perf: Fix child event initial state setup
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
0793a61d 45
76369139
FW
46#include "internal.h"
47
4e193bd4
TB
48#include <asm/irq_regs.h>
49
fadfe7be
JO
50static struct workqueue_struct *perf_wq;
51
fe4b04fa 52struct remote_function_call {
e7e7ee2e
IM
53 struct task_struct *p;
54 int (*func)(void *info);
55 void *info;
56 int ret;
fe4b04fa
PZ
57};
58
59static void remote_function(void *data)
60{
61 struct remote_function_call *tfc = data;
62 struct task_struct *p = tfc->p;
63
64 if (p) {
65 tfc->ret = -EAGAIN;
66 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
67 return;
68 }
69
70 tfc->ret = tfc->func(tfc->info);
71}
72
73/**
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p: the task to evaluate
76 * @func: the function to be called
77 * @info: the function call argument
78 *
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
81 *
82 * returns: @func return value, or
83 * -ESRCH - when the process isn't running
84 * -EAGAIN - when the process moved away
85 */
86static int
87task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
88{
89 struct remote_function_call data = {
e7e7ee2e
IM
90 .p = p,
91 .func = func,
92 .info = info,
93 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
94 };
95
96 if (task_curr(p))
97 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
98
99 return data.ret;
100}
101
102/**
103 * cpu_function_call - call a function on the cpu
104 * @func: the function to be called
105 * @info: the function call argument
106 *
107 * Calls the function @func on the remote cpu.
108 *
109 * returns: @func return value or -ENXIO when the cpu is offline
110 */
111static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
112{
113 struct remote_function_call data = {
e7e7ee2e
IM
114 .p = NULL,
115 .func = func,
116 .info = info,
117 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
118 };
119
120 smp_call_function_single(cpu, remote_function, &data, 1);
121
122 return data.ret;
123}
124
f8697762
JO
125#define EVENT_OWNER_KERNEL ((void *) -1)
126
127static bool is_kernel_event(struct perf_event *event)
128{
129 return event->owner == EVENT_OWNER_KERNEL;
130}
131
e5d1367f
SE
132#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
134 PERF_FLAG_PID_CGROUP |\
135 PERF_FLAG_FD_CLOEXEC)
e5d1367f 136
bce38cd5
SE
137/*
138 * branch priv levels that need permission checks
139 */
140#define PERF_SAMPLE_BRANCH_PERM_PLM \
141 (PERF_SAMPLE_BRANCH_KERNEL |\
142 PERF_SAMPLE_BRANCH_HV)
143
0b3fcf17
SE
144enum event_type_t {
145 EVENT_FLEXIBLE = 0x1,
146 EVENT_PINNED = 0x2,
147 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
148};
149
e5d1367f
SE
150/*
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
153 */
c5905afb 154struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 155static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 156static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 157
cdd6c482
IM
158static atomic_t nr_mmap_events __read_mostly;
159static atomic_t nr_comm_events __read_mostly;
160static atomic_t nr_task_events __read_mostly;
948b26b6 161static atomic_t nr_freq_events __read_mostly;
9ee318a7 162
108b02cf
PZ
163static LIST_HEAD(pmus);
164static DEFINE_MUTEX(pmus_lock);
165static struct srcu_struct pmus_srcu;
166
0764771d 167/*
cdd6c482 168 * perf event paranoia level:
0fbdea19
IM
169 * -1 - not paranoid at all
170 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 171 * 1 - disallow cpu events for unpriv
0fbdea19 172 * 2 - disallow kernel profiling for unpriv
0764771d 173 */
cdd6c482 174int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 175
20443384
FW
176/* Minimum for 512 kiB + 1 user control page */
177int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
178
179/*
cdd6c482 180 * max perf event sample rate
df58ab24 181 */
14c63f17
DH
182#define DEFAULT_MAX_SAMPLE_RATE 100000
183#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184#define DEFAULT_CPU_TIME_MAX_PERCENT 25
185
186int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
187
188static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
189static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
190
d9494cb4
PZ
191static int perf_sample_allowed_ns __read_mostly =
192 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
193
194void update_perf_cpu_limits(void)
195{
196 u64 tmp = perf_sample_period_ns;
197
198 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 199 do_div(tmp, 100);
d9494cb4 200 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 201}
163ec435 202
9e630205
SE
203static int perf_rotate_context(struct perf_cpu_context *cpuctx);
204
163ec435
PZ
205int perf_proc_update_handler(struct ctl_table *table, int write,
206 void __user *buffer, size_t *lenp,
207 loff_t *ppos)
208{
723478c8 209 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
210
211 if (ret || !write)
212 return ret;
213
214 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
215 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
216 update_perf_cpu_limits();
217
218 return 0;
219}
220
221int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
222
223int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
224 void __user *buffer, size_t *lenp,
225 loff_t *ppos)
226{
227 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
228
229 if (ret || !write)
230 return ret;
231
232 update_perf_cpu_limits();
163ec435
PZ
233
234 return 0;
235}
1ccd1549 236
14c63f17
DH
237/*
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done. This will drop the sample rate when
241 * we detect that events are taking too long.
242 */
243#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 244static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 245
6a02ad66 246static void perf_duration_warn(struct irq_work *w)
14c63f17 247{
6a02ad66 248 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 249 u64 avg_local_sample_len;
e5302920 250 u64 local_samples_len;
6a02ad66
PZ
251
252 local_samples_len = __get_cpu_var(running_sample_length);
253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254
255 printk_ratelimited(KERN_WARNING
256 "perf interrupt took too long (%lld > %lld), lowering "
257 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 258 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
259 sysctl_perf_event_sample_rate);
260}
261
262static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
263
264void perf_sample_event_took(u64 sample_len_ns)
265{
d9494cb4 266 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
267 u64 avg_local_sample_len;
268 u64 local_samples_len;
14c63f17 269
d9494cb4 270 if (allowed_ns == 0)
14c63f17
DH
271 return;
272
273 /* decay the counter by 1 average sample */
274 local_samples_len = __get_cpu_var(running_sample_length);
275 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
276 local_samples_len += sample_len_ns;
277 __get_cpu_var(running_sample_length) = local_samples_len;
278
279 /*
280 * note: this will be biased artifically low until we have
281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
282 * from having to maintain a count.
283 */
284 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
285
d9494cb4 286 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
287 return;
288
289 if (max_samples_per_tick <= 1)
290 return;
291
292 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
293 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
294 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
295
14c63f17 296 update_perf_cpu_limits();
6a02ad66 297
cd578abb
PZ
298 if (!irq_work_queue(&perf_duration_work)) {
299 early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 "kernel.perf_event_max_sample_rate to %d\n",
301 avg_local_sample_len, allowed_ns >> 1,
302 sysctl_perf_event_sample_rate);
303 }
14c63f17
DH
304}
305
cdd6c482 306static atomic64_t perf_event_id;
a96bbc16 307
0b3fcf17
SE
308static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
309 enum event_type_t event_type);
310
311static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
312 enum event_type_t event_type,
313 struct task_struct *task);
314
315static void update_context_time(struct perf_event_context *ctx);
316static u64 perf_event_time(struct perf_event *event);
0b3fcf17 317
cdd6c482 318void __weak perf_event_print_debug(void) { }
0793a61d 319
84c79910 320extern __weak const char *perf_pmu_name(void)
0793a61d 321{
84c79910 322 return "pmu";
0793a61d
TG
323}
324
0b3fcf17
SE
325static inline u64 perf_clock(void)
326{
327 return local_clock();
328}
329
e5d1367f
SE
330static inline struct perf_cpu_context *
331__get_cpu_context(struct perf_event_context *ctx)
332{
333 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
334}
335
facc4307
PZ
336static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
337 struct perf_event_context *ctx)
338{
339 raw_spin_lock(&cpuctx->ctx.lock);
340 if (ctx)
341 raw_spin_lock(&ctx->lock);
342}
343
344static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
345 struct perf_event_context *ctx)
346{
347 if (ctx)
348 raw_spin_unlock(&ctx->lock);
349 raw_spin_unlock(&cpuctx->ctx.lock);
350}
351
e5d1367f
SE
352#ifdef CONFIG_CGROUP_PERF
353
877c6856
LZ
354/*
355 * perf_cgroup_info keeps track of time_enabled for a cgroup.
356 * This is a per-cpu dynamically allocated data structure.
357 */
358struct perf_cgroup_info {
359 u64 time;
360 u64 timestamp;
361};
362
363struct perf_cgroup {
364 struct cgroup_subsys_state css;
86e213e1 365 struct perf_cgroup_info __percpu *info;
877c6856
LZ
366};
367
3f7cce3c
SE
368/*
369 * Must ensure cgroup is pinned (css_get) before calling
370 * this function. In other words, we cannot call this function
371 * if there is no cgroup event for the current CPU context.
372 */
e5d1367f
SE
373static inline struct perf_cgroup *
374perf_cgroup_from_task(struct task_struct *task)
375{
073219e9 376 return container_of(task_css(task, perf_event_cgrp_id),
8af01f56 377 struct perf_cgroup, css);
e5d1367f
SE
378}
379
380static inline bool
381perf_cgroup_match(struct perf_event *event)
382{
383 struct perf_event_context *ctx = event->ctx;
384 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
385
ef824fa1
TH
386 /* @event doesn't care about cgroup */
387 if (!event->cgrp)
388 return true;
389
390 /* wants specific cgroup scope but @cpuctx isn't associated with any */
391 if (!cpuctx->cgrp)
392 return false;
393
394 /*
395 * Cgroup scoping is recursive. An event enabled for a cgroup is
396 * also enabled for all its descendant cgroups. If @cpuctx's
397 * cgroup is a descendant of @event's (the test covers identity
398 * case), it's a match.
399 */
400 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
401 event->cgrp->css.cgroup);
e5d1367f
SE
402}
403
e5d1367f
SE
404static inline void perf_put_cgroup(struct perf_event *event)
405{
406 css_put(&event->cgrp->css);
407}
408
409static inline void perf_detach_cgroup(struct perf_event *event)
410{
411 perf_put_cgroup(event);
412 event->cgrp = NULL;
413}
414
415static inline int is_cgroup_event(struct perf_event *event)
416{
417 return event->cgrp != NULL;
418}
419
420static inline u64 perf_cgroup_event_time(struct perf_event *event)
421{
422 struct perf_cgroup_info *t;
423
424 t = per_cpu_ptr(event->cgrp->info, event->cpu);
425 return t->time;
426}
427
428static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
429{
430 struct perf_cgroup_info *info;
431 u64 now;
432
433 now = perf_clock();
434
435 info = this_cpu_ptr(cgrp->info);
436
437 info->time += now - info->timestamp;
438 info->timestamp = now;
439}
440
441static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
442{
443 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
444 if (cgrp_out)
445 __update_cgrp_time(cgrp_out);
446}
447
448static inline void update_cgrp_time_from_event(struct perf_event *event)
449{
3f7cce3c
SE
450 struct perf_cgroup *cgrp;
451
e5d1367f 452 /*
3f7cce3c
SE
453 * ensure we access cgroup data only when needed and
454 * when we know the cgroup is pinned (css_get)
e5d1367f 455 */
3f7cce3c 456 if (!is_cgroup_event(event))
e5d1367f
SE
457 return;
458
3f7cce3c
SE
459 cgrp = perf_cgroup_from_task(current);
460 /*
461 * Do not update time when cgroup is not active
462 */
463 if (cgrp == event->cgrp)
464 __update_cgrp_time(event->cgrp);
e5d1367f
SE
465}
466
467static inline void
3f7cce3c
SE
468perf_cgroup_set_timestamp(struct task_struct *task,
469 struct perf_event_context *ctx)
e5d1367f
SE
470{
471 struct perf_cgroup *cgrp;
472 struct perf_cgroup_info *info;
473
3f7cce3c
SE
474 /*
475 * ctx->lock held by caller
476 * ensure we do not access cgroup data
477 * unless we have the cgroup pinned (css_get)
478 */
479 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
480 return;
481
482 cgrp = perf_cgroup_from_task(task);
483 info = this_cpu_ptr(cgrp->info);
3f7cce3c 484 info->timestamp = ctx->timestamp;
e5d1367f
SE
485}
486
487#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
488#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
489
490/*
491 * reschedule events based on the cgroup constraint of task.
492 *
493 * mode SWOUT : schedule out everything
494 * mode SWIN : schedule in based on cgroup for next
495 */
496void perf_cgroup_switch(struct task_struct *task, int mode)
497{
498 struct perf_cpu_context *cpuctx;
499 struct pmu *pmu;
500 unsigned long flags;
501
502 /*
503 * disable interrupts to avoid geting nr_cgroup
504 * changes via __perf_event_disable(). Also
505 * avoids preemption.
506 */
507 local_irq_save(flags);
508
509 /*
510 * we reschedule only in the presence of cgroup
511 * constrained events.
512 */
513 rcu_read_lock();
514
515 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 516 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
517 if (cpuctx->unique_pmu != pmu)
518 continue; /* ensure we process each cpuctx once */
e5d1367f 519
e5d1367f
SE
520 /*
521 * perf_cgroup_events says at least one
522 * context on this CPU has cgroup events.
523 *
524 * ctx->nr_cgroups reports the number of cgroup
525 * events for a context.
526 */
527 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
528 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
529 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
530
531 if (mode & PERF_CGROUP_SWOUT) {
532 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
533 /*
534 * must not be done before ctxswout due
535 * to event_filter_match() in event_sched_out()
536 */
537 cpuctx->cgrp = NULL;
538 }
539
540 if (mode & PERF_CGROUP_SWIN) {
e566b76e 541 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
542 /*
543 * set cgrp before ctxsw in to allow
544 * event_filter_match() to not have to pass
545 * task around
e5d1367f
SE
546 */
547 cpuctx->cgrp = perf_cgroup_from_task(task);
548 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
549 }
facc4307
PZ
550 perf_pmu_enable(cpuctx->ctx.pmu);
551 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 552 }
e5d1367f
SE
553 }
554
555 rcu_read_unlock();
556
557 local_irq_restore(flags);
558}
559
a8d757ef
SE
560static inline void perf_cgroup_sched_out(struct task_struct *task,
561 struct task_struct *next)
e5d1367f 562{
a8d757ef
SE
563 struct perf_cgroup *cgrp1;
564 struct perf_cgroup *cgrp2 = NULL;
565
566 /*
567 * we come here when we know perf_cgroup_events > 0
568 */
569 cgrp1 = perf_cgroup_from_task(task);
570
571 /*
572 * next is NULL when called from perf_event_enable_on_exec()
573 * that will systematically cause a cgroup_switch()
574 */
575 if (next)
576 cgrp2 = perf_cgroup_from_task(next);
577
578 /*
579 * only schedule out current cgroup events if we know
580 * that we are switching to a different cgroup. Otherwise,
581 * do no touch the cgroup events.
582 */
583 if (cgrp1 != cgrp2)
584 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
585}
586
a8d757ef
SE
587static inline void perf_cgroup_sched_in(struct task_struct *prev,
588 struct task_struct *task)
e5d1367f 589{
a8d757ef
SE
590 struct perf_cgroup *cgrp1;
591 struct perf_cgroup *cgrp2 = NULL;
592
593 /*
594 * we come here when we know perf_cgroup_events > 0
595 */
596 cgrp1 = perf_cgroup_from_task(task);
597
598 /* prev can never be NULL */
599 cgrp2 = perf_cgroup_from_task(prev);
600
601 /*
602 * only need to schedule in cgroup events if we are changing
603 * cgroup during ctxsw. Cgroup events were not scheduled
604 * out of ctxsw out if that was not the case.
605 */
606 if (cgrp1 != cgrp2)
607 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
608}
609
610static inline int perf_cgroup_connect(int fd, struct perf_event *event,
611 struct perf_event_attr *attr,
612 struct perf_event *group_leader)
613{
614 struct perf_cgroup *cgrp;
615 struct cgroup_subsys_state *css;
2903ff01
AV
616 struct fd f = fdget(fd);
617 int ret = 0;
e5d1367f 618
2903ff01 619 if (!f.file)
e5d1367f
SE
620 return -EBADF;
621
ec903c0c
TH
622 css = css_tryget_online_from_dir(f.file->f_dentry,
623 &perf_event_cgrp_subsys);
3db272c0
LZ
624 if (IS_ERR(css)) {
625 ret = PTR_ERR(css);
626 goto out;
627 }
e5d1367f
SE
628
629 cgrp = container_of(css, struct perf_cgroup, css);
630 event->cgrp = cgrp;
631
632 /*
633 * all events in a group must monitor
634 * the same cgroup because a task belongs
635 * to only one perf cgroup at a time
636 */
637 if (group_leader && group_leader->cgrp != cgrp) {
638 perf_detach_cgroup(event);
639 ret = -EINVAL;
e5d1367f 640 }
3db272c0 641out:
2903ff01 642 fdput(f);
e5d1367f
SE
643 return ret;
644}
645
646static inline void
647perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
648{
649 struct perf_cgroup_info *t;
650 t = per_cpu_ptr(event->cgrp->info, event->cpu);
651 event->shadow_ctx_time = now - t->timestamp;
652}
653
654static inline void
655perf_cgroup_defer_enabled(struct perf_event *event)
656{
657 /*
658 * when the current task's perf cgroup does not match
659 * the event's, we need to remember to call the
660 * perf_mark_enable() function the first time a task with
661 * a matching perf cgroup is scheduled in.
662 */
663 if (is_cgroup_event(event) && !perf_cgroup_match(event))
664 event->cgrp_defer_enabled = 1;
665}
666
667static inline void
668perf_cgroup_mark_enabled(struct perf_event *event,
669 struct perf_event_context *ctx)
670{
671 struct perf_event *sub;
672 u64 tstamp = perf_event_time(event);
673
674 if (!event->cgrp_defer_enabled)
675 return;
676
677 event->cgrp_defer_enabled = 0;
678
679 event->tstamp_enabled = tstamp - event->total_time_enabled;
680 list_for_each_entry(sub, &event->sibling_list, group_entry) {
681 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
682 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
683 sub->cgrp_defer_enabled = 0;
684 }
685 }
686}
687#else /* !CONFIG_CGROUP_PERF */
688
689static inline bool
690perf_cgroup_match(struct perf_event *event)
691{
692 return true;
693}
694
695static inline void perf_detach_cgroup(struct perf_event *event)
696{}
697
698static inline int is_cgroup_event(struct perf_event *event)
699{
700 return 0;
701}
702
703static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
704{
705 return 0;
706}
707
708static inline void update_cgrp_time_from_event(struct perf_event *event)
709{
710}
711
712static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
713{
714}
715
a8d757ef
SE
716static inline void perf_cgroup_sched_out(struct task_struct *task,
717 struct task_struct *next)
e5d1367f
SE
718{
719}
720
a8d757ef
SE
721static inline void perf_cgroup_sched_in(struct task_struct *prev,
722 struct task_struct *task)
e5d1367f
SE
723{
724}
725
726static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
727 struct perf_event_attr *attr,
728 struct perf_event *group_leader)
729{
730 return -EINVAL;
731}
732
733static inline void
3f7cce3c
SE
734perf_cgroup_set_timestamp(struct task_struct *task,
735 struct perf_event_context *ctx)
e5d1367f
SE
736{
737}
738
739void
740perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
741{
742}
743
744static inline void
745perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
746{
747}
748
749static inline u64 perf_cgroup_event_time(struct perf_event *event)
750{
751 return 0;
752}
753
754static inline void
755perf_cgroup_defer_enabled(struct perf_event *event)
756{
757}
758
759static inline void
760perf_cgroup_mark_enabled(struct perf_event *event,
761 struct perf_event_context *ctx)
762{
763}
764#endif
765
9e630205
SE
766/*
767 * set default to be dependent on timer tick just
768 * like original code
769 */
770#define PERF_CPU_HRTIMER (1000 / HZ)
771/*
772 * function must be called with interrupts disbled
773 */
774static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
775{
776 struct perf_cpu_context *cpuctx;
777 enum hrtimer_restart ret = HRTIMER_NORESTART;
778 int rotations = 0;
779
780 WARN_ON(!irqs_disabled());
781
782 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
783
784 rotations = perf_rotate_context(cpuctx);
785
786 /*
787 * arm timer if needed
788 */
789 if (rotations) {
790 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
791 ret = HRTIMER_RESTART;
792 }
793
794 return ret;
795}
796
797/* CPU is going down */
798void perf_cpu_hrtimer_cancel(int cpu)
799{
800 struct perf_cpu_context *cpuctx;
801 struct pmu *pmu;
802 unsigned long flags;
803
804 if (WARN_ON(cpu != smp_processor_id()))
805 return;
806
807 local_irq_save(flags);
808
809 rcu_read_lock();
810
811 list_for_each_entry_rcu(pmu, &pmus, entry) {
812 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
813
814 if (pmu->task_ctx_nr == perf_sw_context)
815 continue;
816
817 hrtimer_cancel(&cpuctx->hrtimer);
818 }
819
820 rcu_read_unlock();
821
822 local_irq_restore(flags);
823}
824
825static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
826{
827 struct hrtimer *hr = &cpuctx->hrtimer;
828 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 829 int timer;
9e630205
SE
830
831 /* no multiplexing needed for SW PMU */
832 if (pmu->task_ctx_nr == perf_sw_context)
833 return;
834
62b85639
SE
835 /*
836 * check default is sane, if not set then force to
837 * default interval (1/tick)
838 */
839 timer = pmu->hrtimer_interval_ms;
840 if (timer < 1)
841 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
842
843 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
844
845 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
846 hr->function = perf_cpu_hrtimer_handler;
847}
848
849static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
850{
851 struct hrtimer *hr = &cpuctx->hrtimer;
852 struct pmu *pmu = cpuctx->ctx.pmu;
853
854 /* not for SW PMU */
855 if (pmu->task_ctx_nr == perf_sw_context)
856 return;
857
858 if (hrtimer_active(hr))
859 return;
860
861 if (!hrtimer_callback_running(hr))
862 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
863 0, HRTIMER_MODE_REL_PINNED, 0);
864}
865
33696fc0 866void perf_pmu_disable(struct pmu *pmu)
9e35ad38 867{
33696fc0
PZ
868 int *count = this_cpu_ptr(pmu->pmu_disable_count);
869 if (!(*count)++)
870 pmu->pmu_disable(pmu);
9e35ad38 871}
9e35ad38 872
33696fc0 873void perf_pmu_enable(struct pmu *pmu)
9e35ad38 874{
33696fc0
PZ
875 int *count = this_cpu_ptr(pmu->pmu_disable_count);
876 if (!--(*count))
877 pmu->pmu_enable(pmu);
9e35ad38 878}
9e35ad38 879
e9d2b064
PZ
880static DEFINE_PER_CPU(struct list_head, rotation_list);
881
882/*
883 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
884 * because they're strictly cpu affine and rotate_start is called with IRQs
885 * disabled, while rotate_context is called from IRQ context.
886 */
108b02cf 887static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 888{
108b02cf 889 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 890 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 891
e9d2b064 892 WARN_ON(!irqs_disabled());
b5ab4cd5 893
d84153d6 894 if (list_empty(&cpuctx->rotation_list))
e9d2b064 895 list_add(&cpuctx->rotation_list, head);
9e35ad38 896}
9e35ad38 897
cdd6c482 898static void get_ctx(struct perf_event_context *ctx)
a63eaf34 899{
e5289d4a 900 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
901}
902
cdd6c482 903static void put_ctx(struct perf_event_context *ctx)
a63eaf34 904{
564c2b21
PM
905 if (atomic_dec_and_test(&ctx->refcount)) {
906 if (ctx->parent_ctx)
907 put_ctx(ctx->parent_ctx);
c93f7669
PM
908 if (ctx->task)
909 put_task_struct(ctx->task);
cb796ff3 910 kfree_rcu(ctx, rcu_head);
564c2b21 911 }
a63eaf34
PM
912}
913
cdd6c482 914static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
915{
916 if (ctx->parent_ctx) {
917 put_ctx(ctx->parent_ctx);
918 ctx->parent_ctx = NULL;
919 }
5a3126d4 920 ctx->generation++;
71a851b4
PZ
921}
922
6844c09d
ACM
923static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
924{
925 /*
926 * only top level events have the pid namespace they were created in
927 */
928 if (event->parent)
929 event = event->parent;
930
931 return task_tgid_nr_ns(p, event->ns);
932}
933
934static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
935{
936 /*
937 * only top level events have the pid namespace they were created in
938 */
939 if (event->parent)
940 event = event->parent;
941
942 return task_pid_nr_ns(p, event->ns);
943}
944
7f453c24 945/*
cdd6c482 946 * If we inherit events we want to return the parent event id
7f453c24
PZ
947 * to userspace.
948 */
cdd6c482 949static u64 primary_event_id(struct perf_event *event)
7f453c24 950{
cdd6c482 951 u64 id = event->id;
7f453c24 952
cdd6c482
IM
953 if (event->parent)
954 id = event->parent->id;
7f453c24
PZ
955
956 return id;
957}
958
25346b93 959/*
cdd6c482 960 * Get the perf_event_context for a task and lock it.
25346b93
PM
961 * This has to cope with with the fact that until it is locked,
962 * the context could get moved to another task.
963 */
cdd6c482 964static struct perf_event_context *
8dc85d54 965perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 966{
cdd6c482 967 struct perf_event_context *ctx;
25346b93 968
9ed6060d 969retry:
058ebd0e
PZ
970 /*
971 * One of the few rules of preemptible RCU is that one cannot do
972 * rcu_read_unlock() while holding a scheduler (or nested) lock when
973 * part of the read side critical section was preemptible -- see
974 * rcu_read_unlock_special().
975 *
976 * Since ctx->lock nests under rq->lock we must ensure the entire read
977 * side critical section is non-preemptible.
978 */
979 preempt_disable();
980 rcu_read_lock();
8dc85d54 981 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
982 if (ctx) {
983 /*
984 * If this context is a clone of another, it might
985 * get swapped for another underneath us by
cdd6c482 986 * perf_event_task_sched_out, though the
25346b93
PM
987 * rcu_read_lock() protects us from any context
988 * getting freed. Lock the context and check if it
989 * got swapped before we could get the lock, and retry
990 * if so. If we locked the right context, then it
991 * can't get swapped on us any more.
992 */
e625cce1 993 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 994 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 995 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
996 rcu_read_unlock();
997 preempt_enable();
25346b93
PM
998 goto retry;
999 }
b49a9e7e
PZ
1000
1001 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1002 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1003 ctx = NULL;
1004 }
25346b93
PM
1005 }
1006 rcu_read_unlock();
058ebd0e 1007 preempt_enable();
25346b93
PM
1008 return ctx;
1009}
1010
1011/*
1012 * Get the context for a task and increment its pin_count so it
1013 * can't get swapped to another task. This also increments its
1014 * reference count so that the context can't get freed.
1015 */
8dc85d54
PZ
1016static struct perf_event_context *
1017perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1018{
cdd6c482 1019 struct perf_event_context *ctx;
25346b93
PM
1020 unsigned long flags;
1021
8dc85d54 1022 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1023 if (ctx) {
1024 ++ctx->pin_count;
e625cce1 1025 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1026 }
1027 return ctx;
1028}
1029
cdd6c482 1030static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1031{
1032 unsigned long flags;
1033
e625cce1 1034 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1035 --ctx->pin_count;
e625cce1 1036 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1037}
1038
f67218c3
PZ
1039/*
1040 * Update the record of the current time in a context.
1041 */
1042static void update_context_time(struct perf_event_context *ctx)
1043{
1044 u64 now = perf_clock();
1045
1046 ctx->time += now - ctx->timestamp;
1047 ctx->timestamp = now;
1048}
1049
4158755d
SE
1050static u64 perf_event_time(struct perf_event *event)
1051{
1052 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1053
1054 if (is_cgroup_event(event))
1055 return perf_cgroup_event_time(event);
1056
4158755d
SE
1057 return ctx ? ctx->time : 0;
1058}
1059
f67218c3
PZ
1060/*
1061 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1062 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1063 */
1064static void update_event_times(struct perf_event *event)
1065{
1066 struct perf_event_context *ctx = event->ctx;
1067 u64 run_end;
1068
1069 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1070 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1071 return;
e5d1367f
SE
1072 /*
1073 * in cgroup mode, time_enabled represents
1074 * the time the event was enabled AND active
1075 * tasks were in the monitored cgroup. This is
1076 * independent of the activity of the context as
1077 * there may be a mix of cgroup and non-cgroup events.
1078 *
1079 * That is why we treat cgroup events differently
1080 * here.
1081 */
1082 if (is_cgroup_event(event))
46cd6a7f 1083 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1084 else if (ctx->is_active)
1085 run_end = ctx->time;
acd1d7c1
PZ
1086 else
1087 run_end = event->tstamp_stopped;
1088
1089 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1090
1091 if (event->state == PERF_EVENT_STATE_INACTIVE)
1092 run_end = event->tstamp_stopped;
1093 else
4158755d 1094 run_end = perf_event_time(event);
f67218c3
PZ
1095
1096 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1097
f67218c3
PZ
1098}
1099
96c21a46
PZ
1100/*
1101 * Update total_time_enabled and total_time_running for all events in a group.
1102 */
1103static void update_group_times(struct perf_event *leader)
1104{
1105 struct perf_event *event;
1106
1107 update_event_times(leader);
1108 list_for_each_entry(event, &leader->sibling_list, group_entry)
1109 update_event_times(event);
1110}
1111
889ff015
FW
1112static struct list_head *
1113ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1114{
1115 if (event->attr.pinned)
1116 return &ctx->pinned_groups;
1117 else
1118 return &ctx->flexible_groups;
1119}
1120
fccc714b 1121/*
cdd6c482 1122 * Add a event from the lists for its context.
fccc714b
PZ
1123 * Must be called with ctx->mutex and ctx->lock held.
1124 */
04289bb9 1125static void
cdd6c482 1126list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1127{
8a49542c
PZ
1128 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1129 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1130
1131 /*
8a49542c
PZ
1132 * If we're a stand alone event or group leader, we go to the context
1133 * list, group events are kept attached to the group so that
1134 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1135 */
8a49542c 1136 if (event->group_leader == event) {
889ff015
FW
1137 struct list_head *list;
1138
d6f962b5
FW
1139 if (is_software_event(event))
1140 event->group_flags |= PERF_GROUP_SOFTWARE;
1141
889ff015
FW
1142 list = ctx_group_list(event, ctx);
1143 list_add_tail(&event->group_entry, list);
5c148194 1144 }
592903cd 1145
08309379 1146 if (is_cgroup_event(event))
e5d1367f 1147 ctx->nr_cgroups++;
e5d1367f 1148
d010b332
SE
1149 if (has_branch_stack(event))
1150 ctx->nr_branch_stack++;
1151
cdd6c482 1152 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1153 if (!ctx->nr_events)
108b02cf 1154 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1155 ctx->nr_events++;
1156 if (event->attr.inherit_stat)
bfbd3381 1157 ctx->nr_stat++;
5a3126d4
PZ
1158
1159 ctx->generation++;
04289bb9
IM
1160}
1161
0231bb53
JO
1162/*
1163 * Initialize event state based on the perf_event_attr::disabled.
1164 */
1165static inline void perf_event__state_init(struct perf_event *event)
1166{
1167 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1168 PERF_EVENT_STATE_INACTIVE;
1169}
1170
c320c7b7
ACM
1171/*
1172 * Called at perf_event creation and when events are attached/detached from a
1173 * group.
