perf: Add wakeup watermark control to the AUX area
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
6fb2915d 39#include <linux/ftrace_event.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
fe4b04fa 54struct remote_function_call {
e7e7ee2e
IM
55 struct task_struct *p;
56 int (*func)(void *info);
57 void *info;
58 int ret;
fe4b04fa
PZ
59};
60
61static void remote_function(void *data)
62{
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
67 tfc->ret = -EAGAIN;
68 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
69 return;
70 }
71
72 tfc->ret = tfc->func(tfc->info);
73}
74
75/**
76 * task_function_call - call a function on the cpu on which a task runs
77 * @p: the task to evaluate
78 * @func: the function to be called
79 * @info: the function call argument
80 *
81 * Calls the function @func when the task is currently running. This might
82 * be on the current CPU, which just calls the function directly
83 *
84 * returns: @func return value, or
85 * -ESRCH - when the process isn't running
86 * -EAGAIN - when the process moved away
87 */
88static int
89task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
90{
91 struct remote_function_call data = {
e7e7ee2e
IM
92 .p = p,
93 .func = func,
94 .info = info,
95 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
96 };
97
98 if (task_curr(p))
99 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
100
101 return data.ret;
102}
103
104/**
105 * cpu_function_call - call a function on the cpu
106 * @func: the function to be called
107 * @info: the function call argument
108 *
109 * Calls the function @func on the remote cpu.
110 *
111 * returns: @func return value or -ENXIO when the cpu is offline
112 */
113static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
114{
115 struct remote_function_call data = {
e7e7ee2e
IM
116 .p = NULL,
117 .func = func,
118 .info = info,
119 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
120 };
121
122 smp_call_function_single(cpu, remote_function, &data, 1);
123
124 return data.ret;
125}
126
f8697762
JO
127#define EVENT_OWNER_KERNEL ((void *) -1)
128
129static bool is_kernel_event(struct perf_event *event)
130{
131 return event->owner == EVENT_OWNER_KERNEL;
132}
133
e5d1367f
SE
134#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
135 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
136 PERF_FLAG_PID_CGROUP |\
137 PERF_FLAG_FD_CLOEXEC)
e5d1367f 138
bce38cd5
SE
139/*
140 * branch priv levels that need permission checks
141 */
142#define PERF_SAMPLE_BRANCH_PERM_PLM \
143 (PERF_SAMPLE_BRANCH_KERNEL |\
144 PERF_SAMPLE_BRANCH_HV)
145
0b3fcf17
SE
146enum event_type_t {
147 EVENT_FLEXIBLE = 0x1,
148 EVENT_PINNED = 0x2,
149 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
150};
151
e5d1367f
SE
152/*
153 * perf_sched_events : >0 events exist
154 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
155 */
c5905afb 156struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 157static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 158static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 159
cdd6c482
IM
160static atomic_t nr_mmap_events __read_mostly;
161static atomic_t nr_comm_events __read_mostly;
162static atomic_t nr_task_events __read_mostly;
948b26b6 163static atomic_t nr_freq_events __read_mostly;
9ee318a7 164
108b02cf
PZ
165static LIST_HEAD(pmus);
166static DEFINE_MUTEX(pmus_lock);
167static struct srcu_struct pmus_srcu;
168
0764771d 169/*
cdd6c482 170 * perf event paranoia level:
0fbdea19
IM
171 * -1 - not paranoid at all
172 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 173 * 1 - disallow cpu events for unpriv
0fbdea19 174 * 2 - disallow kernel profiling for unpriv
0764771d 175 */
cdd6c482 176int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 177
20443384
FW
178/* Minimum for 512 kiB + 1 user control page */
179int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
180
181/*
cdd6c482 182 * max perf event sample rate
df58ab24 183 */
14c63f17
DH
184#define DEFAULT_MAX_SAMPLE_RATE 100000
185#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
186#define DEFAULT_CPU_TIME_MAX_PERCENT 25
187
188int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
189
190static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
191static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
192
d9494cb4
PZ
193static int perf_sample_allowed_ns __read_mostly =
194 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
195
196void update_perf_cpu_limits(void)
197{
198 u64 tmp = perf_sample_period_ns;
199
200 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 201 do_div(tmp, 100);
d9494cb4 202 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 203}
163ec435 204
9e630205
SE
205static int perf_rotate_context(struct perf_cpu_context *cpuctx);
206
163ec435
PZ
207int perf_proc_update_handler(struct ctl_table *table, int write,
208 void __user *buffer, size_t *lenp,
209 loff_t *ppos)
210{
723478c8 211 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
212
213 if (ret || !write)
214 return ret;
215
216 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
217 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
218 update_perf_cpu_limits();
219
220 return 0;
221}
222
223int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
224
225int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
226 void __user *buffer, size_t *lenp,
227 loff_t *ppos)
228{
229 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
230
231 if (ret || !write)
232 return ret;
233
234 update_perf_cpu_limits();
163ec435
PZ
235
236 return 0;
237}
1ccd1549 238
14c63f17
DH
239/*
240 * perf samples are done in some very critical code paths (NMIs).
241 * If they take too much CPU time, the system can lock up and not
242 * get any real work done. This will drop the sample rate when
243 * we detect that events are taking too long.
244 */
245#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 246static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 247
6a02ad66 248static void perf_duration_warn(struct irq_work *w)
14c63f17 249{
6a02ad66 250 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 251 u64 avg_local_sample_len;
e5302920 252 u64 local_samples_len;
6a02ad66 253
4a32fea9 254 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
255 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
256
257 printk_ratelimited(KERN_WARNING
258 "perf interrupt took too long (%lld > %lld), lowering "
259 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 260 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
261 sysctl_perf_event_sample_rate);
262}
263
264static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
265
266void perf_sample_event_took(u64 sample_len_ns)
267{
d9494cb4 268 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
269 u64 avg_local_sample_len;
270 u64 local_samples_len;
14c63f17 271
d9494cb4 272 if (allowed_ns == 0)
14c63f17
DH
273 return;
274
275 /* decay the counter by 1 average sample */
4a32fea9 276 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
277 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
278 local_samples_len += sample_len_ns;
4a32fea9 279 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
280
281 /*
282 * note: this will be biased artifically low until we have
283 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
284 * from having to maintain a count.
285 */
286 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
287
d9494cb4 288 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
289 return;
290
291 if (max_samples_per_tick <= 1)
292 return;
293
294 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
295 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
296 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
297
14c63f17 298 update_perf_cpu_limits();
6a02ad66 299
cd578abb
PZ
300 if (!irq_work_queue(&perf_duration_work)) {
301 early_printk("perf interrupt took too long (%lld > %lld), lowering "
302 "kernel.perf_event_max_sample_rate to %d\n",
303 avg_local_sample_len, allowed_ns >> 1,
304 sysctl_perf_event_sample_rate);
305 }
14c63f17
DH
306}
307
cdd6c482 308static atomic64_t perf_event_id;
a96bbc16 309
0b3fcf17
SE
310static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
311 enum event_type_t event_type);
312
313static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
314 enum event_type_t event_type,
315 struct task_struct *task);
316
317static void update_context_time(struct perf_event_context *ctx);
318static u64 perf_event_time(struct perf_event *event);
0b3fcf17 319
cdd6c482 320void __weak perf_event_print_debug(void) { }
0793a61d 321
84c79910 322extern __weak const char *perf_pmu_name(void)
0793a61d 323{
84c79910 324 return "pmu";
0793a61d
TG
325}
326
0b3fcf17
SE
327static inline u64 perf_clock(void)
328{
329 return local_clock();
330}
331
34f43927
PZ
332static inline u64 perf_event_clock(struct perf_event *event)
333{
334 return event->clock();
335}
336
e5d1367f
SE
337static inline struct perf_cpu_context *
338__get_cpu_context(struct perf_event_context *ctx)
339{
340 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
341}
342
facc4307
PZ
343static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
344 struct perf_event_context *ctx)
345{
346 raw_spin_lock(&cpuctx->ctx.lock);
347 if (ctx)
348 raw_spin_lock(&ctx->lock);
349}
350
351static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
352 struct perf_event_context *ctx)
353{
354 if (ctx)
355 raw_spin_unlock(&ctx->lock);
356 raw_spin_unlock(&cpuctx->ctx.lock);
357}
358
e5d1367f
SE
359#ifdef CONFIG_CGROUP_PERF
360
e5d1367f
SE
361static inline bool
362perf_cgroup_match(struct perf_event *event)
363{
364 struct perf_event_context *ctx = event->ctx;
365 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
366
ef824fa1
TH
367 /* @event doesn't care about cgroup */
368 if (!event->cgrp)
369 return true;
370
371 /* wants specific cgroup scope but @cpuctx isn't associated with any */
372 if (!cpuctx->cgrp)
373 return false;
374
375 /*
376 * Cgroup scoping is recursive. An event enabled for a cgroup is
377 * also enabled for all its descendant cgroups. If @cpuctx's
378 * cgroup is a descendant of @event's (the test covers identity
379 * case), it's a match.
380 */
381 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
382 event->cgrp->css.cgroup);
e5d1367f
SE
383}
384
e5d1367f
SE
385static inline void perf_detach_cgroup(struct perf_event *event)
386{
4e2ba650 387 css_put(&event->cgrp->css);
e5d1367f
SE
388 event->cgrp = NULL;
389}
390
391static inline int is_cgroup_event(struct perf_event *event)
392{
393 return event->cgrp != NULL;
394}
395
396static inline u64 perf_cgroup_event_time(struct perf_event *event)
397{
398 struct perf_cgroup_info *t;
399
400 t = per_cpu_ptr(event->cgrp->info, event->cpu);
401 return t->time;
402}
403
404static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
405{
406 struct perf_cgroup_info *info;
407 u64 now;
408
409 now = perf_clock();
410
411 info = this_cpu_ptr(cgrp->info);
412
413 info->time += now - info->timestamp;
414 info->timestamp = now;
415}
416
417static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
418{
419 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
420 if (cgrp_out)
421 __update_cgrp_time(cgrp_out);
422}
423
424static inline void update_cgrp_time_from_event(struct perf_event *event)
425{
3f7cce3c
SE
426 struct perf_cgroup *cgrp;
427
e5d1367f 428 /*
3f7cce3c
SE
429 * ensure we access cgroup data only when needed and
430 * when we know the cgroup is pinned (css_get)
e5d1367f 431 */
3f7cce3c 432 if (!is_cgroup_event(event))
e5d1367f
SE
433 return;
434
3f7cce3c
SE
435 cgrp = perf_cgroup_from_task(current);
436 /*
437 * Do not update time when cgroup is not active
438 */
439 if (cgrp == event->cgrp)
440 __update_cgrp_time(event->cgrp);
e5d1367f
SE
441}
442
443static inline void
3f7cce3c
SE
444perf_cgroup_set_timestamp(struct task_struct *task,
445 struct perf_event_context *ctx)
e5d1367f
SE
446{
447 struct perf_cgroup *cgrp;
448 struct perf_cgroup_info *info;
449
3f7cce3c
SE
450 /*
451 * ctx->lock held by caller
452 * ensure we do not access cgroup data
453 * unless we have the cgroup pinned (css_get)
454 */
455 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
456 return;
457
458 cgrp = perf_cgroup_from_task(task);
459 info = this_cpu_ptr(cgrp->info);
3f7cce3c 460 info->timestamp = ctx->timestamp;
e5d1367f
SE
461}
462
463#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
464#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
465
466/*
467 * reschedule events based on the cgroup constraint of task.
468 *
469 * mode SWOUT : schedule out everything
470 * mode SWIN : schedule in based on cgroup for next
471 */
472void perf_cgroup_switch(struct task_struct *task, int mode)
473{
474 struct perf_cpu_context *cpuctx;
475 struct pmu *pmu;
476 unsigned long flags;
477
478 /*
479 * disable interrupts to avoid geting nr_cgroup
480 * changes via __perf_event_disable(). Also
481 * avoids preemption.
482 */
483 local_irq_save(flags);
484
485 /*
486 * we reschedule only in the presence of cgroup
487 * constrained events.
488 */
489 rcu_read_lock();
490
491 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 492 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
493 if (cpuctx->unique_pmu != pmu)
494 continue; /* ensure we process each cpuctx once */
e5d1367f 495
e5d1367f
SE
496 /*
497 * perf_cgroup_events says at least one
498 * context on this CPU has cgroup events.
499 *
500 * ctx->nr_cgroups reports the number of cgroup
501 * events for a context.
502 */
503 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
504 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
505 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
506
507 if (mode & PERF_CGROUP_SWOUT) {
508 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
509 /*
510 * must not be done before ctxswout due
511 * to event_filter_match() in event_sched_out()
512 */
513 cpuctx->cgrp = NULL;
514 }
515
516 if (mode & PERF_CGROUP_SWIN) {
e566b76e 517 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
518 /*
519 * set cgrp before ctxsw in to allow
520 * event_filter_match() to not have to pass
521 * task around
e5d1367f
SE
522 */
523 cpuctx->cgrp = perf_cgroup_from_task(task);
524 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
525 }
facc4307
PZ
526 perf_pmu_enable(cpuctx->ctx.pmu);
527 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 528 }
e5d1367f
SE
529 }
530
531 rcu_read_unlock();
532
533 local_irq_restore(flags);
534}
535
a8d757ef
SE
536static inline void perf_cgroup_sched_out(struct task_struct *task,
537 struct task_struct *next)
e5d1367f 538{
a8d757ef
SE
539 struct perf_cgroup *cgrp1;
540 struct perf_cgroup *cgrp2 = NULL;
541
542 /*
543 * we come here when we know perf_cgroup_events > 0
544 */
545 cgrp1 = perf_cgroup_from_task(task);
546
547 /*
548 * next is NULL when called from perf_event_enable_on_exec()
549 * that will systematically cause a cgroup_switch()
550 */
551 if (next)
552 cgrp2 = perf_cgroup_from_task(next);
553
554 /*
555 * only schedule out current cgroup events if we know
556 * that we are switching to a different cgroup. Otherwise,
557 * do no touch the cgroup events.
558 */
559 if (cgrp1 != cgrp2)
560 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
561}
562
a8d757ef
SE
563static inline void perf_cgroup_sched_in(struct task_struct *prev,
564 struct task_struct *task)
e5d1367f 565{
a8d757ef
SE
566 struct perf_cgroup *cgrp1;
567 struct perf_cgroup *cgrp2 = NULL;
568
569 /*
570 * we come here when we know perf_cgroup_events > 0
571 */
572 cgrp1 = perf_cgroup_from_task(task);
573
574 /* prev can never be NULL */
575 cgrp2 = perf_cgroup_from_task(prev);
576
577 /*
578 * only need to schedule in cgroup events if we are changing
579 * cgroup during ctxsw. Cgroup events were not scheduled
580 * out of ctxsw out if that was not the case.
581 */
582 if (cgrp1 != cgrp2)
583 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
584}
585
586static inline int perf_cgroup_connect(int fd, struct perf_event *event,
587 struct perf_event_attr *attr,
588 struct perf_event *group_leader)
589{
590 struct perf_cgroup *cgrp;
591 struct cgroup_subsys_state *css;
2903ff01
AV
592 struct fd f = fdget(fd);
593 int ret = 0;
e5d1367f 594
2903ff01 595 if (!f.file)
e5d1367f
SE
596 return -EBADF;
597
b583043e 598 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 599 &perf_event_cgrp_subsys);
3db272c0
LZ
600 if (IS_ERR(css)) {
601 ret = PTR_ERR(css);
602 goto out;
603 }
e5d1367f
SE
604
605 cgrp = container_of(css, struct perf_cgroup, css);
606 event->cgrp = cgrp;
607
608 /*
609 * all events in a group must monitor
610 * the same cgroup because a task belongs
611 * to only one perf cgroup at a time
612 */
613 if (group_leader && group_leader->cgrp != cgrp) {
614 perf_detach_cgroup(event);
615 ret = -EINVAL;
e5d1367f 616 }
3db272c0 617out:
2903ff01 618 fdput(f);
e5d1367f
SE
619 return ret;
620}
621
622static inline void
623perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
624{
625 struct perf_cgroup_info *t;
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 event->shadow_ctx_time = now - t->timestamp;
628}
629
630static inline void
631perf_cgroup_defer_enabled(struct perf_event *event)
632{
633 /*
634 * when the current task's perf cgroup does not match
635 * the event's, we need to remember to call the
636 * perf_mark_enable() function the first time a task with
637 * a matching perf cgroup is scheduled in.
638 */
639 if (is_cgroup_event(event) && !perf_cgroup_match(event))
640 event->cgrp_defer_enabled = 1;
641}
642
643static inline void
644perf_cgroup_mark_enabled(struct perf_event *event,
645 struct perf_event_context *ctx)
646{
647 struct perf_event *sub;
648 u64 tstamp = perf_event_time(event);
649
650 if (!event->cgrp_defer_enabled)
651 return;
652
653 event->cgrp_defer_enabled = 0;
654
655 event->tstamp_enabled = tstamp - event->total_time_enabled;
656 list_for_each_entry(sub, &event->sibling_list, group_entry) {
657 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
658 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
659 sub->cgrp_defer_enabled = 0;
660 }
661 }
662}
663#else /* !CONFIG_CGROUP_PERF */
664
665static inline bool
666perf_cgroup_match(struct perf_event *event)
667{
668 return true;
669}
670
671static inline void perf_detach_cgroup(struct perf_event *event)
672{}
673
674static inline int is_cgroup_event(struct perf_event *event)
675{
676 return 0;
677}
678
679static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
680{
681 return 0;
682}
683
684static inline void update_cgrp_time_from_event(struct perf_event *event)
685{
686}
687
688static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
689{
690}
691
a8d757ef
SE
692static inline void perf_cgroup_sched_out(struct task_struct *task,
693 struct task_struct *next)
e5d1367f
SE
694{
695}
696
a8d757ef
SE
697static inline void perf_cgroup_sched_in(struct task_struct *prev,
698 struct task_struct *task)
e5d1367f
SE
699{
700}
701
702static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
703 struct perf_event_attr *attr,
704 struct perf_event *group_leader)
705{
706 return -EINVAL;
707}
708
709static inline void
3f7cce3c
SE
710perf_cgroup_set_timestamp(struct task_struct *task,
711 struct perf_event_context *ctx)
e5d1367f
SE
712{
713}
714
715void
716perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
717{
718}
719
720static inline void
721perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
722{
723}
724
725static inline u64 perf_cgroup_event_time(struct perf_event *event)
726{
727 return 0;
728}
729
730static inline void
731perf_cgroup_defer_enabled(struct perf_event *event)
732{
733}
734
735static inline void
736perf_cgroup_mark_enabled(struct perf_event *event,
737 struct perf_event_context *ctx)
738{
739}
740#endif
741
9e630205
SE
742/*
743 * set default to be dependent on timer tick just
744 * like original code
745 */
746#define PERF_CPU_HRTIMER (1000 / HZ)
747/*
748 * function must be called with interrupts disbled
749 */
750static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
751{
752 struct perf_cpu_context *cpuctx;
753 enum hrtimer_restart ret = HRTIMER_NORESTART;
754 int rotations = 0;
755
756 WARN_ON(!irqs_disabled());
757
758 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
759
760 rotations = perf_rotate_context(cpuctx);
761
762 /*
763 * arm timer if needed
764 */
765 if (rotations) {
766 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
767 ret = HRTIMER_RESTART;
768 }
769
770 return ret;
771}
772
773/* CPU is going down */
774void perf_cpu_hrtimer_cancel(int cpu)
775{
776 struct perf_cpu_context *cpuctx;
777 struct pmu *pmu;
778 unsigned long flags;
779
780 if (WARN_ON(cpu != smp_processor_id()))
781 return;
782
783 local_irq_save(flags);
784
785 rcu_read_lock();
786
787 list_for_each_entry_rcu(pmu, &pmus, entry) {
788 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
789
790 if (pmu->task_ctx_nr == perf_sw_context)
791 continue;
792
793 hrtimer_cancel(&cpuctx->hrtimer);
794 }
795
796 rcu_read_unlock();
797
798 local_irq_restore(flags);
799}
800
801static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
802{
803 struct hrtimer *hr = &cpuctx->hrtimer;
804 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 805 int timer;
9e630205
SE
806
807 /* no multiplexing needed for SW PMU */
808 if (pmu->task_ctx_nr == perf_sw_context)
809 return;
810
62b85639
SE
811 /*
812 * check default is sane, if not set then force to
813 * default interval (1/tick)
814 */
815 timer = pmu->hrtimer_interval_ms;
816 if (timer < 1)
817 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
818
819 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
820
821 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
822 hr->function = perf_cpu_hrtimer_handler;
823}
824
825static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
826{
827 struct hrtimer *hr = &cpuctx->hrtimer;
828 struct pmu *pmu = cpuctx->ctx.pmu;
829
830 /* not for SW PMU */
831 if (pmu->task_ctx_nr == perf_sw_context)
832 return;
833
834 if (hrtimer_active(hr))
835 return;
836
837 if (!hrtimer_callback_running(hr))
838 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
839 0, HRTIMER_MODE_REL_PINNED, 0);
840}
841
33696fc0 842void perf_pmu_disable(struct pmu *pmu)
9e35ad38 843{
33696fc0
PZ
844 int *count = this_cpu_ptr(pmu->pmu_disable_count);
845 if (!(*count)++)
846 pmu->pmu_disable(pmu);
9e35ad38 847}
9e35ad38 848
33696fc0 849void perf_pmu_enable(struct pmu *pmu)
9e35ad38 850{
33696fc0
PZ
851 int *count = this_cpu_ptr(pmu->pmu_disable_count);
852 if (!--(*count))
853 pmu->pmu_enable(pmu);
9e35ad38 854}
9e35ad38 855
2fde4f94 856static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
857
858/*
2fde4f94
MR
859 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
860 * perf_event_task_tick() are fully serialized because they're strictly cpu
861 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
862 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 863 */
2fde4f94 864static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 865{
2fde4f94 866 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 867
e9d2b064 868 WARN_ON(!irqs_disabled());
b5ab4cd5 869
2fde4f94
MR
870 WARN_ON(!list_empty(&ctx->active_ctx_list));
871
872 list_add(&ctx->active_ctx_list, head);
873}
874
875static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
876{
877 WARN_ON(!irqs_disabled());
878
879 WARN_ON(list_empty(&ctx->active_ctx_list));
880
881 list_del_init(&ctx->active_ctx_list);
9e35ad38 882}
9e35ad38 883
cdd6c482 884static void get_ctx(struct perf_event_context *ctx)
a63eaf34 885{
e5289d4a 886 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
887}
888
4af57ef2
YZ
889static void free_ctx(struct rcu_head *head)
890{
891 struct perf_event_context *ctx;
892
893 ctx = container_of(head, struct perf_event_context, rcu_head);
894 kfree(ctx->task_ctx_data);
895 kfree(ctx);
896}
897
cdd6c482 898static void put_ctx(struct perf_event_context *ctx)
a63eaf34 899{
564c2b21
PM
900 if (atomic_dec_and_test(&ctx->refcount)) {
901 if (ctx->parent_ctx)
902 put_ctx(ctx->parent_ctx);
c93f7669
PM
903 if (ctx->task)
904 put_task_struct(ctx->task);
4af57ef2 905 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 906 }
a63eaf34
PM
907}
908
f63a8daa
PZ
909/*
910 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
911 * perf_pmu_migrate_context() we need some magic.
912 *
913 * Those places that change perf_event::ctx will hold both
914 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
915 *
916 * Lock ordering is by mutex address. There is one other site where
917 * perf_event_context::mutex nests and that is put_event(). But remember that
918 * that is a parent<->child context relation, and migration does not affect
919 * children, therefore these two orderings should not interact.
920 *
921 * The change in perf_event::ctx does not affect children (as claimed above)
922 * because the sys_perf_event_open() case will install a new event and break
923 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
924 * concerned with cpuctx and that doesn't have children.
925 *
926 * The places that change perf_event::ctx will issue:
927 *
928 * perf_remove_from_context();
929 * synchronize_rcu();
930 * perf_install_in_context();
931 *
932 * to affect the change. The remove_from_context() + synchronize_rcu() should
933 * quiesce the event, after which we can install it in the new location. This
934 * means that only external vectors (perf_fops, prctl) can perturb the event
935 * while in transit. Therefore all such accessors should also acquire
936 * perf_event_context::mutex to serialize against this.
937 *
938 * However; because event->ctx can change while we're waiting to acquire
939 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
940 * function.
941 *
942 * Lock order:
943 * task_struct::perf_event_mutex
944 * perf_event_context::mutex
945 * perf_event_context::lock
946 * perf_event::child_mutex;
947 * perf_event::mmap_mutex
948 * mmap_sem
949 */
a83fe28e
PZ
950static struct perf_event_context *
951perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
952{
953 struct perf_event_context *ctx;
954
955again:
956 rcu_read_lock();
957 ctx = ACCESS_ONCE(event->ctx);
958 if (!atomic_inc_not_zero(&ctx->refcount)) {
959 rcu_read_unlock();
960 goto again;
961 }
962 rcu_read_unlock();
963
a83fe28e 964 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
965 if (event->ctx != ctx) {
966 mutex_unlock(&ctx->mutex);
967 put_ctx(ctx);
968 goto again;
969 }
970
971 return ctx;
972}
973
a83fe28e
PZ
974static inline struct perf_event_context *
975perf_event_ctx_lock(struct perf_event *event)
976{
977 return perf_event_ctx_lock_nested(event, 0);
978}
979
f63a8daa
PZ
980static void perf_event_ctx_unlock(struct perf_event *event,
981 struct perf_event_context *ctx)
982{
983 mutex_unlock(&ctx->mutex);
984 put_ctx(ctx);
985}
986
211de6eb
PZ
987/*
988 * This must be done under the ctx->lock, such as to serialize against
989 * context_equiv(), therefore we cannot call put_ctx() since that might end up
990 * calling scheduler related locks and ctx->lock nests inside those.
991 */
992static __must_check struct perf_event_context *
993unclone_ctx(struct perf_event_context *ctx)
71a851b4 994{
211de6eb
PZ
995 struct perf_event_context *parent_ctx = ctx->parent_ctx;
996
997 lockdep_assert_held(&ctx->lock);
998
999 if (parent_ctx)
71a851b4 1000 ctx->parent_ctx = NULL;
5a3126d4 1001 ctx->generation++;
211de6eb
PZ
1002
1003 return parent_ctx;
71a851b4
PZ
1004}
1005
6844c09d
ACM
1006static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1007{
1008 /*
1009 * only top level events have the pid namespace they were created in
1010 */
1011 if (event->parent)
1012 event = event->parent;
1013
1014 return task_tgid_nr_ns(p, event->ns);
1015}
1016
1017static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1018{
1019 /*
1020 * only top level events have the pid namespace they were created in
1021 */
1022 if (event->parent)
1023 event = event->parent;
1024
1025 return task_pid_nr_ns(p, event->ns);
1026}
1027
7f453c24 1028/*
cdd6c482 1029 * If we inherit events we want to return the parent event id
7f453c24
PZ
1030 * to userspace.
1031 */
cdd6c482 1032static u64 primary_event_id(struct perf_event *event)
7f453c24 1033{
cdd6c482 1034 u64 id = event->id;
7f453c24 1035
cdd6c482
IM
1036 if (event->parent)
1037 id = event->parent->id;
7f453c24
PZ
1038
1039 return id;
1040}
1041
25346b93 1042/*
cdd6c482 1043 * Get the perf_event_context for a task and lock it.
25346b93
PM
1044 * This has to cope with with the fact that until it is locked,
1045 * the context could get moved to another task.
1046 */
cdd6c482 1047static struct perf_event_context *
8dc85d54 1048perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1049{
cdd6c482 1050 struct perf_event_context *ctx;
25346b93 1051
9ed6060d 1052retry:
058ebd0e
PZ
1053 /*
1054 * One of the few rules of preemptible RCU is that one cannot do
1055 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1056 * part of the read side critical section was preemptible -- see
1057 * rcu_read_unlock_special().
1058 *
1059 * Since ctx->lock nests under rq->lock we must ensure the entire read
1060 * side critical section is non-preemptible.
1061 */
1062 preempt_disable();
1063 rcu_read_lock();
8dc85d54 1064 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1065 if (ctx) {
1066 /*
1067 * If this context is a clone of another, it might
1068 * get swapped for another underneath us by
cdd6c482 1069 * perf_event_task_sched_out, though the
25346b93
PM
1070 * rcu_read_lock() protects us from any context
1071 * getting freed. Lock the context and check if it
1072 * got swapped before we could get the lock, and retry
1073 * if so. If we locked the right context, then it
1074 * can't get swapped on us any more.
1075 */
e625cce1 1076 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 1077 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1078 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1079 rcu_read_unlock();
1080 preempt_enable();
25346b93
PM
1081 goto retry;
1082 }
b49a9e7e
PZ
1083
1084 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1085 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1086 ctx = NULL;
1087 }
25346b93
PM
1088 }
1089 rcu_read_unlock();
058ebd0e 1090 preempt_enable();
25346b93
PM
1091 return ctx;
1092}
1093
1094/*
1095 * Get the context for a task and increment its pin_count so it
1096 * can't get swapped to another task. This also increments its
1097 * reference count so that the context can't get freed.
1098 */
8dc85d54
PZ
1099static struct perf_event_context *
1100perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1101{
cdd6c482 1102 struct perf_event_context *ctx;
25346b93
PM
1103 unsigned long flags;
1104
8dc85d54 1105 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1106 if (ctx) {
1107 ++ctx->pin_count;
e625cce1 1108 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1109 }
1110 return ctx;
1111}
1112
cdd6c482 1113static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1114{
1115 unsigned long flags;
1116
e625cce1 1117 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1118 --ctx->pin_count;
e625cce1 1119 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1120}
1121
f67218c3
PZ
1122/*
1123 * Update the record of the current time in a context.
1124 */
1125static void update_context_time(struct perf_event_context *ctx)
1126{
1127 u64 now = perf_clock();
1128
1129 ctx->time += now - ctx->timestamp;
1130 ctx->timestamp = now;
1131}
1132
4158755d
SE
1133static u64 perf_event_time(struct perf_event *event)
1134{
1135 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1136
1137 if (is_cgroup_event(event))
1138 return perf_cgroup_event_time(event);
1139
4158755d
SE
1140 return ctx ? ctx->time : 0;
1141}
1142
f67218c3
PZ
1143/*
1144 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1145 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1146 */
1147static void update_event_times(struct perf_event *event)
1148{
1149 struct perf_event_context *ctx = event->ctx;
1150 u64 run_end;
1151
1152 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1153 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1154 return;
e5d1367f
SE
1155 /*
1156 * in cgroup mode, time_enabled represents
1157 * the time the event was enabled AND active
1158 * tasks were in the monitored cgroup. This is
1159 * independent of the activity of the context as
1160 * there may be a mix of cgroup and non-cgroup events.
1161 *
1162 * That is why we treat cgroup events differently
1163 * here.
1164 */
1165 if (is_cgroup_event(event))
46cd6a7f 1166 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1167 else if (ctx->is_active)
1168 run_end = ctx->time;
acd1d7c1
PZ
1169 else
1170 run_end = event->tstamp_stopped;
1171
1172 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1173
1174 if (event->state == PERF_EVENT_STATE_INACTIVE)
1175 run_end = event->tstamp_stopped;
1176 else
4158755d 1177 run_end = perf_event_time(event);
f67218c3
PZ
1178
1179 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1180
f67218c3
PZ
1181}
1182
96c21a46
PZ
1183/*
1184 * Update total_time_enabled and total_time_running for all events in a group.
1185 */
1186static void update_group_times(struct perf_event *leader)
1187{
1188 struct perf_event *event;
1189
1190 update_event_times(leader);
1191 list_for_each_entry(event, &leader->sibling_list, group_entry)
1192 update_event_times(event);
1193}
1194
889ff015
FW
1195static struct list_head *
1196ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1197{
1198 if (event->attr.pinned)
1199 return &ctx->pinned_groups;
1200 else
1201 return &ctx->flexible_groups;
1202}
1203
fccc714b 1204/*
cdd6c482 1205 * Add a event from the lists for its context.
fccc714b
PZ
1206 * Must be called with ctx->mutex and ctx->lock held.
1207 */
04289bb9 1208static void
cdd6c482 1209list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1210{
8a49542c
PZ
1211 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1212 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1213
1214 /*
8a49542c
PZ
1215 * If we're a stand alone event or group leader, we go to the context
1216 * list, group events are kept attached to the group so that
1217 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1218 */
8a49542c 1219 if (event->group_leader == event) {
889ff015
FW
1220 struct list_head *list;
1221
d6f962b5
FW
1222 if (is_software_event(event))
1223 event->group_flags |= PERF_GROUP_SOFTWARE;
1224
889ff015
FW
1225 list = ctx_group_list(event, ctx);
1226 list_add_tail(&event->group_entry, list);
5c148194 1227 }
592903cd 1228
08309379 1229 if (is_cgroup_event(event))
e5d1367f 1230 ctx->nr_cgroups++;
e5d1367f 1231
cdd6c482
IM
1232 list_add_rcu(&event->event_entry, &ctx->event_list);
1233 ctx->nr_events++;
1234 if (event->attr.inherit_stat)
bfbd3381 1235 ctx->nr_stat++;
5a3126d4
PZ
1236
1237 ctx->generation++;
04289bb9
IM
1238}
1239
0231bb53
JO
1240/*
1241 * Initialize event state based on the perf_event_attr::disabled.
1242 */
1243static inline void perf_event__state_init(struct perf_event *event)
1244{
1245 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1246 PERF_EVENT_STATE_INACTIVE;
1247}
1248
c320c7b7
ACM
1249/*
1250 * Called at perf_event creation and when events are attached/detached from a
1251 * group.
1252 */
1253static void perf_event__read_size(struct perf_event *event)
1254{
1255 int entry = sizeof(u64); /* value */
1256 int size = 0;
1257 int nr = 1;
1258
1259 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1260 size += sizeof(u64);
1261
1262 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1263 size += sizeof(u64);
1264
1265 if (event->attr.read_format & PERF_FORMAT_ID)
1266 entry += sizeof(u64);
1267
1268 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1269 nr += event->group_leader->nr_siblings;
1270 size += sizeof(u64);
1271 }
1272
1273 size += entry * nr;
1274 event->read_size = size;
1275}
1276
1277static void perf_event__header_size(struct perf_event *event)
1278{
1279 struct perf_sample_data *data;
1280 u64 sample_type = event->attr.sample_type;
1281 u16 size = 0;
1282
1283 perf_event__read_size(event);
1284
1285 if (sample_type & PERF_SAMPLE_IP)
1286 size += sizeof(data->ip);
1287
6844c09d
ACM
1288 if (sample_type & PERF_SAMPLE_ADDR)
1289 size += sizeof(data->addr);
1290
1291 if (sample_type & PERF_SAMPLE_PERIOD)
1292 size += sizeof(data->period);
1293
c3feedf2
AK
1294 if (sample_type & PERF_SAMPLE_WEIGHT)
1295 size += sizeof(data->weight);
1296
6844c09d
ACM
1297 if (sample_type & PERF_SAMPLE_READ)
1298 size += event->read_size;
1299
d6be9ad6
SE
1300 if (sample_type & PERF_SAMPLE_DATA_SRC)
1301 size += sizeof(data->data_src.val);
1302
fdfbbd07
AK
1303 if (sample_type & PERF_SAMPLE_TRANSACTION)
1304 size += sizeof(data->txn);
1305
6844c09d
ACM
1306 event->header_size = size;
1307}
1308
1309static void perf_event__id_header_size(struct perf_event *event)
1310{
1311 struct perf_sample_data *data;
1312 u64 sample_type = event->attr.sample_type;
1313 u16 size = 0;
1314
c320c7b7
ACM
1315 if (sample_type & PERF_SAMPLE_TID)
1316 size += sizeof(data->tid_entry);
1317
1318 if (sample_type & PERF_SAMPLE_TIME)
1319 size += sizeof(data->time);
1320
ff3d527c
AH
1321 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1322 size += sizeof(data->id);
1323
c320c7b7
ACM
1324 if (sample_type & PERF_SAMPLE_ID)
1325 size += sizeof(data->id);
1326
1327 if (sample_type & PERF_SAMPLE_STREAM_ID)
1328 size += sizeof(data->stream_id);
1329
1330 if (sample_type & PERF_SAMPLE_CPU)
1331 size += sizeof(data->cpu_entry);
1332
6844c09d 1333 event->id_header_size = size;
c320c7b7
ACM
1334}
1335
8a49542c
PZ
1336static void perf_group_attach(struct perf_event *event)
1337{
c320c7b7 1338 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1339
74c3337c
PZ
1340 /*
1341 * We can have double attach due to group movement in perf_event_open.
