *task,
2312 struct task_struct *next)
8dc85d54
PZ
2313{
2314 int ctxn;
2315
8dc85d54
PZ
2316 for_each_task_context_nr(ctxn)
2317 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2318
2319 /*
2320 * if cgroup events exist on this CPU, then we need
2321 * to check if we have to switch out PMU state.
2322 * cgroup event are system-wide mode only
2323 */
2324 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2325 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2326}
2327
04dc2dbb 2328static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2329{
108b02cf 2330 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2331
a63eaf34
PM
2332 if (!cpuctx->task_ctx)
2333 return;
012b84da
IM
2334
2335 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2336 return;
2337
04dc2dbb 2338 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2339 cpuctx->task_ctx = NULL;
2340}
2341
5b0311e1
FW
2342/*
2343 * Called with IRQs disabled
2344 */
2345static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2346 enum event_type_t event_type)
2347{
2348 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2349}
2350
235c7fc7 2351static void
5b0311e1 2352ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2353 struct perf_cpu_context *cpuctx)
0793a61d 2354{
cdd6c482 2355 struct perf_event *event;
0793a61d 2356
889ff015
FW
2357 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2358 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2359 continue;
5632ab12 2360 if (!event_filter_match(event))
3b6f9e5c
PM
2361 continue;
2362
e5d1367f
SE
2363 /* may need to reset tstamp_enabled */
2364 if (is_cgroup_event(event))
2365 perf_cgroup_mark_enabled(event, ctx);
2366
8c9ed8e1 2367 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2368 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2369
2370 /*
2371 * If this pinned group hasn't been scheduled,
2372 * put it in error state.
2373 */
cdd6c482
IM
2374 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2375 update_group_times(event);
2376 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2377 }
3b6f9e5c 2378 }
5b0311e1
FW
2379}
2380
2381static void
2382ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2383 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2384{
2385 struct perf_event *event;
2386 int can_add_hw = 1;
3b6f9e5c 2387
889ff015
FW
2388 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2389 /* Ignore events in OFF or ERROR state */
2390 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2391 continue;
04289bb9
IM
2392 /*
2393 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2394 * of events:
04289bb9 2395 */
5632ab12 2396 if (!event_filter_match(event))
0793a61d
TG
2397 continue;
2398
e5d1367f
SE
2399 /* may need to reset tstamp_enabled */
2400 if (is_cgroup_event(event))
2401 perf_cgroup_mark_enabled(event, ctx);
2402
9ed6060d 2403 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2404 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2405 can_add_hw = 0;
9ed6060d 2406 }
0793a61d 2407 }
5b0311e1
FW
2408}
2409
2410static void
2411ctx_sched_in(struct perf_event_context *ctx,
2412 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2413 enum event_type_t event_type,
2414 struct task_struct *task)
5b0311e1 2415{
e5d1367f 2416 u64 now;
db24d33e 2417 int is_active = ctx->is_active;
e5d1367f 2418
db24d33e 2419 ctx->is_active |= event_type;
5b0311e1 2420 if (likely(!ctx->nr_events))
facc4307 2421 return;
5b0311e1 2422
e5d1367f
SE
2423 now = perf_clock();
2424 ctx->timestamp = now;
3f7cce3c 2425 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2426 /*
2427 * First go through the list and put on any pinned groups
2428 * in order to give them the best chance of going on.
2429 */
db24d33e 2430 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2431 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2432
2433 /* Then walk through the lower prio flexible groups */
db24d33e 2434 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2435 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2436}
2437
329c0e01 2438static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2439 enum event_type_t event_type,
2440 struct task_struct *task)
329c0e01
FW
2441{
2442 struct perf_event_context *ctx = &cpuctx->ctx;
2443
e5d1367f 2444 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2445}
2446
e5d1367f
SE
2447static void perf_event_context_sched_in(struct perf_event_context *ctx,
2448 struct task_struct *task)
235c7fc7 2449{
108b02cf 2450 struct perf_cpu_context *cpuctx;
235c7fc7 2451
108b02cf 2452 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2453 if (cpuctx->task_ctx == ctx)
2454 return;
2455
facc4307 2456 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2457 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2458 /*
2459 * We want to keep the following priority order:
2460 * cpu pinned (that don't need to move), task pinned,
2461 * cpu flexible, task flexible.
2462 */
2463 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2464
1d5f003f
GN
2465 if (ctx->nr_events)
2466 cpuctx->task_ctx = ctx;
9b33fa6b 2467
86b47c25
GN
2468 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2469
facc4307
PZ
2470 perf_pmu_enable(ctx->pmu);
2471 perf_ctx_unlock(cpuctx, ctx);
2472
b5ab4cd5
PZ
2473 /*
2474 * Since these rotations are per-cpu, we need to ensure the
2475 * cpu-context we got scheduled on is actually rotating.
2476 */
108b02cf 2477 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2478}
2479
d010b332
SE
2480/*
2481 * When sampling the branck stack in system-wide, it may be necessary
2482 * to flush the stack on context switch. This happens when the branch
2483 * stack does not tag its entries with the pid of the current task.
2484 * Otherwise it becomes impossible to associate a branch entry with a
2485 * task. This ambiguity is more likely to appear when the branch stack
2486 * supports priv level filtering and the user sets it to monitor only
2487 * at the user level (which could be a useful measurement in system-wide
2488 * mode). In that case, the risk is high of having a branch stack with
2489 * branch from multiple tasks. Flushing may mean dropping the existing
2490 * entries or stashing them somewhere in the PMU specific code layer.
2491 *
2492 * This function provides the context switch callback to the lower code
2493 * layer. It is invoked ONLY when there is at least one system-wide context
2494 * with at least one active event using taken branch sampling.
2495 */
2496static void perf_branch_stack_sched_in(struct task_struct *prev,
2497 struct task_struct *task)
2498{
2499 struct perf_cpu_context *cpuctx;
2500 struct pmu *pmu;
2501 unsigned long flags;
2502
2503 /* no need to flush branch stack if not changing task */
2504 if (prev == task)
2505 return;
2506
2507 local_irq_save(flags);
2508
2509 rcu_read_lock();
2510
2511 list_for_each_entry_rcu(pmu, &pmus, entry) {
2512 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2513
2514 /*
2515 * check if the context has at least one
2516 * event using PERF_SAMPLE_BRANCH_STACK
2517 */
2518 if (cpuctx->ctx.nr_branch_stack > 0
2519 && pmu->flush_branch_stack) {
2520
2521 pmu = cpuctx->ctx.pmu;
2522
2523 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2524
2525 perf_pmu_disable(pmu);
2526
2527 pmu->flush_branch_stack();
2528
2529 perf_pmu_enable(pmu);
2530
2531 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2532 }
2533 }
2534
2535 rcu_read_unlock();
2536
2537 local_irq_restore(flags);
2538}
2539
8dc85d54
PZ
2540/*
2541 * Called from scheduler to add the events of the current task
2542 * with interrupts disabled.
2543 *
2544 * We restore the event value and then enable it.
2545 *
2546 * This does not protect us against NMI, but enable()
2547 * sets the enabled bit in the control field of event _before_
2548 * accessing the event control register. If a NMI hits, then it will
2549 * keep the event running.
2550 */
ab0cce56
JO
2551void __perf_event_task_sched_in(struct task_struct *prev,
2552 struct task_struct *task)
8dc85d54
PZ
2553{
2554 struct perf_event_context *ctx;
2555 int ctxn;
2556
2557 for_each_task_context_nr(ctxn) {
2558 ctx = task->perf_event_ctxp[ctxn];
2559 if (likely(!ctx))
2560 continue;
2561
e5d1367f 2562 perf_event_context_sched_in(ctx, task);
8dc85d54 2563 }
e5d1367f
SE
2564 /*
2565 * if cgroup events exist on this CPU, then we need
2566 * to check if we have to switch in PMU state.
2567 * cgroup event are system-wide mode only
2568 */
2569 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2570 perf_cgroup_sched_in(prev, task);
d010b332
SE
2571
2572 /* check for system-wide branch_stack events */
2573 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2574 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2575}
2576
abd50713
PZ
2577static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2578{
2579 u64 frequency = event->attr.sample_freq;
2580 u64 sec = NSEC_PER_SEC;
2581 u64 divisor, dividend;
2582
2583 int count_fls, nsec_fls, frequency_fls, sec_fls;
2584
2585 count_fls = fls64(count);
2586 nsec_fls = fls64(nsec);
2587 frequency_fls = fls64(frequency);
2588 sec_fls = 30;
2589
2590 /*
2591 * We got @count in @nsec, with a target of sample_freq HZ
2592 * the target period becomes:
2593 *
2594 * @count * 10^9
2595 * period = -------------------
2596 * @nsec * sample_freq
2597 *
2598 */
2599
2600 /*
2601 * Reduce accuracy by one bit such that @a and @b converge
2602 * to a similar magnitude.
2603 */
fe4b04fa 2604#define REDUCE_FLS(a, b) \
abd50713
PZ
2605do { \
2606 if (a##_fls > b##_fls) { \
2607 a >>= 1; \
2608 a##_fls--; \
2609 } else { \
2610 b >>= 1; \
2611 b##_fls--; \
2612 } \
2613} while (0)
2614
2615 /*
2616 * Reduce accuracy until either term fits in a u64, then proceed with
2617 * the other, so that finally we can do a u64/u64 division.
2618 */
2619 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2620 REDUCE_FLS(nsec, frequency);
2621 REDUCE_FLS(sec, count);
2622 }
2623
2624 if (count_fls + sec_fls > 64) {
2625 divisor = nsec * frequency;
2626
2627 while (count_fls + sec_fls > 64) {
2628 REDUCE_FLS(count, sec);
2629 divisor >>= 1;
2630 }
2631
2632 dividend = count * sec;
2633 } else {
2634 dividend = count * sec;
2635
2636 while (nsec_fls + frequency_fls > 64) {
2637 REDUCE_FLS(nsec, frequency);
2638 dividend >>= 1;
2639 }
2640
2641 divisor = nsec * frequency;
2642 }
2643
f6ab91ad
PZ
2644 if (!divisor)
2645 return dividend;
2646
abd50713
PZ
2647 return div64_u64(dividend, divisor);
2648}
2649
e050e3f0
SE
2650static DEFINE_PER_CPU(int, perf_throttled_count);
2651static DEFINE_PER_CPU(u64, perf_throttled_seq);
2652
f39d47ff 2653static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2654{
cdd6c482 2655 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2656 s64 period, sample_period;
bd2b5b12
PZ
2657 s64 delta;
2658
abd50713 2659 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2660
2661 delta = (s64)(period - hwc->sample_period);
2662 delta = (delta + 7) / 8; /* low pass filter */
2663
2664 sample_period = hwc->sample_period + delta;
2665
2666 if (!sample_period)
2667 sample_period = 1;
2668
bd2b5b12 2669 hwc->sample_period = sample_period;
abd50713 2670
e7850595 2671 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2672 if (disable)
2673 event->pmu->stop(event, PERF_EF_UPDATE);
2674
e7850595 2675 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2676
2677 if (disable)
2678 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2679 }
bd2b5b12
PZ
2680}
2681
e050e3f0
SE
2682/*
2683 * combine freq adjustment with unthrottling to avoid two passes over the
2684 * events. At the same time, make sure, having freq events does not change
2685 * the rate of unthrottling as that would introduce bias.
2686 */
2687static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2688 int needs_unthr)
60db5e09 2689{
cdd6c482
IM
2690 struct perf_event *event;
2691 struct hw_perf_event *hwc;
e050e3f0 2692 u64 now, period = TICK_NSEC;
abd50713 2693 s64 delta;
60db5e09 2694
e050e3f0
SE
2695 /*
2696 * only need to iterate over all events iff:
2697 * - context have events in frequency mode (needs freq adjust)
2698 * - there are events to unthrottle on this cpu
2699 */
2700 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2701 return;
2702
e050e3f0 2703 raw_spin_lock(&ctx->lock);
f39d47ff 2704 perf_pmu_disable(ctx->pmu);
e050e3f0 2705
03541f8b 2706 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2707 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2708 continue;
2709
5632ab12 2710 if (!event_filter_match(event))
5d27c23d
PZ
2711 continue;
2712
cdd6c482 2713 hwc = &event->hw;
6a24ed6c 2714
e050e3f0
SE
2715 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2716 hwc->interrupts = 0;
cdd6c482 2717 perf_log_throttle(event, 1);
a4eaf7f1 2718 event->pmu->start(event, 0);
a78ac325
PZ
2719 }
2720
cdd6c482 2721 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2722 continue;
2723
e050e3f0
SE
2724 /*
2725 * stop the event and update event->count
2726 */
2727 event->pmu->stop(event, PERF_EF_UPDATE);
2728
e7850595 2729 now = local64_read(&event->count);
abd50713
PZ
2730 delta = now - hwc->freq_count_stamp;
2731 hwc->freq_count_stamp = now;
60db5e09 2732
e050e3f0
SE
2733 /*
2734 * restart the event
2735 * reload only if value has changed
f39d47ff
SE
2736 * we have stopped the event so tell that
2737 * to perf_adjust_period() to avoid stopping it
2738 * twice.
e050e3f0 2739 */
abd50713 2740 if (delta > 0)
f39d47ff 2741 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2742
2743 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2744 }
e050e3f0 2745
f39d47ff 2746 perf_pmu_enable(ctx->pmu);
e050e3f0 2747 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2748}
2749
235c7fc7 2750/*
cdd6c482 2751 * Round-robin a context's events:
235c7fc7 2752 */
cdd6c482 2753static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2754{
dddd3379
TG
2755 /*
2756 * Rotate the first entry last of non-pinned groups. Rotation might be
2757 * disabled by the inheritance code.
2758 */
2759 if (!ctx->rotate_disable)
2760 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2761}
2762
b5ab4cd5 2763/*
e9d2b064
PZ
2764 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2765 * because they're strictly cpu affine and rotate_start is called with IRQs
2766 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2767 */
9e630205 2768static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2769{
8dc85d54 2770 struct perf_event_context *ctx = NULL;
e050e3f0 2771 int rotate = 0, remove = 1;
7fc23a53 2772
b5ab4cd5 2773 if (cpuctx->ctx.nr_events) {
e9d2b064 2774 remove = 0;
b5ab4cd5
PZ
2775 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2776 rotate = 1;
2777 }
235c7fc7 2778
8dc85d54 2779 ctx = cpuctx->task_ctx;
b5ab4cd5 2780 if (ctx && ctx->nr_events) {
e9d2b064 2781 remove = 0;
b5ab4cd5
PZ
2782 if (ctx->nr_events != ctx->nr_active)
2783 rotate = 1;
2784 }
9717e6cd 2785
e050e3f0 2786 if (!rotate)
0f5a2601
PZ
2787 goto done;
2788
facc4307 2789 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2790 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2791
e050e3f0
SE
2792 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2793 if (ctx)
2794 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2795
e050e3f0
SE
2796 rotate_ctx(&cpuctx->ctx);
2797 if (ctx)
2798 rotate_ctx(ctx);
235c7fc7 2799
e050e3f0 2800 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2801
0f5a2601
PZ
2802 perf_pmu_enable(cpuctx->ctx.pmu);
2803 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2804done:
e9d2b064
PZ
2805 if (remove)
2806 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2807
2808 return rotate;
e9d2b064
PZ
2809}
2810
026249ef
FW
2811#ifdef CONFIG_NO_HZ_FULL
2812bool perf_event_can_stop_tick(void)
2813{
948b26b6 2814 if (atomic_read(&nr_freq_events) ||
d84153d6 2815 __this_cpu_read(perf_throttled_count))
026249ef 2816 return false;
d84153d6
FW
2817 else
2818 return true;
026249ef
FW
2819}
2820#endif
2821
e9d2b064
PZ
2822void perf_event_task_tick(void)
2823{
2824 struct list_head *head = &__get_cpu_var(rotation_list);
2825 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2826 struct perf_event_context *ctx;
2827 int throttled;
b5ab4cd5 2828
e9d2b064
PZ
2829 WARN_ON(!irqs_disabled());
2830
e050e3f0
SE
2831 __this_cpu_inc(perf_throttled_seq);
2832 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2833
e9d2b064 2834 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2835 ctx = &cpuctx->ctx;
2836 perf_adjust_freq_unthr_context(ctx, throttled);
2837
2838 ctx = cpuctx->task_ctx;
2839 if (ctx)
2840 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2841 }
0793a61d
TG
2842}
2843
889ff015
FW
2844static int event_enable_on_exec(struct perf_event *event,
2845 struct perf_event_context *ctx)
2846{
2847 if (!event->attr.enable_on_exec)
2848 return 0;
2849
2850 event->attr.enable_on_exec = 0;
2851 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2852 return 0;
2853
1d9b482e 2854 __perf_event_mark_enabled(event);
889ff015
FW
2855
2856 return 1;
2857}
2858
57e7986e 2859/*
cdd6c482 2860 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2861 * This expects task == current.
2862 */
8dc85d54 2863static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2864{
cdd6c482 2865 struct perf_event *event;
57e7986e
PM
2866 unsigned long flags;
2867 int enabled = 0;
889ff015 2868 int ret;
57e7986e
PM
2869
2870 local_irq_save(flags);
cdd6c482 2871 if (!ctx || !ctx->nr_events)
57e7986e
PM
2872 goto out;
2873
e566b76e
SE
2874 /*
2875 * We must ctxsw out cgroup events to avoid conflict
2876 * when invoking perf_task_event_sched_in() later on
2877 * in this function. Otherwise we end up trying to
2878 * ctxswin cgroup events which are already scheduled
2879 * in.
2880 */
a8d757ef 2881 perf_cgroup_sched_out(current, NULL);
57e7986e 2882
e625cce1 2883 raw_spin_lock(&ctx->lock);
04dc2dbb 2884 task_ctx_sched_out(ctx);
57e7986e 2885
b79387ef 2886 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2887 ret = event_enable_on_exec(event, ctx);
2888 if (ret)
2889 enabled = 1;
57e7986e
PM
2890 }
2891
2892 /*
cdd6c482 2893 * Unclone this context if we enabled any event.
57e7986e 2894 */
71a851b4
PZ
2895 if (enabled)
2896 unclone_ctx(ctx);
57e7986e 2897
e625cce1 2898 raw_spin_unlock(&ctx->lock);
57e7986e 2899
e566b76e
SE
2900 /*
2901 * Also calls ctxswin for cgroup events, if any:
2902 */
e5d1367f 2903 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2904out:
57e7986e
PM
2905 local_irq_restore(flags);
2906}
2907
0793a61d 2908/*
cdd6c482 2909 * Cross CPU call to read the hardware event
0793a61d 2910 */
cdd6c482 2911static void __perf_event_read(void *info)
0793a61d 2912{
cdd6c482
IM
2913 struct perf_event *event = info;
2914 struct perf_event_context *ctx = event->ctx;
108b02cf 2915 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2916
e1ac3614
PM
2917 /*
2918 * If this is a task context, we need to check whether it is
2919 * the current task context of this cpu. If not it has been
2920 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2921 * event->count would have been updated to a recent sample
2922 * when the event was scheduled out.
e1ac3614
PM
2923 */
2924 if (ctx->task && cpuctx->task_ctx != ctx)
2925 return;
2926
e625cce1 2927 raw_spin_lock(&ctx->lock);
e5d1367f 2928 if (ctx->is_active) {
542e72fc 2929 update_context_time(ctx);
e5d1367f
SE
2930 update_cgrp_time_from_event(event);
2931 }
cdd6c482 2932 update_event_times(event);
542e72fc
PZ
2933 if (event->state == PERF_EVENT_STATE_ACTIVE)
2934 event->pmu->read(event);
e625cce1 2935 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2936}
2937
b5e58793
PZ
2938static inline u64 perf_event_count(struct perf_event *event)
2939{
e7850595 2940 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2941}
2942
cdd6c482 2943static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2944{
2945 /*
cdd6c482
IM
2946 * If event is enabled and currently active on a CPU, update the
2947 * value in the event structure:
0793a61d 2948 */
cdd6c482
IM
2949 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2950 smp_call_function_single(event->oncpu,
2951 __perf_event_read, event, 1);
2952 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2953 struct perf_event_context *ctx = event->ctx;
2954 unsigned long flags;
2955
e625cce1 2956 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2957 /*
2958 * may read while context is not active
2959 * (e.g., thread is blocked), in that case
2960 * we cannot update context time
2961 */
e5d1367f 2962 if (ctx->is_active) {
c530ccd9 2963 update_context_time(ctx);
e5d1367f
SE
2964 update_cgrp_time_from_event(event);
2965 }
cdd6c482 2966 update_event_times(event);
e625cce1 2967 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2968 }
2969
b5e58793 2970 return perf_event_count(event);
0793a61d
TG
2971}
2972
a63eaf34 2973/*
cdd6c482 2974 * Initialize the perf_event context in a task_struct:
a63eaf34 2975 */
eb184479 2976static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2977{
e625cce1 2978 raw_spin_lock_init(&ctx->lock);
a63eaf34 2979 mutex_init(&ctx->mutex);
889ff015
FW
2980 INIT_LIST_HEAD(&ctx->pinned_groups);
2981 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2982 INIT_LIST_HEAD(&ctx->event_list);
2983 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2984}
2985
2986static struct perf_event_context *
2987alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2988{
2989 struct perf_event_context *ctx;
2990
2991 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2992 if (!ctx)
2993 return NULL;
2994
2995 __perf_event_init_context(ctx);
2996 if (task) {
2997 ctx->task = task;
2998 get_task_struct(task);
0793a61d 2999 }
eb184479
PZ
3000 ctx->pmu = pmu;
3001
3002 return ctx;
a63eaf34
PM
3003}
3004
2ebd4ffb
MH
3005static struct task_struct *
3006find_lively_task_by_vpid(pid_t vpid)
3007{
3008 struct task_struct *task;
3009 int err;
0793a61d
TG
3010
3011 rcu_read_lock();
2ebd4ffb 3012 if (!vpid)
0793a61d
TG
3013 task = current;
3014 else
2ebd4ffb 3015 task = find_task_by_vpid(vpid);
0793a61d
TG
3016 if (task)
3017 get_task_struct(task);
3018 rcu_read_unlock();
3019
3020 if (!task)
3021 return ERR_PTR(-ESRCH);
3022
0793a61d 3023 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3024 err = -EACCES;
3025 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3026 goto errout;
3027
2ebd4ffb
MH
3028 return task;
3029errout:
3030 put_task_struct(task);
3031 return ERR_PTR(err);
3032
3033}
3034
fe4b04fa
PZ
3035/*
3036 * Returns a matching context with refcount and pincount.
