Linux 4.4-rc2
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
f8697762
JO
129#define EVENT_OWNER_KERNEL ((void *) -1)
130
131static bool is_kernel_event(struct perf_event *event)
132{
133 return event->owner == EVENT_OWNER_KERNEL;
134}
135
e5d1367f
SE
136#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
e5d1367f 140
bce38cd5
SE
141/*
142 * branch priv levels that need permission checks
143 */
144#define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
0b3fcf17
SE
148enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152};
153
e5d1367f
SE
154/*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
c5905afb 158struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 159static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 160static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 161
cdd6c482
IM
162static atomic_t nr_mmap_events __read_mostly;
163static atomic_t nr_comm_events __read_mostly;
164static atomic_t nr_task_events __read_mostly;
948b26b6 165static atomic_t nr_freq_events __read_mostly;
45ac1403 166static atomic_t nr_switch_events __read_mostly;
9ee318a7 167
108b02cf
PZ
168static LIST_HEAD(pmus);
169static DEFINE_MUTEX(pmus_lock);
170static struct srcu_struct pmus_srcu;
171
0764771d 172/*
cdd6c482 173 * perf event paranoia level:
0fbdea19
IM
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 176 * 1 - disallow cpu events for unpriv
0fbdea19 177 * 2 - disallow kernel profiling for unpriv
0764771d 178 */
cdd6c482 179int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 180
20443384
FW
181/* Minimum for 512 kiB + 1 user control page */
182int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
183
184/*
cdd6c482 185 * max perf event sample rate
df58ab24 186 */
14c63f17
DH
187#define DEFAULT_MAX_SAMPLE_RATE 100000
188#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189#define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
d9494cb4
PZ
196static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 198
18ab2cd3 199static void update_perf_cpu_limits(void)
14c63f17
DH
200{
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 204 do_div(tmp, 100);
d9494cb4 205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 206}
163ec435 207
9e630205
SE
208static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
163ec435
PZ
210int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
723478c8 214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224}
225
226int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231{
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
163ec435
PZ
238
239 return 0;
240}
1ccd1549 241
14c63f17
DH
242/*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 249static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 250
6a02ad66 251static void perf_duration_warn(struct irq_work *w)
14c63f17 252{
6a02ad66 253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 254 u64 avg_local_sample_len;
e5302920 255 u64 local_samples_len;
6a02ad66 256
4a32fea9 257 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 263 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
264 sysctl_perf_event_sample_rate);
265}
266
267static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269void perf_sample_event_took(u64 sample_len_ns)
270{
d9494cb4 271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
14c63f17 274
d9494cb4 275 if (allowed_ns == 0)
14c63f17
DH
276 return;
277
278 /* decay the counter by 1 average sample */
4a32fea9 279 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
4a32fea9 282 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
d9494cb4 291 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
14c63f17 301 update_perf_cpu_limits();
6a02ad66 302
cd578abb
PZ
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
14c63f17
DH
309}
310
cdd6c482 311static atomic64_t perf_event_id;
a96bbc16 312
0b3fcf17
SE
313static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320static void update_context_time(struct perf_event_context *ctx);
321static u64 perf_event_time(struct perf_event *event);
0b3fcf17 322
cdd6c482 323void __weak perf_event_print_debug(void) { }
0793a61d 324
84c79910 325extern __weak const char *perf_pmu_name(void)
0793a61d 326{
84c79910 327 return "pmu";
0793a61d
TG
328}
329
0b3fcf17
SE
330static inline u64 perf_clock(void)
331{
332 return local_clock();
333}
334
34f43927
PZ
335static inline u64 perf_event_clock(struct perf_event *event)
336{
337 return event->clock();
338}
339
e5d1367f
SE
340static inline struct perf_cpu_context *
341__get_cpu_context(struct perf_event_context *ctx)
342{
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344}
345
facc4307
PZ
346static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348{
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352}
353
354static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356{
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360}
361
e5d1367f
SE
362#ifdef CONFIG_CGROUP_PERF
363
e5d1367f
SE
364static inline bool
365perf_cgroup_match(struct perf_event *event)
366{
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
ef824fa1
TH
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
e5d1367f
SE
386}
387
e5d1367f
SE
388static inline void perf_detach_cgroup(struct perf_event *event)
389{
4e2ba650 390 css_put(&event->cgrp->css);
e5d1367f
SE
391 event->cgrp = NULL;
392}
393
394static inline int is_cgroup_event(struct perf_event *event)
395{
396 return event->cgrp != NULL;
397}
398
399static inline u64 perf_cgroup_event_time(struct perf_event *event)
400{
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405}
406
407static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408{
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418}
419
420static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421{
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425}
426
427static inline void update_cgrp_time_from_event(struct perf_event *event)
428{
3f7cce3c
SE
429 struct perf_cgroup *cgrp;
430
e5d1367f 431 /*
3f7cce3c
SE
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
e5d1367f 434 */
3f7cce3c 435 if (!is_cgroup_event(event))
e5d1367f
SE
436 return;
437
3f7cce3c
SE
438 cgrp = perf_cgroup_from_task(current);
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
e5d1367f
SE
444}
445
446static inline void
3f7cce3c
SE
447perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
e5d1367f
SE
449{
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
3f7cce3c
SE
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
459 return;
460
461 cgrp = perf_cgroup_from_task(task);
462 info = this_cpu_ptr(cgrp->info);
3f7cce3c 463 info->timestamp = ctx->timestamp;
e5d1367f
SE
464}
465
466#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469/*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
18ab2cd3 475static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
476{
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
492 rcu_read_lock();
493
494 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 495 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
496 if (cpuctx->unique_pmu != pmu)
497 continue; /* ensure we process each cpuctx once */
e5d1367f 498
e5d1367f
SE
499 /*
500 * perf_cgroup_events says at least one
501 * context on this CPU has cgroup events.
502 *
503 * ctx->nr_cgroups reports the number of cgroup
504 * events for a context.
505 */
506 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
507 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
509
510 if (mode & PERF_CGROUP_SWOUT) {
511 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 /*
513 * must not be done before ctxswout due
514 * to event_filter_match() in event_sched_out()
515 */
516 cpuctx->cgrp = NULL;
517 }
518
519 if (mode & PERF_CGROUP_SWIN) {
e566b76e 520 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
521 /*
522 * set cgrp before ctxsw in to allow
523 * event_filter_match() to not have to pass
524 * task around
e5d1367f
SE
525 */
526 cpuctx->cgrp = perf_cgroup_from_task(task);
527 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 }
facc4307
PZ
529 perf_pmu_enable(cpuctx->ctx.pmu);
530 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 531 }
e5d1367f
SE
532 }
533
534 rcu_read_unlock();
535
536 local_irq_restore(flags);
537}
538
a8d757ef
SE
539static inline void perf_cgroup_sched_out(struct task_struct *task,
540 struct task_struct *next)
e5d1367f 541{
a8d757ef
SE
542 struct perf_cgroup *cgrp1;
543 struct perf_cgroup *cgrp2 = NULL;
544
545 /*
546 * we come here when we know perf_cgroup_events > 0
547 */
548 cgrp1 = perf_cgroup_from_task(task);
549
550 /*
551 * next is NULL when called from perf_event_enable_on_exec()
552 * that will systematically cause a cgroup_switch()
553 */
554 if (next)
555 cgrp2 = perf_cgroup_from_task(next);
556
557 /*
558 * only schedule out current cgroup events if we know
559 * that we are switching to a different cgroup. Otherwise,
560 * do no touch the cgroup events.
561 */
562 if (cgrp1 != cgrp2)
563 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
564}
565
a8d757ef
SE
566static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 struct task_struct *task)
e5d1367f 568{
a8d757ef
SE
569 struct perf_cgroup *cgrp1;
570 struct perf_cgroup *cgrp2 = NULL;
571
572 /*
573 * we come here when we know perf_cgroup_events > 0
574 */
575 cgrp1 = perf_cgroup_from_task(task);
576
577 /* prev can never be NULL */
578 cgrp2 = perf_cgroup_from_task(prev);
579
580 /*
581 * only need to schedule in cgroup events if we are changing
582 * cgroup during ctxsw. Cgroup events were not scheduled
583 * out of ctxsw out if that was not the case.
584 */
585 if (cgrp1 != cgrp2)
586 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
587}
588
589static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 struct perf_event_attr *attr,
591 struct perf_event *group_leader)
592{
593 struct perf_cgroup *cgrp;
594 struct cgroup_subsys_state *css;
2903ff01
AV
595 struct fd f = fdget(fd);
596 int ret = 0;
e5d1367f 597
2903ff01 598 if (!f.file)
e5d1367f
SE
599 return -EBADF;
600
b583043e 601 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 602 &perf_event_cgrp_subsys);
3db272c0
LZ
603 if (IS_ERR(css)) {
604 ret = PTR_ERR(css);
605 goto out;
606 }
e5d1367f
SE
607
608 cgrp = container_of(css, struct perf_cgroup, css);
609 event->cgrp = cgrp;
610
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
e5d1367f 619 }
3db272c0 620out:
2903ff01 621 fdput(f);
e5d1367f
SE
622 return ret;
623}
624
625static inline void
626perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627{
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631}
632
633static inline void
634perf_cgroup_defer_enabled(struct perf_event *event)
635{
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644}
645
646static inline void
647perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649{
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665}
666#else /* !CONFIG_CGROUP_PERF */
667
668static inline bool
669perf_cgroup_match(struct perf_event *event)
670{
671 return true;
672}
673
674static inline void perf_detach_cgroup(struct perf_event *event)
675{}
676
677static inline int is_cgroup_event(struct perf_event *event)
678{
679 return 0;
680}
681
682static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683{
684 return 0;
685}
686
687static inline void update_cgrp_time_from_event(struct perf_event *event)
688{
689}
690
691static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692{
693}
694
a8d757ef
SE
695static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
e5d1367f
SE
697{
698}
699
a8d757ef
SE
700static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
e5d1367f
SE
702{
703}
704
705static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708{
709 return -EINVAL;
710}
711
712static inline void
3f7cce3c
SE
713perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
e5d1367f
SE
715{
716}
717
718void
719perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720{
721}
722
723static inline void
724perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725{
726}
727
728static inline u64 perf_cgroup_event_time(struct perf_event *event)
729{
730 return 0;
731}
732
733static inline void
734perf_cgroup_defer_enabled(struct perf_event *event)
735{
736}
737
738static inline void
739perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741{
742}
743#endif
744
9e630205
SE
745/*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749#define PERF_CPU_HRTIMER (1000 / HZ)
750/*
751 * function must be called with interrupts disbled
752 */
272325c4 753static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
754{
755 struct perf_cpu_context *cpuctx;
9e630205
SE
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
761 rotations = perf_rotate_context(cpuctx);
762
4cfafd30
PZ
763 raw_spin_lock(&cpuctx->hrtimer_lock);
764 if (rotations)
9e630205 765 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
766 else
767 cpuctx->hrtimer_active = 0;
768 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 769
4cfafd30 770 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
771}
772
272325c4 773static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 774{
272325c4 775 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 776 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 777 u64 interval;
9e630205
SE
778
779 /* no multiplexing needed for SW PMU */
780 if (pmu->task_ctx_nr == perf_sw_context)
781 return;
782
62b85639
SE
783 /*
784 * check default is sane, if not set then force to
785 * default interval (1/tick)
786 */
272325c4
PZ
787 interval = pmu->hrtimer_interval_ms;
788 if (interval < 1)
789 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 790
272325c4 791 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 792
4cfafd30
PZ
793 raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 795 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
796}
797
272325c4 798static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 799{
272325c4 800 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 801 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 802 unsigned long flags;
9e630205
SE
803
804 /* not for SW PMU */
805 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 806 return 0;
9e630205 807
4cfafd30
PZ
808 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 if (!cpuctx->hrtimer_active) {
810 cpuctx->hrtimer_active = 1;
811 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 }
814 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 815
272325c4 816 return 0;
9e630205
SE
817}
818
33696fc0 819void perf_pmu_disable(struct pmu *pmu)
9e35ad38 820{
33696fc0
PZ
821 int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 if (!(*count)++)
823 pmu->pmu_disable(pmu);
9e35ad38 824}
9e35ad38 825
33696fc0 826void perf_pmu_enable(struct pmu *pmu)
9e35ad38 827{
33696fc0
PZ
828 int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 if (!--(*count))
830 pmu->pmu_enable(pmu);
9e35ad38 831}
9e35ad38 832
2fde4f94 833static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
834
835/*
2fde4f94
MR
836 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837 * perf_event_task_tick() are fully serialized because they're strictly cpu
838 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 840 */
2fde4f94 841static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 842{
2fde4f94 843 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 844
e9d2b064 845 WARN_ON(!irqs_disabled());
b5ab4cd5 846
2fde4f94
MR
847 WARN_ON(!list_empty(&ctx->active_ctx_list));
848
849 list_add(&ctx->active_ctx_list, head);
850}
851
852static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853{
854 WARN_ON(!irqs_disabled());
855
856 WARN_ON(list_empty(&ctx->active_ctx_list));
857
858 list_del_init(&ctx->active_ctx_list);
9e35ad38 859}
9e35ad38 860
cdd6c482 861static void get_ctx(struct perf_event_context *ctx)
a63eaf34 862{
e5289d4a 863 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
864}
865
4af57ef2
YZ
866static void free_ctx(struct rcu_head *head)
867{
868 struct perf_event_context *ctx;
869
870 ctx = container_of(head, struct perf_event_context, rcu_head);
871 kfree(ctx->task_ctx_data);
872 kfree(ctx);
873}
874
cdd6c482 875static void put_ctx(struct perf_event_context *ctx)
a63eaf34 876{
564c2b21
PM
877 if (atomic_dec_and_test(&ctx->refcount)) {
878 if (ctx->parent_ctx)
879 put_ctx(ctx->parent_ctx);
c93f7669
PM
880 if (ctx->task)
881 put_task_struct(ctx->task);
4af57ef2 882 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 883 }
a63eaf34
PM
884}
885
f63a8daa
PZ
886/*
887 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888 * perf_pmu_migrate_context() we need some magic.
889 *
890 * Those places that change perf_event::ctx will hold both
891 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892 *
8b10c5e2
PZ
893 * Lock ordering is by mutex address. There are two other sites where
894 * perf_event_context::mutex nests and those are:
895 *
896 * - perf_event_exit_task_context() [ child , 0 ]
897 * __perf_event_exit_task()
898 * sync_child_event()
899 * put_event() [ parent, 1 ]
900 *
901 * - perf_event_init_context() [ parent, 0 ]
902 * inherit_task_group()
903 * inherit_group()
904 * inherit_event()
905 * perf_event_alloc()
906 * perf_init_event()
907 * perf_try_init_event() [ child , 1 ]
908 *
909 * While it appears there is an obvious deadlock here -- the parent and child
910 * nesting levels are inverted between the two. This is in fact safe because
911 * life-time rules separate them. That is an exiting task cannot fork, and a
912 * spawning task cannot (yet) exit.
913 *
914 * But remember that that these are parent<->child context relations, and
915 * migration does not affect children, therefore these two orderings should not
916 * interact.
f63a8daa
PZ
917 *
918 * The change in perf_event::ctx does not affect children (as claimed above)
919 * because the sys_perf_event_open() case will install a new event and break
920 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921 * concerned with cpuctx and that doesn't have children.
922 *
923 * The places that change perf_event::ctx will issue:
924 *
925 * perf_remove_from_context();
926 * synchronize_rcu();
927 * perf_install_in_context();
928 *
929 * to affect the change. The remove_from_context() + synchronize_rcu() should
930 * quiesce the event, after which we can install it in the new location. This
931 * means that only external vectors (perf_fops, prctl) can perturb the event
932 * while in transit. Therefore all such accessors should also acquire
933 * perf_event_context::mutex to serialize against this.
934 *
935 * However; because event->ctx can change while we're waiting to acquire
936 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937 * function.
938 *
939 * Lock order:
940 * task_struct::perf_event_mutex
941 * perf_event_context::mutex
942 * perf_event_context::lock
943 * perf_event::child_mutex;
944 * perf_event::mmap_mutex
945 * mmap_sem
946 */
a83fe28e
PZ
947static struct perf_event_context *
948perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
949{
950 struct perf_event_context *ctx;
951
952again:
953 rcu_read_lock();
954 ctx = ACCESS_ONCE(event->ctx);
955 if (!atomic_inc_not_zero(&ctx->refcount)) {
956 rcu_read_unlock();
957 goto again;
958 }
959 rcu_read_unlock();
960
a83fe28e 961 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
962 if (event->ctx != ctx) {
963 mutex_unlock(&ctx->mutex);
964 put_ctx(ctx);
965 goto again;
966 }
967
968 return ctx;
969}
970
a83fe28e
PZ
971static inline struct perf_event_context *
972perf_event_ctx_lock(struct perf_event *event)
973{
974 return perf_event_ctx_lock_nested(event, 0);
975}
976
f63a8daa
PZ
977static void perf_event_ctx_unlock(struct perf_event *event,
978 struct perf_event_context *ctx)
979{
980 mutex_unlock(&ctx->mutex);
981 put_ctx(ctx);
982}
983
211de6eb
PZ
984/*
985 * This must be done under the ctx->lock, such as to serialize against
986 * context_equiv(), therefore we cannot call put_ctx() since that might end up
987 * calling scheduler related locks and ctx->lock nests inside those.
988 */
989static __must_check struct perf_event_context *
990unclone_ctx(struct perf_event_context *ctx)
71a851b4 991{
211de6eb
PZ
992 struct perf_event_context *parent_ctx = ctx->parent_ctx;
993
994 lockdep_assert_held(&ctx->lock);
995
996 if (parent_ctx)
71a851b4 997 ctx->parent_ctx = NULL;
5a3126d4 998 ctx->generation++;
211de6eb
PZ
999
1000 return parent_ctx;
71a851b4
PZ
1001}
1002
6844c09d
ACM
1003static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004{
1005 /*
1006 * only top level events have the pid namespace they were created in
1007 */
1008 if (event->parent)
1009 event = event->parent;
1010
1011 return task_tgid_nr_ns(p, event->ns);
1012}
1013
1014static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015{
1016 /*
1017 * only top level events have the pid namespace they were created in
1018 */
1019 if (event->parent)
1020 event = event->parent;
1021
1022 return task_pid_nr_ns(p, event->ns);
1023}
1024
7f453c24 1025/*
cdd6c482 1026 * If we inherit events we want to return the parent event id
7f453c24
PZ
1027 * to userspace.
1028 */
cdd6c482 1029static u64 primary_event_id(struct perf_event *event)
7f453c24 1030{
cdd6c482 1031 u64 id = event->id;
7f453c24 1032
cdd6c482
IM
1033 if (event->parent)
1034 id = event->parent->id;
7f453c24
PZ
1035
1036 return id;
1037}
1038
25346b93 1039/*
cdd6c482 1040 * Get the perf_event_context for a task and lock it.
25346b93
PM
1041 * This has to cope with with the fact that until it is locked,
1042 * the context could get moved to another task.
1043 */
cdd6c482 1044static struct perf_event_context *
8dc85d54 1045perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1046{
cdd6c482 1047 struct perf_event_context *ctx;
25346b93 1048
9ed6060d 1049retry:
058ebd0e
PZ
1050 /*
1051 * One of the few rules of preemptible RCU is that one cannot do
1052 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1053 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1054 * rcu_read_unlock_special().
1055 *
1056 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1057 * side critical section has interrupts disabled.
058ebd0e 1058 */
2fd59077 1059 local_irq_save(*flags);
058ebd0e 1060 rcu_read_lock();
8dc85d54 1061 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1062 if (ctx) {
1063 /*
1064 * If this context is a clone of another, it might
1065 * get swapped for another underneath us by
cdd6c482 1066 * perf_event_task_sched_out, though the
25346b93
PM
1067 * rcu_read_lock() protects us from any context
1068 * getting freed. Lock the context and check if it
1069 * got swapped before we could get the lock, and retry
1070 * if so. If we locked the right context, then it
1071 * can't get swapped on us any more.
1072 */
2fd59077 1073 raw_spin_lock(&ctx->lock);
8dc85d54 1074 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1075 raw_spin_unlock(&ctx->lock);
058ebd0e 1076 rcu_read_unlock();
2fd59077 1077 local_irq_restore(*flags);
25346b93
PM
1078 goto retry;
1079 }
b49a9e7e
PZ
1080
1081 if (!atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1082 raw_spin_unlock(&ctx->lock);
b49a9e7e
PZ
1083 ctx = NULL;
1084 }
25346b93
PM
1085 }
1086 rcu_read_unlock();
2fd59077
PM
1087 if (!ctx)
1088 local_irq_restore(*flags);
25346b93
PM
1089 return ctx;
1090}
1091
1092/*
1093 * Get the context for a task and increment its pin_count so it
1094 * can't get swapped to another task. This also increments its
1095 * reference count so that the context can't get freed.
1096 */
8dc85d54
PZ
1097static struct perf_event_context *
1098perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1099{
cdd6c482 1100 struct perf_event_context *ctx;
25346b93
PM
1101 unsigned long flags;
1102
8dc85d54 1103 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1104 if (ctx) {
1105 ++ctx->pin_count;
e625cce1 1106 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1107 }
1108 return ctx;
1109}
1110
cdd6c482 1111static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1112{
1113 unsigned long flags;
1114
e625cce1 1115 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1116 --ctx->pin_count;
e625cce1 1117 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1118}
1119
f67218c3
PZ
1120/*
1121 * Update the record of the current time in a context.
1122 */
1123static void update_context_time(struct perf_event_context *ctx)
1124{
1125 u64 now = perf_clock();
1126
1127 ctx->time += now - ctx->timestamp;
1128 ctx->timestamp = now;
1129}
1130
4158755d
SE
1131static u64 perf_event_time(struct perf_event *event)
1132{
1133 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1134
1135 if (is_cgroup_event(event))
1136 return perf_cgroup_event_time(event);
1137
4158755d
SE
1138 return ctx ? ctx->time : 0;
1139}
1140
f67218c3
PZ
1141/*
1142 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1143 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1144 */
1145static void update_event_times(struct perf_event *event)
1146{
1147 struct perf_event_context *ctx = event->ctx;
1148 u64 run_end;
1149
1150 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1151 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1152 return;
e5d1367f
SE
1153 /*
1154 * in cgroup mode, time_enabled represents
1155 * the time the event was enabled AND active
1156 * tasks were in the monitored cgroup. This is
1157 * independent of the activity of the context as
1158 * there may be a mix of cgroup and non-cgroup events.
1159 *
1160 * That is why we treat cgroup events differently
1161 * here.
1162 */
1163 if (is_cgroup_event(event))
46cd6a7f 1164 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1165 else if (ctx->is_active)
1166 run_end = ctx->time;
acd1d7c1
PZ
1167 else
1168 run_end = event->tstamp_stopped;
1169
1170 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1171
1172 if (event->state == PERF_EVENT_STATE_INACTIVE)
1173 run_end = event->tstamp_stopped;
1174 else
4158755d 1175 run_end = perf_event_time(event);
f67218c3
PZ
1176
1177 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1178
f67218c3
PZ
1179}
1180
96c21a46
PZ
1181/*
1182 * Update total_time_enabled and total_time_running for all events in a group.
1183 */
1184static void update_group_times(struct perf_event *leader)
1185{
1186 struct perf_event *event;
1187
1188 update_event_times(leader);
1189 list_for_each_entry(event, &leader->sibling_list, group_entry)
1190 update_event_times(event);
1191}
1192
889ff015
FW
1193static struct list_head *
1194ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1195{
1196 if (event->attr.pinned)
1197 return &ctx->pinned_groups;
1198 else
1199 return &ctx->flexible_groups;
1200}
1201
fccc714b 1202/*
cdd6c482 1203 * Add a event from the lists for its context.
fccc714b
PZ
1204 * Must be called with ctx->mutex and ctx->lock held.
1205 */
04289bb9 1206static void
cdd6c482 1207list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1208{
8a49542c
PZ
1209 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1210 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1211
1212 /*
8a49542c
PZ
1213 * If we're a stand alone event or group leader, we go to the context
1214 * list, group events are kept attached to the group so that
1215 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1216 */
8a49542c 1217 if (event->group_leader == event) {
889ff015
FW
1218 struct list_head *list;
1219
d6f962b5
FW
1220 if (is_software_event(event))
1221 event->group_flags |= PERF_GROUP_SOFTWARE;
1222
889ff015
FW
1223 list = ctx_group_list(event, ctx);
1224 list_add_tail(&event->group_entry, list);
5c148194 1225 }
592903cd 1226
08309379 1227 if (is_cgroup_event(event))
e5d1367f 1228 ctx->nr_cgroups++;
e5d1367f 1229
cdd6c482
IM
1230 list_add_rcu(&event->event_entry, &ctx->event_list);
1231 ctx->nr_events++;
1232 if (event->attr.inherit_stat)
bfbd3381 1233 ctx->nr_stat++;
5a3126d4
PZ
1234
1235 ctx->generation++;
04289bb9
IM
1236}
1237
0231bb53
JO
1238/*
1239 * Initialize event state based on the perf_event_attr::disabled.
1240 */
1241static inline void perf_event__state_init(struct perf_event *event)
1242{
1243 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1244 PERF_EVENT_STATE_INACTIVE;
1245}
1246
a723968c 1247static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1248{
1249 int entry = sizeof(u64); /* value */
1250 int size = 0;
1251 int nr = 1;
1252
1253 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1254 size += sizeof(u64);
1255
1256 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1257 size += sizeof(u64);
1258
1259 if (event->attr.read_format & PERF_FORMAT_ID)
1260 entry += sizeof(u64);
1261
1262 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1263 nr += nr_siblings;
c320c7b7
ACM
1264 size += sizeof(u64);
1265 }
1266
1267 size += entry * nr;
1268 event->read_size = size;
1269}
1270
a723968c 1271static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1272{
1273 struct perf_sample_data *data;
c320c7b7
ACM
1274 u16 size = 0;
1275
c320c7b7
ACM
1276 if (sample_type & PERF_SAMPLE_IP)
1277 size += sizeof(data->ip);
1278
6844c09d
ACM
1279 if (sample_type & PERF_SAMPLE_ADDR)
1280 size += sizeof(data->addr);
1281
1282 if (sample_type & PERF_SAMPLE_PERIOD)
1283 size += sizeof(data->period);
1284
c3feedf2
AK
1285 if (sample_type & PERF_SAMPLE_WEIGHT)
1286 size += sizeof(data->weight);
1287
6844c09d
ACM
1288 if (sample_type & PERF_SAMPLE_READ)
1289 size += event->read_size;
1290
d6be9ad6
SE
1291 if (sample_type & PERF_SAMPLE_DATA_SRC)
1292 size += sizeof(data->data_src.val);
1293
fdfbbd07
AK
1294 if (sample_type & PERF_SAMPLE_TRANSACTION)
1295 size += sizeof(data->txn);
1296
6844c09d
ACM
1297 event->header_size = size;
1298}
1299
a723968c
PZ
1300/*
1301 * Called at perf_event creation and when events are attached/detached from a
1302 * group.
1303 */
1304static void perf_event__header_size(struct perf_event *event)
1305{
1306 __perf_event_read_size(event,
1307 event->group_leader->nr_siblings);
1308 __perf_event_header_size(event, event->attr.sample_type);
1309}
1310
6844c09d
ACM
1311static void perf_event__id_header_size(struct perf_event *event)
1312{
1313 struct perf_sample_data *data;
1314 u64 sample_type = event->attr.sample_type;
1315 u16 size = 0;
1316
c320c7b7
ACM
1317 if (sample_type & PERF_SAMPLE_TID)
1318 size += sizeof(data->tid_entry);
1319
1320 if (sample_type & PERF_SAMPLE_TIME)
1321 size += sizeof(data->time);
1322
ff3d527c
AH
1323 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1324 size += sizeof(data->id);
1325
c320c7b7
ACM
1326 if (sample_type & PERF_SAMPLE_ID)
1327 size += sizeof(data->id);
1328
1329 if (sample_type & PERF_SAMPLE_STREAM_ID)
1330 size += sizeof(data->stream_id);
1331
1332 if (sample_type & PERF_SAMPLE_CPU)
1333 size += sizeof(data->cpu_entry);
1334
6844c09d 1335 event->id_header_size = size;
c320c7b7
ACM
1336}
1337
a723968c
PZ
1338static bool perf_event_validate_size(struct perf_event *event)
1339{
1340 /*
1341 * The values computed here will be over-written when we actually
1342 * attach the event.
1343 */
1344 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1345 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1346 perf_event__id_header_size(event);
1347
1348 /*
1349 * Sum the lot; should not exceed the 64k limit we have on records.
1350 * Conservative limit to allow for callchains and other variable fields.
1351 */
1352 if (event->read_size + event->header_size +
1353 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1354 return false;
1355
1356 return true;
1357}
1358
8a49542c
PZ
1359static void perf_group_attach(struct perf_event *event)
1360{
c320c7b7 1361 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1362
74c3337c
PZ
1363 /*
1364 * We can have double attach due to group movement in perf_event_open.
1365 */
1366 if (event->attach_state & PERF_ATTACH_GROUP)
1367 return;
1368
8a49542c
PZ
1369 event->attach_state |= PERF_ATTACH_GROUP;
1370
1371 if (group_leader == event)
1372 return;
1373
652884fe
PZ
1374 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1375
8a49542c
PZ
1376 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1377 !is_software_event(event))
1378 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1379
1380 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1381 group_leader->nr_siblings++;
c320c7b7
ACM
1382
1383 perf_event__header_size(group_leader);
1384
1385 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1386 perf_event__header_size(pos);
8a49542c
PZ
1387}
1388
a63eaf34 1389/*
cdd6c482 1390 * Remove a event from the lists for its context.
fccc714b 1391 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1392 */
04289bb9 1393static void
cdd6c482 1394list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1395{
68cacd29 1396 struct perf_cpu_context *cpuctx;
652884fe
PZ
1397
1398 WARN_ON_ONCE(event->ctx != ctx);
1399 lockdep_assert_held(&ctx->lock);
1400
8a49542c
PZ
1401 /*
1402 * We can have double detach due to exit/hot-unplug + close.
1403 */
1404 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1405 return;
8a49542c
PZ
1406
1407 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1408
68cacd29 1409 if (is_cgroup_event(event)) {
e5d1367f 1410 ctx->nr_cgroups--;
68cacd29
SE
1411 cpuctx = __get_cpu_context(ctx);
1412 /*
1413 * if there are no more cgroup events
1414 * then cler cgrp to avoid stale pointer
1415 * in update_cgrp_time_from_cpuctx()
1416 */
1417 if (!ctx->nr_cgroups)
1418 cpuctx->cgrp = NULL;
1419 }
e5d1367f 1420
cdd6c482
IM
1421 ctx->nr_events--;
1422 if (event->attr.inherit_stat)
bfbd3381 1423 ctx->nr_stat--;
8bc20959 1424
cdd6c482 1425 list_del_rcu(&event->event_entry);
04289bb9 1426
8a49542c
PZ
1427 if (event->group_leader == event)
1428 list_del_init(&event->group_entry);
5c148194 1429
96c21a46 1430 update_group_times(event);
b2e74a26
SE
1431
1432 /*
1433 * If event was in error state, then keep it
1434 * that way, otherwise bogus counts will be
1435 * returned on read(). The only way to get out
1436 * of error state is by explicit re-enabling
1437 * of the event
1438 */
1439 if (event->state > PERF_EVENT_STATE_OFF)
1440 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1441
1442 ctx->generation++;
050735b0
PZ
1443}
1444
8a49542c 1445static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1446{
1447 struct perf_event *sibling, *tmp;
8a49542c
PZ
1448 struct list_head *list = NULL;
1449
1450 /*
1451 * We can have double detach due to exit/hot-unplug + close.
1452 */
1453 if (!(event->attach_state & PERF_ATTACH_GROUP))
1454 return;
1455
1456 event->attach_state &= ~PERF_ATTACH_GROUP;
1457
1458 /*
1459 * If this is a sibling, remove it from its group.
1460 */
1461 if (event->group_leader != event) {
1462 list_del_init(&event->group_entry);
1463 event->group_leader->nr_siblings--;
c320c7b7 1464 goto out;
8a49542c
PZ
1465 }
1466
1467 if (!list_empty(&event->group_entry))
1468 list = &event->group_entry;
2e2af50b 1469
04289bb9 1470 /*
cdd6c482
IM
1471 * If this was a group event with sibling events then
1472 * upgrade the siblings to singleton events by adding them
8a49542c 1473 * to whatever list we are on.
04289bb9 1474 */
cdd6c482 1475 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1476 if (list)
1477 list_move_tail(&sibling->group_entry, list);
04289bb9 1478 sibling->group_leader = sibling;
d6f962b5
FW
1479
1480 /* Inherit group flags from the previous leader */
1481 sibling->group_flags = event->group_flags;
652884fe
PZ
1482
1483 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1484 }
c320c7b7
ACM
1485
1486out:
1487 perf_event__header_size(event->group_leader);
1488
1489 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1490 perf_event__header_size(tmp);
04289bb9
IM
1491}
1492
fadfe7be
JO
1493/*
1494 * User event without the task.
1495 */
1496static bool is_orphaned_event(struct perf_event *event)
1497{
1498 return event && !is_kernel_event(event) && !event->owner;
1499}
1500
1501/*
1502 * Event has a parent but parent's task finished and it's
1503 * alive only because of children holding refference.
1504 */
1505static bool is_orphaned_child(struct perf_event *event)
1506{
1507 return is_orphaned_event(event->parent);
1508}
1509
1510static void orphans_remove_work(struct work_struct *work);
1511
1512static void schedule_orphans_remove(struct perf_event_context *ctx)
1513{
1514 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1515 return;
1516
1517 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1518 get_ctx(ctx);
1519 ctx->orphans_remove_sched = true;
1520 }
1521}
1522
1523static int __init perf_workqueue_init(void)
1524{
1525 perf_wq = create_singlethread_workqueue("perf");
1526 WARN(!perf_wq, "failed to create perf workqueue\n");
1527 return perf_wq ? 0 : -1;
1528}
1529
1530core_initcall(perf_workqueue_init);
1531
66eb579e
MR
1532static inline int pmu_filter_match(struct perf_event *event)
1533{
1534 struct pmu *pmu = event->pmu;
1535 return pmu->filter_match ? pmu->filter_match(event) : 1;
1536}
1537
fa66f07a
SE
1538static inline int
1539event_filter_match(struct perf_event *event)
1540{
e5d1367f 1541 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1542 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1543}
1544
9ffcfa6f
SE
1545static void
1546event_sched_out(struct perf_event *event,
3b6f9e5c 1547 struct perf_cpu_context *cpuctx,
cdd6c482 1548 struct perf_event_context *ctx)
3b6f9e5c 1549{
4158755d 1550 u64 tstamp = perf_event_time(event);
fa66f07a 1551 u64 delta;
652884fe
PZ
1552
1553 WARN_ON_ONCE(event->ctx != ctx);
1554 lockdep_assert_held(&ctx->lock);
1555
fa66f07a
SE
1556 /*
1557 * An event which could not be activated because of
1558 * filter mismatch still needs to have its timings
1559 * maintained, otherwise bogus information is return
1560 * via read() for time_enabled, time_running:
1561 */
1562 if (event->state == PERF_EVENT_STATE_INACTIVE
1563 && !event_filter_match(event)) {
e5d1367f 1564 delta = tstamp - event->tstamp_stopped;
fa66f07a 1565 event->tstamp_running += delta;
4158755d 1566 event->tstamp_stopped = tstamp;
fa66f07a
SE
1567 }
1568
cdd6c482 1569 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1570 return;
3b6f9e5c 1571
44377277
AS
1572 perf_pmu_disable(event->pmu);
1573
cdd6c482
IM
1574 event->state = PERF_EVENT_STATE_INACTIVE;
1575 if (event->pending_disable) {
1576 event->pending_disable = 0;
1577 event->state = PERF_EVENT_STATE_OFF;
970892a9 1578 }
4158755d 1579 event->tstamp_stopped = tstamp;
a4eaf7f1 1580 event->pmu->del(event, 0);
cdd6c482 1581 event->oncpu = -1;
3b6f9e5c 1582
cdd6c482 1583 if (!is_software_event(event))
3b6f9e5c 1584 cpuctx->active_oncpu--;
2fde4f94
MR
1585 if (!--ctx->nr_active)
1586 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1587 if (event->attr.freq && event->attr.sample_freq)
1588 ctx->nr_freq--;
cdd6c482 1589 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1590 cpuctx->exclusive = 0;
44377277 1591
fadfe7be
JO
1592 if (is_orphaned_child(event))
1593 schedule_orphans_remove(ctx);
1594
44377277 1595 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1596}
1597
d859e29f 1598static void
cdd6c482 1599group_sched_out(struct perf_event *group_event,
d859e29f 1600 struct perf_cpu_context *cpuctx,
cdd6c482 1601 struct perf_event_context *ctx)
d859e29f 1602{
cdd6c482 1603 struct perf_event *event;
fa66f07a 1604 int state = group_event->state;
d859e29f 1605
cdd6c482 1606 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1607
1608 /*
1609 * Schedule out siblings (if any):
1610 */
cdd6c482
IM
1611 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1612 event_sched_out(event, cpuctx, ctx);
d859e29f 1613
fa66f07a 1614 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1615 cpuctx->exclusive = 0;
1616}
1617
46ce0fe9
PZ
1618struct remove_event {
1619 struct perf_event *event;
1620 bool detach_group;
1621};
1622
0793a61d 1623/*
cdd6c482 1624 * Cross CPU call to remove a performance event
0793a61d 1625 *
cdd6c482 1626 * We disable the event on the hardware level first. After that we
0793a61d
TG
1627 * remove it from the context list.
