perf: Do not allow optimized switch for non-cloned events
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
0793a61d 44
76369139
FW
45#include "internal.h"
46
4e193bd4
TB
47#include <asm/irq_regs.h>
48
fe4b04fa 49struct remote_function_call {
e7e7ee2e
IM
50 struct task_struct *p;
51 int (*func)(void *info);
52 void *info;
53 int ret;
fe4b04fa
PZ
54};
55
56static void remote_function(void *data)
57{
58 struct remote_function_call *tfc = data;
59 struct task_struct *p = tfc->p;
60
61 if (p) {
62 tfc->ret = -EAGAIN;
63 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
64 return;
65 }
66
67 tfc->ret = tfc->func(tfc->info);
68}
69
70/**
71 * task_function_call - call a function on the cpu on which a task runs
72 * @p: the task to evaluate
73 * @func: the function to be called
74 * @info: the function call argument
75 *
76 * Calls the function @func when the task is currently running. This might
77 * be on the current CPU, which just calls the function directly
78 *
79 * returns: @func return value, or
80 * -ESRCH - when the process isn't running
81 * -EAGAIN - when the process moved away
82 */
83static int
84task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
85{
86 struct remote_function_call data = {
e7e7ee2e
IM
87 .p = p,
88 .func = func,
89 .info = info,
90 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
91 };
92
93 if (task_curr(p))
94 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
95
96 return data.ret;
97}
98
99/**
100 * cpu_function_call - call a function on the cpu
101 * @func: the function to be called
102 * @info: the function call argument
103 *
104 * Calls the function @func on the remote cpu.
105 *
106 * returns: @func return value or -ENXIO when the cpu is offline
107 */
108static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
109{
110 struct remote_function_call data = {
e7e7ee2e
IM
111 .p = NULL,
112 .func = func,
113 .info = info,
114 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
115 };
116
117 smp_call_function_single(cpu, remote_function, &data, 1);
118
119 return data.ret;
120}
121
e5d1367f
SE
122#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
123 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
124 PERF_FLAG_PID_CGROUP |\
125 PERF_FLAG_FD_CLOEXEC)
e5d1367f 126
bce38cd5
SE
127/*
128 * branch priv levels that need permission checks
129 */
130#define PERF_SAMPLE_BRANCH_PERM_PLM \
131 (PERF_SAMPLE_BRANCH_KERNEL |\
132 PERF_SAMPLE_BRANCH_HV)
133
0b3fcf17
SE
134enum event_type_t {
135 EVENT_FLEXIBLE = 0x1,
136 EVENT_PINNED = 0x2,
137 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
138};
139
e5d1367f
SE
140/*
141 * perf_sched_events : >0 events exist
142 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
143 */
c5905afb 144struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 145static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 146static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 147
cdd6c482
IM
148static atomic_t nr_mmap_events __read_mostly;
149static atomic_t nr_comm_events __read_mostly;
150static atomic_t nr_task_events __read_mostly;
948b26b6 151static atomic_t nr_freq_events __read_mostly;
9ee318a7 152
108b02cf
PZ
153static LIST_HEAD(pmus);
154static DEFINE_MUTEX(pmus_lock);
155static struct srcu_struct pmus_srcu;
156
0764771d 157/*
cdd6c482 158 * perf event paranoia level:
0fbdea19
IM
159 * -1 - not paranoid at all
160 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 161 * 1 - disallow cpu events for unpriv
0fbdea19 162 * 2 - disallow kernel profiling for unpriv
0764771d 163 */
cdd6c482 164int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 165
20443384
FW
166/* Minimum for 512 kiB + 1 user control page */
167int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
168
169/*
cdd6c482 170 * max perf event sample rate
df58ab24 171 */
14c63f17
DH
172#define DEFAULT_MAX_SAMPLE_RATE 100000
173#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
174#define DEFAULT_CPU_TIME_MAX_PERCENT 25
175
176int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
177
178static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
179static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
180
d9494cb4
PZ
181static int perf_sample_allowed_ns __read_mostly =
182 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
183
184void update_perf_cpu_limits(void)
185{
186 u64 tmp = perf_sample_period_ns;
187
188 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 189 do_div(tmp, 100);
d9494cb4 190 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 191}
163ec435 192
9e630205
SE
193static int perf_rotate_context(struct perf_cpu_context *cpuctx);
194
163ec435
PZ
195int perf_proc_update_handler(struct ctl_table *table, int write,
196 void __user *buffer, size_t *lenp,
197 loff_t *ppos)
198{
723478c8 199 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
200
201 if (ret || !write)
202 return ret;
203
204 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
205 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
206 update_perf_cpu_limits();
207
208 return 0;
209}
210
211int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
212
213int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
214 void __user *buffer, size_t *lenp,
215 loff_t *ppos)
216{
217 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
218
219 if (ret || !write)
220 return ret;
221
222 update_perf_cpu_limits();
163ec435
PZ
223
224 return 0;
225}
1ccd1549 226
14c63f17
DH
227/*
228 * perf samples are done in some very critical code paths (NMIs).
229 * If they take too much CPU time, the system can lock up and not
230 * get any real work done. This will drop the sample rate when
231 * we detect that events are taking too long.
232 */
233#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 234static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 235
6a02ad66 236static void perf_duration_warn(struct irq_work *w)
14c63f17 237{
6a02ad66 238 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 239 u64 avg_local_sample_len;
e5302920 240 u64 local_samples_len;
6a02ad66
PZ
241
242 local_samples_len = __get_cpu_var(running_sample_length);
243 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
244
245 printk_ratelimited(KERN_WARNING
246 "perf interrupt took too long (%lld > %lld), lowering "
247 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 248 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
249 sysctl_perf_event_sample_rate);
250}
251
252static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
253
254void perf_sample_event_took(u64 sample_len_ns)
255{
d9494cb4 256 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
257 u64 avg_local_sample_len;
258 u64 local_samples_len;
14c63f17 259
d9494cb4 260 if (allowed_ns == 0)
14c63f17
DH
261 return;
262
263 /* decay the counter by 1 average sample */
264 local_samples_len = __get_cpu_var(running_sample_length);
265 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
266 local_samples_len += sample_len_ns;
267 __get_cpu_var(running_sample_length) = local_samples_len;
268
269 /*
270 * note: this will be biased artifically low until we have
271 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
272 * from having to maintain a count.
273 */
274 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
275
d9494cb4 276 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
277 return;
278
279 if (max_samples_per_tick <= 1)
280 return;
281
282 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
283 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
284 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
285
14c63f17 286 update_perf_cpu_limits();
6a02ad66 287
cd578abb
PZ
288 if (!irq_work_queue(&perf_duration_work)) {
289 early_printk("perf interrupt took too long (%lld > %lld), lowering "
290 "kernel.perf_event_max_sample_rate to %d\n",
291 avg_local_sample_len, allowed_ns >> 1,
292 sysctl_perf_event_sample_rate);
293 }
14c63f17
DH
294}
295
cdd6c482 296static atomic64_t perf_event_id;
a96bbc16 297
0b3fcf17
SE
298static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
299 enum event_type_t event_type);
300
301static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
302 enum event_type_t event_type,
303 struct task_struct *task);
304
305static void update_context_time(struct perf_event_context *ctx);
306static u64 perf_event_time(struct perf_event *event);
0b3fcf17 307
cdd6c482 308void __weak perf_event_print_debug(void) { }
0793a61d 309
84c79910 310extern __weak const char *perf_pmu_name(void)
0793a61d 311{
84c79910 312 return "pmu";
0793a61d
TG
313}
314
0b3fcf17
SE
315static inline u64 perf_clock(void)
316{
317 return local_clock();
318}
319
e5d1367f
SE
320static inline struct perf_cpu_context *
321__get_cpu_context(struct perf_event_context *ctx)
322{
323 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
324}
325
facc4307
PZ
326static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
327 struct perf_event_context *ctx)
328{
329 raw_spin_lock(&cpuctx->ctx.lock);
330 if (ctx)
331 raw_spin_lock(&ctx->lock);
332}
333
334static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
335 struct perf_event_context *ctx)
336{
337 if (ctx)
338 raw_spin_unlock(&ctx->lock);
339 raw_spin_unlock(&cpuctx->ctx.lock);
340}
341
e5d1367f
SE
342#ifdef CONFIG_CGROUP_PERF
343
877c6856
LZ
344/*
345 * perf_cgroup_info keeps track of time_enabled for a cgroup.
346 * This is a per-cpu dynamically allocated data structure.
347 */
348struct perf_cgroup_info {
349 u64 time;
350 u64 timestamp;
351};
352
353struct perf_cgroup {
354 struct cgroup_subsys_state css;
86e213e1 355 struct perf_cgroup_info __percpu *info;
877c6856
LZ
356};
357
3f7cce3c
SE
358/*
359 * Must ensure cgroup is pinned (css_get) before calling
360 * this function. In other words, we cannot call this function
361 * if there is no cgroup event for the current CPU context.
362 */
e5d1367f
SE
363static inline struct perf_cgroup *
364perf_cgroup_from_task(struct task_struct *task)
365{
073219e9 366 return container_of(task_css(task, perf_event_cgrp_id),
8af01f56 367 struct perf_cgroup, css);
e5d1367f
SE
368}
369
370static inline bool
371perf_cgroup_match(struct perf_event *event)
372{
373 struct perf_event_context *ctx = event->ctx;
374 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
375
ef824fa1
TH
376 /* @event doesn't care about cgroup */
377 if (!event->cgrp)
378 return true;
379
380 /* wants specific cgroup scope but @cpuctx isn't associated with any */
381 if (!cpuctx->cgrp)
382 return false;
383
384 /*
385 * Cgroup scoping is recursive. An event enabled for a cgroup is
386 * also enabled for all its descendant cgroups. If @cpuctx's
387 * cgroup is a descendant of @event's (the test covers identity
388 * case), it's a match.
389 */
390 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
391 event->cgrp->css.cgroup);
e5d1367f
SE
392}
393
e5d1367f
SE
394static inline void perf_put_cgroup(struct perf_event *event)
395{
396 css_put(&event->cgrp->css);
397}
398
399static inline void perf_detach_cgroup(struct perf_event *event)
400{
401 perf_put_cgroup(event);
402 event->cgrp = NULL;
403}
404
405static inline int is_cgroup_event(struct perf_event *event)
406{
407 return event->cgrp != NULL;
408}
409
410static inline u64 perf_cgroup_event_time(struct perf_event *event)
411{
412 struct perf_cgroup_info *t;
413
414 t = per_cpu_ptr(event->cgrp->info, event->cpu);
415 return t->time;
416}
417
418static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
419{
420 struct perf_cgroup_info *info;
421 u64 now;
422
423 now = perf_clock();
424
425 info = this_cpu_ptr(cgrp->info);
426
427 info->time += now - info->timestamp;
428 info->timestamp = now;
429}
430
431static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
432{
433 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
434 if (cgrp_out)
435 __update_cgrp_time(cgrp_out);
436}
437
438static inline void update_cgrp_time_from_event(struct perf_event *event)
439{
3f7cce3c
SE
440 struct perf_cgroup *cgrp;
441
e5d1367f 442 /*
3f7cce3c
SE
443 * ensure we access cgroup data only when needed and
444 * when we know the cgroup is pinned (css_get)
e5d1367f 445 */
3f7cce3c 446 if (!is_cgroup_event(event))
e5d1367f
SE
447 return;
448
3f7cce3c
SE
449 cgrp = perf_cgroup_from_task(current);
450 /*
451 * Do not update time when cgroup is not active
452 */
453 if (cgrp == event->cgrp)
454 __update_cgrp_time(event->cgrp);
e5d1367f
SE
455}
456
457static inline void
3f7cce3c
SE
458perf_cgroup_set_timestamp(struct task_struct *task,
459 struct perf_event_context *ctx)
e5d1367f
SE
460{
461 struct perf_cgroup *cgrp;
462 struct perf_cgroup_info *info;
463
3f7cce3c
SE
464 /*
465 * ctx->lock held by caller
466 * ensure we do not access cgroup data
467 * unless we have the cgroup pinned (css_get)
468 */
469 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
470 return;
471
472 cgrp = perf_cgroup_from_task(task);
473 info = this_cpu_ptr(cgrp->info);
3f7cce3c 474 info->timestamp = ctx->timestamp;
e5d1367f
SE
475}
476
477#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
478#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
479
480/*
481 * reschedule events based on the cgroup constraint of task.
482 *
483 * mode SWOUT : schedule out everything
484 * mode SWIN : schedule in based on cgroup for next
485 */
486void perf_cgroup_switch(struct task_struct *task, int mode)
487{
488 struct perf_cpu_context *cpuctx;
489 struct pmu *pmu;
490 unsigned long flags;
491
492 /*
493 * disable interrupts to avoid geting nr_cgroup
494 * changes via __perf_event_disable(). Also
495 * avoids preemption.
496 */
497 local_irq_save(flags);
498
499 /*
500 * we reschedule only in the presence of cgroup
501 * constrained events.
502 */
503 rcu_read_lock();
504
505 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 506 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
507 if (cpuctx->unique_pmu != pmu)
508 continue; /* ensure we process each cpuctx once */
e5d1367f 509
e5d1367f
SE
510 /*
511 * perf_cgroup_events says at least one
512 * context on this CPU has cgroup events.
513 *
514 * ctx->nr_cgroups reports the number of cgroup
515 * events for a context.
516 */
517 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
518 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
519 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
520
521 if (mode & PERF_CGROUP_SWOUT) {
522 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
523 /*
524 * must not be done before ctxswout due
525 * to event_filter_match() in event_sched_out()
526 */
527 cpuctx->cgrp = NULL;
528 }
529
530 if (mode & PERF_CGROUP_SWIN) {
e566b76e 531 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
532 /*
533 * set cgrp before ctxsw in to allow
534 * event_filter_match() to not have to pass
535 * task around
e5d1367f
SE
536 */
537 cpuctx->cgrp = perf_cgroup_from_task(task);
538 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
539 }
facc4307
PZ
540 perf_pmu_enable(cpuctx->ctx.pmu);
541 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 542 }
e5d1367f
SE
543 }
544
545 rcu_read_unlock();
546
547 local_irq_restore(flags);
548}
549
a8d757ef
SE
550static inline void perf_cgroup_sched_out(struct task_struct *task,
551 struct task_struct *next)
e5d1367f 552{
a8d757ef
SE
553 struct perf_cgroup *cgrp1;
554 struct perf_cgroup *cgrp2 = NULL;
555
556 /*
557 * we come here when we know perf_cgroup_events > 0
558 */
559 cgrp1 = perf_cgroup_from_task(task);
560
561 /*
562 * next is NULL when called from perf_event_enable_on_exec()
563 * that will systematically cause a cgroup_switch()
564 */
565 if (next)
566 cgrp2 = perf_cgroup_from_task(next);
567
568 /*
569 * only schedule out current cgroup events if we know
570 * that we are switching to a different cgroup. Otherwise,
571 * do no touch the cgroup events.
572 */
573 if (cgrp1 != cgrp2)
574 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
575}
576
a8d757ef
SE
577static inline void perf_cgroup_sched_in(struct task_struct *prev,
578 struct task_struct *task)
e5d1367f 579{
a8d757ef
SE
580 struct perf_cgroup *cgrp1;
581 struct perf_cgroup *cgrp2 = NULL;
582
583 /*
584 * we come here when we know perf_cgroup_events > 0
585 */
586 cgrp1 = perf_cgroup_from_task(task);
587
588 /* prev can never be NULL */
589 cgrp2 = perf_cgroup_from_task(prev);
590
591 /*
592 * only need to schedule in cgroup events if we are changing
593 * cgroup during ctxsw. Cgroup events were not scheduled
594 * out of ctxsw out if that was not the case.
595 */
596 if (cgrp1 != cgrp2)
597 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
598}
599
600static inline int perf_cgroup_connect(int fd, struct perf_event *event,
601 struct perf_event_attr *attr,
602 struct perf_event *group_leader)
603{
604 struct perf_cgroup *cgrp;
605 struct cgroup_subsys_state *css;
2903ff01
AV
606 struct fd f = fdget(fd);
607 int ret = 0;
e5d1367f 608
2903ff01 609 if (!f.file)
e5d1367f
SE
610 return -EBADF;
611
ec903c0c
TH
612 css = css_tryget_online_from_dir(f.file->f_dentry,
613 &perf_event_cgrp_subsys);
3db272c0
LZ
614 if (IS_ERR(css)) {
615 ret = PTR_ERR(css);
616 goto out;
617 }
e5d1367f
SE
618
619 cgrp = container_of(css, struct perf_cgroup, css);
620 event->cgrp = cgrp;
621
622 /*
623 * all events in a group must monitor
624 * the same cgroup because a task belongs
625 * to only one perf cgroup at a time
626 */
627 if (group_leader && group_leader->cgrp != cgrp) {
628 perf_detach_cgroup(event);
629 ret = -EINVAL;
e5d1367f 630 }
3db272c0 631out:
2903ff01 632 fdput(f);
e5d1367f
SE
633 return ret;
634}
635
636static inline void
637perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
638{
639 struct perf_cgroup_info *t;
640 t = per_cpu_ptr(event->cgrp->info, event->cpu);
641 event->shadow_ctx_time = now - t->timestamp;
642}
643
644static inline void
645perf_cgroup_defer_enabled(struct perf_event *event)
646{
647 /*
648 * when the current task's perf cgroup does not match
649 * the event's, we need to remember to call the
650 * perf_mark_enable() function the first time a task with
651 * a matching perf cgroup is scheduled in.
652 */
653 if (is_cgroup_event(event) && !perf_cgroup_match(event))
654 event->cgrp_defer_enabled = 1;
655}
656
657static inline void
658perf_cgroup_mark_enabled(struct perf_event *event,
659 struct perf_event_context *ctx)
660{
661 struct perf_event *sub;
662 u64 tstamp = perf_event_time(event);
663
664 if (!event->cgrp_defer_enabled)
665 return;
666
667 event->cgrp_defer_enabled = 0;
668
669 event->tstamp_enabled = tstamp - event->total_time_enabled;
670 list_for_each_entry(sub, &event->sibling_list, group_entry) {
671 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
672 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
673 sub->cgrp_defer_enabled = 0;
674 }
675 }
676}
677#else /* !CONFIG_CGROUP_PERF */
678
679static inline bool
680perf_cgroup_match(struct perf_event *event)
681{
682 return true;
683}
684
685static inline void perf_detach_cgroup(struct perf_event *event)
686{}
687
688static inline int is_cgroup_event(struct perf_event *event)
689{
690 return 0;
691}
692
693static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
694{
695 return 0;
696}
697
698static inline void update_cgrp_time_from_event(struct perf_event *event)
699{
700}
701
702static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
703{
704}
705
a8d757ef
SE
706static inline void perf_cgroup_sched_out(struct task_struct *task,
707 struct task_struct *next)
e5d1367f
SE
708{
709}
710
a8d757ef
SE
711static inline void perf_cgroup_sched_in(struct task_struct *prev,
712 struct task_struct *task)
e5d1367f
SE
713{
714}
715
716static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
717 struct perf_event_attr *attr,
718 struct perf_event *group_leader)
719{
720 return -EINVAL;
721}
722
723static inline void
3f7cce3c
SE
724perf_cgroup_set_timestamp(struct task_struct *task,
725 struct perf_event_context *ctx)
e5d1367f
SE
726{
727}
728
729void
730perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
731{
732}
733
734static inline void
735perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
736{
737}
738
739static inline u64 perf_cgroup_event_time(struct perf_event *event)
740{
741 return 0;
742}
743
744static inline void
745perf_cgroup_defer_enabled(struct perf_event *event)
746{
747}
748
749static inline void
750perf_cgroup_mark_enabled(struct perf_event *event,
751 struct perf_event_context *ctx)
752{
753}
754#endif
755
9e630205
SE
756/*
757 * set default to be dependent on timer tick just
758 * like original code
759 */
760#define PERF_CPU_HRTIMER (1000 / HZ)
761/*
762 * function must be called with interrupts disbled
763 */
764static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
765{
766 struct perf_cpu_context *cpuctx;
767 enum hrtimer_restart ret = HRTIMER_NORESTART;
768 int rotations = 0;
769
770 WARN_ON(!irqs_disabled());
771
772 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
773
774 rotations = perf_rotate_context(cpuctx);
775
776 /*
777 * arm timer if needed
778 */
779 if (rotations) {
780 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
781 ret = HRTIMER_RESTART;
782 }
783
784 return ret;
785}
786
787/* CPU is going down */
788void perf_cpu_hrtimer_cancel(int cpu)
789{
790 struct perf_cpu_context *cpuctx;
791 struct pmu *pmu;
792 unsigned long flags;
793
794 if (WARN_ON(cpu != smp_processor_id()))
795 return;
796
797 local_irq_save(flags);
798
799 rcu_read_lock();
800
801 list_for_each_entry_rcu(pmu, &pmus, entry) {
802 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
803
804 if (pmu->task_ctx_nr == perf_sw_context)
805 continue;
806
807 hrtimer_cancel(&cpuctx->hrtimer);
808 }
809
810 rcu_read_unlock();
811
812 local_irq_restore(flags);
813}
814
815static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
816{
817 struct hrtimer *hr = &cpuctx->hrtimer;
818 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 819 int timer;
9e630205
SE
820
821 /* no multiplexing needed for SW PMU */
822 if (pmu->task_ctx_nr == perf_sw_context)
823 return;
824
62b85639
SE
825 /*
826 * check default is sane, if not set then force to
827 * default interval (1/tick)
828 */
829 timer = pmu->hrtimer_interval_ms;
830 if (timer < 1)
831 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
832
833 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
834
835 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
836 hr->function = perf_cpu_hrtimer_handler;
837}
838
839static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
840{
841 struct hrtimer *hr = &cpuctx->hrtimer;
842 struct pmu *pmu = cpuctx->ctx.pmu;
843
844 /* not for SW PMU */
845 if (pmu->task_ctx_nr == perf_sw_context)
846 return;
847
848 if (hrtimer_active(hr))
849 return;
850
851 if (!hrtimer_callback_running(hr))
852 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
853 0, HRTIMER_MODE_REL_PINNED, 0);
854}
855
33696fc0 856void perf_pmu_disable(struct pmu *pmu)
9e35ad38 857{
33696fc0
PZ
858 int *count = this_cpu_ptr(pmu->pmu_disable_count);
859 if (!(*count)++)
860 pmu->pmu_disable(pmu);
9e35ad38 861}
9e35ad38 862
33696fc0 863void perf_pmu_enable(struct pmu *pmu)
9e35ad38 864{
33696fc0
PZ
865 int *count = this_cpu_ptr(pmu->pmu_disable_count);
866 if (!--(*count))
867 pmu->pmu_enable(pmu);
9e35ad38 868}
9e35ad38 869
e9d2b064
PZ
870static DEFINE_PER_CPU(struct list_head, rotation_list);
871
872/*
873 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
874 * because they're strictly cpu affine and rotate_start is called with IRQs
875 * disabled, while rotate_context is called from IRQ context.
876 */
108b02cf 877static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 878{
108b02cf 879 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 880 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 881
e9d2b064 882 WARN_ON(!irqs_disabled());
b5ab4cd5 883
d84153d6 884 if (list_empty(&cpuctx->rotation_list))
e9d2b064 885 list_add(&cpuctx->rotation_list, head);
9e35ad38 886}
9e35ad38 887
cdd6c482 888static void get_ctx(struct perf_event_context *ctx)
a63eaf34 889{
e5289d4a 890 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
891}
892
cdd6c482 893static void put_ctx(struct perf_event_context *ctx)
a63eaf34 894{
564c2b21
PM
895 if (atomic_dec_and_test(&ctx->refcount)) {
896 if (ctx->parent_ctx)
897 put_ctx(ctx->parent_ctx);
c93f7669
PM
898 if (ctx->task)
899 put_task_struct(ctx->task);
cb796ff3 900 kfree_rcu(ctx, rcu_head);
564c2b21 901 }
a63eaf34
PM
902}
903
cdd6c482 904static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
905{
906 if (ctx->parent_ctx) {
907 put_ctx(ctx->parent_ctx);
908 ctx->parent_ctx = NULL;
909 }
5a3126d4 910 ctx->generation++;
71a851b4
PZ
911}
912
6844c09d
ACM
913static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
914{
915 /*
916 * only top level events have the pid namespace they were created in
917 */
918 if (event->parent)
919 event = event->parent;
920
921 return task_tgid_nr_ns(p, event->ns);
922}
923
924static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
925{
926 /*
927 * only top level events have the pid namespace they were created in
928 */
929 if (event->parent)
930 event = event->parent;
931
932 return task_pid_nr_ns(p, event->ns);
933}
934
7f453c24 935/*
cdd6c482 936 * If we inherit events we want to return the parent event id
7f453c24
PZ
937 * to userspace.
938 */
cdd6c482 939static u64 primary_event_id(struct perf_event *event)
7f453c24 940{
cdd6c482 941 u64 id = event->id;
7f453c24 942
cdd6c482
IM
943 if (event->parent)
944 id = event->parent->id;
7f453c24
PZ
945
946 return id;
947}
948
25346b93 949/*
cdd6c482 950 * Get the perf_event_context for a task and lock it.
25346b93
PM
951 * This has to cope with with the fact that until it is locked,
952 * the context could get moved to another task.
953 */
cdd6c482 954static struct perf_event_context *
8dc85d54 955perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 956{
cdd6c482 957 struct perf_event_context *ctx;
25346b93 958
9ed6060d 959retry:
058ebd0e
PZ
960 /*
961 * One of the few rules of preemptible RCU is that one cannot do
962 * rcu_read_unlock() while holding a scheduler (or nested) lock when
963 * part of the read side critical section was preemptible -- see
964 * rcu_read_unlock_special().
965 *
966 * Since ctx->lock nests under rq->lock we must ensure the entire read
967 * side critical section is non-preemptible.
968 */
969 preempt_disable();
970 rcu_read_lock();
8dc85d54 971 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
972 if (ctx) {
973 /*
974 * If this context is a clone of another, it might
975 * get swapped for another underneath us by
cdd6c482 976 * perf_event_task_sched_out, though the
25346b93
PM
977 * rcu_read_lock() protects us from any context
978 * getting freed. Lock the context and check if it
979 * got swapped before we could get the lock, and retry
980 * if so. If we locked the right context, then it
981 * can't get swapped on us any more.
982 */
e625cce1 983 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 984 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 985 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
986 rcu_read_unlock();
987 preempt_enable();
25346b93
PM
988 goto retry;
989 }
b49a9e7e
PZ
990
991 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 992 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
993 ctx = NULL;
994 }
25346b93
PM
995 }
996 rcu_read_unlock();
058ebd0e 997 preempt_enable();
25346b93
PM
998 return ctx;
999}
1000
1001/*
1002 * Get the context for a task and increment its pin_count so it
1003 * can't get swapped to another task. This also increments its
1004 * reference count so that the context can't get freed.
1005 */
8dc85d54
PZ
1006static struct perf_event_context *
1007perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1008{
cdd6c482 1009 struct perf_event_context *ctx;
25346b93
PM
1010 unsigned long flags;
1011
8dc85d54 1012 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1013 if (ctx) {
1014 ++ctx->pin_count;
e625cce1 1015 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1016 }
1017 return ctx;
1018}
1019
cdd6c482 1020static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1021{
1022 unsigned long flags;
1023
e625cce1 1024 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1025 --ctx->pin_count;
e625cce1 1026 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1027}
1028
f67218c3
PZ
1029/*
1030 * Update the record of the current time in a context.
1031 */
1032static void update_context_time(struct perf_event_context *ctx)
1033{
1034 u64 now = perf_clock();
1035
1036 ctx->time += now - ctx->timestamp;
1037 ctx->timestamp = now;
1038}
1039
4158755d
SE
1040static u64 perf_event_time(struct perf_event *event)
1041{
1042 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1043
1044 if (is_cgroup_event(event))
1045 return perf_cgroup_event_time(event);
1046
4158755d
SE
1047 return ctx ? ctx->time : 0;
1048}
1049
f67218c3
PZ
1050/*
1051 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1052 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1053 */
1054static void update_event_times(struct perf_event *event)
1055{
1056 struct perf_event_context *ctx = event->ctx;
1057 u64 run_end;
1058
1059 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1060 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1061 return;
e5d1367f
SE
1062 /*
1063 * in cgroup mode, time_enabled represents
1064 * the time the event was enabled AND active
1065 * tasks were in the monitored cgroup. This is
1066 * independent of the activity of the context as
1067 * there may be a mix of cgroup and non-cgroup events.
1068 *
1069 * That is why we treat cgroup events differently
1070 * here.
1071 */
1072 if (is_cgroup_event(event))
46cd6a7f 1073 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1074 else if (ctx->is_active)
1075 run_end = ctx->time;
acd1d7c1
PZ
1076 else
1077 run_end = event->tstamp_stopped;
1078
1079 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1080
1081 if (event->state == PERF_EVENT_STATE_INACTIVE)
1082 run_end = event->tstamp_stopped;
1083 else
4158755d 1084 run_end = perf_event_time(event);
f67218c3
PZ
1085
1086 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1087
f67218c3
PZ
1088}
1089
96c21a46
PZ
1090/*
1091 * Update total_time_enabled and total_time_running for all events in a group.
1092 */
1093static void update_group_times(struct perf_event *leader)
1094{
1095 struct perf_event *event;
1096
1097 update_event_times(leader);
1098 list_for_each_entry(event, &leader->sibling_list, group_entry)
1099 update_event_times(event);
1100}
1101
889ff015
FW
1102static struct list_head *
1103ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1104{
1105 if (event->attr.pinned)
1106 return &ctx->pinned_groups;
1107 else
1108 return &ctx->flexible_groups;
1109}
1110
fccc714b 1111/*
cdd6c482 1112 * Add a event from the lists for its context.
fccc714b
PZ
1113 * Must be called with ctx->mutex and ctx->lock held.
1114 */
04289bb9 1115static void
cdd6c482 1116list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1117{
8a49542c
PZ
1118 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1119 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1120
1121 /*
8a49542c
PZ
1122 * If we're a stand alone event or group leader, we go to the context
1123 * list, group events are kept attached to the group so that
1124 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1125 */
8a49542c 1126 if (event->group_leader == event) {
889ff015
FW
1127 struct list_head *list;
1128
d6f962b5
FW
1129 if (is_software_event(event))
1130 event->group_flags |= PERF_GROUP_SOFTWARE;
1131
889ff015
FW
1132 list = ctx_group_list(event, ctx);
1133 list_add_tail(&event->group_entry, list);
5c148194 1134 }
592903cd 1135
08309379 1136 if (is_cgroup_event(event))
e5d1367f 1137 ctx->nr_cgroups++;
e5d1367f 1138
d010b332
SE
1139 if (has_branch_stack(event))
1140 ctx->nr_branch_stack++;
1141
cdd6c482 1142 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1143 if (!ctx->nr_events)
108b02cf 1144 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1145 ctx->nr_events++;
1146 if (event->attr.inherit_stat)
bfbd3381 1147 ctx->nr_stat++;
5a3126d4
PZ
1148
1149 ctx->generation++;
04289bb9
IM
1150}
1151
0231bb53
JO
1152/*
1153 * Initialize event state based on the perf_event_attr::disabled.
1154 */
1155static inline void perf_event__state_init(struct perf_event *event)
1156{
1157 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1158 PERF_EVENT_STATE_INACTIVE;
1159}
1160
c320c7b7
ACM
1161/*
1162 * Called at perf_event creation and when events are attached/detached from a
1163 * group.
