perf: Always destroy groups on exit
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
c464c76e 42#include <linux/module.h>
0793a61d 43
76369139
FW
44#include "internal.h"
45
4e193bd4
TB
46#include <asm/irq_regs.h>
47
fe4b04fa 48struct remote_function_call {
e7e7ee2e
IM
49 struct task_struct *p;
50 int (*func)(void *info);
51 void *info;
52 int ret;
fe4b04fa
PZ
53};
54
55static void remote_function(void *data)
56{
57 struct remote_function_call *tfc = data;
58 struct task_struct *p = tfc->p;
59
60 if (p) {
61 tfc->ret = -EAGAIN;
62 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
63 return;
64 }
65
66 tfc->ret = tfc->func(tfc->info);
67}
68
69/**
70 * task_function_call - call a function on the cpu on which a task runs
71 * @p: the task to evaluate
72 * @func: the function to be called
73 * @info: the function call argument
74 *
75 * Calls the function @func when the task is currently running. This might
76 * be on the current CPU, which just calls the function directly
77 *
78 * returns: @func return value, or
79 * -ESRCH - when the process isn't running
80 * -EAGAIN - when the process moved away
81 */
82static int
83task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
84{
85 struct remote_function_call data = {
e7e7ee2e
IM
86 .p = p,
87 .func = func,
88 .info = info,
89 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
90 };
91
92 if (task_curr(p))
93 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
94
95 return data.ret;
96}
97
98/**
99 * cpu_function_call - call a function on the cpu
100 * @func: the function to be called
101 * @info: the function call argument
102 *
103 * Calls the function @func on the remote cpu.
104 *
105 * returns: @func return value or -ENXIO when the cpu is offline
106 */
107static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
108{
109 struct remote_function_call data = {
e7e7ee2e
IM
110 .p = NULL,
111 .func = func,
112 .info = info,
113 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
114 };
115
116 smp_call_function_single(cpu, remote_function, &data, 1);
117
118 return data.ret;
119}
120
e5d1367f
SE
121#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
122 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
123 PERF_FLAG_PID_CGROUP |\
124 PERF_FLAG_FD_CLOEXEC)
e5d1367f 125
bce38cd5
SE
126/*
127 * branch priv levels that need permission checks
128 */
129#define PERF_SAMPLE_BRANCH_PERM_PLM \
130 (PERF_SAMPLE_BRANCH_KERNEL |\
131 PERF_SAMPLE_BRANCH_HV)
132
0b3fcf17
SE
133enum event_type_t {
134 EVENT_FLEXIBLE = 0x1,
135 EVENT_PINNED = 0x2,
136 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
137};
138
e5d1367f
SE
139/*
140 * perf_sched_events : >0 events exist
141 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
142 */
c5905afb 143struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 144static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 145static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 146
cdd6c482
IM
147static atomic_t nr_mmap_events __read_mostly;
148static atomic_t nr_comm_events __read_mostly;
149static atomic_t nr_task_events __read_mostly;
948b26b6 150static atomic_t nr_freq_events __read_mostly;
9ee318a7 151
108b02cf
PZ
152static LIST_HEAD(pmus);
153static DEFINE_MUTEX(pmus_lock);
154static struct srcu_struct pmus_srcu;
155
0764771d 156/*
cdd6c482 157 * perf event paranoia level:
0fbdea19
IM
158 * -1 - not paranoid at all
159 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 160 * 1 - disallow cpu events for unpriv
0fbdea19 161 * 2 - disallow kernel profiling for unpriv
0764771d 162 */
cdd6c482 163int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 164
20443384
FW
165/* Minimum for 512 kiB + 1 user control page */
166int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
167
168/*
cdd6c482 169 * max perf event sample rate
df58ab24 170 */
14c63f17
DH
171#define DEFAULT_MAX_SAMPLE_RATE 100000
172#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
173#define DEFAULT_CPU_TIME_MAX_PERCENT 25
174
175int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
176
177static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
178static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
179
d9494cb4
PZ
180static int perf_sample_allowed_ns __read_mostly =
181 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
182
183void update_perf_cpu_limits(void)
184{
185 u64 tmp = perf_sample_period_ns;
186
187 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 188 do_div(tmp, 100);
d9494cb4 189 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 190}
163ec435 191
9e630205
SE
192static int perf_rotate_context(struct perf_cpu_context *cpuctx);
193
163ec435
PZ
194int perf_proc_update_handler(struct ctl_table *table, int write,
195 void __user *buffer, size_t *lenp,
196 loff_t *ppos)
197{
723478c8 198 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
199
200 if (ret || !write)
201 return ret;
202
203 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
204 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
205 update_perf_cpu_limits();
206
207 return 0;
208}
209
210int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
211
212int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
213 void __user *buffer, size_t *lenp,
214 loff_t *ppos)
215{
216 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
217
218 if (ret || !write)
219 return ret;
220
221 update_perf_cpu_limits();
163ec435
PZ
222
223 return 0;
224}
1ccd1549 225
14c63f17
DH
226/*
227 * perf samples are done in some very critical code paths (NMIs).
228 * If they take too much CPU time, the system can lock up and not
229 * get any real work done. This will drop the sample rate when
230 * we detect that events are taking too long.
231 */
232#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 233static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 234
6a02ad66 235static void perf_duration_warn(struct irq_work *w)
14c63f17 236{
6a02ad66 237 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 238 u64 avg_local_sample_len;
e5302920 239 u64 local_samples_len;
6a02ad66
PZ
240
241 local_samples_len = __get_cpu_var(running_sample_length);
242 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
243
244 printk_ratelimited(KERN_WARNING
245 "perf interrupt took too long (%lld > %lld), lowering "
246 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 247 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
248 sysctl_perf_event_sample_rate);
249}
250
251static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
252
253void perf_sample_event_took(u64 sample_len_ns)
254{
d9494cb4 255 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
256 u64 avg_local_sample_len;
257 u64 local_samples_len;
14c63f17 258
d9494cb4 259 if (allowed_ns == 0)
14c63f17
DH
260 return;
261
262 /* decay the counter by 1 average sample */
263 local_samples_len = __get_cpu_var(running_sample_length);
264 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
265 local_samples_len += sample_len_ns;
266 __get_cpu_var(running_sample_length) = local_samples_len;
267
268 /*
269 * note: this will be biased artifically low until we have
270 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
271 * from having to maintain a count.
272 */
273 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
274
d9494cb4 275 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
276 return;
277
278 if (max_samples_per_tick <= 1)
279 return;
280
281 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
282 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
283 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
284
14c63f17 285 update_perf_cpu_limits();
6a02ad66 286
cd578abb
PZ
287 if (!irq_work_queue(&perf_duration_work)) {
288 early_printk("perf interrupt took too long (%lld > %lld), lowering "
289 "kernel.perf_event_max_sample_rate to %d\n",
290 avg_local_sample_len, allowed_ns >> 1,
291 sysctl_perf_event_sample_rate);
292 }
14c63f17
DH
293}
294
cdd6c482 295static atomic64_t perf_event_id;
a96bbc16 296
0b3fcf17
SE
297static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
298 enum event_type_t event_type);
299
300static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
301 enum event_type_t event_type,
302 struct task_struct *task);
303
304static void update_context_time(struct perf_event_context *ctx);
305static u64 perf_event_time(struct perf_event *event);
0b3fcf17 306
cdd6c482 307void __weak perf_event_print_debug(void) { }
0793a61d 308
84c79910 309extern __weak const char *perf_pmu_name(void)
0793a61d 310{
84c79910 311 return "pmu";
0793a61d
TG
312}
313
0b3fcf17
SE
314static inline u64 perf_clock(void)
315{
316 return local_clock();
317}
318
e5d1367f
SE
319static inline struct perf_cpu_context *
320__get_cpu_context(struct perf_event_context *ctx)
321{
322 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
323}
324
facc4307
PZ
325static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
326 struct perf_event_context *ctx)
327{
328 raw_spin_lock(&cpuctx->ctx.lock);
329 if (ctx)
330 raw_spin_lock(&ctx->lock);
331}
332
333static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
334 struct perf_event_context *ctx)
335{
336 if (ctx)
337 raw_spin_unlock(&ctx->lock);
338 raw_spin_unlock(&cpuctx->ctx.lock);
339}
340
e5d1367f
SE
341#ifdef CONFIG_CGROUP_PERF
342
877c6856
LZ
343/*
344 * perf_cgroup_info keeps track of time_enabled for a cgroup.
345 * This is a per-cpu dynamically allocated data structure.
346 */
347struct perf_cgroup_info {
348 u64 time;
349 u64 timestamp;
350};
351
352struct perf_cgroup {
353 struct cgroup_subsys_state css;
86e213e1 354 struct perf_cgroup_info __percpu *info;
877c6856
LZ
355};
356
3f7cce3c
SE
357/*
358 * Must ensure cgroup is pinned (css_get) before calling
359 * this function. In other words, we cannot call this function
360 * if there is no cgroup event for the current CPU context.
361 */
e5d1367f
SE
362static inline struct perf_cgroup *
363perf_cgroup_from_task(struct task_struct *task)
364{
073219e9 365 return container_of(task_css(task, perf_event_cgrp_id),
8af01f56 366 struct perf_cgroup, css);
e5d1367f
SE
367}
368
369static inline bool
370perf_cgroup_match(struct perf_event *event)
371{
372 struct perf_event_context *ctx = event->ctx;
373 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
374
ef824fa1
TH
375 /* @event doesn't care about cgroup */
376 if (!event->cgrp)
377 return true;
378
379 /* wants specific cgroup scope but @cpuctx isn't associated with any */
380 if (!cpuctx->cgrp)
381 return false;
382
383 /*
384 * Cgroup scoping is recursive. An event enabled for a cgroup is
385 * also enabled for all its descendant cgroups. If @cpuctx's
386 * cgroup is a descendant of @event's (the test covers identity
387 * case), it's a match.
388 */
389 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
390 event->cgrp->css.cgroup);
e5d1367f
SE
391}
392
e5d1367f
SE
393static inline void perf_put_cgroup(struct perf_event *event)
394{
395 css_put(&event->cgrp->css);
396}
397
398static inline void perf_detach_cgroup(struct perf_event *event)
399{
400 perf_put_cgroup(event);
401 event->cgrp = NULL;
402}
403
404static inline int is_cgroup_event(struct perf_event *event)
405{
406 return event->cgrp != NULL;
407}
408
409static inline u64 perf_cgroup_event_time(struct perf_event *event)
410{
411 struct perf_cgroup_info *t;
412
413 t = per_cpu_ptr(event->cgrp->info, event->cpu);
414 return t->time;
415}
416
417static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
418{
419 struct perf_cgroup_info *info;
420 u64 now;
421
422 now = perf_clock();
423
424 info = this_cpu_ptr(cgrp->info);
425
426 info->time += now - info->timestamp;
427 info->timestamp = now;
428}
429
430static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
431{
432 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
433 if (cgrp_out)
434 __update_cgrp_time(cgrp_out);
435}
436
437static inline void update_cgrp_time_from_event(struct perf_event *event)
438{
3f7cce3c
SE
439 struct perf_cgroup *cgrp;
440
e5d1367f 441 /*
3f7cce3c
SE
442 * ensure we access cgroup data only when needed and
443 * when we know the cgroup is pinned (css_get)
e5d1367f 444 */
3f7cce3c 445 if (!is_cgroup_event(event))
e5d1367f
SE
446 return;
447
3f7cce3c
SE
448 cgrp = perf_cgroup_from_task(current);
449 /*
450 * Do not update time when cgroup is not active
451 */
452 if (cgrp == event->cgrp)
453 __update_cgrp_time(event->cgrp);
e5d1367f
SE
454}
455
456static inline void
3f7cce3c
SE
457perf_cgroup_set_timestamp(struct task_struct *task,
458 struct perf_event_context *ctx)
e5d1367f
SE
459{
460 struct perf_cgroup *cgrp;
461 struct perf_cgroup_info *info;
462
3f7cce3c
SE
463 /*
464 * ctx->lock held by caller
465 * ensure we do not access cgroup data
466 * unless we have the cgroup pinned (css_get)
467 */
468 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
469 return;
470
471 cgrp = perf_cgroup_from_task(task);
472 info = this_cpu_ptr(cgrp->info);
3f7cce3c 473 info->timestamp = ctx->timestamp;
e5d1367f
SE
474}
475
476#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
477#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
478
479/*
480 * reschedule events based on the cgroup constraint of task.
481 *
482 * mode SWOUT : schedule out everything
483 * mode SWIN : schedule in based on cgroup for next
484 */
485void perf_cgroup_switch(struct task_struct *task, int mode)
486{
487 struct perf_cpu_context *cpuctx;
488 struct pmu *pmu;
489 unsigned long flags;
490
491 /*
492 * disable interrupts to avoid geting nr_cgroup
493 * changes via __perf_event_disable(). Also
494 * avoids preemption.
495 */
496 local_irq_save(flags);
497
498 /*
499 * we reschedule only in the presence of cgroup
500 * constrained events.
501 */
502 rcu_read_lock();
503
504 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 505 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
506 if (cpuctx->unique_pmu != pmu)
507 continue; /* ensure we process each cpuctx once */
e5d1367f 508
e5d1367f
SE
509 /*
510 * perf_cgroup_events says at least one
511 * context on this CPU has cgroup events.
512 *
513 * ctx->nr_cgroups reports the number of cgroup
514 * events for a context.
515 */
516 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
517 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
518 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
519
520 if (mode & PERF_CGROUP_SWOUT) {
521 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
522 /*
523 * must not be done before ctxswout due
524 * to event_filter_match() in event_sched_out()
525 */
526 cpuctx->cgrp = NULL;
527 }
528
529 if (mode & PERF_CGROUP_SWIN) {
e566b76e 530 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
531 /*
532 * set cgrp before ctxsw in to allow
533 * event_filter_match() to not have to pass
534 * task around
e5d1367f
SE
535 */
536 cpuctx->cgrp = perf_cgroup_from_task(task);
537 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
538 }
facc4307
PZ
539 perf_pmu_enable(cpuctx->ctx.pmu);
540 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 541 }
e5d1367f
SE
542 }
543
544 rcu_read_unlock();
545
546 local_irq_restore(flags);
547}
548
a8d757ef
SE
549static inline void perf_cgroup_sched_out(struct task_struct *task,
550 struct task_struct *next)
e5d1367f 551{
a8d757ef
SE
552 struct perf_cgroup *cgrp1;
553 struct perf_cgroup *cgrp2 = NULL;
554
555 /*
556 * we come here when we know perf_cgroup_events > 0
557 */
558 cgrp1 = perf_cgroup_from_task(task);
559
560 /*
561 * next is NULL when called from perf_event_enable_on_exec()
562 * that will systematically cause a cgroup_switch()
563 */
564 if (next)
565 cgrp2 = perf_cgroup_from_task(next);
566
567 /*
568 * only schedule out current cgroup events if we know
569 * that we are switching to a different cgroup. Otherwise,
570 * do no touch the cgroup events.
571 */
572 if (cgrp1 != cgrp2)
573 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
574}
575
a8d757ef
SE
576static inline void perf_cgroup_sched_in(struct task_struct *prev,
577 struct task_struct *task)
e5d1367f 578{
a8d757ef
SE
579 struct perf_cgroup *cgrp1;
580 struct perf_cgroup *cgrp2 = NULL;
581
582 /*
583 * we come here when we know perf_cgroup_events > 0
584 */
585 cgrp1 = perf_cgroup_from_task(task);
586
587 /* prev can never be NULL */
588 cgrp2 = perf_cgroup_from_task(prev);
589
590 /*
591 * only need to schedule in cgroup events if we are changing
592 * cgroup during ctxsw. Cgroup events were not scheduled
593 * out of ctxsw out if that was not the case.
594 */
595 if (cgrp1 != cgrp2)
596 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
597}
598
599static inline int perf_cgroup_connect(int fd, struct perf_event *event,
600 struct perf_event_attr *attr,
601 struct perf_event *group_leader)
602{
603 struct perf_cgroup *cgrp;
604 struct cgroup_subsys_state *css;
2903ff01
AV
605 struct fd f = fdget(fd);
606 int ret = 0;
e5d1367f 607
2903ff01 608 if (!f.file)
e5d1367f
SE
609 return -EBADF;
610
5a17f543 611 css = css_tryget_from_dir(f.file->f_dentry, &perf_event_cgrp_subsys);
3db272c0
LZ
612 if (IS_ERR(css)) {
613 ret = PTR_ERR(css);
614 goto out;
615 }
e5d1367f
SE
616
617 cgrp = container_of(css, struct perf_cgroup, css);
618 event->cgrp = cgrp;
619
620 /*
621 * all events in a group must monitor
622 * the same cgroup because a task belongs
623 * to only one perf cgroup at a time
624 */
625 if (group_leader && group_leader->cgrp != cgrp) {
626 perf_detach_cgroup(event);
627 ret = -EINVAL;
e5d1367f 628 }
3db272c0 629out:
2903ff01 630 fdput(f);
e5d1367f
SE
631 return ret;
632}
633
634static inline void
635perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
636{
637 struct perf_cgroup_info *t;
638 t = per_cpu_ptr(event->cgrp->info, event->cpu);
639 event->shadow_ctx_time = now - t->timestamp;
640}
641
642static inline void
643perf_cgroup_defer_enabled(struct perf_event *event)
644{
645 /*
646 * when the current task's perf cgroup does not match
647 * the event's, we need to remember to call the
648 * perf_mark_enable() function the first time a task with
649 * a matching perf cgroup is scheduled in.
650 */
651 if (is_cgroup_event(event) && !perf_cgroup_match(event))
652 event->cgrp_defer_enabled = 1;
653}
654
655static inline void
656perf_cgroup_mark_enabled(struct perf_event *event,
657 struct perf_event_context *ctx)
658{
659 struct perf_event *sub;
660 u64 tstamp = perf_event_time(event);
661
662 if (!event->cgrp_defer_enabled)
663 return;
664
665 event->cgrp_defer_enabled = 0;
666
667 event->tstamp_enabled = tstamp - event->total_time_enabled;
668 list_for_each_entry(sub, &event->sibling_list, group_entry) {
669 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
670 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
671 sub->cgrp_defer_enabled = 0;
672 }
673 }
674}
675#else /* !CONFIG_CGROUP_PERF */
676
677static inline bool
678perf_cgroup_match(struct perf_event *event)
679{
680 return true;
681}
682
683static inline void perf_detach_cgroup(struct perf_event *event)
684{}
685
686static inline int is_cgroup_event(struct perf_event *event)
687{
688 return 0;
689}
690
691static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
692{
693 return 0;
694}
695
696static inline void update_cgrp_time_from_event(struct perf_event *event)
697{
698}
699
700static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
701{
702}
703
a8d757ef
SE
704static inline void perf_cgroup_sched_out(struct task_struct *task,
705 struct task_struct *next)
e5d1367f
SE
706{
707}
708
a8d757ef
SE
709static inline void perf_cgroup_sched_in(struct task_struct *prev,
710 struct task_struct *task)
e5d1367f
SE
711{
712}
713
714static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
715 struct perf_event_attr *attr,
716 struct perf_event *group_leader)
717{
718 return -EINVAL;
719}
720
721static inline void
3f7cce3c
SE
722perf_cgroup_set_timestamp(struct task_struct *task,
723 struct perf_event_context *ctx)
e5d1367f
SE
724{
725}
726
727void
728perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
729{
730}
731
732static inline void
733perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
734{
735}
736
737static inline u64 perf_cgroup_event_time(struct perf_event *event)
738{
739 return 0;
740}
741
742static inline void
743perf_cgroup_defer_enabled(struct perf_event *event)
744{
745}
746
747static inline void
748perf_cgroup_mark_enabled(struct perf_event *event,
749 struct perf_event_context *ctx)
750{
751}
752#endif
753
9e630205
SE
754/*
755 * set default to be dependent on timer tick just
756 * like original code
757 */
758#define PERF_CPU_HRTIMER (1000 / HZ)
759/*
760 * function must be called with interrupts disbled
761 */
762static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
763{
764 struct perf_cpu_context *cpuctx;
765 enum hrtimer_restart ret = HRTIMER_NORESTART;
766 int rotations = 0;
767
768 WARN_ON(!irqs_disabled());
769
770 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
771
772 rotations = perf_rotate_context(cpuctx);
773
774 /*
775 * arm timer if needed
776 */
777 if (rotations) {
778 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
779 ret = HRTIMER_RESTART;
780 }
781
782 return ret;
783}
784
785/* CPU is going down */
786void perf_cpu_hrtimer_cancel(int cpu)
787{
788 struct perf_cpu_context *cpuctx;
789 struct pmu *pmu;
790 unsigned long flags;
791
792 if (WARN_ON(cpu != smp_processor_id()))
793 return;
794
795 local_irq_save(flags);
796
797 rcu_read_lock();
798
799 list_for_each_entry_rcu(pmu, &pmus, entry) {
800 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
801
802 if (pmu->task_ctx_nr == perf_sw_context)
803 continue;
804
805 hrtimer_cancel(&cpuctx->hrtimer);
806 }
807
808 rcu_read_unlock();
809
810 local_irq_restore(flags);
811}
812
813static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
814{
815 struct hrtimer *hr = &cpuctx->hrtimer;
816 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 817 int timer;
9e630205
SE
818
819 /* no multiplexing needed for SW PMU */
820 if (pmu->task_ctx_nr == perf_sw_context)
821 return;
822
62b85639
SE
823 /*
824 * check default is sane, if not set then force to
825 * default interval (1/tick)
826 */
827 timer = pmu->hrtimer_interval_ms;
828 if (timer < 1)
829 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
830
831 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
832
833 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
834 hr->function = perf_cpu_hrtimer_handler;
835}
836
837static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
838{
839 struct hrtimer *hr = &cpuctx->hrtimer;
840 struct pmu *pmu = cpuctx->ctx.pmu;
841
842 /* not for SW PMU */
843 if (pmu->task_ctx_nr == perf_sw_context)
844 return;
845
846 if (hrtimer_active(hr))
847 return;
848
849 if (!hrtimer_callback_running(hr))
850 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
851 0, HRTIMER_MODE_REL_PINNED, 0);
852}
853
33696fc0 854void perf_pmu_disable(struct pmu *pmu)
9e35ad38 855{
33696fc0
PZ
856 int *count = this_cpu_ptr(pmu->pmu_disable_count);
857 if (!(*count)++)
858 pmu->pmu_disable(pmu);
9e35ad38 859}
9e35ad38 860
33696fc0 861void perf_pmu_enable(struct pmu *pmu)
9e35ad38 862{
33696fc0
PZ
863 int *count = this_cpu_ptr(pmu->pmu_disable_count);
864 if (!--(*count))
865 pmu->pmu_enable(pmu);
9e35ad38 866}
9e35ad38 867
e9d2b064
PZ
868static DEFINE_PER_CPU(struct list_head, rotation_list);
869
870/*
871 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
872 * because they're strictly cpu affine and rotate_start is called with IRQs
873 * disabled, while rotate_context is called from IRQ context.
874 */
108b02cf 875static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 876{
108b02cf 877 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 878 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 879
e9d2b064 880 WARN_ON(!irqs_disabled());
b5ab4cd5 881
d84153d6 882 if (list_empty(&cpuctx->rotation_list))
e9d2b064 883 list_add(&cpuctx->rotation_list, head);
9e35ad38 884}
9e35ad38 885
cdd6c482 886static void get_ctx(struct perf_event_context *ctx)
a63eaf34 887{
e5289d4a 888 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
889}
890
cdd6c482 891static void put_ctx(struct perf_event_context *ctx)
a63eaf34 892{
564c2b21
PM
893 if (atomic_dec_and_test(&ctx->refcount)) {
894 if (ctx->parent_ctx)
895 put_ctx(ctx->parent_ctx);
c93f7669
PM
896 if (ctx->task)
897 put_task_struct(ctx->task);
cb796ff3 898 kfree_rcu(ctx, rcu_head);
564c2b21 899 }
a63eaf34
PM
900}
901
cdd6c482 902static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
903{
904 if (ctx->parent_ctx) {
905 put_ctx(ctx->parent_ctx);
906 ctx->parent_ctx = NULL;
907 }
5a3126d4 908 ctx->generation++;
71a851b4
PZ
909}
910
6844c09d
ACM
911static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
912{
913 /*
914 * only top level events have the pid namespace they were created in
915 */
916 if (event->parent)
917 event = event->parent;
918
919 return task_tgid_nr_ns(p, event->ns);
920}
921
922static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
923{
924 /*
925 * only top level events have the pid namespace they were created in
926 */
927 if (event->parent)
928 event = event->parent;
929
930 return task_pid_nr_ns(p, event->ns);
931}
932
7f453c24 933/*
cdd6c482 934 * If we inherit events we want to return the parent event id
7f453c24
PZ
935 * to userspace.
936 */
cdd6c482 937static u64 primary_event_id(struct perf_event *event)
7f453c24 938{
cdd6c482 939 u64 id = event->id;
7f453c24 940
cdd6c482
IM
941 if (event->parent)
942 id = event->parent->id;
7f453c24
PZ
943
944 return id;
945}
946
25346b93 947/*
cdd6c482 948 * Get the perf_event_context for a task and lock it.
25346b93
PM
949 * This has to cope with with the fact that until it is locked,
950 * the context could get moved to another task.
951 */
cdd6c482 952static struct perf_event_context *
8dc85d54 953perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 954{
cdd6c482 955 struct perf_event_context *ctx;
25346b93 956
9ed6060d 957retry:
058ebd0e
PZ
958 /*
959 * One of the few rules of preemptible RCU is that one cannot do
960 * rcu_read_unlock() while holding a scheduler (or nested) lock when
961 * part of the read side critical section was preemptible -- see
962 * rcu_read_unlock_special().
963 *
964 * Since ctx->lock nests under rq->lock we must ensure the entire read
965 * side critical section is non-preemptible.
966 */
967 preempt_disable();
968 rcu_read_lock();
8dc85d54 969 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
970 if (ctx) {
971 /*
972 * If this context is a clone of another, it might
973 * get swapped for another underneath us by
cdd6c482 974 * perf_event_task_sched_out, though the
25346b93
PM
975 * rcu_read_lock() protects us from any context
976 * getting freed. Lock the context and check if it
977 * got swapped before we could get the lock, and retry
978 * if so. If we locked the right context, then it
979 * can't get swapped on us any more.
980 */
e625cce1 981 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 982 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 983 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
984 rcu_read_unlock();
985 preempt_enable();
25346b93
PM
986 goto retry;
987 }
b49a9e7e
PZ
988
989 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 990 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
991 ctx = NULL;
992 }
25346b93
PM
993 }
994 rcu_read_unlock();
058ebd0e 995 preempt_enable();
25346b93
PM
996 return ctx;
997}
998
999/*
1000 * Get the context for a task and increment its pin_count so it
1001 * can't get swapped to another task. This also increments its
1002 * reference count so that the context can't get freed.
1003 */
8dc85d54
PZ
1004static struct perf_event_context *
1005perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1006{
cdd6c482 1007 struct perf_event_context *ctx;
25346b93
PM
1008 unsigned long flags;
1009
8dc85d54 1010 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1011 if (ctx) {
1012 ++ctx->pin_count;
e625cce1 1013 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1014 }
1015 return ctx;
1016}
1017
cdd6c482 1018static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1019{
1020 unsigned long flags;
1021
e625cce1 1022 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1023 --ctx->pin_count;
e625cce1 1024 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1025}
1026
f67218c3
PZ
1027/*
1028 * Update the record of the current time in a context.
1029 */
1030static void update_context_time(struct perf_event_context *ctx)
1031{
1032 u64 now = perf_clock();
1033
1034 ctx->time += now - ctx->timestamp;
1035 ctx->timestamp = now;
1036}
1037
4158755d
SE
1038static u64 perf_event_time(struct perf_event *event)
1039{
1040 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1041
1042 if (is_cgroup_event(event))
1043 return perf_cgroup_event_time(event);
1044
4158755d
SE
1045 return ctx ? ctx->time : 0;
1046}
1047
f67218c3
PZ
1048/*
1049 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1050 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1051 */
1052static void update_event_times(struct perf_event *event)
1053{
1054 struct perf_event_context *ctx = event->ctx;
1055 u64 run_end;
1056
1057 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1058 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1059 return;
e5d1367f
SE
1060 /*
1061 * in cgroup mode, time_enabled represents
1062 * the time the event was enabled AND active
1063 * tasks were in the monitored cgroup. This is
1064 * independent of the activity of the context as
1065 * there may be a mix of cgroup and non-cgroup events.
1066 *
1067 * That is why we treat cgroup events differently
1068 * here.
1069 */
1070 if (is_cgroup_event(event))
46cd6a7f 1071 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1072 else if (ctx->is_active)
1073 run_end = ctx->time;
acd1d7c1
PZ
1074 else
1075 run_end = event->tstamp_stopped;
1076
1077 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1078
1079 if (event->state == PERF_EVENT_STATE_INACTIVE)
1080 run_end = event->tstamp_stopped;
1081 else
4158755d 1082 run_end = perf_event_time(event);
f67218c3
PZ
1083
1084 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1085
f67218c3
PZ
1086}
1087
96c21a46
PZ
1088/*
1089 * Update total_time_enabled and total_time_running for all events in a group.
1090 */
1091static void update_group_times(struct perf_event *leader)
1092{
1093 struct perf_event *event;
1094
1095 update_event_times(leader);
1096 list_for_each_entry(event, &leader->sibling_list, group_entry)
1097 update_event_times(event);
1098}
1099
889ff015
FW
1100static struct list_head *
1101ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1102{
1103 if (event->attr.pinned)
1104 return &ctx->pinned_groups;
1105 else
1106 return &ctx->flexible_groups;
1107}
1108
fccc714b 1109/*
cdd6c482 1110 * Add a event from the lists for its context.
fccc714b
PZ
1111 * Must be called with ctx->mutex and ctx->lock held.
1112 */
04289bb9 1113static void
cdd6c482 1114list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1115{
8a49542c
PZ
1116 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1117 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1118
1119 /*
8a49542c
PZ
1120 * If we're a stand alone event or group leader, we go to the context
1121 * list, group events are kept attached to the group so that
1122 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1123 */
8a49542c 1124 if (event->group_leader == event) {
889ff015
FW
1125 struct list_head *list;
1126
d6f962b5
FW
1127 if (is_software_event(event))
1128 event->group_flags |= PERF_GROUP_SOFTWARE;
1129
889ff015
FW
1130 list = ctx_group_list(event, ctx);
1131 list_add_tail(&event->group_entry, list);
5c148194 1132 }
592903cd 1133
08309379 1134 if (is_cgroup_event(event))
e5d1367f 1135 ctx->nr_cgroups++;
e5d1367f 1136
d010b332
SE
1137 if (has_branch_stack(event))
1138 ctx->nr_branch_stack++;
1139
cdd6c482 1140 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1141 if (!ctx->nr_events)
108b02cf 1142 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1143 ctx->nr_events++;
1144 if (event->attr.inherit_stat)
bfbd3381 1145 ctx->nr_stat++;
5a3126d4
PZ
1146
1147 ctx->generation++;
04289bb9
IM
1148}
1149
0231bb53
JO
1150/*
1151 * Initialize event state based on the perf_event_attr::disabled.