3037 */
108b02cf 3038static struct perf_event_context *
38a81da2 3039find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3040{
cdd6c482 3041 struct perf_event_context *ctx;
22a4f650 3042 struct perf_cpu_context *cpuctx;
25346b93 3043 unsigned long flags;
8dc85d54 3044 int ctxn, err;
0793a61d 3045
22a4ec72 3046 if (!task) {
cdd6c482 3047 /* Must be root to operate on a CPU event: */
0764771d 3048 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3049 return ERR_PTR(-EACCES);
3050
0793a61d 3051 /*
cdd6c482 3052 * We could be clever and allow to attach a event to an
0793a61d
TG
3053 * offline CPU and activate it when the CPU comes up, but
3054 * that's for later.
3055 */
f6325e30 3056 if (!cpu_online(cpu))
0793a61d
TG
3057 return ERR_PTR(-ENODEV);
3058
108b02cf 3059 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3060 ctx = &cpuctx->ctx;
c93f7669 3061 get_ctx(ctx);
fe4b04fa 3062 ++ctx->pin_count;
0793a61d 3063
0793a61d
TG
3064 return ctx;
3065 }
3066
8dc85d54
PZ
3067 err = -EINVAL;
3068 ctxn = pmu->task_ctx_nr;
3069 if (ctxn < 0)
3070 goto errout;
3071
9ed6060d 3072retry:
8dc85d54 3073 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3074 if (ctx) {
71a851b4 3075 unclone_ctx(ctx);
fe4b04fa 3076 ++ctx->pin_count;
e625cce1 3077 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 3078 } else {
eb184479 3079 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3080 err = -ENOMEM;
3081 if (!ctx)
3082 goto errout;
eb184479 3083
dbe08d82
ON
3084 err = 0;
3085 mutex_lock(&task->perf_event_mutex);
3086 /*
3087 * If it has already passed perf_event_exit_task().
3088 * we must see PF_EXITING, it takes this mutex too.
3089 */
3090 if (task->flags & PF_EXITING)
3091 err = -ESRCH;
3092 else if (task->perf_event_ctxp[ctxn])
3093 err = -EAGAIN;
fe4b04fa 3094 else {
9137fb28 3095 get_ctx(ctx);
fe4b04fa 3096 ++ctx->pin_count;
dbe08d82 3097 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3098 }
dbe08d82
ON
3099 mutex_unlock(&task->perf_event_mutex);
3100
3101 if (unlikely(err)) {
9137fb28 3102 put_ctx(ctx);
dbe08d82
ON
3103
3104 if (err == -EAGAIN)
3105 goto retry;
3106 goto errout;
a63eaf34
PM
3107 }
3108 }
3109
0793a61d 3110 return ctx;
c93f7669 3111
9ed6060d 3112errout:
c93f7669 3113 return ERR_PTR(err);
0793a61d
TG
3114}
3115
6fb2915d
LZ
3116static void perf_event_free_filter(struct perf_event *event);
3117
cdd6c482 3118static void free_event_rcu(struct rcu_head *head)
592903cd 3119{
cdd6c482 3120 struct perf_event *event;
592903cd 3121
cdd6c482
IM
3122 event = container_of(head, struct perf_event, rcu_head);
3123 if (event->ns)
3124 put_pid_ns(event->ns);
6fb2915d 3125 perf_event_free_filter(event);
cdd6c482 3126 kfree(event);
592903cd
PZ
3127}
3128
76369139 3129static void ring_buffer_put(struct ring_buffer *rb);
9bb5d40c 3130static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
925d519a 3131
4beb31f3
FW
3132static void unaccount_event_cpu(struct perf_event *event, int cpu)
3133{
3134 if (event->parent)
3135 return;
3136
3137 if (has_branch_stack(event)) {
3138 if (!(event->attach_state & PERF_ATTACH_TASK))
3139 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3140 }
3141 if (is_cgroup_event(event))
3142 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3143}
3144
3145static void unaccount_event(struct perf_event *event)
3146{
3147 if (event->parent)
3148 return;
3149
3150 if (event->attach_state & PERF_ATTACH_TASK)
3151 static_key_slow_dec_deferred(&perf_sched_events);
3152 if (event->attr.mmap || event->attr.mmap_data)
3153 atomic_dec(&nr_mmap_events);
3154 if (event->attr.comm)
3155 atomic_dec(&nr_comm_events);
3156 if (event->attr.task)
3157 atomic_dec(&nr_task_events);
948b26b6
FW
3158 if (event->attr.freq)
3159 atomic_dec(&nr_freq_events);
4beb31f3
FW
3160 if (is_cgroup_event(event))
3161 static_key_slow_dec_deferred(&perf_sched_events);
3162 if (has_branch_stack(event))
3163 static_key_slow_dec_deferred(&perf_sched_events);
3164
3165 unaccount_event_cpu(event, event->cpu);
3166}
3167
766d6c07
FW
3168static void __free_event(struct perf_event *event)
3169{
3170 if (!event->parent) {
3171 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3172 put_callchain_buffers();
3173 }
3174
3175 if (event->destroy)
3176 event->destroy(event);
3177
3178 if (event->ctx)
3179 put_ctx(event->ctx);
3180
3181 call_rcu(&event->rcu_head, free_event_rcu);
3182}
cdd6c482 3183static void free_event(struct perf_event *event)
f1600952 3184{
e360adbe 3185 irq_work_sync(&event->pending);
925d519a 3186
4beb31f3 3187 unaccount_event(event);
9ee318a7 3188
76369139 3189 if (event->rb) {
9bb5d40c
PZ
3190 struct ring_buffer *rb;
3191
3192 /*
3193 * Can happen when we close an event with re-directed output.
3194 *
3195 * Since we have a 0 refcount, perf_mmap_close() will skip
3196 * over us; possibly making our ring_buffer_put() the last.
3197 */
3198 mutex_lock(&event->mmap_mutex);
3199 rb = event->rb;
3200 if (rb) {
3201 rcu_assign_pointer(event->rb, NULL);
3202 ring_buffer_detach(event, rb);
3203 ring_buffer_put(rb); /* could be last */
3204 }
3205 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3206 }
3207
e5d1367f
SE
3208 if (is_cgroup_event(event))
3209 perf_detach_cgroup(event);
3210
0c67b408 3211
766d6c07 3212 __free_event(event);
f1600952
PZ
3213}
3214
a66a3052 3215int perf_event_release_kernel(struct perf_event *event)
0793a61d 3216{
cdd6c482 3217 struct perf_event_context *ctx = event->ctx;
0793a61d 3218
ad3a37de 3219 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
3220 /*
3221 * There are two ways this annotation is useful:
3222 *
3223 * 1) there is a lock recursion from perf_event_exit_task
3224 * see the comment there.
3225 *
3226 * 2) there is a lock-inversion with mmap_sem through
3227 * perf_event_read_group(), which takes faults while
3228 * holding ctx->mutex, however this is called after
3229 * the last filedesc died, so there is no possibility
3230 * to trigger the AB-BA case.
3231 */
3232 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 3233 raw_spin_lock_irq(&ctx->lock);
8a49542c 3234 perf_group_detach(event);
050735b0 3235 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 3236 perf_remove_from_context(event);
d859e29f 3237 mutex_unlock(&ctx->mutex);
0793a61d 3238
cdd6c482 3239 free_event(event);
0793a61d
TG
3240
3241 return 0;
3242}
a66a3052 3243EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 3244
a66a3052
PZ
3245/*
3246 * Called when the last reference to the file is gone.
3247 */
a6fa941d 3248static void put_event(struct perf_event *event)
fb0459d7 3249{
8882135b 3250 struct task_struct *owner;
fb0459d7 3251
a6fa941d
AV
3252 if (!atomic_long_dec_and_test(&event->refcount))
3253 return;
fb0459d7 3254
8882135b
PZ
3255 rcu_read_lock();
3256 owner = ACCESS_ONCE(event->owner);
3257 /*
3258 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3259 * !owner it means the list deletion is complete and we can indeed
3260 * free this event, otherwise we need to serialize on
3261 * owner->perf_event_mutex.
3262 */
3263 smp_read_barrier_depends();
3264 if (owner) {
3265 /*
3266 * Since delayed_put_task_struct() also drops the last
3267 * task reference we can safely take a new reference
3268 * while holding the rcu_read_lock().
3269 */
3270 get_task_struct(owner);
3271 }
3272 rcu_read_unlock();
3273
3274 if (owner) {
3275 mutex_lock(&owner->perf_event_mutex);
3276 /*
3277 * We have to re-check the event->owner field, if it is cleared
3278 * we raced with perf_event_exit_task(), acquiring the mutex
3279 * ensured they're done, and we can proceed with freeing the
3280 * event.
3281 */
3282 if (event->owner)
3283 list_del_init(&event->owner_entry);
3284 mutex_unlock(&owner->perf_event_mutex);
3285 put_task_struct(owner);
3286 }
3287
a6fa941d
AV
3288 perf_event_release_kernel(event);
3289}
3290
3291static int perf_release(struct inode *inode, struct file *file)
3292{
3293 put_event(file->private_data);
3294 return 0;
fb0459d7 3295}
fb0459d7 3296
59ed446f 3297u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3298{
cdd6c482 3299 struct perf_event *child;
e53c0994
PZ
3300 u64 total = 0;
3301
59ed446f
PZ
3302 *enabled = 0;
3303 *running = 0;
3304
6f10581a 3305 mutex_lock(&event->child_mutex);
cdd6c482 3306 total += perf_event_read(event);
59ed446f
PZ
3307 *enabled += event->total_time_enabled +
3308 atomic64_read(&event->child_total_time_enabled);
3309 *running += event->total_time_running +
3310 atomic64_read(&event->child_total_time_running);
3311
3312 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3313 total += perf_event_read(child);
59ed446f
PZ
3314 *enabled += child->total_time_enabled;
3315 *running += child->total_time_running;
3316 }
6f10581a 3317 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3318
3319 return total;
3320}
fb0459d7 3321EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3322
cdd6c482 3323static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3324 u64 read_format, char __user *buf)
3325{
cdd6c482 3326 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3327 int n = 0, size = 0, ret = -EFAULT;
3328 struct perf_event_context *ctx = leader->ctx;
abf4868b 3329 u64 values[5];
59ed446f 3330 u64 count, enabled, running;
abf4868b 3331
6f10581a 3332 mutex_lock(&ctx->mutex);
59ed446f 3333 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3334
3335 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3336 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3337 values[n++] = enabled;
3338 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3339 values[n++] = running;
abf4868b
PZ
3340 values[n++] = count;
3341 if (read_format & PERF_FORMAT_ID)
3342 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3343
3344 size = n * sizeof(u64);
3345
3346 if (copy_to_user(buf, values, size))
6f10581a 3347 goto unlock;
3dab77fb 3348
6f10581a 3349 ret = size;
3dab77fb 3350
65abc865 3351 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3352 n = 0;
3dab77fb 3353
59ed446f 3354 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3355 if (read_format & PERF_FORMAT_ID)
3356 values[n++] = primary_event_id(sub);
3357
3358 size = n * sizeof(u64);
3359
184d3da8 3360 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3361 ret = -EFAULT;
3362 goto unlock;
3363 }
abf4868b
PZ
3364
3365 ret += size;
3dab77fb 3366 }
6f10581a
PZ
3367unlock:
3368 mutex_unlock(&ctx->mutex);
3dab77fb 3369
abf4868b 3370 return ret;
3dab77fb
PZ
3371}
3372
cdd6c482 3373static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3374 u64 read_format, char __user *buf)
3375{
59ed446f 3376 u64 enabled, running;
3dab77fb
PZ
3377 u64 values[4];
3378 int n = 0;
3379
59ed446f
PZ
3380 values[n++] = perf_event_read_value(event, &enabled, &running);
3381 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3382 values[n++] = enabled;
3383 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3384 values[n++] = running;
3dab77fb 3385 if (read_format & PERF_FORMAT_ID)
cdd6c482 3386 values[n++] = primary_event_id(event);
3dab77fb
PZ
3387
3388 if (copy_to_user(buf, values, n * sizeof(u64)))
3389 return -EFAULT;
3390
3391 return n * sizeof(u64);
3392}
3393
0793a61d 3394/*
cdd6c482 3395 * Read the performance event - simple non blocking version for now
0793a61d
TG
3396 */
3397static ssize_t
cdd6c482 3398perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3399{
cdd6c482 3400 u64 read_format = event->attr.read_format;
3dab77fb 3401 int ret;
0793a61d 3402
3b6f9e5c 3403 /*
cdd6c482 3404 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3405 * error state (i.e. because it was pinned but it couldn't be
3406 * scheduled on to the CPU at some point).
3407 */
cdd6c482 3408 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3409 return 0;
3410
c320c7b7 3411 if (count < event->read_size)
3dab77fb
PZ
3412 return -ENOSPC;
3413
cdd6c482 3414 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3415 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3416 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3417 else
cdd6c482 3418 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3419
3dab77fb 3420 return ret;
0793a61d
TG
3421}
3422
0793a61d
TG
3423static ssize_t
3424perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3425{
cdd6c482 3426 struct perf_event *event = file->private_data;
0793a61d 3427
cdd6c482 3428 return perf_read_hw(event, buf, count);
0793a61d
TG
3429}
3430
3431static unsigned int perf_poll(struct file *file, poll_table *wait)
3432{
cdd6c482 3433 struct perf_event *event = file->private_data;
76369139 3434 struct ring_buffer *rb;
c33a0bc4 3435 unsigned int events = POLL_HUP;
c7138f37 3436
10c6db11 3437 /*
9bb5d40c
PZ
3438 * Pin the event->rb by taking event->mmap_mutex; otherwise
3439 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3440 */
3441 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3442 rb = event->rb;
3443 if (rb)
76369139 3444 events = atomic_xchg(&rb->poll, 0);
10c6db11
PZ
3445 mutex_unlock(&event->mmap_mutex);
3446
cdd6c482 3447 poll_wait(file, &event->waitq, wait);
0793a61d 3448
0793a61d
TG
3449 return events;
3450}
3451
cdd6c482 3452static void perf_event_reset(struct perf_event *event)
6de6a7b9 3453{
cdd6c482 3454 (void)perf_event_read(event);
e7850595 3455 local64_set(&event->count, 0);
cdd6c482 3456 perf_event_update_userpage(event);
3df5edad
PZ
3457}
3458
c93f7669 3459/*
cdd6c482
IM
3460 * Holding the top-level event's child_mutex means that any
3461 * descendant process that has inherited this event will block
3462 * in sync_child_event if it goes to exit, thus satisfying the
3463 * task existence requirements of perf_event_enable/disable.
c93f7669 3464 */
cdd6c482
IM
3465static void perf_event_for_each_child(struct perf_event *event,
3466 void (*func)(struct perf_event *))
3df5edad 3467{
cdd6c482 3468 struct perf_event *child;
3df5edad 3469
cdd6c482
IM
3470 WARN_ON_ONCE(event->ctx->parent_ctx);
3471 mutex_lock(&event->child_mutex);
3472 func(event);
3473 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3474 func(child);
cdd6c482 3475 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3476}
3477
cdd6c482
IM
3478static void perf_event_for_each(struct perf_event *event,
3479 void (*func)(struct perf_event *))
3df5edad 3480{
cdd6c482
IM
3481 struct perf_event_context *ctx = event->ctx;
3482 struct perf_event *sibling;
3df5edad 3483
75f937f2
PZ
3484 WARN_ON_ONCE(ctx->parent_ctx);
3485 mutex_lock(&ctx->mutex);
cdd6c482 3486 event = event->group_leader;
75f937f2 3487
cdd6c482 3488 perf_event_for_each_child(event, func);
cdd6c482 3489 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3490 perf_event_for_each_child(sibling, func);
75f937f2 3491 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3492}
3493
cdd6c482 3494static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3495{
cdd6c482 3496 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3497 int ret = 0;
3498 u64 value;
3499
6c7e550f 3500 if (!is_sampling_event(event))
08247e31
PZ
3501 return -EINVAL;
3502
ad0cf347 3503 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3504 return -EFAULT;
3505
3506 if (!value)
3507 return -EINVAL;
3508
e625cce1 3509 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3510 if (event->attr.freq) {
3511 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3512 ret = -EINVAL;
3513 goto unlock;
3514 }
3515
cdd6c482 3516 event->attr.sample_freq = value;
08247e31 3517 } else {
cdd6c482
IM
3518 event->attr.sample_period = value;
3519 event->hw.sample_period = value;
08247e31
PZ
3520 }
3521unlock:
e625cce1 3522 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3523
3524 return ret;
3525}
3526
ac9721f3
PZ
3527static const struct file_operations perf_fops;
3528
2903ff01 3529static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3530{
2903ff01
AV
3531 struct fd f = fdget(fd);
3532 if (!f.file)
3533 return -EBADF;
ac9721f3 3534
2903ff01
AV
3535 if (f.file->f_op != &perf_fops) {
3536 fdput(f);
3537 return -EBADF;
ac9721f3 3538 }
2903ff01
AV
3539 *p = f;
3540 return 0;
ac9721f3
PZ
3541}
3542
3543static int perf_event_set_output(struct perf_event *event,
3544 struct perf_event *output_event);
6fb2915d 3545static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3546
d859e29f
PM
3547static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3548{
cdd6c482
IM
3549 struct perf_event *event = file->private_data;
3550 void (*func)(struct perf_event *);
3df5edad 3551 u32 flags = arg;
d859e29f
PM
3552
3553 switch (cmd) {
cdd6c482
IM
3554 case PERF_EVENT_IOC_ENABLE:
3555 func = perf_event_enable;
d859e29f 3556 break;
cdd6c482
IM
3557 case PERF_EVENT_IOC_DISABLE:
3558 func = perf_event_disable;
79f14641 3559 break;
cdd6c482
IM
3560 case PERF_EVENT_IOC_RESET:
3561 func = perf_event_reset;
6de6a7b9 3562 break;
3df5edad 3563
cdd6c482
IM
3564 case PERF_EVENT_IOC_REFRESH:
3565 return perf_event_refresh(event, arg);
08247e31 3566
cdd6c482
IM
3567 case PERF_EVENT_IOC_PERIOD:
3568 return perf_event_period(event, (u64 __user *)arg);
08247e31 3569
cf4957f1
JO
3570 case PERF_EVENT_IOC_ID:
3571 {
3572 u64 id = primary_event_id(event);
3573
3574 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3575 return -EFAULT;
3576 return 0;
3577 }
3578
cdd6c482 3579 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3580 {
ac9721f3 3581 int ret;
ac9721f3 3582 if (arg != -1) {
2903ff01
AV
3583 struct perf_event *output_event;
3584 struct fd output;
3585 ret = perf_fget_light(arg, &output);
3586 if (ret)
3587 return ret;
3588 output_event = output.file->private_data;
3589 ret = perf_event_set_output(event, output_event);
3590 fdput(output);
3591 } else {
3592 ret = perf_event_set_output(event, NULL);
ac9721f3 3593 }
ac9721f3
PZ
3594 return ret;
3595 }
a4be7c27 3596
6fb2915d
LZ
3597 case PERF_EVENT_IOC_SET_FILTER:
3598 return perf_event_set_filter(event, (void __user *)arg);
3599
d859e29f 3600 default:
3df5edad 3601 return -ENOTTY;
d859e29f 3602 }
3df5edad
PZ
3603
3604 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3605 perf_event_for_each(event, func);
3df5edad 3606 else
cdd6c482 3607 perf_event_for_each_child(event, func);
3df5edad
PZ
3608
3609 return 0;
d859e29f
PM
3610}
3611
cdd6c482 3612int perf_event_task_enable(void)
771d7cde 3613{
cdd6c482 3614 struct perf_event *event;
771d7cde 3615
cdd6c482
IM
3616 mutex_lock(&current->perf_event_mutex);
3617 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3618 perf_event_for_each_child(event, perf_event_enable);
3619 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3620
3621 return 0;
3622}
3623
cdd6c482 3624int perf_event_task_disable(void)
771d7cde 3625{
cdd6c482 3626 struct perf_event *event;
771d7cde 3627
cdd6c482
IM
3628 mutex_lock(&current->perf_event_mutex);
3629 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3630 perf_event_for_each_child(event, perf_event_disable);
3631 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3632
3633 return 0;
3634}
3635
cdd6c482 3636static int perf_event_index(struct perf_event *event)
194002b2 3637{
a4eaf7f1
PZ
3638 if (event->hw.state & PERF_HES_STOPPED)
3639 return 0;
3640
cdd6c482 3641 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3642 return 0;
3643
35edc2a5 3644 return event->pmu->event_idx(event);
194002b2
PZ
3645}
3646
c4794295 3647static void calc_timer_values(struct perf_event *event,
e3f3541c 3648 u64 *now,
7f310a5d
EM
3649 u64 *enabled,
3650 u64 *running)
c4794295 3651{
e3f3541c 3652 u64 ctx_time;
c4794295 3653
e3f3541c
PZ
3654 *now = perf_clock();
3655 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3656 *enabled = ctx_time - event->tstamp_enabled;
3657 *running = ctx_time - event->tstamp_running;
3658}
3659
c7206205 3660void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3661{
3662}
3663
38ff667b
PZ
3664/*
3665 * Callers need to ensure there can be no nesting of this function, otherwise
3666 * the seqlock logic goes bad. We can not serialize this because the arch
3667 * code calls this from NMI context.
3668 */
cdd6c482 3669void perf_event_update_userpage(struct perf_event *event)
37d81828 3670{
cdd6c482 3671 struct perf_event_mmap_page *userpg;
76369139 3672 struct ring_buffer *rb;
e3f3541c 3673 u64 enabled, running, now;
38ff667b
PZ
3674
3675 rcu_read_lock();
5ec4c599
PZ
3676 rb = rcu_dereference(event->rb);
3677 if (!rb)
3678 goto unlock;
3679
0d641208
EM
3680 /*
3681 * compute total_time_enabled, total_time_running
3682 * based on snapshot values taken when the event
3683 * was last scheduled in.
3684 *
3685 * we cannot simply called update_context_time()
3686 * because of locking issue as we can be called in
3687 * NMI context
3688 */
e3f3541c 3689 calc_timer_values(event, &now, &enabled, &running);
38ff667b 3690
76369139 3691 userpg = rb->user_page;
7b732a75
PZ
3692 /*
3693 * Disable preemption so as to not let the corresponding user-space
3694 * spin too long if we get preempted.
