Merge tag 'trace-fix-filter-4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
6fb2915d 39#include <linux/ftrace_event.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
fe4b04fa 54struct remote_function_call {
e7e7ee2e
IM
55 struct task_struct *p;
56 int (*func)(void *info);
57 void *info;
58 int ret;
fe4b04fa
PZ
59};
60
61static void remote_function(void *data)
62{
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
67 tfc->ret = -EAGAIN;
68 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
69 return;
70 }
71
72 tfc->ret = tfc->func(tfc->info);
73}
74
75/**
76 * task_function_call - call a function on the cpu on which a task runs
77 * @p: the task to evaluate
78 * @func: the function to be called
79 * @info: the function call argument
80 *
81 * Calls the function @func when the task is currently running. This might
82 * be on the current CPU, which just calls the function directly
83 *
84 * returns: @func return value, or
85 * -ESRCH - when the process isn't running
86 * -EAGAIN - when the process moved away
87 */
88static int
89task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
90{
91 struct remote_function_call data = {
e7e7ee2e
IM
92 .p = p,
93 .func = func,
94 .info = info,
95 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
96 };
97
98 if (task_curr(p))
99 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
100
101 return data.ret;
102}
103
104/**
105 * cpu_function_call - call a function on the cpu
106 * @func: the function to be called
107 * @info: the function call argument
108 *
109 * Calls the function @func on the remote cpu.
110 *
111 * returns: @func return value or -ENXIO when the cpu is offline
112 */
113static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
114{
115 struct remote_function_call data = {
e7e7ee2e
IM
116 .p = NULL,
117 .func = func,
118 .info = info,
119 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
120 };
121
122 smp_call_function_single(cpu, remote_function, &data, 1);
123
124 return data.ret;
125}
126
f8697762
JO
127#define EVENT_OWNER_KERNEL ((void *) -1)
128
129static bool is_kernel_event(struct perf_event *event)
130{
131 return event->owner == EVENT_OWNER_KERNEL;
132}
133
e5d1367f
SE
134#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
135 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
136 PERF_FLAG_PID_CGROUP |\
137 PERF_FLAG_FD_CLOEXEC)
e5d1367f 138
bce38cd5
SE
139/*
140 * branch priv levels that need permission checks
141 */
142#define PERF_SAMPLE_BRANCH_PERM_PLM \
143 (PERF_SAMPLE_BRANCH_KERNEL |\
144 PERF_SAMPLE_BRANCH_HV)
145
0b3fcf17
SE
146enum event_type_t {
147 EVENT_FLEXIBLE = 0x1,
148 EVENT_PINNED = 0x2,
149 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
150};
151
e5d1367f
SE
152/*
153 * perf_sched_events : >0 events exist
154 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
155 */
c5905afb 156struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 157static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 158static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 159
cdd6c482
IM
160static atomic_t nr_mmap_events __read_mostly;
161static atomic_t nr_comm_events __read_mostly;
162static atomic_t nr_task_events __read_mostly;
948b26b6 163static atomic_t nr_freq_events __read_mostly;
9ee318a7 164
108b02cf
PZ
165static LIST_HEAD(pmus);
166static DEFINE_MUTEX(pmus_lock);
167static struct srcu_struct pmus_srcu;
168
0764771d 169/*
cdd6c482 170 * perf event paranoia level:
0fbdea19
IM
171 * -1 - not paranoid at all
172 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 173 * 1 - disallow cpu events for unpriv
0fbdea19 174 * 2 - disallow kernel profiling for unpriv
0764771d 175 */
cdd6c482 176int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 177
20443384
FW
178/* Minimum for 512 kiB + 1 user control page */
179int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
180
181/*
cdd6c482 182 * max perf event sample rate
df58ab24 183 */
14c63f17
DH
184#define DEFAULT_MAX_SAMPLE_RATE 100000
185#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
186#define DEFAULT_CPU_TIME_MAX_PERCENT 25
187
188int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
189
190static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
191static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
192
d9494cb4
PZ
193static int perf_sample_allowed_ns __read_mostly =
194 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
195
196void update_perf_cpu_limits(void)
197{
198 u64 tmp = perf_sample_period_ns;
199
200 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 201 do_div(tmp, 100);
d9494cb4 202 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 203}
163ec435 204
9e630205
SE
205static int perf_rotate_context(struct perf_cpu_context *cpuctx);
206
163ec435
PZ
207int perf_proc_update_handler(struct ctl_table *table, int write,
208 void __user *buffer, size_t *lenp,
209 loff_t *ppos)
210{
723478c8 211 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
212
213 if (ret || !write)
214 return ret;
215
216 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
217 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
218 update_perf_cpu_limits();
219
220 return 0;
221}
222
223int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
224
225int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
226 void __user *buffer, size_t *lenp,
227 loff_t *ppos)
228{
229 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
230
231 if (ret || !write)
232 return ret;
233
234 update_perf_cpu_limits();
163ec435
PZ
235
236 return 0;
237}
1ccd1549 238
14c63f17
DH
239/*
240 * perf samples are done in some very critical code paths (NMIs).
241 * If they take too much CPU time, the system can lock up and not
242 * get any real work done. This will drop the sample rate when
243 * we detect that events are taking too long.
244 */
245#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 246static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 247
6a02ad66 248static void perf_duration_warn(struct irq_work *w)
14c63f17 249{
6a02ad66 250 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 251 u64 avg_local_sample_len;
e5302920 252 u64 local_samples_len;
6a02ad66 253
4a32fea9 254 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
255 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
256
257 printk_ratelimited(KERN_WARNING
258 "perf interrupt took too long (%lld > %lld), lowering "
259 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 260 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
261 sysctl_perf_event_sample_rate);
262}
263
264static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
265
266void perf_sample_event_took(u64 sample_len_ns)
267{
d9494cb4 268 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
269 u64 avg_local_sample_len;
270 u64 local_samples_len;
14c63f17 271
d9494cb4 272 if (allowed_ns == 0)
14c63f17
DH
273 return;
274
275 /* decay the counter by 1 average sample */
4a32fea9 276 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
277 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
278 local_samples_len += sample_len_ns;
4a32fea9 279 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
280
281 /*
282 * note: this will be biased artifically low until we have
283 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
284 * from having to maintain a count.
285 */
286 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
287
d9494cb4 288 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
289 return;
290
291 if (max_samples_per_tick <= 1)
292 return;
293
294 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
295 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
296 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
297
14c63f17 298 update_perf_cpu_limits();
6a02ad66 299
cd578abb
PZ
300 if (!irq_work_queue(&perf_duration_work)) {
301 early_printk("perf interrupt took too long (%lld > %lld), lowering "
302 "kernel.perf_event_max_sample_rate to %d\n",
303 avg_local_sample_len, allowed_ns >> 1,
304 sysctl_perf_event_sample_rate);
305 }
14c63f17
DH
306}
307
cdd6c482 308static atomic64_t perf_event_id;
a96bbc16 309
0b3fcf17
SE
310static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
311 enum event_type_t event_type);
312
313static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
314 enum event_type_t event_type,
315 struct task_struct *task);
316
317static void update_context_time(struct perf_event_context *ctx);
318static u64 perf_event_time(struct perf_event *event);
0b3fcf17 319
cdd6c482 320void __weak perf_event_print_debug(void) { }
0793a61d 321
84c79910 322extern __weak const char *perf_pmu_name(void)
0793a61d 323{
84c79910 324 return "pmu";
0793a61d
TG
325}
326
0b3fcf17
SE
327static inline u64 perf_clock(void)
328{
329 return local_clock();
330}
331
34f43927
PZ
332static inline u64 perf_event_clock(struct perf_event *event)
333{
334 return event->clock();
335}
336
e5d1367f
SE
337static inline struct perf_cpu_context *
338__get_cpu_context(struct perf_event_context *ctx)
339{
340 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
341}
342
facc4307
PZ
343static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
344 struct perf_event_context *ctx)
345{
346 raw_spin_lock(&cpuctx->ctx.lock);
347 if (ctx)
348 raw_spin_lock(&ctx->lock);
349}
350
351static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
352 struct perf_event_context *ctx)
353{
354 if (ctx)
355 raw_spin_unlock(&ctx->lock);
356 raw_spin_unlock(&cpuctx->ctx.lock);
357}
358
e5d1367f
SE
359#ifdef CONFIG_CGROUP_PERF
360
e5d1367f
SE
361static inline bool
362perf_cgroup_match(struct perf_event *event)
363{
364 struct perf_event_context *ctx = event->ctx;
365 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
366
ef824fa1
TH
367 /* @event doesn't care about cgroup */
368 if (!event->cgrp)
369 return true;
370
371 /* wants specific cgroup scope but @cpuctx isn't associated with any */
372 if (!cpuctx->cgrp)
373 return false;
374
375 /*
376 * Cgroup scoping is recursive. An event enabled for a cgroup is
377 * also enabled for all its descendant cgroups. If @cpuctx's
378 * cgroup is a descendant of @event's (the test covers identity
379 * case), it's a match.
380 */
381 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
382 event->cgrp->css.cgroup);
e5d1367f
SE
383}
384
e5d1367f
SE
385static inline void perf_detach_cgroup(struct perf_event *event)
386{
4e2ba650 387 css_put(&event->cgrp->css);
e5d1367f
SE
388 event->cgrp = NULL;
389}
390
391static inline int is_cgroup_event(struct perf_event *event)
392{
393 return event->cgrp != NULL;
394}
395
396static inline u64 perf_cgroup_event_time(struct perf_event *event)
397{
398 struct perf_cgroup_info *t;
399
400 t = per_cpu_ptr(event->cgrp->info, event->cpu);
401 return t->time;
402}
403
404static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
405{
406 struct perf_cgroup_info *info;
407 u64 now;
408
409 now = perf_clock();
410
411 info = this_cpu_ptr(cgrp->info);
412
413 info->time += now - info->timestamp;
414 info->timestamp = now;
415}
416
417static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
418{
419 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
420 if (cgrp_out)
421 __update_cgrp_time(cgrp_out);
422}
423
424static inline void update_cgrp_time_from_event(struct perf_event *event)
425{
3f7cce3c
SE
426 struct perf_cgroup *cgrp;
427
e5d1367f 428 /*
3f7cce3c
SE
429 * ensure we access cgroup data only when needed and
430 * when we know the cgroup is pinned (css_get)
e5d1367f 431 */
3f7cce3c 432 if (!is_cgroup_event(event))
e5d1367f
SE
433 return;
434
3f7cce3c
SE
435 cgrp = perf_cgroup_from_task(current);
436 /*
437 * Do not update time when cgroup is not active
438 */
439 if (cgrp == event->cgrp)
440 __update_cgrp_time(event->cgrp);
e5d1367f
SE
441}
442
443static inline void
3f7cce3c
SE
444perf_cgroup_set_timestamp(struct task_struct *task,
445 struct perf_event_context *ctx)
e5d1367f
SE
446{
447 struct perf_cgroup *cgrp;
448 struct perf_cgroup_info *info;
449
3f7cce3c
SE
450 /*
451 * ctx->lock held by caller
452 * ensure we do not access cgroup data
453 * unless we have the cgroup pinned (css_get)
454 */
455 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
456 return;
457
458 cgrp = perf_cgroup_from_task(task);
459 info = this_cpu_ptr(cgrp->info);
3f7cce3c 460 info->timestamp = ctx->timestamp;
e5d1367f
SE
461}
462
463#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
464#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
465
466/*
467 * reschedule events based on the cgroup constraint of task.
468 *
469 * mode SWOUT : schedule out everything
470 * mode SWIN : schedule in based on cgroup for next
471 */
472void perf_cgroup_switch(struct task_struct *task, int mode)
473{
474 struct perf_cpu_context *cpuctx;
475 struct pmu *pmu;
476 unsigned long flags;
477
478 /*
479 * disable interrupts to avoid geting nr_cgroup
480 * changes via __perf_event_disable(). Also
481 * avoids preemption.
482 */
483 local_irq_save(flags);
484
485 /*
486 * we reschedule only in the presence of cgroup
487 * constrained events.
488 */
489 rcu_read_lock();
490
491 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 492 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
493 if (cpuctx->unique_pmu != pmu)
494 continue; /* ensure we process each cpuctx once */
e5d1367f 495
e5d1367f
SE
496 /*
497 * perf_cgroup_events says at least one
498 * context on this CPU has cgroup events.
499 *
500 * ctx->nr_cgroups reports the number of cgroup
501 * events for a context.
502 */
503 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
504 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
505 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
506
507 if (mode & PERF_CGROUP_SWOUT) {
508 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
509 /*
510 * must not be done before ctxswout due
511 * to event_filter_match() in event_sched_out()
512 */
513 cpuctx->cgrp = NULL;
514 }
515
516 if (mode & PERF_CGROUP_SWIN) {
e566b76e 517 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
518 /*
519 * set cgrp before ctxsw in to allow
520 * event_filter_match() to not have to pass
521 * task around
e5d1367f
SE
522 */
523 cpuctx->cgrp = perf_cgroup_from_task(task);
524 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
525 }
facc4307
PZ
526 perf_pmu_enable(cpuctx->ctx.pmu);
527 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 528 }
e5d1367f
SE
529 }
530
531 rcu_read_unlock();
532
533 local_irq_restore(flags);
534}
535
a8d757ef
SE
536static inline void perf_cgroup_sched_out(struct task_struct *task,
537 struct task_struct *next)
e5d1367f 538{
a8d757ef
SE
539 struct perf_cgroup *cgrp1;
540 struct perf_cgroup *cgrp2 = NULL;
541
542 /*
543 * we come here when we know perf_cgroup_events > 0
544 */
545 cgrp1 = perf_cgroup_from_task(task);
546
547 /*
548 * next is NULL when called from perf_event_enable_on_exec()
549 * that will systematically cause a cgroup_switch()
550 */
551 if (next)
552 cgrp2 = perf_cgroup_from_task(next);
553
554 /*
555 * only schedule out current cgroup events if we know
556 * that we are switching to a different cgroup. Otherwise,
557 * do no touch the cgroup events.
558 */
559 if (cgrp1 != cgrp2)
560 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
561}
562
a8d757ef
SE
563static inline void perf_cgroup_sched_in(struct task_struct *prev,
564 struct task_struct *task)
e5d1367f 565{
a8d757ef
SE
566 struct perf_cgroup *cgrp1;
567 struct perf_cgroup *cgrp2 = NULL;
568
569 /*
570 * we come here when we know perf_cgroup_events > 0
571 */
572 cgrp1 = perf_cgroup_from_task(task);
573
574 /* prev can never be NULL */
575 cgrp2 = perf_cgroup_from_task(prev);
576
577 /*
578 * only need to schedule in cgroup events if we are changing
579 * cgroup during ctxsw. Cgroup events were not scheduled
580 * out of ctxsw out if that was not the case.
581 */
582 if (cgrp1 != cgrp2)
583 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
584}
585
586static inline int perf_cgroup_connect(int fd, struct perf_event *event,
587 struct perf_event_attr *attr,
588 struct perf_event *group_leader)
589{
590 struct perf_cgroup *cgrp;
591 struct cgroup_subsys_state *css;
2903ff01
AV
592 struct fd f = fdget(fd);
593 int ret = 0;
e5d1367f 594
2903ff01 595 if (!f.file)
e5d1367f
SE
596 return -EBADF;
597
b583043e 598 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 599 &perf_event_cgrp_subsys);
3db272c0
LZ
600 if (IS_ERR(css)) {
601 ret = PTR_ERR(css);
602 goto out;
603 }
e5d1367f
SE
604
605 cgrp = container_of(css, struct perf_cgroup, css);
606 event->cgrp = cgrp;
607
608 /*
609 * all events in a group must monitor
610 * the same cgroup because a task belongs
611 * to only one perf cgroup at a time
612 */
613 if (group_leader && group_leader->cgrp != cgrp) {
614 perf_detach_cgroup(event);
615 ret = -EINVAL;
e5d1367f 616 }
3db272c0 617out:
2903ff01 618 fdput(f);
e5d1367f
SE
619 return ret;
620}
621
622static inline void
623perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
624{
625 struct perf_cgroup_info *t;
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 event->shadow_ctx_time = now - t->timestamp;
628}
629
630static inline void
631perf_cgroup_defer_enabled(struct perf_event *event)
632{
633 /*
634 * when the current task's perf cgroup does not match
635 * the event's, we need to remember to call the
636 * perf_mark_enable() function the first time a task with
637 * a matching perf cgroup is scheduled in.
638 */
639 if (is_cgroup_event(event) && !perf_cgroup_match(event))
640 event->cgrp_defer_enabled = 1;
641}
642
643static inline void
644perf_cgroup_mark_enabled(struct perf_event *event,
645 struct perf_event_context *ctx)
646{
647 struct perf_event *sub;
648 u64 tstamp = perf_event_time(event);
649
650 if (!event->cgrp_defer_enabled)
651 return;
652
653 event->cgrp_defer_enabled = 0;
654
655 event->tstamp_enabled = tstamp - event->total_time_enabled;
656 list_for_each_entry(sub, &event->sibling_list, group_entry) {
657 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
658 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
659 sub->cgrp_defer_enabled = 0;
660 }
661 }
662}
663#else /* !CONFIG_CGROUP_PERF */
664
665static inline bool
666perf_cgroup_match(struct perf_event *event)
667{
668 return true;
669}
670
671static inline void perf_detach_cgroup(struct perf_event *event)
672{}
673
674static inline int is_cgroup_event(struct perf_event *event)
675{
676 return 0;
677}
678
679static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
680{
681 return 0;
682}
683
684static inline void update_cgrp_time_from_event(struct perf_event *event)
685{
686}
687
688static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
689{
690}
691
a8d757ef
SE
692static inline void perf_cgroup_sched_out(struct task_struct *task,
693 struct task_struct *next)
e5d1367f
SE
694{
695}
696
a8d757ef
SE
697static inline void perf_cgroup_sched_in(struct task_struct *prev,
698 struct task_struct *task)
e5d1367f
SE
699{
700}
701
702static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
703 struct perf_event_attr *attr,
704 struct perf_event *group_leader)
705{
706 return -EINVAL;
707}
708
709static inline void
3f7cce3c
SE
710perf_cgroup_set_timestamp(struct task_struct *task,
711 struct perf_event_context *ctx)
e5d1367f
SE
712{
713}
714
715void
716perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
717{
718}
719
720static inline void
721perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
722{
723}
724
725static inline u64 perf_cgroup_event_time(struct perf_event *event)
726{
727 return 0;
728}
729
730static inline void
731perf_cgroup_defer_enabled(struct perf_event *event)
732{
733}
734
735static inline void
736perf_cgroup_mark_enabled(struct perf_event *event,
737 struct perf_event_context *ctx)
738{
739}
740#endif
741
9e630205
SE
742/*
743 * set default to be dependent on timer tick just
744 * like original code
745 */
746#define PERF_CPU_HRTIMER (1000 / HZ)
747/*
748 * function must be called with interrupts disbled
749 */
750static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
751{
752 struct perf_cpu_context *cpuctx;
753 enum hrtimer_restart ret = HRTIMER_NORESTART;
754 int rotations = 0;
755
756 WARN_ON(!irqs_disabled());
757
758 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
759
760 rotations = perf_rotate_context(cpuctx);
761
762 /*
763 * arm timer if needed
764 */
765 if (rotations) {
766 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
767 ret = HRTIMER_RESTART;
768 }
769
770 return ret;
771}
772
773/* CPU is going down */
774void perf_cpu_hrtimer_cancel(int cpu)
775{
776 struct perf_cpu_context *cpuctx;
777 struct pmu *pmu;
778 unsigned long flags;
779
780 if (WARN_ON(cpu != smp_processor_id()))
781 return;
782
783 local_irq_save(flags);
784
785 rcu_read_lock();
786
787 list_for_each_entry_rcu(pmu, &pmus, entry) {
788 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
789
790 if (pmu->task_ctx_nr == perf_sw_context)
791 continue;
792
793 hrtimer_cancel(&cpuctx->hrtimer);
794 }
795
796 rcu_read_unlock();
797
798 local_irq_restore(flags);
799}
800
801static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
802{
803 struct hrtimer *hr = &cpuctx->hrtimer;
804 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 805 int timer;
9e630205
SE
806
807 /* no multiplexing needed for SW PMU */
808 if (pmu->task_ctx_nr == perf_sw_context)
809 return;
810
62b85639
SE
811 /*
812 * check default is sane, if not set then force to
813 * default interval (1/tick)
814 */
815 timer = pmu->hrtimer_interval_ms;
816 if (timer < 1)
817 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
818
819 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
820
821 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
822 hr->function = perf_cpu_hrtimer_handler;
823}
824
825static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
826{
827 struct hrtimer *hr = &cpuctx->hrtimer;
828 struct pmu *pmu = cpuctx->ctx.pmu;
829
830 /* not for SW PMU */
831 if (pmu->task_ctx_nr == perf_sw_context)
832 return;
833
834 if (hrtimer_active(hr))
835 return;
836
837 if (!hrtimer_callback_running(hr))
838 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
839 0, HRTIMER_MODE_REL_PINNED, 0);
840}
841
33696fc0 842void perf_pmu_disable(struct pmu *pmu)
9e35ad38 843{
33696fc0
PZ
844 int *count = this_cpu_ptr(pmu->pmu_disable_count);
845 if (!(*count)++)
846 pmu->pmu_disable(pmu);
9e35ad38 847}
9e35ad38 848
33696fc0 849void perf_pmu_enable(struct pmu *pmu)
9e35ad38 850{
33696fc0
PZ
851 int *count = this_cpu_ptr(pmu->pmu_disable_count);
852 if (!--(*count))
853 pmu->pmu_enable(pmu);
9e35ad38 854}
9e35ad38 855
2fde4f94 856static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
857
858/*
2fde4f94
MR
859 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
860 * perf_event_task_tick() are fully serialized because they're strictly cpu
861 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
862 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 863 */
2fde4f94 864static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 865{
2fde4f94 866 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 867
e9d2b064 868 WARN_ON(!irqs_disabled());
b5ab4cd5 869
2fde4f94
MR
870 WARN_ON(!list_empty(&ctx->active_ctx_list));
871
872 list_add(&ctx->active_ctx_list, head);
873}
874
875static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
876{
877 WARN_ON(!irqs_disabled());
878
879 WARN_ON(list_empty(&ctx->active_ctx_list));
880
881 list_del_init(&ctx->active_ctx_list);
9e35ad38 882}
9e35ad38 883
cdd6c482 884static void get_ctx(struct perf_event_context *ctx)
a63eaf34 885{
e5289d4a 886 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
887}
888
4af57ef2
YZ
889static void free_ctx(struct rcu_head *head)
890{
891 struct perf_event_context *ctx;
892
893 ctx = container_of(head, struct perf_event_context, rcu_head);
894 kfree(ctx->task_ctx_data);
895 kfree(ctx);
896}
897
cdd6c482 898static void put_ctx(struct perf_event_context *ctx)
a63eaf34 899{
564c2b21
PM
900 if (atomic_dec_and_test(&ctx->refcount)) {
901 if (ctx->parent_ctx)
902 put_ctx(ctx->parent_ctx);
c93f7669
PM
903 if (ctx->task)
904 put_task_struct(ctx->task);
4af57ef2 905 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 906 }
a63eaf34
PM
907}
908
f63a8daa
PZ
909/*
910 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
911 * perf_pmu_migrate_context() we need some magic.
912 *
913 * Those places that change perf_event::ctx will hold both
914 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
915 *
8b10c5e2
PZ
916 * Lock ordering is by mutex address. There are two other sites where
917 * perf_event_context::mutex nests and those are:
918 *
919 * - perf_event_exit_task_context() [ child , 0 ]
920 * __perf_event_exit_task()
921 * sync_child_event()
922 * put_event() [ parent, 1 ]
923 *
924 * - perf_event_init_context() [ parent, 0 ]
925 * inherit_task_group()
926 * inherit_group()
927 * inherit_event()
928 * perf_event_alloc()
929 * perf_init_event()
930 * perf_try_init_event() [ child , 1 ]
931 *
932 * While it appears there is an obvious deadlock here -- the parent and child
933 * nesting levels are inverted between the two. This is in fact safe because
934 * life-time rules separate them. That is an exiting task cannot fork, and a
935 * spawning task cannot (yet) exit.
936 *
937 * But remember that that these are parent<->child context relations, and
938 * migration does not affect children, therefore these two orderings should not
939 * interact.
f63a8daa
PZ
940 *
941 * The change in perf_event::ctx does not affect children (as claimed above)
942 * because the sys_perf_event_open() case will install a new event and break
943 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
944 * concerned with cpuctx and that doesn't have children.
945 *
946 * The places that change perf_event::ctx will issue:
947 *
948 * perf_remove_from_context();
949 * synchronize_rcu();
950 * perf_install_in_context();
951 *
952 * to affect the change. The remove_from_context() + synchronize_rcu() should
953 * quiesce the event, after which we can install it in the new location. This
954 * means that only external vectors (perf_fops, prctl) can perturb the event
955 * while in transit. Therefore all such accessors should also acquire
956 * perf_event_context::mutex to serialize against this.
957 *
958 * However; because event->ctx can change while we're waiting to acquire
959 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
960 * function.
961 *
962 * Lock order:
963 * task_struct::perf_event_mutex
964 * perf_event_context::mutex
965 * perf_event_context::lock
966 * perf_event::child_mutex;
967 * perf_event::mmap_mutex
968 * mmap_sem
969 */
a83fe28e
PZ
970static struct perf_event_context *
971perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
972{
973 struct perf_event_context *ctx;
974
975again:
976 rcu_read_lock();
977 ctx = ACCESS_ONCE(event->ctx);
978 if (!atomic_inc_not_zero(&ctx->refcount)) {
979 rcu_read_unlock();
980 goto again;
981 }
982 rcu_read_unlock();
983
a83fe28e 984 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
985 if (event->ctx != ctx) {
986 mutex_unlock(&ctx->mutex);
987 put_ctx(ctx);
988 goto again;
989 }
990
991 return ctx;
992}
993
a83fe28e
PZ
994static inline struct perf_event_context *
995perf_event_ctx_lock(struct perf_event *event)
996{
997 return perf_event_ctx_lock_nested(event, 0);
998}
999
f63a8daa
PZ
1000static void perf_event_ctx_unlock(struct perf_event *event,
1001 struct perf_event_context *ctx)
1002{
1003 mutex_unlock(&ctx->mutex);
1004 put_ctx(ctx);
1005}
1006
211de6eb
PZ
1007/*
1008 * This must be done under the ctx->lock, such as to serialize against
1009 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1010 * calling scheduler related locks and ctx->lock nests inside those.
1011 */
1012static __must_check struct perf_event_context *
1013unclone_ctx(struct perf_event_context *ctx)
71a851b4 1014{
211de6eb
PZ
1015 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1016
1017 lockdep_assert_held(&ctx->lock);
1018
1019 if (parent_ctx)
71a851b4 1020 ctx->parent_ctx = NULL;
5a3126d4 1021 ctx->generation++;
211de6eb
PZ
1022
1023 return parent_ctx;
71a851b4
PZ
1024}
1025
6844c09d
ACM
1026static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1027{
1028 /*
1029 * only top level events have the pid namespace they were created in
1030 */
1031 if (event->parent)
1032 event = event->parent;
1033
1034 return task_tgid_nr_ns(p, event->ns);
1035}
1036
1037static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1038{
1039 /*
1040 * only top level events have the pid namespace they were created in
1041 */
1042 if (event->parent)
1043 event = event->parent;
1044
1045 return task_pid_nr_ns(p, event->ns);
1046}
1047
7f453c24 1048/*
cdd6c482 1049 * If we inherit events we want to return the parent event id
7f453c24
PZ
1050 * to userspace.
1051 */
cdd6c482 1052static u64 primary_event_id(struct perf_event *event)
7f453c24 1053{
cdd6c482 1054 u64 id = event->id;
7f453c24 1055
cdd6c482
IM
1056 if (event->parent)
1057 id = event->parent->id;
7f453c24
PZ
1058
1059 return id;
1060}
1061
25346b93 1062/*
cdd6c482 1063 * Get the perf_event_context for a task and lock it.
25346b93
PM
1064 * This has to cope with with the fact that until it is locked,
1065 * the context could get moved to another task.
1066 */
cdd6c482 1067static struct perf_event_context *
8dc85d54 1068perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1069{
cdd6c482 1070 struct perf_event_context *ctx;
25346b93 1071
9ed6060d 1072retry:
058ebd0e
PZ
1073 /*
1074 * One of the few rules of preemptible RCU is that one cannot do
1075 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1076 * part of the read side critical section was preemptible -- see
1077 * rcu_read_unlock_special().
1078 *
1079 * Since ctx->lock nests under rq->lock we must ensure the entire read
1080 * side critical section is non-preemptible.
1081 */
1082 preempt_disable();
1083 rcu_read_lock();
8dc85d54 1084 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1085 if (ctx) {
1086 /*
1087 * If this context is a clone of another, it might
1088 * get swapped for another underneath us by
cdd6c482 1089 * perf_event_task_sched_out, though the
25346b93
PM
1090 * rcu_read_lock() protects us from any context
1091 * getting freed. Lock the context and check if it
1092 * got swapped before we could get the lock, and retry
1093 * if so. If we locked the right context, then it
1094 * can't get swapped on us any more.
1095 */
e625cce1 1096 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 1097 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1098 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1099 rcu_read_unlock();
1100 preempt_enable();
25346b93
PM
1101 goto retry;
1102 }
b49a9e7e
PZ
1103
1104 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1105 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1106 ctx = NULL;
1107 }
25346b93
PM
1108 }
1109 rcu_read_unlock();
058ebd0e 1110 preempt_enable();
25346b93
PM
1111 return ctx;
1112}
1113
1114/*
1115 * Get the context for a task and increment its pin_count so it
1116 * can't get swapped to another task. This also increments its
1117 * reference count so that the context can't get freed.
1118 */
8dc85d54
PZ
1119static struct perf_event_context *
1120perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1121{
cdd6c482 1122 struct perf_event_context *ctx;
25346b93
PM
1123 unsigned long flags;
1124
8dc85d54 1125 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1126 if (ctx) {
1127 ++ctx->pin_count;
e625cce1 1128 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1129 }
1130 return ctx;
1131}
1132
cdd6c482 1133static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1134{
1135 unsigned long flags;
1136
e625cce1 1137 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1138 --ctx->pin_count;
e625cce1 1139 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1140}
1141
f67218c3
PZ
1142/*
1143 * Update the record of the current time in a context.
1144 */
1145static void update_context_time(struct perf_event_context *ctx)
1146{
1147 u64 now = perf_clock();
1148
1149 ctx->time += now - ctx->timestamp;
1150 ctx->timestamp = now;
1151}
1152
4158755d
SE
1153static u64 perf_event_time(struct perf_event *event)
1154{
1155 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1156
1157 if (is_cgroup_event(event))
1158 return perf_cgroup_event_time(event);
1159
4158755d
SE
1160 return ctx ? ctx->time : 0;
1161}
1162
f67218c3
PZ
1163/*
1164 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1165 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1166 */
1167static void update_event_times(struct perf_event *event)
1168{
1169 struct perf_event_context *ctx = event->ctx;
1170 u64 run_end;
1171
1172 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1173 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1174 return;
e5d1367f
SE
1175 /*
1176 * in cgroup mode, time_enabled represents
1177 * the time the event was enabled AND active
1178 * tasks were in the monitored cgroup. This is
1179 * independent of the activity of the context as
1180 * there may be a mix of cgroup and non-cgroup events.
1181 *
1182 * That is why we treat cgroup events differently
1183 * here.
1184 */
1185 if (is_cgroup_event(event))
46cd6a7f 1186 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1187 else if (ctx->is_active)
1188 run_end = ctx->time;
acd1d7c1
PZ
1189 else
1190 run_end = event->tstamp_stopped;
1191
1192 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1193
1194 if (event->state == PERF_EVENT_STATE_INACTIVE)
1195 run_end = event->tstamp_stopped;
1196 else
4158755d 1197 run_end = perf_event_time(event);
f67218c3
PZ
1198
1199 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1200
f67218c3
PZ
1201}
1202
96c21a46
PZ
1203/*
1204 * Update total_time_enabled and total_time_running for all events in a group.
1205 */
1206static void update_group_times(struct perf_event *leader)
1207{
1208 struct perf_event *event;
1209
1210 update_event_times(leader);
1211 list_for_each_entry(event, &leader->sibling_list, group_entry)
1212 update_event_times(event);
1213}
1214
889ff015
FW
1215static struct list_head *
1216ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1217{
1218 if (event->attr.pinned)
1219 return &ctx->pinned_groups;
1220 else
1221 return &ctx->flexible_groups;
1222}
1223
fccc714b 1224/*
cdd6c482 1225 * Add a event from the lists for its context.
fccc714b
PZ
1226 * Must be called with ctx->mutex and ctx->lock held.
1227 */
04289bb9 1228static void
cdd6c482 1229list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1230{
8a49542c
PZ
1231 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1232 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1233
1234 /*
8a49542c
PZ
1235 * If we're a stand alone event or group leader, we go to the context
1236 * list, group events are kept attached to the group so that
1237 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1238 */
8a49542c 1239 if (event->group_leader == event) {
889ff015
FW
1240 struct list_head *list;
1241
d6f962b5
FW
1242 if (is_software_event(event))
1243 event->group_flags |= PERF_GROUP_SOFTWARE;
1244
889ff015
FW
1245 list = ctx_group_list(event, ctx);
1246 list_add_tail(&event->group_entry, list);
5c148194 1247 }
592903cd 1248
08309379 1249 if (is_cgroup_event(event))
e5d1367f 1250 ctx->nr_cgroups++;
e5d1367f 1251
cdd6c482
IM
1252 list_add_rcu(&event->event_entry, &ctx->event_list);
1253 ctx->nr_events++;
1254 if (event->attr.inherit_stat)
bfbd3381 1255 ctx->nr_stat++;
5a3126d4
PZ
1256
1257 ctx->generation++;
04289bb9
IM
1258}
1259
0231bb53
JO
1260/*
1261 * Initialize event state based on the perf_event_attr::disabled.
1262 */
1263static inline void perf_event__state_init(struct perf_event *event)
1264{
1265 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1266 PERF_EVENT_STATE_INACTIVE;
1267}
1268
c320c7b7
ACM
1269/*
1270 * Called at perf_event creation and when events are attached/detached from a
1271 * group.