1152 */
1153static inline void perf_event__state_init(struct perf_event *event)
1154{
1155 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1156 PERF_EVENT_STATE_INACTIVE;
1157}
1158
c320c7b7
ACM
1159/*
1160 * Called at perf_event creation and when events are attached/detached from a
1161 * group.
1162 */
1163static void perf_event__read_size(struct perf_event *event)
1164{
1165 int entry = sizeof(u64); /* value */
1166 int size = 0;
1167 int nr = 1;
1168
1169 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1170 size += sizeof(u64);
1171
1172 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1173 size += sizeof(u64);
1174
1175 if (event->attr.read_format & PERF_FORMAT_ID)
1176 entry += sizeof(u64);
1177
1178 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1179 nr += event->group_leader->nr_siblings;
1180 size += sizeof(u64);
1181 }
1182
1183 size += entry * nr;
1184 event->read_size = size;
1185}
1186
1187static void perf_event__header_size(struct perf_event *event)
1188{
1189 struct perf_sample_data *data;
1190 u64 sample_type = event->attr.sample_type;
1191 u16 size = 0;
1192
1193 perf_event__read_size(event);
1194
1195 if (sample_type & PERF_SAMPLE_IP)
1196 size += sizeof(data->ip);
1197
6844c09d
ACM
1198 if (sample_type & PERF_SAMPLE_ADDR)
1199 size += sizeof(data->addr);
1200
1201 if (sample_type & PERF_SAMPLE_PERIOD)
1202 size += sizeof(data->period);
1203
c3feedf2
AK
1204 if (sample_type & PERF_SAMPLE_WEIGHT)
1205 size += sizeof(data->weight);
1206
6844c09d
ACM
1207 if (sample_type & PERF_SAMPLE_READ)
1208 size += event->read_size;
1209
d6be9ad6
SE
1210 if (sample_type & PERF_SAMPLE_DATA_SRC)
1211 size += sizeof(data->data_src.val);
1212
fdfbbd07
AK
1213 if (sample_type & PERF_SAMPLE_TRANSACTION)
1214 size += sizeof(data->txn);
1215
6844c09d
ACM
1216 event->header_size = size;
1217}
1218
1219static void perf_event__id_header_size(struct perf_event *event)
1220{
1221 struct perf_sample_data *data;
1222 u64 sample_type = event->attr.sample_type;
1223 u16 size = 0;
1224
c320c7b7
ACM
1225 if (sample_type & PERF_SAMPLE_TID)
1226 size += sizeof(data->tid_entry);
1227
1228 if (sample_type & PERF_SAMPLE_TIME)
1229 size += sizeof(data->time);
1230
ff3d527c
AH
1231 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1232 size += sizeof(data->id);
1233
c320c7b7
ACM
1234 if (sample_type & PERF_SAMPLE_ID)
1235 size += sizeof(data->id);
1236
1237 if (sample_type & PERF_SAMPLE_STREAM_ID)
1238 size += sizeof(data->stream_id);
1239
1240 if (sample_type & PERF_SAMPLE_CPU)
1241 size += sizeof(data->cpu_entry);
1242
6844c09d 1243 event->id_header_size = size;
c320c7b7
ACM
1244}
1245
8a49542c
PZ
1246static void perf_group_attach(struct perf_event *event)
1247{
c320c7b7 1248 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1249
74c3337c
PZ
1250 /*
1251 * We can have double attach due to group movement in perf_event_open.
1252 */
1253 if (event->attach_state & PERF_ATTACH_GROUP)
1254 return;
1255
8a49542c
PZ
1256 event->attach_state |= PERF_ATTACH_GROUP;
1257
1258 if (group_leader == event)
1259 return;
1260
1261 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1262 !is_software_event(event))
1263 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1264
1265 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1266 group_leader->nr_siblings++;
c320c7b7
ACM
1267
1268 perf_event__header_size(group_leader);
1269
1270 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1271 perf_event__header_size(pos);
8a49542c
PZ
1272}
1273
a63eaf34 1274/*
cdd6c482 1275 * Remove a event from the lists for its context.
fccc714b 1276 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1277 */
04289bb9 1278static void
cdd6c482 1279list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1280{
68cacd29 1281 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1282 /*
1283 * We can have double detach due to exit/hot-unplug + close.
1284 */
1285 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1286 return;
8a49542c
PZ
1287
1288 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1289
68cacd29 1290 if (is_cgroup_event(event)) {
e5d1367f 1291 ctx->nr_cgroups--;
68cacd29
SE
1292 cpuctx = __get_cpu_context(ctx);
1293 /*
1294 * if there are no more cgroup events
1295 * then cler cgrp to avoid stale pointer
1296 * in update_cgrp_time_from_cpuctx()
1297 */
1298 if (!ctx->nr_cgroups)
1299 cpuctx->cgrp = NULL;
1300 }
e5d1367f 1301
d010b332
SE
1302 if (has_branch_stack(event))
1303 ctx->nr_branch_stack--;
1304
cdd6c482
IM
1305 ctx->nr_events--;
1306 if (event->attr.inherit_stat)
bfbd3381 1307 ctx->nr_stat--;
8bc20959 1308
cdd6c482 1309 list_del_rcu(&event->event_entry);
04289bb9 1310
8a49542c
PZ
1311 if (event->group_leader == event)
1312 list_del_init(&event->group_entry);
5c148194 1313
96c21a46 1314 update_group_times(event);
b2e74a26
SE
1315
1316 /*
1317 * If event was in error state, then keep it
1318 * that way, otherwise bogus counts will be
1319 * returned on read(). The only way to get out
1320 * of error state is by explicit re-enabling
1321 * of the event
1322 */
1323 if (event->state > PERF_EVENT_STATE_OFF)
1324 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1325
1326 ctx->generation++;
050735b0
PZ
1327}
1328
8a49542c 1329static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1330{
1331 struct perf_event *sibling, *tmp;
8a49542c
PZ
1332 struct list_head *list = NULL;
1333
1334 /*
1335 * We can have double detach due to exit/hot-unplug + close.
1336 */
1337 if (!(event->attach_state & PERF_ATTACH_GROUP))
1338 return;
1339
1340 event->attach_state &= ~PERF_ATTACH_GROUP;
1341
1342 /*
1343 * If this is a sibling, remove it from its group.
1344 */
1345 if (event->group_leader != event) {
1346 list_del_init(&event->group_entry);
1347 event->group_leader->nr_siblings--;
c320c7b7 1348 goto out;
8a49542c
PZ
1349 }
1350
1351 if (!list_empty(&event->group_entry))
1352 list = &event->group_entry;
2e2af50b 1353
04289bb9 1354 /*
cdd6c482
IM
1355 * If this was a group event with sibling events then
1356 * upgrade the siblings to singleton events by adding them
8a49542c 1357 * to whatever list we are on.
04289bb9 1358 */
cdd6c482 1359 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1360 if (list)
1361 list_move_tail(&sibling->group_entry, list);
04289bb9 1362 sibling->group_leader = sibling;
d6f962b5
FW
1363
1364 /* Inherit group flags from the previous leader */
1365 sibling->group_flags = event->group_flags;
04289bb9 1366 }
c320c7b7
ACM
1367
1368out:
1369 perf_event__header_size(event->group_leader);
1370
1371 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1372 perf_event__header_size(tmp);
04289bb9
IM
1373}
1374
fa66f07a
SE
1375static inline int
1376event_filter_match(struct perf_event *event)
1377{
e5d1367f
SE
1378 return (event->cpu == -1 || event->cpu == smp_processor_id())
1379 && perf_cgroup_match(event);
fa66f07a
SE
1380}
1381
9ffcfa6f
SE
1382static void
1383event_sched_out(struct perf_event *event,
3b6f9e5c 1384 struct perf_cpu_context *cpuctx,
cdd6c482 1385 struct perf_event_context *ctx)
3b6f9e5c 1386{
4158755d 1387 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1388 u64 delta;
1389 /*
1390 * An event which could not be activated because of
1391 * filter mismatch still needs to have its timings
1392 * maintained, otherwise bogus information is return
1393 * via read() for time_enabled, time_running:
1394 */
1395 if (event->state == PERF_EVENT_STATE_INACTIVE
1396 && !event_filter_match(event)) {
e5d1367f 1397 delta = tstamp - event->tstamp_stopped;
fa66f07a 1398 event->tstamp_running += delta;
4158755d 1399 event->tstamp_stopped = tstamp;
fa66f07a
SE
1400 }
1401
cdd6c482 1402 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1403 return;
3b6f9e5c 1404
44377277
AS
1405 perf_pmu_disable(event->pmu);
1406
cdd6c482
IM
1407 event->state = PERF_EVENT_STATE_INACTIVE;
1408 if (event->pending_disable) {
1409 event->pending_disable = 0;
1410 event->state = PERF_EVENT_STATE_OFF;
970892a9 1411 }
4158755d 1412 event->tstamp_stopped = tstamp;
a4eaf7f1 1413 event->pmu->del(event, 0);
cdd6c482 1414 event->oncpu = -1;
3b6f9e5c 1415
cdd6c482 1416 if (!is_software_event(event))
3b6f9e5c
PM
1417 cpuctx->active_oncpu--;
1418 ctx->nr_active--;
0f5a2601
PZ
1419 if (event->attr.freq && event->attr.sample_freq)
1420 ctx->nr_freq--;
cdd6c482 1421 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1422 cpuctx->exclusive = 0;
44377277
AS
1423
1424 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1425}
1426
d859e29f 1427static void
cdd6c482 1428group_sched_out(struct perf_event *group_event,
d859e29f 1429 struct perf_cpu_context *cpuctx,
cdd6c482 1430 struct perf_event_context *ctx)
d859e29f 1431{
cdd6c482 1432 struct perf_event *event;
fa66f07a 1433 int state = group_event->state;
d859e29f 1434
cdd6c482 1435 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1436
1437 /*
1438 * Schedule out siblings (if any):
1439 */
cdd6c482
IM
1440 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1441 event_sched_out(event, cpuctx, ctx);
d859e29f 1442
fa66f07a 1443 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1444 cpuctx->exclusive = 0;
1445}
1446
46ce0fe9
PZ
1447struct remove_event {
1448 struct perf_event *event;
1449 bool detach_group;
1450};
1451
0793a61d 1452/*
cdd6c482 1453 * Cross CPU call to remove a performance event
0793a61d 1454 *
cdd6c482 1455 * We disable the event on the hardware level first. After that we
0793a61d
TG
1456 * remove it from the context list.
1457 */
fe4b04fa 1458static int __perf_remove_from_context(void *info)
0793a61d 1459{
46ce0fe9
PZ
1460 struct remove_event *re = info;
1461 struct perf_event *event = re->event;
cdd6c482 1462 struct perf_event_context *ctx = event->ctx;
108b02cf 1463 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1464
e625cce1 1465 raw_spin_lock(&ctx->lock);
cdd6c482 1466 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1467 if (re->detach_group)
1468 perf_group_detach(event);
cdd6c482 1469 list_del_event(event, ctx);
64ce3126
PZ
1470 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1471 ctx->is_active = 0;
1472 cpuctx->task_ctx = NULL;
1473 }
e625cce1 1474 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1475
1476 return 0;
0793a61d
TG
1477}
1478
1479
1480/*
cdd6c482 1481 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1482 *
cdd6c482 1483 * CPU events are removed with a smp call. For task events we only
0793a61d 1484 * call when the task is on a CPU.
c93f7669 1485 *
cdd6c482
IM
1486 * If event->ctx is a cloned context, callers must make sure that
1487 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1488 * remains valid. This is OK when called from perf_release since
1489 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1490 * When called from perf_event_exit_task, it's OK because the
c93f7669 1491 * context has been detached from its task.
0793a61d 1492 */
46ce0fe9 1493static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1494{
cdd6c482 1495 struct perf_event_context *ctx = event->ctx;
0793a61d 1496 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1497 struct remove_event re = {
1498 .event = event,
1499 .detach_group = detach_group,
1500 };
0793a61d 1501
fe4b04fa
PZ
1502 lockdep_assert_held(&ctx->mutex);
1503
0793a61d
TG
1504 if (!task) {
1505 /*
cdd6c482 1506 * Per cpu events are removed via an smp call and
af901ca1 1507 * the removal is always successful.
0793a61d 1508 */
46ce0fe9 1509 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1510 return;
1511 }
1512
1513retry:
46ce0fe9 1514 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1515 return;
0793a61d 1516
e625cce1 1517 raw_spin_lock_irq(&ctx->lock);
0793a61d 1518 /*
fe4b04fa
PZ
1519 * If we failed to find a running task, but find the context active now
1520 * that we've acquired the ctx->lock, retry.
0793a61d 1521 */
fe4b04fa 1522 if (ctx->is_active) {
e625cce1 1523 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1524 goto retry;
1525 }
1526
1527 /*
fe4b04fa
PZ
1528 * Since the task isn't running, its safe to remove the event, us
1529 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1530 */
46ce0fe9
PZ
1531 if (detach_group)
1532 perf_group_detach(event);
fe4b04fa 1533 list_del_event(event, ctx);
e625cce1 1534 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1535}
1536
d859e29f 1537/*
cdd6c482 1538 * Cross CPU call to disable a performance event
d859e29f 1539 */
500ad2d8 1540int __perf_event_disable(void *info)
d859e29f 1541{
cdd6c482 1542 struct perf_event *event = info;
cdd6c482 1543 struct perf_event_context *ctx = event->ctx;
108b02cf 1544 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1545
1546 /*
cdd6c482
IM
1547 * If this is a per-task event, need to check whether this
1548 * event's task is the current task on this cpu.
fe4b04fa
PZ
1549 *
1550 * Can trigger due to concurrent perf_event_context_sched_out()
1551 * flipping contexts around.
d859e29f 1552 */
665c2142 1553 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1554 return -EINVAL;
d859e29f 1555
e625cce1 1556 raw_spin_lock(&ctx->lock);
d859e29f
PM
1557
1558 /*
cdd6c482 1559 * If the event is on, turn it off.
d859e29f
PM
1560 * If it is in error state, leave it in error state.
1561 */
cdd6c482 1562 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1563 update_context_time(ctx);
e5d1367f 1564 update_cgrp_time_from_event(event);
cdd6c482
IM
1565 update_group_times(event);
1566 if (event == event->group_leader)
1567 group_sched_out(event, cpuctx, ctx);
d859e29f 1568 else
cdd6c482
IM
1569 event_sched_out(event, cpuctx, ctx);
1570 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1571 }
1572
e625cce1 1573 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1574
1575 return 0;
d859e29f
PM
1576}
1577
1578/*
cdd6c482 1579 * Disable a event.
c93f7669 1580 *
cdd6c482
IM
1581 * If event->ctx is a cloned context, callers must make sure that
1582 * every task struct that event->ctx->task could possibly point to
c93f7669 1583 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1584 * perf_event_for_each_child or perf_event_for_each because they
1585 * hold the top-level event's child_mutex, so any descendant that
1586 * goes to exit will block in sync_child_event.
1587 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1588 * is the current context on this CPU and preemption is disabled,
cdd6c482 1589 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1590 */
44234adc 1591void perf_event_disable(struct perf_event *event)
d859e29f 1592{
cdd6c482 1593 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1594 struct task_struct *task = ctx->task;
1595
1596 if (!task) {
1597 /*
cdd6c482 1598 * Disable the event on the cpu that it's on
d859e29f 1599 */
fe4b04fa 1600 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1601 return;
1602 }
1603
9ed6060d 1604retry:
fe4b04fa
PZ
1605 if (!task_function_call(task, __perf_event_disable, event))
1606 return;
d859e29f 1607
e625cce1 1608 raw_spin_lock_irq(&ctx->lock);
d859e29f 1609 /*
cdd6c482 1610 * If the event is still active, we need to retry the cross-call.
d859e29f 1611 */
cdd6c482 1612 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1613 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1614 /*
1615 * Reload the task pointer, it might have been changed by
1616 * a concurrent perf_event_context_sched_out().
1617 */
1618 task = ctx->task;
d859e29f
PM
1619 goto retry;
1620 }
1621
1622 /*
1623 * Since we have the lock this context can't be scheduled
1624 * in, so we can change the state safely.
1625 */
cdd6c482
IM
1626 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1627 update_group_times(event);
1628 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1629 }
e625cce1 1630 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1631}
dcfce4a0 1632EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1633
e5d1367f
SE
1634static void perf_set_shadow_time(struct perf_event *event,
1635 struct perf_event_context *ctx,
1636 u64 tstamp)
1637{
1638 /*
1639 * use the correct time source for the time snapshot
1640 *
1641 * We could get by without this by leveraging the
1642 * fact that to get to this function, the caller
1643 * has most likely already called update_context_time()
1644 * and update_cgrp_time_xx() and thus both timestamp
1645 * are identical (or very close). Given that tstamp is,
1646 * already adjusted for cgroup, we could say that:
1647 * tstamp - ctx->timestamp
1648 * is equivalent to
1649 * tstamp - cgrp->timestamp.
1650 *
1651 * Then, in perf_output_read(), the calculation would
1652 * work with no changes because:
1653 * - event is guaranteed scheduled in
1654 * - no scheduled out in between
1655 * - thus the timestamp would be the same
1656 *
1657 * But this is a bit hairy.
1658 *
1659 * So instead, we have an explicit cgroup call to remain
1660 * within the time time source all along. We believe it
1661 * is cleaner and simpler to understand.
1662 */
1663 if (is_cgroup_event(event))
1664 perf_cgroup_set_shadow_time(event, tstamp);
1665 else
1666 event->shadow_ctx_time = tstamp - ctx->timestamp;
1667}
1668
4fe757dd
PZ
1669#define MAX_INTERRUPTS (~0ULL)
1670
1671static void perf_log_throttle(struct perf_event *event, int enable);
1672
235c7fc7 1673static int
9ffcfa6f 1674event_sched_in(struct perf_event *event,
235c7fc7 1675 struct perf_cpu_context *cpuctx,
6e37738a 1676 struct perf_event_context *ctx)
235c7fc7 1677{
4158755d 1678 u64 tstamp = perf_event_time(event);
44377277 1679 int ret = 0;
4158755d 1680
cdd6c482 1681 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1682 return 0;
1683
cdd6c482 1684 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1685 event->oncpu = smp_processor_id();
4fe757dd
PZ
1686
1687 /*
1688 * Unthrottle events, since we scheduled we might have missed several
1689 * ticks already, also for a heavily scheduling task there is little
1690 * guarantee it'll get a tick in a timely manner.
1691 */
1692 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1693 perf_log_throttle(event, 1);
1694 event->hw.interrupts = 0;
1695 }
1696
235c7fc7
IM
1697 /*
1698 * The new state must be visible before we turn it on in the hardware:
1699 */
1700 smp_wmb();
1701
44377277
AS
1702 perf_pmu_disable(event->pmu);
1703
a4eaf7f1 1704 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1705 event->state = PERF_EVENT_STATE_INACTIVE;
1706 event->oncpu = -1;
44377277
AS
1707 ret = -EAGAIN;
1708 goto out;
235c7fc7
IM
1709 }
1710
4158755d 1711 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1712
e5d1367f 1713 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1714
cdd6c482 1715 if (!is_software_event(event))
3b6f9e5c 1716 cpuctx->active_oncpu++;
235c7fc7 1717 ctx->nr_active++;
0f5a2601
PZ
1718 if (event->attr.freq && event->attr.sample_freq)
1719 ctx->nr_freq++;
235c7fc7 1720
cdd6c482 1721 if (event->attr.exclusive)
3b6f9e5c
PM
1722 cpuctx->exclusive = 1;
1723
44377277
AS
1724out:
1725 perf_pmu_enable(event->pmu);
1726
1727 return ret;
235c7fc7
IM
1728}
1729
6751b71e 1730static int
cdd6c482 1731group_sched_in(struct perf_event *group_event,
6751b71e 1732 struct perf_cpu_context *cpuctx,
6e37738a 1733 struct perf_event_context *ctx)
6751b71e 1734{
6bde9b6c 1735 struct perf_event *event, *partial_group = NULL;
4a234593 1736 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1737 u64 now = ctx->time;
1738 bool simulate = false;
6751b71e 1739
cdd6c482 1740 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1741 return 0;
1742
ad5133b7 1743 pmu->start_txn(pmu);
6bde9b6c 1744
9ffcfa6f 1745 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1746 pmu->cancel_txn(pmu);
9e630205 1747 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1748 return -EAGAIN;
90151c35 1749 }
6751b71e
PM
1750
1751 /*
1752 * Schedule in siblings as one group (if any):
1753 */
cdd6c482 1754 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1755 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1756 partial_group = event;
6751b71e
PM
1757 goto group_error;
1758 }
1759 }
1760
9ffcfa6f 1761 if (!pmu->commit_txn(pmu))
6e85158c 1762 return 0;
9ffcfa6f 1763
6751b71e
PM
1764group_error:
1765 /*
1766 * Groups can be scheduled in as one unit only, so undo any
1767 * partial group before returning:
d7842da4
SE
1768 * The events up to the failed event are scheduled out normally,
1769 * tstamp_stopped will be updated.
1770 *
1771 * The failed events and the remaining siblings need to have
1772 * their timings updated as if they had gone thru event_sched_in()
1773 * and event_sched_out(). This is required to get consistent timings
1774 * across the group. This also takes care of the case where the group
1775 * could never be scheduled by ensuring tstamp_stopped is set to mark
1776 * the time the event was actually stopped, such that time delta
1777 * calculation in update_event_times() is correct.
6751b71e 1778 */
cdd6c482
IM
1779 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1780 if (event == partial_group)
d7842da4
SE
1781 simulate = true;
1782
1783 if (simulate) {
1784 event->tstamp_running += now - event->tstamp_stopped;
1785 event->tstamp_stopped = now;
1786 } else {
1787 event_sched_out(event, cpuctx, ctx);
1788 }
6751b71e 1789 }
9ffcfa6f 1790 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1791
ad5133b7 1792 pmu->cancel_txn(pmu);
90151c35 1793
9e630205
SE
1794 perf_cpu_hrtimer_restart(cpuctx);
1795
6751b71e
PM
1796 return -EAGAIN;
1797}
1798
3b6f9e5c 1799/*
cdd6c482 1800 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1801 */
cdd6c482 1802static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1803 struct perf_cpu_context *cpuctx,
1804 int can_add_hw)
1805{
1806 /*
cdd6c482 1807 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1808 */
d6f962b5 1809 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1810 return 1;
1811 /*
1812 * If an exclusive group is already on, no other hardware
cdd6c482 1813 * events can go on.
3b6f9e5c
PM
1814 */
1815 if (cpuctx->exclusive)
1816 return 0;
1817 /*
1818 * If this group is exclusive and there are already
cdd6c482 1819 * events on the CPU, it can't go on.
3b6f9e5c 1820 */
cdd6c482 1821 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1822 return 0;
1823 /*
1824 * Otherwise, try to add it if all previous groups were able
1825 * to go on.
1826 */
1827 return can_add_hw;
1828}
1829
cdd6c482
IM
1830static void add_event_to_ctx(struct perf_event *event,
1831 struct perf_event_context *ctx)
53cfbf59 1832{
4158755d
SE
1833 u64 tstamp = perf_event_time(event);
1834
cdd6c482 1835 list_add_event(event, ctx);
8a49542c 1836 perf_group_attach(event);
4158755d
SE
1837 event->tstamp_enabled = tstamp;
1838 event->tstamp_running = tstamp;
1839 event->tstamp_stopped = tstamp;
53cfbf59
PM
1840}
1841
2c29ef0f
PZ
1842static void task_ctx_sched_out(struct perf_event_context *ctx);
1843static void
1844ctx_sched_in(struct perf_event_context *ctx,
1845 struct perf_cpu_context *cpuctx,
1846 enum event_type_t event_type,
1847 struct task_struct *task);
fe4b04fa 1848
dce5855b
PZ
1849static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1850 struct perf_event_context *ctx,
1851 struct task_struct *task)
1852{
1853 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1854 if (ctx)
1855 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1856 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1857 if (ctx)
1858 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1859}
1860
0793a61d 1861/*
cdd6c482 1862 * Cross CPU call to install and enable a performance event
682076ae
PZ
1863 *
1864 * Must be called with ctx->mutex held
0793a61d 1865 */
fe4b04fa 1866static int __perf_install_in_context(void *info)
0793a61d 1867{
cdd6c482
IM
1868 struct perf_event *event = info;
1869 struct perf_event_context *ctx = event->ctx;
108b02cf 1870 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1871 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1872 struct task_struct *task = current;
1873
b58f6b0d 1874 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1875 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1876
1877 /*
2c29ef0f 1878 * If there was an active task_ctx schedule it out.
0793a61d 1879 */
b58f6b0d 1880 if (task_ctx)
2c29ef0f 1881 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1882
1883 /*
1884 * If the context we're installing events in is not the
1885 * active task_ctx, flip them.
1886 */
1887 if (ctx->task && task_ctx != ctx) {
1888 if (task_ctx)
1889 raw_spin_unlock(&task_ctx->lock);
1890 raw_spin_lock(&ctx->lock);
1891 task_ctx = ctx;
1892 }
1893
1894 if (task_ctx) {
1895 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1896 task = task_ctx->task;
1897 }
b58f6b0d 1898
2c29ef0f 1899 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1900
4af4998b 1901 update_context_time(ctx);
e5d1367f
SE
1902 /*
1903 * update cgrp time only if current cgrp
1904 * matches event->cgrp. Must be done before
1905 * calling add_event_to_ctx()
1906 */
1907 update_cgrp_time_from_event(event);
0793a61d 1908
cdd6c482 1909 add_event_to_ctx(event, ctx);
0793a61d 1910
d859e29f 1911 /*
2c29ef0f 1912 * Schedule everything back in
d859e29f 1913 */
dce5855b 1914 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1915
1916 perf_pmu_enable(cpuctx->ctx.pmu);
1917 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1918
1919 return 0;
0793a61d
TG
1920}
1921
1922/*
cdd6c482 1923 * Attach a performance event to a context
0793a61d 1924 *
cdd6c482
IM
1925 * First we add the event to the list with the hardware enable bit
1926 * in event->hw_config cleared.
0793a61d 1927 *
cdd6c482 1928 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1929 * call to enable it in the task context. The task might have been
1930 * scheduled away, but we check this in the smp call again.
1931 */
1932static void
cdd6c482
IM
1933perf_install_in_context(struct perf_event_context *ctx,
1934 struct perf_event *event,
0793a61d
TG
1935 int cpu)
1936{
1937 struct task_struct *task = ctx->task;
1938
fe4b04fa
PZ
1939 lockdep_assert_held(&ctx->mutex);
1940
c3f00c70 1941 event->ctx = ctx;
0cda4c02
YZ
1942 if (event->cpu != -1)
1943 event->cpu = cpu;
c3f00c70 1944
0793a61d
TG
1945 if (!task) {
1946 /*
cdd6c482 1947 * Per cpu events are installed via an smp call and
af901ca1 1948 * the install is always successful.
0793a61d 1949 */
fe4b04fa 1950 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1951 return;
1952 }
1953
0793a61d 1954retry:
fe4b04fa
PZ
1955 if (!task_function_call(task, __perf_install_in_context, event))
1956 return;
0793a61d 1957
e625cce1 1958 raw_spin_lock_irq(&ctx->lock);
0793a61d 1959 /*
fe4b04fa
PZ
1960 * If we failed to find a running task, but find the context active now
1961 * that we've acquired the ctx->lock, retry.
0793a61d 1962 */
fe4b04fa 1963 if (ctx->is_active) {
e625cce1 1964 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1965 goto retry;
1966 }
1967
1968 /*
fe4b04fa
PZ
1969 * Since the task isn't running, its safe to add the event, us holding
1970 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1971 */
fe4b04fa 1972 add_event_to_ctx(event, ctx);
e625cce1 1973 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1974}
1975
fa289bec 1976/*
cdd6c482 1977 * Put a event into inactive state and update time fields.
fa289bec
PM
1978 * Enabling the leader of a group effectively enables all
1979 * the group members that aren't explicitly disabled, so we
1980 * have to update their ->tstamp_enabled also.
1981 * Note: this works for group members as well as group leaders
1982 * since the non-leader members' sibling_lists will be empty.
1983 */
1d9b482e 1984static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1985{
cdd6c482 1986 struct perf_event *sub;
4158755d 1987 u64 tstamp = perf_event_time(event);
fa289bec 1988
cdd6c482 1989 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1990 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1991 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1992 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1993 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1994 }
fa289bec
PM
1995}
1996
d859e29f 1997/*
cdd6c482 1998 * Cross CPU call to enable a performance event
d859e29f 1999 */
fe4b04fa 2000static int __perf_event_enable(void *info)
04289bb9 2001{
cdd6c482 2002 struct perf_event *event = info;
cdd6c482
IM
2003 struct perf_event_context *ctx = event->ctx;
2004 struct perf_event *leader = event->group_leader;
108b02cf 2005 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2006 int err;
04289bb9 2007
06f41796
JO
2008 /*
2009 * There's a time window between 'ctx->is_active' check
2010 * in perf_event_enable function and this place having:
2011 * - IRQs on
2012 * - ctx->lock unlocked
2013 *
2014 * where the task could be killed and 'ctx' deactivated
2015 * by perf_event_exit_task.
2016 */
2017 if (!ctx->is_active)
fe4b04fa 2018 return -EINVAL;
3cbed429 2019
e625cce1 2020 raw_spin_lock(&ctx->lock);
4af4998b 2021 update_context_time(ctx);
d859e29f 2022
cdd6c482 2023 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2024 goto unlock;
e5d1367f
SE
2025
2026 /*
2027 * set current task's cgroup time reference point
2028 */
3f7cce3c 2029 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2030
1d9b482e 2031 __perf_event_mark_enabled(event);
04289bb9 2032
e5d1367f
SE
2033 if (!event_filter_match(event)) {
2034 if (is_cgroup_event(event))
2035 perf_cgroup_defer_enabled(event);
f4c4176f 2036 goto unlock;
e5d1367f 2037 }
f4c4176f 2038
04289bb9 2039 /*
cdd6c482 2040 * If the event is in a group and isn't the group leader,
d859e29f 2041 * then don't put it on unless the group is on.
04289bb9 2042 */
cdd6c482 2043 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2044 goto unlock;
3b6f9e5c 2045
cdd6c482 2046 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2047 err = -EEXIST;
e758a33d 2048 } else {
cdd6c482 2049 if (event == leader)
6e37738a 2050 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2051 else
6e37738a 2052 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2053 }
d859e29f
PM
2054
2055 if (err) {
2056 /*
cdd6c482 2057 * If this event can't go on and it's part of a
d859e29f
PM
2058 * group, then the whole group has to come off.