1342 */
1343 if (event->attach_state & PERF_ATTACH_GROUP)
1344 return;
1345
8a49542c
PZ
1346 event->attach_state |= PERF_ATTACH_GROUP;
1347
1348 if (group_leader == event)
1349 return;
1350
652884fe
PZ
1351 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1352
8a49542c
PZ
1353 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1354 !is_software_event(event))
1355 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1356
1357 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1358 group_leader->nr_siblings++;
c320c7b7
ACM
1359
1360 perf_event__header_size(group_leader);
1361
1362 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1363 perf_event__header_size(pos);
8a49542c
PZ
1364}
1365
a63eaf34 1366/*
cdd6c482 1367 * Remove a event from the lists for its context.
fccc714b 1368 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1369 */
04289bb9 1370static void
cdd6c482 1371list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1372{
68cacd29 1373 struct perf_cpu_context *cpuctx;
652884fe
PZ
1374
1375 WARN_ON_ONCE(event->ctx != ctx);
1376 lockdep_assert_held(&ctx->lock);
1377
8a49542c
PZ
1378 /*
1379 * We can have double detach due to exit/hot-unplug + close.
1380 */
1381 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1382 return;
8a49542c
PZ
1383
1384 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1385
68cacd29 1386 if (is_cgroup_event(event)) {
e5d1367f 1387 ctx->nr_cgroups--;
68cacd29
SE
1388 cpuctx = __get_cpu_context(ctx);
1389 /*
1390 * if there are no more cgroup events
1391 * then cler cgrp to avoid stale pointer
1392 * in update_cgrp_time_from_cpuctx()
1393 */
1394 if (!ctx->nr_cgroups)
1395 cpuctx->cgrp = NULL;
1396 }
e5d1367f 1397
cdd6c482
IM
1398 ctx->nr_events--;
1399 if (event->attr.inherit_stat)
bfbd3381 1400 ctx->nr_stat--;
8bc20959 1401
cdd6c482 1402 list_del_rcu(&event->event_entry);
04289bb9 1403
8a49542c
PZ
1404 if (event->group_leader == event)
1405 list_del_init(&event->group_entry);
5c148194 1406
96c21a46 1407 update_group_times(event);
b2e74a26
SE
1408
1409 /*
1410 * If event was in error state, then keep it
1411 * that way, otherwise bogus counts will be
1412 * returned on read(). The only way to get out
1413 * of error state is by explicit re-enabling
1414 * of the event
1415 */
1416 if (event->state > PERF_EVENT_STATE_OFF)
1417 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1418
1419 ctx->generation++;
050735b0
PZ
1420}
1421
8a49542c 1422static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1423{
1424 struct perf_event *sibling, *tmp;
8a49542c
PZ
1425 struct list_head *list = NULL;
1426
1427 /*
1428 * We can have double detach due to exit/hot-unplug + close.
1429 */
1430 if (!(event->attach_state & PERF_ATTACH_GROUP))
1431 return;
1432
1433 event->attach_state &= ~PERF_ATTACH_GROUP;
1434
1435 /*
1436 * If this is a sibling, remove it from its group.
1437 */
1438 if (event->group_leader != event) {
1439 list_del_init(&event->group_entry);
1440 event->group_leader->nr_siblings--;
c320c7b7 1441 goto out;
8a49542c
PZ
1442 }
1443
1444 if (!list_empty(&event->group_entry))
1445 list = &event->group_entry;
2e2af50b 1446
04289bb9 1447 /*
cdd6c482
IM
1448 * If this was a group event with sibling events then
1449 * upgrade the siblings to singleton events by adding them
8a49542c 1450 * to whatever list we are on.
04289bb9 1451 */
cdd6c482 1452 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1453 if (list)
1454 list_move_tail(&sibling->group_entry, list);
04289bb9 1455 sibling->group_leader = sibling;
d6f962b5
FW
1456
1457 /* Inherit group flags from the previous leader */
1458 sibling->group_flags = event->group_flags;
652884fe
PZ
1459
1460 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1461 }
c320c7b7
ACM
1462
1463out:
1464 perf_event__header_size(event->group_leader);
1465
1466 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1467 perf_event__header_size(tmp);
04289bb9
IM
1468}
1469
fadfe7be
JO
1470/*
1471 * User event without the task.
1472 */
1473static bool is_orphaned_event(struct perf_event *event)
1474{
1475 return event && !is_kernel_event(event) && !event->owner;
1476}
1477
1478/*
1479 * Event has a parent but parent's task finished and it's
1480 * alive only because of children holding refference.
1481 */
1482static bool is_orphaned_child(struct perf_event *event)
1483{
1484 return is_orphaned_event(event->parent);
1485}
1486
1487static void orphans_remove_work(struct work_struct *work);
1488
1489static void schedule_orphans_remove(struct perf_event_context *ctx)
1490{
1491 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1492 return;
1493
1494 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1495 get_ctx(ctx);
1496 ctx->orphans_remove_sched = true;
1497 }
1498}
1499
1500static int __init perf_workqueue_init(void)
1501{
1502 perf_wq = create_singlethread_workqueue("perf");
1503 WARN(!perf_wq, "failed to create perf workqueue\n");
1504 return perf_wq ? 0 : -1;
1505}
1506
1507core_initcall(perf_workqueue_init);
1508
fa66f07a
SE
1509static inline int
1510event_filter_match(struct perf_event *event)
1511{
e5d1367f
SE
1512 return (event->cpu == -1 || event->cpu == smp_processor_id())
1513 && perf_cgroup_match(event);
fa66f07a
SE
1514}
1515
9ffcfa6f
SE
1516static void
1517event_sched_out(struct perf_event *event,
3b6f9e5c 1518 struct perf_cpu_context *cpuctx,
cdd6c482 1519 struct perf_event_context *ctx)
3b6f9e5c 1520{
4158755d 1521 u64 tstamp = perf_event_time(event);
fa66f07a 1522 u64 delta;
652884fe
PZ
1523
1524 WARN_ON_ONCE(event->ctx != ctx);
1525 lockdep_assert_held(&ctx->lock);
1526
fa66f07a
SE
1527 /*
1528 * An event which could not be activated because of
1529 * filter mismatch still needs to have its timings
1530 * maintained, otherwise bogus information is return
1531 * via read() for time_enabled, time_running:
1532 */
1533 if (event->state == PERF_EVENT_STATE_INACTIVE
1534 && !event_filter_match(event)) {
e5d1367f 1535 delta = tstamp - event->tstamp_stopped;
fa66f07a 1536 event->tstamp_running += delta;
4158755d 1537 event->tstamp_stopped = tstamp;
fa66f07a
SE
1538 }
1539
cdd6c482 1540 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1541 return;
3b6f9e5c 1542
44377277
AS
1543 perf_pmu_disable(event->pmu);
1544
cdd6c482
IM
1545 event->state = PERF_EVENT_STATE_INACTIVE;
1546 if (event->pending_disable) {
1547 event->pending_disable = 0;
1548 event->state = PERF_EVENT_STATE_OFF;
970892a9 1549 }
4158755d 1550 event->tstamp_stopped = tstamp;
a4eaf7f1 1551 event->pmu->del(event, 0);
cdd6c482 1552 event->oncpu = -1;
3b6f9e5c 1553
cdd6c482 1554 if (!is_software_event(event))
3b6f9e5c 1555 cpuctx->active_oncpu--;
2fde4f94
MR
1556 if (!--ctx->nr_active)
1557 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1558 if (event->attr.freq && event->attr.sample_freq)
1559 ctx->nr_freq--;
cdd6c482 1560 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1561 cpuctx->exclusive = 0;
44377277 1562
fadfe7be
JO
1563 if (is_orphaned_child(event))
1564 schedule_orphans_remove(ctx);
1565
44377277 1566 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1567}
1568
d859e29f 1569static void
cdd6c482 1570group_sched_out(struct perf_event *group_event,
d859e29f 1571 struct perf_cpu_context *cpuctx,
cdd6c482 1572 struct perf_event_context *ctx)
d859e29f 1573{
cdd6c482 1574 struct perf_event *event;
fa66f07a 1575 int state = group_event->state;
d859e29f 1576
cdd6c482 1577 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1578
1579 /*
1580 * Schedule out siblings (if any):
1581 */
cdd6c482
IM
1582 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1583 event_sched_out(event, cpuctx, ctx);
d859e29f 1584
fa66f07a 1585 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1586 cpuctx->exclusive = 0;
1587}
1588
46ce0fe9
PZ
1589struct remove_event {
1590 struct perf_event *event;
1591 bool detach_group;
1592};
1593
0793a61d 1594/*
cdd6c482 1595 * Cross CPU call to remove a performance event
0793a61d 1596 *
cdd6c482 1597 * We disable the event on the hardware level first. After that we
0793a61d
TG
1598 * remove it from the context list.
1599 */
fe4b04fa 1600static int __perf_remove_from_context(void *info)
0793a61d 1601{
46ce0fe9
PZ
1602 struct remove_event *re = info;
1603 struct perf_event *event = re->event;
cdd6c482 1604 struct perf_event_context *ctx = event->ctx;
108b02cf 1605 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1606
e625cce1 1607 raw_spin_lock(&ctx->lock);
cdd6c482 1608 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1609 if (re->detach_group)
1610 perf_group_detach(event);
cdd6c482 1611 list_del_event(event, ctx);
64ce3126
PZ
1612 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1613 ctx->is_active = 0;
1614 cpuctx->task_ctx = NULL;
1615 }
e625cce1 1616 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1617
1618 return 0;
0793a61d
TG
1619}
1620
1621
1622/*
cdd6c482 1623 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1624 *
cdd6c482 1625 * CPU events are removed with a smp call. For task events we only
0793a61d 1626 * call when the task is on a CPU.
c93f7669 1627 *
cdd6c482
IM
1628 * If event->ctx is a cloned context, callers must make sure that
1629 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1630 * remains valid. This is OK when called from perf_release since
1631 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1632 * When called from perf_event_exit_task, it's OK because the
c93f7669 1633 * context has been detached from its task.
0793a61d 1634 */
46ce0fe9 1635static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1636{
cdd6c482 1637 struct perf_event_context *ctx = event->ctx;
0793a61d 1638 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1639 struct remove_event re = {
1640 .event = event,
1641 .detach_group = detach_group,
1642 };
0793a61d 1643
fe4b04fa
PZ
1644 lockdep_assert_held(&ctx->mutex);
1645
0793a61d
TG
1646 if (!task) {
1647 /*
226424ee
MR
1648 * Per cpu events are removed via an smp call. The removal can
1649 * fail if the CPU is currently offline, but in that case we
1650 * already called __perf_remove_from_context from
1651 * perf_event_exit_cpu.
0793a61d 1652 */
46ce0fe9 1653 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1654 return;
1655 }
1656
1657retry:
46ce0fe9 1658 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1659 return;
0793a61d 1660
e625cce1 1661 raw_spin_lock_irq(&ctx->lock);
0793a61d 1662 /*
fe4b04fa
PZ
1663 * If we failed to find a running task, but find the context active now
1664 * that we've acquired the ctx->lock, retry.
0793a61d 1665 */
fe4b04fa 1666 if (ctx->is_active) {
e625cce1 1667 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1668 /*
1669 * Reload the task pointer, it might have been changed by
1670 * a concurrent perf_event_context_sched_out().
1671 */
1672 task = ctx->task;
0793a61d
TG
1673 goto retry;
1674 }
1675
1676 /*
fe4b04fa
PZ
1677 * Since the task isn't running, its safe to remove the event, us
1678 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1679 */
46ce0fe9
PZ
1680 if (detach_group)
1681 perf_group_detach(event);
fe4b04fa 1682 list_del_event(event, ctx);
e625cce1 1683 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1684}
1685
d859e29f 1686/*
cdd6c482 1687 * Cross CPU call to disable a performance event
d859e29f 1688 */
500ad2d8 1689int __perf_event_disable(void *info)
d859e29f 1690{
cdd6c482 1691 struct perf_event *event = info;
cdd6c482 1692 struct perf_event_context *ctx = event->ctx;
108b02cf 1693 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1694
1695 /*
cdd6c482
IM
1696 * If this is a per-task event, need to check whether this
1697 * event's task is the current task on this cpu.
fe4b04fa
PZ
1698 *
1699 * Can trigger due to concurrent perf_event_context_sched_out()
1700 * flipping contexts around.
d859e29f 1701 */
665c2142 1702 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1703 return -EINVAL;
d859e29f 1704
e625cce1 1705 raw_spin_lock(&ctx->lock);
d859e29f
PM
1706
1707 /*
cdd6c482 1708 * If the event is on, turn it off.
d859e29f
PM
1709 * If it is in error state, leave it in error state.
1710 */
cdd6c482 1711 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1712 update_context_time(ctx);
e5d1367f 1713 update_cgrp_time_from_event(event);
cdd6c482
IM
1714 update_group_times(event);
1715 if (event == event->group_leader)
1716 group_sched_out(event, cpuctx, ctx);
d859e29f 1717 else
cdd6c482
IM
1718 event_sched_out(event, cpuctx, ctx);
1719 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1720 }
1721
e625cce1 1722 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1723
1724 return 0;
d859e29f
PM
1725}
1726
1727/*
cdd6c482 1728 * Disable a event.
c93f7669 1729 *
cdd6c482
IM
1730 * If event->ctx is a cloned context, callers must make sure that
1731 * every task struct that event->ctx->task could possibly point to
c93f7669 1732 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1733 * perf_event_for_each_child or perf_event_for_each because they
1734 * hold the top-level event's child_mutex, so any descendant that
1735 * goes to exit will block in sync_child_event.
1736 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1737 * is the current context on this CPU and preemption is disabled,
cdd6c482 1738 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1739 */
f63a8daa 1740static void _perf_event_disable(struct perf_event *event)
d859e29f 1741{
cdd6c482 1742 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1743 struct task_struct *task = ctx->task;
1744
1745 if (!task) {
1746 /*
cdd6c482 1747 * Disable the event on the cpu that it's on
d859e29f 1748 */
fe4b04fa 1749 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1750 return;
1751 }
1752
9ed6060d 1753retry:
fe4b04fa
PZ
1754 if (!task_function_call(task, __perf_event_disable, event))
1755 return;
d859e29f 1756
e625cce1 1757 raw_spin_lock_irq(&ctx->lock);
d859e29f 1758 /*
cdd6c482 1759 * If the event is still active, we need to retry the cross-call.
d859e29f 1760 */
cdd6c482 1761 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1762 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1763 /*
1764 * Reload the task pointer, it might have been changed by
1765 * a concurrent perf_event_context_sched_out().
1766 */
1767 task = ctx->task;
d859e29f
PM
1768 goto retry;
1769 }
1770
1771 /*
1772 * Since we have the lock this context can't be scheduled
1773 * in, so we can change the state safely.
1774 */
cdd6c482
IM
1775 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1776 update_group_times(event);
1777 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1778 }
e625cce1 1779 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1780}
f63a8daa
PZ
1781
1782/*
1783 * Strictly speaking kernel users cannot create groups and therefore this
1784 * interface does not need the perf_event_ctx_lock() magic.
1785 */
1786void perf_event_disable(struct perf_event *event)
1787{
1788 struct perf_event_context *ctx;
1789
1790 ctx = perf_event_ctx_lock(event);
1791 _perf_event_disable(event);
1792 perf_event_ctx_unlock(event, ctx);
1793}
dcfce4a0 1794EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1795
e5d1367f
SE
1796static void perf_set_shadow_time(struct perf_event *event,
1797 struct perf_event_context *ctx,
1798 u64 tstamp)
1799{
1800 /*
1801 * use the correct time source for the time snapshot
1802 *
1803 * We could get by without this by leveraging the
1804 * fact that to get to this function, the caller
1805 * has most likely already called update_context_time()
1806 * and update_cgrp_time_xx() and thus both timestamp
1807 * are identical (or very close). Given that tstamp is,
1808 * already adjusted for cgroup, we could say that:
1809 * tstamp - ctx->timestamp
1810 * is equivalent to
1811 * tstamp - cgrp->timestamp.
1812 *
1813 * Then, in perf_output_read(), the calculation would
1814 * work with no changes because:
1815 * - event is guaranteed scheduled in
1816 * - no scheduled out in between
1817 * - thus the timestamp would be the same
1818 *
1819 * But this is a bit hairy.
1820 *
1821 * So instead, we have an explicit cgroup call to remain
1822 * within the time time source all along. We believe it
1823 * is cleaner and simpler to understand.
1824 */
1825 if (is_cgroup_event(event))
1826 perf_cgroup_set_shadow_time(event, tstamp);
1827 else
1828 event->shadow_ctx_time = tstamp - ctx->timestamp;
1829}
1830
4fe757dd
PZ
1831#define MAX_INTERRUPTS (~0ULL)
1832
1833static void perf_log_throttle(struct perf_event *event, int enable);
1834
235c7fc7 1835static int
9ffcfa6f 1836event_sched_in(struct perf_event *event,
235c7fc7 1837 struct perf_cpu_context *cpuctx,
6e37738a 1838 struct perf_event_context *ctx)
235c7fc7 1839{
4158755d 1840 u64 tstamp = perf_event_time(event);
44377277 1841 int ret = 0;
4158755d 1842
63342411
PZ
1843 lockdep_assert_held(&ctx->lock);
1844
cdd6c482 1845 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1846 return 0;
1847
cdd6c482 1848 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1849 event->oncpu = smp_processor_id();
4fe757dd
PZ
1850
1851 /*
1852 * Unthrottle events, since we scheduled we might have missed several
1853 * ticks already, also for a heavily scheduling task there is little
1854 * guarantee it'll get a tick in a timely manner.
1855 */
1856 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1857 perf_log_throttle(event, 1);
1858 event->hw.interrupts = 0;
1859 }
1860
235c7fc7
IM
1861 /*
1862 * The new state must be visible before we turn it on in the hardware:
1863 */
1864 smp_wmb();
1865
44377277
AS
1866 perf_pmu_disable(event->pmu);
1867
72f669c0
SL
1868 event->tstamp_running += tstamp - event->tstamp_stopped;
1869
1870 perf_set_shadow_time(event, ctx, tstamp);
1871
a4eaf7f1 1872 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1873 event->state = PERF_EVENT_STATE_INACTIVE;
1874 event->oncpu = -1;
44377277
AS
1875 ret = -EAGAIN;
1876 goto out;
235c7fc7
IM
1877 }
1878
cdd6c482 1879 if (!is_software_event(event))
3b6f9e5c 1880 cpuctx->active_oncpu++;
2fde4f94
MR
1881 if (!ctx->nr_active++)
1882 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1883 if (event->attr.freq && event->attr.sample_freq)
1884 ctx->nr_freq++;
235c7fc7 1885
cdd6c482 1886 if (event->attr.exclusive)
3b6f9e5c
PM
1887 cpuctx->exclusive = 1;
1888
fadfe7be
JO
1889 if (is_orphaned_child(event))
1890 schedule_orphans_remove(ctx);
1891
44377277
AS
1892out:
1893 perf_pmu_enable(event->pmu);
1894
1895 return ret;
235c7fc7
IM
1896}
1897
6751b71e 1898static int
cdd6c482 1899group_sched_in(struct perf_event *group_event,
6751b71e 1900 struct perf_cpu_context *cpuctx,
6e37738a 1901 struct perf_event_context *ctx)
6751b71e 1902{
6bde9b6c 1903 struct perf_event *event, *partial_group = NULL;
4a234593 1904 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1905 u64 now = ctx->time;
1906 bool simulate = false;
6751b71e 1907
cdd6c482 1908 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1909 return 0;
1910
ad5133b7 1911 pmu->start_txn(pmu);
6bde9b6c 1912
9ffcfa6f 1913 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1914 pmu->cancel_txn(pmu);
9e630205 1915 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1916 return -EAGAIN;
90151c35 1917 }
6751b71e
PM
1918
1919 /*
1920 * Schedule in siblings as one group (if any):
1921 */
cdd6c482 1922 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1923 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1924 partial_group = event;
6751b71e
PM
1925 goto group_error;
1926 }
1927 }
1928
9ffcfa6f 1929 if (!pmu->commit_txn(pmu))
6e85158c 1930 return 0;
9ffcfa6f 1931
6751b71e
PM
1932group_error:
1933 /*
1934 * Groups can be scheduled in as one unit only, so undo any
1935 * partial group before returning:
d7842da4
SE
1936 * The events up to the failed event are scheduled out normally,
1937 * tstamp_stopped will be updated.
1938 *
1939 * The failed events and the remaining siblings need to have
1940 * their timings updated as if they had gone thru event_sched_in()
1941 * and event_sched_out(). This is required to get consistent timings
1942 * across the group. This also takes care of the case where the group
1943 * could never be scheduled by ensuring tstamp_stopped is set to mark
1944 * the time the event was actually stopped, such that time delta
1945 * calculation in update_event_times() is correct.
6751b71e 1946 */
cdd6c482
IM
1947 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1948 if (event == partial_group)
d7842da4
SE
1949 simulate = true;
1950
1951 if (simulate) {
1952 event->tstamp_running += now - event->tstamp_stopped;
1953 event->tstamp_stopped = now;
1954 } else {
1955 event_sched_out(event, cpuctx, ctx);
1956 }
6751b71e 1957 }
9ffcfa6f 1958 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1959
ad5133b7 1960 pmu->cancel_txn(pmu);
90151c35 1961
9e630205
SE
1962 perf_cpu_hrtimer_restart(cpuctx);
1963
6751b71e
PM
1964 return -EAGAIN;
1965}
1966
3b6f9e5c 1967/*
cdd6c482 1968 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1969 */
cdd6c482 1970static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1971 struct perf_cpu_context *cpuctx,
1972 int can_add_hw)
1973{
1974 /*
cdd6c482 1975 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1976 */
d6f962b5 1977 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1978 return 1;
1979 /*
1980 * If an exclusive group is already on, no other hardware
cdd6c482 1981 * events can go on.
3b6f9e5c
PM
1982 */
1983 if (cpuctx->exclusive)
1984 return 0;
1985 /*
1986 * If this group is exclusive and there are already
cdd6c482 1987 * events on the CPU, it can't go on.
3b6f9e5c 1988 */
cdd6c482 1989 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1990 return 0;
1991 /*
1992 * Otherwise, try to add it if all previous groups were able
1993 * to go on.
1994 */
1995 return can_add_hw;
1996}
1997
cdd6c482
IM
1998static void add_event_to_ctx(struct perf_event *event,
1999 struct perf_event_context *ctx)
53cfbf59 2000{
4158755d
SE
2001 u64 tstamp = perf_event_time(event);
2002
cdd6c482 2003 list_add_event(event, ctx);
8a49542c 2004 perf_group_attach(event);
4158755d
SE
2005 event->tstamp_enabled = tstamp;
2006 event->tstamp_running = tstamp;
2007 event->tstamp_stopped = tstamp;
53cfbf59
PM
2008}
2009
2c29ef0f
PZ
2010static void task_ctx_sched_out(struct perf_event_context *ctx);
2011static void
2012ctx_sched_in(struct perf_event_context *ctx,
2013 struct perf_cpu_context *cpuctx,
2014 enum event_type_t event_type,
2015 struct task_struct *task);
fe4b04fa 2016
dce5855b
PZ
2017static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2018 struct perf_event_context *ctx,
2019 struct task_struct *task)
2020{
2021 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2022 if (ctx)
2023 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2024 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2025 if (ctx)
2026 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2027}
2028
0793a61d 2029/*
cdd6c482 2030 * Cross CPU call to install and enable a performance event
682076ae
PZ
2031 *
2032 * Must be called with ctx->mutex held
0793a61d 2033 */
fe4b04fa 2034static int __perf_install_in_context(void *info)
0793a61d 2035{
cdd6c482
IM
2036 struct perf_event *event = info;
2037 struct perf_event_context *ctx = event->ctx;
108b02cf 2038 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2039 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2040 struct task_struct *task = current;
2041
b58f6b0d 2042 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2043 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2044
2045 /*
2c29ef0f 2046 * If there was an active task_ctx schedule it out.
0793a61d 2047 */
b58f6b0d 2048 if (task_ctx)
2c29ef0f 2049 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2050
2051 /*
2052 * If the context we're installing events in is not the
2053 * active task_ctx, flip them.
2054 */
2055 if (ctx->task && task_ctx != ctx) {
2056 if (task_ctx)
2057 raw_spin_unlock(&task_ctx->lock);
2058 raw_spin_lock(&ctx->lock);
2059 task_ctx = ctx;
2060 }
2061
2062 if (task_ctx) {
2063 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2064 task = task_ctx->task;
2065 }
b58f6b0d 2066
2c29ef0f 2067 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2068
4af4998b 2069 update_context_time(ctx);
e5d1367f
SE
2070 /*
2071 * update cgrp time only if current cgrp
2072 * matches event->cgrp. Must be done before
2073 * calling add_event_to_ctx()
2074 */
2075 update_cgrp_time_from_event(event);
0793a61d 2076
cdd6c482 2077 add_event_to_ctx(event, ctx);
0793a61d 2078
d859e29f 2079 /*
2c29ef0f 2080 * Schedule everything back in
d859e29f 2081 */
dce5855b 2082 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2083
2084 perf_pmu_enable(cpuctx->ctx.pmu);
2085 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2086
2087 return 0;
0793a61d
TG
2088}
2089
2090/*
cdd6c482 2091 * Attach a performance event to a context
0793a61d 2092 *
cdd6c482
IM
2093 * First we add the event to the list with the hardware enable bit
2094 * in event->hw_config cleared.
0793a61d 2095 *
cdd6c482 2096 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2097 * call to enable it in the task context. The task might have been
2098 * scheduled away, but we check this in the smp call again.
2099 */
2100static void
cdd6c482
IM
2101perf_install_in_context(struct perf_event_context *ctx,
2102 struct perf_event *event,
0793a61d
TG
2103 int cpu)
2104{
2105 struct task_struct *task = ctx->task;
2106
fe4b04fa
PZ
2107 lockdep_assert_held(&ctx->mutex);
2108
c3f00c70 2109 event->ctx = ctx;
0cda4c02
YZ
2110 if (event->cpu != -1)
2111 event->cpu = cpu;
c3f00c70 2112
0793a61d
TG
2113 if (!task) {
2114 /*
cdd6c482 2115 * Per cpu events are installed via an smp call and
af901ca1 2116 * the install is always successful.
0793a61d 2117 */
fe4b04fa 2118 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2119 return;
2120 }
2121
0793a61d 2122retry:
fe4b04fa
PZ
2123 if (!task_function_call(task, __perf_install_in_context, event))
2124 return;
0793a61d 2125
e625cce1 2126 raw_spin_lock_irq(&ctx->lock);
0793a61d 2127 /*
fe4b04fa
PZ
2128 * If we failed to find a running task, but find the context active now
2129 * that we've acquired the ctx->lock, retry.
0793a61d 2130 */
fe4b04fa 2131 if (ctx->is_active) {
e625cce1 2132 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2133 /*
2134 * Reload the task pointer, it might have been changed by
2135 * a concurrent perf_event_context_sched_out().
2136 */
2137 task = ctx->task;
0793a61d
TG
2138 goto retry;
2139 }
2140
2141 /*
fe4b04fa
PZ
2142 * Since the task isn't running, its safe to add the event, us holding
2143 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2144 */
fe4b04fa 2145 add_event_to_ctx(event, ctx);
e625cce1 2146 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2147}
2148
fa289bec 2149/*
cdd6c482 2150 * Put a event into inactive state and update time fields.
fa289bec
PM
2151 * Enabling the leader of a group effectively enables all
2152 * the group members that aren't explicitly disabled, so we
2153 * have to update their ->tstamp_enabled also.
2154 * Note: this works for group members as well as group leaders
2155 * since the non-leader members' sibling_lists will be empty.
2156 */
1d9b482e 2157static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2158{
cdd6c482 2159 struct perf_event *sub;
4158755d 2160 u64 tstamp = perf_event_time(event);
fa289bec 2161
cdd6c482 2162 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2163 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2164 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2165 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2166 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2167 }
fa289bec
PM
2168}
2169
d859e29f 2170/*
cdd6c482 2171 * Cross CPU call to enable a performance event
d859e29f 2172 */
fe4b04fa 2173static int __perf_event_enable(void *info)
04289bb9 2174{
cdd6c482 2175 struct perf_event *event = info;
cdd6c482
IM
2176 struct perf_event_context *ctx = event->ctx;
2177 struct perf_event *leader = event->group_leader;
108b02cf 2178 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2179 int err;
04289bb9 2180
06f41796
JO
2181 /*
2182 * There's a time window between 'ctx->is_active' check
2183 * in perf_event_enable function and this place having:
2184 * - IRQs on
2185 * - ctx->lock unlocked
2186 *
2187 * where the task could be killed and 'ctx' deactivated
2188 * by perf_event_exit_task.
2189 */
2190 if (!ctx->is_active)
fe4b04fa 2191 return -EINVAL;
3cbed429 2192
e625cce1 2193 raw_spin_lock(&ctx->lock);
4af4998b 2194 update_context_time(ctx);
d859e29f 2195
cdd6c482 2196 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2197 goto unlock;
e5d1367f
SE
2198
2199 /*
2200 * set current task's cgroup time reference point
2201 */
3f7cce3c 2202 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2203
1d9b482e 2204 __perf_event_mark_enabled(event);
04289bb9 2205
e5d1367f
SE
2206 if (!event_filter_match(event)) {
2207 if (is_cgroup_event(event))
2208 perf_cgroup_defer_enabled(event);
f4c4176f 2209 goto unlock;
e5d1367f 2210 }
f4c4176f 2211
04289bb9 2212 /*
cdd6c482 2213 * If the event is in a group and isn't the group leader,
d859e29f 2214 * then don't put it on unless the group is on.
04289bb9 2215 */
cdd6c482 2216 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2217 goto unlock;
3b6f9e5c 2218
cdd6c482 2219 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2220 err = -EEXIST;
e758a33d 2221 } else {
cdd6c482 2222 if (event == leader)
6e37738a 2223 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2224 else
6e37738a 2225 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2226 }
d859e29f
PM
2227
2228 if (err) {
2229 /*
cdd6c482 2230 * If this event can't go on and it's part of a
d859e29f
PM
2231 * group, then the whole group has to come off.
2232 */
9e630205 2233 if (leader != event) {
d859e29f 2234 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2235 perf_cpu_hrtimer_restart(cpuctx);
2236 }
0d48696f 2237 if (leader->attr.pinned) {
53cfbf59 2238 update_group_times(leader);
cdd6c482 2239 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2240 }
d859e29f
PM
2241 }
2242
9ed6060d 2243unlock:
e625cce1 2244 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2245
2246 return 0;
d859e29f
PM
2247}
2248
2249/*
cdd6c482 2250 * Enable a event.
c93f7669 2251 *
cdd6c482
IM
2252 * If event->ctx is a cloned context, callers must make sure that
2253 * every task struct that event->ctx->task could possibly point to
c93f7669 2254 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2255 * perf_event_for_each_child or perf_event_for_each as described
2256 * for perf_event_disable.
d859e29f 2257 */
f63a8daa 2258static void _perf_event_enable(struct perf_event *event)
d859e29f 2259{
cdd6c482 2260 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2261 struct task_struct *task = ctx->task;
2262
2263 if (!task) {
2264 /*
cdd6c482 2265 * Enable the event on the cpu that it's on
d859e29f 2266 */
fe4b04fa 2267 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2268 return;
2269 }
2270
e625cce1 2271 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2272 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2273 goto out;
2274
2275 /*
cdd6c482
IM
2276 * If the event is in error state, clear that first.
2277 * That way, if we see the event in error state below, we
d859e29f
PM
2278 * know that it has gone back into error state, as distinct
2279 * from the task having been scheduled away before the
2280 * cross-call arrived.
2281 */
cdd6c482
IM
2282 if (event->state == PERF_EVENT_STATE_ERROR)
2283 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2284
9ed6060d 2285retry:
fe4b04fa 2286 if (!ctx->is_active) {
1d9b482e 2287 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2288 goto out;
2289 }
2290
e625cce1 2291 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2292
2293 if (!task_function_call(task, __perf_event_enable, event))
2294 return;
d859e29f 2295
e625cce1 2296 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2297
2298 /*
cdd6c482 2299 * If the context is active and the event is still off,
d859e29f
PM
2300 * we need to retry the cross-call.
2301 */
fe4b04fa
PZ
2302 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2303 /*
2304 * task could have been flipped by a concurrent
2305 * perf_event_context_sched_out()
2306 */
2307 task = ctx->task;
d859e29f 2308 goto retry;
fe4b04fa 2309 }
fa289bec 2310
9ed6060d 2311out:
e625cce1 2312 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2313}
f63a8daa
PZ
2314
2315/*
2316 * See perf_event_disable();
2317 */
2318void perf_event_enable(struct perf_event *event)
2319{
2320 struct perf_event_context *ctx;
2321
2322 ctx = perf_event_ctx_lock(event);
2323 _perf_event_enable(event);
2324 perf_event_ctx_unlock(event, ctx);
2325}
dcfce4a0 2326EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2327
f63a8daa 2328static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2329{
2023b359 2330 /*
cdd6c482 2331 * not supported on inherited events
2023b359 2332 */
2e939d1d 2333 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2334 return -EINVAL;
2335
cdd6c482 2336 atomic_add(refresh, &event->event_limit);
f63a8daa 2337 _perf_event_enable(event);
2023b359
PZ
2338
2339 return 0;
79f14641 2340}
f63a8daa
PZ
2341
2342/*
2343 * See perf_event_disable()
2344 */
2345int perf_event_refresh(struct perf_event *event, int refresh)
2346{
2347 struct perf_event_context *ctx;
2348 int ret;
2349
2350 ctx = perf_event_ctx_lock(event);
2351 ret = _perf_event_refresh(event, refresh);
2352 perf_event_ctx_unlock(event, ctx);
2353
2354 return ret;
2355}
26ca5c11 2356EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2357
5b0311e1
FW
2358static void ctx_sched_out(struct perf_event_context *ctx,
2359 struct perf_cpu_context *cpuctx,
2360 enum event_type_t event_type)
235c7fc7 2361{
cdd6c482 2362 struct perf_event *event;
db24d33e 2363 int is_active = ctx->is_active;
235c7fc7 2364
db24d33e 2365 ctx->is_active &= ~event_type;
cdd6c482 2366 if (likely(!ctx->nr_events))
facc4307
PZ
2367 return;
2368
4af4998b 2369 update_context_time(ctx);
e5d1367f 2370 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2371 if (!ctx->nr_active)
facc4307 2372 return;
5b0311e1 2373
075e0b00 2374 perf_pmu_disable(ctx->pmu);
db24d33e 2375 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2376 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2377 group_sched_out(event, cpuctx, ctx);
9ed6060d 2378 }
889ff015 2379
db24d33e 2380 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2381 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2382 group_sched_out(event, cpuctx, ctx);
9ed6060d 2383 }
1b9a644f 2384 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2385}
2386
564c2b21 2387/*
5a3126d4
PZ
2388 * Test whether two contexts are equivalent, i.e. whether they have both been
2389 * cloned from the same version of the same context.