1164 */
1165static void perf_event__read_size(struct perf_event *event)
1166{
1167 int entry = sizeof(u64); /* value */
1168 int size = 0;
1169 int nr = 1;
1170
1171 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1172 size += sizeof(u64);
1173
1174 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1175 size += sizeof(u64);
1176
1177 if (event->attr.read_format & PERF_FORMAT_ID)
1178 entry += sizeof(u64);
1179
1180 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1181 nr += event->group_leader->nr_siblings;
1182 size += sizeof(u64);
1183 }
1184
1185 size += entry * nr;
1186 event->read_size = size;
1187}
1188
1189static void perf_event__header_size(struct perf_event *event)
1190{
1191 struct perf_sample_data *data;
1192 u64 sample_type = event->attr.sample_type;
1193 u16 size = 0;
1194
1195 perf_event__read_size(event);
1196
1197 if (sample_type & PERF_SAMPLE_IP)
1198 size += sizeof(data->ip);
1199
6844c09d
ACM
1200 if (sample_type & PERF_SAMPLE_ADDR)
1201 size += sizeof(data->addr);
1202
1203 if (sample_type & PERF_SAMPLE_PERIOD)
1204 size += sizeof(data->period);
1205
c3feedf2
AK
1206 if (sample_type & PERF_SAMPLE_WEIGHT)
1207 size += sizeof(data->weight);
1208
6844c09d
ACM
1209 if (sample_type & PERF_SAMPLE_READ)
1210 size += event->read_size;
1211
d6be9ad6
SE
1212 if (sample_type & PERF_SAMPLE_DATA_SRC)
1213 size += sizeof(data->data_src.val);
1214
fdfbbd07
AK
1215 if (sample_type & PERF_SAMPLE_TRANSACTION)
1216 size += sizeof(data->txn);
1217
6844c09d
ACM
1218 event->header_size = size;
1219}
1220
1221static void perf_event__id_header_size(struct perf_event *event)
1222{
1223 struct perf_sample_data *data;
1224 u64 sample_type = event->attr.sample_type;
1225 u16 size = 0;
1226
c320c7b7
ACM
1227 if (sample_type & PERF_SAMPLE_TID)
1228 size += sizeof(data->tid_entry);
1229
1230 if (sample_type & PERF_SAMPLE_TIME)
1231 size += sizeof(data->time);
1232
ff3d527c
AH
1233 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1234 size += sizeof(data->id);
1235
c320c7b7
ACM
1236 if (sample_type & PERF_SAMPLE_ID)
1237 size += sizeof(data->id);
1238
1239 if (sample_type & PERF_SAMPLE_STREAM_ID)
1240 size += sizeof(data->stream_id);
1241
1242 if (sample_type & PERF_SAMPLE_CPU)
1243 size += sizeof(data->cpu_entry);
1244
6844c09d 1245 event->id_header_size = size;
c320c7b7
ACM
1246}
1247
8a49542c
PZ
1248static void perf_group_attach(struct perf_event *event)
1249{
c320c7b7 1250 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1251
74c3337c
PZ
1252 /*
1253 * We can have double attach due to group movement in perf_event_open.
1254 */
1255 if (event->attach_state & PERF_ATTACH_GROUP)
1256 return;
1257
8a49542c
PZ
1258 event->attach_state |= PERF_ATTACH_GROUP;
1259
1260 if (group_leader == event)
1261 return;
1262
1263 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1264 !is_software_event(event))
1265 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1266
1267 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1268 group_leader->nr_siblings++;
c320c7b7
ACM
1269
1270 perf_event__header_size(group_leader);
1271
1272 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1273 perf_event__header_size(pos);
8a49542c
PZ
1274}
1275
a63eaf34 1276/*
cdd6c482 1277 * Remove a event from the lists for its context.
fccc714b 1278 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1279 */
04289bb9 1280static void
cdd6c482 1281list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1282{
68cacd29 1283 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1284 /*
1285 * We can have double detach due to exit/hot-unplug + close.
1286 */
1287 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1288 return;
8a49542c
PZ
1289
1290 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1291
68cacd29 1292 if (is_cgroup_event(event)) {
e5d1367f 1293 ctx->nr_cgroups--;
68cacd29
SE
1294 cpuctx = __get_cpu_context(ctx);
1295 /*
1296 * if there are no more cgroup events
1297 * then cler cgrp to avoid stale pointer
1298 * in update_cgrp_time_from_cpuctx()
1299 */
1300 if (!ctx->nr_cgroups)
1301 cpuctx->cgrp = NULL;
1302 }
e5d1367f 1303
d010b332
SE
1304 if (has_branch_stack(event))
1305 ctx->nr_branch_stack--;
1306
cdd6c482
IM
1307 ctx->nr_events--;
1308 if (event->attr.inherit_stat)
bfbd3381 1309 ctx->nr_stat--;
8bc20959 1310
cdd6c482 1311 list_del_rcu(&event->event_entry);
04289bb9 1312
8a49542c
PZ
1313 if (event->group_leader == event)
1314 list_del_init(&event->group_entry);
5c148194 1315
96c21a46 1316 update_group_times(event);
b2e74a26
SE
1317
1318 /*
1319 * If event was in error state, then keep it
1320 * that way, otherwise bogus counts will be
1321 * returned on read(). The only way to get out
1322 * of error state is by explicit re-enabling
1323 * of the event
1324 */
1325 if (event->state > PERF_EVENT_STATE_OFF)
1326 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1327
1328 ctx->generation++;
050735b0
PZ
1329}
1330
8a49542c 1331static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1332{
1333 struct perf_event *sibling, *tmp;
8a49542c
PZ
1334 struct list_head *list = NULL;
1335
1336 /*
1337 * We can have double detach due to exit/hot-unplug + close.
1338 */
1339 if (!(event->attach_state & PERF_ATTACH_GROUP))
1340 return;
1341
1342 event->attach_state &= ~PERF_ATTACH_GROUP;
1343
1344 /*
1345 * If this is a sibling, remove it from its group.
1346 */
1347 if (event->group_leader != event) {
1348 list_del_init(&event->group_entry);
1349 event->group_leader->nr_siblings--;
c320c7b7 1350 goto out;
8a49542c
PZ
1351 }
1352
1353 if (!list_empty(&event->group_entry))
1354 list = &event->group_entry;
2e2af50b 1355
04289bb9 1356 /*
cdd6c482
IM
1357 * If this was a group event with sibling events then
1358 * upgrade the siblings to singleton events by adding them
8a49542c 1359 * to whatever list we are on.
04289bb9 1360 */
cdd6c482 1361 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1362 if (list)
1363 list_move_tail(&sibling->group_entry, list);
04289bb9 1364 sibling->group_leader = sibling;
d6f962b5
FW
1365
1366 /* Inherit group flags from the previous leader */
1367 sibling->group_flags = event->group_flags;
04289bb9 1368 }
c320c7b7
ACM
1369
1370out:
1371 perf_event__header_size(event->group_leader);
1372
1373 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1374 perf_event__header_size(tmp);
04289bb9
IM
1375}
1376
fa66f07a
SE
1377static inline int
1378event_filter_match(struct perf_event *event)
1379{
e5d1367f
SE
1380 return (event->cpu == -1 || event->cpu == smp_processor_id())
1381 && perf_cgroup_match(event);
fa66f07a
SE
1382}
1383
9ffcfa6f
SE
1384static void
1385event_sched_out(struct perf_event *event,
3b6f9e5c 1386 struct perf_cpu_context *cpuctx,
cdd6c482 1387 struct perf_event_context *ctx)
3b6f9e5c 1388{
4158755d 1389 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1390 u64 delta;
1391 /*
1392 * An event which could not be activated because of
1393 * filter mismatch still needs to have its timings
1394 * maintained, otherwise bogus information is return
1395 * via read() for time_enabled, time_running:
1396 */
1397 if (event->state == PERF_EVENT_STATE_INACTIVE
1398 && !event_filter_match(event)) {
e5d1367f 1399 delta = tstamp - event->tstamp_stopped;
fa66f07a 1400 event->tstamp_running += delta;
4158755d 1401 event->tstamp_stopped = tstamp;
fa66f07a
SE
1402 }
1403
cdd6c482 1404 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1405 return;
3b6f9e5c 1406
44377277
AS
1407 perf_pmu_disable(event->pmu);
1408
cdd6c482
IM
1409 event->state = PERF_EVENT_STATE_INACTIVE;
1410 if (event->pending_disable) {
1411 event->pending_disable = 0;
1412 event->state = PERF_EVENT_STATE_OFF;
970892a9 1413 }
4158755d 1414 event->tstamp_stopped = tstamp;
a4eaf7f1 1415 event->pmu->del(event, 0);
cdd6c482 1416 event->oncpu = -1;
3b6f9e5c 1417
cdd6c482 1418 if (!is_software_event(event))
3b6f9e5c
PM
1419 cpuctx->active_oncpu--;
1420 ctx->nr_active--;
0f5a2601
PZ
1421 if (event->attr.freq && event->attr.sample_freq)
1422 ctx->nr_freq--;
cdd6c482 1423 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1424 cpuctx->exclusive = 0;
44377277
AS
1425
1426 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1427}
1428
d859e29f 1429static void
cdd6c482 1430group_sched_out(struct perf_event *group_event,
d859e29f 1431 struct perf_cpu_context *cpuctx,
cdd6c482 1432 struct perf_event_context *ctx)
d859e29f 1433{
cdd6c482 1434 struct perf_event *event;
fa66f07a 1435 int state = group_event->state;
d859e29f 1436
cdd6c482 1437 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1438
1439 /*
1440 * Schedule out siblings (if any):
1441 */
cdd6c482
IM
1442 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1443 event_sched_out(event, cpuctx, ctx);
d859e29f 1444
fa66f07a 1445 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1446 cpuctx->exclusive = 0;
1447}
1448
46ce0fe9
PZ
1449struct remove_event {
1450 struct perf_event *event;
1451 bool detach_group;
1452};
1453
0793a61d 1454/*
cdd6c482 1455 * Cross CPU call to remove a performance event
0793a61d 1456 *
cdd6c482 1457 * We disable the event on the hardware level first. After that we
0793a61d
TG
1458 * remove it from the context list.
1459 */
fe4b04fa 1460static int __perf_remove_from_context(void *info)
0793a61d 1461{
46ce0fe9
PZ
1462 struct remove_event *re = info;
1463 struct perf_event *event = re->event;
cdd6c482 1464 struct perf_event_context *ctx = event->ctx;
108b02cf 1465 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1466
e625cce1 1467 raw_spin_lock(&ctx->lock);
cdd6c482 1468 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1469 if (re->detach_group)
1470 perf_group_detach(event);
cdd6c482 1471 list_del_event(event, ctx);
64ce3126
PZ
1472 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1473 ctx->is_active = 0;
1474 cpuctx->task_ctx = NULL;
1475 }
e625cce1 1476 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1477
1478 return 0;
0793a61d
TG
1479}
1480
1481
1482/*
cdd6c482 1483 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1484 *
cdd6c482 1485 * CPU events are removed with a smp call. For task events we only
0793a61d 1486 * call when the task is on a CPU.
c93f7669 1487 *
cdd6c482
IM
1488 * If event->ctx is a cloned context, callers must make sure that
1489 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1490 * remains valid. This is OK when called from perf_release since
1491 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1492 * When called from perf_event_exit_task, it's OK because the
c93f7669 1493 * context has been detached from its task.
0793a61d 1494 */
46ce0fe9 1495static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1496{
cdd6c482 1497 struct perf_event_context *ctx = event->ctx;
0793a61d 1498 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1499 struct remove_event re = {
1500 .event = event,
1501 .detach_group = detach_group,
1502 };
0793a61d 1503
fe4b04fa
PZ
1504 lockdep_assert_held(&ctx->mutex);
1505
0793a61d
TG
1506 if (!task) {
1507 /*
cdd6c482 1508 * Per cpu events are removed via an smp call and
af901ca1 1509 * the removal is always successful.
0793a61d 1510 */
46ce0fe9 1511 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1512 return;
1513 }
1514
1515retry:
46ce0fe9 1516 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1517 return;
0793a61d 1518
e625cce1 1519 raw_spin_lock_irq(&ctx->lock);
0793a61d 1520 /*
fe4b04fa
PZ
1521 * If we failed to find a running task, but find the context active now
1522 * that we've acquired the ctx->lock, retry.
0793a61d 1523 */
fe4b04fa 1524 if (ctx->is_active) {
e625cce1 1525 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1526 goto retry;
1527 }
1528
1529 /*
fe4b04fa
PZ
1530 * Since the task isn't running, its safe to remove the event, us
1531 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1532 */
46ce0fe9
PZ
1533 if (detach_group)
1534 perf_group_detach(event);
fe4b04fa 1535 list_del_event(event, ctx);
e625cce1 1536 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1537}
1538
d859e29f 1539/*
cdd6c482 1540 * Cross CPU call to disable a performance event
d859e29f 1541 */
500ad2d8 1542int __perf_event_disable(void *info)
d859e29f 1543{
cdd6c482 1544 struct perf_event *event = info;
cdd6c482 1545 struct perf_event_context *ctx = event->ctx;
108b02cf 1546 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1547
1548 /*
cdd6c482
IM
1549 * If this is a per-task event, need to check whether this
1550 * event's task is the current task on this cpu.
fe4b04fa
PZ
1551 *
1552 * Can trigger due to concurrent perf_event_context_sched_out()
1553 * flipping contexts around.
d859e29f 1554 */
665c2142 1555 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1556 return -EINVAL;
d859e29f 1557
e625cce1 1558 raw_spin_lock(&ctx->lock);
d859e29f
PM
1559
1560 /*
cdd6c482 1561 * If the event is on, turn it off.
d859e29f
PM
1562 * If it is in error state, leave it in error state.
1563 */
cdd6c482 1564 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1565 update_context_time(ctx);
e5d1367f 1566 update_cgrp_time_from_event(event);
cdd6c482
IM
1567 update_group_times(event);
1568 if (event == event->group_leader)
1569 group_sched_out(event, cpuctx, ctx);
d859e29f 1570 else
cdd6c482
IM
1571 event_sched_out(event, cpuctx, ctx);
1572 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1573 }
1574
e625cce1 1575 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1576
1577 return 0;
d859e29f
PM
1578}
1579
1580/*
cdd6c482 1581 * Disable a event.
c93f7669 1582 *
cdd6c482
IM
1583 * If event->ctx is a cloned context, callers must make sure that
1584 * every task struct that event->ctx->task could possibly point to
c93f7669 1585 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1586 * perf_event_for_each_child or perf_event_for_each because they
1587 * hold the top-level event's child_mutex, so any descendant that
1588 * goes to exit will block in sync_child_event.
1589 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1590 * is the current context on this CPU and preemption is disabled,
cdd6c482 1591 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1592 */
44234adc 1593void perf_event_disable(struct perf_event *event)
d859e29f 1594{
cdd6c482 1595 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1596 struct task_struct *task = ctx->task;
1597
1598 if (!task) {
1599 /*
cdd6c482 1600 * Disable the event on the cpu that it's on
d859e29f 1601 */
fe4b04fa 1602 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1603 return;
1604 }
1605
9ed6060d 1606retry:
fe4b04fa
PZ
1607 if (!task_function_call(task, __perf_event_disable, event))
1608 return;
d859e29f 1609
e625cce1 1610 raw_spin_lock_irq(&ctx->lock);
d859e29f 1611 /*
cdd6c482 1612 * If the event is still active, we need to retry the cross-call.
d859e29f 1613 */
cdd6c482 1614 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1615 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1616 /*
1617 * Reload the task pointer, it might have been changed by
1618 * a concurrent perf_event_context_sched_out().
1619 */
1620 task = ctx->task;
d859e29f
PM
1621 goto retry;
1622 }
1623
1624 /*
1625 * Since we have the lock this context can't be scheduled
1626 * in, so we can change the state safely.
1627 */
cdd6c482
IM
1628 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1629 update_group_times(event);
1630 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1631 }
e625cce1 1632 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1633}
dcfce4a0 1634EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1635
e5d1367f
SE
1636static void perf_set_shadow_time(struct perf_event *event,
1637 struct perf_event_context *ctx,
1638 u64 tstamp)
1639{
1640 /*
1641 * use the correct time source for the time snapshot
1642 *
1643 * We could get by without this by leveraging the
1644 * fact that to get to this function, the caller
1645 * has most likely already called update_context_time()
1646 * and update_cgrp_time_xx() and thus both timestamp
1647 * are identical (or very close). Given that tstamp is,
1648 * already adjusted for cgroup, we could say that:
1649 * tstamp - ctx->timestamp
1650 * is equivalent to
1651 * tstamp - cgrp->timestamp.
1652 *
1653 * Then, in perf_output_read(), the calculation would
1654 * work with no changes because:
1655 * - event is guaranteed scheduled in
1656 * - no scheduled out in between
1657 * - thus the timestamp would be the same
1658 *
1659 * But this is a bit hairy.
1660 *
1661 * So instead, we have an explicit cgroup call to remain
1662 * within the time time source all along. We believe it
1663 * is cleaner and simpler to understand.
1664 */
1665 if (is_cgroup_event(event))
1666 perf_cgroup_set_shadow_time(event, tstamp);
1667 else
1668 event->shadow_ctx_time = tstamp - ctx->timestamp;
1669}
1670
4fe757dd
PZ
1671#define MAX_INTERRUPTS (~0ULL)
1672
1673static void perf_log_throttle(struct perf_event *event, int enable);
1674
235c7fc7 1675static int
9ffcfa6f 1676event_sched_in(struct perf_event *event,
235c7fc7 1677 struct perf_cpu_context *cpuctx,
6e37738a 1678 struct perf_event_context *ctx)
235c7fc7 1679{
4158755d 1680 u64 tstamp = perf_event_time(event);
44377277 1681 int ret = 0;
4158755d 1682
63342411
PZ
1683 lockdep_assert_held(&ctx->lock);
1684
cdd6c482 1685 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1686 return 0;
1687
cdd6c482 1688 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1689 event->oncpu = smp_processor_id();
4fe757dd
PZ
1690
1691 /*
1692 * Unthrottle events, since we scheduled we might have missed several
1693 * ticks already, also for a heavily scheduling task there is little
1694 * guarantee it'll get a tick in a timely manner.
1695 */
1696 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1697 perf_log_throttle(event, 1);
1698 event->hw.interrupts = 0;
1699 }
1700
235c7fc7
IM
1701 /*
1702 * The new state must be visible before we turn it on in the hardware:
1703 */
1704 smp_wmb();
1705
44377277
AS
1706 perf_pmu_disable(event->pmu);
1707
a4eaf7f1 1708 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1709 event->state = PERF_EVENT_STATE_INACTIVE;
1710 event->oncpu = -1;
44377277
AS
1711 ret = -EAGAIN;
1712 goto out;
235c7fc7
IM
1713 }
1714
4158755d 1715 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1716
e5d1367f 1717 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1718
cdd6c482 1719 if (!is_software_event(event))
3b6f9e5c 1720 cpuctx->active_oncpu++;
235c7fc7 1721 ctx->nr_active++;
0f5a2601
PZ
1722 if (event->attr.freq && event->attr.sample_freq)
1723 ctx->nr_freq++;
235c7fc7 1724
cdd6c482 1725 if (event->attr.exclusive)
3b6f9e5c
PM
1726 cpuctx->exclusive = 1;
1727
44377277
AS
1728out:
1729 perf_pmu_enable(event->pmu);
1730
1731 return ret;
235c7fc7
IM
1732}
1733
6751b71e 1734static int
cdd6c482 1735group_sched_in(struct perf_event *group_event,
6751b71e 1736 struct perf_cpu_context *cpuctx,
6e37738a 1737 struct perf_event_context *ctx)
6751b71e 1738{
6bde9b6c 1739 struct perf_event *event, *partial_group = NULL;
4a234593 1740 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1741 u64 now = ctx->time;
1742 bool simulate = false;
6751b71e 1743
cdd6c482 1744 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1745 return 0;
1746
ad5133b7 1747 pmu->start_txn(pmu);
6bde9b6c 1748
9ffcfa6f 1749 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1750 pmu->cancel_txn(pmu);
9e630205 1751 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1752 return -EAGAIN;
90151c35 1753 }
6751b71e
PM
1754
1755 /*
1756 * Schedule in siblings as one group (if any):
1757 */
cdd6c482 1758 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1759 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1760 partial_group = event;
6751b71e
PM
1761 goto group_error;
1762 }
1763 }
1764
9ffcfa6f 1765 if (!pmu->commit_txn(pmu))
6e85158c 1766 return 0;
9ffcfa6f 1767
6751b71e
PM
1768group_error:
1769 /*
1770 * Groups can be scheduled in as one unit only, so undo any
1771 * partial group before returning:
d7842da4
SE
1772 * The events up to the failed event are scheduled out normally,
1773 * tstamp_stopped will be updated.
1774 *
1775 * The failed events and the remaining siblings need to have
1776 * their timings updated as if they had gone thru event_sched_in()
1777 * and event_sched_out(). This is required to get consistent timings
1778 * across the group. This also takes care of the case where the group
1779 * could never be scheduled by ensuring tstamp_stopped is set to mark
1780 * the time the event was actually stopped, such that time delta
1781 * calculation in update_event_times() is correct.
6751b71e 1782 */
cdd6c482
IM
1783 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1784 if (event == partial_group)
d7842da4
SE
1785 simulate = true;
1786
1787 if (simulate) {
1788 event->tstamp_running += now - event->tstamp_stopped;
1789 event->tstamp_stopped = now;
1790 } else {
1791 event_sched_out(event, cpuctx, ctx);
1792 }
6751b71e 1793 }
9ffcfa6f 1794 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1795
ad5133b7 1796 pmu->cancel_txn(pmu);
90151c35 1797
9e630205
SE
1798 perf_cpu_hrtimer_restart(cpuctx);
1799
6751b71e
PM
1800 return -EAGAIN;
1801}
1802
3b6f9e5c 1803/*
cdd6c482 1804 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1805 */
cdd6c482 1806static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1807 struct perf_cpu_context *cpuctx,
1808 int can_add_hw)
1809{
1810 /*
cdd6c482 1811 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1812 */
d6f962b5 1813 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1814 return 1;
1815 /*
1816 * If an exclusive group is already on, no other hardware
cdd6c482 1817 * events can go on.
3b6f9e5c
PM
1818 */
1819 if (cpuctx->exclusive)
1820 return 0;
1821 /*
1822 * If this group is exclusive and there are already
cdd6c482 1823 * events on the CPU, it can't go on.
3b6f9e5c 1824 */
cdd6c482 1825 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1826 return 0;
1827 /*
1828 * Otherwise, try to add it if all previous groups were able
1829 * to go on.
1830 */
1831 return can_add_hw;
1832}
1833
cdd6c482
IM
1834static void add_event_to_ctx(struct perf_event *event,
1835 struct perf_event_context *ctx)
53cfbf59 1836{
4158755d
SE
1837 u64 tstamp = perf_event_time(event);
1838
cdd6c482 1839 list_add_event(event, ctx);
8a49542c 1840 perf_group_attach(event);
4158755d
SE
1841 event->tstamp_enabled = tstamp;
1842 event->tstamp_running = tstamp;
1843 event->tstamp_stopped = tstamp;
53cfbf59
PM
1844}
1845
2c29ef0f
PZ
1846static void task_ctx_sched_out(struct perf_event_context *ctx);
1847static void
1848ctx_sched_in(struct perf_event_context *ctx,
1849 struct perf_cpu_context *cpuctx,
1850 enum event_type_t event_type,
1851 struct task_struct *task);
fe4b04fa 1852
dce5855b
PZ
1853static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1854 struct perf_event_context *ctx,
1855 struct task_struct *task)
1856{
1857 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1858 if (ctx)
1859 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1860 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1861 if (ctx)
1862 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1863}
1864
0793a61d 1865/*
cdd6c482 1866 * Cross CPU call to install and enable a performance event
682076ae
PZ
1867 *
1868 * Must be called with ctx->mutex held
0793a61d 1869 */
fe4b04fa 1870static int __perf_install_in_context(void *info)
0793a61d 1871{
cdd6c482
IM
1872 struct perf_event *event = info;
1873 struct perf_event_context *ctx = event->ctx;
108b02cf 1874 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1875 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1876 struct task_struct *task = current;
1877
b58f6b0d 1878 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1879 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1880
1881 /*
2c29ef0f 1882 * If there was an active task_ctx schedule it out.
0793a61d 1883 */
b58f6b0d 1884 if (task_ctx)
2c29ef0f 1885 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1886
1887 /*
1888 * If the context we're installing events in is not the
1889 * active task_ctx, flip them.
1890 */
1891 if (ctx->task && task_ctx != ctx) {
1892 if (task_ctx)
1893 raw_spin_unlock(&task_ctx->lock);
1894 raw_spin_lock(&ctx->lock);
1895 task_ctx = ctx;
1896 }
1897
1898 if (task_ctx) {
1899 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1900 task = task_ctx->task;
1901 }
b58f6b0d 1902
2c29ef0f 1903 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1904
4af4998b 1905 update_context_time(ctx);
e5d1367f
SE
1906 /*
1907 * update cgrp time only if current cgrp
1908 * matches event->cgrp. Must be done before
1909 * calling add_event_to_ctx()
1910 */
1911 update_cgrp_time_from_event(event);
0793a61d 1912
cdd6c482 1913 add_event_to_ctx(event, ctx);
0793a61d 1914
d859e29f 1915 /*
2c29ef0f 1916 * Schedule everything back in
d859e29f 1917 */
dce5855b 1918 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1919
1920 perf_pmu_enable(cpuctx->ctx.pmu);
1921 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1922
1923 return 0;
0793a61d
TG
1924}
1925
1926/*
cdd6c482 1927 * Attach a performance event to a context
0793a61d 1928 *
cdd6c482
IM
1929 * First we add the event to the list with the hardware enable bit
1930 * in event->hw_config cleared.
0793a61d 1931 *
cdd6c482 1932 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1933 * call to enable it in the task context. The task might have been
1934 * scheduled away, but we check this in the smp call again.
1935 */
1936static void
cdd6c482
IM
1937perf_install_in_context(struct perf_event_context *ctx,
1938 struct perf_event *event,
0793a61d
TG
1939 int cpu)
1940{
1941 struct task_struct *task = ctx->task;
1942
fe4b04fa
PZ
1943 lockdep_assert_held(&ctx->mutex);
1944
c3f00c70 1945 event->ctx = ctx;
0cda4c02
YZ
1946 if (event->cpu != -1)
1947 event->cpu = cpu;
c3f00c70 1948
0793a61d
TG
1949 if (!task) {
1950 /*
cdd6c482 1951 * Per cpu events are installed via an smp call and
af901ca1 1952 * the install is always successful.
0793a61d 1953 */
fe4b04fa 1954 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1955 return;
1956 }
1957
0793a61d 1958retry:
fe4b04fa
PZ
1959 if (!task_function_call(task, __perf_install_in_context, event))
1960 return;
0793a61d 1961
e625cce1 1962 raw_spin_lock_irq(&ctx->lock);
0793a61d 1963 /*
fe4b04fa
PZ
1964 * If we failed to find a running task, but find the context active now
1965 * that we've acquired the ctx->lock, retry.
0793a61d 1966 */
fe4b04fa 1967 if (ctx->is_active) {
e625cce1 1968 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1969 goto retry;
1970 }
1971
1972 /*
fe4b04fa
PZ
1973 * Since the task isn't running, its safe to add the event, us holding
1974 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1975 */
fe4b04fa 1976 add_event_to_ctx(event, ctx);
e625cce1 1977 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1978}
1979
fa289bec 1980/*
cdd6c482 1981 * Put a event into inactive state and update time fields.
fa289bec
PM
1982 * Enabling the leader of a group effectively enables all
1983 * the group members that aren't explicitly disabled, so we
1984 * have to update their ->tstamp_enabled also.
1985 * Note: this works for group members as well as group leaders
1986 * since the non-leader members' sibling_lists will be empty.
1987 */
1d9b482e 1988static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1989{
cdd6c482 1990 struct perf_event *sub;
4158755d 1991 u64 tstamp = perf_event_time(event);
fa289bec 1992
cdd6c482 1993 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1994 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1995 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1996 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1997 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1998 }
fa289bec
PM
1999}
2000
d859e29f 2001/*
cdd6c482 2002 * Cross CPU call to enable a performance event
d859e29f 2003 */
fe4b04fa 2004static int __perf_event_enable(void *info)
04289bb9 2005{
cdd6c482 2006 struct perf_event *event = info;
cdd6c482
IM
2007 struct perf_event_context *ctx = event->ctx;
2008 struct perf_event *leader = event->group_leader;
108b02cf 2009 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2010 int err;
04289bb9 2011
06f41796
JO
2012 /*
2013 * There's a time window between 'ctx->is_active' check
2014 * in perf_event_enable function and this place having:
2015 * - IRQs on
2016 * - ctx->lock unlocked
2017 *
2018 * where the task could be killed and 'ctx' deactivated
2019 * by perf_event_exit_task.
2020 */
2021 if (!ctx->is_active)
fe4b04fa 2022 return -EINVAL;
3cbed429 2023
e625cce1 2024 raw_spin_lock(&ctx->lock);
4af4998b 2025 update_context_time(ctx);
d859e29f 2026
cdd6c482 2027 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2028 goto unlock;
e5d1367f
SE
2029
2030 /*
2031 * set current task's cgroup time reference point
2032 */
3f7cce3c 2033 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2034
1d9b482e 2035 __perf_event_mark_enabled(event);
04289bb9 2036
e5d1367f
SE
2037 if (!event_filter_match(event)) {
2038 if (is_cgroup_event(event))
2039 perf_cgroup_defer_enabled(event);
f4c4176f 2040 goto unlock;
e5d1367f 2041 }
f4c4176f 2042
04289bb9 2043 /*
cdd6c482 2044 * If the event is in a group and isn't the group leader,
d859e29f 2045 * then don't put it on unless the group is on.
04289bb9 2046 */
cdd6c482 2047 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2048 goto unlock;
3b6f9e5c 2049
cdd6c482 2050 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2051 err = -EEXIST;
e758a33d 2052 } else {
cdd6c482 2053 if (event == leader)
6e37738a 2054 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2055 else
6e37738a 2056 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2057 }
d859e29f
PM
2058
2059 if (err) {
2060 /*
cdd6c482 2061 * If this event can't go on and it's part of a
d859e29f
PM
2062 * group, then the whole group has to come off.
2063 */
9e630205 2064 if (leader != event) {
d859e29f 2065 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2066 perf_cpu_hrtimer_restart(cpuctx);
2067 }
0d48696f 2068 if (leader->attr.pinned) {
53cfbf59 2069 update_group_times(leader);
cdd6c482 2070 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2071 }
d859e29f
PM
2072 }
2073
9ed6060d 2074unlock:
e625cce1 2075 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2076
2077 return 0;
d859e29f
PM
2078}
2079
2080/*
cdd6c482 2081 * Enable a event.
c93f7669 2082 *
cdd6c482
IM
2083 * If event->ctx is a cloned context, callers must make sure that
2084 * every task struct that event->ctx->task could possibly point to
c93f7669 2085 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2086 * perf_event_for_each_child or perf_event_for_each as described
2087 * for perf_event_disable.
d859e29f 2088 */
44234adc 2089void perf_event_enable(struct perf_event *event)
d859e29f 2090{
cdd6c482 2091 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2092 struct task_struct *task = ctx->task;
2093
2094 if (!task) {
2095 /*
cdd6c482 2096 * Enable the event on the cpu that it's on
d859e29f 2097 */
fe4b04fa 2098 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2099 return;
2100 }
2101
e625cce1 2102 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2103 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2104 goto out;
2105
2106 /*
cdd6c482
IM
2107 * If the event is in error state, clear that first.
2108 * That way, if we see the event in error state below, we
d859e29f
PM
2109 * know that it has gone back into error state, as distinct
2110 * from the task having been scheduled away before the
2111 * cross-call arrived.
2112 */
cdd6c482
IM
2113 if (event->state == PERF_EVENT_STATE_ERROR)
2114 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2115
9ed6060d 2116retry:
fe4b04fa 2117 if (!ctx->is_active) {
1d9b482e 2118 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2119 goto out;
2120 }
2121
e625cce1 2122 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2123
2124 if (!task_function_call(task, __perf_event_enable, event))
2125 return;
d859e29f 2126
e625cce1 2127 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2128
2129 /*
cdd6c482 2130 * If the context is active and the event is still off,
d859e29f
PM
2131 * we need to retry the cross-call.