2059 */
9e630205 2060 if (leader != event) {
d859e29f 2061 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2062 perf_cpu_hrtimer_restart(cpuctx);
2063 }
0d48696f 2064 if (leader->attr.pinned) {
53cfbf59 2065 update_group_times(leader);
cdd6c482 2066 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2067 }
d859e29f
PM
2068 }
2069
9ed6060d 2070unlock:
e625cce1 2071 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2072
2073 return 0;
d859e29f
PM
2074}
2075
2076/*
cdd6c482 2077 * Enable a event.
c93f7669 2078 *
cdd6c482
IM
2079 * If event->ctx is a cloned context, callers must make sure that
2080 * every task struct that event->ctx->task could possibly point to
c93f7669 2081 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2082 * perf_event_for_each_child or perf_event_for_each as described
2083 * for perf_event_disable.
d859e29f 2084 */
44234adc 2085void perf_event_enable(struct perf_event *event)
d859e29f 2086{
cdd6c482 2087 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2088 struct task_struct *task = ctx->task;
2089
2090 if (!task) {
2091 /*
cdd6c482 2092 * Enable the event on the cpu that it's on
d859e29f 2093 */
fe4b04fa 2094 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2095 return;
2096 }
2097
e625cce1 2098 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2099 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2100 goto out;
2101
2102 /*
cdd6c482
IM
2103 * If the event is in error state, clear that first.
2104 * That way, if we see the event in error state below, we
d859e29f
PM
2105 * know that it has gone back into error state, as distinct
2106 * from the task having been scheduled away before the
2107 * cross-call arrived.
2108 */
cdd6c482
IM
2109 if (event->state == PERF_EVENT_STATE_ERROR)
2110 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2111
9ed6060d 2112retry:
fe4b04fa 2113 if (!ctx->is_active) {
1d9b482e 2114 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2115 goto out;
2116 }
2117
e625cce1 2118 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2119
2120 if (!task_function_call(task, __perf_event_enable, event))
2121 return;
d859e29f 2122
e625cce1 2123 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2124
2125 /*
cdd6c482 2126 * If the context is active and the event is still off,
d859e29f
PM
2127 * we need to retry the cross-call.
2128 */
fe4b04fa
PZ
2129 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2130 /*
2131 * task could have been flipped by a concurrent
2132 * perf_event_context_sched_out()
2133 */
2134 task = ctx->task;
d859e29f 2135 goto retry;
fe4b04fa 2136 }
fa289bec 2137
9ed6060d 2138out:
e625cce1 2139 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2140}
dcfce4a0 2141EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2142
26ca5c11 2143int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2144{
2023b359 2145 /*
cdd6c482 2146 * not supported on inherited events
2023b359 2147 */
2e939d1d 2148 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2149 return -EINVAL;
2150
cdd6c482
IM
2151 atomic_add(refresh, &event->event_limit);
2152 perf_event_enable(event);
2023b359
PZ
2153
2154 return 0;
79f14641 2155}
26ca5c11 2156EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2157
5b0311e1
FW
2158static void ctx_sched_out(struct perf_event_context *ctx,
2159 struct perf_cpu_context *cpuctx,
2160 enum event_type_t event_type)
235c7fc7 2161{
cdd6c482 2162 struct perf_event *event;
db24d33e 2163 int is_active = ctx->is_active;
235c7fc7 2164
db24d33e 2165 ctx->is_active &= ~event_type;
cdd6c482 2166 if (likely(!ctx->nr_events))
facc4307
PZ
2167 return;
2168
4af4998b 2169 update_context_time(ctx);
e5d1367f 2170 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2171 if (!ctx->nr_active)
facc4307 2172 return;
5b0311e1 2173
075e0b00 2174 perf_pmu_disable(ctx->pmu);
db24d33e 2175 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2176 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2177 group_sched_out(event, cpuctx, ctx);
9ed6060d 2178 }
889ff015 2179
db24d33e 2180 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2181 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2182 group_sched_out(event, cpuctx, ctx);
9ed6060d 2183 }
1b9a644f 2184 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2185}
2186
564c2b21 2187/*
5a3126d4
PZ
2188 * Test whether two contexts are equivalent, i.e. whether they have both been
2189 * cloned from the same version of the same context.
2190 *
2191 * Equivalence is measured using a generation number in the context that is
2192 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2193 * and list_del_event().
564c2b21 2194 */
cdd6c482
IM
2195static int context_equiv(struct perf_event_context *ctx1,
2196 struct perf_event_context *ctx2)
564c2b21 2197{
5a3126d4
PZ
2198 /* Pinning disables the swap optimization */
2199 if (ctx1->pin_count || ctx2->pin_count)
2200 return 0;
2201
2202 /* If ctx1 is the parent of ctx2 */
2203 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2204 return 1;
2205
2206 /* If ctx2 is the parent of ctx1 */
2207 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2208 return 1;
2209
2210 /*
2211 * If ctx1 and ctx2 have the same parent; we flatten the parent
2212 * hierarchy, see perf_event_init_context().
2213 */
2214 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2215 ctx1->parent_gen == ctx2->parent_gen)
2216 return 1;
2217
2218 /* Unmatched */
2219 return 0;
564c2b21
PM
2220}
2221
cdd6c482
IM
2222static void __perf_event_sync_stat(struct perf_event *event,
2223 struct perf_event *next_event)
bfbd3381
PZ
2224{
2225 u64 value;
2226
cdd6c482 2227 if (!event->attr.inherit_stat)
bfbd3381
PZ
2228 return;
2229
2230 /*
cdd6c482 2231 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2232 * because we're in the middle of a context switch and have IRQs
2233 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2234 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2235 * don't need to use it.
2236 */
cdd6c482
IM
2237 switch (event->state) {
2238 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2239 event->pmu->read(event);
2240 /* fall-through */
bfbd3381 2241
cdd6c482
IM
2242 case PERF_EVENT_STATE_INACTIVE:
2243 update_event_times(event);
bfbd3381
PZ
2244 break;
2245
2246 default:
2247 break;
2248 }
2249
2250 /*
cdd6c482 2251 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2252 * values when we flip the contexts.
2253 */
e7850595
PZ
2254 value = local64_read(&next_event->count);
2255 value = local64_xchg(&event->count, value);
2256 local64_set(&next_event->count, value);
bfbd3381 2257
cdd6c482
IM
2258 swap(event->total_time_enabled, next_event->total_time_enabled);
2259 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2260
bfbd3381 2261 /*
19d2e755 2262 * Since we swizzled the values, update the user visible data too.
bfbd3381 2263 */
cdd6c482
IM
2264 perf_event_update_userpage(event);
2265 perf_event_update_userpage(next_event);
bfbd3381
PZ
2266}
2267
cdd6c482
IM
2268static void perf_event_sync_stat(struct perf_event_context *ctx,
2269 struct perf_event_context *next_ctx)
bfbd3381 2270{
cdd6c482 2271 struct perf_event *event, *next_event;
bfbd3381
PZ
2272
2273 if (!ctx->nr_stat)
2274 return;
2275
02ffdbc8
PZ
2276 update_context_time(ctx);
2277
cdd6c482
IM
2278 event = list_first_entry(&ctx->event_list,
2279 struct perf_event, event_entry);
bfbd3381 2280
cdd6c482
IM
2281 next_event = list_first_entry(&next_ctx->event_list,
2282 struct perf_event, event_entry);
bfbd3381 2283
cdd6c482
IM
2284 while (&event->event_entry != &ctx->event_list &&
2285 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2286
cdd6c482 2287 __perf_event_sync_stat(event, next_event);
bfbd3381 2288
cdd6c482
IM
2289 event = list_next_entry(event, event_entry);
2290 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2291 }
2292}
2293
fe4b04fa
PZ
2294static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2295 struct task_struct *next)
0793a61d 2296{
8dc85d54 2297 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2298 struct perf_event_context *next_ctx;
5a3126d4 2299 struct perf_event_context *parent, *next_parent;
108b02cf 2300 struct perf_cpu_context *cpuctx;
c93f7669 2301 int do_switch = 1;
0793a61d 2302
108b02cf
PZ
2303 if (likely(!ctx))
2304 return;
10989fb2 2305
108b02cf
PZ
2306 cpuctx = __get_cpu_context(ctx);
2307 if (!cpuctx->task_ctx)
0793a61d
TG
2308 return;
2309
c93f7669 2310 rcu_read_lock();
8dc85d54 2311 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2312 if (!next_ctx)
2313 goto unlock;
2314
2315 parent = rcu_dereference(ctx->parent_ctx);
2316 next_parent = rcu_dereference(next_ctx->parent_ctx);
2317
2318 /* If neither context have a parent context; they cannot be clones. */
2319 if (!parent && !next_parent)
2320 goto unlock;
2321
2322 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2323 /*
2324 * Looks like the two contexts are clones, so we might be
2325 * able to optimize the context switch. We lock both
2326 * contexts and check that they are clones under the
2327 * lock (including re-checking that neither has been
2328 * uncloned in the meantime). It doesn't matter which
2329 * order we take the locks because no other cpu could
2330 * be trying to lock both of these tasks.
2331 */
e625cce1
TG
2332 raw_spin_lock(&ctx->lock);
2333 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2334 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2335 /*
2336 * XXX do we need a memory barrier of sorts
cdd6c482 2337 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2338 */
8dc85d54
PZ
2339 task->perf_event_ctxp[ctxn] = next_ctx;
2340 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2341 ctx->task = next;
2342 next_ctx->task = task;
2343 do_switch = 0;
bfbd3381 2344
cdd6c482 2345 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2346 }
e625cce1
TG
2347 raw_spin_unlock(&next_ctx->lock);
2348 raw_spin_unlock(&ctx->lock);
564c2b21 2349 }
5a3126d4 2350unlock:
c93f7669 2351 rcu_read_unlock();
564c2b21 2352
c93f7669 2353 if (do_switch) {
facc4307 2354 raw_spin_lock(&ctx->lock);
5b0311e1 2355 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2356 cpuctx->task_ctx = NULL;
facc4307 2357 raw_spin_unlock(&ctx->lock);
c93f7669 2358 }
0793a61d
TG
2359}
2360
8dc85d54
PZ
2361#define for_each_task_context_nr(ctxn) \
2362 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2363
2364/*
2365 * Called from scheduler to remove the events of the current task,
2366 * with interrupts disabled.
2367 *
2368 * We stop each event and update the event value in event->count.
2369 *
2370 * This does not protect us against NMI, but disable()
2371 * sets the disabled bit in the control field of event _before_
2372 * accessing the event control register. If a NMI hits, then it will
2373 * not restart the event.
2374 */
ab0cce56
JO
2375void __perf_event_task_sched_out(struct task_struct *task,
2376 struct task_struct *next)
8dc85d54
PZ
2377{
2378 int ctxn;
2379
8dc85d54
PZ
2380 for_each_task_context_nr(ctxn)
2381 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2382
2383 /*
2384 * if cgroup events exist on this CPU, then we need
2385 * to check if we have to switch out PMU state.
2386 * cgroup event are system-wide mode only
2387 */
2388 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2389 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2390}
2391
04dc2dbb 2392static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2393{
108b02cf 2394 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2395
a63eaf34
PM
2396 if (!cpuctx->task_ctx)
2397 return;
012b84da
IM
2398
2399 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2400 return;
2401
04dc2dbb 2402 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2403 cpuctx->task_ctx = NULL;
2404}
2405
5b0311e1
FW
2406/*
2407 * Called with IRQs disabled
2408 */
2409static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2410 enum event_type_t event_type)
2411{
2412 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2413}
2414
235c7fc7 2415static void
5b0311e1 2416ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2417 struct perf_cpu_context *cpuctx)
0793a61d 2418{
cdd6c482 2419 struct perf_event *event;
0793a61d 2420
889ff015
FW
2421 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2422 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2423 continue;
5632ab12 2424 if (!event_filter_match(event))
3b6f9e5c
PM
2425 continue;
2426
e5d1367f
SE
2427 /* may need to reset tstamp_enabled */
2428 if (is_cgroup_event(event))
2429 perf_cgroup_mark_enabled(event, ctx);
2430
8c9ed8e1 2431 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2432 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2433
2434 /*
2435 * If this pinned group hasn't been scheduled,
2436 * put it in error state.
2437 */
cdd6c482
IM
2438 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2439 update_group_times(event);
2440 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2441 }
3b6f9e5c 2442 }
5b0311e1
FW
2443}
2444
2445static void
2446ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2447 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2448{
2449 struct perf_event *event;
2450 int can_add_hw = 1;
3b6f9e5c 2451
889ff015
FW
2452 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2453 /* Ignore events in OFF or ERROR state */
2454 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2455 continue;
04289bb9
IM
2456 /*
2457 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2458 * of events:
04289bb9 2459 */
5632ab12 2460 if (!event_filter_match(event))
0793a61d
TG
2461 continue;
2462
e5d1367f
SE
2463 /* may need to reset tstamp_enabled */
2464 if (is_cgroup_event(event))
2465 perf_cgroup_mark_enabled(event, ctx);
2466
9ed6060d 2467 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2468 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2469 can_add_hw = 0;
9ed6060d 2470 }
0793a61d 2471 }
5b0311e1
FW
2472}
2473
2474static void
2475ctx_sched_in(struct perf_event_context *ctx,
2476 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2477 enum event_type_t event_type,
2478 struct task_struct *task)
5b0311e1 2479{
e5d1367f 2480 u64 now;
db24d33e 2481 int is_active = ctx->is_active;
e5d1367f 2482
db24d33e 2483 ctx->is_active |= event_type;
5b0311e1 2484 if (likely(!ctx->nr_events))
facc4307 2485 return;
5b0311e1 2486
e5d1367f
SE
2487 now = perf_clock();
2488 ctx->timestamp = now;
3f7cce3c 2489 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2490 /*
2491 * First go through the list and put on any pinned groups
2492 * in order to give them the best chance of going on.
2493 */
db24d33e 2494 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2495 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2496
2497 /* Then walk through the lower prio flexible groups */
db24d33e 2498 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2499 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2500}
2501
329c0e01 2502static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2503 enum event_type_t event_type,
2504 struct task_struct *task)
329c0e01
FW
2505{
2506 struct perf_event_context *ctx = &cpuctx->ctx;
2507
e5d1367f 2508 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2509}
2510
e5d1367f
SE
2511static void perf_event_context_sched_in(struct perf_event_context *ctx,
2512 struct task_struct *task)
235c7fc7 2513{
108b02cf 2514 struct perf_cpu_context *cpuctx;
235c7fc7 2515
108b02cf 2516 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2517 if (cpuctx->task_ctx == ctx)
2518 return;
2519
facc4307 2520 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2521 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2522 /*
2523 * We want to keep the following priority order:
2524 * cpu pinned (that don't need to move), task pinned,
2525 * cpu flexible, task flexible.
2526 */
2527 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2528
1d5f003f
GN
2529 if (ctx->nr_events)
2530 cpuctx->task_ctx = ctx;
9b33fa6b 2531
86b47c25
GN
2532 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2533
facc4307
PZ
2534 perf_pmu_enable(ctx->pmu);
2535 perf_ctx_unlock(cpuctx, ctx);
2536
b5ab4cd5
PZ
2537 /*
2538 * Since these rotations are per-cpu, we need to ensure the
2539 * cpu-context we got scheduled on is actually rotating.
2540 */
108b02cf 2541 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2542}
2543
d010b332
SE
2544/*
2545 * When sampling the branck stack in system-wide, it may be necessary
2546 * to flush the stack on context switch. This happens when the branch
2547 * stack does not tag its entries with the pid of the current task.
2548 * Otherwise it becomes impossible to associate a branch entry with a
2549 * task. This ambiguity is more likely to appear when the branch stack
2550 * supports priv level filtering and the user sets it to monitor only
2551 * at the user level (which could be a useful measurement in system-wide
2552 * mode). In that case, the risk is high of having a branch stack with
2553 * branch from multiple tasks. Flushing may mean dropping the existing
2554 * entries or stashing them somewhere in the PMU specific code layer.
2555 *
2556 * This function provides the context switch callback to the lower code
2557 * layer. It is invoked ONLY when there is at least one system-wide context
2558 * with at least one active event using taken branch sampling.
2559 */
2560static void perf_branch_stack_sched_in(struct task_struct *prev,
2561 struct task_struct *task)
2562{
2563 struct perf_cpu_context *cpuctx;
2564 struct pmu *pmu;
2565 unsigned long flags;
2566
2567 /* no need to flush branch stack if not changing task */
2568 if (prev == task)
2569 return;
2570
2571 local_irq_save(flags);
2572
2573 rcu_read_lock();
2574
2575 list_for_each_entry_rcu(pmu, &pmus, entry) {
2576 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2577
2578 /*
2579 * check if the context has at least one
2580 * event using PERF_SAMPLE_BRANCH_STACK
2581 */
2582 if (cpuctx->ctx.nr_branch_stack > 0
2583 && pmu->flush_branch_stack) {
2584
d010b332
SE
2585 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2586
2587 perf_pmu_disable(pmu);
2588
2589 pmu->flush_branch_stack();
2590
2591 perf_pmu_enable(pmu);
2592
2593 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2594 }
2595 }
2596
2597 rcu_read_unlock();
2598
2599 local_irq_restore(flags);
2600}
2601
8dc85d54
PZ
2602/*
2603 * Called from scheduler to add the events of the current task
2604 * with interrupts disabled.
2605 *
2606 * We restore the event value and then enable it.
2607 *
2608 * This does not protect us against NMI, but enable()
2609 * sets the enabled bit in the control field of event _before_
2610 * accessing the event control register. If a NMI hits, then it will
2611 * keep the event running.
2612 */
ab0cce56
JO
2613void __perf_event_task_sched_in(struct task_struct *prev,
2614 struct task_struct *task)
8dc85d54
PZ
2615{
2616 struct perf_event_context *ctx;
2617 int ctxn;
2618
2619 for_each_task_context_nr(ctxn) {
2620 ctx = task->perf_event_ctxp[ctxn];
2621 if (likely(!ctx))
2622 continue;
2623
e5d1367f 2624 perf_event_context_sched_in(ctx, task);
8dc85d54 2625 }
e5d1367f
SE
2626 /*
2627 * if cgroup events exist on this CPU, then we need
2628 * to check if we have to switch in PMU state.
2629 * cgroup event are system-wide mode only
2630 */
2631 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2632 perf_cgroup_sched_in(prev, task);
d010b332
SE
2633
2634 /* check for system-wide branch_stack events */
2635 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2636 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2637}
2638
abd50713
PZ
2639static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2640{
2641 u64 frequency = event->attr.sample_freq;
2642 u64 sec = NSEC_PER_SEC;
2643 u64 divisor, dividend;
2644
2645 int count_fls, nsec_fls, frequency_fls, sec_fls;
2646
2647 count_fls = fls64(count);
2648 nsec_fls = fls64(nsec);
2649 frequency_fls = fls64(frequency);
2650 sec_fls = 30;
2651
2652 /*
2653 * We got @count in @nsec, with a target of sample_freq HZ
2654 * the target period becomes:
2655 *
2656 * @count * 10^9
2657 * period = -------------------
2658 * @nsec * sample_freq
2659 *
2660 */
2661
2662 /*
2663 * Reduce accuracy by one bit such that @a and @b converge
2664 * to a similar magnitude.
2665 */
fe4b04fa 2666#define REDUCE_FLS(a, b) \
abd50713
PZ
2667do { \
2668 if (a##_fls > b##_fls) { \
2669 a >>= 1; \
2670 a##_fls--; \
2671 } else { \
2672 b >>= 1; \
2673 b##_fls--; \
2674 } \
2675} while (0)
2676
2677 /*
2678 * Reduce accuracy until either term fits in a u64, then proceed with
2679 * the other, so that finally we can do a u64/u64 division.
2680 */
2681 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2682 REDUCE_FLS(nsec, frequency);
2683 REDUCE_FLS(sec, count);
2684 }
2685
2686 if (count_fls + sec_fls > 64) {
2687 divisor = nsec * frequency;
2688
2689 while (count_fls + sec_fls > 64) {
2690 REDUCE_FLS(count, sec);
2691 divisor >>= 1;
2692 }
2693
2694 dividend = count * sec;
2695 } else {
2696 dividend = count * sec;
2697
2698 while (nsec_fls + frequency_fls > 64) {
2699 REDUCE_FLS(nsec, frequency);
2700 dividend >>= 1;
2701 }
2702
2703 divisor = nsec * frequency;
2704 }
2705
f6ab91ad
PZ
2706 if (!divisor)
2707 return dividend;
2708
abd50713
PZ
2709 return div64_u64(dividend, divisor);
2710}
2711
e050e3f0
SE
2712static DEFINE_PER_CPU(int, perf_throttled_count);
2713static DEFINE_PER_CPU(u64, perf_throttled_seq);
2714
f39d47ff 2715static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2716{
cdd6c482 2717 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2718 s64 period, sample_period;
bd2b5b12
PZ
2719 s64 delta;
2720
abd50713 2721 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2722
2723 delta = (s64)(period - hwc->sample_period);
2724 delta = (delta + 7) / 8; /* low pass filter */
2725
2726 sample_period = hwc->sample_period + delta;
2727
2728 if (!sample_period)
2729 sample_period = 1;
2730
bd2b5b12 2731 hwc->sample_period = sample_period;
abd50713 2732
e7850595 2733 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2734 if (disable)
2735 event->pmu->stop(event, PERF_EF_UPDATE);
2736
e7850595 2737 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2738
2739 if (disable)
2740 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2741 }
bd2b5b12
PZ
2742}
2743
e050e3f0
SE
2744/*
2745 * combine freq adjustment with unthrottling to avoid two passes over the
2746 * events. At the same time, make sure, having freq events does not change
2747 * the rate of unthrottling as that would introduce bias.
2748 */
2749static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2750 int needs_unthr)
60db5e09 2751{
cdd6c482
IM
2752 struct perf_event *event;
2753 struct hw_perf_event *hwc;
e050e3f0 2754 u64 now, period = TICK_NSEC;
abd50713 2755 s64 delta;
60db5e09 2756
e050e3f0
SE
2757 /*
2758 * only need to iterate over all events iff:
2759 * - context have events in frequency mode (needs freq adjust)
2760 * - there are events to unthrottle on this cpu
2761 */
2762 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2763 return;
2764
e050e3f0 2765 raw_spin_lock(&ctx->lock);
f39d47ff 2766 perf_pmu_disable(ctx->pmu);
e050e3f0 2767
03541f8b 2768 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2769 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2770 continue;
2771
5632ab12 2772 if (!event_filter_match(event))
5d27c23d
PZ
2773 continue;
2774
44377277
AS
2775 perf_pmu_disable(event->pmu);
2776
cdd6c482 2777 hwc = &event->hw;
6a24ed6c 2778
ae23bff1 2779 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2780 hwc->interrupts = 0;
cdd6c482 2781 perf_log_throttle(event, 1);
a4eaf7f1 2782 event->pmu->start(event, 0);
a78ac325
PZ
2783 }
2784
cdd6c482 2785 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2786 goto next;
60db5e09 2787
e050e3f0
SE
2788 /*
2789 * stop the event and update event->count
2790 */
2791 event->pmu->stop(event, PERF_EF_UPDATE);
2792
e7850595 2793 now = local64_read(&event->count);
abd50713
PZ
2794 delta = now - hwc->freq_count_stamp;
2795 hwc->freq_count_stamp = now;
60db5e09 2796
e050e3f0
SE
2797 /*
2798 * restart the event
2799 * reload only if value has changed
f39d47ff
SE
2800 * we have stopped the event so tell that
2801 * to perf_adjust_period() to avoid stopping it
2802 * twice.
e050e3f0 2803 */
abd50713 2804 if (delta > 0)
f39d47ff 2805 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2806
2807 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
2808 next:
2809 perf_pmu_enable(event->pmu);
60db5e09 2810 }
e050e3f0 2811
f39d47ff 2812 perf_pmu_enable(ctx->pmu);
e050e3f0 2813 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2814}
2815
235c7fc7 2816/*
cdd6c482 2817 * Round-robin a context's events:
235c7fc7 2818 */
cdd6c482 2819static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2820{
dddd3379
TG
2821 /*
2822 * Rotate the first entry last of non-pinned groups. Rotation might be
2823 * disabled by the inheritance code.
2824 */
2825 if (!ctx->rotate_disable)
2826 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2827}
2828
b5ab4cd5 2829/*
e9d2b064
PZ
2830 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2831 * because they're strictly cpu affine and rotate_start is called with IRQs
2832 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2833 */
9e630205 2834static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2835{
8dc85d54 2836 struct perf_event_context *ctx = NULL;
e050e3f0 2837 int rotate = 0, remove = 1;
7fc23a53 2838
b5ab4cd5 2839 if (cpuctx->ctx.nr_events) {
e9d2b064 2840 remove = 0;
b5ab4cd5
PZ
2841 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2842 rotate = 1;
2843 }
235c7fc7 2844
8dc85d54 2845 ctx = cpuctx->task_ctx;
b5ab4cd5 2846 if (ctx && ctx->nr_events) {
e9d2b064 2847 remove = 0;
b5ab4cd5
PZ
2848 if (ctx->nr_events != ctx->nr_active)
2849 rotate = 1;
2850 }
9717e6cd 2851
e050e3f0 2852 if (!rotate)
0f5a2601
PZ
2853 goto done;
2854
facc4307 2855 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2856 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2857
e050e3f0
SE
2858 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2859 if (ctx)
2860 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2861
e050e3f0
SE
2862 rotate_ctx(&cpuctx->ctx);
2863 if (ctx)
2864 rotate_ctx(ctx);
235c7fc7 2865
e050e3f0 2866 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2867
0f5a2601
PZ
2868 perf_pmu_enable(cpuctx->ctx.pmu);
2869 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2870done:
e9d2b064
PZ
2871 if (remove)
2872 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2873
2874 return rotate;
e9d2b064
PZ
2875}
2876
026249ef
FW
2877#ifdef CONFIG_NO_HZ_FULL
2878bool perf_event_can_stop_tick(void)
2879{
948b26b6 2880 if (atomic_read(&nr_freq_events) ||
d84153d6 2881 __this_cpu_read(perf_throttled_count))
026249ef 2882 return false;
d84153d6
FW
2883 else
2884 return true;
026249ef
FW
2885}
2886#endif
2887
e9d2b064
PZ
2888void perf_event_task_tick(void)
2889{
2890 struct list_head *head = &__get_cpu_var(rotation_list);
2891 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2892 struct perf_event_context *ctx;
2893 int throttled;
b5ab4cd5 2894
e9d2b064
PZ
2895 WARN_ON(!irqs_disabled());
2896
e050e3f0
SE
2897 __this_cpu_inc(perf_throttled_seq);
2898 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2899
e9d2b064 2900 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2901 ctx = &cpuctx->ctx;
2902 perf_adjust_freq_unthr_context(ctx, throttled);
2903
2904 ctx = cpuctx->task_ctx;
2905 if (ctx)
2906 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2907 }
0793a61d
TG
2908}
2909
889ff015
FW
2910static int event_enable_on_exec(struct perf_event *event,
2911 struct perf_event_context *ctx)
2912{
2913 if (!event->attr.enable_on_exec)
2914 return 0;
2915
2916 event->attr.enable_on_exec = 0;
2917 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2918 return 0;
2919
1d9b482e 2920 __perf_event_mark_enabled(event);
889ff015
FW
2921
2922 return 1;
2923}
2924
57e7986e 2925/*
cdd6c482 2926 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2927 * This expects task == current.
2928 */
8dc85d54 2929static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2930{
cdd6c482 2931 struct perf_event *event;
57e7986e
PM
2932 unsigned long flags;
2933 int enabled = 0;
889ff015 2934 int ret;
57e7986e
PM
2935
2936 local_irq_save(flags);
cdd6c482 2937 if (!ctx || !ctx->nr_events)
57e7986e
PM
2938 goto out;
2939
e566b76e
SE
2940 /*
2941 * We must ctxsw out cgroup events to avoid conflict
2942 * when invoking perf_task_event_sched_in() later on
2943 * in this function. Otherwise we end up trying to
2944 * ctxswin cgroup events which are already scheduled
2945 * in.
2946 */
a8d757ef 2947 perf_cgroup_sched_out(current, NULL);
57e7986e 2948
e625cce1 2949 raw_spin_lock(&ctx->lock);
04dc2dbb 2950 task_ctx_sched_out(ctx);
57e7986e 2951
b79387ef 2952 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2953 ret = event_enable_on_exec(event, ctx);
2954 if (ret)
2955 enabled = 1;
57e7986e
PM
2956 }
2957
2958 /*
cdd6c482 2959 * Unclone this context if we enabled any event.
57e7986e 2960 */
71a851b4
PZ
2961 if (enabled)
2962 unclone_ctx(ctx);
57e7986e 2963
e625cce1 2964 raw_spin_unlock(&ctx->lock);
57e7986e 2965
e566b76e
SE
2966 /*
2967 * Also calls ctxswin for cgroup events, if any:
2968 */
e5d1367f 2969 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2970out:
57e7986e
PM
2971 local_irq_restore(flags);
2972}
2973
0793a61d 2974/*
cdd6c482 2975 * Cross CPU call to read the hardware event
0793a61d 2976 */
cdd6c482 2977static void __perf_event_read(void *info)
0793a61d 2978{
cdd6c482
IM
2979 struct perf_event *event = info;
2980 struct perf_event_context *ctx = event->ctx;
108b02cf 2981 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2982
e1ac3614
PM
2983 /*
2984 * If this is a task context, we need to check whether it is
2985 * the current task context of this cpu. If not it has been
2986 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2987 * event->count would have been updated to a recent sample
2988 * when the event was scheduled out.
e1ac3614
PM
2989 */
2990 if (ctx->task && cpuctx->task_ctx != ctx)
2991 return;
2992
e625cce1 2993 raw_spin_lock(&ctx->lock);
e5d1367f 2994 if (ctx->is_active) {
542e72fc 2995 update_context_time(ctx);
e5d1367f
SE
2996 update_cgrp_time_from_event(event);
2997 }
cdd6c482 2998 update_event_times(event);
542e72fc
PZ
2999 if (event->state == PERF_EVENT_STATE_ACTIVE)
3000 event->pmu->read(event);
e625cce1 3001 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3002}
3003
b5e58793
PZ
3004static inline u64 perf_event_count(struct perf_event *event)
3005{
e7850595 3006 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3007}
3008
cdd6c482 3009static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3010{
3011 /*
cdd6c482
IM
3012 * If event is enabled and currently active on a CPU, update the
3013 * value in the event structure:
0793a61d 3014 */
cdd6c482
IM
3015 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3016 smp_call_function_single(event->oncpu,
3017 __perf_event_read, event, 1);
3018 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3019 struct perf_event_context *ctx = event->ctx;
3020 unsigned long flags;
3021
e625cce1 3022 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3023 /*
3024 * may read while context is not active
3025 * (e.g., thread is blocked), in that case
3026 * we cannot update context time
3027 */
e5d1367f 3028 if (ctx->is_active) {
c530ccd9 3029 update_context_time(ctx);
e5d1367f
SE
3030 update_cgrp_time_from_event(event);
3031 }
cdd6c482 3032 update_event_times(event);
e625cce1 3033 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3034 }
3035
b5e58793 3036 return perf_event_count(event);
0793a61d
TG
3037}
3038
a63eaf34 3039/*
cdd6c482 3040 * Initialize the perf_event context in a task_struct:
a63eaf34 3041 */
eb184479 3042static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3043{
e625cce1 3044 raw_spin_lock_init(&ctx->lock);
a63eaf34 3045 mutex_init(&ctx->mutex);
889ff015
FW
3046 INIT_LIST_HEAD(&ctx->pinned_groups);
3047 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3048 INIT_LIST_HEAD(&ctx->event_list);
3049 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3050}
3051
3052static struct perf_event_context *
3053alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3054{
3055 struct perf_event_context *ctx;
3056
3057 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3058 if (!ctx)
3059 return NULL;
3060
3061 __perf_event_init_context(ctx);
3062 if (task) {
3063 ctx->task = task;
3064 get_task_struct(task);
0793a61d 3065 }
eb184479
PZ
3066 ctx->pmu = pmu;
3067
3068 return ctx;
a63eaf34
PM
3069}
3070
2ebd4ffb
MH
3071static struct task_struct *
3072find_lively_task_by_vpid(pid_t vpid)
3073{
3074 struct task_struct *task;
3075 int err;
0793a61d
TG
3076
3077 rcu_read_lock();
2ebd4ffb 3078 if (!vpid)
0793a61d
TG
3079 task = current;
3080 else
2ebd4ffb 3081 task = find_task_by_vpid(vpid);
0793a61d
TG
3082 if (task)
3083 get_task_struct(task);
3084 rcu_read_unlock();
3085
3086 if (!task)
3087 return ERR_PTR(-ESRCH);
3088
0793a61d 3089 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3090 err = -EACCES;
3091 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3092 goto errout;
3093
2ebd4ffb
MH
3094 return task;
3095errout:
3096 put_task_struct(task);
3097 return ERR_PTR(err);
3098
3099}
3100
fe4b04fa
PZ
3101/*
3102 * Returns a matching context with refcount and pincount.