2390 *
2391 * Equivalence is measured using a generation number in the context that is
2392 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2393 * and list_del_event().
564c2b21 2394 */
cdd6c482
IM
2395static int context_equiv(struct perf_event_context *ctx1,
2396 struct perf_event_context *ctx2)
564c2b21 2397{
211de6eb
PZ
2398 lockdep_assert_held(&ctx1->lock);
2399 lockdep_assert_held(&ctx2->lock);
2400
5a3126d4
PZ
2401 /* Pinning disables the swap optimization */
2402 if (ctx1->pin_count || ctx2->pin_count)
2403 return 0;
2404
2405 /* If ctx1 is the parent of ctx2 */
2406 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2407 return 1;
2408
2409 /* If ctx2 is the parent of ctx1 */
2410 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2411 return 1;
2412
2413 /*
2414 * If ctx1 and ctx2 have the same parent; we flatten the parent
2415 * hierarchy, see perf_event_init_context().
2416 */
2417 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2418 ctx1->parent_gen == ctx2->parent_gen)
2419 return 1;
2420
2421 /* Unmatched */
2422 return 0;
564c2b21
PM
2423}
2424
cdd6c482
IM
2425static void __perf_event_sync_stat(struct perf_event *event,
2426 struct perf_event *next_event)
bfbd3381
PZ
2427{
2428 u64 value;
2429
cdd6c482 2430 if (!event->attr.inherit_stat)
bfbd3381
PZ
2431 return;
2432
2433 /*
cdd6c482 2434 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2435 * because we're in the middle of a context switch and have IRQs
2436 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2437 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2438 * don't need to use it.
2439 */
cdd6c482
IM
2440 switch (event->state) {
2441 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2442 event->pmu->read(event);
2443 /* fall-through */
bfbd3381 2444
cdd6c482
IM
2445 case PERF_EVENT_STATE_INACTIVE:
2446 update_event_times(event);
bfbd3381
PZ
2447 break;
2448
2449 default:
2450 break;
2451 }
2452
2453 /*
cdd6c482 2454 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2455 * values when we flip the contexts.
2456 */
e7850595
PZ
2457 value = local64_read(&next_event->count);
2458 value = local64_xchg(&event->count, value);
2459 local64_set(&next_event->count, value);
bfbd3381 2460
cdd6c482
IM
2461 swap(event->total_time_enabled, next_event->total_time_enabled);
2462 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2463
bfbd3381 2464 /*
19d2e755 2465 * Since we swizzled the values, update the user visible data too.
bfbd3381 2466 */
cdd6c482
IM
2467 perf_event_update_userpage(event);
2468 perf_event_update_userpage(next_event);
bfbd3381
PZ
2469}
2470
cdd6c482
IM
2471static void perf_event_sync_stat(struct perf_event_context *ctx,
2472 struct perf_event_context *next_ctx)
bfbd3381 2473{
cdd6c482 2474 struct perf_event *event, *next_event;
bfbd3381
PZ
2475
2476 if (!ctx->nr_stat)
2477 return;
2478
02ffdbc8
PZ
2479 update_context_time(ctx);
2480
cdd6c482
IM
2481 event = list_first_entry(&ctx->event_list,
2482 struct perf_event, event_entry);
bfbd3381 2483
cdd6c482
IM
2484 next_event = list_first_entry(&next_ctx->event_list,
2485 struct perf_event, event_entry);
bfbd3381 2486
cdd6c482
IM
2487 while (&event->event_entry != &ctx->event_list &&
2488 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2489
cdd6c482 2490 __perf_event_sync_stat(event, next_event);
bfbd3381 2491
cdd6c482
IM
2492 event = list_next_entry(event, event_entry);
2493 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2494 }
2495}
2496
fe4b04fa
PZ
2497static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2498 struct task_struct *next)
0793a61d 2499{
8dc85d54 2500 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2501 struct perf_event_context *next_ctx;
5a3126d4 2502 struct perf_event_context *parent, *next_parent;
108b02cf 2503 struct perf_cpu_context *cpuctx;
c93f7669 2504 int do_switch = 1;
0793a61d 2505
108b02cf
PZ
2506 if (likely(!ctx))
2507 return;
10989fb2 2508
108b02cf
PZ
2509 cpuctx = __get_cpu_context(ctx);
2510 if (!cpuctx->task_ctx)
0793a61d
TG
2511 return;
2512
c93f7669 2513 rcu_read_lock();
8dc85d54 2514 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2515 if (!next_ctx)
2516 goto unlock;
2517
2518 parent = rcu_dereference(ctx->parent_ctx);
2519 next_parent = rcu_dereference(next_ctx->parent_ctx);
2520
2521 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2522 if (!parent && !next_parent)
5a3126d4
PZ
2523 goto unlock;
2524
2525 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2526 /*
2527 * Looks like the two contexts are clones, so we might be
2528 * able to optimize the context switch. We lock both
2529 * contexts and check that they are clones under the
2530 * lock (including re-checking that neither has been
2531 * uncloned in the meantime). It doesn't matter which
2532 * order we take the locks because no other cpu could
2533 * be trying to lock both of these tasks.
2534 */
e625cce1
TG
2535 raw_spin_lock(&ctx->lock);
2536 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2537 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2538 /*
2539 * XXX do we need a memory barrier of sorts
cdd6c482 2540 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2541 */
8dc85d54
PZ
2542 task->perf_event_ctxp[ctxn] = next_ctx;
2543 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2544 ctx->task = next;
2545 next_ctx->task = task;
5a158c3c
YZ
2546
2547 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2548
c93f7669 2549 do_switch = 0;
bfbd3381 2550
cdd6c482 2551 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2552 }
e625cce1
TG
2553 raw_spin_unlock(&next_ctx->lock);
2554 raw_spin_unlock(&ctx->lock);
564c2b21 2555 }
5a3126d4 2556unlock:
c93f7669 2557 rcu_read_unlock();
564c2b21 2558
c93f7669 2559 if (do_switch) {
facc4307 2560 raw_spin_lock(&ctx->lock);
5b0311e1 2561 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2562 cpuctx->task_ctx = NULL;
facc4307 2563 raw_spin_unlock(&ctx->lock);
c93f7669 2564 }
0793a61d
TG
2565}
2566
ba532500
YZ
2567void perf_sched_cb_dec(struct pmu *pmu)
2568{
2569 this_cpu_dec(perf_sched_cb_usages);
2570}
2571
2572void perf_sched_cb_inc(struct pmu *pmu)
2573{
2574 this_cpu_inc(perf_sched_cb_usages);
2575}
2576
2577/*
2578 * This function provides the context switch callback to the lower code
2579 * layer. It is invoked ONLY when the context switch callback is enabled.
2580 */
2581static void perf_pmu_sched_task(struct task_struct *prev,
2582 struct task_struct *next,
2583 bool sched_in)
2584{
2585 struct perf_cpu_context *cpuctx;
2586 struct pmu *pmu;
2587 unsigned long flags;
2588
2589 if (prev == next)
2590 return;
2591
2592 local_irq_save(flags);
2593
2594 rcu_read_lock();
2595
2596 list_for_each_entry_rcu(pmu, &pmus, entry) {
2597 if (pmu->sched_task) {
2598 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2599
2600 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2601
2602 perf_pmu_disable(pmu);
2603
2604 pmu->sched_task(cpuctx->task_ctx, sched_in);
2605
2606 perf_pmu_enable(pmu);
2607
2608 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2609 }
2610 }
2611
2612 rcu_read_unlock();
2613
2614 local_irq_restore(flags);
2615}
2616
8dc85d54
PZ
2617#define for_each_task_context_nr(ctxn) \
2618 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2619
2620/*
2621 * Called from scheduler to remove the events of the current task,
2622 * with interrupts disabled.
2623 *
2624 * We stop each event and update the event value in event->count.
2625 *
2626 * This does not protect us against NMI, but disable()
2627 * sets the disabled bit in the control field of event _before_
2628 * accessing the event control register. If a NMI hits, then it will
2629 * not restart the event.
2630 */
ab0cce56
JO
2631void __perf_event_task_sched_out(struct task_struct *task,
2632 struct task_struct *next)
8dc85d54
PZ
2633{
2634 int ctxn;
2635
ba532500
YZ
2636 if (__this_cpu_read(perf_sched_cb_usages))
2637 perf_pmu_sched_task(task, next, false);
2638
8dc85d54
PZ
2639 for_each_task_context_nr(ctxn)
2640 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2641
2642 /*
2643 * if cgroup events exist on this CPU, then we need
2644 * to check if we have to switch out PMU state.
2645 * cgroup event are system-wide mode only
2646 */
4a32fea9 2647 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2648 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2649}
2650
04dc2dbb 2651static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2652{
108b02cf 2653 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2654
a63eaf34
PM
2655 if (!cpuctx->task_ctx)
2656 return;
012b84da
IM
2657
2658 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2659 return;
2660
04dc2dbb 2661 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2662 cpuctx->task_ctx = NULL;
2663}
2664
5b0311e1
FW
2665/*
2666 * Called with IRQs disabled
2667 */
2668static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2669 enum event_type_t event_type)
2670{
2671 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2672}
2673
235c7fc7 2674static void
5b0311e1 2675ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2676 struct perf_cpu_context *cpuctx)
0793a61d 2677{
cdd6c482 2678 struct perf_event *event;
0793a61d 2679
889ff015
FW
2680 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2681 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2682 continue;
5632ab12 2683 if (!event_filter_match(event))
3b6f9e5c
PM
2684 continue;
2685
e5d1367f
SE
2686 /* may need to reset tstamp_enabled */
2687 if (is_cgroup_event(event))
2688 perf_cgroup_mark_enabled(event, ctx);
2689
8c9ed8e1 2690 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2691 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2692
2693 /*
2694 * If this pinned group hasn't been scheduled,
2695 * put it in error state.
2696 */
cdd6c482
IM
2697 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2698 update_group_times(event);
2699 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2700 }
3b6f9e5c 2701 }
5b0311e1
FW
2702}
2703
2704static void
2705ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2706 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2707{
2708 struct perf_event *event;
2709 int can_add_hw = 1;
3b6f9e5c 2710
889ff015
FW
2711 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2712 /* Ignore events in OFF or ERROR state */
2713 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2714 continue;
04289bb9
IM
2715 /*
2716 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2717 * of events:
04289bb9 2718 */
5632ab12 2719 if (!event_filter_match(event))
0793a61d
TG
2720 continue;
2721
e5d1367f
SE
2722 /* may need to reset tstamp_enabled */
2723 if (is_cgroup_event(event))
2724 perf_cgroup_mark_enabled(event, ctx);
2725
9ed6060d 2726 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2727 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2728 can_add_hw = 0;
9ed6060d 2729 }
0793a61d 2730 }
5b0311e1
FW
2731}
2732
2733static void
2734ctx_sched_in(struct perf_event_context *ctx,
2735 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2736 enum event_type_t event_type,
2737 struct task_struct *task)
5b0311e1 2738{
e5d1367f 2739 u64 now;
db24d33e 2740 int is_active = ctx->is_active;
e5d1367f 2741
db24d33e 2742 ctx->is_active |= event_type;
5b0311e1 2743 if (likely(!ctx->nr_events))
facc4307 2744 return;
5b0311e1 2745
e5d1367f
SE
2746 now = perf_clock();
2747 ctx->timestamp = now;
3f7cce3c 2748 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2749 /*
2750 * First go through the list and put on any pinned groups
2751 * in order to give them the best chance of going on.
2752 */
db24d33e 2753 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2754 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2755
2756 /* Then walk through the lower prio flexible groups */
db24d33e 2757 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2758 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2759}
2760
329c0e01 2761static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2762 enum event_type_t event_type,
2763 struct task_struct *task)
329c0e01
FW
2764{
2765 struct perf_event_context *ctx = &cpuctx->ctx;
2766
e5d1367f 2767 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2768}
2769
e5d1367f
SE
2770static void perf_event_context_sched_in(struct perf_event_context *ctx,
2771 struct task_struct *task)
235c7fc7 2772{
108b02cf 2773 struct perf_cpu_context *cpuctx;
235c7fc7 2774
108b02cf 2775 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2776 if (cpuctx->task_ctx == ctx)
2777 return;
2778
facc4307 2779 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2780 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2781 /*
2782 * We want to keep the following priority order:
2783 * cpu pinned (that don't need to move), task pinned,
2784 * cpu flexible, task flexible.
2785 */
2786 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2787
1d5f003f
GN
2788 if (ctx->nr_events)
2789 cpuctx->task_ctx = ctx;
9b33fa6b 2790
86b47c25
GN
2791 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2792
facc4307
PZ
2793 perf_pmu_enable(ctx->pmu);
2794 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2795}
2796
8dc85d54
PZ
2797/*
2798 * Called from scheduler to add the events of the current task
2799 * with interrupts disabled.
2800 *
2801 * We restore the event value and then enable it.
2802 *
2803 * This does not protect us against NMI, but enable()
2804 * sets the enabled bit in the control field of event _before_
2805 * accessing the event control register. If a NMI hits, then it will
2806 * keep the event running.
2807 */
ab0cce56
JO
2808void __perf_event_task_sched_in(struct task_struct *prev,
2809 struct task_struct *task)
8dc85d54
PZ
2810{
2811 struct perf_event_context *ctx;
2812 int ctxn;
2813
2814 for_each_task_context_nr(ctxn) {
2815 ctx = task->perf_event_ctxp[ctxn];
2816 if (likely(!ctx))
2817 continue;
2818
e5d1367f 2819 perf_event_context_sched_in(ctx, task);
8dc85d54 2820 }
e5d1367f
SE
2821 /*
2822 * if cgroup events exist on this CPU, then we need
2823 * to check if we have to switch in PMU state.
2824 * cgroup event are system-wide mode only
2825 */
4a32fea9 2826 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2827 perf_cgroup_sched_in(prev, task);
d010b332 2828
ba532500
YZ
2829 if (__this_cpu_read(perf_sched_cb_usages))
2830 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2831}
2832
abd50713
PZ
2833static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2834{
2835 u64 frequency = event->attr.sample_freq;
2836 u64 sec = NSEC_PER_SEC;
2837 u64 divisor, dividend;
2838
2839 int count_fls, nsec_fls, frequency_fls, sec_fls;
2840
2841 count_fls = fls64(count);
2842 nsec_fls = fls64(nsec);
2843 frequency_fls = fls64(frequency);
2844 sec_fls = 30;
2845
2846 /*
2847 * We got @count in @nsec, with a target of sample_freq HZ
2848 * the target period becomes:
2849 *
2850 * @count * 10^9
2851 * period = -------------------
2852 * @nsec * sample_freq
2853 *
2854 */
2855
2856 /*
2857 * Reduce accuracy by one bit such that @a and @b converge
2858 * to a similar magnitude.
2859 */
fe4b04fa 2860#define REDUCE_FLS(a, b) \
abd50713
PZ
2861do { \
2862 if (a##_fls > b##_fls) { \
2863 a >>= 1; \
2864 a##_fls--; \
2865 } else { \
2866 b >>= 1; \
2867 b##_fls--; \
2868 } \
2869} while (0)
2870
2871 /*
2872 * Reduce accuracy until either term fits in a u64, then proceed with
2873 * the other, so that finally we can do a u64/u64 division.
2874 */
2875 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2876 REDUCE_FLS(nsec, frequency);
2877 REDUCE_FLS(sec, count);
2878 }
2879
2880 if (count_fls + sec_fls > 64) {
2881 divisor = nsec * frequency;
2882
2883 while (count_fls + sec_fls > 64) {
2884 REDUCE_FLS(count, sec);
2885 divisor >>= 1;
2886 }
2887
2888 dividend = count * sec;
2889 } else {
2890 dividend = count * sec;
2891
2892 while (nsec_fls + frequency_fls > 64) {
2893 REDUCE_FLS(nsec, frequency);
2894 dividend >>= 1;
2895 }
2896
2897 divisor = nsec * frequency;
2898 }
2899
f6ab91ad
PZ
2900 if (!divisor)
2901 return dividend;
2902
abd50713
PZ
2903 return div64_u64(dividend, divisor);
2904}
2905
e050e3f0
SE
2906static DEFINE_PER_CPU(int, perf_throttled_count);
2907static DEFINE_PER_CPU(u64, perf_throttled_seq);
2908
f39d47ff 2909static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2910{
cdd6c482 2911 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2912 s64 period, sample_period;
bd2b5b12
PZ
2913 s64 delta;
2914
abd50713 2915 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2916
2917 delta = (s64)(period - hwc->sample_period);
2918 delta = (delta + 7) / 8; /* low pass filter */
2919
2920 sample_period = hwc->sample_period + delta;
2921
2922 if (!sample_period)
2923 sample_period = 1;
2924
bd2b5b12 2925 hwc->sample_period = sample_period;
abd50713 2926
e7850595 2927 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2928 if (disable)
2929 event->pmu->stop(event, PERF_EF_UPDATE);
2930
e7850595 2931 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2932
2933 if (disable)
2934 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2935 }
bd2b5b12
PZ
2936}
2937
e050e3f0
SE
2938/*
2939 * combine freq adjustment with unthrottling to avoid two passes over the
2940 * events. At the same time, make sure, having freq events does not change
2941 * the rate of unthrottling as that would introduce bias.
2942 */
2943static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2944 int needs_unthr)
60db5e09 2945{
cdd6c482
IM
2946 struct perf_event *event;
2947 struct hw_perf_event *hwc;
e050e3f0 2948 u64 now, period = TICK_NSEC;
abd50713 2949 s64 delta;
60db5e09 2950
e050e3f0
SE
2951 /*
2952 * only need to iterate over all events iff:
2953 * - context have events in frequency mode (needs freq adjust)
2954 * - there are events to unthrottle on this cpu
2955 */
2956 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2957 return;
2958
e050e3f0 2959 raw_spin_lock(&ctx->lock);
f39d47ff 2960 perf_pmu_disable(ctx->pmu);
e050e3f0 2961
03541f8b 2962 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2963 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2964 continue;
2965
5632ab12 2966 if (!event_filter_match(event))
5d27c23d
PZ
2967 continue;
2968
44377277
AS
2969 perf_pmu_disable(event->pmu);
2970
cdd6c482 2971 hwc = &event->hw;
6a24ed6c 2972
ae23bff1 2973 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2974 hwc->interrupts = 0;
cdd6c482 2975 perf_log_throttle(event, 1);
a4eaf7f1 2976 event->pmu->start(event, 0);
a78ac325
PZ
2977 }
2978
cdd6c482 2979 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2980 goto next;
60db5e09 2981
e050e3f0
SE
2982 /*
2983 * stop the event and update event->count
2984 */
2985 event->pmu->stop(event, PERF_EF_UPDATE);
2986
e7850595 2987 now = local64_read(&event->count);
abd50713
PZ
2988 delta = now - hwc->freq_count_stamp;
2989 hwc->freq_count_stamp = now;
60db5e09 2990
e050e3f0
SE
2991 /*
2992 * restart the event
2993 * reload only if value has changed
f39d47ff
SE
2994 * we have stopped the event so tell that
2995 * to perf_adjust_period() to avoid stopping it
2996 * twice.
e050e3f0 2997 */
abd50713 2998 if (delta > 0)
f39d47ff 2999 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3000
3001 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3002 next:
3003 perf_pmu_enable(event->pmu);
60db5e09 3004 }
e050e3f0 3005
f39d47ff 3006 perf_pmu_enable(ctx->pmu);
e050e3f0 3007 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3008}
3009
235c7fc7 3010/*
cdd6c482 3011 * Round-robin a context's events:
235c7fc7 3012 */
cdd6c482 3013static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3014{
dddd3379
TG
3015 /*
3016 * Rotate the first entry last of non-pinned groups. Rotation might be
3017 * disabled by the inheritance code.
3018 */
3019 if (!ctx->rotate_disable)
3020 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3021}
3022
9e630205 3023static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3024{
8dc85d54 3025 struct perf_event_context *ctx = NULL;
2fde4f94 3026 int rotate = 0;
7fc23a53 3027
b5ab4cd5 3028 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3029 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3030 rotate = 1;
3031 }
235c7fc7 3032
8dc85d54 3033 ctx = cpuctx->task_ctx;
b5ab4cd5 3034 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3035 if (ctx->nr_events != ctx->nr_active)
3036 rotate = 1;
3037 }
9717e6cd 3038
e050e3f0 3039 if (!rotate)
0f5a2601
PZ
3040 goto done;
3041
facc4307 3042 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3043 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3044
e050e3f0
SE
3045 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3046 if (ctx)
3047 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3048
e050e3f0
SE
3049 rotate_ctx(&cpuctx->ctx);
3050 if (ctx)
3051 rotate_ctx(ctx);
235c7fc7 3052
e050e3f0 3053 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3054
0f5a2601
PZ
3055 perf_pmu_enable(cpuctx->ctx.pmu);
3056 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3057done:
9e630205
SE
3058
3059 return rotate;
e9d2b064
PZ
3060}
3061
026249ef
FW
3062#ifdef CONFIG_NO_HZ_FULL
3063bool perf_event_can_stop_tick(void)
3064{
948b26b6 3065 if (atomic_read(&nr_freq_events) ||
d84153d6 3066 __this_cpu_read(perf_throttled_count))
026249ef 3067 return false;
d84153d6
FW
3068 else
3069 return true;
026249ef
FW
3070}
3071#endif
3072
e9d2b064
PZ
3073void perf_event_task_tick(void)
3074{
2fde4f94
MR
3075 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3076 struct perf_event_context *ctx, *tmp;
e050e3f0 3077 int throttled;
b5ab4cd5 3078
e9d2b064
PZ
3079 WARN_ON(!irqs_disabled());
3080
e050e3f0
SE
3081 __this_cpu_inc(perf_throttled_seq);
3082 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3083
2fde4f94 3084 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3085 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3086}
3087
889ff015
FW
3088static int event_enable_on_exec(struct perf_event *event,
3089 struct perf_event_context *ctx)
3090{
3091 if (!event->attr.enable_on_exec)
3092 return 0;
3093
3094 event->attr.enable_on_exec = 0;
3095 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3096 return 0;
3097
1d9b482e 3098 __perf_event_mark_enabled(event);
889ff015
FW
3099
3100 return 1;
3101}
3102
57e7986e 3103/*
cdd6c482 3104 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3105 * This expects task == current.
3106 */
8dc85d54 3107static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3108{
211de6eb 3109 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3110 struct perf_event *event;
57e7986e
PM
3111 unsigned long flags;
3112 int enabled = 0;
889ff015 3113 int ret;
57e7986e
PM
3114
3115 local_irq_save(flags);
cdd6c482 3116 if (!ctx || !ctx->nr_events)
57e7986e
PM
3117 goto out;
3118
e566b76e
SE
3119 /*
3120 * We must ctxsw out cgroup events to avoid conflict
3121 * when invoking perf_task_event_sched_in() later on
3122 * in this function. Otherwise we end up trying to
3123 * ctxswin cgroup events which are already scheduled
3124 * in.
3125 */
a8d757ef 3126 perf_cgroup_sched_out(current, NULL);
57e7986e 3127
e625cce1 3128 raw_spin_lock(&ctx->lock);
04dc2dbb 3129 task_ctx_sched_out(ctx);
57e7986e 3130
b79387ef 3131 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3132 ret = event_enable_on_exec(event, ctx);
3133 if (ret)
3134 enabled = 1;
57e7986e
PM
3135 }
3136
3137 /*
cdd6c482 3138 * Unclone this context if we enabled any event.
57e7986e 3139 */
71a851b4 3140 if (enabled)
211de6eb 3141 clone_ctx = unclone_ctx(ctx);
57e7986e 3142
e625cce1 3143 raw_spin_unlock(&ctx->lock);
57e7986e 3144
e566b76e
SE
3145 /*
3146 * Also calls ctxswin for cgroup events, if any:
3147 */
e5d1367f 3148 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3149out:
57e7986e 3150 local_irq_restore(flags);
211de6eb
PZ
3151
3152 if (clone_ctx)
3153 put_ctx(clone_ctx);
57e7986e
PM
3154}
3155
e041e328
PZ
3156void perf_event_exec(void)
3157{
3158 struct perf_event_context *ctx;
3159 int ctxn;
3160
3161 rcu_read_lock();
3162 for_each_task_context_nr(ctxn) {
3163 ctx = current->perf_event_ctxp[ctxn];
3164 if (!ctx)
3165 continue;
3166
3167 perf_event_enable_on_exec(ctx);
3168 }
3169 rcu_read_unlock();
3170}
3171
0793a61d 3172/*
cdd6c482 3173 * Cross CPU call to read the hardware event
0793a61d 3174 */
cdd6c482 3175static void __perf_event_read(void *info)
0793a61d 3176{
cdd6c482
IM
3177 struct perf_event *event = info;
3178 struct perf_event_context *ctx = event->ctx;
108b02cf 3179 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3180
e1ac3614
PM
3181 /*
3182 * If this is a task context, we need to check whether it is
3183 * the current task context of this cpu. If not it has been
3184 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3185 * event->count would have been updated to a recent sample
3186 * when the event was scheduled out.
e1ac3614
PM
3187 */
3188 if (ctx->task && cpuctx->task_ctx != ctx)
3189 return;
3190
e625cce1 3191 raw_spin_lock(&ctx->lock);
e5d1367f 3192 if (ctx->is_active) {
542e72fc 3193 update_context_time(ctx);
e5d1367f
SE
3194 update_cgrp_time_from_event(event);
3195 }
cdd6c482 3196 update_event_times(event);
542e72fc
PZ
3197 if (event->state == PERF_EVENT_STATE_ACTIVE)
3198 event->pmu->read(event);
e625cce1 3199 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3200}
3201
b5e58793
PZ
3202static inline u64 perf_event_count(struct perf_event *event)
3203{
eacd3ecc
MF
3204 if (event->pmu->count)
3205 return event->pmu->count(event);
3206
3207 return __perf_event_count(event);
b5e58793
PZ
3208}
3209
cdd6c482 3210static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3211{
3212 /*
cdd6c482
IM
3213 * If event is enabled and currently active on a CPU, update the
3214 * value in the event structure:
0793a61d 3215 */
cdd6c482
IM
3216 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3217 smp_call_function_single(event->oncpu,
3218 __perf_event_read, event, 1);
3219 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3220 struct perf_event_context *ctx = event->ctx;
3221 unsigned long flags;
3222
e625cce1 3223 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3224 /*
3225 * may read while context is not active
3226 * (e.g., thread is blocked), in that case
3227 * we cannot update context time
3228 */
e5d1367f 3229 if (ctx->is_active) {
c530ccd9 3230 update_context_time(ctx);
e5d1367f
SE
3231 update_cgrp_time_from_event(event);
3232 }
cdd6c482 3233 update_event_times(event);
e625cce1 3234 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3235 }
3236
b5e58793 3237 return perf_event_count(event);
0793a61d
TG
3238}
3239
a63eaf34 3240/*
cdd6c482 3241 * Initialize the perf_event context in a task_struct:
a63eaf34 3242 */
eb184479 3243static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3244{
e625cce1 3245 raw_spin_lock_init(&ctx->lock);
a63eaf34 3246 mutex_init(&ctx->mutex);
2fde4f94 3247 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3248 INIT_LIST_HEAD(&ctx->pinned_groups);
3249 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3250 INIT_LIST_HEAD(&ctx->event_list);
3251 atomic_set(&ctx->refcount, 1);
fadfe7be 3252 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3253}
3254
3255static struct perf_event_context *
3256alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3257{
3258 struct perf_event_context *ctx;
3259
3260 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3261 if (!ctx)
3262 return NULL;
3263
3264 __perf_event_init_context(ctx);
3265 if (task) {
3266 ctx->task = task;
3267 get_task_struct(task);
0793a61d 3268 }
eb184479
PZ
3269 ctx->pmu = pmu;
3270
3271 return ctx;
a63eaf34
PM
3272}
3273
2ebd4ffb
MH
3274static struct task_struct *
3275find_lively_task_by_vpid(pid_t vpid)
3276{
3277 struct task_struct *task;
3278 int err;
0793a61d
TG
3279
3280 rcu_read_lock();
2ebd4ffb 3281 if (!vpid)
0793a61d
TG
3282 task = current;
3283 else
2ebd4ffb 3284 task = find_task_by_vpid(vpid);
0793a61d
TG
3285 if (task)
3286 get_task_struct(task);
3287 rcu_read_unlock();
3288
3289 if (!task)
3290 return ERR_PTR(-ESRCH);
3291
0793a61d 3292 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3293 err = -EACCES;
3294 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3295 goto errout;
3296
2ebd4ffb
MH
3297 return task;
3298errout:
3299 put_task_struct(task);
3300 return ERR_PTR(err);
3301
3302}
3303
fe4b04fa
PZ
3304/*
3305 * Returns a matching context with refcount and pincount.
3306 */
108b02cf 3307static struct perf_event_context *
4af57ef2
YZ
3308find_get_context(struct pmu *pmu, struct task_struct *task,
3309 struct perf_event *event)
0793a61d 3310{
211de6eb 3311 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3312 struct perf_cpu_context *cpuctx;
4af57ef2 3313 void *task_ctx_data = NULL;
25346b93 3314 unsigned long flags;
8dc85d54 3315 int ctxn, err;
4af57ef2 3316 int cpu = event->cpu;
0793a61d 3317
22a4ec72 3318 if (!task) {
cdd6c482 3319 /* Must be root to operate on a CPU event: */
0764771d 3320 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3321 return ERR_PTR(-EACCES);
3322
0793a61d 3323 /*
cdd6c482 3324 * We could be clever and allow to attach a event to an
0793a61d
TG
3325 * offline CPU and activate it when the CPU comes up, but
3326 * that's for later.
3327 */
f6325e30 3328 if (!cpu_online(cpu))
0793a61d
TG
3329 return ERR_PTR(-ENODEV);
3330
108b02cf 3331 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3332 ctx = &cpuctx->ctx;
c93f7669 3333 get_ctx(ctx);
fe4b04fa 3334 ++ctx->pin_count;
0793a61d 3335
0793a61d
TG
3336 return ctx;
3337 }
3338
8dc85d54
PZ
3339 err = -EINVAL;
3340 ctxn = pmu->task_ctx_nr;
3341 if (ctxn < 0)
3342 goto errout;
3343
4af57ef2
YZ
3344 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3345 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3346 if (!task_ctx_data) {
3347 err = -ENOMEM;
3348 goto errout;
3349 }
3350 }
3351
9ed6060d 3352retry:
8dc85d54 3353 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3354 if (ctx) {
211de6eb 3355 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3356 ++ctx->pin_count;
4af57ef2
YZ
3357
3358 if (task_ctx_data && !ctx->task_ctx_data) {
3359 ctx->task_ctx_data = task_ctx_data;
3360 task_ctx_data = NULL;
3361 }
e625cce1 3362 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3363
3364 if (clone_ctx)
3365 put_ctx(clone_ctx);
9137fb28 3366 } else {
eb184479 3367 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3368 err = -ENOMEM;
3369 if (!ctx)
3370 goto errout;
eb184479 3371
4af57ef2
YZ
3372 if (task_ctx_data) {
3373 ctx->task_ctx_data = task_ctx_data;
3374 task_ctx_data = NULL;
3375 }
3376
dbe08d82
ON
3377 err = 0;
3378 mutex_lock(&task->perf_event_mutex);
3379 /*
3380 * If it has already passed perf_event_exit_task().
3381 * we must see PF_EXITING, it takes this mutex too.
3382 */
3383 if (task->flags & PF_EXITING)
3384 err = -ESRCH;
3385 else if (task->perf_event_ctxp[ctxn])
3386 err = -EAGAIN;
fe4b04fa 3387 else {
9137fb28 3388 get_ctx(ctx);
fe4b04fa 3389 ++ctx->pin_count;
dbe08d82 3390 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3391 }
dbe08d82
ON
3392 mutex_unlock(&task->perf_event_mutex);
3393
3394 if (unlikely(err)) {
9137fb28 3395 put_ctx(ctx);
dbe08d82
ON
3396
3397 if (err == -EAGAIN)
3398 goto retry;
3399 goto errout;
a63eaf34
PM
3400 }
3401 }
3402
4af57ef2 3403 kfree(task_ctx_data);
0793a61d 3404 return ctx;
c93f7669 3405
9ed6060d 3406errout:
4af57ef2 3407 kfree(task_ctx_data);
c93f7669 3408 return ERR_PTR(err);
0793a61d
TG
3409}
3410
6fb2915d 3411static void perf_event_free_filter(struct perf_event *event);
2541517c 3412static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3413
cdd6c482 3414static void free_event_rcu(struct rcu_head *head)
592903cd 3415{
cdd6c482 3416 struct perf_event *event;
592903cd 3417
cdd6c482
IM
3418 event = container_of(head, struct perf_event, rcu_head);
3419 if (event->ns)
3420 put_pid_ns(event->ns);
6fb2915d 3421 perf_event_free_filter(event);
2541517c 3422 perf_event_free_bpf_prog(event);
cdd6c482 3423 kfree(event);
592903cd
PZ
3424}
3425
b69cf536
PZ
3426static void ring_buffer_attach(struct perf_event *event,
3427 struct ring_buffer *rb);
925d519a 3428
4beb31f3 3429static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3430{
4beb31f3
FW
3431 if (event->parent)
3432 return;
3433
4beb31f3
FW
3434 if (is_cgroup_event(event))
3435 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3436}
925d519a 3437
4beb31f3
FW
3438static void unaccount_event(struct perf_event *event)
3439{
3440 if (event->parent)
3441 return;
3442
3443 if (event->attach_state & PERF_ATTACH_TASK)
3444 static_key_slow_dec_deferred(&perf_sched_events);
3445 if (event->attr.mmap || event->attr.mmap_data)
3446 atomic_dec(&nr_mmap_events);
3447 if (event->attr.comm)
3448 atomic_dec(&nr_comm_events);
3449 if (event->attr.task)
3450 atomic_dec(&nr_task_events);
948b26b6
FW
3451 if (event->attr.freq)
3452 atomic_dec(&nr_freq_events);
4beb31f3
FW
3453 if (is_cgroup_event(event))
3454 static_key_slow_dec_deferred(&perf_sched_events);
3455 if (has_branch_stack(event))
3456 static_key_slow_dec_deferred(&perf_sched_events);
3457
3458 unaccount_event_cpu(event, event->cpu);
3459}
925d519a 3460
bed5b25a
AS
3461/*
3462 * The following implement mutual exclusion of events on "exclusive" pmus
3463 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3464 * at a time, so we disallow creating events that might conflict, namely:
3465 *
3466 * 1) cpu-wide events in the presence of per-task events,
3467 * 2) per-task events in the presence of cpu-wide events,
3468 * 3) two matching events on the same context.