1628 */
fe4b04fa 1629static int __perf_remove_from_context(void *info)
0793a61d 1630{
46ce0fe9
PZ
1631 struct remove_event *re = info;
1632 struct perf_event *event = re->event;
cdd6c482 1633 struct perf_event_context *ctx = event->ctx;
108b02cf 1634 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1635
e625cce1 1636 raw_spin_lock(&ctx->lock);
cdd6c482 1637 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1638 if (re->detach_group)
1639 perf_group_detach(event);
cdd6c482 1640 list_del_event(event, ctx);
64ce3126
PZ
1641 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1642 ctx->is_active = 0;
1643 cpuctx->task_ctx = NULL;
1644 }
e625cce1 1645 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1646
1647 return 0;
0793a61d
TG
1648}
1649
1650
1651/*
cdd6c482 1652 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1653 *
cdd6c482 1654 * CPU events are removed with a smp call. For task events we only
0793a61d 1655 * call when the task is on a CPU.
c93f7669 1656 *
cdd6c482
IM
1657 * If event->ctx is a cloned context, callers must make sure that
1658 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1659 * remains valid. This is OK when called from perf_release since
1660 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1661 * When called from perf_event_exit_task, it's OK because the
c93f7669 1662 * context has been detached from its task.
0793a61d 1663 */
46ce0fe9 1664static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1665{
cdd6c482 1666 struct perf_event_context *ctx = event->ctx;
0793a61d 1667 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1668 struct remove_event re = {
1669 .event = event,
1670 .detach_group = detach_group,
1671 };
0793a61d 1672
fe4b04fa
PZ
1673 lockdep_assert_held(&ctx->mutex);
1674
0793a61d
TG
1675 if (!task) {
1676 /*
226424ee
MR
1677 * Per cpu events are removed via an smp call. The removal can
1678 * fail if the CPU is currently offline, but in that case we
1679 * already called __perf_remove_from_context from
1680 * perf_event_exit_cpu.
0793a61d 1681 */
46ce0fe9 1682 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1683 return;
1684 }
1685
1686retry:
46ce0fe9 1687 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1688 return;
0793a61d 1689
e625cce1 1690 raw_spin_lock_irq(&ctx->lock);
0793a61d 1691 /*
fe4b04fa
PZ
1692 * If we failed to find a running task, but find the context active now
1693 * that we've acquired the ctx->lock, retry.
0793a61d 1694 */
fe4b04fa 1695 if (ctx->is_active) {
e625cce1 1696 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1697 /*
1698 * Reload the task pointer, it might have been changed by
1699 * a concurrent perf_event_context_sched_out().
1700 */
1701 task = ctx->task;
0793a61d
TG
1702 goto retry;
1703 }
1704
1705 /*
fe4b04fa
PZ
1706 * Since the task isn't running, its safe to remove the event, us
1707 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1708 */
46ce0fe9
PZ
1709 if (detach_group)
1710 perf_group_detach(event);
fe4b04fa 1711 list_del_event(event, ctx);
e625cce1 1712 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1713}
1714
d859e29f 1715/*
cdd6c482 1716 * Cross CPU call to disable a performance event
d859e29f 1717 */
500ad2d8 1718int __perf_event_disable(void *info)
d859e29f 1719{
cdd6c482 1720 struct perf_event *event = info;
cdd6c482 1721 struct perf_event_context *ctx = event->ctx;
108b02cf 1722 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1723
1724 /*
cdd6c482
IM
1725 * If this is a per-task event, need to check whether this
1726 * event's task is the current task on this cpu.
fe4b04fa
PZ
1727 *
1728 * Can trigger due to concurrent perf_event_context_sched_out()
1729 * flipping contexts around.
d859e29f 1730 */
665c2142 1731 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1732 return -EINVAL;
d859e29f 1733
e625cce1 1734 raw_spin_lock(&ctx->lock);
d859e29f
PM
1735
1736 /*
cdd6c482 1737 * If the event is on, turn it off.
d859e29f
PM
1738 * If it is in error state, leave it in error state.
1739 */
cdd6c482 1740 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1741 update_context_time(ctx);
e5d1367f 1742 update_cgrp_time_from_event(event);
cdd6c482
IM
1743 update_group_times(event);
1744 if (event == event->group_leader)
1745 group_sched_out(event, cpuctx, ctx);
d859e29f 1746 else
cdd6c482
IM
1747 event_sched_out(event, cpuctx, ctx);
1748 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1749 }
1750
e625cce1 1751 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1752
1753 return 0;
d859e29f
PM
1754}
1755
1756/*
cdd6c482 1757 * Disable a event.
c93f7669 1758 *
cdd6c482
IM
1759 * If event->ctx is a cloned context, callers must make sure that
1760 * every task struct that event->ctx->task could possibly point to
c93f7669 1761 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1762 * perf_event_for_each_child or perf_event_for_each because they
1763 * hold the top-level event's child_mutex, so any descendant that
1764 * goes to exit will block in sync_child_event.
1765 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1766 * is the current context on this CPU and preemption is disabled,
cdd6c482 1767 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1768 */
f63a8daa 1769static void _perf_event_disable(struct perf_event *event)
d859e29f 1770{
cdd6c482 1771 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1772 struct task_struct *task = ctx->task;
1773
1774 if (!task) {
1775 /*
cdd6c482 1776 * Disable the event on the cpu that it's on
d859e29f 1777 */
fe4b04fa 1778 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1779 return;
1780 }
1781
9ed6060d 1782retry:
fe4b04fa
PZ
1783 if (!task_function_call(task, __perf_event_disable, event))
1784 return;
d859e29f 1785
e625cce1 1786 raw_spin_lock_irq(&ctx->lock);
d859e29f 1787 /*
cdd6c482 1788 * If the event is still active, we need to retry the cross-call.
d859e29f 1789 */
cdd6c482 1790 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1791 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1792 /*
1793 * Reload the task pointer, it might have been changed by
1794 * a concurrent perf_event_context_sched_out().
1795 */
1796 task = ctx->task;
d859e29f
PM
1797 goto retry;
1798 }
1799
1800 /*
1801 * Since we have the lock this context can't be scheduled
1802 * in, so we can change the state safely.
1803 */
cdd6c482
IM
1804 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1805 update_group_times(event);
1806 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1807 }
e625cce1 1808 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1809}
f63a8daa
PZ
1810
1811/*
1812 * Strictly speaking kernel users cannot create groups and therefore this
1813 * interface does not need the perf_event_ctx_lock() magic.
1814 */
1815void perf_event_disable(struct perf_event *event)
1816{
1817 struct perf_event_context *ctx;
1818
1819 ctx = perf_event_ctx_lock(event);
1820 _perf_event_disable(event);
1821 perf_event_ctx_unlock(event, ctx);
1822}
dcfce4a0 1823EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1824
e5d1367f
SE
1825static void perf_set_shadow_time(struct perf_event *event,
1826 struct perf_event_context *ctx,
1827 u64 tstamp)
1828{
1829 /*
1830 * use the correct time source for the time snapshot
1831 *
1832 * We could get by without this by leveraging the
1833 * fact that to get to this function, the caller
1834 * has most likely already called update_context_time()
1835 * and update_cgrp_time_xx() and thus both timestamp
1836 * are identical (or very close). Given that tstamp is,
1837 * already adjusted for cgroup, we could say that:
1838 * tstamp - ctx->timestamp
1839 * is equivalent to
1840 * tstamp - cgrp->timestamp.
1841 *
1842 * Then, in perf_output_read(), the calculation would
1843 * work with no changes because:
1844 * - event is guaranteed scheduled in
1845 * - no scheduled out in between
1846 * - thus the timestamp would be the same
1847 *
1848 * But this is a bit hairy.
1849 *
1850 * So instead, we have an explicit cgroup call to remain
1851 * within the time time source all along. We believe it
1852 * is cleaner and simpler to understand.
1853 */
1854 if (is_cgroup_event(event))
1855 perf_cgroup_set_shadow_time(event, tstamp);
1856 else
1857 event->shadow_ctx_time = tstamp - ctx->timestamp;
1858}
1859
4fe757dd
PZ
1860#define MAX_INTERRUPTS (~0ULL)
1861
1862static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1863static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1864
235c7fc7 1865static int
9ffcfa6f 1866event_sched_in(struct perf_event *event,
235c7fc7 1867 struct perf_cpu_context *cpuctx,
6e37738a 1868 struct perf_event_context *ctx)
235c7fc7 1869{
4158755d 1870 u64 tstamp = perf_event_time(event);
44377277 1871 int ret = 0;
4158755d 1872
63342411
PZ
1873 lockdep_assert_held(&ctx->lock);
1874
cdd6c482 1875 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1876 return 0;
1877
cdd6c482 1878 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1879 event->oncpu = smp_processor_id();
4fe757dd
PZ
1880
1881 /*
1882 * Unthrottle events, since we scheduled we might have missed several
1883 * ticks already, also for a heavily scheduling task there is little
1884 * guarantee it'll get a tick in a timely manner.
1885 */
1886 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1887 perf_log_throttle(event, 1);
1888 event->hw.interrupts = 0;
1889 }
1890
235c7fc7
IM
1891 /*
1892 * The new state must be visible before we turn it on in the hardware:
1893 */
1894 smp_wmb();
1895
44377277
AS
1896 perf_pmu_disable(event->pmu);
1897
72f669c0
SL
1898 perf_set_shadow_time(event, ctx, tstamp);
1899
ec0d7729
AS
1900 perf_log_itrace_start(event);
1901
a4eaf7f1 1902 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1903 event->state = PERF_EVENT_STATE_INACTIVE;
1904 event->oncpu = -1;
44377277
AS
1905 ret = -EAGAIN;
1906 goto out;
235c7fc7
IM
1907 }
1908
00a2916f
PZ
1909 event->tstamp_running += tstamp - event->tstamp_stopped;
1910
cdd6c482 1911 if (!is_software_event(event))
3b6f9e5c 1912 cpuctx->active_oncpu++;
2fde4f94
MR
1913 if (!ctx->nr_active++)
1914 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1915 if (event->attr.freq && event->attr.sample_freq)
1916 ctx->nr_freq++;
235c7fc7 1917
cdd6c482 1918 if (event->attr.exclusive)
3b6f9e5c
PM
1919 cpuctx->exclusive = 1;
1920
fadfe7be
JO
1921 if (is_orphaned_child(event))
1922 schedule_orphans_remove(ctx);
1923
44377277
AS
1924out:
1925 perf_pmu_enable(event->pmu);
1926
1927 return ret;
235c7fc7
IM
1928}
1929
6751b71e 1930static int
cdd6c482 1931group_sched_in(struct perf_event *group_event,
6751b71e 1932 struct perf_cpu_context *cpuctx,
6e37738a 1933 struct perf_event_context *ctx)
6751b71e 1934{
6bde9b6c 1935 struct perf_event *event, *partial_group = NULL;
4a234593 1936 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1937 u64 now = ctx->time;
1938 bool simulate = false;
6751b71e 1939
cdd6c482 1940 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1941 return 0;
1942
fbbe0701 1943 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1944
9ffcfa6f 1945 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1946 pmu->cancel_txn(pmu);
272325c4 1947 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1948 return -EAGAIN;
90151c35 1949 }
6751b71e
PM
1950
1951 /*
1952 * Schedule in siblings as one group (if any):
1953 */
cdd6c482 1954 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1955 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1956 partial_group = event;
6751b71e
PM
1957 goto group_error;
1958 }
1959 }
1960
9ffcfa6f 1961 if (!pmu->commit_txn(pmu))
6e85158c 1962 return 0;
9ffcfa6f 1963
6751b71e
PM
1964group_error:
1965 /*
1966 * Groups can be scheduled in as one unit only, so undo any
1967 * partial group before returning:
d7842da4
SE
1968 * The events up to the failed event are scheduled out normally,
1969 * tstamp_stopped will be updated.
1970 *
1971 * The failed events and the remaining siblings need to have
1972 * their timings updated as if they had gone thru event_sched_in()
1973 * and event_sched_out(). This is required to get consistent timings
1974 * across the group. This also takes care of the case where the group
1975 * could never be scheduled by ensuring tstamp_stopped is set to mark
1976 * the time the event was actually stopped, such that time delta
1977 * calculation in update_event_times() is correct.
6751b71e 1978 */
cdd6c482
IM
1979 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1980 if (event == partial_group)
d7842da4
SE
1981 simulate = true;
1982
1983 if (simulate) {
1984 event->tstamp_running += now - event->tstamp_stopped;
1985 event->tstamp_stopped = now;
1986 } else {
1987 event_sched_out(event, cpuctx, ctx);
1988 }
6751b71e 1989 }
9ffcfa6f 1990 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1991
ad5133b7 1992 pmu->cancel_txn(pmu);
90151c35 1993
272325c4 1994 perf_mux_hrtimer_restart(cpuctx);
9e630205 1995
6751b71e
PM
1996 return -EAGAIN;
1997}
1998
3b6f9e5c 1999/*
cdd6c482 2000 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2001 */
cdd6c482 2002static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2003 struct perf_cpu_context *cpuctx,
2004 int can_add_hw)
2005{
2006 /*
cdd6c482 2007 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2008 */
d6f962b5 2009 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2010 return 1;
2011 /*
2012 * If an exclusive group is already on, no other hardware
cdd6c482 2013 * events can go on.
3b6f9e5c
PM
2014 */
2015 if (cpuctx->exclusive)
2016 return 0;
2017 /*
2018 * If this group is exclusive and there are already
cdd6c482 2019 * events on the CPU, it can't go on.
3b6f9e5c 2020 */
cdd6c482 2021 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2022 return 0;
2023 /*
2024 * Otherwise, try to add it if all previous groups were able
2025 * to go on.
2026 */
2027 return can_add_hw;
2028}
2029
cdd6c482
IM
2030static void add_event_to_ctx(struct perf_event *event,
2031 struct perf_event_context *ctx)
53cfbf59 2032{
4158755d
SE
2033 u64 tstamp = perf_event_time(event);
2034
cdd6c482 2035 list_add_event(event, ctx);
8a49542c 2036 perf_group_attach(event);
4158755d
SE
2037 event->tstamp_enabled = tstamp;
2038 event->tstamp_running = tstamp;
2039 event->tstamp_stopped = tstamp;
53cfbf59
PM
2040}
2041
2c29ef0f
PZ
2042static void task_ctx_sched_out(struct perf_event_context *ctx);
2043static void
2044ctx_sched_in(struct perf_event_context *ctx,
2045 struct perf_cpu_context *cpuctx,
2046 enum event_type_t event_type,
2047 struct task_struct *task);
fe4b04fa 2048
dce5855b
PZ
2049static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2050 struct perf_event_context *ctx,
2051 struct task_struct *task)
2052{
2053 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2054 if (ctx)
2055 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2056 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2057 if (ctx)
2058 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2059}
2060
0793a61d 2061/*
cdd6c482 2062 * Cross CPU call to install and enable a performance event
682076ae
PZ
2063 *
2064 * Must be called with ctx->mutex held
0793a61d 2065 */
fe4b04fa 2066static int __perf_install_in_context(void *info)
0793a61d 2067{
cdd6c482
IM
2068 struct perf_event *event = info;
2069 struct perf_event_context *ctx = event->ctx;
108b02cf 2070 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2071 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2072 struct task_struct *task = current;
2073
b58f6b0d 2074 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2075 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2076
2077 /*
2c29ef0f 2078 * If there was an active task_ctx schedule it out.
0793a61d 2079 */
b58f6b0d 2080 if (task_ctx)
2c29ef0f 2081 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2082
2083 /*
2084 * If the context we're installing events in is not the
2085 * active task_ctx, flip them.
2086 */
2087 if (ctx->task && task_ctx != ctx) {
2088 if (task_ctx)
2089 raw_spin_unlock(&task_ctx->lock);
2090 raw_spin_lock(&ctx->lock);
2091 task_ctx = ctx;
2092 }
2093
2094 if (task_ctx) {
2095 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2096 task = task_ctx->task;
2097 }
b58f6b0d 2098
2c29ef0f 2099 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2100
4af4998b 2101 update_context_time(ctx);
e5d1367f
SE
2102 /*
2103 * update cgrp time only if current cgrp
2104 * matches event->cgrp. Must be done before
2105 * calling add_event_to_ctx()
2106 */
2107 update_cgrp_time_from_event(event);
0793a61d 2108
cdd6c482 2109 add_event_to_ctx(event, ctx);
0793a61d 2110
d859e29f 2111 /*
2c29ef0f 2112 * Schedule everything back in
d859e29f 2113 */
dce5855b 2114 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2115
2116 perf_pmu_enable(cpuctx->ctx.pmu);
2117 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2118
2119 return 0;
0793a61d
TG
2120}
2121
2122/*
cdd6c482 2123 * Attach a performance event to a context
0793a61d 2124 *
cdd6c482
IM
2125 * First we add the event to the list with the hardware enable bit
2126 * in event->hw_config cleared.
0793a61d 2127 *
cdd6c482 2128 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2129 * call to enable it in the task context. The task might have been
2130 * scheduled away, but we check this in the smp call again.
2131 */
2132static void
cdd6c482
IM
2133perf_install_in_context(struct perf_event_context *ctx,
2134 struct perf_event *event,
0793a61d
TG
2135 int cpu)
2136{
2137 struct task_struct *task = ctx->task;
2138
fe4b04fa
PZ
2139 lockdep_assert_held(&ctx->mutex);
2140
c3f00c70 2141 event->ctx = ctx;
0cda4c02
YZ
2142 if (event->cpu != -1)
2143 event->cpu = cpu;
c3f00c70 2144
0793a61d
TG
2145 if (!task) {
2146 /*
cdd6c482 2147 * Per cpu events are installed via an smp call and
af901ca1 2148 * the install is always successful.
0793a61d 2149 */
fe4b04fa 2150 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2151 return;
2152 }
2153
0793a61d 2154retry:
fe4b04fa
PZ
2155 if (!task_function_call(task, __perf_install_in_context, event))
2156 return;
0793a61d 2157
e625cce1 2158 raw_spin_lock_irq(&ctx->lock);
0793a61d 2159 /*
fe4b04fa
PZ
2160 * If we failed to find a running task, but find the context active now
2161 * that we've acquired the ctx->lock, retry.
0793a61d 2162 */
fe4b04fa 2163 if (ctx->is_active) {
e625cce1 2164 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2165 /*
2166 * Reload the task pointer, it might have been changed by
2167 * a concurrent perf_event_context_sched_out().
2168 */
2169 task = ctx->task;
0793a61d
TG
2170 goto retry;
2171 }
2172
2173 /*
fe4b04fa
PZ
2174 * Since the task isn't running, its safe to add the event, us holding
2175 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2176 */
fe4b04fa 2177 add_event_to_ctx(event, ctx);
e625cce1 2178 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2179}
2180
fa289bec 2181/*
cdd6c482 2182 * Put a event into inactive state and update time fields.
fa289bec
PM
2183 * Enabling the leader of a group effectively enables all
2184 * the group members that aren't explicitly disabled, so we
2185 * have to update their ->tstamp_enabled also.
2186 * Note: this works for group members as well as group leaders
2187 * since the non-leader members' sibling_lists will be empty.
2188 */
1d9b482e 2189static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2190{
cdd6c482 2191 struct perf_event *sub;
4158755d 2192 u64 tstamp = perf_event_time(event);
fa289bec 2193
cdd6c482 2194 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2195 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2196 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2197 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2198 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2199 }
fa289bec
PM
2200}
2201
d859e29f 2202/*
cdd6c482 2203 * Cross CPU call to enable a performance event
d859e29f 2204 */
fe4b04fa 2205static int __perf_event_enable(void *info)
04289bb9 2206{
cdd6c482 2207 struct perf_event *event = info;
cdd6c482
IM
2208 struct perf_event_context *ctx = event->ctx;
2209 struct perf_event *leader = event->group_leader;
108b02cf 2210 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2211 int err;
04289bb9 2212
06f41796
JO
2213 /*
2214 * There's a time window between 'ctx->is_active' check
2215 * in perf_event_enable function and this place having:
2216 * - IRQs on
2217 * - ctx->lock unlocked
2218 *
2219 * where the task could be killed and 'ctx' deactivated
2220 * by perf_event_exit_task.
2221 */
2222 if (!ctx->is_active)
fe4b04fa 2223 return -EINVAL;
3cbed429 2224
e625cce1 2225 raw_spin_lock(&ctx->lock);
4af4998b 2226 update_context_time(ctx);
d859e29f 2227
cdd6c482 2228 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2229 goto unlock;
e5d1367f
SE
2230
2231 /*
2232 * set current task's cgroup time reference point
2233 */
3f7cce3c 2234 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2235
1d9b482e 2236 __perf_event_mark_enabled(event);
04289bb9 2237
e5d1367f
SE
2238 if (!event_filter_match(event)) {
2239 if (is_cgroup_event(event))
2240 perf_cgroup_defer_enabled(event);
f4c4176f 2241 goto unlock;
e5d1367f 2242 }
f4c4176f 2243
04289bb9 2244 /*
cdd6c482 2245 * If the event is in a group and isn't the group leader,
d859e29f 2246 * then don't put it on unless the group is on.
04289bb9 2247 */
cdd6c482 2248 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2249 goto unlock;
3b6f9e5c 2250
cdd6c482 2251 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2252 err = -EEXIST;
e758a33d 2253 } else {
cdd6c482 2254 if (event == leader)
6e37738a 2255 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2256 else
6e37738a 2257 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2258 }
d859e29f
PM
2259
2260 if (err) {
2261 /*
cdd6c482 2262 * If this event can't go on and it's part of a
d859e29f
PM
2263 * group, then the whole group has to come off.
2264 */
9e630205 2265 if (leader != event) {
d859e29f 2266 group_sched_out(leader, cpuctx, ctx);
272325c4 2267 perf_mux_hrtimer_restart(cpuctx);
9e630205 2268 }
0d48696f 2269 if (leader->attr.pinned) {
53cfbf59 2270 update_group_times(leader);
cdd6c482 2271 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2272 }
d859e29f
PM
2273 }
2274
9ed6060d 2275unlock:
e625cce1 2276 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2277
2278 return 0;
d859e29f
PM
2279}
2280
2281/*
cdd6c482 2282 * Enable a event.
c93f7669 2283 *
cdd6c482
IM
2284 * If event->ctx is a cloned context, callers must make sure that
2285 * every task struct that event->ctx->task could possibly point to
c93f7669 2286 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2287 * perf_event_for_each_child or perf_event_for_each as described
2288 * for perf_event_disable.
d859e29f 2289 */
f63a8daa 2290static void _perf_event_enable(struct perf_event *event)
d859e29f 2291{
cdd6c482 2292 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2293 struct task_struct *task = ctx->task;
2294
2295 if (!task) {
2296 /*
cdd6c482 2297 * Enable the event on the cpu that it's on
d859e29f 2298 */
fe4b04fa 2299 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2300 return;
2301 }
2302
e625cce1 2303 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2304 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2305 goto out;
2306
2307 /*
cdd6c482
IM
2308 * If the event is in error state, clear that first.
2309 * That way, if we see the event in error state below, we
d859e29f
PM
2310 * know that it has gone back into error state, as distinct
2311 * from the task having been scheduled away before the
2312 * cross-call arrived.
2313 */
cdd6c482
IM
2314 if (event->state == PERF_EVENT_STATE_ERROR)
2315 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2316
9ed6060d 2317retry:
fe4b04fa 2318 if (!ctx->is_active) {
1d9b482e 2319 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2320 goto out;
2321 }
2322
e625cce1 2323 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2324
2325 if (!task_function_call(task, __perf_event_enable, event))
2326 return;
d859e29f 2327
e625cce1 2328 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2329
2330 /*
cdd6c482 2331 * If the context is active and the event is still off,
d859e29f
PM
2332 * we need to retry the cross-call.
2333 */
fe4b04fa
PZ
2334 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2335 /*
2336 * task could have been flipped by a concurrent
2337 * perf_event_context_sched_out()
2338 */
2339 task = ctx->task;
d859e29f 2340 goto retry;
fe4b04fa 2341 }
fa289bec 2342
9ed6060d 2343out:
e625cce1 2344 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2345}
f63a8daa
PZ
2346
2347/*
2348 * See perf_event_disable();
2349 */
2350void perf_event_enable(struct perf_event *event)
2351{
2352 struct perf_event_context *ctx;
2353
2354 ctx = perf_event_ctx_lock(event);
2355 _perf_event_enable(event);
2356 perf_event_ctx_unlock(event, ctx);
2357}
dcfce4a0 2358EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2359
f63a8daa 2360static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2361{
2023b359 2362 /*
cdd6c482 2363 * not supported on inherited events
2023b359 2364 */
2e939d1d 2365 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2366 return -EINVAL;
2367
cdd6c482 2368 atomic_add(refresh, &event->event_limit);
f63a8daa 2369 _perf_event_enable(event);
2023b359
PZ
2370
2371 return 0;
79f14641 2372}
f63a8daa
PZ
2373
2374/*
2375 * See perf_event_disable()
2376 */
2377int perf_event_refresh(struct perf_event *event, int refresh)
2378{
2379 struct perf_event_context *ctx;
2380 int ret;
2381
2382 ctx = perf_event_ctx_lock(event);
2383 ret = _perf_event_refresh(event, refresh);
2384 perf_event_ctx_unlock(event, ctx);
2385
2386 return ret;
2387}
26ca5c11 2388EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2389
5b0311e1
FW
2390static void ctx_sched_out(struct perf_event_context *ctx,
2391 struct perf_cpu_context *cpuctx,
2392 enum event_type_t event_type)
235c7fc7 2393{
cdd6c482 2394 struct perf_event *event;
db24d33e 2395 int is_active = ctx->is_active;
235c7fc7 2396
db24d33e 2397 ctx->is_active &= ~event_type;
cdd6c482 2398 if (likely(!ctx->nr_events))
facc4307
PZ
2399 return;
2400
4af4998b 2401 update_context_time(ctx);
e5d1367f 2402 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2403 if (!ctx->nr_active)
facc4307 2404 return;
5b0311e1 2405
075e0b00 2406 perf_pmu_disable(ctx->pmu);
db24d33e 2407 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2408 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2409 group_sched_out(event, cpuctx, ctx);
9ed6060d 2410 }
889ff015 2411
db24d33e 2412 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2413 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2414 group_sched_out(event, cpuctx, ctx);
9ed6060d 2415 }
1b9a644f 2416 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2417}
2418
564c2b21 2419/*
5a3126d4
PZ
2420 * Test whether two contexts are equivalent, i.e. whether they have both been
2421 * cloned from the same version of the same context.
2422 *
2423 * Equivalence is measured using a generation number in the context that is
2424 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2425 * and list_del_event().
564c2b21 2426 */
cdd6c482
IM
2427static int context_equiv(struct perf_event_context *ctx1,
2428 struct perf_event_context *ctx2)
564c2b21 2429{
211de6eb
PZ
2430 lockdep_assert_held(&ctx1->lock);
2431 lockdep_assert_held(&ctx2->lock);
2432
5a3126d4
PZ
2433 /* Pinning disables the swap optimization */
2434 if (ctx1->pin_count || ctx2->pin_count)
2435 return 0;
2436
2437 /* If ctx1 is the parent of ctx2 */
2438 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2439 return 1;
2440
2441 /* If ctx2 is the parent of ctx1 */
2442 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2443 return 1;
2444
2445 /*
2446 * If ctx1 and ctx2 have the same parent; we flatten the parent
2447 * hierarchy, see perf_event_init_context().
2448 */
2449 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2450 ctx1->parent_gen == ctx2->parent_gen)
2451 return 1;
2452
2453 /* Unmatched */
2454 return 0;
564c2b21
PM
2455}
2456
cdd6c482
IM
2457static void __perf_event_sync_stat(struct perf_event *event,
2458 struct perf_event *next_event)
bfbd3381
PZ
2459{
2460 u64 value;
2461
cdd6c482 2462 if (!event->attr.inherit_stat)
bfbd3381
PZ
2463 return;
2464
2465 /*
cdd6c482 2466 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2467 * because we're in the middle of a context switch and have IRQs
2468 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2469 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2470 * don't need to use it.
2471 */
cdd6c482
IM
2472 switch (event->state) {
2473 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2474 event->pmu->read(event);
2475 /* fall-through */
bfbd3381 2476
cdd6c482
IM
2477 case PERF_EVENT_STATE_INACTIVE:
2478 update_event_times(event);
bfbd3381
PZ
2479 break;
2480
2481 default:
2482 break;
2483 }
2484
2485 /*
cdd6c482 2486 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2487 * values when we flip the contexts.
2488 */
e7850595
PZ
2489 value = local64_read(&next_event->count);
2490 value = local64_xchg(&event->count, value);
2491 local64_set(&next_event->count, value);
bfbd3381 2492
cdd6c482
IM
2493 swap(event->total_time_enabled, next_event->total_time_enabled);
2494 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2495
bfbd3381 2496 /*
19d2e755 2497 * Since we swizzled the values, update the user visible data too.
bfbd3381 2498 */
cdd6c482
IM
2499 perf_event_update_userpage(event);
2500 perf_event_update_userpage(next_event);
bfbd3381
PZ
2501}
2502
cdd6c482
IM
2503static void perf_event_sync_stat(struct perf_event_context *ctx,
2504 struct perf_event_context *next_ctx)
bfbd3381 2505{
cdd6c482 2506 struct perf_event *event, *next_event;
bfbd3381
PZ
2507
2508 if (!ctx->nr_stat)
2509 return;
2510
02ffdbc8
PZ
2511 update_context_time(ctx);
2512
cdd6c482
IM
2513 event = list_first_entry(&ctx->event_list,
2514 struct perf_event, event_entry);
bfbd3381 2515
cdd6c482
IM
2516 next_event = list_first_entry(&next_ctx->event_list,
2517 struct perf_event, event_entry);
bfbd3381 2518
cdd6c482
IM
2519 while (&event->event_entry != &ctx->event_list &&
2520 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2521
cdd6c482 2522 __perf_event_sync_stat(event, next_event);
bfbd3381 2523
cdd6c482
IM
2524 event = list_next_entry(event, event_entry);
2525 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2526 }
2527}
2528
fe4b04fa
PZ
2529static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2530 struct task_struct *next)
0793a61d 2531{
8dc85d54 2532 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2533 struct perf_event_context *next_ctx;
5a3126d4 2534 struct perf_event_context *parent, *next_parent;
108b02cf 2535 struct perf_cpu_context *cpuctx;
c93f7669 2536 int do_switch = 1;
0793a61d 2537
108b02cf
PZ
2538 if (likely(!ctx))
2539 return;
10989fb2 2540
108b02cf
PZ
2541 cpuctx = __get_cpu_context(ctx);
2542 if (!cpuctx->task_ctx)
0793a61d
TG
2543 return;
2544
c93f7669 2545 rcu_read_lock();
8dc85d54 2546 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2547 if (!next_ctx)
2548 goto unlock;
2549
2550 parent = rcu_dereference(ctx->parent_ctx);
2551 next_parent = rcu_dereference(next_ctx->parent_ctx);
2552
2553 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2554 if (!parent && !next_parent)
5a3126d4
PZ
2555 goto unlock;
2556
2557 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2558 /*
2559 * Looks like the two contexts are clones, so we might be
2560 * able to optimize the context switch. We lock both
2561 * contexts and check that they are clones under the
2562 * lock (including re-checking that neither has been
2563 * uncloned in the meantime). It doesn't matter which
2564 * order we take the locks because no other cpu could
2565 * be trying to lock both of these tasks.
2566 */
e625cce1
TG
2567 raw_spin_lock(&ctx->lock);
2568 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2569 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2570 /*
2571 * XXX do we need a memory barrier of sorts
cdd6c482 2572 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2573 */
8dc85d54
PZ
2574 task->perf_event_ctxp[ctxn] = next_ctx;
2575 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2576 ctx->task = next;
2577 next_ctx->task = task;
5a158c3c
YZ
2578
2579 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2580
c93f7669 2581 do_switch = 0;
bfbd3381 2582
cdd6c482 2583 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2584 }
e625cce1
TG
2585 raw_spin_unlock(&next_ctx->lock);
2586 raw_spin_unlock(&ctx->lock);
564c2b21 2587 }
5a3126d4 2588unlock:
c93f7669 2589 rcu_read_unlock();
564c2b21 2590
c93f7669 2591 if (do_switch) {
facc4307 2592 raw_spin_lock(&ctx->lock);
5b0311e1 2593 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2594 cpuctx->task_ctx = NULL;
facc4307 2595 raw_spin_unlock(&ctx->lock);
c93f7669 2596 }
0793a61d
TG
2597}
2598
ba532500
YZ
2599void perf_sched_cb_dec(struct pmu *pmu)
2600{
2601 this_cpu_dec(perf_sched_cb_usages);
2602}
2603
2604void perf_sched_cb_inc(struct pmu *pmu)
2605{
2606 this_cpu_inc(perf_sched_cb_usages);
2607}
2608
2609/*
2610 * This function provides the context switch callback to the lower code
2611 * layer. It is invoked ONLY when the context switch callback is enabled.
2612 */
2613static void perf_pmu_sched_task(struct task_struct *prev,
2614 struct task_struct *next,
2615 bool sched_in)
2616{
2617 struct perf_cpu_context *cpuctx;
2618 struct pmu *pmu;
2619 unsigned long flags;
2620
2621 if (prev == next)
2622 return;
2623
2624 local_irq_save(flags);
2625
2626 rcu_read_lock();
2627
2628 list_for_each_entry_rcu(pmu, &pmus, entry) {
2629 if (pmu->sched_task) {
2630 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2631
2632 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2633
2634 perf_pmu_disable(pmu);
2635
2636 pmu->sched_task(cpuctx->task_ctx, sched_in);
2637
2638 perf_pmu_enable(pmu);
2639
2640 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2641 }
2642 }
2643
2644 rcu_read_unlock();
2645
2646 local_irq_restore(flags);
2647}
2648
45ac1403
AH
2649static void perf_event_switch(struct task_struct *task,
2650 struct task_struct *next_prev, bool sched_in);
2651
8dc85d54
PZ
2652#define for_each_task_context_nr(ctxn) \
2653 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2654
2655/*
2656 * Called from scheduler to remove the events of the current task,
2657 * with interrupts disabled.