3103 */
108b02cf 3104static struct perf_event_context *
38a81da2 3105find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3106{
cdd6c482 3107 struct perf_event_context *ctx;
22a4f650 3108 struct perf_cpu_context *cpuctx;
25346b93 3109 unsigned long flags;
8dc85d54 3110 int ctxn, err;
0793a61d 3111
22a4ec72 3112 if (!task) {
cdd6c482 3113 /* Must be root to operate on a CPU event: */
0764771d 3114 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3115 return ERR_PTR(-EACCES);
3116
0793a61d 3117 /*
cdd6c482 3118 * We could be clever and allow to attach a event to an
0793a61d
TG
3119 * offline CPU and activate it when the CPU comes up, but
3120 * that's for later.
3121 */
f6325e30 3122 if (!cpu_online(cpu))
0793a61d
TG
3123 return ERR_PTR(-ENODEV);
3124
108b02cf 3125 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3126 ctx = &cpuctx->ctx;
c93f7669 3127 get_ctx(ctx);
fe4b04fa 3128 ++ctx->pin_count;
0793a61d 3129
0793a61d
TG
3130 return ctx;
3131 }
3132
8dc85d54
PZ
3133 err = -EINVAL;
3134 ctxn = pmu->task_ctx_nr;
3135 if (ctxn < 0)
3136 goto errout;
3137
9ed6060d 3138retry:
8dc85d54 3139 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3140 if (ctx) {
71a851b4 3141 unclone_ctx(ctx);
fe4b04fa 3142 ++ctx->pin_count;
e625cce1 3143 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 3144 } else {
eb184479 3145 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3146 err = -ENOMEM;
3147 if (!ctx)
3148 goto errout;
eb184479 3149
dbe08d82
ON
3150 err = 0;
3151 mutex_lock(&task->perf_event_mutex);
3152 /*
3153 * If it has already passed perf_event_exit_task().
3154 * we must see PF_EXITING, it takes this mutex too.
3155 */
3156 if (task->flags & PF_EXITING)
3157 err = -ESRCH;
3158 else if (task->perf_event_ctxp[ctxn])
3159 err = -EAGAIN;
fe4b04fa 3160 else {
9137fb28 3161 get_ctx(ctx);
fe4b04fa 3162 ++ctx->pin_count;
dbe08d82 3163 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3164 }
dbe08d82
ON
3165 mutex_unlock(&task->perf_event_mutex);
3166
3167 if (unlikely(err)) {
9137fb28 3168 put_ctx(ctx);
dbe08d82
ON
3169
3170 if (err == -EAGAIN)
3171 goto retry;
3172 goto errout;
a63eaf34
PM
3173 }
3174 }
3175
0793a61d 3176 return ctx;
c93f7669 3177
9ed6060d 3178errout:
c93f7669 3179 return ERR_PTR(err);
0793a61d
TG
3180}
3181
6fb2915d
LZ
3182static void perf_event_free_filter(struct perf_event *event);
3183
cdd6c482 3184static void free_event_rcu(struct rcu_head *head)
592903cd 3185{
cdd6c482 3186 struct perf_event *event;
592903cd 3187
cdd6c482
IM
3188 event = container_of(head, struct perf_event, rcu_head);
3189 if (event->ns)
3190 put_pid_ns(event->ns);
6fb2915d 3191 perf_event_free_filter(event);
cdd6c482 3192 kfree(event);
592903cd
PZ
3193}
3194
76369139 3195static void ring_buffer_put(struct ring_buffer *rb);
9bb5d40c 3196static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
925d519a 3197
4beb31f3 3198static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3199{
4beb31f3
FW
3200 if (event->parent)
3201 return;
3202
3203 if (has_branch_stack(event)) {
3204 if (!(event->attach_state & PERF_ATTACH_TASK))
3205 atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3206 }
3207 if (is_cgroup_event(event))
3208 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3209}
925d519a 3210
4beb31f3
FW
3211static void unaccount_event(struct perf_event *event)
3212{
3213 if (event->parent)
3214 return;
3215
3216 if (event->attach_state & PERF_ATTACH_TASK)
3217 static_key_slow_dec_deferred(&perf_sched_events);
3218 if (event->attr.mmap || event->attr.mmap_data)
3219 atomic_dec(&nr_mmap_events);
3220 if (event->attr.comm)
3221 atomic_dec(&nr_comm_events);
3222 if (event->attr.task)
3223 atomic_dec(&nr_task_events);
948b26b6
FW
3224 if (event->attr.freq)
3225 atomic_dec(&nr_freq_events);
4beb31f3
FW
3226 if (is_cgroup_event(event))
3227 static_key_slow_dec_deferred(&perf_sched_events);
3228 if (has_branch_stack(event))
3229 static_key_slow_dec_deferred(&perf_sched_events);
3230
3231 unaccount_event_cpu(event, event->cpu);
3232}
925d519a 3233
766d6c07
FW
3234static void __free_event(struct perf_event *event)
3235{
cdd6c482 3236 if (!event->parent) {
927c7a9e
FW
3237 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3238 put_callchain_buffers();
f344011c 3239 }
9ee318a7 3240
766d6c07
FW
3241 if (event->destroy)
3242 event->destroy(event);
3243
3244 if (event->ctx)
3245 put_ctx(event->ctx);
3246
c464c76e
YZ
3247 if (event->pmu)
3248 module_put(event->pmu->module);
3249
766d6c07
FW
3250 call_rcu(&event->rcu_head, free_event_rcu);
3251}
cdd6c482 3252static void free_event(struct perf_event *event)
f1600952 3253{
e360adbe 3254 irq_work_sync(&event->pending);
925d519a 3255
4beb31f3 3256 unaccount_event(event);
9ee318a7 3257
76369139 3258 if (event->rb) {
9bb5d40c
PZ
3259 struct ring_buffer *rb;
3260
3261 /*
3262 * Can happen when we close an event with re-directed output.
3263 *
3264 * Since we have a 0 refcount, perf_mmap_close() will skip
3265 * over us; possibly making our ring_buffer_put() the last.
3266 */
3267 mutex_lock(&event->mmap_mutex);
3268 rb = event->rb;
3269 if (rb) {
3270 rcu_assign_pointer(event->rb, NULL);
3271 ring_buffer_detach(event, rb);
3272 ring_buffer_put(rb); /* could be last */
3273 }
3274 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3275 }
3276
e5d1367f
SE
3277 if (is_cgroup_event(event))
3278 perf_detach_cgroup(event);
3279
0c67b408 3280
766d6c07 3281 __free_event(event);
f1600952
PZ
3282}
3283
a66a3052 3284int perf_event_release_kernel(struct perf_event *event)
0793a61d 3285{
cdd6c482 3286 struct perf_event_context *ctx = event->ctx;
0793a61d 3287
ad3a37de 3288 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
3289 /*
3290 * There are two ways this annotation is useful:
3291 *
3292 * 1) there is a lock recursion from perf_event_exit_task
3293 * see the comment there.
3294 *
3295 * 2) there is a lock-inversion with mmap_sem through
3296 * perf_event_read_group(), which takes faults while
3297 * holding ctx->mutex, however this is called after
3298 * the last filedesc died, so there is no possibility
3299 * to trigger the AB-BA case.
3300 */
3301 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
46ce0fe9 3302 perf_remove_from_context(event, true);
d859e29f 3303 mutex_unlock(&ctx->mutex);
0793a61d 3304
cdd6c482 3305 free_event(event);
0793a61d
TG
3306
3307 return 0;
3308}
a66a3052 3309EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 3310
a66a3052
PZ
3311/*
3312 * Called when the last reference to the file is gone.
3313 */
a6fa941d 3314static void put_event(struct perf_event *event)
fb0459d7 3315{
8882135b 3316 struct task_struct *owner;
fb0459d7 3317
a6fa941d
AV
3318 if (!atomic_long_dec_and_test(&event->refcount))
3319 return;
fb0459d7 3320
8882135b
PZ
3321 rcu_read_lock();
3322 owner = ACCESS_ONCE(event->owner);
3323 /*
3324 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3325 * !owner it means the list deletion is complete and we can indeed
3326 * free this event, otherwise we need to serialize on
3327 * owner->perf_event_mutex.
3328 */
3329 smp_read_barrier_depends();
3330 if (owner) {
3331 /*
3332 * Since delayed_put_task_struct() also drops the last
3333 * task reference we can safely take a new reference
3334 * while holding the rcu_read_lock().
3335 */
3336 get_task_struct(owner);
3337 }
3338 rcu_read_unlock();
3339
3340 if (owner) {
3341 mutex_lock(&owner->perf_event_mutex);
3342 /*
3343 * We have to re-check the event->owner field, if it is cleared
3344 * we raced with perf_event_exit_task(), acquiring the mutex
3345 * ensured they're done, and we can proceed with freeing the
3346 * event.
3347 */
3348 if (event->owner)
3349 list_del_init(&event->owner_entry);
3350 mutex_unlock(&owner->perf_event_mutex);
3351 put_task_struct(owner);
3352 }
3353
a6fa941d
AV
3354 perf_event_release_kernel(event);
3355}
3356
3357static int perf_release(struct inode *inode, struct file *file)
3358{
3359 put_event(file->private_data);
3360 return 0;
fb0459d7 3361}
fb0459d7 3362
59ed446f 3363u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3364{
cdd6c482 3365 struct perf_event *child;
e53c0994
PZ
3366 u64 total = 0;
3367
59ed446f
PZ
3368 *enabled = 0;
3369 *running = 0;
3370
6f10581a 3371 mutex_lock(&event->child_mutex);
cdd6c482 3372 total += perf_event_read(event);
59ed446f
PZ
3373 *enabled += event->total_time_enabled +
3374 atomic64_read(&event->child_total_time_enabled);
3375 *running += event->total_time_running +
3376 atomic64_read(&event->child_total_time_running);
3377
3378 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3379 total += perf_event_read(child);
59ed446f
PZ
3380 *enabled += child->total_time_enabled;
3381 *running += child->total_time_running;
3382 }
6f10581a 3383 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3384
3385 return total;
3386}
fb0459d7 3387EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3388
cdd6c482 3389static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3390 u64 read_format, char __user *buf)
3391{
cdd6c482 3392 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3393 int n = 0, size = 0, ret = -EFAULT;
3394 struct perf_event_context *ctx = leader->ctx;
abf4868b 3395 u64 values[5];
59ed446f 3396 u64 count, enabled, running;
abf4868b 3397
6f10581a 3398 mutex_lock(&ctx->mutex);
59ed446f 3399 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3400
3401 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3402 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3403 values[n++] = enabled;
3404 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3405 values[n++] = running;
abf4868b
PZ
3406 values[n++] = count;
3407 if (read_format & PERF_FORMAT_ID)
3408 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3409
3410 size = n * sizeof(u64);
3411
3412 if (copy_to_user(buf, values, size))
6f10581a 3413 goto unlock;
3dab77fb 3414
6f10581a 3415 ret = size;
3dab77fb 3416
65abc865 3417 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3418 n = 0;
3dab77fb 3419
59ed446f 3420 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3421 if (read_format & PERF_FORMAT_ID)
3422 values[n++] = primary_event_id(sub);
3423
3424 size = n * sizeof(u64);
3425
184d3da8 3426 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3427 ret = -EFAULT;
3428 goto unlock;
3429 }
abf4868b
PZ
3430
3431 ret += size;
3dab77fb 3432 }
6f10581a
PZ
3433unlock:
3434 mutex_unlock(&ctx->mutex);
3dab77fb 3435
abf4868b 3436 return ret;
3dab77fb
PZ
3437}
3438
cdd6c482 3439static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3440 u64 read_format, char __user *buf)
3441{
59ed446f 3442 u64 enabled, running;
3dab77fb
PZ
3443 u64 values[4];
3444 int n = 0;
3445
59ed446f
PZ
3446 values[n++] = perf_event_read_value(event, &enabled, &running);
3447 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3448 values[n++] = enabled;
3449 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3450 values[n++] = running;
3dab77fb 3451 if (read_format & PERF_FORMAT_ID)
cdd6c482 3452 values[n++] = primary_event_id(event);
3dab77fb
PZ
3453
3454 if (copy_to_user(buf, values, n * sizeof(u64)))
3455 return -EFAULT;
3456
3457 return n * sizeof(u64);
3458}
3459
0793a61d 3460/*
cdd6c482 3461 * Read the performance event - simple non blocking version for now
0793a61d
TG
3462 */
3463static ssize_t
cdd6c482 3464perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3465{
cdd6c482 3466 u64 read_format = event->attr.read_format;
3dab77fb 3467 int ret;
0793a61d 3468
3b6f9e5c 3469 /*
cdd6c482 3470 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3471 * error state (i.e. because it was pinned but it couldn't be
3472 * scheduled on to the CPU at some point).
3473 */
cdd6c482 3474 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3475 return 0;
3476
c320c7b7 3477 if (count < event->read_size)
3dab77fb
PZ
3478 return -ENOSPC;
3479
cdd6c482 3480 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3481 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3482 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3483 else
cdd6c482 3484 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3485
3dab77fb 3486 return ret;
0793a61d
TG
3487}
3488
0793a61d
TG
3489static ssize_t
3490perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3491{
cdd6c482 3492 struct perf_event *event = file->private_data;
0793a61d 3493
cdd6c482 3494 return perf_read_hw(event, buf, count);
0793a61d
TG
3495}
3496
3497static unsigned int perf_poll(struct file *file, poll_table *wait)
3498{
cdd6c482 3499 struct perf_event *event = file->private_data;
76369139 3500 struct ring_buffer *rb;
c33a0bc4 3501 unsigned int events = POLL_HUP;
c7138f37 3502
10c6db11 3503 /*
9bb5d40c
PZ
3504 * Pin the event->rb by taking event->mmap_mutex; otherwise
3505 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3506 */
3507 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3508 rb = event->rb;
3509 if (rb)
76369139 3510 events = atomic_xchg(&rb->poll, 0);
10c6db11
PZ
3511 mutex_unlock(&event->mmap_mutex);
3512
cdd6c482 3513 poll_wait(file, &event->waitq, wait);
0793a61d 3514
0793a61d
TG
3515 return events;
3516}
3517
cdd6c482 3518static void perf_event_reset(struct perf_event *event)
6de6a7b9 3519{
cdd6c482 3520 (void)perf_event_read(event);
e7850595 3521 local64_set(&event->count, 0);
cdd6c482 3522 perf_event_update_userpage(event);
3df5edad
PZ
3523}
3524
c93f7669 3525/*
cdd6c482
IM
3526 * Holding the top-level event's child_mutex means that any
3527 * descendant process that has inherited this event will block
3528 * in sync_child_event if it goes to exit, thus satisfying the
3529 * task existence requirements of perf_event_enable/disable.
c93f7669 3530 */
cdd6c482
IM
3531static void perf_event_for_each_child(struct perf_event *event,
3532 void (*func)(struct perf_event *))
3df5edad 3533{
cdd6c482 3534 struct perf_event *child;
3df5edad 3535
cdd6c482
IM
3536 WARN_ON_ONCE(event->ctx->parent_ctx);
3537 mutex_lock(&event->child_mutex);
3538 func(event);
3539 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3540 func(child);
cdd6c482 3541 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3542}
3543
cdd6c482
IM
3544static void perf_event_for_each(struct perf_event *event,
3545 void (*func)(struct perf_event *))
3df5edad 3546{
cdd6c482
IM
3547 struct perf_event_context *ctx = event->ctx;
3548 struct perf_event *sibling;
3df5edad 3549
75f937f2
PZ
3550 WARN_ON_ONCE(ctx->parent_ctx);
3551 mutex_lock(&ctx->mutex);
cdd6c482 3552 event = event->group_leader;
75f937f2 3553
cdd6c482 3554 perf_event_for_each_child(event, func);
cdd6c482 3555 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3556 perf_event_for_each_child(sibling, func);
75f937f2 3557 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3558}
3559
cdd6c482 3560static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3561{
cdd6c482 3562 struct perf_event_context *ctx = event->ctx;
bad7192b 3563 int ret = 0, active;
08247e31
PZ
3564 u64 value;
3565
6c7e550f 3566 if (!is_sampling_event(event))
08247e31
PZ
3567 return -EINVAL;
3568
ad0cf347 3569 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3570 return -EFAULT;
3571
3572 if (!value)
3573 return -EINVAL;
3574
e625cce1 3575 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3576 if (event->attr.freq) {
3577 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3578 ret = -EINVAL;
3579 goto unlock;
3580 }
3581
cdd6c482 3582 event->attr.sample_freq = value;
08247e31 3583 } else {
cdd6c482
IM
3584 event->attr.sample_period = value;
3585 event->hw.sample_period = value;
08247e31 3586 }
bad7192b
PZ
3587
3588 active = (event->state == PERF_EVENT_STATE_ACTIVE);
3589 if (active) {
3590 perf_pmu_disable(ctx->pmu);
3591 event->pmu->stop(event, PERF_EF_UPDATE);
3592 }
3593
3594 local64_set(&event->hw.period_left, 0);
3595
3596 if (active) {
3597 event->pmu->start(event, PERF_EF_RELOAD);
3598 perf_pmu_enable(ctx->pmu);
3599 }
3600
08247e31 3601unlock:
e625cce1 3602 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3603
3604 return ret;
3605}
3606
ac9721f3
PZ
3607static const struct file_operations perf_fops;
3608
2903ff01 3609static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3610{
2903ff01
AV
3611 struct fd f = fdget(fd);
3612 if (!f.file)
3613 return -EBADF;
ac9721f3 3614
2903ff01
AV
3615 if (f.file->f_op != &perf_fops) {
3616 fdput(f);
3617 return -EBADF;
ac9721f3 3618 }
2903ff01
AV
3619 *p = f;
3620 return 0;
ac9721f3
PZ
3621}
3622
3623static int perf_event_set_output(struct perf_event *event,
3624 struct perf_event *output_event);
6fb2915d 3625static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3626
d859e29f
PM
3627static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3628{
cdd6c482
IM
3629 struct perf_event *event = file->private_data;
3630 void (*func)(struct perf_event *);
3df5edad 3631 u32 flags = arg;
d859e29f
PM
3632
3633 switch (cmd) {
cdd6c482
IM
3634 case PERF_EVENT_IOC_ENABLE:
3635 func = perf_event_enable;
d859e29f 3636 break;
cdd6c482
IM
3637 case PERF_EVENT_IOC_DISABLE:
3638 func = perf_event_disable;
79f14641 3639 break;
cdd6c482
IM
3640 case PERF_EVENT_IOC_RESET:
3641 func = perf_event_reset;
6de6a7b9 3642 break;
3df5edad 3643
cdd6c482
IM
3644 case PERF_EVENT_IOC_REFRESH:
3645 return perf_event_refresh(event, arg);
08247e31 3646
cdd6c482
IM
3647 case PERF_EVENT_IOC_PERIOD:
3648 return perf_event_period(event, (u64 __user *)arg);
08247e31 3649
cf4957f1
JO
3650 case PERF_EVENT_IOC_ID:
3651 {
3652 u64 id = primary_event_id(event);
3653
3654 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3655 return -EFAULT;
3656 return 0;
3657 }
3658
cdd6c482 3659 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3660 {
ac9721f3 3661 int ret;
ac9721f3 3662 if (arg != -1) {
2903ff01
AV
3663 struct perf_event *output_event;
3664 struct fd output;
3665 ret = perf_fget_light(arg, &output);
3666 if (ret)
3667 return ret;
3668 output_event = output.file->private_data;
3669 ret = perf_event_set_output(event, output_event);
3670 fdput(output);
3671 } else {
3672 ret = perf_event_set_output(event, NULL);
ac9721f3 3673 }
ac9721f3
PZ
3674 return ret;
3675 }
a4be7c27 3676
6fb2915d
LZ
3677 case PERF_EVENT_IOC_SET_FILTER:
3678 return perf_event_set_filter(event, (void __user *)arg);
3679
d859e29f 3680 default:
3df5edad 3681 return -ENOTTY;
d859e29f 3682 }
3df5edad
PZ
3683
3684 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3685 perf_event_for_each(event, func);
3df5edad 3686 else
cdd6c482 3687 perf_event_for_each_child(event, func);
3df5edad
PZ
3688
3689 return 0;
d859e29f
PM
3690}
3691
cdd6c482 3692int perf_event_task_enable(void)
771d7cde 3693{
cdd6c482 3694 struct perf_event *event;
771d7cde 3695
cdd6c482
IM
3696 mutex_lock(&current->perf_event_mutex);
3697 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3698 perf_event_for_each_child(event, perf_event_enable);
3699 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3700
3701 return 0;
3702}
3703
cdd6c482 3704int perf_event_task_disable(void)
771d7cde 3705{
cdd6c482 3706 struct perf_event *event;
771d7cde 3707
cdd6c482
IM
3708 mutex_lock(&current->perf_event_mutex);
3709 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3710 perf_event_for_each_child(event, perf_event_disable);
3711 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3712
3713 return 0;
3714}
3715
cdd6c482 3716static int perf_event_index(struct perf_event *event)
194002b2 3717{
a4eaf7f1
PZ
3718 if (event->hw.state & PERF_HES_STOPPED)
3719 return 0;
3720
cdd6c482 3721 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3722 return 0;
3723
35edc2a5 3724 return event->pmu->event_idx(event);
194002b2
PZ
3725}
3726
c4794295 3727static void calc_timer_values(struct perf_event *event,
e3f3541c 3728 u64 *now,
7f310a5d
EM
3729 u64 *enabled,
3730 u64 *running)
c4794295 3731{
e3f3541c 3732 u64 ctx_time;
c4794295 3733
e3f3541c
PZ
3734 *now = perf_clock();
3735 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3736 *enabled = ctx_time - event->tstamp_enabled;
3737 *running = ctx_time - event->tstamp_running;
3738}
3739
fa731587
PZ
3740static void perf_event_init_userpage(struct perf_event *event)
3741{
3742 struct perf_event_mmap_page *userpg;
3743 struct ring_buffer *rb;
3744
3745 rcu_read_lock();
3746 rb = rcu_dereference(event->rb);
3747 if (!rb)
3748 goto unlock;
3749
3750 userpg = rb->user_page;
3751
3752 /* Allow new userspace to detect that bit 0 is deprecated */
3753 userpg->cap_bit0_is_deprecated = 1;
3754 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3755
3756unlock:
3757 rcu_read_unlock();
3758}
3759
c7206205 3760void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3761{
3762}
3763
38ff667b
PZ
3764/*
3765 * Callers need to ensure there can be no nesting of this function, otherwise
3766 * the seqlock logic goes bad. We can not serialize this because the arch
3767 * code calls this from NMI context.
3768 */
cdd6c482 3769void perf_event_update_userpage(struct perf_event *event)
37d81828 3770{
cdd6c482 3771 struct perf_event_mmap_page *userpg;
76369139 3772 struct ring_buffer *rb;
e3f3541c 3773 u64 enabled, running, now;
38ff667b
PZ
3774
3775 rcu_read_lock();
5ec4c599
PZ
3776 rb = rcu_dereference(event->rb);
3777 if (!rb)
3778 goto unlock;
3779
0d641208
EM
3780 /*
3781 * compute total_time_enabled, total_time_running
3782 * based on snapshot values taken when the event
3783 * was last scheduled in.
3784 *
3785 * we cannot simply called update_context_time()
3786 * because of locking issue as we can be called in
3787 * NMI context
3788 */
e3f3541c 3789 calc_timer_values(event, &now, &enabled, &running);
38ff667b 3790
76369139 3791 userpg = rb->user_page;
7b732a75
PZ
3792 /*
3793 * Disable preemption so as to not let the corresponding user-space
3794 * spin too long if we get preempted.
3795 */
3796 preempt_disable();
37d81828 3797 ++userpg->lock;
92f22a38 3798 barrier();
cdd6c482 3799 userpg->index = perf_event_index(event);
b5e58793 3800 userpg->offset = perf_event_count(event);
365a4038 3801 if (userpg->index)
e7850595 3802 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3803
0d641208 3804 userpg->time_enabled = enabled +
cdd6c482 3805 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3806
0d641208 3807 userpg->time_running = running +
cdd6c482 3808 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3809
c7206205 3810 arch_perf_update_userpage(userpg, now);
e3f3541c 3811
92f22a38 3812 barrier();
37d81828 3813 ++userpg->lock;
7b732a75 3814 preempt_enable();
38ff667b 3815unlock:
7b732a75 3816 rcu_read_unlock();
37d81828
PM
3817}
3818
906010b2
PZ
3819static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3820{
3821 struct perf_event *event = vma->vm_file->private_data;
76369139 3822 struct ring_buffer *rb;
906010b2
PZ
3823 int ret = VM_FAULT_SIGBUS;
3824
3825 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3826 if (vmf->pgoff == 0)
3827 ret = 0;
3828 return ret;
3829 }
3830
3831 rcu_read_lock();
76369139
FW
3832 rb = rcu_dereference(event->rb);
3833 if (!rb)
906010b2
PZ
3834 goto unlock;
3835
3836 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3837 goto unlock;
3838
76369139 3839 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3840 if (!vmf->page)
3841 goto unlock;
3842
3843 get_page(vmf->page);
3844 vmf->page->mapping = vma->vm_file->f_mapping;
3845 vmf->page->index = vmf->pgoff;
3846
3847 ret = 0;
3848unlock:
3849 rcu_read_unlock();
3850
3851 return ret;
3852}
3853
10c6db11
PZ
3854static void ring_buffer_attach(struct perf_event *event,
3855 struct ring_buffer *rb)
3856{
3857 unsigned long flags;
3858
3859 if (!list_empty(&event->rb_entry))
3860 return;
3861
3862 spin_lock_irqsave(&rb->event_lock, flags);
9bb5d40c
PZ
3863 if (list_empty(&event->rb_entry))
3864 list_add(&event->rb_entry, &rb->event_list);
10c6db11
PZ
3865 spin_unlock_irqrestore(&rb->event_lock, flags);
3866}
3867
9bb5d40c 3868static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
10c6db11
PZ
3869{
3870 unsigned long flags;
3871
3872 if (list_empty(&event->rb_entry))
3873 return;
3874
3875 spin_lock_irqsave(&rb->event_lock, flags);
3876 list_del_init(&event->rb_entry);
3877 wake_up_all(&event->waitq);
3878 spin_unlock_irqrestore(&rb->event_lock, flags);
3879}
3880
3881static void ring_buffer_wakeup(struct perf_event *event)
3882{
3883 struct ring_buffer *rb;
3884
3885 rcu_read_lock();
3886 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
3887 if (rb) {
3888 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3889 wake_up_all(&event->waitq);
3890 }
10c6db11
PZ
3891 rcu_read_unlock();
3892}
3893
76369139 3894static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3895{
76369139 3896 struct ring_buffer *rb;
906010b2 3897
76369139
FW
3898 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3899 rb_free(rb);
7b732a75
PZ
3900}
3901
76369139 3902static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3903{
76369139 3904 struct ring_buffer *rb;
7b732a75 3905
ac9721f3 3906 rcu_read_lock();
76369139
FW
3907 rb = rcu_dereference(event->rb);
3908 if (rb) {
3909 if (!atomic_inc_not_zero(&rb->refcount))
3910 rb = NULL;
ac9721f3
PZ
3911 }
3912 rcu_read_unlock();
3913
76369139 3914 return rb;
ac9721f3
PZ
3915}
3916
76369139 3917static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3918{
76369139 3919 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3920 return;
7b732a75 3921
9bb5d40c 3922 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 3923
76369139 3924 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3925}
3926
3927static void perf_mmap_open(struct vm_area_struct *vma)
3928{
cdd6c482 3929 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3930
cdd6c482 3931 atomic_inc(&event->mmap_count);
9bb5d40c 3932 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
3933}
3934
9bb5d40c
PZ
3935/*
3936 * A buffer can be mmap()ed multiple times; either directly through the same
3937 * event, or through other events by use of perf_event_set_output().
3938 *
3939 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3940 * the buffer here, where we still have a VM context. This means we need
3941 * to detach all events redirecting to us.
3942 */
7b732a75
PZ
3943static void perf_mmap_close(struct vm_area_struct *vma)
3944{
cdd6c482 3945 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3946
9bb5d40c
PZ
3947 struct ring_buffer *rb = event->rb;
3948 struct user_struct *mmap_user = rb->mmap_user;
3949 int mmap_locked = rb->mmap_locked;
3950 unsigned long size = perf_data_size(rb);
789f90fc 3951
9bb5d40c
PZ
3952 atomic_dec(&rb->mmap_count);
3953
3954 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3955 return;
3956
3957 /* Detach current event from the buffer. */
3958 rcu_assign_pointer(event->rb, NULL);
3959 ring_buffer_detach(event, rb);
3960 mutex_unlock(&event->mmap_mutex);
3961
3962 /* If there's still other mmap()s of this buffer, we're done. */
3963 if (atomic_read(&rb->mmap_count)) {
3964 ring_buffer_put(rb); /* can't be last */
3965 return;
3966 }
ac9721f3 3967
9bb5d40c
PZ
3968 /*
3969 * No other mmap()s, detach from all other events that might redirect
3970 * into the now unreachable buffer. Somewhat complicated by the
3971 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3972 */
3973again:
3974 rcu_read_lock();
3975 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3976 if (!atomic_long_inc_not_zero(&event->refcount)) {
3977 /*
3978 * This event is en-route to free_event() which will
3979 * detach it and remove it from the list.