3469 *
3470 * The former two cases are handled in the allocation path (perf_event_alloc(),
3471 * __free_event()), the latter -- before the first perf_install_in_context().
3472 */
3473static int exclusive_event_init(struct perf_event *event)
3474{
3475 struct pmu *pmu = event->pmu;
3476
3477 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3478 return 0;
3479
3480 /*
3481 * Prevent co-existence of per-task and cpu-wide events on the
3482 * same exclusive pmu.
3483 *
3484 * Negative pmu::exclusive_cnt means there are cpu-wide
3485 * events on this "exclusive" pmu, positive means there are
3486 * per-task events.
3487 *
3488 * Since this is called in perf_event_alloc() path, event::ctx
3489 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3490 * to mean "per-task event", because unlike other attach states it
3491 * never gets cleared.
3492 */
3493 if (event->attach_state & PERF_ATTACH_TASK) {
3494 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3495 return -EBUSY;
3496 } else {
3497 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3498 return -EBUSY;
3499 }
3500
3501 return 0;
3502}
3503
3504static void exclusive_event_destroy(struct perf_event *event)
3505{
3506 struct pmu *pmu = event->pmu;
3507
3508 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3509 return;
3510
3511 /* see comment in exclusive_event_init() */
3512 if (event->attach_state & PERF_ATTACH_TASK)
3513 atomic_dec(&pmu->exclusive_cnt);
3514 else
3515 atomic_inc(&pmu->exclusive_cnt);
3516}
3517
3518static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3519{
3520 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3521 (e1->cpu == e2->cpu ||
3522 e1->cpu == -1 ||
3523 e2->cpu == -1))
3524 return true;
3525 return false;
3526}
3527
3528/* Called under the same ctx::mutex as perf_install_in_context() */
3529static bool exclusive_event_installable(struct perf_event *event,
3530 struct perf_event_context *ctx)
3531{
3532 struct perf_event *iter_event;
3533 struct pmu *pmu = event->pmu;
3534
3535 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3536 return true;
3537
3538 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3539 if (exclusive_event_match(iter_event, event))
3540 return false;
3541 }
3542
3543 return true;
3544}
3545
766d6c07
FW
3546static void __free_event(struct perf_event *event)
3547{
cdd6c482 3548 if (!event->parent) {
927c7a9e
FW
3549 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3550 put_callchain_buffers();
f344011c 3551 }
9ee318a7 3552
766d6c07
FW
3553 if (event->destroy)
3554 event->destroy(event);
3555
3556 if (event->ctx)
3557 put_ctx(event->ctx);
3558
bed5b25a
AS
3559 if (event->pmu) {
3560 exclusive_event_destroy(event);
c464c76e 3561 module_put(event->pmu->module);
bed5b25a 3562 }
c464c76e 3563
766d6c07
FW
3564 call_rcu(&event->rcu_head, free_event_rcu);
3565}
683ede43
PZ
3566
3567static void _free_event(struct perf_event *event)
f1600952 3568{
e360adbe 3569 irq_work_sync(&event->pending);
925d519a 3570
4beb31f3 3571 unaccount_event(event);
9ee318a7 3572
76369139 3573 if (event->rb) {
9bb5d40c
PZ
3574 /*
3575 * Can happen when we close an event with re-directed output.
3576 *
3577 * Since we have a 0 refcount, perf_mmap_close() will skip
3578 * over us; possibly making our ring_buffer_put() the last.
3579 */
3580 mutex_lock(&event->mmap_mutex);
b69cf536 3581 ring_buffer_attach(event, NULL);
9bb5d40c 3582 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3583 }
3584
e5d1367f
SE
3585 if (is_cgroup_event(event))
3586 perf_detach_cgroup(event);
3587
766d6c07 3588 __free_event(event);
f1600952
PZ
3589}
3590
683ede43
PZ
3591/*
3592 * Used to free events which have a known refcount of 1, such as in error paths
3593 * where the event isn't exposed yet and inherited events.
3594 */
3595static void free_event(struct perf_event *event)
0793a61d 3596{
683ede43
PZ
3597 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3598 "unexpected event refcount: %ld; ptr=%p\n",
3599 atomic_long_read(&event->refcount), event)) {
3600 /* leak to avoid use-after-free */
3601 return;
3602 }
0793a61d 3603
683ede43 3604 _free_event(event);
0793a61d
TG
3605}
3606
a66a3052 3607/*
f8697762 3608 * Remove user event from the owner task.
a66a3052 3609 */
f8697762 3610static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3611{
8882135b 3612 struct task_struct *owner;
fb0459d7 3613
8882135b
PZ
3614 rcu_read_lock();
3615 owner = ACCESS_ONCE(event->owner);
3616 /*
3617 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3618 * !owner it means the list deletion is complete and we can indeed
3619 * free this event, otherwise we need to serialize on
3620 * owner->perf_event_mutex.
3621 */
3622 smp_read_barrier_depends();
3623 if (owner) {
3624 /*
3625 * Since delayed_put_task_struct() also drops the last
3626 * task reference we can safely take a new reference
3627 * while holding the rcu_read_lock().
3628 */
3629 get_task_struct(owner);
3630 }
3631 rcu_read_unlock();
3632
3633 if (owner) {
f63a8daa
PZ
3634 /*
3635 * If we're here through perf_event_exit_task() we're already
3636 * holding ctx->mutex which would be an inversion wrt. the
3637 * normal lock order.
3638 *
3639 * However we can safely take this lock because its the child
3640 * ctx->mutex.
3641 */
3642 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3643
8882135b
PZ
3644 /*
3645 * We have to re-check the event->owner field, if it is cleared
3646 * we raced with perf_event_exit_task(), acquiring the mutex
3647 * ensured they're done, and we can proceed with freeing the
3648 * event.
3649 */
3650 if (event->owner)
3651 list_del_init(&event->owner_entry);
3652 mutex_unlock(&owner->perf_event_mutex);
3653 put_task_struct(owner);
3654 }
f8697762
JO
3655}
3656
3657/*
3658 * Called when the last reference to the file is gone.
3659 */
3660static void put_event(struct perf_event *event)
3661{
a83fe28e 3662 struct perf_event_context *ctx;
f8697762
JO
3663
3664 if (!atomic_long_dec_and_test(&event->refcount))
3665 return;
3666
3667 if (!is_kernel_event(event))
3668 perf_remove_from_owner(event);
8882135b 3669
683ede43
PZ
3670 /*
3671 * There are two ways this annotation is useful:
3672 *
3673 * 1) there is a lock recursion from perf_event_exit_task
3674 * see the comment there.
3675 *
3676 * 2) there is a lock-inversion with mmap_sem through
3677 * perf_event_read_group(), which takes faults while
3678 * holding ctx->mutex, however this is called after
3679 * the last filedesc died, so there is no possibility
3680 * to trigger the AB-BA case.
3681 */
a83fe28e
PZ
3682 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3683 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3684 perf_remove_from_context(event, true);
d415a7f1 3685 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3686
3687 _free_event(event);
a6fa941d
AV
3688}
3689
683ede43
PZ
3690int perf_event_release_kernel(struct perf_event *event)
3691{
3692 put_event(event);
3693 return 0;
3694}
3695EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3696
a6fa941d
AV
3697static int perf_release(struct inode *inode, struct file *file)
3698{
3699 put_event(file->private_data);
3700 return 0;
fb0459d7 3701}
fb0459d7 3702
fadfe7be
JO
3703/*
3704 * Remove all orphanes events from the context.
3705 */
3706static void orphans_remove_work(struct work_struct *work)
3707{
3708 struct perf_event_context *ctx;
3709 struct perf_event *event, *tmp;
3710
3711 ctx = container_of(work, struct perf_event_context,
3712 orphans_remove.work);
3713
3714 mutex_lock(&ctx->mutex);
3715 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3716 struct perf_event *parent_event = event->parent;
3717
3718 if (!is_orphaned_child(event))
3719 continue;
3720
3721 perf_remove_from_context(event, true);
3722
3723 mutex_lock(&parent_event->child_mutex);
3724 list_del_init(&event->child_list);
3725 mutex_unlock(&parent_event->child_mutex);
3726
3727 free_event(event);
3728 put_event(parent_event);
3729 }
3730
3731 raw_spin_lock_irq(&ctx->lock);
3732 ctx->orphans_remove_sched = false;
3733 raw_spin_unlock_irq(&ctx->lock);
3734 mutex_unlock(&ctx->mutex);
3735
3736 put_ctx(ctx);
3737}
3738
59ed446f 3739u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3740{
cdd6c482 3741 struct perf_event *child;
e53c0994
PZ
3742 u64 total = 0;
3743
59ed446f
PZ
3744 *enabled = 0;
3745 *running = 0;
3746
6f10581a 3747 mutex_lock(&event->child_mutex);
cdd6c482 3748 total += perf_event_read(event);
59ed446f
PZ
3749 *enabled += event->total_time_enabled +
3750 atomic64_read(&event->child_total_time_enabled);
3751 *running += event->total_time_running +
3752 atomic64_read(&event->child_total_time_running);
3753
3754 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3755 total += perf_event_read(child);
59ed446f
PZ
3756 *enabled += child->total_time_enabled;
3757 *running += child->total_time_running;
3758 }
6f10581a 3759 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3760
3761 return total;
3762}
fb0459d7 3763EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3764
cdd6c482 3765static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3766 u64 read_format, char __user *buf)
3767{
cdd6c482 3768 struct perf_event *leader = event->group_leader, *sub;
6f10581a 3769 struct perf_event_context *ctx = leader->ctx;
f63a8daa 3770 int n = 0, size = 0, ret;
59ed446f 3771 u64 count, enabled, running;
f63a8daa
PZ
3772 u64 values[5];
3773
3774 lockdep_assert_held(&ctx->mutex);
abf4868b 3775
59ed446f 3776 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3777
3778 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3779 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3780 values[n++] = enabled;
3781 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3782 values[n++] = running;
abf4868b
PZ
3783 values[n++] = count;
3784 if (read_format & PERF_FORMAT_ID)
3785 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3786
3787 size = n * sizeof(u64);
3788
3789 if (copy_to_user(buf, values, size))
f63a8daa 3790 return -EFAULT;
3dab77fb 3791
6f10581a 3792 ret = size;
3dab77fb 3793
65abc865 3794 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3795 n = 0;
3dab77fb 3796
59ed446f 3797 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3798 if (read_format & PERF_FORMAT_ID)
3799 values[n++] = primary_event_id(sub);
3800
3801 size = n * sizeof(u64);
3802
184d3da8 3803 if (copy_to_user(buf + ret, values, size)) {
f63a8daa 3804 return -EFAULT;
6f10581a 3805 }
abf4868b
PZ
3806
3807 ret += size;
3dab77fb
PZ
3808 }
3809
abf4868b 3810 return ret;
3dab77fb
PZ
3811}
3812
cdd6c482 3813static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3814 u64 read_format, char __user *buf)
3815{
59ed446f 3816 u64 enabled, running;
3dab77fb
PZ
3817 u64 values[4];
3818 int n = 0;
3819
59ed446f
PZ
3820 values[n++] = perf_event_read_value(event, &enabled, &running);
3821 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3822 values[n++] = enabled;
3823 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3824 values[n++] = running;
3dab77fb 3825 if (read_format & PERF_FORMAT_ID)
cdd6c482 3826 values[n++] = primary_event_id(event);
3dab77fb
PZ
3827
3828 if (copy_to_user(buf, values, n * sizeof(u64)))
3829 return -EFAULT;
3830
3831 return n * sizeof(u64);
3832}
3833
dc633982
JO
3834static bool is_event_hup(struct perf_event *event)
3835{
3836 bool no_children;
3837
3838 if (event->state != PERF_EVENT_STATE_EXIT)
3839 return false;
3840
3841 mutex_lock(&event->child_mutex);
3842 no_children = list_empty(&event->child_list);
3843 mutex_unlock(&event->child_mutex);
3844 return no_children;
3845}
3846
0793a61d 3847/*
cdd6c482 3848 * Read the performance event - simple non blocking version for now
0793a61d
TG
3849 */
3850static ssize_t
cdd6c482 3851perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3852{
cdd6c482 3853 u64 read_format = event->attr.read_format;
3dab77fb 3854 int ret;
0793a61d 3855
3b6f9e5c 3856 /*
cdd6c482 3857 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3858 * error state (i.e. because it was pinned but it couldn't be
3859 * scheduled on to the CPU at some point).
3860 */
cdd6c482 3861 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3862 return 0;
3863
c320c7b7 3864 if (count < event->read_size)
3dab77fb
PZ
3865 return -ENOSPC;
3866
cdd6c482 3867 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3868 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3869 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3870 else
cdd6c482 3871 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3872
3dab77fb 3873 return ret;
0793a61d
TG
3874}
3875
0793a61d
TG
3876static ssize_t
3877perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3878{
cdd6c482 3879 struct perf_event *event = file->private_data;
f63a8daa
PZ
3880 struct perf_event_context *ctx;
3881 int ret;
0793a61d 3882
f63a8daa
PZ
3883 ctx = perf_event_ctx_lock(event);
3884 ret = perf_read_hw(event, buf, count);
3885 perf_event_ctx_unlock(event, ctx);
3886
3887 return ret;
0793a61d
TG
3888}
3889
3890static unsigned int perf_poll(struct file *file, poll_table *wait)
3891{
cdd6c482 3892 struct perf_event *event = file->private_data;
76369139 3893 struct ring_buffer *rb;
61b67684 3894 unsigned int events = POLLHUP;
c7138f37 3895
e708d7ad 3896 poll_wait(file, &event->waitq, wait);
179033b3 3897
dc633982 3898 if (is_event_hup(event))
179033b3 3899 return events;
c7138f37 3900
10c6db11 3901 /*
9bb5d40c
PZ
3902 * Pin the event->rb by taking event->mmap_mutex; otherwise
3903 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3904 */
3905 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3906 rb = event->rb;
3907 if (rb)
76369139 3908 events = atomic_xchg(&rb->poll, 0);
10c6db11 3909 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
3910 return events;
3911}
3912
f63a8daa 3913static void _perf_event_reset(struct perf_event *event)
6de6a7b9 3914{
cdd6c482 3915 (void)perf_event_read(event);
e7850595 3916 local64_set(&event->count, 0);
cdd6c482 3917 perf_event_update_userpage(event);
3df5edad
PZ
3918}
3919
c93f7669 3920/*
cdd6c482
IM
3921 * Holding the top-level event's child_mutex means that any
3922 * descendant process that has inherited this event will block
3923 * in sync_child_event if it goes to exit, thus satisfying the
3924 * task existence requirements of perf_event_enable/disable.
c93f7669 3925 */
cdd6c482
IM
3926static void perf_event_for_each_child(struct perf_event *event,
3927 void (*func)(struct perf_event *))
3df5edad 3928{
cdd6c482 3929 struct perf_event *child;
3df5edad 3930
cdd6c482 3931 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 3932
cdd6c482
IM
3933 mutex_lock(&event->child_mutex);
3934 func(event);
3935 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3936 func(child);
cdd6c482 3937 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3938}
3939
cdd6c482
IM
3940static void perf_event_for_each(struct perf_event *event,
3941 void (*func)(struct perf_event *))
3df5edad 3942{
cdd6c482
IM
3943 struct perf_event_context *ctx = event->ctx;
3944 struct perf_event *sibling;
3df5edad 3945
f63a8daa
PZ
3946 lockdep_assert_held(&ctx->mutex);
3947
cdd6c482 3948 event = event->group_leader;
75f937f2 3949
cdd6c482 3950 perf_event_for_each_child(event, func);
cdd6c482 3951 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3952 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
3953}
3954
cdd6c482 3955static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3956{
cdd6c482 3957 struct perf_event_context *ctx = event->ctx;
bad7192b 3958 int ret = 0, active;
08247e31
PZ
3959 u64 value;
3960
6c7e550f 3961 if (!is_sampling_event(event))
08247e31
PZ
3962 return -EINVAL;
3963
ad0cf347 3964 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3965 return -EFAULT;
3966
3967 if (!value)
3968 return -EINVAL;
3969
e625cce1 3970 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3971 if (event->attr.freq) {
3972 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3973 ret = -EINVAL;
3974 goto unlock;
3975 }
3976
cdd6c482 3977 event->attr.sample_freq = value;
08247e31 3978 } else {
cdd6c482
IM
3979 event->attr.sample_period = value;
3980 event->hw.sample_period = value;
08247e31 3981 }
bad7192b
PZ
3982
3983 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3984 if (active) {
3985 perf_pmu_disable(ctx->pmu);
3986 event->pmu->stop(event, PERF_EF_UPDATE);
3987 }
3988
3989 local64_set(&event->hw.period_left, 0);
3990
3991 if (active) {
3992 event->pmu->start(event, PERF_EF_RELOAD);
3993 perf_pmu_enable(ctx->pmu);
3994 }
3995
08247e31 3996unlock:
e625cce1 3997 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3998
3999 return ret;
4000}
4001
ac9721f3
PZ
4002static const struct file_operations perf_fops;
4003
2903ff01 4004static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4005{
2903ff01
AV
4006 struct fd f = fdget(fd);
4007 if (!f.file)
4008 return -EBADF;
ac9721f3 4009
2903ff01
AV
4010 if (f.file->f_op != &perf_fops) {
4011 fdput(f);
4012 return -EBADF;
ac9721f3 4013 }
2903ff01
AV
4014 *p = f;
4015 return 0;
ac9721f3
PZ
4016}
4017
4018static int perf_event_set_output(struct perf_event *event,
4019 struct perf_event *output_event);
6fb2915d 4020static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4021static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4022
f63a8daa 4023static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4024{
cdd6c482 4025 void (*func)(struct perf_event *);
3df5edad 4026 u32 flags = arg;
d859e29f
PM
4027
4028 switch (cmd) {
cdd6c482 4029 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4030 func = _perf_event_enable;
d859e29f 4031 break;
cdd6c482 4032 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4033 func = _perf_event_disable;
79f14641 4034 break;
cdd6c482 4035 case PERF_EVENT_IOC_RESET:
f63a8daa 4036 func = _perf_event_reset;
6de6a7b9 4037 break;
3df5edad 4038
cdd6c482 4039 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4040 return _perf_event_refresh(event, arg);
08247e31 4041
cdd6c482
IM
4042 case PERF_EVENT_IOC_PERIOD:
4043 return perf_event_period(event, (u64 __user *)arg);
08247e31 4044
cf4957f1
JO
4045 case PERF_EVENT_IOC_ID:
4046 {
4047 u64 id = primary_event_id(event);
4048
4049 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4050 return -EFAULT;
4051 return 0;
4052 }
4053
cdd6c482 4054 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4055 {
ac9721f3 4056 int ret;
ac9721f3 4057 if (arg != -1) {
2903ff01
AV
4058 struct perf_event *output_event;
4059 struct fd output;
4060 ret = perf_fget_light(arg, &output);
4061 if (ret)
4062 return ret;
4063 output_event = output.file->private_data;
4064 ret = perf_event_set_output(event, output_event);
4065 fdput(output);
4066 } else {
4067 ret = perf_event_set_output(event, NULL);
ac9721f3 4068 }
ac9721f3
PZ
4069 return ret;
4070 }
a4be7c27 4071
6fb2915d
LZ
4072 case PERF_EVENT_IOC_SET_FILTER:
4073 return perf_event_set_filter(event, (void __user *)arg);
4074
2541517c
AS
4075 case PERF_EVENT_IOC_SET_BPF:
4076 return perf_event_set_bpf_prog(event, arg);
4077
d859e29f 4078 default:
3df5edad 4079 return -ENOTTY;
d859e29f 4080 }
3df5edad
PZ
4081
4082 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4083 perf_event_for_each(event, func);
3df5edad 4084 else
cdd6c482 4085 perf_event_for_each_child(event, func);
3df5edad
PZ
4086
4087 return 0;
d859e29f
PM
4088}
4089
f63a8daa
PZ
4090static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4091{
4092 struct perf_event *event = file->private_data;
4093 struct perf_event_context *ctx;
4094 long ret;
4095
4096 ctx = perf_event_ctx_lock(event);
4097 ret = _perf_ioctl(event, cmd, arg);
4098 perf_event_ctx_unlock(event, ctx);
4099
4100 return ret;
4101}
4102
b3f20785
PM
4103#ifdef CONFIG_COMPAT
4104static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4105 unsigned long arg)
4106{
4107 switch (_IOC_NR(cmd)) {
4108 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4109 case _IOC_NR(PERF_EVENT_IOC_ID):
4110 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4111 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4112 cmd &= ~IOCSIZE_MASK;
4113 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4114 }
4115 break;
4116 }
4117 return perf_ioctl(file, cmd, arg);
4118}
4119#else
4120# define perf_compat_ioctl NULL
4121#endif
4122
cdd6c482 4123int perf_event_task_enable(void)
771d7cde 4124{
f63a8daa 4125 struct perf_event_context *ctx;
cdd6c482 4126 struct perf_event *event;
771d7cde 4127
cdd6c482 4128 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4129 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4130 ctx = perf_event_ctx_lock(event);
4131 perf_event_for_each_child(event, _perf_event_enable);
4132 perf_event_ctx_unlock(event, ctx);
4133 }
cdd6c482 4134 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4135
4136 return 0;
4137}
4138
cdd6c482 4139int perf_event_task_disable(void)
771d7cde 4140{
f63a8daa 4141 struct perf_event_context *ctx;
cdd6c482 4142 struct perf_event *event;
771d7cde 4143
cdd6c482 4144 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4145 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4146 ctx = perf_event_ctx_lock(event);
4147 perf_event_for_each_child(event, _perf_event_disable);
4148 perf_event_ctx_unlock(event, ctx);
4149 }
cdd6c482 4150 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4151
4152 return 0;
4153}
4154
cdd6c482 4155static int perf_event_index(struct perf_event *event)
194002b2 4156{
a4eaf7f1
PZ
4157 if (event->hw.state & PERF_HES_STOPPED)
4158 return 0;
4159
cdd6c482 4160 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4161 return 0;
4162
35edc2a5 4163 return event->pmu->event_idx(event);
194002b2
PZ
4164}
4165
c4794295 4166static void calc_timer_values(struct perf_event *event,
e3f3541c 4167 u64 *now,
7f310a5d
EM
4168 u64 *enabled,
4169 u64 *running)
c4794295 4170{
e3f3541c 4171 u64 ctx_time;
c4794295 4172
e3f3541c
PZ
4173 *now = perf_clock();
4174 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4175 *enabled = ctx_time - event->tstamp_enabled;
4176 *running = ctx_time - event->tstamp_running;
4177}
4178
fa731587
PZ
4179static void perf_event_init_userpage(struct perf_event *event)
4180{
4181 struct perf_event_mmap_page *userpg;
4182 struct ring_buffer *rb;
4183
4184 rcu_read_lock();
4185 rb = rcu_dereference(event->rb);
4186 if (!rb)
4187 goto unlock;
4188
4189 userpg = rb->user_page;
4190
4191 /* Allow new userspace to detect that bit 0 is deprecated */
4192 userpg->cap_bit0_is_deprecated = 1;
4193 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4194 userpg->data_offset = PAGE_SIZE;
4195 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4196
4197unlock:
4198 rcu_read_unlock();
4199}
4200
c1317ec2
AL
4201void __weak arch_perf_update_userpage(
4202 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4203{
4204}
4205
38ff667b
PZ
4206/*
4207 * Callers need to ensure there can be no nesting of this function, otherwise
4208 * the seqlock logic goes bad. We can not serialize this because the arch
4209 * code calls this from NMI context.
4210 */
cdd6c482 4211void perf_event_update_userpage(struct perf_event *event)
37d81828 4212{
cdd6c482 4213 struct perf_event_mmap_page *userpg;
76369139 4214 struct ring_buffer *rb;
e3f3541c 4215 u64 enabled, running, now;
38ff667b
PZ
4216
4217 rcu_read_lock();
5ec4c599
PZ
4218 rb = rcu_dereference(event->rb);
4219 if (!rb)
4220 goto unlock;
4221
0d641208
EM
4222 /*
4223 * compute total_time_enabled, total_time_running
4224 * based on snapshot values taken when the event
4225 * was last scheduled in.
4226 *
4227 * we cannot simply called update_context_time()
4228 * because of locking issue as we can be called in
4229 * NMI context
4230 */
e3f3541c 4231 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4232
76369139 4233 userpg = rb->user_page;
7b732a75
PZ
4234 /*
4235 * Disable preemption so as to not let the corresponding user-space
4236 * spin too long if we get preempted.
4237 */
4238 preempt_disable();
37d81828 4239 ++userpg->lock;
92f22a38 4240 barrier();
cdd6c482 4241 userpg->index = perf_event_index(event);
b5e58793 4242 userpg->offset = perf_event_count(event);
365a4038 4243 if (userpg->index)
e7850595 4244 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4245
0d641208 4246 userpg->time_enabled = enabled +
cdd6c482 4247 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4248
0d641208 4249 userpg->time_running = running +
cdd6c482 4250 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4251
c1317ec2 4252 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4253
92f22a38 4254 barrier();
37d81828 4255 ++userpg->lock;
7b732a75 4256 preempt_enable();
38ff667b 4257unlock:
7b732a75 4258 rcu_read_unlock();
37d81828
PM
4259}
4260
906010b2
PZ
4261static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4262{
4263 struct perf_event *event = vma->vm_file->private_data;
76369139 4264 struct ring_buffer *rb;
906010b2
PZ
4265 int ret = VM_FAULT_SIGBUS;
4266
4267 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4268 if (vmf->pgoff == 0)
4269 ret = 0;
4270 return ret;
4271 }
4272
4273 rcu_read_lock();
76369139
FW
4274 rb = rcu_dereference(event->rb);
4275 if (!rb)
906010b2
PZ
4276 goto unlock;
4277
4278 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4279 goto unlock;
4280
76369139 4281 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4282 if (!vmf->page)
4283 goto unlock;
4284
4285 get_page(vmf->page);
4286 vmf->page->mapping = vma->vm_file->f_mapping;
4287 vmf->page->index = vmf->pgoff;
4288
4289 ret = 0;
4290unlock:
4291 rcu_read_unlock();
4292
4293 return ret;
4294}
4295
10c6db11
PZ
4296static void ring_buffer_attach(struct perf_event *event,
4297 struct ring_buffer *rb)
4298{
b69cf536 4299 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4300 unsigned long flags;
4301
b69cf536
PZ
4302 if (event->rb) {
4303 /*
4304 * Should be impossible, we set this when removing
4305 * event->rb_entry and wait/clear when adding event->rb_entry.
4306 */
4307 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4308
b69cf536
PZ
4309 old_rb = event->rb;
4310 event->rcu_batches = get_state_synchronize_rcu();
4311 event->rcu_pending = 1;
10c6db11 4312
b69cf536
PZ
4313 spin_lock_irqsave(&old_rb->event_lock, flags);
4314 list_del_rcu(&event->rb_entry);
4315 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4316 }
10c6db11 4317
b69cf536
PZ
4318 if (event->rcu_pending && rb) {
4319 cond_synchronize_rcu(event->rcu_batches);
4320 event->rcu_pending = 0;
4321 }
10c6db11 4322
b69cf536
PZ
4323 if (rb) {
4324 spin_lock_irqsave(&rb->event_lock, flags);
4325 list_add_rcu(&event->rb_entry, &rb->event_list);
4326 spin_unlock_irqrestore(&rb->event_lock, flags);
4327 }
4328
4329 rcu_assign_pointer(event->rb, rb);
4330
4331 if (old_rb) {
4332 ring_buffer_put(old_rb);
4333 /*
4334 * Since we detached before setting the new rb, so that we
4335 * could attach the new rb, we could have missed a wakeup.
4336 * Provide it now.
4337 */
4338 wake_up_all(&event->waitq);
4339 }
10c6db11
PZ
4340}
4341
4342static void ring_buffer_wakeup(struct perf_event *event)
4343{
4344 struct ring_buffer *rb;
4345
4346 rcu_read_lock();
4347 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4348 if (rb) {
4349 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4350 wake_up_all(&event->waitq);
4351 }
10c6db11
PZ
4352 rcu_read_unlock();
4353}
4354
76369139 4355static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 4356{
76369139 4357 struct ring_buffer *rb;
906010b2 4358
76369139
FW
4359 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4360 rb_free(rb);
7b732a75
PZ
4361}
4362
fdc26706 4363struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4364{
76369139 4365 struct ring_buffer *rb;
7b732a75 4366
ac9721f3 4367 rcu_read_lock();
76369139
FW
4368 rb = rcu_dereference(event->rb);
4369 if (rb) {
4370 if (!atomic_inc_not_zero(&rb->refcount))
4371 rb = NULL;
ac9721f3
PZ
4372 }
4373 rcu_read_unlock();
4374
76369139 4375 return rb;
ac9721f3
PZ
4376}
4377
fdc26706 4378void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4379{
76369139 4380 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4381 return;
7b732a75 4382
9bb5d40c 4383 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4384
76369139 4385 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4386}
4387
4388static void perf_mmap_open(struct vm_area_struct *vma)
4389{
cdd6c482 4390 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4391
cdd6c482 4392 atomic_inc(&event->mmap_count);
9bb5d40c 4393 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4394
45bfb2e5
PZ
4395 if (vma->vm_pgoff)
4396 atomic_inc(&event->rb->aux_mmap_count);
4397
1e0fb9ec
AL
4398 if (event->pmu->event_mapped)
4399 event->pmu->event_mapped(event);
7b732a75
PZ
4400}
4401
9bb5d40c
PZ
4402/*
4403 * A buffer can be mmap()ed multiple times; either directly through the same
4404 * event, or through other events by use of perf_event_set_output().
4405 *
4406 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4407 * the buffer here, where we still have a VM context. This means we need
4408 * to detach all events redirecting to us.
4409 */
7b732a75
PZ
4410static void perf_mmap_close(struct vm_area_struct *vma)
4411{
cdd6c482 4412 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4413
b69cf536 4414 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4415 struct user_struct *mmap_user = rb->mmap_user;
4416 int mmap_locked = rb->mmap_locked;
4417 unsigned long size = perf_data_size(rb);
789f90fc 4418
1e0fb9ec
AL
4419 if (event->pmu->event_unmapped)
4420 event->pmu->event_unmapped(event);
4421
45bfb2e5
PZ
4422 /*
4423 * rb->aux_mmap_count will always drop before rb->mmap_count and
4424 * event->mmap_count, so it is ok to use event->mmap_mutex to
4425 * serialize with perf_mmap here.
4426 */
4427 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4428 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4429 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4430 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4431
4432 rb_free_aux(rb);
4433 mutex_unlock(&event->mmap_mutex);
4434 }
4435
9bb5d40c
PZ
4436 atomic_dec(&rb->mmap_count);
4437
4438 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4439 goto out_put;
9bb5d40c 4440
b69cf536 4441 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4442 mutex_unlock(&event->mmap_mutex);
4443
4444 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4445 if (atomic_read(&rb->mmap_count))
4446 goto out_put;
ac9721f3 4447
9bb5d40c
PZ
4448 /*
4449 * No other mmap()s, detach from all other events that might redirect
4450 * into the now unreachable buffer. Somewhat complicated by the
4451 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4452 */
4453again:
4454 rcu_read_lock();
4455 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4456 if (!atomic_long_inc_not_zero(&event->refcount)) {
4457 /*
4458 * This event is en-route to free_event() which will
4459 * detach it and remove it from the list.
4460 */
4461 continue;
4462 }
4463 rcu_read_unlock();
789f90fc 4464
9bb5d40c
PZ
4465 mutex_lock(&event->mmap_mutex);
4466 /*
4467 * Check we didn't race with perf_event_set_output() which can
4468 * swizzle the rb from under us while we were waiting to
4469 * acquire mmap_mutex.
4470 *
4471 * If we find a different rb; ignore this event, a next
4472 * iteration will no longer find it on the list. We have to
4473 * still restart the iteration to make sure we're not now
4474 * iterating the wrong list.
4475 */
b69cf536
PZ
4476 if (event->rb == rb)
4477 ring_buffer_attach(event, NULL);
4478
cdd6c482 4479 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4480 put_event(event);
ac9721f3 4481
9bb5d40c
PZ
4482 /*
4483 * Restart the iteration; either we're on the wrong list or
4484 * destroyed its integrity by doing a deletion.
4485 */
4486 goto again;
7b732a75 4487 }
9bb5d40c
PZ
4488 rcu_read_unlock();
4489
4490 /*
4491 * It could be there's still a few 0-ref events on the list; they'll
4492 * get cleaned up by free_event() -- they'll also still have their
4493 * ref on the rb and will free it whenever they are done with it.
4494 *
4495 * Aside from that, this buffer is 'fully' detached and unmapped,
4496 * undo the VM accounting.
4497 */
4498
4499 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4500 vma->vm_mm->pinned_vm -= mmap_locked;
4501 free_uid(mmap_user);
4502
b69cf536 4503out_put:
9bb5d40c 4504 ring_buffer_put(rb); /* could be last */
37d81828
PM
4505}
4506
f0f37e2f 4507static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4508 .open = perf_mmap_open,
45bfb2e5 4509 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4510 .fault = perf_mmap_fault,
4511 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4512};
4513
4514static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4515{
cdd6c482 4516 struct perf_event *event = file->private_data;
22a4f650 4517 unsigned long user_locked, user_lock_limit;
789f90fc 4518 struct user_struct *user = current_user();
22a4f650 4519 unsigned long locked, lock_limit;
45bfb2e5 4520 struct ring_buffer *rb = NULL;
7b732a75
PZ
4521 unsigned long vma_size;
4522 unsigned long nr_pages;
45bfb2e5 4523 long user_extra = 0, extra = 0;
d57e34fd 4524 int ret = 0, flags = 0;
37d81828 4525
c7920614
PZ
4526 /*
4527 * Don't allow mmap() of inherited per-task counters. This would
4528 * create a performance issue due to all children writing to the
76369139 4529 * same rb.
c7920614
PZ
4530 */
4531 if (event->cpu == -1 && event->attr.inherit)
4532 return -EINVAL;
4533
43a21ea8 4534 if (!(vma->vm_flags & VM_SHARED))
37d81828 4535 return -EINVAL;
7b732a75
PZ
4536
4537 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4538
4539 if (vma->vm_pgoff == 0) {
4540 nr_pages = (vma_size / PAGE_SIZE) - 1;
4541 } else {
4542 /*
4543 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4544 * mapped, all subsequent mappings should have the same size
4545 * and offset. Must be above the normal perf buffer.