2132 */
fe4b04fa
PZ
2133 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2134 /*
2135 * task could have been flipped by a concurrent
2136 * perf_event_context_sched_out()
2137 */
2138 task = ctx->task;
d859e29f 2139 goto retry;
fe4b04fa 2140 }
fa289bec 2141
9ed6060d 2142out:
e625cce1 2143 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2144}
dcfce4a0 2145EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2146
26ca5c11 2147int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2148{
2023b359 2149 /*
cdd6c482 2150 * not supported on inherited events
2023b359 2151 */
2e939d1d 2152 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2153 return -EINVAL;
2154
cdd6c482
IM
2155 atomic_add(refresh, &event->event_limit);
2156 perf_event_enable(event);
2023b359
PZ
2157
2158 return 0;
79f14641 2159}
26ca5c11 2160EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2161
5b0311e1
FW
2162static void ctx_sched_out(struct perf_event_context *ctx,
2163 struct perf_cpu_context *cpuctx,
2164 enum event_type_t event_type)
235c7fc7 2165{
cdd6c482 2166 struct perf_event *event;
db24d33e 2167 int is_active = ctx->is_active;
235c7fc7 2168
db24d33e 2169 ctx->is_active &= ~event_type;
cdd6c482 2170 if (likely(!ctx->nr_events))
facc4307
PZ
2171 return;
2172
4af4998b 2173 update_context_time(ctx);
e5d1367f 2174 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2175 if (!ctx->nr_active)
facc4307 2176 return;
5b0311e1 2177
075e0b00 2178 perf_pmu_disable(ctx->pmu);
db24d33e 2179 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2180 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2181 group_sched_out(event, cpuctx, ctx);
9ed6060d 2182 }
889ff015 2183
db24d33e 2184 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2185 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2186 group_sched_out(event, cpuctx, ctx);
9ed6060d 2187 }
1b9a644f 2188 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2189}
2190
564c2b21 2191/*
5a3126d4
PZ
2192 * Test whether two contexts are equivalent, i.e. whether they have both been
2193 * cloned from the same version of the same context.
2194 *
2195 * Equivalence is measured using a generation number in the context that is
2196 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2197 * and list_del_event().
564c2b21 2198 */
cdd6c482
IM
2199static int context_equiv(struct perf_event_context *ctx1,
2200 struct perf_event_context *ctx2)
564c2b21 2201{
5a3126d4
PZ
2202 /* Pinning disables the swap optimization */
2203 if (ctx1->pin_count || ctx2->pin_count)
2204 return 0;
2205
2206 /* If ctx1 is the parent of ctx2 */
2207 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2208 return 1;
2209
2210 /* If ctx2 is the parent of ctx1 */
2211 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2212 return 1;
2213
2214 /*
2215 * If ctx1 and ctx2 have the same parent; we flatten the parent
2216 * hierarchy, see perf_event_init_context().
2217 */
2218 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2219 ctx1->parent_gen == ctx2->parent_gen)
2220 return 1;
2221
2222 /* Unmatched */
2223 return 0;
564c2b21
PM
2224}
2225
cdd6c482
IM
2226static void __perf_event_sync_stat(struct perf_event *event,
2227 struct perf_event *next_event)
bfbd3381
PZ
2228{
2229 u64 value;
2230
cdd6c482 2231 if (!event->attr.inherit_stat)
bfbd3381
PZ
2232 return;
2233
2234 /*
cdd6c482 2235 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2236 * because we're in the middle of a context switch and have IRQs
2237 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2238 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2239 * don't need to use it.
2240 */
cdd6c482
IM
2241 switch (event->state) {
2242 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2243 event->pmu->read(event);
2244 /* fall-through */
bfbd3381 2245
cdd6c482
IM
2246 case PERF_EVENT_STATE_INACTIVE:
2247 update_event_times(event);
bfbd3381
PZ
2248 break;
2249
2250 default:
2251 break;
2252 }
2253
2254 /*
cdd6c482 2255 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2256 * values when we flip the contexts.
2257 */
e7850595
PZ
2258 value = local64_read(&next_event->count);
2259 value = local64_xchg(&event->count, value);
2260 local64_set(&next_event->count, value);
bfbd3381 2261
cdd6c482
IM
2262 swap(event->total_time_enabled, next_event->total_time_enabled);
2263 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2264
bfbd3381 2265 /*
19d2e755 2266 * Since we swizzled the values, update the user visible data too.
bfbd3381 2267 */
cdd6c482
IM
2268 perf_event_update_userpage(event);
2269 perf_event_update_userpage(next_event);
bfbd3381
PZ
2270}
2271
cdd6c482
IM
2272static void perf_event_sync_stat(struct perf_event_context *ctx,
2273 struct perf_event_context *next_ctx)
bfbd3381 2274{
cdd6c482 2275 struct perf_event *event, *next_event;
bfbd3381
PZ
2276
2277 if (!ctx->nr_stat)
2278 return;
2279
02ffdbc8
PZ
2280 update_context_time(ctx);
2281
cdd6c482
IM
2282 event = list_first_entry(&ctx->event_list,
2283 struct perf_event, event_entry);
bfbd3381 2284
cdd6c482
IM
2285 next_event = list_first_entry(&next_ctx->event_list,
2286 struct perf_event, event_entry);
bfbd3381 2287
cdd6c482
IM
2288 while (&event->event_entry != &ctx->event_list &&
2289 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2290
cdd6c482 2291 __perf_event_sync_stat(event, next_event);
bfbd3381 2292
cdd6c482
IM
2293 event = list_next_entry(event, event_entry);
2294 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2295 }
2296}
2297
fe4b04fa
PZ
2298static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2299 struct task_struct *next)
0793a61d 2300{
8dc85d54 2301 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2302 struct perf_event_context *next_ctx;
5a3126d4 2303 struct perf_event_context *parent, *next_parent;
108b02cf 2304 struct perf_cpu_context *cpuctx;
c93f7669 2305 int do_switch = 1;
0793a61d 2306
108b02cf
PZ
2307 if (likely(!ctx))
2308 return;
10989fb2 2309
108b02cf
PZ
2310 cpuctx = __get_cpu_context(ctx);
2311 if (!cpuctx->task_ctx)
0793a61d
TG
2312 return;
2313
c93f7669 2314 rcu_read_lock();
8dc85d54 2315 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2316 if (!next_ctx)
2317 goto unlock;
2318
2319 parent = rcu_dereference(ctx->parent_ctx);
2320 next_parent = rcu_dereference(next_ctx->parent_ctx);
2321
2322 /* If neither context have a parent context; they cannot be clones. */
1f9a7268 2323 if (!parent || !next_parent)
5a3126d4
PZ
2324 goto unlock;
2325
2326 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2327 /*
2328 * Looks like the two contexts are clones, so we might be
2329 * able to optimize the context switch. We lock both
2330 * contexts and check that they are clones under the
2331 * lock (including re-checking that neither has been
2332 * uncloned in the meantime). It doesn't matter which
2333 * order we take the locks because no other cpu could
2334 * be trying to lock both of these tasks.
2335 */
e625cce1
TG
2336 raw_spin_lock(&ctx->lock);
2337 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2338 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2339 /*
2340 * XXX do we need a memory barrier of sorts
cdd6c482 2341 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2342 */
8dc85d54
PZ
2343 task->perf_event_ctxp[ctxn] = next_ctx;
2344 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2345 ctx->task = next;
2346 next_ctx->task = task;
2347 do_switch = 0;
bfbd3381 2348
cdd6c482 2349 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2350 }
e625cce1
TG
2351 raw_spin_unlock(&next_ctx->lock);
2352 raw_spin_unlock(&ctx->lock);
564c2b21 2353 }
5a3126d4 2354unlock:
c93f7669 2355 rcu_read_unlock();
564c2b21 2356
c93f7669 2357 if (do_switch) {
facc4307 2358 raw_spin_lock(&ctx->lock);
5b0311e1 2359 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2360 cpuctx->task_ctx = NULL;
facc4307 2361 raw_spin_unlock(&ctx->lock);
c93f7669 2362 }
0793a61d
TG
2363}
2364
8dc85d54
PZ
2365#define for_each_task_context_nr(ctxn) \
2366 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2367
2368/*
2369 * Called from scheduler to remove the events of the current task,
2370 * with interrupts disabled.
2371 *
2372 * We stop each event and update the event value in event->count.
2373 *
2374 * This does not protect us against NMI, but disable()
2375 * sets the disabled bit in the control field of event _before_
2376 * accessing the event control register. If a NMI hits, then it will
2377 * not restart the event.
2378 */
ab0cce56
JO
2379void __perf_event_task_sched_out(struct task_struct *task,
2380 struct task_struct *next)
8dc85d54
PZ
2381{
2382 int ctxn;
2383
8dc85d54
PZ
2384 for_each_task_context_nr(ctxn)
2385 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2386
2387 /*
2388 * if cgroup events exist on this CPU, then we need
2389 * to check if we have to switch out PMU state.
2390 * cgroup event are system-wide mode only
2391 */
2392 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2393 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2394}
2395
04dc2dbb 2396static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2397{
108b02cf 2398 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2399
a63eaf34
PM
2400 if (!cpuctx->task_ctx)
2401 return;
012b84da
IM
2402
2403 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2404 return;
2405
04dc2dbb 2406 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2407 cpuctx->task_ctx = NULL;
2408}
2409
5b0311e1
FW
2410/*
2411 * Called with IRQs disabled
2412 */
2413static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2414 enum event_type_t event_type)
2415{
2416 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2417}
2418
235c7fc7 2419static void
5b0311e1 2420ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2421 struct perf_cpu_context *cpuctx)
0793a61d 2422{
cdd6c482 2423 struct perf_event *event;
0793a61d 2424
889ff015
FW
2425 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2426 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2427 continue;
5632ab12 2428 if (!event_filter_match(event))
3b6f9e5c
PM
2429 continue;
2430
e5d1367f
SE
2431 /* may need to reset tstamp_enabled */
2432 if (is_cgroup_event(event))
2433 perf_cgroup_mark_enabled(event, ctx);
2434
8c9ed8e1 2435 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2436 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2437
2438 /*
2439 * If this pinned group hasn't been scheduled,
2440 * put it in error state.
2441 */
cdd6c482
IM
2442 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2443 update_group_times(event);
2444 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2445 }
3b6f9e5c 2446 }
5b0311e1
FW
2447}
2448
2449static void
2450ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2451 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2452{
2453 struct perf_event *event;
2454 int can_add_hw = 1;
3b6f9e5c 2455
889ff015
FW
2456 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2457 /* Ignore events in OFF or ERROR state */
2458 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2459 continue;
04289bb9
IM
2460 /*
2461 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2462 * of events:
04289bb9 2463 */
5632ab12 2464 if (!event_filter_match(event))
0793a61d
TG
2465 continue;
2466
e5d1367f
SE
2467 /* may need to reset tstamp_enabled */
2468 if (is_cgroup_event(event))
2469 perf_cgroup_mark_enabled(event, ctx);
2470
9ed6060d 2471 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2472 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2473 can_add_hw = 0;
9ed6060d 2474 }
0793a61d 2475 }
5b0311e1
FW
2476}
2477
2478static void
2479ctx_sched_in(struct perf_event_context *ctx,
2480 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2481 enum event_type_t event_type,
2482 struct task_struct *task)
5b0311e1 2483{
e5d1367f 2484 u64 now;
db24d33e 2485 int is_active = ctx->is_active;
e5d1367f 2486
db24d33e 2487 ctx->is_active |= event_type;
5b0311e1 2488 if (likely(!ctx->nr_events))
facc4307 2489 return;
5b0311e1 2490
e5d1367f
SE
2491 now = perf_clock();
2492 ctx->timestamp = now;
3f7cce3c 2493 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2494 /*
2495 * First go through the list and put on any pinned groups
2496 * in order to give them the best chance of going on.
2497 */
db24d33e 2498 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2499 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2500
2501 /* Then walk through the lower prio flexible groups */
db24d33e 2502 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2503 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2504}
2505
329c0e01 2506static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2507 enum event_type_t event_type,
2508 struct task_struct *task)
329c0e01
FW
2509{
2510 struct perf_event_context *ctx = &cpuctx->ctx;
2511
e5d1367f 2512 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2513}
2514
e5d1367f
SE
2515static void perf_event_context_sched_in(struct perf_event_context *ctx,
2516 struct task_struct *task)
235c7fc7 2517{
108b02cf 2518 struct perf_cpu_context *cpuctx;
235c7fc7 2519
108b02cf 2520 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2521 if (cpuctx->task_ctx == ctx)
2522 return;
2523
facc4307 2524 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2525 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2526 /*
2527 * We want to keep the following priority order:
2528 * cpu pinned (that don't need to move), task pinned,
2529 * cpu flexible, task flexible.
2530 */
2531 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2532
1d5f003f
GN
2533 if (ctx->nr_events)
2534 cpuctx->task_ctx = ctx;
9b33fa6b 2535
86b47c25
GN
2536 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2537
facc4307
PZ
2538 perf_pmu_enable(ctx->pmu);
2539 perf_ctx_unlock(cpuctx, ctx);
2540
b5ab4cd5
PZ
2541 /*
2542 * Since these rotations are per-cpu, we need to ensure the
2543 * cpu-context we got scheduled on is actually rotating.
2544 */
108b02cf 2545 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2546}
2547
d010b332
SE
2548/*
2549 * When sampling the branck stack in system-wide, it may be necessary
2550 * to flush the stack on context switch. This happens when the branch
2551 * stack does not tag its entries with the pid of the current task.
2552 * Otherwise it becomes impossible to associate a branch entry with a
2553 * task. This ambiguity is more likely to appear when the branch stack
2554 * supports priv level filtering and the user sets it to monitor only
2555 * at the user level (which could be a useful measurement in system-wide
2556 * mode). In that case, the risk is high of having a branch stack with
2557 * branch from multiple tasks. Flushing may mean dropping the existing
2558 * entries or stashing them somewhere in the PMU specific code layer.
2559 *
2560 * This function provides the context switch callback to the lower code
2561 * layer. It is invoked ONLY when there is at least one system-wide context
2562 * with at least one active event using taken branch sampling.
2563 */
2564static void perf_branch_stack_sched_in(struct task_struct *prev,
2565 struct task_struct *task)
2566{
2567 struct perf_cpu_context *cpuctx;
2568 struct pmu *pmu;
2569 unsigned long flags;
2570
2571 /* no need to flush branch stack if not changing task */
2572 if (prev == task)
2573 return;
2574
2575 local_irq_save(flags);
2576
2577 rcu_read_lock();
2578
2579 list_for_each_entry_rcu(pmu, &pmus, entry) {
2580 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2581
2582 /*
2583 * check if the context has at least one
2584 * event using PERF_SAMPLE_BRANCH_STACK
2585 */
2586 if (cpuctx->ctx.nr_branch_stack > 0
2587 && pmu->flush_branch_stack) {
2588
d010b332
SE
2589 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2590
2591 perf_pmu_disable(pmu);
2592
2593 pmu->flush_branch_stack();
2594
2595 perf_pmu_enable(pmu);
2596
2597 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2598 }
2599 }
2600
2601 rcu_read_unlock();
2602
2603 local_irq_restore(flags);
2604}
2605
8dc85d54
PZ
2606/*
2607 * Called from scheduler to add the events of the current task
2608 * with interrupts disabled.
2609 *
2610 * We restore the event value and then enable it.
2611 *
2612 * This does not protect us against NMI, but enable()
2613 * sets the enabled bit in the control field of event _before_
2614 * accessing the event control register. If a NMI hits, then it will
2615 * keep the event running.
2616 */
ab0cce56
JO
2617void __perf_event_task_sched_in(struct task_struct *prev,
2618 struct task_struct *task)
8dc85d54
PZ
2619{
2620 struct perf_event_context *ctx;
2621 int ctxn;
2622
2623 for_each_task_context_nr(ctxn) {
2624 ctx = task->perf_event_ctxp[ctxn];
2625 if (likely(!ctx))
2626 continue;
2627
e5d1367f 2628 perf_event_context_sched_in(ctx, task);
8dc85d54 2629 }
e5d1367f
SE
2630 /*
2631 * if cgroup events exist on this CPU, then we need
2632 * to check if we have to switch in PMU state.
2633 * cgroup event are system-wide mode only
2634 */
2635 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2636 perf_cgroup_sched_in(prev, task);
d010b332
SE
2637
2638 /* check for system-wide branch_stack events */
2639 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2640 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2641}
2642
abd50713
PZ
2643static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2644{
2645 u64 frequency = event->attr.sample_freq;
2646 u64 sec = NSEC_PER_SEC;
2647 u64 divisor, dividend;
2648
2649 int count_fls, nsec_fls, frequency_fls, sec_fls;
2650
2651 count_fls = fls64(count);
2652 nsec_fls = fls64(nsec);
2653 frequency_fls = fls64(frequency);
2654 sec_fls = 30;
2655
2656 /*
2657 * We got @count in @nsec, with a target of sample_freq HZ
2658 * the target period becomes:
2659 *
2660 * @count * 10^9
2661 * period = -------------------
2662 * @nsec * sample_freq
2663 *
2664 */
2665
2666 /*
2667 * Reduce accuracy by one bit such that @a and @b converge
2668 * to a similar magnitude.
2669 */
fe4b04fa 2670#define REDUCE_FLS(a, b) \
abd50713
PZ
2671do { \
2672 if (a##_fls > b##_fls) { \
2673 a >>= 1; \
2674 a##_fls--; \
2675 } else { \
2676 b >>= 1; \
2677 b##_fls--; \
2678 } \
2679} while (0)
2680
2681 /*
2682 * Reduce accuracy until either term fits in a u64, then proceed with
2683 * the other, so that finally we can do a u64/u64 division.
2684 */
2685 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2686 REDUCE_FLS(nsec, frequency);
2687 REDUCE_FLS(sec, count);
2688 }
2689
2690 if (count_fls + sec_fls > 64) {
2691 divisor = nsec * frequency;
2692
2693 while (count_fls + sec_fls > 64) {
2694 REDUCE_FLS(count, sec);
2695 divisor >>= 1;
2696 }
2697
2698 dividend = count * sec;
2699 } else {
2700 dividend = count * sec;
2701
2702 while (nsec_fls + frequency_fls > 64) {
2703 REDUCE_FLS(nsec, frequency);
2704 dividend >>= 1;
2705 }
2706
2707 divisor = nsec * frequency;
2708 }
2709
f6ab91ad
PZ
2710 if (!divisor)
2711 return dividend;
2712
abd50713
PZ
2713 return div64_u64(dividend, divisor);
2714}
2715
e050e3f0
SE
2716static DEFINE_PER_CPU(int, perf_throttled_count);
2717static DEFINE_PER_CPU(u64, perf_throttled_seq);
2718
f39d47ff 2719static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2720{
cdd6c482 2721 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2722 s64 period, sample_period;
bd2b5b12
PZ
2723 s64 delta;
2724
abd50713 2725 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2726
2727 delta = (s64)(period - hwc->sample_period);
2728 delta = (delta + 7) / 8; /* low pass filter */
2729
2730 sample_period = hwc->sample_period + delta;
2731
2732 if (!sample_period)
2733 sample_period = 1;
2734
bd2b5b12 2735 hwc->sample_period = sample_period;
abd50713 2736
e7850595 2737 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2738 if (disable)
2739 event->pmu->stop(event, PERF_EF_UPDATE);
2740
e7850595 2741 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2742
2743 if (disable)
2744 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2745 }
bd2b5b12
PZ
2746}
2747
e050e3f0
SE
2748/*
2749 * combine freq adjustment with unthrottling to avoid two passes over the
2750 * events. At the same time, make sure, having freq events does not change
2751 * the rate of unthrottling as that would introduce bias.
2752 */
2753static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2754 int needs_unthr)
60db5e09 2755{
cdd6c482
IM
2756 struct perf_event *event;
2757 struct hw_perf_event *hwc;
e050e3f0 2758 u64 now, period = TICK_NSEC;
abd50713 2759 s64 delta;
60db5e09 2760
e050e3f0
SE
2761 /*
2762 * only need to iterate over all events iff:
2763 * - context have events in frequency mode (needs freq adjust)
2764 * - there are events to unthrottle on this cpu
2765 */
2766 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2767 return;
2768
e050e3f0 2769 raw_spin_lock(&ctx->lock);
f39d47ff 2770 perf_pmu_disable(ctx->pmu);
e050e3f0 2771
03541f8b 2772 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2773 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2774 continue;
2775
5632ab12 2776 if (!event_filter_match(event))
5d27c23d
PZ
2777 continue;
2778
44377277
AS
2779 perf_pmu_disable(event->pmu);
2780
cdd6c482 2781 hwc = &event->hw;
6a24ed6c 2782
ae23bff1 2783 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2784 hwc->interrupts = 0;
cdd6c482 2785 perf_log_throttle(event, 1);
a4eaf7f1 2786 event->pmu->start(event, 0);
a78ac325
PZ
2787 }
2788
cdd6c482 2789 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2790 goto next;
60db5e09 2791
e050e3f0
SE
2792 /*
2793 * stop the event and update event->count
2794 */
2795 event->pmu->stop(event, PERF_EF_UPDATE);
2796
e7850595 2797 now = local64_read(&event->count);
abd50713
PZ
2798 delta = now - hwc->freq_count_stamp;
2799 hwc->freq_count_stamp = now;
60db5e09 2800
e050e3f0
SE
2801 /*
2802 * restart the event
2803 * reload only if value has changed
f39d47ff
SE
2804 * we have stopped the event so tell that
2805 * to perf_adjust_period() to avoid stopping it
2806 * twice.
e050e3f0 2807 */
abd50713 2808 if (delta > 0)
f39d47ff 2809 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2810
2811 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
2812 next:
2813 perf_pmu_enable(event->pmu);
60db5e09 2814 }
e050e3f0 2815
f39d47ff 2816 perf_pmu_enable(ctx->pmu);
e050e3f0 2817 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2818}
2819
235c7fc7 2820/*
cdd6c482 2821 * Round-robin a context's events:
235c7fc7 2822 */
cdd6c482 2823static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2824{
dddd3379
TG
2825 /*
2826 * Rotate the first entry last of non-pinned groups. Rotation might be
2827 * disabled by the inheritance code.
2828 */
2829 if (!ctx->rotate_disable)
2830 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2831}
2832
b5ab4cd5 2833/*
e9d2b064
PZ
2834 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2835 * because they're strictly cpu affine and rotate_start is called with IRQs
2836 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2837 */
9e630205 2838static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2839{
8dc85d54 2840 struct perf_event_context *ctx = NULL;
e050e3f0 2841 int rotate = 0, remove = 1;
7fc23a53 2842
b5ab4cd5 2843 if (cpuctx->ctx.nr_events) {
e9d2b064 2844 remove = 0;
b5ab4cd5
PZ
2845 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2846 rotate = 1;
2847 }
235c7fc7 2848
8dc85d54 2849 ctx = cpuctx->task_ctx;
b5ab4cd5 2850 if (ctx && ctx->nr_events) {
e9d2b064 2851 remove = 0;
b5ab4cd5
PZ
2852 if (ctx->nr_events != ctx->nr_active)
2853 rotate = 1;
2854 }
9717e6cd 2855
e050e3f0 2856 if (!rotate)
0f5a2601
PZ
2857 goto done;
2858
facc4307 2859 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2860 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2861
e050e3f0
SE
2862 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2863 if (ctx)
2864 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2865
e050e3f0
SE
2866 rotate_ctx(&cpuctx->ctx);
2867 if (ctx)
2868 rotate_ctx(ctx);
235c7fc7 2869
e050e3f0 2870 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2871
0f5a2601
PZ
2872 perf_pmu_enable(cpuctx->ctx.pmu);
2873 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2874done:
e9d2b064
PZ
2875 if (remove)
2876 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2877
2878 return rotate;
e9d2b064
PZ
2879}
2880
026249ef
FW
2881#ifdef CONFIG_NO_HZ_FULL
2882bool perf_event_can_stop_tick(void)
2883{
948b26b6 2884 if (atomic_read(&nr_freq_events) ||
d84153d6 2885 __this_cpu_read(perf_throttled_count))
026249ef 2886 return false;
d84153d6
FW
2887 else
2888 return true;
026249ef
FW
2889}
2890#endif
2891
e9d2b064
PZ
2892void perf_event_task_tick(void)
2893{
2894 struct list_head *head = &__get_cpu_var(rotation_list);
2895 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2896 struct perf_event_context *ctx;
2897 int throttled;
b5ab4cd5 2898
e9d2b064
PZ
2899 WARN_ON(!irqs_disabled());
2900
e050e3f0
SE
2901 __this_cpu_inc(perf_throttled_seq);
2902 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2903
e9d2b064 2904 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2905 ctx = &cpuctx->ctx;
2906 perf_adjust_freq_unthr_context(ctx, throttled);
2907
2908 ctx = cpuctx->task_ctx;
2909 if (ctx)
2910 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2911 }
0793a61d
TG
2912}
2913
889ff015
FW
2914static int event_enable_on_exec(struct perf_event *event,
2915 struct perf_event_context *ctx)
2916{
2917 if (!event->attr.enable_on_exec)
2918 return 0;
2919
2920 event->attr.enable_on_exec = 0;
2921 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2922 return 0;
2923
1d9b482e 2924 __perf_event_mark_enabled(event);
889ff015
FW
2925
2926 return 1;
2927}
2928
57e7986e 2929/*
cdd6c482 2930 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2931 * This expects task == current.
2932 */
8dc85d54 2933static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2934{
cdd6c482 2935 struct perf_event *event;
57e7986e
PM
2936 unsigned long flags;
2937 int enabled = 0;
889ff015 2938 int ret;
57e7986e
PM
2939
2940 local_irq_save(flags);
cdd6c482 2941 if (!ctx || !ctx->nr_events)
57e7986e
PM
2942 goto out;
2943
e566b76e
SE
2944 /*
2945 * We must ctxsw out cgroup events to avoid conflict
2946 * when invoking perf_task_event_sched_in() later on
2947 * in this function. Otherwise we end up trying to
2948 * ctxswin cgroup events which are already scheduled
2949 * in.
2950 */
a8d757ef 2951 perf_cgroup_sched_out(current, NULL);
57e7986e 2952
e625cce1 2953 raw_spin_lock(&ctx->lock);
04dc2dbb 2954 task_ctx_sched_out(ctx);
57e7986e 2955
b79387ef 2956 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2957 ret = event_enable_on_exec(event, ctx);
2958 if (ret)
2959 enabled = 1;
57e7986e
PM
2960 }
2961
2962 /*
cdd6c482 2963 * Unclone this context if we enabled any event.
57e7986e 2964 */
71a851b4
PZ
2965 if (enabled)
2966 unclone_ctx(ctx);
57e7986e 2967
e625cce1 2968 raw_spin_unlock(&ctx->lock);
57e7986e 2969
e566b76e
SE
2970 /*
2971 * Also calls ctxswin for cgroup events, if any:
2972 */
e5d1367f 2973 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2974out:
57e7986e
PM
2975 local_irq_restore(flags);
2976}
2977
e041e328
PZ
2978void perf_event_exec(void)
2979{
2980 struct perf_event_context *ctx;
2981 int ctxn;
2982
2983 rcu_read_lock();
2984 for_each_task_context_nr(ctxn) {
2985 ctx = current->perf_event_ctxp[ctxn];
2986 if (!ctx)
2987 continue;
2988
2989 perf_event_enable_on_exec(ctx);
2990 }
2991 rcu_read_unlock();
2992}
2993
0793a61d 2994/*
cdd6c482 2995 * Cross CPU call to read the hardware event
0793a61d 2996 */
cdd6c482 2997static void __perf_event_read(void *info)
0793a61d 2998{
cdd6c482
IM
2999 struct perf_event *event = info;
3000 struct perf_event_context *ctx = event->ctx;
108b02cf 3001 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3002
e1ac3614
PM
3003 /*
3004 * If this is a task context, we need to check whether it is
3005 * the current task context of this cpu. If not it has been
3006 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3007 * event->count would have been updated to a recent sample
3008 * when the event was scheduled out.
e1ac3614
PM
3009 */
3010 if (ctx->task && cpuctx->task_ctx != ctx)
3011 return;
3012
e625cce1 3013 raw_spin_lock(&ctx->lock);
e5d1367f 3014 if (ctx->is_active) {
542e72fc 3015 update_context_time(ctx);
e5d1367f
SE
3016 update_cgrp_time_from_event(event);
3017 }
cdd6c482 3018 update_event_times(event);
542e72fc
PZ
3019 if (event->state == PERF_EVENT_STATE_ACTIVE)
3020 event->pmu->read(event);
e625cce1 3021 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3022}
3023
b5e58793
PZ
3024static inline u64 perf_event_count(struct perf_event *event)
3025{
e7850595 3026 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3027}
3028
cdd6c482 3029static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3030{
3031 /*
cdd6c482
IM
3032 * If event is enabled and currently active on a CPU, update the
3033 * value in the event structure:
0793a61d 3034 */
cdd6c482
IM
3035 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3036 smp_call_function_single(event->oncpu,
3037 __perf_event_read, event, 1);
3038 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3039 struct perf_event_context *ctx = event->ctx;
3040 unsigned long flags;
3041
e625cce1 3042 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3043 /*
3044 * may read while context is not active
3045 * (e.g., thread is blocked), in that case
3046 * we cannot update context time
3047 */
e5d1367f 3048 if (ctx->is_active) {
c530ccd9 3049 update_context_time(ctx);
e5d1367f
SE
3050 update_cgrp_time_from_event(event);
3051 }
cdd6c482 3052 update_event_times(event);
e625cce1 3053 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3054 }
3055
b5e58793 3056 return perf_event_count(event);
0793a61d
TG
3057}
3058
a63eaf34 3059/*
cdd6c482 3060 * Initialize the perf_event context in a task_struct:
a63eaf34 3061 */
eb184479 3062static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3063{
e625cce1 3064 raw_spin_lock_init(&ctx->lock);
a63eaf34 3065 mutex_init(&ctx->mutex);
889ff015
FW
3066 INIT_LIST_HEAD(&ctx->pinned_groups);
3067 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3068 INIT_LIST_HEAD(&ctx->event_list);
3069 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3070}
3071
3072static struct perf_event_context *
3073alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3074{
3075 struct perf_event_context *ctx;
3076
3077 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3078 if (!ctx)
3079 return NULL;
3080
3081 __perf_event_init_context(ctx);
3082 if (task) {
3083 ctx->task = task;
3084 get_task_struct(task);
0793a61d 3085 }
eb184479
PZ
3086 ctx->pmu = pmu;
3087
3088 return ctx;
a63eaf34
PM
3089}
3090
2ebd4ffb
MH
3091static struct task_struct *
3092find_lively_task_by_vpid(pid_t vpid)
3093{
3094 struct task_struct *task;
3095 int err;
0793a61d
TG
3096
3097 rcu_read_lock();
2ebd4ffb 3098 if (!vpid)
0793a61d
TG
3099 task = current;
3100 else
2ebd4ffb 3101 task = find_task_by_vpid(vpid);
0793a61d
TG
3102 if (task)
3103 get_task_struct(task);
3104 rcu_read_unlock();
3105
3106 if (!task)
3107 return ERR_PTR(-ESRCH);
3108
0793a61d 3109 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3110 err = -EACCES;
3111 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3112 goto errout;
3113
2ebd4ffb
MH
3114 return task;
3115errout:
3116 put_task_struct(task);
3117 return ERR_PTR(err);
3118
3119}
3120
fe4b04fa
PZ
3121/*
3122 * Returns a matching context with refcount and pincount.
3123 */
108b02cf 3124static struct perf_event_context *
38a81da2 3125find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3126{
cdd6c482 3127 struct perf_event_context *ctx;
22a4f650 3128 struct perf_cpu_context *cpuctx;
25346b93 3129 unsigned long flags;
8dc85d54 3130 int ctxn, err;
0793a61d 3131
22a4ec72 3132 if (!task) {
cdd6c482 3133 /* Must be root to operate on a CPU event: */
0764771d 3134 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3135 return ERR_PTR(-EACCES);
3136
0793a61d 3137 /*
cdd6c482 3138 * We could be clever and allow to attach a event to an
0793a61d
TG
3139 * offline CPU and activate it when the CPU comes up, but
3140 * that's for later.