3695 */
3696 preempt_disable();
37d81828 3697 ++userpg->lock;
92f22a38 3698 barrier();
cdd6c482 3699 userpg->index = perf_event_index(event);
b5e58793 3700 userpg->offset = perf_event_count(event);
365a4038 3701 if (userpg->index)
e7850595 3702 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3703
0d641208 3704 userpg->time_enabled = enabled +
cdd6c482 3705 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3706
0d641208 3707 userpg->time_running = running +
cdd6c482 3708 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3709
c7206205 3710 arch_perf_update_userpage(userpg, now);
e3f3541c 3711
92f22a38 3712 barrier();
37d81828 3713 ++userpg->lock;
7b732a75 3714 preempt_enable();
38ff667b 3715unlock:
7b732a75 3716 rcu_read_unlock();
37d81828
PM
3717}
3718
906010b2
PZ
3719static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3720{
3721 struct perf_event *event = vma->vm_file->private_data;
76369139 3722 struct ring_buffer *rb;
906010b2
PZ
3723 int ret = VM_FAULT_SIGBUS;
3724
3725 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3726 if (vmf->pgoff == 0)
3727 ret = 0;
3728 return ret;
3729 }
3730
3731 rcu_read_lock();
76369139
FW
3732 rb = rcu_dereference(event->rb);
3733 if (!rb)
906010b2
PZ
3734 goto unlock;
3735
3736 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3737 goto unlock;
3738
76369139 3739 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3740 if (!vmf->page)
3741 goto unlock;
3742
3743 get_page(vmf->page);
3744 vmf->page->mapping = vma->vm_file->f_mapping;
3745 vmf->page->index = vmf->pgoff;
3746
3747 ret = 0;
3748unlock:
3749 rcu_read_unlock();
3750
3751 return ret;
3752}
3753
10c6db11
PZ
3754static void ring_buffer_attach(struct perf_event *event,
3755 struct ring_buffer *rb)
3756{
3757 unsigned long flags;
3758
3759 if (!list_empty(&event->rb_entry))
3760 return;
3761
3762 spin_lock_irqsave(&rb->event_lock, flags);
9bb5d40c
PZ
3763 if (list_empty(&event->rb_entry))
3764 list_add(&event->rb_entry, &rb->event_list);
10c6db11
PZ
3765 spin_unlock_irqrestore(&rb->event_lock, flags);
3766}
3767
9bb5d40c 3768static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
10c6db11
PZ
3769{
3770 unsigned long flags;
3771
3772 if (list_empty(&event->rb_entry))
3773 return;
3774
3775 spin_lock_irqsave(&rb->event_lock, flags);
3776 list_del_init(&event->rb_entry);
3777 wake_up_all(&event->waitq);
3778 spin_unlock_irqrestore(&rb->event_lock, flags);
3779}
3780
3781static void ring_buffer_wakeup(struct perf_event *event)
3782{
3783 struct ring_buffer *rb;
3784
3785 rcu_read_lock();
3786 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
3787 if (rb) {
3788 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3789 wake_up_all(&event->waitq);
3790 }
10c6db11
PZ
3791 rcu_read_unlock();
3792}
3793
76369139 3794static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3795{
76369139 3796 struct ring_buffer *rb;
906010b2 3797
76369139
FW
3798 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3799 rb_free(rb);
7b732a75
PZ
3800}
3801
76369139 3802static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3803{
76369139 3804 struct ring_buffer *rb;
7b732a75 3805
ac9721f3 3806 rcu_read_lock();
76369139
FW
3807 rb = rcu_dereference(event->rb);
3808 if (rb) {
3809 if (!atomic_inc_not_zero(&rb->refcount))
3810 rb = NULL;
ac9721f3
PZ
3811 }
3812 rcu_read_unlock();
3813
76369139 3814 return rb;
ac9721f3
PZ
3815}
3816
76369139 3817static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3818{
76369139 3819 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3820 return;
7b732a75 3821
9bb5d40c 3822 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 3823
76369139 3824 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3825}
3826
3827static void perf_mmap_open(struct vm_area_struct *vma)
3828{
cdd6c482 3829 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3830
cdd6c482 3831 atomic_inc(&event->mmap_count);
9bb5d40c 3832 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
3833}
3834
9bb5d40c
PZ
3835/*
3836 * A buffer can be mmap()ed multiple times; either directly through the same
3837 * event, or through other events by use of perf_event_set_output().
3838 *
3839 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3840 * the buffer here, where we still have a VM context. This means we need
3841 * to detach all events redirecting to us.
3842 */
7b732a75
PZ
3843static void perf_mmap_close(struct vm_area_struct *vma)
3844{
cdd6c482 3845 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3846
9bb5d40c
PZ
3847 struct ring_buffer *rb = event->rb;
3848 struct user_struct *mmap_user = rb->mmap_user;
3849 int mmap_locked = rb->mmap_locked;
3850 unsigned long size = perf_data_size(rb);
789f90fc 3851
9bb5d40c
PZ
3852 atomic_dec(&rb->mmap_count);
3853
3854 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3855 return;
3856
3857 /* Detach current event from the buffer. */
3858 rcu_assign_pointer(event->rb, NULL);
3859 ring_buffer_detach(event, rb);
3860 mutex_unlock(&event->mmap_mutex);
3861
3862 /* If there's still other mmap()s of this buffer, we're done. */
3863 if (atomic_read(&rb->mmap_count)) {
3864 ring_buffer_put(rb); /* can't be last */
3865 return;
3866 }
ac9721f3 3867
9bb5d40c
PZ
3868 /*
3869 * No other mmap()s, detach from all other events that might redirect
3870 * into the now unreachable buffer. Somewhat complicated by the
3871 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3872 */
3873again:
3874 rcu_read_lock();
3875 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3876 if (!atomic_long_inc_not_zero(&event->refcount)) {
3877 /*
3878 * This event is en-route to free_event() which will
3879 * detach it and remove it from the list.
3880 */
3881 continue;
3882 }
3883 rcu_read_unlock();
789f90fc 3884
9bb5d40c
PZ
3885 mutex_lock(&event->mmap_mutex);
3886 /*
3887 * Check we didn't race with perf_event_set_output() which can
3888 * swizzle the rb from under us while we were waiting to
3889 * acquire mmap_mutex.
3890 *
3891 * If we find a different rb; ignore this event, a next
3892 * iteration will no longer find it on the list. We have to
3893 * still restart the iteration to make sure we're not now
3894 * iterating the wrong list.
3895 */
3896 if (event->rb == rb) {
3897 rcu_assign_pointer(event->rb, NULL);
3898 ring_buffer_detach(event, rb);
3899 ring_buffer_put(rb); /* can't be last, we still have one */
26cb63ad 3900 }
cdd6c482 3901 mutex_unlock(&event->mmap_mutex);
9bb5d40c 3902 put_event(event);
ac9721f3 3903
9bb5d40c
PZ
3904 /*
3905 * Restart the iteration; either we're on the wrong list or
3906 * destroyed its integrity by doing a deletion.
3907 */
3908 goto again;
7b732a75 3909 }
9bb5d40c
PZ
3910 rcu_read_unlock();
3911
3912 /*
3913 * It could be there's still a few 0-ref events on the list; they'll
3914 * get cleaned up by free_event() -- they'll also still have their
3915 * ref on the rb and will free it whenever they are done with it.
3916 *
3917 * Aside from that, this buffer is 'fully' detached and unmapped,
3918 * undo the VM accounting.
3919 */
3920
3921 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3922 vma->vm_mm->pinned_vm -= mmap_locked;
3923 free_uid(mmap_user);
3924
3925 ring_buffer_put(rb); /* could be last */
37d81828
PM
3926}
3927
f0f37e2f 3928static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3929 .open = perf_mmap_open,
3930 .close = perf_mmap_close,
3931 .fault = perf_mmap_fault,
3932 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3933};
3934
3935static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3936{
cdd6c482 3937 struct perf_event *event = file->private_data;
22a4f650 3938 unsigned long user_locked, user_lock_limit;
789f90fc 3939 struct user_struct *user = current_user();
22a4f650 3940 unsigned long locked, lock_limit;
76369139 3941 struct ring_buffer *rb;
7b732a75
PZ
3942 unsigned long vma_size;
3943 unsigned long nr_pages;
789f90fc 3944 long user_extra, extra;
d57e34fd 3945 int ret = 0, flags = 0;
37d81828 3946
c7920614
PZ
3947 /*
3948 * Don't allow mmap() of inherited per-task counters. This would
3949 * create a performance issue due to all children writing to the
76369139 3950 * same rb.
c7920614
PZ
3951 */
3952 if (event->cpu == -1 && event->attr.inherit)
3953 return -EINVAL;
3954
43a21ea8 3955 if (!(vma->vm_flags & VM_SHARED))
37d81828 3956 return -EINVAL;
7b732a75
PZ
3957
3958 vma_size = vma->vm_end - vma->vm_start;
3959 nr_pages = (vma_size / PAGE_SIZE) - 1;
3960
7730d865 3961 /*
76369139 3962 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3963 * can do bitmasks instead of modulo.
3964 */
3965 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3966 return -EINVAL;
3967
7b732a75 3968 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3969 return -EINVAL;
3970
7b732a75
PZ
3971 if (vma->vm_pgoff != 0)
3972 return -EINVAL;
37d81828 3973
cdd6c482 3974 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 3975again:
cdd6c482 3976 mutex_lock(&event->mmap_mutex);
76369139 3977 if (event->rb) {
9bb5d40c 3978 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 3979 ret = -EINVAL;
9bb5d40c
PZ
3980 goto unlock;
3981 }
3982
3983 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3984 /*
3985 * Raced against perf_mmap_close() through
3986 * perf_event_set_output(). Try again, hope for better
3987 * luck.
3988 */
3989 mutex_unlock(&event->mmap_mutex);
3990 goto again;
3991 }
3992
ebb3c4c4
PZ
3993 goto unlock;
3994 }
3995
789f90fc 3996 user_extra = nr_pages + 1;
cdd6c482 3997 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3998
3999 /*
4000 * Increase the limit linearly with more CPUs:
4001 */
4002 user_lock_limit *= num_online_cpus();
4003
789f90fc 4004 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4005
789f90fc
PZ
4006 extra = 0;
4007 if (user_locked > user_lock_limit)
4008 extra = user_locked - user_lock_limit;
7b732a75 4009
78d7d407 4010 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4011 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4012 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4013
459ec28a
IM
4014 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4015 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4016 ret = -EPERM;
4017 goto unlock;
4018 }
7b732a75 4019
76369139 4020 WARN_ON(event->rb);
906010b2 4021
d57e34fd 4022 if (vma->vm_flags & VM_WRITE)
76369139 4023 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4024
4ec8363d
VW
4025 rb = rb_alloc(nr_pages,
4026 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4027 event->cpu, flags);
4028
76369139 4029 if (!rb) {
ac9721f3 4030 ret = -ENOMEM;
ebb3c4c4 4031 goto unlock;
ac9721f3 4032 }
26cb63ad 4033
9bb5d40c 4034 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4035 rb->mmap_locked = extra;
4036 rb->mmap_user = get_current_user();
43a21ea8 4037
ac9721f3 4038 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4039 vma->vm_mm->pinned_vm += extra;
4040
9bb5d40c 4041 ring_buffer_attach(event, rb);
26cb63ad 4042 rcu_assign_pointer(event->rb, rb);
ac9721f3 4043
9a0f05cb
PZ
4044 perf_event_update_userpage(event);
4045
ebb3c4c4 4046unlock:
ac9721f3
PZ
4047 if (!ret)
4048 atomic_inc(&event->mmap_count);
cdd6c482 4049 mutex_unlock(&event->mmap_mutex);
37d81828 4050
9bb5d40c
PZ
4051 /*
4052 * Since pinned accounting is per vm we cannot allow fork() to copy our
4053 * vma.
4054 */
26cb63ad 4055 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4056 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4057
4058 return ret;
37d81828
PM
4059}
4060
3c446b3d
PZ
4061static int perf_fasync(int fd, struct file *filp, int on)
4062{
496ad9aa 4063 struct inode *inode = file_inode(filp);
cdd6c482 4064 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4065 int retval;
4066
4067 mutex_lock(&inode->i_mutex);
cdd6c482 4068 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4069 mutex_unlock(&inode->i_mutex);
4070
4071 if (retval < 0)
4072 return retval;
4073
4074 return 0;
4075}
4076
0793a61d 4077static const struct file_operations perf_fops = {
3326c1ce 4078 .llseek = no_llseek,
0793a61d
TG
4079 .release = perf_release,
4080 .read = perf_read,
4081 .poll = perf_poll,
d859e29f
PM
4082 .unlocked_ioctl = perf_ioctl,
4083 .compat_ioctl = perf_ioctl,
37d81828 4084 .mmap = perf_mmap,
3c446b3d 4085 .fasync = perf_fasync,
0793a61d
TG
4086};
4087
925d519a 4088/*
cdd6c482 4089 * Perf event wakeup
925d519a
PZ
4090 *
4091 * If there's data, ensure we set the poll() state and publish everything
4092 * to user-space before waking everybody up.
4093 */
4094
cdd6c482 4095void perf_event_wakeup(struct perf_event *event)
925d519a 4096{
10c6db11 4097 ring_buffer_wakeup(event);
4c9e2542 4098
cdd6c482
IM
4099 if (event->pending_kill) {
4100 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4101 event->pending_kill = 0;
4c9e2542 4102 }
925d519a
PZ
4103}
4104
e360adbe 4105static void perf_pending_event(struct irq_work *entry)
79f14641 4106{
cdd6c482
IM
4107 struct perf_event *event = container_of(entry,
4108 struct perf_event, pending);
79f14641 4109
cdd6c482
IM
4110 if (event->pending_disable) {
4111 event->pending_disable = 0;
4112 __perf_event_disable(event);
79f14641
PZ
4113 }
4114
cdd6c482
IM
4115 if (event->pending_wakeup) {
4116 event->pending_wakeup = 0;
4117 perf_event_wakeup(event);
79f14641
PZ
4118 }
4119}
4120
39447b38
ZY
4121/*
4122 * We assume there is only KVM supporting the callbacks.
4123 * Later on, we might change it to a list if there is
4124 * another virtualization implementation supporting the callbacks.
4125 */
4126struct perf_guest_info_callbacks *perf_guest_cbs;
4127
4128int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4129{
4130 perf_guest_cbs = cbs;
4131 return 0;
4132}
4133EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4134
4135int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4136{
4137 perf_guest_cbs = NULL;
4138 return 0;
4139}
4140EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4141
4018994f
JO
4142static void
4143perf_output_sample_regs(struct perf_output_handle *handle,
4144 struct pt_regs *regs, u64 mask)
4145{
4146 int bit;
4147
4148 for_each_set_bit(bit, (const unsigned long *) &mask,
4149 sizeof(mask) * BITS_PER_BYTE) {
4150 u64 val;
4151
4152 val = perf_reg_value(regs, bit);
4153 perf_output_put(handle, val);
4154 }
4155}
4156
4157static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4158 struct pt_regs *regs)
4159{
4160 if (!user_mode(regs)) {
4161 if (current->mm)
4162 regs = task_pt_regs(current);
4163 else
4164 regs = NULL;
4165 }
4166
4167 if (regs) {
4168 regs_user->regs = regs;
4169 regs_user->abi = perf_reg_abi(current);
4170 }
4171}
4172
c5ebcedb
JO
4173/*
4174 * Get remaining task size from user stack pointer.
4175 *
4176 * It'd be better to take stack vma map and limit this more
4177 * precisly, but there's no way to get it safely under interrupt,
4178 * so using TASK_SIZE as limit.
4179 */
4180static u64 perf_ustack_task_size(struct pt_regs *regs)
4181{
4182 unsigned long addr = perf_user_stack_pointer(regs);
4183
4184 if (!addr || addr >= TASK_SIZE)
4185 return 0;
4186
4187 return TASK_SIZE - addr;
4188}
4189
4190static u16
4191perf_sample_ustack_size(u16 stack_size, u16 header_size,
4192 struct pt_regs *regs)
4193{
4194 u64 task_size;
4195
4196 /* No regs, no stack pointer, no dump. */
4197 if (!regs)
4198 return 0;
4199
4200 /*
4201 * Check if we fit in with the requested stack size into the:
4202 * - TASK_SIZE
4203 * If we don't, we limit the size to the TASK_SIZE.
4204 *
4205 * - remaining sample size
4206 * If we don't, we customize the stack size to
4207 * fit in to the remaining sample size.
4208 */
4209
4210 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4211 stack_size = min(stack_size, (u16) task_size);
4212
4213 /* Current header size plus static size and dynamic size. */
4214 header_size += 2 * sizeof(u64);
4215
4216 /* Do we fit in with the current stack dump size? */
4217 if ((u16) (header_size + stack_size) < header_size) {
4218 /*
4219 * If we overflow the maximum size for the sample,
4220 * we customize the stack dump size to fit in.
4221 */
4222 stack_size = USHRT_MAX - header_size - sizeof(u64);
4223 stack_size = round_up(stack_size, sizeof(u64));
4224 }
4225
4226 return stack_size;
4227}
4228
4229static void
4230perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4231 struct pt_regs *regs)
4232{
4233 /* Case of a kernel thread, nothing to dump */
4234 if (!regs) {
4235 u64 size = 0;
4236 perf_output_put(handle, size);
4237 } else {
4238 unsigned long sp;
4239 unsigned int rem;
4240 u64 dyn_size;
4241
4242 /*
4243 * We dump:
4244 * static size
4245 * - the size requested by user or the best one we can fit
4246 * in to the sample max size
4247 * data
4248 * - user stack dump data
4249 * dynamic size
4250 * - the actual dumped size
4251 */
4252
4253 /* Static size. */
4254 perf_output_put(handle, dump_size);
4255
4256 /* Data. */
4257 sp = perf_user_stack_pointer(regs);
4258 rem = __output_copy_user(handle, (void *) sp, dump_size);
4259 dyn_size = dump_size - rem;
4260
4261 perf_output_skip(handle, rem);
4262
4263 /* Dynamic size. */
4264 perf_output_put(handle, dyn_size);
4265 }
4266}
4267
c980d109
ACM
4268static void __perf_event_header__init_id(struct perf_event_header *header,
4269 struct perf_sample_data *data,
4270 struct perf_event *event)
6844c09d
ACM
4271{
4272 u64 sample_type = event->attr.sample_type;
4273
4274 data->type = sample_type;
4275 header->size += event->id_header_size;
4276
4277 if (sample_type & PERF_SAMPLE_TID) {
4278 /* namespace issues */
4279 data->tid_entry.pid = perf_event_pid(event, current);
4280 data->tid_entry.tid = perf_event_tid(event, current);
4281 }
4282
4283 if (sample_type & PERF_SAMPLE_TIME)
4284 data->time = perf_clock();
4285
ff3d527c 4286 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4287 data->id = primary_event_id(event);
4288
4289 if (sample_type & PERF_SAMPLE_STREAM_ID)
4290 data->stream_id = event->id;
4291
4292 if (sample_type & PERF_SAMPLE_CPU) {
4293 data->cpu_entry.cpu = raw_smp_processor_id();
4294 data->cpu_entry.reserved = 0;
4295 }
4296}
4297
76369139
FW
4298void perf_event_header__init_id(struct perf_event_header *header,
4299 struct perf_sample_data *data,
4300 struct perf_event *event)
c980d109
ACM
4301{
4302 if (event->attr.sample_id_all)
4303 __perf_event_header__init_id(header, data, event);
4304}
4305
4306static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4307 struct perf_sample_data *data)
4308{
4309 u64 sample_type = data->type;
4310
4311 if (sample_type & PERF_SAMPLE_TID)
4312 perf_output_put(handle, data->tid_entry);
4313
4314 if (sample_type & PERF_SAMPLE_TIME)
4315 perf_output_put(handle, data->time);
4316
4317 if (sample_type & PERF_SAMPLE_ID)
4318 perf_output_put(handle, data->id);
4319
4320 if (sample_type & PERF_SAMPLE_STREAM_ID)
4321 perf_output_put(handle, data->stream_id);
4322
4323 if (sample_type & PERF_SAMPLE_CPU)
4324 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4325
4326 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4327 perf_output_put(handle, data->id);
c980d109
ACM
4328}
4329
76369139
FW
4330void perf_event__output_id_sample(struct perf_event *event,
4331 struct perf_output_handle *handle,
4332 struct perf_sample_data *sample)
c980d109
ACM
4333{
4334 if (event->attr.sample_id_all)
4335 __perf_event__output_id_sample(handle, sample);
4336}
4337
3dab77fb 4338static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4339 struct perf_event *event,
4340 u64 enabled, u64 running)
3dab77fb 4341{
cdd6c482 4342 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4343 u64 values[4];
4344 int n = 0;
4345
b5e58793 4346 values[n++] = perf_event_count(event);
3dab77fb 4347 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4348 values[n++] = enabled +
cdd6c482 4349 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4350 }
4351 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4352 values[n++] = running +
cdd6c482 4353 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4354 }
4355 if (read_format & PERF_FORMAT_ID)
cdd6c482 4356 values[n++] = primary_event_id(event);
3dab77fb 4357
76369139 4358 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4359}
4360
4361/*
cdd6c482 4362 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4363 */
4364static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4365 struct perf_event *event,
4366 u64 enabled, u64 running)
3dab77fb 4367{
cdd6c482
IM
4368 struct perf_event *leader = event->group_leader, *sub;
4369 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4370 u64 values[5];
4371 int n = 0;
4372
4373 values[n++] = 1 + leader->nr_siblings;
4374
4375 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4376 values[n++] = enabled;
3dab77fb
PZ
4377
4378 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4379 values[n++] = running;
3dab77fb 4380
cdd6c482 4381 if (leader != event)
3dab77fb
PZ
4382 leader->pmu->read(leader);
4383
b5e58793 4384 values[n++] = perf_event_count(leader);
3dab77fb 4385 if (read_format & PERF_FORMAT_ID)
cdd6c482 4386 values[n++] = primary_event_id(leader);
3dab77fb 4387
76369139 4388 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4389
65abc865 4390 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4391 n = 0;
4392
6f5ab001
JO
4393 if ((sub != event) &&
4394 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4395 sub->pmu->read(sub);
4396
b5e58793 4397 values[n++] = perf_event_count(sub);
3dab77fb 4398 if (read_format & PERF_FORMAT_ID)
cdd6c482 4399 values[n++] = primary_event_id(sub);
3dab77fb 4400
76369139 4401 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4402 }
4403}
4404
eed01528
SE
4405#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4406 PERF_FORMAT_TOTAL_TIME_RUNNING)
4407
3dab77fb 4408static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4409 struct perf_event *event)
3dab77fb 4410{
e3f3541c 4411 u64 enabled = 0, running = 0, now;
eed01528
SE
4412 u64 read_format = event->attr.read_format;
4413
4414 /*
4415 * compute total_time_enabled, total_time_running
4416 * based on snapshot values taken when the event
4417 * was last scheduled in.