1174 */
1175static void perf_event__read_size(struct perf_event *event)
1176{
1177 int entry = sizeof(u64); /* value */
1178 int size = 0;
1179 int nr = 1;
1180
1181 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1182 size += sizeof(u64);
1183
1184 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1185 size += sizeof(u64);
1186
1187 if (event->attr.read_format & PERF_FORMAT_ID)
1188 entry += sizeof(u64);
1189
1190 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1191 nr += event->group_leader->nr_siblings;
1192 size += sizeof(u64);
1193 }
1194
1195 size += entry * nr;
1196 event->read_size = size;
1197}
1198
1199static void perf_event__header_size(struct perf_event *event)
1200{
1201 struct perf_sample_data *data;
1202 u64 sample_type = event->attr.sample_type;
1203 u16 size = 0;
1204
1205 perf_event__read_size(event);
1206
1207 if (sample_type & PERF_SAMPLE_IP)
1208 size += sizeof(data->ip);
1209
6844c09d
ACM
1210 if (sample_type & PERF_SAMPLE_ADDR)
1211 size += sizeof(data->addr);
1212
1213 if (sample_type & PERF_SAMPLE_PERIOD)
1214 size += sizeof(data->period);
1215
c3feedf2
AK
1216 if (sample_type & PERF_SAMPLE_WEIGHT)
1217 size += sizeof(data->weight);
1218
6844c09d
ACM
1219 if (sample_type & PERF_SAMPLE_READ)
1220 size += event->read_size;
1221
d6be9ad6
SE
1222 if (sample_type & PERF_SAMPLE_DATA_SRC)
1223 size += sizeof(data->data_src.val);
1224
fdfbbd07
AK
1225 if (sample_type & PERF_SAMPLE_TRANSACTION)
1226 size += sizeof(data->txn);
1227
6844c09d
ACM
1228 event->header_size = size;
1229}
1230
1231static void perf_event__id_header_size(struct perf_event *event)
1232{
1233 struct perf_sample_data *data;
1234 u64 sample_type = event->attr.sample_type;
1235 u16 size = 0;
1236
c320c7b7
ACM
1237 if (sample_type & PERF_SAMPLE_TID)
1238 size += sizeof(data->tid_entry);
1239
1240 if (sample_type & PERF_SAMPLE_TIME)
1241 size += sizeof(data->time);
1242
ff3d527c
AH
1243 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1244 size += sizeof(data->id);
1245
c320c7b7
ACM
1246 if (sample_type & PERF_SAMPLE_ID)
1247 size += sizeof(data->id);
1248
1249 if (sample_type & PERF_SAMPLE_STREAM_ID)
1250 size += sizeof(data->stream_id);
1251
1252 if (sample_type & PERF_SAMPLE_CPU)
1253 size += sizeof(data->cpu_entry);
1254
6844c09d 1255 event->id_header_size = size;
c320c7b7
ACM
1256}
1257
8a49542c
PZ
1258static void perf_group_attach(struct perf_event *event)
1259{
c320c7b7 1260 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1261
74c3337c
PZ
1262 /*
1263 * We can have double attach due to group movement in perf_event_open.
1264 */
1265 if (event->attach_state & PERF_ATTACH_GROUP)
1266 return;
1267
8a49542c
PZ
1268 event->attach_state |= PERF_ATTACH_GROUP;
1269
1270 if (group_leader == event)
1271 return;
1272
1273 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1274 !is_software_event(event))
1275 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1276
1277 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1278 group_leader->nr_siblings++;
c320c7b7
ACM
1279
1280 perf_event__header_size(group_leader);
1281
1282 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1283 perf_event__header_size(pos);
8a49542c
PZ
1284}
1285
a63eaf34 1286/*
cdd6c482 1287 * Remove a event from the lists for its context.
fccc714b 1288 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1289 */
04289bb9 1290static void
cdd6c482 1291list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1292{
68cacd29 1293 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1294 /*
1295 * We can have double detach due to exit/hot-unplug + close.
1296 */
1297 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1298 return;
8a49542c
PZ
1299
1300 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1301
68cacd29 1302 if (is_cgroup_event(event)) {
e5d1367f 1303 ctx->nr_cgroups--;
68cacd29
SE
1304 cpuctx = __get_cpu_context(ctx);
1305 /*
1306 * if there are no more cgroup events
1307 * then cler cgrp to avoid stale pointer
1308 * in update_cgrp_time_from_cpuctx()
1309 */
1310 if (!ctx->nr_cgroups)
1311 cpuctx->cgrp = NULL;
1312 }
e5d1367f 1313
d010b332
SE
1314 if (has_branch_stack(event))
1315 ctx->nr_branch_stack--;
1316
cdd6c482
IM
1317 ctx->nr_events--;
1318 if (event->attr.inherit_stat)
bfbd3381 1319 ctx->nr_stat--;
8bc20959 1320
cdd6c482 1321 list_del_rcu(&event->event_entry);
04289bb9 1322
8a49542c
PZ
1323 if (event->group_leader == event)
1324 list_del_init(&event->group_entry);
5c148194 1325
96c21a46 1326 update_group_times(event);
b2e74a26
SE
1327
1328 /*
1329 * If event was in error state, then keep it
1330 * that way, otherwise bogus counts will be
1331 * returned on read(). The only way to get out
1332 * of error state is by explicit re-enabling
1333 * of the event
1334 */
1335 if (event->state > PERF_EVENT_STATE_OFF)
1336 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1337
1338 ctx->generation++;
050735b0
PZ
1339}
1340
8a49542c 1341static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1342{
1343 struct perf_event *sibling, *tmp;
8a49542c
PZ
1344 struct list_head *list = NULL;
1345
1346 /*
1347 * We can have double detach due to exit/hot-unplug + close.
1348 */
1349 if (!(event->attach_state & PERF_ATTACH_GROUP))
1350 return;
1351
1352 event->attach_state &= ~PERF_ATTACH_GROUP;
1353
1354 /*
1355 * If this is a sibling, remove it from its group.
1356 */
1357 if (event->group_leader != event) {
1358 list_del_init(&event->group_entry);
1359 event->group_leader->nr_siblings--;
c320c7b7 1360 goto out;
8a49542c
PZ
1361 }
1362
1363 if (!list_empty(&event->group_entry))
1364 list = &event->group_entry;
2e2af50b 1365
04289bb9 1366 /*
cdd6c482
IM
1367 * If this was a group event with sibling events then
1368 * upgrade the siblings to singleton events by adding them
8a49542c 1369 * to whatever list we are on.
04289bb9 1370 */
cdd6c482 1371 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1372 if (list)
1373 list_move_tail(&sibling->group_entry, list);
04289bb9 1374 sibling->group_leader = sibling;
d6f962b5
FW
1375
1376 /* Inherit group flags from the previous leader */
1377 sibling->group_flags = event->group_flags;
04289bb9 1378 }
c320c7b7
ACM
1379
1380out:
1381 perf_event__header_size(event->group_leader);
1382
1383 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1384 perf_event__header_size(tmp);
04289bb9
IM
1385}
1386
fadfe7be
JO
1387/*
1388 * User event without the task.
1389 */
1390static bool is_orphaned_event(struct perf_event *event)
1391{
1392 return event && !is_kernel_event(event) && !event->owner;
1393}
1394
1395/*
1396 * Event has a parent but parent's task finished and it's
1397 * alive only because of children holding refference.
1398 */
1399static bool is_orphaned_child(struct perf_event *event)
1400{
1401 return is_orphaned_event(event->parent);
1402}
1403
1404static void orphans_remove_work(struct work_struct *work);
1405
1406static void schedule_orphans_remove(struct perf_event_context *ctx)
1407{
1408 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1409 return;
1410
1411 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1412 get_ctx(ctx);
1413 ctx->orphans_remove_sched = true;
1414 }
1415}
1416
1417static int __init perf_workqueue_init(void)
1418{
1419 perf_wq = create_singlethread_workqueue("perf");
1420 WARN(!perf_wq, "failed to create perf workqueue\n");
1421 return perf_wq ? 0 : -1;
1422}
1423
1424core_initcall(perf_workqueue_init);
1425
fa66f07a
SE
1426static inline int
1427event_filter_match(struct perf_event *event)
1428{
e5d1367f
SE
1429 return (event->cpu == -1 || event->cpu == smp_processor_id())
1430 && perf_cgroup_match(event);
fa66f07a
SE
1431}
1432
9ffcfa6f
SE
1433static void
1434event_sched_out(struct perf_event *event,
3b6f9e5c 1435 struct perf_cpu_context *cpuctx,
cdd6c482 1436 struct perf_event_context *ctx)
3b6f9e5c 1437{
4158755d 1438 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1439 u64 delta;
1440 /*
1441 * An event which could not be activated because of
1442 * filter mismatch still needs to have its timings
1443 * maintained, otherwise bogus information is return
1444 * via read() for time_enabled, time_running:
1445 */
1446 if (event->state == PERF_EVENT_STATE_INACTIVE
1447 && !event_filter_match(event)) {
e5d1367f 1448 delta = tstamp - event->tstamp_stopped;
fa66f07a 1449 event->tstamp_running += delta;
4158755d 1450 event->tstamp_stopped = tstamp;
fa66f07a
SE
1451 }
1452
cdd6c482 1453 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1454 return;
3b6f9e5c 1455
44377277
AS
1456 perf_pmu_disable(event->pmu);
1457
cdd6c482
IM
1458 event->state = PERF_EVENT_STATE_INACTIVE;
1459 if (event->pending_disable) {
1460 event->pending_disable = 0;
1461 event->state = PERF_EVENT_STATE_OFF;
970892a9 1462 }
4158755d 1463 event->tstamp_stopped = tstamp;
a4eaf7f1 1464 event->pmu->del(event, 0);
cdd6c482 1465 event->oncpu = -1;
3b6f9e5c 1466
cdd6c482 1467 if (!is_software_event(event))
3b6f9e5c
PM
1468 cpuctx->active_oncpu--;
1469 ctx->nr_active--;
0f5a2601
PZ
1470 if (event->attr.freq && event->attr.sample_freq)
1471 ctx->nr_freq--;
cdd6c482 1472 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1473 cpuctx->exclusive = 0;
44377277 1474
fadfe7be
JO
1475 if (is_orphaned_child(event))
1476 schedule_orphans_remove(ctx);
1477
44377277 1478 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1479}
1480
d859e29f 1481static void
cdd6c482 1482group_sched_out(struct perf_event *group_event,
d859e29f 1483 struct perf_cpu_context *cpuctx,
cdd6c482 1484 struct perf_event_context *ctx)
d859e29f 1485{
cdd6c482 1486 struct perf_event *event;
fa66f07a 1487 int state = group_event->state;
d859e29f 1488
cdd6c482 1489 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1490
1491 /*
1492 * Schedule out siblings (if any):
1493 */
cdd6c482
IM
1494 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1495 event_sched_out(event, cpuctx, ctx);
d859e29f 1496
fa66f07a 1497 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1498 cpuctx->exclusive = 0;
1499}
1500
46ce0fe9
PZ
1501struct remove_event {
1502 struct perf_event *event;
1503 bool detach_group;
1504};
1505
0793a61d 1506/*
cdd6c482 1507 * Cross CPU call to remove a performance event
0793a61d 1508 *
cdd6c482 1509 * We disable the event on the hardware level first. After that we
0793a61d
TG
1510 * remove it from the context list.
1511 */
fe4b04fa 1512static int __perf_remove_from_context(void *info)
0793a61d 1513{
46ce0fe9
PZ
1514 struct remove_event *re = info;
1515 struct perf_event *event = re->event;
cdd6c482 1516 struct perf_event_context *ctx = event->ctx;
108b02cf 1517 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1518
e625cce1 1519 raw_spin_lock(&ctx->lock);
cdd6c482 1520 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1521 if (re->detach_group)
1522 perf_group_detach(event);
cdd6c482 1523 list_del_event(event, ctx);
64ce3126
PZ
1524 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1525 ctx->is_active = 0;
1526 cpuctx->task_ctx = NULL;
1527 }
e625cce1 1528 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1529
1530 return 0;
0793a61d
TG
1531}
1532
1533
1534/*
cdd6c482 1535 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1536 *
cdd6c482 1537 * CPU events are removed with a smp call. For task events we only
0793a61d 1538 * call when the task is on a CPU.
c93f7669 1539 *
cdd6c482
IM
1540 * If event->ctx is a cloned context, callers must make sure that
1541 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1542 * remains valid. This is OK when called from perf_release since
1543 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1544 * When called from perf_event_exit_task, it's OK because the
c93f7669 1545 * context has been detached from its task.
0793a61d 1546 */
46ce0fe9 1547static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1548{
cdd6c482 1549 struct perf_event_context *ctx = event->ctx;
0793a61d 1550 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1551 struct remove_event re = {
1552 .event = event,
1553 .detach_group = detach_group,
1554 };
0793a61d 1555
fe4b04fa
PZ
1556 lockdep_assert_held(&ctx->mutex);
1557
0793a61d
TG
1558 if (!task) {
1559 /*
cdd6c482 1560 * Per cpu events are removed via an smp call and
af901ca1 1561 * the removal is always successful.
0793a61d 1562 */
46ce0fe9 1563 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1564 return;
1565 }
1566
1567retry:
46ce0fe9 1568 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1569 return;
0793a61d 1570
e625cce1 1571 raw_spin_lock_irq(&ctx->lock);
0793a61d 1572 /*
fe4b04fa
PZ
1573 * If we failed to find a running task, but find the context active now
1574 * that we've acquired the ctx->lock, retry.
0793a61d 1575 */
fe4b04fa 1576 if (ctx->is_active) {
e625cce1 1577 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1578 goto retry;
1579 }
1580
1581 /*
fe4b04fa
PZ
1582 * Since the task isn't running, its safe to remove the event, us
1583 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1584 */
46ce0fe9
PZ
1585 if (detach_group)
1586 perf_group_detach(event);
fe4b04fa 1587 list_del_event(event, ctx);
e625cce1 1588 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1589}
1590
d859e29f 1591/*
cdd6c482 1592 * Cross CPU call to disable a performance event
d859e29f 1593 */
500ad2d8 1594int __perf_event_disable(void *info)
d859e29f 1595{
cdd6c482 1596 struct perf_event *event = info;
cdd6c482 1597 struct perf_event_context *ctx = event->ctx;
108b02cf 1598 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1599
1600 /*
cdd6c482
IM
1601 * If this is a per-task event, need to check whether this
1602 * event's task is the current task on this cpu.
fe4b04fa
PZ
1603 *
1604 * Can trigger due to concurrent perf_event_context_sched_out()
1605 * flipping contexts around.
d859e29f 1606 */
665c2142 1607 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1608 return -EINVAL;
d859e29f 1609
e625cce1 1610 raw_spin_lock(&ctx->lock);
d859e29f
PM
1611
1612 /*
cdd6c482 1613 * If the event is on, turn it off.
d859e29f
PM
1614 * If it is in error state, leave it in error state.
1615 */
cdd6c482 1616 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1617 update_context_time(ctx);
e5d1367f 1618 update_cgrp_time_from_event(event);
cdd6c482
IM
1619 update_group_times(event);
1620 if (event == event->group_leader)
1621 group_sched_out(event, cpuctx, ctx);
d859e29f 1622 else
cdd6c482
IM
1623 event_sched_out(event, cpuctx, ctx);
1624 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1625 }
1626
e625cce1 1627 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1628
1629 return 0;
d859e29f
PM
1630}
1631
1632/*
cdd6c482 1633 * Disable a event.
c93f7669 1634 *
cdd6c482
IM
1635 * If event->ctx is a cloned context, callers must make sure that
1636 * every task struct that event->ctx->task could possibly point to
c93f7669 1637 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1638 * perf_event_for_each_child or perf_event_for_each because they
1639 * hold the top-level event's child_mutex, so any descendant that
1640 * goes to exit will block in sync_child_event.
1641 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1642 * is the current context on this CPU and preemption is disabled,
cdd6c482 1643 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1644 */
44234adc 1645void perf_event_disable(struct perf_event *event)
d859e29f 1646{
cdd6c482 1647 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1648 struct task_struct *task = ctx->task;
1649
1650 if (!task) {
1651 /*
cdd6c482 1652 * Disable the event on the cpu that it's on
d859e29f 1653 */
fe4b04fa 1654 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1655 return;
1656 }
1657
9ed6060d 1658retry:
fe4b04fa
PZ
1659 if (!task_function_call(task, __perf_event_disable, event))
1660 return;
d859e29f 1661
e625cce1 1662 raw_spin_lock_irq(&ctx->lock);
d859e29f 1663 /*
cdd6c482 1664 * If the event is still active, we need to retry the cross-call.
d859e29f 1665 */
cdd6c482 1666 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1667 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1668 /*
1669 * Reload the task pointer, it might have been changed by
1670 * a concurrent perf_event_context_sched_out().
1671 */
1672 task = ctx->task;
d859e29f
PM
1673 goto retry;
1674 }
1675
1676 /*
1677 * Since we have the lock this context can't be scheduled
1678 * in, so we can change the state safely.
1679 */
cdd6c482
IM
1680 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1681 update_group_times(event);
1682 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1683 }
e625cce1 1684 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1685}
dcfce4a0 1686EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1687
e5d1367f
SE
1688static void perf_set_shadow_time(struct perf_event *event,
1689 struct perf_event_context *ctx,
1690 u64 tstamp)
1691{
1692 /*
1693 * use the correct time source for the time snapshot
1694 *
1695 * We could get by without this by leveraging the
1696 * fact that to get to this function, the caller
1697 * has most likely already called update_context_time()
1698 * and update_cgrp_time_xx() and thus both timestamp
1699 * are identical (or very close). Given that tstamp is,
1700 * already adjusted for cgroup, we could say that:
1701 * tstamp - ctx->timestamp
1702 * is equivalent to
1703 * tstamp - cgrp->timestamp.
1704 *
1705 * Then, in perf_output_read(), the calculation would
1706 * work with no changes because:
1707 * - event is guaranteed scheduled in
1708 * - no scheduled out in between
1709 * - thus the timestamp would be the same
1710 *
1711 * But this is a bit hairy.
1712 *
1713 * So instead, we have an explicit cgroup call to remain
1714 * within the time time source all along. We believe it
1715 * is cleaner and simpler to understand.
1716 */
1717 if (is_cgroup_event(event))
1718 perf_cgroup_set_shadow_time(event, tstamp);
1719 else
1720 event->shadow_ctx_time = tstamp - ctx->timestamp;
1721}
1722
4fe757dd
PZ
1723#define MAX_INTERRUPTS (~0ULL)
1724
1725static void perf_log_throttle(struct perf_event *event, int enable);
1726
235c7fc7 1727static int
9ffcfa6f 1728event_sched_in(struct perf_event *event,
235c7fc7 1729 struct perf_cpu_context *cpuctx,
6e37738a 1730 struct perf_event_context *ctx)
235c7fc7 1731{
4158755d 1732 u64 tstamp = perf_event_time(event);
44377277 1733 int ret = 0;
4158755d 1734
63342411
PZ
1735 lockdep_assert_held(&ctx->lock);
1736
cdd6c482 1737 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1738 return 0;
1739
cdd6c482 1740 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1741 event->oncpu = smp_processor_id();
4fe757dd
PZ
1742
1743 /*
1744 * Unthrottle events, since we scheduled we might have missed several
1745 * ticks already, also for a heavily scheduling task there is little
1746 * guarantee it'll get a tick in a timely manner.
1747 */
1748 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1749 perf_log_throttle(event, 1);
1750 event->hw.interrupts = 0;
1751 }
1752
235c7fc7
IM
1753 /*
1754 * The new state must be visible before we turn it on in the hardware:
1755 */
1756 smp_wmb();
1757
44377277
AS
1758 perf_pmu_disable(event->pmu);
1759
a4eaf7f1 1760 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1761 event->state = PERF_EVENT_STATE_INACTIVE;
1762 event->oncpu = -1;
44377277
AS
1763 ret = -EAGAIN;
1764 goto out;
235c7fc7
IM
1765 }
1766
4158755d 1767 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1768
e5d1367f 1769 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1770
cdd6c482 1771 if (!is_software_event(event))
3b6f9e5c 1772 cpuctx->active_oncpu++;
235c7fc7 1773 ctx->nr_active++;
0f5a2601
PZ
1774 if (event->attr.freq && event->attr.sample_freq)
1775 ctx->nr_freq++;
235c7fc7 1776
cdd6c482 1777 if (event->attr.exclusive)
3b6f9e5c
PM
1778 cpuctx->exclusive = 1;
1779
fadfe7be
JO
1780 if (is_orphaned_child(event))
1781 schedule_orphans_remove(ctx);
1782
44377277
AS
1783out:
1784 perf_pmu_enable(event->pmu);
1785
1786 return ret;
235c7fc7
IM
1787}
1788
6751b71e 1789static int
cdd6c482 1790group_sched_in(struct perf_event *group_event,
6751b71e 1791 struct perf_cpu_context *cpuctx,
6e37738a 1792 struct perf_event_context *ctx)
6751b71e 1793{
6bde9b6c 1794 struct perf_event *event, *partial_group = NULL;
4a234593 1795 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1796 u64 now = ctx->time;
1797 bool simulate = false;
6751b71e 1798
cdd6c482 1799 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1800 return 0;
1801
ad5133b7 1802 pmu->start_txn(pmu);
6bde9b6c 1803
9ffcfa6f 1804 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1805 pmu->cancel_txn(pmu);
9e630205 1806 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1807 return -EAGAIN;
90151c35 1808 }
6751b71e
PM
1809
1810 /*
1811 * Schedule in siblings as one group (if any):
1812 */
cdd6c482 1813 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1814 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1815 partial_group = event;
6751b71e
PM
1816 goto group_error;
1817 }
1818 }
1819
9ffcfa6f 1820 if (!pmu->commit_txn(pmu))
6e85158c 1821 return 0;
9ffcfa6f 1822
6751b71e
PM
1823group_error:
1824 /*
1825 * Groups can be scheduled in as one unit only, so undo any
1826 * partial group before returning:
d7842da4
SE
1827 * The events up to the failed event are scheduled out normally,
1828 * tstamp_stopped will be updated.
1829 *
1830 * The failed events and the remaining siblings need to have
1831 * their timings updated as if they had gone thru event_sched_in()
1832 * and event_sched_out(). This is required to get consistent timings
1833 * across the group. This also takes care of the case where the group
1834 * could never be scheduled by ensuring tstamp_stopped is set to mark
1835 * the time the event was actually stopped, such that time delta
1836 * calculation in update_event_times() is correct.
6751b71e 1837 */
cdd6c482
IM
1838 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1839 if (event == partial_group)
d7842da4
SE
1840 simulate = true;
1841
1842 if (simulate) {
1843 event->tstamp_running += now - event->tstamp_stopped;
1844 event->tstamp_stopped = now;
1845 } else {
1846 event_sched_out(event, cpuctx, ctx);
1847 }
6751b71e 1848 }
9ffcfa6f 1849 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1850
ad5133b7 1851 pmu->cancel_txn(pmu);
90151c35 1852
9e630205
SE
1853 perf_cpu_hrtimer_restart(cpuctx);
1854
6751b71e
PM
1855 return -EAGAIN;
1856}
1857
3b6f9e5c 1858/*
cdd6c482 1859 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1860 */
cdd6c482 1861static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1862 struct perf_cpu_context *cpuctx,
1863 int can_add_hw)
1864{
1865 /*
cdd6c482 1866 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1867 */
d6f962b5 1868 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1869 return 1;
1870 /*
1871 * If an exclusive group is already on, no other hardware
cdd6c482 1872 * events can go on.
3b6f9e5c
PM
1873 */
1874 if (cpuctx->exclusive)
1875 return 0;
1876 /*
1877 * If this group is exclusive and there are already
cdd6c482 1878 * events on the CPU, it can't go on.
3b6f9e5c 1879 */
cdd6c482 1880 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1881 return 0;
1882 /*
1883 * Otherwise, try to add it if all previous groups were able
1884 * to go on.
1885 */
1886 return can_add_hw;
1887}
1888
cdd6c482
IM
1889static void add_event_to_ctx(struct perf_event *event,
1890 struct perf_event_context *ctx)
53cfbf59 1891{
4158755d
SE
1892 u64 tstamp = perf_event_time(event);
1893
cdd6c482 1894 list_add_event(event, ctx);
8a49542c 1895 perf_group_attach(event);
4158755d
SE
1896 event->tstamp_enabled = tstamp;
1897 event->tstamp_running = tstamp;
1898 event->tstamp_stopped = tstamp;
53cfbf59
PM
1899}
1900
2c29ef0f
PZ
1901static void task_ctx_sched_out(struct perf_event_context *ctx);
1902static void
1903ctx_sched_in(struct perf_event_context *ctx,
1904 struct perf_cpu_context *cpuctx,
1905 enum event_type_t event_type,
1906 struct task_struct *task);
fe4b04fa 1907
dce5855b
PZ
1908static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1909 struct perf_event_context *ctx,
1910 struct task_struct *task)
1911{
1912 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1913 if (ctx)
1914 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1915 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1916 if (ctx)
1917 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1918}
1919
0793a61d 1920/*
cdd6c482 1921 * Cross CPU call to install and enable a performance event
682076ae
PZ
1922 *
1923 * Must be called with ctx->mutex held
0793a61d 1924 */
fe4b04fa 1925static int __perf_install_in_context(void *info)
0793a61d 1926{
cdd6c482
IM
1927 struct perf_event *event = info;
1928 struct perf_event_context *ctx = event->ctx;
108b02cf 1929 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1930 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1931 struct task_struct *task = current;
1932
b58f6b0d 1933 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1934 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1935
1936 /*
2c29ef0f 1937 * If there was an active task_ctx schedule it out.
0793a61d 1938 */
b58f6b0d 1939 if (task_ctx)
2c29ef0f 1940 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1941
1942 /*
1943 * If the context we're installing events in is not the
1944 * active task_ctx, flip them.
1945 */
1946 if (ctx->task && task_ctx != ctx) {
1947 if (task_ctx)
1948 raw_spin_unlock(&task_ctx->lock);
1949 raw_spin_lock(&ctx->lock);
1950 task_ctx = ctx;
1951 }
1952
1953 if (task_ctx) {
1954 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1955 task = task_ctx->task;
1956 }
b58f6b0d 1957
2c29ef0f 1958 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1959
4af4998b 1960 update_context_time(ctx);
e5d1367f
SE
1961 /*
1962 * update cgrp time only if current cgrp
1963 * matches event->cgrp. Must be done before
1964 * calling add_event_to_ctx()
1965 */
1966 update_cgrp_time_from_event(event);
0793a61d 1967
cdd6c482 1968 add_event_to_ctx(event, ctx);
0793a61d 1969
d859e29f 1970 /*
2c29ef0f 1971 * Schedule everything back in
d859e29f 1972 */
dce5855b 1973 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1974
1975 perf_pmu_enable(cpuctx->ctx.pmu);
1976 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1977
1978 return 0;
0793a61d
TG
1979}
1980
1981/*
cdd6c482 1982 * Attach a performance event to a context
0793a61d 1983 *
cdd6c482
IM
1984 * First we add the event to the list with the hardware enable bit
1985 * in event->hw_config cleared.
0793a61d 1986 *
cdd6c482 1987 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1988 * call to enable it in the task context. The task might have been
1989 * scheduled away, but we check this in the smp call again.
1990 */
1991static void
cdd6c482
IM
1992perf_install_in_context(struct perf_event_context *ctx,
1993 struct perf_event *event,
0793a61d
TG
1994 int cpu)
1995{
1996 struct task_struct *task = ctx->task;
1997
fe4b04fa
PZ
1998 lockdep_assert_held(&ctx->mutex);
1999
c3f00c70 2000 event->ctx = ctx;
0cda4c02
YZ
2001 if (event->cpu != -1)
2002 event->cpu = cpu;
c3f00c70 2003
0793a61d
TG
2004 if (!task) {
2005 /*
cdd6c482 2006 * Per cpu events are installed via an smp call and
af901ca1 2007 * the install is always successful.
0793a61d 2008 */
fe4b04fa 2009 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2010 return;
2011 }
2012
0793a61d 2013retry:
fe4b04fa
PZ
2014 if (!task_function_call(task, __perf_install_in_context, event))
2015 return;
0793a61d 2016
e625cce1 2017 raw_spin_lock_irq(&ctx->lock);
0793a61d 2018 /*
fe4b04fa
PZ
2019 * If we failed to find a running task, but find the context active now
2020 * that we've acquired the ctx->lock, retry.
0793a61d 2021 */
fe4b04fa 2022 if (ctx->is_active) {
e625cce1 2023 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2024 goto retry;
2025 }
2026
2027 /*
fe4b04fa
PZ
2028 * Since the task isn't running, its safe to add the event, us holding
2029 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2030 */
fe4b04fa 2031 add_event_to_ctx(event, ctx);
e625cce1 2032 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2033}
2034
fa289bec 2035/*
cdd6c482 2036 * Put a event into inactive state and update time fields.
fa289bec
PM
2037 * Enabling the leader of a group effectively enables all
2038 * the group members that aren't explicitly disabled, so we
2039 * have to update their ->tstamp_enabled also.
2040 * Note: this works for group members as well as group leaders
2041 * since the non-leader members' sibling_lists will be empty.
2042 */
1d9b482e 2043static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2044{
cdd6c482 2045 struct perf_event *sub;
4158755d 2046 u64 tstamp = perf_event_time(event);
fa289bec 2047
cdd6c482 2048 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2049 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2050 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2051 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2052 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2053 }
fa289bec
PM
2054}
2055
d859e29f 2056/*
cdd6c482 2057 * Cross CPU call to enable a performance event
d859e29f 2058 */
fe4b04fa 2059static int __perf_event_enable(void *info)
04289bb9 2060{
cdd6c482 2061 struct perf_event *event = info;
cdd6c482
IM
2062 struct perf_event_context *ctx = event->ctx;
2063 struct perf_event *leader = event->group_leader;
108b02cf 2064 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2065 int err;
04289bb9 2066
06f41796
JO
2067 /*
2068 * There's a time window between 'ctx->is_active' check
2069 * in perf_event_enable function and this place having:
2070 * - IRQs on
2071 * - ctx->lock unlocked
2072 *
2073 * where the task could be killed and 'ctx' deactivated
2074 * by perf_event_exit_task.
2075 */
2076 if (!ctx->is_active)
fe4b04fa 2077 return -EINVAL;
3cbed429 2078
e625cce1 2079 raw_spin_lock(&ctx->lock);
4af4998b 2080 update_context_time(ctx);
d859e29f 2081
cdd6c482 2082 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2083 goto unlock;
e5d1367f
SE
2084
2085 /*
2086 * set current task's cgroup time reference point
2087 */
3f7cce3c 2088 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2089
1d9b482e 2090 __perf_event_mark_enabled(event);
04289bb9 2091
e5d1367f
SE
2092 if (!event_filter_match(event)) {
2093 if (is_cgroup_event(event))
2094 perf_cgroup_defer_enabled(event);
f4c4176f 2095 goto unlock;
e5d1367f 2096 }
f4c4176f 2097
04289bb9 2098 /*
cdd6c482 2099 * If the event is in a group and isn't the group leader,
d859e29f 2100 * then don't put it on unless the group is on.
04289bb9 2101 */
cdd6c482 2102 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2103 goto unlock;
3b6f9e5c 2104
cdd6c482 2105 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2106 err = -EEXIST;
e758a33d 2107 } else {
cdd6c482 2108 if (event == leader)
6e37738a 2109 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2110 else
6e37738a 2111 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2112 }
d859e29f
PM
2113
2114 if (err) {
2115 /*
cdd6c482 2116 * If this event can't go on and it's part of a
d859e29f
PM
2117 * group, then the whole group has to come off.
2118 */
9e630205 2119 if (leader != event) {
d859e29f 2120 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2121 perf_cpu_hrtimer_restart(cpuctx);
2122 }
0d48696f 2123 if (leader->attr.pinned) {
53cfbf59 2124 update_group_times(leader);
cdd6c482 2125 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2126 }
d859e29f
PM
2127 }
2128
9ed6060d 2129unlock:
e625cce1 2130 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2131
2132 return 0;
d859e29f
PM
2133}
2134
2135/*
cdd6c482 2136 * Enable a event.
c93f7669 2137 *
cdd6c482
IM
2138 * If event->ctx is a cloned context, callers must make sure that
2139 * every task struct that event->ctx->task could possibly point to
c93f7669 2140 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2141 * perf_event_for_each_child or perf_event_for_each as described
2142 * for perf_event_disable.
d859e29f 2143 */
44234adc 2144void perf_event_enable(struct perf_event *event)
d859e29f 2145{
cdd6c482 2146 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2147 struct task_struct *task = ctx->task;
2148
2149 if (!task) {
2150 /*
cdd6c482 2151 * Enable the event on the cpu that it's on
d859e29f 2152 */
fe4b04fa 2153 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2154 return;
2155 }
2156
e625cce1 2157 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2158 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2159 goto out;
2160
2161 /*
cdd6c482
IM
2162 * If the event is in error state, clear that first.
2163 * That way, if we see the event in error state below, we
d859e29f
PM
2164 * know that it has gone back into error state, as distinct
2165 * from the task having been scheduled away before the
2166 * cross-call arrived.
2167 */
cdd6c482
IM
2168 if (event->state == PERF_EVENT_STATE_ERROR)
2169 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2170
9ed6060d 2171retry:
fe4b04fa 2172 if (!ctx->is_active) {
1d9b482e 2173 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2174 goto out;
2175 }
2176
e625cce1 2177 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2178
2179 if (!task_function_call(task, __perf_event_enable, event))
2180 return;
d859e29f 2181
e625cce1 2182 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2183
2184 /*
cdd6c482 2185 * If the context is active and the event is still off,
d859e29f
PM
2186 * we need to retry the cross-call.