1272 */
1273static void perf_event__read_size(struct perf_event *event)
1274{
1275 int entry = sizeof(u64); /* value */
1276 int size = 0;
1277 int nr = 1;
1278
1279 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1280 size += sizeof(u64);
1281
1282 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1283 size += sizeof(u64);
1284
1285 if (event->attr.read_format & PERF_FORMAT_ID)
1286 entry += sizeof(u64);
1287
1288 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1289 nr += event->group_leader->nr_siblings;
1290 size += sizeof(u64);
1291 }
1292
1293 size += entry * nr;
1294 event->read_size = size;
1295}
1296
1297static void perf_event__header_size(struct perf_event *event)
1298{
1299 struct perf_sample_data *data;
1300 u64 sample_type = event->attr.sample_type;
1301 u16 size = 0;
1302
1303 perf_event__read_size(event);
1304
1305 if (sample_type & PERF_SAMPLE_IP)
1306 size += sizeof(data->ip);
1307
6844c09d
ACM
1308 if (sample_type & PERF_SAMPLE_ADDR)
1309 size += sizeof(data->addr);
1310
1311 if (sample_type & PERF_SAMPLE_PERIOD)
1312 size += sizeof(data->period);
1313
c3feedf2
AK
1314 if (sample_type & PERF_SAMPLE_WEIGHT)
1315 size += sizeof(data->weight);
1316
6844c09d
ACM
1317 if (sample_type & PERF_SAMPLE_READ)
1318 size += event->read_size;
1319
d6be9ad6
SE
1320 if (sample_type & PERF_SAMPLE_DATA_SRC)
1321 size += sizeof(data->data_src.val);
1322
fdfbbd07
AK
1323 if (sample_type & PERF_SAMPLE_TRANSACTION)
1324 size += sizeof(data->txn);
1325
6844c09d
ACM
1326 event->header_size = size;
1327}
1328
1329static void perf_event__id_header_size(struct perf_event *event)
1330{
1331 struct perf_sample_data *data;
1332 u64 sample_type = event->attr.sample_type;
1333 u16 size = 0;
1334
c320c7b7
ACM
1335 if (sample_type & PERF_SAMPLE_TID)
1336 size += sizeof(data->tid_entry);
1337
1338 if (sample_type & PERF_SAMPLE_TIME)
1339 size += sizeof(data->time);
1340
ff3d527c
AH
1341 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1342 size += sizeof(data->id);
1343
c320c7b7
ACM
1344 if (sample_type & PERF_SAMPLE_ID)
1345 size += sizeof(data->id);
1346
1347 if (sample_type & PERF_SAMPLE_STREAM_ID)
1348 size += sizeof(data->stream_id);
1349
1350 if (sample_type & PERF_SAMPLE_CPU)
1351 size += sizeof(data->cpu_entry);
1352
6844c09d 1353 event->id_header_size = size;
c320c7b7
ACM
1354}
1355
8a49542c
PZ
1356static void perf_group_attach(struct perf_event *event)
1357{
c320c7b7 1358 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1359
74c3337c
PZ
1360 /*
1361 * We can have double attach due to group movement in perf_event_open.
1362 */
1363 if (event->attach_state & PERF_ATTACH_GROUP)
1364 return;
1365
8a49542c
PZ
1366 event->attach_state |= PERF_ATTACH_GROUP;
1367
1368 if (group_leader == event)
1369 return;
1370
652884fe
PZ
1371 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1372
8a49542c
PZ
1373 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1374 !is_software_event(event))
1375 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1376
1377 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1378 group_leader->nr_siblings++;
c320c7b7
ACM
1379
1380 perf_event__header_size(group_leader);
1381
1382 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1383 perf_event__header_size(pos);
8a49542c
PZ
1384}
1385
a63eaf34 1386/*
cdd6c482 1387 * Remove a event from the lists for its context.
fccc714b 1388 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1389 */
04289bb9 1390static void
cdd6c482 1391list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1392{
68cacd29 1393 struct perf_cpu_context *cpuctx;
652884fe
PZ
1394
1395 WARN_ON_ONCE(event->ctx != ctx);
1396 lockdep_assert_held(&ctx->lock);
1397
8a49542c
PZ
1398 /*
1399 * We can have double detach due to exit/hot-unplug + close.
1400 */
1401 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1402 return;
8a49542c
PZ
1403
1404 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1405
68cacd29 1406 if (is_cgroup_event(event)) {
e5d1367f 1407 ctx->nr_cgroups--;
68cacd29
SE
1408 cpuctx = __get_cpu_context(ctx);
1409 /*
1410 * if there are no more cgroup events
1411 * then cler cgrp to avoid stale pointer
1412 * in update_cgrp_time_from_cpuctx()
1413 */
1414 if (!ctx->nr_cgroups)
1415 cpuctx->cgrp = NULL;
1416 }
e5d1367f 1417
cdd6c482
IM
1418 ctx->nr_events--;
1419 if (event->attr.inherit_stat)
bfbd3381 1420 ctx->nr_stat--;
8bc20959 1421
cdd6c482 1422 list_del_rcu(&event->event_entry);
04289bb9 1423
8a49542c
PZ
1424 if (event->group_leader == event)
1425 list_del_init(&event->group_entry);
5c148194 1426
96c21a46 1427 update_group_times(event);
b2e74a26
SE
1428
1429 /*
1430 * If event was in error state, then keep it
1431 * that way, otherwise bogus counts will be
1432 * returned on read(). The only way to get out
1433 * of error state is by explicit re-enabling
1434 * of the event
1435 */
1436 if (event->state > PERF_EVENT_STATE_OFF)
1437 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1438
1439 ctx->generation++;
050735b0
PZ
1440}
1441
8a49542c 1442static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1443{
1444 struct perf_event *sibling, *tmp;
8a49542c
PZ
1445 struct list_head *list = NULL;
1446
1447 /*
1448 * We can have double detach due to exit/hot-unplug + close.
1449 */
1450 if (!(event->attach_state & PERF_ATTACH_GROUP))
1451 return;
1452
1453 event->attach_state &= ~PERF_ATTACH_GROUP;
1454
1455 /*
1456 * If this is a sibling, remove it from its group.
1457 */
1458 if (event->group_leader != event) {
1459 list_del_init(&event->group_entry);
1460 event->group_leader->nr_siblings--;
c320c7b7 1461 goto out;
8a49542c
PZ
1462 }
1463
1464 if (!list_empty(&event->group_entry))
1465 list = &event->group_entry;
2e2af50b 1466
04289bb9 1467 /*
cdd6c482
IM
1468 * If this was a group event with sibling events then
1469 * upgrade the siblings to singleton events by adding them
8a49542c 1470 * to whatever list we are on.
04289bb9 1471 */
cdd6c482 1472 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1473 if (list)
1474 list_move_tail(&sibling->group_entry, list);
04289bb9 1475 sibling->group_leader = sibling;
d6f962b5
FW
1476
1477 /* Inherit group flags from the previous leader */
1478 sibling->group_flags = event->group_flags;
652884fe
PZ
1479
1480 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1481 }
c320c7b7
ACM
1482
1483out:
1484 perf_event__header_size(event->group_leader);
1485
1486 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1487 perf_event__header_size(tmp);
04289bb9
IM
1488}
1489
fadfe7be
JO
1490/*
1491 * User event without the task.
1492 */
1493static bool is_orphaned_event(struct perf_event *event)
1494{
1495 return event && !is_kernel_event(event) && !event->owner;
1496}
1497
1498/*
1499 * Event has a parent but parent's task finished and it's
1500 * alive only because of children holding refference.
1501 */
1502static bool is_orphaned_child(struct perf_event *event)
1503{
1504 return is_orphaned_event(event->parent);
1505}
1506
1507static void orphans_remove_work(struct work_struct *work);
1508
1509static void schedule_orphans_remove(struct perf_event_context *ctx)
1510{
1511 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1512 return;
1513
1514 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1515 get_ctx(ctx);
1516 ctx->orphans_remove_sched = true;
1517 }
1518}
1519
1520static int __init perf_workqueue_init(void)
1521{
1522 perf_wq = create_singlethread_workqueue("perf");
1523 WARN(!perf_wq, "failed to create perf workqueue\n");
1524 return perf_wq ? 0 : -1;
1525}
1526
1527core_initcall(perf_workqueue_init);
1528
fa66f07a
SE
1529static inline int
1530event_filter_match(struct perf_event *event)
1531{
e5d1367f
SE
1532 return (event->cpu == -1 || event->cpu == smp_processor_id())
1533 && perf_cgroup_match(event);
fa66f07a
SE
1534}
1535
9ffcfa6f
SE
1536static void
1537event_sched_out(struct perf_event *event,
3b6f9e5c 1538 struct perf_cpu_context *cpuctx,
cdd6c482 1539 struct perf_event_context *ctx)
3b6f9e5c 1540{
4158755d 1541 u64 tstamp = perf_event_time(event);
fa66f07a 1542 u64 delta;
652884fe
PZ
1543
1544 WARN_ON_ONCE(event->ctx != ctx);
1545 lockdep_assert_held(&ctx->lock);
1546
fa66f07a
SE
1547 /*
1548 * An event which could not be activated because of
1549 * filter mismatch still needs to have its timings
1550 * maintained, otherwise bogus information is return
1551 * via read() for time_enabled, time_running:
1552 */
1553 if (event->state == PERF_EVENT_STATE_INACTIVE
1554 && !event_filter_match(event)) {
e5d1367f 1555 delta = tstamp - event->tstamp_stopped;
fa66f07a 1556 event->tstamp_running += delta;
4158755d 1557 event->tstamp_stopped = tstamp;
fa66f07a
SE
1558 }
1559
cdd6c482 1560 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1561 return;
3b6f9e5c 1562
44377277
AS
1563 perf_pmu_disable(event->pmu);
1564
cdd6c482
IM
1565 event->state = PERF_EVENT_STATE_INACTIVE;
1566 if (event->pending_disable) {
1567 event->pending_disable = 0;
1568 event->state = PERF_EVENT_STATE_OFF;
970892a9 1569 }
4158755d 1570 event->tstamp_stopped = tstamp;
a4eaf7f1 1571 event->pmu->del(event, 0);
cdd6c482 1572 event->oncpu = -1;
3b6f9e5c 1573
cdd6c482 1574 if (!is_software_event(event))
3b6f9e5c 1575 cpuctx->active_oncpu--;
2fde4f94
MR
1576 if (!--ctx->nr_active)
1577 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1578 if (event->attr.freq && event->attr.sample_freq)
1579 ctx->nr_freq--;
cdd6c482 1580 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1581 cpuctx->exclusive = 0;
44377277 1582
fadfe7be
JO
1583 if (is_orphaned_child(event))
1584 schedule_orphans_remove(ctx);
1585
44377277 1586 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1587}
1588
d859e29f 1589static void
cdd6c482 1590group_sched_out(struct perf_event *group_event,
d859e29f 1591 struct perf_cpu_context *cpuctx,
cdd6c482 1592 struct perf_event_context *ctx)
d859e29f 1593{
cdd6c482 1594 struct perf_event *event;
fa66f07a 1595 int state = group_event->state;
d859e29f 1596
cdd6c482 1597 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1598
1599 /*
1600 * Schedule out siblings (if any):
1601 */
cdd6c482
IM
1602 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1603 event_sched_out(event, cpuctx, ctx);
d859e29f 1604
fa66f07a 1605 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1606 cpuctx->exclusive = 0;
1607}
1608
46ce0fe9
PZ
1609struct remove_event {
1610 struct perf_event *event;
1611 bool detach_group;
1612};
1613
0793a61d 1614/*
cdd6c482 1615 * Cross CPU call to remove a performance event
0793a61d 1616 *
cdd6c482 1617 * We disable the event on the hardware level first. After that we
0793a61d
TG
1618 * remove it from the context list.
1619 */
fe4b04fa 1620static int __perf_remove_from_context(void *info)
0793a61d 1621{
46ce0fe9
PZ
1622 struct remove_event *re = info;
1623 struct perf_event *event = re->event;
cdd6c482 1624 struct perf_event_context *ctx = event->ctx;
108b02cf 1625 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1626
e625cce1 1627 raw_spin_lock(&ctx->lock);
cdd6c482 1628 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1629 if (re->detach_group)
1630 perf_group_detach(event);
cdd6c482 1631 list_del_event(event, ctx);
64ce3126
PZ
1632 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1633 ctx->is_active = 0;
1634 cpuctx->task_ctx = NULL;
1635 }
e625cce1 1636 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1637
1638 return 0;
0793a61d
TG
1639}
1640
1641
1642/*
cdd6c482 1643 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1644 *
cdd6c482 1645 * CPU events are removed with a smp call. For task events we only
0793a61d 1646 * call when the task is on a CPU.
c93f7669 1647 *
cdd6c482
IM
1648 * If event->ctx is a cloned context, callers must make sure that
1649 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1650 * remains valid. This is OK when called from perf_release since
1651 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1652 * When called from perf_event_exit_task, it's OK because the
c93f7669 1653 * context has been detached from its task.
0793a61d 1654 */
46ce0fe9 1655static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1656{
cdd6c482 1657 struct perf_event_context *ctx = event->ctx;
0793a61d 1658 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1659 struct remove_event re = {
1660 .event = event,
1661 .detach_group = detach_group,
1662 };
0793a61d 1663
fe4b04fa
PZ
1664 lockdep_assert_held(&ctx->mutex);
1665
0793a61d
TG
1666 if (!task) {
1667 /*
226424ee
MR
1668 * Per cpu events are removed via an smp call. The removal can
1669 * fail if the CPU is currently offline, but in that case we
1670 * already called __perf_remove_from_context from
1671 * perf_event_exit_cpu.
0793a61d 1672 */
46ce0fe9 1673 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1674 return;
1675 }
1676
1677retry:
46ce0fe9 1678 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1679 return;
0793a61d 1680
e625cce1 1681 raw_spin_lock_irq(&ctx->lock);
0793a61d 1682 /*
fe4b04fa
PZ
1683 * If we failed to find a running task, but find the context active now
1684 * that we've acquired the ctx->lock, retry.
0793a61d 1685 */
fe4b04fa 1686 if (ctx->is_active) {
e625cce1 1687 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1688 /*
1689 * Reload the task pointer, it might have been changed by
1690 * a concurrent perf_event_context_sched_out().
1691 */
1692 task = ctx->task;
0793a61d
TG
1693 goto retry;
1694 }
1695
1696 /*
fe4b04fa
PZ
1697 * Since the task isn't running, its safe to remove the event, us
1698 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1699 */
46ce0fe9
PZ
1700 if (detach_group)
1701 perf_group_detach(event);
fe4b04fa 1702 list_del_event(event, ctx);
e625cce1 1703 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1704}
1705
d859e29f 1706/*
cdd6c482 1707 * Cross CPU call to disable a performance event
d859e29f 1708 */
500ad2d8 1709int __perf_event_disable(void *info)
d859e29f 1710{
cdd6c482 1711 struct perf_event *event = info;
cdd6c482 1712 struct perf_event_context *ctx = event->ctx;
108b02cf 1713 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1714
1715 /*
cdd6c482
IM
1716 * If this is a per-task event, need to check whether this
1717 * event's task is the current task on this cpu.
fe4b04fa
PZ
1718 *
1719 * Can trigger due to concurrent perf_event_context_sched_out()
1720 * flipping contexts around.
d859e29f 1721 */
665c2142 1722 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1723 return -EINVAL;
d859e29f 1724
e625cce1 1725 raw_spin_lock(&ctx->lock);
d859e29f
PM
1726
1727 /*
cdd6c482 1728 * If the event is on, turn it off.
d859e29f
PM
1729 * If it is in error state, leave it in error state.
1730 */
cdd6c482 1731 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1732 update_context_time(ctx);
e5d1367f 1733 update_cgrp_time_from_event(event);
cdd6c482
IM
1734 update_group_times(event);
1735 if (event == event->group_leader)
1736 group_sched_out(event, cpuctx, ctx);
d859e29f 1737 else
cdd6c482
IM
1738 event_sched_out(event, cpuctx, ctx);
1739 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1740 }
1741
e625cce1 1742 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1743
1744 return 0;
d859e29f
PM
1745}
1746
1747/*
cdd6c482 1748 * Disable a event.
c93f7669 1749 *
cdd6c482
IM
1750 * If event->ctx is a cloned context, callers must make sure that
1751 * every task struct that event->ctx->task could possibly point to
c93f7669 1752 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1753 * perf_event_for_each_child or perf_event_for_each because they
1754 * hold the top-level event's child_mutex, so any descendant that
1755 * goes to exit will block in sync_child_event.
1756 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1757 * is the current context on this CPU and preemption is disabled,
cdd6c482 1758 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1759 */
f63a8daa 1760static void _perf_event_disable(struct perf_event *event)
d859e29f 1761{
cdd6c482 1762 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1763 struct task_struct *task = ctx->task;
1764
1765 if (!task) {
1766 /*
cdd6c482 1767 * Disable the event on the cpu that it's on
d859e29f 1768 */
fe4b04fa 1769 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1770 return;
1771 }
1772
9ed6060d 1773retry:
fe4b04fa
PZ
1774 if (!task_function_call(task, __perf_event_disable, event))
1775 return;
d859e29f 1776
e625cce1 1777 raw_spin_lock_irq(&ctx->lock);
d859e29f 1778 /*
cdd6c482 1779 * If the event is still active, we need to retry the cross-call.
d859e29f 1780 */
cdd6c482 1781 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1782 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1783 /*
1784 * Reload the task pointer, it might have been changed by
1785 * a concurrent perf_event_context_sched_out().
1786 */
1787 task = ctx->task;
d859e29f
PM
1788 goto retry;
1789 }
1790
1791 /*
1792 * Since we have the lock this context can't be scheduled
1793 * in, so we can change the state safely.
1794 */
cdd6c482
IM
1795 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1796 update_group_times(event);
1797 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1798 }
e625cce1 1799 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1800}
f63a8daa
PZ
1801
1802/*
1803 * Strictly speaking kernel users cannot create groups and therefore this
1804 * interface does not need the perf_event_ctx_lock() magic.
1805 */
1806void perf_event_disable(struct perf_event *event)
1807{
1808 struct perf_event_context *ctx;
1809
1810 ctx = perf_event_ctx_lock(event);
1811 _perf_event_disable(event);
1812 perf_event_ctx_unlock(event, ctx);
1813}
dcfce4a0 1814EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1815
e5d1367f
SE
1816static void perf_set_shadow_time(struct perf_event *event,
1817 struct perf_event_context *ctx,
1818 u64 tstamp)
1819{
1820 /*
1821 * use the correct time source for the time snapshot
1822 *
1823 * We could get by without this by leveraging the
1824 * fact that to get to this function, the caller
1825 * has most likely already called update_context_time()
1826 * and update_cgrp_time_xx() and thus both timestamp
1827 * are identical (or very close). Given that tstamp is,
1828 * already adjusted for cgroup, we could say that:
1829 * tstamp - ctx->timestamp
1830 * is equivalent to
1831 * tstamp - cgrp->timestamp.
1832 *
1833 * Then, in perf_output_read(), the calculation would
1834 * work with no changes because:
1835 * - event is guaranteed scheduled in
1836 * - no scheduled out in between
1837 * - thus the timestamp would be the same
1838 *
1839 * But this is a bit hairy.
1840 *
1841 * So instead, we have an explicit cgroup call to remain
1842 * within the time time source all along. We believe it
1843 * is cleaner and simpler to understand.
1844 */
1845 if (is_cgroup_event(event))
1846 perf_cgroup_set_shadow_time(event, tstamp);
1847 else
1848 event->shadow_ctx_time = tstamp - ctx->timestamp;
1849}
1850
4fe757dd
PZ
1851#define MAX_INTERRUPTS (~0ULL)
1852
1853static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1854static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1855
235c7fc7 1856static int
9ffcfa6f 1857event_sched_in(struct perf_event *event,
235c7fc7 1858 struct perf_cpu_context *cpuctx,
6e37738a 1859 struct perf_event_context *ctx)
235c7fc7 1860{
4158755d 1861 u64 tstamp = perf_event_time(event);
44377277 1862 int ret = 0;
4158755d 1863
63342411
PZ
1864 lockdep_assert_held(&ctx->lock);
1865
cdd6c482 1866 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1867 return 0;
1868
cdd6c482 1869 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1870 event->oncpu = smp_processor_id();
4fe757dd
PZ
1871
1872 /*
1873 * Unthrottle events, since we scheduled we might have missed several
1874 * ticks already, also for a heavily scheduling task there is little
1875 * guarantee it'll get a tick in a timely manner.
1876 */
1877 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1878 perf_log_throttle(event, 1);
1879 event->hw.interrupts = 0;
1880 }
1881
235c7fc7
IM
1882 /*
1883 * The new state must be visible before we turn it on in the hardware:
1884 */
1885 smp_wmb();
1886
44377277
AS
1887 perf_pmu_disable(event->pmu);
1888
72f669c0
SL
1889 event->tstamp_running += tstamp - event->tstamp_stopped;
1890
1891 perf_set_shadow_time(event, ctx, tstamp);
1892
ec0d7729
AS
1893 perf_log_itrace_start(event);
1894
a4eaf7f1 1895 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1896 event->state = PERF_EVENT_STATE_INACTIVE;
1897 event->oncpu = -1;
44377277
AS
1898 ret = -EAGAIN;
1899 goto out;
235c7fc7
IM
1900 }
1901
cdd6c482 1902 if (!is_software_event(event))
3b6f9e5c 1903 cpuctx->active_oncpu++;
2fde4f94
MR
1904 if (!ctx->nr_active++)
1905 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1906 if (event->attr.freq && event->attr.sample_freq)
1907 ctx->nr_freq++;
235c7fc7 1908
cdd6c482 1909 if (event->attr.exclusive)
3b6f9e5c
PM
1910 cpuctx->exclusive = 1;
1911
fadfe7be
JO
1912 if (is_orphaned_child(event))
1913 schedule_orphans_remove(ctx);
1914
44377277
AS
1915out:
1916 perf_pmu_enable(event->pmu);
1917
1918 return ret;
235c7fc7
IM
1919}
1920
6751b71e 1921static int
cdd6c482 1922group_sched_in(struct perf_event *group_event,
6751b71e 1923 struct perf_cpu_context *cpuctx,
6e37738a 1924 struct perf_event_context *ctx)
6751b71e 1925{
6bde9b6c 1926 struct perf_event *event, *partial_group = NULL;
4a234593 1927 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1928 u64 now = ctx->time;
1929 bool simulate = false;
6751b71e 1930
cdd6c482 1931 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1932 return 0;
1933
ad5133b7 1934 pmu->start_txn(pmu);
6bde9b6c 1935
9ffcfa6f 1936 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1937 pmu->cancel_txn(pmu);
9e630205 1938 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1939 return -EAGAIN;
90151c35 1940 }
6751b71e
PM
1941
1942 /*
1943 * Schedule in siblings as one group (if any):
1944 */
cdd6c482 1945 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1946 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1947 partial_group = event;
6751b71e
PM
1948 goto group_error;
1949 }
1950 }
1951
9ffcfa6f 1952 if (!pmu->commit_txn(pmu))
6e85158c 1953 return 0;
9ffcfa6f 1954
6751b71e
PM
1955group_error:
1956 /*
1957 * Groups can be scheduled in as one unit only, so undo any
1958 * partial group before returning:
d7842da4
SE
1959 * The events up to the failed event are scheduled out normally,
1960 * tstamp_stopped will be updated.
1961 *
1962 * The failed events and the remaining siblings need to have
1963 * their timings updated as if they had gone thru event_sched_in()
1964 * and event_sched_out(). This is required to get consistent timings
1965 * across the group. This also takes care of the case where the group
1966 * could never be scheduled by ensuring tstamp_stopped is set to mark
1967 * the time the event was actually stopped, such that time delta
1968 * calculation in update_event_times() is correct.
6751b71e 1969 */
cdd6c482
IM
1970 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1971 if (event == partial_group)
d7842da4
SE
1972 simulate = true;
1973
1974 if (simulate) {
1975 event->tstamp_running += now - event->tstamp_stopped;
1976 event->tstamp_stopped = now;
1977 } else {
1978 event_sched_out(event, cpuctx, ctx);
1979 }
6751b71e 1980 }
9ffcfa6f 1981 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1982
ad5133b7 1983 pmu->cancel_txn(pmu);
90151c35 1984
9e630205
SE
1985 perf_cpu_hrtimer_restart(cpuctx);
1986
6751b71e
PM
1987 return -EAGAIN;
1988}
1989
3b6f9e5c 1990/*
cdd6c482 1991 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1992 */
cdd6c482 1993static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1994 struct perf_cpu_context *cpuctx,
1995 int can_add_hw)
1996{
1997 /*
cdd6c482 1998 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1999 */
d6f962b5 2000 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2001 return 1;
2002 /*
2003 * If an exclusive group is already on, no other hardware
cdd6c482 2004 * events can go on.
3b6f9e5c
PM
2005 */
2006 if (cpuctx->exclusive)
2007 return 0;
2008 /*
2009 * If this group is exclusive and there are already
cdd6c482 2010 * events on the CPU, it can't go on.
3b6f9e5c 2011 */
cdd6c482 2012 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2013 return 0;
2014 /*
2015 * Otherwise, try to add it if all previous groups were able
2016 * to go on.
2017 */
2018 return can_add_hw;
2019}
2020
cdd6c482
IM
2021static void add_event_to_ctx(struct perf_event *event,
2022 struct perf_event_context *ctx)
53cfbf59 2023{
4158755d
SE
2024 u64 tstamp = perf_event_time(event);
2025
cdd6c482 2026 list_add_event(event, ctx);
8a49542c 2027 perf_group_attach(event);
4158755d
SE
2028 event->tstamp_enabled = tstamp;
2029 event->tstamp_running = tstamp;
2030 event->tstamp_stopped = tstamp;
53cfbf59
PM
2031}
2032
2c29ef0f
PZ
2033static void task_ctx_sched_out(struct perf_event_context *ctx);
2034static void
2035ctx_sched_in(struct perf_event_context *ctx,
2036 struct perf_cpu_context *cpuctx,
2037 enum event_type_t event_type,
2038 struct task_struct *task);
fe4b04fa 2039
dce5855b
PZ
2040static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2041 struct perf_event_context *ctx,
2042 struct task_struct *task)
2043{
2044 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2045 if (ctx)
2046 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2047 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2048 if (ctx)
2049 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2050}
2051
0793a61d 2052/*
cdd6c482 2053 * Cross CPU call to install and enable a performance event
682076ae
PZ
2054 *
2055 * Must be called with ctx->mutex held
0793a61d 2056 */
fe4b04fa 2057static int __perf_install_in_context(void *info)
0793a61d 2058{
cdd6c482
IM
2059 struct perf_event *event = info;
2060 struct perf_event_context *ctx = event->ctx;
108b02cf 2061 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2062 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2063 struct task_struct *task = current;
2064
b58f6b0d 2065 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2066 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2067
2068 /*
2c29ef0f 2069 * If there was an active task_ctx schedule it out.
0793a61d 2070 */
b58f6b0d 2071 if (task_ctx)
2c29ef0f 2072 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2073
2074 /*
2075 * If the context we're installing events in is not the
2076 * active task_ctx, flip them.
2077 */
2078 if (ctx->task && task_ctx != ctx) {
2079 if (task_ctx)
2080 raw_spin_unlock(&task_ctx->lock);
2081 raw_spin_lock(&ctx->lock);
2082 task_ctx = ctx;
2083 }
2084
2085 if (task_ctx) {
2086 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2087 task = task_ctx->task;
2088 }
b58f6b0d 2089
2c29ef0f 2090 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2091
4af4998b 2092 update_context_time(ctx);
e5d1367f
SE
2093 /*
2094 * update cgrp time only if current cgrp
2095 * matches event->cgrp. Must be done before
2096 * calling add_event_to_ctx()
2097 */
2098 update_cgrp_time_from_event(event);
0793a61d 2099
cdd6c482 2100 add_event_to_ctx(event, ctx);
0793a61d 2101
d859e29f 2102 /*
2c29ef0f 2103 * Schedule everything back in
d859e29f 2104 */
dce5855b 2105 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2106
2107 perf_pmu_enable(cpuctx->ctx.pmu);
2108 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2109
2110 return 0;
0793a61d
TG
2111}
2112
2113/*
cdd6c482 2114 * Attach a performance event to a context
0793a61d 2115 *
cdd6c482
IM
2116 * First we add the event to the list with the hardware enable bit
2117 * in event->hw_config cleared.
0793a61d 2118 *
cdd6c482 2119 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2120 * call to enable it in the task context. The task might have been
2121 * scheduled away, but we check this in the smp call again.
2122 */
2123static void
cdd6c482
IM
2124perf_install_in_context(struct perf_event_context *ctx,
2125 struct perf_event *event,
0793a61d
TG
2126 int cpu)
2127{
2128 struct task_struct *task = ctx->task;
2129
fe4b04fa
PZ
2130 lockdep_assert_held(&ctx->mutex);
2131
c3f00c70 2132 event->ctx = ctx;
0cda4c02
YZ
2133 if (event->cpu != -1)
2134 event->cpu = cpu;
c3f00c70 2135
0793a61d
TG
2136 if (!task) {
2137 /*
cdd6c482 2138 * Per cpu events are installed via an smp call and
af901ca1 2139 * the install is always successful.
0793a61d 2140 */
fe4b04fa 2141 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2142 return;
2143 }
2144
0793a61d 2145retry:
fe4b04fa
PZ
2146 if (!task_function_call(task, __perf_install_in_context, event))
2147 return;
0793a61d 2148
e625cce1 2149 raw_spin_lock_irq(&ctx->lock);
0793a61d 2150 /*
fe4b04fa
PZ
2151 * If we failed to find a running task, but find the context active now
2152 * that we've acquired the ctx->lock, retry.
0793a61d 2153 */
fe4b04fa 2154 if (ctx->is_active) {
e625cce1 2155 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2156 /*
2157 * Reload the task pointer, it might have been changed by
2158 * a concurrent perf_event_context_sched_out().
2159 */
2160 task = ctx->task;
0793a61d
TG
2161 goto retry;
2162 }
2163
2164 /*
fe4b04fa
PZ
2165 * Since the task isn't running, its safe to add the event, us holding
2166 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2167 */
fe4b04fa 2168 add_event_to_ctx(event, ctx);
e625cce1 2169 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2170}
2171
fa289bec 2172/*
cdd6c482 2173 * Put a event into inactive state and update time fields.
fa289bec
PM
2174 * Enabling the leader of a group effectively enables all
2175 * the group members that aren't explicitly disabled, so we
2176 * have to update their ->tstamp_enabled also.
2177 * Note: this works for group members as well as group leaders
2178 * since the non-leader members' sibling_lists will be empty.
2179 */
1d9b482e 2180static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2181{
cdd6c482 2182 struct perf_event *sub;
4158755d 2183 u64 tstamp = perf_event_time(event);
fa289bec 2184
cdd6c482 2185 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2186 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2187 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2188 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2189 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2190 }
fa289bec
PM
2191}
2192
d859e29f 2193/*
cdd6c482 2194 * Cross CPU call to enable a performance event
d859e29f 2195 */
fe4b04fa 2196static int __perf_event_enable(void *info)
04289bb9 2197{
cdd6c482 2198 struct perf_event *event = info;
cdd6c482
IM
2199 struct perf_event_context *ctx = event->ctx;
2200 struct perf_event *leader = event->group_leader;
108b02cf 2201 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2202 int err;
04289bb9 2203
06f41796
JO
2204 /*
2205 * There's a time window between 'ctx->is_active' check
2206 * in perf_event_enable function and this place having:
2207 * - IRQs on
2208 * - ctx->lock unlocked
2209 *
2210 * where the task could be killed and 'ctx' deactivated
2211 * by perf_event_exit_task.
2212 */
2213 if (!ctx->is_active)
fe4b04fa 2214 return -EINVAL;
3cbed429 2215
e625cce1 2216 raw_spin_lock(&ctx->lock);
4af4998b 2217 update_context_time(ctx);
d859e29f 2218
cdd6c482 2219 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2220 goto unlock;
e5d1367f
SE
2221
2222 /*
2223 * set current task's cgroup time reference point
2224 */
3f7cce3c 2225 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2226
1d9b482e 2227 __perf_event_mark_enabled(event);
04289bb9 2228
e5d1367f
SE
2229 if (!event_filter_match(event)) {
2230 if (is_cgroup_event(event))
2231 perf_cgroup_defer_enabled(event);
f4c4176f 2232 goto unlock;
e5d1367f 2233 }
f4c4176f 2234
04289bb9 2235 /*
cdd6c482 2236 * If the event is in a group and isn't the group leader,
d859e29f 2237 * then don't put it on unless the group is on.
04289bb9 2238 */
cdd6c482 2239 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2240 goto unlock;
3b6f9e5c 2241
cdd6c482 2242 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2243 err = -EEXIST;
e758a33d 2244 } else {
cdd6c482 2245 if (event == leader)
6e37738a 2246 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2247 else
6e37738a 2248 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2249 }
d859e29f
PM
2250
2251 if (err) {
2252 /*
cdd6c482 2253 * If this event can't go on and it's part of a
d859e29f
PM
2254 * group, then the whole group has to come off.
2255 */
9e630205 2256 if (leader != event) {
d859e29f 2257 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2258 perf_cpu_hrtimer_restart(cpuctx);
2259 }
0d48696f 2260 if (leader->attr.pinned) {
53cfbf59 2261 update_group_times(leader);
cdd6c482 2262 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2263 }
d859e29f
PM
2264 }
2265
9ed6060d 2266unlock:
e625cce1 2267 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2268
2269 return 0;
d859e29f
PM
2270}
2271
2272/*
cdd6c482 2273 * Enable a event.
c93f7669 2274 *
cdd6c482
IM
2275 * If event->ctx is a cloned context, callers must make sure that
2276 * every task struct that event->ctx->task could possibly point to
c93f7669 2277 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2278 * perf_event_for_each_child or perf_event_for_each as described
2279 * for perf_event_disable.
d859e29f 2280 */
f63a8daa 2281static void _perf_event_enable(struct perf_event *event)
d859e29f 2282{
cdd6c482 2283 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2284 struct task_struct *task = ctx->task;
2285
2286 if (!task) {
2287 /*
cdd6c482 2288 * Enable the event on the cpu that it's on
d859e29f 2289 */
fe4b04fa 2290 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2291 return;
2292 }
2293
e625cce1 2294 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2295 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2296 goto out;
2297
2298 /*
cdd6c482
IM
2299 * If the event is in error state, clear that first.
2300 * That way, if we see the event in error state below, we
d859e29f
PM
2301 * know that it has gone back into error state, as distinct
2302 * from the task having been scheduled away before the
2303 * cross-call arrived.
2304 */
cdd6c482
IM
2305 if (event->state == PERF_EVENT_STATE_ERROR)
2306 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2307
9ed6060d 2308retry:
fe4b04fa 2309 if (!ctx->is_active) {
1d9b482e 2310 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2311 goto out;
2312 }
2313
e625cce1 2314 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2315
2316 if (!task_function_call(task, __perf_event_enable, event))
2317 return;
d859e29f 2318
e625cce1 2319 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2320
2321 /*
cdd6c482 2322 * If the context is active and the event is still off,
d859e29f
PM
2323 * we need to retry the cross-call.