4418 *
4419 * we cannot simply called update_context_time()
4420 * because of locking issue as we are called in
4421 * NMI context
4422 */
c4794295 4423 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4424 calc_timer_values(event, &now, &enabled, &running);
eed01528 4425
cdd6c482 4426 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4427 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4428 else
eed01528 4429 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4430}
4431
5622f295
MM
4432void perf_output_sample(struct perf_output_handle *handle,
4433 struct perf_event_header *header,
4434 struct perf_sample_data *data,
cdd6c482 4435 struct perf_event *event)
5622f295
MM
4436{
4437 u64 sample_type = data->type;
4438
4439 perf_output_put(handle, *header);
4440
ff3d527c
AH
4441 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4442 perf_output_put(handle, data->id);
4443
5622f295
MM
4444 if (sample_type & PERF_SAMPLE_IP)
4445 perf_output_put(handle, data->ip);
4446
4447 if (sample_type & PERF_SAMPLE_TID)
4448 perf_output_put(handle, data->tid_entry);
4449
4450 if (sample_type & PERF_SAMPLE_TIME)
4451 perf_output_put(handle, data->time);
4452
4453 if (sample_type & PERF_SAMPLE_ADDR)
4454 perf_output_put(handle, data->addr);
4455
4456 if (sample_type & PERF_SAMPLE_ID)
4457 perf_output_put(handle, data->id);
4458
4459 if (sample_type & PERF_SAMPLE_STREAM_ID)
4460 perf_output_put(handle, data->stream_id);
4461
4462 if (sample_type & PERF_SAMPLE_CPU)
4463 perf_output_put(handle, data->cpu_entry);
4464
4465 if (sample_type & PERF_SAMPLE_PERIOD)
4466 perf_output_put(handle, data->period);
4467
4468 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4469 perf_output_read(handle, event);
5622f295
MM
4470
4471 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4472 if (data->callchain) {
4473 int size = 1;
4474
4475 if (data->callchain)
4476 size += data->callchain->nr;
4477
4478 size *= sizeof(u64);
4479
76369139 4480 __output_copy(handle, data->callchain, size);
5622f295
MM
4481 } else {
4482 u64 nr = 0;
4483 perf_output_put(handle, nr);
4484 }
4485 }
4486
4487 if (sample_type & PERF_SAMPLE_RAW) {
4488 if (data->raw) {
4489 perf_output_put(handle, data->raw->size);
76369139
FW
4490 __output_copy(handle, data->raw->data,
4491 data->raw->size);
5622f295
MM
4492 } else {
4493 struct {
4494 u32 size;
4495 u32 data;
4496 } raw = {
4497 .size = sizeof(u32),
4498 .data = 0,
4499 };
4500 perf_output_put(handle, raw);
4501 }
4502 }
a7ac67ea 4503
bce38cd5
SE
4504 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4505 if (data->br_stack) {
4506 size_t size;
4507
4508 size = data->br_stack->nr
4509 * sizeof(struct perf_branch_entry);
4510
4511 perf_output_put(handle, data->br_stack->nr);
4512 perf_output_copy(handle, data->br_stack->entries, size);
4513 } else {
4514 /*
4515 * we always store at least the value of nr
4516 */
4517 u64 nr = 0;
4518 perf_output_put(handle, nr);
4519 }
4520 }
4018994f
JO
4521
4522 if (sample_type & PERF_SAMPLE_REGS_USER) {
4523 u64 abi = data->regs_user.abi;
4524
4525 /*
4526 * If there are no regs to dump, notice it through
4527 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4528 */
4529 perf_output_put(handle, abi);
4530
4531 if (abi) {
4532 u64 mask = event->attr.sample_regs_user;
4533 perf_output_sample_regs(handle,
4534 data->regs_user.regs,
4535 mask);
4536 }
4537 }
c5ebcedb 4538
a5cdd40c 4539 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
4540 perf_output_sample_ustack(handle,
4541 data->stack_user_size,
4542 data->regs_user.regs);
a5cdd40c 4543 }
c3feedf2
AK
4544
4545 if (sample_type & PERF_SAMPLE_WEIGHT)
4546 perf_output_put(handle, data->weight);
d6be9ad6
SE
4547
4548 if (sample_type & PERF_SAMPLE_DATA_SRC)
4549 perf_output_put(handle, data->data_src.val);
a5cdd40c
PZ
4550
4551 if (!event->attr.watermark) {
4552 int wakeup_events = event->attr.wakeup_events;
4553
4554 if (wakeup_events) {
4555 struct ring_buffer *rb = handle->rb;
4556 int events = local_inc_return(&rb->events);
4557
4558 if (events >= wakeup_events) {
4559 local_sub(wakeup_events, &rb->events);
4560 local_inc(&rb->wakeup);
4561 }
4562 }
4563 }
5622f295
MM
4564}
4565
4566void perf_prepare_sample(struct perf_event_header *header,
4567 struct perf_sample_data *data,
cdd6c482 4568 struct perf_event *event,
5622f295 4569 struct pt_regs *regs)
7b732a75 4570{
cdd6c482 4571 u64 sample_type = event->attr.sample_type;
7b732a75 4572
cdd6c482 4573 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4574 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4575
4576 header->misc = 0;
4577 header->misc |= perf_misc_flags(regs);
6fab0192 4578
c980d109 4579 __perf_event_header__init_id(header, data, event);
6844c09d 4580
c320c7b7 4581 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4582 data->ip = perf_instruction_pointer(regs);
4583
b23f3325 4584 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4585 int size = 1;
394ee076 4586
e6dab5ff 4587 data->callchain = perf_callchain(event, regs);
5622f295
MM
4588
4589 if (data->callchain)
4590 size += data->callchain->nr;
4591
4592 header->size += size * sizeof(u64);
394ee076
PZ
4593 }
4594
3a43ce68 4595 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4596 int size = sizeof(u32);
4597
4598 if (data->raw)
4599 size += data->raw->size;
4600 else
4601 size += sizeof(u32);
4602
4603 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4604 header->size += size;
7f453c24 4605 }
bce38cd5
SE
4606
4607 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4608 int size = sizeof(u64); /* nr */
4609 if (data->br_stack) {
4610 size += data->br_stack->nr
4611 * sizeof(struct perf_branch_entry);
4612 }
4613 header->size += size;
4614 }
4018994f
JO
4615
4616 if (sample_type & PERF_SAMPLE_REGS_USER) {
4617 /* regs dump ABI info */
4618 int size = sizeof(u64);
4619
4620 perf_sample_regs_user(&data->regs_user, regs);
4621
4622 if (data->regs_user.regs) {
4623 u64 mask = event->attr.sample_regs_user;
4624 size += hweight64(mask) * sizeof(u64);
4625 }
4626
4627 header->size += size;
4628 }
c5ebcedb
JO
4629
4630 if (sample_type & PERF_SAMPLE_STACK_USER) {
4631 /*
4632 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4633 * processed as the last one or have additional check added
4634 * in case new sample type is added, because we could eat
4635 * up the rest of the sample size.
4636 */
4637 struct perf_regs_user *uregs = &data->regs_user;
4638 u16 stack_size = event->attr.sample_stack_user;
4639 u16 size = sizeof(u64);
4640
4641 if (!uregs->abi)
4642 perf_sample_regs_user(uregs, regs);
4643
4644 stack_size = perf_sample_ustack_size(stack_size, header->size,
4645 uregs->regs);
4646
4647 /*
4648 * If there is something to dump, add space for the dump
4649 * itself and for the field that tells the dynamic size,
4650 * which is how many have been actually dumped.
4651 */
4652 if (stack_size)
4653 size += sizeof(u64) + stack_size;
4654
4655 data->stack_user_size = stack_size;
4656 header->size += size;
4657 }
5622f295 4658}
7f453c24 4659
a8b0ca17 4660static void perf_event_output(struct perf_event *event,
5622f295
MM
4661 struct perf_sample_data *data,
4662 struct pt_regs *regs)
4663{
4664 struct perf_output_handle handle;
4665 struct perf_event_header header;
689802b2 4666
927c7a9e
FW
4667 /* protect the callchain buffers */
4668 rcu_read_lock();
4669
cdd6c482 4670 perf_prepare_sample(&header, data, event, regs);
5c148194 4671
a7ac67ea 4672 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4673 goto exit;
0322cd6e 4674
cdd6c482 4675 perf_output_sample(&handle, &header, data, event);
f413cdb8 4676
8a057d84 4677 perf_output_end(&handle);
927c7a9e
FW
4678
4679exit:
4680 rcu_read_unlock();
0322cd6e
PZ
4681}
4682
38b200d6 4683/*
cdd6c482 4684 * read event_id
38b200d6
PZ
4685 */
4686
4687struct perf_read_event {
4688 struct perf_event_header header;
4689
4690 u32 pid;
4691 u32 tid;
38b200d6
PZ
4692};
4693
4694static void
cdd6c482 4695perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4696 struct task_struct *task)
4697{
4698 struct perf_output_handle handle;
c980d109 4699 struct perf_sample_data sample;
dfc65094 4700 struct perf_read_event read_event = {
38b200d6 4701 .header = {
cdd6c482 4702 .type = PERF_RECORD_READ,
38b200d6 4703 .misc = 0,
c320c7b7 4704 .size = sizeof(read_event) + event->read_size,
38b200d6 4705 },
cdd6c482
IM
4706 .pid = perf_event_pid(event, task),
4707 .tid = perf_event_tid(event, task),
38b200d6 4708 };
3dab77fb 4709 int ret;
38b200d6 4710
c980d109 4711 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4712 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4713 if (ret)
4714 return;
4715
dfc65094 4716 perf_output_put(&handle, read_event);
cdd6c482 4717 perf_output_read(&handle, event);
c980d109 4718 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4719
38b200d6
PZ
4720 perf_output_end(&handle);
4721}
4722
52d857a8
JO
4723typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4724
4725static void
4726perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
4727 perf_event_aux_output_cb output,
4728 void *data)
4729{
4730 struct perf_event *event;
4731
4732 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4733 if (event->state < PERF_EVENT_STATE_INACTIVE)
4734 continue;
4735 if (!event_filter_match(event))
4736 continue;
67516844 4737 output(event, data);
52d857a8
JO
4738 }
4739}
4740
4741static void
67516844 4742perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
4743 struct perf_event_context *task_ctx)
4744{
4745 struct perf_cpu_context *cpuctx;
4746 struct perf_event_context *ctx;
4747 struct pmu *pmu;
4748 int ctxn;
4749
4750 rcu_read_lock();
4751 list_for_each_entry_rcu(pmu, &pmus, entry) {
4752 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4753 if (cpuctx->unique_pmu != pmu)
4754 goto next;
67516844 4755 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
4756 if (task_ctx)
4757 goto next;
4758 ctxn = pmu->task_ctx_nr;
4759 if (ctxn < 0)
4760 goto next;
4761 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4762 if (ctx)
67516844 4763 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
4764next:
4765 put_cpu_ptr(pmu->pmu_cpu_context);
4766 }
4767
4768 if (task_ctx) {
4769 preempt_disable();
67516844 4770 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
4771 preempt_enable();
4772 }
4773 rcu_read_unlock();
4774}
4775
60313ebe 4776/*
9f498cc5
PZ
4777 * task tracking -- fork/exit
4778 *
3af9e859 4779 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4780 */
4781
9f498cc5 4782struct perf_task_event {
3a80b4a3 4783 struct task_struct *task;
cdd6c482 4784 struct perf_event_context *task_ctx;
60313ebe
PZ
4785
4786 struct {
4787 struct perf_event_header header;
4788
4789 u32 pid;
4790 u32 ppid;
9f498cc5
PZ
4791 u32 tid;
4792 u32 ptid;
393b2ad8 4793 u64 time;
cdd6c482 4794 } event_id;
60313ebe
PZ
4795};
4796
67516844
JO
4797static int perf_event_task_match(struct perf_event *event)
4798{
4799 return event->attr.comm || event->attr.mmap ||
4800 event->attr.mmap_data || event->attr.task;
4801}
4802
cdd6c482 4803static void perf_event_task_output(struct perf_event *event,
52d857a8 4804 void *data)
60313ebe 4805{
52d857a8 4806 struct perf_task_event *task_event = data;
60313ebe 4807 struct perf_output_handle handle;
c980d109 4808 struct perf_sample_data sample;
9f498cc5 4809 struct task_struct *task = task_event->task;
c980d109 4810 int ret, size = task_event->event_id.header.size;
8bb39f9a 4811
67516844
JO
4812 if (!perf_event_task_match(event))
4813 return;
4814
c980d109 4815 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4816
c980d109 4817 ret = perf_output_begin(&handle, event,
a7ac67ea 4818 task_event->event_id.header.size);
ef60777c 4819 if (ret)
c980d109 4820 goto out;
60313ebe 4821
cdd6c482
IM
4822 task_event->event_id.pid = perf_event_pid(event, task);
4823 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4824
cdd6c482
IM
4825 task_event->event_id.tid = perf_event_tid(event, task);
4826 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4827
cdd6c482 4828 perf_output_put(&handle, task_event->event_id);
393b2ad8 4829
c980d109
ACM
4830 perf_event__output_id_sample(event, &handle, &sample);
4831
60313ebe 4832 perf_output_end(&handle);
c980d109
ACM
4833out:
4834 task_event->event_id.header.size = size;
60313ebe
PZ
4835}
4836
cdd6c482
IM
4837static void perf_event_task(struct task_struct *task,
4838 struct perf_event_context *task_ctx,
3a80b4a3 4839 int new)
60313ebe 4840{
9f498cc5 4841 struct perf_task_event task_event;
60313ebe 4842
cdd6c482
IM
4843 if (!atomic_read(&nr_comm_events) &&
4844 !atomic_read(&nr_mmap_events) &&
4845 !atomic_read(&nr_task_events))
60313ebe
PZ
4846 return;
4847
9f498cc5 4848 task_event = (struct perf_task_event){
3a80b4a3
PZ
4849 .task = task,
4850 .task_ctx = task_ctx,
cdd6c482 4851 .event_id = {
60313ebe 4852 .header = {
cdd6c482 4853 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4854 .misc = 0,
cdd6c482 4855 .size = sizeof(task_event.event_id),
60313ebe 4856 },
573402db
PZ
4857 /* .pid */
4858 /* .ppid */
9f498cc5
PZ
4859 /* .tid */
4860 /* .ptid */
6f93d0a7 4861 .time = perf_clock(),
60313ebe
PZ
4862 },
4863 };
4864
67516844 4865 perf_event_aux(perf_event_task_output,
52d857a8
JO
4866 &task_event,
4867 task_ctx);
9f498cc5
PZ
4868}
4869
cdd6c482 4870void perf_event_fork(struct task_struct *task)
9f498cc5 4871{
cdd6c482 4872 perf_event_task(task, NULL, 1);
60313ebe
PZ
4873}
4874
8d1b2d93
PZ
4875/*
4876 * comm tracking
4877 */
4878
4879struct perf_comm_event {
22a4f650
IM
4880 struct task_struct *task;
4881 char *comm;
8d1b2d93
PZ
4882 int comm_size;
4883
4884 struct {
4885 struct perf_event_header header;
4886
4887 u32 pid;
4888 u32 tid;
cdd6c482 4889 } event_id;
8d1b2d93
PZ
4890};
4891
67516844
JO
4892static int perf_event_comm_match(struct perf_event *event)
4893{
4894 return event->attr.comm;
4895}
4896
cdd6c482 4897static void perf_event_comm_output(struct perf_event *event,
52d857a8 4898 void *data)
8d1b2d93 4899{
52d857a8 4900 struct perf_comm_event *comm_event = data;
8d1b2d93 4901 struct perf_output_handle handle;
c980d109 4902 struct perf_sample_data sample;
cdd6c482 4903 int size = comm_event->event_id.header.size;
c980d109
ACM
4904 int ret;
4905
67516844
JO
4906 if (!perf_event_comm_match(event))
4907 return;
4908
c980d109
ACM
4909 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4910 ret = perf_output_begin(&handle, event,
a7ac67ea 4911 comm_event->event_id.header.size);
8d1b2d93
PZ
4912
4913 if (ret)
c980d109 4914 goto out;
8d1b2d93 4915
cdd6c482
IM
4916 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4917 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4918
cdd6c482 4919 perf_output_put(&handle, comm_event->event_id);
76369139 4920 __output_copy(&handle, comm_event->comm,
8d1b2d93 4921 comm_event->comm_size);
c980d109
ACM
4922
4923 perf_event__output_id_sample(event, &handle, &sample);
4924
8d1b2d93 4925 perf_output_end(&handle);
c980d109
ACM
4926out:
4927 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4928}
4929
cdd6c482 4930static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 4931{
413ee3b4 4932 char comm[TASK_COMM_LEN];
8d1b2d93 4933 unsigned int size;
8d1b2d93 4934
413ee3b4 4935 memset(comm, 0, sizeof(comm));
96b02d78 4936 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4937 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4938
4939 comm_event->comm = comm;
4940 comm_event->comm_size = size;
4941
cdd6c482 4942 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 4943
67516844 4944 perf_event_aux(perf_event_comm_output,
52d857a8
JO
4945 comm_event,
4946 NULL);
8d1b2d93
PZ
4947}
4948
cdd6c482 4949void perf_event_comm(struct task_struct *task)
8d1b2d93 4950{
9ee318a7 4951 struct perf_comm_event comm_event;
8dc85d54
PZ
4952 struct perf_event_context *ctx;
4953 int ctxn;
9ee318a7 4954
c79aa0d9 4955 rcu_read_lock();
8dc85d54
PZ
4956 for_each_task_context_nr(ctxn) {
4957 ctx = task->perf_event_ctxp[ctxn];
4958 if (!ctx)
4959 continue;
9ee318a7 4960
8dc85d54
PZ
4961 perf_event_enable_on_exec(ctx);
4962 }
c79aa0d9 4963 rcu_read_unlock();
9ee318a7 4964
cdd6c482 4965 if (!atomic_read(&nr_comm_events))
9ee318a7 4966 return;
a63eaf34 4967
9ee318a7 4968 comm_event = (struct perf_comm_event){
8d1b2d93 4969 .task = task,
573402db
PZ
4970 /* .comm */
4971 /* .comm_size */
cdd6c482 4972 .event_id = {
573402db 4973 .header = {
cdd6c482 4974 .type = PERF_RECORD_COMM,
573402db
PZ
4975 .misc = 0,
4976 /* .size */
4977 },
4978 /* .pid */
4979 /* .tid */
8d1b2d93
PZ
4980 },
4981 };
4982
cdd6c482 4983 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4984}
4985
0a4a9391
PZ
4986/*
4987 * mmap tracking
4988 */
4989
4990struct perf_mmap_event {
089dd79d
PZ
4991 struct vm_area_struct *vma;
4992
4993 const char *file_name;
4994 int file_size;
0a4a9391
PZ
4995
4996 struct {
4997 struct perf_event_header header;
4998
4999 u32 pid;
5000 u32 tid;
5001 u64 start;
5002 u64 len;
5003 u64 pgoff;
cdd6c482 5004 } event_id;
0a4a9391
PZ
5005};
5006
67516844
JO
5007static int perf_event_mmap_match(struct perf_event *event,
5008 void *data)
5009{
5010 struct perf_mmap_event *mmap_event = data;
5011 struct vm_area_struct *vma = mmap_event->vma;
5012 int executable = vma->vm_flags & VM_EXEC;
5013
5014 return (!executable && event->attr.mmap_data) ||
5015 (executable && event->attr.mmap);
5016}
5017
cdd6c482 5018static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5019 void *data)
0a4a9391 5020{
52d857a8 5021 struct perf_mmap_event *mmap_event = data;
0a4a9391 5022 struct perf_output_handle handle;
c980d109 5023 struct perf_sample_data sample;
cdd6c482 5024 int size = mmap_event->event_id.header.size;
c980d109 5025 int ret;
0a4a9391 5026
67516844
JO
5027 if (!perf_event_mmap_match(event, data))
5028 return;
5029
c980d109
ACM
5030 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5031 ret = perf_output_begin(&handle, event,
a7ac67ea 5032 mmap_event->event_id.header.size);
0a4a9391 5033 if (ret)
c980d109 5034 goto out;
0a4a9391 5035
cdd6c482
IM
5036 mmap_event->event_id.pid = perf_event_pid(event, current);
5037 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5038
cdd6c482 5039 perf_output_put(&handle, mmap_event->event_id);
76369139 5040 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5041 mmap_event->file_size);
c980d109
ACM
5042
5043 perf_event__output_id_sample(event, &handle, &sample);
5044
78d613eb 5045 perf_output_end(&handle);
c980d109
ACM
5046out:
5047 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5048}
5049
cdd6c482 5050static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5051{
089dd79d
PZ
5052 struct vm_area_struct *vma = mmap_event->vma;
5053 struct file *file = vma->vm_file;
0a4a9391
PZ
5054 unsigned int size;
5055 char tmp[16];
5056 char *buf = NULL;
089dd79d 5057 const char *name;
0a4a9391 5058
413ee3b4
AB
5059 memset(tmp, 0, sizeof(tmp));
5060
0a4a9391 5061 if (file) {
413ee3b4 5062 /*
76369139 5063 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
5064 * need to add enough zero bytes after the string to handle
5065 * the 64bit alignment we do later.