3141 */
f6325e30 3142 if (!cpu_online(cpu))
0793a61d
TG
3143 return ERR_PTR(-ENODEV);
3144
108b02cf 3145 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3146 ctx = &cpuctx->ctx;
c93f7669 3147 get_ctx(ctx);
fe4b04fa 3148 ++ctx->pin_count;
0793a61d 3149
0793a61d
TG
3150 return ctx;
3151 }
3152
8dc85d54
PZ
3153 err = -EINVAL;
3154 ctxn = pmu->task_ctx_nr;
3155 if (ctxn < 0)
3156 goto errout;
3157
9ed6060d 3158retry:
8dc85d54 3159 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3160 if (ctx) {
71a851b4 3161 unclone_ctx(ctx);
fe4b04fa 3162 ++ctx->pin_count;
e625cce1 3163 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 3164 } else {
eb184479 3165 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3166 err = -ENOMEM;
3167 if (!ctx)
3168 goto errout;
eb184479 3169
dbe08d82
ON
3170 err = 0;
3171 mutex_lock(&task->perf_event_mutex);
3172 /*
3173 * If it has already passed perf_event_exit_task().
3174 * we must see PF_EXITING, it takes this mutex too.
3175 */
3176 if (task->flags & PF_EXITING)
3177 err = -ESRCH;
3178 else if (task->perf_event_ctxp[ctxn])
3179 err = -EAGAIN;
fe4b04fa 3180 else {
9137fb28 3181 get_ctx(ctx);
fe4b04fa 3182 ++ctx->pin_count;
dbe08d82 3183 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3184 }
dbe08d82
ON
3185 mutex_unlock(&task->perf_event_mutex);
3186
3187 if (unlikely(err)) {
9137fb28 3188 put_ctx(ctx);
dbe08d82
ON
3189
3190 if (err == -EAGAIN)
3191 goto retry;
3192 goto errout;
a63eaf34
PM
3193 }
3194 }
3195
0793a61d 3196 return ctx;
c93f7669 3197
9ed6060d 3198errout:
c93f7669 3199 return ERR_PTR(err);
0793a61d
TG
3200}
3201
6fb2915d
LZ
3202static void perf_event_free_filter(struct perf_event *event);
3203
cdd6c482 3204static void free_event_rcu(struct rcu_head *head)
592903cd 3205{
cdd6c482 3206 struct perf_event *event;
592903cd 3207
cdd6c482
IM
3208 event = container_of(head, struct perf_event, rcu_head);
3209 if (event->ns)
3210 put_pid_ns(event->ns);
6fb2915d 3211 perf_event_free_filter(event);
cdd6c482 3212 kfree(event);
592903cd
PZ
3213}
3214
76369139 3215static void ring_buffer_put(struct ring_buffer *rb);
b69cf536
PZ
3216static void ring_buffer_attach(struct perf_event *event,
3217 struct ring_buffer *rb);
925d519a 3218
4beb31f3 3219static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3220{
4beb31f3
FW
3221 if (event->parent)
3222 return;
3223
3224 if (has_branch_stack(event)) {
3225 if (!(event->attach_state & PERF_ATTACH_TASK))
3226 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3227 }
3228 if (is_cgroup_event(event))
3229 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3230}
925d519a 3231
4beb31f3
FW
3232static void unaccount_event(struct perf_event *event)
3233{
3234 if (event->parent)
3235 return;
3236
3237 if (event->attach_state & PERF_ATTACH_TASK)
3238 static_key_slow_dec_deferred(&perf_sched_events);
3239 if (event->attr.mmap || event->attr.mmap_data)
3240 atomic_dec(&nr_mmap_events);
3241 if (event->attr.comm)
3242 atomic_dec(&nr_comm_events);
3243 if (event->attr.task)
3244 atomic_dec(&nr_task_events);
948b26b6
FW
3245 if (event->attr.freq)
3246 atomic_dec(&nr_freq_events);
4beb31f3
FW
3247 if (is_cgroup_event(event))
3248 static_key_slow_dec_deferred(&perf_sched_events);
3249 if (has_branch_stack(event))
3250 static_key_slow_dec_deferred(&perf_sched_events);
3251
3252 unaccount_event_cpu(event, event->cpu);
3253}
925d519a 3254
766d6c07
FW
3255static void __free_event(struct perf_event *event)
3256{
cdd6c482 3257 if (!event->parent) {
927c7a9e
FW
3258 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3259 put_callchain_buffers();
f344011c 3260 }
9ee318a7 3261
766d6c07
FW
3262 if (event->destroy)
3263 event->destroy(event);
3264
3265 if (event->ctx)
3266 put_ctx(event->ctx);
3267
c464c76e
YZ
3268 if (event->pmu)
3269 module_put(event->pmu->module);
3270
766d6c07
FW
3271 call_rcu(&event->rcu_head, free_event_rcu);
3272}
683ede43
PZ
3273
3274static void _free_event(struct perf_event *event)
f1600952 3275{
e360adbe 3276 irq_work_sync(&event->pending);
925d519a 3277
4beb31f3 3278 unaccount_event(event);
9ee318a7 3279
76369139 3280 if (event->rb) {
9bb5d40c
PZ
3281 /*
3282 * Can happen when we close an event with re-directed output.
3283 *
3284 * Since we have a 0 refcount, perf_mmap_close() will skip
3285 * over us; possibly making our ring_buffer_put() the last.
3286 */
3287 mutex_lock(&event->mmap_mutex);
b69cf536 3288 ring_buffer_attach(event, NULL);
9bb5d40c 3289 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3290 }
3291
e5d1367f
SE
3292 if (is_cgroup_event(event))
3293 perf_detach_cgroup(event);
3294
766d6c07 3295 __free_event(event);
f1600952
PZ
3296}
3297
683ede43
PZ
3298/*
3299 * Used to free events which have a known refcount of 1, such as in error paths
3300 * where the event isn't exposed yet and inherited events.
3301 */
3302static void free_event(struct perf_event *event)
0793a61d 3303{
683ede43
PZ
3304 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3305 "unexpected event refcount: %ld; ptr=%p\n",
3306 atomic_long_read(&event->refcount), event)) {
3307 /* leak to avoid use-after-free */
3308 return;
3309 }
0793a61d 3310
683ede43 3311 _free_event(event);
0793a61d
TG
3312}
3313
a66a3052
PZ
3314/*
3315 * Called when the last reference to the file is gone.
3316 */
a6fa941d 3317static void put_event(struct perf_event *event)
fb0459d7 3318{
683ede43 3319 struct perf_event_context *ctx = event->ctx;
8882135b 3320 struct task_struct *owner;
fb0459d7 3321
a6fa941d
AV
3322 if (!atomic_long_dec_and_test(&event->refcount))
3323 return;
fb0459d7 3324
8882135b
PZ
3325 rcu_read_lock();
3326 owner = ACCESS_ONCE(event->owner);
3327 /*
3328 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3329 * !owner it means the list deletion is complete and we can indeed
3330 * free this event, otherwise we need to serialize on
3331 * owner->perf_event_mutex.
3332 */
3333 smp_read_barrier_depends();
3334 if (owner) {
3335 /*
3336 * Since delayed_put_task_struct() also drops the last
3337 * task reference we can safely take a new reference
3338 * while holding the rcu_read_lock().
3339 */
3340 get_task_struct(owner);
3341 }
3342 rcu_read_unlock();
3343
3344 if (owner) {
3345 mutex_lock(&owner->perf_event_mutex);
3346 /*
3347 * We have to re-check the event->owner field, if it is cleared
3348 * we raced with perf_event_exit_task(), acquiring the mutex
3349 * ensured they're done, and we can proceed with freeing the
3350 * event.
3351 */
3352 if (event->owner)
3353 list_del_init(&event->owner_entry);
3354 mutex_unlock(&owner->perf_event_mutex);
3355 put_task_struct(owner);
3356 }
3357
683ede43
PZ
3358 WARN_ON_ONCE(ctx->parent_ctx);
3359 /*
3360 * There are two ways this annotation is useful:
3361 *
3362 * 1) there is a lock recursion from perf_event_exit_task
3363 * see the comment there.
3364 *
3365 * 2) there is a lock-inversion with mmap_sem through
3366 * perf_event_read_group(), which takes faults while
3367 * holding ctx->mutex, however this is called after
3368 * the last filedesc died, so there is no possibility
3369 * to trigger the AB-BA case.
3370 */
3371 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3372 perf_remove_from_context(event, true);
3373 mutex_unlock(&ctx->mutex);
3374
3375 _free_event(event);
a6fa941d
AV
3376}
3377
683ede43
PZ
3378int perf_event_release_kernel(struct perf_event *event)
3379{
3380 put_event(event);
3381 return 0;
3382}
3383EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3384
a6fa941d
AV
3385static int perf_release(struct inode *inode, struct file *file)
3386{
3387 put_event(file->private_data);
3388 return 0;
fb0459d7 3389}
fb0459d7 3390
59ed446f 3391u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3392{
cdd6c482 3393 struct perf_event *child;
e53c0994
PZ
3394 u64 total = 0;
3395
59ed446f
PZ
3396 *enabled = 0;
3397 *running = 0;
3398
6f10581a 3399 mutex_lock(&event->child_mutex);
cdd6c482 3400 total += perf_event_read(event);
59ed446f
PZ
3401 *enabled += event->total_time_enabled +
3402 atomic64_read(&event->child_total_time_enabled);
3403 *running += event->total_time_running +
3404 atomic64_read(&event->child_total_time_running);
3405
3406 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3407 total += perf_event_read(child);
59ed446f
PZ
3408 *enabled += child->total_time_enabled;
3409 *running += child->total_time_running;
3410 }
6f10581a 3411 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3412
3413 return total;
3414}
fb0459d7 3415EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3416
cdd6c482 3417static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3418 u64 read_format, char __user *buf)
3419{
cdd6c482 3420 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3421 int n = 0, size = 0, ret = -EFAULT;
3422 struct perf_event_context *ctx = leader->ctx;
abf4868b 3423 u64 values[5];
59ed446f 3424 u64 count, enabled, running;
abf4868b 3425
6f10581a 3426 mutex_lock(&ctx->mutex);
59ed446f 3427 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3428
3429 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3430 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3431 values[n++] = enabled;
3432 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3433 values[n++] = running;
abf4868b
PZ
3434 values[n++] = count;
3435 if (read_format & PERF_FORMAT_ID)
3436 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3437
3438 size = n * sizeof(u64);
3439
3440 if (copy_to_user(buf, values, size))
6f10581a 3441 goto unlock;
3dab77fb 3442
6f10581a 3443 ret = size;
3dab77fb 3444
65abc865 3445 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3446 n = 0;
3dab77fb 3447
59ed446f 3448 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3449 if (read_format & PERF_FORMAT_ID)
3450 values[n++] = primary_event_id(sub);
3451
3452 size = n * sizeof(u64);
3453
184d3da8 3454 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3455 ret = -EFAULT;
3456 goto unlock;
3457 }
abf4868b
PZ
3458
3459 ret += size;
3dab77fb 3460 }
6f10581a
PZ
3461unlock:
3462 mutex_unlock(&ctx->mutex);
3dab77fb 3463
abf4868b 3464 return ret;
3dab77fb
PZ
3465}
3466
cdd6c482 3467static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3468 u64 read_format, char __user *buf)
3469{
59ed446f 3470 u64 enabled, running;
3dab77fb
PZ
3471 u64 values[4];
3472 int n = 0;
3473
59ed446f
PZ
3474 values[n++] = perf_event_read_value(event, &enabled, &running);
3475 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3476 values[n++] = enabled;
3477 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3478 values[n++] = running;
3dab77fb 3479 if (read_format & PERF_FORMAT_ID)
cdd6c482 3480 values[n++] = primary_event_id(event);
3dab77fb
PZ
3481
3482 if (copy_to_user(buf, values, n * sizeof(u64)))
3483 return -EFAULT;
3484
3485 return n * sizeof(u64);
3486}
3487
0793a61d 3488/*
cdd6c482 3489 * Read the performance event - simple non blocking version for now
0793a61d
TG
3490 */
3491static ssize_t
cdd6c482 3492perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3493{
cdd6c482 3494 u64 read_format = event->attr.read_format;
3dab77fb 3495 int ret;
0793a61d 3496
3b6f9e5c 3497 /*
cdd6c482 3498 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3499 * error state (i.e. because it was pinned but it couldn't be
3500 * scheduled on to the CPU at some point).
3501 */
cdd6c482 3502 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3503 return 0;
3504
c320c7b7 3505 if (count < event->read_size)
3dab77fb
PZ
3506 return -ENOSPC;
3507
cdd6c482 3508 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3509 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3510 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3511 else
cdd6c482 3512 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3513
3dab77fb 3514 return ret;
0793a61d
TG
3515}
3516
0793a61d
TG
3517static ssize_t
3518perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3519{
cdd6c482 3520 struct perf_event *event = file->private_data;
0793a61d 3521
cdd6c482 3522 return perf_read_hw(event, buf, count);
0793a61d
TG
3523}
3524
3525static unsigned int perf_poll(struct file *file, poll_table *wait)
3526{
cdd6c482 3527 struct perf_event *event = file->private_data;
76369139 3528 struct ring_buffer *rb;
c33a0bc4 3529 unsigned int events = POLL_HUP;
c7138f37 3530
10c6db11 3531 /*
9bb5d40c
PZ
3532 * Pin the event->rb by taking event->mmap_mutex; otherwise
3533 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3534 */
3535 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3536 rb = event->rb;
3537 if (rb)
76369139 3538 events = atomic_xchg(&rb->poll, 0);
10c6db11
PZ
3539 mutex_unlock(&event->mmap_mutex);
3540
cdd6c482 3541 poll_wait(file, &event->waitq, wait);
0793a61d 3542
0793a61d
TG
3543 return events;
3544}
3545
cdd6c482 3546static void perf_event_reset(struct perf_event *event)
6de6a7b9 3547{
cdd6c482 3548 (void)perf_event_read(event);
e7850595 3549 local64_set(&event->count, 0);
cdd6c482 3550 perf_event_update_userpage(event);
3df5edad
PZ
3551}
3552
c93f7669 3553/*
cdd6c482
IM
3554 * Holding the top-level event's child_mutex means that any
3555 * descendant process that has inherited this event will block
3556 * in sync_child_event if it goes to exit, thus satisfying the
3557 * task existence requirements of perf_event_enable/disable.
c93f7669 3558 */
cdd6c482
IM
3559static void perf_event_for_each_child(struct perf_event *event,
3560 void (*func)(struct perf_event *))
3df5edad 3561{
cdd6c482 3562 struct perf_event *child;
3df5edad 3563
cdd6c482
IM
3564 WARN_ON_ONCE(event->ctx->parent_ctx);
3565 mutex_lock(&event->child_mutex);
3566 func(event);
3567 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3568 func(child);
cdd6c482 3569 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3570}
3571
cdd6c482
IM
3572static void perf_event_for_each(struct perf_event *event,
3573 void (*func)(struct perf_event *))
3df5edad 3574{
cdd6c482
IM
3575 struct perf_event_context *ctx = event->ctx;
3576 struct perf_event *sibling;
3df5edad 3577
75f937f2
PZ
3578 WARN_ON_ONCE(ctx->parent_ctx);
3579 mutex_lock(&ctx->mutex);
cdd6c482 3580 event = event->group_leader;
75f937f2 3581
cdd6c482 3582 perf_event_for_each_child(event, func);
cdd6c482 3583 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3584 perf_event_for_each_child(sibling, func);
75f937f2 3585 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3586}
3587
cdd6c482 3588static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3589{
cdd6c482 3590 struct perf_event_context *ctx = event->ctx;
bad7192b 3591 int ret = 0, active;
08247e31
PZ
3592 u64 value;
3593
6c7e550f 3594 if (!is_sampling_event(event))
08247e31
PZ
3595 return -EINVAL;
3596
ad0cf347 3597 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3598 return -EFAULT;
3599
3600 if (!value)
3601 return -EINVAL;
3602
e625cce1 3603 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3604 if (event->attr.freq) {
3605 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3606 ret = -EINVAL;
3607 goto unlock;
3608 }
3609
cdd6c482 3610 event->attr.sample_freq = value;
08247e31 3611 } else {
cdd6c482
IM
3612 event->attr.sample_period = value;
3613 event->hw.sample_period = value;
08247e31 3614 }
bad7192b
PZ
3615
3616 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3617 if (active) {
3618 perf_pmu_disable(ctx->pmu);
3619 event->pmu->stop(event, PERF_EF_UPDATE);
3620 }
3621
3622 local64_set(&event->hw.period_left, 0);
3623
3624 if (active) {
3625 event->pmu->start(event, PERF_EF_RELOAD);
3626 perf_pmu_enable(ctx->pmu);
3627 }
3628
08247e31 3629unlock:
e625cce1 3630 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3631
3632 return ret;
3633}
3634
ac9721f3
PZ
3635static const struct file_operations perf_fops;
3636
2903ff01 3637static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3638{
2903ff01
AV
3639 struct fd f = fdget(fd);
3640 if (!f.file)
3641 return -EBADF;
ac9721f3 3642
2903ff01
AV
3643 if (f.file->f_op != &perf_fops) {
3644 fdput(f);
3645 return -EBADF;
ac9721f3 3646 }
2903ff01
AV
3647 *p = f;
3648 return 0;
ac9721f3
PZ
3649}
3650
3651static int perf_event_set_output(struct perf_event *event,
3652 struct perf_event *output_event);
6fb2915d 3653static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3654
d859e29f
PM
3655static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3656{
cdd6c482
IM
3657 struct perf_event *event = file->private_data;
3658 void (*func)(struct perf_event *);
3df5edad 3659 u32 flags = arg;
d859e29f
PM
3660
3661 switch (cmd) {
cdd6c482
IM
3662 case PERF_EVENT_IOC_ENABLE:
3663 func = perf_event_enable;
d859e29f 3664 break;
cdd6c482
IM
3665 case PERF_EVENT_IOC_DISABLE:
3666 func = perf_event_disable;
79f14641 3667 break;
cdd6c482
IM
3668 case PERF_EVENT_IOC_RESET:
3669 func = perf_event_reset;
6de6a7b9 3670 break;
3df5edad 3671
cdd6c482
IM
3672 case PERF_EVENT_IOC_REFRESH:
3673 return perf_event_refresh(event, arg);
08247e31 3674
cdd6c482
IM
3675 case PERF_EVENT_IOC_PERIOD:
3676 return perf_event_period(event, (u64 __user *)arg);
08247e31 3677
cf4957f1
JO
3678 case PERF_EVENT_IOC_ID:
3679 {
3680 u64 id = primary_event_id(event);
3681
3682 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3683 return -EFAULT;
3684 return 0;
3685 }
3686
cdd6c482 3687 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3688 {
ac9721f3 3689 int ret;
ac9721f3 3690 if (arg != -1) {
2903ff01
AV
3691 struct perf_event *output_event;
3692 struct fd output;
3693 ret = perf_fget_light(arg, &output);
3694 if (ret)
3695 return ret;
3696 output_event = output.file->private_data;
3697 ret = perf_event_set_output(event, output_event);
3698 fdput(output);
3699 } else {
3700 ret = perf_event_set_output(event, NULL);
ac9721f3 3701 }
ac9721f3
PZ
3702 return ret;
3703 }
a4be7c27 3704
6fb2915d
LZ
3705 case PERF_EVENT_IOC_SET_FILTER:
3706 return perf_event_set_filter(event, (void __user *)arg);
3707
d859e29f 3708 default:
3df5edad 3709 return -ENOTTY;
d859e29f 3710 }
3df5edad
PZ
3711
3712 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3713 perf_event_for_each(event, func);
3df5edad 3714 else
cdd6c482 3715 perf_event_for_each_child(event, func);
3df5edad
PZ
3716
3717 return 0;
d859e29f
PM
3718}
3719
cdd6c482 3720int perf_event_task_enable(void)
771d7cde 3721{
cdd6c482 3722 struct perf_event *event;
771d7cde 3723
cdd6c482
IM
3724 mutex_lock(&current->perf_event_mutex);
3725 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3726 perf_event_for_each_child(event, perf_event_enable);
3727 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3728
3729 return 0;
3730}
3731
cdd6c482 3732int perf_event_task_disable(void)
771d7cde 3733{
cdd6c482 3734 struct perf_event *event;
771d7cde 3735
cdd6c482
IM
3736 mutex_lock(&current->perf_event_mutex);
3737 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3738 perf_event_for_each_child(event, perf_event_disable);
3739 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3740
3741 return 0;
3742}
3743
cdd6c482 3744static int perf_event_index(struct perf_event *event)
194002b2 3745{
a4eaf7f1
PZ
3746 if (event->hw.state & PERF_HES_STOPPED)
3747 return 0;
3748
cdd6c482 3749 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3750 return 0;
3751
35edc2a5 3752 return event->pmu->event_idx(event);
194002b2
PZ
3753}
3754
c4794295 3755static void calc_timer_values(struct perf_event *event,
e3f3541c 3756 u64 *now,
7f310a5d
EM
3757 u64 *enabled,
3758 u64 *running)
c4794295 3759{
e3f3541c 3760 u64 ctx_time;
c4794295 3761
e3f3541c
PZ
3762 *now = perf_clock();
3763 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3764 *enabled = ctx_time - event->tstamp_enabled;
3765 *running = ctx_time - event->tstamp_running;
3766}
3767
fa731587
PZ
3768static void perf_event_init_userpage(struct perf_event *event)
3769{
3770 struct perf_event_mmap_page *userpg;
3771 struct ring_buffer *rb;
3772
3773 rcu_read_lock();
3774 rb = rcu_dereference(event->rb);
3775 if (!rb)
3776 goto unlock;
3777
3778 userpg = rb->user_page;
3779
3780 /* Allow new userspace to detect that bit 0 is deprecated */
3781 userpg->cap_bit0_is_deprecated = 1;
3782 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3783
3784unlock:
3785 rcu_read_unlock();
3786}
3787
c7206205 3788void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3789{
3790}
3791
38ff667b
PZ
3792/*
3793 * Callers need to ensure there can be no nesting of this function, otherwise
3794 * the seqlock logic goes bad. We can not serialize this because the arch
3795 * code calls this from NMI context.
3796 */
cdd6c482 3797void perf_event_update_userpage(struct perf_event *event)
37d81828 3798{
cdd6c482 3799 struct perf_event_mmap_page *userpg;
76369139 3800 struct ring_buffer *rb;
e3f3541c 3801 u64 enabled, running, now;
38ff667b
PZ
3802
3803 rcu_read_lock();
5ec4c599
PZ
3804 rb = rcu_dereference(event->rb);
3805 if (!rb)
3806 goto unlock;
3807
0d641208
EM
3808 /*
3809 * compute total_time_enabled, total_time_running
3810 * based on snapshot values taken when the event
3811 * was last scheduled in.
3812 *
3813 * we cannot simply called update_context_time()
3814 * because of locking issue as we can be called in
3815 * NMI context
3816 */
e3f3541c 3817 calc_timer_values(event, &now, &enabled, &running);
38ff667b 3818
76369139 3819 userpg = rb->user_page;
7b732a75
PZ
3820 /*
3821 * Disable preemption so as to not let the corresponding user-space
3822 * spin too long if we get preempted.
3823 */
3824 preempt_disable();
37d81828 3825 ++userpg->lock;
92f22a38 3826 barrier();
cdd6c482 3827 userpg->index = perf_event_index(event);
b5e58793 3828 userpg->offset = perf_event_count(event);
365a4038 3829 if (userpg->index)
e7850595 3830 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3831
0d641208 3832 userpg->time_enabled = enabled +
cdd6c482 3833 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3834
0d641208 3835 userpg->time_running = running +
cdd6c482 3836 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3837
c7206205 3838 arch_perf_update_userpage(userpg, now);
e3f3541c 3839
92f22a38 3840 barrier();
37d81828 3841 ++userpg->lock;
7b732a75 3842 preempt_enable();
38ff667b 3843unlock:
7b732a75 3844 rcu_read_unlock();
37d81828
PM
3845}
3846
906010b2
PZ
3847static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3848{
3849 struct perf_event *event = vma->vm_file->private_data;
76369139 3850 struct ring_buffer *rb;
906010b2
PZ
3851 int ret = VM_FAULT_SIGBUS;
3852
3853 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3854 if (vmf->pgoff == 0)
3855 ret = 0;
3856 return ret;
3857 }
3858
3859 rcu_read_lock();
76369139
FW
3860 rb = rcu_dereference(event->rb);
3861 if (!rb)
906010b2
PZ
3862 goto unlock;
3863
3864 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3865 goto unlock;
3866
76369139 3867 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3868 if (!vmf->page)
3869 goto unlock;
3870
3871 get_page(vmf->page);
3872 vmf->page->mapping = vma->vm_file->f_mapping;
3873 vmf->page->index = vmf->pgoff;
3874
3875 ret = 0;
3876unlock:
3877 rcu_read_unlock();
3878
3879 return ret;
3880}
3881
10c6db11
PZ
3882static void ring_buffer_attach(struct perf_event *event,
3883 struct ring_buffer *rb)
3884{
b69cf536 3885 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
3886 unsigned long flags;
3887
b69cf536
PZ
3888 if (event->rb) {
3889 /*
3890 * Should be impossible, we set this when removing
3891 * event->rb_entry and wait/clear when adding event->rb_entry.
3892 */
3893 WARN_ON_ONCE(event->rcu_pending);
10c6db11 3894
b69cf536
PZ
3895 old_rb = event->rb;
3896 event->rcu_batches = get_state_synchronize_rcu();
3897 event->rcu_pending = 1;
10c6db11 3898
b69cf536
PZ
3899 spin_lock_irqsave(&old_rb->event_lock, flags);
3900 list_del_rcu(&event->rb_entry);
3901 spin_unlock_irqrestore(&old_rb->event_lock, flags);
3902 }
10c6db11 3903
b69cf536
PZ
3904 if (event->rcu_pending && rb) {
3905 cond_synchronize_rcu(event->rcu_batches);
3906 event->rcu_pending = 0;
3907 }
10c6db11 3908
b69cf536
PZ
3909 if (rb) {
3910 spin_lock_irqsave(&rb->event_lock, flags);
3911 list_add_rcu(&event->rb_entry, &rb->event_list);
3912 spin_unlock_irqrestore(&rb->event_lock, flags);
3913 }
3914
3915 rcu_assign_pointer(event->rb, rb);
3916
3917 if (old_rb) {
3918 ring_buffer_put(old_rb);
3919 /*
3920 * Since we detached before setting the new rb, so that we
3921 * could attach the new rb, we could have missed a wakeup.
3922 * Provide it now.
3923 */
3924 wake_up_all(&event->waitq);
3925 }
10c6db11
PZ
3926}
3927
3928static void ring_buffer_wakeup(struct perf_event *event)
3929{
3930 struct ring_buffer *rb;
3931
3932 rcu_read_lock();
3933 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
3934 if (rb) {
3935 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3936 wake_up_all(&event->waitq);
3937 }
10c6db11
PZ
3938 rcu_read_unlock();
3939}
3940
76369139 3941static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3942{
76369139 3943 struct ring_buffer *rb;
906010b2 3944
76369139
FW
3945 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3946 rb_free(rb);
7b732a75
PZ
3947}
3948
76369139 3949static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3950{
76369139 3951 struct ring_buffer *rb;
7b732a75 3952
ac9721f3 3953 rcu_read_lock();
76369139
FW
3954 rb = rcu_dereference(event->rb);
3955 if (rb) {
3956 if (!atomic_inc_not_zero(&rb->refcount))
3957 rb = NULL;
ac9721f3
PZ
3958 }
3959 rcu_read_unlock();
3960
76369139 3961 return rb;
ac9721f3
PZ
3962}
3963
76369139 3964static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3965{
76369139 3966 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3967 return;
7b732a75 3968
9bb5d40c 3969 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 3970
76369139 3971 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3972}
3973
3974static void perf_mmap_open(struct vm_area_struct *vma)
3975{
cdd6c482 3976 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3977
cdd6c482 3978 atomic_inc(&event->mmap_count);
9bb5d40c 3979 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
3980}
3981
9bb5d40c
PZ
3982/*
3983 * A buffer can be mmap()ed multiple times; either directly through the same
3984 * event, or through other events by use of perf_event_set_output().
3985 *
3986 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3987 * the buffer here, where we still have a VM context. This means we need
3988 * to detach all events redirecting to us.
3989 */
7b732a75
PZ
3990static void perf_mmap_close(struct vm_area_struct *vma)
3991{
cdd6c482 3992 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3993
b69cf536 3994 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
3995 struct user_struct *mmap_user = rb->mmap_user;
3996 int mmap_locked = rb->mmap_locked;
3997 unsigned long size = perf_data_size(rb);
789f90fc 3998
9bb5d40c
PZ
3999 atomic_dec(&rb->mmap_count);
4000
4001 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4002 goto out_put;
9bb5d40c 4003
b69cf536 4004 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4005 mutex_unlock(&event->mmap_mutex);
4006
4007 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4008 if (atomic_read(&rb->mmap_count))
4009 goto out_put;
ac9721f3 4010
9bb5d40c
PZ
4011 /*
4012 * No other mmap()s, detach from all other events that might redirect
4013 * into the now unreachable buffer. Somewhat complicated by the
4014 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4015 */
4016again:
4017 rcu_read_lock();
4018 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4019 if (!atomic_long_inc_not_zero(&event->refcount)) {
4020 /*
4021 * This event is en-route to free_event() which will
4022 * detach it and remove it from the list.
4023 */
4024 continue;
4025 }
4026 rcu_read_unlock();
789f90fc 4027
9bb5d40c
PZ
4028 mutex_lock(&event->mmap_mutex);
4029 /*
4030 * Check we didn't race with perf_event_set_output() which can
4031 * swizzle the rb from under us while we were waiting to
4032 * acquire mmap_mutex.
4033 *
4034 * If we find a different rb; ignore this event, a next
4035 * iteration will no longer find it on the list. We have to
4036 * still restart the iteration to make sure we're not now
4037 * iterating the wrong list.
4038 */
b69cf536
PZ
4039 if (event->rb == rb)
4040 ring_buffer_attach(event, NULL);
4041
cdd6c482 4042 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4043 put_event(event);
ac9721f3 4044
9bb5d40c
PZ
4045 /*
4046 * Restart the iteration; either we're on the wrong list or
4047 * destroyed its integrity by doing a deletion.
4048 */
4049 goto again;
7b732a75 4050 }
9bb5d40c
PZ
4051 rcu_read_unlock();
4052
4053 /*
4054 * It could be there's still a few 0-ref events on the list; they'll
4055 * get cleaned up by free_event() -- they'll also still have their
4056 * ref on the rb and will free it whenever they are done with it.
4057 *
4058 * Aside from that, this buffer is 'fully' detached and unmapped,
4059 * undo the VM accounting.
4060 */
4061
4062 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4063 vma->vm_mm->pinned_vm -= mmap_locked;
4064 free_uid(mmap_user);
4065
b69cf536 4066out_put:
9bb5d40c 4067 ring_buffer_put(rb); /* could be last */
37d81828
PM
4068}
4069
f0f37e2f 4070static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
4071 .open = perf_mmap_open,
4072 .close = perf_mmap_close,
4073 .fault = perf_mmap_fault,
4074 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4075};
4076
4077static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4078{
cdd6c482 4079 struct perf_event *event = file->private_data;
22a4f650 4080 unsigned long user_locked, user_lock_limit;
789f90fc 4081 struct user_struct *user = current_user();
22a4f650 4082 unsigned long locked, lock_limit;
76369139 4083 struct ring_buffer *rb;
7b732a75
PZ
4084 unsigned long vma_size;
4085 unsigned long nr_pages;
789f90fc 4086 long user_extra, extra;
d57e34fd 4087 int ret = 0, flags = 0;
37d81828 4088
c7920614
PZ
4089 /*
4090 * Don't allow mmap() of inherited per-task counters. This would
4091 * create a performance issue due to all children writing to the
76369139 4092 * same rb.
c7920614
PZ
4093 */
4094 if (event->cpu == -1 && event->attr.inherit)
4095 return -EINVAL;
4096
43a21ea8 4097 if (!(vma->vm_flags & VM_SHARED))
37d81828 4098 return -EINVAL;
7b732a75
PZ
4099
4100 vma_size = vma->vm_end - vma->vm_start;
4101 nr_pages = (vma_size / PAGE_SIZE) - 1;
4102
7730d865 4103 /*
76369139 4104 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4105 * can do bitmasks instead of modulo.