3980 */
3981 continue;
3982 }
3983 rcu_read_unlock();
789f90fc 3984
9bb5d40c
PZ
3985 mutex_lock(&event->mmap_mutex);
3986 /*
3987 * Check we didn't race with perf_event_set_output() which can
3988 * swizzle the rb from under us while we were waiting to
3989 * acquire mmap_mutex.
3990 *
3991 * If we find a different rb; ignore this event, a next
3992 * iteration will no longer find it on the list. We have to
3993 * still restart the iteration to make sure we're not now
3994 * iterating the wrong list.
3995 */
3996 if (event->rb == rb) {
3997 rcu_assign_pointer(event->rb, NULL);
3998 ring_buffer_detach(event, rb);
3999 ring_buffer_put(rb); /* can't be last, we still have one */
26cb63ad 4000 }
cdd6c482 4001 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4002 put_event(event);
ac9721f3 4003
9bb5d40c
PZ
4004 /*
4005 * Restart the iteration; either we're on the wrong list or
4006 * destroyed its integrity by doing a deletion.
4007 */
4008 goto again;
7b732a75 4009 }
9bb5d40c
PZ
4010 rcu_read_unlock();
4011
4012 /*
4013 * It could be there's still a few 0-ref events on the list; they'll
4014 * get cleaned up by free_event() -- they'll also still have their
4015 * ref on the rb and will free it whenever they are done with it.
4016 *
4017 * Aside from that, this buffer is 'fully' detached and unmapped,
4018 * undo the VM accounting.
4019 */
4020
4021 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4022 vma->vm_mm->pinned_vm -= mmap_locked;
4023 free_uid(mmap_user);
4024
4025 ring_buffer_put(rb); /* could be last */
37d81828
PM
4026}
4027
f0f37e2f 4028static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
4029 .open = perf_mmap_open,
4030 .close = perf_mmap_close,
4031 .fault = perf_mmap_fault,
4032 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4033};
4034
4035static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4036{
cdd6c482 4037 struct perf_event *event = file->private_data;
22a4f650 4038 unsigned long user_locked, user_lock_limit;
789f90fc 4039 struct user_struct *user = current_user();
22a4f650 4040 unsigned long locked, lock_limit;
76369139 4041 struct ring_buffer *rb;
7b732a75
PZ
4042 unsigned long vma_size;
4043 unsigned long nr_pages;
789f90fc 4044 long user_extra, extra;
d57e34fd 4045 int ret = 0, flags = 0;
37d81828 4046
c7920614
PZ
4047 /*
4048 * Don't allow mmap() of inherited per-task counters. This would
4049 * create a performance issue due to all children writing to the
76369139 4050 * same rb.
c7920614
PZ
4051 */
4052 if (event->cpu == -1 && event->attr.inherit)
4053 return -EINVAL;
4054
43a21ea8 4055 if (!(vma->vm_flags & VM_SHARED))
37d81828 4056 return -EINVAL;
7b732a75
PZ
4057
4058 vma_size = vma->vm_end - vma->vm_start;
4059 nr_pages = (vma_size / PAGE_SIZE) - 1;
4060
7730d865 4061 /*
76369139 4062 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4063 * can do bitmasks instead of modulo.
4064 */
4065 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4066 return -EINVAL;
4067
7b732a75 4068 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4069 return -EINVAL;
4070
7b732a75
PZ
4071 if (vma->vm_pgoff != 0)
4072 return -EINVAL;
37d81828 4073
cdd6c482 4074 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4075again:
cdd6c482 4076 mutex_lock(&event->mmap_mutex);
76369139 4077 if (event->rb) {
9bb5d40c 4078 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4079 ret = -EINVAL;
9bb5d40c
PZ
4080 goto unlock;
4081 }
4082
4083 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4084 /*
4085 * Raced against perf_mmap_close() through
4086 * perf_event_set_output(). Try again, hope for better
4087 * luck.
4088 */
4089 mutex_unlock(&event->mmap_mutex);
4090 goto again;
4091 }
4092
ebb3c4c4
PZ
4093 goto unlock;
4094 }
4095
789f90fc 4096 user_extra = nr_pages + 1;
cdd6c482 4097 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4098
4099 /*
4100 * Increase the limit linearly with more CPUs:
4101 */
4102 user_lock_limit *= num_online_cpus();
4103
789f90fc 4104 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4105
789f90fc
PZ
4106 extra = 0;
4107 if (user_locked > user_lock_limit)
4108 extra = user_locked - user_lock_limit;
7b732a75 4109
78d7d407 4110 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4111 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4112 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4113
459ec28a
IM
4114 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4115 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4116 ret = -EPERM;
4117 goto unlock;
4118 }
7b732a75 4119
76369139 4120 WARN_ON(event->rb);
906010b2 4121
d57e34fd 4122 if (vma->vm_flags & VM_WRITE)
76369139 4123 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4124
4ec8363d
VW
4125 rb = rb_alloc(nr_pages,
4126 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4127 event->cpu, flags);
4128
76369139 4129 if (!rb) {
ac9721f3 4130 ret = -ENOMEM;
ebb3c4c4 4131 goto unlock;
ac9721f3 4132 }
26cb63ad 4133
9bb5d40c 4134 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
4135 rb->mmap_locked = extra;
4136 rb->mmap_user = get_current_user();
43a21ea8 4137
ac9721f3 4138 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
4139 vma->vm_mm->pinned_vm += extra;
4140
9bb5d40c 4141 ring_buffer_attach(event, rb);
26cb63ad 4142 rcu_assign_pointer(event->rb, rb);
ac9721f3 4143
fa731587 4144 perf_event_init_userpage(event);
9a0f05cb
PZ
4145 perf_event_update_userpage(event);
4146
ebb3c4c4 4147unlock:
ac9721f3
PZ
4148 if (!ret)
4149 atomic_inc(&event->mmap_count);
cdd6c482 4150 mutex_unlock(&event->mmap_mutex);
37d81828 4151
9bb5d40c
PZ
4152 /*
4153 * Since pinned accounting is per vm we cannot allow fork() to copy our
4154 * vma.
4155 */
26cb63ad 4156 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4157 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4158
4159 return ret;
37d81828
PM
4160}
4161
3c446b3d
PZ
4162static int perf_fasync(int fd, struct file *filp, int on)
4163{
496ad9aa 4164 struct inode *inode = file_inode(filp);
cdd6c482 4165 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4166 int retval;
4167
4168 mutex_lock(&inode->i_mutex);
cdd6c482 4169 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4170 mutex_unlock(&inode->i_mutex);
4171
4172 if (retval < 0)
4173 return retval;
4174
4175 return 0;
4176}
4177
0793a61d 4178static const struct file_operations perf_fops = {
3326c1ce 4179 .llseek = no_llseek,
0793a61d
TG
4180 .release = perf_release,
4181 .read = perf_read,
4182 .poll = perf_poll,
d859e29f
PM
4183 .unlocked_ioctl = perf_ioctl,
4184 .compat_ioctl = perf_ioctl,
37d81828 4185 .mmap = perf_mmap,
3c446b3d 4186 .fasync = perf_fasync,
0793a61d
TG
4187};
4188
925d519a 4189/*
cdd6c482 4190 * Perf event wakeup
925d519a
PZ
4191 *
4192 * If there's data, ensure we set the poll() state and publish everything
4193 * to user-space before waking everybody up.
4194 */
4195
cdd6c482 4196void perf_event_wakeup(struct perf_event *event)
925d519a 4197{
10c6db11 4198 ring_buffer_wakeup(event);
4c9e2542 4199
cdd6c482
IM
4200 if (event->pending_kill) {
4201 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4202 event->pending_kill = 0;
4c9e2542 4203 }
925d519a
PZ
4204}
4205
e360adbe 4206static void perf_pending_event(struct irq_work *entry)
79f14641 4207{
cdd6c482
IM
4208 struct perf_event *event = container_of(entry,
4209 struct perf_event, pending);
79f14641 4210
cdd6c482
IM
4211 if (event->pending_disable) {
4212 event->pending_disable = 0;
4213 __perf_event_disable(event);
79f14641
PZ
4214 }
4215
cdd6c482
IM
4216 if (event->pending_wakeup) {
4217 event->pending_wakeup = 0;
4218 perf_event_wakeup(event);
79f14641
PZ
4219 }
4220}
4221
39447b38
ZY
4222/*
4223 * We assume there is only KVM supporting the callbacks.
4224 * Later on, we might change it to a list if there is
4225 * another virtualization implementation supporting the callbacks.
4226 */
4227struct perf_guest_info_callbacks *perf_guest_cbs;
4228
4229int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4230{
4231 perf_guest_cbs = cbs;
4232 return 0;
4233}
4234EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4235
4236int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4237{
4238 perf_guest_cbs = NULL;
4239 return 0;
4240}
4241EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4242
4018994f
JO
4243static void
4244perf_output_sample_regs(struct perf_output_handle *handle,
4245 struct pt_regs *regs, u64 mask)
4246{
4247 int bit;
4248
4249 for_each_set_bit(bit, (const unsigned long *) &mask,
4250 sizeof(mask) * BITS_PER_BYTE) {
4251 u64 val;
4252
4253 val = perf_reg_value(regs, bit);
4254 perf_output_put(handle, val);
4255 }
4256}
4257
4258static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4259 struct pt_regs *regs)
4260{
4261 if (!user_mode(regs)) {
4262 if (current->mm)
4263 regs = task_pt_regs(current);
4264 else
4265 regs = NULL;
4266 }
4267
4268 if (regs) {
4269 regs_user->regs = regs;
4270 regs_user->abi = perf_reg_abi(current);
4271 }
4272}
4273
c5ebcedb
JO
4274/*
4275 * Get remaining task size from user stack pointer.
4276 *
4277 * It'd be better to take stack vma map and limit this more
4278 * precisly, but there's no way to get it safely under interrupt,
4279 * so using TASK_SIZE as limit.
4280 */
4281static u64 perf_ustack_task_size(struct pt_regs *regs)
4282{
4283 unsigned long addr = perf_user_stack_pointer(regs);
4284
4285 if (!addr || addr >= TASK_SIZE)
4286 return 0;
4287
4288 return TASK_SIZE - addr;
4289}
4290
4291static u16
4292perf_sample_ustack_size(u16 stack_size, u16 header_size,
4293 struct pt_regs *regs)
4294{
4295 u64 task_size;
4296
4297 /* No regs, no stack pointer, no dump. */
4298 if (!regs)
4299 return 0;
4300
4301 /*
4302 * Check if we fit in with the requested stack size into the:
4303 * - TASK_SIZE
4304 * If we don't, we limit the size to the TASK_SIZE.
4305 *
4306 * - remaining sample size
4307 * If we don't, we customize the stack size to
4308 * fit in to the remaining sample size.
4309 */
4310
4311 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4312 stack_size = min(stack_size, (u16) task_size);
4313
4314 /* Current header size plus static size and dynamic size. */
4315 header_size += 2 * sizeof(u64);
4316
4317 /* Do we fit in with the current stack dump size? */
4318 if ((u16) (header_size + stack_size) < header_size) {
4319 /*
4320 * If we overflow the maximum size for the sample,
4321 * we customize the stack dump size to fit in.
4322 */
4323 stack_size = USHRT_MAX - header_size - sizeof(u64);
4324 stack_size = round_up(stack_size, sizeof(u64));
4325 }
4326
4327 return stack_size;
4328}
4329
4330static void
4331perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4332 struct pt_regs *regs)
4333{
4334 /* Case of a kernel thread, nothing to dump */
4335 if (!regs) {
4336 u64 size = 0;
4337 perf_output_put(handle, size);
4338 } else {
4339 unsigned long sp;
4340 unsigned int rem;
4341 u64 dyn_size;
4342
4343 /*
4344 * We dump:
4345 * static size
4346 * - the size requested by user or the best one we can fit
4347 * in to the sample max size
4348 * data
4349 * - user stack dump data
4350 * dynamic size
4351 * - the actual dumped size
4352 */
4353
4354 /* Static size. */
4355 perf_output_put(handle, dump_size);
4356
4357 /* Data. */
4358 sp = perf_user_stack_pointer(regs);
4359 rem = __output_copy_user(handle, (void *) sp, dump_size);
4360 dyn_size = dump_size - rem;
4361
4362 perf_output_skip(handle, rem);
4363
4364 /* Dynamic size. */
4365 perf_output_put(handle, dyn_size);
4366 }
4367}
4368
c980d109
ACM
4369static void __perf_event_header__init_id(struct perf_event_header *header,
4370 struct perf_sample_data *data,
4371 struct perf_event *event)
6844c09d
ACM
4372{
4373 u64 sample_type = event->attr.sample_type;
4374
4375 data->type = sample_type;
4376 header->size += event->id_header_size;
4377
4378 if (sample_type & PERF_SAMPLE_TID) {
4379 /* namespace issues */
4380 data->tid_entry.pid = perf_event_pid(event, current);
4381 data->tid_entry.tid = perf_event_tid(event, current);
4382 }
4383
4384 if (sample_type & PERF_SAMPLE_TIME)
4385 data->time = perf_clock();
4386
ff3d527c 4387 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4388 data->id = primary_event_id(event);
4389
4390 if (sample_type & PERF_SAMPLE_STREAM_ID)
4391 data->stream_id = event->id;
4392
4393 if (sample_type & PERF_SAMPLE_CPU) {
4394 data->cpu_entry.cpu = raw_smp_processor_id();
4395 data->cpu_entry.reserved = 0;
4396 }
4397}
4398
76369139
FW
4399void perf_event_header__init_id(struct perf_event_header *header,
4400 struct perf_sample_data *data,
4401 struct perf_event *event)
c980d109
ACM
4402{
4403 if (event->attr.sample_id_all)
4404 __perf_event_header__init_id(header, data, event);
4405}
4406
4407static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4408 struct perf_sample_data *data)
4409{
4410 u64 sample_type = data->type;
4411
4412 if (sample_type & PERF_SAMPLE_TID)
4413 perf_output_put(handle, data->tid_entry);
4414
4415 if (sample_type & PERF_SAMPLE_TIME)
4416 perf_output_put(handle, data->time);
4417
4418 if (sample_type & PERF_SAMPLE_ID)
4419 perf_output_put(handle, data->id);
4420
4421 if (sample_type & PERF_SAMPLE_STREAM_ID)
4422 perf_output_put(handle, data->stream_id);
4423
4424 if (sample_type & PERF_SAMPLE_CPU)
4425 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
4426
4427 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4428 perf_output_put(handle, data->id);
c980d109
ACM
4429}
4430
76369139
FW
4431void perf_event__output_id_sample(struct perf_event *event,
4432 struct perf_output_handle *handle,
4433 struct perf_sample_data *sample)
c980d109
ACM
4434{
4435 if (event->attr.sample_id_all)
4436 __perf_event__output_id_sample(handle, sample);
4437}
4438
3dab77fb 4439static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4440 struct perf_event *event,
4441 u64 enabled, u64 running)
3dab77fb 4442{
cdd6c482 4443 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4444 u64 values[4];
4445 int n = 0;
4446
b5e58793 4447 values[n++] = perf_event_count(event);
3dab77fb 4448 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4449 values[n++] = enabled +
cdd6c482 4450 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4451 }
4452 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4453 values[n++] = running +
cdd6c482 4454 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4455 }
4456 if (read_format & PERF_FORMAT_ID)
cdd6c482 4457 values[n++] = primary_event_id(event);
3dab77fb 4458
76369139 4459 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4460}
4461
4462/*
cdd6c482 4463 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4464 */
4465static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4466 struct perf_event *event,
4467 u64 enabled, u64 running)
3dab77fb 4468{
cdd6c482
IM
4469 struct perf_event *leader = event->group_leader, *sub;
4470 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4471 u64 values[5];
4472 int n = 0;
4473
4474 values[n++] = 1 + leader->nr_siblings;
4475
4476 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4477 values[n++] = enabled;
3dab77fb
PZ
4478
4479 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4480 values[n++] = running;
3dab77fb 4481
cdd6c482 4482 if (leader != event)
3dab77fb
PZ
4483 leader->pmu->read(leader);
4484
b5e58793 4485 values[n++] = perf_event_count(leader);
3dab77fb 4486 if (read_format & PERF_FORMAT_ID)
cdd6c482 4487 values[n++] = primary_event_id(leader);
3dab77fb 4488
76369139 4489 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4490
65abc865 4491 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4492 n = 0;
4493
6f5ab001
JO
4494 if ((sub != event) &&
4495 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
4496 sub->pmu->read(sub);
4497
b5e58793 4498 values[n++] = perf_event_count(sub);
3dab77fb 4499 if (read_format & PERF_FORMAT_ID)
cdd6c482 4500 values[n++] = primary_event_id(sub);
3dab77fb 4501
76369139 4502 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4503 }
4504}
4505
eed01528
SE
4506#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4507 PERF_FORMAT_TOTAL_TIME_RUNNING)
4508
3dab77fb 4509static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4510 struct perf_event *event)
3dab77fb 4511{
e3f3541c 4512 u64 enabled = 0, running = 0, now;
eed01528
SE
4513 u64 read_format = event->attr.read_format;
4514
4515 /*
4516 * compute total_time_enabled, total_time_running
4517 * based on snapshot values taken when the event
4518 * was last scheduled in.
4519 *
4520 * we cannot simply called update_context_time()
4521 * because of locking issue as we are called in
4522 * NMI context
4523 */
c4794295 4524 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4525 calc_timer_values(event, &now, &enabled, &running);
eed01528 4526
cdd6c482 4527 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4528 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4529 else
eed01528 4530 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4531}
4532
5622f295
MM
4533void perf_output_sample(struct perf_output_handle *handle,
4534 struct perf_event_header *header,
4535 struct perf_sample_data *data,
cdd6c482 4536 struct perf_event *event)
5622f295
MM
4537{
4538 u64 sample_type = data->type;
4539
4540 perf_output_put(handle, *header);
4541
ff3d527c
AH
4542 if (sample_type & PERF_SAMPLE_IDENTIFIER)
4543 perf_output_put(handle, data->id);
4544
5622f295
MM
4545 if (sample_type & PERF_SAMPLE_IP)
4546 perf_output_put(handle, data->ip);
4547
4548 if (sample_type & PERF_SAMPLE_TID)
4549 perf_output_put(handle, data->tid_entry);
4550
4551 if (sample_type & PERF_SAMPLE_TIME)
4552 perf_output_put(handle, data->time);
4553
4554 if (sample_type & PERF_SAMPLE_ADDR)
4555 perf_output_put(handle, data->addr);
4556
4557 if (sample_type & PERF_SAMPLE_ID)
4558 perf_output_put(handle, data->id);
4559
4560 if (sample_type & PERF_SAMPLE_STREAM_ID)
4561 perf_output_put(handle, data->stream_id);
4562
4563 if (sample_type & PERF_SAMPLE_CPU)
4564 perf_output_put(handle, data->cpu_entry);
4565
4566 if (sample_type & PERF_SAMPLE_PERIOD)
4567 perf_output_put(handle, data->period);
4568
4569 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4570 perf_output_read(handle, event);
5622f295
MM
4571
4572 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4573 if (data->callchain) {
4574 int size = 1;
4575
4576 if (data->callchain)
4577 size += data->callchain->nr;
4578
4579 size *= sizeof(u64);
4580
76369139 4581 __output_copy(handle, data->callchain, size);
5622f295
MM
4582 } else {
4583 u64 nr = 0;
4584 perf_output_put(handle, nr);
4585 }
4586 }
4587
4588 if (sample_type & PERF_SAMPLE_RAW) {
4589 if (data->raw) {
4590 perf_output_put(handle, data->raw->size);
76369139
FW
4591 __output_copy(handle, data->raw->data,
4592 data->raw->size);
5622f295
MM
4593 } else {
4594 struct {
4595 u32 size;
4596 u32 data;
4597 } raw = {
4598 .size = sizeof(u32),
4599 .data = 0,
4600 };
4601 perf_output_put(handle, raw);
4602 }
4603 }
a7ac67ea 4604
bce38cd5
SE
4605 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4606 if (data->br_stack) {
4607 size_t size;
4608
4609 size = data->br_stack->nr
4610 * sizeof(struct perf_branch_entry);
4611
4612 perf_output_put(handle, data->br_stack->nr);
4613 perf_output_copy(handle, data->br_stack->entries, size);
4614 } else {
4615 /*
4616 * we always store at least the value of nr
4617 */
4618 u64 nr = 0;
4619 perf_output_put(handle, nr);
4620 }
4621 }
4018994f
JO
4622
4623 if (sample_type & PERF_SAMPLE_REGS_USER) {
4624 u64 abi = data->regs_user.abi;
4625
4626 /*
4627 * If there are no regs to dump, notice it through
4628 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4629 */
4630 perf_output_put(handle, abi);
4631
4632 if (abi) {
4633 u64 mask = event->attr.sample_regs_user;
4634 perf_output_sample_regs(handle,
4635 data->regs_user.regs,
4636 mask);
4637 }
4638 }
c5ebcedb 4639
a5cdd40c 4640 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
4641 perf_output_sample_ustack(handle,
4642 data->stack_user_size,
4643 data->regs_user.regs);
a5cdd40c 4644 }
c3feedf2
AK
4645
4646 if (sample_type & PERF_SAMPLE_WEIGHT)
4647 perf_output_put(handle, data->weight);
d6be9ad6
SE
4648
4649 if (sample_type & PERF_SAMPLE_DATA_SRC)
4650 perf_output_put(handle, data->data_src.val);
a5cdd40c 4651
fdfbbd07
AK
4652 if (sample_type & PERF_SAMPLE_TRANSACTION)
4653 perf_output_put(handle, data->txn);
4654
a5cdd40c
PZ
4655 if (!event->attr.watermark) {
4656 int wakeup_events = event->attr.wakeup_events;
4657
4658 if (wakeup_events) {
4659 struct ring_buffer *rb = handle->rb;
4660 int events = local_inc_return(&rb->events);
4661
4662 if (events >= wakeup_events) {
4663 local_sub(wakeup_events, &rb->events);
4664 local_inc(&rb->wakeup);
4665 }
4666 }
4667 }
5622f295
MM
4668}
4669
4670void perf_prepare_sample(struct perf_event_header *header,
4671 struct perf_sample_data *data,
cdd6c482 4672 struct perf_event *event,
5622f295 4673 struct pt_regs *regs)
7b732a75 4674{
cdd6c482 4675 u64 sample_type = event->attr.sample_type;
7b732a75 4676
cdd6c482 4677 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4678 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4679
4680 header->misc = 0;
4681 header->misc |= perf_misc_flags(regs);
6fab0192 4682
c980d109 4683 __perf_event_header__init_id(header, data, event);
6844c09d 4684
c320c7b7 4685 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4686 data->ip = perf_instruction_pointer(regs);
4687
b23f3325 4688 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4689 int size = 1;
394ee076 4690
e6dab5ff 4691 data->callchain = perf_callchain(event, regs);
5622f295
MM
4692
4693 if (data->callchain)
4694 size += data->callchain->nr;
4695
4696 header->size += size * sizeof(u64);
394ee076
PZ
4697 }
4698
3a43ce68 4699 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4700 int size = sizeof(u32);
4701
4702 if (data->raw)
4703 size += data->raw->size;
4704 else
4705 size += sizeof(u32);
4706
4707 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4708 header->size += size;
7f453c24 4709 }
bce38cd5
SE
4710
4711 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4712 int size = sizeof(u64); /* nr */
4713 if (data->br_stack) {
4714 size += data->br_stack->nr
4715 * sizeof(struct perf_branch_entry);
4716 }
4717 header->size += size;
4718 }
4018994f
JO
4719
4720 if (sample_type & PERF_SAMPLE_REGS_USER) {
4721 /* regs dump ABI info */
4722 int size = sizeof(u64);
4723
4724 perf_sample_regs_user(&data->regs_user, regs);
4725
4726 if (data->regs_user.regs) {
4727 u64 mask = event->attr.sample_regs_user;
4728 size += hweight64(mask) * sizeof(u64);
4729 }
4730
4731 header->size += size;
4732 }
c5ebcedb
JO
4733
4734 if (sample_type & PERF_SAMPLE_STACK_USER) {
4735 /*
4736 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4737 * processed as the last one or have additional check added
4738 * in case new sample type is added, because we could eat
4739 * up the rest of the sample size.
4740 */
4741 struct perf_regs_user *uregs = &data->regs_user;
4742 u16 stack_size = event->attr.sample_stack_user;
4743 u16 size = sizeof(u64);
4744
4745 if (!uregs->abi)
4746 perf_sample_regs_user(uregs, regs);
4747
4748 stack_size = perf_sample_ustack_size(stack_size, header->size,
4749 uregs->regs);
4750
4751 /*
4752 * If there is something to dump, add space for the dump
4753 * itself and for the field that tells the dynamic size,
4754 * which is how many have been actually dumped.