2658 *
2659 * We stop each event and update the event value in event->count.
2660 *
2661 * This does not protect us against NMI, but disable()
2662 * sets the disabled bit in the control field of event _before_
2663 * accessing the event control register. If a NMI hits, then it will
2664 * not restart the event.
2665 */
ab0cce56
JO
2666void __perf_event_task_sched_out(struct task_struct *task,
2667 struct task_struct *next)
8dc85d54
PZ
2668{
2669 int ctxn;
2670
ba532500
YZ
2671 if (__this_cpu_read(perf_sched_cb_usages))
2672 perf_pmu_sched_task(task, next, false);
2673
45ac1403
AH
2674 if (atomic_read(&nr_switch_events))
2675 perf_event_switch(task, next, false);
2676
8dc85d54
PZ
2677 for_each_task_context_nr(ctxn)
2678 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2679
2680 /*
2681 * if cgroup events exist on this CPU, then we need
2682 * to check if we have to switch out PMU state.
2683 * cgroup event are system-wide mode only
2684 */
4a32fea9 2685 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2686 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2687}
2688
04dc2dbb 2689static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2690{
108b02cf 2691 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2692
a63eaf34
PM
2693 if (!cpuctx->task_ctx)
2694 return;
012b84da
IM
2695
2696 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2697 return;
2698
04dc2dbb 2699 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2700 cpuctx->task_ctx = NULL;
2701}
2702
5b0311e1
FW
2703/*
2704 * Called with IRQs disabled
2705 */
2706static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2707 enum event_type_t event_type)
2708{
2709 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2710}
2711
235c7fc7 2712static void
5b0311e1 2713ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2714 struct perf_cpu_context *cpuctx)
0793a61d 2715{
cdd6c482 2716 struct perf_event *event;
0793a61d 2717
889ff015
FW
2718 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2719 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2720 continue;
5632ab12 2721 if (!event_filter_match(event))
3b6f9e5c
PM
2722 continue;
2723
e5d1367f
SE
2724 /* may need to reset tstamp_enabled */
2725 if (is_cgroup_event(event))
2726 perf_cgroup_mark_enabled(event, ctx);
2727
8c9ed8e1 2728 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2729 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2730
2731 /*
2732 * If this pinned group hasn't been scheduled,
2733 * put it in error state.
2734 */
cdd6c482
IM
2735 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2736 update_group_times(event);
2737 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2738 }
3b6f9e5c 2739 }
5b0311e1
FW
2740}
2741
2742static void
2743ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2744 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2745{
2746 struct perf_event *event;
2747 int can_add_hw = 1;
3b6f9e5c 2748
889ff015
FW
2749 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2750 /* Ignore events in OFF or ERROR state */
2751 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2752 continue;
04289bb9
IM
2753 /*
2754 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2755 * of events:
04289bb9 2756 */
5632ab12 2757 if (!event_filter_match(event))
0793a61d
TG
2758 continue;
2759
e5d1367f
SE
2760 /* may need to reset tstamp_enabled */
2761 if (is_cgroup_event(event))
2762 perf_cgroup_mark_enabled(event, ctx);
2763
9ed6060d 2764 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2765 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2766 can_add_hw = 0;
9ed6060d 2767 }
0793a61d 2768 }
5b0311e1
FW
2769}
2770
2771static void
2772ctx_sched_in(struct perf_event_context *ctx,
2773 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2774 enum event_type_t event_type,
2775 struct task_struct *task)
5b0311e1 2776{
e5d1367f 2777 u64 now;
db24d33e 2778 int is_active = ctx->is_active;
e5d1367f 2779
db24d33e 2780 ctx->is_active |= event_type;
5b0311e1 2781 if (likely(!ctx->nr_events))
facc4307 2782 return;
5b0311e1 2783
e5d1367f
SE
2784 now = perf_clock();
2785 ctx->timestamp = now;
3f7cce3c 2786 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2787 /*
2788 * First go through the list and put on any pinned groups
2789 * in order to give them the best chance of going on.
2790 */
db24d33e 2791 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2792 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2793
2794 /* Then walk through the lower prio flexible groups */
db24d33e 2795 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2796 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2797}
2798
329c0e01 2799static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2800 enum event_type_t event_type,
2801 struct task_struct *task)
329c0e01
FW
2802{
2803 struct perf_event_context *ctx = &cpuctx->ctx;
2804
e5d1367f 2805 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2806}
2807
e5d1367f
SE
2808static void perf_event_context_sched_in(struct perf_event_context *ctx,
2809 struct task_struct *task)
235c7fc7 2810{
108b02cf 2811 struct perf_cpu_context *cpuctx;
235c7fc7 2812
108b02cf 2813 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2814 if (cpuctx->task_ctx == ctx)
2815 return;
2816
facc4307 2817 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2818 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2819 /*
2820 * We want to keep the following priority order:
2821 * cpu pinned (that don't need to move), task pinned,
2822 * cpu flexible, task flexible.
2823 */
2824 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2825
1d5f003f
GN
2826 if (ctx->nr_events)
2827 cpuctx->task_ctx = ctx;
9b33fa6b 2828
86b47c25
GN
2829 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2830
facc4307
PZ
2831 perf_pmu_enable(ctx->pmu);
2832 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2833}
2834
8dc85d54
PZ
2835/*
2836 * Called from scheduler to add the events of the current task
2837 * with interrupts disabled.
2838 *
2839 * We restore the event value and then enable it.
2840 *
2841 * This does not protect us against NMI, but enable()
2842 * sets the enabled bit in the control field of event _before_
2843 * accessing the event control register. If a NMI hits, then it will
2844 * keep the event running.
2845 */
ab0cce56
JO
2846void __perf_event_task_sched_in(struct task_struct *prev,
2847 struct task_struct *task)
8dc85d54
PZ
2848{
2849 struct perf_event_context *ctx;
2850 int ctxn;
2851
2852 for_each_task_context_nr(ctxn) {
2853 ctx = task->perf_event_ctxp[ctxn];
2854 if (likely(!ctx))
2855 continue;
2856
e5d1367f 2857 perf_event_context_sched_in(ctx, task);
8dc85d54 2858 }
e5d1367f
SE
2859 /*
2860 * if cgroup events exist on this CPU, then we need
2861 * to check if we have to switch in PMU state.
2862 * cgroup event are system-wide mode only
2863 */
4a32fea9 2864 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2865 perf_cgroup_sched_in(prev, task);
d010b332 2866
45ac1403
AH
2867 if (atomic_read(&nr_switch_events))
2868 perf_event_switch(task, prev, true);
2869
ba532500
YZ
2870 if (__this_cpu_read(perf_sched_cb_usages))
2871 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2872}
2873
abd50713
PZ
2874static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2875{
2876 u64 frequency = event->attr.sample_freq;
2877 u64 sec = NSEC_PER_SEC;
2878 u64 divisor, dividend;
2879
2880 int count_fls, nsec_fls, frequency_fls, sec_fls;
2881
2882 count_fls = fls64(count);
2883 nsec_fls = fls64(nsec);
2884 frequency_fls = fls64(frequency);
2885 sec_fls = 30;
2886
2887 /*
2888 * We got @count in @nsec, with a target of sample_freq HZ
2889 * the target period becomes:
2890 *
2891 * @count * 10^9
2892 * period = -------------------
2893 * @nsec * sample_freq
2894 *
2895 */
2896
2897 /*
2898 * Reduce accuracy by one bit such that @a and @b converge
2899 * to a similar magnitude.
2900 */
fe4b04fa 2901#define REDUCE_FLS(a, b) \
abd50713
PZ
2902do { \
2903 if (a##_fls > b##_fls) { \
2904 a >>= 1; \
2905 a##_fls--; \
2906 } else { \
2907 b >>= 1; \
2908 b##_fls--; \
2909 } \
2910} while (0)
2911
2912 /*
2913 * Reduce accuracy until either term fits in a u64, then proceed with
2914 * the other, so that finally we can do a u64/u64 division.
2915 */
2916 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2917 REDUCE_FLS(nsec, frequency);
2918 REDUCE_FLS(sec, count);
2919 }
2920
2921 if (count_fls + sec_fls > 64) {
2922 divisor = nsec * frequency;
2923
2924 while (count_fls + sec_fls > 64) {
2925 REDUCE_FLS(count, sec);
2926 divisor >>= 1;
2927 }
2928
2929 dividend = count * sec;
2930 } else {
2931 dividend = count * sec;
2932
2933 while (nsec_fls + frequency_fls > 64) {
2934 REDUCE_FLS(nsec, frequency);
2935 dividend >>= 1;
2936 }
2937
2938 divisor = nsec * frequency;
2939 }
2940
f6ab91ad
PZ
2941 if (!divisor)
2942 return dividend;
2943
abd50713
PZ
2944 return div64_u64(dividend, divisor);
2945}
2946
e050e3f0
SE
2947static DEFINE_PER_CPU(int, perf_throttled_count);
2948static DEFINE_PER_CPU(u64, perf_throttled_seq);
2949
f39d47ff 2950static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2951{
cdd6c482 2952 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2953 s64 period, sample_period;
bd2b5b12
PZ
2954 s64 delta;
2955
abd50713 2956 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2957
2958 delta = (s64)(period - hwc->sample_period);
2959 delta = (delta + 7) / 8; /* low pass filter */
2960
2961 sample_period = hwc->sample_period + delta;
2962
2963 if (!sample_period)
2964 sample_period = 1;
2965
bd2b5b12 2966 hwc->sample_period = sample_period;
abd50713 2967
e7850595 2968 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2969 if (disable)
2970 event->pmu->stop(event, PERF_EF_UPDATE);
2971
e7850595 2972 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2973
2974 if (disable)
2975 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2976 }
bd2b5b12
PZ
2977}
2978
e050e3f0
SE
2979/*
2980 * combine freq adjustment with unthrottling to avoid two passes over the
2981 * events. At the same time, make sure, having freq events does not change
2982 * the rate of unthrottling as that would introduce bias.
2983 */
2984static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2985 int needs_unthr)
60db5e09 2986{
cdd6c482
IM
2987 struct perf_event *event;
2988 struct hw_perf_event *hwc;
e050e3f0 2989 u64 now, period = TICK_NSEC;
abd50713 2990 s64 delta;
60db5e09 2991
e050e3f0
SE
2992 /*
2993 * only need to iterate over all events iff:
2994 * - context have events in frequency mode (needs freq adjust)
2995 * - there are events to unthrottle on this cpu
2996 */
2997 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2998 return;
2999
e050e3f0 3000 raw_spin_lock(&ctx->lock);
f39d47ff 3001 perf_pmu_disable(ctx->pmu);
e050e3f0 3002
03541f8b 3003 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3004 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3005 continue;
3006
5632ab12 3007 if (!event_filter_match(event))
5d27c23d
PZ
3008 continue;
3009
44377277
AS
3010 perf_pmu_disable(event->pmu);
3011
cdd6c482 3012 hwc = &event->hw;
6a24ed6c 3013
ae23bff1 3014 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3015 hwc->interrupts = 0;
cdd6c482 3016 perf_log_throttle(event, 1);
a4eaf7f1 3017 event->pmu->start(event, 0);
a78ac325
PZ
3018 }
3019
cdd6c482 3020 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3021 goto next;
60db5e09 3022
e050e3f0
SE
3023 /*
3024 * stop the event and update event->count
3025 */
3026 event->pmu->stop(event, PERF_EF_UPDATE);
3027
e7850595 3028 now = local64_read(&event->count);
abd50713
PZ
3029 delta = now - hwc->freq_count_stamp;
3030 hwc->freq_count_stamp = now;
60db5e09 3031
e050e3f0
SE
3032 /*
3033 * restart the event
3034 * reload only if value has changed
f39d47ff
SE
3035 * we have stopped the event so tell that
3036 * to perf_adjust_period() to avoid stopping it
3037 * twice.
e050e3f0 3038 */
abd50713 3039 if (delta > 0)
f39d47ff 3040 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3041
3042 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3043 next:
3044 perf_pmu_enable(event->pmu);
60db5e09 3045 }
e050e3f0 3046
f39d47ff 3047 perf_pmu_enable(ctx->pmu);
e050e3f0 3048 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3049}
3050
235c7fc7 3051/*
cdd6c482 3052 * Round-robin a context's events:
235c7fc7 3053 */
cdd6c482 3054static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3055{
dddd3379
TG
3056 /*
3057 * Rotate the first entry last of non-pinned groups. Rotation might be
3058 * disabled by the inheritance code.
3059 */
3060 if (!ctx->rotate_disable)
3061 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3062}
3063
9e630205 3064static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3065{
8dc85d54 3066 struct perf_event_context *ctx = NULL;
2fde4f94 3067 int rotate = 0;
7fc23a53 3068
b5ab4cd5 3069 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3070 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3071 rotate = 1;
3072 }
235c7fc7 3073
8dc85d54 3074 ctx = cpuctx->task_ctx;
b5ab4cd5 3075 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3076 if (ctx->nr_events != ctx->nr_active)
3077 rotate = 1;
3078 }
9717e6cd 3079
e050e3f0 3080 if (!rotate)
0f5a2601
PZ
3081 goto done;
3082
facc4307 3083 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3084 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3085
e050e3f0
SE
3086 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3087 if (ctx)
3088 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3089
e050e3f0
SE
3090 rotate_ctx(&cpuctx->ctx);
3091 if (ctx)
3092 rotate_ctx(ctx);
235c7fc7 3093
e050e3f0 3094 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3095
0f5a2601
PZ
3096 perf_pmu_enable(cpuctx->ctx.pmu);
3097 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3098done:
9e630205
SE
3099
3100 return rotate;
e9d2b064
PZ
3101}
3102
026249ef
FW
3103#ifdef CONFIG_NO_HZ_FULL
3104bool perf_event_can_stop_tick(void)
3105{
948b26b6 3106 if (atomic_read(&nr_freq_events) ||
d84153d6 3107 __this_cpu_read(perf_throttled_count))
026249ef 3108 return false;
d84153d6
FW
3109 else
3110 return true;
026249ef
FW
3111}
3112#endif
3113
e9d2b064
PZ
3114void perf_event_task_tick(void)
3115{
2fde4f94
MR
3116 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3117 struct perf_event_context *ctx, *tmp;
e050e3f0 3118 int throttled;
b5ab4cd5 3119
e9d2b064
PZ
3120 WARN_ON(!irqs_disabled());
3121
e050e3f0
SE
3122 __this_cpu_inc(perf_throttled_seq);
3123 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3124
2fde4f94 3125 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3126 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3127}
3128
889ff015
FW
3129static int event_enable_on_exec(struct perf_event *event,
3130 struct perf_event_context *ctx)
3131{
3132 if (!event->attr.enable_on_exec)
3133 return 0;
3134
3135 event->attr.enable_on_exec = 0;
3136 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3137 return 0;
3138
1d9b482e 3139 __perf_event_mark_enabled(event);
889ff015
FW
3140
3141 return 1;
3142}
3143
57e7986e 3144/*
cdd6c482 3145 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3146 * This expects task == current.
3147 */
8dc85d54 3148static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3149{
211de6eb 3150 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3151 struct perf_event *event;
57e7986e
PM
3152 unsigned long flags;
3153 int enabled = 0;
889ff015 3154 int ret;
57e7986e
PM
3155
3156 local_irq_save(flags);
cdd6c482 3157 if (!ctx || !ctx->nr_events)
57e7986e
PM
3158 goto out;
3159
e566b76e
SE
3160 /*
3161 * We must ctxsw out cgroup events to avoid conflict
3162 * when invoking perf_task_event_sched_in() later on
3163 * in this function. Otherwise we end up trying to
3164 * ctxswin cgroup events which are already scheduled
3165 * in.
3166 */
a8d757ef 3167 perf_cgroup_sched_out(current, NULL);
57e7986e 3168
e625cce1 3169 raw_spin_lock(&ctx->lock);
04dc2dbb 3170 task_ctx_sched_out(ctx);
57e7986e 3171
b79387ef 3172 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3173 ret = event_enable_on_exec(event, ctx);
3174 if (ret)
3175 enabled = 1;
57e7986e
PM
3176 }
3177
3178 /*
cdd6c482 3179 * Unclone this context if we enabled any event.
57e7986e 3180 */
71a851b4 3181 if (enabled)
211de6eb 3182 clone_ctx = unclone_ctx(ctx);
57e7986e 3183
e625cce1 3184 raw_spin_unlock(&ctx->lock);
57e7986e 3185
e566b76e
SE
3186 /*
3187 * Also calls ctxswin for cgroup events, if any:
3188 */
e5d1367f 3189 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3190out:
57e7986e 3191 local_irq_restore(flags);
211de6eb
PZ
3192
3193 if (clone_ctx)
3194 put_ctx(clone_ctx);
57e7986e
PM
3195}
3196
e041e328
PZ
3197void perf_event_exec(void)
3198{
3199 struct perf_event_context *ctx;
3200 int ctxn;
3201
3202 rcu_read_lock();
3203 for_each_task_context_nr(ctxn) {
3204 ctx = current->perf_event_ctxp[ctxn];
3205 if (!ctx)
3206 continue;
3207
3208 perf_event_enable_on_exec(ctx);
3209 }
3210 rcu_read_unlock();
3211}
3212
0492d4c5
PZ
3213struct perf_read_data {
3214 struct perf_event *event;
3215 bool group;
7d88962e 3216 int ret;
0492d4c5
PZ
3217};
3218
0793a61d 3219/*
cdd6c482 3220 * Cross CPU call to read the hardware event
0793a61d 3221 */
cdd6c482 3222static void __perf_event_read(void *info)
0793a61d 3223{
0492d4c5
PZ
3224 struct perf_read_data *data = info;
3225 struct perf_event *sub, *event = data->event;
cdd6c482 3226 struct perf_event_context *ctx = event->ctx;
108b02cf 3227 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3228 struct pmu *pmu = event->pmu;
621a01ea 3229
e1ac3614
PM
3230 /*
3231 * If this is a task context, we need to check whether it is
3232 * the current task context of this cpu. If not it has been
3233 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3234 * event->count would have been updated to a recent sample
3235 * when the event was scheduled out.
e1ac3614
PM
3236 */
3237 if (ctx->task && cpuctx->task_ctx != ctx)
3238 return;
3239
e625cce1 3240 raw_spin_lock(&ctx->lock);
e5d1367f 3241 if (ctx->is_active) {
542e72fc 3242 update_context_time(ctx);
e5d1367f
SE
3243 update_cgrp_time_from_event(event);
3244 }
0492d4c5 3245
cdd6c482 3246 update_event_times(event);
4a00c16e
SB
3247 if (event->state != PERF_EVENT_STATE_ACTIVE)
3248 goto unlock;
0492d4c5 3249
4a00c16e
SB
3250 if (!data->group) {
3251 pmu->read(event);
3252 data->ret = 0;
0492d4c5 3253 goto unlock;
4a00c16e
SB
3254 }
3255
3256 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3257
3258 pmu->read(event);
0492d4c5
PZ
3259
3260 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3261 update_event_times(sub);
4a00c16e
SB
3262 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3263 /*
3264 * Use sibling's PMU rather than @event's since
3265 * sibling could be on different (eg: software) PMU.
3266 */
0492d4c5 3267 sub->pmu->read(sub);
4a00c16e 3268 }
0492d4c5 3269 }
4a00c16e
SB
3270
3271 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3272
3273unlock:
e625cce1 3274 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3275}
3276
b5e58793
PZ
3277static inline u64 perf_event_count(struct perf_event *event)
3278{
eacd3ecc
MF
3279 if (event->pmu->count)
3280 return event->pmu->count(event);
3281
3282 return __perf_event_count(event);
b5e58793
PZ
3283}
3284
ffe8690c
KX
3285/*
3286 * NMI-safe method to read a local event, that is an event that
3287 * is:
3288 * - either for the current task, or for this CPU
3289 * - does not have inherit set, for inherited task events
3290 * will not be local and we cannot read them atomically
3291 * - must not have a pmu::count method
3292 */
3293u64 perf_event_read_local(struct perf_event *event)
3294{
3295 unsigned long flags;
3296 u64 val;
3297
3298 /*
3299 * Disabling interrupts avoids all counter scheduling (context
3300 * switches, timer based rotation and IPIs).
3301 */
3302 local_irq_save(flags);
3303
3304 /* If this is a per-task event, it must be for current */
3305 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3306 event->hw.target != current);
3307
3308 /* If this is a per-CPU event, it must be for this CPU */
3309 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3310 event->cpu != smp_processor_id());
3311
3312 /*
3313 * It must not be an event with inherit set, we cannot read
3314 * all child counters from atomic context.
3315 */
3316 WARN_ON_ONCE(event->attr.inherit);
3317
3318 /*
3319 * It must not have a pmu::count method, those are not
3320 * NMI safe.
3321 */
3322 WARN_ON_ONCE(event->pmu->count);
3323
3324 /*
3325 * If the event is currently on this CPU, its either a per-task event,
3326 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3327 * oncpu == -1).
3328 */
3329 if (event->oncpu == smp_processor_id())
3330 event->pmu->read(event);
3331
3332 val = local64_read(&event->count);
3333 local_irq_restore(flags);
3334
3335 return val;
3336}
3337
7d88962e 3338static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3339{
7d88962e
SB
3340 int ret = 0;
3341
0793a61d 3342 /*
cdd6c482
IM
3343 * If event is enabled and currently active on a CPU, update the
3344 * value in the event structure:
0793a61d 3345 */
cdd6c482 3346 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3347 struct perf_read_data data = {
3348 .event = event,
3349 .group = group,
7d88962e 3350 .ret = 0,
0492d4c5 3351 };
cdd6c482 3352 smp_call_function_single(event->oncpu,
0492d4c5 3353 __perf_event_read, &data, 1);
7d88962e 3354 ret = data.ret;
cdd6c482 3355 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3356 struct perf_event_context *ctx = event->ctx;
3357 unsigned long flags;
3358
e625cce1 3359 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3360 /*
3361 * may read while context is not active
3362 * (e.g., thread is blocked), in that case
3363 * we cannot update context time
3364 */
e5d1367f 3365 if (ctx->is_active) {
c530ccd9 3366 update_context_time(ctx);
e5d1367f
SE
3367 update_cgrp_time_from_event(event);
3368 }
0492d4c5
PZ
3369 if (group)
3370 update_group_times(event);
3371 else
3372 update_event_times(event);
e625cce1 3373 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3374 }
7d88962e
SB
3375
3376 return ret;
0793a61d
TG
3377}
3378
a63eaf34 3379/*
cdd6c482 3380 * Initialize the perf_event context in a task_struct:
a63eaf34 3381 */
eb184479 3382static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3383{
e625cce1 3384 raw_spin_lock_init(&ctx->lock);
a63eaf34 3385 mutex_init(&ctx->mutex);
2fde4f94 3386 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3387 INIT_LIST_HEAD(&ctx->pinned_groups);
3388 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3389 INIT_LIST_HEAD(&ctx->event_list);
3390 atomic_set(&ctx->refcount, 1);
fadfe7be 3391 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3392}
3393
3394static struct perf_event_context *
3395alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3396{
3397 struct perf_event_context *ctx;
3398
3399 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3400 if (!ctx)
3401 return NULL;
3402
3403 __perf_event_init_context(ctx);
3404 if (task) {
3405 ctx->task = task;
3406 get_task_struct(task);
0793a61d 3407 }
eb184479
PZ
3408 ctx->pmu = pmu;
3409
3410 return ctx;
a63eaf34
PM
3411}
3412
2ebd4ffb
MH
3413static struct task_struct *
3414find_lively_task_by_vpid(pid_t vpid)
3415{
3416 struct task_struct *task;
3417 int err;
0793a61d
TG
3418
3419 rcu_read_lock();
2ebd4ffb 3420 if (!vpid)
0793a61d
TG
3421 task = current;
3422 else
2ebd4ffb 3423 task = find_task_by_vpid(vpid);
0793a61d
TG
3424 if (task)
3425 get_task_struct(task);
3426 rcu_read_unlock();
3427
3428 if (!task)
3429 return ERR_PTR(-ESRCH);
3430
0793a61d 3431 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3432 err = -EACCES;
3433 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3434 goto errout;
3435
2ebd4ffb
MH
3436 return task;
3437errout:
3438 put_task_struct(task);
3439 return ERR_PTR(err);
3440
3441}
3442
fe4b04fa
PZ
3443/*
3444 * Returns a matching context with refcount and pincount.
3445 */
108b02cf 3446static struct perf_event_context *
4af57ef2
YZ
3447find_get_context(struct pmu *pmu, struct task_struct *task,
3448 struct perf_event *event)
0793a61d 3449{
211de6eb 3450 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3451 struct perf_cpu_context *cpuctx;
4af57ef2 3452 void *task_ctx_data = NULL;
25346b93 3453 unsigned long flags;
8dc85d54 3454 int ctxn, err;
4af57ef2 3455 int cpu = event->cpu;
0793a61d 3456
22a4ec72 3457 if (!task) {
cdd6c482 3458 /* Must be root to operate on a CPU event: */
0764771d 3459 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3460 return ERR_PTR(-EACCES);
3461
0793a61d 3462 /*
cdd6c482 3463 * We could be clever and allow to attach a event to an
0793a61d
TG
3464 * offline CPU and activate it when the CPU comes up, but
3465 * that's for later.
3466 */
f6325e30 3467 if (!cpu_online(cpu))
0793a61d
TG
3468 return ERR_PTR(-ENODEV);
3469
108b02cf 3470 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3471 ctx = &cpuctx->ctx;
c93f7669 3472 get_ctx(ctx);
fe4b04fa 3473 ++ctx->pin_count;
0793a61d 3474
0793a61d
TG
3475 return ctx;
3476 }
3477
8dc85d54
PZ
3478 err = -EINVAL;
3479 ctxn = pmu->task_ctx_nr;
3480 if (ctxn < 0)
3481 goto errout;
3482
4af57ef2
YZ
3483 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3484 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3485 if (!task_ctx_data) {
3486 err = -ENOMEM;
3487 goto errout;
3488 }
3489 }
3490
9ed6060d 3491retry:
8dc85d54 3492 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3493 if (ctx) {
211de6eb 3494 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3495 ++ctx->pin_count;
4af57ef2
YZ
3496
3497 if (task_ctx_data && !ctx->task_ctx_data) {
3498 ctx->task_ctx_data = task_ctx_data;
3499 task_ctx_data = NULL;
3500 }
e625cce1 3501 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3502
3503 if (clone_ctx)
3504 put_ctx(clone_ctx);
9137fb28 3505 } else {
eb184479 3506 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3507 err = -ENOMEM;
3508 if (!ctx)
3509 goto errout;
eb184479 3510
4af57ef2
YZ
3511 if (task_ctx_data) {
3512 ctx->task_ctx_data = task_ctx_data;
3513 task_ctx_data = NULL;
3514 }
3515
dbe08d82
ON
3516 err = 0;
3517 mutex_lock(&task->perf_event_mutex);
3518 /*
3519 * If it has already passed perf_event_exit_task().
3520 * we must see PF_EXITING, it takes this mutex too.
3521 */
3522 if (task->flags & PF_EXITING)
3523 err = -ESRCH;
3524 else if (task->perf_event_ctxp[ctxn])
3525 err = -EAGAIN;
fe4b04fa 3526 else {
9137fb28 3527 get_ctx(ctx);
fe4b04fa 3528 ++ctx->pin_count;
dbe08d82 3529 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3530 }
dbe08d82
ON
3531 mutex_unlock(&task->perf_event_mutex);
3532
3533 if (unlikely(err)) {
9137fb28 3534 put_ctx(ctx);
dbe08d82
ON
3535
3536 if (err == -EAGAIN)
3537 goto retry;
3538 goto errout;
a63eaf34
PM
3539 }
3540 }
3541
4af57ef2 3542 kfree(task_ctx_data);
0793a61d 3543 return ctx;
c93f7669 3544
9ed6060d 3545errout:
4af57ef2 3546 kfree(task_ctx_data);
c93f7669 3547 return ERR_PTR(err);
0793a61d
TG
3548}
3549
6fb2915d 3550static void perf_event_free_filter(struct perf_event *event);
2541517c 3551static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3552
cdd6c482 3553static void free_event_rcu(struct rcu_head *head)
592903cd 3554{
cdd6c482 3555 struct perf_event *event;
592903cd 3556
cdd6c482
IM
3557 event = container_of(head, struct perf_event, rcu_head);
3558 if (event->ns)
3559 put_pid_ns(event->ns);
6fb2915d 3560 perf_event_free_filter(event);
cdd6c482 3561 kfree(event);
592903cd
PZ
3562}
3563
b69cf536
PZ
3564static void ring_buffer_attach(struct perf_event *event,
3565 struct ring_buffer *rb);
925d519a 3566
4beb31f3 3567static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3568{
4beb31f3
FW
3569 if (event->parent)
3570 return;
3571
4beb31f3
FW
3572 if (is_cgroup_event(event))
3573 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3574}
925d519a 3575
4beb31f3
FW
3576static void unaccount_event(struct perf_event *event)
3577{
3578 if (event->parent)
3579 return;
3580
3581 if (event->attach_state & PERF_ATTACH_TASK)
3582 static_key_slow_dec_deferred(&perf_sched_events);
3583 if (event->attr.mmap || event->attr.mmap_data)
3584 atomic_dec(&nr_mmap_events);
3585 if (event->attr.comm)
3586 atomic_dec(&nr_comm_events);
3587 if (event->attr.task)
3588 atomic_dec(&nr_task_events);
948b26b6
FW
3589 if (event->attr.freq)
3590 atomic_dec(&nr_freq_events);
45ac1403
AH
3591 if (event->attr.context_switch) {
3592 static_key_slow_dec_deferred(&perf_sched_events);
3593 atomic_dec(&nr_switch_events);
3594 }
4beb31f3
FW
3595 if (is_cgroup_event(event))
3596 static_key_slow_dec_deferred(&perf_sched_events);
3597 if (has_branch_stack(event))
3598 static_key_slow_dec_deferred(&perf_sched_events);
3599
3600 unaccount_event_cpu(event, event->cpu);
3601}
925d519a 3602
bed5b25a
AS
3603/*
3604 * The following implement mutual exclusion of events on "exclusive" pmus
3605 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3606 * at a time, so we disallow creating events that might conflict, namely:
3607 *
3608 * 1) cpu-wide events in the presence of per-task events,
3609 * 2) per-task events in the presence of cpu-wide events,
3610 * 3) two matching events on the same context.
3611 *
3612 * The former two cases are handled in the allocation path (perf_event_alloc(),
3613 * __free_event()), the latter -- before the first perf_install_in_context().
3614 */
3615static int exclusive_event_init(struct perf_event *event)
3616{
3617 struct pmu *pmu = event->pmu;
3618
3619 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3620 return 0;
3621
3622 /*
3623 * Prevent co-existence of per-task and cpu-wide events on the
3624 * same exclusive pmu.
3625 *
3626 * Negative pmu::exclusive_cnt means there are cpu-wide
3627 * events on this "exclusive" pmu, positive means there are
3628 * per-task events.
3629 *
3630 * Since this is called in perf_event_alloc() path, event::ctx
3631 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3632 * to mean "per-task event", because unlike other attach states it
3633 * never gets cleared.
3634 */
3635 if (event->attach_state & PERF_ATTACH_TASK) {
3636 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3637 return -EBUSY;
3638 } else {
3639 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3640 return -EBUSY;
3641 }
3642
3643 return 0;
3644}
3645
3646static void exclusive_event_destroy(struct perf_event *event)
3647{
3648 struct pmu *pmu = event->pmu;
3649
3650 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3651 return;
3652
3653 /* see comment in exclusive_event_init() */
3654 if (event->attach_state & PERF_ATTACH_TASK)
3655 atomic_dec(&pmu->exclusive_cnt);
3656 else
3657 atomic_inc(&pmu->exclusive_cnt);
3658}
3659
3660static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3661{
3662 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3663 (e1->cpu == e2->cpu ||
3664 e1->cpu == -1 ||
3665 e2->cpu == -1))
3666 return true;
3667 return false;
3668}
3669
3670/* Called under the same ctx::mutex as perf_install_in_context() */
3671static bool exclusive_event_installable(struct perf_event *event,
3672 struct perf_event_context *ctx)
3673{
3674 struct perf_event *iter_event;
3675 struct pmu *pmu = event->pmu;
3676
3677 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3678 return true;
3679
3680 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3681 if (exclusive_event_match(iter_event, event))
3682 return false;
3683 }
3684
3685 return true;
3686}
3687
766d6c07
FW
3688static void __free_event(struct perf_event *event)
3689{
cdd6c482 3690 if (!event->parent) {
927c7a9e
FW
3691 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3692 put_callchain_buffers();
f344011c 3693 }
9ee318a7 3694
dead9f29
AS
3695 perf_event_free_bpf_prog(event);
3696
766d6c07
FW
3697 if (event->destroy)
3698 event->destroy(event);
3699
3700 if (event->ctx)
3701 put_ctx(event->ctx);
3702
bed5b25a
AS
3703 if (event->pmu) {
3704 exclusive_event_destroy(event);
c464c76e 3705 module_put(event->pmu->module);
bed5b25a 3706 }
c464c76e 3707
766d6c07
FW
3708 call_rcu(&event->rcu_head, free_event_rcu);
3709}
683ede43
PZ
3710
3711static void _free_event(struct perf_event *event)
f1600952 3712{
e360adbe 3713 irq_work_sync(&event->pending);
925d519a 3714
4beb31f3 3715 unaccount_event(event);
9ee318a7 3716
76369139 3717 if (event->rb) {
9bb5d40c
PZ
3718 /*
3719 * Can happen when we close an event with re-directed output.
3720 *
3721 * Since we have a 0 refcount, perf_mmap_close() will skip
3722 * over us; possibly making our ring_buffer_put() the last.
3723 */
3724 mutex_lock(&event->mmap_mutex);
b69cf536 3725 ring_buffer_attach(event, NULL);
9bb5d40c 3726 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3727 }
3728
e5d1367f
SE
3729 if (is_cgroup_event(event))
3730 perf_detach_cgroup(event);
3731
766d6c07 3732 __free_event(event);
f1600952
PZ
3733}
3734
683ede43
PZ
3735/*
3736 * Used to free events which have a known refcount of 1, such as in error paths
3737 * where the event isn't exposed yet and inherited events.
3738 */
3739static void free_event(struct perf_event *event)
0793a61d 3740{
683ede43
PZ
3741 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3742 "unexpected event refcount: %ld; ptr=%p\n",
3743 atomic_long_read(&event->refcount), event)) {
3744 /* leak to avoid use-after-free */
3745 return;
3746 }
0793a61d 3747
683ede43 3748 _free_event(event);
0793a61d
TG
3749}
3750
a66a3052 3751/*
f8697762 3752 * Remove user event from the owner task.
a66a3052 3753 */
f8697762 3754static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3755{
8882135b 3756 struct task_struct *owner;
fb0459d7 3757
8882135b
PZ
3758 rcu_read_lock();
3759 owner = ACCESS_ONCE(event->owner);
3760 /*
3761 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3762 * !owner it means the list deletion is complete and we can indeed
3763 * free this event, otherwise we need to serialize on
3764 * owner->perf_event_mutex.
3765 */
3766 smp_read_barrier_depends();
3767 if (owner) {
3768 /*
3769 * Since delayed_put_task_struct() also drops the last
3770 * task reference we can safely take a new reference
3771 * while holding the rcu_read_lock().
3772 */
3773 get_task_struct(owner);
3774 }
3775 rcu_read_unlock();
3776
3777 if (owner) {
f63a8daa
PZ
3778 /*
3779 * If we're here through perf_event_exit_task() we're already
3780 * holding ctx->mutex which would be an inversion wrt. the
3781 * normal lock order.
3782 *
3783 * However we can safely take this lock because its the child
3784 * ctx->mutex.
3785 */
3786 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3787
8882135b
PZ
3788 /*
3789 * We have to re-check the event->owner field, if it is cleared
3790 * we raced with perf_event_exit_task(), acquiring the mutex
3791 * ensured they're done, and we can proceed with freeing the
3792 * event.