5066 */
5067 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
5068 if (!buf) {
5069 name = strncpy(tmp, "//enomem", sizeof(tmp));
5070 goto got_name;
5071 }
d3d21c41 5072 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
5073 if (IS_ERR(name)) {
5074 name = strncpy(tmp, "//toolong", sizeof(tmp));
5075 goto got_name;
5076 }
5077 } else {
413ee3b4
AB
5078 if (arch_vma_name(mmap_event->vma)) {
5079 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
c97847d2
CG
5080 sizeof(tmp) - 1);
5081 tmp[sizeof(tmp) - 1] = '\0';
089dd79d 5082 goto got_name;
413ee3b4 5083 }
089dd79d
PZ
5084
5085 if (!vma->vm_mm) {
5086 name = strncpy(tmp, "[vdso]", sizeof(tmp));
5087 goto got_name;
3af9e859
EM
5088 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5089 vma->vm_end >= vma->vm_mm->brk) {
5090 name = strncpy(tmp, "[heap]", sizeof(tmp));
5091 goto got_name;
5092 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5093 vma->vm_end >= vma->vm_mm->start_stack) {
5094 name = strncpy(tmp, "[stack]", sizeof(tmp));
5095 goto got_name;
089dd79d
PZ
5096 }
5097
0a4a9391
PZ
5098 name = strncpy(tmp, "//anon", sizeof(tmp));
5099 goto got_name;
5100 }
5101
5102got_name:
888fcee0 5103 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
5104
5105 mmap_event->file_name = name;
5106 mmap_event->file_size = size;
5107
2fe85427
SE
5108 if (!(vma->vm_flags & VM_EXEC))
5109 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5110
cdd6c482 5111 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5112
67516844 5113 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5114 mmap_event,
5115 NULL);
665c2142 5116
0a4a9391
PZ
5117 kfree(buf);
5118}
5119
3af9e859 5120void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5121{
9ee318a7
PZ
5122 struct perf_mmap_event mmap_event;
5123
cdd6c482 5124 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5125 return;
5126
5127 mmap_event = (struct perf_mmap_event){
089dd79d 5128 .vma = vma,
573402db
PZ
5129 /* .file_name */
5130 /* .file_size */
cdd6c482 5131 .event_id = {
573402db 5132 .header = {
cdd6c482 5133 .type = PERF_RECORD_MMAP,
39447b38 5134 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5135 /* .size */
5136 },
5137 /* .pid */
5138 /* .tid */
089dd79d
PZ
5139 .start = vma->vm_start,
5140 .len = vma->vm_end - vma->vm_start,
3a0304e9 5141 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
5142 },
5143 };
5144
cdd6c482 5145 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5146}
5147
a78ac325
PZ
5148/*
5149 * IRQ throttle logging
5150 */
5151
cdd6c482 5152static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5153{
5154 struct perf_output_handle handle;
c980d109 5155 struct perf_sample_data sample;
a78ac325
PZ
5156 int ret;
5157
5158 struct {
5159 struct perf_event_header header;
5160 u64 time;
cca3f454 5161 u64 id;
7f453c24 5162 u64 stream_id;
a78ac325
PZ
5163 } throttle_event = {
5164 .header = {
cdd6c482 5165 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5166 .misc = 0,
5167 .size = sizeof(throttle_event),
5168 },
def0a9b2 5169 .time = perf_clock(),
cdd6c482
IM
5170 .id = primary_event_id(event),
5171 .stream_id = event->id,
a78ac325
PZ
5172 };
5173
966ee4d6 5174 if (enable)
cdd6c482 5175 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5176
c980d109
ACM
5177 perf_event_header__init_id(&throttle_event.header, &sample, event);
5178
5179 ret = perf_output_begin(&handle, event,
a7ac67ea 5180 throttle_event.header.size);
a78ac325
PZ
5181 if (ret)
5182 return;
5183
5184 perf_output_put(&handle, throttle_event);
c980d109 5185 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5186 perf_output_end(&handle);
5187}
5188
f6c7d5fe 5189/*
cdd6c482 5190 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5191 */
5192
a8b0ca17 5193static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5194 int throttle, struct perf_sample_data *data,
5195 struct pt_regs *regs)
f6c7d5fe 5196{
cdd6c482
IM
5197 int events = atomic_read(&event->event_limit);
5198 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5199 u64 seq;
79f14641
PZ
5200 int ret = 0;
5201
96398826
PZ
5202 /*
5203 * Non-sampling counters might still use the PMI to fold short
5204 * hardware counters, ignore those.
5205 */
5206 if (unlikely(!is_sampling_event(event)))
5207 return 0;
5208
e050e3f0
SE
5209 seq = __this_cpu_read(perf_throttled_seq);
5210 if (seq != hwc->interrupts_seq) {
5211 hwc->interrupts_seq = seq;
5212 hwc->interrupts = 1;
5213 } else {
5214 hwc->interrupts++;
5215 if (unlikely(throttle
5216 && hwc->interrupts >= max_samples_per_tick)) {
5217 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5218 hwc->interrupts = MAX_INTERRUPTS;
5219 perf_log_throttle(event, 0);
d84153d6 5220 tick_nohz_full_kick();
a78ac325
PZ
5221 ret = 1;
5222 }
e050e3f0 5223 }
60db5e09 5224
cdd6c482 5225 if (event->attr.freq) {
def0a9b2 5226 u64 now = perf_clock();
abd50713 5227 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5228
abd50713 5229 hwc->freq_time_stamp = now;
bd2b5b12 5230
abd50713 5231 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5232 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5233 }
5234
2023b359
PZ
5235 /*
5236 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5237 * events
2023b359
PZ
5238 */
5239
cdd6c482
IM
5240 event->pending_kill = POLL_IN;
5241 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5242 ret = 1;
cdd6c482 5243 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5244 event->pending_disable = 1;
5245 irq_work_queue(&event->pending);
79f14641
PZ
5246 }
5247
453f19ee 5248 if (event->overflow_handler)
a8b0ca17 5249 event->overflow_handler(event, data, regs);
453f19ee 5250 else
a8b0ca17 5251 perf_event_output(event, data, regs);
453f19ee 5252
f506b3dc 5253 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5254 event->pending_wakeup = 1;
5255 irq_work_queue(&event->pending);
f506b3dc
PZ
5256 }
5257
79f14641 5258 return ret;
f6c7d5fe
PZ
5259}
5260
a8b0ca17 5261int perf_event_overflow(struct perf_event *event,
5622f295
MM
5262 struct perf_sample_data *data,
5263 struct pt_regs *regs)
850bc73f 5264{
a8b0ca17 5265 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5266}
5267
15dbf27c 5268/*
cdd6c482 5269 * Generic software event infrastructure
15dbf27c
PZ
5270 */
5271
b28ab83c
PZ
5272struct swevent_htable {
5273 struct swevent_hlist *swevent_hlist;
5274 struct mutex hlist_mutex;
5275 int hlist_refcount;
5276
5277 /* Recursion avoidance in each contexts */
5278 int recursion[PERF_NR_CONTEXTS];
5279};
5280
5281static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5282
7b4b6658 5283/*
cdd6c482
IM
5284 * We directly increment event->count and keep a second value in
5285 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5286 * is kept in the range [-sample_period, 0] so that we can use the
5287 * sign as trigger.
5288 */
5289
ab573844 5290u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5291{
cdd6c482 5292 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5293 u64 period = hwc->last_period;
5294 u64 nr, offset;
5295 s64 old, val;
5296
5297 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5298
5299again:
e7850595 5300 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5301 if (val < 0)
5302 return 0;
15dbf27c 5303
7b4b6658
PZ
5304 nr = div64_u64(period + val, period);
5305 offset = nr * period;
5306 val -= offset;
e7850595 5307 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5308 goto again;
15dbf27c 5309
7b4b6658 5310 return nr;
15dbf27c
PZ
5311}
5312
0cff784a 5313static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5314 struct perf_sample_data *data,
5622f295 5315 struct pt_regs *regs)
15dbf27c 5316{
cdd6c482 5317 struct hw_perf_event *hwc = &event->hw;
850bc73f 5318 int throttle = 0;
15dbf27c 5319
0cff784a
PZ
5320 if (!overflow)
5321 overflow = perf_swevent_set_period(event);
15dbf27c 5322
7b4b6658
PZ
5323 if (hwc->interrupts == MAX_INTERRUPTS)
5324 return;
15dbf27c 5325
7b4b6658 5326 for (; overflow; overflow--) {
a8b0ca17 5327 if (__perf_event_overflow(event, throttle,
5622f295 5328 data, regs)) {
7b4b6658
PZ
5329 /*
5330 * We inhibit the overflow from happening when
5331 * hwc->interrupts == MAX_INTERRUPTS.
5332 */
5333 break;
5334 }
cf450a73 5335 throttle = 1;
7b4b6658 5336 }
15dbf27c
PZ
5337}
5338
a4eaf7f1 5339static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5340 struct perf_sample_data *data,
5622f295 5341 struct pt_regs *regs)
7b4b6658 5342{
cdd6c482 5343 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5344
e7850595 5345 local64_add(nr, &event->count);
d6d020e9 5346
0cff784a
PZ
5347 if (!regs)
5348 return;
5349
6c7e550f 5350 if (!is_sampling_event(event))
7b4b6658 5351 return;
d6d020e9 5352
5d81e5cf
AV
5353 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5354 data->period = nr;
5355 return perf_swevent_overflow(event, 1, data, regs);
5356 } else
5357 data->period = event->hw.last_period;
5358
0cff784a 5359 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5360 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5361
e7850595 5362 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5363 return;
df1a132b 5364
a8b0ca17 5365 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5366}
5367
f5ffe02e
FW
5368static int perf_exclude_event(struct perf_event *event,
5369 struct pt_regs *regs)
5370{
a4eaf7f1 5371 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5372 return 1;
a4eaf7f1 5373
f5ffe02e
FW
5374 if (regs) {
5375 if (event->attr.exclude_user && user_mode(regs))
5376 return 1;
5377
5378 if (event->attr.exclude_kernel && !user_mode(regs))
5379 return 1;
5380 }
5381
5382 return 0;
5383}
5384
cdd6c482 5385static int perf_swevent_match(struct perf_event *event,
1c432d89 5386 enum perf_type_id type,
6fb2915d
LZ
5387 u32 event_id,
5388 struct perf_sample_data *data,
5389 struct pt_regs *regs)
15dbf27c 5390{
cdd6c482 5391 if (event->attr.type != type)
a21ca2ca 5392 return 0;
f5ffe02e 5393
cdd6c482 5394 if (event->attr.config != event_id)
15dbf27c
PZ
5395 return 0;
5396
f5ffe02e
FW
5397 if (perf_exclude_event(event, regs))
5398 return 0;
15dbf27c
PZ
5399
5400 return 1;
5401}
5402
76e1d904
FW
5403static inline u64 swevent_hash(u64 type, u32 event_id)
5404{
5405 u64 val = event_id | (type << 32);
5406
5407 return hash_64(val, SWEVENT_HLIST_BITS);
5408}
5409
49f135ed
FW
5410static inline struct hlist_head *
5411__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5412{
49f135ed
FW
5413 u64 hash = swevent_hash(type, event_id);
5414
5415 return &hlist->heads[hash];
5416}
76e1d904 5417
49f135ed
FW
5418/* For the read side: events when they trigger */
5419static inline struct hlist_head *
b28ab83c 5420find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5421{
5422 struct swevent_hlist *hlist;
76e1d904 5423
b28ab83c 5424 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5425 if (!hlist)
5426 return NULL;
5427
49f135ed
FW
5428 return __find_swevent_head(hlist, type, event_id);
5429}
5430
5431/* For the event head insertion and removal in the hlist */
5432static inline struct hlist_head *
b28ab83c 5433find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5434{
5435 struct swevent_hlist *hlist;
5436 u32 event_id = event->attr.config;
5437 u64 type = event->attr.type;
5438
5439 /*
5440 * Event scheduling is always serialized against hlist allocation
5441 * and release. Which makes the protected version suitable here.
5442 * The context lock guarantees that.
5443 */
b28ab83c 5444 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5445 lockdep_is_held(&event->ctx->lock));
5446 if (!hlist)
5447 return NULL;
5448
5449 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5450}
5451
5452static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5453 u64 nr,
76e1d904
FW
5454 struct perf_sample_data *data,
5455 struct pt_regs *regs)
15dbf27c 5456{
b28ab83c 5457 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5458 struct perf_event *event;
76e1d904 5459 struct hlist_head *head;
15dbf27c 5460
76e1d904 5461 rcu_read_lock();
b28ab83c 5462 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5463 if (!head)
5464 goto end;
5465
b67bfe0d 5466 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5467 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5468 perf_swevent_event(event, nr, data, regs);
15dbf27c 5469 }
76e1d904
FW
5470end:
5471 rcu_read_unlock();
15dbf27c
PZ
5472}
5473
4ed7c92d 5474int perf_swevent_get_recursion_context(void)
96f6d444 5475{
b28ab83c 5476 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5477
b28ab83c 5478 return get_recursion_context(swhash->recursion);
96f6d444 5479}
645e8cc0 5480EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5481
fa9f90be 5482inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5483{
b28ab83c 5484 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5485
b28ab83c 5486 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5487}
15dbf27c 5488
a8b0ca17 5489void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5490{
a4234bfc 5491 struct perf_sample_data data;
4ed7c92d
PZ
5492 int rctx;
5493
1c024eca 5494 preempt_disable_notrace();
4ed7c92d
PZ
5495 rctx = perf_swevent_get_recursion_context();
5496 if (rctx < 0)
5497 return;
a4234bfc 5498
fd0d000b 5499 perf_sample_data_init(&data, addr, 0);
92bf309a 5500
a8b0ca17 5501 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5502
5503 perf_swevent_put_recursion_context(rctx);
1c024eca 5504 preempt_enable_notrace();
b8e83514
PZ
5505}
5506
cdd6c482 5507static void perf_swevent_read(struct perf_event *event)
15dbf27c 5508{
15dbf27c
PZ
5509}
5510
a4eaf7f1 5511static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5512{
b28ab83c 5513 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5514 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5515 struct hlist_head *head;
5516
6c7e550f 5517 if (is_sampling_event(event)) {
7b4b6658 5518 hwc->last_period = hwc->sample_period;
cdd6c482 5519 perf_swevent_set_period(event);
7b4b6658 5520 }
76e1d904 5521
a4eaf7f1
PZ
5522 hwc->state = !(flags & PERF_EF_START);
5523
b28ab83c 5524 head = find_swevent_head(swhash, event);
76e1d904
FW
5525 if (WARN_ON_ONCE(!head))
5526 return -EINVAL;
5527
5528 hlist_add_head_rcu(&event->hlist_entry, head);
5529
15dbf27c
PZ
5530 return 0;
5531}
5532
a4eaf7f1 5533static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5534{
76e1d904 5535 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5536}
5537
a4eaf7f1 5538static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5539{
a4eaf7f1 5540 event->hw.state = 0;
d6d020e9 5541}
aa9c4c0f 5542
a4eaf7f1 5543static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5544{
a4eaf7f1 5545 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5546}
5547
49f135ed
FW
5548/* Deref the hlist from the update side */
5549static inline struct swevent_hlist *
b28ab83c 5550swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5551{
b28ab83c
PZ
5552 return rcu_dereference_protected(swhash->swevent_hlist,
5553 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5554}
5555
b28ab83c 5556static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5557{
b28ab83c 5558 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5559
49f135ed 5560 if (!hlist)
76e1d904
FW
5561 return;
5562
b28ab83c 5563 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5564 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5565}
5566
5567static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5568{
b28ab83c 5569 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5570
b28ab83c 5571 mutex_lock(&swhash->hlist_mutex);
76e1d904 5572
b28ab83c
PZ
5573 if (!--swhash->hlist_refcount)
5574 swevent_hlist_release(swhash);
76e1d904 5575
b28ab83c 5576 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5577}
5578
5579static void swevent_hlist_put(struct perf_event *event)
5580{
5581 int cpu;
5582
5583 if (event->cpu != -1) {
5584 swevent_hlist_put_cpu(event, event->cpu);
5585 return;
5586 }
5587
5588 for_each_possible_cpu(cpu)
5589 swevent_hlist_put_cpu(event, cpu);
5590}
5591
5592static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5593{
b28ab83c 5594 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5595 int err = 0;
5596
b28ab83c 5597 mutex_lock(&swhash->hlist_mutex);
76e1d904 5598
b28ab83c 5599 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5600 struct swevent_hlist *hlist;
5601
5602 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5603 if (!hlist) {
5604 err = -ENOMEM;
5605 goto exit;
5606 }
b28ab83c 5607 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5608 }
b28ab83c 5609 swhash->hlist_refcount++;
9ed6060d 5610exit:
b28ab83c 5611 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5612
5613 return err;
5614}
5615
5616static int swevent_hlist_get(struct perf_event *event)
5617{
5618 int err;
5619 int cpu, failed_cpu;
5620
5621 if (event->cpu != -1)
5622 return swevent_hlist_get_cpu(event, event->cpu);
5623
5624 get_online_cpus();
5625 for_each_possible_cpu(cpu) {
5626 err = swevent_hlist_get_cpu(event, cpu);
5627 if (err) {
5628 failed_cpu = cpu;
5629 goto fail;
5630 }
5631 }
5632 put_online_cpus();
5633
5634 return 0;
9ed6060d 5635fail:
76e1d904
FW
5636 for_each_possible_cpu(cpu) {
5637 if (cpu == failed_cpu)
5638 break;
5639 swevent_hlist_put_cpu(event, cpu);
5640 }
5641
5642 put_online_cpus();
5643 return err;
5644}
5645
c5905afb 5646struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5647
b0a873eb
PZ
5648static void sw_perf_event_destroy(struct perf_event *event)
5649{
5650 u64 event_id = event->attr.config;
95476b64 5651
b0a873eb
PZ
5652 WARN_ON(event->parent);
5653
c5905afb 5654 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5655 swevent_hlist_put(event);
5656}
5657
5658static int perf_swevent_init(struct perf_event *event)
5659{
8176cced 5660 u64 event_id = event->attr.config;
b0a873eb
PZ
5661
5662 if (event->attr.type != PERF_TYPE_SOFTWARE)
5663 return -ENOENT;
5664
2481c5fa
SE
5665 /*
5666 * no branch sampling for software events
5667 */
5668 if (has_branch_stack(event))
5669 return -EOPNOTSUPP;
5670
b0a873eb
PZ
5671 switch (event_id) {
5672 case PERF_COUNT_SW_CPU_CLOCK:
5673 case PERF_COUNT_SW_TASK_CLOCK:
5674 return -ENOENT;
5675
5676 default:
5677 break;
5678 }
5679
ce677831 5680 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5681 return -ENOENT;
5682
5683 if (!event->parent) {
5684 int err;
5685
5686 err = swevent_hlist_get(event);
5687 if (err)
5688 return err;
5689
c5905afb 5690 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5691 event->destroy = sw_perf_event_destroy;
5692 }
5693
5694 return 0;
5695}
5696
35edc2a5
PZ
5697static int perf_swevent_event_idx(struct perf_event *event)
5698{
5699 return 0;
5700}
5701
b0a873eb 5702static struct pmu perf_swevent = {
89a1e187 5703 .task_ctx_nr = perf_sw_context,
95476b64 5704
b0a873eb 5705 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5706 .add = perf_swevent_add,
5707 .del = perf_swevent_del,
5708 .start = perf_swevent_start,
5709 .stop = perf_swevent_stop,
1c024eca 5710 .read = perf_swevent_read,
35edc2a5
PZ
5711
5712 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5713};
5714
b0a873eb
PZ
5715#ifdef CONFIG_EVENT_TRACING
5716
1c024eca
PZ
5717static int perf_tp_filter_match(struct perf_event *event,
5718 struct perf_sample_data *data)
5719{
5720 void *record = data->raw->data;
5721
5722 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5723 return 1;
5724 return 0;
5725}
5726
5727static int perf_tp_event_match(struct perf_event *event,
5728 struct perf_sample_data *data,
5729 struct pt_regs *regs)
5730{
a0f7d0f7
FW
5731 if (event->hw.state & PERF_HES_STOPPED)
5732 return 0;
580d607c
PZ
5733 /*
5734 * All tracepoints are from kernel-space.
5735 */
5736 if (event->attr.exclude_kernel)
1c024eca
PZ
5737 return 0;
5738
5739 if (!perf_tp_filter_match(event, data))
5740 return 0;
5741
5742 return 1;
5743}
5744
5745void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5746 struct pt_regs *regs, struct hlist_head *head, int rctx,
5747 struct task_struct *task)
95476b64
FW
5748{
5749 struct perf_sample_data data;
1c024eca 5750 struct perf_event *event;
1c024eca 5751
95476b64
FW
5752 struct perf_raw_record raw = {
5753 .size = entry_size,
5754 .data = record,
5755 };
5756
fd0d000b 5757 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5758 data.raw = &raw;
5759
b67bfe0d 5760 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5761 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5762 perf_swevent_event(event, count, &data, regs);
4f41c013 5763 }
ecc55f84 5764
e6dab5ff
AV
5765 /*
5766 * If we got specified a target task, also iterate its context and
5767 * deliver this event there too.