4755 */
4756 if (stack_size)
4757 size += sizeof(u64) + stack_size;
4758
4759 data->stack_user_size = stack_size;
4760 header->size += size;
4761 }
5622f295 4762}
7f453c24 4763
a8b0ca17 4764static void perf_event_output(struct perf_event *event,
5622f295
MM
4765 struct perf_sample_data *data,
4766 struct pt_regs *regs)
4767{
4768 struct perf_output_handle handle;
4769 struct perf_event_header header;
689802b2 4770
927c7a9e
FW
4771 /* protect the callchain buffers */
4772 rcu_read_lock();
4773
cdd6c482 4774 perf_prepare_sample(&header, data, event, regs);
5c148194 4775
a7ac67ea 4776 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4777 goto exit;
0322cd6e 4778
cdd6c482 4779 perf_output_sample(&handle, &header, data, event);
f413cdb8 4780
8a057d84 4781 perf_output_end(&handle);
927c7a9e
FW
4782
4783exit:
4784 rcu_read_unlock();
0322cd6e
PZ
4785}
4786
38b200d6 4787/*
cdd6c482 4788 * read event_id
38b200d6
PZ
4789 */
4790
4791struct perf_read_event {
4792 struct perf_event_header header;
4793
4794 u32 pid;
4795 u32 tid;
38b200d6
PZ
4796};
4797
4798static void
cdd6c482 4799perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4800 struct task_struct *task)
4801{
4802 struct perf_output_handle handle;
c980d109 4803 struct perf_sample_data sample;
dfc65094 4804 struct perf_read_event read_event = {
38b200d6 4805 .header = {
cdd6c482 4806 .type = PERF_RECORD_READ,
38b200d6 4807 .misc = 0,
c320c7b7 4808 .size = sizeof(read_event) + event->read_size,
38b200d6 4809 },
cdd6c482
IM
4810 .pid = perf_event_pid(event, task),
4811 .tid = perf_event_tid(event, task),
38b200d6 4812 };
3dab77fb 4813 int ret;
38b200d6 4814
c980d109 4815 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4816 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4817 if (ret)
4818 return;
4819
dfc65094 4820 perf_output_put(&handle, read_event);
cdd6c482 4821 perf_output_read(&handle, event);
c980d109 4822 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4823
38b200d6
PZ
4824 perf_output_end(&handle);
4825}
4826
52d857a8
JO
4827typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4828
4829static void
4830perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
4831 perf_event_aux_output_cb output,
4832 void *data)
4833{
4834 struct perf_event *event;
4835
4836 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4837 if (event->state < PERF_EVENT_STATE_INACTIVE)
4838 continue;
4839 if (!event_filter_match(event))
4840 continue;
67516844 4841 output(event, data);
52d857a8
JO
4842 }
4843}
4844
4845static void
67516844 4846perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
4847 struct perf_event_context *task_ctx)
4848{
4849 struct perf_cpu_context *cpuctx;
4850 struct perf_event_context *ctx;
4851 struct pmu *pmu;
4852 int ctxn;
4853
4854 rcu_read_lock();
4855 list_for_each_entry_rcu(pmu, &pmus, entry) {
4856 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4857 if (cpuctx->unique_pmu != pmu)
4858 goto next;
67516844 4859 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
4860 if (task_ctx)
4861 goto next;
4862 ctxn = pmu->task_ctx_nr;
4863 if (ctxn < 0)
4864 goto next;
4865 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4866 if (ctx)
67516844 4867 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
4868next:
4869 put_cpu_ptr(pmu->pmu_cpu_context);
4870 }
4871
4872 if (task_ctx) {
4873 preempt_disable();
67516844 4874 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
4875 preempt_enable();
4876 }
4877 rcu_read_unlock();
4878}
4879
60313ebe 4880/*
9f498cc5
PZ
4881 * task tracking -- fork/exit
4882 *
13d7a241 4883 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
4884 */
4885
9f498cc5 4886struct perf_task_event {
3a80b4a3 4887 struct task_struct *task;
cdd6c482 4888 struct perf_event_context *task_ctx;
60313ebe
PZ
4889
4890 struct {
4891 struct perf_event_header header;
4892
4893 u32 pid;
4894 u32 ppid;
9f498cc5
PZ
4895 u32 tid;
4896 u32 ptid;
393b2ad8 4897 u64 time;
cdd6c482 4898 } event_id;
60313ebe
PZ
4899};
4900
67516844
JO
4901static int perf_event_task_match(struct perf_event *event)
4902{
13d7a241
SE
4903 return event->attr.comm || event->attr.mmap ||
4904 event->attr.mmap2 || event->attr.mmap_data ||
4905 event->attr.task;
67516844
JO
4906}
4907
cdd6c482 4908static void perf_event_task_output(struct perf_event *event,
52d857a8 4909 void *data)
60313ebe 4910{
52d857a8 4911 struct perf_task_event *task_event = data;
60313ebe 4912 struct perf_output_handle handle;
c980d109 4913 struct perf_sample_data sample;
9f498cc5 4914 struct task_struct *task = task_event->task;
c980d109 4915 int ret, size = task_event->event_id.header.size;
8bb39f9a 4916
67516844
JO
4917 if (!perf_event_task_match(event))
4918 return;
4919
c980d109 4920 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4921
c980d109 4922 ret = perf_output_begin(&handle, event,
a7ac67ea 4923 task_event->event_id.header.size);
ef60777c 4924 if (ret)
c980d109 4925 goto out;
60313ebe 4926
cdd6c482
IM
4927 task_event->event_id.pid = perf_event_pid(event, task);
4928 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4929
cdd6c482
IM
4930 task_event->event_id.tid = perf_event_tid(event, task);
4931 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4932
cdd6c482 4933 perf_output_put(&handle, task_event->event_id);
393b2ad8 4934
c980d109
ACM
4935 perf_event__output_id_sample(event, &handle, &sample);
4936
60313ebe 4937 perf_output_end(&handle);
c980d109
ACM
4938out:
4939 task_event->event_id.header.size = size;
60313ebe
PZ
4940}
4941
cdd6c482
IM
4942static void perf_event_task(struct task_struct *task,
4943 struct perf_event_context *task_ctx,
3a80b4a3 4944 int new)
60313ebe 4945{
9f498cc5 4946 struct perf_task_event task_event;
60313ebe 4947
cdd6c482
IM
4948 if (!atomic_read(&nr_comm_events) &&
4949 !atomic_read(&nr_mmap_events) &&
4950 !atomic_read(&nr_task_events))
60313ebe
PZ
4951 return;
4952
9f498cc5 4953 task_event = (struct perf_task_event){
3a80b4a3
PZ
4954 .task = task,
4955 .task_ctx = task_ctx,
cdd6c482 4956 .event_id = {
60313ebe 4957 .header = {
cdd6c482 4958 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4959 .misc = 0,
cdd6c482 4960 .size = sizeof(task_event.event_id),
60313ebe 4961 },
573402db
PZ
4962 /* .pid */
4963 /* .ppid */
9f498cc5
PZ
4964 /* .tid */
4965 /* .ptid */
6f93d0a7 4966 .time = perf_clock(),
60313ebe
PZ
4967 },
4968 };
4969
67516844 4970 perf_event_aux(perf_event_task_output,
52d857a8
JO
4971 &task_event,
4972 task_ctx);
9f498cc5
PZ
4973}
4974
cdd6c482 4975void perf_event_fork(struct task_struct *task)
9f498cc5 4976{
cdd6c482 4977 perf_event_task(task, NULL, 1);
60313ebe
PZ
4978}
4979
8d1b2d93
PZ
4980/*
4981 * comm tracking
4982 */
4983
4984struct perf_comm_event {
22a4f650
IM
4985 struct task_struct *task;
4986 char *comm;
8d1b2d93
PZ
4987 int comm_size;
4988
4989 struct {
4990 struct perf_event_header header;
4991
4992 u32 pid;
4993 u32 tid;
cdd6c482 4994 } event_id;
8d1b2d93
PZ
4995};
4996
67516844
JO
4997static int perf_event_comm_match(struct perf_event *event)
4998{
4999 return event->attr.comm;
5000}
5001
cdd6c482 5002static void perf_event_comm_output(struct perf_event *event,
52d857a8 5003 void *data)
8d1b2d93 5004{
52d857a8 5005 struct perf_comm_event *comm_event = data;
8d1b2d93 5006 struct perf_output_handle handle;
c980d109 5007 struct perf_sample_data sample;
cdd6c482 5008 int size = comm_event->event_id.header.size;
c980d109
ACM
5009 int ret;
5010
67516844
JO
5011 if (!perf_event_comm_match(event))
5012 return;
5013
c980d109
ACM
5014 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5015 ret = perf_output_begin(&handle, event,
a7ac67ea 5016 comm_event->event_id.header.size);
8d1b2d93
PZ
5017
5018 if (ret)
c980d109 5019 goto out;
8d1b2d93 5020
cdd6c482
IM
5021 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5022 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5023
cdd6c482 5024 perf_output_put(&handle, comm_event->event_id);
76369139 5025 __output_copy(&handle, comm_event->comm,
8d1b2d93 5026 comm_event->comm_size);
c980d109
ACM
5027
5028 perf_event__output_id_sample(event, &handle, &sample);
5029
8d1b2d93 5030 perf_output_end(&handle);
c980d109
ACM
5031out:
5032 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5033}
5034
cdd6c482 5035static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5036{
413ee3b4 5037 char comm[TASK_COMM_LEN];
8d1b2d93 5038 unsigned int size;
8d1b2d93 5039
413ee3b4 5040 memset(comm, 0, sizeof(comm));
96b02d78 5041 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5042 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5043
5044 comm_event->comm = comm;
5045 comm_event->comm_size = size;
5046
cdd6c482 5047 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5048
67516844 5049 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5050 comm_event,
5051 NULL);
8d1b2d93
PZ
5052}
5053
cdd6c482 5054void perf_event_comm(struct task_struct *task)
8d1b2d93 5055{
9ee318a7 5056 struct perf_comm_event comm_event;
8dc85d54
PZ
5057 struct perf_event_context *ctx;
5058 int ctxn;
9ee318a7 5059
c79aa0d9 5060 rcu_read_lock();
8dc85d54
PZ
5061 for_each_task_context_nr(ctxn) {
5062 ctx = task->perf_event_ctxp[ctxn];
5063 if (!ctx)
5064 continue;
9ee318a7 5065
8dc85d54
PZ
5066 perf_event_enable_on_exec(ctx);
5067 }
c79aa0d9 5068 rcu_read_unlock();
9ee318a7 5069
cdd6c482 5070 if (!atomic_read(&nr_comm_events))
9ee318a7 5071 return;
a63eaf34 5072
9ee318a7 5073 comm_event = (struct perf_comm_event){
8d1b2d93 5074 .task = task,
573402db
PZ
5075 /* .comm */
5076 /* .comm_size */
cdd6c482 5077 .event_id = {
573402db 5078 .header = {
cdd6c482 5079 .type = PERF_RECORD_COMM,
573402db
PZ
5080 .misc = 0,
5081 /* .size */
5082 },
5083 /* .pid */
5084 /* .tid */
8d1b2d93
PZ
5085 },
5086 };
5087
cdd6c482 5088 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5089}
5090
0a4a9391
PZ
5091/*
5092 * mmap tracking
5093 */
5094
5095struct perf_mmap_event {
089dd79d
PZ
5096 struct vm_area_struct *vma;
5097
5098 const char *file_name;
5099 int file_size;
13d7a241
SE
5100 int maj, min;
5101 u64 ino;
5102 u64 ino_generation;
0a4a9391
PZ
5103
5104 struct {
5105 struct perf_event_header header;
5106
5107 u32 pid;
5108 u32 tid;
5109 u64 start;
5110 u64 len;
5111 u64 pgoff;
cdd6c482 5112 } event_id;
0a4a9391
PZ
5113};
5114
67516844
JO
5115static int perf_event_mmap_match(struct perf_event *event,
5116 void *data)
5117{
5118 struct perf_mmap_event *mmap_event = data;
5119 struct vm_area_struct *vma = mmap_event->vma;
5120 int executable = vma->vm_flags & VM_EXEC;
5121
5122 return (!executable && event->attr.mmap_data) ||
13d7a241 5123 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5124}
5125
cdd6c482 5126static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5127 void *data)
0a4a9391 5128{
52d857a8 5129 struct perf_mmap_event *mmap_event = data;
0a4a9391 5130 struct perf_output_handle handle;
c980d109 5131 struct perf_sample_data sample;
cdd6c482 5132 int size = mmap_event->event_id.header.size;
c980d109 5133 int ret;
0a4a9391 5134
67516844
JO
5135 if (!perf_event_mmap_match(event, data))
5136 return;
5137
13d7a241
SE
5138 if (event->attr.mmap2) {
5139 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5140 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5141 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5142 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5143 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
13d7a241
SE
5144 }
5145
c980d109
ACM
5146 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5147 ret = perf_output_begin(&handle, event,
a7ac67ea 5148 mmap_event->event_id.header.size);
0a4a9391 5149 if (ret)
c980d109 5150 goto out;
0a4a9391 5151
cdd6c482
IM
5152 mmap_event->event_id.pid = perf_event_pid(event, current);
5153 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5154
cdd6c482 5155 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5156
5157 if (event->attr.mmap2) {
5158 perf_output_put(&handle, mmap_event->maj);
5159 perf_output_put(&handle, mmap_event->min);
5160 perf_output_put(&handle, mmap_event->ino);
5161 perf_output_put(&handle, mmap_event->ino_generation);
5162 }
5163
76369139 5164 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5165 mmap_event->file_size);
c980d109
ACM
5166
5167 perf_event__output_id_sample(event, &handle, &sample);
5168
78d613eb 5169 perf_output_end(&handle);
c980d109
ACM
5170out:
5171 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5172}
5173
cdd6c482 5174static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5175{
089dd79d
PZ
5176 struct vm_area_struct *vma = mmap_event->vma;
5177 struct file *file = vma->vm_file;
13d7a241
SE
5178 int maj = 0, min = 0;
5179 u64 ino = 0, gen = 0;
0a4a9391
PZ
5180 unsigned int size;
5181 char tmp[16];
5182 char *buf = NULL;
2c42cfbf 5183 char *name;
413ee3b4 5184
0a4a9391 5185 if (file) {
13d7a241
SE
5186 struct inode *inode;
5187 dev_t dev;
3ea2f2b9 5188
2c42cfbf 5189 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5190 if (!buf) {
c7e548b4
ON
5191 name = "//enomem";
5192 goto cpy_name;
0a4a9391 5193 }
413ee3b4 5194 /*
3ea2f2b9 5195 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5196 * need to add enough zero bytes after the string to handle
5197 * the 64bit alignment we do later.
5198 */
3ea2f2b9 5199 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
0a4a9391 5200 if (IS_ERR(name)) {
c7e548b4
ON
5201 name = "//toolong";
5202 goto cpy_name;
0a4a9391 5203 }
13d7a241
SE
5204 inode = file_inode(vma->vm_file);
5205 dev = inode->i_sb->s_dev;
5206 ino = inode->i_ino;
5207 gen = inode->i_generation;
5208 maj = MAJOR(dev);
5209 min = MINOR(dev);
c7e548b4 5210 goto got_name;
0a4a9391 5211 } else {
2c42cfbf 5212 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5213 if (name)
5214 goto cpy_name;
089dd79d 5215
32c5fb7e 5216 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5217 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5218 name = "[heap]";
5219 goto cpy_name;
32c5fb7e
ON
5220 }
5221 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5222 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5223 name = "[stack]";
5224 goto cpy_name;
089dd79d
PZ
5225 }
5226
c7e548b4
ON
5227 name = "//anon";
5228 goto cpy_name;
0a4a9391
PZ
5229 }
5230
c7e548b4
ON
5231cpy_name:
5232 strlcpy(tmp, name, sizeof(tmp));
5233 name = tmp;
0a4a9391 5234got_name:
2c42cfbf
PZ
5235 /*
5236 * Since our buffer works in 8 byte units we need to align our string
5237 * size to a multiple of 8. However, we must guarantee the tail end is
5238 * zero'd out to avoid leaking random bits to userspace.
5239 */
5240 size = strlen(name)+1;
5241 while (!IS_ALIGNED(size, sizeof(u64)))
5242 name[size++] = '\0';
0a4a9391
PZ
5243
5244 mmap_event->file_name = name;
5245 mmap_event->file_size = size;
13d7a241
SE
5246 mmap_event->maj = maj;
5247 mmap_event->min = min;
5248 mmap_event->ino = ino;
5249 mmap_event->ino_generation = gen;
0a4a9391 5250
2fe85427
SE
5251 if (!(vma->vm_flags & VM_EXEC))
5252 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5253
cdd6c482 5254 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5255
67516844 5256 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5257 mmap_event,
5258 NULL);
665c2142 5259
0a4a9391
PZ
5260 kfree(buf);
5261}
5262
3af9e859 5263void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5264{
9ee318a7
PZ
5265 struct perf_mmap_event mmap_event;
5266
cdd6c482 5267 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5268 return;
5269
5270 mmap_event = (struct perf_mmap_event){
089dd79d 5271 .vma = vma,
573402db
PZ
5272 /* .file_name */
5273 /* .file_size */
cdd6c482 5274 .event_id = {
573402db 5275 .header = {
cdd6c482 5276 .type = PERF_RECORD_MMAP,
39447b38 5277 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5278 /* .size */
5279 },
5280 /* .pid */
5281 /* .tid */
089dd79d
PZ
5282 .start = vma->vm_start,
5283 .len = vma->vm_end - vma->vm_start,
3a0304e9 5284 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5285 },
13d7a241
SE
5286 /* .maj (attr_mmap2 only) */
5287 /* .min (attr_mmap2 only) */
5288 /* .ino (attr_mmap2 only) */
5289 /* .ino_generation (attr_mmap2 only) */
0a4a9391
PZ
5290 };
5291
cdd6c482 5292 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5293}
5294
a78ac325
PZ
5295/*
5296 * IRQ throttle logging
5297 */
5298
cdd6c482 5299static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5300{
5301 struct perf_output_handle handle;
c980d109 5302 struct perf_sample_data sample;
a78ac325
PZ
5303 int ret;
5304
5305 struct {
5306 struct perf_event_header header;
5307 u64 time;
cca3f454 5308 u64 id;
7f453c24 5309 u64 stream_id;
a78ac325
PZ
5310 } throttle_event = {
5311 .header = {
cdd6c482 5312 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5313 .misc = 0,
5314 .size = sizeof(throttle_event),
5315 },
def0a9b2 5316 .time = perf_clock(),
cdd6c482
IM
5317 .id = primary_event_id(event),
5318 .stream_id = event->id,
a78ac325
PZ
5319 };
5320
966ee4d6 5321 if (enable)
cdd6c482 5322 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5323
c980d109
ACM
5324 perf_event_header__init_id(&throttle_event.header, &sample, event);
5325
5326 ret = perf_output_begin(&handle, event,
a7ac67ea 5327 throttle_event.header.size);
a78ac325
PZ
5328 if (ret)
5329 return;
5330
5331 perf_output_put(&handle, throttle_event);
c980d109 5332 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5333 perf_output_end(&handle);
5334}
5335
f6c7d5fe 5336/*
cdd6c482 5337 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5338 */
5339
a8b0ca17 5340static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5341 int throttle, struct perf_sample_data *data,
5342 struct pt_regs *regs)
f6c7d5fe 5343{
cdd6c482
IM
5344 int events = atomic_read(&event->event_limit);
5345 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5346 u64 seq;
79f14641
PZ
5347 int ret = 0;
5348
96398826
PZ
5349 /*
5350 * Non-sampling counters might still use the PMI to fold short
5351 * hardware counters, ignore those.
5352 */
5353 if (unlikely(!is_sampling_event(event)))
5354 return 0;
5355
e050e3f0
SE
5356 seq = __this_cpu_read(perf_throttled_seq);
5357 if (seq != hwc->interrupts_seq) {
5358 hwc->interrupts_seq = seq;
5359 hwc->interrupts = 1;
5360 } else {
5361 hwc->interrupts++;
5362 if (unlikely(throttle
5363 && hwc->interrupts >= max_samples_per_tick)) {
5364 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5365 hwc->interrupts = MAX_INTERRUPTS;
5366 perf_log_throttle(event, 0);
d84153d6 5367 tick_nohz_full_kick();
a78ac325
PZ
5368 ret = 1;
5369 }
e050e3f0 5370 }
60db5e09 5371
cdd6c482 5372 if (event->attr.freq) {
def0a9b2 5373 u64 now = perf_clock();
abd50713 5374 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5375
abd50713 5376 hwc->freq_time_stamp = now;
bd2b5b12 5377
abd50713 5378 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5379 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5380 }
5381
2023b359
PZ
5382 /*
5383 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5384 * events
2023b359
PZ
5385 */
5386
cdd6c482
IM
5387 event->pending_kill = POLL_IN;
5388 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5389 ret = 1;
cdd6c482 5390 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5391 event->pending_disable = 1;
5392 irq_work_queue(&event->pending);
79f14641
PZ
5393 }
5394
453f19ee 5395 if (event->overflow_handler)
a8b0ca17 5396 event->overflow_handler(event, data, regs);
453f19ee 5397 else
a8b0ca17 5398 perf_event_output(event, data, regs);
453f19ee 5399
f506b3dc 5400 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5401 event->pending_wakeup = 1;
5402 irq_work_queue(&event->pending);
f506b3dc
PZ
5403 }
5404
79f14641 5405 return ret;
f6c7d5fe
PZ
5406}
5407
a8b0ca17 5408int perf_event_overflow(struct perf_event *event,
5622f295
MM
5409 struct perf_sample_data *data,
5410 struct pt_regs *regs)
850bc73f 5411{
a8b0ca17 5412 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5413}
5414
15dbf27c 5415/*
cdd6c482 5416 * Generic software event infrastructure
15dbf27c
PZ
5417 */
5418
b28ab83c
PZ
5419struct swevent_htable {
5420 struct swevent_hlist *swevent_hlist;
5421 struct mutex hlist_mutex;
5422 int hlist_refcount;
5423
5424 /* Recursion avoidance in each contexts */
5425 int recursion[PERF_NR_CONTEXTS];
5426};
5427
5428static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5429
7b4b6658 5430/*
cdd6c482
IM
5431 * We directly increment event->count and keep a second value in
5432 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5433 * is kept in the range [-sample_period, 0] so that we can use the
5434 * sign as trigger.
5435 */
5436
ab573844 5437u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5438{
cdd6c482 5439 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5440 u64 period = hwc->last_period;
5441 u64 nr, offset;
5442 s64 old, val;
5443
5444 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5445
5446again:
e7850595 5447 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5448 if (val < 0)
5449 return 0;
15dbf27c 5450
7b4b6658
PZ
5451 nr = div64_u64(period + val, period);
5452 offset = nr * period;
5453 val -= offset;
e7850595 5454 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5455 goto again;
15dbf27c 5456
7b4b6658 5457 return nr;
15dbf27c
PZ
5458}
5459
0cff784a 5460static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5461 struct perf_sample_data *data,
5622f295 5462 struct pt_regs *regs)
15dbf27c 5463{
cdd6c482 5464 struct hw_perf_event *hwc = &event->hw;
850bc73f 5465 int throttle = 0;
15dbf27c 5466
0cff784a
PZ
5467 if (!overflow)
5468 overflow = perf_swevent_set_period(event);
15dbf27c 5469
7b4b6658
PZ
5470 if (hwc->interrupts == MAX_INTERRUPTS)
5471 return;
15dbf27c 5472
7b4b6658 5473 for (; overflow; overflow--) {
a8b0ca17 5474 if (__perf_event_overflow(event, throttle,
5622f295 5475 data, regs)) {
7b4b6658
PZ
5476 /*
5477 * We inhibit the overflow from happening when
5478 * hwc->interrupts == MAX_INTERRUPTS.
5479 */
5480 break;
5481 }
cf450a73 5482 throttle = 1;
7b4b6658 5483 }
15dbf27c
PZ
5484}
5485
a4eaf7f1 5486static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5487 struct perf_sample_data *data,
5622f295 5488 struct pt_regs *regs)
7b4b6658 5489{
cdd6c482 5490 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5491
e7850595 5492 local64_add(nr, &event->count);
d6d020e9 5493
0cff784a
PZ
5494 if (!regs)
5495 return;
5496
6c7e550f 5497 if (!is_sampling_event(event))
7b4b6658 5498 return;
d6d020e9 5499
5d81e5cf
AV
5500 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5501 data->period = nr;
5502 return perf_swevent_overflow(event, 1, data, regs);
5503 } else
5504 data->period = event->hw.last_period;
5505
0cff784a 5506 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5507 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5508
e7850595 5509 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5510 return;
df1a132b 5511
a8b0ca17 5512 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5513}
5514
f5ffe02e
FW
5515static int perf_exclude_event(struct perf_event *event,
5516 struct pt_regs *regs)
5517{
a4eaf7f1 5518 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5519 return 1;
a4eaf7f1 5520
f5ffe02e
FW
5521 if (regs) {
5522 if (event->attr.exclude_user && user_mode(regs))
5523 return 1;
5524
5525 if (event->attr.exclude_kernel && !user_mode(regs))
5526 return 1;
5527 }
5528
5529 return 0;
5530}
5531
cdd6c482 5532static int perf_swevent_match(struct perf_event *event,
1c432d89 5533 enum perf_type_id type,
6fb2915d
LZ
5534 u32 event_id,
5535 struct perf_sample_data *data,
5536 struct pt_regs *regs)
15dbf27c 5537{
cdd6c482 5538 if (event->attr.type != type)
a21ca2ca 5539 return 0;
f5ffe02e 5540
cdd6c482 5541 if (event->attr.config != event_id)
15dbf27c
PZ
5542 return 0;
5543
f5ffe02e
FW
5544 if (perf_exclude_event(event, regs))
5545 return 0;
15dbf27c
PZ
5546
5547 return 1;
5548}
5549
76e1d904
FW
5550static inline u64 swevent_hash(u64 type, u32 event_id)
5551{
5552 u64 val = event_id | (type << 32);
5553
5554 return hash_64(val, SWEVENT_HLIST_BITS);
5555}
5556
49f135ed
FW
5557static inline struct hlist_head *
5558__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5559{
49f135ed
FW
5560 u64 hash = swevent_hash(type, event_id);
5561
5562 return &hlist->heads[hash];
5563}
76e1d904 5564
49f135ed
FW
5565/* For the read side: events when they trigger */
5566static inline struct hlist_head *
b28ab83c 5567find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5568{
5569 struct swevent_hlist *hlist;
76e1d904 5570
b28ab83c 5571 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5572 if (!hlist)
5573 return NULL;
5574
49f135ed
FW
5575 return __find_swevent_head(hlist, type, event_id);
5576}
5577
5578/* For the event head insertion and removal in the hlist */
5579static inline struct hlist_head *
b28ab83c 5580find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5581{
5582 struct swevent_hlist *hlist;
5583 u32 event_id = event->attr.config;
5584 u64 type = event->attr.type;
5585
5586 /*
5587 * Event scheduling is always serialized against hlist allocation
5588 * and release. Which makes the protected version suitable here.
5589 * The context lock guarantees that.
5590 */
b28ab83c 5591 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5592 lockdep_is_held(&event->ctx->lock));
5593 if (!hlist)
5594 return NULL;
5595
5596 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5597}
5598
5599static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5600 u64 nr,
76e1d904
FW
5601 struct perf_sample_data *data,
5602 struct pt_regs *regs)
15dbf27c 5603{
b28ab83c 5604 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5605 struct perf_event *event;
76e1d904 5606 struct hlist_head *head;
15dbf27c 5607
76e1d904 5608 rcu_read_lock();
b28ab83c 5609 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5610 if (!head)
5611 goto end;
5612
b67bfe0d 5613 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5614 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5615 perf_swevent_event(event, nr, data, regs);
15dbf27c 5616 }
76e1d904
FW
5617end:
5618 rcu_read_unlock();
15dbf27c
PZ
5619}
5620
4ed7c92d 5621int perf_swevent_get_recursion_context(void)
96f6d444 5622{
b28ab83c 5623 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5624
b28ab83c 5625 return get_recursion_context(swhash->recursion);
96f6d444 5626}
645e8cc0 5627EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5628
fa9f90be 5629inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5630{
b28ab83c 5631 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5632
b28ab83c 5633 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5634}
15dbf27c 5635
a8b0ca17 5636void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5637{
a4234bfc 5638 struct perf_sample_data data;
4ed7c92d
PZ
5639 int rctx;
5640
1c024eca 5641 preempt_disable_notrace();
4ed7c92d
PZ
5642 rctx = perf_swevent_get_recursion_context();
5643 if (rctx < 0)
5644 return;
a4234bfc 5645
fd0d000b 5646 perf_sample_data_init(&data, addr, 0);
92bf309a 5647
a8b0ca17 5648 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5649
5650 perf_swevent_put_recursion_context(rctx);
1c024eca 5651 preempt_enable_notrace();
b8e83514
PZ
5652}
5653
cdd6c482 5654static void perf_swevent_read(struct perf_event *event)
15dbf27c 5655{
15dbf27c
PZ
5656}
5657
a4eaf7f1 5658static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5659{
b28ab83c 5660 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5661 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5662 struct hlist_head *head;
5663
6c7e550f 5664 if (is_sampling_event(event)) {
7b4b6658 5665 hwc->last_period = hwc->sample_period;
cdd6c482 5666 perf_swevent_set_period(event);
7b4b6658 5667 }
76e1d904 5668
a4eaf7f1
PZ
5669 hwc->state = !(flags & PERF_EF_START);
5670
b28ab83c 5671 head = find_swevent_head(swhash, event);
76e1d904
FW
5672 if (WARN_ON_ONCE(!head))
5673 return -EINVAL;
5674
5675 hlist_add_head_rcu(&event->hlist_entry, head);
5676
15dbf27c
PZ
5677 return 0;
5678}
5679
a4eaf7f1 5680static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5681{
76e1d904 5682 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5683}
5684
a4eaf7f1 5685static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5686{
a4eaf7f1 5687 event->hw.state = 0;
d6d020e9 5688}
aa9c4c0f 5689
a4eaf7f1 5690static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5691{
a4eaf7f1 5692 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5693}
5694
49f135ed
FW
5695/* Deref the hlist from the update side */
5696static inline struct swevent_hlist *
b28ab83c 5697swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5698{
b28ab83c
PZ
5699 return rcu_dereference_protected(swhash->swevent_hlist,
5700 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5701}
5702
b28ab83c 5703static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5704{
b28ab83c 5705 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5706
49f135ed 5707 if (!hlist)
76e1d904
FW
5708 return;
5709
b28ab83c 5710 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5711 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5712}
5713
5714static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5715{
b28ab83c 5716 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5717
b28ab83c 5718 mutex_lock(&swhash->hlist_mutex);
76e1d904 5719
b28ab83c
PZ
5720 if (!--swhash->hlist_refcount)
5721 swevent_hlist_release(swhash);
76e1d904 5722
b28ab83c 5723 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5724}
5725
5726static void swevent_hlist_put(struct perf_event *event)
5727{
5728 int cpu;
5729
76e1d904
FW
5730 for_each_possible_cpu(cpu)
5731 swevent_hlist_put_cpu(event, cpu);
5732}
5733
5734static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5735{
b28ab83c 5736 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5737 int err = 0;
5738
b28ab83c 5739 mutex_lock(&swhash->hlist_mutex);
76e1d904 5740
b28ab83c 5741 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5742 struct swevent_hlist *hlist;
5743
5744 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5745 if (!hlist) {
5746 err = -ENOMEM;
5747 goto exit;
5748 }
b28ab83c 5749 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5750 }
b28ab83c 5751 swhash->hlist_refcount++;
9ed6060d 5752exit:
b28ab83c 5753 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5754
5755 return err;
5756}
5757
5758static int swevent_hlist_get(struct perf_event *event)
5759{
5760 int err;
5761 int cpu, failed_cpu;
5762
76e1d904
FW
5763 get_online_cpus();
5764 for_each_possible_cpu(cpu) {
5765 err = swevent_hlist_get_cpu(event, cpu);
5766 if (err) {
5767 failed_cpu = cpu;
5768 goto fail;
5769 }
5770 }
5771 put_online_cpus();
5772
5773 return 0;
9ed6060d 5774fail:
76e1d904
FW
5775 for_each_possible_cpu(cpu) {
5776 if (cpu == failed_cpu)
5777 break;
5778 swevent_hlist_put_cpu(event, cpu);
5779 }
5780
5781 put_online_cpus();
5782 return err;
5783}
5784
c5905afb 5785struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5786
b0a873eb
PZ
5787static void sw_perf_event_destroy(struct perf_event *event)
5788{
5789 u64 event_id = event->attr.config;
95476b64 5790
b0a873eb
PZ
5791 WARN_ON(event->parent);
5792
c5905afb 5793 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5794 swevent_hlist_put(event);
5795}
5796
5797static int perf_swevent_init(struct perf_event *event)
5798{
8176cced 5799 u64 event_id = event->attr.config;
b0a873eb
PZ
5800
5801 if (event->attr.type != PERF_TYPE_SOFTWARE)
5802 return -ENOENT;
5803
2481c5fa
SE
5804 /*
5805 * no branch sampling for software events
5806 */
5807 if (has_branch_stack(event))
5808 return -EOPNOTSUPP;
5809
b0a873eb
PZ
5810 switch (event_id) {
5811 case PERF_COUNT_SW_CPU_CLOCK:
5812 case PERF_COUNT_SW_TASK_CLOCK:
5813 return -ENOENT;
5814
5815 default:
5816 break;
5817 }
5818
ce677831 5819 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5820 return -ENOENT;
5821
5822 if (!event->parent) {
5823 int err;
5824
5825 err = swevent_hlist_get(event);
5826 if (err)
5827 return err;
5828
c5905afb 5829 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5830 event->destroy = sw_perf_event_destroy;
5831 }
5832
5833 return 0;
5834}
5835
35edc2a5
PZ
5836static int perf_swevent_event_idx(struct perf_event *event)
5837{
5838 return 0;
5839}
5840
b0a873eb 5841static struct pmu perf_swevent = {
89a1e187 5842 .task_ctx_nr = perf_sw_context,
95476b64 5843
b0a873eb 5844 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5845 .add = perf_swevent_add,
5846 .del = perf_swevent_del,
5847 .start = perf_swevent_start,
5848 .stop = perf_swevent_stop,
1c024eca 5849 .read = perf_swevent_read,
35edc2a5
PZ
5850
5851 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5852};
5853
b0a873eb
PZ
5854#ifdef CONFIG_EVENT_TRACING
5855
1c024eca
PZ
5856static int perf_tp_filter_match(struct perf_event *event,
5857 struct perf_sample_data *data)
5858{
5859 void *record = data->raw->data;
5860
5861 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5862 return 1;
5863 return 0;
5864}
5865
5866static int perf_tp_event_match(struct perf_event *event,
5867 struct perf_sample_data *data,
5868 struct pt_regs *regs)
5869{
a0f7d0f7
FW
5870 if (event->hw.state & PERF_HES_STOPPED)
5871 return 0;
580d607c
PZ
5872 /*
5873 * All tracepoints are from kernel-space.
5874 */
5875 if (event->attr.exclude_kernel)
1c024eca
PZ
5876 return 0;
5877
5878 if (!perf_tp_filter_match(event, data))
5879 return 0;
5880
5881 return 1;
5882}
5883
5884void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5885 struct pt_regs *regs, struct hlist_head *head, int rctx,
5886 struct task_struct *task)
95476b64
FW
5887{
5888 struct perf_sample_data data;
1c024eca 5889 struct perf_event *event;
1c024eca 5890
95476b64
FW
5891 struct perf_raw_record raw = {
5892 .size = entry_size,
5893 .data = record,
5894 };
5895
fd0d000b 5896 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5897 data.raw = &raw;
5898
b67bfe0d 5899 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5900 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5901 perf_swevent_event(event, count, &data, regs);
4f41c013 5902 }
ecc55f84 5903
e6dab5ff
AV
5904 /*
5905 * If we got specified a target task, also iterate its context and
5906 * deliver this event there too.