4546 */
4547 u64 aux_offset, aux_size;
4548
4549 if (!event->rb)
4550 return -EINVAL;
4551
4552 nr_pages = vma_size / PAGE_SIZE;
4553
4554 mutex_lock(&event->mmap_mutex);
4555 ret = -EINVAL;
4556
4557 rb = event->rb;
4558 if (!rb)
4559 goto aux_unlock;
4560
4561 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4562 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4563
4564 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4565 goto aux_unlock;
4566
4567 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4568 goto aux_unlock;
4569
4570 /* already mapped with a different offset */
4571 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4572 goto aux_unlock;
4573
4574 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4575 goto aux_unlock;
4576
4577 /* already mapped with a different size */
4578 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4579 goto aux_unlock;
4580
4581 if (!is_power_of_2(nr_pages))
4582 goto aux_unlock;
4583
4584 if (!atomic_inc_not_zero(&rb->mmap_count))
4585 goto aux_unlock;
4586
4587 if (rb_has_aux(rb)) {
4588 atomic_inc(&rb->aux_mmap_count);
4589 ret = 0;
4590 goto unlock;
4591 }
4592
4593 atomic_set(&rb->aux_mmap_count, 1);
4594 user_extra = nr_pages;
4595
4596 goto accounting;
4597 }
7b732a75 4598
7730d865 4599 /*
76369139 4600 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4601 * can do bitmasks instead of modulo.
4602 */
2ed11312 4603 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4604 return -EINVAL;
4605
7b732a75 4606 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4607 return -EINVAL;
4608
cdd6c482 4609 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4610again:
cdd6c482 4611 mutex_lock(&event->mmap_mutex);
76369139 4612 if (event->rb) {
9bb5d40c 4613 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4614 ret = -EINVAL;
9bb5d40c
PZ
4615 goto unlock;
4616 }
4617
4618 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4619 /*
4620 * Raced against perf_mmap_close() through
4621 * perf_event_set_output(). Try again, hope for better
4622 * luck.
4623 */
4624 mutex_unlock(&event->mmap_mutex);
4625 goto again;
4626 }
4627
ebb3c4c4
PZ
4628 goto unlock;
4629 }
4630
789f90fc 4631 user_extra = nr_pages + 1;
45bfb2e5
PZ
4632
4633accounting:
cdd6c482 4634 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4635
4636 /*
4637 * Increase the limit linearly with more CPUs:
4638 */
4639 user_lock_limit *= num_online_cpus();
4640
789f90fc 4641 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4642
789f90fc
PZ
4643 if (user_locked > user_lock_limit)
4644 extra = user_locked - user_lock_limit;
7b732a75 4645
78d7d407 4646 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4647 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4648 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4649
459ec28a
IM
4650 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4651 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4652 ret = -EPERM;
4653 goto unlock;
4654 }
7b732a75 4655
45bfb2e5 4656 WARN_ON(!rb && event->rb);
906010b2 4657
d57e34fd 4658 if (vma->vm_flags & VM_WRITE)
76369139 4659 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4660
76369139 4661 if (!rb) {
45bfb2e5
PZ
4662 rb = rb_alloc(nr_pages,
4663 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4664 event->cpu, flags);
26cb63ad 4665
45bfb2e5
PZ
4666 if (!rb) {
4667 ret = -ENOMEM;
4668 goto unlock;
4669 }
43a21ea8 4670
45bfb2e5
PZ
4671 atomic_set(&rb->mmap_count, 1);
4672 rb->mmap_user = get_current_user();
4673 rb->mmap_locked = extra;
26cb63ad 4674
45bfb2e5 4675 ring_buffer_attach(event, rb);
ac9721f3 4676
45bfb2e5
PZ
4677 perf_event_init_userpage(event);
4678 perf_event_update_userpage(event);
4679 } else {
1a594131
AS
4680 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4681 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4682 if (!ret)
4683 rb->aux_mmap_locked = extra;
4684 }
9a0f05cb 4685
ebb3c4c4 4686unlock:
45bfb2e5
PZ
4687 if (!ret) {
4688 atomic_long_add(user_extra, &user->locked_vm);
4689 vma->vm_mm->pinned_vm += extra;
4690
ac9721f3 4691 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4692 } else if (rb) {
4693 atomic_dec(&rb->mmap_count);
4694 }
4695aux_unlock:
cdd6c482 4696 mutex_unlock(&event->mmap_mutex);
37d81828 4697
9bb5d40c
PZ
4698 /*
4699 * Since pinned accounting is per vm we cannot allow fork() to copy our
4700 * vma.
4701 */
26cb63ad 4702 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4703 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4704
1e0fb9ec
AL
4705 if (event->pmu->event_mapped)
4706 event->pmu->event_mapped(event);
4707
7b732a75 4708 return ret;
37d81828
PM
4709}
4710
3c446b3d
PZ
4711static int perf_fasync(int fd, struct file *filp, int on)
4712{
496ad9aa 4713 struct inode *inode = file_inode(filp);
cdd6c482 4714 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4715 int retval;
4716
4717 mutex_lock(&inode->i_mutex);
cdd6c482 4718 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4719 mutex_unlock(&inode->i_mutex);
4720
4721 if (retval < 0)
4722 return retval;
4723
4724 return 0;
4725}
4726
0793a61d 4727static const struct file_operations perf_fops = {
3326c1ce 4728 .llseek = no_llseek,
0793a61d
TG
4729 .release = perf_release,
4730 .read = perf_read,
4731 .poll = perf_poll,
d859e29f 4732 .unlocked_ioctl = perf_ioctl,
b3f20785 4733 .compat_ioctl = perf_compat_ioctl,
37d81828 4734 .mmap = perf_mmap,
3c446b3d 4735 .fasync = perf_fasync,
0793a61d
TG
4736};
4737
925d519a 4738/*
cdd6c482 4739 * Perf event wakeup
925d519a
PZ
4740 *
4741 * If there's data, ensure we set the poll() state and publish everything
4742 * to user-space before waking everybody up.
4743 */
4744
cdd6c482 4745void perf_event_wakeup(struct perf_event *event)
925d519a 4746{
10c6db11 4747 ring_buffer_wakeup(event);
4c9e2542 4748
cdd6c482
IM
4749 if (event->pending_kill) {
4750 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4751 event->pending_kill = 0;
4c9e2542 4752 }
925d519a
PZ
4753}
4754
e360adbe 4755static void perf_pending_event(struct irq_work *entry)
79f14641 4756{
cdd6c482
IM
4757 struct perf_event *event = container_of(entry,
4758 struct perf_event, pending);
d525211f
PZ
4759 int rctx;
4760
4761 rctx = perf_swevent_get_recursion_context();
4762 /*
4763 * If we 'fail' here, that's OK, it means recursion is already disabled
4764 * and we won't recurse 'further'.
4765 */
79f14641 4766
cdd6c482
IM
4767 if (event->pending_disable) {
4768 event->pending_disable = 0;
4769 __perf_event_disable(event);
79f14641
PZ
4770 }
4771
cdd6c482
IM
4772 if (event->pending_wakeup) {
4773 event->pending_wakeup = 0;
4774 perf_event_wakeup(event);
79f14641 4775 }
d525211f
PZ
4776
4777 if (rctx >= 0)
4778 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4779}
4780
39447b38
ZY
4781/*
4782 * We assume there is only KVM supporting the callbacks.
4783 * Later on, we might change it to a list if there is
4784 * another virtualization implementation supporting the callbacks.
4785 */
4786struct perf_guest_info_callbacks *perf_guest_cbs;
4787
4788int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4789{
4790 perf_guest_cbs = cbs;
4791 return 0;
4792}
4793EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4794
4795int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4796{
4797 perf_guest_cbs = NULL;
4798 return 0;
4799}
4800EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4801
4018994f
JO
4802static void
4803perf_output_sample_regs(struct perf_output_handle *handle,
4804 struct pt_regs *regs, u64 mask)
4805{
4806 int bit;
4807
4808 for_each_set_bit(bit, (const unsigned long *) &mask,
4809 sizeof(mask) * BITS_PER_BYTE) {
4810 u64 val;
4811
4812 val = perf_reg_value(regs, bit);
4813 perf_output_put(handle, val);
4814 }
4815}
4816
60e2364e 4817static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4818 struct pt_regs *regs,
4819 struct pt_regs *regs_user_copy)
4018994f 4820{
88a7c26a
AL
4821 if (user_mode(regs)) {
4822 regs_user->abi = perf_reg_abi(current);
2565711f 4823 regs_user->regs = regs;
88a7c26a
AL
4824 } else if (current->mm) {
4825 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4826 } else {
4827 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4828 regs_user->regs = NULL;
4018994f
JO
4829 }
4830}
4831
60e2364e
SE
4832static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4833 struct pt_regs *regs)
4834{
4835 regs_intr->regs = regs;
4836 regs_intr->abi = perf_reg_abi(current);
4837}
4838
4839
c5ebcedb
JO
4840/*
4841 * Get remaining task size from user stack pointer.
4842 *
4843 * It'd be better to take stack vma map and limit this more
4844 * precisly, but there's no way to get it safely under interrupt,
4845 * so using TASK_SIZE as limit.
4846 */
4847static u64 perf_ustack_task_size(struct pt_regs *regs)
4848{
4849 unsigned long addr = perf_user_stack_pointer(regs);
4850
4851 if (!addr || addr >= TASK_SIZE)
4852 return 0;
4853
4854 return TASK_SIZE - addr;
4855}
4856
4857static u16
4858perf_sample_ustack_size(u16 stack_size, u16 header_size,
4859 struct pt_regs *regs)
4860{
4861 u64 task_size;
4862
4863 /* No regs, no stack pointer, no dump. */
4864 if (!regs)
4865 return 0;
4866
4867 /*
4868 * Check if we fit in with the requested stack size into the:
4869 * - TASK_SIZE
4870 * If we don't, we limit the size to the TASK_SIZE.
4871 *
4872 * - remaining sample size
4873 * If we don't, we customize the stack size to
4874 * fit in to the remaining sample size.
4875 */
4876
4877 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4878 stack_size = min(stack_size, (u16) task_size);
4879
4880 /* Current header size plus static size and dynamic size. */
4881 header_size += 2 * sizeof(u64);
4882
4883 /* Do we fit in with the current stack dump size? */
4884 if ((u16) (header_size + stack_size) < header_size) {
4885 /*
4886 * If we overflow the maximum size for the sample,
4887 * we customize the stack dump size to fit in.
4888 */
4889 stack_size = USHRT_MAX - header_size - sizeof(u64);
4890 stack_size = round_up(stack_size, sizeof(u64));
4891 }
4892
4893 return stack_size;
4894}
4895
4896static void
4897perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4898 struct pt_regs *regs)
4899{
4900 /* Case of a kernel thread, nothing to dump */
4901 if (!regs) {
4902 u64 size = 0;
4903 perf_output_put(handle, size);
4904 } else {
4905 unsigned long sp;
4906 unsigned int rem;
4907 u64 dyn_size;
4908
4909 /*
4910 * We dump:
4911 * static size
4912 * - the size requested by user or the best one we can fit
4913 * in to the sample max size
4914 * data
4915 * - user stack dump data
4916 * dynamic size
4917 * - the actual dumped size
4918 */
4919
4920 /* Static size. */
4921 perf_output_put(handle, dump_size);
4922
4923 /* Data. */
4924 sp = perf_user_stack_pointer(regs);
4925 rem = __output_copy_user(handle, (void *) sp, dump_size);
4926 dyn_size = dump_size - rem;
4927
4928 perf_output_skip(handle, rem);
4929
4930 /* Dynamic size. */
4931 perf_output_put(handle, dyn_size);
4932 }
4933}
4934
c980d109
ACM
4935static void __perf_event_header__init_id(struct perf_event_header *header,
4936 struct perf_sample_data *data,
4937 struct perf_event *event)
6844c09d
ACM
4938{
4939 u64 sample_type = event->attr.sample_type;
4940
4941 data->type = sample_type;
4942 header->size += event->id_header_size;
4943
4944 if (sample_type & PERF_SAMPLE_TID) {
4945 /* namespace issues */
4946 data->tid_entry.pid = perf_event_pid(event, current);
4947 data->tid_entry.tid = perf_event_tid(event, current);
4948 }
4949
4950 if (sample_type & PERF_SAMPLE_TIME)
34f43927 4951 data->time = perf_event_clock(event);
6844c09d 4952
ff3d527c 4953 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4954 data->id = primary_event_id(event);
4955
4956 if (sample_type & PERF_SAMPLE_STREAM_ID)
4957 data->stream_id = event->id;
4958
4959 if (sample_type & PERF_SAMPLE_CPU) {
4960 data->cpu_entry.cpu = raw_smp_processor_id();
4961 data->cpu_entry.reserved = 0;
4962 }
4963}
4964
76369139
FW
4965void perf_event_header__init_id(struct perf_event_header *header,
4966 struct perf_sample_data *data,
4967 struct perf_event *event)
c980d109
ACM
4968{
4969 if (event->attr.sample_id_all)
4970 __perf_event_header__init_id(header, data, event);
4971}
4972
4973static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4974 struct perf_sample_data *data)
4975{
4976 u64 sample_type = data->type;
4977
4978 if (sample_type & PERF_SAMPLE_TID)
4979 perf_output_put(handle, data->tid_entry);
4980
4981 if (sample_type & PERF_SAMPLE_TIME)
4982 perf_output_put(handle, data->time);
4983
4984 if (sample_type & PERF_SAMPLE_ID)
4985 perf_output_put(handle, data->id);
4986
4987 if (sample_type & PERF_SAMPLE_STREAM_ID)
4988 perf_output_put(handle, data->stream_id);
4989
4990 if (sample_type & PERF_SAMPLE_CPU)
4991 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4992
4993 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4994 perf_output_put(handle, data->id);
c980d109
ACM
4995}
4996
76369139
FW
4997void perf_event__output_id_sample(struct perf_event *event,
4998 struct perf_output_handle *handle,
4999 struct perf_sample_data *sample)
c980d109
ACM
5000{
5001 if (event->attr.sample_id_all)
5002 __perf_event__output_id_sample(handle, sample);
5003}
5004
3dab77fb 5005static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5006 struct perf_event *event,
5007 u64 enabled, u64 running)
3dab77fb 5008{
cdd6c482 5009 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5010 u64 values[4];
5011 int n = 0;
5012
b5e58793 5013 values[n++] = perf_event_count(event);
3dab77fb 5014 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5015 values[n++] = enabled +
cdd6c482 5016 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5017 }
5018 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5019 values[n++] = running +
cdd6c482 5020 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5021 }
5022 if (read_format & PERF_FORMAT_ID)
cdd6c482 5023 values[n++] = primary_event_id(event);
3dab77fb 5024
76369139 5025 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5026}
5027
5028/*
cdd6c482 5029 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5030 */
5031static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5032 struct perf_event *event,
5033 u64 enabled, u64 running)
3dab77fb 5034{
cdd6c482
IM
5035 struct perf_event *leader = event->group_leader, *sub;
5036 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5037 u64 values[5];
5038 int n = 0;
5039
5040 values[n++] = 1 + leader->nr_siblings;
5041
5042 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5043 values[n++] = enabled;
3dab77fb
PZ
5044
5045 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5046 values[n++] = running;
3dab77fb 5047
cdd6c482 5048 if (leader != event)
3dab77fb
PZ
5049 leader->pmu->read(leader);
5050
b5e58793 5051 values[n++] = perf_event_count(leader);
3dab77fb 5052 if (read_format & PERF_FORMAT_ID)
cdd6c482 5053 values[n++] = primary_event_id(leader);
3dab77fb 5054
76369139 5055 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5056
65abc865 5057 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5058 n = 0;
5059
6f5ab001
JO
5060 if ((sub != event) &&
5061 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5062 sub->pmu->read(sub);
5063
b5e58793 5064 values[n++] = perf_event_count(sub);
3dab77fb 5065 if (read_format & PERF_FORMAT_ID)
cdd6c482 5066 values[n++] = primary_event_id(sub);
3dab77fb 5067
76369139 5068 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5069 }
5070}
5071
eed01528
SE
5072#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5073 PERF_FORMAT_TOTAL_TIME_RUNNING)
5074
3dab77fb 5075static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5076 struct perf_event *event)
3dab77fb 5077{
e3f3541c 5078 u64 enabled = 0, running = 0, now;
eed01528
SE
5079 u64 read_format = event->attr.read_format;
5080
5081 /*
5082 * compute total_time_enabled, total_time_running
5083 * based on snapshot values taken when the event
5084 * was last scheduled in.
5085 *
5086 * we cannot simply called update_context_time()
5087 * because of locking issue as we are called in
5088 * NMI context
5089 */
c4794295 5090 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5091 calc_timer_values(event, &now, &enabled, &running);
eed01528 5092
cdd6c482 5093 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5094 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5095 else
eed01528 5096 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5097}
5098
5622f295
MM
5099void perf_output_sample(struct perf_output_handle *handle,
5100 struct perf_event_header *header,
5101 struct perf_sample_data *data,
cdd6c482 5102 struct perf_event *event)
5622f295
MM
5103{
5104 u64 sample_type = data->type;
5105
5106 perf_output_put(handle, *header);
5107
ff3d527c
AH
5108 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5109 perf_output_put(handle, data->id);
5110
5622f295
MM
5111 if (sample_type & PERF_SAMPLE_IP)
5112 perf_output_put(handle, data->ip);
5113
5114 if (sample_type & PERF_SAMPLE_TID)
5115 perf_output_put(handle, data->tid_entry);
5116
5117 if (sample_type & PERF_SAMPLE_TIME)
5118 perf_output_put(handle, data->time);
5119
5120 if (sample_type & PERF_SAMPLE_ADDR)
5121 perf_output_put(handle, data->addr);
5122
5123 if (sample_type & PERF_SAMPLE_ID)
5124 perf_output_put(handle, data->id);
5125
5126 if (sample_type & PERF_SAMPLE_STREAM_ID)
5127 perf_output_put(handle, data->stream_id);
5128
5129 if (sample_type & PERF_SAMPLE_CPU)
5130 perf_output_put(handle, data->cpu_entry);
5131
5132 if (sample_type & PERF_SAMPLE_PERIOD)
5133 perf_output_put(handle, data->period);
5134
5135 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5136 perf_output_read(handle, event);
5622f295
MM
5137
5138 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5139 if (data->callchain) {
5140 int size = 1;
5141
5142 if (data->callchain)
5143 size += data->callchain->nr;
5144
5145 size *= sizeof(u64);
5146
76369139 5147 __output_copy(handle, data->callchain, size);
5622f295
MM
5148 } else {
5149 u64 nr = 0;
5150 perf_output_put(handle, nr);
5151 }
5152 }
5153
5154 if (sample_type & PERF_SAMPLE_RAW) {
5155 if (data->raw) {
5156 perf_output_put(handle, data->raw->size);
76369139
FW
5157 __output_copy(handle, data->raw->data,
5158 data->raw->size);
5622f295
MM
5159 } else {
5160 struct {
5161 u32 size;
5162 u32 data;
5163 } raw = {
5164 .size = sizeof(u32),
5165 .data = 0,
5166 };
5167 perf_output_put(handle, raw);
5168 }
5169 }
a7ac67ea 5170
bce38cd5
SE
5171 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5172 if (data->br_stack) {
5173 size_t size;
5174
5175 size = data->br_stack->nr
5176 * sizeof(struct perf_branch_entry);
5177
5178 perf_output_put(handle, data->br_stack->nr);
5179 perf_output_copy(handle, data->br_stack->entries, size);
5180 } else {
5181 /*
5182 * we always store at least the value of nr
5183 */
5184 u64 nr = 0;
5185 perf_output_put(handle, nr);
5186 }
5187 }
4018994f
JO
5188
5189 if (sample_type & PERF_SAMPLE_REGS_USER) {
5190 u64 abi = data->regs_user.abi;
5191
5192 /*
5193 * If there are no regs to dump, notice it through
5194 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5195 */
5196 perf_output_put(handle, abi);
5197
5198 if (abi) {
5199 u64 mask = event->attr.sample_regs_user;
5200 perf_output_sample_regs(handle,
5201 data->regs_user.regs,
5202 mask);
5203 }
5204 }
c5ebcedb 5205
a5cdd40c 5206 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5207 perf_output_sample_ustack(handle,
5208 data->stack_user_size,
5209 data->regs_user.regs);
a5cdd40c 5210 }
c3feedf2
AK
5211
5212 if (sample_type & PERF_SAMPLE_WEIGHT)
5213 perf_output_put(handle, data->weight);
d6be9ad6
SE
5214
5215 if (sample_type & PERF_SAMPLE_DATA_SRC)
5216 perf_output_put(handle, data->data_src.val);
a5cdd40c 5217
fdfbbd07
AK
5218 if (sample_type & PERF_SAMPLE_TRANSACTION)
5219 perf_output_put(handle, data->txn);
5220
60e2364e
SE
5221 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5222 u64 abi = data->regs_intr.abi;
5223 /*
5224 * If there are no regs to dump, notice it through
5225 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5226 */
5227 perf_output_put(handle, abi);
5228
5229 if (abi) {
5230 u64 mask = event->attr.sample_regs_intr;
5231
5232 perf_output_sample_regs(handle,
5233 data->regs_intr.regs,
5234 mask);
5235 }
5236 }
5237
a5cdd40c
PZ
5238 if (!event->attr.watermark) {
5239 int wakeup_events = event->attr.wakeup_events;
5240
5241 if (wakeup_events) {
5242 struct ring_buffer *rb = handle->rb;
5243 int events = local_inc_return(&rb->events);
5244
5245 if (events >= wakeup_events) {
5246 local_sub(wakeup_events, &rb->events);
5247 local_inc(&rb->wakeup);
5248 }
5249 }
5250 }
5622f295
MM
5251}
5252
5253void perf_prepare_sample(struct perf_event_header *header,
5254 struct perf_sample_data *data,
cdd6c482 5255 struct perf_event *event,
5622f295 5256 struct pt_regs *regs)
7b732a75 5257{
cdd6c482 5258 u64 sample_type = event->attr.sample_type;
7b732a75 5259
cdd6c482 5260 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5261 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5262
5263 header->misc = 0;
5264 header->misc |= perf_misc_flags(regs);
6fab0192 5265
c980d109 5266 __perf_event_header__init_id(header, data, event);
6844c09d 5267
c320c7b7 5268 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5269 data->ip = perf_instruction_pointer(regs);
5270
b23f3325 5271 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5272 int size = 1;
394ee076 5273
e6dab5ff 5274 data->callchain = perf_callchain(event, regs);
5622f295
MM
5275
5276 if (data->callchain)
5277 size += data->callchain->nr;
5278
5279 header->size += size * sizeof(u64);
394ee076
PZ
5280 }
5281
3a43ce68 5282 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5283 int size = sizeof(u32);
5284
5285 if (data->raw)
5286 size += data->raw->size;
5287 else
5288 size += sizeof(u32);
5289
5290 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5291 header->size += size;
7f453c24 5292 }
bce38cd5
SE
5293
5294 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5295 int size = sizeof(u64); /* nr */
5296 if (data->br_stack) {
5297 size += data->br_stack->nr
5298 * sizeof(struct perf_branch_entry);
5299 }
5300 header->size += size;
5301 }
4018994f 5302
2565711f 5303 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5304 perf_sample_regs_user(&data->regs_user, regs,
5305 &data->regs_user_copy);
2565711f 5306
4018994f
JO
5307 if (sample_type & PERF_SAMPLE_REGS_USER) {
5308 /* regs dump ABI info */
5309 int size = sizeof(u64);
5310
4018994f
JO
5311 if (data->regs_user.regs) {
5312 u64 mask = event->attr.sample_regs_user;
5313 size += hweight64(mask) * sizeof(u64);
5314 }
5315
5316 header->size += size;
5317 }
c5ebcedb
JO
5318
5319 if (sample_type & PERF_SAMPLE_STACK_USER) {
5320 /*
5321 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5322 * processed as the last one or have additional check added
5323 * in case new sample type is added, because we could eat
5324 * up the rest of the sample size.
5325 */
c5ebcedb
JO
5326 u16 stack_size = event->attr.sample_stack_user;
5327 u16 size = sizeof(u64);
5328
c5ebcedb 5329 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5330 data->regs_user.regs);
c5ebcedb
JO
5331
5332 /*
5333 * If there is something to dump, add space for the dump
5334 * itself and for the field that tells the dynamic size,
5335 * which is how many have been actually dumped.
5336 */
5337 if (stack_size)
5338 size += sizeof(u64) + stack_size;
5339
5340 data->stack_user_size = stack_size;
5341 header->size += size;
5342 }
60e2364e
SE
5343
5344 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5345 /* regs dump ABI info */
5346 int size = sizeof(u64);
5347
5348 perf_sample_regs_intr(&data->regs_intr, regs);
5349
5350 if (data->regs_intr.regs) {
5351 u64 mask = event->attr.sample_regs_intr;
5352
5353 size += hweight64(mask) * sizeof(u64);
5354 }
5355
5356 header->size += size;
5357 }
5622f295 5358}
7f453c24 5359
a8b0ca17 5360static void perf_event_output(struct perf_event *event,
5622f295
MM
5361 struct perf_sample_data *data,
5362 struct pt_regs *regs)
5363{
5364 struct perf_output_handle handle;
5365 struct perf_event_header header;
689802b2 5366
927c7a9e
FW
5367 /* protect the callchain buffers */
5368 rcu_read_lock();
5369
cdd6c482 5370 perf_prepare_sample(&header, data, event, regs);
5c148194 5371
a7ac67ea 5372 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5373 goto exit;
0322cd6e 5374
cdd6c482 5375 perf_output_sample(&handle, &header, data, event);
f413cdb8 5376
8a057d84 5377 perf_output_end(&handle);
927c7a9e
FW
5378
5379exit:
5380 rcu_read_unlock();
0322cd6e
PZ
5381}
5382
38b200d6 5383/*
cdd6c482 5384 * read event_id
38b200d6
PZ
5385 */
5386
5387struct perf_read_event {
5388 struct perf_event_header header;
5389
5390 u32 pid;
5391 u32 tid;
38b200d6
PZ
5392};
5393
5394static void
cdd6c482 5395perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5396 struct task_struct *task)
5397{
5398 struct perf_output_handle handle;
c980d109 5399 struct perf_sample_data sample;
dfc65094 5400 struct perf_read_event read_event = {
38b200d6 5401 .header = {
cdd6c482 5402 .type = PERF_RECORD_READ,
38b200d6 5403 .misc = 0,
c320c7b7 5404 .size = sizeof(read_event) + event->read_size,
38b200d6 5405 },
cdd6c482
IM
5406 .pid = perf_event_pid(event, task),
5407 .tid = perf_event_tid(event, task),
38b200d6 5408 };
3dab77fb 5409 int ret;
38b200d6 5410
c980d109 5411 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5412 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5413 if (ret)
5414 return;
5415
dfc65094 5416 perf_output_put(&handle, read_event);
cdd6c482 5417 perf_output_read(&handle, event);
c980d109 5418 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5419
38b200d6
PZ
5420 perf_output_end(&handle);
5421}
5422
52d857a8
JO
5423typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5424
5425static void
5426perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5427 perf_event_aux_output_cb output,
5428 void *data)
5429{
5430 struct perf_event *event;
5431
5432 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5433 if (event->state < PERF_EVENT_STATE_INACTIVE)
5434 continue;
5435 if (!event_filter_match(event))
5436 continue;
67516844 5437 output(event, data);
52d857a8
JO
5438 }
5439}
5440
5441static void
67516844 5442perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5443 struct perf_event_context *task_ctx)
5444{
5445 struct perf_cpu_context *cpuctx;
5446 struct perf_event_context *ctx;
5447 struct pmu *pmu;
5448 int ctxn;
5449
5450 rcu_read_lock();
5451 list_for_each_entry_rcu(pmu, &pmus, entry) {
5452 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5453 if (cpuctx->unique_pmu != pmu)
5454 goto next;
67516844 5455 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5456 if (task_ctx)
5457 goto next;
5458 ctxn = pmu->task_ctx_nr;
5459 if (ctxn < 0)
5460 goto next;
5461 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5462 if (ctx)
67516844 5463 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5464next:
5465 put_cpu_ptr(pmu->pmu_cpu_context);
5466 }
5467
5468 if (task_ctx) {
5469 preempt_disable();
67516844 5470 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5471 preempt_enable();
5472 }
5473 rcu_read_unlock();
5474}
5475
60313ebe 5476/*
9f498cc5
PZ
5477 * task tracking -- fork/exit
5478 *
13d7a241 5479 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5480 */
5481
9f498cc5 5482struct perf_task_event {
3a80b4a3 5483 struct task_struct *task;
cdd6c482 5484 struct perf_event_context *task_ctx;
60313ebe
PZ
5485
5486 struct {
5487 struct perf_event_header header;
5488
5489 u32 pid;
5490 u32 ppid;
9f498cc5
PZ
5491 u32 tid;
5492 u32 ptid;
393b2ad8 5493 u64 time;
cdd6c482 5494 } event_id;
60313ebe
PZ
5495};
5496
67516844
JO
5497static int perf_event_task_match(struct perf_event *event)
5498{
13d7a241
SE
5499 return event->attr.comm || event->attr.mmap ||
5500 event->attr.mmap2 || event->attr.mmap_data ||
5501 event->attr.task;
67516844
JO
5502}
5503
cdd6c482 5504static void perf_event_task_output(struct perf_event *event,
52d857a8 5505 void *data)
60313ebe 5506{
52d857a8 5507 struct perf_task_event *task_event = data;
60313ebe 5508 struct perf_output_handle handle;
c980d109 5509 struct perf_sample_data sample;
9f498cc5 5510 struct task_struct *task = task_event->task;
c980d109 5511 int ret, size = task_event->event_id.header.size;
8bb39f9a 5512
67516844
JO
5513 if (!perf_event_task_match(event))
5514 return;
5515
c980d109 5516 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5517
c980d109 5518 ret = perf_output_begin(&handle, event,
a7ac67ea 5519 task_event->event_id.header.size);
ef60777c 5520 if (ret)
c980d109 5521 goto out;
60313ebe 5522
cdd6c482
IM
5523 task_event->event_id.pid = perf_event_pid(event, task);
5524 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5525
cdd6c482
IM
5526 task_event->event_id.tid = perf_event_tid(event, task);
5527 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5528
34f43927
PZ
5529 task_event->event_id.time = perf_event_clock(event);
5530
cdd6c482 5531 perf_output_put(&handle, task_event->event_id);
393b2ad8 5532
c980d109
ACM
5533 perf_event__output_id_sample(event, &handle, &sample);
5534
60313ebe 5535 perf_output_end(&handle);
c980d109
ACM
5536out:
5537 task_event->event_id.header.size = size;
60313ebe
PZ
5538}
5539
cdd6c482
IM
5540static void perf_event_task(struct task_struct *task,
5541 struct perf_event_context *task_ctx,
3a80b4a3 5542 int new)
60313ebe 5543{
9f498cc5 5544 struct perf_task_event task_event;
60313ebe 5545
cdd6c482
IM
5546 if (!atomic_read(&nr_comm_events) &&
5547 !atomic_read(&nr_mmap_events) &&
5548 !atomic_read(&nr_task_events))
60313ebe
PZ
5549 return;
5550
9f498cc5 5551 task_event = (struct perf_task_event){
3a80b4a3
PZ
5552 .task = task,
5553 .task_ctx = task_ctx,
cdd6c482 5554 .event_id = {
60313ebe 5555 .header = {
cdd6c482 5556 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5557 .misc = 0,
cdd6c482 5558 .size = sizeof(task_event.event_id),
60313ebe 5559 },
573402db
PZ
5560 /* .pid */
5561 /* .ppid */
9f498cc5
PZ
5562 /* .tid */
5563 /* .ptid */
34f43927 5564 /* .time */
60313ebe
PZ
5565 },
5566 };
5567
67516844 5568 perf_event_aux(perf_event_task_output,
52d857a8
JO
5569 &task_event,
5570 task_ctx);
9f498cc5
PZ
5571}
5572
cdd6c482 5573void perf_event_fork(struct task_struct *task)
9f498cc5 5574{
cdd6c482 5575 perf_event_task(task, NULL, 1);
60313ebe
PZ
5576}
5577
8d1b2d93
PZ
5578/*
5579 * comm tracking
5580 */
5581
5582struct perf_comm_event {
22a4f650
IM
5583 struct task_struct *task;
5584 char *comm;
8d1b2d93
PZ
5585 int comm_size;
5586
5587 struct {
5588 struct perf_event_header header;
5589
5590 u32 pid;
5591 u32 tid;
cdd6c482 5592 } event_id;
8d1b2d93
PZ
5593};
5594
67516844
JO
5595static int perf_event_comm_match(struct perf_event *event)
5596{
5597 return event->attr.comm;
5598}
5599
cdd6c482 5600static void perf_event_comm_output(struct perf_event *event,
52d857a8 5601 void *data)
8d1b2d93 5602{
52d857a8 5603 struct perf_comm_event *comm_event = data;
8d1b2d93 5604 struct perf_output_handle handle;
c980d109 5605 struct perf_sample_data sample;
cdd6c482 5606 int size = comm_event->event_id.header.size;
c980d109
ACM
5607 int ret;
5608
67516844
JO
5609 if (!perf_event_comm_match(event))
5610 return;
5611
c980d109
ACM
5612 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5613 ret = perf_output_begin(&handle, event,
a7ac67ea 5614 comm_event->event_id.header.size);
8d1b2d93
PZ
5615
5616 if (ret)
c980d109 5617 goto out;
8d1b2d93 5618
cdd6c482
IM
5619 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5620 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5621
cdd6c482 5622 perf_output_put(&handle, comm_event->event_id);
76369139 5623 __output_copy(&handle, comm_event->comm,
8d1b2d93 5624 comm_event->comm_size);
c980d109
ACM
5625
5626 perf_event__output_id_sample(event, &handle, &sample);
5627
8d1b2d93 5628 perf_output_end(&handle);
c980d109
ACM
5629out:
5630 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5631}
5632
cdd6c482 5633static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5634{
413ee3b4 5635 char comm[TASK_COMM_LEN];
8d1b2d93 5636 unsigned int size;
8d1b2d93 5637
413ee3b4 5638 memset(comm, 0, sizeof(comm));
96b02d78 5639 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5640 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5641
5642 comm_event->comm = comm;
5643 comm_event->comm_size = size;
5644
cdd6c482 5645 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5646
67516844 5647 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5648 comm_event,
5649 NULL);
8d1b2d93
PZ
5650}
5651
82b89778 5652void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5653{
9ee318a7
PZ
5654 struct perf_comm_event comm_event;
5655
cdd6c482 5656 if (!atomic_read(&nr_comm_events))
9ee318a7 5657 return;
a63eaf34 5658
9ee318a7 5659 comm_event = (struct perf_comm_event){
8d1b2d93 5660 .task = task,
573402db
PZ
5661 /* .comm */
5662 /* .comm_size */
cdd6c482 5663 .event_id = {
573402db 5664 .header = {
cdd6c482 5665 .type = PERF_RECORD_COMM,
82b89778 5666 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5667 /* .size */
5668 },
5669 /* .pid */
5670 /* .tid */
8d1b2d93
PZ
5671 },
5672 };
5673
cdd6c482 5674 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5675}
5676
0a4a9391
PZ
5677/*
5678 * mmap tracking
5679 */
5680
5681struct perf_mmap_event {
089dd79d
PZ
5682 struct vm_area_struct *vma;
5683
5684 const char *file_name;
5685 int file_size;
13d7a241
SE
5686 int maj, min;
5687 u64 ino;
5688 u64 ino_generation;
f972eb63 5689 u32 prot, flags;
0a4a9391
PZ
5690
5691 struct {
5692 struct perf_event_header header;
5693
5694 u32 pid;
5695 u32 tid;
5696 u64 start;
5697 u64 len;
5698 u64 pgoff;
cdd6c482 5699 } event_id;
0a4a9391
PZ
5700};
5701
67516844
JO
5702static int perf_event_mmap_match(struct perf_event *event,
5703 void *data)
5704{
5705 struct perf_mmap_event *mmap_event = data;
5706 struct vm_area_struct *vma = mmap_event->vma;
5707 int executable = vma->vm_flags & VM_EXEC;
5708
5709 return (!executable && event->attr.mmap_data) ||
13d7a241 5710 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5711}
5712
cdd6c482 5713static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5714 void *data)
0a4a9391 5715{
52d857a8 5716 struct perf_mmap_event *mmap_event = data;
0a4a9391 5717 struct perf_output_handle handle;
c980d109 5718 struct perf_sample_data sample;
cdd6c482 5719 int size = mmap_event->event_id.header.size;
c980d109 5720 int ret;
0a4a9391 5721
67516844
JO
5722 if (!perf_event_mmap_match(event, data))
5723 return;
5724
13d7a241
SE
5725 if (event->attr.mmap2) {
5726 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5727 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5728 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5729 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5730 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5731 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5732 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5733 }
5734
c980d109
ACM
5735 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5736 ret = perf_output_begin(&handle, event,
a7ac67ea 5737 mmap_event->event_id.header.size);
0a4a9391 5738 if (ret)
c980d109 5739 goto out;
0a4a9391 5740
cdd6c482
IM
5741 mmap_event->event_id.pid = perf_event_pid(event, current);
5742 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5743
cdd6c482 5744 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5745
5746 if (event->attr.mmap2) {
5747 perf_output_put(&handle, mmap_event->maj);
5748 perf_output_put(&handle, mmap_event->min);
5749 perf_output_put(&handle, mmap_event->ino);
5750 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5751 perf_output_put(&handle, mmap_event->prot);
5752 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5753 }
5754
76369139 5755 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5756 mmap_event->file_size);
c980d109
ACM
5757
5758 perf_event__output_id_sample(event, &handle, &sample);
5759
78d613eb 5760 perf_output_end(&handle);
c980d109
ACM
5761out:
5762 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5763}
5764
cdd6c482 5765static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5766{
089dd79d
PZ
5767 struct vm_area_struct *vma = mmap_event->vma;
5768 struct file *file = vma->vm_file;
13d7a241
SE
5769 int maj = 0, min = 0;
5770 u64 ino = 0, gen = 0;
f972eb63 5771 u32 prot = 0, flags = 0;
0a4a9391
PZ
5772 unsigned int size;
5773 char tmp[16];
5774 char *buf = NULL;
2c42cfbf 5775 char *name;
413ee3b4 5776
0a4a9391 5777 if (file) {
13d7a241
SE
5778 struct inode *inode;
5779 dev_t dev;
3ea2f2b9 5780
2c42cfbf 5781 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5782 if (!buf) {
c7e548b4
ON
5783 name = "//enomem";
5784 goto cpy_name;
0a4a9391 5785 }
413ee3b4 5786 /*
3ea2f2b9 5787 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5788 * need to add enough zero bytes after the string to handle
5789 * the 64bit alignment we do later.