4106 */
4107 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4108 return -EINVAL;
4109
7b732a75 4110 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4111 return -EINVAL;
4112
7b732a75
PZ
4113 if (vma->vm_pgoff != 0)
4114 return -EINVAL;
37d81828 4115
cdd6c482 4116 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4117again:
cdd6c482 4118 mutex_lock(&event->mmap_mutex);
76369139 4119 if (event->rb) {
9bb5d40c 4120 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4121 ret = -EINVAL;
9bb5d40c
PZ
4122 goto unlock;
4123 }
4124
4125 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4126 /*
4127 * Raced against perf_mmap_close() through
4128 * perf_event_set_output(). Try again, hope for better
4129 * luck.
4130 */
4131 mutex_unlock(&event->mmap_mutex);
4132 goto again;
4133 }
4134
ebb3c4c4
PZ
4135 goto unlock;
4136 }
4137
789f90fc 4138 user_extra = nr_pages + 1;
cdd6c482 4139 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4140
4141 /*
4142 * Increase the limit linearly with more CPUs:
4143 */
4144 user_lock_limit *= num_online_cpus();
4145
789f90fc 4146 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4147
789f90fc
PZ
4148 extra = 0;
4149 if (user_locked > user_lock_limit)
4150 extra = user_locked - user_lock_limit;
7b732a75 4151
78d7d407 4152 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4153 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4154 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4155
459ec28a
IM
4156 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4157 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4158 ret = -EPERM;
4159 goto unlock;
4160 }
7b732a75 4161
76369139 4162 WARN_ON(event->rb);
906010b2 4163
d57e34fd 4164 if (vma->vm_flags & VM_WRITE)
76369139 4165 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4166
4ec8363d
VW
4167 rb = rb_alloc(nr_pages,
4168 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4169 event->cpu, flags);
4170
76369139 4171 if (!rb) {
ac9721f3 4172 ret = -ENOMEM;
ebb3c4c4 4173 goto unlock;
ac9721f3 4174 }
26cb63ad 4175
9bb5d40c 4176 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4177 rb->mmap_locked = extra;
4178 rb->mmap_user = get_current_user();
43a21ea8 4179
ac9721f3 4180 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4181 vma->vm_mm->pinned_vm += extra;
4182
9bb5d40c 4183 ring_buffer_attach(event, rb);
ac9721f3 4184
fa731587 4185 perf_event_init_userpage(event);
9a0f05cb
PZ
4186 perf_event_update_userpage(event);
4187
ebb3c4c4 4188unlock:
ac9721f3
PZ
4189 if (!ret)
4190 atomic_inc(&event->mmap_count);
cdd6c482 4191 mutex_unlock(&event->mmap_mutex);
37d81828 4192
9bb5d40c
PZ
4193 /*
4194 * Since pinned accounting is per vm we cannot allow fork() to copy our
4195 * vma.
4196 */
26cb63ad 4197 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4198 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4199
4200 return ret;
37d81828
PM
4201}
4202
3c446b3d
PZ
4203static int perf_fasync(int fd, struct file *filp, int on)
4204{
496ad9aa 4205 struct inode *inode = file_inode(filp);
cdd6c482 4206 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4207 int retval;
4208
4209 mutex_lock(&inode->i_mutex);
cdd6c482 4210 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4211 mutex_unlock(&inode->i_mutex);
4212
4213 if (retval < 0)
4214 return retval;
4215
4216 return 0;
4217}
4218
0793a61d 4219static const struct file_operations perf_fops = {
3326c1ce 4220 .llseek = no_llseek,
0793a61d
TG
4221 .release = perf_release,
4222 .read = perf_read,
4223 .poll = perf_poll,
d859e29f
PM
4224 .unlocked_ioctl = perf_ioctl,
4225 .compat_ioctl = perf_ioctl,
37d81828 4226 .mmap = perf_mmap,
3c446b3d 4227 .fasync = perf_fasync,
0793a61d
TG
4228};
4229
925d519a 4230/*
cdd6c482 4231 * Perf event wakeup
925d519a
PZ
4232 *
4233 * If there's data, ensure we set the poll() state and publish everything
4234 * to user-space before waking everybody up.
4235 */
4236
cdd6c482 4237void perf_event_wakeup(struct perf_event *event)
925d519a 4238{
10c6db11 4239 ring_buffer_wakeup(event);
4c9e2542 4240
cdd6c482
IM
4241 if (event->pending_kill) {
4242 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4243 event->pending_kill = 0;
4c9e2542 4244 }
925d519a
PZ
4245}
4246
e360adbe 4247static void perf_pending_event(struct irq_work *entry)
79f14641 4248{
cdd6c482
IM
4249 struct perf_event *event = container_of(entry,
4250 struct perf_event, pending);
79f14641 4251
cdd6c482
IM
4252 if (event->pending_disable) {
4253 event->pending_disable = 0;
4254 __perf_event_disable(event);
79f14641
PZ
4255 }
4256
cdd6c482
IM
4257 if (event->pending_wakeup) {
4258 event->pending_wakeup = 0;
4259 perf_event_wakeup(event);
79f14641
PZ
4260 }
4261}
4262
39447b38
ZY
4263/*
4264 * We assume there is only KVM supporting the callbacks.
4265 * Later on, we might change it to a list if there is
4266 * another virtualization implementation supporting the callbacks.
4267 */
4268struct perf_guest_info_callbacks *perf_guest_cbs;
4269
4270int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4271{
4272 perf_guest_cbs = cbs;
4273 return 0;
4274}
4275EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4276
4277int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4278{
4279 perf_guest_cbs = NULL;
4280 return 0;
4281}
4282EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4283
4018994f
JO
4284static void
4285perf_output_sample_regs(struct perf_output_handle *handle,
4286 struct pt_regs *regs, u64 mask)
4287{
4288 int bit;
4289
4290 for_each_set_bit(bit, (const unsigned long *) &mask,
4291 sizeof(mask) * BITS_PER_BYTE) {
4292 u64 val;
4293
4294 val = perf_reg_value(regs, bit);
4295 perf_output_put(handle, val);
4296 }
4297}
4298
4299static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4300 struct pt_regs *regs)
4301{
4302 if (!user_mode(regs)) {
4303 if (current->mm)
4304 regs = task_pt_regs(current);
4305 else
4306 regs = NULL;
4307 }
4308
4309 if (regs) {
4310 regs_user->regs = regs;
4311 regs_user->abi = perf_reg_abi(current);
4312 }
4313}
4314
c5ebcedb
JO
4315/*
4316 * Get remaining task size from user stack pointer.
4317 *
4318 * It'd be better to take stack vma map and limit this more
4319 * precisly, but there's no way to get it safely under interrupt,
4320 * so using TASK_SIZE as limit.
4321 */
4322static u64 perf_ustack_task_size(struct pt_regs *regs)
4323{
4324 unsigned long addr = perf_user_stack_pointer(regs);
4325
4326 if (!addr || addr >= TASK_SIZE)
4327 return 0;
4328
4329 return TASK_SIZE - addr;
4330}
4331
4332static u16
4333perf_sample_ustack_size(u16 stack_size, u16 header_size,
4334 struct pt_regs *regs)
4335{
4336 u64 task_size;
4337
4338 /* No regs, no stack pointer, no dump. */
4339 if (!regs)
4340 return 0;
4341
4342 /*
4343 * Check if we fit in with the requested stack size into the:
4344 * - TASK_SIZE
4345 * If we don't, we limit the size to the TASK_SIZE.
4346 *
4347 * - remaining sample size
4348 * If we don't, we customize the stack size to
4349 * fit in to the remaining sample size.
4350 */
4351
4352 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4353 stack_size = min(stack_size, (u16) task_size);
4354
4355 /* Current header size plus static size and dynamic size. */
4356 header_size += 2 * sizeof(u64);
4357
4358 /* Do we fit in with the current stack dump size? */
4359 if ((u16) (header_size + stack_size) < header_size) {
4360 /*
4361 * If we overflow the maximum size for the sample,
4362 * we customize the stack dump size to fit in.
4363 */
4364 stack_size = USHRT_MAX - header_size - sizeof(u64);
4365 stack_size = round_up(stack_size, sizeof(u64));
4366 }
4367
4368 return stack_size;
4369}
4370
4371static void
4372perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4373 struct pt_regs *regs)
4374{
4375 /* Case of a kernel thread, nothing to dump */
4376 if (!regs) {
4377 u64 size = 0;
4378 perf_output_put(handle, size);
4379 } else {
4380 unsigned long sp;
4381 unsigned int rem;
4382 u64 dyn_size;
4383
4384 /*
4385 * We dump:
4386 * static size
4387 * - the size requested by user or the best one we can fit
4388 * in to the sample max size
4389 * data
4390 * - user stack dump data
4391 * dynamic size
4392 * - the actual dumped size
4393 */
4394
4395 /* Static size. */
4396 perf_output_put(handle, dump_size);
4397
4398 /* Data. */
4399 sp = perf_user_stack_pointer(regs);
4400 rem = __output_copy_user(handle, (void *) sp, dump_size);
4401 dyn_size = dump_size - rem;
4402
4403 perf_output_skip(handle, rem);
4404
4405 /* Dynamic size. */
4406 perf_output_put(handle, dyn_size);
4407 }
4408}
4409
c980d109
ACM
4410static void __perf_event_header__init_id(struct perf_event_header *header,
4411 struct perf_sample_data *data,
4412 struct perf_event *event)
6844c09d
ACM
4413{
4414 u64 sample_type = event->attr.sample_type;
4415
4416 data->type = sample_type;
4417 header->size += event->id_header_size;
4418
4419 if (sample_type & PERF_SAMPLE_TID) {
4420 /* namespace issues */
4421 data->tid_entry.pid = perf_event_pid(event, current);
4422 data->tid_entry.tid = perf_event_tid(event, current);
4423 }
4424
4425 if (sample_type & PERF_SAMPLE_TIME)
4426 data->time = perf_clock();
4427
ff3d527c 4428 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4429 data->id = primary_event_id(event);
4430
4431 if (sample_type & PERF_SAMPLE_STREAM_ID)
4432 data->stream_id = event->id;
4433
4434 if (sample_type & PERF_SAMPLE_CPU) {
4435 data->cpu_entry.cpu = raw_smp_processor_id();
4436 data->cpu_entry.reserved = 0;
4437 }
4438}
4439
76369139
FW
4440void perf_event_header__init_id(struct perf_event_header *header,
4441 struct perf_sample_data *data,
4442 struct perf_event *event)
c980d109
ACM
4443{
4444 if (event->attr.sample_id_all)
4445 __perf_event_header__init_id(header, data, event);
4446}
4447
4448static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4449 struct perf_sample_data *data)
4450{
4451 u64 sample_type = data->type;
4452
4453 if (sample_type & PERF_SAMPLE_TID)
4454 perf_output_put(handle, data->tid_entry);
4455
4456 if (sample_type & PERF_SAMPLE_TIME)
4457 perf_output_put(handle, data->time);
4458
4459 if (sample_type & PERF_SAMPLE_ID)
4460 perf_output_put(handle, data->id);
4461
4462 if (sample_type & PERF_SAMPLE_STREAM_ID)
4463 perf_output_put(handle, data->stream_id);
4464
4465 if (sample_type & PERF_SAMPLE_CPU)
4466 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4467
4468 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4469 perf_output_put(handle, data->id);
c980d109
ACM
4470}
4471
76369139
FW
4472void perf_event__output_id_sample(struct perf_event *event,
4473 struct perf_output_handle *handle,
4474 struct perf_sample_data *sample)
c980d109
ACM
4475{
4476 if (event->attr.sample_id_all)
4477 __perf_event__output_id_sample(handle, sample);
4478}
4479
3dab77fb 4480static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4481 struct perf_event *event,
4482 u64 enabled, u64 running)
3dab77fb 4483{
cdd6c482 4484 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4485 u64 values[4];
4486 int n = 0;
4487
b5e58793 4488 values[n++] = perf_event_count(event);
3dab77fb 4489 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4490 values[n++] = enabled +
cdd6c482 4491 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4492 }
4493 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4494 values[n++] = running +
cdd6c482 4495 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4496 }
4497 if (read_format & PERF_FORMAT_ID)
cdd6c482 4498 values[n++] = primary_event_id(event);
3dab77fb 4499
76369139 4500 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4501}
4502
4503/*
cdd6c482 4504 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4505 */
4506static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4507 struct perf_event *event,
4508 u64 enabled, u64 running)
3dab77fb 4509{
cdd6c482
IM
4510 struct perf_event *leader = event->group_leader, *sub;
4511 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4512 u64 values[5];
4513 int n = 0;
4514
4515 values[n++] = 1 + leader->nr_siblings;
4516
4517 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4518 values[n++] = enabled;
3dab77fb
PZ
4519
4520 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4521 values[n++] = running;
3dab77fb 4522
cdd6c482 4523 if (leader != event)
3dab77fb
PZ
4524 leader->pmu->read(leader);
4525
b5e58793 4526 values[n++] = perf_event_count(leader);
3dab77fb 4527 if (read_format & PERF_FORMAT_ID)
cdd6c482 4528 values[n++] = primary_event_id(leader);
3dab77fb 4529
76369139 4530 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4531
65abc865 4532 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4533 n = 0;
4534
6f5ab001
JO
4535 if ((sub != event) &&
4536 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4537 sub->pmu->read(sub);
4538
b5e58793 4539 values[n++] = perf_event_count(sub);
3dab77fb 4540 if (read_format & PERF_FORMAT_ID)
cdd6c482 4541 values[n++] = primary_event_id(sub);
3dab77fb 4542
76369139 4543 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4544 }
4545}
4546
eed01528
SE
4547#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4548 PERF_FORMAT_TOTAL_TIME_RUNNING)
4549
3dab77fb 4550static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4551 struct perf_event *event)
3dab77fb 4552{
e3f3541c 4553 u64 enabled = 0, running = 0, now;
eed01528
SE
4554 u64 read_format = event->attr.read_format;
4555
4556 /*
4557 * compute total_time_enabled, total_time_running
4558 * based on snapshot values taken when the event
4559 * was last scheduled in.
4560 *
4561 * we cannot simply called update_context_time()
4562 * because of locking issue as we are called in
4563 * NMI context
4564 */
c4794295 4565 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4566 calc_timer_values(event, &now, &enabled, &running);
eed01528 4567
cdd6c482 4568 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4569 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4570 else
eed01528 4571 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4572}
4573
5622f295
MM
4574void perf_output_sample(struct perf_output_handle *handle,
4575 struct perf_event_header *header,
4576 struct perf_sample_data *data,
cdd6c482 4577 struct perf_event *event)
5622f295
MM
4578{
4579 u64 sample_type = data->type;
4580
4581 perf_output_put(handle, *header);
4582
ff3d527c
AH
4583 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4584 perf_output_put(handle, data->id);
4585
5622f295
MM
4586 if (sample_type & PERF_SAMPLE_IP)
4587 perf_output_put(handle, data->ip);
4588
4589 if (sample_type & PERF_SAMPLE_TID)
4590 perf_output_put(handle, data->tid_entry);
4591
4592 if (sample_type & PERF_SAMPLE_TIME)
4593 perf_output_put(handle, data->time);
4594
4595 if (sample_type & PERF_SAMPLE_ADDR)
4596 perf_output_put(handle, data->addr);
4597
4598 if (sample_type & PERF_SAMPLE_ID)
4599 perf_output_put(handle, data->id);
4600
4601 if (sample_type & PERF_SAMPLE_STREAM_ID)
4602 perf_output_put(handle, data->stream_id);
4603
4604 if (sample_type & PERF_SAMPLE_CPU)
4605 perf_output_put(handle, data->cpu_entry);
4606
4607 if (sample_type & PERF_SAMPLE_PERIOD)
4608 perf_output_put(handle, data->period);
4609
4610 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4611 perf_output_read(handle, event);
5622f295
MM
4612
4613 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4614 if (data->callchain) {
4615 int size = 1;
4616
4617 if (data->callchain)
4618 size += data->callchain->nr;
4619
4620 size *= sizeof(u64);
4621
76369139 4622 __output_copy(handle, data->callchain, size);
5622f295
MM
4623 } else {
4624 u64 nr = 0;
4625 perf_output_put(handle, nr);
4626 }
4627 }
4628
4629 if (sample_type & PERF_SAMPLE_RAW) {
4630 if (data->raw) {
4631 perf_output_put(handle, data->raw->size);
76369139
FW
4632 __output_copy(handle, data->raw->data,
4633 data->raw->size);
5622f295
MM
4634 } else {
4635 struct {
4636 u32 size;
4637 u32 data;
4638 } raw = {
4639 .size = sizeof(u32),
4640 .data = 0,
4641 };
4642 perf_output_put(handle, raw);
4643 }
4644 }
a7ac67ea 4645
bce38cd5
SE
4646 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4647 if (data->br_stack) {
4648 size_t size;
4649
4650 size = data->br_stack->nr
4651 * sizeof(struct perf_branch_entry);
4652
4653 perf_output_put(handle, data->br_stack->nr);
4654 perf_output_copy(handle, data->br_stack->entries, size);
4655 } else {
4656 /*
4657 * we always store at least the value of nr
4658 */
4659 u64 nr = 0;
4660 perf_output_put(handle, nr);
4661 }
4662 }
4018994f
JO
4663
4664 if (sample_type & PERF_SAMPLE_REGS_USER) {
4665 u64 abi = data->regs_user.abi;
4666
4667 /*
4668 * If there are no regs to dump, notice it through
4669 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4670 */
4671 perf_output_put(handle, abi);
4672
4673 if (abi) {
4674 u64 mask = event->attr.sample_regs_user;
4675 perf_output_sample_regs(handle,
4676 data->regs_user.regs,
4677 mask);
4678 }
4679 }
c5ebcedb 4680
a5cdd40c 4681 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
4682 perf_output_sample_ustack(handle,
4683 data->stack_user_size,
4684 data->regs_user.regs);
a5cdd40c 4685 }
c3feedf2
AK
4686
4687 if (sample_type & PERF_SAMPLE_WEIGHT)
4688 perf_output_put(handle, data->weight);
d6be9ad6
SE
4689
4690 if (sample_type & PERF_SAMPLE_DATA_SRC)
4691 perf_output_put(handle, data->data_src.val);
a5cdd40c 4692
fdfbbd07
AK
4693 if (sample_type & PERF_SAMPLE_TRANSACTION)
4694 perf_output_put(handle, data->txn);
4695
a5cdd40c
PZ
4696 if (!event->attr.watermark) {
4697 int wakeup_events = event->attr.wakeup_events;
4698
4699 if (wakeup_events) {
4700 struct ring_buffer *rb = handle->rb;
4701 int events = local_inc_return(&rb->events);
4702
4703 if (events >= wakeup_events) {
4704 local_sub(wakeup_events, &rb->events);
4705 local_inc(&rb->wakeup);
4706 }
4707 }
4708 }
5622f295
MM
4709}
4710
4711void perf_prepare_sample(struct perf_event_header *header,
4712 struct perf_sample_data *data,
cdd6c482 4713 struct perf_event *event,
5622f295 4714 struct pt_regs *regs)
7b732a75 4715{
cdd6c482 4716 u64 sample_type = event->attr.sample_type;
7b732a75 4717
cdd6c482 4718 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4719 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4720
4721 header->misc = 0;
4722 header->misc |= perf_misc_flags(regs);
6fab0192 4723
c980d109 4724 __perf_event_header__init_id(header, data, event);
6844c09d 4725
c320c7b7 4726 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4727 data->ip = perf_instruction_pointer(regs);
4728
b23f3325 4729 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4730 int size = 1;
394ee076 4731
e6dab5ff 4732 data->callchain = perf_callchain(event, regs);
5622f295
MM
4733
4734 if (data->callchain)
4735 size += data->callchain->nr;
4736
4737 header->size += size * sizeof(u64);
394ee076
PZ
4738 }
4739
3a43ce68 4740 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4741 int size = sizeof(u32);
4742
4743 if (data->raw)
4744 size += data->raw->size;
4745 else
4746 size += sizeof(u32);
4747
4748 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4749 header->size += size;
7f453c24 4750 }
bce38cd5
SE
4751
4752 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4753 int size = sizeof(u64); /* nr */
4754 if (data->br_stack) {
4755 size += data->br_stack->nr
4756 * sizeof(struct perf_branch_entry);
4757 }
4758 header->size += size;
4759 }
4018994f
JO
4760
4761 if (sample_type & PERF_SAMPLE_REGS_USER) {
4762 /* regs dump ABI info */
4763 int size = sizeof(u64);
4764
4765 perf_sample_regs_user(&data->regs_user, regs);
4766
4767 if (data->regs_user.regs) {
4768 u64 mask = event->attr.sample_regs_user;
4769 size += hweight64(mask) * sizeof(u64);
4770 }
4771
4772 header->size += size;
4773 }
c5ebcedb
JO
4774
4775 if (sample_type & PERF_SAMPLE_STACK_USER) {
4776 /*
4777 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4778 * processed as the last one or have additional check added
4779 * in case new sample type is added, because we could eat
4780 * up the rest of the sample size.
4781 */
4782 struct perf_regs_user *uregs = &data->regs_user;
4783 u16 stack_size = event->attr.sample_stack_user;
4784 u16 size = sizeof(u64);
4785
4786 if (!uregs->abi)
4787 perf_sample_regs_user(uregs, regs);
4788
4789 stack_size = perf_sample_ustack_size(stack_size, header->size,
4790 uregs->regs);
4791
4792 /*
4793 * If there is something to dump, add space for the dump
4794 * itself and for the field that tells the dynamic size,
4795 * which is how many have been actually dumped.
4796 */
4797 if (stack_size)
4798 size += sizeof(u64) + stack_size;
4799
4800 data->stack_user_size = stack_size;
4801 header->size += size;
4802 }
5622f295 4803}
7f453c24 4804
a8b0ca17 4805static void perf_event_output(struct perf_event *event,
5622f295
MM
4806 struct perf_sample_data *data,
4807 struct pt_regs *regs)
4808{
4809 struct perf_output_handle handle;
4810 struct perf_event_header header;
689802b2 4811
927c7a9e
FW
4812 /* protect the callchain buffers */
4813 rcu_read_lock();
4814
cdd6c482 4815 perf_prepare_sample(&header, data, event, regs);
5c148194 4816
a7ac67ea 4817 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4818 goto exit;
0322cd6e 4819
cdd6c482 4820 perf_output_sample(&handle, &header, data, event);
f413cdb8 4821
8a057d84 4822 perf_output_end(&handle);
927c7a9e
FW
4823
4824exit:
4825 rcu_read_unlock();
0322cd6e
PZ
4826}
4827
38b200d6 4828/*
cdd6c482 4829 * read event_id
38b200d6
PZ
4830 */
4831
4832struct perf_read_event {
4833 struct perf_event_header header;
4834
4835 u32 pid;
4836 u32 tid;
38b200d6
PZ
4837};
4838
4839static void
cdd6c482 4840perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4841 struct task_struct *task)
4842{
4843 struct perf_output_handle handle;
c980d109 4844 struct perf_sample_data sample;
dfc65094 4845 struct perf_read_event read_event = {
38b200d6 4846 .header = {
cdd6c482 4847 .type = PERF_RECORD_READ,
38b200d6 4848 .misc = 0,
c320c7b7 4849 .size = sizeof(read_event) + event->read_size,
38b200d6 4850 },
cdd6c482
IM
4851 .pid = perf_event_pid(event, task),
4852 .tid = perf_event_tid(event, task),
38b200d6 4853 };
3dab77fb 4854 int ret;
38b200d6 4855
c980d109 4856 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4857 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4858 if (ret)
4859 return;
4860
dfc65094 4861 perf_output_put(&handle, read_event);
cdd6c482 4862 perf_output_read(&handle, event);
c980d109 4863 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4864
38b200d6
PZ
4865 perf_output_end(&handle);
4866}
4867
52d857a8
JO
4868typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4869
4870static void
4871perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
4872 perf_event_aux_output_cb output,
4873 void *data)
4874{
4875 struct perf_event *event;
4876
4877 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4878 if (event->state < PERF_EVENT_STATE_INACTIVE)
4879 continue;
4880 if (!event_filter_match(event))
4881 continue;
67516844 4882 output(event, data);
52d857a8
JO
4883 }
4884}
4885
4886static void
67516844 4887perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
4888 struct perf_event_context *task_ctx)
4889{
4890 struct perf_cpu_context *cpuctx;
4891 struct perf_event_context *ctx;
4892 struct pmu *pmu;
4893 int ctxn;
4894
4895 rcu_read_lock();
4896 list_for_each_entry_rcu(pmu, &pmus, entry) {
4897 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4898 if (cpuctx->unique_pmu != pmu)
4899 goto next;
67516844 4900 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
4901 if (task_ctx)
4902 goto next;
4903 ctxn = pmu->task_ctx_nr;
4904 if (ctxn < 0)
4905 goto next;
4906 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4907 if (ctx)
67516844 4908 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
4909next:
4910 put_cpu_ptr(pmu->pmu_cpu_context);
4911 }
4912
4913 if (task_ctx) {
4914 preempt_disable();
67516844 4915 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
4916 preempt_enable();
4917 }
4918 rcu_read_unlock();
4919}
4920
60313ebe 4921/*
9f498cc5
PZ
4922 * task tracking -- fork/exit
4923 *
13d7a241 4924 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
4925 */
4926
9f498cc5 4927struct perf_task_event {
3a80b4a3 4928 struct task_struct *task;
cdd6c482 4929 struct perf_event_context *task_ctx;
60313ebe
PZ
4930
4931 struct {
4932 struct perf_event_header header;
4933
4934 u32 pid;
4935 u32 ppid;
9f498cc5
PZ
4936 u32 tid;
4937 u32 ptid;
393b2ad8 4938 u64 time;
cdd6c482 4939 } event_id;
60313ebe
PZ
4940};
4941
67516844
JO
4942static int perf_event_task_match(struct perf_event *event)
4943{
13d7a241
SE
4944 return event->attr.comm || event->attr.mmap ||
4945 event->attr.mmap2 || event->attr.mmap_data ||
4946 event->attr.task;
67516844
JO
4947}
4948
cdd6c482 4949static void perf_event_task_output(struct perf_event *event,
52d857a8 4950 void *data)
60313ebe 4951{
52d857a8 4952 struct perf_task_event *task_event = data;
60313ebe 4953 struct perf_output_handle handle;
c980d109 4954 struct perf_sample_data sample;
9f498cc5 4955 struct task_struct *task = task_event->task;
c980d109 4956 int ret, size = task_event->event_id.header.size;
8bb39f9a 4957
67516844
JO
4958 if (!perf_event_task_match(event))
4959 return;
4960
c980d109 4961 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4962
c980d109 4963 ret = perf_output_begin(&handle, event,
a7ac67ea 4964 task_event->event_id.header.size);
ef60777c 4965 if (ret)
c980d109 4966 goto out;
60313ebe 4967
cdd6c482
IM
4968 task_event->event_id.pid = perf_event_pid(event, task);
4969 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4970
cdd6c482
IM
4971 task_event->event_id.tid = perf_event_tid(event, task);
4972 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4973
cdd6c482 4974 perf_output_put(&handle, task_event->event_id);
393b2ad8 4975
c980d109
ACM
4976 perf_event__output_id_sample(event, &handle, &sample);
4977
60313ebe 4978 perf_output_end(&handle);
c980d109
ACM
4979out:
4980 task_event->event_id.header.size = size;
60313ebe
PZ
4981}
4982
cdd6c482
IM
4983static void perf_event_task(struct task_struct *task,
4984 struct perf_event_context *task_ctx,
3a80b4a3 4985 int new)
60313ebe 4986{
9f498cc5 4987 struct perf_task_event task_event;
60313ebe 4988
cdd6c482
IM
4989 if (!atomic_read(&nr_comm_events) &&
4990 !atomic_read(&nr_mmap_events) &&
4991 !atomic_read(&nr_task_events))
60313ebe
PZ
4992 return;
4993
9f498cc5 4994 task_event = (struct perf_task_event){
3a80b4a3
PZ
4995 .task = task,
4996 .task_ctx = task_ctx,
cdd6c482 4997 .event_id = {
60313ebe 4998 .header = {
cdd6c482 4999 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5000 .misc = 0,
cdd6c482 5001 .size = sizeof(task_event.event_id),
60313ebe 5002 },
573402db
PZ
5003 /* .pid */
5004 /* .ppid */
9f498cc5
PZ
5005 /* .tid */
5006 /* .ptid */
6f93d0a7 5007 .time = perf_clock(),
60313ebe
PZ
5008 },
5009 };
5010
67516844 5011 perf_event_aux(perf_event_task_output,
52d857a8
JO
5012 &task_event,
5013 task_ctx);
9f498cc5
PZ
5014}
5015
cdd6c482 5016void perf_event_fork(struct task_struct *task)
9f498cc5 5017{
cdd6c482 5018 perf_event_task(task, NULL, 1);
60313ebe
PZ
5019}
5020
8d1b2d93
PZ
5021/*
5022 * comm tracking
5023 */
5024
5025struct perf_comm_event {
22a4f650
IM
5026 struct task_struct *task;
5027 char *comm;
8d1b2d93
PZ
5028 int comm_size;
5029
5030 struct {
5031 struct perf_event_header header;
5032
5033 u32 pid;
5034 u32 tid;
cdd6c482 5035 } event_id;
8d1b2d93
PZ
5036};
5037
67516844
JO
5038static int perf_event_comm_match(struct perf_event *event)
5039{
5040 return event->attr.comm;
5041}
5042
cdd6c482 5043static void perf_event_comm_output(struct perf_event *event,
52d857a8 5044 void *data)
8d1b2d93 5045{
52d857a8 5046 struct perf_comm_event *comm_event = data;
8d1b2d93 5047 struct perf_output_handle handle;
c980d109 5048 struct perf_sample_data sample;
cdd6c482 5049 int size = comm_event->event_id.header.size;
c980d109
ACM
5050 int ret;
5051
67516844
JO
5052 if (!perf_event_comm_match(event))
5053 return;
5054
c980d109
ACM
5055 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5056 ret = perf_output_begin(&handle, event,
a7ac67ea 5057 comm_event->event_id.header.size);
8d1b2d93
PZ
5058
5059 if (ret)
c980d109 5060 goto out;
8d1b2d93 5061
cdd6c482
IM
5062 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5063 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5064
cdd6c482 5065 perf_output_put(&handle, comm_event->event_id);
76369139 5066 __output_copy(&handle, comm_event->comm,
8d1b2d93 5067 comm_event->comm_size);
c980d109
ACM
5068
5069 perf_event__output_id_sample(event, &handle, &sample);
5070
8d1b2d93 5071 perf_output_end(&handle);
c980d109
ACM
5072out:
5073 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5074}
5075
cdd6c482 5076static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5077{
413ee3b4 5078 char comm[TASK_COMM_LEN];
8d1b2d93 5079 unsigned int size;
8d1b2d93 5080
413ee3b4 5081 memset(comm, 0, sizeof(comm));
96b02d78 5082 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5083 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5084
5085 comm_event->comm = comm;
5086 comm_event->comm_size = size;
5087
cdd6c482 5088 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5089
67516844 5090 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5091 comm_event,
5092 NULL);
8d1b2d93
PZ
5093}
5094
82b89778 5095void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5096{
9ee318a7
PZ
5097 struct perf_comm_event comm_event;
5098
cdd6c482 5099 if (!atomic_read(&nr_comm_events))
9ee318a7 5100 return;
a63eaf34 5101
9ee318a7 5102 comm_event = (struct perf_comm_event){
8d1b2d93 5103 .task = task,
573402db
PZ
5104 /* .comm */
5105 /* .comm_size */
cdd6c482 5106 .event_id = {
573402db 5107 .header = {
cdd6c482 5108 .type = PERF_RECORD_COMM,
82b89778 5109 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5110 /* .size */
5111 },
5112 /* .pid */
5113 /* .tid */
8d1b2d93
PZ
5114 },
5115 };
5116
cdd6c482 5117 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5118}
5119
0a4a9391
PZ
5120/*
5121 * mmap tracking
5122 */
5123
5124struct perf_mmap_event {
089dd79d
PZ
5125 struct vm_area_struct *vma;
5126
5127 const char *file_name;
5128 int file_size;
13d7a241
SE
5129 int maj, min;
5130 u64 ino;
5131 u64 ino_generation;
f972eb63 5132 u32 prot, flags;
0a4a9391
PZ
5133
5134 struct {
5135 struct perf_event_header header;
5136
5137 u32 pid;
5138 u32 tid;
5139 u64 start;
5140 u64 len;
5141 u64 pgoff;
cdd6c482 5142 } event_id;
0a4a9391
PZ
5143};
5144
67516844
JO
5145static int perf_event_mmap_match(struct perf_event *event,
5146 void *data)
5147{
5148 struct perf_mmap_event *mmap_event = data;
5149 struct vm_area_struct *vma = mmap_event->vma;
5150 int executable = vma->vm_flags & VM_EXEC;
5151
5152 return (!executable && event->attr.mmap_data) ||
13d7a241 5153 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5154}
5155
cdd6c482 5156static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5157 void *data)
0a4a9391 5158{
52d857a8 5159 struct perf_mmap_event *mmap_event = data;
0a4a9391 5160 struct perf_output_handle handle;
c980d109 5161 struct perf_sample_data sample;
cdd6c482 5162 int size = mmap_event->event_id.header.size;
c980d109 5163 int ret;
0a4a9391 5164
67516844
JO
5165 if (!perf_event_mmap_match(event, data))
5166 return;
5167
13d7a241
SE
5168 if (event->attr.mmap2) {
5169 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5170 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5171 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5172 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5173 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5174 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5175 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5176 }
5177
c980d109
ACM
5178 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5179 ret = perf_output_begin(&handle, event,
a7ac67ea 5180 mmap_event->event_id.header.size);
0a4a9391 5181 if (ret)
c980d109 5182 goto out;
0a4a9391 5183
cdd6c482
IM
5184 mmap_event->event_id.pid = perf_event_pid(event, current);
5185 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5186
cdd6c482 5187 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5188
5189 if (event->attr.mmap2) {
5190 perf_output_put(&handle, mmap_event->maj);
5191 perf_output_put(&handle, mmap_event->min);
5192 perf_output_put(&handle, mmap_event->ino);
5193 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5194 perf_output_put(&handle, mmap_event->prot);
5195 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5196 }
5197
76369139 5198 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5199 mmap_event->file_size);
c980d109
ACM
5200
5201 perf_event__output_id_sample(event, &handle, &sample);
5202
78d613eb 5203 perf_output_end(&handle);
c980d109
ACM
5204out:
5205 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5206}
5207
cdd6c482 5208static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5209{
089dd79d
PZ
5210 struct vm_area_struct *vma = mmap_event->vma;
5211 struct file *file = vma->vm_file;
13d7a241
SE
5212 int maj = 0, min = 0;
5213 u64 ino = 0, gen = 0;
f972eb63 5214 u32 prot = 0, flags = 0;
0a4a9391
PZ
5215 unsigned int size;
5216 char tmp[16];
5217 char *buf = NULL;
2c42cfbf 5218 char *name;
413ee3b4 5219
0a4a9391 5220 if (file) {
13d7a241
SE
5221 struct inode *inode;
5222 dev_t dev;
3ea2f2b9 5223
2c42cfbf 5224 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5225 if (!buf) {
c7e548b4
ON
5226 name = "//enomem";
5227 goto cpy_name;
0a4a9391 5228 }
413ee3b4 5229 /*
3ea2f2b9 5230 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5231 * need to add enough zero bytes after the string to handle
5232 * the 64bit alignment we do later.