5907 */
5908 if (task && task != current) {
5909 struct perf_event_context *ctx;
5910 struct trace_entry *entry = record;
5911
5912 rcu_read_lock();
5913 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5914 if (!ctx)
5915 goto unlock;
5916
5917 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5918 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5919 continue;
5920 if (event->attr.config != entry->type)
5921 continue;
5922 if (perf_tp_event_match(event, &data, regs))
5923 perf_swevent_event(event, count, &data, regs);
5924 }
5925unlock:
5926 rcu_read_unlock();
5927 }
5928
ecc55f84 5929 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5930}
5931EXPORT_SYMBOL_GPL(perf_tp_event);
5932
cdd6c482 5933static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5934{
1c024eca 5935 perf_trace_destroy(event);
e077df4f
PZ
5936}
5937
b0a873eb 5938static int perf_tp_event_init(struct perf_event *event)
e077df4f 5939{
76e1d904
FW
5940 int err;
5941
b0a873eb
PZ
5942 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5943 return -ENOENT;
5944
2481c5fa
SE
5945 /*
5946 * no branch sampling for tracepoint events
5947 */
5948 if (has_branch_stack(event))
5949 return -EOPNOTSUPP;
5950
1c024eca
PZ
5951 err = perf_trace_init(event);
5952 if (err)
b0a873eb 5953 return err;
e077df4f 5954
cdd6c482 5955 event->destroy = tp_perf_event_destroy;
e077df4f 5956
b0a873eb
PZ
5957 return 0;
5958}
5959
5960static struct pmu perf_tracepoint = {
89a1e187
PZ
5961 .task_ctx_nr = perf_sw_context,
5962
b0a873eb 5963 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5964 .add = perf_trace_add,
5965 .del = perf_trace_del,
5966 .start = perf_swevent_start,
5967 .stop = perf_swevent_stop,
b0a873eb 5968 .read = perf_swevent_read,
35edc2a5
PZ
5969
5970 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5971};
5972
5973static inline void perf_tp_register(void)
5974{
2e80a82a 5975 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5976}
6fb2915d
LZ
5977
5978static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5979{
5980 char *filter_str;
5981 int ret;
5982
5983 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5984 return -EINVAL;
5985
5986 filter_str = strndup_user(arg, PAGE_SIZE);
5987 if (IS_ERR(filter_str))
5988 return PTR_ERR(filter_str);
5989
5990 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5991
5992 kfree(filter_str);
5993 return ret;
5994}
5995
5996static void perf_event_free_filter(struct perf_event *event)
5997{
5998 ftrace_profile_free_filter(event);
5999}
6000
e077df4f 6001#else
6fb2915d 6002
b0a873eb 6003static inline void perf_tp_register(void)
e077df4f 6004{
e077df4f 6005}
6fb2915d
LZ
6006
6007static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6008{
6009 return -ENOENT;
6010}
6011
6012static void perf_event_free_filter(struct perf_event *event)
6013{
6014}
6015
07b139c8 6016#endif /* CONFIG_EVENT_TRACING */
e077df4f 6017
24f1e32c 6018#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6019void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6020{
f5ffe02e
FW
6021 struct perf_sample_data sample;
6022 struct pt_regs *regs = data;
6023
fd0d000b 6024 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6025
a4eaf7f1 6026 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6027 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6028}
6029#endif
6030
b0a873eb
PZ
6031/*
6032 * hrtimer based swevent callback
6033 */
f29ac756 6034
b0a873eb 6035static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6036{
b0a873eb
PZ
6037 enum hrtimer_restart ret = HRTIMER_RESTART;
6038 struct perf_sample_data data;
6039 struct pt_regs *regs;
6040 struct perf_event *event;
6041 u64 period;
f29ac756 6042
b0a873eb 6043 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6044
6045 if (event->state != PERF_EVENT_STATE_ACTIVE)
6046 return HRTIMER_NORESTART;
6047
b0a873eb 6048 event->pmu->read(event);
f344011c 6049
fd0d000b 6050 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6051 regs = get_irq_regs();
6052
6053 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6054 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6055 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6056 ret = HRTIMER_NORESTART;
6057 }
24f1e32c 6058
b0a873eb
PZ
6059 period = max_t(u64, 10000, event->hw.sample_period);
6060 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6061
b0a873eb 6062 return ret;
f29ac756
PZ
6063}
6064
b0a873eb 6065static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6066{
b0a873eb 6067 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6068 s64 period;
6069
6070 if (!is_sampling_event(event))
6071 return;
f5ffe02e 6072
5d508e82
FBH
6073 period = local64_read(&hwc->period_left);
6074 if (period) {
6075 if (period < 0)
6076 period = 10000;
fa407f35 6077
5d508e82
FBH
6078 local64_set(&hwc->period_left, 0);
6079 } else {
6080 period = max_t(u64, 10000, hwc->sample_period);
6081 }
6082 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 6083 ns_to_ktime(period), 0,
b5ab4cd5 6084 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 6085}
b0a873eb
PZ
6086
6087static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6088{
b0a873eb
PZ
6089 struct hw_perf_event *hwc = &event->hw;
6090
6c7e550f 6091 if (is_sampling_event(event)) {
b0a873eb 6092 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6093 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6094
6095 hrtimer_cancel(&hwc->hrtimer);
6096 }
24f1e32c
FW
6097}
6098
ba3dd36c
PZ
6099static void perf_swevent_init_hrtimer(struct perf_event *event)
6100{
6101 struct hw_perf_event *hwc = &event->hw;
6102
6103 if (!is_sampling_event(event))
6104 return;
6105
6106 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6107 hwc->hrtimer.function = perf_swevent_hrtimer;
6108
6109 /*
6110 * Since hrtimers have a fixed rate, we can do a static freq->period
6111 * mapping and avoid the whole period adjust feedback stuff.
6112 */
6113 if (event->attr.freq) {
6114 long freq = event->attr.sample_freq;
6115
6116 event->attr.sample_period = NSEC_PER_SEC / freq;
6117 hwc->sample_period = event->attr.sample_period;
6118 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 6119 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
6120 event->attr.freq = 0;
6121 }
6122}
6123
b0a873eb
PZ
6124/*
6125 * Software event: cpu wall time clock
6126 */
6127
6128static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 6129{
b0a873eb
PZ
6130 s64 prev;
6131 u64 now;
6132
a4eaf7f1 6133 now = local_clock();
b0a873eb
PZ
6134 prev = local64_xchg(&event->hw.prev_count, now);
6135 local64_add(now - prev, &event->count);
24f1e32c 6136}
24f1e32c 6137
a4eaf7f1 6138static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6139{
a4eaf7f1 6140 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 6141 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6142}
6143
a4eaf7f1 6144static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 6145{
b0a873eb
PZ
6146 perf_swevent_cancel_hrtimer(event);
6147 cpu_clock_event_update(event);
6148}
f29ac756 6149
a4eaf7f1
PZ
6150static int cpu_clock_event_add(struct perf_event *event, int flags)
6151{
6152 if (flags & PERF_EF_START)
6153 cpu_clock_event_start(event, flags);
6154
6155 return 0;
6156}
6157
6158static void cpu_clock_event_del(struct perf_event *event, int flags)
6159{
6160 cpu_clock_event_stop(event, flags);
6161}
6162
b0a873eb
PZ
6163static void cpu_clock_event_read(struct perf_event *event)
6164{
6165 cpu_clock_event_update(event);
6166}
f344011c 6167
b0a873eb
PZ
6168static int cpu_clock_event_init(struct perf_event *event)
6169{
6170 if (event->attr.type != PERF_TYPE_SOFTWARE)
6171 return -ENOENT;
6172
6173 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6174 return -ENOENT;
6175
2481c5fa
SE
6176 /*
6177 * no branch sampling for software events
6178 */
6179 if (has_branch_stack(event))
6180 return -EOPNOTSUPP;
6181
ba3dd36c
PZ
6182 perf_swevent_init_hrtimer(event);
6183
b0a873eb 6184 return 0;
f29ac756
PZ
6185}
6186
b0a873eb 6187static struct pmu perf_cpu_clock = {
89a1e187
PZ
6188 .task_ctx_nr = perf_sw_context,
6189
b0a873eb 6190 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
6191 .add = cpu_clock_event_add,
6192 .del = cpu_clock_event_del,
6193 .start = cpu_clock_event_start,
6194 .stop = cpu_clock_event_stop,
b0a873eb 6195 .read = cpu_clock_event_read,
35edc2a5
PZ
6196
6197 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6198};
6199
6200/*
6201 * Software event: task time clock
6202 */
6203
6204static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6205{
b0a873eb
PZ
6206 u64 prev;
6207 s64 delta;
5c92d124 6208
b0a873eb
PZ
6209 prev = local64_xchg(&event->hw.prev_count, now);
6210 delta = now - prev;
6211 local64_add(delta, &event->count);
6212}
5c92d124 6213
a4eaf7f1 6214static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6215{
a4eaf7f1 6216 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6217 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6218}
6219
a4eaf7f1 6220static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6221{
6222 perf_swevent_cancel_hrtimer(event);
6223 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6224}
6225
6226static int task_clock_event_add(struct perf_event *event, int flags)
6227{
6228 if (flags & PERF_EF_START)
6229 task_clock_event_start(event, flags);
b0a873eb 6230
a4eaf7f1
PZ
6231 return 0;
6232}
6233
6234static void task_clock_event_del(struct perf_event *event, int flags)
6235{
6236 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6237}
6238
6239static void task_clock_event_read(struct perf_event *event)
6240{
768a06e2
PZ
6241 u64 now = perf_clock();
6242 u64 delta = now - event->ctx->timestamp;
6243 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6244
6245 task_clock_event_update(event, time);
6246}
6247
6248static int task_clock_event_init(struct perf_event *event)
6fb2915d 6249{
b0a873eb
PZ
6250 if (event->attr.type != PERF_TYPE_SOFTWARE)
6251 return -ENOENT;
6252
6253 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6254 return -ENOENT;
6255
2481c5fa
SE
6256 /*
6257 * no branch sampling for software events
6258 */
6259 if (has_branch_stack(event))
6260 return -EOPNOTSUPP;
6261
ba3dd36c
PZ
6262 perf_swevent_init_hrtimer(event);
6263
b0a873eb 6264 return 0;
6fb2915d
LZ
6265}
6266
b0a873eb 6267static struct pmu perf_task_clock = {
89a1e187
PZ
6268 .task_ctx_nr = perf_sw_context,
6269
b0a873eb 6270 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6271 .add = task_clock_event_add,
6272 .del = task_clock_event_del,
6273 .start = task_clock_event_start,
6274 .stop = task_clock_event_stop,
b0a873eb 6275 .read = task_clock_event_read,
35edc2a5
PZ
6276
6277 .event_idx = perf_swevent_event_idx,
b0a873eb 6278};
6fb2915d 6279
ad5133b7 6280static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6281{
e077df4f 6282}
6fb2915d 6283
ad5133b7 6284static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6285{
ad5133b7 6286 return 0;
6fb2915d
LZ
6287}
6288
ad5133b7 6289static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6290{
ad5133b7 6291 perf_pmu_disable(pmu);
6fb2915d
LZ
6292}
6293
ad5133b7
PZ
6294static int perf_pmu_commit_txn(struct pmu *pmu)
6295{
6296 perf_pmu_enable(pmu);
6297 return 0;
6298}
e077df4f 6299
ad5133b7 6300static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6301{
ad5133b7 6302 perf_pmu_enable(pmu);
24f1e32c
FW
6303}
6304
35edc2a5
PZ
6305static int perf_event_idx_default(struct perf_event *event)
6306{
6307 return event->hw.idx + 1;
6308}
6309
8dc85d54
PZ
6310/*
6311 * Ensures all contexts with the same task_ctx_nr have the same
6312 * pmu_cpu_context too.
6313 */
9e317041 6314static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 6315{
8dc85d54 6316 struct pmu *pmu;
b326e956 6317
8dc85d54
PZ
6318 if (ctxn < 0)
6319 return NULL;
24f1e32c 6320
8dc85d54
PZ
6321 list_for_each_entry(pmu, &pmus, entry) {
6322 if (pmu->task_ctx_nr == ctxn)
6323 return pmu->pmu_cpu_context;
6324 }
24f1e32c 6325
8dc85d54 6326 return NULL;
24f1e32c
FW
6327}
6328
51676957 6329static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6330{
51676957
PZ
6331 int cpu;
6332
6333 for_each_possible_cpu(cpu) {
6334 struct perf_cpu_context *cpuctx;
6335
6336 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6337
3f1f3320
PZ
6338 if (cpuctx->unique_pmu == old_pmu)
6339 cpuctx->unique_pmu = pmu;
51676957
PZ
6340 }
6341}
6342
6343static void free_pmu_context(struct pmu *pmu)
6344{
6345 struct pmu *i;
f5ffe02e 6346
8dc85d54 6347 mutex_lock(&pmus_lock);
0475f9ea 6348 /*
8dc85d54 6349 * Like a real lame refcount.
0475f9ea 6350 */
51676957
PZ
6351 list_for_each_entry(i, &pmus, entry) {
6352 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6353 update_pmu_context(i, pmu);
8dc85d54 6354 goto out;
51676957 6355 }
8dc85d54 6356 }
d6d020e9 6357
51676957 6358 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6359out:
6360 mutex_unlock(&pmus_lock);
24f1e32c 6361}
2e80a82a 6362static struct idr pmu_idr;
d6d020e9 6363
abe43400
PZ
6364static ssize_t
6365type_show(struct device *dev, struct device_attribute *attr, char *page)
6366{
6367 struct pmu *pmu = dev_get_drvdata(dev);
6368
6369 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6370}
90826ca7 6371static DEVICE_ATTR_RO(type);
abe43400 6372
62b85639
SE
6373static ssize_t
6374perf_event_mux_interval_ms_show(struct device *dev,
6375 struct device_attribute *attr,
6376 char *page)
6377{
6378 struct pmu *pmu = dev_get_drvdata(dev);
6379
6380 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6381}
6382
6383static ssize_t
6384perf_event_mux_interval_ms_store(struct device *dev,
6385 struct device_attribute *attr,
6386 const char *buf, size_t count)
6387{
6388 struct pmu *pmu = dev_get_drvdata(dev);
6389 int timer, cpu, ret;
6390
6391 ret = kstrtoint(buf, 0, &timer);
6392 if (ret)
6393 return ret;
6394
6395 if (timer < 1)
6396 return -EINVAL;
6397
6398 /* same value, noting to do */
6399 if (timer == pmu->hrtimer_interval_ms)
6400 return count;
6401
6402 pmu->hrtimer_interval_ms = timer;
6403
6404 /* update all cpuctx for this PMU */
6405 for_each_possible_cpu(cpu) {
6406 struct perf_cpu_context *cpuctx;
6407 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6408 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6409
6410 if (hrtimer_active(&cpuctx->hrtimer))
6411 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6412 }
6413
6414 return count;
6415}
90826ca7 6416static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 6417
90826ca7
GKH
6418static struct attribute *pmu_dev_attrs[] = {
6419 &dev_attr_type.attr,
6420 &dev_attr_perf_event_mux_interval_ms.attr,
6421 NULL,
abe43400 6422};
90826ca7 6423ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
6424
6425static int pmu_bus_running;
6426static struct bus_type pmu_bus = {
6427 .name = "event_source",
90826ca7 6428 .dev_groups = pmu_dev_groups,
abe43400
PZ
6429};
6430
6431static void pmu_dev_release(struct device *dev)
6432{
6433 kfree(dev);
6434}
6435
6436static int pmu_dev_alloc(struct pmu *pmu)
6437{
6438 int ret = -ENOMEM;
6439
6440 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6441 if (!pmu->dev)
6442 goto out;
6443
0c9d42ed 6444 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6445 device_initialize(pmu->dev);
6446 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6447 if (ret)
6448 goto free_dev;
6449
6450 dev_set_drvdata(pmu->dev, pmu);
6451 pmu->dev->bus = &pmu_bus;
6452 pmu->dev->release = pmu_dev_release;
6453 ret = device_add(pmu->dev);
6454 if (ret)
6455 goto free_dev;
6456
6457out:
6458 return ret;
6459
6460free_dev:
6461 put_device(pmu->dev);
6462 goto out;
6463}
6464
547e9fd7 6465static struct lock_class_key cpuctx_mutex;
facc4307 6466static struct lock_class_key cpuctx_lock;
547e9fd7 6467
03d8e80b 6468int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6469{
108b02cf 6470 int cpu, ret;
24f1e32c 6471
b0a873eb 6472 mutex_lock(&pmus_lock);
33696fc0
PZ
6473 ret = -ENOMEM;
6474 pmu->pmu_disable_count = alloc_percpu(int);
6475 if (!pmu->pmu_disable_count)
6476 goto unlock;
f29ac756 6477
2e80a82a
PZ
6478 pmu->type = -1;
6479 if (!name)
6480 goto skip_type;
6481 pmu->name = name;
6482
6483 if (type < 0) {
0e9c3be2
TH
6484 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6485 if (type < 0) {
6486 ret = type;
2e80a82a
PZ
6487 goto free_pdc;
6488 }
6489 }
6490 pmu->type = type;
6491
abe43400
PZ
6492 if (pmu_bus_running) {
6493 ret = pmu_dev_alloc(pmu);
6494 if (ret)
6495 goto free_idr;
6496 }
6497
2e80a82a 6498skip_type:
8dc85d54
PZ
6499 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6500 if (pmu->pmu_cpu_context)
6501 goto got_cpu_context;
f29ac756 6502
c4814202 6503 ret = -ENOMEM;
108b02cf
PZ
6504 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6505 if (!pmu->pmu_cpu_context)
abe43400 6506 goto free_dev;
f344011c 6507
108b02cf
PZ
6508 for_each_possible_cpu(cpu) {
6509 struct perf_cpu_context *cpuctx;
6510
6511 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6512 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6513 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6514 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6515 cpuctx->ctx.type = cpu_context;
108b02cf 6516 cpuctx->ctx.pmu = pmu;
9e630205
SE
6517
6518 __perf_cpu_hrtimer_init(cpuctx, cpu);
6519
e9d2b064 6520 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6521 cpuctx->unique_pmu = pmu;
108b02cf 6522 }
76e1d904 6523
8dc85d54 6524got_cpu_context:
ad5133b7
PZ
6525 if (!pmu->start_txn) {
6526 if (pmu->pmu_enable) {
6527 /*
6528 * If we have pmu_enable/pmu_disable calls, install
6529 * transaction stubs that use that to try and batch
6530 * hardware accesses.
6531 */
6532 pmu->start_txn = perf_pmu_start_txn;
6533 pmu->commit_txn = perf_pmu_commit_txn;
6534 pmu->cancel_txn = perf_pmu_cancel_txn;
6535 } else {
6536 pmu->start_txn = perf_pmu_nop_void;
6537 pmu->commit_txn = perf_pmu_nop_int;
6538 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6539 }
5c92d124 6540 }
15dbf27c 6541
ad5133b7
PZ
6542 if (!pmu->pmu_enable) {
6543 pmu->pmu_enable = perf_pmu_nop_void;
6544 pmu->pmu_disable = perf_pmu_nop_void;
6545 }
6546
35edc2a5
PZ
6547 if (!pmu->event_idx)
6548 pmu->event_idx = perf_event_idx_default;
6549
b0a873eb 6550 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6551 ret = 0;
6552unlock:
b0a873eb
PZ
6553 mutex_unlock(&pmus_lock);
6554
33696fc0 6555 return ret;
108b02cf 6556
abe43400
PZ
6557free_dev:
6558 device_del(pmu->dev);
6559 put_device(pmu->dev);
6560
2e80a82a
PZ
6561free_idr:
6562 if (pmu->type >= PERF_TYPE_MAX)
6563 idr_remove(&pmu_idr, pmu->type);
6564
108b02cf
PZ
6565free_pdc:
6566 free_percpu(pmu->pmu_disable_count);
6567 goto unlock;
f29ac756 6568}
c464c76e 6569EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 6570
b0a873eb 6571void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6572{
b0a873eb
PZ
6573 mutex_lock(&pmus_lock);
6574 list_del_rcu(&pmu->entry);
6575 mutex_unlock(&pmus_lock);
5c92d124 6576
0475f9ea 6577 /*
cde8e884
PZ
6578 * We dereference the pmu list under both SRCU and regular RCU, so
6579 * synchronize against both of those.
0475f9ea 6580 */
b0a873eb 6581 synchronize_srcu(&pmus_srcu);
cde8e884 6582 synchronize_rcu();
d6d020e9 6583
33696fc0 6584 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6585 if (pmu->type >= PERF_TYPE_MAX)
6586 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6587 device_del(pmu->dev);
6588 put_device(pmu->dev);
51676957 6589 free_pmu_context(pmu);
b0a873eb 6590}
c464c76e 6591EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 6592
b0a873eb
PZ
6593struct pmu *perf_init_event(struct perf_event *event)
6594{
6595 struct pmu *pmu = NULL;
6596 int idx;
940c5b29 6597 int ret;
b0a873eb
PZ
6598
6599 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6600
6601 rcu_read_lock();
6602 pmu = idr_find(&pmu_idr, event->attr.type);
6603 rcu_read_unlock();
940c5b29 6604 if (pmu) {
c464c76e
YZ
6605 if (!try_module_get(pmu->module)) {
6606 pmu = ERR_PTR(-ENODEV);
6607 goto unlock;
6608 }
7e5b2a01 6609 event->pmu = pmu;
940c5b29
LM
6610 ret = pmu->event_init(event);
6611 if (ret)
6612 pmu = ERR_PTR(ret);
2e80a82a 6613 goto unlock;
940c5b29 6614 }
2e80a82a 6615
b0a873eb 6616 list_for_each_entry_rcu(pmu, &pmus, entry) {
c464c76e
YZ
6617 if (!try_module_get(pmu->module)) {
6618 pmu = ERR_PTR(-ENODEV);
6619 goto unlock;
6620 }
7e5b2a01 6621 event->pmu = pmu;
940c5b29 6622 ret = pmu->event_init(event);
b0a873eb 6623 if (!ret)
e5f4d339 6624 goto unlock;
76e1d904 6625
b0a873eb
PZ
6626 if (ret != -ENOENT) {
6627 pmu = ERR_PTR(ret);
e5f4d339 6628 goto unlock;
f344011c 6629 }
5c92d124 6630 }
e5f4d339
PZ
6631 pmu = ERR_PTR(-ENOENT);
6632unlock:
b0a873eb 6633 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6634
4aeb0b42 6635 return pmu;
5c92d124
IM
6636}
6637
4beb31f3
FW
6638static void account_event_cpu(struct perf_event *event, int cpu)
6639{
6640 if (event->parent)
6641 return;
6642
6643 if (has_branch_stack(event)) {
6644 if (!(event->attach_state & PERF_ATTACH_TASK))
6645 atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6646 }
6647 if (is_cgroup_event(event))
6648 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6649}
6650
766d6c07
FW
6651static void account_event(struct perf_event *event)
6652{
4beb31f3
FW
6653 if (event->parent)
6654 return;
6655
766d6c07
FW
6656 if (event->attach_state & PERF_ATTACH_TASK)
6657 static_key_slow_inc(&perf_sched_events.key);
6658 if (event->attr.mmap || event->attr.mmap_data)
6659 atomic_inc(&nr_mmap_events);
6660 if (event->attr.comm)
6661 atomic_inc(&nr_comm_events);
6662 if (event->attr.task)
6663 atomic_inc(&nr_task_events);
948b26b6
FW
6664 if (event->attr.freq) {
6665 if (atomic_inc_return(&nr_freq_events) == 1)
6666 tick_nohz_full_kick_all();
6667 }
4beb31f3 6668 if (has_branch_stack(event))
766d6c07 6669 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 6670 if (is_cgroup_event(event))
766d6c07 6671 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
6672
6673 account_event_cpu(event, event->cpu);
766d6c07
FW
6674}
6675
0793a61d 6676/*
cdd6c482 6677 * Allocate and initialize a event structure
0793a61d 6678 */
cdd6c482 6679static struct perf_event *
c3f00c70 6680perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6681 struct task_struct *task,
6682 struct perf_event *group_leader,
6683 struct perf_event *parent_event,
4dc0da86
AK
6684 perf_overflow_handler_t overflow_handler,
6685 void *context)
0793a61d 6686{
51b0fe39 6687 struct pmu *pmu;
cdd6c482
IM
6688 struct perf_event *event;
6689 struct hw_perf_event *hwc;
90983b16 6690 long err = -EINVAL;
0793a61d 6691
66832eb4
ON
6692 if ((unsigned)cpu >= nr_cpu_ids) {
6693 if (!task || cpu != -1)
6694 return ERR_PTR(-EINVAL);
6695 }
6696
c3f00c70 6697 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6698 if (!event)
d5d2bc0d 6699 return ERR_PTR(-ENOMEM);
0793a61d 6700
04289bb9 6701 /*
cdd6c482 6702 * Single events are their own group leaders, with an
04289bb9
IM
6703 * empty sibling list:
6704 */
6705 if (!group_leader)
cdd6c482 6706 group_leader = event;
04289bb9 6707
cdd6c482
IM
6708 mutex_init(&event->child_mutex);
6709 INIT_LIST_HEAD(&event->child_list);
fccc714b 6710
cdd6c482
IM
6711 INIT_LIST_HEAD(&event->group_entry);
6712 INIT_LIST_HEAD(&event->event_entry);
6713 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 6714 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 6715 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
6716 INIT_HLIST_NODE(&event->hlist_entry);
6717
10c6db11 6718
cdd6c482 6719 init_waitqueue_head(&event->waitq);
e360adbe 6720 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6721
cdd6c482 6722 mutex_init(&event->mmap_mutex);
7b732a75 6723
a6fa941d 6724 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6725 event->cpu = cpu;
6726 event->attr = *attr;
6727 event->group_leader = group_leader;
6728 event->pmu = NULL;
cdd6c482 6729 event->oncpu = -1;
a96bbc16 6730
cdd6c482 6731 event->parent = parent_event;
b84fbc9f 6732
17cf22c3 6733 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6734 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6735
cdd6c482 6736 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6737
d580ff86
PZ
6738 if (task) {
6739 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6740
6741 if (attr->type == PERF_TYPE_TRACEPOINT)
6742 event->hw.tp_target = task;
d580ff86
PZ
6743#ifdef CONFIG_HAVE_HW_BREAKPOINT
6744 /*
6745 * hw_breakpoint is a bit difficult here..
6746 */
f22c1bb6 6747 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6748 event->hw.bp_target = task;
6749#endif
6750 }
6751
4dc0da86 6752 if (!overflow_handler && parent_event) {
b326e956 6753 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6754 context = parent_event->overflow_handler_context;
6755 }
66832eb4 6756
b326e956 6757 event->overflow_handler = overflow_handler;
4dc0da86 6758 event->overflow_handler_context = context;
97eaf530 6759
0231bb53 6760 perf_event__state_init(event);
a86ed508 6761
4aeb0b42 6762 pmu = NULL;
b8e83514 6763
cdd6c482 6764 hwc = &event->hw;
bd2b5b12 6765 hwc->sample_period = attr->sample_period;
0d48696f 6766 if (attr->freq && attr->sample_freq)
bd2b5b12 6767 hwc->sample_period = 1;
eced1dfc 6768 hwc->last_period = hwc->sample_period;
bd2b5b12 6769
e7850595 6770 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6771
2023b359 6772 /*
cdd6c482 6773 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6774 */
3dab77fb 6775 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 6776 goto err_ns;
2023b359 6777
b0a873eb 6778 pmu = perf_init_event(event);
4aeb0b42 6779 if (!pmu)
90983b16
FW
6780 goto err_ns;
6781 else if (IS_ERR(pmu)) {
4aeb0b42 6782 err = PTR_ERR(pmu);
90983b16 6783 goto err_ns;
621a01ea 6784 }
d5d2bc0d 6785
cdd6c482 6786 if (!event->parent) {
927c7a9e
FW
6787 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6788 err = get_callchain_buffers();
90983b16
FW
6789 if (err)
6790 goto err_pmu;
d010b332 6791 }
f344011c 6792 }
9ee318a7 6793
cdd6c482 6794 return event;
90983b16
FW
6795
6796err_pmu:
6797 if (event->destroy)
6798 event->destroy(event);
c464c76e 6799 module_put(pmu->module);
90983b16
FW
6800err_ns:
6801 if (event->ns)
6802 put_pid_ns(event->ns);
6803 kfree(event);
6804
6805 return ERR_PTR(err);
0793a61d
TG
6806}
6807
cdd6c482
IM
6808static int perf_copy_attr(struct perf_event_attr __user *uattr,
6809 struct perf_event_attr *attr)
974802ea 6810{
974802ea 6811 u32 size;
cdf8073d 6812 int ret;
974802ea
PZ
6813
6814 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6815 return -EFAULT;
6816
6817 /*
6818 * zero the full structure, so that a short copy will be nice.
6819 */
6820 memset(attr, 0, sizeof(*attr));
6821
6822 ret = get_user(size, &uattr->size);
6823 if (ret)
6824 return ret;
6825
6826 if (size > PAGE_SIZE) /* silly large */
6827 goto err_size;
6828
6829 if (!size) /* abi compat */
6830 size = PERF_ATTR_SIZE_VER0;
6831
6832 if (size < PERF_ATTR_SIZE_VER0)
6833 goto err_size;
6834
6835 /*
6836 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6837 * ensure all the unknown bits are 0 - i.e. new
6838 * user-space does not rely on any kernel feature
6839 * extensions we dont know about yet.
974802ea
PZ
6840 */
6841 if (size > sizeof(*attr)) {
cdf8073d
IS
6842 unsigned char __user *addr;
6843 unsigned char __user *end;
6844 unsigned char val;
974802ea 6845
cdf8073d
IS
6846 addr = (void __user *)uattr + sizeof(*attr);
6847 end = (void __user *)uattr + size;
974802ea 6848
cdf8073d 6849 for (; addr < end; addr++) {
974802ea
PZ
6850 ret = get_user(val, addr);
6851 if (ret)
6852 return ret;
6853 if (val)
6854 goto err_size;
6855 }
b3e62e35 6856 size = sizeof(*attr);
974802ea
PZ
6857 }
6858
6859 ret = copy_from_user(attr, uattr, size);
6860 if (ret)
6861 return -EFAULT;
6862
3090ffb5
SE
6863 /* disabled for now */
6864 if (attr->mmap2)
6865 return -EINVAL;
6866
cd757645 6867 if (attr->__reserved_1)
974802ea
PZ
6868 return -EINVAL;
6869
6870 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6871 return -EINVAL;
6872
6873 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6874 return -EINVAL;
6875
bce38cd5
SE
6876 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6877 u64 mask = attr->branch_sample_type;
6878
6879 /* only using defined bits */
6880 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6881 return -EINVAL;
6882
6883 /* at least one branch bit must be set */
6884 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6885 return -EINVAL;
6886
bce38cd5
SE
6887 /* propagate priv level, when not set for branch */
6888 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6889
6890 /* exclude_kernel checked on syscall entry */
6891 if (!attr->exclude_kernel)
6892 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6893
6894 if (!attr->exclude_user)
6895 mask |= PERF_SAMPLE_BRANCH_USER;
6896
6897 if (!attr->exclude_hv)
6898 mask |= PERF_SAMPLE_BRANCH_HV;
6899 /*
6900 * adjust user setting (for HW filter setup)
6901 */
6902 attr->branch_sample_type = mask;
6903 }
e712209a
SE
6904 /* privileged levels capture (kernel, hv): check permissions */
6905 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
6906 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6907 return -EACCES;
bce38cd5 6908 }
4018994f 6909
c5ebcedb 6910 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6911 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6912 if (ret)
6913 return ret;
6914 }
6915
6916 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6917 if (!arch_perf_have_user_stack_dump())
6918 return -ENOSYS;
6919
6920 /*
6921 * We have __u32 type for the size, but so far
6922 * we can only use __u16 as maximum due to the
6923 * __u16 sample size limit.