3793 */
3794 if (event->owner)
3795 list_del_init(&event->owner_entry);
3796 mutex_unlock(&owner->perf_event_mutex);
3797 put_task_struct(owner);
3798 }
f8697762
JO
3799}
3800
f8697762
JO
3801static void put_event(struct perf_event *event)
3802{
a83fe28e 3803 struct perf_event_context *ctx;
f8697762
JO
3804
3805 if (!atomic_long_dec_and_test(&event->refcount))
3806 return;
3807
3808 if (!is_kernel_event(event))
3809 perf_remove_from_owner(event);
8882135b 3810
683ede43
PZ
3811 /*
3812 * There are two ways this annotation is useful:
3813 *
3814 * 1) there is a lock recursion from perf_event_exit_task
3815 * see the comment there.
3816 *
3817 * 2) there is a lock-inversion with mmap_sem through
b15f495b 3818 * perf_read_group(), which takes faults while
683ede43
PZ
3819 * holding ctx->mutex, however this is called after
3820 * the last filedesc died, so there is no possibility
3821 * to trigger the AB-BA case.
3822 */
a83fe28e
PZ
3823 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3824 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3825 perf_remove_from_context(event, true);
d415a7f1 3826 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3827
3828 _free_event(event);
a6fa941d
AV
3829}
3830
683ede43
PZ
3831int perf_event_release_kernel(struct perf_event *event)
3832{
3833 put_event(event);
3834 return 0;
3835}
3836EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3837
8b10c5e2
PZ
3838/*
3839 * Called when the last reference to the file is gone.
3840 */
a6fa941d
AV
3841static int perf_release(struct inode *inode, struct file *file)
3842{
3843 put_event(file->private_data);
3844 return 0;
fb0459d7 3845}
fb0459d7 3846
fadfe7be
JO
3847/*
3848 * Remove all orphanes events from the context.
3849 */
3850static void orphans_remove_work(struct work_struct *work)
3851{
3852 struct perf_event_context *ctx;
3853 struct perf_event *event, *tmp;
3854
3855 ctx = container_of(work, struct perf_event_context,
3856 orphans_remove.work);
3857
3858 mutex_lock(&ctx->mutex);
3859 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3860 struct perf_event *parent_event = event->parent;
3861
3862 if (!is_orphaned_child(event))
3863 continue;
3864
3865 perf_remove_from_context(event, true);
3866
3867 mutex_lock(&parent_event->child_mutex);
3868 list_del_init(&event->child_list);
3869 mutex_unlock(&parent_event->child_mutex);
3870
3871 free_event(event);
3872 put_event(parent_event);
3873 }
3874
3875 raw_spin_lock_irq(&ctx->lock);
3876 ctx->orphans_remove_sched = false;
3877 raw_spin_unlock_irq(&ctx->lock);
3878 mutex_unlock(&ctx->mutex);
3879
3880 put_ctx(ctx);
3881}
3882
59ed446f 3883u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3884{
cdd6c482 3885 struct perf_event *child;
e53c0994
PZ
3886 u64 total = 0;
3887
59ed446f
PZ
3888 *enabled = 0;
3889 *running = 0;
3890
6f10581a 3891 mutex_lock(&event->child_mutex);
01add3ea 3892
7d88962e 3893 (void)perf_event_read(event, false);
01add3ea
SB
3894 total += perf_event_count(event);
3895
59ed446f
PZ
3896 *enabled += event->total_time_enabled +
3897 atomic64_read(&event->child_total_time_enabled);
3898 *running += event->total_time_running +
3899 atomic64_read(&event->child_total_time_running);
3900
3901 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3902 (void)perf_event_read(child, false);
01add3ea 3903 total += perf_event_count(child);
59ed446f
PZ
3904 *enabled += child->total_time_enabled;
3905 *running += child->total_time_running;
3906 }
6f10581a 3907 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3908
3909 return total;
3910}
fb0459d7 3911EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3912
7d88962e 3913static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3914 u64 read_format, u64 *values)
3dab77fb 3915{
fa8c2693
PZ
3916 struct perf_event *sub;
3917 int n = 1; /* skip @nr */
7d88962e 3918 int ret;
f63a8daa 3919
7d88962e
SB
3920 ret = perf_event_read(leader, true);
3921 if (ret)
3922 return ret;
abf4868b 3923
fa8c2693
PZ
3924 /*
3925 * Since we co-schedule groups, {enabled,running} times of siblings
3926 * will be identical to those of the leader, so we only publish one
3927 * set.
3928 */
3929 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3930 values[n++] += leader->total_time_enabled +
3931 atomic64_read(&leader->child_total_time_enabled);
3932 }
3dab77fb 3933
fa8c2693
PZ
3934 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3935 values[n++] += leader->total_time_running +
3936 atomic64_read(&leader->child_total_time_running);
3937 }
3938
3939 /*
3940 * Write {count,id} tuples for every sibling.
3941 */
3942 values[n++] += perf_event_count(leader);
abf4868b
PZ
3943 if (read_format & PERF_FORMAT_ID)
3944 values[n++] = primary_event_id(leader);
3dab77fb 3945
fa8c2693
PZ
3946 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3947 values[n++] += perf_event_count(sub);
3948 if (read_format & PERF_FORMAT_ID)
3949 values[n++] = primary_event_id(sub);
3950 }
7d88962e
SB
3951
3952 return 0;
fa8c2693 3953}
3dab77fb 3954
fa8c2693
PZ
3955static int perf_read_group(struct perf_event *event,
3956 u64 read_format, char __user *buf)
3957{
3958 struct perf_event *leader = event->group_leader, *child;
3959 struct perf_event_context *ctx = leader->ctx;
7d88962e 3960 int ret;
fa8c2693 3961 u64 *values;
3dab77fb 3962
fa8c2693 3963 lockdep_assert_held(&ctx->mutex);
3dab77fb 3964
fa8c2693
PZ
3965 values = kzalloc(event->read_size, GFP_KERNEL);
3966 if (!values)
3967 return -ENOMEM;
3dab77fb 3968
fa8c2693
PZ
3969 values[0] = 1 + leader->nr_siblings;
3970
3971 /*
3972 * By locking the child_mutex of the leader we effectively
3973 * lock the child list of all siblings.. XXX explain how.
3974 */
3975 mutex_lock(&leader->child_mutex);
abf4868b 3976
7d88962e
SB
3977 ret = __perf_read_group_add(leader, read_format, values);
3978 if (ret)
3979 goto unlock;
3980
3981 list_for_each_entry(child, &leader->child_list, child_list) {
3982 ret = __perf_read_group_add(child, read_format, values);
3983 if (ret)
3984 goto unlock;
3985 }
abf4868b 3986
fa8c2693 3987 mutex_unlock(&leader->child_mutex);
abf4868b 3988
7d88962e 3989 ret = event->read_size;
fa8c2693
PZ
3990 if (copy_to_user(buf, values, event->read_size))
3991 ret = -EFAULT;
7d88962e 3992 goto out;
fa8c2693 3993
7d88962e
SB
3994unlock:
3995 mutex_unlock(&leader->child_mutex);
3996out:
fa8c2693 3997 kfree(values);
abf4868b 3998 return ret;
3dab77fb
PZ
3999}
4000
b15f495b 4001static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4002 u64 read_format, char __user *buf)
4003{
59ed446f 4004 u64 enabled, running;
3dab77fb
PZ
4005 u64 values[4];
4006 int n = 0;
4007
59ed446f
PZ
4008 values[n++] = perf_event_read_value(event, &enabled, &running);
4009 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4010 values[n++] = enabled;
4011 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4012 values[n++] = running;
3dab77fb 4013 if (read_format & PERF_FORMAT_ID)
cdd6c482 4014 values[n++] = primary_event_id(event);
3dab77fb
PZ
4015
4016 if (copy_to_user(buf, values, n * sizeof(u64)))
4017 return -EFAULT;
4018
4019 return n * sizeof(u64);
4020}
4021
dc633982
JO
4022static bool is_event_hup(struct perf_event *event)
4023{
4024 bool no_children;
4025
4026 if (event->state != PERF_EVENT_STATE_EXIT)
4027 return false;
4028
4029 mutex_lock(&event->child_mutex);
4030 no_children = list_empty(&event->child_list);
4031 mutex_unlock(&event->child_mutex);
4032 return no_children;
4033}
4034
0793a61d 4035/*
cdd6c482 4036 * Read the performance event - simple non blocking version for now
0793a61d
TG
4037 */
4038static ssize_t
b15f495b 4039__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4040{
cdd6c482 4041 u64 read_format = event->attr.read_format;
3dab77fb 4042 int ret;
0793a61d 4043
3b6f9e5c 4044 /*
cdd6c482 4045 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4046 * error state (i.e. because it was pinned but it couldn't be
4047 * scheduled on to the CPU at some point).
4048 */
cdd6c482 4049 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4050 return 0;
4051
c320c7b7 4052 if (count < event->read_size)
3dab77fb
PZ
4053 return -ENOSPC;
4054
cdd6c482 4055 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4056 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4057 ret = perf_read_group(event, read_format, buf);
3dab77fb 4058 else
b15f495b 4059 ret = perf_read_one(event, read_format, buf);
0793a61d 4060
3dab77fb 4061 return ret;
0793a61d
TG
4062}
4063
0793a61d
TG
4064static ssize_t
4065perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4066{
cdd6c482 4067 struct perf_event *event = file->private_data;
f63a8daa
PZ
4068 struct perf_event_context *ctx;
4069 int ret;
0793a61d 4070
f63a8daa 4071 ctx = perf_event_ctx_lock(event);
b15f495b 4072 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4073 perf_event_ctx_unlock(event, ctx);
4074
4075 return ret;
0793a61d
TG
4076}
4077
4078static unsigned int perf_poll(struct file *file, poll_table *wait)
4079{
cdd6c482 4080 struct perf_event *event = file->private_data;
76369139 4081 struct ring_buffer *rb;
61b67684 4082 unsigned int events = POLLHUP;
c7138f37 4083
e708d7ad 4084 poll_wait(file, &event->waitq, wait);
179033b3 4085
dc633982 4086 if (is_event_hup(event))
179033b3 4087 return events;
c7138f37 4088
10c6db11 4089 /*
9bb5d40c
PZ
4090 * Pin the event->rb by taking event->mmap_mutex; otherwise
4091 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4092 */
4093 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4094 rb = event->rb;
4095 if (rb)
76369139 4096 events = atomic_xchg(&rb->poll, 0);
10c6db11 4097 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4098 return events;
4099}
4100
f63a8daa 4101static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4102{
7d88962e 4103 (void)perf_event_read(event, false);
e7850595 4104 local64_set(&event->count, 0);
cdd6c482 4105 perf_event_update_userpage(event);
3df5edad
PZ
4106}
4107
c93f7669 4108/*
cdd6c482
IM
4109 * Holding the top-level event's child_mutex means that any
4110 * descendant process that has inherited this event will block
4111 * in sync_child_event if it goes to exit, thus satisfying the
4112 * task existence requirements of perf_event_enable/disable.
c93f7669 4113 */
cdd6c482
IM
4114static void perf_event_for_each_child(struct perf_event *event,
4115 void (*func)(struct perf_event *))
3df5edad 4116{
cdd6c482 4117 struct perf_event *child;
3df5edad 4118
cdd6c482 4119 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4120
cdd6c482
IM
4121 mutex_lock(&event->child_mutex);
4122 func(event);
4123 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4124 func(child);
cdd6c482 4125 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4126}
4127
cdd6c482
IM
4128static void perf_event_for_each(struct perf_event *event,
4129 void (*func)(struct perf_event *))
3df5edad 4130{
cdd6c482
IM
4131 struct perf_event_context *ctx = event->ctx;
4132 struct perf_event *sibling;
3df5edad 4133
f63a8daa
PZ
4134 lockdep_assert_held(&ctx->mutex);
4135
cdd6c482 4136 event = event->group_leader;
75f937f2 4137
cdd6c482 4138 perf_event_for_each_child(event, func);
cdd6c482 4139 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4140 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4141}
4142
c7999c6f
PZ
4143struct period_event {
4144 struct perf_event *event;
08247e31 4145 u64 value;
c7999c6f 4146};
08247e31 4147
c7999c6f
PZ
4148static int __perf_event_period(void *info)
4149{
4150 struct period_event *pe = info;
4151 struct perf_event *event = pe->event;
4152 struct perf_event_context *ctx = event->ctx;
4153 u64 value = pe->value;
4154 bool active;
08247e31 4155
c7999c6f 4156 raw_spin_lock(&ctx->lock);
cdd6c482 4157 if (event->attr.freq) {
cdd6c482 4158 event->attr.sample_freq = value;
08247e31 4159 } else {
cdd6c482
IM
4160 event->attr.sample_period = value;
4161 event->hw.sample_period = value;
08247e31 4162 }
bad7192b
PZ
4163
4164 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4165 if (active) {
4166 perf_pmu_disable(ctx->pmu);
4167 event->pmu->stop(event, PERF_EF_UPDATE);
4168 }
4169
4170 local64_set(&event->hw.period_left, 0);
4171
4172 if (active) {
4173 event->pmu->start(event, PERF_EF_RELOAD);
4174 perf_pmu_enable(ctx->pmu);
4175 }
c7999c6f 4176 raw_spin_unlock(&ctx->lock);
bad7192b 4177
c7999c6f
PZ
4178 return 0;
4179}
4180
4181static int perf_event_period(struct perf_event *event, u64 __user *arg)
4182{
4183 struct period_event pe = { .event = event, };
4184 struct perf_event_context *ctx = event->ctx;
4185 struct task_struct *task;
4186 u64 value;
4187
4188 if (!is_sampling_event(event))
4189 return -EINVAL;
4190
4191 if (copy_from_user(&value, arg, sizeof(value)))
4192 return -EFAULT;
4193
4194 if (!value)
4195 return -EINVAL;
4196
4197 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4198 return -EINVAL;
4199
4200 task = ctx->task;
4201 pe.value = value;
4202
4203 if (!task) {
4204 cpu_function_call(event->cpu, __perf_event_period, &pe);
4205 return 0;
4206 }
4207
4208retry:
4209 if (!task_function_call(task, __perf_event_period, &pe))
4210 return 0;
4211
4212 raw_spin_lock_irq(&ctx->lock);
4213 if (ctx->is_active) {
4214 raw_spin_unlock_irq(&ctx->lock);
4215 task = ctx->task;
4216 goto retry;
4217 }
4218
4219 __perf_event_period(&pe);
e625cce1 4220 raw_spin_unlock_irq(&ctx->lock);
08247e31 4221
c7999c6f 4222 return 0;
08247e31
PZ
4223}
4224
ac9721f3
PZ
4225static const struct file_operations perf_fops;
4226
2903ff01 4227static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4228{
2903ff01
AV
4229 struct fd f = fdget(fd);
4230 if (!f.file)
4231 return -EBADF;
ac9721f3 4232
2903ff01
AV
4233 if (f.file->f_op != &perf_fops) {
4234 fdput(f);
4235 return -EBADF;
ac9721f3 4236 }
2903ff01
AV
4237 *p = f;
4238 return 0;
ac9721f3
PZ
4239}
4240
4241static int perf_event_set_output(struct perf_event *event,
4242 struct perf_event *output_event);
6fb2915d 4243static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4244static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4245
f63a8daa 4246static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4247{
cdd6c482 4248 void (*func)(struct perf_event *);
3df5edad 4249 u32 flags = arg;
d859e29f
PM
4250
4251 switch (cmd) {
cdd6c482 4252 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4253 func = _perf_event_enable;
d859e29f 4254 break;
cdd6c482 4255 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4256 func = _perf_event_disable;
79f14641 4257 break;
cdd6c482 4258 case PERF_EVENT_IOC_RESET:
f63a8daa 4259 func = _perf_event_reset;
6de6a7b9 4260 break;
3df5edad 4261
cdd6c482 4262 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4263 return _perf_event_refresh(event, arg);
08247e31 4264
cdd6c482
IM
4265 case PERF_EVENT_IOC_PERIOD:
4266 return perf_event_period(event, (u64 __user *)arg);
08247e31 4267
cf4957f1
JO
4268 case PERF_EVENT_IOC_ID:
4269 {
4270 u64 id = primary_event_id(event);
4271
4272 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4273 return -EFAULT;
4274 return 0;
4275 }
4276
cdd6c482 4277 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4278 {
ac9721f3 4279 int ret;
ac9721f3 4280 if (arg != -1) {
2903ff01
AV
4281 struct perf_event *output_event;
4282 struct fd output;
4283 ret = perf_fget_light(arg, &output);
4284 if (ret)
4285 return ret;
4286 output_event = output.file->private_data;
4287 ret = perf_event_set_output(event, output_event);
4288 fdput(output);
4289 } else {
4290 ret = perf_event_set_output(event, NULL);
ac9721f3 4291 }
ac9721f3
PZ
4292 return ret;
4293 }
a4be7c27 4294
6fb2915d
LZ
4295 case PERF_EVENT_IOC_SET_FILTER:
4296 return perf_event_set_filter(event, (void __user *)arg);
4297
2541517c
AS
4298 case PERF_EVENT_IOC_SET_BPF:
4299 return perf_event_set_bpf_prog(event, arg);
4300
d859e29f 4301 default:
3df5edad 4302 return -ENOTTY;
d859e29f 4303 }
3df5edad
PZ
4304
4305 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4306 perf_event_for_each(event, func);
3df5edad 4307 else
cdd6c482 4308 perf_event_for_each_child(event, func);
3df5edad
PZ
4309
4310 return 0;
d859e29f
PM
4311}
4312
f63a8daa
PZ
4313static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4314{
4315 struct perf_event *event = file->private_data;
4316 struct perf_event_context *ctx;
4317 long ret;
4318
4319 ctx = perf_event_ctx_lock(event);
4320 ret = _perf_ioctl(event, cmd, arg);
4321 perf_event_ctx_unlock(event, ctx);
4322
4323 return ret;
4324}
4325
b3f20785
PM
4326#ifdef CONFIG_COMPAT
4327static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4328 unsigned long arg)
4329{
4330 switch (_IOC_NR(cmd)) {
4331 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4332 case _IOC_NR(PERF_EVENT_IOC_ID):
4333 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4334 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4335 cmd &= ~IOCSIZE_MASK;
4336 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4337 }
4338 break;
4339 }
4340 return perf_ioctl(file, cmd, arg);
4341}
4342#else
4343# define perf_compat_ioctl NULL
4344#endif
4345
cdd6c482 4346int perf_event_task_enable(void)
771d7cde 4347{
f63a8daa 4348 struct perf_event_context *ctx;
cdd6c482 4349 struct perf_event *event;
771d7cde 4350
cdd6c482 4351 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4352 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4353 ctx = perf_event_ctx_lock(event);
4354 perf_event_for_each_child(event, _perf_event_enable);
4355 perf_event_ctx_unlock(event, ctx);
4356 }
cdd6c482 4357 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4358
4359 return 0;
4360}
4361
cdd6c482 4362int perf_event_task_disable(void)
771d7cde 4363{
f63a8daa 4364 struct perf_event_context *ctx;
cdd6c482 4365 struct perf_event *event;
771d7cde 4366
cdd6c482 4367 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4368 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4369 ctx = perf_event_ctx_lock(event);
4370 perf_event_for_each_child(event, _perf_event_disable);
4371 perf_event_ctx_unlock(event, ctx);
4372 }
cdd6c482 4373 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4374
4375 return 0;
4376}
4377
cdd6c482 4378static int perf_event_index(struct perf_event *event)
194002b2 4379{
a4eaf7f1
PZ
4380 if (event->hw.state & PERF_HES_STOPPED)
4381 return 0;
4382
cdd6c482 4383 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4384 return 0;
4385
35edc2a5 4386 return event->pmu->event_idx(event);
194002b2
PZ
4387}
4388
c4794295 4389static void calc_timer_values(struct perf_event *event,
e3f3541c 4390 u64 *now,
7f310a5d
EM
4391 u64 *enabled,
4392 u64 *running)
c4794295 4393{
e3f3541c 4394 u64 ctx_time;
c4794295 4395
e3f3541c
PZ
4396 *now = perf_clock();
4397 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4398 *enabled = ctx_time - event->tstamp_enabled;
4399 *running = ctx_time - event->tstamp_running;
4400}
4401
fa731587
PZ
4402static void perf_event_init_userpage(struct perf_event *event)
4403{
4404 struct perf_event_mmap_page *userpg;
4405 struct ring_buffer *rb;
4406
4407 rcu_read_lock();
4408 rb = rcu_dereference(event->rb);
4409 if (!rb)
4410 goto unlock;
4411
4412 userpg = rb->user_page;
4413
4414 /* Allow new userspace to detect that bit 0 is deprecated */
4415 userpg->cap_bit0_is_deprecated = 1;
4416 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4417 userpg->data_offset = PAGE_SIZE;
4418 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4419
4420unlock:
4421 rcu_read_unlock();
4422}
4423
c1317ec2
AL
4424void __weak arch_perf_update_userpage(
4425 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4426{
4427}
4428
38ff667b
PZ
4429/*
4430 * Callers need to ensure there can be no nesting of this function, otherwise
4431 * the seqlock logic goes bad. We can not serialize this because the arch
4432 * code calls this from NMI context.
4433 */
cdd6c482 4434void perf_event_update_userpage(struct perf_event *event)
37d81828 4435{
cdd6c482 4436 struct perf_event_mmap_page *userpg;
76369139 4437 struct ring_buffer *rb;
e3f3541c 4438 u64 enabled, running, now;
38ff667b
PZ
4439
4440 rcu_read_lock();
5ec4c599
PZ
4441 rb = rcu_dereference(event->rb);
4442 if (!rb)
4443 goto unlock;
4444
0d641208
EM
4445 /*
4446 * compute total_time_enabled, total_time_running
4447 * based on snapshot values taken when the event
4448 * was last scheduled in.
4449 *
4450 * we cannot simply called update_context_time()
4451 * because of locking issue as we can be called in
4452 * NMI context
4453 */
e3f3541c 4454 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4455
76369139 4456 userpg = rb->user_page;
7b732a75
PZ
4457 /*
4458 * Disable preemption so as to not let the corresponding user-space
4459 * spin too long if we get preempted.
4460 */
4461 preempt_disable();
37d81828 4462 ++userpg->lock;
92f22a38 4463 barrier();
cdd6c482 4464 userpg->index = perf_event_index(event);
b5e58793 4465 userpg->offset = perf_event_count(event);
365a4038 4466 if (userpg->index)
e7850595 4467 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4468
0d641208 4469 userpg->time_enabled = enabled +
cdd6c482 4470 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4471
0d641208 4472 userpg->time_running = running +
cdd6c482 4473 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4474
c1317ec2 4475 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4476
92f22a38 4477 barrier();
37d81828 4478 ++userpg->lock;
7b732a75 4479 preempt_enable();
38ff667b 4480unlock:
7b732a75 4481 rcu_read_unlock();
37d81828
PM
4482}
4483
906010b2
PZ
4484static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4485{
4486 struct perf_event *event = vma->vm_file->private_data;
76369139 4487 struct ring_buffer *rb;
906010b2
PZ
4488 int ret = VM_FAULT_SIGBUS;
4489
4490 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4491 if (vmf->pgoff == 0)
4492 ret = 0;
4493 return ret;
4494 }
4495
4496 rcu_read_lock();
76369139
FW
4497 rb = rcu_dereference(event->rb);
4498 if (!rb)
906010b2
PZ
4499 goto unlock;
4500
4501 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4502 goto unlock;
4503
76369139 4504 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4505 if (!vmf->page)
4506 goto unlock;
4507
4508 get_page(vmf->page);
4509 vmf->page->mapping = vma->vm_file->f_mapping;
4510 vmf->page->index = vmf->pgoff;
4511
4512 ret = 0;
4513unlock:
4514 rcu_read_unlock();
4515
4516 return ret;
4517}
4518
10c6db11
PZ
4519static void ring_buffer_attach(struct perf_event *event,
4520 struct ring_buffer *rb)
4521{
b69cf536 4522 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4523 unsigned long flags;
4524
b69cf536
PZ
4525 if (event->rb) {
4526 /*
4527 * Should be impossible, we set this when removing
4528 * event->rb_entry and wait/clear when adding event->rb_entry.
4529 */
4530 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4531
b69cf536 4532 old_rb = event->rb;
b69cf536
PZ
4533 spin_lock_irqsave(&old_rb->event_lock, flags);
4534 list_del_rcu(&event->rb_entry);
4535 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4536
2f993cf0
ON
4537 event->rcu_batches = get_state_synchronize_rcu();
4538 event->rcu_pending = 1;
b69cf536 4539 }
10c6db11 4540
b69cf536 4541 if (rb) {
2f993cf0
ON
4542 if (event->rcu_pending) {
4543 cond_synchronize_rcu(event->rcu_batches);
4544 event->rcu_pending = 0;
4545 }
4546
b69cf536
PZ
4547 spin_lock_irqsave(&rb->event_lock, flags);
4548 list_add_rcu(&event->rb_entry, &rb->event_list);
4549 spin_unlock_irqrestore(&rb->event_lock, flags);
4550 }
4551
4552 rcu_assign_pointer(event->rb, rb);
4553
4554 if (old_rb) {
4555 ring_buffer_put(old_rb);
4556 /*
4557 * Since we detached before setting the new rb, so that we
4558 * could attach the new rb, we could have missed a wakeup.
4559 * Provide it now.
4560 */
4561 wake_up_all(&event->waitq);
4562 }
10c6db11
PZ
4563}
4564
4565static void ring_buffer_wakeup(struct perf_event *event)
4566{
4567 struct ring_buffer *rb;
4568
4569 rcu_read_lock();
4570 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4571 if (rb) {
4572 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4573 wake_up_all(&event->waitq);
4574 }
10c6db11
PZ
4575 rcu_read_unlock();
4576}
4577
fdc26706 4578struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4579{
76369139 4580 struct ring_buffer *rb;
7b732a75 4581
ac9721f3 4582 rcu_read_lock();
76369139
FW
4583 rb = rcu_dereference(event->rb);
4584 if (rb) {
4585 if (!atomic_inc_not_zero(&rb->refcount))
4586 rb = NULL;
ac9721f3
PZ
4587 }
4588 rcu_read_unlock();
4589
76369139 4590 return rb;
ac9721f3
PZ
4591}
4592
fdc26706 4593void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4594{
76369139 4595 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4596 return;
7b732a75 4597
9bb5d40c 4598 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4599
76369139 4600 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4601}
4602
4603static void perf_mmap_open(struct vm_area_struct *vma)
4604{
cdd6c482 4605 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4606
cdd6c482 4607 atomic_inc(&event->mmap_count);
9bb5d40c 4608 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4609
45bfb2e5
PZ
4610 if (vma->vm_pgoff)
4611 atomic_inc(&event->rb->aux_mmap_count);
4612
1e0fb9ec
AL
4613 if (event->pmu->event_mapped)
4614 event->pmu->event_mapped(event);
7b732a75
PZ
4615}
4616
9bb5d40c
PZ
4617/*
4618 * A buffer can be mmap()ed multiple times; either directly through the same
4619 * event, or through other events by use of perf_event_set_output().
4620 *
4621 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4622 * the buffer here, where we still have a VM context. This means we need
4623 * to detach all events redirecting to us.
4624 */
7b732a75
PZ
4625static void perf_mmap_close(struct vm_area_struct *vma)
4626{
cdd6c482 4627 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4628
b69cf536 4629 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4630 struct user_struct *mmap_user = rb->mmap_user;
4631 int mmap_locked = rb->mmap_locked;
4632 unsigned long size = perf_data_size(rb);
789f90fc 4633
1e0fb9ec
AL
4634 if (event->pmu->event_unmapped)
4635 event->pmu->event_unmapped(event);
4636
45bfb2e5
PZ
4637 /*
4638 * rb->aux_mmap_count will always drop before rb->mmap_count and
4639 * event->mmap_count, so it is ok to use event->mmap_mutex to
4640 * serialize with perf_mmap here.
4641 */
4642 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4643 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4644 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4645 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4646
4647 rb_free_aux(rb);
4648 mutex_unlock(&event->mmap_mutex);
4649 }
4650
9bb5d40c
PZ
4651 atomic_dec(&rb->mmap_count);
4652
4653 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4654 goto out_put;
9bb5d40c 4655
b69cf536 4656 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4657 mutex_unlock(&event->mmap_mutex);
4658
4659 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4660 if (atomic_read(&rb->mmap_count))
4661 goto out_put;
ac9721f3 4662
9bb5d40c
PZ
4663 /*
4664 * No other mmap()s, detach from all other events that might redirect
4665 * into the now unreachable buffer. Somewhat complicated by the
4666 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4667 */
4668again:
4669 rcu_read_lock();
4670 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4671 if (!atomic_long_inc_not_zero(&event->refcount)) {
4672 /*
4673 * This event is en-route to free_event() which will
4674 * detach it and remove it from the list.
4675 */
4676 continue;
4677 }
4678 rcu_read_unlock();
789f90fc 4679
9bb5d40c
PZ
4680 mutex_lock(&event->mmap_mutex);
4681 /*
4682 * Check we didn't race with perf_event_set_output() which can
4683 * swizzle the rb from under us while we were waiting to
4684 * acquire mmap_mutex.
4685 *
4686 * If we find a different rb; ignore this event, a next
4687 * iteration will no longer find it on the list. We have to
4688 * still restart the iteration to make sure we're not now
4689 * iterating the wrong list.
4690 */
b69cf536
PZ
4691 if (event->rb == rb)
4692 ring_buffer_attach(event, NULL);
4693
cdd6c482 4694 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4695 put_event(event);
ac9721f3 4696
9bb5d40c
PZ
4697 /*
4698 * Restart the iteration; either we're on the wrong list or
4699 * destroyed its integrity by doing a deletion.
4700 */
4701 goto again;
7b732a75 4702 }
9bb5d40c
PZ
4703 rcu_read_unlock();
4704
4705 /*
4706 * It could be there's still a few 0-ref events on the list; they'll
4707 * get cleaned up by free_event() -- they'll also still have their
4708 * ref on the rb and will free it whenever they are done with it.
4709 *
4710 * Aside from that, this buffer is 'fully' detached and unmapped,
4711 * undo the VM accounting.
4712 */
4713
4714 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4715 vma->vm_mm->pinned_vm -= mmap_locked;
4716 free_uid(mmap_user);
4717
b69cf536 4718out_put:
9bb5d40c 4719 ring_buffer_put(rb); /* could be last */
37d81828
PM
4720}
4721
f0f37e2f 4722static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4723 .open = perf_mmap_open,
45bfb2e5 4724 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4725 .fault = perf_mmap_fault,
4726 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4727};
4728
4729static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4730{
cdd6c482 4731 struct perf_event *event = file->private_data;
22a4f650 4732 unsigned long user_locked, user_lock_limit;
789f90fc 4733 struct user_struct *user = current_user();
22a4f650 4734 unsigned long locked, lock_limit;
45bfb2e5 4735 struct ring_buffer *rb = NULL;
7b732a75
PZ
4736 unsigned long vma_size;
4737 unsigned long nr_pages;
45bfb2e5 4738 long user_extra = 0, extra = 0;
d57e34fd 4739 int ret = 0, flags = 0;
37d81828 4740
c7920614
PZ
4741 /*
4742 * Don't allow mmap() of inherited per-task counters. This would
4743 * create a performance issue due to all children writing to the
76369139 4744 * same rb.
c7920614
PZ
4745 */
4746 if (event->cpu == -1 && event->attr.inherit)
4747 return -EINVAL;
4748
43a21ea8 4749 if (!(vma->vm_flags & VM_SHARED))
37d81828 4750 return -EINVAL;
7b732a75
PZ
4751
4752 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4753
4754 if (vma->vm_pgoff == 0) {
4755 nr_pages = (vma_size / PAGE_SIZE) - 1;
4756 } else {
4757 /*
4758 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4759 * mapped, all subsequent mappings should have the same size
4760 * and offset. Must be above the normal perf buffer.
4761 */
4762 u64 aux_offset, aux_size;
4763
4764 if (!event->rb)
4765 return -EINVAL;
4766
4767 nr_pages = vma_size / PAGE_SIZE;
4768
4769 mutex_lock(&event->mmap_mutex);
4770 ret = -EINVAL;
4771
4772 rb = event->rb;
4773 if (!rb)
4774 goto aux_unlock;
4775
4776 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4777 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4778
4779 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4780 goto aux_unlock;
4781
4782 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4783 goto aux_unlock;
4784
4785 /* already mapped with a different offset */
4786 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4787 goto aux_unlock;
4788
4789 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4790 goto aux_unlock;
4791
4792 /* already mapped with a different size */
4793 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4794 goto aux_unlock;
4795
4796 if (!is_power_of_2(nr_pages))
4797 goto aux_unlock;
4798
4799 if (!atomic_inc_not_zero(&rb->mmap_count))
4800 goto aux_unlock;
4801
4802 if (rb_has_aux(rb)) {
4803 atomic_inc(&rb->aux_mmap_count);
4804 ret = 0;
4805 goto unlock;
4806 }
4807
4808 atomic_set(&rb->aux_mmap_count, 1);
4809 user_extra = nr_pages;
4810
4811 goto accounting;
4812 }
7b732a75 4813
7730d865 4814 /*
76369139 4815 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4816 * can do bitmasks instead of modulo.
4817 */
2ed11312 4818 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4819 return -EINVAL;
4820
7b732a75 4821 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4822 return -EINVAL;
4823
cdd6c482 4824 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4825again:
cdd6c482 4826 mutex_lock(&event->mmap_mutex);
76369139 4827 if (event->rb) {
9bb5d40c 4828 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4829 ret = -EINVAL;
9bb5d40c
PZ
4830 goto unlock;
4831 }
4832
4833 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4834 /*
4835 * Raced against perf_mmap_close() through
4836 * perf_event_set_output(). Try again, hope for better
4837 * luck.
4838 */
4839 mutex_unlock(&event->mmap_mutex);
4840 goto again;
4841 }
4842
ebb3c4c4
PZ
4843 goto unlock;
4844 }
4845
789f90fc 4846 user_extra = nr_pages + 1;
45bfb2e5
PZ
4847
4848accounting:
cdd6c482 4849 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4850
4851 /*
4852 * Increase the limit linearly with more CPUs:
4853 */
4854 user_lock_limit *= num_online_cpus();
4855
789f90fc 4856 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4857
789f90fc
PZ
4858 if (user_locked > user_lock_limit)
4859 extra = user_locked - user_lock_limit;
7b732a75 4860
78d7d407 4861 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4862 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4863 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4864
459ec28a
IM
4865 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4866 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4867 ret = -EPERM;
4868 goto unlock;
4869 }
7b732a75 4870
45bfb2e5 4871 WARN_ON(!rb && event->rb);
906010b2 4872
d57e34fd 4873 if (vma->vm_flags & VM_WRITE)
76369139 4874 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4875
76369139 4876 if (!rb) {
45bfb2e5
PZ
4877 rb = rb_alloc(nr_pages,
4878 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4879 event->cpu, flags);
26cb63ad 4880
45bfb2e5
PZ
4881 if (!rb) {
4882 ret = -ENOMEM;
4883 goto unlock;
4884 }
43a21ea8 4885
45bfb2e5
PZ
4886 atomic_set(&rb->mmap_count, 1);
4887 rb->mmap_user = get_current_user();
4888 rb->mmap_locked = extra;
26cb63ad 4889
45bfb2e5 4890 ring_buffer_attach(event, rb);
ac9721f3 4891
45bfb2e5
PZ
4892 perf_event_init_userpage(event);
4893 perf_event_update_userpage(event);
4894 } else {
1a594131
AS
4895 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4896 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4897 if (!ret)
4898 rb->aux_mmap_locked = extra;
4899 }
9a0f05cb 4900
ebb3c4c4 4901unlock:
45bfb2e5
PZ
4902 if (!ret) {
4903 atomic_long_add(user_extra, &user->locked_vm);
4904 vma->vm_mm->pinned_vm += extra;
4905
ac9721f3 4906 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4907 } else if (rb) {
4908 atomic_dec(&rb->mmap_count);
4909 }
4910aux_unlock:
cdd6c482 4911 mutex_unlock(&event->mmap_mutex);
37d81828 4912
9bb5d40c
PZ
4913 /*
4914 * Since pinned accounting is per vm we cannot allow fork() to copy our
4915 * vma.