2324 */
fe4b04fa
PZ
2325 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2326 /*
2327 * task could have been flipped by a concurrent
2328 * perf_event_context_sched_out()
2329 */
2330 task = ctx->task;
d859e29f 2331 goto retry;
fe4b04fa 2332 }
fa289bec 2333
9ed6060d 2334out:
e625cce1 2335 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2336}
f63a8daa
PZ
2337
2338/*
2339 * See perf_event_disable();
2340 */
2341void perf_event_enable(struct perf_event *event)
2342{
2343 struct perf_event_context *ctx;
2344
2345 ctx = perf_event_ctx_lock(event);
2346 _perf_event_enable(event);
2347 perf_event_ctx_unlock(event, ctx);
2348}
dcfce4a0 2349EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2350
f63a8daa 2351static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2352{
2023b359 2353 /*
cdd6c482 2354 * not supported on inherited events
2023b359 2355 */
2e939d1d 2356 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2357 return -EINVAL;
2358
cdd6c482 2359 atomic_add(refresh, &event->event_limit);
f63a8daa 2360 _perf_event_enable(event);
2023b359
PZ
2361
2362 return 0;
79f14641 2363}
f63a8daa
PZ
2364
2365/*
2366 * See perf_event_disable()
2367 */
2368int perf_event_refresh(struct perf_event *event, int refresh)
2369{
2370 struct perf_event_context *ctx;
2371 int ret;
2372
2373 ctx = perf_event_ctx_lock(event);
2374 ret = _perf_event_refresh(event, refresh);
2375 perf_event_ctx_unlock(event, ctx);
2376
2377 return ret;
2378}
26ca5c11 2379EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2380
5b0311e1
FW
2381static void ctx_sched_out(struct perf_event_context *ctx,
2382 struct perf_cpu_context *cpuctx,
2383 enum event_type_t event_type)
235c7fc7 2384{
cdd6c482 2385 struct perf_event *event;
db24d33e 2386 int is_active = ctx->is_active;
235c7fc7 2387
db24d33e 2388 ctx->is_active &= ~event_type;
cdd6c482 2389 if (likely(!ctx->nr_events))
facc4307
PZ
2390 return;
2391
4af4998b 2392 update_context_time(ctx);
e5d1367f 2393 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2394 if (!ctx->nr_active)
facc4307 2395 return;
5b0311e1 2396
075e0b00 2397 perf_pmu_disable(ctx->pmu);
db24d33e 2398 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2399 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2400 group_sched_out(event, cpuctx, ctx);
9ed6060d 2401 }
889ff015 2402
db24d33e 2403 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2404 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2405 group_sched_out(event, cpuctx, ctx);
9ed6060d 2406 }
1b9a644f 2407 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2408}
2409
564c2b21 2410/*
5a3126d4
PZ
2411 * Test whether two contexts are equivalent, i.e. whether they have both been
2412 * cloned from the same version of the same context.
2413 *
2414 * Equivalence is measured using a generation number in the context that is
2415 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2416 * and list_del_event().
564c2b21 2417 */
cdd6c482
IM
2418static int context_equiv(struct perf_event_context *ctx1,
2419 struct perf_event_context *ctx2)
564c2b21 2420{
211de6eb
PZ
2421 lockdep_assert_held(&ctx1->lock);
2422 lockdep_assert_held(&ctx2->lock);
2423
5a3126d4
PZ
2424 /* Pinning disables the swap optimization */
2425 if (ctx1->pin_count || ctx2->pin_count)
2426 return 0;
2427
2428 /* If ctx1 is the parent of ctx2 */
2429 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2430 return 1;
2431
2432 /* If ctx2 is the parent of ctx1 */
2433 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2434 return 1;
2435
2436 /*
2437 * If ctx1 and ctx2 have the same parent; we flatten the parent
2438 * hierarchy, see perf_event_init_context().
2439 */
2440 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2441 ctx1->parent_gen == ctx2->parent_gen)
2442 return 1;
2443
2444 /* Unmatched */
2445 return 0;
564c2b21
PM
2446}
2447
cdd6c482
IM
2448static void __perf_event_sync_stat(struct perf_event *event,
2449 struct perf_event *next_event)
bfbd3381
PZ
2450{
2451 u64 value;
2452
cdd6c482 2453 if (!event->attr.inherit_stat)
bfbd3381
PZ
2454 return;
2455
2456 /*
cdd6c482 2457 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2458 * because we're in the middle of a context switch and have IRQs
2459 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2460 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2461 * don't need to use it.
2462 */
cdd6c482
IM
2463 switch (event->state) {
2464 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2465 event->pmu->read(event);
2466 /* fall-through */
bfbd3381 2467
cdd6c482
IM
2468 case PERF_EVENT_STATE_INACTIVE:
2469 update_event_times(event);
bfbd3381
PZ
2470 break;
2471
2472 default:
2473 break;
2474 }
2475
2476 /*
cdd6c482 2477 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2478 * values when we flip the contexts.
2479 */
e7850595
PZ
2480 value = local64_read(&next_event->count);
2481 value = local64_xchg(&event->count, value);
2482 local64_set(&next_event->count, value);
bfbd3381 2483
cdd6c482
IM
2484 swap(event->total_time_enabled, next_event->total_time_enabled);
2485 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2486
bfbd3381 2487 /*
19d2e755 2488 * Since we swizzled the values, update the user visible data too.
bfbd3381 2489 */
cdd6c482
IM
2490 perf_event_update_userpage(event);
2491 perf_event_update_userpage(next_event);
bfbd3381
PZ
2492}
2493
cdd6c482
IM
2494static void perf_event_sync_stat(struct perf_event_context *ctx,
2495 struct perf_event_context *next_ctx)
bfbd3381 2496{
cdd6c482 2497 struct perf_event *event, *next_event;
bfbd3381
PZ
2498
2499 if (!ctx->nr_stat)
2500 return;
2501
02ffdbc8
PZ
2502 update_context_time(ctx);
2503
cdd6c482
IM
2504 event = list_first_entry(&ctx->event_list,
2505 struct perf_event, event_entry);
bfbd3381 2506
cdd6c482
IM
2507 next_event = list_first_entry(&next_ctx->event_list,
2508 struct perf_event, event_entry);
bfbd3381 2509
cdd6c482
IM
2510 while (&event->event_entry != &ctx->event_list &&
2511 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2512
cdd6c482 2513 __perf_event_sync_stat(event, next_event);
bfbd3381 2514
cdd6c482
IM
2515 event = list_next_entry(event, event_entry);
2516 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2517 }
2518}
2519
fe4b04fa
PZ
2520static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2521 struct task_struct *next)
0793a61d 2522{
8dc85d54 2523 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2524 struct perf_event_context *next_ctx;
5a3126d4 2525 struct perf_event_context *parent, *next_parent;
108b02cf 2526 struct perf_cpu_context *cpuctx;
c93f7669 2527 int do_switch = 1;
0793a61d 2528
108b02cf
PZ
2529 if (likely(!ctx))
2530 return;
10989fb2 2531
108b02cf
PZ
2532 cpuctx = __get_cpu_context(ctx);
2533 if (!cpuctx->task_ctx)
0793a61d
TG
2534 return;
2535
c93f7669 2536 rcu_read_lock();
8dc85d54 2537 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2538 if (!next_ctx)
2539 goto unlock;
2540
2541 parent = rcu_dereference(ctx->parent_ctx);
2542 next_parent = rcu_dereference(next_ctx->parent_ctx);
2543
2544 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2545 if (!parent && !next_parent)
5a3126d4
PZ
2546 goto unlock;
2547
2548 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2549 /*
2550 * Looks like the two contexts are clones, so we might be
2551 * able to optimize the context switch. We lock both
2552 * contexts and check that they are clones under the
2553 * lock (including re-checking that neither has been
2554 * uncloned in the meantime). It doesn't matter which
2555 * order we take the locks because no other cpu could
2556 * be trying to lock both of these tasks.
2557 */
e625cce1
TG
2558 raw_spin_lock(&ctx->lock);
2559 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2560 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2561 /*
2562 * XXX do we need a memory barrier of sorts
cdd6c482 2563 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2564 */
8dc85d54
PZ
2565 task->perf_event_ctxp[ctxn] = next_ctx;
2566 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2567 ctx->task = next;
2568 next_ctx->task = task;
5a158c3c
YZ
2569
2570 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2571
c93f7669 2572 do_switch = 0;
bfbd3381 2573
cdd6c482 2574 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2575 }
e625cce1
TG
2576 raw_spin_unlock(&next_ctx->lock);
2577 raw_spin_unlock(&ctx->lock);
564c2b21 2578 }
5a3126d4 2579unlock:
c93f7669 2580 rcu_read_unlock();
564c2b21 2581
c93f7669 2582 if (do_switch) {
facc4307 2583 raw_spin_lock(&ctx->lock);
5b0311e1 2584 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2585 cpuctx->task_ctx = NULL;
facc4307 2586 raw_spin_unlock(&ctx->lock);
c93f7669 2587 }
0793a61d
TG
2588}
2589
ba532500
YZ
2590void perf_sched_cb_dec(struct pmu *pmu)
2591{
2592 this_cpu_dec(perf_sched_cb_usages);
2593}
2594
2595void perf_sched_cb_inc(struct pmu *pmu)
2596{
2597 this_cpu_inc(perf_sched_cb_usages);
2598}
2599
2600/*
2601 * This function provides the context switch callback to the lower code
2602 * layer. It is invoked ONLY when the context switch callback is enabled.
2603 */
2604static void perf_pmu_sched_task(struct task_struct *prev,
2605 struct task_struct *next,
2606 bool sched_in)
2607{
2608 struct perf_cpu_context *cpuctx;
2609 struct pmu *pmu;
2610 unsigned long flags;
2611
2612 if (prev == next)
2613 return;
2614
2615 local_irq_save(flags);
2616
2617 rcu_read_lock();
2618
2619 list_for_each_entry_rcu(pmu, &pmus, entry) {
2620 if (pmu->sched_task) {
2621 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2622
2623 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2624
2625 perf_pmu_disable(pmu);
2626
2627 pmu->sched_task(cpuctx->task_ctx, sched_in);
2628
2629 perf_pmu_enable(pmu);
2630
2631 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2632 }
2633 }
2634
2635 rcu_read_unlock();
2636
2637 local_irq_restore(flags);
2638}
2639
8dc85d54
PZ
2640#define for_each_task_context_nr(ctxn) \
2641 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2642
2643/*
2644 * Called from scheduler to remove the events of the current task,
2645 * with interrupts disabled.
2646 *
2647 * We stop each event and update the event value in event->count.
2648 *
2649 * This does not protect us against NMI, but disable()
2650 * sets the disabled bit in the control field of event _before_
2651 * accessing the event control register. If a NMI hits, then it will
2652 * not restart the event.
2653 */
ab0cce56
JO
2654void __perf_event_task_sched_out(struct task_struct *task,
2655 struct task_struct *next)
8dc85d54
PZ
2656{
2657 int ctxn;
2658
ba532500
YZ
2659 if (__this_cpu_read(perf_sched_cb_usages))
2660 perf_pmu_sched_task(task, next, false);
2661
8dc85d54
PZ
2662 for_each_task_context_nr(ctxn)
2663 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2664
2665 /*
2666 * if cgroup events exist on this CPU, then we need
2667 * to check if we have to switch out PMU state.
2668 * cgroup event are system-wide mode only
2669 */
4a32fea9 2670 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2671 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2672}
2673
04dc2dbb 2674static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2675{
108b02cf 2676 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2677
a63eaf34
PM
2678 if (!cpuctx->task_ctx)
2679 return;
012b84da
IM
2680
2681 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2682 return;
2683
04dc2dbb 2684 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2685 cpuctx->task_ctx = NULL;
2686}
2687
5b0311e1
FW
2688/*
2689 * Called with IRQs disabled
2690 */
2691static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2692 enum event_type_t event_type)
2693{
2694 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2695}
2696
235c7fc7 2697static void
5b0311e1 2698ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2699 struct perf_cpu_context *cpuctx)
0793a61d 2700{
cdd6c482 2701 struct perf_event *event;
0793a61d 2702
889ff015
FW
2703 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2704 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2705 continue;
5632ab12 2706 if (!event_filter_match(event))
3b6f9e5c
PM
2707 continue;
2708
e5d1367f
SE
2709 /* may need to reset tstamp_enabled */
2710 if (is_cgroup_event(event))
2711 perf_cgroup_mark_enabled(event, ctx);
2712
8c9ed8e1 2713 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2714 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2715
2716 /*
2717 * If this pinned group hasn't been scheduled,
2718 * put it in error state.
2719 */
cdd6c482
IM
2720 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2721 update_group_times(event);
2722 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2723 }
3b6f9e5c 2724 }
5b0311e1
FW
2725}
2726
2727static void
2728ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2729 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2730{
2731 struct perf_event *event;
2732 int can_add_hw = 1;
3b6f9e5c 2733
889ff015
FW
2734 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2735 /* Ignore events in OFF or ERROR state */
2736 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2737 continue;
04289bb9
IM
2738 /*
2739 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2740 * of events:
04289bb9 2741 */
5632ab12 2742 if (!event_filter_match(event))
0793a61d
TG
2743 continue;
2744
e5d1367f
SE
2745 /* may need to reset tstamp_enabled */
2746 if (is_cgroup_event(event))
2747 perf_cgroup_mark_enabled(event, ctx);
2748
9ed6060d 2749 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2750 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2751 can_add_hw = 0;
9ed6060d 2752 }
0793a61d 2753 }
5b0311e1
FW
2754}
2755
2756static void
2757ctx_sched_in(struct perf_event_context *ctx,
2758 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2759 enum event_type_t event_type,
2760 struct task_struct *task)
5b0311e1 2761{
e5d1367f 2762 u64 now;
db24d33e 2763 int is_active = ctx->is_active;
e5d1367f 2764
db24d33e 2765 ctx->is_active |= event_type;
5b0311e1 2766 if (likely(!ctx->nr_events))
facc4307 2767 return;
5b0311e1 2768
e5d1367f
SE
2769 now = perf_clock();
2770 ctx->timestamp = now;
3f7cce3c 2771 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2772 /*
2773 * First go through the list and put on any pinned groups
2774 * in order to give them the best chance of going on.
2775 */
db24d33e 2776 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2777 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2778
2779 /* Then walk through the lower prio flexible groups */
db24d33e 2780 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2781 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2782}
2783
329c0e01 2784static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2785 enum event_type_t event_type,
2786 struct task_struct *task)
329c0e01
FW
2787{
2788 struct perf_event_context *ctx = &cpuctx->ctx;
2789
e5d1367f 2790 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2791}
2792
e5d1367f
SE
2793static void perf_event_context_sched_in(struct perf_event_context *ctx,
2794 struct task_struct *task)
235c7fc7 2795{
108b02cf 2796 struct perf_cpu_context *cpuctx;
235c7fc7 2797
108b02cf 2798 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2799 if (cpuctx->task_ctx == ctx)
2800 return;
2801
facc4307 2802 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2803 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2804 /*
2805 * We want to keep the following priority order:
2806 * cpu pinned (that don't need to move), task pinned,
2807 * cpu flexible, task flexible.
2808 */
2809 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2810
1d5f003f
GN
2811 if (ctx->nr_events)
2812 cpuctx->task_ctx = ctx;
9b33fa6b 2813
86b47c25
GN
2814 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2815
facc4307
PZ
2816 perf_pmu_enable(ctx->pmu);
2817 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2818}
2819
8dc85d54
PZ
2820/*
2821 * Called from scheduler to add the events of the current task
2822 * with interrupts disabled.
2823 *
2824 * We restore the event value and then enable it.
2825 *
2826 * This does not protect us against NMI, but enable()
2827 * sets the enabled bit in the control field of event _before_
2828 * accessing the event control register. If a NMI hits, then it will
2829 * keep the event running.
2830 */
ab0cce56
JO
2831void __perf_event_task_sched_in(struct task_struct *prev,
2832 struct task_struct *task)
8dc85d54
PZ
2833{
2834 struct perf_event_context *ctx;
2835 int ctxn;
2836
2837 for_each_task_context_nr(ctxn) {
2838 ctx = task->perf_event_ctxp[ctxn];
2839 if (likely(!ctx))
2840 continue;
2841
e5d1367f 2842 perf_event_context_sched_in(ctx, task);
8dc85d54 2843 }
e5d1367f
SE
2844 /*
2845 * if cgroup events exist on this CPU, then we need
2846 * to check if we have to switch in PMU state.
2847 * cgroup event are system-wide mode only
2848 */
4a32fea9 2849 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2850 perf_cgroup_sched_in(prev, task);
d010b332 2851
ba532500
YZ
2852 if (__this_cpu_read(perf_sched_cb_usages))
2853 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2854}
2855
abd50713
PZ
2856static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2857{
2858 u64 frequency = event->attr.sample_freq;
2859 u64 sec = NSEC_PER_SEC;
2860 u64 divisor, dividend;
2861
2862 int count_fls, nsec_fls, frequency_fls, sec_fls;
2863
2864 count_fls = fls64(count);
2865 nsec_fls = fls64(nsec);
2866 frequency_fls = fls64(frequency);
2867 sec_fls = 30;
2868
2869 /*
2870 * We got @count in @nsec, with a target of sample_freq HZ
2871 * the target period becomes:
2872 *
2873 * @count * 10^9
2874 * period = -------------------
2875 * @nsec * sample_freq
2876 *
2877 */
2878
2879 /*
2880 * Reduce accuracy by one bit such that @a and @b converge
2881 * to a similar magnitude.
2882 */
fe4b04fa 2883#define REDUCE_FLS(a, b) \
abd50713
PZ
2884do { \
2885 if (a##_fls > b##_fls) { \
2886 a >>= 1; \
2887 a##_fls--; \
2888 } else { \
2889 b >>= 1; \
2890 b##_fls--; \
2891 } \
2892} while (0)
2893
2894 /*
2895 * Reduce accuracy until either term fits in a u64, then proceed with
2896 * the other, so that finally we can do a u64/u64 division.
2897 */
2898 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2899 REDUCE_FLS(nsec, frequency);
2900 REDUCE_FLS(sec, count);
2901 }
2902
2903 if (count_fls + sec_fls > 64) {
2904 divisor = nsec * frequency;
2905
2906 while (count_fls + sec_fls > 64) {
2907 REDUCE_FLS(count, sec);
2908 divisor >>= 1;
2909 }
2910
2911 dividend = count * sec;
2912 } else {
2913 dividend = count * sec;
2914
2915 while (nsec_fls + frequency_fls > 64) {
2916 REDUCE_FLS(nsec, frequency);
2917 dividend >>= 1;
2918 }
2919
2920 divisor = nsec * frequency;
2921 }
2922
f6ab91ad
PZ
2923 if (!divisor)
2924 return dividend;
2925
abd50713
PZ
2926 return div64_u64(dividend, divisor);
2927}
2928
e050e3f0
SE
2929static DEFINE_PER_CPU(int, perf_throttled_count);
2930static DEFINE_PER_CPU(u64, perf_throttled_seq);
2931
f39d47ff 2932static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2933{
cdd6c482 2934 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2935 s64 period, sample_period;
bd2b5b12
PZ
2936 s64 delta;
2937
abd50713 2938 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2939
2940 delta = (s64)(period - hwc->sample_period);
2941 delta = (delta + 7) / 8; /* low pass filter */
2942
2943 sample_period = hwc->sample_period + delta;
2944
2945 if (!sample_period)
2946 sample_period = 1;
2947
bd2b5b12 2948 hwc->sample_period = sample_period;
abd50713 2949
e7850595 2950 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2951 if (disable)
2952 event->pmu->stop(event, PERF_EF_UPDATE);
2953
e7850595 2954 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2955
2956 if (disable)
2957 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2958 }
bd2b5b12
PZ
2959}
2960
e050e3f0
SE
2961/*
2962 * combine freq adjustment with unthrottling to avoid two passes over the
2963 * events. At the same time, make sure, having freq events does not change
2964 * the rate of unthrottling as that would introduce bias.
2965 */
2966static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2967 int needs_unthr)
60db5e09 2968{
cdd6c482
IM
2969 struct perf_event *event;
2970 struct hw_perf_event *hwc;
e050e3f0 2971 u64 now, period = TICK_NSEC;
abd50713 2972 s64 delta;
60db5e09 2973
e050e3f0
SE
2974 /*
2975 * only need to iterate over all events iff:
2976 * - context have events in frequency mode (needs freq adjust)
2977 * - there are events to unthrottle on this cpu
2978 */
2979 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2980 return;
2981
e050e3f0 2982 raw_spin_lock(&ctx->lock);
f39d47ff 2983 perf_pmu_disable(ctx->pmu);
e050e3f0 2984
03541f8b 2985 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2986 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2987 continue;
2988
5632ab12 2989 if (!event_filter_match(event))
5d27c23d
PZ
2990 continue;
2991
44377277
AS
2992 perf_pmu_disable(event->pmu);
2993
cdd6c482 2994 hwc = &event->hw;
6a24ed6c 2995
ae23bff1 2996 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2997 hwc->interrupts = 0;
cdd6c482 2998 perf_log_throttle(event, 1);
a4eaf7f1 2999 event->pmu->start(event, 0);
a78ac325
PZ
3000 }
3001
cdd6c482 3002 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3003 goto next;
60db5e09 3004
e050e3f0
SE
3005 /*
3006 * stop the event and update event->count
3007 */
3008 event->pmu->stop(event, PERF_EF_UPDATE);
3009
e7850595 3010 now = local64_read(&event->count);
abd50713
PZ
3011 delta = now - hwc->freq_count_stamp;
3012 hwc->freq_count_stamp = now;
60db5e09 3013
e050e3f0
SE
3014 /*
3015 * restart the event
3016 * reload only if value has changed
f39d47ff
SE
3017 * we have stopped the event so tell that
3018 * to perf_adjust_period() to avoid stopping it
3019 * twice.
e050e3f0 3020 */
abd50713 3021 if (delta > 0)
f39d47ff 3022 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3023
3024 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3025 next:
3026 perf_pmu_enable(event->pmu);
60db5e09 3027 }
e050e3f0 3028
f39d47ff 3029 perf_pmu_enable(ctx->pmu);
e050e3f0 3030 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3031}
3032
235c7fc7 3033/*
cdd6c482 3034 * Round-robin a context's events:
235c7fc7 3035 */
cdd6c482 3036static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3037{
dddd3379
TG
3038 /*
3039 * Rotate the first entry last of non-pinned groups. Rotation might be
3040 * disabled by the inheritance code.
3041 */
3042 if (!ctx->rotate_disable)
3043 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3044}
3045
9e630205 3046static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3047{
8dc85d54 3048 struct perf_event_context *ctx = NULL;
2fde4f94 3049 int rotate = 0;
7fc23a53 3050
b5ab4cd5 3051 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3052 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3053 rotate = 1;
3054 }
235c7fc7 3055
8dc85d54 3056 ctx = cpuctx->task_ctx;
b5ab4cd5 3057 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3058 if (ctx->nr_events != ctx->nr_active)
3059 rotate = 1;
3060 }
9717e6cd 3061
e050e3f0 3062 if (!rotate)
0f5a2601
PZ
3063 goto done;
3064
facc4307 3065 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3066 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3067
e050e3f0
SE
3068 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3069 if (ctx)
3070 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3071
e050e3f0
SE
3072 rotate_ctx(&cpuctx->ctx);
3073 if (ctx)
3074 rotate_ctx(ctx);
235c7fc7 3075
e050e3f0 3076 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3077
0f5a2601
PZ
3078 perf_pmu_enable(cpuctx->ctx.pmu);
3079 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3080done:
9e630205
SE
3081
3082 return rotate;
e9d2b064
PZ
3083}
3084
026249ef
FW
3085#ifdef CONFIG_NO_HZ_FULL
3086bool perf_event_can_stop_tick(void)
3087{
948b26b6 3088 if (atomic_read(&nr_freq_events) ||
d84153d6 3089 __this_cpu_read(perf_throttled_count))
026249ef 3090 return false;
d84153d6
FW
3091 else
3092 return true;
026249ef
FW
3093}
3094#endif
3095
e9d2b064
PZ
3096void perf_event_task_tick(void)
3097{
2fde4f94
MR
3098 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3099 struct perf_event_context *ctx, *tmp;
e050e3f0 3100 int throttled;
b5ab4cd5 3101
e9d2b064
PZ
3102 WARN_ON(!irqs_disabled());
3103
e050e3f0
SE
3104 __this_cpu_inc(perf_throttled_seq);
3105 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3106
2fde4f94 3107 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3108 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3109}
3110
889ff015
FW
3111static int event_enable_on_exec(struct perf_event *event,
3112 struct perf_event_context *ctx)
3113{
3114 if (!event->attr.enable_on_exec)
3115 return 0;
3116
3117 event->attr.enable_on_exec = 0;
3118 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3119 return 0;
3120
1d9b482e 3121 __perf_event_mark_enabled(event);
889ff015
FW
3122
3123 return 1;
3124}
3125
57e7986e 3126/*
cdd6c482 3127 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3128 * This expects task == current.
3129 */
8dc85d54 3130static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3131{
211de6eb 3132 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3133 struct perf_event *event;
57e7986e
PM
3134 unsigned long flags;
3135 int enabled = 0;
889ff015 3136 int ret;
57e7986e
PM
3137
3138 local_irq_save(flags);
cdd6c482 3139 if (!ctx || !ctx->nr_events)
57e7986e
PM
3140 goto out;
3141
e566b76e
SE
3142 /*
3143 * We must ctxsw out cgroup events to avoid conflict
3144 * when invoking perf_task_event_sched_in() later on
3145 * in this function. Otherwise we end up trying to
3146 * ctxswin cgroup events which are already scheduled
3147 * in.
3148 */
a8d757ef 3149 perf_cgroup_sched_out(current, NULL);
57e7986e 3150
e625cce1 3151 raw_spin_lock(&ctx->lock);
04dc2dbb 3152 task_ctx_sched_out(ctx);
57e7986e 3153
b79387ef 3154 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3155 ret = event_enable_on_exec(event, ctx);
3156 if (ret)
3157 enabled = 1;
57e7986e
PM
3158 }
3159
3160 /*
cdd6c482 3161 * Unclone this context if we enabled any event.
57e7986e 3162 */
71a851b4 3163 if (enabled)
211de6eb 3164 clone_ctx = unclone_ctx(ctx);
57e7986e 3165
e625cce1 3166 raw_spin_unlock(&ctx->lock);
57e7986e 3167
e566b76e
SE
3168 /*
3169 * Also calls ctxswin for cgroup events, if any:
3170 */
e5d1367f 3171 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3172out:
57e7986e 3173 local_irq_restore(flags);
211de6eb
PZ
3174
3175 if (clone_ctx)
3176 put_ctx(clone_ctx);
57e7986e
PM
3177}
3178
e041e328
PZ
3179void perf_event_exec(void)
3180{
3181 struct perf_event_context *ctx;
3182 int ctxn;
3183
3184 rcu_read_lock();
3185 for_each_task_context_nr(ctxn) {
3186 ctx = current->perf_event_ctxp[ctxn];
3187 if (!ctx)
3188 continue;
3189
3190 perf_event_enable_on_exec(ctx);
3191 }
3192 rcu_read_unlock();
3193}
3194
0793a61d 3195/*
cdd6c482 3196 * Cross CPU call to read the hardware event
0793a61d 3197 */
cdd6c482 3198static void __perf_event_read(void *info)
0793a61d 3199{
cdd6c482
IM
3200 struct perf_event *event = info;
3201 struct perf_event_context *ctx = event->ctx;
108b02cf 3202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3203
e1ac3614
PM
3204 /*
3205 * If this is a task context, we need to check whether it is
3206 * the current task context of this cpu. If not it has been
3207 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3208 * event->count would have been updated to a recent sample
3209 * when the event was scheduled out.
e1ac3614
PM
3210 */
3211 if (ctx->task && cpuctx->task_ctx != ctx)
3212 return;
3213
e625cce1 3214 raw_spin_lock(&ctx->lock);
e5d1367f 3215 if (ctx->is_active) {
542e72fc 3216 update_context_time(ctx);
e5d1367f
SE
3217 update_cgrp_time_from_event(event);
3218 }
cdd6c482 3219 update_event_times(event);
542e72fc
PZ
3220 if (event->state == PERF_EVENT_STATE_ACTIVE)
3221 event->pmu->read(event);
e625cce1 3222 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3223}
3224
b5e58793
PZ
3225static inline u64 perf_event_count(struct perf_event *event)
3226{
eacd3ecc
MF
3227 if (event->pmu->count)
3228 return event->pmu->count(event);
3229
3230 return __perf_event_count(event);
b5e58793
PZ
3231}
3232
cdd6c482 3233static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3234{
3235 /*
cdd6c482
IM
3236 * If event is enabled and currently active on a CPU, update the
3237 * value in the event structure:
0793a61d 3238 */
cdd6c482
IM
3239 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3240 smp_call_function_single(event->oncpu,
3241 __perf_event_read, event, 1);
3242 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3243 struct perf_event_context *ctx = event->ctx;
3244 unsigned long flags;
3245
e625cce1 3246 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3247 /*
3248 * may read while context is not active
3249 * (e.g., thread is blocked), in that case
3250 * we cannot update context time
3251 */
e5d1367f 3252 if (ctx->is_active) {
c530ccd9 3253 update_context_time(ctx);
e5d1367f
SE
3254 update_cgrp_time_from_event(event);
3255 }
cdd6c482 3256 update_event_times(event);
e625cce1 3257 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3258 }
3259
b5e58793 3260 return perf_event_count(event);
0793a61d
TG
3261}
3262
a63eaf34 3263/*
cdd6c482 3264 * Initialize the perf_event context in a task_struct:
a63eaf34 3265 */
eb184479 3266static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3267{
e625cce1 3268 raw_spin_lock_init(&ctx->lock);
a63eaf34 3269 mutex_init(&ctx->mutex);
2fde4f94 3270 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3271 INIT_LIST_HEAD(&ctx->pinned_groups);
3272 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3273 INIT_LIST_HEAD(&ctx->event_list);
3274 atomic_set(&ctx->refcount, 1);
fadfe7be 3275 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3276}
3277
3278static struct perf_event_context *
3279alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3280{
3281 struct perf_event_context *ctx;
3282
3283 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3284 if (!ctx)
3285 return NULL;
3286
3287 __perf_event_init_context(ctx);
3288 if (task) {
3289 ctx->task = task;
3290 get_task_struct(task);
0793a61d 3291 }
eb184479
PZ
3292 ctx->pmu = pmu;
3293
3294 return ctx;
a63eaf34
PM
3295}
3296
2ebd4ffb
MH
3297static struct task_struct *
3298find_lively_task_by_vpid(pid_t vpid)
3299{
3300 struct task_struct *task;
3301 int err;
0793a61d
TG
3302
3303 rcu_read_lock();
2ebd4ffb 3304 if (!vpid)
0793a61d
TG
3305 task = current;
3306 else
2ebd4ffb 3307 task = find_task_by_vpid(vpid);
0793a61d
TG
3308 if (task)
3309 get_task_struct(task);
3310 rcu_read_unlock();
3311
3312 if (!task)
3313 return ERR_PTR(-ESRCH);
3314
0793a61d 3315 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3316 err = -EACCES;
3317 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3318 goto errout;
3319
2ebd4ffb
MH
3320 return task;
3321errout:
3322 put_task_struct(task);
3323 return ERR_PTR(err);
3324
3325}
3326
fe4b04fa
PZ
3327/*
3328 * Returns a matching context with refcount and pincount.
3329 */
108b02cf 3330static struct perf_event_context *
4af57ef2
YZ
3331find_get_context(struct pmu *pmu, struct task_struct *task,
3332 struct perf_event *event)
0793a61d 3333{
211de6eb 3334 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3335 struct perf_cpu_context *cpuctx;
4af57ef2 3336 void *task_ctx_data = NULL;
25346b93 3337 unsigned long flags;
8dc85d54 3338 int ctxn, err;
4af57ef2 3339 int cpu = event->cpu;
0793a61d 3340
22a4ec72 3341 if (!task) {
cdd6c482 3342 /* Must be root to operate on a CPU event: */
0764771d 3343 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3344 return ERR_PTR(-EACCES);
3345
0793a61d 3346 /*
cdd6c482 3347 * We could be clever and allow to attach a event to an
0793a61d
TG
3348 * offline CPU and activate it when the CPU comes up, but
3349 * that's for later.
3350 */
f6325e30 3351 if (!cpu_online(cpu))
0793a61d
TG
3352 return ERR_PTR(-ENODEV);
3353
108b02cf 3354 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3355 ctx = &cpuctx->ctx;
c93f7669 3356 get_ctx(ctx);
fe4b04fa 3357 ++ctx->pin_count;
0793a61d 3358
0793a61d
TG
3359 return ctx;
3360 }
3361
8dc85d54
PZ
3362 err = -EINVAL;
3363 ctxn = pmu->task_ctx_nr;
3364 if (ctxn < 0)
3365 goto errout;
3366
4af57ef2
YZ
3367 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3368 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3369 if (!task_ctx_data) {
3370 err = -ENOMEM;
3371 goto errout;
3372 }
3373 }
3374
9ed6060d 3375retry:
8dc85d54 3376 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3377 if (ctx) {
211de6eb 3378 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3379 ++ctx->pin_count;
4af57ef2
YZ
3380
3381 if (task_ctx_data && !ctx->task_ctx_data) {
3382 ctx->task_ctx_data = task_ctx_data;
3383 task_ctx_data = NULL;
3384 }
e625cce1 3385 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3386
3387 if (clone_ctx)
3388 put_ctx(clone_ctx);
9137fb28 3389 } else {
eb184479 3390 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3391 err = -ENOMEM;
3392 if (!ctx)
3393 goto errout;
eb184479 3394
4af57ef2
YZ
3395 if (task_ctx_data) {
3396 ctx->task_ctx_data = task_ctx_data;
3397 task_ctx_data = NULL;
3398 }
3399
dbe08d82
ON
3400 err = 0;
3401 mutex_lock(&task->perf_event_mutex);
3402 /*
3403 * If it has already passed perf_event_exit_task().
3404 * we must see PF_EXITING, it takes this mutex too.
3405 */
3406 if (task->flags & PF_EXITING)
3407 err = -ESRCH;
3408 else if (task->perf_event_ctxp[ctxn])
3409 err = -EAGAIN;
fe4b04fa 3410 else {
9137fb28 3411 get_ctx(ctx);
fe4b04fa 3412 ++ctx->pin_count;
dbe08d82 3413 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3414 }
dbe08d82
ON
3415 mutex_unlock(&task->perf_event_mutex);
3416
3417 if (unlikely(err)) {
9137fb28 3418 put_ctx(ctx);
dbe08d82
ON
3419
3420 if (err == -EAGAIN)
3421 goto retry;
3422 goto errout;
a63eaf34
PM
3423 }
3424 }
3425
4af57ef2 3426 kfree(task_ctx_data);
0793a61d 3427 return ctx;
c93f7669 3428
9ed6060d 3429errout:
4af57ef2 3430 kfree(task_ctx_data);
c93f7669 3431 return ERR_PTR(err);
0793a61d
TG
3432}
3433
6fb2915d 3434static void perf_event_free_filter(struct perf_event *event);
2541517c 3435static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3436
cdd6c482 3437static void free_event_rcu(struct rcu_head *head)
592903cd 3438{
cdd6c482 3439 struct perf_event *event;
592903cd 3440
cdd6c482
IM
3441 event = container_of(head, struct perf_event, rcu_head);
3442 if (event->ns)
3443 put_pid_ns(event->ns);
6fb2915d 3444 perf_event_free_filter(event);
cdd6c482 3445 kfree(event);
592903cd
PZ
3446}
3447
b69cf536
PZ
3448static void ring_buffer_attach(struct perf_event *event,
3449 struct ring_buffer *rb);
925d519a 3450
4beb31f3 3451static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3452{
4beb31f3
FW
3453 if (event->parent)
3454 return;
3455
4beb31f3
FW
3456 if (is_cgroup_event(event))
3457 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3458}
925d519a 3459
4beb31f3
FW
3460static void unaccount_event(struct perf_event *event)
3461{
3462 if (event->parent)
3463 return;
3464
3465 if (event->attach_state & PERF_ATTACH_TASK)
3466 static_key_slow_dec_deferred(&perf_sched_events);
3467 if (event->attr.mmap || event->attr.mmap_data)
3468 atomic_dec(&nr_mmap_events);
3469 if (event->attr.comm)
3470 atomic_dec(&nr_comm_events);
3471 if (event->attr.task)
3472 atomic_dec(&nr_task_events);
948b26b6
FW
3473 if (event->attr.freq)
3474 atomic_dec(&nr_freq_events);
4beb31f3
FW
3475 if (is_cgroup_event(event))
3476 static_key_slow_dec_deferred(&perf_sched_events);
3477 if (has_branch_stack(event))
3478 static_key_slow_dec_deferred(&perf_sched_events);
3479
3480 unaccount_event_cpu(event, event->cpu);
3481}
925d519a 3482
bed5b25a
AS
3483/*
3484 * The following implement mutual exclusion of events on "exclusive" pmus
3485 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3486 * at a time, so we disallow creating events that might conflict, namely:
3487 *
3488 * 1) cpu-wide events in the presence of per-task events,
3489 * 2) per-task events in the presence of cpu-wide events,
3490 * 3) two matching events on the same context.