5233 */
3ea2f2b9 5234 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5235 if (IS_ERR(name)) {
c7e548b4
ON
5236 name = "//toolong";
5237 goto cpy_name;
0a4a9391 5238 }
13d7a241
SE
5239 inode = file_inode(vma->vm_file);
5240 dev = inode->i_sb->s_dev;
5241 ino = inode->i_ino;
5242 gen = inode->i_generation;
5243 maj = MAJOR(dev);
5244 min = MINOR(dev);
f972eb63
PZ
5245
5246 if (vma->vm_flags & VM_READ)
5247 prot |= PROT_READ;
5248 if (vma->vm_flags & VM_WRITE)
5249 prot |= PROT_WRITE;
5250 if (vma->vm_flags & VM_EXEC)
5251 prot |= PROT_EXEC;
5252
5253 if (vma->vm_flags & VM_MAYSHARE)
5254 flags = MAP_SHARED;
5255 else
5256 flags = MAP_PRIVATE;
5257
5258 if (vma->vm_flags & VM_DENYWRITE)
5259 flags |= MAP_DENYWRITE;
5260 if (vma->vm_flags & VM_MAYEXEC)
5261 flags |= MAP_EXECUTABLE;
5262 if (vma->vm_flags & VM_LOCKED)
5263 flags |= MAP_LOCKED;
5264 if (vma->vm_flags & VM_HUGETLB)
5265 flags |= MAP_HUGETLB;
5266
c7e548b4 5267 goto got_name;
0a4a9391 5268 } else {
2c42cfbf 5269 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5270 if (name)
5271 goto cpy_name;
089dd79d 5272
32c5fb7e 5273 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5274 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5275 name = "[heap]";
5276 goto cpy_name;
32c5fb7e
ON
5277 }
5278 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5279 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5280 name = "[stack]";
5281 goto cpy_name;
089dd79d
PZ
5282 }
5283
c7e548b4
ON
5284 name = "//anon";
5285 goto cpy_name;
0a4a9391
PZ
5286 }
5287
c7e548b4
ON
5288cpy_name:
5289 strlcpy(tmp, name, sizeof(tmp));
5290 name = tmp;
0a4a9391 5291got_name:
2c42cfbf
PZ
5292 /*
5293 * Since our buffer works in 8 byte units we need to align our string
5294 * size to a multiple of 8. However, we must guarantee the tail end is
5295 * zero'd out to avoid leaking random bits to userspace.
5296 */
5297 size = strlen(name)+1;
5298 while (!IS_ALIGNED(size, sizeof(u64)))
5299 name[size++] = '\0';
0a4a9391
PZ
5300
5301 mmap_event->file_name = name;
5302 mmap_event->file_size = size;
13d7a241
SE
5303 mmap_event->maj = maj;
5304 mmap_event->min = min;
5305 mmap_event->ino = ino;
5306 mmap_event->ino_generation = gen;
f972eb63
PZ
5307 mmap_event->prot = prot;
5308 mmap_event->flags = flags;
0a4a9391 5309
2fe85427
SE
5310 if (!(vma->vm_flags & VM_EXEC))
5311 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5312
cdd6c482 5313 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5314
67516844 5315 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5316 mmap_event,
5317 NULL);
665c2142 5318
0a4a9391
PZ
5319 kfree(buf);
5320}
5321
3af9e859 5322void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5323{
9ee318a7
PZ
5324 struct perf_mmap_event mmap_event;
5325
cdd6c482 5326 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5327 return;
5328
5329 mmap_event = (struct perf_mmap_event){
089dd79d 5330 .vma = vma,
573402db
PZ
5331 /* .file_name */
5332 /* .file_size */
cdd6c482 5333 .event_id = {
573402db 5334 .header = {
cdd6c482 5335 .type = PERF_RECORD_MMAP,
39447b38 5336 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5337 /* .size */
5338 },
5339 /* .pid */
5340 /* .tid */
089dd79d
PZ
5341 .start = vma->vm_start,
5342 .len = vma->vm_end - vma->vm_start,
3a0304e9 5343 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5344 },
13d7a241
SE
5345 /* .maj (attr_mmap2 only) */
5346 /* .min (attr_mmap2 only) */
5347 /* .ino (attr_mmap2 only) */
5348 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
5349 /* .prot (attr_mmap2 only) */
5350 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
5351 };
5352
cdd6c482 5353 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5354}
5355
a78ac325
PZ
5356/*
5357 * IRQ throttle logging
5358 */
5359
cdd6c482 5360static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5361{
5362 struct perf_output_handle handle;
c980d109 5363 struct perf_sample_data sample;
a78ac325
PZ
5364 int ret;
5365
5366 struct {
5367 struct perf_event_header header;
5368 u64 time;
cca3f454 5369 u64 id;
7f453c24 5370 u64 stream_id;
a78ac325
PZ
5371 } throttle_event = {
5372 .header = {
cdd6c482 5373 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5374 .misc = 0,
5375 .size = sizeof(throttle_event),
5376 },
def0a9b2 5377 .time = perf_clock(),
cdd6c482
IM
5378 .id = primary_event_id(event),
5379 .stream_id = event->id,
a78ac325
PZ
5380 };
5381
966ee4d6 5382 if (enable)
cdd6c482 5383 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5384
c980d109
ACM
5385 perf_event_header__init_id(&throttle_event.header, &sample, event);
5386
5387 ret = perf_output_begin(&handle, event,
a7ac67ea 5388 throttle_event.header.size);
a78ac325
PZ
5389 if (ret)
5390 return;
5391
5392 perf_output_put(&handle, throttle_event);
c980d109 5393 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5394 perf_output_end(&handle);
5395}
5396
f6c7d5fe 5397/*
cdd6c482 5398 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5399 */
5400
a8b0ca17 5401static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5402 int throttle, struct perf_sample_data *data,
5403 struct pt_regs *regs)
f6c7d5fe 5404{
cdd6c482
IM
5405 int events = atomic_read(&event->event_limit);
5406 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5407 u64 seq;
79f14641
PZ
5408 int ret = 0;
5409
96398826
PZ
5410 /*
5411 * Non-sampling counters might still use the PMI to fold short
5412 * hardware counters, ignore those.
5413 */
5414 if (unlikely(!is_sampling_event(event)))
5415 return 0;
5416
e050e3f0
SE
5417 seq = __this_cpu_read(perf_throttled_seq);
5418 if (seq != hwc->interrupts_seq) {
5419 hwc->interrupts_seq = seq;
5420 hwc->interrupts = 1;
5421 } else {
5422 hwc->interrupts++;
5423 if (unlikely(throttle
5424 && hwc->interrupts >= max_samples_per_tick)) {
5425 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5426 hwc->interrupts = MAX_INTERRUPTS;
5427 perf_log_throttle(event, 0);
d84153d6 5428 tick_nohz_full_kick();
a78ac325
PZ
5429 ret = 1;
5430 }
e050e3f0 5431 }
60db5e09 5432
cdd6c482 5433 if (event->attr.freq) {
def0a9b2 5434 u64 now = perf_clock();
abd50713 5435 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5436
abd50713 5437 hwc->freq_time_stamp = now;
bd2b5b12 5438
abd50713 5439 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5440 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5441 }
5442
2023b359
PZ
5443 /*
5444 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5445 * events
2023b359
PZ
5446 */
5447
cdd6c482
IM
5448 event->pending_kill = POLL_IN;
5449 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5450 ret = 1;
cdd6c482 5451 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5452 event->pending_disable = 1;
5453 irq_work_queue(&event->pending);
79f14641
PZ
5454 }
5455
453f19ee 5456 if (event->overflow_handler)
a8b0ca17 5457 event->overflow_handler(event, data, regs);
453f19ee 5458 else
a8b0ca17 5459 perf_event_output(event, data, regs);
453f19ee 5460
f506b3dc 5461 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5462 event->pending_wakeup = 1;
5463 irq_work_queue(&event->pending);
f506b3dc
PZ
5464 }
5465
79f14641 5466 return ret;
f6c7d5fe
PZ
5467}
5468
a8b0ca17 5469int perf_event_overflow(struct perf_event *event,
5622f295
MM
5470 struct perf_sample_data *data,
5471 struct pt_regs *regs)
850bc73f 5472{
a8b0ca17 5473 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5474}
5475
15dbf27c 5476/*
cdd6c482 5477 * Generic software event infrastructure
15dbf27c
PZ
5478 */
5479
b28ab83c
PZ
5480struct swevent_htable {
5481 struct swevent_hlist *swevent_hlist;
5482 struct mutex hlist_mutex;
5483 int hlist_refcount;
5484
5485 /* Recursion avoidance in each contexts */
5486 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
5487
5488 /* Keeps track of cpu being initialized/exited */
5489 bool online;
b28ab83c
PZ
5490};
5491
5492static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5493
7b4b6658 5494/*
cdd6c482
IM
5495 * We directly increment event->count and keep a second value in
5496 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5497 * is kept in the range [-sample_period, 0] so that we can use the
5498 * sign as trigger.
5499 */
5500
ab573844 5501u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5502{
cdd6c482 5503 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5504 u64 period = hwc->last_period;
5505 u64 nr, offset;
5506 s64 old, val;
5507
5508 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5509
5510again:
e7850595 5511 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5512 if (val < 0)
5513 return 0;
15dbf27c 5514
7b4b6658
PZ
5515 nr = div64_u64(period + val, period);
5516 offset = nr * period;
5517 val -= offset;
e7850595 5518 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5519 goto again;
15dbf27c 5520
7b4b6658 5521 return nr;
15dbf27c
PZ
5522}
5523
0cff784a 5524static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5525 struct perf_sample_data *data,
5622f295 5526 struct pt_regs *regs)
15dbf27c 5527{
cdd6c482 5528 struct hw_perf_event *hwc = &event->hw;
850bc73f 5529 int throttle = 0;
15dbf27c 5530
0cff784a
PZ
5531 if (!overflow)
5532 overflow = perf_swevent_set_period(event);
15dbf27c 5533
7b4b6658
PZ
5534 if (hwc->interrupts == MAX_INTERRUPTS)
5535 return;
15dbf27c 5536
7b4b6658 5537 for (; overflow; overflow--) {
a8b0ca17 5538 if (__perf_event_overflow(event, throttle,
5622f295 5539 data, regs)) {
7b4b6658
PZ
5540 /*
5541 * We inhibit the overflow from happening when
5542 * hwc->interrupts == MAX_INTERRUPTS.
5543 */
5544 break;
5545 }
cf450a73 5546 throttle = 1;
7b4b6658 5547 }
15dbf27c
PZ
5548}
5549
a4eaf7f1 5550static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5551 struct perf_sample_data *data,
5622f295 5552 struct pt_regs *regs)
7b4b6658 5553{
cdd6c482 5554 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5555
e7850595 5556 local64_add(nr, &event->count);
d6d020e9 5557
0cff784a
PZ
5558 if (!regs)
5559 return;
5560
6c7e550f 5561 if (!is_sampling_event(event))
7b4b6658 5562 return;
d6d020e9 5563
5d81e5cf
AV
5564 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5565 data->period = nr;
5566 return perf_swevent_overflow(event, 1, data, regs);
5567 } else
5568 data->period = event->hw.last_period;
5569
0cff784a 5570 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5571 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5572
e7850595 5573 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5574 return;
df1a132b 5575
a8b0ca17 5576 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5577}
5578
f5ffe02e
FW
5579static int perf_exclude_event(struct perf_event *event,
5580 struct pt_regs *regs)
5581{
a4eaf7f1 5582 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5583 return 1;
a4eaf7f1 5584
f5ffe02e
FW
5585 if (regs) {
5586 if (event->attr.exclude_user && user_mode(regs))
5587 return 1;
5588
5589 if (event->attr.exclude_kernel && !user_mode(regs))
5590 return 1;
5591 }
5592
5593 return 0;
5594}
5595
cdd6c482 5596static int perf_swevent_match(struct perf_event *event,
1c432d89 5597 enum perf_type_id type,
6fb2915d
LZ
5598 u32 event_id,
5599 struct perf_sample_data *data,
5600 struct pt_regs *regs)
15dbf27c 5601{
cdd6c482 5602 if (event->attr.type != type)
a21ca2ca 5603 return 0;
f5ffe02e 5604
cdd6c482 5605 if (event->attr.config != event_id)
15dbf27c
PZ
5606 return 0;
5607
f5ffe02e
FW
5608 if (perf_exclude_event(event, regs))
5609 return 0;
15dbf27c
PZ
5610
5611 return 1;
5612}
5613
76e1d904
FW
5614static inline u64 swevent_hash(u64 type, u32 event_id)
5615{
5616 u64 val = event_id | (type << 32);
5617
5618 return hash_64(val, SWEVENT_HLIST_BITS);
5619}
5620
49f135ed
FW
5621static inline struct hlist_head *
5622__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5623{
49f135ed
FW
5624 u64 hash = swevent_hash(type, event_id);
5625
5626 return &hlist->heads[hash];
5627}
76e1d904 5628
49f135ed
FW
5629/* For the read side: events when they trigger */
5630static inline struct hlist_head *
b28ab83c 5631find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5632{
5633 struct swevent_hlist *hlist;
76e1d904 5634
b28ab83c 5635 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5636 if (!hlist)
5637 return NULL;
5638
49f135ed
FW
5639 return __find_swevent_head(hlist, type, event_id);
5640}
5641
5642/* For the event head insertion and removal in the hlist */
5643static inline struct hlist_head *
b28ab83c 5644find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5645{
5646 struct swevent_hlist *hlist;
5647 u32 event_id = event->attr.config;
5648 u64 type = event->attr.type;
5649
5650 /*
5651 * Event scheduling is always serialized against hlist allocation
5652 * and release. Which makes the protected version suitable here.
5653 * The context lock guarantees that.
5654 */
b28ab83c 5655 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5656 lockdep_is_held(&event->ctx->lock));
5657 if (!hlist)
5658 return NULL;
5659
5660 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5661}
5662
5663static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5664 u64 nr,
76e1d904
FW
5665 struct perf_sample_data *data,
5666 struct pt_regs *regs)
15dbf27c 5667{
b28ab83c 5668 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5669 struct perf_event *event;
76e1d904 5670 struct hlist_head *head;
15dbf27c 5671
76e1d904 5672 rcu_read_lock();
b28ab83c 5673 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5674 if (!head)
5675 goto end;
5676
b67bfe0d 5677 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5678 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5679 perf_swevent_event(event, nr, data, regs);
15dbf27c 5680 }
76e1d904
FW
5681end:
5682 rcu_read_unlock();
15dbf27c
PZ
5683}
5684
4ed7c92d 5685int perf_swevent_get_recursion_context(void)
96f6d444 5686{
b28ab83c 5687 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5688
b28ab83c 5689 return get_recursion_context(swhash->recursion);
96f6d444 5690}
645e8cc0 5691EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5692
fa9f90be 5693inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5694{
b28ab83c 5695 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5696
b28ab83c 5697 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5698}
15dbf27c 5699
a8b0ca17 5700void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5701{
a4234bfc 5702 struct perf_sample_data data;
4ed7c92d
PZ
5703 int rctx;
5704
1c024eca 5705 preempt_disable_notrace();
4ed7c92d
PZ
5706 rctx = perf_swevent_get_recursion_context();
5707 if (rctx < 0)
5708 return;
a4234bfc 5709
fd0d000b 5710 perf_sample_data_init(&data, addr, 0);
92bf309a 5711
a8b0ca17 5712 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5713
5714 perf_swevent_put_recursion_context(rctx);
1c024eca 5715 preempt_enable_notrace();
b8e83514
PZ
5716}
5717
cdd6c482 5718static void perf_swevent_read(struct perf_event *event)
15dbf27c 5719{
15dbf27c
PZ
5720}
5721
a4eaf7f1 5722static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5723{
b28ab83c 5724 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5725 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5726 struct hlist_head *head;
5727
6c7e550f 5728 if (is_sampling_event(event)) {
7b4b6658 5729 hwc->last_period = hwc->sample_period;
cdd6c482 5730 perf_swevent_set_period(event);
7b4b6658 5731 }
76e1d904 5732
a4eaf7f1
PZ
5733 hwc->state = !(flags & PERF_EF_START);
5734
b28ab83c 5735 head = find_swevent_head(swhash, event);
39af6b16
JO
5736 if (!head) {
5737 /*
5738 * We can race with cpu hotplug code. Do not
5739 * WARN if the cpu just got unplugged.
5740 */
5741 WARN_ON_ONCE(swhash->online);
76e1d904 5742 return -EINVAL;
39af6b16 5743 }
76e1d904
FW
5744
5745 hlist_add_head_rcu(&event->hlist_entry, head);
5746
15dbf27c
PZ
5747 return 0;
5748}
5749
a4eaf7f1 5750static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5751{
76e1d904 5752 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5753}
5754
a4eaf7f1 5755static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5756{
a4eaf7f1 5757 event->hw.state = 0;
d6d020e9 5758}
aa9c4c0f 5759
a4eaf7f1 5760static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5761{
a4eaf7f1 5762 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5763}
5764
49f135ed
FW
5765/* Deref the hlist from the update side */
5766static inline struct swevent_hlist *
b28ab83c 5767swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5768{
b28ab83c
PZ
5769 return rcu_dereference_protected(swhash->swevent_hlist,
5770 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5771}
5772
b28ab83c 5773static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5774{
b28ab83c 5775 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5776
49f135ed 5777 if (!hlist)
76e1d904
FW
5778 return;
5779
b28ab83c 5780 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5781 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5782}
5783
5784static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5785{
b28ab83c 5786 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5787
b28ab83c 5788 mutex_lock(&swhash->hlist_mutex);
76e1d904 5789
b28ab83c
PZ
5790 if (!--swhash->hlist_refcount)
5791 swevent_hlist_release(swhash);
76e1d904 5792
b28ab83c 5793 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5794}
5795
5796static void swevent_hlist_put(struct perf_event *event)
5797{
5798 int cpu;
5799
76e1d904
FW
5800 for_each_possible_cpu(cpu)
5801 swevent_hlist_put_cpu(event, cpu);
5802}
5803
5804static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5805{
b28ab83c 5806 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5807 int err = 0;
5808
b28ab83c 5809 mutex_lock(&swhash->hlist_mutex);
76e1d904 5810
b28ab83c 5811 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5812 struct swevent_hlist *hlist;
5813
5814 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5815 if (!hlist) {
5816 err = -ENOMEM;
5817 goto exit;
5818 }
b28ab83c 5819 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5820 }
b28ab83c 5821 swhash->hlist_refcount++;
9ed6060d 5822exit:
b28ab83c 5823 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5824
5825 return err;
5826}
5827
5828static int swevent_hlist_get(struct perf_event *event)
5829{
5830 int err;
5831 int cpu, failed_cpu;
5832
76e1d904
FW
5833 get_online_cpus();
5834 for_each_possible_cpu(cpu) {
5835 err = swevent_hlist_get_cpu(event, cpu);
5836 if (err) {
5837 failed_cpu = cpu;
5838 goto fail;
5839 }
5840 }
5841 put_online_cpus();
5842
5843 return 0;
9ed6060d 5844fail:
76e1d904
FW
5845 for_each_possible_cpu(cpu) {
5846 if (cpu == failed_cpu)
5847 break;
5848 swevent_hlist_put_cpu(event, cpu);
5849 }
5850
5851 put_online_cpus();
5852 return err;
5853}
5854
c5905afb 5855struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5856
b0a873eb
PZ
5857static void sw_perf_event_destroy(struct perf_event *event)
5858{
5859 u64 event_id = event->attr.config;
95476b64 5860
b0a873eb
PZ
5861 WARN_ON(event->parent);
5862
c5905afb 5863 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5864 swevent_hlist_put(event);
5865}
5866
5867static int perf_swevent_init(struct perf_event *event)
5868{
8176cced 5869 u64 event_id = event->attr.config;
b0a873eb
PZ
5870
5871 if (event->attr.type != PERF_TYPE_SOFTWARE)
5872 return -ENOENT;
5873
2481c5fa
SE
5874 /*
5875 * no branch sampling for software events
5876 */
5877 if (has_branch_stack(event))
5878 return -EOPNOTSUPP;
5879
b0a873eb
PZ
5880 switch (event_id) {
5881 case PERF_COUNT_SW_CPU_CLOCK:
5882 case PERF_COUNT_SW_TASK_CLOCK:
5883 return -ENOENT;
5884
5885 default:
5886 break;
5887 }
5888
ce677831 5889 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5890 return -ENOENT;
5891
5892 if (!event->parent) {
5893 int err;
5894
5895 err = swevent_hlist_get(event);
5896 if (err)
5897 return err;
5898
c5905afb 5899 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5900 event->destroy = sw_perf_event_destroy;
5901 }
5902
5903 return 0;
5904}
5905
35edc2a5
PZ
5906static int perf_swevent_event_idx(struct perf_event *event)
5907{
5908 return 0;
5909}
5910
b0a873eb 5911static struct pmu perf_swevent = {
89a1e187 5912 .task_ctx_nr = perf_sw_context,
95476b64 5913
b0a873eb 5914 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5915 .add = perf_swevent_add,
5916 .del = perf_swevent_del,
5917 .start = perf_swevent_start,
5918 .stop = perf_swevent_stop,
1c024eca 5919 .read = perf_swevent_read,
35edc2a5
PZ
5920
5921 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5922};
5923
b0a873eb
PZ
5924#ifdef CONFIG_EVENT_TRACING
5925
1c024eca
PZ
5926static int perf_tp_filter_match(struct perf_event *event,
5927 struct perf_sample_data *data)
5928{
5929 void *record = data->raw->data;
5930
5931 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5932 return 1;
5933 return 0;
5934}
5935
5936static int perf_tp_event_match(struct perf_event *event,
5937 struct perf_sample_data *data,
5938 struct pt_regs *regs)
5939{
a0f7d0f7
FW
5940 if (event->hw.state & PERF_HES_STOPPED)
5941 return 0;
580d607c
PZ
5942 /*
5943 * All tracepoints are from kernel-space.
5944 */
5945 if (event->attr.exclude_kernel)
1c024eca
PZ
5946 return 0;
5947
5948 if (!perf_tp_filter_match(event, data))
5949 return 0;
5950
5951 return 1;
5952}
5953
5954void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5955 struct pt_regs *regs, struct hlist_head *head, int rctx,
5956 struct task_struct *task)
95476b64
FW
5957{
5958 struct perf_sample_data data;
1c024eca 5959 struct perf_event *event;
1c024eca 5960
95476b64
FW
5961 struct perf_raw_record raw = {
5962 .size = entry_size,
5963 .data = record,
5964 };
5965
fd0d000b 5966 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5967 data.raw = &raw;
5968
b67bfe0d 5969 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5970 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5971 perf_swevent_event(event, count, &data, regs);
4f41c013 5972 }
ecc55f84 5973
e6dab5ff
AV
5974 /*
5975 * If we got specified a target task, also iterate its context and
5976 * deliver this event there too.
5977 */
5978 if (task && task != current) {
5979 struct perf_event_context *ctx;
5980 struct trace_entry *entry = record;
5981
5982 rcu_read_lock();
5983 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5984 if (!ctx)
5985 goto unlock;
5986
5987 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5988 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5989 continue;
5990 if (event->attr.config != entry->type)
5991 continue;
5992 if (perf_tp_event_match(event, &data, regs))
5993 perf_swevent_event(event, count, &data, regs);
5994 }
5995unlock:
5996 rcu_read_unlock();
5997 }
5998
ecc55f84 5999 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6000}
6001EXPORT_SYMBOL_GPL(perf_tp_event);
6002
cdd6c482 6003static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6004{
1c024eca 6005 perf_trace_destroy(event);
e077df4f
PZ
6006}
6007
b0a873eb 6008static int perf_tp_event_init(struct perf_event *event)
e077df4f 6009{
76e1d904
FW
6010 int err;
6011
b0a873eb
PZ
6012 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6013 return -ENOENT;
6014
2481c5fa
SE
6015 /*
6016 * no branch sampling for tracepoint events
6017 */
6018 if (has_branch_stack(event))
6019 return -EOPNOTSUPP;
6020
1c024eca
PZ
6021 err = perf_trace_init(event);
6022 if (err)
b0a873eb 6023 return err;
e077df4f 6024
cdd6c482 6025 event->destroy = tp_perf_event_destroy;
e077df4f 6026
b0a873eb
PZ
6027 return 0;
6028}
6029
6030static struct pmu perf_tracepoint = {
89a1e187
PZ
6031 .task_ctx_nr = perf_sw_context,
6032
b0a873eb 6033 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6034 .add = perf_trace_add,
6035 .del = perf_trace_del,
6036 .start = perf_swevent_start,
6037 .stop = perf_swevent_stop,
b0a873eb 6038 .read = perf_swevent_read,
35edc2a5
PZ
6039
6040 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6041};
6042
6043static inline void perf_tp_register(void)
6044{
2e80a82a 6045 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6046}
6fb2915d
LZ
6047
6048static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6049{
6050 char *filter_str;
6051 int ret;
6052
6053 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6054 return -EINVAL;
6055
6056 filter_str = strndup_user(arg, PAGE_SIZE);
6057 if (IS_ERR(filter_str))
6058 return PTR_ERR(filter_str);
6059
6060 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6061
6062 kfree(filter_str);
6063 return ret;
6064}
6065
6066static void perf_event_free_filter(struct perf_event *event)
6067{
6068 ftrace_profile_free_filter(event);
6069}
6070
e077df4f 6071#else
6fb2915d 6072
b0a873eb 6073static inline void perf_tp_register(void)
e077df4f 6074{
e077df4f 6075}
6fb2915d
LZ
6076
6077static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6078{
6079 return -ENOENT;
6080}
6081
6082static void perf_event_free_filter(struct perf_event *event)
6083{
6084}
6085
07b139c8 6086#endif /* CONFIG_EVENT_TRACING */
e077df4f 6087
24f1e32c 6088#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6089void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6090{
f5ffe02e
FW
6091 struct perf_sample_data sample;
6092 struct pt_regs *regs = data;
6093
fd0d000b 6094 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6095
a4eaf7f1 6096 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6097 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6098}
6099#endif
6100
b0a873eb
PZ
6101/*
6102 * hrtimer based swevent callback
6103 */
f29ac756 6104
b0a873eb 6105static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6106{
b0a873eb
PZ
6107 enum hrtimer_restart ret = HRTIMER_RESTART;
6108 struct perf_sample_data data;
6109 struct pt_regs *regs;
6110 struct perf_event *event;
6111 u64 period;
f29ac756 6112
b0a873eb 6113 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6114
6115 if (event->state != PERF_EVENT_STATE_ACTIVE)
6116 return HRTIMER_NORESTART;
6117
b0a873eb 6118 event->pmu->read(event);
f344011c 6119
fd0d000b 6120 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6121 regs = get_irq_regs();
6122
6123 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6124 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6125 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6126 ret = HRTIMER_NORESTART;
6127 }
24f1e32c 6128
b0a873eb
PZ
6129 period = max_t(u64, 10000, event->hw.sample_period);
6130 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6131
b0a873eb 6132 return ret;
f29ac756
PZ
6133}
6134
b0a873eb 6135static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6136{
b0a873eb 6137 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6138 s64 period;
6139
6140 if (!is_sampling_event(event))
6141 return;
f5ffe02e 6142
5d508e82
FBH
6143 period = local64_read(&hwc->period_left);
6144 if (period) {
6145 if (period < 0)
6146 period = 10000;
fa407f35 6147
5d508e82
FBH
6148 local64_set(&hwc->period_left, 0);
6149 } else {
6150 period = max_t(u64, 10000, hwc->sample_period);
6151 }
6152 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6153 ns_to_ktime(period), 0,
b5ab4cd5 6154 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6155}
b0a873eb
PZ
6156
6157static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6158{
b0a873eb
PZ
6159 struct hw_perf_event *hwc = &event->hw;
6160
6c7e550f 6161 if (is_sampling_event(event)) {
b0a873eb 6162 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6163 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6164
6165 hrtimer_cancel(&hwc->hrtimer);
6166 }
24f1e32c
FW
6167}
6168
ba3dd36c
PZ
6169static void perf_swevent_init_hrtimer(struct perf_event *event)
6170{
6171 struct hw_perf_event *hwc = &event->hw;
6172
6173 if (!is_sampling_event(event))
6174 return;
6175
6176 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6177 hwc->hrtimer.function = perf_swevent_hrtimer;
6178
6179 /*
6180 * Since hrtimers have a fixed rate, we can do a static freq->period
6181 * mapping and avoid the whole period adjust feedback stuff.