2187 */
fe4b04fa
PZ
2188 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2189 /*
2190 * task could have been flipped by a concurrent
2191 * perf_event_context_sched_out()
2192 */
2193 task = ctx->task;
d859e29f 2194 goto retry;
fe4b04fa 2195 }
fa289bec 2196
9ed6060d 2197out:
e625cce1 2198 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2199}
dcfce4a0 2200EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2201
26ca5c11 2202int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2203{
2023b359 2204 /*
cdd6c482 2205 * not supported on inherited events
2023b359 2206 */
2e939d1d 2207 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2208 return -EINVAL;
2209
cdd6c482
IM
2210 atomic_add(refresh, &event->event_limit);
2211 perf_event_enable(event);
2023b359
PZ
2212
2213 return 0;
79f14641 2214}
26ca5c11 2215EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2216
5b0311e1
FW
2217static void ctx_sched_out(struct perf_event_context *ctx,
2218 struct perf_cpu_context *cpuctx,
2219 enum event_type_t event_type)
235c7fc7 2220{
cdd6c482 2221 struct perf_event *event;
db24d33e 2222 int is_active = ctx->is_active;
235c7fc7 2223
db24d33e 2224 ctx->is_active &= ~event_type;
cdd6c482 2225 if (likely(!ctx->nr_events))
facc4307
PZ
2226 return;
2227
4af4998b 2228 update_context_time(ctx);
e5d1367f 2229 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2230 if (!ctx->nr_active)
facc4307 2231 return;
5b0311e1 2232
075e0b00 2233 perf_pmu_disable(ctx->pmu);
db24d33e 2234 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2235 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2236 group_sched_out(event, cpuctx, ctx);
9ed6060d 2237 }
889ff015 2238
db24d33e 2239 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2240 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2241 group_sched_out(event, cpuctx, ctx);
9ed6060d 2242 }
1b9a644f 2243 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2244}
2245
564c2b21 2246/*
5a3126d4
PZ
2247 * Test whether two contexts are equivalent, i.e. whether they have both been
2248 * cloned from the same version of the same context.
2249 *
2250 * Equivalence is measured using a generation number in the context that is
2251 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2252 * and list_del_event().
564c2b21 2253 */
cdd6c482
IM
2254static int context_equiv(struct perf_event_context *ctx1,
2255 struct perf_event_context *ctx2)
564c2b21 2256{
5a3126d4
PZ
2257 /* Pinning disables the swap optimization */
2258 if (ctx1->pin_count || ctx2->pin_count)
2259 return 0;
2260
2261 /* If ctx1 is the parent of ctx2 */
2262 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2263 return 1;
2264
2265 /* If ctx2 is the parent of ctx1 */
2266 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2267 return 1;
2268
2269 /*
2270 * If ctx1 and ctx2 have the same parent; we flatten the parent
2271 * hierarchy, see perf_event_init_context().
2272 */
2273 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2274 ctx1->parent_gen == ctx2->parent_gen)
2275 return 1;
2276
2277 /* Unmatched */
2278 return 0;
564c2b21
PM
2279}
2280
cdd6c482
IM
2281static void __perf_event_sync_stat(struct perf_event *event,
2282 struct perf_event *next_event)
bfbd3381
PZ
2283{
2284 u64 value;
2285
cdd6c482 2286 if (!event->attr.inherit_stat)
bfbd3381
PZ
2287 return;
2288
2289 /*
cdd6c482 2290 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2291 * because we're in the middle of a context switch and have IRQs
2292 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2293 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2294 * don't need to use it.
2295 */
cdd6c482
IM
2296 switch (event->state) {
2297 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2298 event->pmu->read(event);
2299 /* fall-through */
bfbd3381 2300
cdd6c482
IM
2301 case PERF_EVENT_STATE_INACTIVE:
2302 update_event_times(event);
bfbd3381
PZ
2303 break;
2304
2305 default:
2306 break;
2307 }
2308
2309 /*
cdd6c482 2310 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2311 * values when we flip the contexts.
2312 */
e7850595
PZ
2313 value = local64_read(&next_event->count);
2314 value = local64_xchg(&event->count, value);
2315 local64_set(&next_event->count, value);
bfbd3381 2316
cdd6c482
IM
2317 swap(event->total_time_enabled, next_event->total_time_enabled);
2318 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2319
bfbd3381 2320 /*
19d2e755 2321 * Since we swizzled the values, update the user visible data too.
bfbd3381 2322 */
cdd6c482
IM
2323 perf_event_update_userpage(event);
2324 perf_event_update_userpage(next_event);
bfbd3381
PZ
2325}
2326
cdd6c482
IM
2327static void perf_event_sync_stat(struct perf_event_context *ctx,
2328 struct perf_event_context *next_ctx)
bfbd3381 2329{
cdd6c482 2330 struct perf_event *event, *next_event;
bfbd3381
PZ
2331
2332 if (!ctx->nr_stat)
2333 return;
2334
02ffdbc8
PZ
2335 update_context_time(ctx);
2336
cdd6c482
IM
2337 event = list_first_entry(&ctx->event_list,
2338 struct perf_event, event_entry);
bfbd3381 2339
cdd6c482
IM
2340 next_event = list_first_entry(&next_ctx->event_list,
2341 struct perf_event, event_entry);
bfbd3381 2342
cdd6c482
IM
2343 while (&event->event_entry != &ctx->event_list &&
2344 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2345
cdd6c482 2346 __perf_event_sync_stat(event, next_event);
bfbd3381 2347
cdd6c482
IM
2348 event = list_next_entry(event, event_entry);
2349 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2350 }
2351}
2352
fe4b04fa
PZ
2353static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2354 struct task_struct *next)
0793a61d 2355{
8dc85d54 2356 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2357 struct perf_event_context *next_ctx;
5a3126d4 2358 struct perf_event_context *parent, *next_parent;
108b02cf 2359 struct perf_cpu_context *cpuctx;
c93f7669 2360 int do_switch = 1;
0793a61d 2361
108b02cf
PZ
2362 if (likely(!ctx))
2363 return;
10989fb2 2364
108b02cf
PZ
2365 cpuctx = __get_cpu_context(ctx);
2366 if (!cpuctx->task_ctx)
0793a61d
TG
2367 return;
2368
c93f7669 2369 rcu_read_lock();
8dc85d54 2370 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2371 if (!next_ctx)
2372 goto unlock;
2373
2374 parent = rcu_dereference(ctx->parent_ctx);
2375 next_parent = rcu_dereference(next_ctx->parent_ctx);
2376
2377 /* If neither context have a parent context; they cannot be clones. */
1f9a7268 2378 if (!parent || !next_parent)
5a3126d4
PZ
2379 goto unlock;
2380
2381 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2382 /*
2383 * Looks like the two contexts are clones, so we might be
2384 * able to optimize the context switch. We lock both
2385 * contexts and check that they are clones under the
2386 * lock (including re-checking that neither has been
2387 * uncloned in the meantime). It doesn't matter which
2388 * order we take the locks because no other cpu could
2389 * be trying to lock both of these tasks.
2390 */
e625cce1
TG
2391 raw_spin_lock(&ctx->lock);
2392 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2393 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2394 /*
2395 * XXX do we need a memory barrier of sorts
cdd6c482 2396 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2397 */
8dc85d54
PZ
2398 task->perf_event_ctxp[ctxn] = next_ctx;
2399 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2400 ctx->task = next;
2401 next_ctx->task = task;
2402 do_switch = 0;
bfbd3381 2403
cdd6c482 2404 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2405 }
e625cce1
TG
2406 raw_spin_unlock(&next_ctx->lock);
2407 raw_spin_unlock(&ctx->lock);
564c2b21 2408 }
5a3126d4 2409unlock:
c93f7669 2410 rcu_read_unlock();
564c2b21 2411
c93f7669 2412 if (do_switch) {
facc4307 2413 raw_spin_lock(&ctx->lock);
5b0311e1 2414 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2415 cpuctx->task_ctx = NULL;
facc4307 2416 raw_spin_unlock(&ctx->lock);
c93f7669 2417 }
0793a61d
TG
2418}
2419
8dc85d54
PZ
2420#define for_each_task_context_nr(ctxn) \
2421 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2422
2423/*
2424 * Called from scheduler to remove the events of the current task,
2425 * with interrupts disabled.
2426 *
2427 * We stop each event and update the event value in event->count.
2428 *
2429 * This does not protect us against NMI, but disable()
2430 * sets the disabled bit in the control field of event _before_
2431 * accessing the event control register. If a NMI hits, then it will
2432 * not restart the event.
2433 */
ab0cce56
JO
2434void __perf_event_task_sched_out(struct task_struct *task,
2435 struct task_struct *next)
8dc85d54
PZ
2436{
2437 int ctxn;
2438
8dc85d54
PZ
2439 for_each_task_context_nr(ctxn)
2440 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2441
2442 /*
2443 * if cgroup events exist on this CPU, then we need
2444 * to check if we have to switch out PMU state.
2445 * cgroup event are system-wide mode only
2446 */
2447 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2448 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2449}
2450
04dc2dbb 2451static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2452{
108b02cf 2453 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2454
a63eaf34
PM
2455 if (!cpuctx->task_ctx)
2456 return;
012b84da
IM
2457
2458 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2459 return;
2460
04dc2dbb 2461 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2462 cpuctx->task_ctx = NULL;
2463}
2464
5b0311e1
FW
2465/*
2466 * Called with IRQs disabled
2467 */
2468static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2469 enum event_type_t event_type)
2470{
2471 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2472}
2473
235c7fc7 2474static void
5b0311e1 2475ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2476 struct perf_cpu_context *cpuctx)
0793a61d 2477{
cdd6c482 2478 struct perf_event *event;
0793a61d 2479
889ff015
FW
2480 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2481 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2482 continue;
5632ab12 2483 if (!event_filter_match(event))
3b6f9e5c
PM
2484 continue;
2485
e5d1367f
SE
2486 /* may need to reset tstamp_enabled */
2487 if (is_cgroup_event(event))
2488 perf_cgroup_mark_enabled(event, ctx);
2489
8c9ed8e1 2490 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2491 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2492
2493 /*
2494 * If this pinned group hasn't been scheduled,
2495 * put it in error state.
2496 */
cdd6c482
IM
2497 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2498 update_group_times(event);
2499 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2500 }
3b6f9e5c 2501 }
5b0311e1
FW
2502}
2503
2504static void
2505ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2506 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2507{
2508 struct perf_event *event;
2509 int can_add_hw = 1;
3b6f9e5c 2510
889ff015
FW
2511 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2512 /* Ignore events in OFF or ERROR state */
2513 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2514 continue;
04289bb9
IM
2515 /*
2516 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2517 * of events:
04289bb9 2518 */
5632ab12 2519 if (!event_filter_match(event))
0793a61d
TG
2520 continue;
2521
e5d1367f
SE
2522 /* may need to reset tstamp_enabled */
2523 if (is_cgroup_event(event))
2524 perf_cgroup_mark_enabled(event, ctx);
2525
9ed6060d 2526 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2527 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2528 can_add_hw = 0;
9ed6060d 2529 }
0793a61d 2530 }
5b0311e1
FW
2531}
2532
2533static void
2534ctx_sched_in(struct perf_event_context *ctx,
2535 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2536 enum event_type_t event_type,
2537 struct task_struct *task)
5b0311e1 2538{
e5d1367f 2539 u64 now;
db24d33e 2540 int is_active = ctx->is_active;
e5d1367f 2541
db24d33e 2542 ctx->is_active |= event_type;
5b0311e1 2543 if (likely(!ctx->nr_events))
facc4307 2544 return;
5b0311e1 2545
e5d1367f
SE
2546 now = perf_clock();
2547 ctx->timestamp = now;
3f7cce3c 2548 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2549 /*
2550 * First go through the list and put on any pinned groups
2551 * in order to give them the best chance of going on.
2552 */
db24d33e 2553 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2554 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2555
2556 /* Then walk through the lower prio flexible groups */
db24d33e 2557 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2558 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2559}
2560
329c0e01 2561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2562 enum event_type_t event_type,
2563 struct task_struct *task)
329c0e01
FW
2564{
2565 struct perf_event_context *ctx = &cpuctx->ctx;
2566
e5d1367f 2567 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2568}
2569
e5d1367f
SE
2570static void perf_event_context_sched_in(struct perf_event_context *ctx,
2571 struct task_struct *task)
235c7fc7 2572{
108b02cf 2573 struct perf_cpu_context *cpuctx;
235c7fc7 2574
108b02cf 2575 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2576 if (cpuctx->task_ctx == ctx)
2577 return;
2578
facc4307 2579 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2580 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2581 /*
2582 * We want to keep the following priority order:
2583 * cpu pinned (that don't need to move), task pinned,
2584 * cpu flexible, task flexible.
2585 */
2586 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2587
1d5f003f
GN
2588 if (ctx->nr_events)
2589 cpuctx->task_ctx = ctx;
9b33fa6b 2590
86b47c25
GN
2591 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2592
facc4307
PZ
2593 perf_pmu_enable(ctx->pmu);
2594 perf_ctx_unlock(cpuctx, ctx);
2595
b5ab4cd5
PZ
2596 /*
2597 * Since these rotations are per-cpu, we need to ensure the
2598 * cpu-context we got scheduled on is actually rotating.
2599 */
108b02cf 2600 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2601}
2602
d010b332
SE
2603/*
2604 * When sampling the branck stack in system-wide, it may be necessary
2605 * to flush the stack on context switch. This happens when the branch
2606 * stack does not tag its entries with the pid of the current task.
2607 * Otherwise it becomes impossible to associate a branch entry with a
2608 * task. This ambiguity is more likely to appear when the branch stack
2609 * supports priv level filtering and the user sets it to monitor only
2610 * at the user level (which could be a useful measurement in system-wide
2611 * mode). In that case, the risk is high of having a branch stack with
2612 * branch from multiple tasks. Flushing may mean dropping the existing
2613 * entries or stashing them somewhere in the PMU specific code layer.
2614 *
2615 * This function provides the context switch callback to the lower code
2616 * layer. It is invoked ONLY when there is at least one system-wide context
2617 * with at least one active event using taken branch sampling.
2618 */
2619static void perf_branch_stack_sched_in(struct task_struct *prev,
2620 struct task_struct *task)
2621{
2622 struct perf_cpu_context *cpuctx;
2623 struct pmu *pmu;
2624 unsigned long flags;
2625
2626 /* no need to flush branch stack if not changing task */
2627 if (prev == task)
2628 return;
2629
2630 local_irq_save(flags);
2631
2632 rcu_read_lock();
2633
2634 list_for_each_entry_rcu(pmu, &pmus, entry) {
2635 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2636
2637 /*
2638 * check if the context has at least one
2639 * event using PERF_SAMPLE_BRANCH_STACK
2640 */
2641 if (cpuctx->ctx.nr_branch_stack > 0
2642 && pmu->flush_branch_stack) {
2643
d010b332
SE
2644 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2645
2646 perf_pmu_disable(pmu);
2647
2648 pmu->flush_branch_stack();
2649
2650 perf_pmu_enable(pmu);
2651
2652 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2653 }
2654 }
2655
2656 rcu_read_unlock();
2657
2658 local_irq_restore(flags);
2659}
2660
8dc85d54
PZ
2661/*
2662 * Called from scheduler to add the events of the current task
2663 * with interrupts disabled.
2664 *
2665 * We restore the event value and then enable it.
2666 *
2667 * This does not protect us against NMI, but enable()
2668 * sets the enabled bit in the control field of event _before_
2669 * accessing the event control register. If a NMI hits, then it will
2670 * keep the event running.
2671 */
ab0cce56
JO
2672void __perf_event_task_sched_in(struct task_struct *prev,
2673 struct task_struct *task)
8dc85d54
PZ
2674{
2675 struct perf_event_context *ctx;
2676 int ctxn;
2677
2678 for_each_task_context_nr(ctxn) {
2679 ctx = task->perf_event_ctxp[ctxn];
2680 if (likely(!ctx))
2681 continue;
2682
e5d1367f 2683 perf_event_context_sched_in(ctx, task);
8dc85d54 2684 }
e5d1367f
SE
2685 /*
2686 * if cgroup events exist on this CPU, then we need
2687 * to check if we have to switch in PMU state.
2688 * cgroup event are system-wide mode only
2689 */
2690 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2691 perf_cgroup_sched_in(prev, task);
d010b332
SE
2692
2693 /* check for system-wide branch_stack events */
2694 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2695 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2696}
2697
abd50713
PZ
2698static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2699{
2700 u64 frequency = event->attr.sample_freq;
2701 u64 sec = NSEC_PER_SEC;
2702 u64 divisor, dividend;
2703
2704 int count_fls, nsec_fls, frequency_fls, sec_fls;
2705
2706 count_fls = fls64(count);
2707 nsec_fls = fls64(nsec);
2708 frequency_fls = fls64(frequency);
2709 sec_fls = 30;
2710
2711 /*
2712 * We got @count in @nsec, with a target of sample_freq HZ
2713 * the target period becomes:
2714 *
2715 * @count * 10^9
2716 * period = -------------------
2717 * @nsec * sample_freq
2718 *
2719 */
2720
2721 /*
2722 * Reduce accuracy by one bit such that @a and @b converge
2723 * to a similar magnitude.
2724 */
fe4b04fa 2725#define REDUCE_FLS(a, b) \
abd50713
PZ
2726do { \
2727 if (a##_fls > b##_fls) { \
2728 a >>= 1; \
2729 a##_fls--; \
2730 } else { \
2731 b >>= 1; \
2732 b##_fls--; \
2733 } \
2734} while (0)
2735
2736 /*
2737 * Reduce accuracy until either term fits in a u64, then proceed with
2738 * the other, so that finally we can do a u64/u64 division.
2739 */
2740 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2741 REDUCE_FLS(nsec, frequency);
2742 REDUCE_FLS(sec, count);
2743 }
2744
2745 if (count_fls + sec_fls > 64) {
2746 divisor = nsec * frequency;
2747
2748 while (count_fls + sec_fls > 64) {
2749 REDUCE_FLS(count, sec);
2750 divisor >>= 1;
2751 }
2752
2753 dividend = count * sec;
2754 } else {
2755 dividend = count * sec;
2756
2757 while (nsec_fls + frequency_fls > 64) {
2758 REDUCE_FLS(nsec, frequency);
2759 dividend >>= 1;
2760 }
2761
2762 divisor = nsec * frequency;
2763 }
2764
f6ab91ad
PZ
2765 if (!divisor)
2766 return dividend;
2767
abd50713
PZ
2768 return div64_u64(dividend, divisor);
2769}
2770
e050e3f0
SE
2771static DEFINE_PER_CPU(int, perf_throttled_count);
2772static DEFINE_PER_CPU(u64, perf_throttled_seq);
2773
f39d47ff 2774static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2775{
cdd6c482 2776 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2777 s64 period, sample_period;
bd2b5b12
PZ
2778 s64 delta;
2779
abd50713 2780 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2781
2782 delta = (s64)(period - hwc->sample_period);
2783 delta = (delta + 7) / 8; /* low pass filter */
2784
2785 sample_period = hwc->sample_period + delta;
2786
2787 if (!sample_period)
2788 sample_period = 1;
2789
bd2b5b12 2790 hwc->sample_period = sample_period;
abd50713 2791
e7850595 2792 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2793 if (disable)
2794 event->pmu->stop(event, PERF_EF_UPDATE);
2795
e7850595 2796 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2797
2798 if (disable)
2799 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2800 }
bd2b5b12
PZ
2801}
2802
e050e3f0
SE
2803/*
2804 * combine freq adjustment with unthrottling to avoid two passes over the
2805 * events. At the same time, make sure, having freq events does not change
2806 * the rate of unthrottling as that would introduce bias.
2807 */
2808static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2809 int needs_unthr)
60db5e09 2810{
cdd6c482
IM
2811 struct perf_event *event;
2812 struct hw_perf_event *hwc;
e050e3f0 2813 u64 now, period = TICK_NSEC;
abd50713 2814 s64 delta;
60db5e09 2815
e050e3f0
SE
2816 /*
2817 * only need to iterate over all events iff:
2818 * - context have events in frequency mode (needs freq adjust)
2819 * - there are events to unthrottle on this cpu
2820 */
2821 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2822 return;
2823
e050e3f0 2824 raw_spin_lock(&ctx->lock);
f39d47ff 2825 perf_pmu_disable(ctx->pmu);
e050e3f0 2826
03541f8b 2827 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2828 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2829 continue;
2830
5632ab12 2831 if (!event_filter_match(event))
5d27c23d
PZ
2832 continue;
2833
44377277
AS
2834 perf_pmu_disable(event->pmu);
2835
cdd6c482 2836 hwc = &event->hw;
6a24ed6c 2837
ae23bff1 2838 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2839 hwc->interrupts = 0;
cdd6c482 2840 perf_log_throttle(event, 1);
a4eaf7f1 2841 event->pmu->start(event, 0);
a78ac325
PZ
2842 }
2843
cdd6c482 2844 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2845 goto next;
60db5e09 2846
e050e3f0
SE
2847 /*
2848 * stop the event and update event->count
2849 */
2850 event->pmu->stop(event, PERF_EF_UPDATE);
2851
e7850595 2852 now = local64_read(&event->count);
abd50713
PZ
2853 delta = now - hwc->freq_count_stamp;
2854 hwc->freq_count_stamp = now;
60db5e09 2855
e050e3f0
SE
2856 /*
2857 * restart the event
2858 * reload only if value has changed
f39d47ff
SE
2859 * we have stopped the event so tell that
2860 * to perf_adjust_period() to avoid stopping it
2861 * twice.
e050e3f0 2862 */
abd50713 2863 if (delta > 0)
f39d47ff 2864 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2865
2866 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
2867 next:
2868 perf_pmu_enable(event->pmu);
60db5e09 2869 }
e050e3f0 2870
f39d47ff 2871 perf_pmu_enable(ctx->pmu);
e050e3f0 2872 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2873}
2874
235c7fc7 2875/*
cdd6c482 2876 * Round-robin a context's events:
235c7fc7 2877 */
cdd6c482 2878static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2879{
dddd3379
TG
2880 /*
2881 * Rotate the first entry last of non-pinned groups. Rotation might be
2882 * disabled by the inheritance code.
2883 */
2884 if (!ctx->rotate_disable)
2885 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2886}
2887
b5ab4cd5 2888/*
e9d2b064
PZ
2889 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2890 * because they're strictly cpu affine and rotate_start is called with IRQs
2891 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2892 */
9e630205 2893static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2894{
8dc85d54 2895 struct perf_event_context *ctx = NULL;
e050e3f0 2896 int rotate = 0, remove = 1;
7fc23a53 2897
b5ab4cd5 2898 if (cpuctx->ctx.nr_events) {
e9d2b064 2899 remove = 0;
b5ab4cd5
PZ
2900 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2901 rotate = 1;
2902 }
235c7fc7 2903
8dc85d54 2904 ctx = cpuctx->task_ctx;
b5ab4cd5 2905 if (ctx && ctx->nr_events) {
e9d2b064 2906 remove = 0;
b5ab4cd5
PZ
2907 if (ctx->nr_events != ctx->nr_active)
2908 rotate = 1;
2909 }
9717e6cd 2910
e050e3f0 2911 if (!rotate)
0f5a2601
PZ
2912 goto done;
2913
facc4307 2914 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2915 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2916
e050e3f0
SE
2917 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2918 if (ctx)
2919 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2920
e050e3f0
SE
2921 rotate_ctx(&cpuctx->ctx);
2922 if (ctx)
2923 rotate_ctx(ctx);
235c7fc7 2924
e050e3f0 2925 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2926
0f5a2601
PZ
2927 perf_pmu_enable(cpuctx->ctx.pmu);
2928 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2929done:
e9d2b064
PZ
2930 if (remove)
2931 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2932
2933 return rotate;
e9d2b064
PZ
2934}
2935
026249ef
FW
2936#ifdef CONFIG_NO_HZ_FULL
2937bool perf_event_can_stop_tick(void)
2938{
948b26b6 2939 if (atomic_read(&nr_freq_events) ||
d84153d6 2940 __this_cpu_read(perf_throttled_count))
026249ef 2941 return false;
d84153d6
FW
2942 else
2943 return true;
026249ef
FW
2944}
2945#endif
2946
e9d2b064
PZ
2947void perf_event_task_tick(void)
2948{
2949 struct list_head *head = &__get_cpu_var(rotation_list);
2950 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2951 struct perf_event_context *ctx;
2952 int throttled;
b5ab4cd5 2953
e9d2b064
PZ
2954 WARN_ON(!irqs_disabled());
2955
e050e3f0
SE
2956 __this_cpu_inc(perf_throttled_seq);
2957 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2958
e9d2b064 2959 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2960 ctx = &cpuctx->ctx;
2961 perf_adjust_freq_unthr_context(ctx, throttled);
2962
2963 ctx = cpuctx->task_ctx;
2964 if (ctx)
2965 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2966 }
0793a61d
TG
2967}
2968
889ff015
FW
2969static int event_enable_on_exec(struct perf_event *event,
2970 struct perf_event_context *ctx)
2971{
2972 if (!event->attr.enable_on_exec)
2973 return 0;
2974
2975 event->attr.enable_on_exec = 0;
2976 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2977 return 0;
2978
1d9b482e 2979 __perf_event_mark_enabled(event);
889ff015
FW
2980
2981 return 1;
2982}
2983
57e7986e 2984/*
cdd6c482 2985 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2986 * This expects task == current.
2987 */
8dc85d54 2988static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2989{
cdd6c482 2990 struct perf_event *event;
57e7986e
PM
2991 unsigned long flags;
2992 int enabled = 0;
889ff015 2993 int ret;
57e7986e
PM
2994
2995 local_irq_save(flags);
cdd6c482 2996 if (!ctx || !ctx->nr_events)
57e7986e
PM
2997 goto out;
2998
e566b76e
SE
2999 /*
3000 * We must ctxsw out cgroup events to avoid conflict
3001 * when invoking perf_task_event_sched_in() later on
3002 * in this function. Otherwise we end up trying to
3003 * ctxswin cgroup events which are already scheduled
3004 * in.
3005 */
a8d757ef 3006 perf_cgroup_sched_out(current, NULL);
57e7986e 3007
e625cce1 3008 raw_spin_lock(&ctx->lock);
04dc2dbb 3009 task_ctx_sched_out(ctx);
57e7986e 3010
b79387ef 3011 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3012 ret = event_enable_on_exec(event, ctx);
3013 if (ret)
3014 enabled = 1;
57e7986e
PM
3015 }
3016
3017 /*
cdd6c482 3018 * Unclone this context if we enabled any event.
57e7986e 3019 */
71a851b4
PZ
3020 if (enabled)
3021 unclone_ctx(ctx);
57e7986e 3022
e625cce1 3023 raw_spin_unlock(&ctx->lock);
57e7986e 3024
e566b76e
SE
3025 /*
3026 * Also calls ctxswin for cgroup events, if any:
3027 */
e5d1367f 3028 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3029out:
57e7986e
PM
3030 local_irq_restore(flags);
3031}
3032
e041e328
PZ
3033void perf_event_exec(void)
3034{
3035 struct perf_event_context *ctx;
3036 int ctxn;
3037
3038 rcu_read_lock();
3039 for_each_task_context_nr(ctxn) {
3040 ctx = current->perf_event_ctxp[ctxn];
3041 if (!ctx)
3042 continue;
3043
3044 perf_event_enable_on_exec(ctx);
3045 }
3046 rcu_read_unlock();
3047}
3048
0793a61d 3049/*
cdd6c482 3050 * Cross CPU call to read the hardware event
0793a61d 3051 */
cdd6c482 3052static void __perf_event_read(void *info)
0793a61d 3053{
cdd6c482
IM
3054 struct perf_event *event = info;
3055 struct perf_event_context *ctx = event->ctx;
108b02cf 3056 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3057
e1ac3614
PM
3058 /*
3059 * If this is a task context, we need to check whether it is
3060 * the current task context of this cpu. If not it has been
3061 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3062 * event->count would have been updated to a recent sample
3063 * when the event was scheduled out.
e1ac3614
PM
3064 */
3065 if (ctx->task && cpuctx->task_ctx != ctx)
3066 return;
3067
e625cce1 3068 raw_spin_lock(&ctx->lock);
e5d1367f 3069 if (ctx->is_active) {
542e72fc 3070 update_context_time(ctx);
e5d1367f
SE
3071 update_cgrp_time_from_event(event);
3072 }
cdd6c482 3073 update_event_times(event);
542e72fc
PZ
3074 if (event->state == PERF_EVENT_STATE_ACTIVE)
3075 event->pmu->read(event);
e625cce1 3076 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3077}
3078
b5e58793
PZ
3079static inline u64 perf_event_count(struct perf_event *event)
3080{
e7850595 3081 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3082}
3083
cdd6c482 3084static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3085{
3086 /*
cdd6c482
IM
3087 * If event is enabled and currently active on a CPU, update the
3088 * value in the event structure:
0793a61d 3089 */
cdd6c482
IM
3090 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3091 smp_call_function_single(event->oncpu,
3092 __perf_event_read, event, 1);
3093 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3094 struct perf_event_context *ctx = event->ctx;
3095 unsigned long flags;
3096
e625cce1 3097 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3098 /*
3099 * may read while context is not active
3100 * (e.g., thread is blocked), in that case
3101 * we cannot update context time
3102 */
e5d1367f 3103 if (ctx->is_active) {
c530ccd9 3104 update_context_time(ctx);
e5d1367f
SE
3105 update_cgrp_time_from_event(event);
3106 }
cdd6c482 3107 update_event_times(event);
e625cce1 3108 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3109 }
3110
b5e58793 3111 return perf_event_count(event);
0793a61d
TG
3112}
3113
a63eaf34 3114/*
cdd6c482 3115 * Initialize the perf_event context in a task_struct:
a63eaf34 3116 */
eb184479 3117static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3118{
e625cce1 3119 raw_spin_lock_init(&ctx->lock);
a63eaf34 3120 mutex_init(&ctx->mutex);
889ff015
FW
3121 INIT_LIST_HEAD(&ctx->pinned_groups);
3122 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3123 INIT_LIST_HEAD(&ctx->event_list);
3124 atomic_set(&ctx->refcount, 1);
fadfe7be 3125 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3126}
3127
3128static struct perf_event_context *
3129alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3130{
3131 struct perf_event_context *ctx;
3132
3133 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3134 if (!ctx)
3135 return NULL;
3136
3137 __perf_event_init_context(ctx);
3138 if (task) {
3139 ctx->task = task;
3140 get_task_struct(task);
0793a61d 3141 }
eb184479
PZ
3142 ctx->pmu = pmu;
3143
3144 return ctx;
a63eaf34
PM
3145}
3146
2ebd4ffb
MH
3147static struct task_struct *
3148find_lively_task_by_vpid(pid_t vpid)
3149{
3150 struct task_struct *task;
3151 int err;
0793a61d
TG
3152
3153 rcu_read_lock();
2ebd4ffb 3154 if (!vpid)
0793a61d
TG
3155 task = current;
3156 else
2ebd4ffb 3157 task = find_task_by_vpid(vpid);
0793a61d
TG
3158 if (task)
3159 get_task_struct(task);
3160 rcu_read_unlock();
3161
3162 if (!task)
3163 return ERR_PTR(-ESRCH);
3164
0793a61d 3165 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3166 err = -EACCES;
3167 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3168 goto errout;
3169
2ebd4ffb
MH
3170 return task;
3171errout:
3172 put_task_struct(task);
3173 return ERR_PTR(err);
3174
3175}
3176
fe4b04fa
PZ
3177/*
3178 * Returns a matching context with refcount and pincount.
3179 */
108b02cf 3180static struct perf_event_context *
38a81da2 3181find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3182{
cdd6c482 3183 struct perf_event_context *ctx;
22a4f650 3184 struct perf_cpu_context *cpuctx;
25346b93 3185 unsigned long flags;
8dc85d54 3186 int ctxn, err;
0793a61d 3187
22a4ec72 3188 if (!task) {
cdd6c482 3189 /* Must be root to operate on a CPU event: */
0764771d 3190 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3191 return ERR_PTR(-EACCES);
3192
0793a61d 3193 /*
cdd6c482 3194 * We could be clever and allow to attach a event to an
0793a61d
TG
3195 * offline CPU and activate it when the CPU comes up, but
3196 * that's for later.
3197 */
f6325e30 3198 if (!cpu_online(cpu))
0793a61d
TG
3199 return ERR_PTR(-ENODEV);
3200
108b02cf 3201 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3202 ctx = &cpuctx->ctx;
c93f7669 3203 get_ctx(ctx);
fe4b04fa 3204 ++ctx->pin_count;
0793a61d 3205
0793a61d
TG
3206 return ctx;
3207 }
3208
8dc85d54
PZ
3209 err = -EINVAL;
3210 ctxn = pmu->task_ctx_nr;
3211 if (ctxn < 0)
3212 goto errout;
3213
9ed6060d 3214retry:
8dc85d54 3215 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3216 if (ctx) {
71a851b4 3217 unclone_ctx(ctx);
fe4b04fa 3218 ++ctx->pin_count;
e625cce1 3219 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 3220 } else {
eb184479 3221 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3222 err = -ENOMEM;
3223 if (!ctx)
3224 goto errout;
eb184479 3225
dbe08d82
ON
3226 err = 0;
3227 mutex_lock(&task->perf_event_mutex);
3228 /*
3229 * If it has already passed perf_event_exit_task().