3491 *
3492 * The former two cases are handled in the allocation path (perf_event_alloc(),
3493 * __free_event()), the latter -- before the first perf_install_in_context().
3494 */
3495static int exclusive_event_init(struct perf_event *event)
3496{
3497 struct pmu *pmu = event->pmu;
3498
3499 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3500 return 0;
3501
3502 /*
3503 * Prevent co-existence of per-task and cpu-wide events on the
3504 * same exclusive pmu.
3505 *
3506 * Negative pmu::exclusive_cnt means there are cpu-wide
3507 * events on this "exclusive" pmu, positive means there are
3508 * per-task events.
3509 *
3510 * Since this is called in perf_event_alloc() path, event::ctx
3511 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3512 * to mean "per-task event", because unlike other attach states it
3513 * never gets cleared.
3514 */
3515 if (event->attach_state & PERF_ATTACH_TASK) {
3516 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3517 return -EBUSY;
3518 } else {
3519 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3520 return -EBUSY;
3521 }
3522
3523 return 0;
3524}
3525
3526static void exclusive_event_destroy(struct perf_event *event)
3527{
3528 struct pmu *pmu = event->pmu;
3529
3530 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3531 return;
3532
3533 /* see comment in exclusive_event_init() */
3534 if (event->attach_state & PERF_ATTACH_TASK)
3535 atomic_dec(&pmu->exclusive_cnt);
3536 else
3537 atomic_inc(&pmu->exclusive_cnt);
3538}
3539
3540static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3541{
3542 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3543 (e1->cpu == e2->cpu ||
3544 e1->cpu == -1 ||
3545 e2->cpu == -1))
3546 return true;
3547 return false;
3548}
3549
3550/* Called under the same ctx::mutex as perf_install_in_context() */
3551static bool exclusive_event_installable(struct perf_event *event,
3552 struct perf_event_context *ctx)
3553{
3554 struct perf_event *iter_event;
3555 struct pmu *pmu = event->pmu;
3556
3557 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3558 return true;
3559
3560 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3561 if (exclusive_event_match(iter_event, event))
3562 return false;
3563 }
3564
3565 return true;
3566}
3567
766d6c07
FW
3568static void __free_event(struct perf_event *event)
3569{
cdd6c482 3570 if (!event->parent) {
927c7a9e
FW
3571 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3572 put_callchain_buffers();
f344011c 3573 }
9ee318a7 3574
dead9f29
AS
3575 perf_event_free_bpf_prog(event);
3576
766d6c07
FW
3577 if (event->destroy)
3578 event->destroy(event);
3579
3580 if (event->ctx)
3581 put_ctx(event->ctx);
3582
bed5b25a
AS
3583 if (event->pmu) {
3584 exclusive_event_destroy(event);
c464c76e 3585 module_put(event->pmu->module);
bed5b25a 3586 }
c464c76e 3587
766d6c07
FW
3588 call_rcu(&event->rcu_head, free_event_rcu);
3589}
683ede43
PZ
3590
3591static void _free_event(struct perf_event *event)
f1600952 3592{
e360adbe 3593 irq_work_sync(&event->pending);
925d519a 3594
4beb31f3 3595 unaccount_event(event);
9ee318a7 3596
76369139 3597 if (event->rb) {
9bb5d40c
PZ
3598 /*
3599 * Can happen when we close an event with re-directed output.
3600 *
3601 * Since we have a 0 refcount, perf_mmap_close() will skip
3602 * over us; possibly making our ring_buffer_put() the last.
3603 */
3604 mutex_lock(&event->mmap_mutex);
b69cf536 3605 ring_buffer_attach(event, NULL);
9bb5d40c 3606 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3607 }
3608
e5d1367f
SE
3609 if (is_cgroup_event(event))
3610 perf_detach_cgroup(event);
3611
766d6c07 3612 __free_event(event);
f1600952
PZ
3613}
3614
683ede43
PZ
3615/*
3616 * Used to free events which have a known refcount of 1, such as in error paths
3617 * where the event isn't exposed yet and inherited events.
3618 */
3619static void free_event(struct perf_event *event)
0793a61d 3620{
683ede43
PZ
3621 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3622 "unexpected event refcount: %ld; ptr=%p\n",
3623 atomic_long_read(&event->refcount), event)) {
3624 /* leak to avoid use-after-free */
3625 return;
3626 }
0793a61d 3627
683ede43 3628 _free_event(event);
0793a61d
TG
3629}
3630
a66a3052 3631/*
f8697762 3632 * Remove user event from the owner task.
a66a3052 3633 */
f8697762 3634static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3635{
8882135b 3636 struct task_struct *owner;
fb0459d7 3637
8882135b
PZ
3638 rcu_read_lock();
3639 owner = ACCESS_ONCE(event->owner);
3640 /*
3641 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3642 * !owner it means the list deletion is complete and we can indeed
3643 * free this event, otherwise we need to serialize on
3644 * owner->perf_event_mutex.
3645 */
3646 smp_read_barrier_depends();
3647 if (owner) {
3648 /*
3649 * Since delayed_put_task_struct() also drops the last
3650 * task reference we can safely take a new reference
3651 * while holding the rcu_read_lock().
3652 */
3653 get_task_struct(owner);
3654 }
3655 rcu_read_unlock();
3656
3657 if (owner) {
f63a8daa
PZ
3658 /*
3659 * If we're here through perf_event_exit_task() we're already
3660 * holding ctx->mutex which would be an inversion wrt. the
3661 * normal lock order.
3662 *
3663 * However we can safely take this lock because its the child
3664 * ctx->mutex.
3665 */
3666 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3667
8882135b
PZ
3668 /*
3669 * We have to re-check the event->owner field, if it is cleared
3670 * we raced with perf_event_exit_task(), acquiring the mutex
3671 * ensured they're done, and we can proceed with freeing the
3672 * event.
3673 */
3674 if (event->owner)
3675 list_del_init(&event->owner_entry);
3676 mutex_unlock(&owner->perf_event_mutex);
3677 put_task_struct(owner);
3678 }
f8697762
JO
3679}
3680
f8697762
JO
3681static void put_event(struct perf_event *event)
3682{
a83fe28e 3683 struct perf_event_context *ctx;
f8697762
JO
3684
3685 if (!atomic_long_dec_and_test(&event->refcount))
3686 return;
3687
3688 if (!is_kernel_event(event))
3689 perf_remove_from_owner(event);
8882135b 3690
683ede43
PZ
3691 /*
3692 * There are two ways this annotation is useful:
3693 *
3694 * 1) there is a lock recursion from perf_event_exit_task
3695 * see the comment there.
3696 *
3697 * 2) there is a lock-inversion with mmap_sem through
3698 * perf_event_read_group(), which takes faults while
3699 * holding ctx->mutex, however this is called after
3700 * the last filedesc died, so there is no possibility
3701 * to trigger the AB-BA case.
3702 */
a83fe28e
PZ
3703 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3704 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3705 perf_remove_from_context(event, true);
d415a7f1 3706 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3707
3708 _free_event(event);
a6fa941d
AV
3709}
3710
683ede43
PZ
3711int perf_event_release_kernel(struct perf_event *event)
3712{
3713 put_event(event);
3714 return 0;
3715}
3716EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3717
8b10c5e2
PZ
3718/*
3719 * Called when the last reference to the file is gone.
3720 */
a6fa941d
AV
3721static int perf_release(struct inode *inode, struct file *file)
3722{
3723 put_event(file->private_data);
3724 return 0;
fb0459d7 3725}
fb0459d7 3726
fadfe7be
JO
3727/*
3728 * Remove all orphanes events from the context.
3729 */
3730static void orphans_remove_work(struct work_struct *work)
3731{
3732 struct perf_event_context *ctx;
3733 struct perf_event *event, *tmp;
3734
3735 ctx = container_of(work, struct perf_event_context,
3736 orphans_remove.work);
3737
3738 mutex_lock(&ctx->mutex);
3739 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3740 struct perf_event *parent_event = event->parent;
3741
3742 if (!is_orphaned_child(event))
3743 continue;
3744
3745 perf_remove_from_context(event, true);
3746
3747 mutex_lock(&parent_event->child_mutex);
3748 list_del_init(&event->child_list);
3749 mutex_unlock(&parent_event->child_mutex);
3750
3751 free_event(event);
3752 put_event(parent_event);
3753 }
3754
3755 raw_spin_lock_irq(&ctx->lock);
3756 ctx->orphans_remove_sched = false;
3757 raw_spin_unlock_irq(&ctx->lock);
3758 mutex_unlock(&ctx->mutex);
3759
3760 put_ctx(ctx);
3761}
3762
59ed446f 3763u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3764{
cdd6c482 3765 struct perf_event *child;
e53c0994
PZ
3766 u64 total = 0;
3767
59ed446f
PZ
3768 *enabled = 0;
3769 *running = 0;
3770
6f10581a 3771 mutex_lock(&event->child_mutex);
cdd6c482 3772 total += perf_event_read(event);
59ed446f
PZ
3773 *enabled += event->total_time_enabled +
3774 atomic64_read(&event->child_total_time_enabled);
3775 *running += event->total_time_running +
3776 atomic64_read(&event->child_total_time_running);
3777
3778 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3779 total += perf_event_read(child);
59ed446f
PZ
3780 *enabled += child->total_time_enabled;
3781 *running += child->total_time_running;
3782 }
6f10581a 3783 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3784
3785 return total;
3786}
fb0459d7 3787EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3788
cdd6c482 3789static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3790 u64 read_format, char __user *buf)
3791{
cdd6c482 3792 struct perf_event *leader = event->group_leader, *sub;
6f10581a 3793 struct perf_event_context *ctx = leader->ctx;
f63a8daa 3794 int n = 0, size = 0, ret;
59ed446f 3795 u64 count, enabled, running;
f63a8daa
PZ
3796 u64 values[5];
3797
3798 lockdep_assert_held(&ctx->mutex);
abf4868b 3799
59ed446f 3800 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3801
3802 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3803 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3804 values[n++] = enabled;
3805 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3806 values[n++] = running;
abf4868b
PZ
3807 values[n++] = count;
3808 if (read_format & PERF_FORMAT_ID)
3809 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3810
3811 size = n * sizeof(u64);
3812
3813 if (copy_to_user(buf, values, size))
f63a8daa 3814 return -EFAULT;
3dab77fb 3815
6f10581a 3816 ret = size;
3dab77fb 3817
65abc865 3818 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3819 n = 0;
3dab77fb 3820
59ed446f 3821 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3822 if (read_format & PERF_FORMAT_ID)
3823 values[n++] = primary_event_id(sub);
3824
3825 size = n * sizeof(u64);
3826
184d3da8 3827 if (copy_to_user(buf + ret, values, size)) {
f63a8daa 3828 return -EFAULT;
6f10581a 3829 }
abf4868b
PZ
3830
3831 ret += size;
3dab77fb
PZ
3832 }
3833
abf4868b 3834 return ret;
3dab77fb
PZ
3835}
3836
cdd6c482 3837static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3838 u64 read_format, char __user *buf)
3839{
59ed446f 3840 u64 enabled, running;
3dab77fb
PZ
3841 u64 values[4];
3842 int n = 0;
3843
59ed446f
PZ
3844 values[n++] = perf_event_read_value(event, &enabled, &running);
3845 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3846 values[n++] = enabled;
3847 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3848 values[n++] = running;
3dab77fb 3849 if (read_format & PERF_FORMAT_ID)
cdd6c482 3850 values[n++] = primary_event_id(event);
3dab77fb
PZ
3851
3852 if (copy_to_user(buf, values, n * sizeof(u64)))
3853 return -EFAULT;
3854
3855 return n * sizeof(u64);
3856}
3857
dc633982
JO
3858static bool is_event_hup(struct perf_event *event)
3859{
3860 bool no_children;
3861
3862 if (event->state != PERF_EVENT_STATE_EXIT)
3863 return false;
3864
3865 mutex_lock(&event->child_mutex);
3866 no_children = list_empty(&event->child_list);
3867 mutex_unlock(&event->child_mutex);
3868 return no_children;
3869}
3870
0793a61d 3871/*
cdd6c482 3872 * Read the performance event - simple non blocking version for now
0793a61d
TG
3873 */
3874static ssize_t
cdd6c482 3875perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3876{
cdd6c482 3877 u64 read_format = event->attr.read_format;
3dab77fb 3878 int ret;
0793a61d 3879
3b6f9e5c 3880 /*
cdd6c482 3881 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3882 * error state (i.e. because it was pinned but it couldn't be
3883 * scheduled on to the CPU at some point).
3884 */
cdd6c482 3885 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3886 return 0;
3887
c320c7b7 3888 if (count < event->read_size)
3dab77fb
PZ
3889 return -ENOSPC;
3890
cdd6c482 3891 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3892 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3893 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3894 else
cdd6c482 3895 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3896
3dab77fb 3897 return ret;
0793a61d
TG
3898}
3899
0793a61d
TG
3900static ssize_t
3901perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3902{
cdd6c482 3903 struct perf_event *event = file->private_data;
f63a8daa
PZ
3904 struct perf_event_context *ctx;
3905 int ret;
0793a61d 3906
f63a8daa
PZ
3907 ctx = perf_event_ctx_lock(event);
3908 ret = perf_read_hw(event, buf, count);
3909 perf_event_ctx_unlock(event, ctx);
3910
3911 return ret;
0793a61d
TG
3912}
3913
3914static unsigned int perf_poll(struct file *file, poll_table *wait)
3915{
cdd6c482 3916 struct perf_event *event = file->private_data;
76369139 3917 struct ring_buffer *rb;
61b67684 3918 unsigned int events = POLLHUP;
c7138f37 3919
e708d7ad 3920 poll_wait(file, &event->waitq, wait);
179033b3 3921
dc633982 3922 if (is_event_hup(event))
179033b3 3923 return events;
c7138f37 3924
10c6db11 3925 /*
9bb5d40c
PZ
3926 * Pin the event->rb by taking event->mmap_mutex; otherwise
3927 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3928 */
3929 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3930 rb = event->rb;
3931 if (rb)
76369139 3932 events = atomic_xchg(&rb->poll, 0);
10c6db11 3933 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
3934 return events;
3935}
3936
f63a8daa 3937static void _perf_event_reset(struct perf_event *event)
6de6a7b9 3938{
cdd6c482 3939 (void)perf_event_read(event);
e7850595 3940 local64_set(&event->count, 0);
cdd6c482 3941 perf_event_update_userpage(event);
3df5edad
PZ
3942}
3943
c93f7669 3944/*
cdd6c482
IM
3945 * Holding the top-level event's child_mutex means that any
3946 * descendant process that has inherited this event will block
3947 * in sync_child_event if it goes to exit, thus satisfying the
3948 * task existence requirements of perf_event_enable/disable.
c93f7669 3949 */
cdd6c482
IM
3950static void perf_event_for_each_child(struct perf_event *event,
3951 void (*func)(struct perf_event *))
3df5edad 3952{
cdd6c482 3953 struct perf_event *child;
3df5edad 3954
cdd6c482 3955 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 3956
cdd6c482
IM
3957 mutex_lock(&event->child_mutex);
3958 func(event);
3959 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3960 func(child);
cdd6c482 3961 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3962}
3963
cdd6c482
IM
3964static void perf_event_for_each(struct perf_event *event,
3965 void (*func)(struct perf_event *))
3df5edad 3966{
cdd6c482
IM
3967 struct perf_event_context *ctx = event->ctx;
3968 struct perf_event *sibling;
3df5edad 3969
f63a8daa
PZ
3970 lockdep_assert_held(&ctx->mutex);
3971
cdd6c482 3972 event = event->group_leader;
75f937f2 3973
cdd6c482 3974 perf_event_for_each_child(event, func);
cdd6c482 3975 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3976 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
3977}
3978
cdd6c482 3979static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3980{
cdd6c482 3981 struct perf_event_context *ctx = event->ctx;
bad7192b 3982 int ret = 0, active;
08247e31
PZ
3983 u64 value;
3984
6c7e550f 3985 if (!is_sampling_event(event))
08247e31
PZ
3986 return -EINVAL;
3987
ad0cf347 3988 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3989 return -EFAULT;
3990
3991 if (!value)
3992 return -EINVAL;
3993
e625cce1 3994 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3995 if (event->attr.freq) {
3996 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3997 ret = -EINVAL;
3998 goto unlock;
3999 }
4000
cdd6c482 4001 event->attr.sample_freq = value;
08247e31 4002 } else {
cdd6c482
IM
4003 event->attr.sample_period = value;
4004 event->hw.sample_period = value;
08247e31 4005 }
bad7192b
PZ
4006
4007 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4008 if (active) {
4009 perf_pmu_disable(ctx->pmu);
4010 event->pmu->stop(event, PERF_EF_UPDATE);
4011 }
4012
4013 local64_set(&event->hw.period_left, 0);
4014
4015 if (active) {
4016 event->pmu->start(event, PERF_EF_RELOAD);
4017 perf_pmu_enable(ctx->pmu);
4018 }
4019
08247e31 4020unlock:
e625cce1 4021 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
4022
4023 return ret;
4024}
4025
ac9721f3
PZ
4026static const struct file_operations perf_fops;
4027
2903ff01 4028static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4029{
2903ff01
AV
4030 struct fd f = fdget(fd);
4031 if (!f.file)
4032 return -EBADF;
ac9721f3 4033
2903ff01
AV
4034 if (f.file->f_op != &perf_fops) {
4035 fdput(f);
4036 return -EBADF;
ac9721f3 4037 }
2903ff01
AV
4038 *p = f;
4039 return 0;
ac9721f3
PZ
4040}
4041
4042static int perf_event_set_output(struct perf_event *event,
4043 struct perf_event *output_event);
6fb2915d 4044static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4045static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4046
f63a8daa 4047static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4048{
cdd6c482 4049 void (*func)(struct perf_event *);
3df5edad 4050 u32 flags = arg;
d859e29f
PM
4051
4052 switch (cmd) {
cdd6c482 4053 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4054 func = _perf_event_enable;
d859e29f 4055 break;
cdd6c482 4056 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4057 func = _perf_event_disable;
79f14641 4058 break;
cdd6c482 4059 case PERF_EVENT_IOC_RESET:
f63a8daa 4060 func = _perf_event_reset;
6de6a7b9 4061 break;
3df5edad 4062
cdd6c482 4063 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4064 return _perf_event_refresh(event, arg);
08247e31 4065
cdd6c482
IM
4066 case PERF_EVENT_IOC_PERIOD:
4067 return perf_event_period(event, (u64 __user *)arg);
08247e31 4068
cf4957f1
JO
4069 case PERF_EVENT_IOC_ID:
4070 {
4071 u64 id = primary_event_id(event);
4072
4073 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4074 return -EFAULT;
4075 return 0;
4076 }
4077
cdd6c482 4078 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4079 {
ac9721f3 4080 int ret;
ac9721f3 4081 if (arg != -1) {
2903ff01
AV
4082 struct perf_event *output_event;
4083 struct fd output;
4084 ret = perf_fget_light(arg, &output);
4085 if (ret)
4086 return ret;
4087 output_event = output.file->private_data;
4088 ret = perf_event_set_output(event, output_event);
4089 fdput(output);
4090 } else {
4091 ret = perf_event_set_output(event, NULL);
ac9721f3 4092 }
ac9721f3
PZ
4093 return ret;
4094 }
a4be7c27 4095
6fb2915d
LZ
4096 case PERF_EVENT_IOC_SET_FILTER:
4097 return perf_event_set_filter(event, (void __user *)arg);
4098
2541517c
AS
4099 case PERF_EVENT_IOC_SET_BPF:
4100 return perf_event_set_bpf_prog(event, arg);
4101
d859e29f 4102 default:
3df5edad 4103 return -ENOTTY;
d859e29f 4104 }
3df5edad
PZ
4105
4106 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4107 perf_event_for_each(event, func);
3df5edad 4108 else
cdd6c482 4109 perf_event_for_each_child(event, func);
3df5edad
PZ
4110
4111 return 0;
d859e29f
PM
4112}
4113
f63a8daa
PZ
4114static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4115{
4116 struct perf_event *event = file->private_data;
4117 struct perf_event_context *ctx;
4118 long ret;
4119
4120 ctx = perf_event_ctx_lock(event);
4121 ret = _perf_ioctl(event, cmd, arg);
4122 perf_event_ctx_unlock(event, ctx);
4123
4124 return ret;
4125}
4126
b3f20785
PM
4127#ifdef CONFIG_COMPAT
4128static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4129 unsigned long arg)
4130{
4131 switch (_IOC_NR(cmd)) {
4132 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4133 case _IOC_NR(PERF_EVENT_IOC_ID):
4134 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4135 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4136 cmd &= ~IOCSIZE_MASK;
4137 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4138 }
4139 break;
4140 }
4141 return perf_ioctl(file, cmd, arg);
4142}
4143#else
4144# define perf_compat_ioctl NULL
4145#endif
4146
cdd6c482 4147int perf_event_task_enable(void)
771d7cde 4148{
f63a8daa 4149 struct perf_event_context *ctx;
cdd6c482 4150 struct perf_event *event;
771d7cde 4151
cdd6c482 4152 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4153 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4154 ctx = perf_event_ctx_lock(event);
4155 perf_event_for_each_child(event, _perf_event_enable);
4156 perf_event_ctx_unlock(event, ctx);
4157 }
cdd6c482 4158 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4159
4160 return 0;
4161}
4162
cdd6c482 4163int perf_event_task_disable(void)
771d7cde 4164{
f63a8daa 4165 struct perf_event_context *ctx;
cdd6c482 4166 struct perf_event *event;
771d7cde 4167
cdd6c482 4168 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4169 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4170 ctx = perf_event_ctx_lock(event);
4171 perf_event_for_each_child(event, _perf_event_disable);
4172 perf_event_ctx_unlock(event, ctx);
4173 }
cdd6c482 4174 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4175
4176 return 0;
4177}
4178
cdd6c482 4179static int perf_event_index(struct perf_event *event)
194002b2 4180{
a4eaf7f1
PZ
4181 if (event->hw.state & PERF_HES_STOPPED)
4182 return 0;
4183
cdd6c482 4184 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4185 return 0;
4186
35edc2a5 4187 return event->pmu->event_idx(event);
194002b2
PZ
4188}
4189
c4794295 4190static void calc_timer_values(struct perf_event *event,
e3f3541c 4191 u64 *now,
7f310a5d
EM
4192 u64 *enabled,
4193 u64 *running)
c4794295 4194{
e3f3541c 4195 u64 ctx_time;
c4794295 4196
e3f3541c
PZ
4197 *now = perf_clock();
4198 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4199 *enabled = ctx_time - event->tstamp_enabled;
4200 *running = ctx_time - event->tstamp_running;
4201}
4202
fa731587
PZ
4203static void perf_event_init_userpage(struct perf_event *event)
4204{
4205 struct perf_event_mmap_page *userpg;
4206 struct ring_buffer *rb;
4207
4208 rcu_read_lock();
4209 rb = rcu_dereference(event->rb);
4210 if (!rb)
4211 goto unlock;
4212
4213 userpg = rb->user_page;
4214
4215 /* Allow new userspace to detect that bit 0 is deprecated */
4216 userpg->cap_bit0_is_deprecated = 1;
4217 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4218 userpg->data_offset = PAGE_SIZE;
4219 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4220
4221unlock:
4222 rcu_read_unlock();
4223}
4224
c1317ec2
AL
4225void __weak arch_perf_update_userpage(
4226 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4227{
4228}
4229
38ff667b
PZ
4230/*
4231 * Callers need to ensure there can be no nesting of this function, otherwise
4232 * the seqlock logic goes bad. We can not serialize this because the arch
4233 * code calls this from NMI context.
4234 */
cdd6c482 4235void perf_event_update_userpage(struct perf_event *event)
37d81828 4236{
cdd6c482 4237 struct perf_event_mmap_page *userpg;
76369139 4238 struct ring_buffer *rb;
e3f3541c 4239 u64 enabled, running, now;
38ff667b
PZ
4240
4241 rcu_read_lock();
5ec4c599
PZ
4242 rb = rcu_dereference(event->rb);
4243 if (!rb)
4244 goto unlock;
4245
0d641208
EM
4246 /*
4247 * compute total_time_enabled, total_time_running
4248 * based on snapshot values taken when the event
4249 * was last scheduled in.
4250 *
4251 * we cannot simply called update_context_time()
4252 * because of locking issue as we can be called in
4253 * NMI context
4254 */
e3f3541c 4255 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4256
76369139 4257 userpg = rb->user_page;
7b732a75
PZ
4258 /*
4259 * Disable preemption so as to not let the corresponding user-space
4260 * spin too long if we get preempted.
4261 */
4262 preempt_disable();
37d81828 4263 ++userpg->lock;
92f22a38 4264 barrier();
cdd6c482 4265 userpg->index = perf_event_index(event);
b5e58793 4266 userpg->offset = perf_event_count(event);
365a4038 4267 if (userpg->index)
e7850595 4268 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4269
0d641208 4270 userpg->time_enabled = enabled +
cdd6c482 4271 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4272
0d641208 4273 userpg->time_running = running +
cdd6c482 4274 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4275
c1317ec2 4276 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4277
92f22a38 4278 barrier();
37d81828 4279 ++userpg->lock;
7b732a75 4280 preempt_enable();
38ff667b 4281unlock:
7b732a75 4282 rcu_read_unlock();
37d81828
PM
4283}
4284
906010b2
PZ
4285static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4286{
4287 struct perf_event *event = vma->vm_file->private_data;
76369139 4288 struct ring_buffer *rb;
906010b2
PZ
4289 int ret = VM_FAULT_SIGBUS;
4290
4291 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4292 if (vmf->pgoff == 0)
4293 ret = 0;
4294 return ret;
4295 }
4296
4297 rcu_read_lock();
76369139
FW
4298 rb = rcu_dereference(event->rb);
4299 if (!rb)
906010b2
PZ
4300 goto unlock;
4301
4302 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4303 goto unlock;
4304
76369139 4305 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4306 if (!vmf->page)
4307 goto unlock;
4308
4309 get_page(vmf->page);
4310 vmf->page->mapping = vma->vm_file->f_mapping;
4311 vmf->page->index = vmf->pgoff;
4312
4313 ret = 0;
4314unlock:
4315 rcu_read_unlock();
4316
4317 return ret;
4318}
4319
10c6db11
PZ
4320static void ring_buffer_attach(struct perf_event *event,
4321 struct ring_buffer *rb)
4322{
b69cf536 4323 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4324 unsigned long flags;
4325
b69cf536
PZ
4326 if (event->rb) {
4327 /*
4328 * Should be impossible, we set this when removing
4329 * event->rb_entry and wait/clear when adding event->rb_entry.
4330 */
4331 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4332
b69cf536
PZ
4333 old_rb = event->rb;
4334 event->rcu_batches = get_state_synchronize_rcu();
4335 event->rcu_pending = 1;
10c6db11 4336
b69cf536
PZ
4337 spin_lock_irqsave(&old_rb->event_lock, flags);
4338 list_del_rcu(&event->rb_entry);
4339 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4340 }
10c6db11 4341
b69cf536
PZ
4342 if (event->rcu_pending && rb) {
4343 cond_synchronize_rcu(event->rcu_batches);
4344 event->rcu_pending = 0;
4345 }
10c6db11 4346
b69cf536
PZ
4347 if (rb) {
4348 spin_lock_irqsave(&rb->event_lock, flags);
4349 list_add_rcu(&event->rb_entry, &rb->event_list);
4350 spin_unlock_irqrestore(&rb->event_lock, flags);
4351 }
4352
4353 rcu_assign_pointer(event->rb, rb);
4354
4355 if (old_rb) {
4356 ring_buffer_put(old_rb);
4357 /*
4358 * Since we detached before setting the new rb, so that we
4359 * could attach the new rb, we could have missed a wakeup.
4360 * Provide it now.
4361 */
4362 wake_up_all(&event->waitq);
4363 }
10c6db11
PZ
4364}
4365
4366static void ring_buffer_wakeup(struct perf_event *event)
4367{
4368 struct ring_buffer *rb;
4369
4370 rcu_read_lock();
4371 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4372 if (rb) {
4373 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4374 wake_up_all(&event->waitq);
4375 }
10c6db11
PZ
4376 rcu_read_unlock();
4377}
4378
76369139 4379static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 4380{
76369139 4381 struct ring_buffer *rb;
906010b2 4382
76369139
FW
4383 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
4384 rb_free(rb);
7b732a75
PZ
4385}
4386
fdc26706 4387struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4388{
76369139 4389 struct ring_buffer *rb;
7b732a75 4390
ac9721f3 4391 rcu_read_lock();
76369139
FW
4392 rb = rcu_dereference(event->rb);
4393 if (rb) {
4394 if (!atomic_inc_not_zero(&rb->refcount))
4395 rb = NULL;
ac9721f3
PZ
4396 }
4397 rcu_read_unlock();
4398
76369139 4399 return rb;
ac9721f3
PZ
4400}
4401
fdc26706 4402void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4403{
76369139 4404 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4405 return;
7b732a75 4406
9bb5d40c 4407 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4408
76369139 4409 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4410}
4411
4412static void perf_mmap_open(struct vm_area_struct *vma)
4413{
cdd6c482 4414 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4415
cdd6c482 4416 atomic_inc(&event->mmap_count);
9bb5d40c 4417 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4418
45bfb2e5
PZ
4419 if (vma->vm_pgoff)
4420 atomic_inc(&event->rb->aux_mmap_count);
4421
1e0fb9ec
AL
4422 if (event->pmu->event_mapped)
4423 event->pmu->event_mapped(event);
7b732a75
PZ
4424}
4425
9bb5d40c
PZ
4426/*
4427 * A buffer can be mmap()ed multiple times; either directly through the same
4428 * event, or through other events by use of perf_event_set_output().
4429 *
4430 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4431 * the buffer here, where we still have a VM context. This means we need
4432 * to detach all events redirecting to us.
4433 */
7b732a75
PZ
4434static void perf_mmap_close(struct vm_area_struct *vma)
4435{
cdd6c482 4436 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4437
b69cf536 4438 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4439 struct user_struct *mmap_user = rb->mmap_user;
4440 int mmap_locked = rb->mmap_locked;
4441 unsigned long size = perf_data_size(rb);
789f90fc 4442
1e0fb9ec
AL
4443 if (event->pmu->event_unmapped)
4444 event->pmu->event_unmapped(event);
4445
45bfb2e5
PZ
4446 /*
4447 * rb->aux_mmap_count will always drop before rb->mmap_count and
4448 * event->mmap_count, so it is ok to use event->mmap_mutex to
4449 * serialize with perf_mmap here.
4450 */
4451 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4452 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4453 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4454 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4455
4456 rb_free_aux(rb);
4457 mutex_unlock(&event->mmap_mutex);
4458 }
4459
9bb5d40c
PZ
4460 atomic_dec(&rb->mmap_count);
4461
4462 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4463 goto out_put;
9bb5d40c 4464
b69cf536 4465 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4466 mutex_unlock(&event->mmap_mutex);
4467
4468 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4469 if (atomic_read(&rb->mmap_count))
4470 goto out_put;
ac9721f3 4471
9bb5d40c
PZ
4472 /*
4473 * No other mmap()s, detach from all other events that might redirect
4474 * into the now unreachable buffer. Somewhat complicated by the
4475 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4476 */
4477again:
4478 rcu_read_lock();
4479 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4480 if (!atomic_long_inc_not_zero(&event->refcount)) {
4481 /*
4482 * This event is en-route to free_event() which will
4483 * detach it and remove it from the list.
4484 */
4485 continue;
4486 }
4487 rcu_read_unlock();
789f90fc 4488
9bb5d40c
PZ
4489 mutex_lock(&event->mmap_mutex);
4490 /*
4491 * Check we didn't race with perf_event_set_output() which can
4492 * swizzle the rb from under us while we were waiting to
4493 * acquire mmap_mutex.
4494 *
4495 * If we find a different rb; ignore this event, a next
4496 * iteration will no longer find it on the list. We have to
4497 * still restart the iteration to make sure we're not now
4498 * iterating the wrong list.
4499 */
b69cf536
PZ
4500 if (event->rb == rb)
4501 ring_buffer_attach(event, NULL);
4502
cdd6c482 4503 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4504 put_event(event);
ac9721f3 4505
9bb5d40c
PZ
4506 /*
4507 * Restart the iteration; either we're on the wrong list or
4508 * destroyed its integrity by doing a deletion.
4509 */
4510 goto again;
7b732a75 4511 }
9bb5d40c
PZ
4512 rcu_read_unlock();
4513
4514 /*
4515 * It could be there's still a few 0-ref events on the list; they'll
4516 * get cleaned up by free_event() -- they'll also still have their
4517 * ref on the rb and will free it whenever they are done with it.
4518 *
4519 * Aside from that, this buffer is 'fully' detached and unmapped,
4520 * undo the VM accounting.
4521 */
4522
4523 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4524 vma->vm_mm->pinned_vm -= mmap_locked;
4525 free_uid(mmap_user);
4526
b69cf536 4527out_put:
9bb5d40c 4528 ring_buffer_put(rb); /* could be last */
37d81828
PM
4529}
4530
f0f37e2f 4531static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4532 .open = perf_mmap_open,
45bfb2e5 4533 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4534 .fault = perf_mmap_fault,
4535 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4536};
4537
4538static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4539{
cdd6c482 4540 struct perf_event *event = file->private_data;
22a4f650 4541 unsigned long user_locked, user_lock_limit;
789f90fc 4542 struct user_struct *user = current_user();
22a4f650 4543 unsigned long locked, lock_limit;
45bfb2e5 4544 struct ring_buffer *rb = NULL;
7b732a75
PZ
4545 unsigned long vma_size;
4546 unsigned long nr_pages;
45bfb2e5 4547 long user_extra = 0, extra = 0;
d57e34fd 4548 int ret = 0, flags = 0;
37d81828 4549
c7920614
PZ
4550 /*
4551 * Don't allow mmap() of inherited per-task counters. This would
4552 * create a performance issue due to all children writing to the
76369139 4553 * same rb.
c7920614
PZ
4554 */
4555 if (event->cpu == -1 && event->attr.inherit)
4556 return -EINVAL;
4557
43a21ea8 4558 if (!(vma->vm_flags & VM_SHARED))
37d81828 4559 return -EINVAL;
7b732a75
PZ
4560
4561 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4562
4563 if (vma->vm_pgoff == 0) {
4564 nr_pages = (vma_size / PAGE_SIZE) - 1;
4565 } else {
4566 /*
4567 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4568 * mapped, all subsequent mappings should have the same size
4569 * and offset. Must be above the normal perf buffer.