5768 */
5769 if (task && task != current) {
5770 struct perf_event_context *ctx;
5771 struct trace_entry *entry = record;
5772
5773 rcu_read_lock();
5774 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5775 if (!ctx)
5776 goto unlock;
5777
5778 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5779 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5780 continue;
5781 if (event->attr.config != entry->type)
5782 continue;
5783 if (perf_tp_event_match(event, &data, regs))
5784 perf_swevent_event(event, count, &data, regs);
5785 }
5786unlock:
5787 rcu_read_unlock();
5788 }
5789
ecc55f84 5790 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5791}
5792EXPORT_SYMBOL_GPL(perf_tp_event);
5793
cdd6c482 5794static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5795{
1c024eca 5796 perf_trace_destroy(event);
e077df4f
PZ
5797}
5798
b0a873eb 5799static int perf_tp_event_init(struct perf_event *event)
e077df4f 5800{
76e1d904
FW
5801 int err;
5802
b0a873eb
PZ
5803 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5804 return -ENOENT;
5805
2481c5fa
SE
5806 /*
5807 * no branch sampling for tracepoint events
5808 */
5809 if (has_branch_stack(event))
5810 return -EOPNOTSUPP;
5811
1c024eca
PZ
5812 err = perf_trace_init(event);
5813 if (err)
b0a873eb 5814 return err;
e077df4f 5815
cdd6c482 5816 event->destroy = tp_perf_event_destroy;
e077df4f 5817
b0a873eb
PZ
5818 return 0;
5819}
5820
5821static struct pmu perf_tracepoint = {
89a1e187
PZ
5822 .task_ctx_nr = perf_sw_context,
5823
b0a873eb 5824 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5825 .add = perf_trace_add,
5826 .del = perf_trace_del,
5827 .start = perf_swevent_start,
5828 .stop = perf_swevent_stop,
b0a873eb 5829 .read = perf_swevent_read,
35edc2a5
PZ
5830
5831 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5832};
5833
5834static inline void perf_tp_register(void)
5835{
2e80a82a 5836 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5837}
6fb2915d
LZ
5838
5839static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5840{
5841 char *filter_str;
5842 int ret;
5843
5844 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5845 return -EINVAL;
5846
5847 filter_str = strndup_user(arg, PAGE_SIZE);
5848 if (IS_ERR(filter_str))
5849 return PTR_ERR(filter_str);
5850
5851 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5852
5853 kfree(filter_str);
5854 return ret;
5855}
5856
5857static void perf_event_free_filter(struct perf_event *event)
5858{
5859 ftrace_profile_free_filter(event);
5860}
5861
e077df4f 5862#else
6fb2915d 5863
b0a873eb 5864static inline void perf_tp_register(void)
e077df4f 5865{
e077df4f 5866}
6fb2915d
LZ
5867
5868static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5869{
5870 return -ENOENT;
5871}
5872
5873static void perf_event_free_filter(struct perf_event *event)
5874{
5875}
5876
07b139c8 5877#endif /* CONFIG_EVENT_TRACING */
e077df4f 5878
24f1e32c 5879#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5880void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5881{
f5ffe02e
FW
5882 struct perf_sample_data sample;
5883 struct pt_regs *regs = data;
5884
fd0d000b 5885 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5886
a4eaf7f1 5887 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5888 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5889}
5890#endif
5891
b0a873eb
PZ
5892/*
5893 * hrtimer based swevent callback
5894 */
f29ac756 5895
b0a873eb 5896static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5897{
b0a873eb
PZ
5898 enum hrtimer_restart ret = HRTIMER_RESTART;
5899 struct perf_sample_data data;
5900 struct pt_regs *regs;
5901 struct perf_event *event;
5902 u64 period;
f29ac756 5903
b0a873eb 5904 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5905
5906 if (event->state != PERF_EVENT_STATE_ACTIVE)
5907 return HRTIMER_NORESTART;
5908
b0a873eb 5909 event->pmu->read(event);
f344011c 5910
fd0d000b 5911 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5912 regs = get_irq_regs();
5913
5914 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5915 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5916 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5917 ret = HRTIMER_NORESTART;
5918 }
24f1e32c 5919
b0a873eb
PZ
5920 period = max_t(u64, 10000, event->hw.sample_period);
5921 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5922
b0a873eb 5923 return ret;
f29ac756
PZ
5924}
5925
b0a873eb 5926static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5927{
b0a873eb 5928 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5929 s64 period;
5930
5931 if (!is_sampling_event(event))
5932 return;
f5ffe02e 5933
5d508e82
FBH
5934 period = local64_read(&hwc->period_left);
5935 if (period) {
5936 if (period < 0)
5937 period = 10000;
fa407f35 5938
5d508e82
FBH
5939 local64_set(&hwc->period_left, 0);
5940 } else {
5941 period = max_t(u64, 10000, hwc->sample_period);
5942 }
5943 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5944 ns_to_ktime(period), 0,
b5ab4cd5 5945 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5946}
b0a873eb
PZ
5947
5948static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5949{
b0a873eb
PZ
5950 struct hw_perf_event *hwc = &event->hw;
5951
6c7e550f 5952 if (is_sampling_event(event)) {
b0a873eb 5953 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5954 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5955
5956 hrtimer_cancel(&hwc->hrtimer);
5957 }
24f1e32c
FW
5958}
5959
ba3dd36c
PZ
5960static void perf_swevent_init_hrtimer(struct perf_event *event)
5961{
5962 struct hw_perf_event *hwc = &event->hw;
5963
5964 if (!is_sampling_event(event))
5965 return;
5966
5967 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5968 hwc->hrtimer.function = perf_swevent_hrtimer;
5969
5970 /*
5971 * Since hrtimers have a fixed rate, we can do a static freq->period
5972 * mapping and avoid the whole period adjust feedback stuff.
5973 */
5974 if (event->attr.freq) {
5975 long freq = event->attr.sample_freq;
5976
5977 event->attr.sample_period = NSEC_PER_SEC / freq;
5978 hwc->sample_period = event->attr.sample_period;
5979 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 5980 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
5981 event->attr.freq = 0;
5982 }
5983}
5984
b0a873eb
PZ
5985/*
5986 * Software event: cpu wall time clock
5987 */
5988
5989static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5990{
b0a873eb
PZ
5991 s64 prev;
5992 u64 now;
5993
a4eaf7f1 5994 now = local_clock();
b0a873eb
PZ
5995 prev = local64_xchg(&event->hw.prev_count, now);
5996 local64_add(now - prev, &event->count);
24f1e32c 5997}
24f1e32c 5998
a4eaf7f1 5999static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6000{
a4eaf7f1 6001 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6002 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6003}
6004
a4eaf7f1 6005static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6006{
b0a873eb
PZ
6007 perf_swevent_cancel_hrtimer(event);
6008 cpu_clock_event_update(event);
6009}
f29ac756 6010
a4eaf7f1
PZ
6011static int cpu_clock_event_add(struct perf_event *event, int flags)
6012{
6013 if (flags & PERF_EF_START)
6014 cpu_clock_event_start(event, flags);
6015
6016 return 0;
6017}
6018
6019static void cpu_clock_event_del(struct perf_event *event, int flags)
6020{
6021 cpu_clock_event_stop(event, flags);
6022}
6023
b0a873eb
PZ
6024static void cpu_clock_event_read(struct perf_event *event)
6025{
6026 cpu_clock_event_update(event);
6027}
f344011c 6028
b0a873eb
PZ
6029static int cpu_clock_event_init(struct perf_event *event)
6030{
6031 if (event->attr.type != PERF_TYPE_SOFTWARE)
6032 return -ENOENT;
6033
6034 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6035 return -ENOENT;
6036
2481c5fa
SE
6037 /*
6038 * no branch sampling for software events
6039 */
6040 if (has_branch_stack(event))
6041 return -EOPNOTSUPP;
6042
ba3dd36c
PZ
6043 perf_swevent_init_hrtimer(event);
6044
b0a873eb 6045 return 0;
f29ac756
PZ
6046}
6047
b0a873eb 6048static struct pmu perf_cpu_clock = {
89a1e187
PZ
6049 .task_ctx_nr = perf_sw_context,
6050
b0a873eb 6051 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6052 .add = cpu_clock_event_add,
6053 .del = cpu_clock_event_del,
6054 .start = cpu_clock_event_start,
6055 .stop = cpu_clock_event_stop,
b0a873eb 6056 .read = cpu_clock_event_read,
35edc2a5
PZ
6057
6058 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6059};
6060
6061/*
6062 * Software event: task time clock
6063 */
6064
6065static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6066{
b0a873eb
PZ
6067 u64 prev;
6068 s64 delta;
5c92d124 6069
b0a873eb
PZ
6070 prev = local64_xchg(&event->hw.prev_count, now);
6071 delta = now - prev;
6072 local64_add(delta, &event->count);
6073}
5c92d124 6074
a4eaf7f1 6075static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6076{
a4eaf7f1 6077 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6078 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6079}
6080
a4eaf7f1 6081static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6082{
6083 perf_swevent_cancel_hrtimer(event);
6084 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6085}
6086
6087static int task_clock_event_add(struct perf_event *event, int flags)
6088{
6089 if (flags & PERF_EF_START)
6090 task_clock_event_start(event, flags);
b0a873eb 6091
a4eaf7f1
PZ
6092 return 0;
6093}
6094
6095static void task_clock_event_del(struct perf_event *event, int flags)
6096{
6097 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6098}
6099
6100static void task_clock_event_read(struct perf_event *event)
6101{
768a06e2
PZ
6102 u64 now = perf_clock();
6103 u64 delta = now - event->ctx->timestamp;
6104 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6105
6106 task_clock_event_update(event, time);
6107}
6108
6109static int task_clock_event_init(struct perf_event *event)
6fb2915d 6110{
b0a873eb
PZ
6111 if (event->attr.type != PERF_TYPE_SOFTWARE)
6112 return -ENOENT;
6113
6114 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6115 return -ENOENT;
6116
2481c5fa
SE
6117 /*
6118 * no branch sampling for software events
6119 */
6120 if (has_branch_stack(event))
6121 return -EOPNOTSUPP;
6122
ba3dd36c
PZ
6123 perf_swevent_init_hrtimer(event);
6124
b0a873eb 6125 return 0;
6fb2915d
LZ
6126}
6127
b0a873eb 6128static struct pmu perf_task_clock = {
89a1e187
PZ
6129 .task_ctx_nr = perf_sw_context,
6130
b0a873eb 6131 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6132 .add = task_clock_event_add,
6133 .del = task_clock_event_del,
6134 .start = task_clock_event_start,
6135 .stop = task_clock_event_stop,
b0a873eb 6136 .read = task_clock_event_read,
35edc2a5
PZ
6137
6138 .event_idx = perf_swevent_event_idx,
b0a873eb 6139};
6fb2915d 6140
ad5133b7 6141static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6142{
e077df4f 6143}
6fb2915d 6144
ad5133b7 6145static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6146{
ad5133b7 6147 return 0;
6fb2915d
LZ
6148}
6149
ad5133b7 6150static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6151{
ad5133b7 6152 perf_pmu_disable(pmu);
6fb2915d
LZ
6153}
6154
ad5133b7
PZ
6155static int perf_pmu_commit_txn(struct pmu *pmu)
6156{
6157 perf_pmu_enable(pmu);
6158 return 0;
6159}
e077df4f 6160
ad5133b7 6161static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6162{
ad5133b7 6163 perf_pmu_enable(pmu);
24f1e32c
FW
6164}
6165
35edc2a5
PZ
6166static int perf_event_idx_default(struct perf_event *event)
6167{
6168 return event->hw.idx + 1;
6169}
6170
8dc85d54
PZ
6171/*
6172 * Ensures all contexts with the same task_ctx_nr have the same
6173 * pmu_cpu_context too.
6174 */
6175static void *find_pmu_context(int ctxn)
24f1e32c 6176{
8dc85d54 6177 struct pmu *pmu;
b326e956 6178
8dc85d54
PZ
6179 if (ctxn < 0)
6180 return NULL;
24f1e32c 6181
8dc85d54
PZ
6182 list_for_each_entry(pmu, &pmus, entry) {
6183 if (pmu->task_ctx_nr == ctxn)
6184 return pmu->pmu_cpu_context;
6185 }
24f1e32c 6186
8dc85d54 6187 return NULL;
24f1e32c
FW
6188}
6189
51676957 6190static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6191{
51676957
PZ
6192 int cpu;
6193
6194 for_each_possible_cpu(cpu) {
6195 struct perf_cpu_context *cpuctx;
6196
6197 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6198
3f1f3320
PZ
6199 if (cpuctx->unique_pmu == old_pmu)
6200 cpuctx->unique_pmu = pmu;
51676957
PZ
6201 }
6202}
6203
6204static void free_pmu_context(struct pmu *pmu)
6205{
6206 struct pmu *i;
f5ffe02e 6207
8dc85d54 6208 mutex_lock(&pmus_lock);
0475f9ea 6209 /*
8dc85d54 6210 * Like a real lame refcount.
0475f9ea 6211 */
51676957
PZ
6212 list_for_each_entry(i, &pmus, entry) {
6213 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6214 update_pmu_context(i, pmu);
8dc85d54 6215 goto out;
51676957 6216 }
8dc85d54 6217 }
d6d020e9 6218
51676957 6219 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6220out:
6221 mutex_unlock(&pmus_lock);
24f1e32c 6222}
2e80a82a 6223static struct idr pmu_idr;
d6d020e9 6224
abe43400
PZ
6225static ssize_t
6226type_show(struct device *dev, struct device_attribute *attr, char *page)
6227{
6228 struct pmu *pmu = dev_get_drvdata(dev);
6229
6230 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6231}
6232
62b85639
SE
6233static ssize_t
6234perf_event_mux_interval_ms_show(struct device *dev,
6235 struct device_attribute *attr,
6236 char *page)
6237{
6238 struct pmu *pmu = dev_get_drvdata(dev);
6239
6240 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6241}
6242
6243static ssize_t
6244perf_event_mux_interval_ms_store(struct device *dev,
6245 struct device_attribute *attr,
6246 const char *buf, size_t count)
6247{
6248 struct pmu *pmu = dev_get_drvdata(dev);
6249 int timer, cpu, ret;
6250
6251 ret = kstrtoint(buf, 0, &timer);
6252 if (ret)
6253 return ret;
6254
6255 if (timer < 1)
6256 return -EINVAL;
6257
6258 /* same value, noting to do */
6259 if (timer == pmu->hrtimer_interval_ms)
6260 return count;
6261
6262 pmu->hrtimer_interval_ms = timer;
6263
6264 /* update all cpuctx for this PMU */
6265 for_each_possible_cpu(cpu) {
6266 struct perf_cpu_context *cpuctx;
6267 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6268 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6269
6270 if (hrtimer_active(&cpuctx->hrtimer))
6271 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6272 }
6273
6274 return count;
6275}
6276
abe43400 6277static struct device_attribute pmu_dev_attrs[] = {
62b85639
SE
6278 __ATTR_RO(type),
6279 __ATTR_RW(perf_event_mux_interval_ms),
6280 __ATTR_NULL,
abe43400
PZ
6281};
6282
6283static int pmu_bus_running;
6284static struct bus_type pmu_bus = {
6285 .name = "event_source",
6286 .dev_attrs = pmu_dev_attrs,
6287};
6288
6289static void pmu_dev_release(struct device *dev)
6290{
6291 kfree(dev);
6292}
6293
6294static int pmu_dev_alloc(struct pmu *pmu)
6295{
6296 int ret = -ENOMEM;
6297
6298 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6299 if (!pmu->dev)
6300 goto out;
6301
0c9d42ed 6302 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6303 device_initialize(pmu->dev);
6304 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6305 if (ret)
6306 goto free_dev;
6307
6308 dev_set_drvdata(pmu->dev, pmu);
6309 pmu->dev->bus = &pmu_bus;
6310 pmu->dev->release = pmu_dev_release;
6311 ret = device_add(pmu->dev);
6312 if (ret)
6313 goto free_dev;
6314
6315out:
6316 return ret;
6317
6318free_dev:
6319 put_device(pmu->dev);
6320 goto out;
6321}
6322
547e9fd7 6323static struct lock_class_key cpuctx_mutex;
facc4307 6324static struct lock_class_key cpuctx_lock;
547e9fd7 6325
03d8e80b 6326int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6327{
108b02cf 6328 int cpu, ret;
24f1e32c 6329
b0a873eb 6330 mutex_lock(&pmus_lock);
33696fc0
PZ
6331 ret = -ENOMEM;
6332 pmu->pmu_disable_count = alloc_percpu(int);
6333 if (!pmu->pmu_disable_count)
6334 goto unlock;
f29ac756 6335
2e80a82a
PZ
6336 pmu->type = -1;
6337 if (!name)
6338 goto skip_type;
6339 pmu->name = name;
6340
6341 if (type < 0) {
0e9c3be2
TH
6342 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6343 if (type < 0) {
6344 ret = type;
2e80a82a
PZ
6345 goto free_pdc;
6346 }
6347 }
6348 pmu->type = type;
6349
abe43400
PZ
6350 if (pmu_bus_running) {
6351 ret = pmu_dev_alloc(pmu);
6352 if (ret)
6353 goto free_idr;
6354 }
6355
2e80a82a 6356skip_type:
8dc85d54
PZ
6357 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6358 if (pmu->pmu_cpu_context)
6359 goto got_cpu_context;
f29ac756 6360
c4814202 6361 ret = -ENOMEM;
108b02cf
PZ
6362 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6363 if (!pmu->pmu_cpu_context)
abe43400 6364 goto free_dev;
f344011c 6365
108b02cf
PZ
6366 for_each_possible_cpu(cpu) {
6367 struct perf_cpu_context *cpuctx;
6368
6369 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6370 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6371 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6372 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6373 cpuctx->ctx.type = cpu_context;
108b02cf 6374 cpuctx->ctx.pmu = pmu;
9e630205
SE
6375
6376 __perf_cpu_hrtimer_init(cpuctx, cpu);
6377
e9d2b064 6378 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6379 cpuctx->unique_pmu = pmu;
108b02cf 6380 }
76e1d904 6381
8dc85d54 6382got_cpu_context:
ad5133b7
PZ
6383 if (!pmu->start_txn) {
6384 if (pmu->pmu_enable) {
6385 /*
6386 * If we have pmu_enable/pmu_disable calls, install
6387 * transaction stubs that use that to try and batch
6388 * hardware accesses.
6389 */
6390 pmu->start_txn = perf_pmu_start_txn;
6391 pmu->commit_txn = perf_pmu_commit_txn;
6392 pmu->cancel_txn = perf_pmu_cancel_txn;
6393 } else {
6394 pmu->start_txn = perf_pmu_nop_void;
6395 pmu->commit_txn = perf_pmu_nop_int;
6396 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6397 }
5c92d124 6398 }
15dbf27c 6399
ad5133b7
PZ
6400 if (!pmu->pmu_enable) {
6401 pmu->pmu_enable = perf_pmu_nop_void;
6402 pmu->pmu_disable = perf_pmu_nop_void;
6403 }
6404
35edc2a5
PZ
6405 if (!pmu->event_idx)
6406 pmu->event_idx = perf_event_idx_default;
6407
b0a873eb 6408 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6409 ret = 0;
6410unlock:
b0a873eb
PZ
6411 mutex_unlock(&pmus_lock);
6412
33696fc0 6413 return ret;
108b02cf 6414
abe43400
PZ
6415free_dev:
6416 device_del(pmu->dev);
6417 put_device(pmu->dev);
6418
2e80a82a
PZ
6419free_idr:
6420 if (pmu->type >= PERF_TYPE_MAX)
6421 idr_remove(&pmu_idr, pmu->type);
6422
108b02cf
PZ
6423free_pdc:
6424 free_percpu(pmu->pmu_disable_count);
6425 goto unlock;
f29ac756
PZ
6426}
6427
b0a873eb 6428void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6429{
b0a873eb
PZ
6430 mutex_lock(&pmus_lock);
6431 list_del_rcu(&pmu->entry);
6432 mutex_unlock(&pmus_lock);
5c92d124 6433
0475f9ea 6434 /*
cde8e884
PZ
6435 * We dereference the pmu list under both SRCU and regular RCU, so
6436 * synchronize against both of those.
0475f9ea 6437 */
b0a873eb 6438 synchronize_srcu(&pmus_srcu);
cde8e884 6439 synchronize_rcu();
d6d020e9 6440
33696fc0 6441 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6442 if (pmu->type >= PERF_TYPE_MAX)
6443 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6444 device_del(pmu->dev);
6445 put_device(pmu->dev);
51676957 6446 free_pmu_context(pmu);
b0a873eb 6447}
d6d020e9 6448
b0a873eb
PZ
6449struct pmu *perf_init_event(struct perf_event *event)
6450{
6451 struct pmu *pmu = NULL;
6452 int idx;
940c5b29 6453 int ret;
b0a873eb
PZ
6454
6455 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6456
6457 rcu_read_lock();
6458 pmu = idr_find(&pmu_idr, event->attr.type);
6459 rcu_read_unlock();
940c5b29 6460 if (pmu) {
7e5b2a01 6461 event->pmu = pmu;
940c5b29
LM
6462 ret = pmu->event_init(event);
6463 if (ret)
6464 pmu = ERR_PTR(ret);
2e80a82a 6465 goto unlock;
940c5b29 6466 }
2e80a82a 6467
b0a873eb 6468 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 6469 event->pmu = pmu;
940c5b29 6470 ret = pmu->event_init(event);
b0a873eb 6471 if (!ret)
e5f4d339 6472 goto unlock;
76e1d904 6473
b0a873eb
PZ
6474 if (ret != -ENOENT) {
6475 pmu = ERR_PTR(ret);
e5f4d339 6476 goto unlock;
f344011c 6477 }
5c92d124 6478 }
e5f4d339
PZ
6479 pmu = ERR_PTR(-ENOENT);
6480unlock:
b0a873eb 6481 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6482
4aeb0b42 6483 return pmu;
5c92d124
IM
6484}
6485
4beb31f3
FW
6486static void account_event_cpu(struct perf_event *event, int cpu)
6487{
6488 if (event->parent)
6489 return;
6490
6491 if (has_branch_stack(event)) {
6492 if (!(event->attach_state & PERF_ATTACH_TASK))
6493 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6494 }
6495 if (is_cgroup_event(event))
6496 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6497}
6498
766d6c07
FW
6499static void account_event(struct perf_event *event)
6500{
4beb31f3
FW
6501 if (event->parent)
6502 return;
6503
766d6c07
FW
6504 if (event->attach_state & PERF_ATTACH_TASK)
6505 static_key_slow_inc(&perf_sched_events.key);
6506 if (event->attr.mmap || event->attr.mmap_data)
6507 atomic_inc(&nr_mmap_events);
6508 if (event->attr.comm)
6509 atomic_inc(&nr_comm_events);
6510 if (event->attr.task)
6511 atomic_inc(&nr_task_events);
948b26b6
FW
6512 if (event->attr.freq) {
6513 if (atomic_inc_return(&nr_freq_events) == 1)
6514 tick_nohz_full_kick_all();
6515 }
4beb31f3 6516 if (has_branch_stack(event))
766d6c07 6517 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 6518 if (is_cgroup_event(event))
766d6c07 6519 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
6520
6521 account_event_cpu(event, event->cpu);
766d6c07
FW
6522}
6523
0793a61d 6524/*
cdd6c482 6525 * Allocate and initialize a event structure
0793a61d 6526 */
cdd6c482 6527static struct perf_event *
c3f00c70 6528perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6529 struct task_struct *task,
6530 struct perf_event *group_leader,
6531 struct perf_event *parent_event,
4dc0da86
AK
6532 perf_overflow_handler_t overflow_handler,
6533 void *context)
0793a61d 6534{
51b0fe39 6535 struct pmu *pmu;
cdd6c482
IM
6536 struct perf_event *event;
6537 struct hw_perf_event *hwc;
90983b16 6538 long err = -EINVAL;
0793a61d 6539
66832eb4
ON
6540 if ((unsigned)cpu >= nr_cpu_ids) {
6541 if (!task || cpu != -1)
6542 return ERR_PTR(-EINVAL);
6543 }
6544
c3f00c70 6545 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6546 if (!event)
d5d2bc0d 6547 return ERR_PTR(-ENOMEM);
0793a61d 6548
04289bb9 6549 /*
cdd6c482 6550 * Single events are their own group leaders, with an
04289bb9
IM
6551 * empty sibling list:
6552 */
6553 if (!group_leader)
cdd6c482 6554 group_leader = event;
04289bb9 6555
cdd6c482
IM
6556 mutex_init(&event->child_mutex);
6557 INIT_LIST_HEAD(&event->child_list);
fccc714b 6558
cdd6c482
IM
6559 INIT_LIST_HEAD(&event->group_entry);
6560 INIT_LIST_HEAD(&event->event_entry);
6561 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
6562 INIT_LIST_HEAD(&event->rb_entry);
6563
cdd6c482 6564 init_waitqueue_head(&event->waitq);
e360adbe 6565 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6566
cdd6c482 6567 mutex_init(&event->mmap_mutex);
7b732a75 6568
a6fa941d 6569 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6570 event->cpu = cpu;
6571 event->attr = *attr;
6572 event->group_leader = group_leader;
6573 event->pmu = NULL;
cdd6c482 6574 event->oncpu = -1;
a96bbc16 6575
cdd6c482 6576 event->parent = parent_event;
b84fbc9f 6577
17cf22c3 6578 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6579 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6580
cdd6c482 6581 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6582
d580ff86
PZ
6583 if (task) {
6584 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6585
6586 if (attr->type == PERF_TYPE_TRACEPOINT)
6587 event->hw.tp_target = task;
d580ff86
PZ
6588#ifdef CONFIG_HAVE_HW_BREAKPOINT
6589 /*
6590 * hw_breakpoint is a bit difficult here..