3230 * we must see PF_EXITING, it takes this mutex too.
3231 */
3232 if (task->flags & PF_EXITING)
3233 err = -ESRCH;
3234 else if (task->perf_event_ctxp[ctxn])
3235 err = -EAGAIN;
fe4b04fa 3236 else {
9137fb28 3237 get_ctx(ctx);
fe4b04fa 3238 ++ctx->pin_count;
dbe08d82 3239 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3240 }
dbe08d82
ON
3241 mutex_unlock(&task->perf_event_mutex);
3242
3243 if (unlikely(err)) {
9137fb28 3244 put_ctx(ctx);
dbe08d82
ON
3245
3246 if (err == -EAGAIN)
3247 goto retry;
3248 goto errout;
a63eaf34
PM
3249 }
3250 }
3251
0793a61d 3252 return ctx;
c93f7669 3253
9ed6060d 3254errout:
c93f7669 3255 return ERR_PTR(err);
0793a61d
TG
3256}
3257
6fb2915d
LZ
3258static void perf_event_free_filter(struct perf_event *event);
3259
cdd6c482 3260static void free_event_rcu(struct rcu_head *head)
592903cd 3261{
cdd6c482 3262 struct perf_event *event;
592903cd 3263
cdd6c482
IM
3264 event = container_of(head, struct perf_event, rcu_head);
3265 if (event->ns)
3266 put_pid_ns(event->ns);
6fb2915d 3267 perf_event_free_filter(event);
cdd6c482 3268 kfree(event);
592903cd
PZ
3269}
3270
76369139 3271static void ring_buffer_put(struct ring_buffer *rb);
b69cf536
PZ
3272static void ring_buffer_attach(struct perf_event *event,
3273 struct ring_buffer *rb);
925d519a 3274
4beb31f3 3275static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3276{
4beb31f3
FW
3277 if (event->parent)
3278 return;
3279
3280 if (has_branch_stack(event)) {
3281 if (!(event->attach_state & PERF_ATTACH_TASK))
3282 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3283 }
3284 if (is_cgroup_event(event))
3285 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3286}
925d519a 3287
4beb31f3
FW
3288static void unaccount_event(struct perf_event *event)
3289{
3290 if (event->parent)
3291 return;
3292
3293 if (event->attach_state & PERF_ATTACH_TASK)
3294 static_key_slow_dec_deferred(&perf_sched_events);
3295 if (event->attr.mmap || event->attr.mmap_data)
3296 atomic_dec(&nr_mmap_events);
3297 if (event->attr.comm)
3298 atomic_dec(&nr_comm_events);
3299 if (event->attr.task)
3300 atomic_dec(&nr_task_events);
948b26b6
FW
3301 if (event->attr.freq)
3302 atomic_dec(&nr_freq_events);
4beb31f3
FW
3303 if (is_cgroup_event(event))
3304 static_key_slow_dec_deferred(&perf_sched_events);
3305 if (has_branch_stack(event))
3306 static_key_slow_dec_deferred(&perf_sched_events);
3307
3308 unaccount_event_cpu(event, event->cpu);
3309}
925d519a 3310
766d6c07
FW
3311static void __free_event(struct perf_event *event)
3312{
cdd6c482 3313 if (!event->parent) {
927c7a9e
FW
3314 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3315 put_callchain_buffers();
f344011c 3316 }
9ee318a7 3317
766d6c07
FW
3318 if (event->destroy)
3319 event->destroy(event);
3320
3321 if (event->ctx)
3322 put_ctx(event->ctx);
3323
c464c76e
YZ
3324 if (event->pmu)
3325 module_put(event->pmu->module);
3326
766d6c07
FW
3327 call_rcu(&event->rcu_head, free_event_rcu);
3328}
683ede43
PZ
3329
3330static void _free_event(struct perf_event *event)
f1600952 3331{
e360adbe 3332 irq_work_sync(&event->pending);
925d519a 3333
4beb31f3 3334 unaccount_event(event);
9ee318a7 3335
76369139 3336 if (event->rb) {
9bb5d40c
PZ
3337 /*
3338 * Can happen when we close an event with re-directed output.
3339 *
3340 * Since we have a 0 refcount, perf_mmap_close() will skip
3341 * over us; possibly making our ring_buffer_put() the last.
3342 */
3343 mutex_lock(&event->mmap_mutex);
b69cf536 3344 ring_buffer_attach(event, NULL);
9bb5d40c 3345 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3346 }
3347
e5d1367f
SE
3348 if (is_cgroup_event(event))
3349 perf_detach_cgroup(event);
3350
766d6c07 3351 __free_event(event);
f1600952
PZ
3352}
3353
683ede43
PZ
3354/*
3355 * Used to free events which have a known refcount of 1, such as in error paths
3356 * where the event isn't exposed yet and inherited events.
3357 */
3358static void free_event(struct perf_event *event)
0793a61d 3359{
683ede43
PZ
3360 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3361 "unexpected event refcount: %ld; ptr=%p\n",
3362 atomic_long_read(&event->refcount), event)) {
3363 /* leak to avoid use-after-free */
3364 return;
3365 }
0793a61d 3366
683ede43 3367 _free_event(event);
0793a61d
TG
3368}
3369
a66a3052 3370/*
f8697762 3371 * Remove user event from the owner task.
a66a3052 3372 */
f8697762 3373static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3374{
8882135b 3375 struct task_struct *owner;
fb0459d7 3376
8882135b
PZ
3377 rcu_read_lock();
3378 owner = ACCESS_ONCE(event->owner);
3379 /*
3380 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3381 * !owner it means the list deletion is complete and we can indeed
3382 * free this event, otherwise we need to serialize on
3383 * owner->perf_event_mutex.
3384 */
3385 smp_read_barrier_depends();
3386 if (owner) {
3387 /*
3388 * Since delayed_put_task_struct() also drops the last
3389 * task reference we can safely take a new reference
3390 * while holding the rcu_read_lock().
3391 */
3392 get_task_struct(owner);
3393 }
3394 rcu_read_unlock();
3395
3396 if (owner) {
3397 mutex_lock(&owner->perf_event_mutex);
3398 /*
3399 * We have to re-check the event->owner field, if it is cleared
3400 * we raced with perf_event_exit_task(), acquiring the mutex
3401 * ensured they're done, and we can proceed with freeing the
3402 * event.
3403 */
3404 if (event->owner)
3405 list_del_init(&event->owner_entry);
3406 mutex_unlock(&owner->perf_event_mutex);
3407 put_task_struct(owner);
3408 }
f8697762
JO
3409}
3410
3411/*
3412 * Called when the last reference to the file is gone.
3413 */
3414static void put_event(struct perf_event *event)
3415{
3416 struct perf_event_context *ctx = event->ctx;
3417
3418 if (!atomic_long_dec_and_test(&event->refcount))
3419 return;
3420
3421 if (!is_kernel_event(event))
3422 perf_remove_from_owner(event);
8882135b 3423
683ede43
PZ
3424 WARN_ON_ONCE(ctx->parent_ctx);
3425 /*
3426 * There are two ways this annotation is useful:
3427 *
3428 * 1) there is a lock recursion from perf_event_exit_task
3429 * see the comment there.
3430 *
3431 * 2) there is a lock-inversion with mmap_sem through
3432 * perf_event_read_group(), which takes faults while
3433 * holding ctx->mutex, however this is called after
3434 * the last filedesc died, so there is no possibility
3435 * to trigger the AB-BA case.
3436 */
3437 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3438 perf_remove_from_context(event, true);
3439 mutex_unlock(&ctx->mutex);
3440
3441 _free_event(event);
a6fa941d
AV
3442}
3443
683ede43
PZ
3444int perf_event_release_kernel(struct perf_event *event)
3445{
3446 put_event(event);
3447 return 0;
3448}
3449EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3450
a6fa941d
AV
3451static int perf_release(struct inode *inode, struct file *file)
3452{
3453 put_event(file->private_data);
3454 return 0;
fb0459d7 3455}
fb0459d7 3456
fadfe7be
JO
3457/*
3458 * Remove all orphanes events from the context.
3459 */
3460static void orphans_remove_work(struct work_struct *work)
3461{
3462 struct perf_event_context *ctx;
3463 struct perf_event *event, *tmp;
3464
3465 ctx = container_of(work, struct perf_event_context,
3466 orphans_remove.work);
3467
3468 mutex_lock(&ctx->mutex);
3469 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3470 struct perf_event *parent_event = event->parent;
3471
3472 if (!is_orphaned_child(event))
3473 continue;
3474
3475 perf_remove_from_context(event, true);
3476
3477 mutex_lock(&parent_event->child_mutex);
3478 list_del_init(&event->child_list);
3479 mutex_unlock(&parent_event->child_mutex);
3480
3481 free_event(event);
3482 put_event(parent_event);
3483 }
3484
3485 raw_spin_lock_irq(&ctx->lock);
3486 ctx->orphans_remove_sched = false;
3487 raw_spin_unlock_irq(&ctx->lock);
3488 mutex_unlock(&ctx->mutex);
3489
3490 put_ctx(ctx);
3491}
3492
59ed446f 3493u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3494{
cdd6c482 3495 struct perf_event *child;
e53c0994
PZ
3496 u64 total = 0;
3497
59ed446f
PZ
3498 *enabled = 0;
3499 *running = 0;
3500
6f10581a 3501 mutex_lock(&event->child_mutex);
cdd6c482 3502 total += perf_event_read(event);
59ed446f
PZ
3503 *enabled += event->total_time_enabled +
3504 atomic64_read(&event->child_total_time_enabled);
3505 *running += event->total_time_running +
3506 atomic64_read(&event->child_total_time_running);
3507
3508 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3509 total += perf_event_read(child);
59ed446f
PZ
3510 *enabled += child->total_time_enabled;
3511 *running += child->total_time_running;
3512 }
6f10581a 3513 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3514
3515 return total;
3516}
fb0459d7 3517EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3518
cdd6c482 3519static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3520 u64 read_format, char __user *buf)
3521{
cdd6c482 3522 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3523 int n = 0, size = 0, ret = -EFAULT;
3524 struct perf_event_context *ctx = leader->ctx;
abf4868b 3525 u64 values[5];
59ed446f 3526 u64 count, enabled, running;
abf4868b 3527
6f10581a 3528 mutex_lock(&ctx->mutex);
59ed446f 3529 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3530
3531 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3532 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3533 values[n++] = enabled;
3534 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3535 values[n++] = running;
abf4868b
PZ
3536 values[n++] = count;
3537 if (read_format & PERF_FORMAT_ID)
3538 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3539
3540 size = n * sizeof(u64);
3541
3542 if (copy_to_user(buf, values, size))
6f10581a 3543 goto unlock;
3dab77fb 3544
6f10581a 3545 ret = size;
3dab77fb 3546
65abc865 3547 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3548 n = 0;
3dab77fb 3549
59ed446f 3550 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3551 if (read_format & PERF_FORMAT_ID)
3552 values[n++] = primary_event_id(sub);
3553
3554 size = n * sizeof(u64);
3555
184d3da8 3556 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3557 ret = -EFAULT;
3558 goto unlock;
3559 }
abf4868b
PZ
3560
3561 ret += size;
3dab77fb 3562 }
6f10581a
PZ
3563unlock:
3564 mutex_unlock(&ctx->mutex);
3dab77fb 3565
abf4868b 3566 return ret;
3dab77fb
PZ
3567}
3568
cdd6c482 3569static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3570 u64 read_format, char __user *buf)
3571{
59ed446f 3572 u64 enabled, running;
3dab77fb
PZ
3573 u64 values[4];
3574 int n = 0;
3575
59ed446f
PZ
3576 values[n++] = perf_event_read_value(event, &enabled, &running);
3577 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3578 values[n++] = enabled;
3579 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3580 values[n++] = running;
3dab77fb 3581 if (read_format & PERF_FORMAT_ID)
cdd6c482 3582 values[n++] = primary_event_id(event);
3dab77fb
PZ
3583
3584 if (copy_to_user(buf, values, n * sizeof(u64)))
3585 return -EFAULT;
3586
3587 return n * sizeof(u64);
3588}
3589
dc633982
JO
3590static bool is_event_hup(struct perf_event *event)
3591{
3592 bool no_children;
3593
3594 if (event->state != PERF_EVENT_STATE_EXIT)
3595 return false;
3596
3597 mutex_lock(&event->child_mutex);
3598 no_children = list_empty(&event->child_list);
3599 mutex_unlock(&event->child_mutex);
3600 return no_children;
3601}
3602
0793a61d 3603/*
cdd6c482 3604 * Read the performance event - simple non blocking version for now
0793a61d
TG
3605 */
3606static ssize_t
cdd6c482 3607perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3608{
cdd6c482 3609 u64 read_format = event->attr.read_format;
3dab77fb 3610 int ret;
0793a61d 3611
3b6f9e5c 3612 /*
cdd6c482 3613 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3614 * error state (i.e. because it was pinned but it couldn't be
3615 * scheduled on to the CPU at some point).
3616 */
c88f2096 3617 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3618 return 0;
3619
c320c7b7 3620 if (count < event->read_size)
3dab77fb
PZ
3621 return -ENOSPC;
3622
cdd6c482 3623 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3624 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3625 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3626 else
cdd6c482 3627 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3628
3dab77fb 3629 return ret;
0793a61d
TG
3630}
3631
0793a61d
TG
3632static ssize_t
3633perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3634{
cdd6c482 3635 struct perf_event *event = file->private_data;
0793a61d 3636
cdd6c482 3637 return perf_read_hw(event, buf, count);
0793a61d
TG
3638}
3639
3640static unsigned int perf_poll(struct file *file, poll_table *wait)
3641{
cdd6c482 3642 struct perf_event *event = file->private_data;
76369139 3643 struct ring_buffer *rb;
61b67684 3644 unsigned int events = POLLHUP;
c7138f37 3645
e708d7ad 3646 poll_wait(file, &event->waitq, wait);
179033b3 3647
dc633982 3648 if (is_event_hup(event))
179033b3
JO
3649 return events;
3650
10c6db11 3651 /*
9bb5d40c
PZ
3652 * Pin the event->rb by taking event->mmap_mutex; otherwise
3653 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3654 */
3655 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3656 rb = event->rb;
3657 if (rb)
76369139 3658 events = atomic_xchg(&rb->poll, 0);
10c6db11 3659 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
3660 return events;
3661}
3662
cdd6c482 3663static void perf_event_reset(struct perf_event *event)
6de6a7b9 3664{
cdd6c482 3665 (void)perf_event_read(event);
e7850595 3666 local64_set(&event->count, 0);
cdd6c482 3667 perf_event_update_userpage(event);
3df5edad
PZ
3668}
3669
c93f7669 3670/*
cdd6c482
IM
3671 * Holding the top-level event's child_mutex means that any
3672 * descendant process that has inherited this event will block
3673 * in sync_child_event if it goes to exit, thus satisfying the
3674 * task existence requirements of perf_event_enable/disable.
c93f7669 3675 */
cdd6c482
IM
3676static void perf_event_for_each_child(struct perf_event *event,
3677 void (*func)(struct perf_event *))
3df5edad 3678{
cdd6c482 3679 struct perf_event *child;
3df5edad 3680
cdd6c482
IM
3681 WARN_ON_ONCE(event->ctx->parent_ctx);
3682 mutex_lock(&event->child_mutex);
3683 func(event);
3684 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3685 func(child);
cdd6c482 3686 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3687}
3688
cdd6c482
IM
3689static void perf_event_for_each(struct perf_event *event,
3690 void (*func)(struct perf_event *))
3df5edad 3691{
cdd6c482
IM
3692 struct perf_event_context *ctx = event->ctx;
3693 struct perf_event *sibling;
3df5edad 3694
75f937f2
PZ
3695 WARN_ON_ONCE(ctx->parent_ctx);
3696 mutex_lock(&ctx->mutex);
cdd6c482 3697 event = event->group_leader;
75f937f2 3698
cdd6c482 3699 perf_event_for_each_child(event, func);
cdd6c482 3700 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3701 perf_event_for_each_child(sibling, func);
75f937f2 3702 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3703}
3704
cdd6c482 3705static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3706{
cdd6c482 3707 struct perf_event_context *ctx = event->ctx;
bad7192b 3708 int ret = 0, active;
08247e31
PZ
3709 u64 value;
3710
6c7e550f 3711 if (!is_sampling_event(event))
08247e31
PZ
3712 return -EINVAL;
3713
ad0cf347 3714 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3715 return -EFAULT;
3716
3717 if (!value)
3718 return -EINVAL;
3719
e625cce1 3720 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3721 if (event->attr.freq) {
3722 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3723 ret = -EINVAL;
3724 goto unlock;
3725 }
3726
cdd6c482 3727 event->attr.sample_freq = value;
08247e31 3728 } else {
cdd6c482
IM
3729 event->attr.sample_period = value;
3730 event->hw.sample_period = value;
08247e31 3731 }
bad7192b
PZ
3732
3733 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3734 if (active) {
3735 perf_pmu_disable(ctx->pmu);
3736 event->pmu->stop(event, PERF_EF_UPDATE);
3737 }
3738
3739 local64_set(&event->hw.period_left, 0);
3740
3741 if (active) {
3742 event->pmu->start(event, PERF_EF_RELOAD);
3743 perf_pmu_enable(ctx->pmu);
3744 }
3745
08247e31 3746unlock:
e625cce1 3747 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3748
3749 return ret;
3750}
3751
ac9721f3
PZ
3752static const struct file_operations perf_fops;
3753
2903ff01 3754static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3755{
2903ff01
AV
3756 struct fd f = fdget(fd);
3757 if (!f.file)
3758 return -EBADF;
ac9721f3 3759
2903ff01
AV
3760 if (f.file->f_op != &perf_fops) {
3761 fdput(f);
3762 return -EBADF;
ac9721f3 3763 }
2903ff01
AV
3764 *p = f;
3765 return 0;
ac9721f3
PZ
3766}
3767
3768static int perf_event_set_output(struct perf_event *event,
3769 struct perf_event *output_event);
6fb2915d 3770static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3771
d859e29f
PM
3772static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3773{
cdd6c482
IM
3774 struct perf_event *event = file->private_data;
3775 void (*func)(struct perf_event *);
3df5edad 3776 u32 flags = arg;
d859e29f
PM
3777
3778 switch (cmd) {
cdd6c482
IM
3779 case PERF_EVENT_IOC_ENABLE:
3780 func = perf_event_enable;
d859e29f 3781 break;
cdd6c482
IM
3782 case PERF_EVENT_IOC_DISABLE:
3783 func = perf_event_disable;
79f14641 3784 break;
cdd6c482
IM
3785 case PERF_EVENT_IOC_RESET:
3786 func = perf_event_reset;
6de6a7b9 3787 break;
3df5edad 3788
cdd6c482
IM
3789 case PERF_EVENT_IOC_REFRESH:
3790 return perf_event_refresh(event, arg);
08247e31 3791
cdd6c482
IM
3792 case PERF_EVENT_IOC_PERIOD:
3793 return perf_event_period(event, (u64 __user *)arg);
08247e31 3794
cf4957f1
JO
3795 case PERF_EVENT_IOC_ID:
3796 {
3797 u64 id = primary_event_id(event);
3798
3799 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3800 return -EFAULT;
3801 return 0;
3802 }
3803
cdd6c482 3804 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3805 {
ac9721f3 3806 int ret;
ac9721f3 3807 if (arg != -1) {
2903ff01
AV
3808 struct perf_event *output_event;
3809 struct fd output;
3810 ret = perf_fget_light(arg, &output);
3811 if (ret)
3812 return ret;
3813 output_event = output.file->private_data;
3814 ret = perf_event_set_output(event, output_event);
3815 fdput(output);
3816 } else {
3817 ret = perf_event_set_output(event, NULL);
ac9721f3 3818 }
ac9721f3
PZ
3819 return ret;
3820 }
a4be7c27 3821
6fb2915d
LZ
3822 case PERF_EVENT_IOC_SET_FILTER:
3823 return perf_event_set_filter(event, (void __user *)arg);
3824
d859e29f 3825 default:
3df5edad 3826 return -ENOTTY;
d859e29f 3827 }
3df5edad
PZ
3828
3829 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3830 perf_event_for_each(event, func);
3df5edad 3831 else
cdd6c482 3832 perf_event_for_each_child(event, func);
3df5edad
PZ
3833
3834 return 0;
d859e29f
PM
3835}
3836
b3f20785
PM
3837#ifdef CONFIG_COMPAT
3838static long perf_compat_ioctl(struct file *file, unsigned int cmd,
3839 unsigned long arg)
3840{
3841 switch (_IOC_NR(cmd)) {
3842 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
3843 case _IOC_NR(PERF_EVENT_IOC_ID):
3844 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3845 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
3846 cmd &= ~IOCSIZE_MASK;
3847 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
3848 }
3849 break;
3850 }
3851 return perf_ioctl(file, cmd, arg);
3852}
3853#else
3854# define perf_compat_ioctl NULL
3855#endif
3856
cdd6c482 3857int perf_event_task_enable(void)
771d7cde 3858{
cdd6c482 3859 struct perf_event *event;
771d7cde 3860
cdd6c482
IM
3861 mutex_lock(&current->perf_event_mutex);
3862 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3863 perf_event_for_each_child(event, perf_event_enable);
3864 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3865
3866 return 0;
3867}
3868
cdd6c482 3869int perf_event_task_disable(void)
771d7cde 3870{
cdd6c482 3871 struct perf_event *event;
771d7cde 3872
cdd6c482
IM
3873 mutex_lock(&current->perf_event_mutex);
3874 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3875 perf_event_for_each_child(event, perf_event_disable);
3876 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3877
3878 return 0;
3879}
3880
cdd6c482 3881static int perf_event_index(struct perf_event *event)
194002b2 3882{
a4eaf7f1
PZ
3883 if (event->hw.state & PERF_HES_STOPPED)
3884 return 0;
3885
cdd6c482 3886 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3887 return 0;
3888
35edc2a5 3889 return event->pmu->event_idx(event);
194002b2
PZ
3890}
3891
c4794295 3892static void calc_timer_values(struct perf_event *event,
e3f3541c 3893 u64 *now,
7f310a5d
EM
3894 u64 *enabled,
3895 u64 *running)
c4794295 3896{
e3f3541c 3897 u64 ctx_time;
c4794295 3898
e3f3541c
PZ
3899 *now = perf_clock();
3900 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3901 *enabled = ctx_time - event->tstamp_enabled;
3902 *running = ctx_time - event->tstamp_running;
3903}
3904
fa731587
PZ
3905static void perf_event_init_userpage(struct perf_event *event)
3906{
3907 struct perf_event_mmap_page *userpg;
3908 struct ring_buffer *rb;
3909
3910 rcu_read_lock();
3911 rb = rcu_dereference(event->rb);
3912 if (!rb)
3913 goto unlock;
3914
3915 userpg = rb->user_page;
3916
3917 /* Allow new userspace to detect that bit 0 is deprecated */
3918 userpg->cap_bit0_is_deprecated = 1;
3919 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3920
3921unlock:
3922 rcu_read_unlock();
3923}
3924
c7206205 3925void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3926{
3927}
3928
38ff667b
PZ
3929/*
3930 * Callers need to ensure there can be no nesting of this function, otherwise
3931 * the seqlock logic goes bad. We can not serialize this because the arch
3932 * code calls this from NMI context.
3933 */
cdd6c482 3934void perf_event_update_userpage(struct perf_event *event)
37d81828 3935{
cdd6c482 3936 struct perf_event_mmap_page *userpg;
76369139 3937 struct ring_buffer *rb;
e3f3541c 3938 u64 enabled, running, now;
38ff667b
PZ
3939
3940 rcu_read_lock();
5ec4c599
PZ
3941 rb = rcu_dereference(event->rb);
3942 if (!rb)
3943 goto unlock;
3944
0d641208
EM
3945 /*
3946 * compute total_time_enabled, total_time_running
3947 * based on snapshot values taken when the event
3948 * was last scheduled in.
3949 *
3950 * we cannot simply called update_context_time()
3951 * because of locking issue as we can be called in
3952 * NMI context
3953 */
e3f3541c 3954 calc_timer_values(event, &now, &enabled, &running);
38ff667b 3955
76369139 3956 userpg = rb->user_page;
7b732a75
PZ
3957 /*
3958 * Disable preemption so as to not let the corresponding user-space
3959 * spin too long if we get preempted.
3960 */
3961 preempt_disable();
37d81828 3962 ++userpg->lock;
92f22a38 3963 barrier();
cdd6c482 3964 userpg->index = perf_event_index(event);
b5e58793 3965 userpg->offset = perf_event_count(event);
365a4038 3966 if (userpg->index)
e7850595 3967 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3968
0d641208 3969 userpg->time_enabled = enabled +
cdd6c482 3970 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3971
0d641208 3972 userpg->time_running = running +
cdd6c482 3973 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3974
c7206205 3975 arch_perf_update_userpage(userpg, now);
e3f3541c 3976
92f22a38 3977 barrier();
37d81828 3978 ++userpg->lock;
7b732a75 3979 preempt_enable();
38ff667b 3980unlock:
7b732a75 3981 rcu_read_unlock();
37d81828
PM
3982}
3983
906010b2
PZ
3984static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3985{
3986 struct perf_event *event = vma->vm_file->private_data;
76369139 3987 struct ring_buffer *rb;
906010b2
PZ
3988 int ret = VM_FAULT_SIGBUS;
3989
3990 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3991 if (vmf->pgoff == 0)
3992 ret = 0;
3993 return ret;
3994 }
3995
3996 rcu_read_lock();
76369139
FW
3997 rb = rcu_dereference(event->rb);
3998 if (!rb)
906010b2
PZ
3999 goto unlock;
4000
4001 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4002 goto unlock;
4003
76369139 4004 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4005 if (!vmf->page)
4006 goto unlock;
4007
4008 get_page(vmf->page);
4009 vmf->page->mapping = vma->vm_file->f_mapping;
4010 vmf->page->index = vmf->pgoff;
4011
4012 ret = 0;
4013unlock:
4014 rcu_read_unlock();
4015
4016 return ret;
4017}
4018
10c6db11
PZ
4019static void ring_buffer_attach(struct perf_event *event,
4020 struct ring_buffer *rb)
4021{
b69cf536 4022 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4023 unsigned long flags;
4024
b69cf536
PZ
4025 if (event->rb) {
4026 /*
4027 * Should be impossible, we set this when removing
4028 * event->rb_entry and wait/clear when adding event->rb_entry.
4029 */
4030 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4031
b69cf536
PZ
4032 old_rb = event->rb;
4033 event->rcu_batches = get_state_synchronize_rcu();
4034 event->rcu_pending = 1;
10c6db11 4035
b69cf536
PZ
4036 spin_lock_irqsave(&old_rb->event_lock, flags);
4037 list_del_rcu(&event->rb_entry);
4038 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4039 }
10c6db11 4040
b69cf536
PZ
4041 if (event->rcu_pending && rb) {
4042 cond_synchronize_rcu(event->rcu_batches);
4043 event->rcu_pending = 0;
4044 }
10c6db11 4045
b69cf536
PZ
4046 if (rb) {
4047 spin_lock_irqsave(&rb->event_lock, flags);
4048 list_add_rcu(&event->rb_entry, &rb->event_list);
4049 spin_unlock_irqrestore(&rb->event_lock, flags);
4050 }
4051
4052 rcu_assign_pointer(event->rb, rb);
4053
4054 if (old_rb) {
4055 ring_buffer_put(old_rb);
4056 /*
4057 * Since we detached before setting the new rb, so that we
4058 * could attach the new rb, we could have missed a wakeup.
4059 * Provide it now.
4060 */
4061 wake_up_all(&event->waitq);
4062 }
10c6db11
PZ
4063}
4064
4065static void ring_buffer_wakeup(struct perf_event *event)
4066{
4067 struct ring_buffer *rb;
4068
4069 rcu_read_lock();
4070 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4071 if (rb) {
4072 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4073 wake_up_all(&event->waitq);
4074 }
10c6db11
PZ
4075 rcu_read_unlock();
4076}
4077
76369139 4078static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 4079{
76369139 4080 struct ring_buffer *rb;
906010b2 4081
76369139
FW
4082 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4083 rb_free(rb);
7b732a75
PZ
4084}
4085
76369139 4086static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4087{
76369139 4088 struct ring_buffer *rb;
7b732a75 4089
ac9721f3 4090 rcu_read_lock();
76369139
FW
4091 rb = rcu_dereference(event->rb);
4092 if (rb) {
4093 if (!atomic_inc_not_zero(&rb->refcount))
4094 rb = NULL;
ac9721f3
PZ
4095 }
4096 rcu_read_unlock();
4097
76369139 4098 return rb;
ac9721f3
PZ
4099}
4100
76369139 4101static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4102{
76369139 4103 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4104 return;
7b732a75 4105
9bb5d40c 4106 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4107
76369139 4108 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4109}
4110
4111static void perf_mmap_open(struct vm_area_struct *vma)
4112{
cdd6c482 4113 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4114
cdd6c482 4115 atomic_inc(&event->mmap_count);
9bb5d40c 4116 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
4117}
4118
9bb5d40c
PZ
4119/*
4120 * A buffer can be mmap()ed multiple times; either directly through the same
4121 * event, or through other events by use of perf_event_set_output().
4122 *
4123 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4124 * the buffer here, where we still have a VM context. This means we need
4125 * to detach all events redirecting to us.
4126 */
7b732a75
PZ
4127static void perf_mmap_close(struct vm_area_struct *vma)
4128{
cdd6c482 4129 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4130
b69cf536 4131 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4132 struct user_struct *mmap_user = rb->mmap_user;
4133 int mmap_locked = rb->mmap_locked;
4134 unsigned long size = perf_data_size(rb);
789f90fc 4135
9bb5d40c
PZ
4136 atomic_dec(&rb->mmap_count);
4137
4138 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4139 goto out_put;
9bb5d40c 4140
b69cf536 4141 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4142 mutex_unlock(&event->mmap_mutex);
4143
4144 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4145 if (atomic_read(&rb->mmap_count))
4146 goto out_put;
ac9721f3 4147
9bb5d40c
PZ
4148 /*
4149 * No other mmap()s, detach from all other events that might redirect
4150 * into the now unreachable buffer. Somewhat complicated by the
4151 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4152 */
4153again:
4154 rcu_read_lock();
4155 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4156 if (!atomic_long_inc_not_zero(&event->refcount)) {
4157 /*
4158 * This event is en-route to free_event() which will
4159 * detach it and remove it from the list.
4160 */
4161 continue;
4162 }
4163 rcu_read_unlock();
789f90fc 4164
9bb5d40c
PZ
4165 mutex_lock(&event->mmap_mutex);
4166 /*
4167 * Check we didn't race with perf_event_set_output() which can
4168 * swizzle the rb from under us while we were waiting to
4169 * acquire mmap_mutex.
4170 *
4171 * If we find a different rb; ignore this event, a next
4172 * iteration will no longer find it on the list. We have to
4173 * still restart the iteration to make sure we're not now
4174 * iterating the wrong list.
4175 */
b69cf536
PZ
4176 if (event->rb == rb)
4177 ring_buffer_attach(event, NULL);
4178
cdd6c482 4179 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4180 put_event(event);
ac9721f3 4181
9bb5d40c
PZ
4182 /*
4183 * Restart the iteration; either we're on the wrong list or
4184 * destroyed its integrity by doing a deletion.
4185 */
4186 goto again;
7b732a75 4187 }
9bb5d40c
PZ
4188 rcu_read_unlock();
4189
4190 /*
4191 * It could be there's still a few 0-ref events on the list; they'll
4192 * get cleaned up by free_event() -- they'll also still have their
4193 * ref on the rb and will free it whenever they are done with it.
4194 *
4195 * Aside from that, this buffer is 'fully' detached and unmapped,
4196 * undo the VM accounting.