4570 */
4571 u64 aux_offset, aux_size;
4572
4573 if (!event->rb)
4574 return -EINVAL;
4575
4576 nr_pages = vma_size / PAGE_SIZE;
4577
4578 mutex_lock(&event->mmap_mutex);
4579 ret = -EINVAL;
4580
4581 rb = event->rb;
4582 if (!rb)
4583 goto aux_unlock;
4584
4585 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4586 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4587
4588 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4589 goto aux_unlock;
4590
4591 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4592 goto aux_unlock;
4593
4594 /* already mapped with a different offset */
4595 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4596 goto aux_unlock;
4597
4598 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4599 goto aux_unlock;
4600
4601 /* already mapped with a different size */
4602 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4603 goto aux_unlock;
4604
4605 if (!is_power_of_2(nr_pages))
4606 goto aux_unlock;
4607
4608 if (!atomic_inc_not_zero(&rb->mmap_count))
4609 goto aux_unlock;
4610
4611 if (rb_has_aux(rb)) {
4612 atomic_inc(&rb->aux_mmap_count);
4613 ret = 0;
4614 goto unlock;
4615 }
4616
4617 atomic_set(&rb->aux_mmap_count, 1);
4618 user_extra = nr_pages;
4619
4620 goto accounting;
4621 }
7b732a75 4622
7730d865 4623 /*
76369139 4624 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4625 * can do bitmasks instead of modulo.
4626 */
2ed11312 4627 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4628 return -EINVAL;
4629
7b732a75 4630 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4631 return -EINVAL;
4632
cdd6c482 4633 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4634again:
cdd6c482 4635 mutex_lock(&event->mmap_mutex);
76369139 4636 if (event->rb) {
9bb5d40c 4637 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4638 ret = -EINVAL;
9bb5d40c
PZ
4639 goto unlock;
4640 }
4641
4642 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4643 /*
4644 * Raced against perf_mmap_close() through
4645 * perf_event_set_output(). Try again, hope for better
4646 * luck.
4647 */
4648 mutex_unlock(&event->mmap_mutex);
4649 goto again;
4650 }
4651
ebb3c4c4
PZ
4652 goto unlock;
4653 }
4654
789f90fc 4655 user_extra = nr_pages + 1;
45bfb2e5
PZ
4656
4657accounting:
cdd6c482 4658 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4659
4660 /*
4661 * Increase the limit linearly with more CPUs:
4662 */
4663 user_lock_limit *= num_online_cpus();
4664
789f90fc 4665 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4666
789f90fc
PZ
4667 if (user_locked > user_lock_limit)
4668 extra = user_locked - user_lock_limit;
7b732a75 4669
78d7d407 4670 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4671 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4672 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4673
459ec28a
IM
4674 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4675 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4676 ret = -EPERM;
4677 goto unlock;
4678 }
7b732a75 4679
45bfb2e5 4680 WARN_ON(!rb && event->rb);
906010b2 4681
d57e34fd 4682 if (vma->vm_flags & VM_WRITE)
76369139 4683 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4684
76369139 4685 if (!rb) {
45bfb2e5
PZ
4686 rb = rb_alloc(nr_pages,
4687 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4688 event->cpu, flags);
26cb63ad 4689
45bfb2e5
PZ
4690 if (!rb) {
4691 ret = -ENOMEM;
4692 goto unlock;
4693 }
43a21ea8 4694
45bfb2e5
PZ
4695 atomic_set(&rb->mmap_count, 1);
4696 rb->mmap_user = get_current_user();
4697 rb->mmap_locked = extra;
26cb63ad 4698
45bfb2e5 4699 ring_buffer_attach(event, rb);
ac9721f3 4700
45bfb2e5
PZ
4701 perf_event_init_userpage(event);
4702 perf_event_update_userpage(event);
4703 } else {
1a594131
AS
4704 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4705 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4706 if (!ret)
4707 rb->aux_mmap_locked = extra;
4708 }
9a0f05cb 4709
ebb3c4c4 4710unlock:
45bfb2e5
PZ
4711 if (!ret) {
4712 atomic_long_add(user_extra, &user->locked_vm);
4713 vma->vm_mm->pinned_vm += extra;
4714
ac9721f3 4715 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4716 } else if (rb) {
4717 atomic_dec(&rb->mmap_count);
4718 }
4719aux_unlock:
cdd6c482 4720 mutex_unlock(&event->mmap_mutex);
37d81828 4721
9bb5d40c
PZ
4722 /*
4723 * Since pinned accounting is per vm we cannot allow fork() to copy our
4724 * vma.
4725 */
26cb63ad 4726 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4727 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4728
1e0fb9ec
AL
4729 if (event->pmu->event_mapped)
4730 event->pmu->event_mapped(event);
4731
7b732a75 4732 return ret;
37d81828
PM
4733}
4734
3c446b3d
PZ
4735static int perf_fasync(int fd, struct file *filp, int on)
4736{
496ad9aa 4737 struct inode *inode = file_inode(filp);
cdd6c482 4738 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4739 int retval;
4740
4741 mutex_lock(&inode->i_mutex);
cdd6c482 4742 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4743 mutex_unlock(&inode->i_mutex);
4744
4745 if (retval < 0)
4746 return retval;
4747
4748 return 0;
4749}
4750
0793a61d 4751static const struct file_operations perf_fops = {
3326c1ce 4752 .llseek = no_llseek,
0793a61d
TG
4753 .release = perf_release,
4754 .read = perf_read,
4755 .poll = perf_poll,
d859e29f 4756 .unlocked_ioctl = perf_ioctl,
b3f20785 4757 .compat_ioctl = perf_compat_ioctl,
37d81828 4758 .mmap = perf_mmap,
3c446b3d 4759 .fasync = perf_fasync,
0793a61d
TG
4760};
4761
925d519a 4762/*
cdd6c482 4763 * Perf event wakeup
925d519a
PZ
4764 *
4765 * If there's data, ensure we set the poll() state and publish everything
4766 * to user-space before waking everybody up.
4767 */
4768
cdd6c482 4769void perf_event_wakeup(struct perf_event *event)
925d519a 4770{
10c6db11 4771 ring_buffer_wakeup(event);
4c9e2542 4772
cdd6c482
IM
4773 if (event->pending_kill) {
4774 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4775 event->pending_kill = 0;
4c9e2542 4776 }
925d519a
PZ
4777}
4778
e360adbe 4779static void perf_pending_event(struct irq_work *entry)
79f14641 4780{
cdd6c482
IM
4781 struct perf_event *event = container_of(entry,
4782 struct perf_event, pending);
d525211f
PZ
4783 int rctx;
4784
4785 rctx = perf_swevent_get_recursion_context();
4786 /*
4787 * If we 'fail' here, that's OK, it means recursion is already disabled
4788 * and we won't recurse 'further'.
4789 */
79f14641 4790
cdd6c482
IM
4791 if (event->pending_disable) {
4792 event->pending_disable = 0;
4793 __perf_event_disable(event);
79f14641
PZ
4794 }
4795
cdd6c482
IM
4796 if (event->pending_wakeup) {
4797 event->pending_wakeup = 0;
4798 perf_event_wakeup(event);
79f14641 4799 }
d525211f
PZ
4800
4801 if (rctx >= 0)
4802 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4803}
4804
39447b38
ZY
4805/*
4806 * We assume there is only KVM supporting the callbacks.
4807 * Later on, we might change it to a list if there is
4808 * another virtualization implementation supporting the callbacks.
4809 */
4810struct perf_guest_info_callbacks *perf_guest_cbs;
4811
4812int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4813{
4814 perf_guest_cbs = cbs;
4815 return 0;
4816}
4817EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4818
4819int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4820{
4821 perf_guest_cbs = NULL;
4822 return 0;
4823}
4824EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4825
4018994f
JO
4826static void
4827perf_output_sample_regs(struct perf_output_handle *handle,
4828 struct pt_regs *regs, u64 mask)
4829{
4830 int bit;
4831
4832 for_each_set_bit(bit, (const unsigned long *) &mask,
4833 sizeof(mask) * BITS_PER_BYTE) {
4834 u64 val;
4835
4836 val = perf_reg_value(regs, bit);
4837 perf_output_put(handle, val);
4838 }
4839}
4840
60e2364e 4841static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4842 struct pt_regs *regs,
4843 struct pt_regs *regs_user_copy)
4018994f 4844{
88a7c26a
AL
4845 if (user_mode(regs)) {
4846 regs_user->abi = perf_reg_abi(current);
2565711f 4847 regs_user->regs = regs;
88a7c26a
AL
4848 } else if (current->mm) {
4849 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4850 } else {
4851 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4852 regs_user->regs = NULL;
4018994f
JO
4853 }
4854}
4855
60e2364e
SE
4856static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4857 struct pt_regs *regs)
4858{
4859 regs_intr->regs = regs;
4860 regs_intr->abi = perf_reg_abi(current);
4861}
4862
4863
c5ebcedb
JO
4864/*
4865 * Get remaining task size from user stack pointer.
4866 *
4867 * It'd be better to take stack vma map and limit this more
4868 * precisly, but there's no way to get it safely under interrupt,
4869 * so using TASK_SIZE as limit.
4870 */
4871static u64 perf_ustack_task_size(struct pt_regs *regs)
4872{
4873 unsigned long addr = perf_user_stack_pointer(regs);
4874
4875 if (!addr || addr >= TASK_SIZE)
4876 return 0;
4877
4878 return TASK_SIZE - addr;
4879}
4880
4881static u16
4882perf_sample_ustack_size(u16 stack_size, u16 header_size,
4883 struct pt_regs *regs)
4884{
4885 u64 task_size;
4886
4887 /* No regs, no stack pointer, no dump. */
4888 if (!regs)
4889 return 0;
4890
4891 /*
4892 * Check if we fit in with the requested stack size into the:
4893 * - TASK_SIZE
4894 * If we don't, we limit the size to the TASK_SIZE.
4895 *
4896 * - remaining sample size
4897 * If we don't, we customize the stack size to
4898 * fit in to the remaining sample size.
4899 */
4900
4901 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4902 stack_size = min(stack_size, (u16) task_size);
4903
4904 /* Current header size plus static size and dynamic size. */
4905 header_size += 2 * sizeof(u64);
4906
4907 /* Do we fit in with the current stack dump size? */
4908 if ((u16) (header_size + stack_size) < header_size) {
4909 /*
4910 * If we overflow the maximum size for the sample,
4911 * we customize the stack dump size to fit in.
4912 */
4913 stack_size = USHRT_MAX - header_size - sizeof(u64);
4914 stack_size = round_up(stack_size, sizeof(u64));
4915 }
4916
4917 return stack_size;
4918}
4919
4920static void
4921perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4922 struct pt_regs *regs)
4923{
4924 /* Case of a kernel thread, nothing to dump */
4925 if (!regs) {
4926 u64 size = 0;
4927 perf_output_put(handle, size);
4928 } else {
4929 unsigned long sp;
4930 unsigned int rem;
4931 u64 dyn_size;
4932
4933 /*
4934 * We dump:
4935 * static size
4936 * - the size requested by user or the best one we can fit
4937 * in to the sample max size
4938 * data
4939 * - user stack dump data
4940 * dynamic size
4941 * - the actual dumped size
4942 */
4943
4944 /* Static size. */
4945 perf_output_put(handle, dump_size);
4946
4947 /* Data. */
4948 sp = perf_user_stack_pointer(regs);
4949 rem = __output_copy_user(handle, (void *) sp, dump_size);
4950 dyn_size = dump_size - rem;
4951
4952 perf_output_skip(handle, rem);
4953
4954 /* Dynamic size. */
4955 perf_output_put(handle, dyn_size);
4956 }
4957}
4958
c980d109
ACM
4959static void __perf_event_header__init_id(struct perf_event_header *header,
4960 struct perf_sample_data *data,
4961 struct perf_event *event)
6844c09d
ACM
4962{
4963 u64 sample_type = event->attr.sample_type;
4964
4965 data->type = sample_type;
4966 header->size += event->id_header_size;
4967
4968 if (sample_type & PERF_SAMPLE_TID) {
4969 /* namespace issues */
4970 data->tid_entry.pid = perf_event_pid(event, current);
4971 data->tid_entry.tid = perf_event_tid(event, current);
4972 }
4973
4974 if (sample_type & PERF_SAMPLE_TIME)
34f43927 4975 data->time = perf_event_clock(event);
6844c09d 4976
ff3d527c 4977 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4978 data->id = primary_event_id(event);
4979
4980 if (sample_type & PERF_SAMPLE_STREAM_ID)
4981 data->stream_id = event->id;
4982
4983 if (sample_type & PERF_SAMPLE_CPU) {
4984 data->cpu_entry.cpu = raw_smp_processor_id();
4985 data->cpu_entry.reserved = 0;
4986 }
4987}
4988
76369139
FW
4989void perf_event_header__init_id(struct perf_event_header *header,
4990 struct perf_sample_data *data,
4991 struct perf_event *event)
c980d109
ACM
4992{
4993 if (event->attr.sample_id_all)
4994 __perf_event_header__init_id(header, data, event);
4995}
4996
4997static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4998 struct perf_sample_data *data)
4999{
5000 u64 sample_type = data->type;
5001
5002 if (sample_type & PERF_SAMPLE_TID)
5003 perf_output_put(handle, data->tid_entry);
5004
5005 if (sample_type & PERF_SAMPLE_TIME)
5006 perf_output_put(handle, data->time);
5007
5008 if (sample_type & PERF_SAMPLE_ID)
5009 perf_output_put(handle, data->id);
5010
5011 if (sample_type & PERF_SAMPLE_STREAM_ID)
5012 perf_output_put(handle, data->stream_id);
5013
5014 if (sample_type & PERF_SAMPLE_CPU)
5015 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5016
5017 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5018 perf_output_put(handle, data->id);
c980d109
ACM
5019}
5020
76369139
FW
5021void perf_event__output_id_sample(struct perf_event *event,
5022 struct perf_output_handle *handle,
5023 struct perf_sample_data *sample)
c980d109
ACM
5024{
5025 if (event->attr.sample_id_all)
5026 __perf_event__output_id_sample(handle, sample);
5027}
5028
3dab77fb 5029static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5030 struct perf_event *event,
5031 u64 enabled, u64 running)
3dab77fb 5032{
cdd6c482 5033 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5034 u64 values[4];
5035 int n = 0;
5036
b5e58793 5037 values[n++] = perf_event_count(event);
3dab77fb 5038 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5039 values[n++] = enabled +
cdd6c482 5040 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5041 }
5042 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5043 values[n++] = running +
cdd6c482 5044 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5045 }
5046 if (read_format & PERF_FORMAT_ID)
cdd6c482 5047 values[n++] = primary_event_id(event);
3dab77fb 5048
76369139 5049 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5050}
5051
5052/*
cdd6c482 5053 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5054 */
5055static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5056 struct perf_event *event,
5057 u64 enabled, u64 running)
3dab77fb 5058{
cdd6c482
IM
5059 struct perf_event *leader = event->group_leader, *sub;
5060 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5061 u64 values[5];
5062 int n = 0;
5063
5064 values[n++] = 1 + leader->nr_siblings;
5065
5066 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5067 values[n++] = enabled;
3dab77fb
PZ
5068
5069 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5070 values[n++] = running;
3dab77fb 5071
cdd6c482 5072 if (leader != event)
3dab77fb
PZ
5073 leader->pmu->read(leader);
5074
b5e58793 5075 values[n++] = perf_event_count(leader);
3dab77fb 5076 if (read_format & PERF_FORMAT_ID)
cdd6c482 5077 values[n++] = primary_event_id(leader);
3dab77fb 5078
76369139 5079 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5080
65abc865 5081 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5082 n = 0;
5083
6f5ab001
JO
5084 if ((sub != event) &&
5085 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5086 sub->pmu->read(sub);
5087
b5e58793 5088 values[n++] = perf_event_count(sub);
3dab77fb 5089 if (read_format & PERF_FORMAT_ID)
cdd6c482 5090 values[n++] = primary_event_id(sub);
3dab77fb 5091
76369139 5092 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5093 }
5094}
5095
eed01528
SE
5096#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5097 PERF_FORMAT_TOTAL_TIME_RUNNING)
5098
3dab77fb 5099static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5100 struct perf_event *event)
3dab77fb 5101{
e3f3541c 5102 u64 enabled = 0, running = 0, now;
eed01528
SE
5103 u64 read_format = event->attr.read_format;
5104
5105 /*
5106 * compute total_time_enabled, total_time_running
5107 * based on snapshot values taken when the event
5108 * was last scheduled in.
5109 *
5110 * we cannot simply called update_context_time()
5111 * because of locking issue as we are called in
5112 * NMI context
5113 */
c4794295 5114 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5115 calc_timer_values(event, &now, &enabled, &running);
eed01528 5116
cdd6c482 5117 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5118 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5119 else
eed01528 5120 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5121}
5122
5622f295
MM
5123void perf_output_sample(struct perf_output_handle *handle,
5124 struct perf_event_header *header,
5125 struct perf_sample_data *data,
cdd6c482 5126 struct perf_event *event)
5622f295
MM
5127{
5128 u64 sample_type = data->type;
5129
5130 perf_output_put(handle, *header);
5131
ff3d527c
AH
5132 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5133 perf_output_put(handle, data->id);
5134
5622f295
MM
5135 if (sample_type & PERF_SAMPLE_IP)
5136 perf_output_put(handle, data->ip);
5137
5138 if (sample_type & PERF_SAMPLE_TID)
5139 perf_output_put(handle, data->tid_entry);
5140
5141 if (sample_type & PERF_SAMPLE_TIME)
5142 perf_output_put(handle, data->time);
5143
5144 if (sample_type & PERF_SAMPLE_ADDR)
5145 perf_output_put(handle, data->addr);
5146
5147 if (sample_type & PERF_SAMPLE_ID)
5148 perf_output_put(handle, data->id);
5149
5150 if (sample_type & PERF_SAMPLE_STREAM_ID)
5151 perf_output_put(handle, data->stream_id);
5152
5153 if (sample_type & PERF_SAMPLE_CPU)
5154 perf_output_put(handle, data->cpu_entry);
5155
5156 if (sample_type & PERF_SAMPLE_PERIOD)
5157 perf_output_put(handle, data->period);
5158
5159 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5160 perf_output_read(handle, event);
5622f295
MM
5161
5162 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5163 if (data->callchain) {
5164 int size = 1;
5165
5166 if (data->callchain)
5167 size += data->callchain->nr;
5168
5169 size *= sizeof(u64);
5170
76369139 5171 __output_copy(handle, data->callchain, size);
5622f295
MM
5172 } else {
5173 u64 nr = 0;
5174 perf_output_put(handle, nr);
5175 }
5176 }
5177
5178 if (sample_type & PERF_SAMPLE_RAW) {
5179 if (data->raw) {
5180 perf_output_put(handle, data->raw->size);
76369139
FW
5181 __output_copy(handle, data->raw->data,
5182 data->raw->size);
5622f295
MM
5183 } else {
5184 struct {
5185 u32 size;
5186 u32 data;
5187 } raw = {
5188 .size = sizeof(u32),
5189 .data = 0,
5190 };
5191 perf_output_put(handle, raw);
5192 }
5193 }
a7ac67ea 5194
bce38cd5
SE
5195 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5196 if (data->br_stack) {
5197 size_t size;
5198
5199 size = data->br_stack->nr
5200 * sizeof(struct perf_branch_entry);
5201
5202 perf_output_put(handle, data->br_stack->nr);
5203 perf_output_copy(handle, data->br_stack->entries, size);
5204 } else {
5205 /*
5206 * we always store at least the value of nr
5207 */
5208 u64 nr = 0;
5209 perf_output_put(handle, nr);
5210 }
5211 }
4018994f
JO
5212
5213 if (sample_type & PERF_SAMPLE_REGS_USER) {
5214 u64 abi = data->regs_user.abi;
5215
5216 /*
5217 * If there are no regs to dump, notice it through
5218 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5219 */
5220 perf_output_put(handle, abi);
5221
5222 if (abi) {
5223 u64 mask = event->attr.sample_regs_user;
5224 perf_output_sample_regs(handle,
5225 data->regs_user.regs,
5226 mask);
5227 }
5228 }
c5ebcedb 5229
a5cdd40c 5230 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5231 perf_output_sample_ustack(handle,
5232 data->stack_user_size,
5233 data->regs_user.regs);
a5cdd40c 5234 }
c3feedf2
AK
5235
5236 if (sample_type & PERF_SAMPLE_WEIGHT)
5237 perf_output_put(handle, data->weight);
d6be9ad6
SE
5238
5239 if (sample_type & PERF_SAMPLE_DATA_SRC)
5240 perf_output_put(handle, data->data_src.val);
a5cdd40c 5241
fdfbbd07
AK
5242 if (sample_type & PERF_SAMPLE_TRANSACTION)
5243 perf_output_put(handle, data->txn);
5244
60e2364e
SE
5245 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5246 u64 abi = data->regs_intr.abi;
5247 /*
5248 * If there are no regs to dump, notice it through
5249 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5250 */
5251 perf_output_put(handle, abi);
5252
5253 if (abi) {
5254 u64 mask = event->attr.sample_regs_intr;
5255
5256 perf_output_sample_regs(handle,
5257 data->regs_intr.regs,
5258 mask);
5259 }
5260 }
5261
a5cdd40c
PZ
5262 if (!event->attr.watermark) {
5263 int wakeup_events = event->attr.wakeup_events;
5264
5265 if (wakeup_events) {
5266 struct ring_buffer *rb = handle->rb;
5267 int events = local_inc_return(&rb->events);
5268
5269 if (events >= wakeup_events) {
5270 local_sub(wakeup_events, &rb->events);
5271 local_inc(&rb->wakeup);
5272 }
5273 }
5274 }
5622f295
MM
5275}
5276
5277void perf_prepare_sample(struct perf_event_header *header,
5278 struct perf_sample_data *data,
cdd6c482 5279 struct perf_event *event,
5622f295 5280 struct pt_regs *regs)
7b732a75 5281{
cdd6c482 5282 u64 sample_type = event->attr.sample_type;
7b732a75 5283
cdd6c482 5284 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5285 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5286
5287 header->misc = 0;
5288 header->misc |= perf_misc_flags(regs);
6fab0192 5289
c980d109 5290 __perf_event_header__init_id(header, data, event);
6844c09d 5291
c320c7b7 5292 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5293 data->ip = perf_instruction_pointer(regs);
5294
b23f3325 5295 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5296 int size = 1;
394ee076 5297
e6dab5ff 5298 data->callchain = perf_callchain(event, regs);
5622f295
MM
5299
5300 if (data->callchain)
5301 size += data->callchain->nr;
5302
5303 header->size += size * sizeof(u64);
394ee076
PZ
5304 }
5305
3a43ce68 5306 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5307 int size = sizeof(u32);
5308
5309 if (data->raw)
5310 size += data->raw->size;
5311 else
5312 size += sizeof(u32);
5313
5314 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5315 header->size += size;
7f453c24 5316 }
bce38cd5
SE
5317
5318 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5319 int size = sizeof(u64); /* nr */
5320 if (data->br_stack) {
5321 size += data->br_stack->nr
5322 * sizeof(struct perf_branch_entry);
5323 }
5324 header->size += size;
5325 }
4018994f 5326
2565711f 5327 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5328 perf_sample_regs_user(&data->regs_user, regs,
5329 &data->regs_user_copy);
2565711f 5330
4018994f
JO
5331 if (sample_type & PERF_SAMPLE_REGS_USER) {
5332 /* regs dump ABI info */
5333 int size = sizeof(u64);
5334
4018994f
JO
5335 if (data->regs_user.regs) {
5336 u64 mask = event->attr.sample_regs_user;
5337 size += hweight64(mask) * sizeof(u64);
5338 }
5339
5340 header->size += size;
5341 }
c5ebcedb
JO
5342
5343 if (sample_type & PERF_SAMPLE_STACK_USER) {
5344 /*
5345 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5346 * processed as the last one or have additional check added
5347 * in case new sample type is added, because we could eat
5348 * up the rest of the sample size.
5349 */
c5ebcedb
JO
5350 u16 stack_size = event->attr.sample_stack_user;
5351 u16 size = sizeof(u64);
5352
c5ebcedb 5353 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5354 data->regs_user.regs);
c5ebcedb
JO
5355
5356 /*
5357 * If there is something to dump, add space for the dump
5358 * itself and for the field that tells the dynamic size,
5359 * which is how many have been actually dumped.
5360 */
5361 if (stack_size)
5362 size += sizeof(u64) + stack_size;
5363
5364 data->stack_user_size = stack_size;
5365 header->size += size;
5366 }
60e2364e
SE
5367
5368 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5369 /* regs dump ABI info */
5370 int size = sizeof(u64);
5371
5372 perf_sample_regs_intr(&data->regs_intr, regs);
5373
5374 if (data->regs_intr.regs) {
5375 u64 mask = event->attr.sample_regs_intr;
5376
5377 size += hweight64(mask) * sizeof(u64);
5378 }
5379
5380 header->size += size;
5381 }
5622f295 5382}
7f453c24 5383
a8b0ca17 5384static void perf_event_output(struct perf_event *event,
5622f295
MM
5385 struct perf_sample_data *data,
5386 struct pt_regs *regs)
5387{
5388 struct perf_output_handle handle;
5389 struct perf_event_header header;
689802b2 5390
927c7a9e
FW
5391 /* protect the callchain buffers */
5392 rcu_read_lock();
5393
cdd6c482 5394 perf_prepare_sample(&header, data, event, regs);
5c148194 5395
a7ac67ea 5396 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5397 goto exit;
0322cd6e 5398
cdd6c482 5399 perf_output_sample(&handle, &header, data, event);
f413cdb8 5400
8a057d84 5401 perf_output_end(&handle);
927c7a9e
FW
5402
5403exit:
5404 rcu_read_unlock();
0322cd6e
PZ
5405}
5406
38b200d6 5407/*
cdd6c482 5408 * read event_id
38b200d6
PZ
5409 */
5410
5411struct perf_read_event {
5412 struct perf_event_header header;
5413
5414 u32 pid;
5415 u32 tid;
38b200d6
PZ
5416};
5417
5418static void
cdd6c482 5419perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5420 struct task_struct *task)
5421{
5422 struct perf_output_handle handle;
c980d109 5423 struct perf_sample_data sample;
dfc65094 5424 struct perf_read_event read_event = {
38b200d6 5425 .header = {
cdd6c482 5426 .type = PERF_RECORD_READ,
38b200d6 5427 .misc = 0,
c320c7b7 5428 .size = sizeof(read_event) + event->read_size,
38b200d6 5429 },
cdd6c482
IM
5430 .pid = perf_event_pid(event, task),
5431 .tid = perf_event_tid(event, task),
38b200d6 5432 };
3dab77fb 5433 int ret;
38b200d6 5434
c980d109 5435 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5436 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5437 if (ret)
5438 return;
5439
dfc65094 5440 perf_output_put(&handle, read_event);
cdd6c482 5441 perf_output_read(&handle, event);
c980d109 5442 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5443
38b200d6
PZ
5444 perf_output_end(&handle);
5445}
5446
52d857a8
JO
5447typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5448
5449static void
5450perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5451 perf_event_aux_output_cb output,
5452 void *data)
5453{
5454 struct perf_event *event;
5455
5456 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5457 if (event->state < PERF_EVENT_STATE_INACTIVE)
5458 continue;
5459 if (!event_filter_match(event))
5460 continue;
67516844 5461 output(event, data);
52d857a8
JO
5462 }
5463}
5464
5465static void
67516844 5466perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5467 struct perf_event_context *task_ctx)
5468{
5469 struct perf_cpu_context *cpuctx;
5470 struct perf_event_context *ctx;
5471 struct pmu *pmu;
5472 int ctxn;
5473
5474 rcu_read_lock();
5475 list_for_each_entry_rcu(pmu, &pmus, entry) {
5476 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5477 if (cpuctx->unique_pmu != pmu)
5478 goto next;
67516844 5479 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5480 if (task_ctx)
5481 goto next;
5482 ctxn = pmu->task_ctx_nr;
5483 if (ctxn < 0)
5484 goto next;
5485 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5486 if (ctx)
67516844 5487 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5488next:
5489 put_cpu_ptr(pmu->pmu_cpu_context);
5490 }
5491
5492 if (task_ctx) {
5493 preempt_disable();
67516844 5494 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5495 preempt_enable();
5496 }
5497 rcu_read_unlock();
5498}
5499
60313ebe 5500/*
9f498cc5
PZ
5501 * task tracking -- fork/exit
5502 *
13d7a241 5503 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5504 */
5505
9f498cc5 5506struct perf_task_event {
3a80b4a3 5507 struct task_struct *task;
cdd6c482 5508 struct perf_event_context *task_ctx;
60313ebe
PZ
5509
5510 struct {
5511 struct perf_event_header header;
5512
5513 u32 pid;
5514 u32 ppid;
9f498cc5
PZ
5515 u32 tid;
5516 u32 ptid;
393b2ad8 5517 u64 time;
cdd6c482 5518 } event_id;
60313ebe
PZ
5519};
5520
67516844
JO
5521static int perf_event_task_match(struct perf_event *event)
5522{
13d7a241
SE
5523 return event->attr.comm || event->attr.mmap ||
5524 event->attr.mmap2 || event->attr.mmap_data ||
5525 event->attr.task;
67516844
JO
5526}
5527
cdd6c482 5528static void perf_event_task_output(struct perf_event *event,
52d857a8 5529 void *data)
60313ebe 5530{
52d857a8 5531 struct perf_task_event *task_event = data;
60313ebe 5532 struct perf_output_handle handle;
c980d109 5533 struct perf_sample_data sample;
9f498cc5 5534 struct task_struct *task = task_event->task;
c980d109 5535 int ret, size = task_event->event_id.header.size;
8bb39f9a 5536
67516844
JO
5537 if (!perf_event_task_match(event))
5538 return;
5539
c980d109 5540 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5541
c980d109 5542 ret = perf_output_begin(&handle, event,
a7ac67ea 5543 task_event->event_id.header.size);
ef60777c 5544 if (ret)
c980d109 5545 goto out;
60313ebe 5546
cdd6c482
IM
5547 task_event->event_id.pid = perf_event_pid(event, task);
5548 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5549
cdd6c482
IM
5550 task_event->event_id.tid = perf_event_tid(event, task);
5551 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5552
34f43927
PZ
5553 task_event->event_id.time = perf_event_clock(event);
5554
cdd6c482 5555 perf_output_put(&handle, task_event->event_id);
393b2ad8 5556
c980d109
ACM
5557 perf_event__output_id_sample(event, &handle, &sample);
5558
60313ebe 5559 perf_output_end(&handle);
c980d109
ACM
5560out:
5561 task_event->event_id.header.size = size;
60313ebe
PZ
5562}
5563
cdd6c482
IM
5564static void perf_event_task(struct task_struct *task,
5565 struct perf_event_context *task_ctx,
3a80b4a3 5566 int new)
60313ebe 5567{
9f498cc5 5568 struct perf_task_event task_event;
60313ebe 5569
cdd6c482
IM
5570 if (!atomic_read(&nr_comm_events) &&
5571 !atomic_read(&nr_mmap_events) &&
5572 !atomic_read(&nr_task_events))
60313ebe
PZ
5573 return;
5574
9f498cc5 5575 task_event = (struct perf_task_event){
3a80b4a3
PZ
5576 .task = task,
5577 .task_ctx = task_ctx,
cdd6c482 5578 .event_id = {
60313ebe 5579 .header = {
cdd6c482 5580 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5581 .misc = 0,
cdd6c482 5582 .size = sizeof(task_event.event_id),
60313ebe 5583 },
573402db
PZ
5584 /* .pid */
5585 /* .ppid */
9f498cc5
PZ
5586 /* .tid */
5587 /* .ptid */
34f43927 5588 /* .time */
60313ebe
PZ
5589 },
5590 };
5591
67516844 5592 perf_event_aux(perf_event_task_output,
52d857a8
JO
5593 &task_event,
5594 task_ctx);
9f498cc5
PZ
5595}
5596
cdd6c482 5597void perf_event_fork(struct task_struct *task)
9f498cc5 5598{
cdd6c482 5599 perf_event_task(task, NULL, 1);
60313ebe
PZ
5600}
5601
8d1b2d93
PZ
5602/*
5603 * comm tracking
5604 */
5605
5606struct perf_comm_event {
22a4f650
IM
5607 struct task_struct *task;
5608 char *comm;
8d1b2d93
PZ
5609 int comm_size;
5610
5611 struct {
5612 struct perf_event_header header;
5613
5614 u32 pid;
5615 u32 tid;
cdd6c482 5616 } event_id;
8d1b2d93
PZ
5617};
5618
67516844
JO
5619static int perf_event_comm_match(struct perf_event *event)
5620{
5621 return event->attr.comm;
5622}
5623
cdd6c482 5624static void perf_event_comm_output(struct perf_event *event,
52d857a8 5625 void *data)
8d1b2d93 5626{
52d857a8 5627 struct perf_comm_event *comm_event = data;
8d1b2d93 5628 struct perf_output_handle handle;
c980d109 5629 struct perf_sample_data sample;
cdd6c482 5630 int size = comm_event->event_id.header.size;
c980d109
ACM
5631 int ret;
5632
67516844
JO
5633 if (!perf_event_comm_match(event))
5634 return;
5635
c980d109
ACM
5636 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5637 ret = perf_output_begin(&handle, event,
a7ac67ea 5638 comm_event->event_id.header.size);
8d1b2d93
PZ
5639
5640 if (ret)
c980d109 5641 goto out;
8d1b2d93 5642
cdd6c482
IM
5643 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5644 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5645
cdd6c482 5646 perf_output_put(&handle, comm_event->event_id);
76369139 5647 __output_copy(&handle, comm_event->comm,
8d1b2d93 5648 comm_event->comm_size);
c980d109
ACM
5649
5650 perf_event__output_id_sample(event, &handle, &sample);
5651
8d1b2d93 5652 perf_output_end(&handle);
c980d109
ACM
5653out:
5654 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5655}
5656
cdd6c482 5657static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5658{
413ee3b4 5659 char comm[TASK_COMM_LEN];
8d1b2d93 5660 unsigned int size;
8d1b2d93 5661
413ee3b4 5662 memset(comm, 0, sizeof(comm));
96b02d78 5663 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5664 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5665
5666 comm_event->comm = comm;
5667 comm_event->comm_size = size;
5668
cdd6c482 5669 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5670
67516844 5671 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5672 comm_event,
5673 NULL);
8d1b2d93
PZ
5674}
5675
82b89778 5676void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5677{
9ee318a7
PZ
5678 struct perf_comm_event comm_event;
5679
cdd6c482 5680 if (!atomic_read(&nr_comm_events))
9ee318a7 5681 return;
a63eaf34 5682
9ee318a7 5683 comm_event = (struct perf_comm_event){
8d1b2d93 5684 .task = task,
573402db
PZ
5685 /* .comm */
5686 /* .comm_size */
cdd6c482 5687 .event_id = {
573402db 5688 .header = {
cdd6c482 5689 .type = PERF_RECORD_COMM,
82b89778 5690 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5691 /* .size */
5692 },
5693 /* .pid */
5694 /* .tid */
8d1b2d93
PZ
5695 },
5696 };
5697
cdd6c482 5698 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5699}
5700
0a4a9391
PZ
5701/*
5702 * mmap tracking
5703 */
5704
5705struct perf_mmap_event {
089dd79d
PZ
5706 struct vm_area_struct *vma;
5707
5708 const char *file_name;
5709 int file_size;
13d7a241
SE
5710 int maj, min;
5711 u64 ino;
5712 u64 ino_generation;
f972eb63 5713 u32 prot, flags;
0a4a9391
PZ
5714
5715 struct {
5716 struct perf_event_header header;
5717
5718 u32 pid;
5719 u32 tid;
5720 u64 start;
5721 u64 len;
5722 u64 pgoff;
cdd6c482 5723 } event_id;
0a4a9391
PZ
5724};
5725
67516844
JO
5726static int perf_event_mmap_match(struct perf_event *event,
5727 void *data)
5728{
5729 struct perf_mmap_event *mmap_event = data;
5730 struct vm_area_struct *vma = mmap_event->vma;
5731 int executable = vma->vm_flags & VM_EXEC;
5732
5733 return (!executable && event->attr.mmap_data) ||
13d7a241 5734 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5735}
5736
cdd6c482 5737static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5738 void *data)
0a4a9391 5739{
52d857a8 5740 struct perf_mmap_event *mmap_event = data;
0a4a9391 5741 struct perf_output_handle handle;
c980d109 5742 struct perf_sample_data sample;
cdd6c482 5743 int size = mmap_event->event_id.header.size;
c980d109 5744 int ret;
0a4a9391 5745
67516844
JO
5746 if (!perf_event_mmap_match(event, data))
5747 return;
5748
13d7a241
SE
5749 if (event->attr.mmap2) {
5750 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5751 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5752 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5753 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5754 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5755 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5756 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5757 }
5758
c980d109
ACM
5759 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5760 ret = perf_output_begin(&handle, event,
a7ac67ea 5761 mmap_event->event_id.header.size);
0a4a9391 5762 if (ret)
c980d109 5763 goto out;
0a4a9391 5764
cdd6c482
IM
5765 mmap_event->event_id.pid = perf_event_pid(event, current);
5766 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5767
cdd6c482 5768 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5769
5770 if (event->attr.mmap2) {
5771 perf_output_put(&handle, mmap_event->maj);
5772 perf_output_put(&handle, mmap_event->min);
5773 perf_output_put(&handle, mmap_event->ino);
5774 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5775 perf_output_put(&handle, mmap_event->prot);
5776 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5777 }
5778
76369139 5779 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5780 mmap_event->file_size);
c980d109
ACM
5781
5782 perf_event__output_id_sample(event, &handle, &sample);
5783
78d613eb 5784 perf_output_end(&handle);
c980d109
ACM
5785out:
5786 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5787}
5788
cdd6c482 5789static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5790{
089dd79d
PZ
5791 struct vm_area_struct *vma = mmap_event->vma;
5792 struct file *file = vma->vm_file;
13d7a241
SE
5793 int maj = 0, min = 0;
5794 u64 ino = 0, gen = 0;
f972eb63 5795 u32 prot = 0, flags = 0;
0a4a9391
PZ
5796 unsigned int size;
5797 char tmp[16];
5798 char *buf = NULL;
2c42cfbf 5799 char *name;
413ee3b4 5800
0a4a9391 5801 if (file) {
13d7a241
SE
5802 struct inode *inode;
5803 dev_t dev;
3ea2f2b9 5804
2c42cfbf 5805 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5806 if (!buf) {
c7e548b4
ON
5807 name = "//enomem";
5808 goto cpy_name;
0a4a9391 5809 }
413ee3b4 5810 /*
3ea2f2b9 5811 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5812 * need to add enough zero bytes after the string to handle
5813 * the 64bit alignment we do later.