4916 */
26cb63ad 4917 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4918 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4919
1e0fb9ec
AL
4920 if (event->pmu->event_mapped)
4921 event->pmu->event_mapped(event);
4922
7b732a75 4923 return ret;
37d81828
PM
4924}
4925
3c446b3d
PZ
4926static int perf_fasync(int fd, struct file *filp, int on)
4927{
496ad9aa 4928 struct inode *inode = file_inode(filp);
cdd6c482 4929 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4930 int retval;
4931
4932 mutex_lock(&inode->i_mutex);
cdd6c482 4933 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4934 mutex_unlock(&inode->i_mutex);
4935
4936 if (retval < 0)
4937 return retval;
4938
4939 return 0;
4940}
4941
0793a61d 4942static const struct file_operations perf_fops = {
3326c1ce 4943 .llseek = no_llseek,
0793a61d
TG
4944 .release = perf_release,
4945 .read = perf_read,
4946 .poll = perf_poll,
d859e29f 4947 .unlocked_ioctl = perf_ioctl,
b3f20785 4948 .compat_ioctl = perf_compat_ioctl,
37d81828 4949 .mmap = perf_mmap,
3c446b3d 4950 .fasync = perf_fasync,
0793a61d
TG
4951};
4952
925d519a 4953/*
cdd6c482 4954 * Perf event wakeup
925d519a
PZ
4955 *
4956 * If there's data, ensure we set the poll() state and publish everything
4957 * to user-space before waking everybody up.
4958 */
4959
fed66e2c
PZ
4960static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4961{
4962 /* only the parent has fasync state */
4963 if (event->parent)
4964 event = event->parent;
4965 return &event->fasync;
4966}
4967
cdd6c482 4968void perf_event_wakeup(struct perf_event *event)
925d519a 4969{
10c6db11 4970 ring_buffer_wakeup(event);
4c9e2542 4971
cdd6c482 4972 if (event->pending_kill) {
fed66e2c 4973 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4974 event->pending_kill = 0;
4c9e2542 4975 }
925d519a
PZ
4976}
4977
e360adbe 4978static void perf_pending_event(struct irq_work *entry)
79f14641 4979{
cdd6c482
IM
4980 struct perf_event *event = container_of(entry,
4981 struct perf_event, pending);
d525211f
PZ
4982 int rctx;
4983
4984 rctx = perf_swevent_get_recursion_context();
4985 /*
4986 * If we 'fail' here, that's OK, it means recursion is already disabled
4987 * and we won't recurse 'further'.
4988 */
79f14641 4989
cdd6c482
IM
4990 if (event->pending_disable) {
4991 event->pending_disable = 0;
4992 __perf_event_disable(event);
79f14641
PZ
4993 }
4994
cdd6c482
IM
4995 if (event->pending_wakeup) {
4996 event->pending_wakeup = 0;
4997 perf_event_wakeup(event);
79f14641 4998 }
d525211f
PZ
4999
5000 if (rctx >= 0)
5001 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5002}
5003
39447b38
ZY
5004/*
5005 * We assume there is only KVM supporting the callbacks.
5006 * Later on, we might change it to a list if there is
5007 * another virtualization implementation supporting the callbacks.
5008 */
5009struct perf_guest_info_callbacks *perf_guest_cbs;
5010
5011int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5012{
5013 perf_guest_cbs = cbs;
5014 return 0;
5015}
5016EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5017
5018int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5019{
5020 perf_guest_cbs = NULL;
5021 return 0;
5022}
5023EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5024
4018994f
JO
5025static void
5026perf_output_sample_regs(struct perf_output_handle *handle,
5027 struct pt_regs *regs, u64 mask)
5028{
5029 int bit;
5030
5031 for_each_set_bit(bit, (const unsigned long *) &mask,
5032 sizeof(mask) * BITS_PER_BYTE) {
5033 u64 val;
5034
5035 val = perf_reg_value(regs, bit);
5036 perf_output_put(handle, val);
5037 }
5038}
5039
60e2364e 5040static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5041 struct pt_regs *regs,
5042 struct pt_regs *regs_user_copy)
4018994f 5043{
88a7c26a
AL
5044 if (user_mode(regs)) {
5045 regs_user->abi = perf_reg_abi(current);
2565711f 5046 regs_user->regs = regs;
88a7c26a
AL
5047 } else if (current->mm) {
5048 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5049 } else {
5050 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5051 regs_user->regs = NULL;
4018994f
JO
5052 }
5053}
5054
60e2364e
SE
5055static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5056 struct pt_regs *regs)
5057{
5058 regs_intr->regs = regs;
5059 regs_intr->abi = perf_reg_abi(current);
5060}
5061
5062
c5ebcedb
JO
5063/*
5064 * Get remaining task size from user stack pointer.
5065 *
5066 * It'd be better to take stack vma map and limit this more
5067 * precisly, but there's no way to get it safely under interrupt,
5068 * so using TASK_SIZE as limit.
5069 */
5070static u64 perf_ustack_task_size(struct pt_regs *regs)
5071{
5072 unsigned long addr = perf_user_stack_pointer(regs);
5073
5074 if (!addr || addr >= TASK_SIZE)
5075 return 0;
5076
5077 return TASK_SIZE - addr;
5078}
5079
5080static u16
5081perf_sample_ustack_size(u16 stack_size, u16 header_size,
5082 struct pt_regs *regs)
5083{
5084 u64 task_size;
5085
5086 /* No regs, no stack pointer, no dump. */
5087 if (!regs)
5088 return 0;
5089
5090 /*
5091 * Check if we fit in with the requested stack size into the:
5092 * - TASK_SIZE
5093 * If we don't, we limit the size to the TASK_SIZE.
5094 *
5095 * - remaining sample size
5096 * If we don't, we customize the stack size to
5097 * fit in to the remaining sample size.
5098 */
5099
5100 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5101 stack_size = min(stack_size, (u16) task_size);
5102
5103 /* Current header size plus static size and dynamic size. */
5104 header_size += 2 * sizeof(u64);
5105
5106 /* Do we fit in with the current stack dump size? */
5107 if ((u16) (header_size + stack_size) < header_size) {
5108 /*
5109 * If we overflow the maximum size for the sample,
5110 * we customize the stack dump size to fit in.
5111 */
5112 stack_size = USHRT_MAX - header_size - sizeof(u64);
5113 stack_size = round_up(stack_size, sizeof(u64));
5114 }
5115
5116 return stack_size;
5117}
5118
5119static void
5120perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5121 struct pt_regs *regs)
5122{
5123 /* Case of a kernel thread, nothing to dump */
5124 if (!regs) {
5125 u64 size = 0;
5126 perf_output_put(handle, size);
5127 } else {
5128 unsigned long sp;
5129 unsigned int rem;
5130 u64 dyn_size;
5131
5132 /*
5133 * We dump:
5134 * static size
5135 * - the size requested by user or the best one we can fit
5136 * in to the sample max size
5137 * data
5138 * - user stack dump data
5139 * dynamic size
5140 * - the actual dumped size
5141 */
5142
5143 /* Static size. */
5144 perf_output_put(handle, dump_size);
5145
5146 /* Data. */
5147 sp = perf_user_stack_pointer(regs);
5148 rem = __output_copy_user(handle, (void *) sp, dump_size);
5149 dyn_size = dump_size - rem;
5150
5151 perf_output_skip(handle, rem);
5152
5153 /* Dynamic size. */
5154 perf_output_put(handle, dyn_size);
5155 }
5156}
5157
c980d109
ACM
5158static void __perf_event_header__init_id(struct perf_event_header *header,
5159 struct perf_sample_data *data,
5160 struct perf_event *event)
6844c09d
ACM
5161{
5162 u64 sample_type = event->attr.sample_type;
5163
5164 data->type = sample_type;
5165 header->size += event->id_header_size;
5166
5167 if (sample_type & PERF_SAMPLE_TID) {
5168 /* namespace issues */
5169 data->tid_entry.pid = perf_event_pid(event, current);
5170 data->tid_entry.tid = perf_event_tid(event, current);
5171 }
5172
5173 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5174 data->time = perf_event_clock(event);
6844c09d 5175
ff3d527c 5176 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5177 data->id = primary_event_id(event);
5178
5179 if (sample_type & PERF_SAMPLE_STREAM_ID)
5180 data->stream_id = event->id;
5181
5182 if (sample_type & PERF_SAMPLE_CPU) {
5183 data->cpu_entry.cpu = raw_smp_processor_id();
5184 data->cpu_entry.reserved = 0;
5185 }
5186}
5187
76369139
FW
5188void perf_event_header__init_id(struct perf_event_header *header,
5189 struct perf_sample_data *data,
5190 struct perf_event *event)
c980d109
ACM
5191{
5192 if (event->attr.sample_id_all)
5193 __perf_event_header__init_id(header, data, event);
5194}
5195
5196static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5197 struct perf_sample_data *data)
5198{
5199 u64 sample_type = data->type;
5200
5201 if (sample_type & PERF_SAMPLE_TID)
5202 perf_output_put(handle, data->tid_entry);
5203
5204 if (sample_type & PERF_SAMPLE_TIME)
5205 perf_output_put(handle, data->time);
5206
5207 if (sample_type & PERF_SAMPLE_ID)
5208 perf_output_put(handle, data->id);
5209
5210 if (sample_type & PERF_SAMPLE_STREAM_ID)
5211 perf_output_put(handle, data->stream_id);
5212
5213 if (sample_type & PERF_SAMPLE_CPU)
5214 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5215
5216 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5217 perf_output_put(handle, data->id);
c980d109
ACM
5218}
5219
76369139
FW
5220void perf_event__output_id_sample(struct perf_event *event,
5221 struct perf_output_handle *handle,
5222 struct perf_sample_data *sample)
c980d109
ACM
5223{
5224 if (event->attr.sample_id_all)
5225 __perf_event__output_id_sample(handle, sample);
5226}
5227
3dab77fb 5228static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5229 struct perf_event *event,
5230 u64 enabled, u64 running)
3dab77fb 5231{
cdd6c482 5232 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5233 u64 values[4];
5234 int n = 0;
5235
b5e58793 5236 values[n++] = perf_event_count(event);
3dab77fb 5237 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5238 values[n++] = enabled +
cdd6c482 5239 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5240 }
5241 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5242 values[n++] = running +
cdd6c482 5243 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5244 }
5245 if (read_format & PERF_FORMAT_ID)
cdd6c482 5246 values[n++] = primary_event_id(event);
3dab77fb 5247
76369139 5248 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5249}
5250
5251/*
cdd6c482 5252 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5253 */
5254static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5255 struct perf_event *event,
5256 u64 enabled, u64 running)
3dab77fb 5257{
cdd6c482
IM
5258 struct perf_event *leader = event->group_leader, *sub;
5259 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5260 u64 values[5];
5261 int n = 0;
5262
5263 values[n++] = 1 + leader->nr_siblings;
5264
5265 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5266 values[n++] = enabled;
3dab77fb
PZ
5267
5268 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5269 values[n++] = running;
3dab77fb 5270
cdd6c482 5271 if (leader != event)
3dab77fb
PZ
5272 leader->pmu->read(leader);
5273
b5e58793 5274 values[n++] = perf_event_count(leader);
3dab77fb 5275 if (read_format & PERF_FORMAT_ID)
cdd6c482 5276 values[n++] = primary_event_id(leader);
3dab77fb 5277
76369139 5278 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5279
65abc865 5280 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5281 n = 0;
5282
6f5ab001
JO
5283 if ((sub != event) &&
5284 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5285 sub->pmu->read(sub);
5286
b5e58793 5287 values[n++] = perf_event_count(sub);
3dab77fb 5288 if (read_format & PERF_FORMAT_ID)
cdd6c482 5289 values[n++] = primary_event_id(sub);
3dab77fb 5290
76369139 5291 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5292 }
5293}
5294
eed01528
SE
5295#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5296 PERF_FORMAT_TOTAL_TIME_RUNNING)
5297
3dab77fb 5298static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5299 struct perf_event *event)
3dab77fb 5300{
e3f3541c 5301 u64 enabled = 0, running = 0, now;
eed01528
SE
5302 u64 read_format = event->attr.read_format;
5303
5304 /*
5305 * compute total_time_enabled, total_time_running
5306 * based on snapshot values taken when the event
5307 * was last scheduled in.
5308 *
5309 * we cannot simply called update_context_time()
5310 * because of locking issue as we are called in
5311 * NMI context
5312 */
c4794295 5313 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5314 calc_timer_values(event, &now, &enabled, &running);
eed01528 5315
cdd6c482 5316 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5317 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5318 else
eed01528 5319 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5320}
5321
5622f295
MM
5322void perf_output_sample(struct perf_output_handle *handle,
5323 struct perf_event_header *header,
5324 struct perf_sample_data *data,
cdd6c482 5325 struct perf_event *event)
5622f295
MM
5326{
5327 u64 sample_type = data->type;
5328
5329 perf_output_put(handle, *header);
5330
ff3d527c
AH
5331 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5332 perf_output_put(handle, data->id);
5333
5622f295
MM
5334 if (sample_type & PERF_SAMPLE_IP)
5335 perf_output_put(handle, data->ip);
5336
5337 if (sample_type & PERF_SAMPLE_TID)
5338 perf_output_put(handle, data->tid_entry);
5339
5340 if (sample_type & PERF_SAMPLE_TIME)
5341 perf_output_put(handle, data->time);
5342
5343 if (sample_type & PERF_SAMPLE_ADDR)
5344 perf_output_put(handle, data->addr);
5345
5346 if (sample_type & PERF_SAMPLE_ID)
5347 perf_output_put(handle, data->id);
5348
5349 if (sample_type & PERF_SAMPLE_STREAM_ID)
5350 perf_output_put(handle, data->stream_id);
5351
5352 if (sample_type & PERF_SAMPLE_CPU)
5353 perf_output_put(handle, data->cpu_entry);
5354
5355 if (sample_type & PERF_SAMPLE_PERIOD)
5356 perf_output_put(handle, data->period);
5357
5358 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5359 perf_output_read(handle, event);
5622f295
MM
5360
5361 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5362 if (data->callchain) {
5363 int size = 1;
5364
5365 if (data->callchain)
5366 size += data->callchain->nr;
5367
5368 size *= sizeof(u64);
5369
76369139 5370 __output_copy(handle, data->callchain, size);
5622f295
MM
5371 } else {
5372 u64 nr = 0;
5373 perf_output_put(handle, nr);
5374 }
5375 }
5376
5377 if (sample_type & PERF_SAMPLE_RAW) {
5378 if (data->raw) {
fa128e6a
AS
5379 u32 raw_size = data->raw->size;
5380 u32 real_size = round_up(raw_size + sizeof(u32),
5381 sizeof(u64)) - sizeof(u32);
5382 u64 zero = 0;
5383
5384 perf_output_put(handle, real_size);
5385 __output_copy(handle, data->raw->data, raw_size);
5386 if (real_size - raw_size)
5387 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5388 } else {
5389 struct {
5390 u32 size;
5391 u32 data;
5392 } raw = {
5393 .size = sizeof(u32),
5394 .data = 0,
5395 };
5396 perf_output_put(handle, raw);
5397 }
5398 }
a7ac67ea 5399
bce38cd5
SE
5400 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5401 if (data->br_stack) {
5402 size_t size;
5403
5404 size = data->br_stack->nr
5405 * sizeof(struct perf_branch_entry);
5406
5407 perf_output_put(handle, data->br_stack->nr);
5408 perf_output_copy(handle, data->br_stack->entries, size);
5409 } else {
5410 /*
5411 * we always store at least the value of nr
5412 */
5413 u64 nr = 0;
5414 perf_output_put(handle, nr);
5415 }
5416 }
4018994f
JO
5417
5418 if (sample_type & PERF_SAMPLE_REGS_USER) {
5419 u64 abi = data->regs_user.abi;
5420
5421 /*
5422 * If there are no regs to dump, notice it through
5423 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5424 */
5425 perf_output_put(handle, abi);
5426
5427 if (abi) {
5428 u64 mask = event->attr.sample_regs_user;
5429 perf_output_sample_regs(handle,
5430 data->regs_user.regs,
5431 mask);
5432 }
5433 }
c5ebcedb 5434
a5cdd40c 5435 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5436 perf_output_sample_ustack(handle,
5437 data->stack_user_size,
5438 data->regs_user.regs);
a5cdd40c 5439 }
c3feedf2
AK
5440
5441 if (sample_type & PERF_SAMPLE_WEIGHT)
5442 perf_output_put(handle, data->weight);
d6be9ad6
SE
5443
5444 if (sample_type & PERF_SAMPLE_DATA_SRC)
5445 perf_output_put(handle, data->data_src.val);
a5cdd40c 5446
fdfbbd07
AK
5447 if (sample_type & PERF_SAMPLE_TRANSACTION)
5448 perf_output_put(handle, data->txn);
5449
60e2364e
SE
5450 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5451 u64 abi = data->regs_intr.abi;
5452 /*
5453 * If there are no regs to dump, notice it through
5454 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5455 */
5456 perf_output_put(handle, abi);
5457
5458 if (abi) {
5459 u64 mask = event->attr.sample_regs_intr;
5460
5461 perf_output_sample_regs(handle,
5462 data->regs_intr.regs,
5463 mask);
5464 }
5465 }
5466
a5cdd40c
PZ
5467 if (!event->attr.watermark) {
5468 int wakeup_events = event->attr.wakeup_events;
5469
5470 if (wakeup_events) {
5471 struct ring_buffer *rb = handle->rb;
5472 int events = local_inc_return(&rb->events);
5473
5474 if (events >= wakeup_events) {
5475 local_sub(wakeup_events, &rb->events);
5476 local_inc(&rb->wakeup);
5477 }
5478 }
5479 }
5622f295
MM
5480}
5481
5482void perf_prepare_sample(struct perf_event_header *header,
5483 struct perf_sample_data *data,
cdd6c482 5484 struct perf_event *event,
5622f295 5485 struct pt_regs *regs)
7b732a75 5486{
cdd6c482 5487 u64 sample_type = event->attr.sample_type;
7b732a75 5488
cdd6c482 5489 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5490 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5491
5492 header->misc = 0;
5493 header->misc |= perf_misc_flags(regs);
6fab0192 5494
c980d109 5495 __perf_event_header__init_id(header, data, event);
6844c09d 5496
c320c7b7 5497 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5498 data->ip = perf_instruction_pointer(regs);
5499
b23f3325 5500 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5501 int size = 1;
394ee076 5502
e6dab5ff 5503 data->callchain = perf_callchain(event, regs);
5622f295
MM
5504
5505 if (data->callchain)
5506 size += data->callchain->nr;
5507
5508 header->size += size * sizeof(u64);
394ee076
PZ
5509 }
5510
3a43ce68 5511 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5512 int size = sizeof(u32);
5513
5514 if (data->raw)
5515 size += data->raw->size;
5516 else
5517 size += sizeof(u32);
5518
fa128e6a 5519 header->size += round_up(size, sizeof(u64));
7f453c24 5520 }
bce38cd5
SE
5521
5522 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5523 int size = sizeof(u64); /* nr */
5524 if (data->br_stack) {
5525 size += data->br_stack->nr
5526 * sizeof(struct perf_branch_entry);
5527 }
5528 header->size += size;
5529 }
4018994f 5530
2565711f 5531 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5532 perf_sample_regs_user(&data->regs_user, regs,
5533 &data->regs_user_copy);
2565711f 5534
4018994f
JO
5535 if (sample_type & PERF_SAMPLE_REGS_USER) {
5536 /* regs dump ABI info */
5537 int size = sizeof(u64);
5538
4018994f
JO
5539 if (data->regs_user.regs) {
5540 u64 mask = event->attr.sample_regs_user;
5541 size += hweight64(mask) * sizeof(u64);
5542 }
5543
5544 header->size += size;
5545 }
c5ebcedb
JO
5546
5547 if (sample_type & PERF_SAMPLE_STACK_USER) {
5548 /*
5549 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5550 * processed as the last one or have additional check added
5551 * in case new sample type is added, because we could eat
5552 * up the rest of the sample size.
5553 */
c5ebcedb
JO
5554 u16 stack_size = event->attr.sample_stack_user;
5555 u16 size = sizeof(u64);
5556
c5ebcedb 5557 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5558 data->regs_user.regs);
c5ebcedb
JO
5559
5560 /*
5561 * If there is something to dump, add space for the dump
5562 * itself and for the field that tells the dynamic size,
5563 * which is how many have been actually dumped.
5564 */
5565 if (stack_size)
5566 size += sizeof(u64) + stack_size;
5567
5568 data->stack_user_size = stack_size;
5569 header->size += size;
5570 }
60e2364e
SE
5571
5572 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5573 /* regs dump ABI info */
5574 int size = sizeof(u64);
5575
5576 perf_sample_regs_intr(&data->regs_intr, regs);
5577
5578 if (data->regs_intr.regs) {
5579 u64 mask = event->attr.sample_regs_intr;
5580
5581 size += hweight64(mask) * sizeof(u64);
5582 }
5583
5584 header->size += size;
5585 }
5622f295 5586}
7f453c24 5587
21509084
YZ
5588void perf_event_output(struct perf_event *event,
5589 struct perf_sample_data *data,
5590 struct pt_regs *regs)
5622f295
MM
5591{
5592 struct perf_output_handle handle;
5593 struct perf_event_header header;
689802b2 5594
927c7a9e
FW
5595 /* protect the callchain buffers */
5596 rcu_read_lock();
5597
cdd6c482 5598 perf_prepare_sample(&header, data, event, regs);
5c148194 5599
a7ac67ea 5600 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5601 goto exit;
0322cd6e 5602
cdd6c482 5603 perf_output_sample(&handle, &header, data, event);
f413cdb8 5604
8a057d84 5605 perf_output_end(&handle);
927c7a9e
FW
5606
5607exit:
5608 rcu_read_unlock();
0322cd6e
PZ
5609}
5610
38b200d6 5611/*
cdd6c482 5612 * read event_id
38b200d6
PZ
5613 */
5614
5615struct perf_read_event {
5616 struct perf_event_header header;
5617
5618 u32 pid;
5619 u32 tid;
38b200d6
PZ
5620};
5621
5622static void
cdd6c482 5623perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5624 struct task_struct *task)
5625{
5626 struct perf_output_handle handle;
c980d109 5627 struct perf_sample_data sample;
dfc65094 5628 struct perf_read_event read_event = {
38b200d6 5629 .header = {
cdd6c482 5630 .type = PERF_RECORD_READ,
38b200d6 5631 .misc = 0,
c320c7b7 5632 .size = sizeof(read_event) + event->read_size,
38b200d6 5633 },
cdd6c482
IM
5634 .pid = perf_event_pid(event, task),
5635 .tid = perf_event_tid(event, task),
38b200d6 5636 };
3dab77fb 5637 int ret;
38b200d6 5638
c980d109 5639 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5640 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5641 if (ret)
5642 return;
5643
dfc65094 5644 perf_output_put(&handle, read_event);
cdd6c482 5645 perf_output_read(&handle, event);
c980d109 5646 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5647
38b200d6
PZ
5648 perf_output_end(&handle);
5649}
5650
52d857a8
JO
5651typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5652
5653static void
5654perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5655 perf_event_aux_output_cb output,
5656 void *data)
5657{
5658 struct perf_event *event;
5659
5660 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5661 if (event->state < PERF_EVENT_STATE_INACTIVE)
5662 continue;
5663 if (!event_filter_match(event))
5664 continue;
67516844 5665 output(event, data);
52d857a8
JO
5666 }
5667}
5668
5669static void
67516844 5670perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5671 struct perf_event_context *task_ctx)
5672{
5673 struct perf_cpu_context *cpuctx;
5674 struct perf_event_context *ctx;
5675 struct pmu *pmu;
5676 int ctxn;
5677
5678 rcu_read_lock();
5679 list_for_each_entry_rcu(pmu, &pmus, entry) {
5680 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5681 if (cpuctx->unique_pmu != pmu)
5682 goto next;
67516844 5683 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5684 if (task_ctx)
5685 goto next;
5686 ctxn = pmu->task_ctx_nr;
5687 if (ctxn < 0)
5688 goto next;
5689 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5690 if (ctx)
67516844 5691 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5692next:
5693 put_cpu_ptr(pmu->pmu_cpu_context);
5694 }
5695
5696 if (task_ctx) {
5697 preempt_disable();
67516844 5698 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5699 preempt_enable();
5700 }
5701 rcu_read_unlock();
5702}
5703
60313ebe 5704/*
9f498cc5
PZ
5705 * task tracking -- fork/exit
5706 *
13d7a241 5707 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5708 */
5709
9f498cc5 5710struct perf_task_event {
3a80b4a3 5711 struct task_struct *task;
cdd6c482 5712 struct perf_event_context *task_ctx;
60313ebe
PZ
5713
5714 struct {
5715 struct perf_event_header header;
5716
5717 u32 pid;
5718 u32 ppid;
9f498cc5
PZ
5719 u32 tid;
5720 u32 ptid;
393b2ad8 5721 u64 time;
cdd6c482 5722 } event_id;
60313ebe
PZ
5723};
5724
67516844
JO
5725static int perf_event_task_match(struct perf_event *event)
5726{
13d7a241
SE
5727 return event->attr.comm || event->attr.mmap ||
5728 event->attr.mmap2 || event->attr.mmap_data ||
5729 event->attr.task;
67516844
JO
5730}
5731
cdd6c482 5732static void perf_event_task_output(struct perf_event *event,
52d857a8 5733 void *data)
60313ebe 5734{
52d857a8 5735 struct perf_task_event *task_event = data;
60313ebe 5736 struct perf_output_handle handle;
c980d109 5737 struct perf_sample_data sample;
9f498cc5 5738 struct task_struct *task = task_event->task;
c980d109 5739 int ret, size = task_event->event_id.header.size;
8bb39f9a 5740
67516844
JO
5741 if (!perf_event_task_match(event))
5742 return;
5743
c980d109 5744 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5745
c980d109 5746 ret = perf_output_begin(&handle, event,
a7ac67ea 5747 task_event->event_id.header.size);
ef60777c 5748 if (ret)
c980d109 5749 goto out;
60313ebe 5750
cdd6c482
IM
5751 task_event->event_id.pid = perf_event_pid(event, task);
5752 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5753
cdd6c482
IM
5754 task_event->event_id.tid = perf_event_tid(event, task);
5755 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5756
34f43927
PZ
5757 task_event->event_id.time = perf_event_clock(event);
5758
cdd6c482 5759 perf_output_put(&handle, task_event->event_id);
393b2ad8 5760
c980d109
ACM
5761 perf_event__output_id_sample(event, &handle, &sample);
5762
60313ebe 5763 perf_output_end(&handle);
c980d109
ACM
5764out:
5765 task_event->event_id.header.size = size;
60313ebe
PZ
5766}
5767
cdd6c482
IM
5768static void perf_event_task(struct task_struct *task,
5769 struct perf_event_context *task_ctx,
3a80b4a3 5770 int new)
60313ebe 5771{
9f498cc5 5772 struct perf_task_event task_event;
60313ebe 5773
cdd6c482
IM
5774 if (!atomic_read(&nr_comm_events) &&
5775 !atomic_read(&nr_mmap_events) &&
5776 !atomic_read(&nr_task_events))
60313ebe
PZ
5777 return;
5778
9f498cc5 5779 task_event = (struct perf_task_event){
3a80b4a3
PZ
5780 .task = task,
5781 .task_ctx = task_ctx,
cdd6c482 5782 .event_id = {
60313ebe 5783 .header = {
cdd6c482 5784 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5785 .misc = 0,
cdd6c482 5786 .size = sizeof(task_event.event_id),
60313ebe 5787 },
573402db
PZ
5788 /* .pid */
5789 /* .ppid */
9f498cc5
PZ
5790 /* .tid */
5791 /* .ptid */
34f43927 5792 /* .time */
60313ebe
PZ
5793 },
5794 };
5795
67516844 5796 perf_event_aux(perf_event_task_output,
52d857a8
JO
5797 &task_event,
5798 task_ctx);
9f498cc5
PZ
5799}
5800
cdd6c482 5801void perf_event_fork(struct task_struct *task)
9f498cc5 5802{
cdd6c482 5803 perf_event_task(task, NULL, 1);
60313ebe
PZ
5804}
5805
8d1b2d93
PZ
5806/*
5807 * comm tracking
5808 */
5809
5810struct perf_comm_event {
22a4f650
IM
5811 struct task_struct *task;
5812 char *comm;
8d1b2d93
PZ
5813 int comm_size;
5814
5815 struct {
5816 struct perf_event_header header;
5817
5818 u32 pid;
5819 u32 tid;
cdd6c482 5820 } event_id;
8d1b2d93
PZ
5821};
5822
67516844
JO
5823static int perf_event_comm_match(struct perf_event *event)
5824{
5825 return event->attr.comm;
5826}
5827
cdd6c482 5828static void perf_event_comm_output(struct perf_event *event,
52d857a8 5829 void *data)
8d1b2d93 5830{
52d857a8 5831 struct perf_comm_event *comm_event = data;
8d1b2d93 5832 struct perf_output_handle handle;
c980d109 5833 struct perf_sample_data sample;
cdd6c482 5834 int size = comm_event->event_id.header.size;
c980d109
ACM
5835 int ret;
5836
67516844
JO
5837 if (!perf_event_comm_match(event))
5838 return;
5839
c980d109
ACM
5840 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5841 ret = perf_output_begin(&handle, event,
a7ac67ea 5842 comm_event->event_id.header.size);
8d1b2d93
PZ
5843
5844 if (ret)
c980d109 5845 goto out;
8d1b2d93 5846
cdd6c482
IM
5847 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5848 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5849
cdd6c482 5850 perf_output_put(&handle, comm_event->event_id);
76369139 5851 __output_copy(&handle, comm_event->comm,
8d1b2d93 5852 comm_event->comm_size);
c980d109
ACM
5853
5854 perf_event__output_id_sample(event, &handle, &sample);
5855
8d1b2d93 5856 perf_output_end(&handle);
c980d109
ACM
5857out:
5858 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5859}
5860
cdd6c482 5861static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5862{
413ee3b4 5863 char comm[TASK_COMM_LEN];
8d1b2d93 5864 unsigned int size;
8d1b2d93 5865
413ee3b4 5866 memset(comm, 0, sizeof(comm));
96b02d78 5867 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5868 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5869
5870 comm_event->comm = comm;
5871 comm_event->comm_size = size;
5872
cdd6c482 5873 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5874
67516844 5875 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5876 comm_event,
5877 NULL);
8d1b2d93
PZ
5878}
5879
82b89778 5880void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5881{
9ee318a7
PZ
5882 struct perf_comm_event comm_event;
5883
cdd6c482 5884 if (!atomic_read(&nr_comm_events))
9ee318a7 5885 return;
a63eaf34 5886
9ee318a7 5887 comm_event = (struct perf_comm_event){
8d1b2d93 5888 .task = task,
573402db
PZ
5889 /* .comm */
5890 /* .comm_size */
cdd6c482 5891 .event_id = {
573402db 5892 .header = {
cdd6c482 5893 .type = PERF_RECORD_COMM,
82b89778 5894 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5895 /* .size */
5896 },
5897 /* .pid */
5898 /* .tid */
8d1b2d93
PZ
5899 },
5900 };
5901
cdd6c482 5902 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5903}
5904
0a4a9391
PZ
5905/*
5906 * mmap tracking
5907 */
5908
5909struct perf_mmap_event {
089dd79d
PZ
5910 struct vm_area_struct *vma;
5911
5912 const char *file_name;
5913 int file_size;
13d7a241
SE
5914 int maj, min;
5915 u64 ino;
5916 u64 ino_generation;
f972eb63 5917 u32 prot, flags;
0a4a9391
PZ
5918
5919 struct {
5920 struct perf_event_header header;
5921
5922 u32 pid;
5923 u32 tid;
5924 u64 start;
5925 u64 len;
5926 u64 pgoff;
cdd6c482 5927 } event_id;
0a4a9391
PZ
5928};
5929
67516844
JO
5930static int perf_event_mmap_match(struct perf_event *event,
5931 void *data)
5932{
5933 struct perf_mmap_event *mmap_event = data;
5934 struct vm_area_struct *vma = mmap_event->vma;
5935 int executable = vma->vm_flags & VM_EXEC;
5936
5937 return (!executable && event->attr.mmap_data) ||
13d7a241 5938 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5939}
5940
cdd6c482 5941static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5942 void *data)
0a4a9391 5943{
52d857a8 5944 struct perf_mmap_event *mmap_event = data;
0a4a9391 5945 struct perf_output_handle handle;
c980d109 5946 struct perf_sample_data sample;
cdd6c482 5947 int size = mmap_event->event_id.header.size;
c980d109 5948 int ret;
0a4a9391 5949
67516844
JO
5950 if (!perf_event_mmap_match(event, data))
5951 return;
5952
13d7a241
SE
5953 if (event->attr.mmap2) {
5954 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5955 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5956 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5957 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5958 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5959 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5960 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5961 }
5962
c980d109
ACM
5963 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5964 ret = perf_output_begin(&handle, event,
a7ac67ea 5965 mmap_event->event_id.header.size);
0a4a9391 5966 if (ret)
c980d109 5967 goto out;
0a4a9391 5968
cdd6c482
IM
5969 mmap_event->event_id.pid = perf_event_pid(event, current);
5970 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5971
cdd6c482 5972 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5973
5974 if (event->attr.mmap2) {
5975 perf_output_put(&handle, mmap_event->maj);
5976 perf_output_put(&handle, mmap_event->min);
5977 perf_output_put(&handle, mmap_event->ino);
5978 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5979 perf_output_put(&handle, mmap_event->prot);
5980 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5981 }
5982
76369139 5983 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5984 mmap_event->file_size);
c980d109
ACM
5985
5986 perf_event__output_id_sample(event, &handle, &sample);
5987
78d613eb 5988 perf_output_end(&handle);
c980d109
ACM
5989out:
5990 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5991}
5992
cdd6c482 5993static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5994{
089dd79d
PZ
5995 struct vm_area_struct *vma = mmap_event->vma;
5996 struct file *file = vma->vm_file;
13d7a241
SE
5997 int maj = 0, min = 0;
5998 u64 ino = 0, gen = 0;
f972eb63 5999 u32 prot = 0, flags = 0;
0a4a9391
PZ
6000 unsigned int size;
6001 char tmp[16];
6002 char *buf = NULL;
2c42cfbf 6003 char *name;
413ee3b4 6004
0a4a9391 6005 if (file) {
13d7a241
SE
6006 struct inode *inode;
6007 dev_t dev;
3ea2f2b9 6008
2c42cfbf 6009 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6010 if (!buf) {
c7e548b4
ON
6011 name = "//enomem";
6012 goto cpy_name;
0a4a9391 6013 }
413ee3b4 6014 /*
3ea2f2b9 6015 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6016 * need to add enough zero bytes after the string to handle
6017 * the 64bit alignment we do later.