6182 */
6183 if (event->attr.freq) {
6184 long freq = event->attr.sample_freq;
6185
6186 event->attr.sample_period = NSEC_PER_SEC / freq;
6187 hwc->sample_period = event->attr.sample_period;
6188 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6189 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6190 event->attr.freq = 0;
6191 }
6192}
6193
b0a873eb
PZ
6194/*
6195 * Software event: cpu wall time clock
6196 */
6197
6198static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6199{
b0a873eb
PZ
6200 s64 prev;
6201 u64 now;
6202
a4eaf7f1 6203 now = local_clock();
b0a873eb
PZ
6204 prev = local64_xchg(&event->hw.prev_count, now);
6205 local64_add(now - prev, &event->count);
24f1e32c 6206}
24f1e32c 6207
a4eaf7f1 6208static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6209{
a4eaf7f1 6210 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6211 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6212}
6213
a4eaf7f1 6214static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6215{
b0a873eb
PZ
6216 perf_swevent_cancel_hrtimer(event);
6217 cpu_clock_event_update(event);
6218}
f29ac756 6219
a4eaf7f1
PZ
6220static int cpu_clock_event_add(struct perf_event *event, int flags)
6221{
6222 if (flags & PERF_EF_START)
6223 cpu_clock_event_start(event, flags);
6224
6225 return 0;
6226}
6227
6228static void cpu_clock_event_del(struct perf_event *event, int flags)
6229{
6230 cpu_clock_event_stop(event, flags);
6231}
6232
b0a873eb
PZ
6233static void cpu_clock_event_read(struct perf_event *event)
6234{
6235 cpu_clock_event_update(event);
6236}
f344011c 6237
b0a873eb
PZ
6238static int cpu_clock_event_init(struct perf_event *event)
6239{
6240 if (event->attr.type != PERF_TYPE_SOFTWARE)
6241 return -ENOENT;
6242
6243 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6244 return -ENOENT;
6245
2481c5fa
SE
6246 /*
6247 * no branch sampling for software events
6248 */
6249 if (has_branch_stack(event))
6250 return -EOPNOTSUPP;
6251
ba3dd36c
PZ
6252 perf_swevent_init_hrtimer(event);
6253
b0a873eb 6254 return 0;
f29ac756
PZ
6255}
6256
b0a873eb 6257static struct pmu perf_cpu_clock = {
89a1e187
PZ
6258 .task_ctx_nr = perf_sw_context,
6259
b0a873eb 6260 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6261 .add = cpu_clock_event_add,
6262 .del = cpu_clock_event_del,
6263 .start = cpu_clock_event_start,
6264 .stop = cpu_clock_event_stop,
b0a873eb 6265 .read = cpu_clock_event_read,
35edc2a5
PZ
6266
6267 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6268};
6269
6270/*
6271 * Software event: task time clock
6272 */
6273
6274static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6275{
b0a873eb
PZ
6276 u64 prev;
6277 s64 delta;
5c92d124 6278
b0a873eb
PZ
6279 prev = local64_xchg(&event->hw.prev_count, now);
6280 delta = now - prev;
6281 local64_add(delta, &event->count);
6282}
5c92d124 6283
a4eaf7f1 6284static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6285{
a4eaf7f1 6286 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6287 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6288}
6289
a4eaf7f1 6290static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6291{
6292 perf_swevent_cancel_hrtimer(event);
6293 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6294}
6295
6296static int task_clock_event_add(struct perf_event *event, int flags)
6297{
6298 if (flags & PERF_EF_START)
6299 task_clock_event_start(event, flags);
b0a873eb 6300
a4eaf7f1
PZ
6301 return 0;
6302}
6303
6304static void task_clock_event_del(struct perf_event *event, int flags)
6305{
6306 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6307}
6308
6309static void task_clock_event_read(struct perf_event *event)
6310{
768a06e2
PZ
6311 u64 now = perf_clock();
6312 u64 delta = now - event->ctx->timestamp;
6313 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6314
6315 task_clock_event_update(event, time);
6316}
6317
6318static int task_clock_event_init(struct perf_event *event)
6fb2915d 6319{
b0a873eb
PZ
6320 if (event->attr.type != PERF_TYPE_SOFTWARE)
6321 return -ENOENT;
6322
6323 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6324 return -ENOENT;
6325
2481c5fa
SE
6326 /*
6327 * no branch sampling for software events
6328 */
6329 if (has_branch_stack(event))
6330 return -EOPNOTSUPP;
6331
ba3dd36c
PZ
6332 perf_swevent_init_hrtimer(event);
6333
b0a873eb 6334 return 0;
6fb2915d
LZ
6335}
6336
b0a873eb 6337static struct pmu perf_task_clock = {
89a1e187
PZ
6338 .task_ctx_nr = perf_sw_context,
6339
b0a873eb 6340 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6341 .add = task_clock_event_add,
6342 .del = task_clock_event_del,
6343 .start = task_clock_event_start,
6344 .stop = task_clock_event_stop,
b0a873eb 6345 .read = task_clock_event_read,
35edc2a5
PZ
6346
6347 .event_idx = perf_swevent_event_idx,
b0a873eb 6348};
6fb2915d 6349
ad5133b7 6350static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6351{
e077df4f 6352}
6fb2915d 6353
ad5133b7 6354static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6355{
ad5133b7 6356 return 0;
6fb2915d
LZ
6357}
6358
ad5133b7 6359static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6360{
ad5133b7 6361 perf_pmu_disable(pmu);
6fb2915d
LZ
6362}
6363
ad5133b7
PZ
6364static int perf_pmu_commit_txn(struct pmu *pmu)
6365{
6366 perf_pmu_enable(pmu);
6367 return 0;
6368}
e077df4f 6369
ad5133b7 6370static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6371{
ad5133b7 6372 perf_pmu_enable(pmu);
24f1e32c
FW
6373}
6374
35edc2a5
PZ
6375static int perf_event_idx_default(struct perf_event *event)
6376{
6377 return event->hw.idx + 1;
6378}
6379
8dc85d54
PZ
6380/*
6381 * Ensures all contexts with the same task_ctx_nr have the same
6382 * pmu_cpu_context too.
6383 */
9e317041 6384static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 6385{
8dc85d54 6386 struct pmu *pmu;
b326e956 6387
8dc85d54
PZ
6388 if (ctxn < 0)
6389 return NULL;
24f1e32c 6390
8dc85d54
PZ
6391 list_for_each_entry(pmu, &pmus, entry) {
6392 if (pmu->task_ctx_nr == ctxn)
6393 return pmu->pmu_cpu_context;
6394 }
24f1e32c 6395
8dc85d54 6396 return NULL;
24f1e32c
FW
6397}
6398
51676957 6399static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6400{
51676957
PZ
6401 int cpu;
6402
6403 for_each_possible_cpu(cpu) {
6404 struct perf_cpu_context *cpuctx;
6405
6406 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6407
3f1f3320
PZ
6408 if (cpuctx->unique_pmu == old_pmu)
6409 cpuctx->unique_pmu = pmu;
51676957
PZ
6410 }
6411}
6412
6413static void free_pmu_context(struct pmu *pmu)
6414{
6415 struct pmu *i;
f5ffe02e 6416
8dc85d54 6417 mutex_lock(&pmus_lock);
0475f9ea 6418 /*
8dc85d54 6419 * Like a real lame refcount.
0475f9ea 6420 */
51676957
PZ
6421 list_for_each_entry(i, &pmus, entry) {
6422 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6423 update_pmu_context(i, pmu);
8dc85d54 6424 goto out;
51676957 6425 }
8dc85d54 6426 }
d6d020e9 6427
51676957 6428 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6429out:
6430 mutex_unlock(&pmus_lock);
24f1e32c 6431}
2e80a82a 6432static struct idr pmu_idr;
d6d020e9 6433
abe43400
PZ
6434static ssize_t
6435type_show(struct device *dev, struct device_attribute *attr, char *page)
6436{
6437 struct pmu *pmu = dev_get_drvdata(dev);
6438
6439 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6440}
90826ca7 6441static DEVICE_ATTR_RO(type);
abe43400 6442
62b85639
SE
6443static ssize_t
6444perf_event_mux_interval_ms_show(struct device *dev,
6445 struct device_attribute *attr,
6446 char *page)
6447{
6448 struct pmu *pmu = dev_get_drvdata(dev);
6449
6450 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6451}
6452
6453static ssize_t
6454perf_event_mux_interval_ms_store(struct device *dev,
6455 struct device_attribute *attr,
6456 const char *buf, size_t count)
6457{
6458 struct pmu *pmu = dev_get_drvdata(dev);
6459 int timer, cpu, ret;
6460
6461 ret = kstrtoint(buf, 0, &timer);
6462 if (ret)
6463 return ret;
6464
6465 if (timer < 1)
6466 return -EINVAL;
6467
6468 /* same value, noting to do */
6469 if (timer == pmu->hrtimer_interval_ms)
6470 return count;
6471
6472 pmu->hrtimer_interval_ms = timer;
6473
6474 /* update all cpuctx for this PMU */
6475 for_each_possible_cpu(cpu) {
6476 struct perf_cpu_context *cpuctx;
6477 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6478 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6479
6480 if (hrtimer_active(&cpuctx->hrtimer))
6481 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6482 }
6483
6484 return count;
6485}
90826ca7 6486static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 6487
90826ca7
GKH
6488static struct attribute *pmu_dev_attrs[] = {
6489 &dev_attr_type.attr,
6490 &dev_attr_perf_event_mux_interval_ms.attr,
6491 NULL,
abe43400 6492};
90826ca7 6493ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
6494
6495static int pmu_bus_running;
6496static struct bus_type pmu_bus = {
6497 .name = "event_source",
90826ca7 6498 .dev_groups = pmu_dev_groups,
abe43400
PZ
6499};
6500
6501static void pmu_dev_release(struct device *dev)
6502{
6503 kfree(dev);
6504}
6505
6506static int pmu_dev_alloc(struct pmu *pmu)
6507{
6508 int ret = -ENOMEM;
6509
6510 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6511 if (!pmu->dev)
6512 goto out;
6513
0c9d42ed 6514 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6515 device_initialize(pmu->dev);
6516 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6517 if (ret)
6518 goto free_dev;
6519
6520 dev_set_drvdata(pmu->dev, pmu);
6521 pmu->dev->bus = &pmu_bus;
6522 pmu->dev->release = pmu_dev_release;
6523 ret = device_add(pmu->dev);
6524 if (ret)
6525 goto free_dev;
6526
6527out:
6528 return ret;
6529
6530free_dev:
6531 put_device(pmu->dev);
6532 goto out;
6533}
6534
547e9fd7 6535static struct lock_class_key cpuctx_mutex;
facc4307 6536static struct lock_class_key cpuctx_lock;
547e9fd7 6537
03d8e80b 6538int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6539{
108b02cf 6540 int cpu, ret;
24f1e32c 6541
b0a873eb 6542 mutex_lock(&pmus_lock);
33696fc0
PZ
6543 ret = -ENOMEM;
6544 pmu->pmu_disable_count = alloc_percpu(int);
6545 if (!pmu->pmu_disable_count)
6546 goto unlock;
f29ac756 6547
2e80a82a
PZ
6548 pmu->type = -1;
6549 if (!name)
6550 goto skip_type;
6551 pmu->name = name;
6552
6553 if (type < 0) {
0e9c3be2
TH
6554 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6555 if (type < 0) {
6556 ret = type;
2e80a82a
PZ
6557 goto free_pdc;
6558 }
6559 }
6560 pmu->type = type;
6561
abe43400
PZ
6562 if (pmu_bus_running) {
6563 ret = pmu_dev_alloc(pmu);
6564 if (ret)
6565 goto free_idr;
6566 }
6567
2e80a82a 6568skip_type:
8dc85d54
PZ
6569 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6570 if (pmu->pmu_cpu_context)
6571 goto got_cpu_context;
f29ac756 6572
c4814202 6573 ret = -ENOMEM;
108b02cf
PZ
6574 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6575 if (!pmu->pmu_cpu_context)
abe43400 6576 goto free_dev;
f344011c 6577
108b02cf
PZ
6578 for_each_possible_cpu(cpu) {
6579 struct perf_cpu_context *cpuctx;
6580
6581 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6582 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6583 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6584 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6585 cpuctx->ctx.type = cpu_context;
108b02cf 6586 cpuctx->ctx.pmu = pmu;
9e630205
SE
6587
6588 __perf_cpu_hrtimer_init(cpuctx, cpu);
6589
e9d2b064 6590 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6591 cpuctx->unique_pmu = pmu;
108b02cf 6592 }
76e1d904 6593
8dc85d54 6594got_cpu_context:
ad5133b7
PZ
6595 if (!pmu->start_txn) {
6596 if (pmu->pmu_enable) {
6597 /*
6598 * If we have pmu_enable/pmu_disable calls, install
6599 * transaction stubs that use that to try and batch
6600 * hardware accesses.
6601 */
6602 pmu->start_txn = perf_pmu_start_txn;
6603 pmu->commit_txn = perf_pmu_commit_txn;
6604 pmu->cancel_txn = perf_pmu_cancel_txn;
6605 } else {
6606 pmu->start_txn = perf_pmu_nop_void;
6607 pmu->commit_txn = perf_pmu_nop_int;
6608 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6609 }
5c92d124 6610 }
15dbf27c 6611
ad5133b7
PZ
6612 if (!pmu->pmu_enable) {
6613 pmu->pmu_enable = perf_pmu_nop_void;
6614 pmu->pmu_disable = perf_pmu_nop_void;
6615 }
6616
35edc2a5
PZ
6617 if (!pmu->event_idx)
6618 pmu->event_idx = perf_event_idx_default;
6619
b0a873eb 6620 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6621 ret = 0;
6622unlock:
b0a873eb
PZ
6623 mutex_unlock(&pmus_lock);
6624
33696fc0 6625 return ret;
108b02cf 6626
abe43400
PZ
6627free_dev:
6628 device_del(pmu->dev);
6629 put_device(pmu->dev);
6630
2e80a82a
PZ
6631free_idr:
6632 if (pmu->type >= PERF_TYPE_MAX)
6633 idr_remove(&pmu_idr, pmu->type);
6634
108b02cf
PZ
6635free_pdc:
6636 free_percpu(pmu->pmu_disable_count);
6637 goto unlock;
f29ac756 6638}
c464c76e 6639EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 6640
b0a873eb 6641void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6642{
b0a873eb
PZ
6643 mutex_lock(&pmus_lock);
6644 list_del_rcu(&pmu->entry);
6645 mutex_unlock(&pmus_lock);
5c92d124 6646
0475f9ea 6647 /*
cde8e884
PZ
6648 * We dereference the pmu list under both SRCU and regular RCU, so
6649 * synchronize against both of those.
0475f9ea 6650 */
b0a873eb 6651 synchronize_srcu(&pmus_srcu);
cde8e884 6652 synchronize_rcu();
d6d020e9 6653
33696fc0 6654 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6655 if (pmu->type >= PERF_TYPE_MAX)
6656 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6657 device_del(pmu->dev);
6658 put_device(pmu->dev);
51676957 6659 free_pmu_context(pmu);
b0a873eb 6660}
c464c76e 6661EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 6662
b0a873eb
PZ
6663struct pmu *perf_init_event(struct perf_event *event)
6664{
6665 struct pmu *pmu = NULL;
6666 int idx;
940c5b29 6667 int ret;
b0a873eb
PZ
6668
6669 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6670
6671 rcu_read_lock();
6672 pmu = idr_find(&pmu_idr, event->attr.type);
6673 rcu_read_unlock();
940c5b29 6674 if (pmu) {
c464c76e
YZ
6675 if (!try_module_get(pmu->module)) {
6676 pmu = ERR_PTR(-ENODEV);
6677 goto unlock;
6678 }
7e5b2a01 6679 event->pmu = pmu;
940c5b29
LM
6680 ret = pmu->event_init(event);
6681 if (ret)
6682 pmu = ERR_PTR(ret);
2e80a82a 6683 goto unlock;
940c5b29 6684 }
2e80a82a 6685
b0a873eb 6686 list_for_each_entry_rcu(pmu, &pmus, entry) {
c464c76e
YZ
6687 if (!try_module_get(pmu->module)) {
6688 pmu = ERR_PTR(-ENODEV);
6689 goto unlock;
6690 }
7e5b2a01 6691 event->pmu = pmu;
940c5b29 6692 ret = pmu->event_init(event);
b0a873eb 6693 if (!ret)
e5f4d339 6694 goto unlock;
76e1d904 6695
b0a873eb
PZ
6696 if (ret != -ENOENT) {
6697 pmu = ERR_PTR(ret);
e5f4d339 6698 goto unlock;
f344011c 6699 }
5c92d124 6700 }
e5f4d339
PZ
6701 pmu = ERR_PTR(-ENOENT);
6702unlock:
b0a873eb 6703 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6704
4aeb0b42 6705 return pmu;
5c92d124
IM
6706}
6707
4beb31f3
FW
6708static void account_event_cpu(struct perf_event *event, int cpu)
6709{
6710 if (event->parent)
6711 return;
6712
6713 if (has_branch_stack(event)) {
6714 if (!(event->attach_state & PERF_ATTACH_TASK))
6715 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6716 }
6717 if (is_cgroup_event(event))
6718 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6719}
6720
766d6c07
FW
6721static void account_event(struct perf_event *event)
6722{
4beb31f3
FW
6723 if (event->parent)
6724 return;
6725
766d6c07
FW
6726 if (event->attach_state & PERF_ATTACH_TASK)
6727 static_key_slow_inc(&perf_sched_events.key);
6728 if (event->attr.mmap || event->attr.mmap_data)
6729 atomic_inc(&nr_mmap_events);
6730 if (event->attr.comm)
6731 atomic_inc(&nr_comm_events);
6732 if (event->attr.task)
6733 atomic_inc(&nr_task_events);
948b26b6
FW
6734 if (event->attr.freq) {
6735 if (atomic_inc_return(&nr_freq_events) == 1)
6736 tick_nohz_full_kick_all();
6737 }
4beb31f3 6738 if (has_branch_stack(event))
766d6c07 6739 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 6740 if (is_cgroup_event(event))
766d6c07 6741 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
6742
6743 account_event_cpu(event, event->cpu);
766d6c07
FW
6744}
6745
0793a61d 6746/*
cdd6c482 6747 * Allocate and initialize a event structure
0793a61d 6748 */
cdd6c482 6749static struct perf_event *
c3f00c70 6750perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6751 struct task_struct *task,
6752 struct perf_event *group_leader,
6753 struct perf_event *parent_event,
4dc0da86
AK
6754 perf_overflow_handler_t overflow_handler,
6755 void *context)
0793a61d 6756{
51b0fe39 6757 struct pmu *pmu;
cdd6c482
IM
6758 struct perf_event *event;
6759 struct hw_perf_event *hwc;
90983b16 6760 long err = -EINVAL;
0793a61d 6761
66832eb4
ON
6762 if ((unsigned)cpu >= nr_cpu_ids) {
6763 if (!task || cpu != -1)
6764 return ERR_PTR(-EINVAL);
6765 }
6766
c3f00c70 6767 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6768 if (!event)
d5d2bc0d 6769 return ERR_PTR(-ENOMEM);
0793a61d 6770
04289bb9 6771 /*
cdd6c482 6772 * Single events are their own group leaders, with an
04289bb9
IM
6773 * empty sibling list:
6774 */
6775 if (!group_leader)
cdd6c482 6776 group_leader = event;
04289bb9 6777
cdd6c482
IM
6778 mutex_init(&event->child_mutex);
6779 INIT_LIST_HEAD(&event->child_list);
fccc714b 6780
cdd6c482
IM
6781 INIT_LIST_HEAD(&event->group_entry);
6782 INIT_LIST_HEAD(&event->event_entry);
6783 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 6784 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 6785 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
6786 INIT_HLIST_NODE(&event->hlist_entry);
6787
10c6db11 6788
cdd6c482 6789 init_waitqueue_head(&event->waitq);
e360adbe 6790 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6791
cdd6c482 6792 mutex_init(&event->mmap_mutex);
7b732a75 6793
a6fa941d 6794 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6795 event->cpu = cpu;
6796 event->attr = *attr;
6797 event->group_leader = group_leader;
6798 event->pmu = NULL;
cdd6c482 6799 event->oncpu = -1;
a96bbc16 6800
cdd6c482 6801 event->parent = parent_event;
b84fbc9f 6802
17cf22c3 6803 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6804 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6805
cdd6c482 6806 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6807
d580ff86
PZ
6808 if (task) {
6809 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6810
6811 if (attr->type == PERF_TYPE_TRACEPOINT)
6812 event->hw.tp_target = task;
d580ff86
PZ
6813#ifdef CONFIG_HAVE_HW_BREAKPOINT
6814 /*
6815 * hw_breakpoint is a bit difficult here..
6816 */
f22c1bb6 6817 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6818 event->hw.bp_target = task;
6819#endif
6820 }
6821
4dc0da86 6822 if (!overflow_handler && parent_event) {
b326e956 6823 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6824 context = parent_event->overflow_handler_context;
6825 }
66832eb4 6826
b326e956 6827 event->overflow_handler = overflow_handler;
4dc0da86 6828 event->overflow_handler_context = context;
97eaf530 6829
0231bb53 6830 perf_event__state_init(event);
a86ed508 6831
4aeb0b42 6832 pmu = NULL;
b8e83514 6833
cdd6c482 6834 hwc = &event->hw;
bd2b5b12 6835 hwc->sample_period = attr->sample_period;
0d48696f 6836 if (attr->freq && attr->sample_freq)
bd2b5b12 6837 hwc->sample_period = 1;
eced1dfc 6838 hwc->last_period = hwc->sample_period;
bd2b5b12 6839
e7850595 6840 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6841
2023b359 6842 /*
cdd6c482 6843 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6844 */
3dab77fb 6845 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 6846 goto err_ns;
2023b359 6847
b0a873eb 6848 pmu = perf_init_event(event);
4aeb0b42 6849 if (!pmu)
90983b16
FW
6850 goto err_ns;
6851 else if (IS_ERR(pmu)) {
4aeb0b42 6852 err = PTR_ERR(pmu);
90983b16 6853 goto err_ns;
621a01ea 6854 }
d5d2bc0d 6855
cdd6c482 6856 if (!event->parent) {
927c7a9e
FW
6857 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6858 err = get_callchain_buffers();
90983b16
FW
6859 if (err)
6860 goto err_pmu;
d010b332 6861 }
f344011c 6862 }
9ee318a7 6863
cdd6c482 6864 return event;
90983b16
FW
6865
6866err_pmu:
6867 if (event->destroy)
6868 event->destroy(event);
c464c76e 6869 module_put(pmu->module);
90983b16
FW
6870err_ns:
6871 if (event->ns)
6872 put_pid_ns(event->ns);
6873 kfree(event);
6874
6875 return ERR_PTR(err);
0793a61d
TG
6876}
6877
cdd6c482
IM
6878static int perf_copy_attr(struct perf_event_attr __user *uattr,
6879 struct perf_event_attr *attr)
974802ea 6880{
974802ea 6881 u32 size;
cdf8073d 6882 int ret;
974802ea
PZ
6883
6884 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6885 return -EFAULT;
6886
6887 /*
6888 * zero the full structure, so that a short copy will be nice.
6889 */
6890 memset(attr, 0, sizeof(*attr));
6891
6892 ret = get_user(size, &uattr->size);
6893 if (ret)
6894 return ret;
6895
6896 if (size > PAGE_SIZE) /* silly large */
6897 goto err_size;
6898
6899 if (!size) /* abi compat */
6900 size = PERF_ATTR_SIZE_VER0;
6901
6902 if (size < PERF_ATTR_SIZE_VER0)
6903 goto err_size;
6904
6905 /*
6906 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6907 * ensure all the unknown bits are 0 - i.e. new
6908 * user-space does not rely on any kernel feature
6909 * extensions we dont know about yet.
974802ea
PZ
6910 */
6911 if (size > sizeof(*attr)) {
cdf8073d
IS
6912 unsigned char __user *addr;
6913 unsigned char __user *end;
6914 unsigned char val;
974802ea 6915
cdf8073d
IS
6916 addr = (void __user *)uattr + sizeof(*attr);
6917 end = (void __user *)uattr + size;
974802ea 6918
cdf8073d 6919 for (; addr < end; addr++) {
974802ea
PZ
6920 ret = get_user(val, addr);
6921 if (ret)
6922 return ret;
6923 if (val)
6924 goto err_size;
6925 }
b3e62e35 6926 size = sizeof(*attr);
974802ea
PZ
6927 }
6928
6929 ret = copy_from_user(attr, uattr, size);
6930 if (ret)
6931 return -EFAULT;
6932
cd757645 6933 if (attr->__reserved_1)
974802ea
PZ
6934 return -EINVAL;
6935
6936 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6937 return -EINVAL;
6938
6939 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6940 return -EINVAL;
6941
bce38cd5
SE
6942 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6943 u64 mask = attr->branch_sample_type;
6944
6945 /* only using defined bits */
6946 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6947 return -EINVAL;
6948
6949 /* at least one branch bit must be set */
6950 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6951 return -EINVAL;
6952
bce38cd5
SE
6953 /* propagate priv level, when not set for branch */
6954 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6955
6956 /* exclude_kernel checked on syscall entry */
6957 if (!attr->exclude_kernel)
6958 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6959
6960 if (!attr->exclude_user)
6961 mask |= PERF_SAMPLE_BRANCH_USER;
6962
6963 if (!attr->exclude_hv)
6964 mask |= PERF_SAMPLE_BRANCH_HV;
6965 /*
6966 * adjust user setting (for HW filter setup)
6967 */
6968 attr->branch_sample_type = mask;
6969 }
e712209a
SE
6970 /* privileged levels capture (kernel, hv): check permissions */
6971 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
6972 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6973 return -EACCES;
bce38cd5 6974 }
4018994f 6975
c5ebcedb 6976 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6977 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6978 if (ret)
6979 return ret;
6980 }
6981
6982 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6983 if (!arch_perf_have_user_stack_dump())
6984 return -ENOSYS;
6985
6986 /*
6987 * We have __u32 type for the size, but so far
6988 * we can only use __u16 as maximum due to the
6989 * __u16 sample size limit.
6990 */
6991 if (attr->sample_stack_user >= USHRT_MAX)
6992 ret = -EINVAL;
6993 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6994 ret = -EINVAL;
6995 }
4018994f 6996
974802ea
PZ
6997out:
6998 return ret;
6999
7000err_size:
7001 put_user(sizeof(*attr), &uattr->size);
7002 ret = -E2BIG;
7003 goto out;
7004}
7005
ac9721f3
PZ
7006static int
7007perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7008{
b69cf536 7009 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7010 int ret = -EINVAL;
7011
ac9721f3 7012 if (!output_event)
a4be7c27
PZ
7013 goto set;
7014
ac9721f3
PZ
7015 /* don't allow circular references */
7016 if (event == output_event)
a4be7c27
PZ
7017 goto out;
7018
0f139300
PZ
7019 /*
7020 * Don't allow cross-cpu buffers
7021 */
7022 if (output_event->cpu != event->cpu)
7023 goto out;
7024
7025 /*
76369139 7026 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7027 */
7028 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7029 goto out;
7030
a4be7c27 7031set:
cdd6c482 7032 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7033 /* Can't redirect output if we've got an active mmap() */
7034 if (atomic_read(&event->mmap_count))
7035 goto unlock;
a4be7c27 7036
ac9721f3 7037 if (output_event) {
76369139
FW
7038 /* get the rb we want to redirect to */
7039 rb = ring_buffer_get(output_event);
7040 if (!rb)
ac9721f3 7041 goto unlock;
a4be7c27
PZ
7042 }
7043
b69cf536 7044 ring_buffer_attach(event, rb);
9bb5d40c 7045
a4be7c27 7046 ret = 0;
ac9721f3
PZ
7047unlock:
7048 mutex_unlock(&event->mmap_mutex);
7049
a4be7c27 7050out:
a4be7c27
PZ
7051 return ret;
7052}
7053
0793a61d 7054/**
cdd6c482 7055 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7056 *
cdd6c482 7057 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7058 * @pid: target pid
9f66a381 7059 * @cpu: target cpu
cdd6c482 7060 * @group_fd: group leader event fd
0793a61d 7061 */
cdd6c482
IM
7062SYSCALL_DEFINE5(perf_event_open,
7063 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7064 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7065{
b04243ef
PZ
7066 struct perf_event *group_leader = NULL, *output_event = NULL;
7067 struct perf_event *event, *sibling;
cdd6c482
IM
7068 struct perf_event_attr attr;
7069 struct perf_event_context *ctx;
7070 struct file *event_file = NULL;
2903ff01 7071 struct fd group = {NULL, 0};
38a81da2 7072 struct task_struct *task = NULL;
89a1e187 7073 struct pmu *pmu;
ea635c64 7074 int event_fd;
b04243ef 7075 int move_group = 0;
dc86cabe 7076 int err;
a21b0b35 7077 int f_flags = O_RDWR;
0793a61d 7078
2743a5b0 7079 /* for future expandability... */
e5d1367f 7080 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7081 return -EINVAL;
7082
dc86cabe
IM
7083 err = perf_copy_attr(attr_uptr, &attr);
7084 if (err)
7085 return err;
eab656ae 7086
0764771d
PZ
7087 if (!attr.exclude_kernel) {
7088 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7089 return -EACCES;
7090 }
7091
df58ab24 7092 if (attr.freq) {
cdd6c482 7093 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 7094 return -EINVAL;
0819b2e3
PZ
7095 } else {
7096 if (attr.sample_period & (1ULL << 63))
7097 return -EINVAL;
df58ab24
PZ
7098 }
7099
e5d1367f
SE
7100 /*
7101 * In cgroup mode, the pid argument is used to pass the fd
7102 * opened to the cgroup directory in cgroupfs. The cpu argument
7103 * designates the cpu on which to monitor threads from that
7104 * cgroup.
7105 */
7106 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7107 return -EINVAL;
7108
a21b0b35
YD
7109 if (flags & PERF_FLAG_FD_CLOEXEC)
7110 f_flags |= O_CLOEXEC;
7111
7112 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7113 if (event_fd < 0)
7114 return event_fd;
7115
ac9721f3 7116 if (group_fd != -1) {
2903ff01
AV
7117 err = perf_fget_light(group_fd, &group);
7118 if (err)
d14b12d7 7119 goto err_fd;
2903ff01 7120 group_leader = group.file->private_data;
ac9721f3
PZ
7121 if (flags & PERF_FLAG_FD_OUTPUT)
7122 output_event = group_leader;
7123 if (flags & PERF_FLAG_FD_NO_GROUP)
7124 group_leader = NULL;
7125 }
7126
e5d1367f 7127 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7128 task = find_lively_task_by_vpid(pid);
7129 if (IS_ERR(task)) {
7130 err = PTR_ERR(task);
7131 goto err_group_fd;
7132 }
7133 }
7134
1f4ee503
PZ
7135 if (task && group_leader &&
7136 group_leader->attr.inherit != attr.inherit) {
7137 err = -EINVAL;
7138 goto err_task;
7139 }
7140
fbfc623f
YZ
7141 get_online_cpus();
7142
4dc0da86
AK
7143 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7144 NULL, NULL);
d14b12d7
SE
7145 if (IS_ERR(event)) {
7146 err = PTR_ERR(event);
1f4ee503 7147 goto err_cpus;
d14b12d7
SE
7148 }
7149
e5d1367f
SE
7150 if (flags & PERF_FLAG_PID_CGROUP) {
7151 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
7152 if (err) {
7153 __free_event(event);
1f4ee503 7154 goto err_cpus;
766d6c07 7155 }
e5d1367f
SE
7156 }
7157
53b25335
VW
7158 if (is_sampling_event(event)) {
7159 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7160 err = -ENOTSUPP;
7161 goto err_alloc;
7162 }
7163 }
7164
766d6c07
FW
7165 account_event(event);
7166
89a1e187
PZ
7167 /*
7168 * Special case software events and allow them to be part of
7169 * any hardware group.