5814 */
3ea2f2b9 5815 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5816 if (IS_ERR(name)) {
c7e548b4
ON
5817 name = "//toolong";
5818 goto cpy_name;
0a4a9391 5819 }
13d7a241
SE
5820 inode = file_inode(vma->vm_file);
5821 dev = inode->i_sb->s_dev;
5822 ino = inode->i_ino;
5823 gen = inode->i_generation;
5824 maj = MAJOR(dev);
5825 min = MINOR(dev);
f972eb63
PZ
5826
5827 if (vma->vm_flags & VM_READ)
5828 prot |= PROT_READ;
5829 if (vma->vm_flags & VM_WRITE)
5830 prot |= PROT_WRITE;
5831 if (vma->vm_flags & VM_EXEC)
5832 prot |= PROT_EXEC;
5833
5834 if (vma->vm_flags & VM_MAYSHARE)
5835 flags = MAP_SHARED;
5836 else
5837 flags = MAP_PRIVATE;
5838
5839 if (vma->vm_flags & VM_DENYWRITE)
5840 flags |= MAP_DENYWRITE;
5841 if (vma->vm_flags & VM_MAYEXEC)
5842 flags |= MAP_EXECUTABLE;
5843 if (vma->vm_flags & VM_LOCKED)
5844 flags |= MAP_LOCKED;
5845 if (vma->vm_flags & VM_HUGETLB)
5846 flags |= MAP_HUGETLB;
5847
c7e548b4 5848 goto got_name;
0a4a9391 5849 } else {
fbe26abe
JO
5850 if (vma->vm_ops && vma->vm_ops->name) {
5851 name = (char *) vma->vm_ops->name(vma);
5852 if (name)
5853 goto cpy_name;
5854 }
5855
2c42cfbf 5856 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5857 if (name)
5858 goto cpy_name;
089dd79d 5859
32c5fb7e 5860 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5861 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5862 name = "[heap]";
5863 goto cpy_name;
32c5fb7e
ON
5864 }
5865 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5866 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5867 name = "[stack]";
5868 goto cpy_name;
089dd79d
PZ
5869 }
5870
c7e548b4
ON
5871 name = "//anon";
5872 goto cpy_name;
0a4a9391
PZ
5873 }
5874
c7e548b4
ON
5875cpy_name:
5876 strlcpy(tmp, name, sizeof(tmp));
5877 name = tmp;
0a4a9391 5878got_name:
2c42cfbf
PZ
5879 /*
5880 * Since our buffer works in 8 byte units we need to align our string
5881 * size to a multiple of 8. However, we must guarantee the tail end is
5882 * zero'd out to avoid leaking random bits to userspace.
5883 */
5884 size = strlen(name)+1;
5885 while (!IS_ALIGNED(size, sizeof(u64)))
5886 name[size++] = '\0';
0a4a9391
PZ
5887
5888 mmap_event->file_name = name;
5889 mmap_event->file_size = size;
13d7a241
SE
5890 mmap_event->maj = maj;
5891 mmap_event->min = min;
5892 mmap_event->ino = ino;
5893 mmap_event->ino_generation = gen;
f972eb63
PZ
5894 mmap_event->prot = prot;
5895 mmap_event->flags = flags;
0a4a9391 5896
2fe85427
SE
5897 if (!(vma->vm_flags & VM_EXEC))
5898 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5899
cdd6c482 5900 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5901
67516844 5902 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5903 mmap_event,
5904 NULL);
665c2142 5905
0a4a9391
PZ
5906 kfree(buf);
5907}
5908
3af9e859 5909void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5910{
9ee318a7
PZ
5911 struct perf_mmap_event mmap_event;
5912
cdd6c482 5913 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5914 return;
5915
5916 mmap_event = (struct perf_mmap_event){
089dd79d 5917 .vma = vma,
573402db
PZ
5918 /* .file_name */
5919 /* .file_size */
cdd6c482 5920 .event_id = {
573402db 5921 .header = {
cdd6c482 5922 .type = PERF_RECORD_MMAP,
39447b38 5923 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5924 /* .size */
5925 },
5926 /* .pid */
5927 /* .tid */
089dd79d
PZ
5928 .start = vma->vm_start,
5929 .len = vma->vm_end - vma->vm_start,
3a0304e9 5930 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5931 },
13d7a241
SE
5932 /* .maj (attr_mmap2 only) */
5933 /* .min (attr_mmap2 only) */
5934 /* .ino (attr_mmap2 only) */
5935 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
5936 /* .prot (attr_mmap2 only) */
5937 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
5938 };
5939
cdd6c482 5940 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5941}
5942
68db7e98
AS
5943void perf_event_aux_event(struct perf_event *event, unsigned long head,
5944 unsigned long size, u64 flags)
5945{
5946 struct perf_output_handle handle;
5947 struct perf_sample_data sample;
5948 struct perf_aux_event {
5949 struct perf_event_header header;
5950 u64 offset;
5951 u64 size;
5952 u64 flags;
5953 } rec = {
5954 .header = {
5955 .type = PERF_RECORD_AUX,
5956 .misc = 0,
5957 .size = sizeof(rec),
5958 },
5959 .offset = head,
5960 .size = size,
5961 .flags = flags,
5962 };
5963 int ret;
5964
5965 perf_event_header__init_id(&rec.header, &sample, event);
5966 ret = perf_output_begin(&handle, event, rec.header.size);
5967
5968 if (ret)
5969 return;
5970
5971 perf_output_put(&handle, rec);
5972 perf_event__output_id_sample(event, &handle, &sample);
5973
5974 perf_output_end(&handle);
5975}
5976
a78ac325
PZ
5977/*
5978 * IRQ throttle logging
5979 */
5980
cdd6c482 5981static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5982{
5983 struct perf_output_handle handle;
c980d109 5984 struct perf_sample_data sample;
a78ac325
PZ
5985 int ret;
5986
5987 struct {
5988 struct perf_event_header header;
5989 u64 time;
cca3f454 5990 u64 id;
7f453c24 5991 u64 stream_id;
a78ac325
PZ
5992 } throttle_event = {
5993 .header = {
cdd6c482 5994 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5995 .misc = 0,
5996 .size = sizeof(throttle_event),
5997 },
34f43927 5998 .time = perf_event_clock(event),
cdd6c482
IM
5999 .id = primary_event_id(event),
6000 .stream_id = event->id,
a78ac325
PZ
6001 };
6002
966ee4d6 6003 if (enable)
cdd6c482 6004 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6005
c980d109
ACM
6006 perf_event_header__init_id(&throttle_event.header, &sample, event);
6007
6008 ret = perf_output_begin(&handle, event,
a7ac67ea 6009 throttle_event.header.size);
a78ac325
PZ
6010 if (ret)
6011 return;
6012
6013 perf_output_put(&handle, throttle_event);
c980d109 6014 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6015 perf_output_end(&handle);
6016}
6017
ec0d7729
AS
6018static void perf_log_itrace_start(struct perf_event *event)
6019{
6020 struct perf_output_handle handle;
6021 struct perf_sample_data sample;
6022 struct perf_aux_event {
6023 struct perf_event_header header;
6024 u32 pid;
6025 u32 tid;
6026 } rec;
6027 int ret;
6028
6029 if (event->parent)
6030 event = event->parent;
6031
6032 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6033 event->hw.itrace_started)
6034 return;
6035
6036 event->hw.itrace_started = 1;
6037
6038 rec.header.type = PERF_RECORD_ITRACE_START;
6039 rec.header.misc = 0;
6040 rec.header.size = sizeof(rec);
6041 rec.pid = perf_event_pid(event, current);
6042 rec.tid = perf_event_tid(event, current);
6043
6044 perf_event_header__init_id(&rec.header, &sample, event);
6045 ret = perf_output_begin(&handle, event, rec.header.size);
6046
6047 if (ret)
6048 return;
6049
6050 perf_output_put(&handle, rec);
6051 perf_event__output_id_sample(event, &handle, &sample);
6052
6053 perf_output_end(&handle);
6054}
6055
f6c7d5fe 6056/*
cdd6c482 6057 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6058 */
6059
a8b0ca17 6060static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6061 int throttle, struct perf_sample_data *data,
6062 struct pt_regs *regs)
f6c7d5fe 6063{
cdd6c482
IM
6064 int events = atomic_read(&event->event_limit);
6065 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6066 u64 seq;
79f14641
PZ
6067 int ret = 0;
6068
96398826
PZ
6069 /*
6070 * Non-sampling counters might still use the PMI to fold short
6071 * hardware counters, ignore those.
6072 */
6073 if (unlikely(!is_sampling_event(event)))
6074 return 0;
6075
e050e3f0
SE
6076 seq = __this_cpu_read(perf_throttled_seq);
6077 if (seq != hwc->interrupts_seq) {
6078 hwc->interrupts_seq = seq;
6079 hwc->interrupts = 1;
6080 } else {
6081 hwc->interrupts++;
6082 if (unlikely(throttle
6083 && hwc->interrupts >= max_samples_per_tick)) {
6084 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6085 hwc->interrupts = MAX_INTERRUPTS;
6086 perf_log_throttle(event, 0);
d84153d6 6087 tick_nohz_full_kick();
a78ac325
PZ
6088 ret = 1;
6089 }
e050e3f0 6090 }
60db5e09 6091
cdd6c482 6092 if (event->attr.freq) {
def0a9b2 6093 u64 now = perf_clock();
abd50713 6094 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6095
abd50713 6096 hwc->freq_time_stamp = now;
bd2b5b12 6097
abd50713 6098 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6099 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6100 }
6101
2023b359
PZ
6102 /*
6103 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6104 * events
2023b359
PZ
6105 */
6106
cdd6c482
IM
6107 event->pending_kill = POLL_IN;
6108 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6109 ret = 1;
cdd6c482 6110 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6111 event->pending_disable = 1;
6112 irq_work_queue(&event->pending);
79f14641
PZ
6113 }
6114
453f19ee 6115 if (event->overflow_handler)
a8b0ca17 6116 event->overflow_handler(event, data, regs);
453f19ee 6117 else
a8b0ca17 6118 perf_event_output(event, data, regs);
453f19ee 6119
f506b3dc 6120 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
6121 event->pending_wakeup = 1;
6122 irq_work_queue(&event->pending);
f506b3dc
PZ
6123 }
6124
79f14641 6125 return ret;
f6c7d5fe
PZ
6126}
6127
a8b0ca17 6128int perf_event_overflow(struct perf_event *event,
5622f295
MM
6129 struct perf_sample_data *data,
6130 struct pt_regs *regs)
850bc73f 6131{
a8b0ca17 6132 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6133}
6134
15dbf27c 6135/*
cdd6c482 6136 * Generic software event infrastructure
15dbf27c
PZ
6137 */
6138
b28ab83c
PZ
6139struct swevent_htable {
6140 struct swevent_hlist *swevent_hlist;
6141 struct mutex hlist_mutex;
6142 int hlist_refcount;
6143
6144 /* Recursion avoidance in each contexts */
6145 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
6146
6147 /* Keeps track of cpu being initialized/exited */
6148 bool online;
b28ab83c
PZ
6149};
6150
6151static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6152
7b4b6658 6153/*
cdd6c482
IM
6154 * We directly increment event->count and keep a second value in
6155 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6156 * is kept in the range [-sample_period, 0] so that we can use the
6157 * sign as trigger.
6158 */
6159
ab573844 6160u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6161{
cdd6c482 6162 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6163 u64 period = hwc->last_period;
6164 u64 nr, offset;
6165 s64 old, val;
6166
6167 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6168
6169again:
e7850595 6170 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6171 if (val < 0)
6172 return 0;
15dbf27c 6173
7b4b6658
PZ
6174 nr = div64_u64(period + val, period);
6175 offset = nr * period;
6176 val -= offset;
e7850595 6177 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6178 goto again;
15dbf27c 6179
7b4b6658 6180 return nr;
15dbf27c
PZ
6181}
6182
0cff784a 6183static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6184 struct perf_sample_data *data,
5622f295 6185 struct pt_regs *regs)
15dbf27c 6186{
cdd6c482 6187 struct hw_perf_event *hwc = &event->hw;
850bc73f 6188 int throttle = 0;
15dbf27c 6189
0cff784a
PZ
6190 if (!overflow)
6191 overflow = perf_swevent_set_period(event);
15dbf27c 6192
7b4b6658
PZ
6193 if (hwc->interrupts == MAX_INTERRUPTS)
6194 return;
15dbf27c 6195
7b4b6658 6196 for (; overflow; overflow--) {
a8b0ca17 6197 if (__perf_event_overflow(event, throttle,
5622f295 6198 data, regs)) {
7b4b6658
PZ
6199 /*
6200 * We inhibit the overflow from happening when
6201 * hwc->interrupts == MAX_INTERRUPTS.
6202 */
6203 break;
6204 }
cf450a73 6205 throttle = 1;
7b4b6658 6206 }
15dbf27c
PZ
6207}
6208
a4eaf7f1 6209static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6210 struct perf_sample_data *data,
5622f295 6211 struct pt_regs *regs)
7b4b6658 6212{
cdd6c482 6213 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6214
e7850595 6215 local64_add(nr, &event->count);
d6d020e9 6216
0cff784a
PZ
6217 if (!regs)
6218 return;
6219
6c7e550f 6220 if (!is_sampling_event(event))
7b4b6658 6221 return;
d6d020e9 6222
5d81e5cf
AV
6223 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6224 data->period = nr;
6225 return perf_swevent_overflow(event, 1, data, regs);
6226 } else
6227 data->period = event->hw.last_period;
6228
0cff784a 6229 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6230 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6231
e7850595 6232 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6233 return;
df1a132b 6234
a8b0ca17 6235 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6236}
6237
f5ffe02e
FW
6238static int perf_exclude_event(struct perf_event *event,
6239 struct pt_regs *regs)
6240{
a4eaf7f1 6241 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6242 return 1;
a4eaf7f1 6243
f5ffe02e
FW
6244 if (regs) {
6245 if (event->attr.exclude_user && user_mode(regs))
6246 return 1;
6247
6248 if (event->attr.exclude_kernel && !user_mode(regs))
6249 return 1;
6250 }
6251
6252 return 0;
6253}
6254
cdd6c482 6255static int perf_swevent_match(struct perf_event *event,
1c432d89 6256 enum perf_type_id type,
6fb2915d
LZ
6257 u32 event_id,
6258 struct perf_sample_data *data,
6259 struct pt_regs *regs)
15dbf27c 6260{
cdd6c482 6261 if (event->attr.type != type)
a21ca2ca 6262 return 0;
f5ffe02e 6263
cdd6c482 6264 if (event->attr.config != event_id)
15dbf27c
PZ
6265 return 0;
6266
f5ffe02e
FW
6267 if (perf_exclude_event(event, regs))
6268 return 0;
15dbf27c
PZ
6269
6270 return 1;
6271}
6272
76e1d904
FW
6273static inline u64 swevent_hash(u64 type, u32 event_id)
6274{
6275 u64 val = event_id | (type << 32);
6276
6277 return hash_64(val, SWEVENT_HLIST_BITS);
6278}
6279
49f135ed
FW
6280static inline struct hlist_head *
6281__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6282{
49f135ed
FW
6283 u64 hash = swevent_hash(type, event_id);
6284
6285 return &hlist->heads[hash];
6286}
76e1d904 6287
49f135ed
FW
6288/* For the read side: events when they trigger */
6289static inline struct hlist_head *
b28ab83c 6290find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6291{
6292 struct swevent_hlist *hlist;
76e1d904 6293
b28ab83c 6294 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6295 if (!hlist)
6296 return NULL;
6297
49f135ed
FW
6298 return __find_swevent_head(hlist, type, event_id);
6299}
6300
6301/* For the event head insertion and removal in the hlist */
6302static inline struct hlist_head *
b28ab83c 6303find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6304{
6305 struct swevent_hlist *hlist;
6306 u32 event_id = event->attr.config;
6307 u64 type = event->attr.type;
6308
6309 /*
6310 * Event scheduling is always serialized against hlist allocation
6311 * and release. Which makes the protected version suitable here.
6312 * The context lock guarantees that.
6313 */
b28ab83c 6314 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6315 lockdep_is_held(&event->ctx->lock));
6316 if (!hlist)
6317 return NULL;
6318
6319 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6320}
6321
6322static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6323 u64 nr,
76e1d904
FW
6324 struct perf_sample_data *data,
6325 struct pt_regs *regs)
15dbf27c 6326{
4a32fea9 6327 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6328 struct perf_event *event;
76e1d904 6329 struct hlist_head *head;
15dbf27c 6330
76e1d904 6331 rcu_read_lock();
b28ab83c 6332 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6333 if (!head)
6334 goto end;
6335
b67bfe0d 6336 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6337 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6338 perf_swevent_event(event, nr, data, regs);
15dbf27c 6339 }
76e1d904
FW
6340end:
6341 rcu_read_unlock();
15dbf27c
PZ
6342}
6343
86038c5e
PZI
6344DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6345
4ed7c92d 6346int perf_swevent_get_recursion_context(void)
96f6d444 6347{
4a32fea9 6348 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6349
b28ab83c 6350 return get_recursion_context(swhash->recursion);
96f6d444 6351}
645e8cc0 6352EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6353
fa9f90be 6354inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6355{
4a32fea9 6356 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6357
b28ab83c 6358 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6359}
15dbf27c 6360
86038c5e 6361void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6362{
a4234bfc 6363 struct perf_sample_data data;
4ed7c92d 6364
86038c5e 6365 if (WARN_ON_ONCE(!regs))
4ed7c92d 6366 return;
a4234bfc 6367
fd0d000b 6368 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6369 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6370}
6371
6372void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6373{
6374 int rctx;
6375
6376 preempt_disable_notrace();
6377 rctx = perf_swevent_get_recursion_context();
6378 if (unlikely(rctx < 0))
6379 goto fail;
6380
6381 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6382
6383 perf_swevent_put_recursion_context(rctx);
86038c5e 6384fail:
1c024eca 6385 preempt_enable_notrace();
b8e83514
PZ
6386}
6387
cdd6c482 6388static void perf_swevent_read(struct perf_event *event)
15dbf27c 6389{
15dbf27c
PZ
6390}
6391
a4eaf7f1 6392static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6393{
4a32fea9 6394 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6395 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6396 struct hlist_head *head;
6397
6c7e550f 6398 if (is_sampling_event(event)) {
7b4b6658 6399 hwc->last_period = hwc->sample_period;
cdd6c482 6400 perf_swevent_set_period(event);
7b4b6658 6401 }
76e1d904 6402
a4eaf7f1
PZ
6403 hwc->state = !(flags & PERF_EF_START);
6404
b28ab83c 6405 head = find_swevent_head(swhash, event);
39af6b16
JO
6406 if (!head) {
6407 /*
6408 * We can race with cpu hotplug code. Do not
6409 * WARN if the cpu just got unplugged.
6410 */
6411 WARN_ON_ONCE(swhash->online);
76e1d904 6412 return -EINVAL;
39af6b16 6413 }
76e1d904
FW
6414
6415 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6416 perf_event_update_userpage(event);
76e1d904 6417
15dbf27c
PZ
6418 return 0;
6419}
6420
a4eaf7f1 6421static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6422{
76e1d904 6423 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6424}
6425
a4eaf7f1 6426static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6427{
a4eaf7f1 6428 event->hw.state = 0;
d6d020e9 6429}
aa9c4c0f 6430
a4eaf7f1 6431static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6432{
a4eaf7f1 6433 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6434}
6435
49f135ed
FW
6436/* Deref the hlist from the update side */
6437static inline struct swevent_hlist *
b28ab83c 6438swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6439{
b28ab83c
PZ
6440 return rcu_dereference_protected(swhash->swevent_hlist,
6441 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6442}
6443
b28ab83c 6444static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6445{
b28ab83c 6446 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6447
49f135ed 6448 if (!hlist)
76e1d904
FW
6449 return;
6450
70691d4a 6451 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6452 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6453}
6454
6455static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6456{
b28ab83c 6457 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6458
b28ab83c 6459 mutex_lock(&swhash->hlist_mutex);
76e1d904 6460
b28ab83c
PZ
6461 if (!--swhash->hlist_refcount)
6462 swevent_hlist_release(swhash);
76e1d904 6463
b28ab83c 6464 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6465}
6466
6467static void swevent_hlist_put(struct perf_event *event)
6468{
6469 int cpu;
6470
76e1d904
FW
6471 for_each_possible_cpu(cpu)
6472 swevent_hlist_put_cpu(event, cpu);
6473}
6474
6475static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6476{
b28ab83c 6477 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6478 int err = 0;
6479
b28ab83c 6480 mutex_lock(&swhash->hlist_mutex);
76e1d904 6481
b28ab83c 6482 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6483 struct swevent_hlist *hlist;
6484
6485 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6486 if (!hlist) {
6487 err = -ENOMEM;
6488 goto exit;
6489 }
b28ab83c 6490 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6491 }
b28ab83c 6492 swhash->hlist_refcount++;
9ed6060d 6493exit:
b28ab83c 6494 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6495
6496 return err;
6497}
6498
6499static int swevent_hlist_get(struct perf_event *event)
6500{
6501 int err;
6502 int cpu, failed_cpu;
6503
76e1d904
FW
6504 get_online_cpus();
6505 for_each_possible_cpu(cpu) {
6506 err = swevent_hlist_get_cpu(event, cpu);
6507 if (err) {
6508 failed_cpu = cpu;
6509 goto fail;
6510 }
6511 }
6512 put_online_cpus();
6513
6514 return 0;
9ed6060d 6515fail:
76e1d904
FW
6516 for_each_possible_cpu(cpu) {
6517 if (cpu == failed_cpu)
6518 break;
6519 swevent_hlist_put_cpu(event, cpu);
6520 }
6521
6522 put_online_cpus();
6523 return err;
6524}
6525
c5905afb 6526struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6527
b0a873eb
PZ
6528static void sw_perf_event_destroy(struct perf_event *event)
6529{
6530 u64 event_id = event->attr.config;
95476b64 6531
b0a873eb
PZ
6532 WARN_ON(event->parent);
6533
c5905afb 6534 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6535 swevent_hlist_put(event);
6536}
6537
6538static int perf_swevent_init(struct perf_event *event)
6539{
8176cced 6540 u64 event_id = event->attr.config;
b0a873eb
PZ
6541
6542 if (event->attr.type != PERF_TYPE_SOFTWARE)
6543 return -ENOENT;
6544
2481c5fa
SE
6545 /*
6546 * no branch sampling for software events
6547 */
6548 if (has_branch_stack(event))
6549 return -EOPNOTSUPP;
6550
b0a873eb
PZ
6551 switch (event_id) {
6552 case PERF_COUNT_SW_CPU_CLOCK:
6553 case PERF_COUNT_SW_TASK_CLOCK:
6554 return -ENOENT;
6555
6556 default:
6557 break;
6558 }
6559
ce677831 6560 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6561 return -ENOENT;
6562
6563 if (!event->parent) {
6564 int err;
6565
6566 err = swevent_hlist_get(event);
6567 if (err)
6568 return err;
6569
c5905afb 6570 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6571 event->destroy = sw_perf_event_destroy;
6572 }
6573
6574 return 0;
6575}
6576
6577static struct pmu perf_swevent = {
89a1e187 6578 .task_ctx_nr = perf_sw_context,
95476b64 6579
34f43927
PZ
6580 .capabilities = PERF_PMU_CAP_NO_NMI,
6581
b0a873eb 6582 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6583 .add = perf_swevent_add,
6584 .del = perf_swevent_del,
6585 .start = perf_swevent_start,
6586 .stop = perf_swevent_stop,
1c024eca 6587 .read = perf_swevent_read,
1c024eca
PZ
6588};
6589
b0a873eb
PZ
6590#ifdef CONFIG_EVENT_TRACING
6591
1c024eca
PZ
6592static int perf_tp_filter_match(struct perf_event *event,
6593 struct perf_sample_data *data)
6594{
6595 void *record = data->raw->data;
6596
6597 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6598 return 1;
6599 return 0;
6600}
6601
6602static int perf_tp_event_match(struct perf_event *event,
6603 struct perf_sample_data *data,
6604 struct pt_regs *regs)
6605{
a0f7d0f7
FW
6606 if (event->hw.state & PERF_HES_STOPPED)
6607 return 0;
580d607c
PZ
6608 /*
6609 * All tracepoints are from kernel-space.
6610 */
6611 if (event->attr.exclude_kernel)
1c024eca
PZ
6612 return 0;
6613
6614 if (!perf_tp_filter_match(event, data))
6615 return 0;
6616
6617 return 1;
6618}
6619
6620void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6621 struct pt_regs *regs, struct hlist_head *head, int rctx,
6622 struct task_struct *task)
95476b64
FW
6623{
6624 struct perf_sample_data data;
1c024eca 6625 struct perf_event *event;
1c024eca 6626
95476b64
FW
6627 struct perf_raw_record raw = {
6628 .size = entry_size,
6629 .data = record,
6630 };
6631
fd0d000b 6632 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6633 data.raw = &raw;
6634
b67bfe0d 6635 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6636 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6637 perf_swevent_event(event, count, &data, regs);
4f41c013 6638 }
ecc55f84 6639
e6dab5ff
AV
6640 /*
6641 * If we got specified a target task, also iterate its context and
6642 * deliver this event there too.
6643 */
6644 if (task && task != current) {
6645 struct perf_event_context *ctx;
6646 struct trace_entry *entry = record;
6647
6648 rcu_read_lock();
6649 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6650 if (!ctx)
6651 goto unlock;
6652
6653 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6654 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6655 continue;
6656 if (event->attr.config != entry->type)
6657 continue;
6658 if (perf_tp_event_match(event, &data, regs))
6659 perf_swevent_event(event, count, &data, regs);
6660 }
6661unlock:
6662 rcu_read_unlock();
6663 }
6664
ecc55f84 6665 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6666}
6667EXPORT_SYMBOL_GPL(perf_tp_event);
6668
cdd6c482 6669static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6670{
1c024eca 6671 perf_trace_destroy(event);
e077df4f
PZ
6672}
6673
b0a873eb 6674static int perf_tp_event_init(struct perf_event *event)
e077df4f 6675{
76e1d904
FW
6676 int err;
6677
b0a873eb
PZ
6678 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6679 return -ENOENT;
6680
2481c5fa
SE
6681 /*
6682 * no branch sampling for tracepoint events
6683 */
6684 if (has_branch_stack(event))
6685 return -EOPNOTSUPP;
6686
1c024eca
PZ
6687 err = perf_trace_init(event);
6688 if (err)
b0a873eb 6689 return err;
e077df4f 6690
cdd6c482 6691 event->destroy = tp_perf_event_destroy;
e077df4f 6692
b0a873eb
PZ
6693 return 0;
6694}
6695
6696static struct pmu perf_tracepoint = {
89a1e187
PZ
6697 .task_ctx_nr = perf_sw_context,
6698
b0a873eb 6699 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6700 .add = perf_trace_add,
6701 .del = perf_trace_del,
6702 .start = perf_swevent_start,
6703 .stop = perf_swevent_stop,
b0a873eb 6704 .read = perf_swevent_read,
b0a873eb
PZ
6705};
6706
6707static inline void perf_tp_register(void)
6708{
2e80a82a 6709 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6710}
6fb2915d
LZ
6711
6712static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6713{
6714 char *filter_str;
6715 int ret;
6716
6717 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6718 return -EINVAL;
6719
6720 filter_str = strndup_user(arg, PAGE_SIZE);
6721 if (IS_ERR(filter_str))
6722 return PTR_ERR(filter_str);
6723
6724 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6725
6726 kfree(filter_str);
6727 return ret;
6728}
6729
6730static void perf_event_free_filter(struct perf_event *event)
6731{
6732 ftrace_profile_free_filter(event);
6733}
6734
2541517c
AS
6735static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6736{
6737 struct bpf_prog *prog;
6738
6739 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6740 return -EINVAL;
6741
6742 if (event->tp_event->prog)
6743 return -EEXIST;
6744
6745 if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
6746 /* bpf programs can only be attached to kprobes */
6747 return -EINVAL;
6748
6749 prog = bpf_prog_get(prog_fd);
6750 if (IS_ERR(prog))
6751 return PTR_ERR(prog);
6752
6c373ca8 6753 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
6754 /* valid fd, but invalid bpf program type */
6755 bpf_prog_put(prog);
6756 return -EINVAL;
6757 }
6758
6759 event->tp_event->prog = prog;
6760
6761 return 0;
6762}
6763
6764static void perf_event_free_bpf_prog(struct perf_event *event)
6765{
6766 struct bpf_prog *prog;
6767
6768 if (!event->tp_event)
6769 return;
6770
6771 prog = event->tp_event->prog;
6772 if (prog) {
6773 event->tp_event->prog = NULL;
6774 bpf_prog_put(prog);
6775 }
6776}
6777
e077df4f 6778#else
6fb2915d 6779
b0a873eb 6780static inline void perf_tp_register(void)
e077df4f 6781{
e077df4f 6782}
6fb2915d
LZ
6783
6784static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6785{
6786 return -ENOENT;
6787}
6788
6789static void perf_event_free_filter(struct perf_event *event)
6790{
6791}
6792
2541517c
AS
6793static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6794{
6795 return -ENOENT;
6796}
6797
6798static void perf_event_free_bpf_prog(struct perf_event *event)
6799{
6800}
07b139c8 6801#endif /* CONFIG_EVENT_TRACING */
e077df4f 6802
24f1e32c 6803#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6804void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6805{
f5ffe02e
FW
6806 struct perf_sample_data sample;
6807 struct pt_regs *regs = data;
6808
fd0d000b 6809 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6810
a4eaf7f1 6811 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6812 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6813}
6814#endif
6815
b0a873eb
PZ
6816/*
6817 * hrtimer based swevent callback
6818 */
f29ac756 6819
b0a873eb 6820static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6821{
b0a873eb
PZ
6822 enum hrtimer_restart ret = HRTIMER_RESTART;
6823 struct perf_sample_data data;
6824 struct pt_regs *regs;
6825 struct perf_event *event;
6826 u64 period;
f29ac756 6827
b0a873eb 6828 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6829
6830 if (event->state != PERF_EVENT_STATE_ACTIVE)
6831 return HRTIMER_NORESTART;
6832
b0a873eb 6833 event->pmu->read(event);
f344011c 6834
fd0d000b 6835 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6836 regs = get_irq_regs();
6837
6838 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6839 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6840 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6841 ret = HRTIMER_NORESTART;
6842 }
24f1e32c 6843
b0a873eb
PZ
6844 period = max_t(u64, 10000, event->hw.sample_period);
6845 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6846
b0a873eb 6847 return ret;
f29ac756
PZ
6848}
6849
b0a873eb 6850static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6851{
b0a873eb 6852 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6853 s64 period;
6854
6855 if (!is_sampling_event(event))
6856 return;
f5ffe02e 6857
5d508e82
FBH
6858 period = local64_read(&hwc->period_left);
6859 if (period) {
6860 if (period < 0)
6861 period = 10000;
fa407f35 6862
5d508e82
FBH
6863 local64_set(&hwc->period_left, 0);
6864 } else {
6865 period = max_t(u64, 10000, hwc->sample_period);
6866 }
6867 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6868 ns_to_ktime(period), 0,
b5ab4cd5 6869 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6870}
b0a873eb
PZ
6871
6872static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6873{
b0a873eb
PZ
6874 struct hw_perf_event *hwc = &event->hw;
6875
6c7e550f 6876 if (is_sampling_event(event)) {
b0a873eb 6877 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6878 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6879
6880 hrtimer_cancel(&hwc->hrtimer);
6881 }
24f1e32c
FW
6882}
6883
ba3dd36c
PZ
6884static void perf_swevent_init_hrtimer(struct perf_event *event)
6885{
6886 struct hw_perf_event *hwc = &event->hw;
6887
6888 if (!is_sampling_event(event))
6889 return;
6890
6891 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6892 hwc->hrtimer.function = perf_swevent_hrtimer;
6893
6894 /*
6895 * Since hrtimers have a fixed rate, we can do a static freq->period
6896 * mapping and avoid the whole period adjust feedback stuff.