4197 */
4198
4199 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4200 vma->vm_mm->pinned_vm -= mmap_locked;
4201 free_uid(mmap_user);
4202
b69cf536 4203out_put:
9bb5d40c 4204 ring_buffer_put(rb); /* could be last */
37d81828
PM
4205}
4206
f0f37e2f 4207static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
4208 .open = perf_mmap_open,
4209 .close = perf_mmap_close,
4210 .fault = perf_mmap_fault,
4211 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4212};
4213
4214static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4215{
cdd6c482 4216 struct perf_event *event = file->private_data;
22a4f650 4217 unsigned long user_locked, user_lock_limit;
789f90fc 4218 struct user_struct *user = current_user();
22a4f650 4219 unsigned long locked, lock_limit;
76369139 4220 struct ring_buffer *rb;
7b732a75
PZ
4221 unsigned long vma_size;
4222 unsigned long nr_pages;
789f90fc 4223 long user_extra, extra;
d57e34fd 4224 int ret = 0, flags = 0;
37d81828 4225
c7920614
PZ
4226 /*
4227 * Don't allow mmap() of inherited per-task counters. This would
4228 * create a performance issue due to all children writing to the
76369139 4229 * same rb.
c7920614
PZ
4230 */
4231 if (event->cpu == -1 && event->attr.inherit)
4232 return -EINVAL;
4233
43a21ea8 4234 if (!(vma->vm_flags & VM_SHARED))
37d81828 4235 return -EINVAL;
7b732a75
PZ
4236
4237 vma_size = vma->vm_end - vma->vm_start;
4238 nr_pages = (vma_size / PAGE_SIZE) - 1;
4239
7730d865 4240 /*
76369139 4241 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4242 * can do bitmasks instead of modulo.
4243 */
4244 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4245 return -EINVAL;
4246
7b732a75 4247 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4248 return -EINVAL;
4249
7b732a75
PZ
4250 if (vma->vm_pgoff != 0)
4251 return -EINVAL;
37d81828 4252
cdd6c482 4253 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4254again:
cdd6c482 4255 mutex_lock(&event->mmap_mutex);
76369139 4256 if (event->rb) {
9bb5d40c 4257 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4258 ret = -EINVAL;
9bb5d40c
PZ
4259 goto unlock;
4260 }
4261
4262 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4263 /*
4264 * Raced against perf_mmap_close() through
4265 * perf_event_set_output(). Try again, hope for better
4266 * luck.
4267 */
4268 mutex_unlock(&event->mmap_mutex);
4269 goto again;
4270 }
4271
ebb3c4c4
PZ
4272 goto unlock;
4273 }
4274
789f90fc 4275 user_extra = nr_pages + 1;
cdd6c482 4276 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4277
4278 /*
4279 * Increase the limit linearly with more CPUs:
4280 */
4281 user_lock_limit *= num_online_cpus();
4282
789f90fc 4283 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4284
789f90fc
PZ
4285 extra = 0;
4286 if (user_locked > user_lock_limit)
4287 extra = user_locked - user_lock_limit;
7b732a75 4288
78d7d407 4289 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4290 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4291 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4292
459ec28a
IM
4293 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4294 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4295 ret = -EPERM;
4296 goto unlock;
4297 }
7b732a75 4298
76369139 4299 WARN_ON(event->rb);
906010b2 4300
d57e34fd 4301 if (vma->vm_flags & VM_WRITE)
76369139 4302 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4303
4ec8363d
VW
4304 rb = rb_alloc(nr_pages,
4305 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4306 event->cpu, flags);
4307
76369139 4308 if (!rb) {
ac9721f3 4309 ret = -ENOMEM;
ebb3c4c4 4310 goto unlock;
ac9721f3 4311 }
26cb63ad 4312
9bb5d40c 4313 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4314 rb->mmap_locked = extra;
4315 rb->mmap_user = get_current_user();
43a21ea8 4316
ac9721f3 4317 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4318 vma->vm_mm->pinned_vm += extra;
4319
9bb5d40c 4320 ring_buffer_attach(event, rb);
ac9721f3 4321
fa731587 4322 perf_event_init_userpage(event);
9a0f05cb
PZ
4323 perf_event_update_userpage(event);
4324
ebb3c4c4 4325unlock:
ac9721f3
PZ
4326 if (!ret)
4327 atomic_inc(&event->mmap_count);
cdd6c482 4328 mutex_unlock(&event->mmap_mutex);
37d81828 4329
9bb5d40c
PZ
4330 /*
4331 * Since pinned accounting is per vm we cannot allow fork() to copy our
4332 * vma.
4333 */
26cb63ad 4334 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4335 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4336
4337 return ret;
37d81828
PM
4338}
4339
3c446b3d
PZ
4340static int perf_fasync(int fd, struct file *filp, int on)
4341{
496ad9aa 4342 struct inode *inode = file_inode(filp);
cdd6c482 4343 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4344 int retval;
4345
4346 mutex_lock(&inode->i_mutex);
cdd6c482 4347 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4348 mutex_unlock(&inode->i_mutex);
4349
4350 if (retval < 0)
4351 return retval;
4352
4353 return 0;
4354}
4355
0793a61d 4356static const struct file_operations perf_fops = {
3326c1ce 4357 .llseek = no_llseek,
0793a61d
TG
4358 .release = perf_release,
4359 .read = perf_read,
4360 .poll = perf_poll,
d859e29f 4361 .unlocked_ioctl = perf_ioctl,
b3f20785 4362 .compat_ioctl = perf_compat_ioctl,
37d81828 4363 .mmap = perf_mmap,
3c446b3d 4364 .fasync = perf_fasync,
0793a61d
TG
4365};
4366
925d519a 4367/*
cdd6c482 4368 * Perf event wakeup
925d519a
PZ
4369 *
4370 * If there's data, ensure we set the poll() state and publish everything
4371 * to user-space before waking everybody up.
4372 */
4373
cdd6c482 4374void perf_event_wakeup(struct perf_event *event)
925d519a 4375{
10c6db11 4376 ring_buffer_wakeup(event);
4c9e2542 4377
cdd6c482
IM
4378 if (event->pending_kill) {
4379 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4380 event->pending_kill = 0;
4c9e2542 4381 }
925d519a
PZ
4382}
4383
e360adbe 4384static void perf_pending_event(struct irq_work *entry)
79f14641 4385{
cdd6c482
IM
4386 struct perf_event *event = container_of(entry,
4387 struct perf_event, pending);
79f14641 4388
cdd6c482
IM
4389 if (event->pending_disable) {
4390 event->pending_disable = 0;
4391 __perf_event_disable(event);
79f14641
PZ
4392 }
4393
cdd6c482
IM
4394 if (event->pending_wakeup) {
4395 event->pending_wakeup = 0;
4396 perf_event_wakeup(event);
79f14641
PZ
4397 }
4398}
4399
39447b38
ZY
4400/*
4401 * We assume there is only KVM supporting the callbacks.
4402 * Later on, we might change it to a list if there is
4403 * another virtualization implementation supporting the callbacks.
4404 */
4405struct perf_guest_info_callbacks *perf_guest_cbs;
4406
4407int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4408{
4409 perf_guest_cbs = cbs;
4410 return 0;
4411}
4412EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4413
4414int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4415{
4416 perf_guest_cbs = NULL;
4417 return 0;
4418}
4419EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4420
4018994f
JO
4421static void
4422perf_output_sample_regs(struct perf_output_handle *handle,
4423 struct pt_regs *regs, u64 mask)
4424{
4425 int bit;
4426
4427 for_each_set_bit(bit, (const unsigned long *) &mask,
4428 sizeof(mask) * BITS_PER_BYTE) {
4429 u64 val;
4430
4431 val = perf_reg_value(regs, bit);
4432 perf_output_put(handle, val);
4433 }
4434}
4435
4436static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4437 struct pt_regs *regs)
4438{
4439 if (!user_mode(regs)) {
4440 if (current->mm)
4441 regs = task_pt_regs(current);
4442 else
4443 regs = NULL;
4444 }
4445
4446 if (regs) {
4447 regs_user->regs = regs;
4448 regs_user->abi = perf_reg_abi(current);
4449 }
4450}
4451
c5ebcedb
JO
4452/*
4453 * Get remaining task size from user stack pointer.
4454 *
4455 * It'd be better to take stack vma map and limit this more
4456 * precisly, but there's no way to get it safely under interrupt,
4457 * so using TASK_SIZE as limit.
4458 */
4459static u64 perf_ustack_task_size(struct pt_regs *regs)
4460{
4461 unsigned long addr = perf_user_stack_pointer(regs);
4462
4463 if (!addr || addr >= TASK_SIZE)
4464 return 0;
4465
4466 return TASK_SIZE - addr;
4467}
4468
4469static u16
4470perf_sample_ustack_size(u16 stack_size, u16 header_size,
4471 struct pt_regs *regs)
4472{
4473 u64 task_size;
4474
4475 /* No regs, no stack pointer, no dump. */
4476 if (!regs)
4477 return 0;
4478
4479 /*
4480 * Check if we fit in with the requested stack size into the:
4481 * - TASK_SIZE
4482 * If we don't, we limit the size to the TASK_SIZE.
4483 *
4484 * - remaining sample size
4485 * If we don't, we customize the stack size to
4486 * fit in to the remaining sample size.
4487 */
4488
4489 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4490 stack_size = min(stack_size, (u16) task_size);
4491
4492 /* Current header size plus static size and dynamic size. */
4493 header_size += 2 * sizeof(u64);
4494
4495 /* Do we fit in with the current stack dump size? */
4496 if ((u16) (header_size + stack_size) < header_size) {
4497 /*
4498 * If we overflow the maximum size for the sample,
4499 * we customize the stack dump size to fit in.
4500 */
4501 stack_size = USHRT_MAX - header_size - sizeof(u64);
4502 stack_size = round_up(stack_size, sizeof(u64));
4503 }
4504
4505 return stack_size;
4506}
4507
4508static void
4509perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4510 struct pt_regs *regs)
4511{
4512 /* Case of a kernel thread, nothing to dump */
4513 if (!regs) {
4514 u64 size = 0;
4515 perf_output_put(handle, size);
4516 } else {
4517 unsigned long sp;
4518 unsigned int rem;
4519 u64 dyn_size;
4520
4521 /*
4522 * We dump:
4523 * static size
4524 * - the size requested by user or the best one we can fit
4525 * in to the sample max size
4526 * data
4527 * - user stack dump data
4528 * dynamic size
4529 * - the actual dumped size
4530 */
4531
4532 /* Static size. */
4533 perf_output_put(handle, dump_size);
4534
4535 /* Data. */
4536 sp = perf_user_stack_pointer(regs);
4537 rem = __output_copy_user(handle, (void *) sp, dump_size);
4538 dyn_size = dump_size - rem;
4539
4540 perf_output_skip(handle, rem);
4541
4542 /* Dynamic size. */
4543 perf_output_put(handle, dyn_size);
4544 }
4545}
4546
c980d109
ACM
4547static void __perf_event_header__init_id(struct perf_event_header *header,
4548 struct perf_sample_data *data,
4549 struct perf_event *event)
6844c09d
ACM
4550{
4551 u64 sample_type = event->attr.sample_type;
4552
4553 data->type = sample_type;
4554 header->size += event->id_header_size;
4555
4556 if (sample_type & PERF_SAMPLE_TID) {
4557 /* namespace issues */
4558 data->tid_entry.pid = perf_event_pid(event, current);
4559 data->tid_entry.tid = perf_event_tid(event, current);
4560 }
4561
4562 if (sample_type & PERF_SAMPLE_TIME)
4563 data->time = perf_clock();
4564
ff3d527c 4565 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4566 data->id = primary_event_id(event);
4567
4568 if (sample_type & PERF_SAMPLE_STREAM_ID)
4569 data->stream_id = event->id;
4570
4571 if (sample_type & PERF_SAMPLE_CPU) {
4572 data->cpu_entry.cpu = raw_smp_processor_id();
4573 data->cpu_entry.reserved = 0;
4574 }
4575}
4576
76369139
FW
4577void perf_event_header__init_id(struct perf_event_header *header,
4578 struct perf_sample_data *data,
4579 struct perf_event *event)
c980d109
ACM
4580{
4581 if (event->attr.sample_id_all)
4582 __perf_event_header__init_id(header, data, event);
4583}
4584
4585static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4586 struct perf_sample_data *data)
4587{
4588 u64 sample_type = data->type;
4589
4590 if (sample_type & PERF_SAMPLE_TID)
4591 perf_output_put(handle, data->tid_entry);
4592
4593 if (sample_type & PERF_SAMPLE_TIME)
4594 perf_output_put(handle, data->time);
4595
4596 if (sample_type & PERF_SAMPLE_ID)
4597 perf_output_put(handle, data->id);
4598
4599 if (sample_type & PERF_SAMPLE_STREAM_ID)
4600 perf_output_put(handle, data->stream_id);
4601
4602 if (sample_type & PERF_SAMPLE_CPU)
4603 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4604
4605 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4606 perf_output_put(handle, data->id);
c980d109
ACM
4607}
4608
76369139
FW
4609void perf_event__output_id_sample(struct perf_event *event,
4610 struct perf_output_handle *handle,
4611 struct perf_sample_data *sample)
c980d109
ACM
4612{
4613 if (event->attr.sample_id_all)
4614 __perf_event__output_id_sample(handle, sample);
4615}
4616
3dab77fb 4617static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4618 struct perf_event *event,
4619 u64 enabled, u64 running)
3dab77fb 4620{
cdd6c482 4621 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4622 u64 values[4];
4623 int n = 0;
4624
b5e58793 4625 values[n++] = perf_event_count(event);
3dab77fb 4626 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4627 values[n++] = enabled +
cdd6c482 4628 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4629 }
4630 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4631 values[n++] = running +
cdd6c482 4632 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4633 }
4634 if (read_format & PERF_FORMAT_ID)
cdd6c482 4635 values[n++] = primary_event_id(event);
3dab77fb 4636
76369139 4637 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4638}
4639
4640/*
cdd6c482 4641 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4642 */
4643static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4644 struct perf_event *event,
4645 u64 enabled, u64 running)
3dab77fb 4646{
cdd6c482
IM
4647 struct perf_event *leader = event->group_leader, *sub;
4648 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4649 u64 values[5];
4650 int n = 0;
4651
4652 values[n++] = 1 + leader->nr_siblings;
4653
4654 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4655 values[n++] = enabled;
3dab77fb
PZ
4656
4657 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4658 values[n++] = running;
3dab77fb 4659
cdd6c482 4660 if (leader != event)
3dab77fb
PZ
4661 leader->pmu->read(leader);
4662
b5e58793 4663 values[n++] = perf_event_count(leader);
3dab77fb 4664 if (read_format & PERF_FORMAT_ID)
cdd6c482 4665 values[n++] = primary_event_id(leader);
3dab77fb 4666
76369139 4667 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4668
65abc865 4669 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4670 n = 0;
4671
6f5ab001
JO
4672 if ((sub != event) &&
4673 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4674 sub->pmu->read(sub);
4675
b5e58793 4676 values[n++] = perf_event_count(sub);
3dab77fb 4677 if (read_format & PERF_FORMAT_ID)
cdd6c482 4678 values[n++] = primary_event_id(sub);
3dab77fb 4679
76369139 4680 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4681 }
4682}
4683
eed01528
SE
4684#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4685 PERF_FORMAT_TOTAL_TIME_RUNNING)
4686
3dab77fb 4687static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4688 struct perf_event *event)
3dab77fb 4689{
e3f3541c 4690 u64 enabled = 0, running = 0, now;
eed01528
SE
4691 u64 read_format = event->attr.read_format;
4692
4693 /*
4694 * compute total_time_enabled, total_time_running
4695 * based on snapshot values taken when the event
4696 * was last scheduled in.
4697 *
4698 * we cannot simply called update_context_time()
4699 * because of locking issue as we are called in
4700 * NMI context
4701 */
c4794295 4702 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4703 calc_timer_values(event, &now, &enabled, &running);
eed01528 4704
cdd6c482 4705 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4706 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4707 else
eed01528 4708 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4709}
4710
5622f295
MM
4711void perf_output_sample(struct perf_output_handle *handle,
4712 struct perf_event_header *header,
4713 struct perf_sample_data *data,
cdd6c482 4714 struct perf_event *event)
5622f295
MM
4715{
4716 u64 sample_type = data->type;
4717
4718 perf_output_put(handle, *header);
4719
ff3d527c
AH
4720 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4721 perf_output_put(handle, data->id);
4722
5622f295
MM
4723 if (sample_type & PERF_SAMPLE_IP)
4724 perf_output_put(handle, data->ip);
4725
4726 if (sample_type & PERF_SAMPLE_TID)
4727 perf_output_put(handle, data->tid_entry);
4728
4729 if (sample_type & PERF_SAMPLE_TIME)
4730 perf_output_put(handle, data->time);
4731
4732 if (sample_type & PERF_SAMPLE_ADDR)
4733 perf_output_put(handle, data->addr);
4734
4735 if (sample_type & PERF_SAMPLE_ID)
4736 perf_output_put(handle, data->id);
4737
4738 if (sample_type & PERF_SAMPLE_STREAM_ID)
4739 perf_output_put(handle, data->stream_id);
4740
4741 if (sample_type & PERF_SAMPLE_CPU)
4742 perf_output_put(handle, data->cpu_entry);
4743
4744 if (sample_type & PERF_SAMPLE_PERIOD)
4745 perf_output_put(handle, data->period);
4746
4747 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4748 perf_output_read(handle, event);
5622f295
MM
4749
4750 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4751 if (data->callchain) {
4752 int size = 1;
4753
4754 if (data->callchain)
4755 size += data->callchain->nr;
4756
4757 size *= sizeof(u64);
4758
76369139 4759 __output_copy(handle, data->callchain, size);
5622f295
MM
4760 } else {
4761 u64 nr = 0;
4762 perf_output_put(handle, nr);
4763 }
4764 }
4765
4766 if (sample_type & PERF_SAMPLE_RAW) {
4767 if (data->raw) {
4768 perf_output_put(handle, data->raw->size);
76369139
FW
4769 __output_copy(handle, data->raw->data,
4770 data->raw->size);
5622f295
MM
4771 } else {
4772 struct {
4773 u32 size;
4774 u32 data;
4775 } raw = {
4776 .size = sizeof(u32),
4777 .data = 0,
4778 };
4779 perf_output_put(handle, raw);
4780 }
4781 }
a7ac67ea 4782
bce38cd5
SE
4783 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4784 if (data->br_stack) {
4785 size_t size;
4786
4787 size = data->br_stack->nr
4788 * sizeof(struct perf_branch_entry);
4789
4790 perf_output_put(handle, data->br_stack->nr);
4791 perf_output_copy(handle, data->br_stack->entries, size);
4792 } else {
4793 /*
4794 * we always store at least the value of nr
4795 */
4796 u64 nr = 0;
4797 perf_output_put(handle, nr);
4798 }
4799 }
4018994f
JO
4800
4801 if (sample_type & PERF_SAMPLE_REGS_USER) {
4802 u64 abi = data->regs_user.abi;
4803
4804 /*
4805 * If there are no regs to dump, notice it through
4806 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4807 */
4808 perf_output_put(handle, abi);
4809
4810 if (abi) {
4811 u64 mask = event->attr.sample_regs_user;
4812 perf_output_sample_regs(handle,
4813 data->regs_user.regs,
4814 mask);
4815 }
4816 }
c5ebcedb 4817
a5cdd40c 4818 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
4819 perf_output_sample_ustack(handle,
4820 data->stack_user_size,
4821 data->regs_user.regs);
a5cdd40c 4822 }
c3feedf2
AK
4823
4824 if (sample_type & PERF_SAMPLE_WEIGHT)
4825 perf_output_put(handle, data->weight);
d6be9ad6
SE
4826
4827 if (sample_type & PERF_SAMPLE_DATA_SRC)
4828 perf_output_put(handle, data->data_src.val);
a5cdd40c 4829
fdfbbd07
AK
4830 if (sample_type & PERF_SAMPLE_TRANSACTION)
4831 perf_output_put(handle, data->txn);
4832
a5cdd40c
PZ
4833 if (!event->attr.watermark) {
4834 int wakeup_events = event->attr.wakeup_events;
4835
4836 if (wakeup_events) {
4837 struct ring_buffer *rb = handle->rb;
4838 int events = local_inc_return(&rb->events);
4839
4840 if (events >= wakeup_events) {
4841 local_sub(wakeup_events, &rb->events);
4842 local_inc(&rb->wakeup);
4843 }
4844 }
4845 }
5622f295
MM
4846}
4847
4848void perf_prepare_sample(struct perf_event_header *header,
4849 struct perf_sample_data *data,
cdd6c482 4850 struct perf_event *event,
5622f295 4851 struct pt_regs *regs)
7b732a75 4852{
cdd6c482 4853 u64 sample_type = event->attr.sample_type;
7b732a75 4854
cdd6c482 4855 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4856 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4857
4858 header->misc = 0;
4859 header->misc |= perf_misc_flags(regs);
6fab0192 4860
c980d109 4861 __perf_event_header__init_id(header, data, event);
6844c09d 4862
c320c7b7 4863 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4864 data->ip = perf_instruction_pointer(regs);
4865
b23f3325 4866 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4867 int size = 1;
394ee076 4868
e6dab5ff 4869 data->callchain = perf_callchain(event, regs);
5622f295
MM
4870
4871 if (data->callchain)
4872 size += data->callchain->nr;
4873
4874 header->size += size * sizeof(u64);
394ee076
PZ
4875 }
4876
3a43ce68 4877 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4878 int size = sizeof(u32);
4879
4880 if (data->raw)
4881 size += data->raw->size;
4882 else
4883 size += sizeof(u32);
4884
4885 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4886 header->size += size;
7f453c24 4887 }
bce38cd5
SE
4888
4889 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4890 int size = sizeof(u64); /* nr */
4891 if (data->br_stack) {
4892 size += data->br_stack->nr
4893 * sizeof(struct perf_branch_entry);
4894 }
4895 header->size += size;
4896 }
4018994f
JO
4897
4898 if (sample_type & PERF_SAMPLE_REGS_USER) {
4899 /* regs dump ABI info */
4900 int size = sizeof(u64);
4901
4902 perf_sample_regs_user(&data->regs_user, regs);
4903
4904 if (data->regs_user.regs) {
4905 u64 mask = event->attr.sample_regs_user;
4906 size += hweight64(mask) * sizeof(u64);
4907 }
4908
4909 header->size += size;
4910 }
c5ebcedb
JO
4911
4912 if (sample_type & PERF_SAMPLE_STACK_USER) {
4913 /*
4914 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4915 * processed as the last one or have additional check added
4916 * in case new sample type is added, because we could eat
4917 * up the rest of the sample size.
4918 */
4919 struct perf_regs_user *uregs = &data->regs_user;
4920 u16 stack_size = event->attr.sample_stack_user;
4921 u16 size = sizeof(u64);
4922
4923 if (!uregs->abi)
4924 perf_sample_regs_user(uregs, regs);
4925
4926 stack_size = perf_sample_ustack_size(stack_size, header->size,
4927 uregs->regs);
4928
4929 /*
4930 * If there is something to dump, add space for the dump
4931 * itself and for the field that tells the dynamic size,
4932 * which is how many have been actually dumped.
4933 */
4934 if (stack_size)
4935 size += sizeof(u64) + stack_size;
4936
4937 data->stack_user_size = stack_size;
4938 header->size += size;
4939 }
5622f295 4940}
7f453c24 4941
a8b0ca17 4942static void perf_event_output(struct perf_event *event,
5622f295
MM
4943 struct perf_sample_data *data,
4944 struct pt_regs *regs)
4945{
4946 struct perf_output_handle handle;
4947 struct perf_event_header header;
689802b2 4948
927c7a9e
FW
4949 /* protect the callchain buffers */
4950 rcu_read_lock();
4951
cdd6c482 4952 perf_prepare_sample(&header, data, event, regs);
5c148194 4953
a7ac67ea 4954 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4955 goto exit;
0322cd6e 4956
cdd6c482 4957 perf_output_sample(&handle, &header, data, event);
f413cdb8 4958
8a057d84 4959 perf_output_end(&handle);
927c7a9e
FW
4960
4961exit:
4962 rcu_read_unlock();
0322cd6e
PZ
4963}
4964
38b200d6 4965/*
cdd6c482 4966 * read event_id
38b200d6
PZ
4967 */
4968
4969struct perf_read_event {
4970 struct perf_event_header header;
4971
4972 u32 pid;
4973 u32 tid;
38b200d6
PZ
4974};
4975
4976static void
cdd6c482 4977perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4978 struct task_struct *task)
4979{
4980 struct perf_output_handle handle;
c980d109 4981 struct perf_sample_data sample;
dfc65094 4982 struct perf_read_event read_event = {
38b200d6 4983 .header = {
cdd6c482 4984 .type = PERF_RECORD_READ,
38b200d6 4985 .misc = 0,
c320c7b7 4986 .size = sizeof(read_event) + event->read_size,
38b200d6 4987 },
cdd6c482
IM
4988 .pid = perf_event_pid(event, task),
4989 .tid = perf_event_tid(event, task),
38b200d6 4990 };
3dab77fb 4991 int ret;
38b200d6 4992
c980d109 4993 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4994 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4995 if (ret)
4996 return;
4997
dfc65094 4998 perf_output_put(&handle, read_event);
cdd6c482 4999 perf_output_read(&handle, event);
c980d109 5000 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5001
38b200d6
PZ
5002 perf_output_end(&handle);
5003}
5004
52d857a8
JO
5005typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5006
5007static void
5008perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5009 perf_event_aux_output_cb output,
5010 void *data)
5011{
5012 struct perf_event *event;
5013
5014 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5015 if (event->state < PERF_EVENT_STATE_INACTIVE)
5016 continue;
5017 if (!event_filter_match(event))
5018 continue;
67516844 5019 output(event, data);
52d857a8
JO
5020 }
5021}
5022
5023static void
67516844 5024perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5025 struct perf_event_context *task_ctx)
5026{
5027 struct perf_cpu_context *cpuctx;
5028 struct perf_event_context *ctx;
5029 struct pmu *pmu;
5030 int ctxn;
5031
5032 rcu_read_lock();
5033 list_for_each_entry_rcu(pmu, &pmus, entry) {
5034 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5035 if (cpuctx->unique_pmu != pmu)
5036 goto next;
67516844 5037 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5038 if (task_ctx)
5039 goto next;
5040 ctxn = pmu->task_ctx_nr;
5041 if (ctxn < 0)
5042 goto next;
5043 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5044 if (ctx)
67516844 5045 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5046next:
5047 put_cpu_ptr(pmu->pmu_cpu_context);
5048 }
5049
5050 if (task_ctx) {
5051 preempt_disable();
67516844 5052 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5053 preempt_enable();
5054 }
5055 rcu_read_unlock();
5056}
5057
60313ebe 5058/*
9f498cc5
PZ
5059 * task tracking -- fork/exit
5060 *
13d7a241 5061 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5062 */
5063
9f498cc5 5064struct perf_task_event {
3a80b4a3 5065 struct task_struct *task;
cdd6c482 5066 struct perf_event_context *task_ctx;
60313ebe
PZ
5067
5068 struct {
5069 struct perf_event_header header;
5070
5071 u32 pid;
5072 u32 ppid;
9f498cc5
PZ
5073 u32 tid;
5074 u32 ptid;
393b2ad8 5075 u64 time;
cdd6c482 5076 } event_id;
60313ebe
PZ
5077};
5078
67516844
JO
5079static int perf_event_task_match(struct perf_event *event)
5080{
13d7a241
SE
5081 return event->attr.comm || event->attr.mmap ||
5082 event->attr.mmap2 || event->attr.mmap_data ||
5083 event->attr.task;
67516844
JO
5084}
5085
cdd6c482 5086static void perf_event_task_output(struct perf_event *event,
52d857a8 5087 void *data)
60313ebe 5088{
52d857a8 5089 struct perf_task_event *task_event = data;
60313ebe 5090 struct perf_output_handle handle;
c980d109 5091 struct perf_sample_data sample;
9f498cc5 5092 struct task_struct *task = task_event->task;
c980d109 5093 int ret, size = task_event->event_id.header.size;
8bb39f9a 5094
67516844
JO
5095 if (!perf_event_task_match(event))
5096 return;
5097
c980d109 5098 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5099
c980d109 5100 ret = perf_output_begin(&handle, event,
a7ac67ea 5101 task_event->event_id.header.size);
ef60777c 5102 if (ret)
c980d109 5103 goto out;
60313ebe 5104
cdd6c482
IM
5105 task_event->event_id.pid = perf_event_pid(event, task);
5106 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5107
cdd6c482
IM
5108 task_event->event_id.tid = perf_event_tid(event, task);
5109 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5110
cdd6c482 5111 perf_output_put(&handle, task_event->event_id);
393b2ad8 5112
c980d109
ACM
5113 perf_event__output_id_sample(event, &handle, &sample);
5114
60313ebe 5115 perf_output_end(&handle);
c980d109
ACM
5116out:
5117 task_event->event_id.header.size = size;
60313ebe
PZ
5118}
5119
cdd6c482
IM
5120static void perf_event_task(struct task_struct *task,
5121 struct perf_event_context *task_ctx,
3a80b4a3 5122 int new)
60313ebe 5123{
9f498cc5 5124 struct perf_task_event task_event;
60313ebe 5125
cdd6c482
IM
5126 if (!atomic_read(&nr_comm_events) &&
5127 !atomic_read(&nr_mmap_events) &&
5128 !atomic_read(&nr_task_events))
60313ebe
PZ
5129 return;
5130
9f498cc5 5131 task_event = (struct perf_task_event){
3a80b4a3
PZ
5132 .task = task,
5133 .task_ctx = task_ctx,
cdd6c482 5134 .event_id = {
60313ebe 5135 .header = {
cdd6c482 5136 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5137 .misc = 0,
cdd6c482 5138 .size = sizeof(task_event.event_id),
60313ebe 5139 },
573402db
PZ
5140 /* .pid */
5141 /* .ppid */
9f498cc5
PZ
5142 /* .tid */
5143 /* .ptid */
6f93d0a7 5144 .time = perf_clock(),
60313ebe
PZ
5145 },
5146 };
5147
67516844 5148 perf_event_aux(perf_event_task_output,
52d857a8
JO
5149 &task_event,
5150 task_ctx);
9f498cc5
PZ
5151}
5152
cdd6c482 5153void perf_event_fork(struct task_struct *task)
9f498cc5 5154{
cdd6c482 5155 perf_event_task(task, NULL, 1);
60313ebe
PZ
5156}
5157
8d1b2d93
PZ
5158/*
5159 * comm tracking
5160 */
5161
5162struct perf_comm_event {
22a4f650
IM
5163 struct task_struct *task;
5164 char *comm;
8d1b2d93
PZ
5165 int comm_size;
5166
5167 struct {
5168 struct perf_event_header header;
5169
5170 u32 pid;
5171 u32 tid;
cdd6c482 5172 } event_id;
8d1b2d93
PZ
5173};
5174
67516844
JO
5175static int perf_event_comm_match(struct perf_event *event)
5176{
5177 return event->attr.comm;
5178}
5179
cdd6c482 5180static void perf_event_comm_output(struct perf_event *event,
52d857a8 5181 void *data)
8d1b2d93 5182{
52d857a8 5183 struct perf_comm_event *comm_event = data;
8d1b2d93 5184 struct perf_output_handle handle;
c980d109 5185 struct perf_sample_data sample;
cdd6c482 5186 int size = comm_event->event_id.header.size;
c980d109
ACM
5187 int ret;
5188
67516844
JO
5189 if (!perf_event_comm_match(event))
5190 return;
5191
c980d109
ACM
5192 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5193 ret = perf_output_begin(&handle, event,
a7ac67ea 5194 comm_event->event_id.header.size);
8d1b2d93
PZ
5195
5196 if (ret)
c980d109 5197 goto out;
8d1b2d93 5198
cdd6c482
IM
5199 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5200 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5201
cdd6c482 5202 perf_output_put(&handle, comm_event->event_id);
76369139 5203 __output_copy(&handle, comm_event->comm,
8d1b2d93 5204 comm_event->comm_size);
c980d109
ACM
5205
5206 perf_event__output_id_sample(event, &handle, &sample);
5207
8d1b2d93 5208 perf_output_end(&handle);
c980d109
ACM
5209out:
5210 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5211}
5212
cdd6c482 5213static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5214{
413ee3b4 5215 char comm[TASK_COMM_LEN];
8d1b2d93 5216 unsigned int size;
8d1b2d93 5217
413ee3b4 5218 memset(comm, 0, sizeof(comm));
96b02d78 5219 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5220 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5221
5222 comm_event->comm = comm;
5223 comm_event->comm_size = size;
5224
cdd6c482 5225 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5226
67516844 5227 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5228 comm_event,
5229 NULL);
8d1b2d93
PZ
5230}
5231
82b89778 5232void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5233{
9ee318a7
PZ
5234 struct perf_comm_event comm_event;
5235
cdd6c482 5236 if (!atomic_read(&nr_comm_events))
9ee318a7 5237 return;
a63eaf34 5238
9ee318a7 5239 comm_event = (struct perf_comm_event){
8d1b2d93 5240 .task = task,
573402db
PZ
5241 /* .comm */
5242 /* .comm_size */
cdd6c482 5243 .event_id = {
573402db 5244 .header = {
cdd6c482 5245 .type = PERF_RECORD_COMM,
82b89778 5246 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5247 /* .size */
5248 },
5249 /* .pid */
5250 /* .tid */
8d1b2d93
PZ
5251 },
5252 };
5253
cdd6c482 5254 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5255}
5256
0a4a9391
PZ
5257/*
5258 * mmap tracking
5259 */
5260
5261struct perf_mmap_event {
089dd79d
PZ
5262 struct vm_area_struct *vma;
5263
5264 const char *file_name;
5265 int file_size;
13d7a241
SE
5266 int maj, min;
5267 u64 ino;
5268 u64 ino_generation;
f972eb63 5269 u32 prot, flags;
0a4a9391
PZ
5270
5271 struct {
5272 struct perf_event_header header;
5273
5274 u32 pid;
5275 u32 tid;
5276 u64 start;
5277 u64 len;
5278 u64 pgoff;
cdd6c482 5279 } event_id;
0a4a9391
PZ
5280};
5281
67516844
JO
5282static int perf_event_mmap_match(struct perf_event *event,
5283 void *data)
5284{
5285 struct perf_mmap_event *mmap_event = data;
5286 struct vm_area_struct *vma = mmap_event->vma;
5287 int executable = vma->vm_flags & VM_EXEC;
5288
5289 return (!executable && event->attr.mmap_data) ||
13d7a241 5290 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5291}
5292
cdd6c482 5293static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5294 void *data)
0a4a9391 5295{
52d857a8 5296 struct perf_mmap_event *mmap_event = data;
0a4a9391 5297 struct perf_output_handle handle;
c980d109 5298 struct perf_sample_data sample;
cdd6c482 5299 int size = mmap_event->event_id.header.size;
c980d109 5300 int ret;
0a4a9391 5301
67516844
JO
5302 if (!perf_event_mmap_match(event, data))
5303 return;
5304
13d7a241
SE
5305 if (event->attr.mmap2) {
5306 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5307 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5308 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5309 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5310 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5311 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5312 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5313 }
5314
c980d109
ACM
5315 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5316 ret = perf_output_begin(&handle, event,
a7ac67ea 5317 mmap_event->event_id.header.size);
0a4a9391 5318 if (ret)
c980d109 5319 goto out;
0a4a9391 5320
cdd6c482
IM
5321 mmap_event->event_id.pid = perf_event_pid(event, current);
5322 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5323
cdd6c482 5324 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5325
5326 if (event->attr.mmap2) {
5327 perf_output_put(&handle, mmap_event->maj);
5328 perf_output_put(&handle, mmap_event->min);
5329 perf_output_put(&handle, mmap_event->ino);
5330 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5331 perf_output_put(&handle, mmap_event->prot);
5332 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5333 }
5334
76369139 5335 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5336 mmap_event->file_size);
c980d109
ACM
5337
5338 perf_event__output_id_sample(event, &handle, &sample);
5339
78d613eb 5340 perf_output_end(&handle);
c980d109
ACM
5341out:
5342 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5343}
5344
cdd6c482 5345static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5346{
089dd79d
PZ
5347 struct vm_area_struct *vma = mmap_event->vma;
5348 struct file *file = vma->vm_file;
13d7a241
SE
5349 int maj = 0, min = 0;
5350 u64 ino = 0, gen = 0;
f972eb63 5351 u32 prot = 0, flags = 0;
0a4a9391
PZ
5352 unsigned int size;
5353 char tmp[16];
5354 char *buf = NULL;
2c42cfbf 5355 char *name;
413ee3b4 5356
0a4a9391 5357 if (file) {
13d7a241
SE
5358 struct inode *inode;
5359 dev_t dev;
3ea2f2b9 5360
2c42cfbf 5361 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5362 if (!buf) {
c7e548b4
ON
5363 name = "//enomem";
5364 goto cpy_name;
0a4a9391 5365 }
413ee3b4 5366 /*
3ea2f2b9 5367 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5368 * need to add enough zero bytes after the string to handle
5369 * the 64bit alignment we do later.