6018 */
9bf39ab2 6019 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6020 if (IS_ERR(name)) {
c7e548b4
ON
6021 name = "//toolong";
6022 goto cpy_name;
0a4a9391 6023 }
13d7a241
SE
6024 inode = file_inode(vma->vm_file);
6025 dev = inode->i_sb->s_dev;
6026 ino = inode->i_ino;
6027 gen = inode->i_generation;
6028 maj = MAJOR(dev);
6029 min = MINOR(dev);
f972eb63
PZ
6030
6031 if (vma->vm_flags & VM_READ)
6032 prot |= PROT_READ;
6033 if (vma->vm_flags & VM_WRITE)
6034 prot |= PROT_WRITE;
6035 if (vma->vm_flags & VM_EXEC)
6036 prot |= PROT_EXEC;
6037
6038 if (vma->vm_flags & VM_MAYSHARE)
6039 flags = MAP_SHARED;
6040 else
6041 flags = MAP_PRIVATE;
6042
6043 if (vma->vm_flags & VM_DENYWRITE)
6044 flags |= MAP_DENYWRITE;
6045 if (vma->vm_flags & VM_MAYEXEC)
6046 flags |= MAP_EXECUTABLE;
6047 if (vma->vm_flags & VM_LOCKED)
6048 flags |= MAP_LOCKED;
6049 if (vma->vm_flags & VM_HUGETLB)
6050 flags |= MAP_HUGETLB;
6051
c7e548b4 6052 goto got_name;
0a4a9391 6053 } else {
fbe26abe
JO
6054 if (vma->vm_ops && vma->vm_ops->name) {
6055 name = (char *) vma->vm_ops->name(vma);
6056 if (name)
6057 goto cpy_name;
6058 }
6059
2c42cfbf 6060 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6061 if (name)
6062 goto cpy_name;
089dd79d 6063
32c5fb7e 6064 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6065 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6066 name = "[heap]";
6067 goto cpy_name;
32c5fb7e
ON
6068 }
6069 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6070 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6071 name = "[stack]";
6072 goto cpy_name;
089dd79d
PZ
6073 }
6074
c7e548b4
ON
6075 name = "//anon";
6076 goto cpy_name;
0a4a9391
PZ
6077 }
6078
c7e548b4
ON
6079cpy_name:
6080 strlcpy(tmp, name, sizeof(tmp));
6081 name = tmp;
0a4a9391 6082got_name:
2c42cfbf
PZ
6083 /*
6084 * Since our buffer works in 8 byte units we need to align our string
6085 * size to a multiple of 8. However, we must guarantee the tail end is
6086 * zero'd out to avoid leaking random bits to userspace.
6087 */
6088 size = strlen(name)+1;
6089 while (!IS_ALIGNED(size, sizeof(u64)))
6090 name[size++] = '\0';
0a4a9391
PZ
6091
6092 mmap_event->file_name = name;
6093 mmap_event->file_size = size;
13d7a241
SE
6094 mmap_event->maj = maj;
6095 mmap_event->min = min;
6096 mmap_event->ino = ino;
6097 mmap_event->ino_generation = gen;
f972eb63
PZ
6098 mmap_event->prot = prot;
6099 mmap_event->flags = flags;
0a4a9391 6100
2fe85427
SE
6101 if (!(vma->vm_flags & VM_EXEC))
6102 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6103
cdd6c482 6104 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6105
67516844 6106 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6107 mmap_event,
6108 NULL);
665c2142 6109
0a4a9391
PZ
6110 kfree(buf);
6111}
6112
3af9e859 6113void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6114{
9ee318a7
PZ
6115 struct perf_mmap_event mmap_event;
6116
cdd6c482 6117 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6118 return;
6119
6120 mmap_event = (struct perf_mmap_event){
089dd79d 6121 .vma = vma,
573402db
PZ
6122 /* .file_name */
6123 /* .file_size */
cdd6c482 6124 .event_id = {
573402db 6125 .header = {
cdd6c482 6126 .type = PERF_RECORD_MMAP,
39447b38 6127 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6128 /* .size */
6129 },
6130 /* .pid */
6131 /* .tid */
089dd79d
PZ
6132 .start = vma->vm_start,
6133 .len = vma->vm_end - vma->vm_start,
3a0304e9 6134 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6135 },
13d7a241
SE
6136 /* .maj (attr_mmap2 only) */
6137 /* .min (attr_mmap2 only) */
6138 /* .ino (attr_mmap2 only) */
6139 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6140 /* .prot (attr_mmap2 only) */
6141 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6142 };
6143
cdd6c482 6144 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6145}
6146
68db7e98
AS
6147void perf_event_aux_event(struct perf_event *event, unsigned long head,
6148 unsigned long size, u64 flags)
6149{
6150 struct perf_output_handle handle;
6151 struct perf_sample_data sample;
6152 struct perf_aux_event {
6153 struct perf_event_header header;
6154 u64 offset;
6155 u64 size;
6156 u64 flags;
6157 } rec = {
6158 .header = {
6159 .type = PERF_RECORD_AUX,
6160 .misc = 0,
6161 .size = sizeof(rec),
6162 },
6163 .offset = head,
6164 .size = size,
6165 .flags = flags,
6166 };
6167 int ret;
6168
6169 perf_event_header__init_id(&rec.header, &sample, event);
6170 ret = perf_output_begin(&handle, event, rec.header.size);
6171
6172 if (ret)
6173 return;
6174
6175 perf_output_put(&handle, rec);
6176 perf_event__output_id_sample(event, &handle, &sample);
6177
6178 perf_output_end(&handle);
6179}
6180
f38b0dbb
KL
6181/*
6182 * Lost/dropped samples logging
6183 */
6184void perf_log_lost_samples(struct perf_event *event, u64 lost)
6185{
6186 struct perf_output_handle handle;
6187 struct perf_sample_data sample;
6188 int ret;
6189
6190 struct {
6191 struct perf_event_header header;
6192 u64 lost;
6193 } lost_samples_event = {
6194 .header = {
6195 .type = PERF_RECORD_LOST_SAMPLES,
6196 .misc = 0,
6197 .size = sizeof(lost_samples_event),
6198 },
6199 .lost = lost,
6200 };
6201
6202 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6203
6204 ret = perf_output_begin(&handle, event,
6205 lost_samples_event.header.size);
6206 if (ret)
6207 return;
6208
6209 perf_output_put(&handle, lost_samples_event);
6210 perf_event__output_id_sample(event, &handle, &sample);
6211 perf_output_end(&handle);
6212}
6213
45ac1403
AH
6214/*
6215 * context_switch tracking
6216 */
6217
6218struct perf_switch_event {
6219 struct task_struct *task;
6220 struct task_struct *next_prev;
6221
6222 struct {
6223 struct perf_event_header header;
6224 u32 next_prev_pid;
6225 u32 next_prev_tid;
6226 } event_id;
6227};
6228
6229static int perf_event_switch_match(struct perf_event *event)
6230{
6231 return event->attr.context_switch;
6232}
6233
6234static void perf_event_switch_output(struct perf_event *event, void *data)
6235{
6236 struct perf_switch_event *se = data;
6237 struct perf_output_handle handle;
6238 struct perf_sample_data sample;
6239 int ret;
6240
6241 if (!perf_event_switch_match(event))
6242 return;
6243
6244 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6245 if (event->ctx->task) {
6246 se->event_id.header.type = PERF_RECORD_SWITCH;
6247 se->event_id.header.size = sizeof(se->event_id.header);
6248 } else {
6249 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6250 se->event_id.header.size = sizeof(se->event_id);
6251 se->event_id.next_prev_pid =
6252 perf_event_pid(event, se->next_prev);
6253 se->event_id.next_prev_tid =
6254 perf_event_tid(event, se->next_prev);
6255 }
6256
6257 perf_event_header__init_id(&se->event_id.header, &sample, event);
6258
6259 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6260 if (ret)
6261 return;
6262
6263 if (event->ctx->task)
6264 perf_output_put(&handle, se->event_id.header);
6265 else
6266 perf_output_put(&handle, se->event_id);
6267
6268 perf_event__output_id_sample(event, &handle, &sample);
6269
6270 perf_output_end(&handle);
6271}
6272
6273static void perf_event_switch(struct task_struct *task,
6274 struct task_struct *next_prev, bool sched_in)
6275{
6276 struct perf_switch_event switch_event;
6277
6278 /* N.B. caller checks nr_switch_events != 0 */
6279
6280 switch_event = (struct perf_switch_event){
6281 .task = task,
6282 .next_prev = next_prev,
6283 .event_id = {
6284 .header = {
6285 /* .type */
6286 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6287 /* .size */
6288 },
6289 /* .next_prev_pid */
6290 /* .next_prev_tid */
6291 },
6292 };
6293
6294 perf_event_aux(perf_event_switch_output,
6295 &switch_event,
6296 NULL);
6297}
6298
a78ac325
PZ
6299/*
6300 * IRQ throttle logging
6301 */
6302
cdd6c482 6303static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6304{
6305 struct perf_output_handle handle;
c980d109 6306 struct perf_sample_data sample;
a78ac325
PZ
6307 int ret;
6308
6309 struct {
6310 struct perf_event_header header;
6311 u64 time;
cca3f454 6312 u64 id;
7f453c24 6313 u64 stream_id;
a78ac325
PZ
6314 } throttle_event = {
6315 .header = {
cdd6c482 6316 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6317 .misc = 0,
6318 .size = sizeof(throttle_event),
6319 },
34f43927 6320 .time = perf_event_clock(event),
cdd6c482
IM
6321 .id = primary_event_id(event),
6322 .stream_id = event->id,
a78ac325
PZ
6323 };
6324
966ee4d6 6325 if (enable)
cdd6c482 6326 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6327
c980d109
ACM
6328 perf_event_header__init_id(&throttle_event.header, &sample, event);
6329
6330 ret = perf_output_begin(&handle, event,
a7ac67ea 6331 throttle_event.header.size);
a78ac325
PZ
6332 if (ret)
6333 return;
6334
6335 perf_output_put(&handle, throttle_event);
c980d109 6336 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6337 perf_output_end(&handle);
6338}
6339
ec0d7729
AS
6340static void perf_log_itrace_start(struct perf_event *event)
6341{
6342 struct perf_output_handle handle;
6343 struct perf_sample_data sample;
6344 struct perf_aux_event {
6345 struct perf_event_header header;
6346 u32 pid;
6347 u32 tid;
6348 } rec;
6349 int ret;
6350
6351 if (event->parent)
6352 event = event->parent;
6353
6354 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6355 event->hw.itrace_started)
6356 return;
6357
ec0d7729
AS
6358 rec.header.type = PERF_RECORD_ITRACE_START;
6359 rec.header.misc = 0;
6360 rec.header.size = sizeof(rec);
6361 rec.pid = perf_event_pid(event, current);
6362 rec.tid = perf_event_tid(event, current);
6363
6364 perf_event_header__init_id(&rec.header, &sample, event);
6365 ret = perf_output_begin(&handle, event, rec.header.size);
6366
6367 if (ret)
6368 return;
6369
6370 perf_output_put(&handle, rec);
6371 perf_event__output_id_sample(event, &handle, &sample);
6372
6373 perf_output_end(&handle);
6374}
6375
f6c7d5fe 6376/*
cdd6c482 6377 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6378 */
6379
a8b0ca17 6380static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6381 int throttle, struct perf_sample_data *data,
6382 struct pt_regs *regs)
f6c7d5fe 6383{
cdd6c482
IM
6384 int events = atomic_read(&event->event_limit);
6385 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6386 u64 seq;
79f14641
PZ
6387 int ret = 0;
6388
96398826
PZ
6389 /*
6390 * Non-sampling counters might still use the PMI to fold short
6391 * hardware counters, ignore those.
6392 */
6393 if (unlikely(!is_sampling_event(event)))
6394 return 0;
6395
e050e3f0
SE
6396 seq = __this_cpu_read(perf_throttled_seq);
6397 if (seq != hwc->interrupts_seq) {
6398 hwc->interrupts_seq = seq;
6399 hwc->interrupts = 1;
6400 } else {
6401 hwc->interrupts++;
6402 if (unlikely(throttle
6403 && hwc->interrupts >= max_samples_per_tick)) {
6404 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6405 hwc->interrupts = MAX_INTERRUPTS;
6406 perf_log_throttle(event, 0);
d84153d6 6407 tick_nohz_full_kick();
a78ac325
PZ
6408 ret = 1;
6409 }
e050e3f0 6410 }
60db5e09 6411
cdd6c482 6412 if (event->attr.freq) {
def0a9b2 6413 u64 now = perf_clock();
abd50713 6414 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6415
abd50713 6416 hwc->freq_time_stamp = now;
bd2b5b12 6417
abd50713 6418 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6419 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6420 }
6421
2023b359
PZ
6422 /*
6423 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6424 * events
2023b359
PZ
6425 */
6426
cdd6c482
IM
6427 event->pending_kill = POLL_IN;
6428 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6429 ret = 1;
cdd6c482 6430 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6431 event->pending_disable = 1;
6432 irq_work_queue(&event->pending);
79f14641
PZ
6433 }
6434
453f19ee 6435 if (event->overflow_handler)
a8b0ca17 6436 event->overflow_handler(event, data, regs);
453f19ee 6437 else
a8b0ca17 6438 perf_event_output(event, data, regs);
453f19ee 6439
fed66e2c 6440 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6441 event->pending_wakeup = 1;
6442 irq_work_queue(&event->pending);
f506b3dc
PZ
6443 }
6444
79f14641 6445 return ret;
f6c7d5fe
PZ
6446}
6447
a8b0ca17 6448int perf_event_overflow(struct perf_event *event,
5622f295
MM
6449 struct perf_sample_data *data,
6450 struct pt_regs *regs)
850bc73f 6451{
a8b0ca17 6452 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6453}
6454
15dbf27c 6455/*
cdd6c482 6456 * Generic software event infrastructure
15dbf27c
PZ
6457 */
6458
b28ab83c
PZ
6459struct swevent_htable {
6460 struct swevent_hlist *swevent_hlist;
6461 struct mutex hlist_mutex;
6462 int hlist_refcount;
6463
6464 /* Recursion avoidance in each contexts */
6465 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
6466
6467 /* Keeps track of cpu being initialized/exited */
6468 bool online;
b28ab83c
PZ
6469};
6470
6471static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6472
7b4b6658 6473/*
cdd6c482
IM
6474 * We directly increment event->count and keep a second value in
6475 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6476 * is kept in the range [-sample_period, 0] so that we can use the
6477 * sign as trigger.
6478 */
6479
ab573844 6480u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6481{
cdd6c482 6482 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6483 u64 period = hwc->last_period;
6484 u64 nr, offset;
6485 s64 old, val;
6486
6487 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6488
6489again:
e7850595 6490 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6491 if (val < 0)
6492 return 0;
15dbf27c 6493
7b4b6658
PZ
6494 nr = div64_u64(period + val, period);
6495 offset = nr * period;
6496 val -= offset;
e7850595 6497 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6498 goto again;
15dbf27c 6499
7b4b6658 6500 return nr;
15dbf27c
PZ
6501}
6502
0cff784a 6503static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6504 struct perf_sample_data *data,
5622f295 6505 struct pt_regs *regs)
15dbf27c 6506{
cdd6c482 6507 struct hw_perf_event *hwc = &event->hw;
850bc73f 6508 int throttle = 0;
15dbf27c 6509
0cff784a
PZ
6510 if (!overflow)
6511 overflow = perf_swevent_set_period(event);
15dbf27c 6512
7b4b6658
PZ
6513 if (hwc->interrupts == MAX_INTERRUPTS)
6514 return;
15dbf27c 6515
7b4b6658 6516 for (; overflow; overflow--) {
a8b0ca17 6517 if (__perf_event_overflow(event, throttle,
5622f295 6518 data, regs)) {
7b4b6658
PZ
6519 /*
6520 * We inhibit the overflow from happening when
6521 * hwc->interrupts == MAX_INTERRUPTS.
6522 */
6523 break;
6524 }
cf450a73 6525 throttle = 1;
7b4b6658 6526 }
15dbf27c
PZ
6527}
6528
a4eaf7f1 6529static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6530 struct perf_sample_data *data,
5622f295 6531 struct pt_regs *regs)
7b4b6658 6532{
cdd6c482 6533 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6534
e7850595 6535 local64_add(nr, &event->count);
d6d020e9 6536
0cff784a
PZ
6537 if (!regs)
6538 return;
6539
6c7e550f 6540 if (!is_sampling_event(event))
7b4b6658 6541 return;
d6d020e9 6542
5d81e5cf
AV
6543 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6544 data->period = nr;
6545 return perf_swevent_overflow(event, 1, data, regs);
6546 } else
6547 data->period = event->hw.last_period;
6548
0cff784a 6549 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6550 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6551
e7850595 6552 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6553 return;
df1a132b 6554
a8b0ca17 6555 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6556}
6557
f5ffe02e
FW
6558static int perf_exclude_event(struct perf_event *event,
6559 struct pt_regs *regs)
6560{
a4eaf7f1 6561 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6562 return 1;
a4eaf7f1 6563
f5ffe02e
FW
6564 if (regs) {
6565 if (event->attr.exclude_user && user_mode(regs))
6566 return 1;
6567
6568 if (event->attr.exclude_kernel && !user_mode(regs))
6569 return 1;
6570 }
6571
6572 return 0;
6573}
6574
cdd6c482 6575static int perf_swevent_match(struct perf_event *event,
1c432d89 6576 enum perf_type_id type,
6fb2915d
LZ
6577 u32 event_id,
6578 struct perf_sample_data *data,
6579 struct pt_regs *regs)
15dbf27c 6580{
cdd6c482 6581 if (event->attr.type != type)
a21ca2ca 6582 return 0;
f5ffe02e 6583
cdd6c482 6584 if (event->attr.config != event_id)
15dbf27c
PZ
6585 return 0;
6586
f5ffe02e
FW
6587 if (perf_exclude_event(event, regs))
6588 return 0;
15dbf27c
PZ
6589
6590 return 1;
6591}
6592
76e1d904
FW
6593static inline u64 swevent_hash(u64 type, u32 event_id)
6594{
6595 u64 val = event_id | (type << 32);
6596
6597 return hash_64(val, SWEVENT_HLIST_BITS);
6598}
6599
49f135ed
FW
6600static inline struct hlist_head *
6601__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6602{
49f135ed
FW
6603 u64 hash = swevent_hash(type, event_id);
6604
6605 return &hlist->heads[hash];
6606}
76e1d904 6607
49f135ed
FW
6608/* For the read side: events when they trigger */
6609static inline struct hlist_head *
b28ab83c 6610find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6611{
6612 struct swevent_hlist *hlist;
76e1d904 6613
b28ab83c 6614 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6615 if (!hlist)
6616 return NULL;
6617
49f135ed
FW
6618 return __find_swevent_head(hlist, type, event_id);
6619}
6620
6621/* For the event head insertion and removal in the hlist */
6622static inline struct hlist_head *
b28ab83c 6623find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6624{
6625 struct swevent_hlist *hlist;
6626 u32 event_id = event->attr.config;
6627 u64 type = event->attr.type;
6628
6629 /*
6630 * Event scheduling is always serialized against hlist allocation
6631 * and release. Which makes the protected version suitable here.
6632 * The context lock guarantees that.
6633 */
b28ab83c 6634 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6635 lockdep_is_held(&event->ctx->lock));
6636 if (!hlist)
6637 return NULL;
6638
6639 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6640}
6641
6642static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6643 u64 nr,
76e1d904
FW
6644 struct perf_sample_data *data,
6645 struct pt_regs *regs)
15dbf27c 6646{
4a32fea9 6647 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6648 struct perf_event *event;
76e1d904 6649 struct hlist_head *head;
15dbf27c 6650
76e1d904 6651 rcu_read_lock();
b28ab83c 6652 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6653 if (!head)
6654 goto end;
6655
b67bfe0d 6656 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6657 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6658 perf_swevent_event(event, nr, data, regs);
15dbf27c 6659 }
76e1d904
FW
6660end:
6661 rcu_read_unlock();
15dbf27c
PZ
6662}
6663
86038c5e
PZI
6664DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6665
4ed7c92d 6666int perf_swevent_get_recursion_context(void)
96f6d444 6667{
4a32fea9 6668 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6669
b28ab83c 6670 return get_recursion_context(swhash->recursion);
96f6d444 6671}
645e8cc0 6672EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6673
fa9f90be 6674inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6675{
4a32fea9 6676 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6677
b28ab83c 6678 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6679}
15dbf27c 6680
86038c5e 6681void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6682{
a4234bfc 6683 struct perf_sample_data data;
4ed7c92d 6684
86038c5e 6685 if (WARN_ON_ONCE(!regs))
4ed7c92d 6686 return;
a4234bfc 6687
fd0d000b 6688 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6689 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6690}
6691
6692void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6693{
6694 int rctx;
6695
6696 preempt_disable_notrace();
6697 rctx = perf_swevent_get_recursion_context();
6698 if (unlikely(rctx < 0))
6699 goto fail;
6700
6701 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6702
6703 perf_swevent_put_recursion_context(rctx);
86038c5e 6704fail:
1c024eca 6705 preempt_enable_notrace();
b8e83514
PZ
6706}
6707
cdd6c482 6708static void perf_swevent_read(struct perf_event *event)
15dbf27c 6709{
15dbf27c
PZ
6710}
6711
a4eaf7f1 6712static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6713{
4a32fea9 6714 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6715 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6716 struct hlist_head *head;
6717
6c7e550f 6718 if (is_sampling_event(event)) {
7b4b6658 6719 hwc->last_period = hwc->sample_period;
cdd6c482 6720 perf_swevent_set_period(event);
7b4b6658 6721 }
76e1d904 6722
a4eaf7f1
PZ
6723 hwc->state = !(flags & PERF_EF_START);
6724
b28ab83c 6725 head = find_swevent_head(swhash, event);
39af6b16
JO
6726 if (!head) {
6727 /*
6728 * We can race with cpu hotplug code. Do not
6729 * WARN if the cpu just got unplugged.
6730 */
6731 WARN_ON_ONCE(swhash->online);
76e1d904 6732 return -EINVAL;
39af6b16 6733 }
76e1d904
FW
6734
6735 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6736 perf_event_update_userpage(event);
76e1d904 6737
15dbf27c
PZ
6738 return 0;
6739}
6740
a4eaf7f1 6741static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6742{
76e1d904 6743 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6744}
6745
a4eaf7f1 6746static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6747{
a4eaf7f1 6748 event->hw.state = 0;
d6d020e9 6749}
aa9c4c0f 6750
a4eaf7f1 6751static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6752{
a4eaf7f1 6753 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6754}
6755
49f135ed
FW
6756/* Deref the hlist from the update side */
6757static inline struct swevent_hlist *
b28ab83c 6758swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6759{
b28ab83c
PZ
6760 return rcu_dereference_protected(swhash->swevent_hlist,
6761 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6762}
6763
b28ab83c 6764static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6765{
b28ab83c 6766 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6767
49f135ed 6768 if (!hlist)
76e1d904
FW
6769 return;
6770
70691d4a 6771 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6772 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6773}
6774
6775static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6776{
b28ab83c 6777 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6778
b28ab83c 6779 mutex_lock(&swhash->hlist_mutex);
76e1d904 6780
b28ab83c
PZ
6781 if (!--swhash->hlist_refcount)
6782 swevent_hlist_release(swhash);
76e1d904 6783
b28ab83c 6784 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6785}
6786
6787static void swevent_hlist_put(struct perf_event *event)
6788{
6789 int cpu;
6790
76e1d904
FW
6791 for_each_possible_cpu(cpu)
6792 swevent_hlist_put_cpu(event, cpu);
6793}
6794
6795static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6796{
b28ab83c 6797 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6798 int err = 0;
6799
b28ab83c 6800 mutex_lock(&swhash->hlist_mutex);
76e1d904 6801
b28ab83c 6802 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6803 struct swevent_hlist *hlist;
6804
6805 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6806 if (!hlist) {
6807 err = -ENOMEM;
6808 goto exit;
6809 }
b28ab83c 6810 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6811 }
b28ab83c 6812 swhash->hlist_refcount++;
9ed6060d 6813exit:
b28ab83c 6814 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6815
6816 return err;
6817}
6818
6819static int swevent_hlist_get(struct perf_event *event)
6820{
6821 int err;
6822 int cpu, failed_cpu;
6823
76e1d904
FW
6824 get_online_cpus();
6825 for_each_possible_cpu(cpu) {
6826 err = swevent_hlist_get_cpu(event, cpu);
6827 if (err) {
6828 failed_cpu = cpu;
6829 goto fail;
6830 }
6831 }
6832 put_online_cpus();
6833
6834 return 0;
9ed6060d 6835fail:
76e1d904
FW
6836 for_each_possible_cpu(cpu) {
6837 if (cpu == failed_cpu)
6838 break;
6839 swevent_hlist_put_cpu(event, cpu);
6840 }
6841
6842 put_online_cpus();
6843 return err;
6844}
6845
c5905afb 6846struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6847
b0a873eb
PZ
6848static void sw_perf_event_destroy(struct perf_event *event)
6849{
6850 u64 event_id = event->attr.config;
95476b64 6851
b0a873eb
PZ
6852 WARN_ON(event->parent);
6853
c5905afb 6854 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6855 swevent_hlist_put(event);
6856}
6857
6858static int perf_swevent_init(struct perf_event *event)
6859{
8176cced 6860 u64 event_id = event->attr.config;
b0a873eb
PZ
6861
6862 if (event->attr.type != PERF_TYPE_SOFTWARE)
6863 return -ENOENT;
6864
2481c5fa
SE
6865 /*
6866 * no branch sampling for software events
6867 */
6868 if (has_branch_stack(event))
6869 return -EOPNOTSUPP;
6870
b0a873eb
PZ
6871 switch (event_id) {
6872 case PERF_COUNT_SW_CPU_CLOCK:
6873 case PERF_COUNT_SW_TASK_CLOCK:
6874 return -ENOENT;
6875
6876 default:
6877 break;
6878 }
6879
ce677831 6880 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6881 return -ENOENT;
6882
6883 if (!event->parent) {
6884 int err;
6885
6886 err = swevent_hlist_get(event);
6887 if (err)
6888 return err;
6889
c5905afb 6890 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6891 event->destroy = sw_perf_event_destroy;
6892 }
6893
6894 return 0;
6895}
6896
6897static struct pmu perf_swevent = {
89a1e187 6898 .task_ctx_nr = perf_sw_context,
95476b64 6899
34f43927
PZ
6900 .capabilities = PERF_PMU_CAP_NO_NMI,
6901
b0a873eb 6902 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6903 .add = perf_swevent_add,
6904 .del = perf_swevent_del,
6905 .start = perf_swevent_start,
6906 .stop = perf_swevent_stop,
1c024eca 6907 .read = perf_swevent_read,
1c024eca
PZ
6908};
6909
b0a873eb
PZ
6910#ifdef CONFIG_EVENT_TRACING
6911
1c024eca
PZ
6912static int perf_tp_filter_match(struct perf_event *event,
6913 struct perf_sample_data *data)
6914{
6915 void *record = data->raw->data;
6916
b71b437e
PZ
6917 /* only top level events have filters set */
6918 if (event->parent)
6919 event = event->parent;
6920
1c024eca
PZ
6921 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6922 return 1;
6923 return 0;
6924}
6925
6926static int perf_tp_event_match(struct perf_event *event,
6927 struct perf_sample_data *data,
6928 struct pt_regs *regs)
6929{
a0f7d0f7
FW
6930 if (event->hw.state & PERF_HES_STOPPED)
6931 return 0;
580d607c
PZ
6932 /*
6933 * All tracepoints are from kernel-space.
6934 */
6935 if (event->attr.exclude_kernel)
1c024eca
PZ
6936 return 0;
6937
6938 if (!perf_tp_filter_match(event, data))
6939 return 0;
6940
6941 return 1;
6942}
6943
6944void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6945 struct pt_regs *regs, struct hlist_head *head, int rctx,
6946 struct task_struct *task)
95476b64
FW
6947{
6948 struct perf_sample_data data;
1c024eca 6949 struct perf_event *event;
1c024eca 6950
95476b64
FW
6951 struct perf_raw_record raw = {
6952 .size = entry_size,
6953 .data = record,
6954 };
6955
fd0d000b 6956 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6957 data.raw = &raw;
6958
b67bfe0d 6959 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6960 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6961 perf_swevent_event(event, count, &data, regs);
4f41c013 6962 }
ecc55f84 6963
e6dab5ff
AV
6964 /*
6965 * If we got specified a target task, also iterate its context and
6966 * deliver this event there too.
6967 */
6968 if (task && task != current) {
6969 struct perf_event_context *ctx;
6970 struct trace_entry *entry = record;
6971
6972 rcu_read_lock();
6973 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6974 if (!ctx)
6975 goto unlock;
6976
6977 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6978 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6979 continue;
6980 if (event->attr.config != entry->type)
6981 continue;
6982 if (perf_tp_event_match(event, &data, regs))
6983 perf_swevent_event(event, count, &data, regs);
6984 }
6985unlock:
6986 rcu_read_unlock();
6987 }
6988
ecc55f84 6989 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6990}
6991EXPORT_SYMBOL_GPL(perf_tp_event);
6992
cdd6c482 6993static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6994{
1c024eca 6995 perf_trace_destroy(event);
e077df4f
PZ
6996}
6997
b0a873eb 6998static int perf_tp_event_init(struct perf_event *event)
e077df4f 6999{
76e1d904
FW
7000 int err;
7001
b0a873eb
PZ
7002 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7003 return -ENOENT;
7004
2481c5fa
SE
7005 /*
7006 * no branch sampling for tracepoint events
7007 */
7008 if (has_branch_stack(event))
7009 return -EOPNOTSUPP;
7010
1c024eca
PZ
7011 err = perf_trace_init(event);
7012 if (err)
b0a873eb 7013 return err;
e077df4f 7014
cdd6c482 7015 event->destroy = tp_perf_event_destroy;
e077df4f 7016
b0a873eb
PZ
7017 return 0;
7018}
7019
7020static struct pmu perf_tracepoint = {
89a1e187
PZ
7021 .task_ctx_nr = perf_sw_context,
7022
b0a873eb 7023 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7024 .add = perf_trace_add,
7025 .del = perf_trace_del,
7026 .start = perf_swevent_start,
7027 .stop = perf_swevent_stop,
b0a873eb 7028 .read = perf_swevent_read,
b0a873eb
PZ
7029};
7030
7031static inline void perf_tp_register(void)
7032{
2e80a82a 7033 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7034}
6fb2915d
LZ
7035
7036static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7037{
7038 char *filter_str;
7039 int ret;
7040
7041 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7042 return -EINVAL;
7043
7044 filter_str = strndup_user(arg, PAGE_SIZE);
7045 if (IS_ERR(filter_str))
7046 return PTR_ERR(filter_str);
7047
7048 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7049
7050 kfree(filter_str);
7051 return ret;
7052}
7053
7054static void perf_event_free_filter(struct perf_event *event)
7055{
7056 ftrace_profile_free_filter(event);
7057}
7058
2541517c
AS
7059static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7060{
7061 struct bpf_prog *prog;
7062
7063 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7064 return -EINVAL;
7065
7066 if (event->tp_event->prog)
7067 return -EEXIST;
7068
04a22fae
WN
7069 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7070 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7071 return -EINVAL;
7072
7073 prog = bpf_prog_get(prog_fd);
7074 if (IS_ERR(prog))
7075 return PTR_ERR(prog);
7076
6c373ca8 7077 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7078 /* valid fd, but invalid bpf program type */
7079 bpf_prog_put(prog);
7080 return -EINVAL;
7081 }
7082
7083 event->tp_event->prog = prog;
7084
7085 return 0;
7086}
7087
7088static void perf_event_free_bpf_prog(struct perf_event *event)
7089{
7090 struct bpf_prog *prog;
7091
7092 if (!event->tp_event)
7093 return;
7094
7095 prog = event->tp_event->prog;
7096 if (prog) {
7097 event->tp_event->prog = NULL;
7098 bpf_prog_put(prog);
7099 }
7100}
7101
e077df4f 7102#else
6fb2915d 7103
b0a873eb 7104static inline void perf_tp_register(void)
e077df4f 7105{
e077df4f 7106}
6fb2915d
LZ
7107
7108static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7109{
7110 return -ENOENT;
7111}
7112
7113static void perf_event_free_filter(struct perf_event *event)
7114{
7115}
7116
2541517c
AS
7117static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7118{
7119 return -ENOENT;
7120}
7121
7122static void perf_event_free_bpf_prog(struct perf_event *event)
7123{
7124}
07b139c8 7125#endif /* CONFIG_EVENT_TRACING */
e077df4f 7126
24f1e32c 7127#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7128void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7129{
f5ffe02e
FW
7130 struct perf_sample_data sample;
7131 struct pt_regs *regs = data;
7132
fd0d000b 7133 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7134
a4eaf7f1 7135 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7136 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7137}
7138#endif
7139
b0a873eb
PZ
7140/*
7141 * hrtimer based swevent callback
7142 */
f29ac756 7143
b0a873eb 7144static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7145{
b0a873eb
PZ
7146 enum hrtimer_restart ret = HRTIMER_RESTART;
7147 struct perf_sample_data data;
7148 struct pt_regs *regs;
7149 struct perf_event *event;
7150 u64 period;
f29ac756 7151
b0a873eb 7152 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7153
7154 if (event->state != PERF_EVENT_STATE_ACTIVE)
7155 return HRTIMER_NORESTART;
7156
b0a873eb 7157 event->pmu->read(event);
f344011c 7158
fd0d000b 7159 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7160 regs = get_irq_regs();
7161
7162 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7163 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7164 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7165 ret = HRTIMER_NORESTART;
7166 }
24f1e32c 7167
b0a873eb
PZ
7168 period = max_t(u64, 10000, event->hw.sample_period);
7169 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7170
b0a873eb 7171 return ret;
f29ac756
PZ
7172}
7173
b0a873eb 7174static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7175{
b0a873eb 7176 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7177 s64 period;
7178
7179 if (!is_sampling_event(event))
7180 return;
f5ffe02e 7181
5d508e82
FBH
7182 period = local64_read(&hwc->period_left);
7183 if (period) {
7184 if (period < 0)
7185 period = 10000;
fa407f35 7186
5d508e82
FBH
7187 local64_set(&hwc->period_left, 0);
7188 } else {
7189 period = max_t(u64, 10000, hwc->sample_period);
7190 }
3497d206
TG
7191 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7192 HRTIMER_MODE_REL_PINNED);
24f1e32c 7193}
b0a873eb
PZ
7194
7195static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7196{
b0a873eb
PZ
7197 struct hw_perf_event *hwc = &event->hw;
7198
6c7e550f 7199 if (is_sampling_event(event)) {
b0a873eb 7200 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7201 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7202
7203 hrtimer_cancel(&hwc->hrtimer);
7204 }
24f1e32c
FW
7205}
7206
ba3dd36c
PZ
7207static void perf_swevent_init_hrtimer(struct perf_event *event)
7208{
7209 struct hw_perf_event *hwc = &event->hw;
7210
7211 if (!is_sampling_event(event))
7212 return;
7213
7214 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7215 hwc->hrtimer.function = perf_swevent_hrtimer;
7216
7217 /*
7218 * Since hrtimers have a fixed rate, we can do a static freq->period
7219 * mapping and avoid the whole period adjust feedback stuff.