7170 */
7171 pmu = event->pmu;
b04243ef
PZ
7172
7173 if (group_leader &&
7174 (is_software_event(event) != is_software_event(group_leader))) {
7175 if (is_software_event(event)) {
7176 /*
7177 * If event and group_leader are not both a software
7178 * event, and event is, then group leader is not.
7179 *
7180 * Allow the addition of software events to !software
7181 * groups, this is safe because software events never
7182 * fail to schedule.
7183 */
7184 pmu = group_leader->pmu;
7185 } else if (is_software_event(group_leader) &&
7186 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7187 /*
7188 * In case the group is a pure software group, and we
7189 * try to add a hardware event, move the whole group to
7190 * the hardware context.
7191 */
7192 move_group = 1;
7193 }
7194 }
89a1e187
PZ
7195
7196 /*
7197 * Get the target context (task or percpu):
7198 */
e2d37cd2 7199 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
7200 if (IS_ERR(ctx)) {
7201 err = PTR_ERR(ctx);
c6be5a5c 7202 goto err_alloc;
89a1e187
PZ
7203 }
7204
fd1edb3a
PZ
7205 if (task) {
7206 put_task_struct(task);
7207 task = NULL;
7208 }
7209
ccff286d 7210 /*
cdd6c482 7211 * Look up the group leader (we will attach this event to it):
04289bb9 7212 */
ac9721f3 7213 if (group_leader) {
dc86cabe 7214 err = -EINVAL;
04289bb9 7215
04289bb9 7216 /*
ccff286d
IM
7217 * Do not allow a recursive hierarchy (this new sibling
7218 * becoming part of another group-sibling):
7219 */
7220 if (group_leader->group_leader != group_leader)
c3f00c70 7221 goto err_context;
ccff286d
IM
7222 /*
7223 * Do not allow to attach to a group in a different
7224 * task or CPU context:
04289bb9 7225 */
b04243ef
PZ
7226 if (move_group) {
7227 if (group_leader->ctx->type != ctx->type)
7228 goto err_context;
7229 } else {
7230 if (group_leader->ctx != ctx)
7231 goto err_context;
7232 }
7233
3b6f9e5c
PM
7234 /*
7235 * Only a group leader can be exclusive or pinned
7236 */
0d48696f 7237 if (attr.exclusive || attr.pinned)
c3f00c70 7238 goto err_context;
ac9721f3
PZ
7239 }
7240
7241 if (output_event) {
7242 err = perf_event_set_output(event, output_event);
7243 if (err)
c3f00c70 7244 goto err_context;
ac9721f3 7245 }
0793a61d 7246
a21b0b35
YD
7247 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7248 f_flags);
ea635c64
AV
7249 if (IS_ERR(event_file)) {
7250 err = PTR_ERR(event_file);
c3f00c70 7251 goto err_context;
ea635c64 7252 }
9b51f66d 7253
b04243ef
PZ
7254 if (move_group) {
7255 struct perf_event_context *gctx = group_leader->ctx;
7256
7257 mutex_lock(&gctx->mutex);
46ce0fe9 7258 perf_remove_from_context(group_leader, false);
0231bb53
JO
7259
7260 /*
7261 * Removing from the context ends up with disabled
7262 * event. What we want here is event in the initial
7263 * startup state, ready to be add into new context.
7264 */
7265 perf_event__state_init(group_leader);
b04243ef
PZ
7266 list_for_each_entry(sibling, &group_leader->sibling_list,
7267 group_entry) {
46ce0fe9 7268 perf_remove_from_context(sibling, false);
0231bb53 7269 perf_event__state_init(sibling);
b04243ef
PZ
7270 put_ctx(gctx);
7271 }
7272 mutex_unlock(&gctx->mutex);
7273 put_ctx(gctx);
ea635c64 7274 }
9b51f66d 7275
ad3a37de 7276 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 7277 mutex_lock(&ctx->mutex);
b04243ef
PZ
7278
7279 if (move_group) {
0cda4c02 7280 synchronize_rcu();
e2d37cd2 7281 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
7282 get_ctx(ctx);
7283 list_for_each_entry(sibling, &group_leader->sibling_list,
7284 group_entry) {
e2d37cd2 7285 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
7286 get_ctx(ctx);
7287 }
7288 }
7289
e2d37cd2 7290 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 7291 perf_unpin_context(ctx);
d859e29f 7292 mutex_unlock(&ctx->mutex);
9b51f66d 7293
fbfc623f
YZ
7294 put_online_cpus();
7295
cdd6c482 7296 event->owner = current;
8882135b 7297
cdd6c482
IM
7298 mutex_lock(&current->perf_event_mutex);
7299 list_add_tail(&event->owner_entry, &current->perf_event_list);
7300 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7301
c320c7b7
ACM
7302 /*
7303 * Precalculate sample_data sizes
7304 */
7305 perf_event__header_size(event);
6844c09d 7306 perf_event__id_header_size(event);
c320c7b7 7307
8a49542c
PZ
7308 /*
7309 * Drop the reference on the group_event after placing the
7310 * new event on the sibling_list. This ensures destruction
7311 * of the group leader will find the pointer to itself in
7312 * perf_group_detach().
7313 */
2903ff01 7314 fdput(group);
ea635c64
AV
7315 fd_install(event_fd, event_file);
7316 return event_fd;
0793a61d 7317
c3f00c70 7318err_context:
fe4b04fa 7319 perf_unpin_context(ctx);
ea635c64 7320 put_ctx(ctx);
c6be5a5c 7321err_alloc:
ea635c64 7322 free_event(event);
1f4ee503 7323err_cpus:
fbfc623f 7324 put_online_cpus();
1f4ee503 7325err_task:
e7d0bc04
PZ
7326 if (task)
7327 put_task_struct(task);
89a1e187 7328err_group_fd:
2903ff01 7329 fdput(group);
ea635c64
AV
7330err_fd:
7331 put_unused_fd(event_fd);
dc86cabe 7332 return err;
0793a61d
TG
7333}
7334
fb0459d7
AV
7335/**
7336 * perf_event_create_kernel_counter
7337 *
7338 * @attr: attributes of the counter to create
7339 * @cpu: cpu in which the counter is bound
38a81da2 7340 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7341 */
7342struct perf_event *
7343perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7344 struct task_struct *task,
4dc0da86
AK
7345 perf_overflow_handler_t overflow_handler,
7346 void *context)
fb0459d7 7347{
fb0459d7 7348 struct perf_event_context *ctx;
c3f00c70 7349 struct perf_event *event;
fb0459d7 7350 int err;
d859e29f 7351
fb0459d7
AV
7352 /*
7353 * Get the target context (task or percpu):
7354 */
d859e29f 7355
4dc0da86
AK
7356 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7357 overflow_handler, context);
c3f00c70
PZ
7358 if (IS_ERR(event)) {
7359 err = PTR_ERR(event);
7360 goto err;
7361 }
d859e29f 7362
766d6c07
FW
7363 account_event(event);
7364
38a81da2 7365 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7366 if (IS_ERR(ctx)) {
7367 err = PTR_ERR(ctx);
c3f00c70 7368 goto err_free;
d859e29f 7369 }
fb0459d7 7370
fb0459d7
AV
7371 WARN_ON_ONCE(ctx->parent_ctx);
7372 mutex_lock(&ctx->mutex);
7373 perf_install_in_context(ctx, event, cpu);
fe4b04fa 7374 perf_unpin_context(ctx);
fb0459d7
AV
7375 mutex_unlock(&ctx->mutex);
7376
fb0459d7
AV
7377 return event;
7378
c3f00c70
PZ
7379err_free:
7380 free_event(event);
7381err:
c6567f64 7382 return ERR_PTR(err);
9b51f66d 7383}
fb0459d7 7384EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7385
0cda4c02
YZ
7386void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7387{
7388 struct perf_event_context *src_ctx;
7389 struct perf_event_context *dst_ctx;
7390 struct perf_event *event, *tmp;
7391 LIST_HEAD(events);
7392
7393 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7394 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7395
7396 mutex_lock(&src_ctx->mutex);
7397 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7398 event_entry) {
46ce0fe9 7399 perf_remove_from_context(event, false);
9a545de0 7400 unaccount_event_cpu(event, src_cpu);
0cda4c02 7401 put_ctx(src_ctx);
9886167d 7402 list_add(&event->migrate_entry, &events);
0cda4c02
YZ
7403 }
7404 mutex_unlock(&src_ctx->mutex);
7405
7406 synchronize_rcu();
7407
7408 mutex_lock(&dst_ctx->mutex);
9886167d
PZ
7409 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7410 list_del(&event->migrate_entry);
0cda4c02
YZ
7411 if (event->state >= PERF_EVENT_STATE_OFF)
7412 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7413 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7414 perf_install_in_context(dst_ctx, event, dst_cpu);
7415 get_ctx(dst_ctx);
7416 }
7417 mutex_unlock(&dst_ctx->mutex);
7418}
7419EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7420
cdd6c482 7421static void sync_child_event(struct perf_event *child_event,
38b200d6 7422 struct task_struct *child)
d859e29f 7423{
cdd6c482 7424 struct perf_event *parent_event = child_event->parent;
8bc20959 7425 u64 child_val;
d859e29f 7426
cdd6c482
IM
7427 if (child_event->attr.inherit_stat)
7428 perf_event_read_event(child_event, child);
38b200d6 7429
b5e58793 7430 child_val = perf_event_count(child_event);
d859e29f
PM
7431
7432 /*
7433 * Add back the child's count to the parent's count:
7434 */
a6e6dea6 7435 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7436 atomic64_add(child_event->total_time_enabled,
7437 &parent_event->child_total_time_enabled);
7438 atomic64_add(child_event->total_time_running,
7439 &parent_event->child_total_time_running);
d859e29f
PM
7440
7441 /*
cdd6c482 7442 * Remove this event from the parent's list
d859e29f 7443 */
cdd6c482
IM
7444 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7445 mutex_lock(&parent_event->child_mutex);
7446 list_del_init(&child_event->child_list);
7447 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
7448
7449 /*
cdd6c482 7450 * Release the parent event, if this was the last
d859e29f
PM
7451 * reference to it.
7452 */
a6fa941d 7453 put_event(parent_event);
d859e29f
PM
7454}
7455
9b51f66d 7456static void
cdd6c482
IM
7457__perf_event_exit_task(struct perf_event *child_event,
7458 struct perf_event_context *child_ctx,
38b200d6 7459 struct task_struct *child)
9b51f66d 7460{
15a2d4de 7461 perf_remove_from_context(child_event, true);
0cc0c027 7462
9b51f66d 7463 /*
38b435b1 7464 * It can happen that the parent exits first, and has events
9b51f66d 7465 * that are still around due to the child reference. These
38b435b1 7466 * events need to be zapped.
9b51f66d 7467 */
38b435b1 7468 if (child_event->parent) {
cdd6c482
IM
7469 sync_child_event(child_event, child);
7470 free_event(child_event);
4bcf349a 7471 }
9b51f66d
IM
7472}
7473
8dc85d54 7474static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7475{
ebf905fc 7476 struct perf_event *child_event, *next;
cdd6c482 7477 struct perf_event_context *child_ctx;
a63eaf34 7478 unsigned long flags;
9b51f66d 7479
8dc85d54 7480 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7481 perf_event_task(child, NULL, 0);
9b51f66d 7482 return;
9f498cc5 7483 }
9b51f66d 7484
a63eaf34 7485 local_irq_save(flags);
ad3a37de
PM
7486 /*
7487 * We can't reschedule here because interrupts are disabled,
7488 * and either child is current or it is a task that can't be
7489 * scheduled, so we are now safe from rescheduling changing
7490 * our context.
7491 */
806839b2 7492 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7493
7494 /*
7495 * Take the context lock here so that if find_get_context is
cdd6c482 7496 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7497 * incremented the context's refcount before we do put_ctx below.
7498 */
e625cce1 7499 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7500 task_ctx_sched_out(child_ctx);
8dc85d54 7501 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
7502 /*
7503 * If this context is a clone; unclone it so it can't get
7504 * swapped to another process while we're removing all
cdd6c482 7505 * the events from it.
71a851b4
PZ
7506 */
7507 unclone_ctx(child_ctx);
5e942bb3 7508 update_context_time(child_ctx);
e625cce1 7509 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
7510
7511 /*
cdd6c482
IM
7512 * Report the task dead after unscheduling the events so that we
7513 * won't get any samples after PERF_RECORD_EXIT. We can however still
7514 * get a few PERF_RECORD_READ events.
9f498cc5 7515 */
cdd6c482 7516 perf_event_task(child, child_ctx, 0);
a63eaf34 7517
66fff224
PZ
7518 /*
7519 * We can recurse on the same lock type through:
7520 *
cdd6c482
IM
7521 * __perf_event_exit_task()
7522 * sync_child_event()
a6fa941d
AV
7523 * put_event()
7524 * mutex_lock(&ctx->mutex)
66fff224
PZ
7525 *
7526 * But since its the parent context it won't be the same instance.
7527 */
a0507c84 7528 mutex_lock(&child_ctx->mutex);
a63eaf34 7529
ebf905fc 7530 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 7531 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 7532
a63eaf34
PM
7533 mutex_unlock(&child_ctx->mutex);
7534
7535 put_ctx(child_ctx);
9b51f66d
IM
7536}
7537
8dc85d54
PZ
7538/*
7539 * When a child task exits, feed back event values to parent events.
7540 */
7541void perf_event_exit_task(struct task_struct *child)
7542{
8882135b 7543 struct perf_event *event, *tmp;
8dc85d54
PZ
7544 int ctxn;
7545
8882135b
PZ
7546 mutex_lock(&child->perf_event_mutex);
7547 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7548 owner_entry) {
7549 list_del_init(&event->owner_entry);
7550
7551 /*
7552 * Ensure the list deletion is visible before we clear
7553 * the owner, closes a race against perf_release() where
7554 * we need to serialize on the owner->perf_event_mutex.
7555 */
7556 smp_wmb();
7557 event->owner = NULL;
7558 }
7559 mutex_unlock(&child->perf_event_mutex);
7560
8dc85d54
PZ
7561 for_each_task_context_nr(ctxn)
7562 perf_event_exit_task_context(child, ctxn);
7563}
7564
889ff015
FW
7565static void perf_free_event(struct perf_event *event,
7566 struct perf_event_context *ctx)
7567{
7568 struct perf_event *parent = event->parent;
7569
7570 if (WARN_ON_ONCE(!parent))
7571 return;
7572
7573 mutex_lock(&parent->child_mutex);
7574 list_del_init(&event->child_list);
7575 mutex_unlock(&parent->child_mutex);
7576
a6fa941d 7577 put_event(parent);
889ff015 7578
8a49542c 7579 perf_group_detach(event);
889ff015
FW
7580 list_del_event(event, ctx);
7581 free_event(event);
7582}
7583
bbbee908
PZ
7584/*
7585 * free an unexposed, unused context as created by inheritance by
8dc85d54 7586 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7587 */
cdd6c482 7588void perf_event_free_task(struct task_struct *task)
bbbee908 7589{
8dc85d54 7590 struct perf_event_context *ctx;
cdd6c482 7591 struct perf_event *event, *tmp;
8dc85d54 7592 int ctxn;
bbbee908 7593
8dc85d54
PZ
7594 for_each_task_context_nr(ctxn) {
7595 ctx = task->perf_event_ctxp[ctxn];
7596 if (!ctx)
7597 continue;
bbbee908 7598
8dc85d54 7599 mutex_lock(&ctx->mutex);
bbbee908 7600again:
8dc85d54
PZ
7601 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7602 group_entry)
7603 perf_free_event(event, ctx);
bbbee908 7604
8dc85d54
PZ
7605 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7606 group_entry)
7607 perf_free_event(event, ctx);
bbbee908 7608
8dc85d54
PZ
7609 if (!list_empty(&ctx->pinned_groups) ||
7610 !list_empty(&ctx->flexible_groups))
7611 goto again;
bbbee908 7612
8dc85d54 7613 mutex_unlock(&ctx->mutex);
bbbee908 7614
8dc85d54
PZ
7615 put_ctx(ctx);
7616 }
889ff015
FW
7617}
7618
4e231c79
PZ
7619void perf_event_delayed_put(struct task_struct *task)
7620{
7621 int ctxn;
7622
7623 for_each_task_context_nr(ctxn)
7624 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7625}
7626
97dee4f3
PZ
7627/*
7628 * inherit a event from parent task to child task:
7629 */
7630static struct perf_event *
7631inherit_event(struct perf_event *parent_event,
7632 struct task_struct *parent,
7633 struct perf_event_context *parent_ctx,
7634 struct task_struct *child,
7635 struct perf_event *group_leader,
7636 struct perf_event_context *child_ctx)
7637{
7638 struct perf_event *child_event;
cee010ec 7639 unsigned long flags;
97dee4f3
PZ
7640
7641 /*
7642 * Instead of creating recursive hierarchies of events,
7643 * we link inherited events back to the original parent,
7644 * which has a filp for sure, which we use as the reference
7645 * count:
7646 */
7647 if (parent_event->parent)
7648 parent_event = parent_event->parent;
7649
7650 child_event = perf_event_alloc(&parent_event->attr,
7651 parent_event->cpu,
d580ff86 7652 child,
97dee4f3 7653 group_leader, parent_event,
4dc0da86 7654 NULL, NULL);
97dee4f3
PZ
7655 if (IS_ERR(child_event))
7656 return child_event;
a6fa941d
AV
7657
7658 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7659 free_event(child_event);
7660 return NULL;
7661 }
7662
97dee4f3
PZ
7663 get_ctx(child_ctx);
7664
7665 /*
7666 * Make the child state follow the state of the parent event,
7667 * not its attr.disabled bit. We hold the parent's mutex,
7668 * so we won't race with perf_event_{en, dis}able_family.
7669 */
7670 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7671 child_event->state = PERF_EVENT_STATE_INACTIVE;
7672 else
7673 child_event->state = PERF_EVENT_STATE_OFF;
7674
7675 if (parent_event->attr.freq) {
7676 u64 sample_period = parent_event->hw.sample_period;
7677 struct hw_perf_event *hwc = &child_event->hw;
7678
7679 hwc->sample_period = sample_period;
7680 hwc->last_period = sample_period;
7681
7682 local64_set(&hwc->period_left, sample_period);
7683 }
7684
7685 child_event->ctx = child_ctx;
7686 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7687 child_event->overflow_handler_context
7688 = parent_event->overflow_handler_context;
97dee4f3 7689
614b6780
TG
7690 /*
7691 * Precalculate sample_data sizes
7692 */
7693 perf_event__header_size(child_event);
6844c09d 7694 perf_event__id_header_size(child_event);
614b6780 7695
97dee4f3
PZ
7696 /*
7697 * Link it up in the child's context:
7698 */
cee010ec 7699 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7700 add_event_to_ctx(child_event, child_ctx);
cee010ec 7701 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7702
97dee4f3
PZ
7703 /*
7704 * Link this into the parent event's child list
7705 */
7706 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7707 mutex_lock(&parent_event->child_mutex);
7708 list_add_tail(&child_event->child_list, &parent_event->child_list);
7709 mutex_unlock(&parent_event->child_mutex);
7710
7711 return child_event;
7712}
7713
7714static int inherit_group(struct perf_event *parent_event,
7715 struct task_struct *parent,
7716 struct perf_event_context *parent_ctx,
7717 struct task_struct *child,
7718 struct perf_event_context *child_ctx)
7719{
7720 struct perf_event *leader;
7721 struct perf_event *sub;
7722 struct perf_event *child_ctr;
7723
7724 leader = inherit_event(parent_event, parent, parent_ctx,
7725 child, NULL, child_ctx);
7726 if (IS_ERR(leader))
7727 return PTR_ERR(leader);
7728 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7729 child_ctr = inherit_event(sub, parent, parent_ctx,
7730 child, leader, child_ctx);
7731 if (IS_ERR(child_ctr))
7732 return PTR_ERR(child_ctr);
7733 }
7734 return 0;
889ff015
FW
7735}
7736
7737static int
7738inherit_task_group(struct perf_event *event, struct task_struct *parent,
7739 struct perf_event_context *parent_ctx,
8dc85d54 7740 struct task_struct *child, int ctxn,
889ff015
FW
7741 int *inherited_all)
7742{
7743 int ret;
8dc85d54 7744 struct perf_event_context *child_ctx;
889ff015
FW
7745
7746 if (!event->attr.inherit) {
7747 *inherited_all = 0;
7748 return 0;
bbbee908
PZ
7749 }
7750
fe4b04fa 7751 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7752 if (!child_ctx) {
7753 /*
7754 * This is executed from the parent task context, so
7755 * inherit events that have been marked for cloning.
7756 * First allocate and initialize a context for the
7757 * child.
7758 */
bbbee908 7759
734df5ab 7760 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
7761 if (!child_ctx)
7762 return -ENOMEM;
bbbee908 7763
8dc85d54 7764 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7765 }
7766
7767 ret = inherit_group(event, parent, parent_ctx,
7768 child, child_ctx);
7769
7770 if (ret)
7771 *inherited_all = 0;
7772
7773 return ret;
bbbee908
PZ
7774}
7775
9b51f66d 7776/*
cdd6c482 7777 * Initialize the perf_event context in task_struct
9b51f66d 7778 */
8dc85d54 7779int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7780{
889ff015 7781 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7782 struct perf_event_context *cloned_ctx;
7783 struct perf_event *event;
9b51f66d 7784 struct task_struct *parent = current;
564c2b21 7785 int inherited_all = 1;
dddd3379 7786 unsigned long flags;
6ab423e0 7787 int ret = 0;
9b51f66d 7788
8dc85d54 7789 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7790 return 0;
7791
ad3a37de 7792 /*
25346b93
PM
7793 * If the parent's context is a clone, pin it so it won't get
7794 * swapped under us.
ad3a37de 7795 */
8dc85d54 7796 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
7797 if (!parent_ctx)
7798 return 0;
25346b93 7799
ad3a37de
PM
7800 /*
7801 * No need to check if parent_ctx != NULL here; since we saw
7802 * it non-NULL earlier, the only reason for it to become NULL
7803 * is if we exit, and since we're currently in the middle of
7804 * a fork we can't be exiting at the same time.
7805 */
ad3a37de 7806
9b51f66d
IM
7807 /*
7808 * Lock the parent list. No need to lock the child - not PID
7809 * hashed yet and not running, so nobody can access it.
7810 */
d859e29f 7811 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7812
7813 /*
7814 * We dont have to disable NMIs - we are only looking at
7815 * the list, not manipulating it:
7816 */
889ff015 7817 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7818 ret = inherit_task_group(event, parent, parent_ctx,
7819 child, ctxn, &inherited_all);
889ff015
FW
7820 if (ret)
7821 break;
7822 }
b93f7978 7823
dddd3379
TG
7824 /*
7825 * We can't hold ctx->lock when iterating the ->flexible_group list due
7826 * to allocations, but we need to prevent rotation because
7827 * rotate_ctx() will change the list from interrupt context.
7828 */
7829 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7830 parent_ctx->rotate_disable = 1;
7831 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7832
889ff015 7833 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7834 ret = inherit_task_group(event, parent, parent_ctx,
7835 child, ctxn, &inherited_all);
889ff015 7836 if (ret)
9b51f66d 7837 break;
564c2b21
PM
7838 }
7839
dddd3379
TG
7840 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7841 parent_ctx->rotate_disable = 0;
dddd3379 7842
8dc85d54 7843 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7844
05cbaa28 7845 if (child_ctx && inherited_all) {
564c2b21
PM
7846 /*
7847 * Mark the child context as a clone of the parent
7848 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7849 *
7850 * Note that if the parent is a clone, the holding of
7851 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7852 */
c5ed5145 7853 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7854 if (cloned_ctx) {
7855 child_ctx->parent_ctx = cloned_ctx;
25346b93 7856 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7857 } else {
7858 child_ctx->parent_ctx = parent_ctx;
7859 child_ctx->parent_gen = parent_ctx->generation;
7860 }
7861 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7862 }
7863
c5ed5145 7864 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7865 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7866
25346b93 7867 perf_unpin_context(parent_ctx);
fe4b04fa 7868 put_ctx(parent_ctx);
ad3a37de 7869
6ab423e0 7870 return ret;
9b51f66d
IM
7871}
7872
8dc85d54
PZ
7873/*
7874 * Initialize the perf_event context in task_struct
7875 */
7876int perf_event_init_task(struct task_struct *child)
7877{
7878 int ctxn, ret;
7879
8550d7cb
ON
7880 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7881 mutex_init(&child->perf_event_mutex);
7882 INIT_LIST_HEAD(&child->perf_event_list);
7883
8dc85d54
PZ
7884 for_each_task_context_nr(ctxn) {
7885 ret = perf_event_init_context(child, ctxn);
7886 if (ret)
7887 return ret;
7888 }
7889
7890 return 0;
7891}
7892
220b140b
PM
7893static void __init perf_event_init_all_cpus(void)
7894{
b28ab83c 7895 struct swevent_htable *swhash;
220b140b 7896 int cpu;
220b140b
PM
7897
7898 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7899 swhash = &per_cpu(swevent_htable, cpu);
7900 mutex_init(&swhash->hlist_mutex);
e9d2b064 7901 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7902 }
7903}
7904
0db0628d 7905static void perf_event_init_cpu(int cpu)
0793a61d 7906{
108b02cf 7907 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7908
b28ab83c 7909 mutex_lock(&swhash->hlist_mutex);
39af6b16 7910 swhash->online = true;
4536e4d1 7911 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7912 struct swevent_hlist *hlist;
7913
b28ab83c
PZ
7914 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7915 WARN_ON(!hlist);
7916 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7917 }
b28ab83c 7918 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7919}
7920
c277443c 7921#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7922static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7923{
e9d2b064
PZ
7924 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7925
7926 WARN_ON(!irqs_disabled());
7927
7928 list_del_init(&cpuctx->rotation_list);
7929}
7930
108b02cf 7931static void __perf_event_exit_context(void *__info)
0793a61d 7932{
46ce0fe9 7933 struct remove_event re = { .detach_group = false };
108b02cf 7934 struct perf_event_context *ctx = __info;
0793a61d 7935
108b02cf 7936 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7937
e3703f8c 7938 rcu_read_lock();
46ce0fe9
PZ
7939 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
7940 __perf_remove_from_context(&re);
e3703f8c 7941 rcu_read_unlock();
0793a61d 7942}
108b02cf
PZ
7943
7944static void perf_event_exit_cpu_context(int cpu)
7945{
7946 struct perf_event_context *ctx;
7947 struct pmu *pmu;
7948 int idx;
7949
7950 idx = srcu_read_lock(&pmus_srcu);
7951 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7952 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7953
7954 mutex_lock(&ctx->mutex);
7955 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7956 mutex_unlock(&ctx->mutex);
7957 }
7958 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7959}
7960
cdd6c482 7961static void perf_event_exit_cpu(int cpu)
0793a61d 7962{
b28ab83c 7963 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7964
e3703f8c
PZ
7965 perf_event_exit_cpu_context(cpu);
7966
b28ab83c 7967 mutex_lock(&swhash->hlist_mutex);
39af6b16 7968 swhash->online = false;
b28ab83c
PZ
7969 swevent_hlist_release(swhash);
7970 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7971}
7972#else
cdd6c482 7973static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7974#endif
7975
c277443c
PZ
7976static int
7977perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7978{
7979 int cpu;
7980
7981 for_each_online_cpu(cpu)
7982 perf_event_exit_cpu(cpu);
7983
7984 return NOTIFY_OK;
7985}
7986
7987/*
7988 * Run the perf reboot notifier at the very last possible moment so that
7989 * the generic watchdog code runs as long as possible.
7990 */
7991static struct notifier_block perf_reboot_notifier = {
7992 .notifier_call = perf_reboot,
7993 .priority = INT_MIN,
7994};
7995
0db0628d 7996static int
0793a61d
TG
7997perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7998{
7999 unsigned int cpu = (long)hcpu;
8000
4536e4d1 8001 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
8002
8003 case CPU_UP_PREPARE:
5e11637e 8004 case CPU_DOWN_FAILED:
cdd6c482 8005 perf_event_init_cpu(cpu);
0793a61d
TG
8006 break;
8007
5e11637e 8008 case CPU_UP_CANCELED:
0793a61d 8009 case CPU_DOWN_PREPARE:
cdd6c482 8010 perf_event_exit_cpu(cpu);
0793a61d 8011 break;
0793a61d
TG
8012 default:
8013 break;
8014 }
8015
8016 return NOTIFY_OK;
8017}
8018
cdd6c482 8019void __init perf_event_init(void)
0793a61d 8020{
3c502e7a
JW
8021 int ret;
8022
2e80a82a
PZ
8023 idr_init(&pmu_idr);
8024
220b140b 8025 perf_event_init_all_cpus();
b0a873eb 8026 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
8027 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8028 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8029 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
8030 perf_tp_register();
8031 perf_cpu_notifier(perf_cpu_notify);
c277443c 8032 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
8033
8034 ret = init_hw_breakpoint();
8035 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
8036
8037 /* do not patch jump label more than once per second */
8038 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
8039
8040 /*
8041 * Build time assertion that we keep the data_head at the intended
8042 * location. IOW, validation we got the __reserved[] size right.
8043 */
8044 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8045 != 1024);
0793a61d 8046}
abe43400
PZ
8047
8048static int __init perf_event_sysfs_init(void)
8049{
8050 struct pmu *pmu;
8051 int ret;
8052
8053 mutex_lock(&pmus_lock);
8054
8055 ret = bus_register(&pmu_bus);
8056 if (ret)
8057 goto unlock;
8058
8059 list_for_each_entry(pmu, &pmus, entry) {
8060 if (!pmu->name || pmu->type < 0)
8061 continue;
8062
8063 ret = pmu_dev_alloc(pmu);
8064 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8065 }
8066 pmu_bus_running = 1;
8067 ret = 0;
8068
8069unlock:
8070 mutex_unlock(&pmus_lock);
8071
8072 return ret;
8073}
8074device_initcall(perf_event_sysfs_init);
e5d1367f
SE
8075
8076#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
8077static struct cgroup_subsys_state *
8078perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
8079{
8080 struct perf_cgroup *jc;
e5d1367f 8081
1b15d055 8082 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
8083 if (!jc)
8084 return ERR_PTR(-ENOMEM);
8085
e5d1367f
SE
8086 jc->info = alloc_percpu(struct perf_cgroup_info);
8087 if (!jc->info) {
8088 kfree(jc);
8089 return ERR_PTR(-ENOMEM);
8090 }
8091
e5d1367f
SE
8092 return &jc->css;
8093}
8094
eb95419b 8095static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 8096{
eb95419b
TH
8097 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8098
e5d1367f
SE
8099 free_percpu(jc->info);
8100 kfree(jc);
8101}
8102
8103static int __perf_cgroup_move(void *info)
8104{
8105 struct task_struct *task = info;
8106 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8107 return 0;
8108}
8109
eb95419b
TH
8110static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8111 struct cgroup_taskset *tset)
e5d1367f 8112{
bb9d97b6
TH
8113 struct task_struct *task;
8114
924f0d9a 8115 cgroup_taskset_for_each(task, tset)
bb9d97b6 8116 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8117}
8118
eb95419b
TH
8119static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8120 struct cgroup_subsys_state *old_css,
761b3ef5 8121 struct task_struct *task)
e5d1367f
SE
8122{
8123 /*
8124 * cgroup_exit() is called in the copy_process() failure path.
8125 * Ignore this case since the task hasn't ran yet, this avoids
8126 * trying to poke a half freed task state from generic code.
8127 */
8128 if (!(task->flags & PF_EXITING))
8129 return;
8130
bb9d97b6 8131 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8132}
8133
073219e9 8134struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
8135 .css_alloc = perf_cgroup_css_alloc,
8136 .css_free = perf_cgroup_css_free,
e7e7ee2e 8137 .exit = perf_cgroup_exit,
bb9d97b6 8138 .attach = perf_cgroup_attach,
e5d1367f
SE
8139};
8140#endif /* CONFIG_CGROUP_PERF */