5370 */
3ea2f2b9 5371 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5372 if (IS_ERR(name)) {
c7e548b4
ON
5373 name = "//toolong";
5374 goto cpy_name;
0a4a9391 5375 }
13d7a241
SE
5376 inode = file_inode(vma->vm_file);
5377 dev = inode->i_sb->s_dev;
5378 ino = inode->i_ino;
5379 gen = inode->i_generation;
5380 maj = MAJOR(dev);
5381 min = MINOR(dev);
f972eb63
PZ
5382
5383 if (vma->vm_flags & VM_READ)
5384 prot |= PROT_READ;
5385 if (vma->vm_flags & VM_WRITE)
5386 prot |= PROT_WRITE;
5387 if (vma->vm_flags & VM_EXEC)
5388 prot |= PROT_EXEC;
5389
5390 if (vma->vm_flags & VM_MAYSHARE)
5391 flags = MAP_SHARED;
5392 else
5393 flags = MAP_PRIVATE;
5394
5395 if (vma->vm_flags & VM_DENYWRITE)
5396 flags |= MAP_DENYWRITE;
5397 if (vma->vm_flags & VM_MAYEXEC)
5398 flags |= MAP_EXECUTABLE;
5399 if (vma->vm_flags & VM_LOCKED)
5400 flags |= MAP_LOCKED;
5401 if (vma->vm_flags & VM_HUGETLB)
5402 flags |= MAP_HUGETLB;
5403
c7e548b4 5404 goto got_name;
0a4a9391 5405 } else {
fbe26abe
JO
5406 if (vma->vm_ops && vma->vm_ops->name) {
5407 name = (char *) vma->vm_ops->name(vma);
5408 if (name)
5409 goto cpy_name;
5410 }
5411
2c42cfbf 5412 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5413 if (name)
5414 goto cpy_name;
089dd79d 5415
32c5fb7e 5416 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5417 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5418 name = "[heap]";
5419 goto cpy_name;
32c5fb7e
ON
5420 }
5421 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5422 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5423 name = "[stack]";
5424 goto cpy_name;
089dd79d
PZ
5425 }
5426
c7e548b4
ON
5427 name = "//anon";
5428 goto cpy_name;
0a4a9391
PZ
5429 }
5430
c7e548b4
ON
5431cpy_name:
5432 strlcpy(tmp, name, sizeof(tmp));
5433 name = tmp;
0a4a9391 5434got_name:
2c42cfbf
PZ
5435 /*
5436 * Since our buffer works in 8 byte units we need to align our string
5437 * size to a multiple of 8. However, we must guarantee the tail end is
5438 * zero'd out to avoid leaking random bits to userspace.
5439 */
5440 size = strlen(name)+1;
5441 while (!IS_ALIGNED(size, sizeof(u64)))
5442 name[size++] = '\0';
0a4a9391
PZ
5443
5444 mmap_event->file_name = name;
5445 mmap_event->file_size = size;
13d7a241
SE
5446 mmap_event->maj = maj;
5447 mmap_event->min = min;
5448 mmap_event->ino = ino;
5449 mmap_event->ino_generation = gen;
f972eb63
PZ
5450 mmap_event->prot = prot;
5451 mmap_event->flags = flags;
0a4a9391 5452
2fe85427
SE
5453 if (!(vma->vm_flags & VM_EXEC))
5454 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5455
cdd6c482 5456 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5457
67516844 5458 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5459 mmap_event,
5460 NULL);
665c2142 5461
0a4a9391
PZ
5462 kfree(buf);
5463}
5464
3af9e859 5465void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5466{
9ee318a7
PZ
5467 struct perf_mmap_event mmap_event;
5468
cdd6c482 5469 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5470 return;
5471
5472 mmap_event = (struct perf_mmap_event){
089dd79d 5473 .vma = vma,
573402db
PZ
5474 /* .file_name */
5475 /* .file_size */
cdd6c482 5476 .event_id = {
573402db 5477 .header = {
cdd6c482 5478 .type = PERF_RECORD_MMAP,
39447b38 5479 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5480 /* .size */
5481 },
5482 /* .pid */
5483 /* .tid */
089dd79d
PZ
5484 .start = vma->vm_start,
5485 .len = vma->vm_end - vma->vm_start,
3a0304e9 5486 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5487 },
13d7a241
SE
5488 /* .maj (attr_mmap2 only) */
5489 /* .min (attr_mmap2 only) */
5490 /* .ino (attr_mmap2 only) */
5491 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
5492 /* .prot (attr_mmap2 only) */
5493 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
5494 };
5495
cdd6c482 5496 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5497}
5498
a78ac325
PZ
5499/*
5500 * IRQ throttle logging
5501 */
5502
cdd6c482 5503static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5504{
5505 struct perf_output_handle handle;
c980d109 5506 struct perf_sample_data sample;
a78ac325
PZ
5507 int ret;
5508
5509 struct {
5510 struct perf_event_header header;
5511 u64 time;
cca3f454 5512 u64 id;
7f453c24 5513 u64 stream_id;
a78ac325
PZ
5514 } throttle_event = {
5515 .header = {
cdd6c482 5516 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5517 .misc = 0,
5518 .size = sizeof(throttle_event),
5519 },
def0a9b2 5520 .time = perf_clock(),
cdd6c482
IM
5521 .id = primary_event_id(event),
5522 .stream_id = event->id,
a78ac325
PZ
5523 };
5524
966ee4d6 5525 if (enable)
cdd6c482 5526 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5527
c980d109
ACM
5528 perf_event_header__init_id(&throttle_event.header, &sample, event);
5529
5530 ret = perf_output_begin(&handle, event,
a7ac67ea 5531 throttle_event.header.size);
a78ac325
PZ
5532 if (ret)
5533 return;
5534
5535 perf_output_put(&handle, throttle_event);
c980d109 5536 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5537 perf_output_end(&handle);
5538}
5539
f6c7d5fe 5540/*
cdd6c482 5541 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5542 */
5543
a8b0ca17 5544static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5545 int throttle, struct perf_sample_data *data,
5546 struct pt_regs *regs)
f6c7d5fe 5547{
cdd6c482
IM
5548 int events = atomic_read(&event->event_limit);
5549 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5550 u64 seq;
79f14641
PZ
5551 int ret = 0;
5552
96398826
PZ
5553 /*
5554 * Non-sampling counters might still use the PMI to fold short
5555 * hardware counters, ignore those.
5556 */
5557 if (unlikely(!is_sampling_event(event)))
5558 return 0;
5559
e050e3f0
SE
5560 seq = __this_cpu_read(perf_throttled_seq);
5561 if (seq != hwc->interrupts_seq) {
5562 hwc->interrupts_seq = seq;
5563 hwc->interrupts = 1;
5564 } else {
5565 hwc->interrupts++;
5566 if (unlikely(throttle
5567 && hwc->interrupts >= max_samples_per_tick)) {
5568 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5569 hwc->interrupts = MAX_INTERRUPTS;
5570 perf_log_throttle(event, 0);
d84153d6 5571 tick_nohz_full_kick();
a78ac325
PZ
5572 ret = 1;
5573 }
e050e3f0 5574 }
60db5e09 5575
cdd6c482 5576 if (event->attr.freq) {
def0a9b2 5577 u64 now = perf_clock();
abd50713 5578 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5579
abd50713 5580 hwc->freq_time_stamp = now;
bd2b5b12 5581
abd50713 5582 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5583 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5584 }
5585
2023b359
PZ
5586 /*
5587 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5588 * events
2023b359
PZ
5589 */
5590
cdd6c482
IM
5591 event->pending_kill = POLL_IN;
5592 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5593 ret = 1;
cdd6c482 5594 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5595 event->pending_disable = 1;
5596 irq_work_queue(&event->pending);
79f14641
PZ
5597 }
5598
453f19ee 5599 if (event->overflow_handler)
a8b0ca17 5600 event->overflow_handler(event, data, regs);
453f19ee 5601 else
a8b0ca17 5602 perf_event_output(event, data, regs);
453f19ee 5603
f506b3dc 5604 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5605 event->pending_wakeup = 1;
5606 irq_work_queue(&event->pending);
f506b3dc
PZ
5607 }
5608
79f14641 5609 return ret;
f6c7d5fe
PZ
5610}
5611
a8b0ca17 5612int perf_event_overflow(struct perf_event *event,
5622f295
MM
5613 struct perf_sample_data *data,
5614 struct pt_regs *regs)
850bc73f 5615{
a8b0ca17 5616 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5617}
5618
15dbf27c 5619/*
cdd6c482 5620 * Generic software event infrastructure
15dbf27c
PZ
5621 */
5622
b28ab83c
PZ
5623struct swevent_htable {
5624 struct swevent_hlist *swevent_hlist;
5625 struct mutex hlist_mutex;
5626 int hlist_refcount;
5627
5628 /* Recursion avoidance in each contexts */
5629 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
5630
5631 /* Keeps track of cpu being initialized/exited */
5632 bool online;
b28ab83c
PZ
5633};
5634
5635static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5636
7b4b6658 5637/*
cdd6c482
IM
5638 * We directly increment event->count and keep a second value in
5639 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5640 * is kept in the range [-sample_period, 0] so that we can use the
5641 * sign as trigger.
5642 */
5643
ab573844 5644u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5645{
cdd6c482 5646 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5647 u64 period = hwc->last_period;
5648 u64 nr, offset;
5649 s64 old, val;
5650
5651 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5652
5653again:
e7850595 5654 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5655 if (val < 0)
5656 return 0;
15dbf27c 5657
7b4b6658
PZ
5658 nr = div64_u64(period + val, period);
5659 offset = nr * period;
5660 val -= offset;
e7850595 5661 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5662 goto again;
15dbf27c 5663
7b4b6658 5664 return nr;
15dbf27c
PZ
5665}
5666
0cff784a 5667static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5668 struct perf_sample_data *data,
5622f295 5669 struct pt_regs *regs)
15dbf27c 5670{
cdd6c482 5671 struct hw_perf_event *hwc = &event->hw;
850bc73f 5672 int throttle = 0;
15dbf27c 5673
0cff784a
PZ
5674 if (!overflow)
5675 overflow = perf_swevent_set_period(event);
15dbf27c 5676
7b4b6658
PZ
5677 if (hwc->interrupts == MAX_INTERRUPTS)
5678 return;
15dbf27c 5679
7b4b6658 5680 for (; overflow; overflow--) {
a8b0ca17 5681 if (__perf_event_overflow(event, throttle,
5622f295 5682 data, regs)) {
7b4b6658
PZ
5683 /*
5684 * We inhibit the overflow from happening when
5685 * hwc->interrupts == MAX_INTERRUPTS.
5686 */
5687 break;
5688 }
cf450a73 5689 throttle = 1;
7b4b6658 5690 }
15dbf27c
PZ
5691}
5692
a4eaf7f1 5693static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5694 struct perf_sample_data *data,
5622f295 5695 struct pt_regs *regs)
7b4b6658 5696{
cdd6c482 5697 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5698
e7850595 5699 local64_add(nr, &event->count);
d6d020e9 5700
0cff784a
PZ
5701 if (!regs)
5702 return;
5703
6c7e550f 5704 if (!is_sampling_event(event))
7b4b6658 5705 return;
d6d020e9 5706
5d81e5cf
AV
5707 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5708 data->period = nr;
5709 return perf_swevent_overflow(event, 1, data, regs);
5710 } else
5711 data->period = event->hw.last_period;
5712
0cff784a 5713 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5714 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5715
e7850595 5716 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5717 return;
df1a132b 5718
a8b0ca17 5719 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5720}
5721
f5ffe02e
FW
5722static int perf_exclude_event(struct perf_event *event,
5723 struct pt_regs *regs)
5724{
a4eaf7f1 5725 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5726 return 1;
a4eaf7f1 5727
f5ffe02e
FW
5728 if (regs) {
5729 if (event->attr.exclude_user && user_mode(regs))
5730 return 1;
5731
5732 if (event->attr.exclude_kernel && !user_mode(regs))
5733 return 1;
5734 }
5735
5736 return 0;
5737}
5738
cdd6c482 5739static int perf_swevent_match(struct perf_event *event,
1c432d89 5740 enum perf_type_id type,
6fb2915d
LZ
5741 u32 event_id,
5742 struct perf_sample_data *data,
5743 struct pt_regs *regs)
15dbf27c 5744{
cdd6c482 5745 if (event->attr.type != type)
a21ca2ca 5746 return 0;
f5ffe02e 5747
cdd6c482 5748 if (event->attr.config != event_id)
15dbf27c
PZ
5749 return 0;
5750
f5ffe02e
FW
5751 if (perf_exclude_event(event, regs))
5752 return 0;
15dbf27c
PZ
5753
5754 return 1;
5755}
5756
76e1d904
FW
5757static inline u64 swevent_hash(u64 type, u32 event_id)
5758{
5759 u64 val = event_id | (type << 32);
5760
5761 return hash_64(val, SWEVENT_HLIST_BITS);
5762}
5763
49f135ed
FW
5764static inline struct hlist_head *
5765__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5766{
49f135ed
FW
5767 u64 hash = swevent_hash(type, event_id);
5768
5769 return &hlist->heads[hash];
5770}
76e1d904 5771
49f135ed
FW
5772/* For the read side: events when they trigger */
5773static inline struct hlist_head *
b28ab83c 5774find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5775{
5776 struct swevent_hlist *hlist;
76e1d904 5777
b28ab83c 5778 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5779 if (!hlist)
5780 return NULL;
5781
49f135ed
FW
5782 return __find_swevent_head(hlist, type, event_id);
5783}
5784
5785/* For the event head insertion and removal in the hlist */
5786static inline struct hlist_head *
b28ab83c 5787find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5788{
5789 struct swevent_hlist *hlist;
5790 u32 event_id = event->attr.config;
5791 u64 type = event->attr.type;
5792
5793 /*
5794 * Event scheduling is always serialized against hlist allocation
5795 * and release. Which makes the protected version suitable here.
5796 * The context lock guarantees that.
5797 */
b28ab83c 5798 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5799 lockdep_is_held(&event->ctx->lock));
5800 if (!hlist)
5801 return NULL;
5802
5803 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5804}
5805
5806static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5807 u64 nr,
76e1d904
FW
5808 struct perf_sample_data *data,
5809 struct pt_regs *regs)
15dbf27c 5810{
b28ab83c 5811 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5812 struct perf_event *event;
76e1d904 5813 struct hlist_head *head;
15dbf27c 5814
76e1d904 5815 rcu_read_lock();
b28ab83c 5816 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5817 if (!head)
5818 goto end;
5819
b67bfe0d 5820 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5821 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5822 perf_swevent_event(event, nr, data, regs);
15dbf27c 5823 }
76e1d904
FW
5824end:
5825 rcu_read_unlock();
15dbf27c
PZ
5826}
5827
4ed7c92d 5828int perf_swevent_get_recursion_context(void)
96f6d444 5829{
b28ab83c 5830 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5831
b28ab83c 5832 return get_recursion_context(swhash->recursion);
96f6d444 5833}
645e8cc0 5834EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5835
fa9f90be 5836inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5837{
b28ab83c 5838 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5839
b28ab83c 5840 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5841}
15dbf27c 5842
a8b0ca17 5843void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5844{
a4234bfc 5845 struct perf_sample_data data;
4ed7c92d
PZ
5846 int rctx;
5847
1c024eca 5848 preempt_disable_notrace();
4ed7c92d
PZ
5849 rctx = perf_swevent_get_recursion_context();
5850 if (rctx < 0)
5851 return;
a4234bfc 5852
fd0d000b 5853 perf_sample_data_init(&data, addr, 0);
92bf309a 5854
a8b0ca17 5855 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5856
5857 perf_swevent_put_recursion_context(rctx);
1c024eca 5858 preempt_enable_notrace();
b8e83514
PZ
5859}
5860
cdd6c482 5861static void perf_swevent_read(struct perf_event *event)
15dbf27c 5862{
15dbf27c
PZ
5863}
5864
a4eaf7f1 5865static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5866{
b28ab83c 5867 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5868 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5869 struct hlist_head *head;
5870
6c7e550f 5871 if (is_sampling_event(event)) {
7b4b6658 5872 hwc->last_period = hwc->sample_period;
cdd6c482 5873 perf_swevent_set_period(event);
7b4b6658 5874 }
76e1d904 5875
a4eaf7f1
PZ
5876 hwc->state = !(flags & PERF_EF_START);
5877
b28ab83c 5878 head = find_swevent_head(swhash, event);
39af6b16
JO
5879 if (!head) {
5880 /*
5881 * We can race with cpu hotplug code. Do not
5882 * WARN if the cpu just got unplugged.
5883 */
5884 WARN_ON_ONCE(swhash->online);
76e1d904 5885 return -EINVAL;
39af6b16 5886 }
76e1d904
FW
5887
5888 hlist_add_head_rcu(&event->hlist_entry, head);
5889
15dbf27c
PZ
5890 return 0;
5891}
5892
a4eaf7f1 5893static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5894{
76e1d904 5895 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5896}
5897
a4eaf7f1 5898static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5899{
a4eaf7f1 5900 event->hw.state = 0;
d6d020e9 5901}
aa9c4c0f 5902
a4eaf7f1 5903static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5904{
a4eaf7f1 5905 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5906}
5907
49f135ed
FW
5908/* Deref the hlist from the update side */
5909static inline struct swevent_hlist *
b28ab83c 5910swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5911{
b28ab83c
PZ
5912 return rcu_dereference_protected(swhash->swevent_hlist,
5913 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5914}
5915
b28ab83c 5916static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5917{
b28ab83c 5918 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5919
49f135ed 5920 if (!hlist)
76e1d904
FW
5921 return;
5922
70691d4a 5923 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 5924 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5925}
5926
5927static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5928{
b28ab83c 5929 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5930
b28ab83c 5931 mutex_lock(&swhash->hlist_mutex);
76e1d904 5932
b28ab83c
PZ
5933 if (!--swhash->hlist_refcount)
5934 swevent_hlist_release(swhash);
76e1d904 5935
b28ab83c 5936 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5937}
5938
5939static void swevent_hlist_put(struct perf_event *event)
5940{
5941 int cpu;
5942
76e1d904
FW
5943 for_each_possible_cpu(cpu)
5944 swevent_hlist_put_cpu(event, cpu);
5945}
5946
5947static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5948{
b28ab83c 5949 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5950 int err = 0;
5951
b28ab83c 5952 mutex_lock(&swhash->hlist_mutex);
76e1d904 5953
b28ab83c 5954 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5955 struct swevent_hlist *hlist;
5956
5957 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5958 if (!hlist) {
5959 err = -ENOMEM;
5960 goto exit;
5961 }
b28ab83c 5962 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5963 }
b28ab83c 5964 swhash->hlist_refcount++;
9ed6060d 5965exit:
b28ab83c 5966 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5967
5968 return err;
5969}
5970
5971static int swevent_hlist_get(struct perf_event *event)
5972{
5973 int err;
5974 int cpu, failed_cpu;
5975
76e1d904
FW
5976 get_online_cpus();
5977 for_each_possible_cpu(cpu) {
5978 err = swevent_hlist_get_cpu(event, cpu);
5979 if (err) {
5980 failed_cpu = cpu;
5981 goto fail;
5982 }
5983 }
5984 put_online_cpus();
5985
5986 return 0;
9ed6060d 5987fail:
76e1d904
FW
5988 for_each_possible_cpu(cpu) {
5989 if (cpu == failed_cpu)
5990 break;
5991 swevent_hlist_put_cpu(event, cpu);
5992 }
5993
5994 put_online_cpus();
5995 return err;
5996}
5997
c5905afb 5998struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5999
b0a873eb
PZ
6000static void sw_perf_event_destroy(struct perf_event *event)
6001{
6002 u64 event_id = event->attr.config;
95476b64 6003
b0a873eb
PZ
6004 WARN_ON(event->parent);
6005
c5905afb 6006 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6007 swevent_hlist_put(event);
6008}
6009
6010static int perf_swevent_init(struct perf_event *event)
6011{
8176cced 6012 u64 event_id = event->attr.config;
b0a873eb
PZ
6013
6014 if (event->attr.type != PERF_TYPE_SOFTWARE)
6015 return -ENOENT;
6016
2481c5fa
SE
6017 /*
6018 * no branch sampling for software events
6019 */
6020 if (has_branch_stack(event))
6021 return -EOPNOTSUPP;
6022
b0a873eb
PZ
6023 switch (event_id) {
6024 case PERF_COUNT_SW_CPU_CLOCK:
6025 case PERF_COUNT_SW_TASK_CLOCK:
6026 return -ENOENT;
6027
6028 default:
6029 break;
6030 }
6031
ce677831 6032 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6033 return -ENOENT;
6034
6035 if (!event->parent) {
6036 int err;
6037
6038 err = swevent_hlist_get(event);
6039 if (err)
6040 return err;
6041
c5905afb 6042 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6043 event->destroy = sw_perf_event_destroy;
6044 }
6045
6046 return 0;
6047}
6048
35edc2a5
PZ
6049static int perf_swevent_event_idx(struct perf_event *event)
6050{
6051 return 0;
6052}
6053
b0a873eb 6054static struct pmu perf_swevent = {
89a1e187 6055 .task_ctx_nr = perf_sw_context,
95476b64 6056
b0a873eb 6057 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6058 .add = perf_swevent_add,
6059 .del = perf_swevent_del,
6060 .start = perf_swevent_start,
6061 .stop = perf_swevent_stop,
1c024eca 6062 .read = perf_swevent_read,
35edc2a5
PZ
6063
6064 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
6065};
6066
b0a873eb
PZ
6067#ifdef CONFIG_EVENT_TRACING
6068
1c024eca
PZ
6069static int perf_tp_filter_match(struct perf_event *event,
6070 struct perf_sample_data *data)
6071{
6072 void *record = data->raw->data;
6073
6074 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6075 return 1;
6076 return 0;
6077}
6078
6079static int perf_tp_event_match(struct perf_event *event,
6080 struct perf_sample_data *data,
6081 struct pt_regs *regs)
6082{
a0f7d0f7
FW
6083 if (event->hw.state & PERF_HES_STOPPED)
6084 return 0;
580d607c
PZ
6085 /*
6086 * All tracepoints are from kernel-space.
6087 */
6088 if (event->attr.exclude_kernel)
1c024eca
PZ
6089 return 0;
6090
6091 if (!perf_tp_filter_match(event, data))
6092 return 0;
6093
6094 return 1;
6095}
6096
6097void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6098 struct pt_regs *regs, struct hlist_head *head, int rctx,
6099 struct task_struct *task)
95476b64
FW
6100{
6101 struct perf_sample_data data;
1c024eca 6102 struct perf_event *event;
1c024eca 6103
95476b64
FW
6104 struct perf_raw_record raw = {
6105 .size = entry_size,
6106 .data = record,
6107 };
6108
fd0d000b 6109 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6110 data.raw = &raw;
6111
b67bfe0d 6112 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6113 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6114 perf_swevent_event(event, count, &data, regs);
4f41c013 6115 }
ecc55f84 6116
e6dab5ff
AV
6117 /*
6118 * If we got specified a target task, also iterate its context and
6119 * deliver this event there too.
6120 */
6121 if (task && task != current) {
6122 struct perf_event_context *ctx;
6123 struct trace_entry *entry = record;
6124
6125 rcu_read_lock();
6126 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6127 if (!ctx)
6128 goto unlock;
6129
6130 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6131 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6132 continue;
6133 if (event->attr.config != entry->type)
6134 continue;
6135 if (perf_tp_event_match(event, &data, regs))
6136 perf_swevent_event(event, count, &data, regs);
6137 }
6138unlock:
6139 rcu_read_unlock();
6140 }
6141
ecc55f84 6142 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6143}
6144EXPORT_SYMBOL_GPL(perf_tp_event);
6145
cdd6c482 6146static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6147{
1c024eca 6148 perf_trace_destroy(event);
e077df4f
PZ
6149}
6150
b0a873eb 6151static int perf_tp_event_init(struct perf_event *event)
e077df4f 6152{
76e1d904
FW
6153 int err;
6154
b0a873eb
PZ
6155 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6156 return -ENOENT;
6157
2481c5fa
SE
6158 /*
6159 * no branch sampling for tracepoint events
6160 */
6161 if (has_branch_stack(event))
6162 return -EOPNOTSUPP;
6163
1c024eca
PZ
6164 err = perf_trace_init(event);
6165 if (err)
b0a873eb 6166 return err;
e077df4f 6167
cdd6c482 6168 event->destroy = tp_perf_event_destroy;
e077df4f 6169
b0a873eb
PZ
6170 return 0;
6171}
6172
6173static struct pmu perf_tracepoint = {
89a1e187
PZ
6174 .task_ctx_nr = perf_sw_context,
6175
b0a873eb 6176 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6177 .add = perf_trace_add,
6178 .del = perf_trace_del,
6179 .start = perf_swevent_start,
6180 .stop = perf_swevent_stop,
b0a873eb 6181 .read = perf_swevent_read,
35edc2a5
PZ
6182
6183 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6184};
6185
6186static inline void perf_tp_register(void)
6187{
2e80a82a 6188 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6189}
6fb2915d
LZ
6190
6191static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6192{
6193 char *filter_str;
6194 int ret;
6195
6196 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6197 return -EINVAL;
6198
6199 filter_str = strndup_user(arg, PAGE_SIZE);
6200 if (IS_ERR(filter_str))
6201 return PTR_ERR(filter_str);
6202
6203 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6204
6205 kfree(filter_str);
6206 return ret;
6207}
6208
6209static void perf_event_free_filter(struct perf_event *event)
6210{
6211 ftrace_profile_free_filter(event);
6212}
6213
e077df4f 6214#else
6fb2915d 6215
b0a873eb 6216static inline void perf_tp_register(void)
e077df4f 6217{
e077df4f 6218}
6fb2915d
LZ
6219
6220static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6221{
6222 return -ENOENT;
6223}
6224
6225static void perf_event_free_filter(struct perf_event *event)
6226{
6227}
6228
07b139c8 6229#endif /* CONFIG_EVENT_TRACING */
e077df4f 6230
24f1e32c 6231#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6232void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6233{
f5ffe02e
FW
6234 struct perf_sample_data sample;
6235 struct pt_regs *regs = data;
6236
fd0d000b 6237 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6238
a4eaf7f1 6239 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6240 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6241}
6242#endif
6243
b0a873eb
PZ
6244/*
6245 * hrtimer based swevent callback
6246 */
f29ac756 6247
b0a873eb 6248static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6249{
b0a873eb
PZ
6250 enum hrtimer_restart ret = HRTIMER_RESTART;
6251 struct perf_sample_data data;
6252 struct pt_regs *regs;
6253 struct perf_event *event;
6254 u64 period;
f29ac756 6255
b0a873eb 6256 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6257
6258 if (event->state != PERF_EVENT_STATE_ACTIVE)
6259 return HRTIMER_NORESTART;
6260
b0a873eb 6261 event->pmu->read(event);
f344011c 6262
fd0d000b 6263 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6264 regs = get_irq_regs();
6265
6266 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6267 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6268 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6269 ret = HRTIMER_NORESTART;
6270 }
24f1e32c 6271
b0a873eb
PZ
6272 period = max_t(u64, 10000, event->hw.sample_period);
6273 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6274
b0a873eb 6275 return ret;
f29ac756
PZ
6276}
6277
b0a873eb 6278static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6279{
b0a873eb 6280 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6281 s64 period;
6282
6283 if (!is_sampling_event(event))
6284 return;
f5ffe02e 6285
5d508e82
FBH
6286 period = local64_read(&hwc->period_left);
6287 if (period) {
6288 if (period < 0)
6289 period = 10000;
fa407f35 6290
5d508e82
FBH
6291 local64_set(&hwc->period_left, 0);
6292 } else {
6293 period = max_t(u64, 10000, hwc->sample_period);
6294 }
6295 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6296 ns_to_ktime(period), 0,
b5ab4cd5 6297 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6298}
b0a873eb
PZ
6299
6300static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6301{
b0a873eb
PZ
6302 struct hw_perf_event *hwc = &event->hw;
6303
6c7e550f 6304 if (is_sampling_event(event)) {
b0a873eb 6305 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6306 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6307
6308 hrtimer_cancel(&hwc->hrtimer);
6309 }
24f1e32c
FW
6310}
6311
ba3dd36c
PZ
6312static void perf_swevent_init_hrtimer(struct perf_event *event)
6313{
6314 struct hw_perf_event *hwc = &event->hw;
6315
6316 if (!is_sampling_event(event))
6317 return;
6318
6319 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6320 hwc->hrtimer.function = perf_swevent_hrtimer;
6321
6322 /*
6323 * Since hrtimers have a fixed rate, we can do a static freq->period
6324 * mapping and avoid the whole period adjust feedback stuff.