5790 */
3ea2f2b9 5791 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5792 if (IS_ERR(name)) {
c7e548b4
ON
5793 name = "//toolong";
5794 goto cpy_name;
0a4a9391 5795 }
13d7a241
SE
5796 inode = file_inode(vma->vm_file);
5797 dev = inode->i_sb->s_dev;
5798 ino = inode->i_ino;
5799 gen = inode->i_generation;
5800 maj = MAJOR(dev);
5801 min = MINOR(dev);
f972eb63
PZ
5802
5803 if (vma->vm_flags & VM_READ)
5804 prot |= PROT_READ;
5805 if (vma->vm_flags & VM_WRITE)
5806 prot |= PROT_WRITE;
5807 if (vma->vm_flags & VM_EXEC)
5808 prot |= PROT_EXEC;
5809
5810 if (vma->vm_flags & VM_MAYSHARE)
5811 flags = MAP_SHARED;
5812 else
5813 flags = MAP_PRIVATE;
5814
5815 if (vma->vm_flags & VM_DENYWRITE)
5816 flags |= MAP_DENYWRITE;
5817 if (vma->vm_flags & VM_MAYEXEC)
5818 flags |= MAP_EXECUTABLE;
5819 if (vma->vm_flags & VM_LOCKED)
5820 flags |= MAP_LOCKED;
5821 if (vma->vm_flags & VM_HUGETLB)
5822 flags |= MAP_HUGETLB;
5823
c7e548b4 5824 goto got_name;
0a4a9391 5825 } else {
fbe26abe
JO
5826 if (vma->vm_ops && vma->vm_ops->name) {
5827 name = (char *) vma->vm_ops->name(vma);
5828 if (name)
5829 goto cpy_name;
5830 }
5831
2c42cfbf 5832 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5833 if (name)
5834 goto cpy_name;
089dd79d 5835
32c5fb7e 5836 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5837 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5838 name = "[heap]";
5839 goto cpy_name;
32c5fb7e
ON
5840 }
5841 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5842 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5843 name = "[stack]";
5844 goto cpy_name;
089dd79d
PZ
5845 }
5846
c7e548b4
ON
5847 name = "//anon";
5848 goto cpy_name;
0a4a9391
PZ
5849 }
5850
c7e548b4
ON
5851cpy_name:
5852 strlcpy(tmp, name, sizeof(tmp));
5853 name = tmp;
0a4a9391 5854got_name:
2c42cfbf
PZ
5855 /*
5856 * Since our buffer works in 8 byte units we need to align our string
5857 * size to a multiple of 8. However, we must guarantee the tail end is
5858 * zero'd out to avoid leaking random bits to userspace.
5859 */
5860 size = strlen(name)+1;
5861 while (!IS_ALIGNED(size, sizeof(u64)))
5862 name[size++] = '\0';
0a4a9391
PZ
5863
5864 mmap_event->file_name = name;
5865 mmap_event->file_size = size;
13d7a241
SE
5866 mmap_event->maj = maj;
5867 mmap_event->min = min;
5868 mmap_event->ino = ino;
5869 mmap_event->ino_generation = gen;
f972eb63
PZ
5870 mmap_event->prot = prot;
5871 mmap_event->flags = flags;
0a4a9391 5872
2fe85427
SE
5873 if (!(vma->vm_flags & VM_EXEC))
5874 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5875
cdd6c482 5876 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5877
67516844 5878 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5879 mmap_event,
5880 NULL);
665c2142 5881
0a4a9391
PZ
5882 kfree(buf);
5883}
5884
3af9e859 5885void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5886{
9ee318a7
PZ
5887 struct perf_mmap_event mmap_event;
5888
cdd6c482 5889 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5890 return;
5891
5892 mmap_event = (struct perf_mmap_event){
089dd79d 5893 .vma = vma,
573402db
PZ
5894 /* .file_name */
5895 /* .file_size */
cdd6c482 5896 .event_id = {
573402db 5897 .header = {
cdd6c482 5898 .type = PERF_RECORD_MMAP,
39447b38 5899 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5900 /* .size */
5901 },
5902 /* .pid */
5903 /* .tid */
089dd79d
PZ
5904 .start = vma->vm_start,
5905 .len = vma->vm_end - vma->vm_start,
3a0304e9 5906 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5907 },
13d7a241
SE
5908 /* .maj (attr_mmap2 only) */
5909 /* .min (attr_mmap2 only) */
5910 /* .ino (attr_mmap2 only) */
5911 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
5912 /* .prot (attr_mmap2 only) */
5913 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
5914 };
5915
cdd6c482 5916 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5917}
5918
68db7e98
AS
5919void perf_event_aux_event(struct perf_event *event, unsigned long head,
5920 unsigned long size, u64 flags)
5921{
5922 struct perf_output_handle handle;
5923 struct perf_sample_data sample;
5924 struct perf_aux_event {
5925 struct perf_event_header header;
5926 u64 offset;
5927 u64 size;
5928 u64 flags;
5929 } rec = {
5930 .header = {
5931 .type = PERF_RECORD_AUX,
5932 .misc = 0,
5933 .size = sizeof(rec),
5934 },
5935 .offset = head,
5936 .size = size,
5937 .flags = flags,
5938 };
5939 int ret;
5940
5941 perf_event_header__init_id(&rec.header, &sample, event);
5942 ret = perf_output_begin(&handle, event, rec.header.size);
5943
5944 if (ret)
5945 return;
5946
5947 perf_output_put(&handle, rec);
5948 perf_event__output_id_sample(event, &handle, &sample);
5949
5950 perf_output_end(&handle);
5951}
5952
a78ac325
PZ
5953/*
5954 * IRQ throttle logging
5955 */
5956
cdd6c482 5957static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5958{
5959 struct perf_output_handle handle;
c980d109 5960 struct perf_sample_data sample;
a78ac325
PZ
5961 int ret;
5962
5963 struct {
5964 struct perf_event_header header;
5965 u64 time;
cca3f454 5966 u64 id;
7f453c24 5967 u64 stream_id;
a78ac325
PZ
5968 } throttle_event = {
5969 .header = {
cdd6c482 5970 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5971 .misc = 0,
5972 .size = sizeof(throttle_event),
5973 },
34f43927 5974 .time = perf_event_clock(event),
cdd6c482
IM
5975 .id = primary_event_id(event),
5976 .stream_id = event->id,
a78ac325
PZ
5977 };
5978
966ee4d6 5979 if (enable)
cdd6c482 5980 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5981
c980d109
ACM
5982 perf_event_header__init_id(&throttle_event.header, &sample, event);
5983
5984 ret = perf_output_begin(&handle, event,
a7ac67ea 5985 throttle_event.header.size);
a78ac325
PZ
5986 if (ret)
5987 return;
5988
5989 perf_output_put(&handle, throttle_event);
c980d109 5990 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5991 perf_output_end(&handle);
5992}
5993
f6c7d5fe 5994/*
cdd6c482 5995 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5996 */
5997
a8b0ca17 5998static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5999 int throttle, struct perf_sample_data *data,
6000 struct pt_regs *regs)
f6c7d5fe 6001{
cdd6c482
IM
6002 int events = atomic_read(&event->event_limit);
6003 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6004 u64 seq;
79f14641
PZ
6005 int ret = 0;
6006
96398826
PZ
6007 /*
6008 * Non-sampling counters might still use the PMI to fold short
6009 * hardware counters, ignore those.
6010 */
6011 if (unlikely(!is_sampling_event(event)))
6012 return 0;
6013
e050e3f0
SE
6014 seq = __this_cpu_read(perf_throttled_seq);
6015 if (seq != hwc->interrupts_seq) {
6016 hwc->interrupts_seq = seq;
6017 hwc->interrupts = 1;
6018 } else {
6019 hwc->interrupts++;
6020 if (unlikely(throttle
6021 && hwc->interrupts >= max_samples_per_tick)) {
6022 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6023 hwc->interrupts = MAX_INTERRUPTS;
6024 perf_log_throttle(event, 0);
d84153d6 6025 tick_nohz_full_kick();
a78ac325
PZ
6026 ret = 1;
6027 }
e050e3f0 6028 }
60db5e09 6029
cdd6c482 6030 if (event->attr.freq) {
def0a9b2 6031 u64 now = perf_clock();
abd50713 6032 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6033
abd50713 6034 hwc->freq_time_stamp = now;
bd2b5b12 6035
abd50713 6036 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6037 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6038 }
6039
2023b359
PZ
6040 /*
6041 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6042 * events
2023b359
PZ
6043 */
6044
cdd6c482
IM
6045 event->pending_kill = POLL_IN;
6046 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6047 ret = 1;
cdd6c482 6048 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6049 event->pending_disable = 1;
6050 irq_work_queue(&event->pending);
79f14641
PZ
6051 }
6052
453f19ee 6053 if (event->overflow_handler)
a8b0ca17 6054 event->overflow_handler(event, data, regs);
453f19ee 6055 else
a8b0ca17 6056 perf_event_output(event, data, regs);
453f19ee 6057
f506b3dc 6058 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
6059 event->pending_wakeup = 1;
6060 irq_work_queue(&event->pending);
f506b3dc
PZ
6061 }
6062
79f14641 6063 return ret;
f6c7d5fe
PZ
6064}
6065
a8b0ca17 6066int perf_event_overflow(struct perf_event *event,
5622f295
MM
6067 struct perf_sample_data *data,
6068 struct pt_regs *regs)
850bc73f 6069{
a8b0ca17 6070 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6071}
6072
15dbf27c 6073/*
cdd6c482 6074 * Generic software event infrastructure
15dbf27c
PZ
6075 */
6076
b28ab83c
PZ
6077struct swevent_htable {
6078 struct swevent_hlist *swevent_hlist;
6079 struct mutex hlist_mutex;
6080 int hlist_refcount;
6081
6082 /* Recursion avoidance in each contexts */
6083 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
6084
6085 /* Keeps track of cpu being initialized/exited */
6086 bool online;
b28ab83c
PZ
6087};
6088
6089static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6090
7b4b6658 6091/*
cdd6c482
IM
6092 * We directly increment event->count and keep a second value in
6093 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6094 * is kept in the range [-sample_period, 0] so that we can use the
6095 * sign as trigger.
6096 */
6097
ab573844 6098u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6099{
cdd6c482 6100 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6101 u64 period = hwc->last_period;
6102 u64 nr, offset;
6103 s64 old, val;
6104
6105 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6106
6107again:
e7850595 6108 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6109 if (val < 0)
6110 return 0;
15dbf27c 6111
7b4b6658
PZ
6112 nr = div64_u64(period + val, period);
6113 offset = nr * period;
6114 val -= offset;
e7850595 6115 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6116 goto again;
15dbf27c 6117
7b4b6658 6118 return nr;
15dbf27c
PZ
6119}
6120
0cff784a 6121static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6122 struct perf_sample_data *data,
5622f295 6123 struct pt_regs *regs)
15dbf27c 6124{
cdd6c482 6125 struct hw_perf_event *hwc = &event->hw;
850bc73f 6126 int throttle = 0;
15dbf27c 6127
0cff784a
PZ
6128 if (!overflow)
6129 overflow = perf_swevent_set_period(event);
15dbf27c 6130
7b4b6658
PZ
6131 if (hwc->interrupts == MAX_INTERRUPTS)
6132 return;
15dbf27c 6133
7b4b6658 6134 for (; overflow; overflow--) {
a8b0ca17 6135 if (__perf_event_overflow(event, throttle,
5622f295 6136 data, regs)) {
7b4b6658
PZ
6137 /*
6138 * We inhibit the overflow from happening when
6139 * hwc->interrupts == MAX_INTERRUPTS.
6140 */
6141 break;
6142 }
cf450a73 6143 throttle = 1;
7b4b6658 6144 }
15dbf27c
PZ
6145}
6146
a4eaf7f1 6147static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6148 struct perf_sample_data *data,
5622f295 6149 struct pt_regs *regs)
7b4b6658 6150{
cdd6c482 6151 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6152
e7850595 6153 local64_add(nr, &event->count);
d6d020e9 6154
0cff784a
PZ
6155 if (!regs)
6156 return;
6157
6c7e550f 6158 if (!is_sampling_event(event))
7b4b6658 6159 return;
d6d020e9 6160
5d81e5cf
AV
6161 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6162 data->period = nr;
6163 return perf_swevent_overflow(event, 1, data, regs);
6164 } else
6165 data->period = event->hw.last_period;
6166
0cff784a 6167 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6168 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6169
e7850595 6170 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6171 return;
df1a132b 6172
a8b0ca17 6173 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6174}
6175
f5ffe02e
FW
6176static int perf_exclude_event(struct perf_event *event,
6177 struct pt_regs *regs)
6178{
a4eaf7f1 6179 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6180 return 1;
a4eaf7f1 6181
f5ffe02e
FW
6182 if (regs) {
6183 if (event->attr.exclude_user && user_mode(regs))
6184 return 1;
6185
6186 if (event->attr.exclude_kernel && !user_mode(regs))
6187 return 1;
6188 }
6189
6190 return 0;
6191}
6192
cdd6c482 6193static int perf_swevent_match(struct perf_event *event,
1c432d89 6194 enum perf_type_id type,
6fb2915d
LZ
6195 u32 event_id,
6196 struct perf_sample_data *data,
6197 struct pt_regs *regs)
15dbf27c 6198{
cdd6c482 6199 if (event->attr.type != type)
a21ca2ca 6200 return 0;
f5ffe02e 6201
cdd6c482 6202 if (event->attr.config != event_id)
15dbf27c
PZ
6203 return 0;
6204
f5ffe02e
FW
6205 if (perf_exclude_event(event, regs))
6206 return 0;
15dbf27c
PZ
6207
6208 return 1;
6209}
6210
76e1d904
FW
6211static inline u64 swevent_hash(u64 type, u32 event_id)
6212{
6213 u64 val = event_id | (type << 32);
6214
6215 return hash_64(val, SWEVENT_HLIST_BITS);
6216}
6217
49f135ed
FW
6218static inline struct hlist_head *
6219__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6220{
49f135ed
FW
6221 u64 hash = swevent_hash(type, event_id);
6222
6223 return &hlist->heads[hash];
6224}
76e1d904 6225
49f135ed
FW
6226/* For the read side: events when they trigger */
6227static inline struct hlist_head *
b28ab83c 6228find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6229{
6230 struct swevent_hlist *hlist;
76e1d904 6231
b28ab83c 6232 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6233 if (!hlist)
6234 return NULL;
6235
49f135ed
FW
6236 return __find_swevent_head(hlist, type, event_id);
6237}
6238
6239/* For the event head insertion and removal in the hlist */
6240static inline struct hlist_head *
b28ab83c 6241find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6242{
6243 struct swevent_hlist *hlist;
6244 u32 event_id = event->attr.config;
6245 u64 type = event->attr.type;
6246
6247 /*
6248 * Event scheduling is always serialized against hlist allocation
6249 * and release. Which makes the protected version suitable here.
6250 * The context lock guarantees that.
6251 */
b28ab83c 6252 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6253 lockdep_is_held(&event->ctx->lock));
6254 if (!hlist)
6255 return NULL;
6256
6257 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6258}
6259
6260static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6261 u64 nr,
76e1d904
FW
6262 struct perf_sample_data *data,
6263 struct pt_regs *regs)
15dbf27c 6264{
4a32fea9 6265 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6266 struct perf_event *event;
76e1d904 6267 struct hlist_head *head;
15dbf27c 6268
76e1d904 6269 rcu_read_lock();
b28ab83c 6270 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6271 if (!head)
6272 goto end;
6273
b67bfe0d 6274 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6275 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6276 perf_swevent_event(event, nr, data, regs);
15dbf27c 6277 }
76e1d904
FW
6278end:
6279 rcu_read_unlock();
15dbf27c
PZ
6280}
6281
86038c5e
PZI
6282DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6283
4ed7c92d 6284int perf_swevent_get_recursion_context(void)
96f6d444 6285{
4a32fea9 6286 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6287
b28ab83c 6288 return get_recursion_context(swhash->recursion);
96f6d444 6289}
645e8cc0 6290EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6291
fa9f90be 6292inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6293{
4a32fea9 6294 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6295
b28ab83c 6296 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6297}
15dbf27c 6298
86038c5e 6299void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6300{
a4234bfc 6301 struct perf_sample_data data;
4ed7c92d 6302
86038c5e 6303 if (WARN_ON_ONCE(!regs))
4ed7c92d 6304 return;
a4234bfc 6305
fd0d000b 6306 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6307 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6308}
6309
6310void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6311{
6312 int rctx;
6313
6314 preempt_disable_notrace();
6315 rctx = perf_swevent_get_recursion_context();
6316 if (unlikely(rctx < 0))
6317 goto fail;
6318
6319 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6320
6321 perf_swevent_put_recursion_context(rctx);
86038c5e 6322fail:
1c024eca 6323 preempt_enable_notrace();
b8e83514
PZ
6324}
6325
cdd6c482 6326static void perf_swevent_read(struct perf_event *event)
15dbf27c 6327{
15dbf27c
PZ
6328}
6329
a4eaf7f1 6330static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6331{
4a32fea9 6332 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6333 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6334 struct hlist_head *head;
6335
6c7e550f 6336 if (is_sampling_event(event)) {
7b4b6658 6337 hwc->last_period = hwc->sample_period;
cdd6c482 6338 perf_swevent_set_period(event);
7b4b6658 6339 }
76e1d904 6340
a4eaf7f1
PZ
6341 hwc->state = !(flags & PERF_EF_START);
6342
b28ab83c 6343 head = find_swevent_head(swhash, event);
39af6b16
JO
6344 if (!head) {
6345 /*
6346 * We can race with cpu hotplug code. Do not
6347 * WARN if the cpu just got unplugged.
6348 */
6349 WARN_ON_ONCE(swhash->online);
76e1d904 6350 return -EINVAL;
39af6b16 6351 }
76e1d904
FW
6352
6353 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6354 perf_event_update_userpage(event);
76e1d904 6355
15dbf27c
PZ
6356 return 0;
6357}
6358
a4eaf7f1 6359static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6360{
76e1d904 6361 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6362}
6363
a4eaf7f1 6364static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6365{
a4eaf7f1 6366 event->hw.state = 0;
d6d020e9 6367}
aa9c4c0f 6368
a4eaf7f1 6369static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6370{
a4eaf7f1 6371 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6372}
6373
49f135ed
FW
6374/* Deref the hlist from the update side */
6375static inline struct swevent_hlist *
b28ab83c 6376swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6377{
b28ab83c
PZ
6378 return rcu_dereference_protected(swhash->swevent_hlist,
6379 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6380}
6381
b28ab83c 6382static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6383{
b28ab83c 6384 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6385
49f135ed 6386 if (!hlist)
76e1d904
FW
6387 return;
6388
70691d4a 6389 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6390 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6391}
6392
6393static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6394{
b28ab83c 6395 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6396
b28ab83c 6397 mutex_lock(&swhash->hlist_mutex);
76e1d904 6398
b28ab83c
PZ
6399 if (!--swhash->hlist_refcount)
6400 swevent_hlist_release(swhash);
76e1d904 6401
b28ab83c 6402 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6403}
6404
6405static void swevent_hlist_put(struct perf_event *event)
6406{
6407 int cpu;
6408
76e1d904
FW
6409 for_each_possible_cpu(cpu)
6410 swevent_hlist_put_cpu(event, cpu);
6411}
6412
6413static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6414{
b28ab83c 6415 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6416 int err = 0;
6417
b28ab83c 6418 mutex_lock(&swhash->hlist_mutex);
76e1d904 6419
b28ab83c 6420 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6421 struct swevent_hlist *hlist;
6422
6423 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6424 if (!hlist) {
6425 err = -ENOMEM;
6426 goto exit;
6427 }
b28ab83c 6428 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6429 }
b28ab83c 6430 swhash->hlist_refcount++;
9ed6060d 6431exit:
b28ab83c 6432 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6433
6434 return err;
6435}
6436
6437static int swevent_hlist_get(struct perf_event *event)
6438{
6439 int err;
6440 int cpu, failed_cpu;
6441
76e1d904
FW
6442 get_online_cpus();
6443 for_each_possible_cpu(cpu) {
6444 err = swevent_hlist_get_cpu(event, cpu);
6445 if (err) {
6446 failed_cpu = cpu;
6447 goto fail;
6448 }
6449 }
6450 put_online_cpus();
6451
6452 return 0;
9ed6060d 6453fail:
76e1d904
FW
6454 for_each_possible_cpu(cpu) {
6455 if (cpu == failed_cpu)
6456 break;
6457 swevent_hlist_put_cpu(event, cpu);
6458 }
6459
6460 put_online_cpus();
6461 return err;
6462}
6463
c5905afb 6464struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6465
b0a873eb
PZ
6466static void sw_perf_event_destroy(struct perf_event *event)
6467{
6468 u64 event_id = event->attr.config;
95476b64 6469
b0a873eb
PZ
6470 WARN_ON(event->parent);
6471
c5905afb 6472 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6473 swevent_hlist_put(event);
6474}
6475
6476static int perf_swevent_init(struct perf_event *event)
6477{
8176cced 6478 u64 event_id = event->attr.config;
b0a873eb
PZ
6479
6480 if (event->attr.type != PERF_TYPE_SOFTWARE)
6481 return -ENOENT;
6482
2481c5fa
SE
6483 /*
6484 * no branch sampling for software events
6485 */
6486 if (has_branch_stack(event))
6487 return -EOPNOTSUPP;
6488
b0a873eb
PZ
6489 switch (event_id) {
6490 case PERF_COUNT_SW_CPU_CLOCK:
6491 case PERF_COUNT_SW_TASK_CLOCK:
6492 return -ENOENT;
6493
6494 default:
6495 break;
6496 }
6497
ce677831 6498 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6499 return -ENOENT;
6500
6501 if (!event->parent) {
6502 int err;
6503
6504 err = swevent_hlist_get(event);
6505 if (err)
6506 return err;
6507
c5905afb 6508 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6509 event->destroy = sw_perf_event_destroy;
6510 }
6511
6512 return 0;
6513}
6514
6515static struct pmu perf_swevent = {
89a1e187 6516 .task_ctx_nr = perf_sw_context,
95476b64 6517
34f43927
PZ
6518 .capabilities = PERF_PMU_CAP_NO_NMI,
6519
b0a873eb 6520 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6521 .add = perf_swevent_add,
6522 .del = perf_swevent_del,
6523 .start = perf_swevent_start,
6524 .stop = perf_swevent_stop,
1c024eca 6525 .read = perf_swevent_read,
1c024eca
PZ
6526};
6527
b0a873eb
PZ
6528#ifdef CONFIG_EVENT_TRACING
6529
1c024eca
PZ
6530static int perf_tp_filter_match(struct perf_event *event,
6531 struct perf_sample_data *data)
6532{
6533 void *record = data->raw->data;
6534
6535 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6536 return 1;
6537 return 0;
6538}
6539
6540static int perf_tp_event_match(struct perf_event *event,
6541 struct perf_sample_data *data,
6542 struct pt_regs *regs)
6543{
a0f7d0f7
FW
6544 if (event->hw.state & PERF_HES_STOPPED)
6545 return 0;
580d607c
PZ
6546 /*
6547 * All tracepoints are from kernel-space.
6548 */
6549 if (event->attr.exclude_kernel)
1c024eca
PZ
6550 return 0;
6551
6552 if (!perf_tp_filter_match(event, data))
6553 return 0;
6554
6555 return 1;
6556}
6557
6558void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6559 struct pt_regs *regs, struct hlist_head *head, int rctx,
6560 struct task_struct *task)
95476b64
FW
6561{
6562 struct perf_sample_data data;
1c024eca 6563 struct perf_event *event;
1c024eca 6564
95476b64
FW
6565 struct perf_raw_record raw = {
6566 .size = entry_size,
6567 .data = record,
6568 };
6569
fd0d000b 6570 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6571 data.raw = &raw;
6572
b67bfe0d 6573 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6574 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6575 perf_swevent_event(event, count, &data, regs);
4f41c013 6576 }
ecc55f84 6577
e6dab5ff
AV
6578 /*
6579 * If we got specified a target task, also iterate its context and
6580 * deliver this event there too.
6581 */
6582 if (task && task != current) {
6583 struct perf_event_context *ctx;
6584 struct trace_entry *entry = record;
6585
6586 rcu_read_lock();
6587 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6588 if (!ctx)
6589 goto unlock;
6590
6591 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6592 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6593 continue;
6594 if (event->attr.config != entry->type)
6595 continue;
6596 if (perf_tp_event_match(event, &data, regs))
6597 perf_swevent_event(event, count, &data, regs);
6598 }
6599unlock:
6600 rcu_read_unlock();
6601 }
6602
ecc55f84 6603 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6604}
6605EXPORT_SYMBOL_GPL(perf_tp_event);
6606
cdd6c482 6607static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6608{
1c024eca 6609 perf_trace_destroy(event);
e077df4f
PZ
6610}
6611
b0a873eb 6612static int perf_tp_event_init(struct perf_event *event)
e077df4f 6613{
76e1d904
FW
6614 int err;
6615
b0a873eb
PZ
6616 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6617 return -ENOENT;
6618
2481c5fa
SE
6619 /*
6620 * no branch sampling for tracepoint events
6621 */
6622 if (has_branch_stack(event))
6623 return -EOPNOTSUPP;
6624
1c024eca
PZ
6625 err = perf_trace_init(event);
6626 if (err)
b0a873eb 6627 return err;
e077df4f 6628
cdd6c482 6629 event->destroy = tp_perf_event_destroy;
e077df4f 6630
b0a873eb
PZ
6631 return 0;
6632}
6633
6634static struct pmu perf_tracepoint = {
89a1e187
PZ
6635 .task_ctx_nr = perf_sw_context,
6636
b0a873eb 6637 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6638 .add = perf_trace_add,
6639 .del = perf_trace_del,
6640 .start = perf_swevent_start,
6641 .stop = perf_swevent_stop,
b0a873eb 6642 .read = perf_swevent_read,
b0a873eb
PZ
6643};
6644
6645static inline void perf_tp_register(void)
6646{
2e80a82a 6647 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6648}
6fb2915d
LZ
6649
6650static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6651{
6652 char *filter_str;
6653 int ret;
6654
6655 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6656 return -EINVAL;
6657
6658 filter_str = strndup_user(arg, PAGE_SIZE);
6659 if (IS_ERR(filter_str))
6660 return PTR_ERR(filter_str);
6661
6662 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6663
6664 kfree(filter_str);
6665 return ret;
6666}
6667
6668static void perf_event_free_filter(struct perf_event *event)
6669{
6670 ftrace_profile_free_filter(event);
6671}
6672
2541517c
AS
6673static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6674{
6675 struct bpf_prog *prog;
6676
6677 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6678 return -EINVAL;
6679
6680 if (event->tp_event->prog)
6681 return -EEXIST;
6682
6683 if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
6684 /* bpf programs can only be attached to kprobes */
6685 return -EINVAL;
6686
6687 prog = bpf_prog_get(prog_fd);
6688 if (IS_ERR(prog))
6689 return PTR_ERR(prog);
6690
6691 if (prog->aux->prog_type != BPF_PROG_TYPE_KPROBE) {
6692 /* valid fd, but invalid bpf program type */
6693 bpf_prog_put(prog);
6694 return -EINVAL;
6695 }
6696
6697 event->tp_event->prog = prog;
6698
6699 return 0;
6700}
6701
6702static void perf_event_free_bpf_prog(struct perf_event *event)
6703{
6704 struct bpf_prog *prog;
6705
6706 if (!event->tp_event)
6707 return;
6708
6709 prog = event->tp_event->prog;
6710 if (prog) {
6711 event->tp_event->prog = NULL;
6712 bpf_prog_put(prog);
6713 }
6714}
6715
e077df4f 6716#else
6fb2915d 6717
b0a873eb 6718static inline void perf_tp_register(void)
e077df4f 6719{
e077df4f 6720}
6fb2915d
LZ
6721
6722static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6723{
6724 return -ENOENT;
6725}
6726
6727static void perf_event_free_filter(struct perf_event *event)
6728{
6729}
6730
2541517c
AS
6731static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6732{
6733 return -ENOENT;
6734}
6735
6736static void perf_event_free_bpf_prog(struct perf_event *event)
6737{
6738}
07b139c8 6739#endif /* CONFIG_EVENT_TRACING */
e077df4f 6740
24f1e32c 6741#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6742void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6743{
f5ffe02e
FW
6744 struct perf_sample_data sample;
6745 struct pt_regs *regs = data;
6746
fd0d000b 6747 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6748
a4eaf7f1 6749 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6750 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6751}
6752#endif
6753
b0a873eb
PZ
6754/*
6755 * hrtimer based swevent callback
6756 */
f29ac756 6757
b0a873eb 6758static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6759{
b0a873eb
PZ
6760 enum hrtimer_restart ret = HRTIMER_RESTART;
6761 struct perf_sample_data data;
6762 struct pt_regs *regs;
6763 struct perf_event *event;
6764 u64 period;
f29ac756 6765
b0a873eb 6766 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6767
6768 if (event->state != PERF_EVENT_STATE_ACTIVE)
6769 return HRTIMER_NORESTART;
6770
b0a873eb 6771 event->pmu->read(event);
f344011c 6772
fd0d000b 6773 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6774 regs = get_irq_regs();
6775
6776 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6777 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6778 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6779 ret = HRTIMER_NORESTART;
6780 }
24f1e32c 6781
b0a873eb
PZ
6782 period = max_t(u64, 10000, event->hw.sample_period);
6783 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6784
b0a873eb 6785 return ret;
f29ac756
PZ
6786}
6787
b0a873eb 6788static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6789{
b0a873eb 6790 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6791 s64 period;
6792
6793 if (!is_sampling_event(event))
6794 return;
f5ffe02e 6795
5d508e82
FBH
6796 period = local64_read(&hwc->period_left);
6797 if (period) {
6798 if (period < 0)
6799 period = 10000;
fa407f35 6800
5d508e82
FBH
6801 local64_set(&hwc->period_left, 0);
6802 } else {
6803 period = max_t(u64, 10000, hwc->sample_period);
6804 }
6805 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6806 ns_to_ktime(period), 0,
b5ab4cd5 6807 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6808}
b0a873eb
PZ
6809
6810static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6811{
b0a873eb
PZ
6812 struct hw_perf_event *hwc = &event->hw;
6813
6c7e550f 6814 if (is_sampling_event(event)) {
b0a873eb 6815 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6816 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6817
6818 hrtimer_cancel(&hwc->hrtimer);
6819 }
24f1e32c
FW
6820}
6821
ba3dd36c
PZ
6822static void perf_swevent_init_hrtimer(struct perf_event *event)
6823{
6824 struct hw_perf_event *hwc = &event->hw;
6825
6826 if (!is_sampling_event(event))
6827 return;
6828
6829 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6830 hwc->hrtimer.function = perf_swevent_hrtimer;
6831
6832 /*
6833 * Since hrtimers have a fixed rate, we can do a static freq->period
6834 * mapping and avoid the whole period adjust feedback stuff.