6591 */
f22c1bb6 6592 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6593 event->hw.bp_target = task;
6594#endif
6595 }
6596
4dc0da86 6597 if (!overflow_handler && parent_event) {
b326e956 6598 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6599 context = parent_event->overflow_handler_context;
6600 }
66832eb4 6601
b326e956 6602 event->overflow_handler = overflow_handler;
4dc0da86 6603 event->overflow_handler_context = context;
97eaf530 6604
0231bb53 6605 perf_event__state_init(event);
a86ed508 6606
4aeb0b42 6607 pmu = NULL;
b8e83514 6608
cdd6c482 6609 hwc = &event->hw;
bd2b5b12 6610 hwc->sample_period = attr->sample_period;
0d48696f 6611 if (attr->freq && attr->sample_freq)
bd2b5b12 6612 hwc->sample_period = 1;
eced1dfc 6613 hwc->last_period = hwc->sample_period;
bd2b5b12 6614
e7850595 6615 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6616
2023b359 6617 /*
cdd6c482 6618 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6619 */
3dab77fb 6620 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 6621 goto err_ns;
2023b359 6622
b0a873eb 6623 pmu = perf_init_event(event);
4aeb0b42 6624 if (!pmu)
90983b16
FW
6625 goto err_ns;
6626 else if (IS_ERR(pmu)) {
4aeb0b42 6627 err = PTR_ERR(pmu);
90983b16 6628 goto err_ns;
621a01ea 6629 }
d5d2bc0d 6630
cdd6c482 6631 if (!event->parent) {
90983b16
FW
6632 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6633 err = get_callchain_buffers();
6634 if (err)
6635 goto err_pmu;
6636 }
f344011c 6637 }
9ee318a7 6638
cdd6c482 6639 return event;
90983b16
FW
6640
6641err_pmu:
6642 if (event->destroy)
6643 event->destroy(event);
6644err_ns:
6645 if (event->ns)
6646 put_pid_ns(event->ns);
6647 kfree(event);
6648
6649 return ERR_PTR(err);
0793a61d
TG
6650}
6651
cdd6c482
IM
6652static int perf_copy_attr(struct perf_event_attr __user *uattr,
6653 struct perf_event_attr *attr)
974802ea 6654{
974802ea 6655 u32 size;
cdf8073d 6656 int ret;
974802ea
PZ
6657
6658 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6659 return -EFAULT;
6660
6661 /*
6662 * zero the full structure, so that a short copy will be nice.
6663 */
6664 memset(attr, 0, sizeof(*attr));
6665
6666 ret = get_user(size, &uattr->size);
6667 if (ret)
6668 return ret;
6669
6670 if (size > PAGE_SIZE) /* silly large */
6671 goto err_size;
6672
6673 if (!size) /* abi compat */
6674 size = PERF_ATTR_SIZE_VER0;
6675
6676 if (size < PERF_ATTR_SIZE_VER0)
6677 goto err_size;
6678
6679 /*
6680 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6681 * ensure all the unknown bits are 0 - i.e. new
6682 * user-space does not rely on any kernel feature
6683 * extensions we dont know about yet.
974802ea
PZ
6684 */
6685 if (size > sizeof(*attr)) {
cdf8073d
IS
6686 unsigned char __user *addr;
6687 unsigned char __user *end;
6688 unsigned char val;
974802ea 6689
cdf8073d
IS
6690 addr = (void __user *)uattr + sizeof(*attr);
6691 end = (void __user *)uattr + size;
974802ea 6692
cdf8073d 6693 for (; addr < end; addr++) {
974802ea
PZ
6694 ret = get_user(val, addr);
6695 if (ret)
6696 return ret;
6697 if (val)
6698 goto err_size;
6699 }
b3e62e35 6700 size = sizeof(*attr);
974802ea
PZ
6701 }
6702
6703 ret = copy_from_user(attr, uattr, size);
6704 if (ret)
6705 return -EFAULT;
6706
cd757645 6707 if (attr->__reserved_1)
974802ea
PZ
6708 return -EINVAL;
6709
6710 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6711 return -EINVAL;
6712
6713 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6714 return -EINVAL;
6715
bce38cd5
SE
6716 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6717 u64 mask = attr->branch_sample_type;
6718
6719 /* only using defined bits */
6720 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6721 return -EINVAL;
6722
6723 /* at least one branch bit must be set */
6724 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6725 return -EINVAL;
6726
bce38cd5
SE
6727 /* propagate priv level, when not set for branch */
6728 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6729
6730 /* exclude_kernel checked on syscall entry */
6731 if (!attr->exclude_kernel)
6732 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6733
6734 if (!attr->exclude_user)
6735 mask |= PERF_SAMPLE_BRANCH_USER;
6736
6737 if (!attr->exclude_hv)
6738 mask |= PERF_SAMPLE_BRANCH_HV;
6739 /*
6740 * adjust user setting (for HW filter setup)
6741 */
6742 attr->branch_sample_type = mask;
6743 }
e712209a
SE
6744 /* privileged levels capture (kernel, hv): check permissions */
6745 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
6746 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6747 return -EACCES;
bce38cd5 6748 }
4018994f 6749
c5ebcedb 6750 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6751 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6752 if (ret)
6753 return ret;
6754 }
6755
6756 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6757 if (!arch_perf_have_user_stack_dump())
6758 return -ENOSYS;
6759
6760 /*
6761 * We have __u32 type for the size, but so far
6762 * we can only use __u16 as maximum due to the
6763 * __u16 sample size limit.
6764 */
6765 if (attr->sample_stack_user >= USHRT_MAX)
6766 ret = -EINVAL;
6767 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6768 ret = -EINVAL;
6769 }
4018994f 6770
974802ea
PZ
6771out:
6772 return ret;
6773
6774err_size:
6775 put_user(sizeof(*attr), &uattr->size);
6776 ret = -E2BIG;
6777 goto out;
6778}
6779
ac9721f3
PZ
6780static int
6781perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6782{
76369139 6783 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6784 int ret = -EINVAL;
6785
ac9721f3 6786 if (!output_event)
a4be7c27
PZ
6787 goto set;
6788
ac9721f3
PZ
6789 /* don't allow circular references */
6790 if (event == output_event)
a4be7c27
PZ
6791 goto out;
6792
0f139300
PZ
6793 /*
6794 * Don't allow cross-cpu buffers
6795 */
6796 if (output_event->cpu != event->cpu)
6797 goto out;
6798
6799 /*
76369139 6800 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6801 */
6802 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6803 goto out;
6804
a4be7c27 6805set:
cdd6c482 6806 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6807 /* Can't redirect output if we've got an active mmap() */
6808 if (atomic_read(&event->mmap_count))
6809 goto unlock;
a4be7c27 6810
9bb5d40c
PZ
6811 old_rb = event->rb;
6812
ac9721f3 6813 if (output_event) {
76369139
FW
6814 /* get the rb we want to redirect to */
6815 rb = ring_buffer_get(output_event);
6816 if (!rb)
ac9721f3 6817 goto unlock;
a4be7c27
PZ
6818 }
6819
10c6db11
PZ
6820 if (old_rb)
6821 ring_buffer_detach(event, old_rb);
9bb5d40c
PZ
6822
6823 if (rb)
6824 ring_buffer_attach(event, rb);
6825
6826 rcu_assign_pointer(event->rb, rb);
6827
6828 if (old_rb) {
6829 ring_buffer_put(old_rb);
6830 /*
6831 * Since we detached before setting the new rb, so that we
6832 * could attach the new rb, we could have missed a wakeup.
6833 * Provide it now.
6834 */
6835 wake_up_all(&event->waitq);
6836 }
6837
a4be7c27 6838 ret = 0;
ac9721f3
PZ
6839unlock:
6840 mutex_unlock(&event->mmap_mutex);
6841
a4be7c27 6842out:
a4be7c27
PZ
6843 return ret;
6844}
6845
0793a61d 6846/**
cdd6c482 6847 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6848 *
cdd6c482 6849 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6850 * @pid: target pid
9f66a381 6851 * @cpu: target cpu
cdd6c482 6852 * @group_fd: group leader event fd
0793a61d 6853 */
cdd6c482
IM
6854SYSCALL_DEFINE5(perf_event_open,
6855 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6856 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6857{
b04243ef
PZ
6858 struct perf_event *group_leader = NULL, *output_event = NULL;
6859 struct perf_event *event, *sibling;
cdd6c482
IM
6860 struct perf_event_attr attr;
6861 struct perf_event_context *ctx;
6862 struct file *event_file = NULL;
2903ff01 6863 struct fd group = {NULL, 0};
38a81da2 6864 struct task_struct *task = NULL;
89a1e187 6865 struct pmu *pmu;
ea635c64 6866 int event_fd;
b04243ef 6867 int move_group = 0;
dc86cabe 6868 int err;
0793a61d 6869
2743a5b0 6870 /* for future expandability... */
e5d1367f 6871 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6872 return -EINVAL;
6873
dc86cabe
IM
6874 err = perf_copy_attr(attr_uptr, &attr);
6875 if (err)
6876 return err;
eab656ae 6877
0764771d
PZ
6878 if (!attr.exclude_kernel) {
6879 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6880 return -EACCES;
6881 }
6882
df58ab24 6883 if (attr.freq) {
cdd6c482 6884 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6885 return -EINVAL;
6886 }
6887
e5d1367f
SE
6888 /*
6889 * In cgroup mode, the pid argument is used to pass the fd
6890 * opened to the cgroup directory in cgroupfs. The cpu argument
6891 * designates the cpu on which to monitor threads from that
6892 * cgroup.
6893 */
6894 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6895 return -EINVAL;
6896
ab72a702 6897 event_fd = get_unused_fd();
ea635c64
AV
6898 if (event_fd < 0)
6899 return event_fd;
6900
ac9721f3 6901 if (group_fd != -1) {
2903ff01
AV
6902 err = perf_fget_light(group_fd, &group);
6903 if (err)
d14b12d7 6904 goto err_fd;
2903ff01 6905 group_leader = group.file->private_data;
ac9721f3
PZ
6906 if (flags & PERF_FLAG_FD_OUTPUT)
6907 output_event = group_leader;
6908 if (flags & PERF_FLAG_FD_NO_GROUP)
6909 group_leader = NULL;
6910 }
6911
e5d1367f 6912 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6913 task = find_lively_task_by_vpid(pid);
6914 if (IS_ERR(task)) {
6915 err = PTR_ERR(task);
6916 goto err_group_fd;
6917 }
6918 }
6919
fbfc623f
YZ
6920 get_online_cpus();
6921
4dc0da86
AK
6922 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6923 NULL, NULL);
d14b12d7
SE
6924 if (IS_ERR(event)) {
6925 err = PTR_ERR(event);
c6be5a5c 6926 goto err_task;
d14b12d7
SE
6927 }
6928
e5d1367f
SE
6929 if (flags & PERF_FLAG_PID_CGROUP) {
6930 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
6931 if (err) {
6932 __free_event(event);
6933 goto err_task;
6934 }
e5d1367f
SE
6935 }
6936
766d6c07
FW
6937 account_event(event);
6938
89a1e187
PZ
6939 /*
6940 * Special case software events and allow them to be part of
6941 * any hardware group.
6942 */
6943 pmu = event->pmu;
b04243ef
PZ
6944
6945 if (group_leader &&
6946 (is_software_event(event) != is_software_event(group_leader))) {
6947 if (is_software_event(event)) {
6948 /*
6949 * If event and group_leader are not both a software
6950 * event, and event is, then group leader is not.
6951 *
6952 * Allow the addition of software events to !software
6953 * groups, this is safe because software events never
6954 * fail to schedule.
6955 */
6956 pmu = group_leader->pmu;
6957 } else if (is_software_event(group_leader) &&
6958 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6959 /*
6960 * In case the group is a pure software group, and we
6961 * try to add a hardware event, move the whole group to
6962 * the hardware context.
6963 */
6964 move_group = 1;
6965 }
6966 }
89a1e187
PZ
6967
6968 /*
6969 * Get the target context (task or percpu):
6970 */
e2d37cd2 6971 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
6972 if (IS_ERR(ctx)) {
6973 err = PTR_ERR(ctx);
c6be5a5c 6974 goto err_alloc;
89a1e187
PZ
6975 }
6976
fd1edb3a
PZ
6977 if (task) {
6978 put_task_struct(task);
6979 task = NULL;
6980 }
6981
ccff286d 6982 /*
cdd6c482 6983 * Look up the group leader (we will attach this event to it):
04289bb9 6984 */
ac9721f3 6985 if (group_leader) {
dc86cabe 6986 err = -EINVAL;
04289bb9 6987
04289bb9 6988 /*
ccff286d
IM
6989 * Do not allow a recursive hierarchy (this new sibling
6990 * becoming part of another group-sibling):
6991 */
6992 if (group_leader->group_leader != group_leader)
c3f00c70 6993 goto err_context;
ccff286d
IM
6994 /*
6995 * Do not allow to attach to a group in a different
6996 * task or CPU context:
04289bb9 6997 */
b04243ef
PZ
6998 if (move_group) {
6999 if (group_leader->ctx->type != ctx->type)
7000 goto err_context;
7001 } else {
7002 if (group_leader->ctx != ctx)
7003 goto err_context;
7004 }
7005
3b6f9e5c
PM
7006 /*
7007 * Only a group leader can be exclusive or pinned
7008 */
0d48696f 7009 if (attr.exclusive || attr.pinned)
c3f00c70 7010 goto err_context;
ac9721f3
PZ
7011 }
7012
7013 if (output_event) {
7014 err = perf_event_set_output(event, output_event);
7015 if (err)
c3f00c70 7016 goto err_context;
ac9721f3 7017 }
0793a61d 7018
ea635c64
AV
7019 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7020 if (IS_ERR(event_file)) {
7021 err = PTR_ERR(event_file);
c3f00c70 7022 goto err_context;
ea635c64 7023 }
9b51f66d 7024
b04243ef
PZ
7025 if (move_group) {
7026 struct perf_event_context *gctx = group_leader->ctx;
7027
7028 mutex_lock(&gctx->mutex);
fe4b04fa 7029 perf_remove_from_context(group_leader);
0231bb53
JO
7030
7031 /*
7032 * Removing from the context ends up with disabled
7033 * event. What we want here is event in the initial
7034 * startup state, ready to be add into new context.
7035 */
7036 perf_event__state_init(group_leader);
b04243ef
PZ
7037 list_for_each_entry(sibling, &group_leader->sibling_list,
7038 group_entry) {
fe4b04fa 7039 perf_remove_from_context(sibling);
0231bb53 7040 perf_event__state_init(sibling);
b04243ef
PZ
7041 put_ctx(gctx);
7042 }
7043 mutex_unlock(&gctx->mutex);
7044 put_ctx(gctx);
ea635c64 7045 }
9b51f66d 7046
ad3a37de 7047 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 7048 mutex_lock(&ctx->mutex);
b04243ef
PZ
7049
7050 if (move_group) {
0cda4c02 7051 synchronize_rcu();
e2d37cd2 7052 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
7053 get_ctx(ctx);
7054 list_for_each_entry(sibling, &group_leader->sibling_list,
7055 group_entry) {
e2d37cd2 7056 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
7057 get_ctx(ctx);
7058 }
7059 }
7060
e2d37cd2 7061 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 7062 ++ctx->generation;
fe4b04fa 7063 perf_unpin_context(ctx);
d859e29f 7064 mutex_unlock(&ctx->mutex);
9b51f66d 7065
fbfc623f
YZ
7066 put_online_cpus();
7067
cdd6c482 7068 event->owner = current;
8882135b 7069
cdd6c482
IM
7070 mutex_lock(&current->perf_event_mutex);
7071 list_add_tail(&event->owner_entry, &current->perf_event_list);
7072 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7073
c320c7b7
ACM
7074 /*
7075 * Precalculate sample_data sizes
7076 */
7077 perf_event__header_size(event);
6844c09d 7078 perf_event__id_header_size(event);
c320c7b7 7079
8a49542c
PZ
7080 /*
7081 * Drop the reference on the group_event after placing the
7082 * new event on the sibling_list. This ensures destruction
7083 * of the group leader will find the pointer to itself in
7084 * perf_group_detach().
7085 */
2903ff01 7086 fdput(group);
ea635c64
AV
7087 fd_install(event_fd, event_file);
7088 return event_fd;
0793a61d 7089
c3f00c70 7090err_context:
fe4b04fa 7091 perf_unpin_context(ctx);
ea635c64 7092 put_ctx(ctx);
c6be5a5c 7093err_alloc:
ea635c64 7094 free_event(event);
e7d0bc04 7095err_task:
fbfc623f 7096 put_online_cpus();
e7d0bc04
PZ
7097 if (task)
7098 put_task_struct(task);
89a1e187 7099err_group_fd:
2903ff01 7100 fdput(group);
ea635c64
AV
7101err_fd:
7102 put_unused_fd(event_fd);
dc86cabe 7103 return err;
0793a61d
TG
7104}
7105
fb0459d7
AV
7106/**
7107 * perf_event_create_kernel_counter
7108 *
7109 * @attr: attributes of the counter to create
7110 * @cpu: cpu in which the counter is bound
38a81da2 7111 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7112 */
7113struct perf_event *
7114perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7115 struct task_struct *task,
4dc0da86
AK
7116 perf_overflow_handler_t overflow_handler,
7117 void *context)
fb0459d7 7118{
fb0459d7 7119 struct perf_event_context *ctx;
c3f00c70 7120 struct perf_event *event;
fb0459d7 7121 int err;
d859e29f 7122
fb0459d7
AV
7123 /*
7124 * Get the target context (task or percpu):
7125 */
d859e29f 7126
4dc0da86
AK
7127 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7128 overflow_handler, context);
c3f00c70
PZ
7129 if (IS_ERR(event)) {
7130 err = PTR_ERR(event);
7131 goto err;
7132 }
d859e29f 7133
766d6c07
FW
7134 account_event(event);
7135
38a81da2 7136 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7137 if (IS_ERR(ctx)) {
7138 err = PTR_ERR(ctx);
c3f00c70 7139 goto err_free;
d859e29f 7140 }
fb0459d7 7141
fb0459d7
AV
7142 WARN_ON_ONCE(ctx->parent_ctx);
7143 mutex_lock(&ctx->mutex);
7144 perf_install_in_context(ctx, event, cpu);
7145 ++ctx->generation;
fe4b04fa 7146 perf_unpin_context(ctx);
fb0459d7
AV
7147 mutex_unlock(&ctx->mutex);
7148
fb0459d7
AV
7149 return event;
7150
c3f00c70
PZ
7151err_free:
7152 free_event(event);
7153err:
c6567f64 7154 return ERR_PTR(err);
9b51f66d 7155}
fb0459d7 7156EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7157
0cda4c02
YZ
7158void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7159{
7160 struct perf_event_context *src_ctx;
7161 struct perf_event_context *dst_ctx;
7162 struct perf_event *event, *tmp;
7163 LIST_HEAD(events);
7164
7165 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7166 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7167
7168 mutex_lock(&src_ctx->mutex);
7169 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7170 event_entry) {
7171 perf_remove_from_context(event);
9a545de0 7172 unaccount_event_cpu(event, src_cpu);
0cda4c02
YZ
7173 put_ctx(src_ctx);
7174 list_add(&event->event_entry, &events);
7175 }
7176 mutex_unlock(&src_ctx->mutex);
7177
7178 synchronize_rcu();
7179
7180 mutex_lock(&dst_ctx->mutex);
7181 list_for_each_entry_safe(event, tmp, &events, event_entry) {
7182 list_del(&event->event_entry);
7183 if (event->state >= PERF_EVENT_STATE_OFF)
7184 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7185 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7186 perf_install_in_context(dst_ctx, event, dst_cpu);
7187 get_ctx(dst_ctx);
7188 }
7189 mutex_unlock(&dst_ctx->mutex);
7190}
7191EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7192
cdd6c482 7193static void sync_child_event(struct perf_event *child_event,
38b200d6 7194 struct task_struct *child)
d859e29f 7195{
cdd6c482 7196 struct perf_event *parent_event = child_event->parent;
8bc20959 7197 u64 child_val;
d859e29f 7198
cdd6c482
IM
7199 if (child_event->attr.inherit_stat)
7200 perf_event_read_event(child_event, child);
38b200d6 7201
b5e58793 7202 child_val = perf_event_count(child_event);
d859e29f
PM
7203
7204 /*
7205 * Add back the child's count to the parent's count:
7206 */
a6e6dea6 7207 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7208 atomic64_add(child_event->total_time_enabled,
7209 &parent_event->child_total_time_enabled);
7210 atomic64_add(child_event->total_time_running,
7211 &parent_event->child_total_time_running);
d859e29f
PM
7212
7213 /*
cdd6c482 7214 * Remove this event from the parent's list
d859e29f 7215 */
cdd6c482
IM
7216 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7217 mutex_lock(&parent_event->child_mutex);
7218 list_del_init(&child_event->child_list);
7219 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
7220
7221 /*
cdd6c482 7222 * Release the parent event, if this was the last
d859e29f
PM
7223 * reference to it.