6325 */
6326 if (event->attr.freq) {
6327 long freq = event->attr.sample_freq;
6328
6329 event->attr.sample_period = NSEC_PER_SEC / freq;
6330 hwc->sample_period = event->attr.sample_period;
6331 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6332 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6333 event->attr.freq = 0;
6334 }
6335}
6336
b0a873eb
PZ
6337/*
6338 * Software event: cpu wall time clock
6339 */
6340
6341static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6342{
b0a873eb
PZ
6343 s64 prev;
6344 u64 now;
6345
a4eaf7f1 6346 now = local_clock();
b0a873eb
PZ
6347 prev = local64_xchg(&event->hw.prev_count, now);
6348 local64_add(now - prev, &event->count);
24f1e32c 6349}
24f1e32c 6350
a4eaf7f1 6351static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6352{
a4eaf7f1 6353 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6354 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6355}
6356
a4eaf7f1 6357static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6358{
b0a873eb
PZ
6359 perf_swevent_cancel_hrtimer(event);
6360 cpu_clock_event_update(event);
6361}
f29ac756 6362
a4eaf7f1
PZ
6363static int cpu_clock_event_add(struct perf_event *event, int flags)
6364{
6365 if (flags & PERF_EF_START)
6366 cpu_clock_event_start(event, flags);
6367
6368 return 0;
6369}
6370
6371static void cpu_clock_event_del(struct perf_event *event, int flags)
6372{
6373 cpu_clock_event_stop(event, flags);
6374}
6375
b0a873eb
PZ
6376static void cpu_clock_event_read(struct perf_event *event)
6377{
6378 cpu_clock_event_update(event);
6379}
f344011c 6380
b0a873eb
PZ
6381static int cpu_clock_event_init(struct perf_event *event)
6382{
6383 if (event->attr.type != PERF_TYPE_SOFTWARE)
6384 return -ENOENT;
6385
6386 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6387 return -ENOENT;
6388
2481c5fa
SE
6389 /*
6390 * no branch sampling for software events
6391 */
6392 if (has_branch_stack(event))
6393 return -EOPNOTSUPP;
6394
ba3dd36c
PZ
6395 perf_swevent_init_hrtimer(event);
6396
b0a873eb 6397 return 0;
f29ac756
PZ
6398}
6399
b0a873eb 6400static struct pmu perf_cpu_clock = {
89a1e187
PZ
6401 .task_ctx_nr = perf_sw_context,
6402
b0a873eb 6403 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6404 .add = cpu_clock_event_add,
6405 .del = cpu_clock_event_del,
6406 .start = cpu_clock_event_start,
6407 .stop = cpu_clock_event_stop,
b0a873eb 6408 .read = cpu_clock_event_read,
35edc2a5
PZ
6409
6410 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6411};
6412
6413/*
6414 * Software event: task time clock
6415 */
6416
6417static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6418{
b0a873eb
PZ
6419 u64 prev;
6420 s64 delta;
5c92d124 6421
b0a873eb
PZ
6422 prev = local64_xchg(&event->hw.prev_count, now);
6423 delta = now - prev;
6424 local64_add(delta, &event->count);
6425}
5c92d124 6426
a4eaf7f1 6427static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6428{
a4eaf7f1 6429 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6430 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6431}
6432
a4eaf7f1 6433static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6434{
6435 perf_swevent_cancel_hrtimer(event);
6436 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6437}
6438
6439static int task_clock_event_add(struct perf_event *event, int flags)
6440{
6441 if (flags & PERF_EF_START)
6442 task_clock_event_start(event, flags);
b0a873eb 6443
a4eaf7f1
PZ
6444 return 0;
6445}
6446
6447static void task_clock_event_del(struct perf_event *event, int flags)
6448{
6449 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6450}
6451
6452static void task_clock_event_read(struct perf_event *event)
6453{
768a06e2
PZ
6454 u64 now = perf_clock();
6455 u64 delta = now - event->ctx->timestamp;
6456 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6457
6458 task_clock_event_update(event, time);
6459}
6460
6461static int task_clock_event_init(struct perf_event *event)
6fb2915d 6462{
b0a873eb
PZ
6463 if (event->attr.type != PERF_TYPE_SOFTWARE)
6464 return -ENOENT;
6465
6466 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6467 return -ENOENT;
6468
2481c5fa
SE
6469 /*
6470 * no branch sampling for software events
6471 */
6472 if (has_branch_stack(event))
6473 return -EOPNOTSUPP;
6474
ba3dd36c
PZ
6475 perf_swevent_init_hrtimer(event);
6476
b0a873eb 6477 return 0;
6fb2915d
LZ
6478}
6479
b0a873eb 6480static struct pmu perf_task_clock = {
89a1e187
PZ
6481 .task_ctx_nr = perf_sw_context,
6482
b0a873eb 6483 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6484 .add = task_clock_event_add,
6485 .del = task_clock_event_del,
6486 .start = task_clock_event_start,
6487 .stop = task_clock_event_stop,
b0a873eb 6488 .read = task_clock_event_read,
35edc2a5
PZ
6489
6490 .event_idx = perf_swevent_event_idx,
b0a873eb 6491};
6fb2915d 6492
ad5133b7 6493static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6494{
e077df4f 6495}
6fb2915d 6496
ad5133b7 6497static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6498{
ad5133b7 6499 return 0;
6fb2915d
LZ
6500}
6501
ad5133b7 6502static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6503{
ad5133b7 6504 perf_pmu_disable(pmu);
6fb2915d
LZ
6505}
6506
ad5133b7
PZ
6507static int perf_pmu_commit_txn(struct pmu *pmu)
6508{
6509 perf_pmu_enable(pmu);
6510 return 0;
6511}
e077df4f 6512
ad5133b7 6513static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6514{
ad5133b7 6515 perf_pmu_enable(pmu);
24f1e32c
FW
6516}
6517
35edc2a5
PZ
6518static int perf_event_idx_default(struct perf_event *event)
6519{
6520 return event->hw.idx + 1;
6521}
6522
8dc85d54
PZ
6523/*
6524 * Ensures all contexts with the same task_ctx_nr have the same
6525 * pmu_cpu_context too.
6526 */
9e317041 6527static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 6528{
8dc85d54 6529 struct pmu *pmu;
b326e956 6530
8dc85d54
PZ
6531 if (ctxn < 0)
6532 return NULL;
24f1e32c 6533
8dc85d54
PZ
6534 list_for_each_entry(pmu, &pmus, entry) {
6535 if (pmu->task_ctx_nr == ctxn)
6536 return pmu->pmu_cpu_context;
6537 }
24f1e32c 6538
8dc85d54 6539 return NULL;
24f1e32c
FW
6540}
6541
51676957 6542static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6543{
51676957
PZ
6544 int cpu;
6545
6546 for_each_possible_cpu(cpu) {
6547 struct perf_cpu_context *cpuctx;
6548
6549 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6550
3f1f3320
PZ
6551 if (cpuctx->unique_pmu == old_pmu)
6552 cpuctx->unique_pmu = pmu;
51676957
PZ
6553 }
6554}
6555
6556static void free_pmu_context(struct pmu *pmu)
6557{
6558 struct pmu *i;
f5ffe02e 6559
8dc85d54 6560 mutex_lock(&pmus_lock);
0475f9ea 6561 /*
8dc85d54 6562 * Like a real lame refcount.
0475f9ea 6563 */
51676957
PZ
6564 list_for_each_entry(i, &pmus, entry) {
6565 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6566 update_pmu_context(i, pmu);
8dc85d54 6567 goto out;
51676957 6568 }
8dc85d54 6569 }
d6d020e9 6570
51676957 6571 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6572out:
6573 mutex_unlock(&pmus_lock);
24f1e32c 6574}
2e80a82a 6575static struct idr pmu_idr;
d6d020e9 6576
abe43400
PZ
6577static ssize_t
6578type_show(struct device *dev, struct device_attribute *attr, char *page)
6579{
6580 struct pmu *pmu = dev_get_drvdata(dev);
6581
6582 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6583}
90826ca7 6584static DEVICE_ATTR_RO(type);
abe43400 6585
62b85639
SE
6586static ssize_t
6587perf_event_mux_interval_ms_show(struct device *dev,
6588 struct device_attribute *attr,
6589 char *page)
6590{
6591 struct pmu *pmu = dev_get_drvdata(dev);
6592
6593 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6594}
6595
6596static ssize_t
6597perf_event_mux_interval_ms_store(struct device *dev,
6598 struct device_attribute *attr,
6599 const char *buf, size_t count)
6600{
6601 struct pmu *pmu = dev_get_drvdata(dev);
6602 int timer, cpu, ret;
6603
6604 ret = kstrtoint(buf, 0, &timer);
6605 if (ret)
6606 return ret;
6607
6608 if (timer < 1)
6609 return -EINVAL;
6610
6611 /* same value, noting to do */
6612 if (timer == pmu->hrtimer_interval_ms)
6613 return count;
6614
6615 pmu->hrtimer_interval_ms = timer;
6616
6617 /* update all cpuctx for this PMU */
6618 for_each_possible_cpu(cpu) {
6619 struct perf_cpu_context *cpuctx;
6620 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6621 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6622
6623 if (hrtimer_active(&cpuctx->hrtimer))
6624 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6625 }
6626
6627 return count;
6628}
90826ca7 6629static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 6630
90826ca7
GKH
6631static struct attribute *pmu_dev_attrs[] = {
6632 &dev_attr_type.attr,
6633 &dev_attr_perf_event_mux_interval_ms.attr,
6634 NULL,
abe43400 6635};
90826ca7 6636ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
6637
6638static int pmu_bus_running;
6639static struct bus_type pmu_bus = {
6640 .name = "event_source",
90826ca7 6641 .dev_groups = pmu_dev_groups,
abe43400
PZ
6642};
6643
6644static void pmu_dev_release(struct device *dev)
6645{
6646 kfree(dev);
6647}
6648
6649static int pmu_dev_alloc(struct pmu *pmu)
6650{
6651 int ret = -ENOMEM;
6652
6653 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6654 if (!pmu->dev)
6655 goto out;
6656
0c9d42ed 6657 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6658 device_initialize(pmu->dev);
6659 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6660 if (ret)
6661 goto free_dev;
6662
6663 dev_set_drvdata(pmu->dev, pmu);
6664 pmu->dev->bus = &pmu_bus;
6665 pmu->dev->release = pmu_dev_release;
6666 ret = device_add(pmu->dev);
6667 if (ret)
6668 goto free_dev;
6669
6670out:
6671 return ret;
6672
6673free_dev:
6674 put_device(pmu->dev);
6675 goto out;
6676}
6677
547e9fd7 6678static struct lock_class_key cpuctx_mutex;
facc4307 6679static struct lock_class_key cpuctx_lock;
547e9fd7 6680
03d8e80b 6681int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6682{
108b02cf 6683 int cpu, ret;
24f1e32c 6684
b0a873eb 6685 mutex_lock(&pmus_lock);
33696fc0
PZ
6686 ret = -ENOMEM;
6687 pmu->pmu_disable_count = alloc_percpu(int);
6688 if (!pmu->pmu_disable_count)
6689 goto unlock;
f29ac756 6690
2e80a82a
PZ
6691 pmu->type = -1;
6692 if (!name)
6693 goto skip_type;
6694 pmu->name = name;
6695
6696 if (type < 0) {
0e9c3be2
TH
6697 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6698 if (type < 0) {
6699 ret = type;
2e80a82a
PZ
6700 goto free_pdc;
6701 }
6702 }
6703 pmu->type = type;
6704
abe43400
PZ
6705 if (pmu_bus_running) {
6706 ret = pmu_dev_alloc(pmu);
6707 if (ret)
6708 goto free_idr;
6709 }
6710
2e80a82a 6711skip_type:
8dc85d54
PZ
6712 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6713 if (pmu->pmu_cpu_context)
6714 goto got_cpu_context;
f29ac756 6715
c4814202 6716 ret = -ENOMEM;
108b02cf
PZ
6717 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6718 if (!pmu->pmu_cpu_context)
abe43400 6719 goto free_dev;
f344011c 6720
108b02cf
PZ
6721 for_each_possible_cpu(cpu) {
6722 struct perf_cpu_context *cpuctx;
6723
6724 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6725 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6726 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6727 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6728 cpuctx->ctx.type = cpu_context;
108b02cf 6729 cpuctx->ctx.pmu = pmu;
9e630205
SE
6730
6731 __perf_cpu_hrtimer_init(cpuctx, cpu);
6732
e9d2b064 6733 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6734 cpuctx->unique_pmu = pmu;
108b02cf 6735 }
76e1d904 6736
8dc85d54 6737got_cpu_context:
ad5133b7
PZ
6738 if (!pmu->start_txn) {
6739 if (pmu->pmu_enable) {
6740 /*
6741 * If we have pmu_enable/pmu_disable calls, install
6742 * transaction stubs that use that to try and batch
6743 * hardware accesses.
6744 */
6745 pmu->start_txn = perf_pmu_start_txn;
6746 pmu->commit_txn = perf_pmu_commit_txn;
6747 pmu->cancel_txn = perf_pmu_cancel_txn;
6748 } else {
6749 pmu->start_txn = perf_pmu_nop_void;
6750 pmu->commit_txn = perf_pmu_nop_int;
6751 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6752 }
5c92d124 6753 }
15dbf27c 6754
ad5133b7
PZ
6755 if (!pmu->pmu_enable) {
6756 pmu->pmu_enable = perf_pmu_nop_void;
6757 pmu->pmu_disable = perf_pmu_nop_void;
6758 }
6759
35edc2a5
PZ
6760 if (!pmu->event_idx)
6761 pmu->event_idx = perf_event_idx_default;
6762
b0a873eb 6763 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6764 ret = 0;
6765unlock:
b0a873eb
PZ
6766 mutex_unlock(&pmus_lock);
6767
33696fc0 6768 return ret;
108b02cf 6769
abe43400
PZ
6770free_dev:
6771 device_del(pmu->dev);
6772 put_device(pmu->dev);
6773
2e80a82a
PZ
6774free_idr:
6775 if (pmu->type >= PERF_TYPE_MAX)
6776 idr_remove(&pmu_idr, pmu->type);
6777
108b02cf
PZ
6778free_pdc:
6779 free_percpu(pmu->pmu_disable_count);
6780 goto unlock;
f29ac756 6781}
c464c76e 6782EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 6783
b0a873eb 6784void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6785{
b0a873eb
PZ
6786 mutex_lock(&pmus_lock);
6787 list_del_rcu(&pmu->entry);
6788 mutex_unlock(&pmus_lock);
5c92d124 6789
0475f9ea 6790 /*
cde8e884
PZ
6791 * We dereference the pmu list under both SRCU and regular RCU, so
6792 * synchronize against both of those.
0475f9ea 6793 */
b0a873eb 6794 synchronize_srcu(&pmus_srcu);
cde8e884 6795 synchronize_rcu();
d6d020e9 6796
33696fc0 6797 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6798 if (pmu->type >= PERF_TYPE_MAX)
6799 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6800 device_del(pmu->dev);
6801 put_device(pmu->dev);
51676957 6802 free_pmu_context(pmu);
b0a873eb 6803}
c464c76e 6804EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 6805
b0a873eb
PZ
6806struct pmu *perf_init_event(struct perf_event *event)
6807{
6808 struct pmu *pmu = NULL;
6809 int idx;
940c5b29 6810 int ret;
b0a873eb
PZ
6811
6812 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6813
6814 rcu_read_lock();
6815 pmu = idr_find(&pmu_idr, event->attr.type);
6816 rcu_read_unlock();
940c5b29 6817 if (pmu) {
c464c76e
YZ
6818 if (!try_module_get(pmu->module)) {
6819 pmu = ERR_PTR(-ENODEV);
6820 goto unlock;
6821 }
7e5b2a01 6822 event->pmu = pmu;
940c5b29
LM
6823 ret = pmu->event_init(event);
6824 if (ret)
6825 pmu = ERR_PTR(ret);
2e80a82a 6826 goto unlock;
940c5b29 6827 }
2e80a82a 6828
b0a873eb 6829 list_for_each_entry_rcu(pmu, &pmus, entry) {
c464c76e
YZ
6830 if (!try_module_get(pmu->module)) {
6831 pmu = ERR_PTR(-ENODEV);
6832 goto unlock;
6833 }
7e5b2a01 6834 event->pmu = pmu;
940c5b29 6835 ret = pmu->event_init(event);
b0a873eb 6836 if (!ret)
e5f4d339 6837 goto unlock;
76e1d904 6838
b0a873eb
PZ
6839 if (ret != -ENOENT) {
6840 pmu = ERR_PTR(ret);
e5f4d339 6841 goto unlock;
f344011c 6842 }
5c92d124 6843 }
e5f4d339
PZ
6844 pmu = ERR_PTR(-ENOENT);
6845unlock:
b0a873eb 6846 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6847
4aeb0b42 6848 return pmu;
5c92d124
IM
6849}
6850
4beb31f3
FW
6851static void account_event_cpu(struct perf_event *event, int cpu)
6852{
6853 if (event->parent)
6854 return;
6855
6856 if (has_branch_stack(event)) {
6857 if (!(event->attach_state & PERF_ATTACH_TASK))
6858 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6859 }
6860 if (is_cgroup_event(event))
6861 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6862}
6863
766d6c07
FW
6864static void account_event(struct perf_event *event)
6865{
4beb31f3
FW
6866 if (event->parent)
6867 return;
6868
766d6c07
FW
6869 if (event->attach_state & PERF_ATTACH_TASK)
6870 static_key_slow_inc(&perf_sched_events.key);
6871 if (event->attr.mmap || event->attr.mmap_data)
6872 atomic_inc(&nr_mmap_events);
6873 if (event->attr.comm)
6874 atomic_inc(&nr_comm_events);
6875 if (event->attr.task)
6876 atomic_inc(&nr_task_events);
948b26b6
FW
6877 if (event->attr.freq) {
6878 if (atomic_inc_return(&nr_freq_events) == 1)
6879 tick_nohz_full_kick_all();
6880 }
4beb31f3 6881 if (has_branch_stack(event))
766d6c07 6882 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 6883 if (is_cgroup_event(event))
766d6c07 6884 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
6885
6886 account_event_cpu(event, event->cpu);
766d6c07
FW
6887}
6888
0793a61d 6889/*
cdd6c482 6890 * Allocate and initialize a event structure
0793a61d 6891 */
cdd6c482 6892static struct perf_event *
c3f00c70 6893perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6894 struct task_struct *task,
6895 struct perf_event *group_leader,
6896 struct perf_event *parent_event,
4dc0da86
AK
6897 perf_overflow_handler_t overflow_handler,
6898 void *context)
0793a61d 6899{
51b0fe39 6900 struct pmu *pmu;
cdd6c482
IM
6901 struct perf_event *event;
6902 struct hw_perf_event *hwc;
90983b16 6903 long err = -EINVAL;
0793a61d 6904
66832eb4
ON
6905 if ((unsigned)cpu >= nr_cpu_ids) {
6906 if (!task || cpu != -1)
6907 return ERR_PTR(-EINVAL);
6908 }
6909
c3f00c70 6910 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6911 if (!event)
d5d2bc0d 6912 return ERR_PTR(-ENOMEM);
0793a61d 6913
04289bb9 6914 /*
cdd6c482 6915 * Single events are their own group leaders, with an
04289bb9
IM
6916 * empty sibling list:
6917 */
6918 if (!group_leader)
cdd6c482 6919 group_leader = event;
04289bb9 6920
cdd6c482
IM
6921 mutex_init(&event->child_mutex);
6922 INIT_LIST_HEAD(&event->child_list);
fccc714b 6923
cdd6c482
IM
6924 INIT_LIST_HEAD(&event->group_entry);
6925 INIT_LIST_HEAD(&event->event_entry);
6926 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 6927 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 6928 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
6929 INIT_HLIST_NODE(&event->hlist_entry);
6930
10c6db11 6931
cdd6c482 6932 init_waitqueue_head(&event->waitq);
e360adbe 6933 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6934
cdd6c482 6935 mutex_init(&event->mmap_mutex);
7b732a75 6936
a6fa941d 6937 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6938 event->cpu = cpu;
6939 event->attr = *attr;
6940 event->group_leader = group_leader;
6941 event->pmu = NULL;
cdd6c482 6942 event->oncpu = -1;
a96bbc16 6943
cdd6c482 6944 event->parent = parent_event;
b84fbc9f 6945
17cf22c3 6946 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6947 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6948
cdd6c482 6949 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6950
d580ff86
PZ
6951 if (task) {
6952 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6953
6954 if (attr->type == PERF_TYPE_TRACEPOINT)
6955 event->hw.tp_target = task;
d580ff86
PZ
6956#ifdef CONFIG_HAVE_HW_BREAKPOINT
6957 /*
6958 * hw_breakpoint is a bit difficult here..
6959 */
f22c1bb6 6960 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6961 event->hw.bp_target = task;
6962#endif
6963 }
6964
4dc0da86 6965 if (!overflow_handler && parent_event) {
b326e956 6966 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6967 context = parent_event->overflow_handler_context;
6968 }
66832eb4 6969
b326e956 6970 event->overflow_handler = overflow_handler;
4dc0da86 6971 event->overflow_handler_context = context;
97eaf530 6972
0231bb53 6973 perf_event__state_init(event);
a86ed508 6974
4aeb0b42 6975 pmu = NULL;
b8e83514 6976
cdd6c482 6977 hwc = &event->hw;
bd2b5b12 6978 hwc->sample_period = attr->sample_period;
0d48696f 6979 if (attr->freq && attr->sample_freq)
bd2b5b12 6980 hwc->sample_period = 1;
eced1dfc 6981 hwc->last_period = hwc->sample_period;
bd2b5b12 6982
e7850595 6983 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6984
2023b359 6985 /*
cdd6c482 6986 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6987 */
3dab77fb 6988 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 6989 goto err_ns;
2023b359 6990
b0a873eb 6991 pmu = perf_init_event(event);
4aeb0b42 6992 if (!pmu)
90983b16
FW
6993 goto err_ns;
6994 else if (IS_ERR(pmu)) {
4aeb0b42 6995 err = PTR_ERR(pmu);
90983b16 6996 goto err_ns;
621a01ea 6997 }
d5d2bc0d 6998
cdd6c482 6999 if (!event->parent) {
927c7a9e
FW
7000 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7001 err = get_callchain_buffers();
90983b16
FW
7002 if (err)
7003 goto err_pmu;
d010b332 7004 }
f344011c 7005 }
9ee318a7 7006
cdd6c482 7007 return event;
90983b16
FW
7008
7009err_pmu:
7010 if (event->destroy)
7011 event->destroy(event);
c464c76e 7012 module_put(pmu->module);
90983b16
FW
7013err_ns:
7014 if (event->ns)
7015 put_pid_ns(event->ns);
7016 kfree(event);
7017
7018 return ERR_PTR(err);
0793a61d
TG
7019}
7020
cdd6c482
IM
7021static int perf_copy_attr(struct perf_event_attr __user *uattr,
7022 struct perf_event_attr *attr)
974802ea 7023{
974802ea 7024 u32 size;
cdf8073d 7025 int ret;
974802ea
PZ
7026
7027 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7028 return -EFAULT;
7029
7030 /*
7031 * zero the full structure, so that a short copy will be nice.
7032 */
7033 memset(attr, 0, sizeof(*attr));
7034
7035 ret = get_user(size, &uattr->size);
7036 if (ret)
7037 return ret;
7038
7039 if (size > PAGE_SIZE) /* silly large */
7040 goto err_size;
7041
7042 if (!size) /* abi compat */
7043 size = PERF_ATTR_SIZE_VER0;
7044
7045 if (size < PERF_ATTR_SIZE_VER0)
7046 goto err_size;
7047
7048 /*
7049 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7050 * ensure all the unknown bits are 0 - i.e. new
7051 * user-space does not rely on any kernel feature
7052 * extensions we dont know about yet.
974802ea
PZ
7053 */
7054 if (size > sizeof(*attr)) {
cdf8073d
IS
7055 unsigned char __user *addr;
7056 unsigned char __user *end;
7057 unsigned char val;
974802ea 7058
cdf8073d
IS
7059 addr = (void __user *)uattr + sizeof(*attr);
7060 end = (void __user *)uattr + size;
974802ea 7061
cdf8073d 7062 for (; addr < end; addr++) {
974802ea
PZ
7063 ret = get_user(val, addr);
7064 if (ret)
7065 return ret;
7066 if (val)
7067 goto err_size;
7068 }
b3e62e35 7069 size = sizeof(*attr);
974802ea
PZ
7070 }
7071
7072 ret = copy_from_user(attr, uattr, size);
7073 if (ret)
7074 return -EFAULT;
7075
cd757645 7076 if (attr->__reserved_1)
974802ea
PZ
7077 return -EINVAL;
7078
7079 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7080 return -EINVAL;
7081
7082 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7083 return -EINVAL;
7084
bce38cd5
SE
7085 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7086 u64 mask = attr->branch_sample_type;
7087
7088 /* only using defined bits */
7089 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7090 return -EINVAL;
7091
7092 /* at least one branch bit must be set */
7093 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7094 return -EINVAL;
7095
bce38cd5
SE
7096 /* propagate priv level, when not set for branch */
7097 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7098
7099 /* exclude_kernel checked on syscall entry */
7100 if (!attr->exclude_kernel)
7101 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7102
7103 if (!attr->exclude_user)
7104 mask |= PERF_SAMPLE_BRANCH_USER;
7105
7106 if (!attr->exclude_hv)
7107 mask |= PERF_SAMPLE_BRANCH_HV;
7108 /*
7109 * adjust user setting (for HW filter setup)
7110 */
7111 attr->branch_sample_type = mask;
7112 }
e712209a
SE
7113 /* privileged levels capture (kernel, hv): check permissions */
7114 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7115 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7116 return -EACCES;
bce38cd5 7117 }
4018994f 7118
c5ebcedb 7119 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7120 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7121 if (ret)
7122 return ret;
7123 }
7124
7125 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7126 if (!arch_perf_have_user_stack_dump())
7127 return -ENOSYS;
7128
7129 /*
7130 * We have __u32 type for the size, but so far
7131 * we can only use __u16 as maximum due to the
7132 * __u16 sample size limit.
7133 */
7134 if (attr->sample_stack_user >= USHRT_MAX)
7135 ret = -EINVAL;
7136 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7137 ret = -EINVAL;
7138 }
4018994f 7139
974802ea
PZ
7140out:
7141 return ret;
7142
7143err_size:
7144 put_user(sizeof(*attr), &uattr->size);
7145 ret = -E2BIG;
7146 goto out;
7147}
7148
ac9721f3
PZ
7149static int
7150perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7151{
b69cf536 7152 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7153 int ret = -EINVAL;
7154
ac9721f3 7155 if (!output_event)
a4be7c27
PZ
7156 goto set;
7157
ac9721f3
PZ
7158 /* don't allow circular references */
7159 if (event == output_event)
a4be7c27
PZ
7160 goto out;
7161
0f139300
PZ
7162 /*
7163 * Don't allow cross-cpu buffers
7164 */
7165 if (output_event->cpu != event->cpu)
7166 goto out;
7167
7168 /*
76369139 7169 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7170 */
7171 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7172 goto out;
7173
a4be7c27 7174set:
cdd6c482 7175 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7176 /* Can't redirect output if we've got an active mmap() */
7177 if (atomic_read(&event->mmap_count))
7178 goto unlock;
a4be7c27 7179
ac9721f3 7180 if (output_event) {
76369139
FW
7181 /* get the rb we want to redirect to */
7182 rb = ring_buffer_get(output_event);
7183 if (!rb)
ac9721f3 7184 goto unlock;
a4be7c27
PZ
7185 }
7186
b69cf536 7187 ring_buffer_attach(event, rb);
9bb5d40c 7188
a4be7c27 7189 ret = 0;
ac9721f3
PZ
7190unlock:
7191 mutex_unlock(&event->mmap_mutex);
7192
a4be7c27 7193out:
a4be7c27
PZ
7194 return ret;
7195}
7196
0793a61d 7197/**
cdd6c482 7198 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7199 *
cdd6c482 7200 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7201 * @pid: target pid
9f66a381 7202 * @cpu: target cpu
cdd6c482 7203 * @group_fd: group leader event fd
0793a61d 7204 */
cdd6c482
IM
7205SYSCALL_DEFINE5(perf_event_open,
7206 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7207 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7208{
b04243ef
PZ
7209 struct perf_event *group_leader = NULL, *output_event = NULL;
7210 struct perf_event *event, *sibling;
cdd6c482
IM
7211 struct perf_event_attr attr;
7212 struct perf_event_context *ctx;
7213 struct file *event_file = NULL;
2903ff01 7214 struct fd group = {NULL, 0};
38a81da2 7215 struct task_struct *task = NULL;
89a1e187 7216 struct pmu *pmu;
ea635c64 7217 int event_fd;
b04243ef 7218 int move_group = 0;
dc86cabe 7219 int err;
a21b0b35 7220 int f_flags = O_RDWR;
0793a61d 7221
2743a5b0 7222 /* for future expandability... */
e5d1367f 7223 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7224 return -EINVAL;
7225
dc86cabe
IM
7226 err = perf_copy_attr(attr_uptr, &attr);
7227 if (err)
7228 return err;
eab656ae 7229
0764771d
PZ
7230 if (!attr.exclude_kernel) {
7231 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7232 return -EACCES;
7233 }
7234
df58ab24 7235 if (attr.freq) {
cdd6c482 7236 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 7237 return -EINVAL;
0819b2e3
PZ
7238 } else {
7239 if (attr.sample_period & (1ULL << 63))
7240 return -EINVAL;
df58ab24
PZ
7241 }
7242
e5d1367f
SE
7243 /*
7244 * In cgroup mode, the pid argument is used to pass the fd
7245 * opened to the cgroup directory in cgroupfs. The cpu argument
7246 * designates the cpu on which to monitor threads from that
7247 * cgroup.
7248 */
7249 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7250 return -EINVAL;
7251
a21b0b35
YD
7252 if (flags & PERF_FLAG_FD_CLOEXEC)
7253 f_flags |= O_CLOEXEC;
7254
7255 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7256 if (event_fd < 0)
7257 return event_fd;
7258
ac9721f3 7259 if (group_fd != -1) {
2903ff01
AV
7260 err = perf_fget_light(group_fd, &group);
7261 if (err)
d14b12d7 7262 goto err_fd;
2903ff01 7263 group_leader = group.file->private_data;
ac9721f3
PZ
7264 if (flags & PERF_FLAG_FD_OUTPUT)
7265 output_event = group_leader;
7266 if (flags & PERF_FLAG_FD_NO_GROUP)
7267 group_leader = NULL;
7268 }
7269
e5d1367f 7270 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7271 task = find_lively_task_by_vpid(pid);
7272 if (IS_ERR(task)) {
7273 err = PTR_ERR(task);
7274 goto err_group_fd;
7275 }
7276 }
7277
1f4ee503
PZ
7278 if (task && group_leader &&
7279 group_leader->attr.inherit != attr.inherit) {
7280 err = -EINVAL;
7281 goto err_task;
7282 }
7283
fbfc623f
YZ
7284 get_online_cpus();
7285
4dc0da86
AK
7286 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7287 NULL, NULL);
d14b12d7
SE
7288 if (IS_ERR(event)) {
7289 err = PTR_ERR(event);
1f4ee503 7290 goto err_cpus;
d14b12d7
SE
7291 }
7292
e5d1367f
SE
7293 if (flags & PERF_FLAG_PID_CGROUP) {
7294 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
7295 if (err) {
7296 __free_event(event);
1f4ee503 7297 goto err_cpus;
766d6c07 7298 }
e5d1367f
SE
7299 }
7300
53b25335
VW
7301 if (is_sampling_event(event)) {
7302 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7303 err = -ENOTSUPP;
7304 goto err_alloc;
7305 }
7306 }
7307
766d6c07
FW
7308 account_event(event);
7309
89a1e187
PZ
7310 /*
7311 * Special case software events and allow them to be part of
7312 * any hardware group.
7313 */
7314 pmu = event->pmu;
b04243ef
PZ
7315
7316 if (group_leader &&
7317 (is_software_event(event) != is_software_event(group_leader))) {
7318 if (is_software_event(event)) {
7319 /*
7320 * If event and group_leader are not both a software
7321 * event, and event is, then group leader is not.
7322 *
7323 * Allow the addition of software events to !software
7324 * groups, this is safe because software events never
7325 * fail to schedule.
7326 */
7327 pmu = group_leader->pmu;
7328 } else if (is_software_event(group_leader) &&
7329 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7330 /*
7331 * In case the group is a pure software group, and we
7332 * try to add a hardware event, move the whole group to
7333 * the hardware context.