6835 */
6836 if (event->attr.freq) {
6837 long freq = event->attr.sample_freq;
6838
6839 event->attr.sample_period = NSEC_PER_SEC / freq;
6840 hwc->sample_period = event->attr.sample_period;
6841 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6842 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6843 event->attr.freq = 0;
6844 }
6845}
6846
b0a873eb
PZ
6847/*
6848 * Software event: cpu wall time clock
6849 */
6850
6851static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6852{
b0a873eb
PZ
6853 s64 prev;
6854 u64 now;
6855
a4eaf7f1 6856 now = local_clock();
b0a873eb
PZ
6857 prev = local64_xchg(&event->hw.prev_count, now);
6858 local64_add(now - prev, &event->count);
24f1e32c 6859}
24f1e32c 6860
a4eaf7f1 6861static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6862{
a4eaf7f1 6863 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6864 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6865}
6866
a4eaf7f1 6867static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6868{
b0a873eb
PZ
6869 perf_swevent_cancel_hrtimer(event);
6870 cpu_clock_event_update(event);
6871}
f29ac756 6872
a4eaf7f1
PZ
6873static int cpu_clock_event_add(struct perf_event *event, int flags)
6874{
6875 if (flags & PERF_EF_START)
6876 cpu_clock_event_start(event, flags);
6a694a60 6877 perf_event_update_userpage(event);
a4eaf7f1
PZ
6878
6879 return 0;
6880}
6881
6882static void cpu_clock_event_del(struct perf_event *event, int flags)
6883{
6884 cpu_clock_event_stop(event, flags);
6885}
6886
b0a873eb
PZ
6887static void cpu_clock_event_read(struct perf_event *event)
6888{
6889 cpu_clock_event_update(event);
6890}
f344011c 6891
b0a873eb
PZ
6892static int cpu_clock_event_init(struct perf_event *event)
6893{
6894 if (event->attr.type != PERF_TYPE_SOFTWARE)
6895 return -ENOENT;
6896
6897 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6898 return -ENOENT;
6899
2481c5fa
SE
6900 /*
6901 * no branch sampling for software events
6902 */
6903 if (has_branch_stack(event))
6904 return -EOPNOTSUPP;
6905
ba3dd36c
PZ
6906 perf_swevent_init_hrtimer(event);
6907
b0a873eb 6908 return 0;
f29ac756
PZ
6909}
6910
b0a873eb 6911static struct pmu perf_cpu_clock = {
89a1e187
PZ
6912 .task_ctx_nr = perf_sw_context,
6913
34f43927
PZ
6914 .capabilities = PERF_PMU_CAP_NO_NMI,
6915
b0a873eb 6916 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6917 .add = cpu_clock_event_add,
6918 .del = cpu_clock_event_del,
6919 .start = cpu_clock_event_start,
6920 .stop = cpu_clock_event_stop,
b0a873eb
PZ
6921 .read = cpu_clock_event_read,
6922};
6923
6924/*
6925 * Software event: task time clock
6926 */
6927
6928static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6929{
b0a873eb
PZ
6930 u64 prev;
6931 s64 delta;
5c92d124 6932
b0a873eb
PZ
6933 prev = local64_xchg(&event->hw.prev_count, now);
6934 delta = now - prev;
6935 local64_add(delta, &event->count);
6936}
5c92d124 6937
a4eaf7f1 6938static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6939{
a4eaf7f1 6940 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6941 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6942}
6943
a4eaf7f1 6944static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6945{
6946 perf_swevent_cancel_hrtimer(event);
6947 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6948}
6949
6950static int task_clock_event_add(struct perf_event *event, int flags)
6951{
6952 if (flags & PERF_EF_START)
6953 task_clock_event_start(event, flags);
6a694a60 6954 perf_event_update_userpage(event);
b0a873eb 6955
a4eaf7f1
PZ
6956 return 0;
6957}
6958
6959static void task_clock_event_del(struct perf_event *event, int flags)
6960{
6961 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6962}
6963
6964static void task_clock_event_read(struct perf_event *event)
6965{
768a06e2
PZ
6966 u64 now = perf_clock();
6967 u64 delta = now - event->ctx->timestamp;
6968 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6969
6970 task_clock_event_update(event, time);
6971}
6972
6973static int task_clock_event_init(struct perf_event *event)
6fb2915d 6974{
b0a873eb
PZ
6975 if (event->attr.type != PERF_TYPE_SOFTWARE)
6976 return -ENOENT;
6977
6978 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6979 return -ENOENT;
6980
2481c5fa
SE
6981 /*
6982 * no branch sampling for software events
6983 */
6984 if (has_branch_stack(event))
6985 return -EOPNOTSUPP;
6986
ba3dd36c
PZ
6987 perf_swevent_init_hrtimer(event);
6988
b0a873eb 6989 return 0;
6fb2915d
LZ
6990}
6991
b0a873eb 6992static struct pmu perf_task_clock = {
89a1e187
PZ
6993 .task_ctx_nr = perf_sw_context,
6994
34f43927
PZ
6995 .capabilities = PERF_PMU_CAP_NO_NMI,
6996
b0a873eb 6997 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6998 .add = task_clock_event_add,
6999 .del = task_clock_event_del,
7000 .start = task_clock_event_start,
7001 .stop = task_clock_event_stop,
b0a873eb
PZ
7002 .read = task_clock_event_read,
7003};
6fb2915d 7004
ad5133b7 7005static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7006{
e077df4f 7007}
6fb2915d 7008
ad5133b7 7009static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7010{
ad5133b7 7011 return 0;
6fb2915d
LZ
7012}
7013
ad5133b7 7014static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 7015{
ad5133b7 7016 perf_pmu_disable(pmu);
6fb2915d
LZ
7017}
7018
ad5133b7
PZ
7019static int perf_pmu_commit_txn(struct pmu *pmu)
7020{
7021 perf_pmu_enable(pmu);
7022 return 0;
7023}
e077df4f 7024
ad5133b7 7025static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7026{
ad5133b7 7027 perf_pmu_enable(pmu);
24f1e32c
FW
7028}
7029
35edc2a5
PZ
7030static int perf_event_idx_default(struct perf_event *event)
7031{
c719f560 7032 return 0;
35edc2a5
PZ
7033}
7034
8dc85d54
PZ
7035/*
7036 * Ensures all contexts with the same task_ctx_nr have the same
7037 * pmu_cpu_context too.
7038 */
9e317041 7039static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7040{
8dc85d54 7041 struct pmu *pmu;
b326e956 7042
8dc85d54
PZ
7043 if (ctxn < 0)
7044 return NULL;
24f1e32c 7045
8dc85d54
PZ
7046 list_for_each_entry(pmu, &pmus, entry) {
7047 if (pmu->task_ctx_nr == ctxn)
7048 return pmu->pmu_cpu_context;
7049 }
24f1e32c 7050
8dc85d54 7051 return NULL;
24f1e32c
FW
7052}
7053
51676957 7054static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7055{
51676957
PZ
7056 int cpu;
7057
7058 for_each_possible_cpu(cpu) {
7059 struct perf_cpu_context *cpuctx;
7060
7061 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7062
3f1f3320
PZ
7063 if (cpuctx->unique_pmu == old_pmu)
7064 cpuctx->unique_pmu = pmu;
51676957
PZ
7065 }
7066}
7067
7068static void free_pmu_context(struct pmu *pmu)
7069{
7070 struct pmu *i;
f5ffe02e 7071
8dc85d54 7072 mutex_lock(&pmus_lock);
0475f9ea 7073 /*
8dc85d54 7074 * Like a real lame refcount.
0475f9ea 7075 */
51676957
PZ
7076 list_for_each_entry(i, &pmus, entry) {
7077 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7078 update_pmu_context(i, pmu);
8dc85d54 7079 goto out;
51676957 7080 }
8dc85d54 7081 }
d6d020e9 7082
51676957 7083 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7084out:
7085 mutex_unlock(&pmus_lock);
24f1e32c 7086}
2e80a82a 7087static struct idr pmu_idr;
d6d020e9 7088
abe43400
PZ
7089static ssize_t
7090type_show(struct device *dev, struct device_attribute *attr, char *page)
7091{
7092 struct pmu *pmu = dev_get_drvdata(dev);
7093
7094 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7095}
90826ca7 7096static DEVICE_ATTR_RO(type);
abe43400 7097
62b85639
SE
7098static ssize_t
7099perf_event_mux_interval_ms_show(struct device *dev,
7100 struct device_attribute *attr,
7101 char *page)
7102{
7103 struct pmu *pmu = dev_get_drvdata(dev);
7104
7105 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7106}
7107
7108static ssize_t
7109perf_event_mux_interval_ms_store(struct device *dev,
7110 struct device_attribute *attr,
7111 const char *buf, size_t count)
7112{
7113 struct pmu *pmu = dev_get_drvdata(dev);
7114 int timer, cpu, ret;
7115
7116 ret = kstrtoint(buf, 0, &timer);
7117 if (ret)
7118 return ret;
7119
7120 if (timer < 1)
7121 return -EINVAL;
7122
7123 /* same value, noting to do */
7124 if (timer == pmu->hrtimer_interval_ms)
7125 return count;
7126
7127 pmu->hrtimer_interval_ms = timer;
7128
7129 /* update all cpuctx for this PMU */
7130 for_each_possible_cpu(cpu) {
7131 struct perf_cpu_context *cpuctx;
7132 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7133 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7134
7135 if (hrtimer_active(&cpuctx->hrtimer))
7136 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
7137 }
7138
7139 return count;
7140}
90826ca7 7141static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7142
90826ca7
GKH
7143static struct attribute *pmu_dev_attrs[] = {
7144 &dev_attr_type.attr,
7145 &dev_attr_perf_event_mux_interval_ms.attr,
7146 NULL,
abe43400 7147};
90826ca7 7148ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7149
7150static int pmu_bus_running;
7151static struct bus_type pmu_bus = {
7152 .name = "event_source",
90826ca7 7153 .dev_groups = pmu_dev_groups,
abe43400
PZ
7154};
7155
7156static void pmu_dev_release(struct device *dev)
7157{
7158 kfree(dev);
7159}
7160
7161static int pmu_dev_alloc(struct pmu *pmu)
7162{
7163 int ret = -ENOMEM;
7164
7165 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7166 if (!pmu->dev)
7167 goto out;
7168
0c9d42ed 7169 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7170 device_initialize(pmu->dev);
7171 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7172 if (ret)
7173 goto free_dev;
7174
7175 dev_set_drvdata(pmu->dev, pmu);
7176 pmu->dev->bus = &pmu_bus;
7177 pmu->dev->release = pmu_dev_release;
7178 ret = device_add(pmu->dev);
7179 if (ret)
7180 goto free_dev;
7181
7182out:
7183 return ret;
7184
7185free_dev:
7186 put_device(pmu->dev);
7187 goto out;
7188}
7189
547e9fd7 7190static struct lock_class_key cpuctx_mutex;
facc4307 7191static struct lock_class_key cpuctx_lock;
547e9fd7 7192
03d8e80b 7193int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7194{
108b02cf 7195 int cpu, ret;
24f1e32c 7196
b0a873eb 7197 mutex_lock(&pmus_lock);
33696fc0
PZ
7198 ret = -ENOMEM;
7199 pmu->pmu_disable_count = alloc_percpu(int);
7200 if (!pmu->pmu_disable_count)
7201 goto unlock;
f29ac756 7202
2e80a82a
PZ
7203 pmu->type = -1;
7204 if (!name)
7205 goto skip_type;
7206 pmu->name = name;
7207
7208 if (type < 0) {
0e9c3be2
TH
7209 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7210 if (type < 0) {
7211 ret = type;
2e80a82a
PZ
7212 goto free_pdc;
7213 }
7214 }
7215 pmu->type = type;
7216
abe43400
PZ
7217 if (pmu_bus_running) {
7218 ret = pmu_dev_alloc(pmu);
7219 if (ret)
7220 goto free_idr;
7221 }
7222
2e80a82a 7223skip_type:
8dc85d54
PZ
7224 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7225 if (pmu->pmu_cpu_context)
7226 goto got_cpu_context;
f29ac756 7227
c4814202 7228 ret = -ENOMEM;
108b02cf
PZ
7229 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7230 if (!pmu->pmu_cpu_context)
abe43400 7231 goto free_dev;
f344011c 7232
108b02cf
PZ
7233 for_each_possible_cpu(cpu) {
7234 struct perf_cpu_context *cpuctx;
7235
7236 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7237 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7238 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7239 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7240 cpuctx->ctx.pmu = pmu;
9e630205
SE
7241
7242 __perf_cpu_hrtimer_init(cpuctx, cpu);
7243
3f1f3320 7244 cpuctx->unique_pmu = pmu;
108b02cf 7245 }
76e1d904 7246
8dc85d54 7247got_cpu_context:
ad5133b7
PZ
7248 if (!pmu->start_txn) {
7249 if (pmu->pmu_enable) {
7250 /*
7251 * If we have pmu_enable/pmu_disable calls, install
7252 * transaction stubs that use that to try and batch
7253 * hardware accesses.
7254 */
7255 pmu->start_txn = perf_pmu_start_txn;
7256 pmu->commit_txn = perf_pmu_commit_txn;
7257 pmu->cancel_txn = perf_pmu_cancel_txn;
7258 } else {
7259 pmu->start_txn = perf_pmu_nop_void;
7260 pmu->commit_txn = perf_pmu_nop_int;
7261 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7262 }
5c92d124 7263 }
15dbf27c 7264
ad5133b7
PZ
7265 if (!pmu->pmu_enable) {
7266 pmu->pmu_enable = perf_pmu_nop_void;
7267 pmu->pmu_disable = perf_pmu_nop_void;
7268 }
7269
35edc2a5
PZ
7270 if (!pmu->event_idx)
7271 pmu->event_idx = perf_event_idx_default;
7272
b0a873eb 7273 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7274 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7275 ret = 0;
7276unlock:
b0a873eb
PZ
7277 mutex_unlock(&pmus_lock);
7278
33696fc0 7279 return ret;
108b02cf 7280
abe43400
PZ
7281free_dev:
7282 device_del(pmu->dev);
7283 put_device(pmu->dev);
7284
2e80a82a
PZ
7285free_idr:
7286 if (pmu->type >= PERF_TYPE_MAX)
7287 idr_remove(&pmu_idr, pmu->type);
7288
108b02cf
PZ
7289free_pdc:
7290 free_percpu(pmu->pmu_disable_count);
7291 goto unlock;
f29ac756 7292}
c464c76e 7293EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7294
b0a873eb 7295void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7296{
b0a873eb
PZ
7297 mutex_lock(&pmus_lock);
7298 list_del_rcu(&pmu->entry);
7299 mutex_unlock(&pmus_lock);
5c92d124 7300
0475f9ea 7301 /*
cde8e884
PZ
7302 * We dereference the pmu list under both SRCU and regular RCU, so
7303 * synchronize against both of those.
0475f9ea 7304 */
b0a873eb 7305 synchronize_srcu(&pmus_srcu);
cde8e884 7306 synchronize_rcu();
d6d020e9 7307
33696fc0 7308 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7309 if (pmu->type >= PERF_TYPE_MAX)
7310 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7311 device_del(pmu->dev);
7312 put_device(pmu->dev);
51676957 7313 free_pmu_context(pmu);
b0a873eb 7314}
c464c76e 7315EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7316
cc34b98b
MR
7317static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7318{
ccd41c86 7319 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7320 int ret;
7321
7322 if (!try_module_get(pmu->module))
7323 return -ENODEV;
ccd41c86
PZ
7324
7325 if (event->group_leader != event) {
7326 ctx = perf_event_ctx_lock(event->group_leader);
7327 BUG_ON(!ctx);
7328 }
7329
cc34b98b
MR
7330 event->pmu = pmu;
7331 ret = pmu->event_init(event);
ccd41c86
PZ
7332
7333 if (ctx)
7334 perf_event_ctx_unlock(event->group_leader, ctx);
7335
cc34b98b
MR
7336 if (ret)
7337 module_put(pmu->module);
7338
7339 return ret;
7340}
7341
b0a873eb
PZ
7342struct pmu *perf_init_event(struct perf_event *event)
7343{
7344 struct pmu *pmu = NULL;
7345 int idx;
940c5b29 7346 int ret;
b0a873eb
PZ
7347
7348 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7349
7350 rcu_read_lock();
7351 pmu = idr_find(&pmu_idr, event->attr.type);
7352 rcu_read_unlock();
940c5b29 7353 if (pmu) {
cc34b98b 7354 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7355 if (ret)
7356 pmu = ERR_PTR(ret);
2e80a82a 7357 goto unlock;
940c5b29 7358 }
2e80a82a 7359
b0a873eb 7360 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7361 ret = perf_try_init_event(pmu, event);
b0a873eb 7362 if (!ret)
e5f4d339 7363 goto unlock;
76e1d904 7364
b0a873eb
PZ
7365 if (ret != -ENOENT) {
7366 pmu = ERR_PTR(ret);
e5f4d339 7367 goto unlock;
f344011c 7368 }
5c92d124 7369 }
e5f4d339
PZ
7370 pmu = ERR_PTR(-ENOENT);
7371unlock:
b0a873eb 7372 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7373
4aeb0b42 7374 return pmu;
5c92d124
IM
7375}
7376
4beb31f3
FW
7377static void account_event_cpu(struct perf_event *event, int cpu)
7378{
7379 if (event->parent)
7380 return;
7381
4beb31f3
FW
7382 if (is_cgroup_event(event))
7383 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7384}
7385
766d6c07
FW
7386static void account_event(struct perf_event *event)
7387{
4beb31f3
FW
7388 if (event->parent)
7389 return;
7390
766d6c07
FW
7391 if (event->attach_state & PERF_ATTACH_TASK)
7392 static_key_slow_inc(&perf_sched_events.key);
7393 if (event->attr.mmap || event->attr.mmap_data)
7394 atomic_inc(&nr_mmap_events);
7395 if (event->attr.comm)
7396 atomic_inc(&nr_comm_events);
7397 if (event->attr.task)
7398 atomic_inc(&nr_task_events);
948b26b6
FW
7399 if (event->attr.freq) {
7400 if (atomic_inc_return(&nr_freq_events) == 1)
7401 tick_nohz_full_kick_all();
7402 }
4beb31f3 7403 if (has_branch_stack(event))
766d6c07 7404 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7405 if (is_cgroup_event(event))
766d6c07 7406 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7407
7408 account_event_cpu(event, event->cpu);
766d6c07
FW
7409}
7410
0793a61d 7411/*
cdd6c482 7412 * Allocate and initialize a event structure
0793a61d 7413 */
cdd6c482 7414static struct perf_event *
c3f00c70 7415perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7416 struct task_struct *task,
7417 struct perf_event *group_leader,
7418 struct perf_event *parent_event,
4dc0da86 7419 perf_overflow_handler_t overflow_handler,
79dff51e 7420 void *context, int cgroup_fd)
0793a61d 7421{
51b0fe39 7422 struct pmu *pmu;
cdd6c482
IM
7423 struct perf_event *event;
7424 struct hw_perf_event *hwc;
90983b16 7425 long err = -EINVAL;
0793a61d 7426
66832eb4
ON
7427 if ((unsigned)cpu >= nr_cpu_ids) {
7428 if (!task || cpu != -1)
7429 return ERR_PTR(-EINVAL);
7430 }
7431
c3f00c70 7432 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7433 if (!event)
d5d2bc0d 7434 return ERR_PTR(-ENOMEM);
0793a61d 7435
04289bb9 7436 /*
cdd6c482 7437 * Single events are their own group leaders, with an
04289bb9
IM
7438 * empty sibling list:
7439 */
7440 if (!group_leader)
cdd6c482 7441 group_leader = event;
04289bb9 7442
cdd6c482
IM
7443 mutex_init(&event->child_mutex);
7444 INIT_LIST_HEAD(&event->child_list);
fccc714b 7445
cdd6c482
IM
7446 INIT_LIST_HEAD(&event->group_entry);
7447 INIT_LIST_HEAD(&event->event_entry);
7448 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7449 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7450 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7451 INIT_HLIST_NODE(&event->hlist_entry);
7452
10c6db11 7453
cdd6c482 7454 init_waitqueue_head(&event->waitq);
e360adbe 7455 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7456
cdd6c482 7457 mutex_init(&event->mmap_mutex);
7b732a75 7458
a6fa941d 7459 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7460 event->cpu = cpu;
7461 event->attr = *attr;
7462 event->group_leader = group_leader;
7463 event->pmu = NULL;
cdd6c482 7464 event->oncpu = -1;
a96bbc16 7465
cdd6c482 7466 event->parent = parent_event;
b84fbc9f 7467
17cf22c3 7468 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7469 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7470
cdd6c482 7471 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7472
d580ff86
PZ
7473 if (task) {
7474 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7475 /*
50f16a8b
PZ
7476 * XXX pmu::event_init needs to know what task to account to
7477 * and we cannot use the ctx information because we need the
7478 * pmu before we get a ctx.
d580ff86 7479 */
50f16a8b 7480 event->hw.target = task;
d580ff86
PZ
7481 }
7482
34f43927
PZ
7483 event->clock = &local_clock;
7484 if (parent_event)
7485 event->clock = parent_event->clock;
7486
4dc0da86 7487 if (!overflow_handler && parent_event) {
b326e956 7488 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7489 context = parent_event->overflow_handler_context;
7490 }
66832eb4 7491
b326e956 7492 event->overflow_handler = overflow_handler;
4dc0da86 7493 event->overflow_handler_context = context;
97eaf530 7494
0231bb53 7495 perf_event__state_init(event);
a86ed508 7496
4aeb0b42 7497 pmu = NULL;
b8e83514 7498
cdd6c482 7499 hwc = &event->hw;
bd2b5b12 7500 hwc->sample_period = attr->sample_period;
0d48696f 7501 if (attr->freq && attr->sample_freq)
bd2b5b12 7502 hwc->sample_period = 1;
eced1dfc 7503 hwc->last_period = hwc->sample_period;
bd2b5b12 7504
e7850595 7505 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7506
2023b359 7507 /*
cdd6c482 7508 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7509 */
3dab77fb 7510 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7511 goto err_ns;
a46a2300
YZ
7512
7513 if (!has_branch_stack(event))
7514 event->attr.branch_sample_type = 0;
2023b359 7515
79dff51e
MF
7516 if (cgroup_fd != -1) {
7517 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7518 if (err)
7519 goto err_ns;
7520 }
7521
b0a873eb 7522 pmu = perf_init_event(event);
4aeb0b42 7523 if (!pmu)
90983b16
FW
7524 goto err_ns;
7525 else if (IS_ERR(pmu)) {
4aeb0b42 7526 err = PTR_ERR(pmu);
90983b16 7527 goto err_ns;
621a01ea 7528 }
d5d2bc0d 7529
bed5b25a
AS
7530 err = exclusive_event_init(event);
7531 if (err)
7532 goto err_pmu;
7533
cdd6c482 7534 if (!event->parent) {
927c7a9e
FW
7535 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7536 err = get_callchain_buffers();
90983b16 7537 if (err)
bed5b25a 7538 goto err_per_task;
d010b332 7539 }
f344011c 7540 }
9ee318a7 7541
cdd6c482 7542 return event;
90983b16 7543
bed5b25a
AS
7544err_per_task:
7545 exclusive_event_destroy(event);
7546
90983b16
FW
7547err_pmu:
7548 if (event->destroy)
7549 event->destroy(event);
c464c76e 7550 module_put(pmu->module);
90983b16 7551err_ns:
79dff51e
MF
7552 if (is_cgroup_event(event))
7553 perf_detach_cgroup(event);
90983b16
FW
7554 if (event->ns)
7555 put_pid_ns(event->ns);
7556 kfree(event);
7557
7558 return ERR_PTR(err);
0793a61d
TG
7559}
7560
cdd6c482
IM
7561static int perf_copy_attr(struct perf_event_attr __user *uattr,
7562 struct perf_event_attr *attr)
974802ea 7563{
974802ea 7564 u32 size;
cdf8073d 7565 int ret;
974802ea
PZ
7566
7567 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7568 return -EFAULT;
7569
7570 /*
7571 * zero the full structure, so that a short copy will be nice.
7572 */
7573 memset(attr, 0, sizeof(*attr));
7574
7575 ret = get_user(size, &uattr->size);
7576 if (ret)
7577 return ret;
7578
7579 if (size > PAGE_SIZE) /* silly large */
7580 goto err_size;
7581
7582 if (!size) /* abi compat */
7583 size = PERF_ATTR_SIZE_VER0;
7584
7585 if (size < PERF_ATTR_SIZE_VER0)
7586 goto err_size;
7587
7588 /*
7589 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7590 * ensure all the unknown bits are 0 - i.e. new
7591 * user-space does not rely on any kernel feature
7592 * extensions we dont know about yet.
974802ea
PZ
7593 */
7594 if (size > sizeof(*attr)) {
cdf8073d
IS
7595 unsigned char __user *addr;
7596 unsigned char __user *end;
7597 unsigned char val;
974802ea 7598
cdf8073d
IS
7599 addr = (void __user *)uattr + sizeof(*attr);
7600 end = (void __user *)uattr + size;
974802ea 7601
cdf8073d 7602 for (; addr < end; addr++) {
974802ea
PZ
7603 ret = get_user(val, addr);
7604 if (ret)
7605 return ret;
7606 if (val)
7607 goto err_size;
7608 }
b3e62e35 7609 size = sizeof(*attr);
974802ea
PZ
7610 }
7611
7612 ret = copy_from_user(attr, uattr, size);
7613 if (ret)
7614 return -EFAULT;
7615
cd757645 7616 if (attr->__reserved_1)
974802ea
PZ
7617 return -EINVAL;
7618
7619 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7620 return -EINVAL;
7621
7622 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7623 return -EINVAL;
7624
bce38cd5
SE
7625 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7626 u64 mask = attr->branch_sample_type;
7627
7628 /* only using defined bits */
7629 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7630 return -EINVAL;
7631
7632 /* at least one branch bit must be set */
7633 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7634 return -EINVAL;
7635
bce38cd5
SE
7636 /* propagate priv level, when not set for branch */
7637 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7638
7639 /* exclude_kernel checked on syscall entry */
7640 if (!attr->exclude_kernel)
7641 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7642
7643 if (!attr->exclude_user)
7644 mask |= PERF_SAMPLE_BRANCH_USER;
7645
7646 if (!attr->exclude_hv)
7647 mask |= PERF_SAMPLE_BRANCH_HV;
7648 /*
7649 * adjust user setting (for HW filter setup)
7650 */
7651 attr->branch_sample_type = mask;
7652 }
e712209a
SE
7653 /* privileged levels capture (kernel, hv): check permissions */
7654 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7655 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7656 return -EACCES;
bce38cd5 7657 }
4018994f 7658
c5ebcedb 7659 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7660 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7661 if (ret)
7662 return ret;
7663 }
7664
7665 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7666 if (!arch_perf_have_user_stack_dump())
7667 return -ENOSYS;
7668
7669 /*
7670 * We have __u32 type for the size, but so far
7671 * we can only use __u16 as maximum due to the
7672 * __u16 sample size limit.
7673 */
7674 if (attr->sample_stack_user >= USHRT_MAX)
7675 ret = -EINVAL;
7676 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7677 ret = -EINVAL;
7678 }
4018994f 7679
60e2364e
SE
7680 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7681 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
7682out:
7683 return ret;
7684
7685err_size:
7686 put_user(sizeof(*attr), &uattr->size);
7687 ret = -E2BIG;
7688 goto out;
7689}
7690
ac9721f3
PZ
7691static int
7692perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7693{
b69cf536 7694 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7695 int ret = -EINVAL;
7696
ac9721f3 7697 if (!output_event)
a4be7c27
PZ
7698 goto set;
7699
ac9721f3
PZ
7700 /* don't allow circular references */
7701 if (event == output_event)
a4be7c27
PZ
7702 goto out;
7703
0f139300
PZ
7704 /*
7705 * Don't allow cross-cpu buffers
7706 */
7707 if (output_event->cpu != event->cpu)
7708 goto out;
7709
7710 /*
76369139 7711 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7712 */
7713 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7714 goto out;
7715
34f43927
PZ
7716 /*
7717 * Mixing clocks in the same buffer is trouble you don't need.
7718 */
7719 if (output_event->clock != event->clock)
7720 goto out;
7721
45bfb2e5
PZ
7722 /*
7723 * If both events generate aux data, they must be on the same PMU
7724 */
7725 if (has_aux(event) && has_aux(output_event) &&
7726 event->pmu != output_event->pmu)
7727 goto out;
7728
a4be7c27 7729set:
cdd6c482 7730 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7731 /* Can't redirect output if we've got an active mmap() */
7732 if (atomic_read(&event->mmap_count))
7733 goto unlock;
a4be7c27 7734
ac9721f3 7735 if (output_event) {
76369139
FW
7736 /* get the rb we want to redirect to */
7737 rb = ring_buffer_get(output_event);
7738 if (!rb)
ac9721f3 7739 goto unlock;
a4be7c27
PZ
7740 }
7741
b69cf536 7742 ring_buffer_attach(event, rb);
9bb5d40c 7743
a4be7c27 7744 ret = 0;
ac9721f3
PZ
7745unlock:
7746 mutex_unlock(&event->mmap_mutex);
7747
a4be7c27 7748out:
a4be7c27
PZ
7749 return ret;
7750}
7751
f63a8daa
PZ
7752static void mutex_lock_double(struct mutex *a, struct mutex *b)
7753{
7754 if (b < a)
7755 swap(a, b);
7756
7757 mutex_lock(a);
7758 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7759}
7760
34f43927
PZ
7761static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7762{
7763 bool nmi_safe = false;
7764
7765 switch (clk_id) {
7766 case CLOCK_MONOTONIC:
7767 event->clock = &ktime_get_mono_fast_ns;
7768 nmi_safe = true;
7769 break;
7770
7771 case CLOCK_MONOTONIC_RAW:
7772 event->clock = &ktime_get_raw_fast_ns;
7773 nmi_safe = true;
7774 break;
7775
7776 case CLOCK_REALTIME:
7777 event->clock = &ktime_get_real_ns;
7778 break;
7779
7780 case CLOCK_BOOTTIME:
7781 event->clock = &ktime_get_boot_ns;
7782 break;
7783
7784 case CLOCK_TAI:
7785 event->clock = &ktime_get_tai_ns;
7786 break;
7787
7788 default:
7789 return -EINVAL;
7790 }
7791
7792 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
7793 return -EINVAL;
7794
7795 return 0;
7796}
7797
0793a61d 7798/**
cdd6c482 7799 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7800 *
cdd6c482 7801 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7802 * @pid: target pid
9f66a381 7803 * @cpu: target cpu
cdd6c482 7804 * @group_fd: group leader event fd
0793a61d 7805 */
cdd6c482
IM
7806SYSCALL_DEFINE5(perf_event_open,
7807 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7808 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7809{
b04243ef
PZ
7810 struct perf_event *group_leader = NULL, *output_event = NULL;
7811 struct perf_event *event, *sibling;
cdd6c482 7812 struct perf_event_attr attr;
f63a8daa 7813 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 7814 struct file *event_file = NULL;
2903ff01 7815 struct fd group = {NULL, 0};
38a81da2 7816 struct task_struct *task = NULL;
89a1e187 7817 struct pmu *pmu;
ea635c64 7818 int event_fd;
b04243ef 7819 int move_group = 0;
dc86cabe 7820 int err;
a21b0b35 7821 int f_flags = O_RDWR;
79dff51e 7822 int cgroup_fd = -1;
0793a61d 7823
2743a5b0 7824 /* for future expandability... */
e5d1367f 7825 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7826 return -EINVAL;
7827
dc86cabe
IM
7828 err = perf_copy_attr(attr_uptr, &attr);
7829 if (err)
7830 return err;
eab656ae 7831
0764771d
PZ
7832 if (!attr.exclude_kernel) {
7833 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7834 return -EACCES;
7835 }
7836
df58ab24 7837 if (attr.freq) {
cdd6c482 7838 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 7839 return -EINVAL;
0819b2e3
PZ
7840 } else {
7841 if (attr.sample_period & (1ULL << 63))
7842 return -EINVAL;
df58ab24
PZ
7843 }
7844
e5d1367f
SE
7845 /*
7846 * In cgroup mode, the pid argument is used to pass the fd
7847 * opened to the cgroup directory in cgroupfs. The cpu argument
7848 * designates the cpu on which to monitor threads from that
7849 * cgroup.
7850 */
7851 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7852 return -EINVAL;
7853
a21b0b35
YD
7854 if (flags & PERF_FLAG_FD_CLOEXEC)
7855 f_flags |= O_CLOEXEC;
7856
7857 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7858 if (event_fd < 0)
7859 return event_fd;
7860
ac9721f3 7861 if (group_fd != -1) {
2903ff01
AV
7862 err = perf_fget_light(group_fd, &group);
7863 if (err)
d14b12d7 7864 goto err_fd;
2903ff01 7865 group_leader = group.file->private_data;
ac9721f3
PZ
7866 if (flags & PERF_FLAG_FD_OUTPUT)
7867 output_event = group_leader;
7868 if (flags & PERF_FLAG_FD_NO_GROUP)
7869 group_leader = NULL;
7870 }
7871
e5d1367f 7872 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7873 task = find_lively_task_by_vpid(pid);
7874 if (IS_ERR(task)) {
7875 err = PTR_ERR(task);
7876 goto err_group_fd;
7877 }
7878 }
7879
1f4ee503
PZ
7880 if (task && group_leader &&
7881 group_leader->attr.inherit != attr.inherit) {
7882 err = -EINVAL;
7883 goto err_task;
7884 }
7885
fbfc623f
YZ
7886 get_online_cpus();
7887
79dff51e
MF
7888 if (flags & PERF_FLAG_PID_CGROUP)
7889 cgroup_fd = pid;
7890
4dc0da86 7891 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 7892 NULL, NULL, cgroup_fd);
d14b12d7
SE
7893 if (IS_ERR(event)) {
7894 err = PTR_ERR(event);
1f4ee503 7895 goto err_cpus;
d14b12d7
SE
7896 }
7897
53b25335
VW
7898 if (is_sampling_event(event)) {
7899 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7900 err = -ENOTSUPP;
7901 goto err_alloc;
7902 }
7903 }
7904
766d6c07
FW
7905 account_event(event);
7906
89a1e187
PZ
7907 /*
7908 * Special case software events and allow them to be part of
7909 * any hardware group.
7910 */
7911 pmu = event->pmu;
b04243ef 7912
34f43927
PZ
7913 if (attr.use_clockid) {
7914 err = perf_event_set_clock(event, attr.clockid);
7915 if (err)
7916 goto err_alloc;
7917 }
7918
b04243ef
PZ
7919 if (group_leader &&
7920 (is_software_event(event) != is_software_event(group_leader))) {
7921 if (is_software_event(event)) {
7922 /*
7923 * If event and group_leader are not both a software
7924 * event, and event is, then group leader is not.
7925 *
7926 * Allow the addition of software events to !software
7927 * groups, this is safe because software events never
7928 * fail to schedule.
7929 */
7930 pmu = group_leader->pmu;
7931 } else if (is_software_event(group_leader) &&
7932 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7933 /*
7934 * In case the group is a pure software group, and we
7935 * try to add a hardware event, move the whole group to
7936 * the hardware context.