7220 */
7221 if (event->attr.freq) {
7222 long freq = event->attr.sample_freq;
7223
7224 event->attr.sample_period = NSEC_PER_SEC / freq;
7225 hwc->sample_period = event->attr.sample_period;
7226 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7227 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7228 event->attr.freq = 0;
7229 }
7230}
7231
b0a873eb
PZ
7232/*
7233 * Software event: cpu wall time clock
7234 */
7235
7236static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7237{
b0a873eb
PZ
7238 s64 prev;
7239 u64 now;
7240
a4eaf7f1 7241 now = local_clock();
b0a873eb
PZ
7242 prev = local64_xchg(&event->hw.prev_count, now);
7243 local64_add(now - prev, &event->count);
24f1e32c 7244}
24f1e32c 7245
a4eaf7f1 7246static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7247{
a4eaf7f1 7248 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7249 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7250}
7251
a4eaf7f1 7252static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7253{
b0a873eb
PZ
7254 perf_swevent_cancel_hrtimer(event);
7255 cpu_clock_event_update(event);
7256}
f29ac756 7257
a4eaf7f1
PZ
7258static int cpu_clock_event_add(struct perf_event *event, int flags)
7259{
7260 if (flags & PERF_EF_START)
7261 cpu_clock_event_start(event, flags);
6a694a60 7262 perf_event_update_userpage(event);
a4eaf7f1
PZ
7263
7264 return 0;
7265}
7266
7267static void cpu_clock_event_del(struct perf_event *event, int flags)
7268{
7269 cpu_clock_event_stop(event, flags);
7270}
7271
b0a873eb
PZ
7272static void cpu_clock_event_read(struct perf_event *event)
7273{
7274 cpu_clock_event_update(event);
7275}
f344011c 7276
b0a873eb
PZ
7277static int cpu_clock_event_init(struct perf_event *event)
7278{
7279 if (event->attr.type != PERF_TYPE_SOFTWARE)
7280 return -ENOENT;
7281
7282 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7283 return -ENOENT;
7284
2481c5fa
SE
7285 /*
7286 * no branch sampling for software events
7287 */
7288 if (has_branch_stack(event))
7289 return -EOPNOTSUPP;
7290
ba3dd36c
PZ
7291 perf_swevent_init_hrtimer(event);
7292
b0a873eb 7293 return 0;
f29ac756
PZ
7294}
7295
b0a873eb 7296static struct pmu perf_cpu_clock = {
89a1e187
PZ
7297 .task_ctx_nr = perf_sw_context,
7298
34f43927
PZ
7299 .capabilities = PERF_PMU_CAP_NO_NMI,
7300
b0a873eb 7301 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7302 .add = cpu_clock_event_add,
7303 .del = cpu_clock_event_del,
7304 .start = cpu_clock_event_start,
7305 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7306 .read = cpu_clock_event_read,
7307};
7308
7309/*
7310 * Software event: task time clock
7311 */
7312
7313static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7314{
b0a873eb
PZ
7315 u64 prev;
7316 s64 delta;
5c92d124 7317
b0a873eb
PZ
7318 prev = local64_xchg(&event->hw.prev_count, now);
7319 delta = now - prev;
7320 local64_add(delta, &event->count);
7321}
5c92d124 7322
a4eaf7f1 7323static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7324{
a4eaf7f1 7325 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7326 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7327}
7328
a4eaf7f1 7329static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7330{
7331 perf_swevent_cancel_hrtimer(event);
7332 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7333}
7334
7335static int task_clock_event_add(struct perf_event *event, int flags)
7336{
7337 if (flags & PERF_EF_START)
7338 task_clock_event_start(event, flags);
6a694a60 7339 perf_event_update_userpage(event);
b0a873eb 7340
a4eaf7f1
PZ
7341 return 0;
7342}
7343
7344static void task_clock_event_del(struct perf_event *event, int flags)
7345{
7346 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7347}
7348
7349static void task_clock_event_read(struct perf_event *event)
7350{
768a06e2
PZ
7351 u64 now = perf_clock();
7352 u64 delta = now - event->ctx->timestamp;
7353 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7354
7355 task_clock_event_update(event, time);
7356}
7357
7358static int task_clock_event_init(struct perf_event *event)
6fb2915d 7359{
b0a873eb
PZ
7360 if (event->attr.type != PERF_TYPE_SOFTWARE)
7361 return -ENOENT;
7362
7363 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7364 return -ENOENT;
7365
2481c5fa
SE
7366 /*
7367 * no branch sampling for software events
7368 */
7369 if (has_branch_stack(event))
7370 return -EOPNOTSUPP;
7371
ba3dd36c
PZ
7372 perf_swevent_init_hrtimer(event);
7373
b0a873eb 7374 return 0;
6fb2915d
LZ
7375}
7376
b0a873eb 7377static struct pmu perf_task_clock = {
89a1e187
PZ
7378 .task_ctx_nr = perf_sw_context,
7379
34f43927
PZ
7380 .capabilities = PERF_PMU_CAP_NO_NMI,
7381
b0a873eb 7382 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7383 .add = task_clock_event_add,
7384 .del = task_clock_event_del,
7385 .start = task_clock_event_start,
7386 .stop = task_clock_event_stop,
b0a873eb
PZ
7387 .read = task_clock_event_read,
7388};
6fb2915d 7389
ad5133b7 7390static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7391{
e077df4f 7392}
6fb2915d 7393
fbbe0701
SB
7394static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7395{
7396}
7397
ad5133b7 7398static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7399{
ad5133b7 7400 return 0;
6fb2915d
LZ
7401}
7402
18ab2cd3 7403static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7404
7405static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7406{
fbbe0701
SB
7407 __this_cpu_write(nop_txn_flags, flags);
7408
7409 if (flags & ~PERF_PMU_TXN_ADD)
7410 return;
7411
ad5133b7 7412 perf_pmu_disable(pmu);
6fb2915d
LZ
7413}
7414
ad5133b7
PZ
7415static int perf_pmu_commit_txn(struct pmu *pmu)
7416{
fbbe0701
SB
7417 unsigned int flags = __this_cpu_read(nop_txn_flags);
7418
7419 __this_cpu_write(nop_txn_flags, 0);
7420
7421 if (flags & ~PERF_PMU_TXN_ADD)
7422 return 0;
7423
ad5133b7
PZ
7424 perf_pmu_enable(pmu);
7425 return 0;
7426}
e077df4f 7427
ad5133b7 7428static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7429{
fbbe0701
SB
7430 unsigned int flags = __this_cpu_read(nop_txn_flags);
7431
7432 __this_cpu_write(nop_txn_flags, 0);
7433
7434 if (flags & ~PERF_PMU_TXN_ADD)
7435 return;
7436
ad5133b7 7437 perf_pmu_enable(pmu);
24f1e32c
FW
7438}
7439
35edc2a5
PZ
7440static int perf_event_idx_default(struct perf_event *event)
7441{
c719f560 7442 return 0;
35edc2a5
PZ
7443}
7444
8dc85d54
PZ
7445/*
7446 * Ensures all contexts with the same task_ctx_nr have the same
7447 * pmu_cpu_context too.
7448 */
9e317041 7449static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7450{
8dc85d54 7451 struct pmu *pmu;
b326e956 7452
8dc85d54
PZ
7453 if (ctxn < 0)
7454 return NULL;
24f1e32c 7455
8dc85d54
PZ
7456 list_for_each_entry(pmu, &pmus, entry) {
7457 if (pmu->task_ctx_nr == ctxn)
7458 return pmu->pmu_cpu_context;
7459 }
24f1e32c 7460
8dc85d54 7461 return NULL;
24f1e32c
FW
7462}
7463
51676957 7464static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7465{
51676957
PZ
7466 int cpu;
7467
7468 for_each_possible_cpu(cpu) {
7469 struct perf_cpu_context *cpuctx;
7470
7471 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7472
3f1f3320
PZ
7473 if (cpuctx->unique_pmu == old_pmu)
7474 cpuctx->unique_pmu = pmu;
51676957
PZ
7475 }
7476}
7477
7478static void free_pmu_context(struct pmu *pmu)
7479{
7480 struct pmu *i;
f5ffe02e 7481
8dc85d54 7482 mutex_lock(&pmus_lock);
0475f9ea 7483 /*
8dc85d54 7484 * Like a real lame refcount.
0475f9ea 7485 */
51676957
PZ
7486 list_for_each_entry(i, &pmus, entry) {
7487 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7488 update_pmu_context(i, pmu);
8dc85d54 7489 goto out;
51676957 7490 }
8dc85d54 7491 }
d6d020e9 7492
51676957 7493 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7494out:
7495 mutex_unlock(&pmus_lock);
24f1e32c 7496}
2e80a82a 7497static struct idr pmu_idr;
d6d020e9 7498
abe43400
PZ
7499static ssize_t
7500type_show(struct device *dev, struct device_attribute *attr, char *page)
7501{
7502 struct pmu *pmu = dev_get_drvdata(dev);
7503
7504 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7505}
90826ca7 7506static DEVICE_ATTR_RO(type);
abe43400 7507
62b85639
SE
7508static ssize_t
7509perf_event_mux_interval_ms_show(struct device *dev,
7510 struct device_attribute *attr,
7511 char *page)
7512{
7513 struct pmu *pmu = dev_get_drvdata(dev);
7514
7515 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7516}
7517
272325c4
PZ
7518static DEFINE_MUTEX(mux_interval_mutex);
7519
62b85639
SE
7520static ssize_t
7521perf_event_mux_interval_ms_store(struct device *dev,
7522 struct device_attribute *attr,
7523 const char *buf, size_t count)
7524{
7525 struct pmu *pmu = dev_get_drvdata(dev);
7526 int timer, cpu, ret;
7527
7528 ret = kstrtoint(buf, 0, &timer);
7529 if (ret)
7530 return ret;
7531
7532 if (timer < 1)
7533 return -EINVAL;
7534
7535 /* same value, noting to do */
7536 if (timer == pmu->hrtimer_interval_ms)
7537 return count;
7538
272325c4 7539 mutex_lock(&mux_interval_mutex);
62b85639
SE
7540 pmu->hrtimer_interval_ms = timer;
7541
7542 /* update all cpuctx for this PMU */
272325c4
PZ
7543 get_online_cpus();
7544 for_each_online_cpu(cpu) {
62b85639
SE
7545 struct perf_cpu_context *cpuctx;
7546 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7547 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7548
272325c4
PZ
7549 cpu_function_call(cpu,
7550 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7551 }
272325c4
PZ
7552 put_online_cpus();
7553 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7554
7555 return count;
7556}
90826ca7 7557static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7558
90826ca7
GKH
7559static struct attribute *pmu_dev_attrs[] = {
7560 &dev_attr_type.attr,
7561 &dev_attr_perf_event_mux_interval_ms.attr,
7562 NULL,
abe43400 7563};
90826ca7 7564ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7565
7566static int pmu_bus_running;
7567static struct bus_type pmu_bus = {
7568 .name = "event_source",
90826ca7 7569 .dev_groups = pmu_dev_groups,
abe43400
PZ
7570};
7571
7572static void pmu_dev_release(struct device *dev)
7573{
7574 kfree(dev);
7575}
7576
7577static int pmu_dev_alloc(struct pmu *pmu)
7578{
7579 int ret = -ENOMEM;
7580
7581 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7582 if (!pmu->dev)
7583 goto out;
7584
0c9d42ed 7585 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7586 device_initialize(pmu->dev);
7587 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7588 if (ret)
7589 goto free_dev;
7590
7591 dev_set_drvdata(pmu->dev, pmu);
7592 pmu->dev->bus = &pmu_bus;
7593 pmu->dev->release = pmu_dev_release;
7594 ret = device_add(pmu->dev);
7595 if (ret)
7596 goto free_dev;
7597
7598out:
7599 return ret;
7600
7601free_dev:
7602 put_device(pmu->dev);
7603 goto out;
7604}
7605
547e9fd7 7606static struct lock_class_key cpuctx_mutex;
facc4307 7607static struct lock_class_key cpuctx_lock;
547e9fd7 7608
03d8e80b 7609int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7610{
108b02cf 7611 int cpu, ret;
24f1e32c 7612
b0a873eb 7613 mutex_lock(&pmus_lock);
33696fc0
PZ
7614 ret = -ENOMEM;
7615 pmu->pmu_disable_count = alloc_percpu(int);
7616 if (!pmu->pmu_disable_count)
7617 goto unlock;
f29ac756 7618
2e80a82a
PZ
7619 pmu->type = -1;
7620 if (!name)
7621 goto skip_type;
7622 pmu->name = name;
7623
7624 if (type < 0) {
0e9c3be2
TH
7625 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7626 if (type < 0) {
7627 ret = type;
2e80a82a
PZ
7628 goto free_pdc;
7629 }
7630 }
7631 pmu->type = type;
7632
abe43400
PZ
7633 if (pmu_bus_running) {
7634 ret = pmu_dev_alloc(pmu);
7635 if (ret)
7636 goto free_idr;
7637 }
7638
2e80a82a 7639skip_type:
8dc85d54
PZ
7640 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7641 if (pmu->pmu_cpu_context)
7642 goto got_cpu_context;
f29ac756 7643
c4814202 7644 ret = -ENOMEM;
108b02cf
PZ
7645 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7646 if (!pmu->pmu_cpu_context)
abe43400 7647 goto free_dev;
f344011c 7648
108b02cf
PZ
7649 for_each_possible_cpu(cpu) {
7650 struct perf_cpu_context *cpuctx;
7651
7652 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7653 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7654 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7655 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7656 cpuctx->ctx.pmu = pmu;
9e630205 7657
272325c4 7658 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7659
3f1f3320 7660 cpuctx->unique_pmu = pmu;
108b02cf 7661 }
76e1d904 7662
8dc85d54 7663got_cpu_context:
ad5133b7
PZ
7664 if (!pmu->start_txn) {
7665 if (pmu->pmu_enable) {
7666 /*
7667 * If we have pmu_enable/pmu_disable calls, install
7668 * transaction stubs that use that to try and batch
7669 * hardware accesses.
7670 */
7671 pmu->start_txn = perf_pmu_start_txn;
7672 pmu->commit_txn = perf_pmu_commit_txn;
7673 pmu->cancel_txn = perf_pmu_cancel_txn;
7674 } else {
fbbe0701 7675 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7676 pmu->commit_txn = perf_pmu_nop_int;
7677 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7678 }
5c92d124 7679 }
15dbf27c 7680
ad5133b7
PZ
7681 if (!pmu->pmu_enable) {
7682 pmu->pmu_enable = perf_pmu_nop_void;
7683 pmu->pmu_disable = perf_pmu_nop_void;
7684 }
7685
35edc2a5
PZ
7686 if (!pmu->event_idx)
7687 pmu->event_idx = perf_event_idx_default;
7688
b0a873eb 7689 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7690 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7691 ret = 0;
7692unlock:
b0a873eb
PZ
7693 mutex_unlock(&pmus_lock);
7694
33696fc0 7695 return ret;
108b02cf 7696
abe43400
PZ
7697free_dev:
7698 device_del(pmu->dev);
7699 put_device(pmu->dev);
7700
2e80a82a
PZ
7701free_idr:
7702 if (pmu->type >= PERF_TYPE_MAX)
7703 idr_remove(&pmu_idr, pmu->type);
7704
108b02cf
PZ
7705free_pdc:
7706 free_percpu(pmu->pmu_disable_count);
7707 goto unlock;
f29ac756 7708}
c464c76e 7709EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7710
b0a873eb 7711void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7712{
b0a873eb
PZ
7713 mutex_lock(&pmus_lock);
7714 list_del_rcu(&pmu->entry);
7715 mutex_unlock(&pmus_lock);
5c92d124 7716
0475f9ea 7717 /*
cde8e884
PZ
7718 * We dereference the pmu list under both SRCU and regular RCU, so
7719 * synchronize against both of those.
0475f9ea 7720 */
b0a873eb 7721 synchronize_srcu(&pmus_srcu);
cde8e884 7722 synchronize_rcu();
d6d020e9 7723
33696fc0 7724 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7725 if (pmu->type >= PERF_TYPE_MAX)
7726 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7727 device_del(pmu->dev);
7728 put_device(pmu->dev);
51676957 7729 free_pmu_context(pmu);
b0a873eb 7730}
c464c76e 7731EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7732
cc34b98b
MR
7733static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7734{
ccd41c86 7735 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7736 int ret;
7737
7738 if (!try_module_get(pmu->module))
7739 return -ENODEV;
ccd41c86
PZ
7740
7741 if (event->group_leader != event) {
8b10c5e2
PZ
7742 /*
7743 * This ctx->mutex can nest when we're called through
7744 * inheritance. See the perf_event_ctx_lock_nested() comment.
7745 */
7746 ctx = perf_event_ctx_lock_nested(event->group_leader,
7747 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7748 BUG_ON(!ctx);
7749 }
7750
cc34b98b
MR
7751 event->pmu = pmu;
7752 ret = pmu->event_init(event);
ccd41c86
PZ
7753
7754 if (ctx)
7755 perf_event_ctx_unlock(event->group_leader, ctx);
7756
cc34b98b
MR
7757 if (ret)
7758 module_put(pmu->module);
7759
7760 return ret;
7761}
7762
18ab2cd3 7763static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7764{
7765 struct pmu *pmu = NULL;
7766 int idx;
940c5b29 7767 int ret;
b0a873eb
PZ
7768
7769 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7770
7771 rcu_read_lock();
7772 pmu = idr_find(&pmu_idr, event->attr.type);
7773 rcu_read_unlock();
940c5b29 7774 if (pmu) {
cc34b98b 7775 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7776 if (ret)
7777 pmu = ERR_PTR(ret);
2e80a82a 7778 goto unlock;
940c5b29 7779 }
2e80a82a 7780
b0a873eb 7781 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7782 ret = perf_try_init_event(pmu, event);
b0a873eb 7783 if (!ret)
e5f4d339 7784 goto unlock;
76e1d904 7785
b0a873eb
PZ
7786 if (ret != -ENOENT) {
7787 pmu = ERR_PTR(ret);
e5f4d339 7788 goto unlock;
f344011c 7789 }
5c92d124 7790 }
e5f4d339
PZ
7791 pmu = ERR_PTR(-ENOENT);
7792unlock:
b0a873eb 7793 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7794
4aeb0b42 7795 return pmu;
5c92d124
IM
7796}
7797
4beb31f3
FW
7798static void account_event_cpu(struct perf_event *event, int cpu)
7799{
7800 if (event->parent)
7801 return;
7802
4beb31f3
FW
7803 if (is_cgroup_event(event))
7804 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7805}
7806
766d6c07
FW
7807static void account_event(struct perf_event *event)
7808{
4beb31f3
FW
7809 if (event->parent)
7810 return;
7811
766d6c07
FW
7812 if (event->attach_state & PERF_ATTACH_TASK)
7813 static_key_slow_inc(&perf_sched_events.key);
7814 if (event->attr.mmap || event->attr.mmap_data)
7815 atomic_inc(&nr_mmap_events);
7816 if (event->attr.comm)
7817 atomic_inc(&nr_comm_events);
7818 if (event->attr.task)
7819 atomic_inc(&nr_task_events);
948b26b6
FW
7820 if (event->attr.freq) {
7821 if (atomic_inc_return(&nr_freq_events) == 1)
7822 tick_nohz_full_kick_all();
7823 }
45ac1403
AH
7824 if (event->attr.context_switch) {
7825 atomic_inc(&nr_switch_events);
7826 static_key_slow_inc(&perf_sched_events.key);
7827 }
4beb31f3 7828 if (has_branch_stack(event))
766d6c07 7829 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7830 if (is_cgroup_event(event))
766d6c07 7831 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7832
7833 account_event_cpu(event, event->cpu);
766d6c07
FW
7834}
7835
0793a61d 7836/*
cdd6c482 7837 * Allocate and initialize a event structure
0793a61d 7838 */
cdd6c482 7839static struct perf_event *
c3f00c70 7840perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7841 struct task_struct *task,
7842 struct perf_event *group_leader,
7843 struct perf_event *parent_event,
4dc0da86 7844 perf_overflow_handler_t overflow_handler,
79dff51e 7845 void *context, int cgroup_fd)
0793a61d 7846{
51b0fe39 7847 struct pmu *pmu;
cdd6c482
IM
7848 struct perf_event *event;
7849 struct hw_perf_event *hwc;
90983b16 7850 long err = -EINVAL;
0793a61d 7851
66832eb4
ON
7852 if ((unsigned)cpu >= nr_cpu_ids) {
7853 if (!task || cpu != -1)
7854 return ERR_PTR(-EINVAL);
7855 }
7856
c3f00c70 7857 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7858 if (!event)
d5d2bc0d 7859 return ERR_PTR(-ENOMEM);
0793a61d 7860
04289bb9 7861 /*
cdd6c482 7862 * Single events are their own group leaders, with an
04289bb9
IM
7863 * empty sibling list:
7864 */
7865 if (!group_leader)
cdd6c482 7866 group_leader = event;
04289bb9 7867
cdd6c482
IM
7868 mutex_init(&event->child_mutex);
7869 INIT_LIST_HEAD(&event->child_list);
fccc714b 7870
cdd6c482
IM
7871 INIT_LIST_HEAD(&event->group_entry);
7872 INIT_LIST_HEAD(&event->event_entry);
7873 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7874 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7875 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7876 INIT_HLIST_NODE(&event->hlist_entry);
7877
10c6db11 7878
cdd6c482 7879 init_waitqueue_head(&event->waitq);
e360adbe 7880 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7881
cdd6c482 7882 mutex_init(&event->mmap_mutex);
7b732a75 7883
a6fa941d 7884 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7885 event->cpu = cpu;
7886 event->attr = *attr;
7887 event->group_leader = group_leader;
7888 event->pmu = NULL;
cdd6c482 7889 event->oncpu = -1;
a96bbc16 7890
cdd6c482 7891 event->parent = parent_event;
b84fbc9f 7892
17cf22c3 7893 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7894 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7895
cdd6c482 7896 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7897
d580ff86
PZ
7898 if (task) {
7899 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7900 /*
50f16a8b
PZ
7901 * XXX pmu::event_init needs to know what task to account to
7902 * and we cannot use the ctx information because we need the
7903 * pmu before we get a ctx.
d580ff86 7904 */
50f16a8b 7905 event->hw.target = task;
d580ff86
PZ
7906 }
7907
34f43927
PZ
7908 event->clock = &local_clock;
7909 if (parent_event)
7910 event->clock = parent_event->clock;
7911
4dc0da86 7912 if (!overflow_handler && parent_event) {
b326e956 7913 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7914 context = parent_event->overflow_handler_context;
7915 }
66832eb4 7916
b326e956 7917 event->overflow_handler = overflow_handler;
4dc0da86 7918 event->overflow_handler_context = context;
97eaf530 7919
0231bb53 7920 perf_event__state_init(event);
a86ed508 7921
4aeb0b42 7922 pmu = NULL;
b8e83514 7923
cdd6c482 7924 hwc = &event->hw;
bd2b5b12 7925 hwc->sample_period = attr->sample_period;
0d48696f 7926 if (attr->freq && attr->sample_freq)
bd2b5b12 7927 hwc->sample_period = 1;
eced1dfc 7928 hwc->last_period = hwc->sample_period;
bd2b5b12 7929
e7850595 7930 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7931
2023b359 7932 /*
cdd6c482 7933 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7934 */
3dab77fb 7935 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7936 goto err_ns;
a46a2300
YZ
7937
7938 if (!has_branch_stack(event))
7939 event->attr.branch_sample_type = 0;
2023b359 7940
79dff51e
MF
7941 if (cgroup_fd != -1) {
7942 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7943 if (err)
7944 goto err_ns;
7945 }
7946
b0a873eb 7947 pmu = perf_init_event(event);
4aeb0b42 7948 if (!pmu)
90983b16
FW
7949 goto err_ns;
7950 else if (IS_ERR(pmu)) {
4aeb0b42 7951 err = PTR_ERR(pmu);
90983b16 7952 goto err_ns;
621a01ea 7953 }
d5d2bc0d 7954
bed5b25a
AS
7955 err = exclusive_event_init(event);
7956 if (err)
7957 goto err_pmu;
7958
cdd6c482 7959 if (!event->parent) {
927c7a9e
FW
7960 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7961 err = get_callchain_buffers();
90983b16 7962 if (err)
bed5b25a 7963 goto err_per_task;
d010b332 7964 }
f344011c 7965 }
9ee318a7 7966
cdd6c482 7967 return event;
90983b16 7968
bed5b25a
AS
7969err_per_task:
7970 exclusive_event_destroy(event);
7971
90983b16
FW
7972err_pmu:
7973 if (event->destroy)
7974 event->destroy(event);
c464c76e 7975 module_put(pmu->module);
90983b16 7976err_ns:
79dff51e
MF
7977 if (is_cgroup_event(event))
7978 perf_detach_cgroup(event);
90983b16
FW
7979 if (event->ns)
7980 put_pid_ns(event->ns);
7981 kfree(event);
7982
7983 return ERR_PTR(err);
0793a61d
TG
7984}
7985
cdd6c482
IM
7986static int perf_copy_attr(struct perf_event_attr __user *uattr,
7987 struct perf_event_attr *attr)
974802ea 7988{
974802ea 7989 u32 size;
cdf8073d 7990 int ret;
974802ea
PZ
7991
7992 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7993 return -EFAULT;
7994
7995 /*
7996 * zero the full structure, so that a short copy will be nice.
7997 */
7998 memset(attr, 0, sizeof(*attr));
7999
8000 ret = get_user(size, &uattr->size);
8001 if (ret)
8002 return ret;
8003
8004 if (size > PAGE_SIZE) /* silly large */
8005 goto err_size;
8006
8007 if (!size) /* abi compat */
8008 size = PERF_ATTR_SIZE_VER0;
8009
8010 if (size < PERF_ATTR_SIZE_VER0)
8011 goto err_size;
8012
8013 /*
8014 * If we're handed a bigger struct than we know of,
cdf8073d
IS
8015 * ensure all the unknown bits are 0 - i.e. new
8016 * user-space does not rely on any kernel feature
8017 * extensions we dont know about yet.
974802ea
PZ
8018 */
8019 if (size > sizeof(*attr)) {
cdf8073d
IS
8020 unsigned char __user *addr;
8021 unsigned char __user *end;
8022 unsigned char val;
974802ea 8023
cdf8073d
IS
8024 addr = (void __user *)uattr + sizeof(*attr);
8025 end = (void __user *)uattr + size;
974802ea 8026
cdf8073d 8027 for (; addr < end; addr++) {
974802ea
PZ
8028 ret = get_user(val, addr);
8029 if (ret)
8030 return ret;
8031 if (val)
8032 goto err_size;
8033 }
b3e62e35 8034 size = sizeof(*attr);
974802ea
PZ
8035 }
8036
8037 ret = copy_from_user(attr, uattr, size);
8038 if (ret)
8039 return -EFAULT;
8040
cd757645 8041 if (attr->__reserved_1)
974802ea
PZ
8042 return -EINVAL;
8043
8044 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8045 return -EINVAL;
8046
8047 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8048 return -EINVAL;
8049
bce38cd5
SE
8050 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8051 u64 mask = attr->branch_sample_type;
8052
8053 /* only using defined bits */
8054 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8055 return -EINVAL;
8056
8057 /* at least one branch bit must be set */
8058 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8059 return -EINVAL;
8060
bce38cd5
SE
8061 /* propagate priv level, when not set for branch */
8062 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8063
8064 /* exclude_kernel checked on syscall entry */
8065 if (!attr->exclude_kernel)
8066 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8067
8068 if (!attr->exclude_user)
8069 mask |= PERF_SAMPLE_BRANCH_USER;
8070
8071 if (!attr->exclude_hv)
8072 mask |= PERF_SAMPLE_BRANCH_HV;
8073 /*
8074 * adjust user setting (for HW filter setup)
8075 */
8076 attr->branch_sample_type = mask;
8077 }
e712209a
SE
8078 /* privileged levels capture (kernel, hv): check permissions */
8079 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8080 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8081 return -EACCES;
bce38cd5 8082 }
4018994f 8083
c5ebcedb 8084 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8085 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8086 if (ret)
8087 return ret;
8088 }
8089
8090 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8091 if (!arch_perf_have_user_stack_dump())
8092 return -ENOSYS;
8093
8094 /*
8095 * We have __u32 type for the size, but so far
8096 * we can only use __u16 as maximum due to the
8097 * __u16 sample size limit.
8098 */
8099 if (attr->sample_stack_user >= USHRT_MAX)
8100 ret = -EINVAL;
8101 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8102 ret = -EINVAL;
8103 }
4018994f 8104
60e2364e
SE
8105 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8106 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8107out:
8108 return ret;
8109
8110err_size:
8111 put_user(sizeof(*attr), &uattr->size);
8112 ret = -E2BIG;
8113 goto out;
8114}
8115
ac9721f3
PZ
8116static int
8117perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8118{
b69cf536 8119 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8120 int ret = -EINVAL;
8121
ac9721f3 8122 if (!output_event)
a4be7c27
PZ
8123 goto set;
8124
ac9721f3
PZ
8125 /* don't allow circular references */
8126 if (event == output_event)
a4be7c27
PZ
8127 goto out;
8128
0f139300
PZ
8129 /*
8130 * Don't allow cross-cpu buffers
8131 */
8132 if (output_event->cpu != event->cpu)
8133 goto out;
8134
8135 /*
76369139 8136 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8137 */
8138 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8139 goto out;
8140
34f43927
PZ
8141 /*
8142 * Mixing clocks in the same buffer is trouble you don't need.
8143 */
8144 if (output_event->clock != event->clock)
8145 goto out;
8146
45bfb2e5
PZ
8147 /*
8148 * If both events generate aux data, they must be on the same PMU
8149 */
8150 if (has_aux(event) && has_aux(output_event) &&
8151 event->pmu != output_event->pmu)
8152 goto out;
8153
a4be7c27 8154set:
cdd6c482 8155 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8156 /* Can't redirect output if we've got an active mmap() */
8157 if (atomic_read(&event->mmap_count))
8158 goto unlock;
a4be7c27 8159
ac9721f3 8160 if (output_event) {
76369139
FW
8161 /* get the rb we want to redirect to */
8162 rb = ring_buffer_get(output_event);
8163 if (!rb)
ac9721f3 8164 goto unlock;
a4be7c27
PZ
8165 }
8166
b69cf536 8167 ring_buffer_attach(event, rb);
9bb5d40c 8168
a4be7c27 8169 ret = 0;
ac9721f3
PZ
8170unlock:
8171 mutex_unlock(&event->mmap_mutex);
8172
a4be7c27 8173out:
a4be7c27
PZ
8174 return ret;
8175}
8176
f63a8daa
PZ
8177static void mutex_lock_double(struct mutex *a, struct mutex *b)
8178{
8179 if (b < a)
8180 swap(a, b);
8181
8182 mutex_lock(a);
8183 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8184}
8185
34f43927
PZ
8186static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8187{
8188 bool nmi_safe = false;
8189
8190 switch (clk_id) {
8191 case CLOCK_MONOTONIC:
8192 event->clock = &ktime_get_mono_fast_ns;
8193 nmi_safe = true;
8194 break;
8195
8196 case CLOCK_MONOTONIC_RAW:
8197 event->clock = &ktime_get_raw_fast_ns;
8198 nmi_safe = true;
8199 break;
8200
8201 case CLOCK_REALTIME:
8202 event->clock = &ktime_get_real_ns;
8203 break;
8204
8205 case CLOCK_BOOTTIME:
8206 event->clock = &ktime_get_boot_ns;
8207 break;
8208
8209 case CLOCK_TAI:
8210 event->clock = &ktime_get_tai_ns;
8211 break;
8212
8213 default:
8214 return -EINVAL;
8215 }
8216
8217 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8218 return -EINVAL;
8219
8220 return 0;
8221}
8222
0793a61d 8223/**
cdd6c482 8224 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8225 *
cdd6c482 8226 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8227 * @pid: target pid
9f66a381 8228 * @cpu: target cpu
cdd6c482 8229 * @group_fd: group leader event fd
0793a61d 8230 */
cdd6c482
IM
8231SYSCALL_DEFINE5(perf_event_open,
8232 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8233 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8234{
b04243ef
PZ
8235 struct perf_event *group_leader = NULL, *output_event = NULL;
8236 struct perf_event *event, *sibling;
cdd6c482 8237 struct perf_event_attr attr;
f63a8daa 8238 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8239 struct file *event_file = NULL;
2903ff01 8240 struct fd group = {NULL, 0};
38a81da2 8241 struct task_struct *task = NULL;
89a1e187 8242 struct pmu *pmu;
ea635c64 8243 int event_fd;
b04243ef 8244 int move_group = 0;
dc86cabe 8245 int err;
a21b0b35 8246 int f_flags = O_RDWR;
79dff51e 8247 int cgroup_fd = -1;
0793a61d 8248
2743a5b0 8249 /* for future expandability... */
e5d1367f 8250 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8251 return -EINVAL;
8252
dc86cabe
IM
8253 err = perf_copy_attr(attr_uptr, &attr);
8254 if (err)
8255 return err;
eab656ae 8256
0764771d
PZ
8257 if (!attr.exclude_kernel) {
8258 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8259 return -EACCES;
8260 }
8261
df58ab24 8262 if (attr.freq) {
cdd6c482 8263 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8264 return -EINVAL;
0819b2e3
PZ
8265 } else {
8266 if (attr.sample_period & (1ULL << 63))
8267 return -EINVAL;
df58ab24
PZ
8268 }
8269
e5d1367f
SE
8270 /*
8271 * In cgroup mode, the pid argument is used to pass the fd
8272 * opened to the cgroup directory in cgroupfs. The cpu argument
8273 * designates the cpu on which to monitor threads from that
8274 * cgroup.
8275 */
8276 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8277 return -EINVAL;
8278
a21b0b35
YD
8279 if (flags & PERF_FLAG_FD_CLOEXEC)
8280 f_flags |= O_CLOEXEC;
8281
8282 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8283 if (event_fd < 0)
8284 return event_fd;
8285
ac9721f3 8286 if (group_fd != -1) {
2903ff01
AV
8287 err = perf_fget_light(group_fd, &group);
8288 if (err)
d14b12d7 8289 goto err_fd;
2903ff01 8290 group_leader = group.file->private_data;
ac9721f3
PZ
8291 if (flags & PERF_FLAG_FD_OUTPUT)
8292 output_event = group_leader;
8293 if (flags & PERF_FLAG_FD_NO_GROUP)
8294 group_leader = NULL;
8295 }
8296
e5d1367f 8297 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8298 task = find_lively_task_by_vpid(pid);
8299 if (IS_ERR(task)) {
8300 err = PTR_ERR(task);
8301 goto err_group_fd;
8302 }
8303 }
8304
1f4ee503
PZ
8305 if (task && group_leader &&
8306 group_leader->attr.inherit != attr.inherit) {
8307 err = -EINVAL;
8308 goto err_task;
8309 }
8310
fbfc623f
YZ
8311 get_online_cpus();
8312
79dff51e
MF
8313 if (flags & PERF_FLAG_PID_CGROUP)
8314 cgroup_fd = pid;
8315
4dc0da86 8316 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8317 NULL, NULL, cgroup_fd);
d14b12d7
SE
8318 if (IS_ERR(event)) {
8319 err = PTR_ERR(event);
1f4ee503 8320 goto err_cpus;
d14b12d7
SE
8321 }
8322
53b25335
VW
8323 if (is_sampling_event(event)) {
8324 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8325 err = -ENOTSUPP;
8326 goto err_alloc;
8327 }
8328 }
8329
766d6c07
FW
8330 account_event(event);
8331
89a1e187
PZ
8332 /*
8333 * Special case software events and allow them to be part of
8334 * any hardware group.
8335 */
8336 pmu = event->pmu;
b04243ef 8337
34f43927
PZ
8338 if (attr.use_clockid) {
8339 err = perf_event_set_clock(event, attr.clockid);
8340 if (err)
8341 goto err_alloc;
8342 }
8343
b04243ef
PZ
8344 if (group_leader &&
8345 (is_software_event(event) != is_software_event(group_leader))) {
8346 if (is_software_event(event)) {
8347 /*
8348 * If event and group_leader are not both a software
8349 * event, and event is, then group leader is not.
8350 *
8351 * Allow the addition of software events to !software
8352 * groups, this is safe because software events never
8353 * fail to schedule.
8354 */
8355 pmu = group_leader->pmu;
8356 } else if (is_software_event(group_leader) &&
8357 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8358 /*
8359 * In case the group is a pure software group, and we
8360 * try to add a hardware event, move the whole group to
8361 * the hardware context.