7224 */
a6fa941d 7225 put_event(parent_event);
d859e29f
PM
7226}
7227
9b51f66d 7228static void
cdd6c482
IM
7229__perf_event_exit_task(struct perf_event *child_event,
7230 struct perf_event_context *child_ctx,
38b200d6 7231 struct task_struct *child)
9b51f66d 7232{
38b435b1
PZ
7233 if (child_event->parent) {
7234 raw_spin_lock_irq(&child_ctx->lock);
7235 perf_group_detach(child_event);
7236 raw_spin_unlock_irq(&child_ctx->lock);
7237 }
9b51f66d 7238
fe4b04fa 7239 perf_remove_from_context(child_event);
0cc0c027 7240
9b51f66d 7241 /*
38b435b1 7242 * It can happen that the parent exits first, and has events
9b51f66d 7243 * that are still around due to the child reference. These
38b435b1 7244 * events need to be zapped.
9b51f66d 7245 */
38b435b1 7246 if (child_event->parent) {
cdd6c482
IM
7247 sync_child_event(child_event, child);
7248 free_event(child_event);
4bcf349a 7249 }
9b51f66d
IM
7250}
7251
8dc85d54 7252static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7253{
cdd6c482
IM
7254 struct perf_event *child_event, *tmp;
7255 struct perf_event_context *child_ctx;
a63eaf34 7256 unsigned long flags;
9b51f66d 7257
8dc85d54 7258 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7259 perf_event_task(child, NULL, 0);
9b51f66d 7260 return;
9f498cc5 7261 }
9b51f66d 7262
a63eaf34 7263 local_irq_save(flags);
ad3a37de
PM
7264 /*
7265 * We can't reschedule here because interrupts are disabled,
7266 * and either child is current or it is a task that can't be
7267 * scheduled, so we are now safe from rescheduling changing
7268 * our context.
7269 */
806839b2 7270 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7271
7272 /*
7273 * Take the context lock here so that if find_get_context is
cdd6c482 7274 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7275 * incremented the context's refcount before we do put_ctx below.
7276 */
e625cce1 7277 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7278 task_ctx_sched_out(child_ctx);
8dc85d54 7279 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
7280 /*
7281 * If this context is a clone; unclone it so it can't get
7282 * swapped to another process while we're removing all
cdd6c482 7283 * the events from it.
71a851b4
PZ
7284 */
7285 unclone_ctx(child_ctx);
5e942bb3 7286 update_context_time(child_ctx);
e625cce1 7287 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
7288
7289 /*
cdd6c482
IM
7290 * Report the task dead after unscheduling the events so that we
7291 * won't get any samples after PERF_RECORD_EXIT. We can however still
7292 * get a few PERF_RECORD_READ events.
9f498cc5 7293 */
cdd6c482 7294 perf_event_task(child, child_ctx, 0);
a63eaf34 7295
66fff224
PZ
7296 /*
7297 * We can recurse on the same lock type through:
7298 *
cdd6c482
IM
7299 * __perf_event_exit_task()
7300 * sync_child_event()
a6fa941d
AV
7301 * put_event()
7302 * mutex_lock(&ctx->mutex)
66fff224
PZ
7303 *
7304 * But since its the parent context it won't be the same instance.
7305 */
a0507c84 7306 mutex_lock(&child_ctx->mutex);
a63eaf34 7307
8bc20959 7308again:
889ff015
FW
7309 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7310 group_entry)
7311 __perf_event_exit_task(child_event, child_ctx, child);
7312
7313 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 7314 group_entry)
cdd6c482 7315 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
7316
7317 /*
cdd6c482 7318 * If the last event was a group event, it will have appended all
8bc20959
PZ
7319 * its siblings to the list, but we obtained 'tmp' before that which
7320 * will still point to the list head terminating the iteration.
7321 */
889ff015
FW
7322 if (!list_empty(&child_ctx->pinned_groups) ||
7323 !list_empty(&child_ctx->flexible_groups))
8bc20959 7324 goto again;
a63eaf34
PM
7325
7326 mutex_unlock(&child_ctx->mutex);
7327
7328 put_ctx(child_ctx);
9b51f66d
IM
7329}
7330
8dc85d54
PZ
7331/*
7332 * When a child task exits, feed back event values to parent events.
7333 */
7334void perf_event_exit_task(struct task_struct *child)
7335{
8882135b 7336 struct perf_event *event, *tmp;
8dc85d54
PZ
7337 int ctxn;
7338
8882135b
PZ
7339 mutex_lock(&child->perf_event_mutex);
7340 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7341 owner_entry) {
7342 list_del_init(&event->owner_entry);
7343
7344 /*
7345 * Ensure the list deletion is visible before we clear
7346 * the owner, closes a race against perf_release() where
7347 * we need to serialize on the owner->perf_event_mutex.
7348 */
7349 smp_wmb();
7350 event->owner = NULL;
7351 }
7352 mutex_unlock(&child->perf_event_mutex);
7353
8dc85d54
PZ
7354 for_each_task_context_nr(ctxn)
7355 perf_event_exit_task_context(child, ctxn);
7356}
7357
889ff015
FW
7358static void perf_free_event(struct perf_event *event,
7359 struct perf_event_context *ctx)
7360{
7361 struct perf_event *parent = event->parent;
7362
7363 if (WARN_ON_ONCE(!parent))
7364 return;
7365
7366 mutex_lock(&parent->child_mutex);
7367 list_del_init(&event->child_list);
7368 mutex_unlock(&parent->child_mutex);
7369
a6fa941d 7370 put_event(parent);
889ff015 7371
8a49542c 7372 perf_group_detach(event);
889ff015
FW
7373 list_del_event(event, ctx);
7374 free_event(event);
7375}
7376
bbbee908
PZ
7377/*
7378 * free an unexposed, unused context as created by inheritance by
8dc85d54 7379 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7380 */
cdd6c482 7381void perf_event_free_task(struct task_struct *task)
bbbee908 7382{
8dc85d54 7383 struct perf_event_context *ctx;
cdd6c482 7384 struct perf_event *event, *tmp;
8dc85d54 7385 int ctxn;
bbbee908 7386
8dc85d54
PZ
7387 for_each_task_context_nr(ctxn) {
7388 ctx = task->perf_event_ctxp[ctxn];
7389 if (!ctx)
7390 continue;
bbbee908 7391
8dc85d54 7392 mutex_lock(&ctx->mutex);
bbbee908 7393again:
8dc85d54
PZ
7394 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7395 group_entry)
7396 perf_free_event(event, ctx);
bbbee908 7397
8dc85d54
PZ
7398 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7399 group_entry)
7400 perf_free_event(event, ctx);
bbbee908 7401
8dc85d54
PZ
7402 if (!list_empty(&ctx->pinned_groups) ||
7403 !list_empty(&ctx->flexible_groups))
7404 goto again;
bbbee908 7405
8dc85d54 7406 mutex_unlock(&ctx->mutex);
bbbee908 7407
8dc85d54
PZ
7408 put_ctx(ctx);
7409 }
889ff015
FW
7410}
7411
4e231c79
PZ
7412void perf_event_delayed_put(struct task_struct *task)
7413{
7414 int ctxn;
7415
7416 for_each_task_context_nr(ctxn)
7417 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7418}
7419
97dee4f3
PZ
7420/*
7421 * inherit a event from parent task to child task:
7422 */
7423static struct perf_event *
7424inherit_event(struct perf_event *parent_event,
7425 struct task_struct *parent,
7426 struct perf_event_context *parent_ctx,
7427 struct task_struct *child,
7428 struct perf_event *group_leader,
7429 struct perf_event_context *child_ctx)
7430{
7431 struct perf_event *child_event;
cee010ec 7432 unsigned long flags;
97dee4f3
PZ
7433
7434 /*
7435 * Instead of creating recursive hierarchies of events,
7436 * we link inherited events back to the original parent,
7437 * which has a filp for sure, which we use as the reference
7438 * count:
7439 */
7440 if (parent_event->parent)
7441 parent_event = parent_event->parent;
7442
7443 child_event = perf_event_alloc(&parent_event->attr,
7444 parent_event->cpu,
d580ff86 7445 child,
97dee4f3 7446 group_leader, parent_event,
4dc0da86 7447 NULL, NULL);
97dee4f3
PZ
7448 if (IS_ERR(child_event))
7449 return child_event;
a6fa941d
AV
7450
7451 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7452 free_event(child_event);
7453 return NULL;
7454 }
7455
97dee4f3
PZ
7456 get_ctx(child_ctx);
7457
7458 /*
7459 * Make the child state follow the state of the parent event,
7460 * not its attr.disabled bit. We hold the parent's mutex,
7461 * so we won't race with perf_event_{en, dis}able_family.
7462 */
7463 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7464 child_event->state = PERF_EVENT_STATE_INACTIVE;
7465 else
7466 child_event->state = PERF_EVENT_STATE_OFF;
7467
7468 if (parent_event->attr.freq) {
7469 u64 sample_period = parent_event->hw.sample_period;
7470 struct hw_perf_event *hwc = &child_event->hw;
7471
7472 hwc->sample_period = sample_period;
7473 hwc->last_period = sample_period;
7474
7475 local64_set(&hwc->period_left, sample_period);
7476 }
7477
7478 child_event->ctx = child_ctx;
7479 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7480 child_event->overflow_handler_context
7481 = parent_event->overflow_handler_context;
97dee4f3 7482
614b6780
TG
7483 /*
7484 * Precalculate sample_data sizes
7485 */
7486 perf_event__header_size(child_event);
6844c09d 7487 perf_event__id_header_size(child_event);
614b6780 7488
97dee4f3
PZ
7489 /*
7490 * Link it up in the child's context:
7491 */
cee010ec 7492 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7493 add_event_to_ctx(child_event, child_ctx);
cee010ec 7494 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7495
97dee4f3
PZ
7496 /*
7497 * Link this into the parent event's child list
7498 */
7499 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7500 mutex_lock(&parent_event->child_mutex);
7501 list_add_tail(&child_event->child_list, &parent_event->child_list);
7502 mutex_unlock(&parent_event->child_mutex);
7503
7504 return child_event;
7505}
7506
7507static int inherit_group(struct perf_event *parent_event,
7508 struct task_struct *parent,
7509 struct perf_event_context *parent_ctx,
7510 struct task_struct *child,
7511 struct perf_event_context *child_ctx)
7512{
7513 struct perf_event *leader;
7514 struct perf_event *sub;
7515 struct perf_event *child_ctr;
7516
7517 leader = inherit_event(parent_event, parent, parent_ctx,
7518 child, NULL, child_ctx);
7519 if (IS_ERR(leader))
7520 return PTR_ERR(leader);
7521 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7522 child_ctr = inherit_event(sub, parent, parent_ctx,
7523 child, leader, child_ctx);
7524 if (IS_ERR(child_ctr))
7525 return PTR_ERR(child_ctr);
7526 }
7527 return 0;
889ff015
FW
7528}
7529
7530static int
7531inherit_task_group(struct perf_event *event, struct task_struct *parent,
7532 struct perf_event_context *parent_ctx,
8dc85d54 7533 struct task_struct *child, int ctxn,
889ff015
FW
7534 int *inherited_all)
7535{
7536 int ret;
8dc85d54 7537 struct perf_event_context *child_ctx;
889ff015
FW
7538
7539 if (!event->attr.inherit) {
7540 *inherited_all = 0;
7541 return 0;
bbbee908
PZ
7542 }
7543
fe4b04fa 7544 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7545 if (!child_ctx) {
7546 /*
7547 * This is executed from the parent task context, so
7548 * inherit events that have been marked for cloning.
7549 * First allocate and initialize a context for the
7550 * child.
7551 */
bbbee908 7552
734df5ab 7553 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
7554 if (!child_ctx)
7555 return -ENOMEM;
bbbee908 7556
8dc85d54 7557 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7558 }
7559
7560 ret = inherit_group(event, parent, parent_ctx,
7561 child, child_ctx);
7562
7563 if (ret)
7564 *inherited_all = 0;
7565
7566 return ret;
bbbee908
PZ
7567}
7568
9b51f66d 7569/*
cdd6c482 7570 * Initialize the perf_event context in task_struct
9b51f66d 7571 */
8dc85d54 7572int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7573{
889ff015 7574 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7575 struct perf_event_context *cloned_ctx;
7576 struct perf_event *event;
9b51f66d 7577 struct task_struct *parent = current;
564c2b21 7578 int inherited_all = 1;
dddd3379 7579 unsigned long flags;
6ab423e0 7580 int ret = 0;
9b51f66d 7581
8dc85d54 7582 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7583 return 0;
7584
ad3a37de 7585 /*
25346b93
PM
7586 * If the parent's context is a clone, pin it so it won't get
7587 * swapped under us.
ad3a37de 7588 */
8dc85d54 7589 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 7590
ad3a37de
PM
7591 /*
7592 * No need to check if parent_ctx != NULL here; since we saw
7593 * it non-NULL earlier, the only reason for it to become NULL
7594 * is if we exit, and since we're currently in the middle of
7595 * a fork we can't be exiting at the same time.
7596 */
ad3a37de 7597
9b51f66d
IM
7598 /*
7599 * Lock the parent list. No need to lock the child - not PID
7600 * hashed yet and not running, so nobody can access it.
7601 */
d859e29f 7602 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7603
7604 /*
7605 * We dont have to disable NMIs - we are only looking at
7606 * the list, not manipulating it:
7607 */
889ff015 7608 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7609 ret = inherit_task_group(event, parent, parent_ctx,
7610 child, ctxn, &inherited_all);
889ff015
FW
7611 if (ret)
7612 break;
7613 }
b93f7978 7614
dddd3379
TG
7615 /*
7616 * We can't hold ctx->lock when iterating the ->flexible_group list due
7617 * to allocations, but we need to prevent rotation because
7618 * rotate_ctx() will change the list from interrupt context.
7619 */
7620 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7621 parent_ctx->rotate_disable = 1;
7622 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7623
889ff015 7624 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7625 ret = inherit_task_group(event, parent, parent_ctx,
7626 child, ctxn, &inherited_all);
889ff015 7627 if (ret)
9b51f66d 7628 break;
564c2b21
PM
7629 }
7630
dddd3379
TG
7631 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7632 parent_ctx->rotate_disable = 0;
dddd3379 7633
8dc85d54 7634 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7635
05cbaa28 7636 if (child_ctx && inherited_all) {
564c2b21
PM
7637 /*
7638 * Mark the child context as a clone of the parent
7639 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7640 *
7641 * Note that if the parent is a clone, the holding of
7642 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7643 */
c5ed5145 7644 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7645 if (cloned_ctx) {
7646 child_ctx->parent_ctx = cloned_ctx;
25346b93 7647 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7648 } else {
7649 child_ctx->parent_ctx = parent_ctx;
7650 child_ctx->parent_gen = parent_ctx->generation;
7651 }
7652 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7653 }
7654
c5ed5145 7655 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7656 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7657
25346b93 7658 perf_unpin_context(parent_ctx);
fe4b04fa 7659 put_ctx(parent_ctx);
ad3a37de 7660
6ab423e0 7661 return ret;
9b51f66d
IM
7662}
7663
8dc85d54
PZ
7664/*
7665 * Initialize the perf_event context in task_struct
7666 */
7667int perf_event_init_task(struct task_struct *child)
7668{
7669 int ctxn, ret;
7670
8550d7cb
ON
7671 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7672 mutex_init(&child->perf_event_mutex);
7673 INIT_LIST_HEAD(&child->perf_event_list);
7674
8dc85d54
PZ
7675 for_each_task_context_nr(ctxn) {
7676 ret = perf_event_init_context(child, ctxn);
7677 if (ret)
7678 return ret;
7679 }
7680
7681 return 0;
7682}
7683
220b140b
PM
7684static void __init perf_event_init_all_cpus(void)
7685{
b28ab83c 7686 struct swevent_htable *swhash;
220b140b 7687 int cpu;
220b140b
PM
7688
7689 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7690 swhash = &per_cpu(swevent_htable, cpu);
7691 mutex_init(&swhash->hlist_mutex);
e9d2b064 7692 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7693 }
7694}
7695
0db0628d 7696static void perf_event_init_cpu(int cpu)
0793a61d 7697{
108b02cf 7698 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7699
b28ab83c 7700 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7701 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7702 struct swevent_hlist *hlist;
7703
b28ab83c
PZ
7704 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7705 WARN_ON(!hlist);
7706 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7707 }
b28ab83c 7708 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7709}
7710
c277443c 7711#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7712static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7713{
e9d2b064
PZ
7714 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7715
7716 WARN_ON(!irqs_disabled());
7717
7718 list_del_init(&cpuctx->rotation_list);
7719}
7720
108b02cf 7721static void __perf_event_exit_context(void *__info)
0793a61d 7722{
108b02cf 7723 struct perf_event_context *ctx = __info;
cdd6c482 7724 struct perf_event *event, *tmp;
0793a61d 7725
108b02cf 7726 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7727
889ff015 7728 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7729 __perf_remove_from_context(event);
889ff015 7730 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7731 __perf_remove_from_context(event);
0793a61d 7732}
108b02cf
PZ
7733
7734static void perf_event_exit_cpu_context(int cpu)
7735{
7736 struct perf_event_context *ctx;
7737 struct pmu *pmu;
7738 int idx;
7739
7740 idx = srcu_read_lock(&pmus_srcu);
7741 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7742 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7743
7744 mutex_lock(&ctx->mutex);
7745 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7746 mutex_unlock(&ctx->mutex);
7747 }
7748 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7749}
7750
cdd6c482 7751static void perf_event_exit_cpu(int cpu)
0793a61d 7752{
b28ab83c 7753 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7754
b28ab83c
PZ
7755 mutex_lock(&swhash->hlist_mutex);
7756 swevent_hlist_release(swhash);
7757 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7758
108b02cf 7759 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7760}
7761#else
cdd6c482 7762static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7763#endif
7764
c277443c
PZ
7765static int
7766perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7767{
7768 int cpu;
7769
7770 for_each_online_cpu(cpu)
7771 perf_event_exit_cpu(cpu);
7772
7773 return NOTIFY_OK;
7774}
7775
7776/*
7777 * Run the perf reboot notifier at the very last possible moment so that
7778 * the generic watchdog code runs as long as possible.
7779 */
7780static struct notifier_block perf_reboot_notifier = {
7781 .notifier_call = perf_reboot,
7782 .priority = INT_MIN,
7783};
7784
0db0628d 7785static int
0793a61d
TG
7786perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7787{
7788 unsigned int cpu = (long)hcpu;
7789
4536e4d1 7790 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7791
7792 case CPU_UP_PREPARE:
5e11637e 7793 case CPU_DOWN_FAILED:
cdd6c482 7794 perf_event_init_cpu(cpu);
0793a61d
TG
7795 break;
7796
5e11637e 7797 case CPU_UP_CANCELED:
0793a61d 7798 case CPU_DOWN_PREPARE:
cdd6c482 7799 perf_event_exit_cpu(cpu);
0793a61d 7800 break;
0793a61d
TG
7801 default:
7802 break;
7803 }
7804
7805 return NOTIFY_OK;
7806}
7807
cdd6c482 7808void __init perf_event_init(void)
0793a61d 7809{
3c502e7a
JW
7810 int ret;
7811
2e80a82a
PZ
7812 idr_init(&pmu_idr);
7813
220b140b 7814 perf_event_init_all_cpus();
b0a873eb 7815 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7816 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7817 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7818 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7819 perf_tp_register();
7820 perf_cpu_notifier(perf_cpu_notify);
c277443c 7821 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7822
7823 ret = init_hw_breakpoint();
7824 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7825
7826 /* do not patch jump label more than once per second */
7827 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7828
7829 /*
7830 * Build time assertion that we keep the data_head at the intended
7831 * location. IOW, validation we got the __reserved[] size right.
7832 */
7833 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7834 != 1024);
0793a61d 7835}
abe43400
PZ
7836
7837static int __init perf_event_sysfs_init(void)
7838{
7839 struct pmu *pmu;
7840 int ret;
7841
7842 mutex_lock(&pmus_lock);
7843
7844 ret = bus_register(&pmu_bus);
7845 if (ret)
7846 goto unlock;
7847
7848 list_for_each_entry(pmu, &pmus, entry) {
7849 if (!pmu->name || pmu->type < 0)
7850 continue;
7851
7852 ret = pmu_dev_alloc(pmu);
7853 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7854 }
7855 pmu_bus_running = 1;
7856 ret = 0;
7857
7858unlock:
7859 mutex_unlock(&pmus_lock);
7860
7861 return ret;
7862}
7863device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7864
7865#ifdef CONFIG_CGROUP_PERF
92fb9748 7866static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
e5d1367f
SE
7867{
7868 struct perf_cgroup *jc;
e5d1367f 7869
1b15d055 7870 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7871 if (!jc)
7872 return ERR_PTR(-ENOMEM);
7873
e5d1367f
SE
7874 jc->info = alloc_percpu(struct perf_cgroup_info);
7875 if (!jc->info) {
7876 kfree(jc);
7877 return ERR_PTR(-ENOMEM);
7878 }
7879
e5d1367f
SE
7880 return &jc->css;
7881}
7882
92fb9748 7883static void perf_cgroup_css_free(struct cgroup *cont)
e5d1367f
SE
7884{
7885 struct perf_cgroup *jc;
7886 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7887 struct perf_cgroup, css);
7888 free_percpu(jc->info);
7889 kfree(jc);
7890}
7891
7892static int __perf_cgroup_move(void *info)
7893{
7894 struct task_struct *task = info;
7895 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7896 return 0;
7897}
7898
761b3ef5 7899static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7900{
bb9d97b6
TH
7901 struct task_struct *task;
7902
7903 cgroup_taskset_for_each(task, cgrp, tset)
7904 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7905}
7906
761b3ef5
LZ
7907static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7908 struct task_struct *task)
e5d1367f
SE
7909{
7910 /*
7911 * cgroup_exit() is called in the copy_process() failure path.
7912 * Ignore this case since the task hasn't ran yet, this avoids
7913 * trying to poke a half freed task state from generic code.
7914 */
7915 if (!(task->flags & PF_EXITING))
7916 return;
7917
bb9d97b6 7918 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7919}
7920
7921struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7922 .name = "perf_event",
7923 .subsys_id = perf_subsys_id,
92fb9748
TH
7924 .css_alloc = perf_cgroup_css_alloc,
7925 .css_free = perf_cgroup_css_free,
e7e7ee2e 7926 .exit = perf_cgroup_exit,
bb9d97b6 7927 .attach = perf_cgroup_attach,
e5d1367f
SE
7928};
7929#endif /* CONFIG_CGROUP_PERF */