7937 */
7938 move_group = 1;
7939 }
7940 }
89a1e187
PZ
7941
7942 /*
7943 * Get the target context (task or percpu):
7944 */
4af57ef2 7945 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
7946 if (IS_ERR(ctx)) {
7947 err = PTR_ERR(ctx);
c6be5a5c 7948 goto err_alloc;
89a1e187
PZ
7949 }
7950
bed5b25a
AS
7951 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
7952 err = -EBUSY;
7953 goto err_context;
7954 }
7955
fd1edb3a
PZ
7956 if (task) {
7957 put_task_struct(task);
7958 task = NULL;
7959 }
7960
ccff286d 7961 /*
cdd6c482 7962 * Look up the group leader (we will attach this event to it):
04289bb9 7963 */
ac9721f3 7964 if (group_leader) {
dc86cabe 7965 err = -EINVAL;
04289bb9 7966
04289bb9 7967 /*
ccff286d
IM
7968 * Do not allow a recursive hierarchy (this new sibling
7969 * becoming part of another group-sibling):
7970 */
7971 if (group_leader->group_leader != group_leader)
c3f00c70 7972 goto err_context;
34f43927
PZ
7973
7974 /* All events in a group should have the same clock */
7975 if (group_leader->clock != event->clock)
7976 goto err_context;
7977
ccff286d
IM
7978 /*
7979 * Do not allow to attach to a group in a different
7980 * task or CPU context:
04289bb9 7981 */
b04243ef 7982 if (move_group) {
c3c87e77
PZ
7983 /*
7984 * Make sure we're both on the same task, or both
7985 * per-cpu events.
7986 */
7987 if (group_leader->ctx->task != ctx->task)
7988 goto err_context;
7989
7990 /*
7991 * Make sure we're both events for the same CPU;
7992 * grouping events for different CPUs is broken; since
7993 * you can never concurrently schedule them anyhow.
7994 */
7995 if (group_leader->cpu != event->cpu)
b04243ef
PZ
7996 goto err_context;
7997 } else {
7998 if (group_leader->ctx != ctx)
7999 goto err_context;
8000 }
8001
3b6f9e5c
PM
8002 /*
8003 * Only a group leader can be exclusive or pinned
8004 */
0d48696f 8005 if (attr.exclusive || attr.pinned)
c3f00c70 8006 goto err_context;
ac9721f3
PZ
8007 }
8008
8009 if (output_event) {
8010 err = perf_event_set_output(event, output_event);
8011 if (err)
c3f00c70 8012 goto err_context;
ac9721f3 8013 }
0793a61d 8014
a21b0b35
YD
8015 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8016 f_flags);
ea635c64
AV
8017 if (IS_ERR(event_file)) {
8018 err = PTR_ERR(event_file);
c3f00c70 8019 goto err_context;
ea635c64 8020 }
9b51f66d 8021
b04243ef 8022 if (move_group) {
f63a8daa
PZ
8023 gctx = group_leader->ctx;
8024
8025 /*
8026 * See perf_event_ctx_lock() for comments on the details
8027 * of swizzling perf_event::ctx.
8028 */
8029 mutex_lock_double(&gctx->mutex, &ctx->mutex);
b04243ef 8030
46ce0fe9 8031 perf_remove_from_context(group_leader, false);
0231bb53 8032
b04243ef
PZ
8033 list_for_each_entry(sibling, &group_leader->sibling_list,
8034 group_entry) {
46ce0fe9 8035 perf_remove_from_context(sibling, false);
b04243ef
PZ
8036 put_ctx(gctx);
8037 }
f63a8daa
PZ
8038 } else {
8039 mutex_lock(&ctx->mutex);
ea635c64 8040 }
9b51f66d 8041
ad3a37de 8042 WARN_ON_ONCE(ctx->parent_ctx);
b04243ef
PZ
8043
8044 if (move_group) {
f63a8daa
PZ
8045 /*
8046 * Wait for everybody to stop referencing the events through
8047 * the old lists, before installing it on new lists.
8048 */
0cda4c02 8049 synchronize_rcu();
f63a8daa 8050
8f95b435
PZI
8051 /*
8052 * Install the group siblings before the group leader.
8053 *
8054 * Because a group leader will try and install the entire group
8055 * (through the sibling list, which is still in-tact), we can
8056 * end up with siblings installed in the wrong context.
8057 *
8058 * By installing siblings first we NO-OP because they're not
8059 * reachable through the group lists.
8060 */
b04243ef
PZ
8061 list_for_each_entry(sibling, &group_leader->sibling_list,
8062 group_entry) {
8f95b435 8063 perf_event__state_init(sibling);
9fc81d87 8064 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8065 get_ctx(ctx);
8066 }
8f95b435
PZI
8067
8068 /*
8069 * Removing from the context ends up with disabled
8070 * event. What we want here is event in the initial
8071 * startup state, ready to be add into new context.
8072 */
8073 perf_event__state_init(group_leader);
8074 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8075 get_ctx(ctx);
b04243ef
PZ
8076 }
8077
bed5b25a
AS
8078 if (!exclusive_event_installable(event, ctx)) {
8079 err = -EBUSY;
8080 mutex_unlock(&ctx->mutex);
8081 fput(event_file);
8082 goto err_context;
8083 }
8084
e2d37cd2 8085 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8086 perf_unpin_context(ctx);
f63a8daa
PZ
8087
8088 if (move_group) {
8089 mutex_unlock(&gctx->mutex);
8090 put_ctx(gctx);
8091 }
d859e29f 8092 mutex_unlock(&ctx->mutex);
9b51f66d 8093
fbfc623f
YZ
8094 put_online_cpus();
8095
cdd6c482 8096 event->owner = current;
8882135b 8097
cdd6c482
IM
8098 mutex_lock(&current->perf_event_mutex);
8099 list_add_tail(&event->owner_entry, &current->perf_event_list);
8100 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8101
c320c7b7
ACM
8102 /*
8103 * Precalculate sample_data sizes
8104 */
8105 perf_event__header_size(event);
6844c09d 8106 perf_event__id_header_size(event);
c320c7b7 8107
8a49542c
PZ
8108 /*
8109 * Drop the reference on the group_event after placing the
8110 * new event on the sibling_list. This ensures destruction
8111 * of the group leader will find the pointer to itself in
8112 * perf_group_detach().
8113 */
2903ff01 8114 fdput(group);
ea635c64
AV
8115 fd_install(event_fd, event_file);
8116 return event_fd;
0793a61d 8117
c3f00c70 8118err_context:
fe4b04fa 8119 perf_unpin_context(ctx);
ea635c64 8120 put_ctx(ctx);
c6be5a5c 8121err_alloc:
ea635c64 8122 free_event(event);
1f4ee503 8123err_cpus:
fbfc623f 8124 put_online_cpus();
1f4ee503 8125err_task:
e7d0bc04
PZ
8126 if (task)
8127 put_task_struct(task);
89a1e187 8128err_group_fd:
2903ff01 8129 fdput(group);
ea635c64
AV
8130err_fd:
8131 put_unused_fd(event_fd);
dc86cabe 8132 return err;
0793a61d
TG
8133}
8134
fb0459d7
AV
8135/**
8136 * perf_event_create_kernel_counter
8137 *
8138 * @attr: attributes of the counter to create
8139 * @cpu: cpu in which the counter is bound
38a81da2 8140 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8141 */
8142struct perf_event *
8143perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8144 struct task_struct *task,
4dc0da86
AK
8145 perf_overflow_handler_t overflow_handler,
8146 void *context)
fb0459d7 8147{
fb0459d7 8148 struct perf_event_context *ctx;
c3f00c70 8149 struct perf_event *event;
fb0459d7 8150 int err;
d859e29f 8151
fb0459d7
AV
8152 /*
8153 * Get the target context (task or percpu):
8154 */
d859e29f 8155
4dc0da86 8156 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8157 overflow_handler, context, -1);
c3f00c70
PZ
8158 if (IS_ERR(event)) {
8159 err = PTR_ERR(event);
8160 goto err;
8161 }
d859e29f 8162
f8697762
JO
8163 /* Mark owner so we could distinguish it from user events. */
8164 event->owner = EVENT_OWNER_KERNEL;
8165
766d6c07
FW
8166 account_event(event);
8167
4af57ef2 8168 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8169 if (IS_ERR(ctx)) {
8170 err = PTR_ERR(ctx);
c3f00c70 8171 goto err_free;
d859e29f 8172 }
fb0459d7 8173
fb0459d7
AV
8174 WARN_ON_ONCE(ctx->parent_ctx);
8175 mutex_lock(&ctx->mutex);
bed5b25a
AS
8176 if (!exclusive_event_installable(event, ctx)) {
8177 mutex_unlock(&ctx->mutex);
8178 perf_unpin_context(ctx);
8179 put_ctx(ctx);
8180 err = -EBUSY;
8181 goto err_free;
8182 }
8183
fb0459d7 8184 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8185 perf_unpin_context(ctx);
fb0459d7
AV
8186 mutex_unlock(&ctx->mutex);
8187
fb0459d7
AV
8188 return event;
8189
c3f00c70
PZ
8190err_free:
8191 free_event(event);
8192err:
c6567f64 8193 return ERR_PTR(err);
9b51f66d 8194}
fb0459d7 8195EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8196
0cda4c02
YZ
8197void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8198{
8199 struct perf_event_context *src_ctx;
8200 struct perf_event_context *dst_ctx;
8201 struct perf_event *event, *tmp;
8202 LIST_HEAD(events);
8203
8204 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8205 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8206
f63a8daa
PZ
8207 /*
8208 * See perf_event_ctx_lock() for comments on the details
8209 * of swizzling perf_event::ctx.
8210 */
8211 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8212 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8213 event_entry) {
46ce0fe9 8214 perf_remove_from_context(event, false);
9a545de0 8215 unaccount_event_cpu(event, src_cpu);
0cda4c02 8216 put_ctx(src_ctx);
9886167d 8217 list_add(&event->migrate_entry, &events);
0cda4c02 8218 }
0cda4c02 8219
8f95b435
PZI
8220 /*
8221 * Wait for the events to quiesce before re-instating them.
8222 */
0cda4c02
YZ
8223 synchronize_rcu();
8224
8f95b435
PZI
8225 /*
8226 * Re-instate events in 2 passes.
8227 *
8228 * Skip over group leaders and only install siblings on this first
8229 * pass, siblings will not get enabled without a leader, however a
8230 * leader will enable its siblings, even if those are still on the old
8231 * context.
8232 */
8233 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8234 if (event->group_leader == event)
8235 continue;
8236
8237 list_del(&event->migrate_entry);
8238 if (event->state >= PERF_EVENT_STATE_OFF)
8239 event->state = PERF_EVENT_STATE_INACTIVE;
8240 account_event_cpu(event, dst_cpu);
8241 perf_install_in_context(dst_ctx, event, dst_cpu);
8242 get_ctx(dst_ctx);
8243 }
8244
8245 /*
8246 * Once all the siblings are setup properly, install the group leaders
8247 * to make it go.
8248 */
9886167d
PZ
8249 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8250 list_del(&event->migrate_entry);
0cda4c02
YZ
8251 if (event->state >= PERF_EVENT_STATE_OFF)
8252 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8253 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8254 perf_install_in_context(dst_ctx, event, dst_cpu);
8255 get_ctx(dst_ctx);
8256 }
8257 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8258 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8259}
8260EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8261
cdd6c482 8262static void sync_child_event(struct perf_event *child_event,
38b200d6 8263 struct task_struct *child)
d859e29f 8264{
cdd6c482 8265 struct perf_event *parent_event = child_event->parent;
8bc20959 8266 u64 child_val;
d859e29f 8267
cdd6c482
IM
8268 if (child_event->attr.inherit_stat)
8269 perf_event_read_event(child_event, child);
38b200d6 8270
b5e58793 8271 child_val = perf_event_count(child_event);
d859e29f
PM
8272
8273 /*
8274 * Add back the child's count to the parent's count:
8275 */
a6e6dea6 8276 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8277 atomic64_add(child_event->total_time_enabled,
8278 &parent_event->child_total_time_enabled);
8279 atomic64_add(child_event->total_time_running,
8280 &parent_event->child_total_time_running);
d859e29f
PM
8281
8282 /*
cdd6c482 8283 * Remove this event from the parent's list
d859e29f 8284 */
cdd6c482
IM
8285 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8286 mutex_lock(&parent_event->child_mutex);
8287 list_del_init(&child_event->child_list);
8288 mutex_unlock(&parent_event->child_mutex);
d859e29f 8289
dc633982
JO
8290 /*
8291 * Make sure user/parent get notified, that we just
8292 * lost one event.
8293 */
8294 perf_event_wakeup(parent_event);
8295
d859e29f 8296 /*
cdd6c482 8297 * Release the parent event, if this was the last
d859e29f
PM
8298 * reference to it.
8299 */
a6fa941d 8300 put_event(parent_event);
d859e29f
PM
8301}
8302
9b51f66d 8303static void
cdd6c482
IM
8304__perf_event_exit_task(struct perf_event *child_event,
8305 struct perf_event_context *child_ctx,
38b200d6 8306 struct task_struct *child)
9b51f66d 8307{
1903d50c
PZ
8308 /*
8309 * Do not destroy the 'original' grouping; because of the context
8310 * switch optimization the original events could've ended up in a
8311 * random child task.
8312 *
8313 * If we were to destroy the original group, all group related
8314 * operations would cease to function properly after this random
8315 * child dies.
8316 *
8317 * Do destroy all inherited groups, we don't care about those
8318 * and being thorough is better.
8319 */
8320 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8321
9b51f66d 8322 /*
38b435b1 8323 * It can happen that the parent exits first, and has events
9b51f66d 8324 * that are still around due to the child reference. These
38b435b1 8325 * events need to be zapped.
9b51f66d 8326 */
38b435b1 8327 if (child_event->parent) {
cdd6c482
IM
8328 sync_child_event(child_event, child);
8329 free_event(child_event);
179033b3
JO
8330 } else {
8331 child_event->state = PERF_EVENT_STATE_EXIT;
8332 perf_event_wakeup(child_event);
4bcf349a 8333 }
9b51f66d
IM
8334}
8335
8dc85d54 8336static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8337{
ebf905fc 8338 struct perf_event *child_event, *next;
211de6eb 8339 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8340 unsigned long flags;
9b51f66d 8341
8dc85d54 8342 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 8343 perf_event_task(child, NULL, 0);
9b51f66d 8344 return;
9f498cc5 8345 }
9b51f66d 8346
a63eaf34 8347 local_irq_save(flags);
ad3a37de
PM
8348 /*
8349 * We can't reschedule here because interrupts are disabled,
8350 * and either child is current or it is a task that can't be
8351 * scheduled, so we are now safe from rescheduling changing
8352 * our context.
8353 */
806839b2 8354 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8355
8356 /*
8357 * Take the context lock here so that if find_get_context is
cdd6c482 8358 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8359 * incremented the context's refcount before we do put_ctx below.
8360 */
e625cce1 8361 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8362 task_ctx_sched_out(child_ctx);
8dc85d54 8363 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8364
71a851b4
PZ
8365 /*
8366 * If this context is a clone; unclone it so it can't get
8367 * swapped to another process while we're removing all
cdd6c482 8368 * the events from it.
71a851b4 8369 */
211de6eb 8370 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8371 update_context_time(child_ctx);
e625cce1 8372 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8373
211de6eb
PZ
8374 if (clone_ctx)
8375 put_ctx(clone_ctx);
4a1c0f26 8376
9f498cc5 8377 /*
cdd6c482
IM
8378 * Report the task dead after unscheduling the events so that we
8379 * won't get any samples after PERF_RECORD_EXIT. We can however still
8380 * get a few PERF_RECORD_READ events.
9f498cc5 8381 */
cdd6c482 8382 perf_event_task(child, child_ctx, 0);
a63eaf34 8383
66fff224
PZ
8384 /*
8385 * We can recurse on the same lock type through:
8386 *
cdd6c482
IM
8387 * __perf_event_exit_task()
8388 * sync_child_event()
a6fa941d
AV
8389 * put_event()
8390 * mutex_lock(&ctx->mutex)
66fff224
PZ
8391 *
8392 * But since its the parent context it won't be the same instance.
8393 */
a0507c84 8394 mutex_lock(&child_ctx->mutex);
a63eaf34 8395
ebf905fc 8396 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8397 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8398
a63eaf34
PM
8399 mutex_unlock(&child_ctx->mutex);
8400
8401 put_ctx(child_ctx);
9b51f66d
IM
8402}
8403
8dc85d54
PZ
8404/*
8405 * When a child task exits, feed back event values to parent events.
8406 */
8407void perf_event_exit_task(struct task_struct *child)
8408{
8882135b 8409 struct perf_event *event, *tmp;
8dc85d54
PZ
8410 int ctxn;
8411
8882135b
PZ
8412 mutex_lock(&child->perf_event_mutex);
8413 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8414 owner_entry) {
8415 list_del_init(&event->owner_entry);
8416
8417 /*
8418 * Ensure the list deletion is visible before we clear
8419 * the owner, closes a race against perf_release() where
8420 * we need to serialize on the owner->perf_event_mutex.
8421 */
8422 smp_wmb();
8423 event->owner = NULL;
8424 }
8425 mutex_unlock(&child->perf_event_mutex);
8426
8dc85d54
PZ
8427 for_each_task_context_nr(ctxn)
8428 perf_event_exit_task_context(child, ctxn);
8429}
8430
889ff015
FW
8431static void perf_free_event(struct perf_event *event,
8432 struct perf_event_context *ctx)
8433{
8434 struct perf_event *parent = event->parent;
8435
8436 if (WARN_ON_ONCE(!parent))
8437 return;
8438
8439 mutex_lock(&parent->child_mutex);
8440 list_del_init(&event->child_list);
8441 mutex_unlock(&parent->child_mutex);
8442
a6fa941d 8443 put_event(parent);
889ff015 8444
652884fe 8445 raw_spin_lock_irq(&ctx->lock);
8a49542c 8446 perf_group_detach(event);
889ff015 8447 list_del_event(event, ctx);
652884fe 8448 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8449 free_event(event);
8450}
8451
bbbee908 8452/*
652884fe 8453 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8454 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8455 *
8456 * Not all locks are strictly required, but take them anyway to be nice and
8457 * help out with the lockdep assertions.
bbbee908 8458 */
cdd6c482 8459void perf_event_free_task(struct task_struct *task)
bbbee908 8460{
8dc85d54 8461 struct perf_event_context *ctx;
cdd6c482 8462 struct perf_event *event, *tmp;
8dc85d54 8463 int ctxn;
bbbee908 8464
8dc85d54
PZ
8465 for_each_task_context_nr(ctxn) {
8466 ctx = task->perf_event_ctxp[ctxn];
8467 if (!ctx)
8468 continue;
bbbee908 8469
8dc85d54 8470 mutex_lock(&ctx->mutex);
bbbee908 8471again:
8dc85d54
PZ
8472 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8473 group_entry)
8474 perf_free_event(event, ctx);
bbbee908 8475
8dc85d54
PZ
8476 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8477 group_entry)
8478 perf_free_event(event, ctx);
bbbee908 8479
8dc85d54
PZ
8480 if (!list_empty(&ctx->pinned_groups) ||
8481 !list_empty(&ctx->flexible_groups))
8482 goto again;
bbbee908 8483
8dc85d54 8484 mutex_unlock(&ctx->mutex);
bbbee908 8485
8dc85d54
PZ
8486 put_ctx(ctx);
8487 }
889ff015
FW
8488}
8489
4e231c79
PZ
8490void perf_event_delayed_put(struct task_struct *task)
8491{
8492 int ctxn;
8493
8494 for_each_task_context_nr(ctxn)
8495 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8496}
8497
97dee4f3
PZ
8498/*
8499 * inherit a event from parent task to child task:
8500 */
8501static struct perf_event *
8502inherit_event(struct perf_event *parent_event,
8503 struct task_struct *parent,
8504 struct perf_event_context *parent_ctx,
8505 struct task_struct *child,
8506 struct perf_event *group_leader,
8507 struct perf_event_context *child_ctx)
8508{
1929def9 8509 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8510 struct perf_event *child_event;
cee010ec 8511 unsigned long flags;
97dee4f3
PZ
8512
8513 /*
8514 * Instead of creating recursive hierarchies of events,
8515 * we link inherited events back to the original parent,
8516 * which has a filp for sure, which we use as the reference
8517 * count:
8518 */
8519 if (parent_event->parent)
8520 parent_event = parent_event->parent;
8521
8522 child_event = perf_event_alloc(&parent_event->attr,
8523 parent_event->cpu,
d580ff86 8524 child,
97dee4f3 8525 group_leader, parent_event,
79dff51e 8526 NULL, NULL, -1);
97dee4f3
PZ
8527 if (IS_ERR(child_event))
8528 return child_event;
a6fa941d 8529
fadfe7be
JO
8530 if (is_orphaned_event(parent_event) ||
8531 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8532 free_event(child_event);
8533 return NULL;
8534 }
8535
97dee4f3
PZ
8536 get_ctx(child_ctx);
8537
8538 /*
8539 * Make the child state follow the state of the parent event,
8540 * not its attr.disabled bit. We hold the parent's mutex,
8541 * so we won't race with perf_event_{en, dis}able_family.
8542 */
1929def9 8543 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8544 child_event->state = PERF_EVENT_STATE_INACTIVE;
8545 else
8546 child_event->state = PERF_EVENT_STATE_OFF;
8547
8548 if (parent_event->attr.freq) {
8549 u64 sample_period = parent_event->hw.sample_period;
8550 struct hw_perf_event *hwc = &child_event->hw;
8551
8552 hwc->sample_period = sample_period;
8553 hwc->last_period = sample_period;
8554
8555 local64_set(&hwc->period_left, sample_period);
8556 }
8557
8558 child_event->ctx = child_ctx;
8559 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8560 child_event->overflow_handler_context
8561 = parent_event->overflow_handler_context;
97dee4f3 8562
614b6780
TG
8563 /*
8564 * Precalculate sample_data sizes
8565 */
8566 perf_event__header_size(child_event);
6844c09d 8567 perf_event__id_header_size(child_event);
614b6780 8568
97dee4f3
PZ
8569 /*
8570 * Link it up in the child's context:
8571 */
cee010ec 8572 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8573 add_event_to_ctx(child_event, child_ctx);
cee010ec 8574 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8575
97dee4f3
PZ
8576 /*
8577 * Link this into the parent event's child list
8578 */
8579 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8580 mutex_lock(&parent_event->child_mutex);
8581 list_add_tail(&child_event->child_list, &parent_event->child_list);
8582 mutex_unlock(&parent_event->child_mutex);
8583
8584 return child_event;
8585}
8586
8587static int inherit_group(struct perf_event *parent_event,
8588 struct task_struct *parent,
8589 struct perf_event_context *parent_ctx,
8590 struct task_struct *child,
8591 struct perf_event_context *child_ctx)
8592{
8593 struct perf_event *leader;
8594 struct perf_event *sub;
8595 struct perf_event *child_ctr;
8596
8597 leader = inherit_event(parent_event, parent, parent_ctx,
8598 child, NULL, child_ctx);
8599 if (IS_ERR(leader))
8600 return PTR_ERR(leader);
8601 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8602 child_ctr = inherit_event(sub, parent, parent_ctx,
8603 child, leader, child_ctx);
8604 if (IS_ERR(child_ctr))
8605 return PTR_ERR(child_ctr);
8606 }
8607 return 0;
889ff015
FW
8608}
8609
8610static int
8611inherit_task_group(struct perf_event *event, struct task_struct *parent,
8612 struct perf_event_context *parent_ctx,
8dc85d54 8613 struct task_struct *child, int ctxn,
889ff015
FW
8614 int *inherited_all)
8615{
8616 int ret;
8dc85d54 8617 struct perf_event_context *child_ctx;
889ff015
FW
8618
8619 if (!event->attr.inherit) {
8620 *inherited_all = 0;
8621 return 0;
bbbee908
PZ
8622 }
8623
fe4b04fa 8624 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
8625 if (!child_ctx) {
8626 /*
8627 * This is executed from the parent task context, so
8628 * inherit events that have been marked for cloning.
8629 * First allocate and initialize a context for the
8630 * child.
8631 */
bbbee908 8632
734df5ab 8633 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
8634 if (!child_ctx)
8635 return -ENOMEM;
bbbee908 8636
8dc85d54 8637 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
8638 }
8639
8640 ret = inherit_group(event, parent, parent_ctx,
8641 child, child_ctx);
8642
8643 if (ret)
8644 *inherited_all = 0;
8645
8646 return ret;
bbbee908
PZ
8647}
8648
9b51f66d 8649/*
cdd6c482 8650 * Initialize the perf_event context in task_struct
9b51f66d 8651 */
985c8dcb 8652static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 8653{
889ff015 8654 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
8655 struct perf_event_context *cloned_ctx;
8656 struct perf_event *event;
9b51f66d 8657 struct task_struct *parent = current;
564c2b21 8658 int inherited_all = 1;
dddd3379 8659 unsigned long flags;
6ab423e0 8660 int ret = 0;
9b51f66d 8661
8dc85d54 8662 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
8663 return 0;
8664
ad3a37de 8665 /*
25346b93
PM
8666 * If the parent's context is a clone, pin it so it won't get
8667 * swapped under us.
ad3a37de 8668 */
8dc85d54 8669 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
8670 if (!parent_ctx)
8671 return 0;
25346b93 8672
ad3a37de
PM
8673 /*
8674 * No need to check if parent_ctx != NULL here; since we saw
8675 * it non-NULL earlier, the only reason for it to become NULL
8676 * is if we exit, and since we're currently in the middle of
8677 * a fork we can't be exiting at the same time.
8678 */
ad3a37de 8679
9b51f66d
IM
8680 /*
8681 * Lock the parent list. No need to lock the child - not PID
8682 * hashed yet and not running, so nobody can access it.
8683 */
d859e29f 8684 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
8685
8686 /*
8687 * We dont have to disable NMIs - we are only looking at
8688 * the list, not manipulating it:
8689 */
889ff015 8690 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
8691 ret = inherit_task_group(event, parent, parent_ctx,
8692 child, ctxn, &inherited_all);
889ff015
FW
8693 if (ret)
8694 break;
8695 }
b93f7978 8696
dddd3379
TG
8697 /*
8698 * We can't hold ctx->lock when iterating the ->flexible_group list due
8699 * to allocations, but we need to prevent rotation because
8700 * rotate_ctx() will change the list from interrupt context.
8701 */
8702 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8703 parent_ctx->rotate_disable = 1;
8704 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8705
889ff015 8706 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
8707 ret = inherit_task_group(event, parent, parent_ctx,
8708 child, ctxn, &inherited_all);
889ff015 8709 if (ret)
9b51f66d 8710 break;
564c2b21
PM
8711 }
8712
dddd3379
TG
8713 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8714 parent_ctx->rotate_disable = 0;
dddd3379 8715
8dc85d54 8716 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 8717
05cbaa28 8718 if (child_ctx && inherited_all) {
564c2b21
PM
8719 /*
8720 * Mark the child context as a clone of the parent
8721 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
8722 *
8723 * Note that if the parent is a clone, the holding of
8724 * parent_ctx->lock avoids it from being uncloned.
564c2b21 8725 */
c5ed5145 8726 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
8727 if (cloned_ctx) {
8728 child_ctx->parent_ctx = cloned_ctx;
25346b93 8729 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
8730 } else {
8731 child_ctx->parent_ctx = parent_ctx;
8732 child_ctx->parent_gen = parent_ctx->generation;
8733 }
8734 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
8735 }
8736
c5ed5145 8737 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 8738 mutex_unlock(&parent_ctx->mutex);
6ab423e0 8739
25346b93 8740 perf_unpin_context(parent_ctx);
fe4b04fa 8741 put_ctx(parent_ctx);
ad3a37de 8742
6ab423e0 8743 return ret;
9b51f66d
IM
8744}
8745
8dc85d54
PZ
8746/*
8747 * Initialize the perf_event context in task_struct
8748 */
8749int perf_event_init_task(struct task_struct *child)
8750{
8751 int ctxn, ret;
8752
8550d7cb
ON
8753 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8754 mutex_init(&child->perf_event_mutex);
8755 INIT_LIST_HEAD(&child->perf_event_list);
8756
8dc85d54
PZ
8757 for_each_task_context_nr(ctxn) {
8758 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
8759 if (ret) {
8760 perf_event_free_task(child);
8dc85d54 8761 return ret;
6c72e350 8762 }
8dc85d54
PZ
8763 }
8764
8765 return 0;
8766}
8767
220b140b
PM
8768static void __init perf_event_init_all_cpus(void)
8769{
b28ab83c 8770 struct swevent_htable *swhash;
220b140b 8771 int cpu;
220b140b
PM
8772
8773 for_each_possible_cpu(cpu) {
b28ab83c
PZ
8774 swhash = &per_cpu(swevent_htable, cpu);
8775 mutex_init(&swhash->hlist_mutex);
2fde4f94 8776 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
8777 }
8778}
8779
0db0628d 8780static void perf_event_init_cpu(int cpu)
0793a61d 8781{
108b02cf 8782 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 8783
b28ab83c 8784 mutex_lock(&swhash->hlist_mutex);
39af6b16 8785 swhash->online = true;
4536e4d1 8786 if (swhash->hlist_refcount > 0) {
76e1d904
FW
8787 struct swevent_hlist *hlist;
8788
b28ab83c
PZ
8789 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8790 WARN_ON(!hlist);
8791 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8792 }
b28ab83c 8793 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8794}
8795
c277443c 8796#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
108b02cf 8797static void __perf_event_exit_context(void *__info)
0793a61d 8798{
226424ee 8799 struct remove_event re = { .detach_group = true };
108b02cf 8800 struct perf_event_context *ctx = __info;
0793a61d 8801
e3703f8c 8802 rcu_read_lock();
46ce0fe9
PZ
8803 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8804 __perf_remove_from_context(&re);
e3703f8c 8805 rcu_read_unlock();
0793a61d 8806}
108b02cf
PZ
8807
8808static void perf_event_exit_cpu_context(int cpu)
8809{
8810 struct perf_event_context *ctx;
8811 struct pmu *pmu;
8812 int idx;
8813
8814 idx = srcu_read_lock(&pmus_srcu);
8815 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 8816 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
8817
8818 mutex_lock(&ctx->mutex);
8819 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8820 mutex_unlock(&ctx->mutex);
8821 }
8822 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
8823}
8824
cdd6c482 8825static void perf_event_exit_cpu(int cpu)
0793a61d 8826{
b28ab83c 8827 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 8828
e3703f8c
PZ
8829 perf_event_exit_cpu_context(cpu);
8830
b28ab83c 8831 mutex_lock(&swhash->hlist_mutex);
39af6b16 8832 swhash->online = false;
b28ab83c
PZ
8833 swevent_hlist_release(swhash);
8834 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8835}
8836#else
cdd6c482 8837static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
8838#endif
8839
c277443c
PZ
8840static int
8841perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8842{
8843 int cpu;
8844
8845 for_each_online_cpu(cpu)
8846 perf_event_exit_cpu(cpu);
8847
8848 return NOTIFY_OK;
8849}
8850
8851/*
8852 * Run the perf reboot notifier at the very last possible moment so that
8853 * the generic watchdog code runs as long as possible.
8854 */
8855static struct notifier_block perf_reboot_notifier = {
8856 .notifier_call = perf_reboot,
8857 .priority = INT_MIN,
8858};
8859
0db0628d 8860static int
0793a61d
TG
8861perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8862{
8863 unsigned int cpu = (long)hcpu;
8864
4536e4d1 8865 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
8866
8867 case CPU_UP_PREPARE:
5e11637e 8868 case CPU_DOWN_FAILED:
cdd6c482 8869 perf_event_init_cpu(cpu);
0793a61d
TG
8870 break;
8871
5e11637e 8872 case CPU_UP_CANCELED:
0793a61d 8873 case CPU_DOWN_PREPARE:
cdd6c482 8874 perf_event_exit_cpu(cpu);
0793a61d 8875 break;
0793a61d
TG
8876 default:
8877 break;
8878 }
8879
8880 return NOTIFY_OK;
8881}
8882
cdd6c482 8883void __init perf_event_init(void)
0793a61d 8884{
3c502e7a
JW
8885 int ret;
8886
2e80a82a
PZ
8887 idr_init(&pmu_idr);
8888
220b140b 8889 perf_event_init_all_cpus();
b0a873eb 8890 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
8891 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8892 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8893 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
8894 perf_tp_register();
8895 perf_cpu_notifier(perf_cpu_notify);
c277443c 8896 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
8897
8898 ret = init_hw_breakpoint();
8899 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
8900
8901 /* do not patch jump label more than once per second */
8902 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
8903
8904 /*
8905 * Build time assertion that we keep the data_head at the intended
8906 * location. IOW, validation we got the __reserved[] size right.
8907 */
8908 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8909 != 1024);
0793a61d 8910}
abe43400 8911
fd979c01
CS
8912ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
8913 char *page)
8914{
8915 struct perf_pmu_events_attr *pmu_attr =
8916 container_of(attr, struct perf_pmu_events_attr, attr);
8917
8918 if (pmu_attr->event_str)
8919 return sprintf(page, "%s\n", pmu_attr->event_str);
8920
8921 return 0;
8922}
8923
abe43400
PZ
8924static int __init perf_event_sysfs_init(void)
8925{
8926 struct pmu *pmu;
8927 int ret;
8928
8929 mutex_lock(&pmus_lock);
8930
8931 ret = bus_register(&pmu_bus);
8932 if (ret)
8933 goto unlock;
8934
8935 list_for_each_entry(pmu, &pmus, entry) {
8936 if (!pmu->name || pmu->type < 0)
8937 continue;
8938
8939 ret = pmu_dev_alloc(pmu);
8940 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8941 }
8942 pmu_bus_running = 1;
8943 ret = 0;
8944
8945unlock:
8946 mutex_unlock(&pmus_lock);
8947
8948 return ret;
8949}
8950device_initcall(perf_event_sysfs_init);
e5d1367f
SE
8951
8952#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
8953static struct cgroup_subsys_state *
8954perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
8955{
8956 struct perf_cgroup *jc;
e5d1367f 8957
1b15d055 8958 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
8959 if (!jc)
8960 return ERR_PTR(-ENOMEM);
8961
e5d1367f
SE
8962 jc->info = alloc_percpu(struct perf_cgroup_info);
8963 if (!jc->info) {
8964 kfree(jc);
8965 return ERR_PTR(-ENOMEM);
8966 }
8967
e5d1367f
SE
8968 return &jc->css;
8969}
8970
eb95419b 8971static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 8972{
eb95419b
TH
8973 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8974
e5d1367f
SE
8975 free_percpu(jc->info);
8976 kfree(jc);
8977}
8978
8979static int __perf_cgroup_move(void *info)
8980{
8981 struct task_struct *task = info;
8982 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8983 return 0;
8984}
8985
eb95419b
TH
8986static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8987 struct cgroup_taskset *tset)
e5d1367f 8988{
bb9d97b6
TH
8989 struct task_struct *task;
8990
924f0d9a 8991 cgroup_taskset_for_each(task, tset)
bb9d97b6 8992 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8993}
8994
eb95419b
TH
8995static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8996 struct cgroup_subsys_state *old_css,
761b3ef5 8997 struct task_struct *task)
e5d1367f
SE
8998{
8999 /*
9000 * cgroup_exit() is called in the copy_process() failure path.
9001 * Ignore this case since the task hasn't ran yet, this avoids
9002 * trying to poke a half freed task state from generic code.
9003 */
9004 if (!(task->flags & PF_EXITING))
9005 return;
9006
bb9d97b6 9007 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9008}
9009
073219e9 9010struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9011 .css_alloc = perf_cgroup_css_alloc,
9012 .css_free = perf_cgroup_css_free,
e7e7ee2e 9013 .exit = perf_cgroup_exit,
bb9d97b6 9014 .attach = perf_cgroup_attach,
e5d1367f
SE
9015};
9016#endif /* CONFIG_CGROUP_PERF */