6897 */
6898 if (event->attr.freq) {
6899 long freq = event->attr.sample_freq;
6900
6901 event->attr.sample_period = NSEC_PER_SEC / freq;
6902 hwc->sample_period = event->attr.sample_period;
6903 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6904 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6905 event->attr.freq = 0;
6906 }
6907}
6908
b0a873eb
PZ
6909/*
6910 * Software event: cpu wall time clock
6911 */
6912
6913static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6914{
b0a873eb
PZ
6915 s64 prev;
6916 u64 now;
6917
a4eaf7f1 6918 now = local_clock();
b0a873eb
PZ
6919 prev = local64_xchg(&event->hw.prev_count, now);
6920 local64_add(now - prev, &event->count);
24f1e32c 6921}
24f1e32c 6922
a4eaf7f1 6923static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6924{
a4eaf7f1 6925 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6926 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6927}
6928
a4eaf7f1 6929static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6930{
b0a873eb
PZ
6931 perf_swevent_cancel_hrtimer(event);
6932 cpu_clock_event_update(event);
6933}
f29ac756 6934
a4eaf7f1
PZ
6935static int cpu_clock_event_add(struct perf_event *event, int flags)
6936{
6937 if (flags & PERF_EF_START)
6938 cpu_clock_event_start(event, flags);
6a694a60 6939 perf_event_update_userpage(event);
a4eaf7f1
PZ
6940
6941 return 0;
6942}
6943
6944static void cpu_clock_event_del(struct perf_event *event, int flags)
6945{
6946 cpu_clock_event_stop(event, flags);
6947}
6948
b0a873eb
PZ
6949static void cpu_clock_event_read(struct perf_event *event)
6950{
6951 cpu_clock_event_update(event);
6952}
f344011c 6953
b0a873eb
PZ
6954static int cpu_clock_event_init(struct perf_event *event)
6955{
6956 if (event->attr.type != PERF_TYPE_SOFTWARE)
6957 return -ENOENT;
6958
6959 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6960 return -ENOENT;
6961
2481c5fa
SE
6962 /*
6963 * no branch sampling for software events
6964 */
6965 if (has_branch_stack(event))
6966 return -EOPNOTSUPP;
6967
ba3dd36c
PZ
6968 perf_swevent_init_hrtimer(event);
6969
b0a873eb 6970 return 0;
f29ac756
PZ
6971}
6972
b0a873eb 6973static struct pmu perf_cpu_clock = {
89a1e187
PZ
6974 .task_ctx_nr = perf_sw_context,
6975
34f43927
PZ
6976 .capabilities = PERF_PMU_CAP_NO_NMI,
6977
b0a873eb 6978 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6979 .add = cpu_clock_event_add,
6980 .del = cpu_clock_event_del,
6981 .start = cpu_clock_event_start,
6982 .stop = cpu_clock_event_stop,
b0a873eb
PZ
6983 .read = cpu_clock_event_read,
6984};
6985
6986/*
6987 * Software event: task time clock
6988 */
6989
6990static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6991{
b0a873eb
PZ
6992 u64 prev;
6993 s64 delta;
5c92d124 6994
b0a873eb
PZ
6995 prev = local64_xchg(&event->hw.prev_count, now);
6996 delta = now - prev;
6997 local64_add(delta, &event->count);
6998}
5c92d124 6999
a4eaf7f1 7000static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7001{
a4eaf7f1 7002 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7003 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7004}
7005
a4eaf7f1 7006static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7007{
7008 perf_swevent_cancel_hrtimer(event);
7009 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7010}
7011
7012static int task_clock_event_add(struct perf_event *event, int flags)
7013{
7014 if (flags & PERF_EF_START)
7015 task_clock_event_start(event, flags);
6a694a60 7016 perf_event_update_userpage(event);
b0a873eb 7017
a4eaf7f1
PZ
7018 return 0;
7019}
7020
7021static void task_clock_event_del(struct perf_event *event, int flags)
7022{
7023 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7024}
7025
7026static void task_clock_event_read(struct perf_event *event)
7027{
768a06e2
PZ
7028 u64 now = perf_clock();
7029 u64 delta = now - event->ctx->timestamp;
7030 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7031
7032 task_clock_event_update(event, time);
7033}
7034
7035static int task_clock_event_init(struct perf_event *event)
6fb2915d 7036{
b0a873eb
PZ
7037 if (event->attr.type != PERF_TYPE_SOFTWARE)
7038 return -ENOENT;
7039
7040 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7041 return -ENOENT;
7042
2481c5fa
SE
7043 /*
7044 * no branch sampling for software events
7045 */
7046 if (has_branch_stack(event))
7047 return -EOPNOTSUPP;
7048
ba3dd36c
PZ
7049 perf_swevent_init_hrtimer(event);
7050
b0a873eb 7051 return 0;
6fb2915d
LZ
7052}
7053
b0a873eb 7054static struct pmu perf_task_clock = {
89a1e187
PZ
7055 .task_ctx_nr = perf_sw_context,
7056
34f43927
PZ
7057 .capabilities = PERF_PMU_CAP_NO_NMI,
7058
b0a873eb 7059 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7060 .add = task_clock_event_add,
7061 .del = task_clock_event_del,
7062 .start = task_clock_event_start,
7063 .stop = task_clock_event_stop,
b0a873eb
PZ
7064 .read = task_clock_event_read,
7065};
6fb2915d 7066
ad5133b7 7067static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7068{
e077df4f 7069}
6fb2915d 7070
ad5133b7 7071static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7072{
ad5133b7 7073 return 0;
6fb2915d
LZ
7074}
7075
ad5133b7 7076static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 7077{
ad5133b7 7078 perf_pmu_disable(pmu);
6fb2915d
LZ
7079}
7080
ad5133b7
PZ
7081static int perf_pmu_commit_txn(struct pmu *pmu)
7082{
7083 perf_pmu_enable(pmu);
7084 return 0;
7085}
e077df4f 7086
ad5133b7 7087static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7088{
ad5133b7 7089 perf_pmu_enable(pmu);
24f1e32c
FW
7090}
7091
35edc2a5
PZ
7092static int perf_event_idx_default(struct perf_event *event)
7093{
c719f560 7094 return 0;
35edc2a5
PZ
7095}
7096
8dc85d54
PZ
7097/*
7098 * Ensures all contexts with the same task_ctx_nr have the same
7099 * pmu_cpu_context too.
7100 */
9e317041 7101static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7102{
8dc85d54 7103 struct pmu *pmu;
b326e956 7104
8dc85d54
PZ
7105 if (ctxn < 0)
7106 return NULL;
24f1e32c 7107
8dc85d54
PZ
7108 list_for_each_entry(pmu, &pmus, entry) {
7109 if (pmu->task_ctx_nr == ctxn)
7110 return pmu->pmu_cpu_context;
7111 }
24f1e32c 7112
8dc85d54 7113 return NULL;
24f1e32c
FW
7114}
7115
51676957 7116static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7117{
51676957
PZ
7118 int cpu;
7119
7120 for_each_possible_cpu(cpu) {
7121 struct perf_cpu_context *cpuctx;
7122
7123 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7124
3f1f3320
PZ
7125 if (cpuctx->unique_pmu == old_pmu)
7126 cpuctx->unique_pmu = pmu;
51676957
PZ
7127 }
7128}
7129
7130static void free_pmu_context(struct pmu *pmu)
7131{
7132 struct pmu *i;
f5ffe02e 7133
8dc85d54 7134 mutex_lock(&pmus_lock);
0475f9ea 7135 /*
8dc85d54 7136 * Like a real lame refcount.
0475f9ea 7137 */
51676957
PZ
7138 list_for_each_entry(i, &pmus, entry) {
7139 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7140 update_pmu_context(i, pmu);
8dc85d54 7141 goto out;
51676957 7142 }
8dc85d54 7143 }
d6d020e9 7144
51676957 7145 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7146out:
7147 mutex_unlock(&pmus_lock);
24f1e32c 7148}
2e80a82a 7149static struct idr pmu_idr;
d6d020e9 7150
abe43400
PZ
7151static ssize_t
7152type_show(struct device *dev, struct device_attribute *attr, char *page)
7153{
7154 struct pmu *pmu = dev_get_drvdata(dev);
7155
7156 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7157}
90826ca7 7158static DEVICE_ATTR_RO(type);
abe43400 7159
62b85639
SE
7160static ssize_t
7161perf_event_mux_interval_ms_show(struct device *dev,
7162 struct device_attribute *attr,
7163 char *page)
7164{
7165 struct pmu *pmu = dev_get_drvdata(dev);
7166
7167 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7168}
7169
7170static ssize_t
7171perf_event_mux_interval_ms_store(struct device *dev,
7172 struct device_attribute *attr,
7173 const char *buf, size_t count)
7174{
7175 struct pmu *pmu = dev_get_drvdata(dev);
7176 int timer, cpu, ret;
7177
7178 ret = kstrtoint(buf, 0, &timer);
7179 if (ret)
7180 return ret;
7181
7182 if (timer < 1)
7183 return -EINVAL;
7184
7185 /* same value, noting to do */
7186 if (timer == pmu->hrtimer_interval_ms)
7187 return count;
7188
7189 pmu->hrtimer_interval_ms = timer;
7190
7191 /* update all cpuctx for this PMU */
7192 for_each_possible_cpu(cpu) {
7193 struct perf_cpu_context *cpuctx;
7194 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7195 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7196
7197 if (hrtimer_active(&cpuctx->hrtimer))
7198 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
7199 }
7200
7201 return count;
7202}
90826ca7 7203static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7204
90826ca7
GKH
7205static struct attribute *pmu_dev_attrs[] = {
7206 &dev_attr_type.attr,
7207 &dev_attr_perf_event_mux_interval_ms.attr,
7208 NULL,
abe43400 7209};
90826ca7 7210ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7211
7212static int pmu_bus_running;
7213static struct bus_type pmu_bus = {
7214 .name = "event_source",
90826ca7 7215 .dev_groups = pmu_dev_groups,
abe43400
PZ
7216};
7217
7218static void pmu_dev_release(struct device *dev)
7219{
7220 kfree(dev);
7221}
7222
7223static int pmu_dev_alloc(struct pmu *pmu)
7224{
7225 int ret = -ENOMEM;
7226
7227 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7228 if (!pmu->dev)
7229 goto out;
7230
0c9d42ed 7231 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7232 device_initialize(pmu->dev);
7233 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7234 if (ret)
7235 goto free_dev;
7236
7237 dev_set_drvdata(pmu->dev, pmu);
7238 pmu->dev->bus = &pmu_bus;
7239 pmu->dev->release = pmu_dev_release;
7240 ret = device_add(pmu->dev);
7241 if (ret)
7242 goto free_dev;
7243
7244out:
7245 return ret;
7246
7247free_dev:
7248 put_device(pmu->dev);
7249 goto out;
7250}
7251
547e9fd7 7252static struct lock_class_key cpuctx_mutex;
facc4307 7253static struct lock_class_key cpuctx_lock;
547e9fd7 7254
03d8e80b 7255int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7256{
108b02cf 7257 int cpu, ret;
24f1e32c 7258
b0a873eb 7259 mutex_lock(&pmus_lock);
33696fc0
PZ
7260 ret = -ENOMEM;
7261 pmu->pmu_disable_count = alloc_percpu(int);
7262 if (!pmu->pmu_disable_count)
7263 goto unlock;
f29ac756 7264
2e80a82a
PZ
7265 pmu->type = -1;
7266 if (!name)
7267 goto skip_type;
7268 pmu->name = name;
7269
7270 if (type < 0) {
0e9c3be2
TH
7271 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7272 if (type < 0) {
7273 ret = type;
2e80a82a
PZ
7274 goto free_pdc;
7275 }
7276 }
7277 pmu->type = type;
7278
abe43400
PZ
7279 if (pmu_bus_running) {
7280 ret = pmu_dev_alloc(pmu);
7281 if (ret)
7282 goto free_idr;
7283 }
7284
2e80a82a 7285skip_type:
8dc85d54
PZ
7286 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7287 if (pmu->pmu_cpu_context)
7288 goto got_cpu_context;
f29ac756 7289
c4814202 7290 ret = -ENOMEM;
108b02cf
PZ
7291 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7292 if (!pmu->pmu_cpu_context)
abe43400 7293 goto free_dev;
f344011c 7294
108b02cf
PZ
7295 for_each_possible_cpu(cpu) {
7296 struct perf_cpu_context *cpuctx;
7297
7298 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7299 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7300 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7301 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7302 cpuctx->ctx.pmu = pmu;
9e630205
SE
7303
7304 __perf_cpu_hrtimer_init(cpuctx, cpu);
7305
3f1f3320 7306 cpuctx->unique_pmu = pmu;
108b02cf 7307 }
76e1d904 7308
8dc85d54 7309got_cpu_context:
ad5133b7
PZ
7310 if (!pmu->start_txn) {
7311 if (pmu->pmu_enable) {
7312 /*
7313 * If we have pmu_enable/pmu_disable calls, install
7314 * transaction stubs that use that to try and batch
7315 * hardware accesses.
7316 */
7317 pmu->start_txn = perf_pmu_start_txn;
7318 pmu->commit_txn = perf_pmu_commit_txn;
7319 pmu->cancel_txn = perf_pmu_cancel_txn;
7320 } else {
7321 pmu->start_txn = perf_pmu_nop_void;
7322 pmu->commit_txn = perf_pmu_nop_int;
7323 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7324 }
5c92d124 7325 }
15dbf27c 7326
ad5133b7
PZ
7327 if (!pmu->pmu_enable) {
7328 pmu->pmu_enable = perf_pmu_nop_void;
7329 pmu->pmu_disable = perf_pmu_nop_void;
7330 }
7331
35edc2a5
PZ
7332 if (!pmu->event_idx)
7333 pmu->event_idx = perf_event_idx_default;
7334
b0a873eb 7335 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7336 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7337 ret = 0;
7338unlock:
b0a873eb
PZ
7339 mutex_unlock(&pmus_lock);
7340
33696fc0 7341 return ret;
108b02cf 7342
abe43400
PZ
7343free_dev:
7344 device_del(pmu->dev);
7345 put_device(pmu->dev);
7346
2e80a82a
PZ
7347free_idr:
7348 if (pmu->type >= PERF_TYPE_MAX)
7349 idr_remove(&pmu_idr, pmu->type);
7350
108b02cf
PZ
7351free_pdc:
7352 free_percpu(pmu->pmu_disable_count);
7353 goto unlock;
f29ac756 7354}
c464c76e 7355EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7356
b0a873eb 7357void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7358{
b0a873eb
PZ
7359 mutex_lock(&pmus_lock);
7360 list_del_rcu(&pmu->entry);
7361 mutex_unlock(&pmus_lock);
5c92d124 7362
0475f9ea 7363 /*
cde8e884
PZ
7364 * We dereference the pmu list under both SRCU and regular RCU, so
7365 * synchronize against both of those.
0475f9ea 7366 */
b0a873eb 7367 synchronize_srcu(&pmus_srcu);
cde8e884 7368 synchronize_rcu();
d6d020e9 7369
33696fc0 7370 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7371 if (pmu->type >= PERF_TYPE_MAX)
7372 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7373 device_del(pmu->dev);
7374 put_device(pmu->dev);
51676957 7375 free_pmu_context(pmu);
b0a873eb 7376}
c464c76e 7377EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7378
cc34b98b
MR
7379static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7380{
ccd41c86 7381 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7382 int ret;
7383
7384 if (!try_module_get(pmu->module))
7385 return -ENODEV;
ccd41c86
PZ
7386
7387 if (event->group_leader != event) {
8b10c5e2
PZ
7388 /*
7389 * This ctx->mutex can nest when we're called through
7390 * inheritance. See the perf_event_ctx_lock_nested() comment.
7391 */
7392 ctx = perf_event_ctx_lock_nested(event->group_leader,
7393 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7394 BUG_ON(!ctx);
7395 }
7396
cc34b98b
MR
7397 event->pmu = pmu;
7398 ret = pmu->event_init(event);
ccd41c86
PZ
7399
7400 if (ctx)
7401 perf_event_ctx_unlock(event->group_leader, ctx);
7402
cc34b98b
MR
7403 if (ret)
7404 module_put(pmu->module);
7405
7406 return ret;
7407}
7408
b0a873eb
PZ
7409struct pmu *perf_init_event(struct perf_event *event)
7410{
7411 struct pmu *pmu = NULL;
7412 int idx;
940c5b29 7413 int ret;
b0a873eb
PZ
7414
7415 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7416
7417 rcu_read_lock();
7418 pmu = idr_find(&pmu_idr, event->attr.type);
7419 rcu_read_unlock();
940c5b29 7420 if (pmu) {
cc34b98b 7421 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7422 if (ret)
7423 pmu = ERR_PTR(ret);
2e80a82a 7424 goto unlock;
940c5b29 7425 }
2e80a82a 7426
b0a873eb 7427 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7428 ret = perf_try_init_event(pmu, event);
b0a873eb 7429 if (!ret)
e5f4d339 7430 goto unlock;
76e1d904 7431
b0a873eb
PZ
7432 if (ret != -ENOENT) {
7433 pmu = ERR_PTR(ret);
e5f4d339 7434 goto unlock;
f344011c 7435 }
5c92d124 7436 }
e5f4d339
PZ
7437 pmu = ERR_PTR(-ENOENT);
7438unlock:
b0a873eb 7439 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7440
4aeb0b42 7441 return pmu;
5c92d124
IM
7442}
7443
4beb31f3
FW
7444static void account_event_cpu(struct perf_event *event, int cpu)
7445{
7446 if (event->parent)
7447 return;
7448
4beb31f3
FW
7449 if (is_cgroup_event(event))
7450 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7451}
7452
766d6c07
FW
7453static void account_event(struct perf_event *event)
7454{
4beb31f3
FW
7455 if (event->parent)
7456 return;
7457
766d6c07
FW
7458 if (event->attach_state & PERF_ATTACH_TASK)
7459 static_key_slow_inc(&perf_sched_events.key);
7460 if (event->attr.mmap || event->attr.mmap_data)
7461 atomic_inc(&nr_mmap_events);
7462 if (event->attr.comm)
7463 atomic_inc(&nr_comm_events);
7464 if (event->attr.task)
7465 atomic_inc(&nr_task_events);
948b26b6
FW
7466 if (event->attr.freq) {
7467 if (atomic_inc_return(&nr_freq_events) == 1)
7468 tick_nohz_full_kick_all();
7469 }
4beb31f3 7470 if (has_branch_stack(event))
766d6c07 7471 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7472 if (is_cgroup_event(event))
766d6c07 7473 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7474
7475 account_event_cpu(event, event->cpu);
766d6c07
FW
7476}
7477
0793a61d 7478/*
cdd6c482 7479 * Allocate and initialize a event structure
0793a61d 7480 */
cdd6c482 7481static struct perf_event *
c3f00c70 7482perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7483 struct task_struct *task,
7484 struct perf_event *group_leader,
7485 struct perf_event *parent_event,
4dc0da86 7486 perf_overflow_handler_t overflow_handler,
79dff51e 7487 void *context, int cgroup_fd)
0793a61d 7488{
51b0fe39 7489 struct pmu *pmu;
cdd6c482
IM
7490 struct perf_event *event;
7491 struct hw_perf_event *hwc;
90983b16 7492 long err = -EINVAL;
0793a61d 7493
66832eb4
ON
7494 if ((unsigned)cpu >= nr_cpu_ids) {
7495 if (!task || cpu != -1)
7496 return ERR_PTR(-EINVAL);
7497 }
7498
c3f00c70 7499 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7500 if (!event)
d5d2bc0d 7501 return ERR_PTR(-ENOMEM);
0793a61d 7502
04289bb9 7503 /*
cdd6c482 7504 * Single events are their own group leaders, with an
04289bb9
IM
7505 * empty sibling list:
7506 */
7507 if (!group_leader)
cdd6c482 7508 group_leader = event;
04289bb9 7509
cdd6c482
IM
7510 mutex_init(&event->child_mutex);
7511 INIT_LIST_HEAD(&event->child_list);
fccc714b 7512
cdd6c482
IM
7513 INIT_LIST_HEAD(&event->group_entry);
7514 INIT_LIST_HEAD(&event->event_entry);
7515 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7516 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7517 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7518 INIT_HLIST_NODE(&event->hlist_entry);
7519
10c6db11 7520
cdd6c482 7521 init_waitqueue_head(&event->waitq);
e360adbe 7522 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7523
cdd6c482 7524 mutex_init(&event->mmap_mutex);
7b732a75 7525
a6fa941d 7526 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7527 event->cpu = cpu;
7528 event->attr = *attr;
7529 event->group_leader = group_leader;
7530 event->pmu = NULL;
cdd6c482 7531 event->oncpu = -1;
a96bbc16 7532
cdd6c482 7533 event->parent = parent_event;
b84fbc9f 7534
17cf22c3 7535 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7536 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7537
cdd6c482 7538 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7539
d580ff86
PZ
7540 if (task) {
7541 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7542 /*
50f16a8b
PZ
7543 * XXX pmu::event_init needs to know what task to account to
7544 * and we cannot use the ctx information because we need the
7545 * pmu before we get a ctx.
d580ff86 7546 */
50f16a8b 7547 event->hw.target = task;
d580ff86
PZ
7548 }
7549
34f43927
PZ
7550 event->clock = &local_clock;
7551 if (parent_event)
7552 event->clock = parent_event->clock;
7553
4dc0da86 7554 if (!overflow_handler && parent_event) {
b326e956 7555 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7556 context = parent_event->overflow_handler_context;
7557 }
66832eb4 7558
b326e956 7559 event->overflow_handler = overflow_handler;
4dc0da86 7560 event->overflow_handler_context = context;
97eaf530 7561
0231bb53 7562 perf_event__state_init(event);
a86ed508 7563
4aeb0b42 7564 pmu = NULL;
b8e83514 7565
cdd6c482 7566 hwc = &event->hw;
bd2b5b12 7567 hwc->sample_period = attr->sample_period;
0d48696f 7568 if (attr->freq && attr->sample_freq)
bd2b5b12 7569 hwc->sample_period = 1;
eced1dfc 7570 hwc->last_period = hwc->sample_period;
bd2b5b12 7571
e7850595 7572 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7573
2023b359 7574 /*
cdd6c482 7575 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7576 */
3dab77fb 7577 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7578 goto err_ns;
a46a2300
YZ
7579
7580 if (!has_branch_stack(event))
7581 event->attr.branch_sample_type = 0;
2023b359 7582
79dff51e
MF
7583 if (cgroup_fd != -1) {
7584 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7585 if (err)
7586 goto err_ns;
7587 }
7588
b0a873eb 7589 pmu = perf_init_event(event);
4aeb0b42 7590 if (!pmu)
90983b16
FW
7591 goto err_ns;
7592 else if (IS_ERR(pmu)) {
4aeb0b42 7593 err = PTR_ERR(pmu);
90983b16 7594 goto err_ns;
621a01ea 7595 }
d5d2bc0d 7596
bed5b25a
AS
7597 err = exclusive_event_init(event);
7598 if (err)
7599 goto err_pmu;
7600
cdd6c482 7601 if (!event->parent) {
927c7a9e
FW
7602 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7603 err = get_callchain_buffers();
90983b16 7604 if (err)
bed5b25a 7605 goto err_per_task;
d010b332 7606 }
f344011c 7607 }
9ee318a7 7608
cdd6c482 7609 return event;
90983b16 7610
bed5b25a
AS
7611err_per_task:
7612 exclusive_event_destroy(event);
7613
90983b16
FW
7614err_pmu:
7615 if (event->destroy)
7616 event->destroy(event);
c464c76e 7617 module_put(pmu->module);
90983b16 7618err_ns:
79dff51e
MF
7619 if (is_cgroup_event(event))
7620 perf_detach_cgroup(event);
90983b16
FW
7621 if (event->ns)
7622 put_pid_ns(event->ns);
7623 kfree(event);
7624
7625 return ERR_PTR(err);
0793a61d
TG
7626}
7627
cdd6c482
IM
7628static int perf_copy_attr(struct perf_event_attr __user *uattr,
7629 struct perf_event_attr *attr)
974802ea 7630{
974802ea 7631 u32 size;
cdf8073d 7632 int ret;
974802ea
PZ
7633
7634 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7635 return -EFAULT;
7636
7637 /*
7638 * zero the full structure, so that a short copy will be nice.
7639 */
7640 memset(attr, 0, sizeof(*attr));
7641
7642 ret = get_user(size, &uattr->size);
7643 if (ret)
7644 return ret;
7645
7646 if (size > PAGE_SIZE) /* silly large */
7647 goto err_size;
7648
7649 if (!size) /* abi compat */
7650 size = PERF_ATTR_SIZE_VER0;
7651
7652 if (size < PERF_ATTR_SIZE_VER0)
7653 goto err_size;
7654
7655 /*
7656 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7657 * ensure all the unknown bits are 0 - i.e. new
7658 * user-space does not rely on any kernel feature
7659 * extensions we dont know about yet.
974802ea
PZ
7660 */
7661 if (size > sizeof(*attr)) {
cdf8073d
IS
7662 unsigned char __user *addr;
7663 unsigned char __user *end;
7664 unsigned char val;
974802ea 7665
cdf8073d
IS
7666 addr = (void __user *)uattr + sizeof(*attr);
7667 end = (void __user *)uattr + size;
974802ea 7668
cdf8073d 7669 for (; addr < end; addr++) {
974802ea
PZ
7670 ret = get_user(val, addr);
7671 if (ret)
7672 return ret;
7673 if (val)
7674 goto err_size;
7675 }
b3e62e35 7676 size = sizeof(*attr);
974802ea
PZ
7677 }
7678
7679 ret = copy_from_user(attr, uattr, size);
7680 if (ret)
7681 return -EFAULT;
7682
cd757645 7683 if (attr->__reserved_1)
974802ea
PZ
7684 return -EINVAL;
7685
7686 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7687 return -EINVAL;
7688
7689 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7690 return -EINVAL;
7691
bce38cd5
SE
7692 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7693 u64 mask = attr->branch_sample_type;
7694
7695 /* only using defined bits */
7696 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7697 return -EINVAL;
7698
7699 /* at least one branch bit must be set */
7700 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7701 return -EINVAL;
7702
bce38cd5
SE
7703 /* propagate priv level, when not set for branch */
7704 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7705
7706 /* exclude_kernel checked on syscall entry */
7707 if (!attr->exclude_kernel)
7708 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7709
7710 if (!attr->exclude_user)
7711 mask |= PERF_SAMPLE_BRANCH_USER;
7712
7713 if (!attr->exclude_hv)
7714 mask |= PERF_SAMPLE_BRANCH_HV;
7715 /*
7716 * adjust user setting (for HW filter setup)
7717 */
7718 attr->branch_sample_type = mask;
7719 }
e712209a
SE
7720 /* privileged levels capture (kernel, hv): check permissions */
7721 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7722 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7723 return -EACCES;
bce38cd5 7724 }
4018994f 7725
c5ebcedb 7726 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7727 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7728 if (ret)
7729 return ret;
7730 }
7731
7732 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7733 if (!arch_perf_have_user_stack_dump())
7734 return -ENOSYS;
7735
7736 /*
7737 * We have __u32 type for the size, but so far
7738 * we can only use __u16 as maximum due to the
7739 * __u16 sample size limit.
7740 */
7741 if (attr->sample_stack_user >= USHRT_MAX)
7742 ret = -EINVAL;
7743 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7744 ret = -EINVAL;
7745 }
4018994f 7746
60e2364e
SE
7747 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7748 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
7749out:
7750 return ret;
7751
7752err_size:
7753 put_user(sizeof(*attr), &uattr->size);
7754 ret = -E2BIG;
7755 goto out;
7756}
7757
ac9721f3
PZ
7758static int
7759perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7760{
b69cf536 7761 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7762 int ret = -EINVAL;
7763
ac9721f3 7764 if (!output_event)
a4be7c27
PZ
7765 goto set;
7766
ac9721f3
PZ
7767 /* don't allow circular references */
7768 if (event == output_event)
a4be7c27
PZ
7769 goto out;
7770
0f139300
PZ
7771 /*
7772 * Don't allow cross-cpu buffers
7773 */
7774 if (output_event->cpu != event->cpu)
7775 goto out;
7776
7777 /*
76369139 7778 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7779 */
7780 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7781 goto out;
7782
34f43927
PZ
7783 /*
7784 * Mixing clocks in the same buffer is trouble you don't need.
7785 */
7786 if (output_event->clock != event->clock)
7787 goto out;
7788
45bfb2e5
PZ
7789 /*
7790 * If both events generate aux data, they must be on the same PMU
7791 */
7792 if (has_aux(event) && has_aux(output_event) &&
7793 event->pmu != output_event->pmu)
7794 goto out;
7795
a4be7c27 7796set:
cdd6c482 7797 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7798 /* Can't redirect output if we've got an active mmap() */
7799 if (atomic_read(&event->mmap_count))
7800 goto unlock;
a4be7c27 7801
ac9721f3 7802 if (output_event) {
76369139
FW
7803 /* get the rb we want to redirect to */
7804 rb = ring_buffer_get(output_event);
7805 if (!rb)
ac9721f3 7806 goto unlock;
a4be7c27
PZ
7807 }
7808
b69cf536 7809 ring_buffer_attach(event, rb);
9bb5d40c 7810
a4be7c27 7811 ret = 0;
ac9721f3
PZ
7812unlock:
7813 mutex_unlock(&event->mmap_mutex);
7814
a4be7c27 7815out:
a4be7c27
PZ
7816 return ret;
7817}
7818
f63a8daa
PZ
7819static void mutex_lock_double(struct mutex *a, struct mutex *b)
7820{
7821 if (b < a)
7822 swap(a, b);
7823
7824 mutex_lock(a);
7825 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7826}
7827
34f43927
PZ
7828static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7829{
7830 bool nmi_safe = false;
7831
7832 switch (clk_id) {
7833 case CLOCK_MONOTONIC:
7834 event->clock = &ktime_get_mono_fast_ns;
7835 nmi_safe = true;
7836 break;
7837
7838 case CLOCK_MONOTONIC_RAW:
7839 event->clock = &ktime_get_raw_fast_ns;
7840 nmi_safe = true;
7841 break;
7842
7843 case CLOCK_REALTIME:
7844 event->clock = &ktime_get_real_ns;
7845 break;
7846
7847 case CLOCK_BOOTTIME:
7848 event->clock = &ktime_get_boot_ns;
7849 break;
7850
7851 case CLOCK_TAI:
7852 event->clock = &ktime_get_tai_ns;
7853 break;
7854
7855 default:
7856 return -EINVAL;
7857 }
7858
7859 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
7860 return -EINVAL;
7861
7862 return 0;
7863}
7864
0793a61d 7865/**
cdd6c482 7866 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7867 *
cdd6c482 7868 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7869 * @pid: target pid
9f66a381 7870 * @cpu: target cpu
cdd6c482 7871 * @group_fd: group leader event fd
0793a61d 7872 */
cdd6c482
IM
7873SYSCALL_DEFINE5(perf_event_open,
7874 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7875 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7876{
b04243ef
PZ
7877 struct perf_event *group_leader = NULL, *output_event = NULL;
7878 struct perf_event *event, *sibling;
cdd6c482 7879 struct perf_event_attr attr;
f63a8daa 7880 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 7881 struct file *event_file = NULL;
2903ff01 7882 struct fd group = {NULL, 0};
38a81da2 7883 struct task_struct *task = NULL;
89a1e187 7884 struct pmu *pmu;
ea635c64 7885 int event_fd;
b04243ef 7886 int move_group = 0;
dc86cabe 7887 int err;
a21b0b35 7888 int f_flags = O_RDWR;
79dff51e 7889 int cgroup_fd = -1;
0793a61d 7890
2743a5b0 7891 /* for future expandability... */
e5d1367f 7892 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7893 return -EINVAL;
7894
dc86cabe
IM
7895 err = perf_copy_attr(attr_uptr, &attr);
7896 if (err)
7897 return err;
eab656ae 7898
0764771d
PZ
7899 if (!attr.exclude_kernel) {
7900 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7901 return -EACCES;
7902 }
7903
df58ab24 7904 if (attr.freq) {
cdd6c482 7905 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 7906 return -EINVAL;
0819b2e3
PZ
7907 } else {
7908 if (attr.sample_period & (1ULL << 63))
7909 return -EINVAL;
df58ab24
PZ
7910 }
7911
e5d1367f
SE
7912 /*
7913 * In cgroup mode, the pid argument is used to pass the fd
7914 * opened to the cgroup directory in cgroupfs. The cpu argument
7915 * designates the cpu on which to monitor threads from that
7916 * cgroup.
7917 */
7918 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7919 return -EINVAL;
7920
a21b0b35
YD
7921 if (flags & PERF_FLAG_FD_CLOEXEC)
7922 f_flags |= O_CLOEXEC;
7923
7924 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7925 if (event_fd < 0)
7926 return event_fd;
7927
ac9721f3 7928 if (group_fd != -1) {
2903ff01
AV
7929 err = perf_fget_light(group_fd, &group);
7930 if (err)
d14b12d7 7931 goto err_fd;
2903ff01 7932 group_leader = group.file->private_data;
ac9721f3
PZ
7933 if (flags & PERF_FLAG_FD_OUTPUT)
7934 output_event = group_leader;
7935 if (flags & PERF_FLAG_FD_NO_GROUP)
7936 group_leader = NULL;
7937 }
7938
e5d1367f 7939 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7940 task = find_lively_task_by_vpid(pid);
7941 if (IS_ERR(task)) {
7942 err = PTR_ERR(task);
7943 goto err_group_fd;
7944 }
7945 }
7946
1f4ee503
PZ
7947 if (task && group_leader &&
7948 group_leader->attr.inherit != attr.inherit) {
7949 err = -EINVAL;
7950 goto err_task;
7951 }
7952
fbfc623f
YZ
7953 get_online_cpus();
7954
79dff51e
MF
7955 if (flags & PERF_FLAG_PID_CGROUP)
7956 cgroup_fd = pid;
7957
4dc0da86 7958 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 7959 NULL, NULL, cgroup_fd);
d14b12d7
SE
7960 if (IS_ERR(event)) {
7961 err = PTR_ERR(event);
1f4ee503 7962 goto err_cpus;
d14b12d7
SE
7963 }
7964
53b25335
VW
7965 if (is_sampling_event(event)) {
7966 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
7967 err = -ENOTSUPP;
7968 goto err_alloc;
7969 }
7970 }
7971
766d6c07
FW
7972 account_event(event);
7973
89a1e187
PZ
7974 /*
7975 * Special case software events and allow them to be part of
7976 * any hardware group.
7977 */
7978 pmu = event->pmu;
b04243ef 7979
34f43927
PZ
7980 if (attr.use_clockid) {
7981 err = perf_event_set_clock(event, attr.clockid);
7982 if (err)
7983 goto err_alloc;
7984 }
7985
b04243ef
PZ
7986 if (group_leader &&
7987 (is_software_event(event) != is_software_event(group_leader))) {
7988 if (is_software_event(event)) {
7989 /*
7990 * If event and group_leader are not both a software
7991 * event, and event is, then group leader is not.
7992 *
7993 * Allow the addition of software events to !software
7994 * groups, this is safe because software events never
7995 * fail to schedule.
7996 */
7997 pmu = group_leader->pmu;
7998 } else if (is_software_event(group_leader) &&
7999 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8000 /*
8001 * In case the group is a pure software group, and we
8002 * try to add a hardware event, move the whole group to
8003 * the hardware context.