8362 */
8363 move_group = 1;
8364 }
8365 }
89a1e187
PZ
8366
8367 /*
8368 * Get the target context (task or percpu):
8369 */
4af57ef2 8370 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8371 if (IS_ERR(ctx)) {
8372 err = PTR_ERR(ctx);
c6be5a5c 8373 goto err_alloc;
89a1e187
PZ
8374 }
8375
bed5b25a
AS
8376 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8377 err = -EBUSY;
8378 goto err_context;
8379 }
8380
fd1edb3a
PZ
8381 if (task) {
8382 put_task_struct(task);
8383 task = NULL;
8384 }
8385
ccff286d 8386 /*
cdd6c482 8387 * Look up the group leader (we will attach this event to it):
04289bb9 8388 */
ac9721f3 8389 if (group_leader) {
dc86cabe 8390 err = -EINVAL;
04289bb9 8391
04289bb9 8392 /*
ccff286d
IM
8393 * Do not allow a recursive hierarchy (this new sibling
8394 * becoming part of another group-sibling):
8395 */
8396 if (group_leader->group_leader != group_leader)
c3f00c70 8397 goto err_context;
34f43927
PZ
8398
8399 /* All events in a group should have the same clock */
8400 if (group_leader->clock != event->clock)
8401 goto err_context;
8402
ccff286d
IM
8403 /*
8404 * Do not allow to attach to a group in a different
8405 * task or CPU context:
04289bb9 8406 */
b04243ef 8407 if (move_group) {
c3c87e77
PZ
8408 /*
8409 * Make sure we're both on the same task, or both
8410 * per-cpu events.
8411 */
8412 if (group_leader->ctx->task != ctx->task)
8413 goto err_context;
8414
8415 /*
8416 * Make sure we're both events for the same CPU;
8417 * grouping events for different CPUs is broken; since
8418 * you can never concurrently schedule them anyhow.
8419 */
8420 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8421 goto err_context;
8422 } else {
8423 if (group_leader->ctx != ctx)
8424 goto err_context;
8425 }
8426
3b6f9e5c
PM
8427 /*
8428 * Only a group leader can be exclusive or pinned
8429 */
0d48696f 8430 if (attr.exclusive || attr.pinned)
c3f00c70 8431 goto err_context;
ac9721f3
PZ
8432 }
8433
8434 if (output_event) {
8435 err = perf_event_set_output(event, output_event);
8436 if (err)
c3f00c70 8437 goto err_context;
ac9721f3 8438 }
0793a61d 8439
a21b0b35
YD
8440 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8441 f_flags);
ea635c64
AV
8442 if (IS_ERR(event_file)) {
8443 err = PTR_ERR(event_file);
c3f00c70 8444 goto err_context;
ea635c64 8445 }
9b51f66d 8446
b04243ef 8447 if (move_group) {
f63a8daa 8448 gctx = group_leader->ctx;
f55fc2a5
PZ
8449 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8450 } else {
8451 mutex_lock(&ctx->mutex);
8452 }
8453
a723968c
PZ
8454 if (!perf_event_validate_size(event)) {
8455 err = -E2BIG;
8456 goto err_locked;
8457 }
8458
f55fc2a5
PZ
8459 /*
8460 * Must be under the same ctx::mutex as perf_install_in_context(),
8461 * because we need to serialize with concurrent event creation.
8462 */
8463 if (!exclusive_event_installable(event, ctx)) {
8464 /* exclusive and group stuff are assumed mutually exclusive */
8465 WARN_ON_ONCE(move_group);
f63a8daa 8466
f55fc2a5
PZ
8467 err = -EBUSY;
8468 goto err_locked;
8469 }
f63a8daa 8470
f55fc2a5
PZ
8471 WARN_ON_ONCE(ctx->parent_ctx);
8472
8473 if (move_group) {
f63a8daa
PZ
8474 /*
8475 * See perf_event_ctx_lock() for comments on the details
8476 * of swizzling perf_event::ctx.
8477 */
46ce0fe9 8478 perf_remove_from_context(group_leader, false);
0231bb53 8479
b04243ef
PZ
8480 list_for_each_entry(sibling, &group_leader->sibling_list,
8481 group_entry) {
46ce0fe9 8482 perf_remove_from_context(sibling, false);
b04243ef
PZ
8483 put_ctx(gctx);
8484 }
b04243ef 8485
f63a8daa
PZ
8486 /*
8487 * Wait for everybody to stop referencing the events through
8488 * the old lists, before installing it on new lists.
8489 */
0cda4c02 8490 synchronize_rcu();
f63a8daa 8491
8f95b435
PZI
8492 /*
8493 * Install the group siblings before the group leader.
8494 *
8495 * Because a group leader will try and install the entire group
8496 * (through the sibling list, which is still in-tact), we can
8497 * end up with siblings installed in the wrong context.
8498 *
8499 * By installing siblings first we NO-OP because they're not
8500 * reachable through the group lists.
8501 */
b04243ef
PZ
8502 list_for_each_entry(sibling, &group_leader->sibling_list,
8503 group_entry) {
8f95b435 8504 perf_event__state_init(sibling);
9fc81d87 8505 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8506 get_ctx(ctx);
8507 }
8f95b435
PZI
8508
8509 /*
8510 * Removing from the context ends up with disabled
8511 * event. What we want here is event in the initial
8512 * startup state, ready to be add into new context.
8513 */
8514 perf_event__state_init(group_leader);
8515 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8516 get_ctx(ctx);
b04243ef 8517
f55fc2a5
PZ
8518 /*
8519 * Now that all events are installed in @ctx, nothing
8520 * references @gctx anymore, so drop the last reference we have
8521 * on it.
8522 */
8523 put_ctx(gctx);
bed5b25a
AS
8524 }
8525
f73e22ab
PZ
8526 /*
8527 * Precalculate sample_data sizes; do while holding ctx::mutex such
8528 * that we're serialized against further additions and before
8529 * perf_install_in_context() which is the point the event is active and
8530 * can use these values.
8531 */
8532 perf_event__header_size(event);
8533 perf_event__id_header_size(event);
8534
e2d37cd2 8535 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8536 perf_unpin_context(ctx);
f63a8daa 8537
f55fc2a5 8538 if (move_group)
f63a8daa 8539 mutex_unlock(&gctx->mutex);
d859e29f 8540 mutex_unlock(&ctx->mutex);
9b51f66d 8541
fbfc623f
YZ
8542 put_online_cpus();
8543
cdd6c482 8544 event->owner = current;
8882135b 8545
cdd6c482
IM
8546 mutex_lock(&current->perf_event_mutex);
8547 list_add_tail(&event->owner_entry, &current->perf_event_list);
8548 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8549
8a49542c
PZ
8550 /*
8551 * Drop the reference on the group_event after placing the
8552 * new event on the sibling_list. This ensures destruction
8553 * of the group leader will find the pointer to itself in
8554 * perf_group_detach().
8555 */
2903ff01 8556 fdput(group);
ea635c64
AV
8557 fd_install(event_fd, event_file);
8558 return event_fd;
0793a61d 8559
f55fc2a5
PZ
8560err_locked:
8561 if (move_group)
8562 mutex_unlock(&gctx->mutex);
8563 mutex_unlock(&ctx->mutex);
8564/* err_file: */
8565 fput(event_file);
c3f00c70 8566err_context:
fe4b04fa 8567 perf_unpin_context(ctx);
ea635c64 8568 put_ctx(ctx);
c6be5a5c 8569err_alloc:
ea635c64 8570 free_event(event);
1f4ee503 8571err_cpus:
fbfc623f 8572 put_online_cpus();
1f4ee503 8573err_task:
e7d0bc04
PZ
8574 if (task)
8575 put_task_struct(task);
89a1e187 8576err_group_fd:
2903ff01 8577 fdput(group);
ea635c64
AV
8578err_fd:
8579 put_unused_fd(event_fd);
dc86cabe 8580 return err;
0793a61d
TG
8581}
8582
fb0459d7
AV
8583/**
8584 * perf_event_create_kernel_counter
8585 *
8586 * @attr: attributes of the counter to create
8587 * @cpu: cpu in which the counter is bound
38a81da2 8588 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8589 */
8590struct perf_event *
8591perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8592 struct task_struct *task,
4dc0da86
AK
8593 perf_overflow_handler_t overflow_handler,
8594 void *context)
fb0459d7 8595{
fb0459d7 8596 struct perf_event_context *ctx;
c3f00c70 8597 struct perf_event *event;
fb0459d7 8598 int err;
d859e29f 8599
fb0459d7
AV
8600 /*
8601 * Get the target context (task or percpu):
8602 */
d859e29f 8603
4dc0da86 8604 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8605 overflow_handler, context, -1);
c3f00c70
PZ
8606 if (IS_ERR(event)) {
8607 err = PTR_ERR(event);
8608 goto err;
8609 }
d859e29f 8610
f8697762
JO
8611 /* Mark owner so we could distinguish it from user events. */
8612 event->owner = EVENT_OWNER_KERNEL;
8613
766d6c07
FW
8614 account_event(event);
8615
4af57ef2 8616 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8617 if (IS_ERR(ctx)) {
8618 err = PTR_ERR(ctx);
c3f00c70 8619 goto err_free;
d859e29f 8620 }
fb0459d7 8621
fb0459d7
AV
8622 WARN_ON_ONCE(ctx->parent_ctx);
8623 mutex_lock(&ctx->mutex);
bed5b25a
AS
8624 if (!exclusive_event_installable(event, ctx)) {
8625 mutex_unlock(&ctx->mutex);
8626 perf_unpin_context(ctx);
8627 put_ctx(ctx);
8628 err = -EBUSY;
8629 goto err_free;
8630 }
8631
fb0459d7 8632 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8633 perf_unpin_context(ctx);
fb0459d7
AV
8634 mutex_unlock(&ctx->mutex);
8635
fb0459d7
AV
8636 return event;
8637
c3f00c70
PZ
8638err_free:
8639 free_event(event);
8640err:
c6567f64 8641 return ERR_PTR(err);
9b51f66d 8642}
fb0459d7 8643EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8644
0cda4c02
YZ
8645void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8646{
8647 struct perf_event_context *src_ctx;
8648 struct perf_event_context *dst_ctx;
8649 struct perf_event *event, *tmp;
8650 LIST_HEAD(events);
8651
8652 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8653 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8654
f63a8daa
PZ
8655 /*
8656 * See perf_event_ctx_lock() for comments on the details
8657 * of swizzling perf_event::ctx.
8658 */
8659 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8660 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8661 event_entry) {
46ce0fe9 8662 perf_remove_from_context(event, false);
9a545de0 8663 unaccount_event_cpu(event, src_cpu);
0cda4c02 8664 put_ctx(src_ctx);
9886167d 8665 list_add(&event->migrate_entry, &events);
0cda4c02 8666 }
0cda4c02 8667
8f95b435
PZI
8668 /*
8669 * Wait for the events to quiesce before re-instating them.
8670 */
0cda4c02
YZ
8671 synchronize_rcu();
8672
8f95b435
PZI
8673 /*
8674 * Re-instate events in 2 passes.
8675 *
8676 * Skip over group leaders and only install siblings on this first
8677 * pass, siblings will not get enabled without a leader, however a
8678 * leader will enable its siblings, even if those are still on the old
8679 * context.
8680 */
8681 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8682 if (event->group_leader == event)
8683 continue;
8684
8685 list_del(&event->migrate_entry);
8686 if (event->state >= PERF_EVENT_STATE_OFF)
8687 event->state = PERF_EVENT_STATE_INACTIVE;
8688 account_event_cpu(event, dst_cpu);
8689 perf_install_in_context(dst_ctx, event, dst_cpu);
8690 get_ctx(dst_ctx);
8691 }
8692
8693 /*
8694 * Once all the siblings are setup properly, install the group leaders
8695 * to make it go.
8696 */
9886167d
PZ
8697 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8698 list_del(&event->migrate_entry);
0cda4c02
YZ
8699 if (event->state >= PERF_EVENT_STATE_OFF)
8700 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8701 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8702 perf_install_in_context(dst_ctx, event, dst_cpu);
8703 get_ctx(dst_ctx);
8704 }
8705 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8706 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8707}
8708EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8709
cdd6c482 8710static void sync_child_event(struct perf_event *child_event,
38b200d6 8711 struct task_struct *child)
d859e29f 8712{
cdd6c482 8713 struct perf_event *parent_event = child_event->parent;
8bc20959 8714 u64 child_val;
d859e29f 8715
cdd6c482
IM
8716 if (child_event->attr.inherit_stat)
8717 perf_event_read_event(child_event, child);
38b200d6 8718
b5e58793 8719 child_val = perf_event_count(child_event);
d859e29f
PM
8720
8721 /*
8722 * Add back the child's count to the parent's count:
8723 */
a6e6dea6 8724 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8725 atomic64_add(child_event->total_time_enabled,
8726 &parent_event->child_total_time_enabled);
8727 atomic64_add(child_event->total_time_running,
8728 &parent_event->child_total_time_running);
d859e29f
PM
8729
8730 /*
cdd6c482 8731 * Remove this event from the parent's list
d859e29f 8732 */
cdd6c482
IM
8733 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8734 mutex_lock(&parent_event->child_mutex);
8735 list_del_init(&child_event->child_list);
8736 mutex_unlock(&parent_event->child_mutex);
d859e29f 8737
dc633982
JO
8738 /*
8739 * Make sure user/parent get notified, that we just
8740 * lost one event.
8741 */
8742 perf_event_wakeup(parent_event);
8743
d859e29f 8744 /*
cdd6c482 8745 * Release the parent event, if this was the last
d859e29f
PM
8746 * reference to it.
8747 */
a6fa941d 8748 put_event(parent_event);
d859e29f
PM
8749}
8750
9b51f66d 8751static void
cdd6c482
IM
8752__perf_event_exit_task(struct perf_event *child_event,
8753 struct perf_event_context *child_ctx,
38b200d6 8754 struct task_struct *child)
9b51f66d 8755{
1903d50c
PZ
8756 /*
8757 * Do not destroy the 'original' grouping; because of the context
8758 * switch optimization the original events could've ended up in a
8759 * random child task.
8760 *
8761 * If we were to destroy the original group, all group related
8762 * operations would cease to function properly after this random
8763 * child dies.
8764 *
8765 * Do destroy all inherited groups, we don't care about those
8766 * and being thorough is better.
8767 */
8768 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8769
9b51f66d 8770 /*
38b435b1 8771 * It can happen that the parent exits first, and has events
9b51f66d 8772 * that are still around due to the child reference. These
38b435b1 8773 * events need to be zapped.
9b51f66d 8774 */
38b435b1 8775 if (child_event->parent) {
cdd6c482
IM
8776 sync_child_event(child_event, child);
8777 free_event(child_event);
179033b3
JO
8778 } else {
8779 child_event->state = PERF_EVENT_STATE_EXIT;
8780 perf_event_wakeup(child_event);
4bcf349a 8781 }
9b51f66d
IM
8782}
8783
8dc85d54 8784static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8785{
ebf905fc 8786 struct perf_event *child_event, *next;
211de6eb 8787 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8788 unsigned long flags;
9b51f66d 8789
8dc85d54 8790 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 8791 perf_event_task(child, NULL, 0);
9b51f66d 8792 return;
9f498cc5 8793 }
9b51f66d 8794
a63eaf34 8795 local_irq_save(flags);
ad3a37de
PM
8796 /*
8797 * We can't reschedule here because interrupts are disabled,
8798 * and either child is current or it is a task that can't be
8799 * scheduled, so we are now safe from rescheduling changing
8800 * our context.
8801 */
806839b2 8802 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8803
8804 /*
8805 * Take the context lock here so that if find_get_context is
cdd6c482 8806 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8807 * incremented the context's refcount before we do put_ctx below.
8808 */
e625cce1 8809 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8810 task_ctx_sched_out(child_ctx);
8dc85d54 8811 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8812
71a851b4
PZ
8813 /*
8814 * If this context is a clone; unclone it so it can't get
8815 * swapped to another process while we're removing all
cdd6c482 8816 * the events from it.
71a851b4 8817 */
211de6eb 8818 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8819 update_context_time(child_ctx);
e625cce1 8820 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8821
211de6eb
PZ
8822 if (clone_ctx)
8823 put_ctx(clone_ctx);
4a1c0f26 8824
9f498cc5 8825 /*
cdd6c482
IM
8826 * Report the task dead after unscheduling the events so that we
8827 * won't get any samples after PERF_RECORD_EXIT. We can however still
8828 * get a few PERF_RECORD_READ events.
9f498cc5 8829 */
cdd6c482 8830 perf_event_task(child, child_ctx, 0);
a63eaf34 8831
66fff224
PZ
8832 /*
8833 * We can recurse on the same lock type through:
8834 *
cdd6c482
IM
8835 * __perf_event_exit_task()
8836 * sync_child_event()
a6fa941d
AV
8837 * put_event()
8838 * mutex_lock(&ctx->mutex)
66fff224
PZ
8839 *
8840 * But since its the parent context it won't be the same instance.
8841 */
a0507c84 8842 mutex_lock(&child_ctx->mutex);
a63eaf34 8843
ebf905fc 8844 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8845 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8846
a63eaf34
PM
8847 mutex_unlock(&child_ctx->mutex);
8848
8849 put_ctx(child_ctx);
9b51f66d
IM
8850}
8851
8dc85d54
PZ
8852/*
8853 * When a child task exits, feed back event values to parent events.
8854 */
8855void perf_event_exit_task(struct task_struct *child)
8856{
8882135b 8857 struct perf_event *event, *tmp;
8dc85d54
PZ
8858 int ctxn;
8859
8882135b
PZ
8860 mutex_lock(&child->perf_event_mutex);
8861 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8862 owner_entry) {
8863 list_del_init(&event->owner_entry);
8864
8865 /*
8866 * Ensure the list deletion is visible before we clear
8867 * the owner, closes a race against perf_release() where
8868 * we need to serialize on the owner->perf_event_mutex.
8869 */
8870 smp_wmb();
8871 event->owner = NULL;
8872 }
8873 mutex_unlock(&child->perf_event_mutex);
8874
8dc85d54
PZ
8875 for_each_task_context_nr(ctxn)
8876 perf_event_exit_task_context(child, ctxn);
8877}
8878
889ff015
FW
8879static void perf_free_event(struct perf_event *event,
8880 struct perf_event_context *ctx)
8881{
8882 struct perf_event *parent = event->parent;
8883
8884 if (WARN_ON_ONCE(!parent))
8885 return;
8886
8887 mutex_lock(&parent->child_mutex);
8888 list_del_init(&event->child_list);
8889 mutex_unlock(&parent->child_mutex);
8890
a6fa941d 8891 put_event(parent);
889ff015 8892
652884fe 8893 raw_spin_lock_irq(&ctx->lock);
8a49542c 8894 perf_group_detach(event);
889ff015 8895 list_del_event(event, ctx);
652884fe 8896 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8897 free_event(event);
8898}
8899
bbbee908 8900/*
652884fe 8901 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8902 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8903 *
8904 * Not all locks are strictly required, but take them anyway to be nice and
8905 * help out with the lockdep assertions.
bbbee908 8906 */
cdd6c482 8907void perf_event_free_task(struct task_struct *task)
bbbee908 8908{
8dc85d54 8909 struct perf_event_context *ctx;
cdd6c482 8910 struct perf_event *event, *tmp;
8dc85d54 8911 int ctxn;
bbbee908 8912
8dc85d54
PZ
8913 for_each_task_context_nr(ctxn) {
8914 ctx = task->perf_event_ctxp[ctxn];
8915 if (!ctx)
8916 continue;
bbbee908 8917
8dc85d54 8918 mutex_lock(&ctx->mutex);
bbbee908 8919again:
8dc85d54
PZ
8920 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8921 group_entry)
8922 perf_free_event(event, ctx);
bbbee908 8923
8dc85d54
PZ
8924 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8925 group_entry)
8926 perf_free_event(event, ctx);
bbbee908 8927
8dc85d54
PZ
8928 if (!list_empty(&ctx->pinned_groups) ||
8929 !list_empty(&ctx->flexible_groups))
8930 goto again;
bbbee908 8931
8dc85d54 8932 mutex_unlock(&ctx->mutex);
bbbee908 8933
8dc85d54
PZ
8934 put_ctx(ctx);
8935 }
889ff015
FW
8936}
8937
4e231c79
PZ
8938void perf_event_delayed_put(struct task_struct *task)
8939{
8940 int ctxn;
8941
8942 for_each_task_context_nr(ctxn)
8943 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8944}
8945
ffe8690c
KX
8946struct perf_event *perf_event_get(unsigned int fd)
8947{
8948 int err;
8949 struct fd f;
8950 struct perf_event *event;
8951
8952 err = perf_fget_light(fd, &f);
8953 if (err)
8954 return ERR_PTR(err);
8955
8956 event = f.file->private_data;
8957 atomic_long_inc(&event->refcount);
8958 fdput(f);
8959
8960 return event;
8961}
8962
8963const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8964{
8965 if (!event)
8966 return ERR_PTR(-EINVAL);
8967
8968 return &event->attr;
8969}
8970
97dee4f3
PZ
8971/*
8972 * inherit a event from parent task to child task:
8973 */
8974static struct perf_event *
8975inherit_event(struct perf_event *parent_event,
8976 struct task_struct *parent,
8977 struct perf_event_context *parent_ctx,
8978 struct task_struct *child,
8979 struct perf_event *group_leader,
8980 struct perf_event_context *child_ctx)
8981{
1929def9 8982 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8983 struct perf_event *child_event;
cee010ec 8984 unsigned long flags;
97dee4f3
PZ
8985
8986 /*
8987 * Instead of creating recursive hierarchies of events,
8988 * we link inherited events back to the original parent,
8989 * which has a filp for sure, which we use as the reference
8990 * count:
8991 */
8992 if (parent_event->parent)
8993 parent_event = parent_event->parent;
8994
8995 child_event = perf_event_alloc(&parent_event->attr,
8996 parent_event->cpu,
d580ff86 8997 child,
97dee4f3 8998 group_leader, parent_event,
79dff51e 8999 NULL, NULL, -1);
97dee4f3
PZ
9000 if (IS_ERR(child_event))
9001 return child_event;
a6fa941d 9002
fadfe7be
JO
9003 if (is_orphaned_event(parent_event) ||
9004 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
9005 free_event(child_event);
9006 return NULL;
9007 }
9008
97dee4f3
PZ
9009 get_ctx(child_ctx);
9010
9011 /*
9012 * Make the child state follow the state of the parent event,
9013 * not its attr.disabled bit. We hold the parent's mutex,
9014 * so we won't race with perf_event_{en, dis}able_family.
9015 */
1929def9 9016 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
9017 child_event->state = PERF_EVENT_STATE_INACTIVE;
9018 else
9019 child_event->state = PERF_EVENT_STATE_OFF;
9020
9021 if (parent_event->attr.freq) {
9022 u64 sample_period = parent_event->hw.sample_period;
9023 struct hw_perf_event *hwc = &child_event->hw;
9024
9025 hwc->sample_period = sample_period;
9026 hwc->last_period = sample_period;
9027
9028 local64_set(&hwc->period_left, sample_period);
9029 }
9030
9031 child_event->ctx = child_ctx;
9032 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9033 child_event->overflow_handler_context
9034 = parent_event->overflow_handler_context;
97dee4f3 9035
614b6780
TG
9036 /*
9037 * Precalculate sample_data sizes
9038 */
9039 perf_event__header_size(child_event);
6844c09d 9040 perf_event__id_header_size(child_event);
614b6780 9041
97dee4f3
PZ
9042 /*
9043 * Link it up in the child's context:
9044 */
cee010ec 9045 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9046 add_event_to_ctx(child_event, child_ctx);
cee010ec 9047 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9048
97dee4f3
PZ
9049 /*
9050 * Link this into the parent event's child list
9051 */
9052 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9053 mutex_lock(&parent_event->child_mutex);
9054 list_add_tail(&child_event->child_list, &parent_event->child_list);
9055 mutex_unlock(&parent_event->child_mutex);
9056
9057 return child_event;
9058}
9059
9060static int inherit_group(struct perf_event *parent_event,
9061 struct task_struct *parent,
9062 struct perf_event_context *parent_ctx,
9063 struct task_struct *child,
9064 struct perf_event_context *child_ctx)
9065{
9066 struct perf_event *leader;
9067 struct perf_event *sub;
9068 struct perf_event *child_ctr;
9069
9070 leader = inherit_event(parent_event, parent, parent_ctx,
9071 child, NULL, child_ctx);
9072 if (IS_ERR(leader))
9073 return PTR_ERR(leader);
9074 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9075 child_ctr = inherit_event(sub, parent, parent_ctx,
9076 child, leader, child_ctx);
9077 if (IS_ERR(child_ctr))
9078 return PTR_ERR(child_ctr);
9079 }
9080 return 0;
889ff015
FW
9081}
9082
9083static int
9084inherit_task_group(struct perf_event *event, struct task_struct *parent,
9085 struct perf_event_context *parent_ctx,
8dc85d54 9086 struct task_struct *child, int ctxn,
889ff015
FW
9087 int *inherited_all)
9088{
9089 int ret;
8dc85d54 9090 struct perf_event_context *child_ctx;
889ff015
FW
9091
9092 if (!event->attr.inherit) {
9093 *inherited_all = 0;
9094 return 0;
bbbee908
PZ
9095 }
9096
fe4b04fa 9097 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9098 if (!child_ctx) {
9099 /*
9100 * This is executed from the parent task context, so
9101 * inherit events that have been marked for cloning.
9102 * First allocate and initialize a context for the
9103 * child.
9104 */
bbbee908 9105
734df5ab 9106 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9107 if (!child_ctx)
9108 return -ENOMEM;
bbbee908 9109
8dc85d54 9110 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9111 }
9112
9113 ret = inherit_group(event, parent, parent_ctx,
9114 child, child_ctx);
9115
9116 if (ret)
9117 *inherited_all = 0;
9118
9119 return ret;
bbbee908
PZ
9120}
9121
9b51f66d 9122/*
cdd6c482 9123 * Initialize the perf_event context in task_struct
9b51f66d 9124 */
985c8dcb 9125static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9126{
889ff015 9127 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9128 struct perf_event_context *cloned_ctx;
9129 struct perf_event *event;
9b51f66d 9130 struct task_struct *parent = current;
564c2b21 9131 int inherited_all = 1;
dddd3379 9132 unsigned long flags;
6ab423e0 9133 int ret = 0;
9b51f66d 9134
8dc85d54 9135 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9136 return 0;
9137
ad3a37de 9138 /*
25346b93
PM
9139 * If the parent's context is a clone, pin it so it won't get
9140 * swapped under us.
ad3a37de 9141 */
8dc85d54 9142 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9143 if (!parent_ctx)
9144 return 0;
25346b93 9145
ad3a37de
PM
9146 /*
9147 * No need to check if parent_ctx != NULL here; since we saw
9148 * it non-NULL earlier, the only reason for it to become NULL
9149 * is if we exit, and since we're currently in the middle of
9150 * a fork we can't be exiting at the same time.
9151 */
ad3a37de 9152
9b51f66d
IM
9153 /*
9154 * Lock the parent list. No need to lock the child - not PID
9155 * hashed yet and not running, so nobody can access it.
9156 */
d859e29f 9157 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9158
9159 /*
9160 * We dont have to disable NMIs - we are only looking at
9161 * the list, not manipulating it:
9162 */
889ff015 9163 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9164 ret = inherit_task_group(event, parent, parent_ctx,
9165 child, ctxn, &inherited_all);
889ff015
FW
9166 if (ret)
9167 break;
9168 }
b93f7978 9169
dddd3379
TG
9170 /*
9171 * We can't hold ctx->lock when iterating the ->flexible_group list due
9172 * to allocations, but we need to prevent rotation because
9173 * rotate_ctx() will change the list from interrupt context.
9174 */
9175 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9176 parent_ctx->rotate_disable = 1;
9177 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9178
889ff015 9179 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9180 ret = inherit_task_group(event, parent, parent_ctx,
9181 child, ctxn, &inherited_all);
889ff015 9182 if (ret)
9b51f66d 9183 break;
564c2b21
PM
9184 }
9185
dddd3379
TG
9186 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9187 parent_ctx->rotate_disable = 0;
dddd3379 9188
8dc85d54 9189 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9190
05cbaa28 9191 if (child_ctx && inherited_all) {
564c2b21
PM
9192 /*
9193 * Mark the child context as a clone of the parent
9194 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9195 *
9196 * Note that if the parent is a clone, the holding of
9197 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9198 */
c5ed5145 9199 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9200 if (cloned_ctx) {
9201 child_ctx->parent_ctx = cloned_ctx;
25346b93 9202 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9203 } else {
9204 child_ctx->parent_ctx = parent_ctx;
9205 child_ctx->parent_gen = parent_ctx->generation;
9206 }
9207 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9208 }
9209
c5ed5145 9210 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9211 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9212
25346b93 9213 perf_unpin_context(parent_ctx);
fe4b04fa 9214 put_ctx(parent_ctx);
ad3a37de 9215
6ab423e0 9216 return ret;
9b51f66d
IM
9217}
9218
8dc85d54
PZ
9219/*
9220 * Initialize the perf_event context in task_struct
9221 */
9222int perf_event_init_task(struct task_struct *child)
9223{
9224 int ctxn, ret;
9225
8550d7cb
ON
9226 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9227 mutex_init(&child->perf_event_mutex);
9228 INIT_LIST_HEAD(&child->perf_event_list);
9229
8dc85d54
PZ
9230 for_each_task_context_nr(ctxn) {
9231 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9232 if (ret) {
9233 perf_event_free_task(child);
8dc85d54 9234 return ret;
6c72e350 9235 }
8dc85d54
PZ
9236 }
9237
9238 return 0;
9239}
9240
220b140b
PM
9241static void __init perf_event_init_all_cpus(void)
9242{
b28ab83c 9243 struct swevent_htable *swhash;
220b140b 9244 int cpu;
220b140b
PM
9245
9246 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9247 swhash = &per_cpu(swevent_htable, cpu);
9248 mutex_init(&swhash->hlist_mutex);
2fde4f94 9249 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9250 }
9251}
9252
0db0628d 9253static void perf_event_init_cpu(int cpu)
0793a61d 9254{
108b02cf 9255 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9256
b28ab83c 9257 mutex_lock(&swhash->hlist_mutex);
39af6b16 9258 swhash->online = true;
4536e4d1 9259 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9260 struct swevent_hlist *hlist;
9261
b28ab83c
PZ
9262 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9263 WARN_ON(!hlist);
9264 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9265 }
b28ab83c 9266 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9267}
9268
2965faa5 9269#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9270static void __perf_event_exit_context(void *__info)
0793a61d 9271{
226424ee 9272 struct remove_event re = { .detach_group = true };
108b02cf 9273 struct perf_event_context *ctx = __info;
0793a61d 9274
e3703f8c 9275 rcu_read_lock();
46ce0fe9
PZ
9276 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9277 __perf_remove_from_context(&re);
e3703f8c 9278 rcu_read_unlock();
0793a61d 9279}
108b02cf
PZ
9280
9281static void perf_event_exit_cpu_context(int cpu)
9282{
9283 struct perf_event_context *ctx;
9284 struct pmu *pmu;
9285 int idx;
9286
9287 idx = srcu_read_lock(&pmus_srcu);
9288 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9289 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9290
9291 mutex_lock(&ctx->mutex);
9292 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9293 mutex_unlock(&ctx->mutex);
9294 }
9295 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9296}
9297
cdd6c482 9298static void perf_event_exit_cpu(int cpu)
0793a61d 9299{
b28ab83c 9300 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 9301
e3703f8c
PZ
9302 perf_event_exit_cpu_context(cpu);
9303
b28ab83c 9304 mutex_lock(&swhash->hlist_mutex);
39af6b16 9305 swhash->online = false;
b28ab83c
PZ
9306 swevent_hlist_release(swhash);
9307 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9308}
9309#else
cdd6c482 9310static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9311#endif
9312
c277443c
PZ
9313static int
9314perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9315{
9316 int cpu;
9317
9318 for_each_online_cpu(cpu)
9319 perf_event_exit_cpu(cpu);
9320
9321 return NOTIFY_OK;
9322}
9323
9324/*
9325 * Run the perf reboot notifier at the very last possible moment so that
9326 * the generic watchdog code runs as long as possible.
9327 */
9328static struct notifier_block perf_reboot_notifier = {
9329 .notifier_call = perf_reboot,
9330 .priority = INT_MIN,
9331};
9332
0db0628d 9333static int
0793a61d
TG
9334perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9335{
9336 unsigned int cpu = (long)hcpu;
9337
4536e4d1 9338 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9339
9340 case CPU_UP_PREPARE:
5e11637e 9341 case CPU_DOWN_FAILED:
cdd6c482 9342 perf_event_init_cpu(cpu);
0793a61d
TG
9343 break;
9344
5e11637e 9345 case CPU_UP_CANCELED:
0793a61d 9346 case CPU_DOWN_PREPARE:
cdd6c482 9347 perf_event_exit_cpu(cpu);
0793a61d 9348 break;
0793a61d
TG
9349 default:
9350 break;
9351 }
9352
9353 return NOTIFY_OK;
9354}
9355
cdd6c482 9356void __init perf_event_init(void)
0793a61d 9357{
3c502e7a
JW
9358 int ret;
9359
2e80a82a
PZ
9360 idr_init(&pmu_idr);
9361
220b140b 9362 perf_event_init_all_cpus();
b0a873eb 9363 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9364 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9365 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9366 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9367 perf_tp_register();
9368 perf_cpu_notifier(perf_cpu_notify);
c277443c 9369 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9370
9371 ret = init_hw_breakpoint();
9372 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9373
9374 /* do not patch jump label more than once per second */
9375 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9376
9377 /*
9378 * Build time assertion that we keep the data_head at the intended
9379 * location. IOW, validation we got the __reserved[] size right.
9380 */
9381 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9382 != 1024);
0793a61d 9383}
abe43400 9384
fd979c01
CS
9385ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9386 char *page)
9387{
9388 struct perf_pmu_events_attr *pmu_attr =
9389 container_of(attr, struct perf_pmu_events_attr, attr);
9390
9391 if (pmu_attr->event_str)
9392 return sprintf(page, "%s\n", pmu_attr->event_str);
9393
9394 return 0;
9395}
9396
abe43400
PZ
9397static int __init perf_event_sysfs_init(void)
9398{
9399 struct pmu *pmu;
9400 int ret;
9401
9402 mutex_lock(&pmus_lock);
9403
9404 ret = bus_register(&pmu_bus);
9405 if (ret)
9406 goto unlock;
9407
9408 list_for_each_entry(pmu, &pmus, entry) {
9409 if (!pmu->name || pmu->type < 0)
9410 continue;
9411
9412 ret = pmu_dev_alloc(pmu);
9413 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9414 }
9415 pmu_bus_running = 1;
9416 ret = 0;
9417
9418unlock:
9419 mutex_unlock(&pmus_lock);
9420
9421 return ret;
9422}
9423device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9424
9425#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9426static struct cgroup_subsys_state *
9427perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9428{
9429 struct perf_cgroup *jc;
e5d1367f 9430
1b15d055 9431 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9432 if (!jc)
9433 return ERR_PTR(-ENOMEM);
9434
e5d1367f
SE
9435 jc->info = alloc_percpu(struct perf_cgroup_info);
9436 if (!jc->info) {
9437 kfree(jc);
9438 return ERR_PTR(-ENOMEM);
9439 }
9440
e5d1367f
SE
9441 return &jc->css;
9442}
9443
eb95419b 9444static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9445{
eb95419b
TH
9446 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9447
e5d1367f
SE
9448 free_percpu(jc->info);
9449 kfree(jc);
9450}
9451
9452static int __perf_cgroup_move(void *info)
9453{
9454 struct task_struct *task = info;
9455 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9456 return 0;
9457}
9458
eb95419b
TH
9459static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9460 struct cgroup_taskset *tset)
e5d1367f 9461{
bb9d97b6
TH
9462 struct task_struct *task;
9463
924f0d9a 9464 cgroup_taskset_for_each(task, tset)
bb9d97b6 9465 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9466}
9467
073219e9 9468struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9469 .css_alloc = perf_cgroup_css_alloc,
9470 .css_free = perf_cgroup_css_free,
bb9d97b6 9471 .attach = perf_cgroup_attach,
e5d1367f
SE
9472};
9473#endif /* CONFIG_CGROUP_PERF */