7334 */
7335 move_group = 1;
7336 }
7337 }
89a1e187
PZ
7338
7339 /*
7340 * Get the target context (task or percpu):
7341 */
e2d37cd2 7342 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
7343 if (IS_ERR(ctx)) {
7344 err = PTR_ERR(ctx);
c6be5a5c 7345 goto err_alloc;
89a1e187
PZ
7346 }
7347
fd1edb3a
PZ
7348 if (task) {
7349 put_task_struct(task);
7350 task = NULL;
7351 }
7352
ccff286d 7353 /*
cdd6c482 7354 * Look up the group leader (we will attach this event to it):
04289bb9 7355 */
ac9721f3 7356 if (group_leader) {
dc86cabe 7357 err = -EINVAL;
04289bb9 7358
04289bb9 7359 /*
ccff286d
IM
7360 * Do not allow a recursive hierarchy (this new sibling
7361 * becoming part of another group-sibling):
7362 */
7363 if (group_leader->group_leader != group_leader)
c3f00c70 7364 goto err_context;
ccff286d
IM
7365 /*
7366 * Do not allow to attach to a group in a different
7367 * task or CPU context:
04289bb9 7368 */
b04243ef
PZ
7369 if (move_group) {
7370 if (group_leader->ctx->type != ctx->type)
7371 goto err_context;
7372 } else {
7373 if (group_leader->ctx != ctx)
7374 goto err_context;
7375 }
7376
3b6f9e5c
PM
7377 /*
7378 * Only a group leader can be exclusive or pinned
7379 */
0d48696f 7380 if (attr.exclusive || attr.pinned)
c3f00c70 7381 goto err_context;
ac9721f3
PZ
7382 }
7383
7384 if (output_event) {
7385 err = perf_event_set_output(event, output_event);
7386 if (err)
c3f00c70 7387 goto err_context;
ac9721f3 7388 }
0793a61d 7389
a21b0b35
YD
7390 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7391 f_flags);
ea635c64
AV
7392 if (IS_ERR(event_file)) {
7393 err = PTR_ERR(event_file);
c3f00c70 7394 goto err_context;
ea635c64 7395 }
9b51f66d 7396
b04243ef
PZ
7397 if (move_group) {
7398 struct perf_event_context *gctx = group_leader->ctx;
7399
7400 mutex_lock(&gctx->mutex);
46ce0fe9 7401 perf_remove_from_context(group_leader, false);
0231bb53
JO
7402
7403 /*
7404 * Removing from the context ends up with disabled
7405 * event. What we want here is event in the initial
7406 * startup state, ready to be add into new context.
7407 */
7408 perf_event__state_init(group_leader);
b04243ef
PZ
7409 list_for_each_entry(sibling, &group_leader->sibling_list,
7410 group_entry) {
46ce0fe9 7411 perf_remove_from_context(sibling, false);
0231bb53 7412 perf_event__state_init(sibling);
b04243ef
PZ
7413 put_ctx(gctx);
7414 }
7415 mutex_unlock(&gctx->mutex);
7416 put_ctx(gctx);
ea635c64 7417 }
9b51f66d 7418
ad3a37de 7419 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 7420 mutex_lock(&ctx->mutex);
b04243ef
PZ
7421
7422 if (move_group) {
0cda4c02 7423 synchronize_rcu();
e2d37cd2 7424 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
7425 get_ctx(ctx);
7426 list_for_each_entry(sibling, &group_leader->sibling_list,
7427 group_entry) {
e2d37cd2 7428 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
7429 get_ctx(ctx);
7430 }
7431 }
7432
e2d37cd2 7433 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 7434 perf_unpin_context(ctx);
d859e29f 7435 mutex_unlock(&ctx->mutex);
9b51f66d 7436
fbfc623f
YZ
7437 put_online_cpus();
7438
cdd6c482 7439 event->owner = current;
8882135b 7440
cdd6c482
IM
7441 mutex_lock(&current->perf_event_mutex);
7442 list_add_tail(&event->owner_entry, &current->perf_event_list);
7443 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7444
c320c7b7
ACM
7445 /*
7446 * Precalculate sample_data sizes
7447 */
7448 perf_event__header_size(event);
6844c09d 7449 perf_event__id_header_size(event);
c320c7b7 7450
8a49542c
PZ
7451 /*
7452 * Drop the reference on the group_event after placing the
7453 * new event on the sibling_list. This ensures destruction
7454 * of the group leader will find the pointer to itself in
7455 * perf_group_detach().
7456 */
2903ff01 7457 fdput(group);
ea635c64
AV
7458 fd_install(event_fd, event_file);
7459 return event_fd;
0793a61d 7460
c3f00c70 7461err_context:
fe4b04fa 7462 perf_unpin_context(ctx);
ea635c64 7463 put_ctx(ctx);
c6be5a5c 7464err_alloc:
ea635c64 7465 free_event(event);
1f4ee503 7466err_cpus:
fbfc623f 7467 put_online_cpus();
1f4ee503 7468err_task:
e7d0bc04
PZ
7469 if (task)
7470 put_task_struct(task);
89a1e187 7471err_group_fd:
2903ff01 7472 fdput(group);
ea635c64
AV
7473err_fd:
7474 put_unused_fd(event_fd);
dc86cabe 7475 return err;
0793a61d
TG
7476}
7477
fb0459d7
AV
7478/**
7479 * perf_event_create_kernel_counter
7480 *
7481 * @attr: attributes of the counter to create
7482 * @cpu: cpu in which the counter is bound
38a81da2 7483 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7484 */
7485struct perf_event *
7486perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7487 struct task_struct *task,
4dc0da86
AK
7488 perf_overflow_handler_t overflow_handler,
7489 void *context)
fb0459d7 7490{
fb0459d7 7491 struct perf_event_context *ctx;
c3f00c70 7492 struct perf_event *event;
fb0459d7 7493 int err;
d859e29f 7494
fb0459d7
AV
7495 /*
7496 * Get the target context (task or percpu):
7497 */
d859e29f 7498
4dc0da86
AK
7499 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7500 overflow_handler, context);
c3f00c70
PZ
7501 if (IS_ERR(event)) {
7502 err = PTR_ERR(event);
7503 goto err;
7504 }
d859e29f 7505
f8697762
JO
7506 /* Mark owner so we could distinguish it from user events. */
7507 event->owner = EVENT_OWNER_KERNEL;
7508
766d6c07
FW
7509 account_event(event);
7510
38a81da2 7511 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7512 if (IS_ERR(ctx)) {
7513 err = PTR_ERR(ctx);
c3f00c70 7514 goto err_free;
d859e29f 7515 }
fb0459d7 7516
fb0459d7
AV
7517 WARN_ON_ONCE(ctx->parent_ctx);
7518 mutex_lock(&ctx->mutex);
7519 perf_install_in_context(ctx, event, cpu);
fe4b04fa 7520 perf_unpin_context(ctx);
fb0459d7
AV
7521 mutex_unlock(&ctx->mutex);
7522
fb0459d7
AV
7523 return event;
7524
c3f00c70
PZ
7525err_free:
7526 free_event(event);
7527err:
c6567f64 7528 return ERR_PTR(err);
9b51f66d 7529}
fb0459d7 7530EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7531
0cda4c02
YZ
7532void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7533{
7534 struct perf_event_context *src_ctx;
7535 struct perf_event_context *dst_ctx;
7536 struct perf_event *event, *tmp;
7537 LIST_HEAD(events);
7538
7539 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7540 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7541
7542 mutex_lock(&src_ctx->mutex);
7543 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7544 event_entry) {
46ce0fe9 7545 perf_remove_from_context(event, false);
9a545de0 7546 unaccount_event_cpu(event, src_cpu);
0cda4c02 7547 put_ctx(src_ctx);
9886167d 7548 list_add(&event->migrate_entry, &events);
0cda4c02
YZ
7549 }
7550 mutex_unlock(&src_ctx->mutex);
7551
7552 synchronize_rcu();
7553
7554 mutex_lock(&dst_ctx->mutex);
9886167d
PZ
7555 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7556 list_del(&event->migrate_entry);
0cda4c02
YZ
7557 if (event->state >= PERF_EVENT_STATE_OFF)
7558 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7559 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7560 perf_install_in_context(dst_ctx, event, dst_cpu);
7561 get_ctx(dst_ctx);
7562 }
7563 mutex_unlock(&dst_ctx->mutex);
7564}
7565EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7566
cdd6c482 7567static void sync_child_event(struct perf_event *child_event,
38b200d6 7568 struct task_struct *child)
d859e29f 7569{
cdd6c482 7570 struct perf_event *parent_event = child_event->parent;
8bc20959 7571 u64 child_val;
d859e29f 7572
cdd6c482
IM
7573 if (child_event->attr.inherit_stat)
7574 perf_event_read_event(child_event, child);
38b200d6 7575
b5e58793 7576 child_val = perf_event_count(child_event);
d859e29f
PM
7577
7578 /*
7579 * Add back the child's count to the parent's count:
7580 */
a6e6dea6 7581 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7582 atomic64_add(child_event->total_time_enabled,
7583 &parent_event->child_total_time_enabled);
7584 atomic64_add(child_event->total_time_running,
7585 &parent_event->child_total_time_running);
d859e29f
PM
7586
7587 /*
cdd6c482 7588 * Remove this event from the parent's list
d859e29f 7589 */
cdd6c482
IM
7590 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7591 mutex_lock(&parent_event->child_mutex);
7592 list_del_init(&child_event->child_list);
7593 mutex_unlock(&parent_event->child_mutex);
d859e29f 7594
dc633982
JO
7595 /*
7596 * Make sure user/parent get notified, that we just
7597 * lost one event.
7598 */
7599 perf_event_wakeup(parent_event);
7600
d859e29f 7601 /*
cdd6c482 7602 * Release the parent event, if this was the last
d859e29f
PM
7603 * reference to it.
7604 */
a6fa941d 7605 put_event(parent_event);
d859e29f
PM
7606}
7607
9b51f66d 7608static void
cdd6c482
IM
7609__perf_event_exit_task(struct perf_event *child_event,
7610 struct perf_event_context *child_ctx,
38b200d6 7611 struct task_struct *child)
9b51f66d 7612{
1903d50c
PZ
7613 /*
7614 * Do not destroy the 'original' grouping; because of the context
7615 * switch optimization the original events could've ended up in a
7616 * random child task.
7617 *
7618 * If we were to destroy the original group, all group related
7619 * operations would cease to function properly after this random
7620 * child dies.
7621 *
7622 * Do destroy all inherited groups, we don't care about those
7623 * and being thorough is better.
7624 */
7625 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 7626
9b51f66d 7627 /*
38b435b1 7628 * It can happen that the parent exits first, and has events
9b51f66d 7629 * that are still around due to the child reference. These
38b435b1 7630 * events need to be zapped.
9b51f66d 7631 */
38b435b1 7632 if (child_event->parent) {
cdd6c482
IM
7633 sync_child_event(child_event, child);
7634 free_event(child_event);
179033b3
JO
7635 } else {
7636 child_event->state = PERF_EVENT_STATE_EXIT;
7637 perf_event_wakeup(child_event);
4bcf349a 7638 }
9b51f66d
IM
7639}
7640
8dc85d54 7641static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7642{
ebf905fc 7643 struct perf_event *child_event, *next;
4a1c0f26 7644 struct perf_event_context *child_ctx, *parent_ctx;
a63eaf34 7645 unsigned long flags;
9b51f66d 7646
8dc85d54 7647 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7648 perf_event_task(child, NULL, 0);
9b51f66d 7649 return;
9f498cc5 7650 }
9b51f66d 7651
a63eaf34 7652 local_irq_save(flags);
ad3a37de
PM
7653 /*
7654 * We can't reschedule here because interrupts are disabled,
7655 * and either child is current or it is a task that can't be
7656 * scheduled, so we are now safe from rescheduling changing
7657 * our context.
7658 */
806839b2 7659 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7660
7661 /*
7662 * Take the context lock here so that if find_get_context is
cdd6c482 7663 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7664 * incremented the context's refcount before we do put_ctx below.
7665 */
e625cce1 7666 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7667 task_ctx_sched_out(child_ctx);
8dc85d54 7668 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26
PZ
7669
7670 /*
7671 * In order to avoid freeing: child_ctx->parent_ctx->task
7672 * under perf_event_context::lock, grab another reference.
7673 */
7674 parent_ctx = child_ctx->parent_ctx;
7675 if (parent_ctx)
7676 get_ctx(parent_ctx);
7677
71a851b4
PZ
7678 /*
7679 * If this context is a clone; unclone it so it can't get
7680 * swapped to another process while we're removing all
cdd6c482 7681 * the events from it.
71a851b4
PZ
7682 */
7683 unclone_ctx(child_ctx);
5e942bb3 7684 update_context_time(child_ctx);
e625cce1 7685 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 7686
4a1c0f26
PZ
7687 /*
7688 * Now that we no longer hold perf_event_context::lock, drop
7689 * our extra child_ctx->parent_ctx reference.
7690 */
7691 if (parent_ctx)
7692 put_ctx(parent_ctx);
7693
9f498cc5 7694 /*
cdd6c482
IM
7695 * Report the task dead after unscheduling the events so that we
7696 * won't get any samples after PERF_RECORD_EXIT. We can however still
7697 * get a few PERF_RECORD_READ events.
9f498cc5 7698 */
cdd6c482 7699 perf_event_task(child, child_ctx, 0);
a63eaf34 7700
66fff224
PZ
7701 /*
7702 * We can recurse on the same lock type through:
7703 *
cdd6c482
IM
7704 * __perf_event_exit_task()
7705 * sync_child_event()
a6fa941d
AV
7706 * put_event()
7707 * mutex_lock(&ctx->mutex)
66fff224
PZ
7708 *
7709 * But since its the parent context it won't be the same instance.
7710 */
a0507c84 7711 mutex_lock(&child_ctx->mutex);
a63eaf34 7712
ebf905fc 7713 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 7714 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 7715
a63eaf34
PM
7716 mutex_unlock(&child_ctx->mutex);
7717
7718 put_ctx(child_ctx);
9b51f66d
IM
7719}
7720
8dc85d54
PZ
7721/*
7722 * When a child task exits, feed back event values to parent events.
7723 */
7724void perf_event_exit_task(struct task_struct *child)
7725{
8882135b 7726 struct perf_event *event, *tmp;
8dc85d54
PZ
7727 int ctxn;
7728
8882135b
PZ
7729 mutex_lock(&child->perf_event_mutex);
7730 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7731 owner_entry) {
7732 list_del_init(&event->owner_entry);
7733
7734 /*
7735 * Ensure the list deletion is visible before we clear
7736 * the owner, closes a race against perf_release() where
7737 * we need to serialize on the owner->perf_event_mutex.
7738 */
7739 smp_wmb();
7740 event->owner = NULL;
7741 }
7742 mutex_unlock(&child->perf_event_mutex);
7743
8dc85d54
PZ
7744 for_each_task_context_nr(ctxn)
7745 perf_event_exit_task_context(child, ctxn);
7746}
7747
889ff015
FW
7748static void perf_free_event(struct perf_event *event,
7749 struct perf_event_context *ctx)
7750{
7751 struct perf_event *parent = event->parent;
7752
7753 if (WARN_ON_ONCE(!parent))
7754 return;
7755
7756 mutex_lock(&parent->child_mutex);
7757 list_del_init(&event->child_list);
7758 mutex_unlock(&parent->child_mutex);
7759
a6fa941d 7760 put_event(parent);
889ff015 7761
8a49542c 7762 perf_group_detach(event);
889ff015
FW
7763 list_del_event(event, ctx);
7764 free_event(event);
7765}
7766
bbbee908
PZ
7767/*
7768 * free an unexposed, unused context as created by inheritance by
8dc85d54 7769 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7770 */
cdd6c482 7771void perf_event_free_task(struct task_struct *task)
bbbee908 7772{
8dc85d54 7773 struct perf_event_context *ctx;
cdd6c482 7774 struct perf_event *event, *tmp;
8dc85d54 7775 int ctxn;
bbbee908 7776
8dc85d54
PZ
7777 for_each_task_context_nr(ctxn) {
7778 ctx = task->perf_event_ctxp[ctxn];
7779 if (!ctx)
7780 continue;
bbbee908 7781
8dc85d54 7782 mutex_lock(&ctx->mutex);
bbbee908 7783again:
8dc85d54
PZ
7784 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7785 group_entry)
7786 perf_free_event(event, ctx);
bbbee908 7787
8dc85d54
PZ
7788 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7789 group_entry)
7790 perf_free_event(event, ctx);
bbbee908 7791
8dc85d54
PZ
7792 if (!list_empty(&ctx->pinned_groups) ||
7793 !list_empty(&ctx->flexible_groups))
7794 goto again;
bbbee908 7795
8dc85d54 7796 mutex_unlock(&ctx->mutex);
bbbee908 7797
8dc85d54
PZ
7798 put_ctx(ctx);
7799 }
889ff015
FW
7800}
7801
4e231c79
PZ
7802void perf_event_delayed_put(struct task_struct *task)
7803{
7804 int ctxn;
7805
7806 for_each_task_context_nr(ctxn)
7807 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7808}
7809
97dee4f3
PZ
7810/*
7811 * inherit a event from parent task to child task:
7812 */
7813static struct perf_event *
7814inherit_event(struct perf_event *parent_event,
7815 struct task_struct *parent,
7816 struct perf_event_context *parent_ctx,
7817 struct task_struct *child,
7818 struct perf_event *group_leader,
7819 struct perf_event_context *child_ctx)
7820{
1929def9 7821 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 7822 struct perf_event *child_event;
cee010ec 7823 unsigned long flags;
97dee4f3
PZ
7824
7825 /*
7826 * Instead of creating recursive hierarchies of events,
7827 * we link inherited events back to the original parent,
7828 * which has a filp for sure, which we use as the reference
7829 * count:
7830 */
7831 if (parent_event->parent)
7832 parent_event = parent_event->parent;
7833
7834 child_event = perf_event_alloc(&parent_event->attr,
7835 parent_event->cpu,
d580ff86 7836 child,
97dee4f3 7837 group_leader, parent_event,
4dc0da86 7838 NULL, NULL);
97dee4f3
PZ
7839 if (IS_ERR(child_event))
7840 return child_event;
a6fa941d 7841
fadfe7be
JO
7842 if (is_orphaned_event(parent_event) ||
7843 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
7844 free_event(child_event);
7845 return NULL;
7846 }
7847
97dee4f3
PZ
7848 get_ctx(child_ctx);
7849
7850 /*
7851 * Make the child state follow the state of the parent event,
7852 * not its attr.disabled bit. We hold the parent's mutex,
7853 * so we won't race with perf_event_{en, dis}able_family.
7854 */
1929def9 7855 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
7856 child_event->state = PERF_EVENT_STATE_INACTIVE;
7857 else
7858 child_event->state = PERF_EVENT_STATE_OFF;
7859
7860 if (parent_event->attr.freq) {
7861 u64 sample_period = parent_event->hw.sample_period;
7862 struct hw_perf_event *hwc = &child_event->hw;
7863
7864 hwc->sample_period = sample_period;
7865 hwc->last_period = sample_period;
7866
7867 local64_set(&hwc->period_left, sample_period);
7868 }
7869
7870 child_event->ctx = child_ctx;
7871 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7872 child_event->overflow_handler_context
7873 = parent_event->overflow_handler_context;
97dee4f3 7874
614b6780
TG
7875 /*
7876 * Precalculate sample_data sizes
7877 */
7878 perf_event__header_size(child_event);
6844c09d 7879 perf_event__id_header_size(child_event);
614b6780 7880
97dee4f3
PZ
7881 /*
7882 * Link it up in the child's context:
7883 */
cee010ec 7884 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7885 add_event_to_ctx(child_event, child_ctx);
cee010ec 7886 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7887
97dee4f3
PZ
7888 /*
7889 * Link this into the parent event's child list
7890 */
7891 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7892 mutex_lock(&parent_event->child_mutex);
7893 list_add_tail(&child_event->child_list, &parent_event->child_list);
7894 mutex_unlock(&parent_event->child_mutex);
7895
7896 return child_event;
7897}
7898
7899static int inherit_group(struct perf_event *parent_event,
7900 struct task_struct *parent,
7901 struct perf_event_context *parent_ctx,
7902 struct task_struct *child,
7903 struct perf_event_context *child_ctx)
7904{
7905 struct perf_event *leader;
7906 struct perf_event *sub;
7907 struct perf_event *child_ctr;
7908
7909 leader = inherit_event(parent_event, parent, parent_ctx,
7910 child, NULL, child_ctx);
7911 if (IS_ERR(leader))
7912 return PTR_ERR(leader);
7913 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7914 child_ctr = inherit_event(sub, parent, parent_ctx,
7915 child, leader, child_ctx);
7916 if (IS_ERR(child_ctr))
7917 return PTR_ERR(child_ctr);
7918 }
7919 return 0;
889ff015
FW
7920}
7921
7922static int
7923inherit_task_group(struct perf_event *event, struct task_struct *parent,
7924 struct perf_event_context *parent_ctx,
8dc85d54 7925 struct task_struct *child, int ctxn,
889ff015
FW
7926 int *inherited_all)
7927{
7928 int ret;
8dc85d54 7929 struct perf_event_context *child_ctx;
889ff015
FW
7930
7931 if (!event->attr.inherit) {
7932 *inherited_all = 0;
7933 return 0;
bbbee908
PZ
7934 }
7935
fe4b04fa 7936 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7937 if (!child_ctx) {
7938 /*
7939 * This is executed from the parent task context, so
7940 * inherit events that have been marked for cloning.
7941 * First allocate and initialize a context for the
7942 * child.
7943 */
bbbee908 7944
734df5ab 7945 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
7946 if (!child_ctx)
7947 return -ENOMEM;
bbbee908 7948
8dc85d54 7949 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7950 }
7951
7952 ret = inherit_group(event, parent, parent_ctx,
7953 child, child_ctx);
7954
7955 if (ret)
7956 *inherited_all = 0;
7957
7958 return ret;
bbbee908
PZ
7959}
7960
9b51f66d 7961/*
cdd6c482 7962 * Initialize the perf_event context in task_struct
9b51f66d 7963 */
985c8dcb 7964static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7965{
889ff015 7966 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7967 struct perf_event_context *cloned_ctx;
7968 struct perf_event *event;
9b51f66d 7969 struct task_struct *parent = current;
564c2b21 7970 int inherited_all = 1;
dddd3379 7971 unsigned long flags;
6ab423e0 7972 int ret = 0;
9b51f66d 7973
8dc85d54 7974 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7975 return 0;
7976
ad3a37de 7977 /*
25346b93
PM
7978 * If the parent's context is a clone, pin it so it won't get
7979 * swapped under us.
ad3a37de 7980 */
8dc85d54 7981 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
7982 if (!parent_ctx)
7983 return 0;
25346b93 7984
ad3a37de
PM
7985 /*
7986 * No need to check if parent_ctx != NULL here; since we saw
7987 * it non-NULL earlier, the only reason for it to become NULL
7988 * is if we exit, and since we're currently in the middle of
7989 * a fork we can't be exiting at the same time.
7990 */
ad3a37de 7991
9b51f66d
IM
7992 /*
7993 * Lock the parent list. No need to lock the child - not PID
7994 * hashed yet and not running, so nobody can access it.
7995 */
d859e29f 7996 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7997
7998 /*
7999 * We dont have to disable NMIs - we are only looking at
8000 * the list, not manipulating it:
8001 */
889ff015 8002 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
8003 ret = inherit_task_group(event, parent, parent_ctx,
8004 child, ctxn, &inherited_all);
889ff015
FW
8005 if (ret)
8006 break;
8007 }
b93f7978 8008
dddd3379
TG
8009 /*
8010 * We can't hold ctx->lock when iterating the ->flexible_group list due
8011 * to allocations, but we need to prevent rotation because
8012 * rotate_ctx() will change the list from interrupt context.
8013 */
8014 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8015 parent_ctx->rotate_disable = 1;
8016 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8017
889ff015 8018 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
8019 ret = inherit_task_group(event, parent, parent_ctx,
8020 child, ctxn, &inherited_all);
889ff015 8021 if (ret)
9b51f66d 8022 break;
564c2b21
PM
8023 }
8024
dddd3379
TG
8025 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8026 parent_ctx->rotate_disable = 0;
dddd3379 8027
8dc85d54 8028 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 8029
05cbaa28 8030 if (child_ctx && inherited_all) {
564c2b21
PM
8031 /*
8032 * Mark the child context as a clone of the parent
8033 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
8034 *
8035 * Note that if the parent is a clone, the holding of
8036 * parent_ctx->lock avoids it from being uncloned.
564c2b21 8037 */
c5ed5145 8038 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
8039 if (cloned_ctx) {
8040 child_ctx->parent_ctx = cloned_ctx;
25346b93 8041 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
8042 } else {
8043 child_ctx->parent_ctx = parent_ctx;
8044 child_ctx->parent_gen = parent_ctx->generation;
8045 }
8046 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
8047 }
8048
c5ed5145 8049 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 8050 mutex_unlock(&parent_ctx->mutex);
6ab423e0 8051
25346b93 8052 perf_unpin_context(parent_ctx);
fe4b04fa 8053 put_ctx(parent_ctx);
ad3a37de 8054
6ab423e0 8055 return ret;
9b51f66d
IM
8056}
8057
8dc85d54
PZ
8058/*
8059 * Initialize the perf_event context in task_struct
8060 */
8061int perf_event_init_task(struct task_struct *child)
8062{
8063 int ctxn, ret;
8064
8550d7cb
ON
8065 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8066 mutex_init(&child->perf_event_mutex);
8067 INIT_LIST_HEAD(&child->perf_event_list);
8068
8dc85d54
PZ
8069 for_each_task_context_nr(ctxn) {
8070 ret = perf_event_init_context(child, ctxn);
8071 if (ret)
8072 return ret;
8073 }
8074
8075 return 0;
8076}
8077
220b140b
PM
8078static void __init perf_event_init_all_cpus(void)
8079{
b28ab83c 8080 struct swevent_htable *swhash;
220b140b 8081 int cpu;
220b140b
PM
8082
8083 for_each_possible_cpu(cpu) {
b28ab83c
PZ
8084 swhash = &per_cpu(swevent_htable, cpu);
8085 mutex_init(&swhash->hlist_mutex);
e9d2b064 8086 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
8087 }
8088}
8089
0db0628d 8090static void perf_event_init_cpu(int cpu)
0793a61d 8091{
108b02cf 8092 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 8093
b28ab83c 8094 mutex_lock(&swhash->hlist_mutex);
39af6b16 8095 swhash->online = true;
4536e4d1 8096 if (swhash->hlist_refcount > 0) {
76e1d904
FW
8097 struct swevent_hlist *hlist;
8098
b28ab83c
PZ
8099 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8100 WARN_ON(!hlist);
8101 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8102 }
b28ab83c 8103 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8104}
8105
c277443c 8106#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 8107static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 8108{
e9d2b064
PZ
8109 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
8110
8111 WARN_ON(!irqs_disabled());
8112
8113 list_del_init(&cpuctx->rotation_list);
8114}
8115
108b02cf 8116static void __perf_event_exit_context(void *__info)
0793a61d 8117{
46ce0fe9 8118 struct remove_event re = { .detach_group = false };
108b02cf 8119 struct perf_event_context *ctx = __info;
0793a61d 8120
108b02cf 8121 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 8122
e3703f8c 8123 rcu_read_lock();
46ce0fe9
PZ
8124 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8125 __perf_remove_from_context(&re);
e3703f8c 8126 rcu_read_unlock();
0793a61d 8127}
108b02cf
PZ
8128
8129static void perf_event_exit_cpu_context(int cpu)
8130{
8131 struct perf_event_context *ctx;
8132 struct pmu *pmu;
8133 int idx;
8134
8135 idx = srcu_read_lock(&pmus_srcu);
8136 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 8137 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
8138
8139 mutex_lock(&ctx->mutex);
8140 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8141 mutex_unlock(&ctx->mutex);
8142 }
8143 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
8144}
8145
cdd6c482 8146static void perf_event_exit_cpu(int cpu)
0793a61d 8147{
b28ab83c 8148 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 8149
e3703f8c
PZ
8150 perf_event_exit_cpu_context(cpu);
8151
b28ab83c 8152 mutex_lock(&swhash->hlist_mutex);
39af6b16 8153 swhash->online = false;
b28ab83c
PZ
8154 swevent_hlist_release(swhash);
8155 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8156}
8157#else
cdd6c482 8158static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
8159#endif
8160
c277443c
PZ
8161static int
8162perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8163{
8164 int cpu;
8165
8166 for_each_online_cpu(cpu)
8167 perf_event_exit_cpu(cpu);
8168
8169 return NOTIFY_OK;
8170}
8171
8172/*
8173 * Run the perf reboot notifier at the very last possible moment so that
8174 * the generic watchdog code runs as long as possible.
8175 */
8176static struct notifier_block perf_reboot_notifier = {
8177 .notifier_call = perf_reboot,
8178 .priority = INT_MIN,
8179};
8180
0db0628d 8181static int
0793a61d
TG
8182perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8183{
8184 unsigned int cpu = (long)hcpu;
8185
4536e4d1 8186 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
8187
8188 case CPU_UP_PREPARE:
5e11637e 8189 case CPU_DOWN_FAILED:
cdd6c482 8190 perf_event_init_cpu(cpu);
0793a61d
TG
8191 break;
8192
5e11637e 8193 case CPU_UP_CANCELED:
0793a61d 8194 case CPU_DOWN_PREPARE:
cdd6c482 8195 perf_event_exit_cpu(cpu);
0793a61d 8196 break;
0793a61d
TG
8197 default:
8198 break;
8199 }
8200
8201 return NOTIFY_OK;
8202}
8203
cdd6c482 8204void __init perf_event_init(void)
0793a61d 8205{
3c502e7a
JW
8206 int ret;
8207
2e80a82a
PZ
8208 idr_init(&pmu_idr);
8209
220b140b 8210 perf_event_init_all_cpus();
b0a873eb 8211 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
8212 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8213 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8214 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
8215 perf_tp_register();
8216 perf_cpu_notifier(perf_cpu_notify);
c277443c 8217 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
8218
8219 ret = init_hw_breakpoint();
8220 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
8221
8222 /* do not patch jump label more than once per second */
8223 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
8224
8225 /*
8226 * Build time assertion that we keep the data_head at the intended
8227 * location. IOW, validation we got the __reserved[] size right.
8228 */
8229 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8230 != 1024);
0793a61d 8231}
abe43400
PZ
8232
8233static int __init perf_event_sysfs_init(void)
8234{
8235 struct pmu *pmu;
8236 int ret;
8237
8238 mutex_lock(&pmus_lock);
8239
8240 ret = bus_register(&pmu_bus);
8241 if (ret)
8242 goto unlock;
8243
8244 list_for_each_entry(pmu, &pmus, entry) {
8245 if (!pmu->name || pmu->type < 0)
8246 continue;
8247
8248 ret = pmu_dev_alloc(pmu);
8249 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8250 }
8251 pmu_bus_running = 1;
8252 ret = 0;
8253
8254unlock:
8255 mutex_unlock(&pmus_lock);
8256
8257 return ret;
8258}
8259device_initcall(perf_event_sysfs_init);
e5d1367f
SE
8260
8261#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
8262static struct cgroup_subsys_state *
8263perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
8264{
8265 struct perf_cgroup *jc;
e5d1367f 8266
1b15d055 8267 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
8268 if (!jc)
8269 return ERR_PTR(-ENOMEM);
8270
e5d1367f
SE
8271 jc->info = alloc_percpu(struct perf_cgroup_info);
8272 if (!jc->info) {
8273 kfree(jc);
8274 return ERR_PTR(-ENOMEM);
8275 }
8276
e5d1367f
SE
8277 return &jc->css;
8278}
8279
eb95419b 8280static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 8281{
eb95419b
TH
8282 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8283
e5d1367f
SE
8284 free_percpu(jc->info);
8285 kfree(jc);
8286}
8287
8288static int __perf_cgroup_move(void *info)
8289{
8290 struct task_struct *task = info;
8291 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8292 return 0;
8293}
8294
eb95419b
TH
8295static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8296 struct cgroup_taskset *tset)
e5d1367f 8297{
bb9d97b6
TH
8298 struct task_struct *task;
8299
924f0d9a 8300 cgroup_taskset_for_each(task, tset)
bb9d97b6 8301 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8302}
8303
eb95419b
TH
8304static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8305 struct cgroup_subsys_state *old_css,
761b3ef5 8306 struct task_struct *task)
e5d1367f
SE
8307{
8308 /*
8309 * cgroup_exit() is called in the copy_process() failure path.
8310 * Ignore this case since the task hasn't ran yet, this avoids
8311 * trying to poke a half freed task state from generic code.
8312 */
8313 if (!(task->flags & PF_EXITING))
8314 return;
8315
bb9d97b6 8316 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8317}
8318
073219e9 8319struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
8320 .css_alloc = perf_cgroup_css_alloc,
8321 .css_free = perf_cgroup_css_free,
e7e7ee2e 8322 .exit = perf_cgroup_exit,
bb9d97b6 8323 .attach = perf_cgroup_attach,
e5d1367f
SE
8324};
8325#endif /* CONFIG_CGROUP_PERF */