8004 */
8005 move_group = 1;
8006 }
8007 }
89a1e187
PZ
8008
8009 /*
8010 * Get the target context (task or percpu):
8011 */
4af57ef2 8012 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8013 if (IS_ERR(ctx)) {
8014 err = PTR_ERR(ctx);
c6be5a5c 8015 goto err_alloc;
89a1e187
PZ
8016 }
8017
bed5b25a
AS
8018 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8019 err = -EBUSY;
8020 goto err_context;
8021 }
8022
fd1edb3a
PZ
8023 if (task) {
8024 put_task_struct(task);
8025 task = NULL;
8026 }
8027
ccff286d 8028 /*
cdd6c482 8029 * Look up the group leader (we will attach this event to it):
04289bb9 8030 */
ac9721f3 8031 if (group_leader) {
dc86cabe 8032 err = -EINVAL;
04289bb9 8033
04289bb9 8034 /*
ccff286d
IM
8035 * Do not allow a recursive hierarchy (this new sibling
8036 * becoming part of another group-sibling):
8037 */
8038 if (group_leader->group_leader != group_leader)
c3f00c70 8039 goto err_context;
34f43927
PZ
8040
8041 /* All events in a group should have the same clock */
8042 if (group_leader->clock != event->clock)
8043 goto err_context;
8044
ccff286d
IM
8045 /*
8046 * Do not allow to attach to a group in a different
8047 * task or CPU context:
04289bb9 8048 */
b04243ef 8049 if (move_group) {
c3c87e77
PZ
8050 /*
8051 * Make sure we're both on the same task, or both
8052 * per-cpu events.
8053 */
8054 if (group_leader->ctx->task != ctx->task)
8055 goto err_context;
8056
8057 /*
8058 * Make sure we're both events for the same CPU;
8059 * grouping events for different CPUs is broken; since
8060 * you can never concurrently schedule them anyhow.
8061 */
8062 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8063 goto err_context;
8064 } else {
8065 if (group_leader->ctx != ctx)
8066 goto err_context;
8067 }
8068
3b6f9e5c
PM
8069 /*
8070 * Only a group leader can be exclusive or pinned
8071 */
0d48696f 8072 if (attr.exclusive || attr.pinned)
c3f00c70 8073 goto err_context;
ac9721f3
PZ
8074 }
8075
8076 if (output_event) {
8077 err = perf_event_set_output(event, output_event);
8078 if (err)
c3f00c70 8079 goto err_context;
ac9721f3 8080 }
0793a61d 8081
a21b0b35
YD
8082 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8083 f_flags);
ea635c64
AV
8084 if (IS_ERR(event_file)) {
8085 err = PTR_ERR(event_file);
c3f00c70 8086 goto err_context;
ea635c64 8087 }
9b51f66d 8088
b04243ef 8089 if (move_group) {
f63a8daa
PZ
8090 gctx = group_leader->ctx;
8091
8092 /*
8093 * See perf_event_ctx_lock() for comments on the details
8094 * of swizzling perf_event::ctx.
8095 */
8096 mutex_lock_double(&gctx->mutex, &ctx->mutex);
b04243ef 8097
46ce0fe9 8098 perf_remove_from_context(group_leader, false);
0231bb53 8099
b04243ef
PZ
8100 list_for_each_entry(sibling, &group_leader->sibling_list,
8101 group_entry) {
46ce0fe9 8102 perf_remove_from_context(sibling, false);
b04243ef
PZ
8103 put_ctx(gctx);
8104 }
f63a8daa
PZ
8105 } else {
8106 mutex_lock(&ctx->mutex);
ea635c64 8107 }
9b51f66d 8108
ad3a37de 8109 WARN_ON_ONCE(ctx->parent_ctx);
b04243ef
PZ
8110
8111 if (move_group) {
f63a8daa
PZ
8112 /*
8113 * Wait for everybody to stop referencing the events through
8114 * the old lists, before installing it on new lists.
8115 */
0cda4c02 8116 synchronize_rcu();
f63a8daa 8117
8f95b435
PZI
8118 /*
8119 * Install the group siblings before the group leader.
8120 *
8121 * Because a group leader will try and install the entire group
8122 * (through the sibling list, which is still in-tact), we can
8123 * end up with siblings installed in the wrong context.
8124 *
8125 * By installing siblings first we NO-OP because they're not
8126 * reachable through the group lists.
8127 */
b04243ef
PZ
8128 list_for_each_entry(sibling, &group_leader->sibling_list,
8129 group_entry) {
8f95b435 8130 perf_event__state_init(sibling);
9fc81d87 8131 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8132 get_ctx(ctx);
8133 }
8f95b435
PZI
8134
8135 /*
8136 * Removing from the context ends up with disabled
8137 * event. What we want here is event in the initial
8138 * startup state, ready to be add into new context.
8139 */
8140 perf_event__state_init(group_leader);
8141 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8142 get_ctx(ctx);
b04243ef
PZ
8143 }
8144
bed5b25a
AS
8145 if (!exclusive_event_installable(event, ctx)) {
8146 err = -EBUSY;
8147 mutex_unlock(&ctx->mutex);
8148 fput(event_file);
8149 goto err_context;
8150 }
8151
e2d37cd2 8152 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8153 perf_unpin_context(ctx);
f63a8daa
PZ
8154
8155 if (move_group) {
8156 mutex_unlock(&gctx->mutex);
8157 put_ctx(gctx);
8158 }
d859e29f 8159 mutex_unlock(&ctx->mutex);
9b51f66d 8160
fbfc623f
YZ
8161 put_online_cpus();
8162
cdd6c482 8163 event->owner = current;
8882135b 8164
cdd6c482
IM
8165 mutex_lock(&current->perf_event_mutex);
8166 list_add_tail(&event->owner_entry, &current->perf_event_list);
8167 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8168
c320c7b7
ACM
8169 /*
8170 * Precalculate sample_data sizes
8171 */
8172 perf_event__header_size(event);
6844c09d 8173 perf_event__id_header_size(event);
c320c7b7 8174
8a49542c
PZ
8175 /*
8176 * Drop the reference on the group_event after placing the
8177 * new event on the sibling_list. This ensures destruction
8178 * of the group leader will find the pointer to itself in
8179 * perf_group_detach().
8180 */
2903ff01 8181 fdput(group);
ea635c64
AV
8182 fd_install(event_fd, event_file);
8183 return event_fd;
0793a61d 8184
c3f00c70 8185err_context:
fe4b04fa 8186 perf_unpin_context(ctx);
ea635c64 8187 put_ctx(ctx);
c6be5a5c 8188err_alloc:
ea635c64 8189 free_event(event);
1f4ee503 8190err_cpus:
fbfc623f 8191 put_online_cpus();
1f4ee503 8192err_task:
e7d0bc04
PZ
8193 if (task)
8194 put_task_struct(task);
89a1e187 8195err_group_fd:
2903ff01 8196 fdput(group);
ea635c64
AV
8197err_fd:
8198 put_unused_fd(event_fd);
dc86cabe 8199 return err;
0793a61d
TG
8200}
8201
fb0459d7
AV
8202/**
8203 * perf_event_create_kernel_counter
8204 *
8205 * @attr: attributes of the counter to create
8206 * @cpu: cpu in which the counter is bound
38a81da2 8207 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8208 */
8209struct perf_event *
8210perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8211 struct task_struct *task,
4dc0da86
AK
8212 perf_overflow_handler_t overflow_handler,
8213 void *context)
fb0459d7 8214{
fb0459d7 8215 struct perf_event_context *ctx;
c3f00c70 8216 struct perf_event *event;
fb0459d7 8217 int err;
d859e29f 8218
fb0459d7
AV
8219 /*
8220 * Get the target context (task or percpu):
8221 */
d859e29f 8222
4dc0da86 8223 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8224 overflow_handler, context, -1);
c3f00c70
PZ
8225 if (IS_ERR(event)) {
8226 err = PTR_ERR(event);
8227 goto err;
8228 }
d859e29f 8229
f8697762
JO
8230 /* Mark owner so we could distinguish it from user events. */
8231 event->owner = EVENT_OWNER_KERNEL;
8232
766d6c07
FW
8233 account_event(event);
8234
4af57ef2 8235 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8236 if (IS_ERR(ctx)) {
8237 err = PTR_ERR(ctx);
c3f00c70 8238 goto err_free;
d859e29f 8239 }
fb0459d7 8240
fb0459d7
AV
8241 WARN_ON_ONCE(ctx->parent_ctx);
8242 mutex_lock(&ctx->mutex);
bed5b25a
AS
8243 if (!exclusive_event_installable(event, ctx)) {
8244 mutex_unlock(&ctx->mutex);
8245 perf_unpin_context(ctx);
8246 put_ctx(ctx);
8247 err = -EBUSY;
8248 goto err_free;
8249 }
8250
fb0459d7 8251 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8252 perf_unpin_context(ctx);
fb0459d7
AV
8253 mutex_unlock(&ctx->mutex);
8254
fb0459d7
AV
8255 return event;
8256
c3f00c70
PZ
8257err_free:
8258 free_event(event);
8259err:
c6567f64 8260 return ERR_PTR(err);
9b51f66d 8261}
fb0459d7 8262EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8263
0cda4c02
YZ
8264void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8265{
8266 struct perf_event_context *src_ctx;
8267 struct perf_event_context *dst_ctx;
8268 struct perf_event *event, *tmp;
8269 LIST_HEAD(events);
8270
8271 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8272 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8273
f63a8daa
PZ
8274 /*
8275 * See perf_event_ctx_lock() for comments on the details
8276 * of swizzling perf_event::ctx.
8277 */
8278 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8279 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8280 event_entry) {
46ce0fe9 8281 perf_remove_from_context(event, false);
9a545de0 8282 unaccount_event_cpu(event, src_cpu);
0cda4c02 8283 put_ctx(src_ctx);
9886167d 8284 list_add(&event->migrate_entry, &events);
0cda4c02 8285 }
0cda4c02 8286
8f95b435
PZI
8287 /*
8288 * Wait for the events to quiesce before re-instating them.
8289 */
0cda4c02
YZ
8290 synchronize_rcu();
8291
8f95b435
PZI
8292 /*
8293 * Re-instate events in 2 passes.
8294 *
8295 * Skip over group leaders and only install siblings on this first
8296 * pass, siblings will not get enabled without a leader, however a
8297 * leader will enable its siblings, even if those are still on the old
8298 * context.
8299 */
8300 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8301 if (event->group_leader == event)
8302 continue;
8303
8304 list_del(&event->migrate_entry);
8305 if (event->state >= PERF_EVENT_STATE_OFF)
8306 event->state = PERF_EVENT_STATE_INACTIVE;
8307 account_event_cpu(event, dst_cpu);
8308 perf_install_in_context(dst_ctx, event, dst_cpu);
8309 get_ctx(dst_ctx);
8310 }
8311
8312 /*
8313 * Once all the siblings are setup properly, install the group leaders
8314 * to make it go.
8315 */
9886167d
PZ
8316 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8317 list_del(&event->migrate_entry);
0cda4c02
YZ
8318 if (event->state >= PERF_EVENT_STATE_OFF)
8319 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8320 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8321 perf_install_in_context(dst_ctx, event, dst_cpu);
8322 get_ctx(dst_ctx);
8323 }
8324 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8325 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8326}
8327EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8328
cdd6c482 8329static void sync_child_event(struct perf_event *child_event,
38b200d6 8330 struct task_struct *child)
d859e29f 8331{
cdd6c482 8332 struct perf_event *parent_event = child_event->parent;
8bc20959 8333 u64 child_val;
d859e29f 8334
cdd6c482
IM
8335 if (child_event->attr.inherit_stat)
8336 perf_event_read_event(child_event, child);
38b200d6 8337
b5e58793 8338 child_val = perf_event_count(child_event);
d859e29f
PM
8339
8340 /*
8341 * Add back the child's count to the parent's count:
8342 */
a6e6dea6 8343 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8344 atomic64_add(child_event->total_time_enabled,
8345 &parent_event->child_total_time_enabled);
8346 atomic64_add(child_event->total_time_running,
8347 &parent_event->child_total_time_running);
d859e29f
PM
8348
8349 /*
cdd6c482 8350 * Remove this event from the parent's list
d859e29f 8351 */
cdd6c482
IM
8352 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8353 mutex_lock(&parent_event->child_mutex);
8354 list_del_init(&child_event->child_list);
8355 mutex_unlock(&parent_event->child_mutex);
d859e29f 8356
dc633982
JO
8357 /*
8358 * Make sure user/parent get notified, that we just
8359 * lost one event.
8360 */
8361 perf_event_wakeup(parent_event);
8362
d859e29f 8363 /*
cdd6c482 8364 * Release the parent event, if this was the last
d859e29f
PM
8365 * reference to it.
8366 */
a6fa941d 8367 put_event(parent_event);
d859e29f
PM
8368}
8369
9b51f66d 8370static void
cdd6c482
IM
8371__perf_event_exit_task(struct perf_event *child_event,
8372 struct perf_event_context *child_ctx,
38b200d6 8373 struct task_struct *child)
9b51f66d 8374{
1903d50c
PZ
8375 /*
8376 * Do not destroy the 'original' grouping; because of the context
8377 * switch optimization the original events could've ended up in a
8378 * random child task.
8379 *
8380 * If we were to destroy the original group, all group related
8381 * operations would cease to function properly after this random
8382 * child dies.
8383 *
8384 * Do destroy all inherited groups, we don't care about those
8385 * and being thorough is better.
8386 */
8387 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8388
9b51f66d 8389 /*
38b435b1 8390 * It can happen that the parent exits first, and has events
9b51f66d 8391 * that are still around due to the child reference. These
38b435b1 8392 * events need to be zapped.
9b51f66d 8393 */
38b435b1 8394 if (child_event->parent) {
cdd6c482
IM
8395 sync_child_event(child_event, child);
8396 free_event(child_event);
179033b3
JO
8397 } else {
8398 child_event->state = PERF_EVENT_STATE_EXIT;
8399 perf_event_wakeup(child_event);
4bcf349a 8400 }
9b51f66d
IM
8401}
8402
8dc85d54 8403static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8404{
ebf905fc 8405 struct perf_event *child_event, *next;
211de6eb 8406 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8407 unsigned long flags;
9b51f66d 8408
8dc85d54 8409 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 8410 perf_event_task(child, NULL, 0);
9b51f66d 8411 return;
9f498cc5 8412 }
9b51f66d 8413
a63eaf34 8414 local_irq_save(flags);
ad3a37de
PM
8415 /*
8416 * We can't reschedule here because interrupts are disabled,
8417 * and either child is current or it is a task that can't be
8418 * scheduled, so we are now safe from rescheduling changing
8419 * our context.
8420 */
806839b2 8421 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8422
8423 /*
8424 * Take the context lock here so that if find_get_context is
cdd6c482 8425 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8426 * incremented the context's refcount before we do put_ctx below.
8427 */
e625cce1 8428 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8429 task_ctx_sched_out(child_ctx);
8dc85d54 8430 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8431
71a851b4
PZ
8432 /*
8433 * If this context is a clone; unclone it so it can't get
8434 * swapped to another process while we're removing all
cdd6c482 8435 * the events from it.
71a851b4 8436 */
211de6eb 8437 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8438 update_context_time(child_ctx);
e625cce1 8439 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8440
211de6eb
PZ
8441 if (clone_ctx)
8442 put_ctx(clone_ctx);
4a1c0f26 8443
9f498cc5 8444 /*
cdd6c482
IM
8445 * Report the task dead after unscheduling the events so that we
8446 * won't get any samples after PERF_RECORD_EXIT. We can however still
8447 * get a few PERF_RECORD_READ events.
9f498cc5 8448 */
cdd6c482 8449 perf_event_task(child, child_ctx, 0);
a63eaf34 8450
66fff224
PZ
8451 /*
8452 * We can recurse on the same lock type through:
8453 *
cdd6c482
IM
8454 * __perf_event_exit_task()
8455 * sync_child_event()
a6fa941d
AV
8456 * put_event()
8457 * mutex_lock(&ctx->mutex)
66fff224
PZ
8458 *
8459 * But since its the parent context it won't be the same instance.
8460 */
a0507c84 8461 mutex_lock(&child_ctx->mutex);
a63eaf34 8462
ebf905fc 8463 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8464 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8465
a63eaf34
PM
8466 mutex_unlock(&child_ctx->mutex);
8467
8468 put_ctx(child_ctx);
9b51f66d
IM
8469}
8470
8dc85d54
PZ
8471/*
8472 * When a child task exits, feed back event values to parent events.
8473 */
8474void perf_event_exit_task(struct task_struct *child)
8475{
8882135b 8476 struct perf_event *event, *tmp;
8dc85d54
PZ
8477 int ctxn;
8478
8882135b
PZ
8479 mutex_lock(&child->perf_event_mutex);
8480 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8481 owner_entry) {
8482 list_del_init(&event->owner_entry);
8483
8484 /*
8485 * Ensure the list deletion is visible before we clear
8486 * the owner, closes a race against perf_release() where
8487 * we need to serialize on the owner->perf_event_mutex.
8488 */
8489 smp_wmb();
8490 event->owner = NULL;
8491 }
8492 mutex_unlock(&child->perf_event_mutex);
8493
8dc85d54
PZ
8494 for_each_task_context_nr(ctxn)
8495 perf_event_exit_task_context(child, ctxn);
8496}
8497
889ff015
FW
8498static void perf_free_event(struct perf_event *event,
8499 struct perf_event_context *ctx)
8500{
8501 struct perf_event *parent = event->parent;
8502
8503 if (WARN_ON_ONCE(!parent))
8504 return;
8505
8506 mutex_lock(&parent->child_mutex);
8507 list_del_init(&event->child_list);
8508 mutex_unlock(&parent->child_mutex);
8509
a6fa941d 8510 put_event(parent);
889ff015 8511
652884fe 8512 raw_spin_lock_irq(&ctx->lock);
8a49542c 8513 perf_group_detach(event);
889ff015 8514 list_del_event(event, ctx);
652884fe 8515 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8516 free_event(event);
8517}
8518
bbbee908 8519/*
652884fe 8520 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8521 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8522 *
8523 * Not all locks are strictly required, but take them anyway to be nice and
8524 * help out with the lockdep assertions.
bbbee908 8525 */
cdd6c482 8526void perf_event_free_task(struct task_struct *task)
bbbee908 8527{
8dc85d54 8528 struct perf_event_context *ctx;
cdd6c482 8529 struct perf_event *event, *tmp;
8dc85d54 8530 int ctxn;
bbbee908 8531
8dc85d54
PZ
8532 for_each_task_context_nr(ctxn) {
8533 ctx = task->perf_event_ctxp[ctxn];
8534 if (!ctx)
8535 continue;
bbbee908 8536
8dc85d54 8537 mutex_lock(&ctx->mutex);
bbbee908 8538again:
8dc85d54
PZ
8539 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8540 group_entry)
8541 perf_free_event(event, ctx);
bbbee908 8542
8dc85d54
PZ
8543 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8544 group_entry)
8545 perf_free_event(event, ctx);
bbbee908 8546
8dc85d54
PZ
8547 if (!list_empty(&ctx->pinned_groups) ||
8548 !list_empty(&ctx->flexible_groups))
8549 goto again;
bbbee908 8550
8dc85d54 8551 mutex_unlock(&ctx->mutex);
bbbee908 8552
8dc85d54
PZ
8553 put_ctx(ctx);
8554 }
889ff015
FW
8555}
8556
4e231c79
PZ
8557void perf_event_delayed_put(struct task_struct *task)
8558{
8559 int ctxn;
8560
8561 for_each_task_context_nr(ctxn)
8562 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8563}
8564
97dee4f3
PZ
8565/*
8566 * inherit a event from parent task to child task:
8567 */
8568static struct perf_event *
8569inherit_event(struct perf_event *parent_event,
8570 struct task_struct *parent,
8571 struct perf_event_context *parent_ctx,
8572 struct task_struct *child,
8573 struct perf_event *group_leader,
8574 struct perf_event_context *child_ctx)
8575{
1929def9 8576 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8577 struct perf_event *child_event;
cee010ec 8578 unsigned long flags;
97dee4f3
PZ
8579
8580 /*
8581 * Instead of creating recursive hierarchies of events,
8582 * we link inherited events back to the original parent,
8583 * which has a filp for sure, which we use as the reference
8584 * count:
8585 */
8586 if (parent_event->parent)
8587 parent_event = parent_event->parent;
8588
8589 child_event = perf_event_alloc(&parent_event->attr,
8590 parent_event->cpu,
d580ff86 8591 child,
97dee4f3 8592 group_leader, parent_event,
79dff51e 8593 NULL, NULL, -1);
97dee4f3
PZ
8594 if (IS_ERR(child_event))
8595 return child_event;
a6fa941d 8596
fadfe7be
JO
8597 if (is_orphaned_event(parent_event) ||
8598 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8599 free_event(child_event);
8600 return NULL;
8601 }
8602
97dee4f3
PZ
8603 get_ctx(child_ctx);
8604
8605 /*
8606 * Make the child state follow the state of the parent event,
8607 * not its attr.disabled bit. We hold the parent's mutex,
8608 * so we won't race with perf_event_{en, dis}able_family.
8609 */
1929def9 8610 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8611 child_event->state = PERF_EVENT_STATE_INACTIVE;
8612 else
8613 child_event->state = PERF_EVENT_STATE_OFF;
8614
8615 if (parent_event->attr.freq) {
8616 u64 sample_period = parent_event->hw.sample_period;
8617 struct hw_perf_event *hwc = &child_event->hw;
8618
8619 hwc->sample_period = sample_period;
8620 hwc->last_period = sample_period;
8621
8622 local64_set(&hwc->period_left, sample_period);
8623 }
8624
8625 child_event->ctx = child_ctx;
8626 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8627 child_event->overflow_handler_context
8628 = parent_event->overflow_handler_context;
97dee4f3 8629
614b6780
TG
8630 /*
8631 * Precalculate sample_data sizes
8632 */
8633 perf_event__header_size(child_event);
6844c09d 8634 perf_event__id_header_size(child_event);
614b6780 8635
97dee4f3
PZ
8636 /*
8637 * Link it up in the child's context:
8638 */
cee010ec 8639 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8640 add_event_to_ctx(child_event, child_ctx);
cee010ec 8641 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8642
97dee4f3
PZ
8643 /*
8644 * Link this into the parent event's child list
8645 */
8646 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8647 mutex_lock(&parent_event->child_mutex);
8648 list_add_tail(&child_event->child_list, &parent_event->child_list);
8649 mutex_unlock(&parent_event->child_mutex);
8650
8651 return child_event;
8652}
8653
8654static int inherit_group(struct perf_event *parent_event,
8655 struct task_struct *parent,
8656 struct perf_event_context *parent_ctx,
8657 struct task_struct *child,
8658 struct perf_event_context *child_ctx)
8659{
8660 struct perf_event *leader;
8661 struct perf_event *sub;
8662 struct perf_event *child_ctr;
8663
8664 leader = inherit_event(parent_event, parent, parent_ctx,
8665 child, NULL, child_ctx);
8666 if (IS_ERR(leader))
8667 return PTR_ERR(leader);
8668 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8669 child_ctr = inherit_event(sub, parent, parent_ctx,
8670 child, leader, child_ctx);
8671 if (IS_ERR(child_ctr))
8672 return PTR_ERR(child_ctr);
8673 }
8674 return 0;
889ff015
FW
8675}
8676
8677static int
8678inherit_task_group(struct perf_event *event, struct task_struct *parent,
8679 struct perf_event_context *parent_ctx,
8dc85d54 8680 struct task_struct *child, int ctxn,
889ff015
FW
8681 int *inherited_all)
8682{
8683 int ret;
8dc85d54 8684 struct perf_event_context *child_ctx;
889ff015
FW
8685
8686 if (!event->attr.inherit) {
8687 *inherited_all = 0;
8688 return 0;
bbbee908
PZ
8689 }
8690
fe4b04fa 8691 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
8692 if (!child_ctx) {
8693 /*
8694 * This is executed from the parent task context, so
8695 * inherit events that have been marked for cloning.
8696 * First allocate and initialize a context for the
8697 * child.
8698 */
bbbee908 8699
734df5ab 8700 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
8701 if (!child_ctx)
8702 return -ENOMEM;
bbbee908 8703
8dc85d54 8704 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
8705 }
8706
8707 ret = inherit_group(event, parent, parent_ctx,
8708 child, child_ctx);
8709
8710 if (ret)
8711 *inherited_all = 0;
8712
8713 return ret;
bbbee908
PZ
8714}
8715
9b51f66d 8716/*
cdd6c482 8717 * Initialize the perf_event context in task_struct
9b51f66d 8718 */
985c8dcb 8719static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 8720{
889ff015 8721 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
8722 struct perf_event_context *cloned_ctx;
8723 struct perf_event *event;
9b51f66d 8724 struct task_struct *parent = current;
564c2b21 8725 int inherited_all = 1;
dddd3379 8726 unsigned long flags;
6ab423e0 8727 int ret = 0;
9b51f66d 8728
8dc85d54 8729 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
8730 return 0;
8731
ad3a37de 8732 /*
25346b93
PM
8733 * If the parent's context is a clone, pin it so it won't get
8734 * swapped under us.
ad3a37de 8735 */
8dc85d54 8736 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
8737 if (!parent_ctx)
8738 return 0;
25346b93 8739
ad3a37de
PM
8740 /*
8741 * No need to check if parent_ctx != NULL here; since we saw
8742 * it non-NULL earlier, the only reason for it to become NULL
8743 * is if we exit, and since we're currently in the middle of
8744 * a fork we can't be exiting at the same time.
8745 */
ad3a37de 8746
9b51f66d
IM
8747 /*
8748 * Lock the parent list. No need to lock the child - not PID
8749 * hashed yet and not running, so nobody can access it.
8750 */
d859e29f 8751 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
8752
8753 /*
8754 * We dont have to disable NMIs - we are only looking at
8755 * the list, not manipulating it:
8756 */
889ff015 8757 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
8758 ret = inherit_task_group(event, parent, parent_ctx,
8759 child, ctxn, &inherited_all);
889ff015
FW
8760 if (ret)
8761 break;
8762 }
b93f7978 8763
dddd3379
TG
8764 /*
8765 * We can't hold ctx->lock when iterating the ->flexible_group list due
8766 * to allocations, but we need to prevent rotation because
8767 * rotate_ctx() will change the list from interrupt context.
8768 */
8769 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8770 parent_ctx->rotate_disable = 1;
8771 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8772
889ff015 8773 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
8774 ret = inherit_task_group(event, parent, parent_ctx,
8775 child, ctxn, &inherited_all);
889ff015 8776 if (ret)
9b51f66d 8777 break;
564c2b21
PM
8778 }
8779
dddd3379
TG
8780 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8781 parent_ctx->rotate_disable = 0;
dddd3379 8782
8dc85d54 8783 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 8784
05cbaa28 8785 if (child_ctx && inherited_all) {
564c2b21
PM
8786 /*
8787 * Mark the child context as a clone of the parent
8788 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
8789 *
8790 * Note that if the parent is a clone, the holding of
8791 * parent_ctx->lock avoids it from being uncloned.
564c2b21 8792 */
c5ed5145 8793 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
8794 if (cloned_ctx) {
8795 child_ctx->parent_ctx = cloned_ctx;
25346b93 8796 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
8797 } else {
8798 child_ctx->parent_ctx = parent_ctx;
8799 child_ctx->parent_gen = parent_ctx->generation;
8800 }
8801 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
8802 }
8803
c5ed5145 8804 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 8805 mutex_unlock(&parent_ctx->mutex);
6ab423e0 8806
25346b93 8807 perf_unpin_context(parent_ctx);
fe4b04fa 8808 put_ctx(parent_ctx);
ad3a37de 8809
6ab423e0 8810 return ret;
9b51f66d
IM
8811}
8812
8dc85d54
PZ
8813/*
8814 * Initialize the perf_event context in task_struct
8815 */
8816int perf_event_init_task(struct task_struct *child)
8817{
8818 int ctxn, ret;
8819
8550d7cb
ON
8820 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8821 mutex_init(&child->perf_event_mutex);
8822 INIT_LIST_HEAD(&child->perf_event_list);
8823
8dc85d54
PZ
8824 for_each_task_context_nr(ctxn) {
8825 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
8826 if (ret) {
8827 perf_event_free_task(child);
8dc85d54 8828 return ret;
6c72e350 8829 }
8dc85d54
PZ
8830 }
8831
8832 return 0;
8833}
8834
220b140b
PM
8835static void __init perf_event_init_all_cpus(void)
8836{
b28ab83c 8837 struct swevent_htable *swhash;
220b140b 8838 int cpu;
220b140b
PM
8839
8840 for_each_possible_cpu(cpu) {
b28ab83c
PZ
8841 swhash = &per_cpu(swevent_htable, cpu);
8842 mutex_init(&swhash->hlist_mutex);
2fde4f94 8843 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
8844 }
8845}
8846
0db0628d 8847static void perf_event_init_cpu(int cpu)
0793a61d 8848{
108b02cf 8849 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 8850
b28ab83c 8851 mutex_lock(&swhash->hlist_mutex);
39af6b16 8852 swhash->online = true;
4536e4d1 8853 if (swhash->hlist_refcount > 0) {
76e1d904
FW
8854 struct swevent_hlist *hlist;
8855
b28ab83c
PZ
8856 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8857 WARN_ON(!hlist);
8858 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8859 }
b28ab83c 8860 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8861}
8862
c277443c 8863#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
108b02cf 8864static void __perf_event_exit_context(void *__info)
0793a61d 8865{
226424ee 8866 struct remove_event re = { .detach_group = true };
108b02cf 8867 struct perf_event_context *ctx = __info;
0793a61d 8868
e3703f8c 8869 rcu_read_lock();
46ce0fe9
PZ
8870 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8871 __perf_remove_from_context(&re);
e3703f8c 8872 rcu_read_unlock();
0793a61d 8873}
108b02cf
PZ
8874
8875static void perf_event_exit_cpu_context(int cpu)
8876{
8877 struct perf_event_context *ctx;
8878 struct pmu *pmu;
8879 int idx;
8880
8881 idx = srcu_read_lock(&pmus_srcu);
8882 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 8883 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
8884
8885 mutex_lock(&ctx->mutex);
8886 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8887 mutex_unlock(&ctx->mutex);
8888 }
8889 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
8890}
8891
cdd6c482 8892static void perf_event_exit_cpu(int cpu)
0793a61d 8893{
b28ab83c 8894 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 8895
e3703f8c
PZ
8896 perf_event_exit_cpu_context(cpu);
8897
b28ab83c 8898 mutex_lock(&swhash->hlist_mutex);
39af6b16 8899 swhash->online = false;
b28ab83c
PZ
8900 swevent_hlist_release(swhash);
8901 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8902}
8903#else
cdd6c482 8904static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
8905#endif
8906
c277443c
PZ
8907static int
8908perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8909{
8910 int cpu;
8911
8912 for_each_online_cpu(cpu)
8913 perf_event_exit_cpu(cpu);
8914
8915 return NOTIFY_OK;
8916}
8917
8918/*
8919 * Run the perf reboot notifier at the very last possible moment so that
8920 * the generic watchdog code runs as long as possible.
8921 */
8922static struct notifier_block perf_reboot_notifier = {
8923 .notifier_call = perf_reboot,
8924 .priority = INT_MIN,
8925};
8926
0db0628d 8927static int
0793a61d
TG
8928perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8929{
8930 unsigned int cpu = (long)hcpu;
8931
4536e4d1 8932 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
8933
8934 case CPU_UP_PREPARE:
5e11637e 8935 case CPU_DOWN_FAILED:
cdd6c482 8936 perf_event_init_cpu(cpu);
0793a61d
TG
8937 break;
8938
5e11637e 8939 case CPU_UP_CANCELED:
0793a61d 8940 case CPU_DOWN_PREPARE:
cdd6c482 8941 perf_event_exit_cpu(cpu);
0793a61d 8942 break;
0793a61d
TG
8943 default:
8944 break;
8945 }
8946
8947 return NOTIFY_OK;
8948}
8949
cdd6c482 8950void __init perf_event_init(void)
0793a61d 8951{
3c502e7a
JW
8952 int ret;
8953
2e80a82a
PZ
8954 idr_init(&pmu_idr);
8955
220b140b 8956 perf_event_init_all_cpus();
b0a873eb 8957 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
8958 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8959 perf_pmu_register(&perf_cpu_clock, NULL, -1);
8960 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
8961 perf_tp_register();
8962 perf_cpu_notifier(perf_cpu_notify);
c277443c 8963 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
8964
8965 ret = init_hw_breakpoint();
8966 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
8967
8968 /* do not patch jump label more than once per second */
8969 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
8970
8971 /*
8972 * Build time assertion that we keep the data_head at the intended
8973 * location. IOW, validation we got the __reserved[] size right.
8974 */
8975 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8976 != 1024);
0793a61d 8977}
abe43400 8978
fd979c01
CS
8979ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
8980 char *page)
8981{
8982 struct perf_pmu_events_attr *pmu_attr =
8983 container_of(attr, struct perf_pmu_events_attr, attr);
8984
8985 if (pmu_attr->event_str)
8986 return sprintf(page, "%s\n", pmu_attr->event_str);
8987
8988 return 0;
8989}
8990
abe43400
PZ
8991static int __init perf_event_sysfs_init(void)
8992{
8993 struct pmu *pmu;
8994 int ret;
8995
8996 mutex_lock(&pmus_lock);
8997
8998 ret = bus_register(&pmu_bus);
8999 if (ret)
9000 goto unlock;
9001
9002 list_for_each_entry(pmu, &pmus, entry) {
9003 if (!pmu->name || pmu->type < 0)
9004 continue;
9005
9006 ret = pmu_dev_alloc(pmu);
9007 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9008 }
9009 pmu_bus_running = 1;
9010 ret = 0;
9011
9012unlock:
9013 mutex_unlock(&pmus_lock);
9014
9015 return ret;
9016}
9017device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9018
9019#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9020static struct cgroup_subsys_state *
9021perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9022{
9023 struct perf_cgroup *jc;
e5d1367f 9024
1b15d055 9025 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9026 if (!jc)
9027 return ERR_PTR(-ENOMEM);
9028
e5d1367f
SE
9029 jc->info = alloc_percpu(struct perf_cgroup_info);
9030 if (!jc->info) {
9031 kfree(jc);
9032 return ERR_PTR(-ENOMEM);
9033 }
9034
e5d1367f
SE
9035 return &jc->css;
9036}
9037
eb95419b 9038static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9039{
eb95419b
TH
9040 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9041
e5d1367f
SE
9042 free_percpu(jc->info);
9043 kfree(jc);
9044}
9045
9046static int __perf_cgroup_move(void *info)
9047{
9048 struct task_struct *task = info;
9049 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9050 return 0;
9051}
9052
eb95419b
TH
9053static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9054 struct cgroup_taskset *tset)
e5d1367f 9055{
bb9d97b6
TH
9056 struct task_struct *task;
9057
924f0d9a 9058 cgroup_taskset_for_each(task, tset)
bb9d97b6 9059 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9060}
9061
eb95419b
TH
9062static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9063 struct cgroup_subsys_state *old_css,
761b3ef5 9064 struct task_struct *task)
e5d1367f
SE
9065{
9066 /*
9067 * cgroup_exit() is called in the copy_process() failure path.
9068 * Ignore this case since the task hasn't ran yet, this avoids
9069 * trying to poke a half freed task state from generic code.
9070 */
9071 if (!(task->flags & PF_EXITING))
9072 return;
9073
bb9d97b6 9074 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9075}
9076
073219e9 9077struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9078 .css_alloc = perf_cgroup_css_alloc,
9079 .css_free = perf_cgroup_css_free,
e7e7ee2e 9080 .exit = perf_cgroup_exit,
bb9d97b6 9081 .attach = perf_cgroup_attach,
e5d1367f
SE
9082};
9083#endif /* CONFIG_CGROUP_PERF */