6924 */
6925 if (attr->sample_stack_user >= USHRT_MAX)
6926 ret = -EINVAL;
6927 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6928 ret = -EINVAL;
6929 }
4018994f 6930
974802ea
PZ
6931out:
6932 return ret;
6933
6934err_size:
6935 put_user(sizeof(*attr), &uattr->size);
6936 ret = -E2BIG;
6937 goto out;
6938}
6939
ac9721f3
PZ
6940static int
6941perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6942{
76369139 6943 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6944 int ret = -EINVAL;
6945
ac9721f3 6946 if (!output_event)
a4be7c27
PZ
6947 goto set;
6948
ac9721f3
PZ
6949 /* don't allow circular references */
6950 if (event == output_event)
a4be7c27
PZ
6951 goto out;
6952
0f139300
PZ
6953 /*
6954 * Don't allow cross-cpu buffers
6955 */
6956 if (output_event->cpu != event->cpu)
6957 goto out;
6958
6959 /*
76369139 6960 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6961 */
6962 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6963 goto out;
6964
a4be7c27 6965set:
cdd6c482 6966 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6967 /* Can't redirect output if we've got an active mmap() */
6968 if (atomic_read(&event->mmap_count))
6969 goto unlock;
a4be7c27 6970
9bb5d40c
PZ
6971 old_rb = event->rb;
6972
ac9721f3 6973 if (output_event) {
76369139
FW
6974 /* get the rb we want to redirect to */
6975 rb = ring_buffer_get(output_event);
6976 if (!rb)
ac9721f3 6977 goto unlock;
a4be7c27
PZ
6978 }
6979
10c6db11
PZ
6980 if (old_rb)
6981 ring_buffer_detach(event, old_rb);
9bb5d40c
PZ
6982
6983 if (rb)
6984 ring_buffer_attach(event, rb);
6985
6986 rcu_assign_pointer(event->rb, rb);
6987
6988 if (old_rb) {
6989 ring_buffer_put(old_rb);
6990 /*
6991 * Since we detached before setting the new rb, so that we
6992 * could attach the new rb, we could have missed a wakeup.
6993 * Provide it now.
6994 */
6995 wake_up_all(&event->waitq);
6996 }
6997
a4be7c27 6998 ret = 0;
ac9721f3
PZ
6999unlock:
7000 mutex_unlock(&event->mmap_mutex);
7001
a4be7c27 7002out:
a4be7c27
PZ
7003 return ret;
7004}
7005
0793a61d 7006/**
cdd6c482 7007 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7008 *
cdd6c482 7009 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7010 * @pid: target pid
9f66a381 7011 * @cpu: target cpu
cdd6c482 7012 * @group_fd: group leader event fd
0793a61d 7013 */
cdd6c482
IM
7014SYSCALL_DEFINE5(perf_event_open,
7015 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7016 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7017{
b04243ef
PZ
7018 struct perf_event *group_leader = NULL, *output_event = NULL;
7019 struct perf_event *event, *sibling;
cdd6c482
IM
7020 struct perf_event_attr attr;
7021 struct perf_event_context *ctx;
7022 struct file *event_file = NULL;
2903ff01 7023 struct fd group = {NULL, 0};
38a81da2 7024 struct task_struct *task = NULL;
89a1e187 7025 struct pmu *pmu;
ea635c64 7026 int event_fd;
b04243ef 7027 int move_group = 0;
dc86cabe 7028 int err;
a21b0b35 7029 int f_flags = O_RDWR;
0793a61d 7030
2743a5b0 7031 /* for future expandability... */
e5d1367f 7032 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
7033 return -EINVAL;
7034
dc86cabe
IM
7035 err = perf_copy_attr(attr_uptr, &attr);
7036 if (err)
7037 return err;
eab656ae 7038
0764771d
PZ
7039 if (!attr.exclude_kernel) {
7040 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7041 return -EACCES;
7042 }
7043
df58ab24 7044 if (attr.freq) {
cdd6c482 7045 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
7046 return -EINVAL;
7047 }
7048
e5d1367f
SE
7049 /*
7050 * In cgroup mode, the pid argument is used to pass the fd
7051 * opened to the cgroup directory in cgroupfs. The cpu argument
7052 * designates the cpu on which to monitor threads from that
7053 * cgroup.
7054 */
7055 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7056 return -EINVAL;
7057
a21b0b35
YD
7058 if (flags & PERF_FLAG_FD_CLOEXEC)
7059 f_flags |= O_CLOEXEC;
7060
7061 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
7062 if (event_fd < 0)
7063 return event_fd;
7064
ac9721f3 7065 if (group_fd != -1) {
2903ff01
AV
7066 err = perf_fget_light(group_fd, &group);
7067 if (err)
d14b12d7 7068 goto err_fd;
2903ff01 7069 group_leader = group.file->private_data;
ac9721f3
PZ
7070 if (flags & PERF_FLAG_FD_OUTPUT)
7071 output_event = group_leader;
7072 if (flags & PERF_FLAG_FD_NO_GROUP)
7073 group_leader = NULL;
7074 }
7075
e5d1367f 7076 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
7077 task = find_lively_task_by_vpid(pid);
7078 if (IS_ERR(task)) {
7079 err = PTR_ERR(task);
7080 goto err_group_fd;
7081 }
7082 }
7083
1f4ee503
PZ
7084 if (task && group_leader &&
7085 group_leader->attr.inherit != attr.inherit) {
7086 err = -EINVAL;
7087 goto err_task;
7088 }
7089
fbfc623f
YZ
7090 get_online_cpus();
7091
4dc0da86
AK
7092 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7093 NULL, NULL);
d14b12d7
SE
7094 if (IS_ERR(event)) {
7095 err = PTR_ERR(event);
1f4ee503 7096 goto err_cpus;
d14b12d7
SE
7097 }
7098
e5d1367f
SE
7099 if (flags & PERF_FLAG_PID_CGROUP) {
7100 err = perf_cgroup_connect(pid, event, &attr, group_leader);
766d6c07
FW
7101 if (err) {
7102 __free_event(event);
1f4ee503 7103 goto err_cpus;
766d6c07 7104 }
e5d1367f
SE
7105 }
7106
766d6c07
FW
7107 account_event(event);
7108
89a1e187
PZ
7109 /*
7110 * Special case software events and allow them to be part of
7111 * any hardware group.
7112 */
7113 pmu = event->pmu;
b04243ef
PZ
7114
7115 if (group_leader &&
7116 (is_software_event(event) != is_software_event(group_leader))) {
7117 if (is_software_event(event)) {
7118 /*
7119 * If event and group_leader are not both a software
7120 * event, and event is, then group leader is not.
7121 *
7122 * Allow the addition of software events to !software
7123 * groups, this is safe because software events never
7124 * fail to schedule.
7125 */
7126 pmu = group_leader->pmu;
7127 } else if (is_software_event(group_leader) &&
7128 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7129 /*
7130 * In case the group is a pure software group, and we
7131 * try to add a hardware event, move the whole group to
7132 * the hardware context.
7133 */
7134 move_group = 1;
7135 }
7136 }
89a1e187
PZ
7137
7138 /*
7139 * Get the target context (task or percpu):
7140 */
e2d37cd2 7141 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
7142 if (IS_ERR(ctx)) {
7143 err = PTR_ERR(ctx);
c6be5a5c 7144 goto err_alloc;
89a1e187
PZ
7145 }
7146
fd1edb3a
PZ
7147 if (task) {
7148 put_task_struct(task);
7149 task = NULL;
7150 }
7151
ccff286d 7152 /*
cdd6c482 7153 * Look up the group leader (we will attach this event to it):
04289bb9 7154 */
ac9721f3 7155 if (group_leader) {
dc86cabe 7156 err = -EINVAL;
04289bb9 7157
04289bb9 7158 /*
ccff286d
IM
7159 * Do not allow a recursive hierarchy (this new sibling
7160 * becoming part of another group-sibling):
7161 */
7162 if (group_leader->group_leader != group_leader)
c3f00c70 7163 goto err_context;
ccff286d
IM
7164 /*
7165 * Do not allow to attach to a group in a different
7166 * task or CPU context:
04289bb9 7167 */
b04243ef
PZ
7168 if (move_group) {
7169 if (group_leader->ctx->type != ctx->type)
7170 goto err_context;
7171 } else {
7172 if (group_leader->ctx != ctx)
7173 goto err_context;
7174 }
7175
3b6f9e5c
PM
7176 /*
7177 * Only a group leader can be exclusive or pinned
7178 */
0d48696f 7179 if (attr.exclusive || attr.pinned)
c3f00c70 7180 goto err_context;
ac9721f3
PZ
7181 }
7182
7183 if (output_event) {
7184 err = perf_event_set_output(event, output_event);
7185 if (err)
c3f00c70 7186 goto err_context;
ac9721f3 7187 }
0793a61d 7188
a21b0b35
YD
7189 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
7190 f_flags);
ea635c64
AV
7191 if (IS_ERR(event_file)) {
7192 err = PTR_ERR(event_file);
c3f00c70 7193 goto err_context;
ea635c64 7194 }
9b51f66d 7195
b04243ef
PZ
7196 if (move_group) {
7197 struct perf_event_context *gctx = group_leader->ctx;
7198
7199 mutex_lock(&gctx->mutex);
46ce0fe9 7200 perf_remove_from_context(group_leader, false);
0231bb53
JO
7201
7202 /*
7203 * Removing from the context ends up with disabled
7204 * event. What we want here is event in the initial
7205 * startup state, ready to be add into new context.
7206 */
7207 perf_event__state_init(group_leader);
b04243ef
PZ
7208 list_for_each_entry(sibling, &group_leader->sibling_list,
7209 group_entry) {
46ce0fe9 7210 perf_remove_from_context(sibling, false);
0231bb53 7211 perf_event__state_init(sibling);
b04243ef
PZ
7212 put_ctx(gctx);
7213 }
7214 mutex_unlock(&gctx->mutex);
7215 put_ctx(gctx);
ea635c64 7216 }
9b51f66d 7217
ad3a37de 7218 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 7219 mutex_lock(&ctx->mutex);
b04243ef
PZ
7220
7221 if (move_group) {
0cda4c02 7222 synchronize_rcu();
e2d37cd2 7223 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
7224 get_ctx(ctx);
7225 list_for_each_entry(sibling, &group_leader->sibling_list,
7226 group_entry) {
e2d37cd2 7227 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
7228 get_ctx(ctx);
7229 }
7230 }
7231
e2d37cd2 7232 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 7233 perf_unpin_context(ctx);
d859e29f 7234 mutex_unlock(&ctx->mutex);
9b51f66d 7235
fbfc623f
YZ
7236 put_online_cpus();
7237
cdd6c482 7238 event->owner = current;
8882135b 7239
cdd6c482
IM
7240 mutex_lock(&current->perf_event_mutex);
7241 list_add_tail(&event->owner_entry, &current->perf_event_list);
7242 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7243
c320c7b7
ACM
7244 /*
7245 * Precalculate sample_data sizes
7246 */
7247 perf_event__header_size(event);
6844c09d 7248 perf_event__id_header_size(event);
c320c7b7 7249
8a49542c
PZ
7250 /*
7251 * Drop the reference on the group_event after placing the
7252 * new event on the sibling_list. This ensures destruction
7253 * of the group leader will find the pointer to itself in
7254 * perf_group_detach().
7255 */
2903ff01 7256 fdput(group);
ea635c64
AV
7257 fd_install(event_fd, event_file);
7258 return event_fd;
0793a61d 7259
c3f00c70 7260err_context:
fe4b04fa 7261 perf_unpin_context(ctx);
ea635c64 7262 put_ctx(ctx);
c6be5a5c 7263err_alloc:
ea635c64 7264 free_event(event);
1f4ee503 7265err_cpus:
fbfc623f 7266 put_online_cpus();
1f4ee503 7267err_task:
e7d0bc04
PZ
7268 if (task)
7269 put_task_struct(task);
89a1e187 7270err_group_fd:
2903ff01 7271 fdput(group);
ea635c64
AV
7272err_fd:
7273 put_unused_fd(event_fd);
dc86cabe 7274 return err;
0793a61d
TG
7275}
7276
fb0459d7
AV
7277/**
7278 * perf_event_create_kernel_counter
7279 *
7280 * @attr: attributes of the counter to create
7281 * @cpu: cpu in which the counter is bound
38a81da2 7282 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7283 */
7284struct perf_event *
7285perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7286 struct task_struct *task,
4dc0da86
AK
7287 perf_overflow_handler_t overflow_handler,
7288 void *context)
fb0459d7 7289{
fb0459d7 7290 struct perf_event_context *ctx;
c3f00c70 7291 struct perf_event *event;
fb0459d7 7292 int err;
d859e29f 7293
fb0459d7
AV
7294 /*
7295 * Get the target context (task or percpu):
7296 */
d859e29f 7297
4dc0da86
AK
7298 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7299 overflow_handler, context);
c3f00c70
PZ
7300 if (IS_ERR(event)) {
7301 err = PTR_ERR(event);
7302 goto err;
7303 }
d859e29f 7304
766d6c07
FW
7305 account_event(event);
7306
38a81da2 7307 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7308 if (IS_ERR(ctx)) {
7309 err = PTR_ERR(ctx);
c3f00c70 7310 goto err_free;
d859e29f 7311 }
fb0459d7 7312
fb0459d7
AV
7313 WARN_ON_ONCE(ctx->parent_ctx);
7314 mutex_lock(&ctx->mutex);
7315 perf_install_in_context(ctx, event, cpu);
fe4b04fa 7316 perf_unpin_context(ctx);
fb0459d7
AV
7317 mutex_unlock(&ctx->mutex);
7318
fb0459d7
AV
7319 return event;
7320
c3f00c70
PZ
7321err_free:
7322 free_event(event);
7323err:
c6567f64 7324 return ERR_PTR(err);
9b51f66d 7325}
fb0459d7 7326EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7327
0cda4c02
YZ
7328void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7329{
7330 struct perf_event_context *src_ctx;
7331 struct perf_event_context *dst_ctx;
7332 struct perf_event *event, *tmp;
7333 LIST_HEAD(events);
7334
7335 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7336 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7337
7338 mutex_lock(&src_ctx->mutex);
7339 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7340 event_entry) {
46ce0fe9 7341 perf_remove_from_context(event, false);
9a545de0 7342 unaccount_event_cpu(event, src_cpu);
0cda4c02 7343 put_ctx(src_ctx);
9886167d 7344 list_add(&event->migrate_entry, &events);
0cda4c02
YZ
7345 }
7346 mutex_unlock(&src_ctx->mutex);
7347
7348 synchronize_rcu();
7349
7350 mutex_lock(&dst_ctx->mutex);
9886167d
PZ
7351 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7352 list_del(&event->migrate_entry);
0cda4c02
YZ
7353 if (event->state >= PERF_EVENT_STATE_OFF)
7354 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 7355 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
7356 perf_install_in_context(dst_ctx, event, dst_cpu);
7357 get_ctx(dst_ctx);
7358 }
7359 mutex_unlock(&dst_ctx->mutex);
7360}
7361EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7362
cdd6c482 7363static void sync_child_event(struct perf_event *child_event,
38b200d6 7364 struct task_struct *child)
d859e29f 7365{
cdd6c482 7366 struct perf_event *parent_event = child_event->parent;
8bc20959 7367 u64 child_val;
d859e29f 7368
cdd6c482
IM
7369 if (child_event->attr.inherit_stat)
7370 perf_event_read_event(child_event, child);
38b200d6 7371
b5e58793 7372 child_val = perf_event_count(child_event);
d859e29f
PM
7373
7374 /*
7375 * Add back the child's count to the parent's count:
7376 */
a6e6dea6 7377 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7378 atomic64_add(child_event->total_time_enabled,
7379 &parent_event->child_total_time_enabled);
7380 atomic64_add(child_event->total_time_running,
7381 &parent_event->child_total_time_running);
d859e29f
PM
7382
7383 /*
cdd6c482 7384 * Remove this event from the parent's list
d859e29f 7385 */
cdd6c482
IM
7386 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7387 mutex_lock(&parent_event->child_mutex);
7388 list_del_init(&child_event->child_list);
7389 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
7390
7391 /*
cdd6c482 7392 * Release the parent event, if this was the last
d859e29f
PM
7393 * reference to it.
7394 */
a6fa941d 7395 put_event(parent_event);
d859e29f
PM
7396}
7397
9b51f66d 7398static void
cdd6c482
IM
7399__perf_event_exit_task(struct perf_event *child_event,
7400 struct perf_event_context *child_ctx,
38b200d6 7401 struct task_struct *child)
9b51f66d 7402{
15a2d4de 7403 perf_remove_from_context(child_event, true);
0cc0c027 7404
9b51f66d 7405 /*
38b435b1 7406 * It can happen that the parent exits first, and has events
9b51f66d 7407 * that are still around due to the child reference. These
38b435b1 7408 * events need to be zapped.
9b51f66d 7409 */
38b435b1 7410 if (child_event->parent) {
cdd6c482
IM
7411 sync_child_event(child_event, child);
7412 free_event(child_event);
4bcf349a 7413 }
9b51f66d
IM
7414}
7415
8dc85d54 7416static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7417{
cdd6c482
IM
7418 struct perf_event *child_event, *tmp;
7419 struct perf_event_context *child_ctx;
a63eaf34 7420 unsigned long flags;
9b51f66d 7421
8dc85d54 7422 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7423 perf_event_task(child, NULL, 0);
9b51f66d 7424 return;
9f498cc5 7425 }
9b51f66d 7426
a63eaf34 7427 local_irq_save(flags);
ad3a37de
PM
7428 /*
7429 * We can't reschedule here because interrupts are disabled,
7430 * and either child is current or it is a task that can't be
7431 * scheduled, so we are now safe from rescheduling changing
7432 * our context.
7433 */
806839b2 7434 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7435
7436 /*
7437 * Take the context lock here so that if find_get_context is
cdd6c482 7438 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7439 * incremented the context's refcount before we do put_ctx below.
7440 */
e625cce1 7441 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7442 task_ctx_sched_out(child_ctx);
8dc85d54 7443 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
7444 /*
7445 * If this context is a clone; unclone it so it can't get
7446 * swapped to another process while we're removing all
cdd6c482 7447 * the events from it.
71a851b4
PZ
7448 */
7449 unclone_ctx(child_ctx);
5e942bb3 7450 update_context_time(child_ctx);
e625cce1 7451 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
7452
7453 /*
cdd6c482
IM
7454 * Report the task dead after unscheduling the events so that we
7455 * won't get any samples after PERF_RECORD_EXIT. We can however still
7456 * get a few PERF_RECORD_READ events.
9f498cc5 7457 */
cdd6c482 7458 perf_event_task(child, child_ctx, 0);
a63eaf34 7459
66fff224
PZ
7460 /*
7461 * We can recurse on the same lock type through:
7462 *
cdd6c482
IM
7463 * __perf_event_exit_task()
7464 * sync_child_event()
a6fa941d
AV
7465 * put_event()
7466 * mutex_lock(&ctx->mutex)
66fff224
PZ
7467 *
7468 * But since its the parent context it won't be the same instance.
7469 */
a0507c84 7470 mutex_lock(&child_ctx->mutex);
a63eaf34 7471
8bc20959 7472again:
889ff015
FW
7473 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7474 group_entry)
7475 __perf_event_exit_task(child_event, child_ctx, child);
7476
7477 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 7478 group_entry)
cdd6c482 7479 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
7480
7481 /*
cdd6c482 7482 * If the last event was a group event, it will have appended all
8bc20959
PZ
7483 * its siblings to the list, but we obtained 'tmp' before that which
7484 * will still point to the list head terminating the iteration.
7485 */
889ff015
FW
7486 if (!list_empty(&child_ctx->pinned_groups) ||
7487 !list_empty(&child_ctx->flexible_groups))
8bc20959 7488 goto again;
a63eaf34
PM
7489
7490 mutex_unlock(&child_ctx->mutex);
7491
7492 put_ctx(child_ctx);
9b51f66d
IM
7493}
7494
8dc85d54
PZ
7495/*
7496 * When a child task exits, feed back event values to parent events.
7497 */
7498void perf_event_exit_task(struct task_struct *child)
7499{
8882135b 7500 struct perf_event *event, *tmp;
8dc85d54
PZ
7501 int ctxn;
7502
8882135b
PZ
7503 mutex_lock(&child->perf_event_mutex);
7504 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7505 owner_entry) {
7506 list_del_init(&event->owner_entry);
7507
7508 /*
7509 * Ensure the list deletion is visible before we clear
7510 * the owner, closes a race against perf_release() where
7511 * we need to serialize on the owner->perf_event_mutex.
7512 */
7513 smp_wmb();
7514 event->owner = NULL;
7515 }
7516 mutex_unlock(&child->perf_event_mutex);
7517
8dc85d54
PZ
7518 for_each_task_context_nr(ctxn)
7519 perf_event_exit_task_context(child, ctxn);
7520}
7521
889ff015
FW
7522static void perf_free_event(struct perf_event *event,
7523 struct perf_event_context *ctx)
7524{
7525 struct perf_event *parent = event->parent;
7526
7527 if (WARN_ON_ONCE(!parent))
7528 return;
7529
7530 mutex_lock(&parent->child_mutex);
7531 list_del_init(&event->child_list);
7532 mutex_unlock(&parent->child_mutex);
7533
a6fa941d 7534 put_event(parent);
889ff015 7535
8a49542c 7536 perf_group_detach(event);
889ff015
FW
7537 list_del_event(event, ctx);
7538 free_event(event);
7539}
7540
bbbee908
PZ
7541/*
7542 * free an unexposed, unused context as created by inheritance by
8dc85d54 7543 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7544 */
cdd6c482 7545void perf_event_free_task(struct task_struct *task)
bbbee908 7546{
8dc85d54 7547 struct perf_event_context *ctx;
cdd6c482 7548 struct perf_event *event, *tmp;
8dc85d54 7549 int ctxn;
bbbee908 7550
8dc85d54
PZ
7551 for_each_task_context_nr(ctxn) {
7552 ctx = task->perf_event_ctxp[ctxn];
7553 if (!ctx)
7554 continue;
bbbee908 7555
8dc85d54 7556 mutex_lock(&ctx->mutex);
bbbee908 7557again:
8dc85d54
PZ
7558 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7559 group_entry)
7560 perf_free_event(event, ctx);
bbbee908 7561
8dc85d54
PZ
7562 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7563 group_entry)
7564 perf_free_event(event, ctx);
bbbee908 7565
8dc85d54
PZ
7566 if (!list_empty(&ctx->pinned_groups) ||
7567 !list_empty(&ctx->flexible_groups))
7568 goto again;
bbbee908 7569
8dc85d54 7570 mutex_unlock(&ctx->mutex);
bbbee908 7571
8dc85d54
PZ
7572 put_ctx(ctx);
7573 }
889ff015
FW
7574}
7575
4e231c79
PZ
7576void perf_event_delayed_put(struct task_struct *task)
7577{
7578 int ctxn;
7579
7580 for_each_task_context_nr(ctxn)
7581 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7582}
7583
97dee4f3
PZ
7584/*
7585 * inherit a event from parent task to child task:
7586 */
7587static struct perf_event *
7588inherit_event(struct perf_event *parent_event,
7589 struct task_struct *parent,
7590 struct perf_event_context *parent_ctx,
7591 struct task_struct *child,
7592 struct perf_event *group_leader,
7593 struct perf_event_context *child_ctx)
7594{
7595 struct perf_event *child_event;
cee010ec 7596 unsigned long flags;
97dee4f3
PZ
7597
7598 /*
7599 * Instead of creating recursive hierarchies of events,
7600 * we link inherited events back to the original parent,
7601 * which has a filp for sure, which we use as the reference
7602 * count:
7603 */
7604 if (parent_event->parent)
7605 parent_event = parent_event->parent;
7606
7607 child_event = perf_event_alloc(&parent_event->attr,
7608 parent_event->cpu,
d580ff86 7609 child,
97dee4f3 7610 group_leader, parent_event,
4dc0da86 7611 NULL, NULL);
97dee4f3
PZ
7612 if (IS_ERR(child_event))
7613 return child_event;
a6fa941d
AV
7614
7615 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7616 free_event(child_event);
7617 return NULL;
7618 }
7619
97dee4f3
PZ
7620 get_ctx(child_ctx);
7621
7622 /*
7623 * Make the child state follow the state of the parent event,
7624 * not its attr.disabled bit. We hold the parent's mutex,
7625 * so we won't race with perf_event_{en, dis}able_family.
7626 */
7627 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7628 child_event->state = PERF_EVENT_STATE_INACTIVE;
7629 else
7630 child_event->state = PERF_EVENT_STATE_OFF;
7631
7632 if (parent_event->attr.freq) {
7633 u64 sample_period = parent_event->hw.sample_period;
7634 struct hw_perf_event *hwc = &child_event->hw;
7635
7636 hwc->sample_period = sample_period;
7637 hwc->last_period = sample_period;
7638
7639 local64_set(&hwc->period_left, sample_period);
7640 }
7641
7642 child_event->ctx = child_ctx;
7643 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7644 child_event->overflow_handler_context
7645 = parent_event->overflow_handler_context;
97dee4f3 7646
614b6780
TG
7647 /*
7648 * Precalculate sample_data sizes
7649 */
7650 perf_event__header_size(child_event);
6844c09d 7651 perf_event__id_header_size(child_event);
614b6780 7652
97dee4f3
PZ
7653 /*
7654 * Link it up in the child's context:
7655 */
cee010ec 7656 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7657 add_event_to_ctx(child_event, child_ctx);
cee010ec 7658 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7659
97dee4f3
PZ
7660 /*
7661 * Link this into the parent event's child list
7662 */
7663 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7664 mutex_lock(&parent_event->child_mutex);
7665 list_add_tail(&child_event->child_list, &parent_event->child_list);
7666 mutex_unlock(&parent_event->child_mutex);
7667
7668 return child_event;
7669}
7670
7671static int inherit_group(struct perf_event *parent_event,
7672 struct task_struct *parent,
7673 struct perf_event_context *parent_ctx,
7674 struct task_struct *child,
7675 struct perf_event_context *child_ctx)
7676{
7677 struct perf_event *leader;
7678 struct perf_event *sub;
7679 struct perf_event *child_ctr;
7680
7681 leader = inherit_event(parent_event, parent, parent_ctx,
7682 child, NULL, child_ctx);
7683 if (IS_ERR(leader))
7684 return PTR_ERR(leader);
7685 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7686 child_ctr = inherit_event(sub, parent, parent_ctx,
7687 child, leader, child_ctx);
7688 if (IS_ERR(child_ctr))
7689 return PTR_ERR(child_ctr);
7690 }
7691 return 0;
889ff015
FW
7692}
7693
7694static int
7695inherit_task_group(struct perf_event *event, struct task_struct *parent,
7696 struct perf_event_context *parent_ctx,
8dc85d54 7697 struct task_struct *child, int ctxn,
889ff015
FW
7698 int *inherited_all)
7699{
7700 int ret;
8dc85d54 7701 struct perf_event_context *child_ctx;
889ff015
FW
7702
7703 if (!event->attr.inherit) {
7704 *inherited_all = 0;
7705 return 0;
bbbee908
PZ
7706 }
7707
fe4b04fa 7708 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7709 if (!child_ctx) {
7710 /*
7711 * This is executed from the parent task context, so
7712 * inherit events that have been marked for cloning.
7713 * First allocate and initialize a context for the
7714 * child.
7715 */
bbbee908 7716
734df5ab 7717 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
7718 if (!child_ctx)
7719 return -ENOMEM;
bbbee908 7720
8dc85d54 7721 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7722 }
7723
7724 ret = inherit_group(event, parent, parent_ctx,
7725 child, child_ctx);
7726
7727 if (ret)
7728 *inherited_all = 0;
7729
7730 return ret;
bbbee908
PZ
7731}
7732
9b51f66d 7733/*
cdd6c482 7734 * Initialize the perf_event context in task_struct
9b51f66d 7735 */
8dc85d54 7736int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7737{
889ff015 7738 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7739 struct perf_event_context *cloned_ctx;
7740 struct perf_event *event;
9b51f66d 7741 struct task_struct *parent = current;
564c2b21 7742 int inherited_all = 1;
dddd3379 7743 unsigned long flags;
6ab423e0 7744 int ret = 0;
9b51f66d 7745
8dc85d54 7746 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7747 return 0;
7748
ad3a37de 7749 /*
25346b93
PM
7750 * If the parent's context is a clone, pin it so it won't get
7751 * swapped under us.
ad3a37de 7752 */
8dc85d54 7753 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
7754 if (!parent_ctx)
7755 return 0;
25346b93 7756
ad3a37de
PM
7757 /*
7758 * No need to check if parent_ctx != NULL here; since we saw
7759 * it non-NULL earlier, the only reason for it to become NULL
7760 * is if we exit, and since we're currently in the middle of
7761 * a fork we can't be exiting at the same time.
7762 */
ad3a37de 7763
9b51f66d
IM
7764 /*
7765 * Lock the parent list. No need to lock the child - not PID
7766 * hashed yet and not running, so nobody can access it.
7767 */
d859e29f 7768 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7769
7770 /*
7771 * We dont have to disable NMIs - we are only looking at
7772 * the list, not manipulating it:
7773 */
889ff015 7774 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7775 ret = inherit_task_group(event, parent, parent_ctx,
7776 child, ctxn, &inherited_all);
889ff015
FW
7777 if (ret)
7778 break;
7779 }
b93f7978 7780
dddd3379
TG
7781 /*
7782 * We can't hold ctx->lock when iterating the ->flexible_group list due
7783 * to allocations, but we need to prevent rotation because
7784 * rotate_ctx() will change the list from interrupt context.
7785 */
7786 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7787 parent_ctx->rotate_disable = 1;
7788 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7789
889ff015 7790 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7791 ret = inherit_task_group(event, parent, parent_ctx,
7792 child, ctxn, &inherited_all);
889ff015 7793 if (ret)
9b51f66d 7794 break;
564c2b21
PM
7795 }
7796
dddd3379
TG
7797 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7798 parent_ctx->rotate_disable = 0;
dddd3379 7799
8dc85d54 7800 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7801
05cbaa28 7802 if (child_ctx && inherited_all) {
564c2b21
PM
7803 /*
7804 * Mark the child context as a clone of the parent
7805 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7806 *
7807 * Note that if the parent is a clone, the holding of
7808 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7809 */
c5ed5145 7810 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7811 if (cloned_ctx) {
7812 child_ctx->parent_ctx = cloned_ctx;
25346b93 7813 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7814 } else {
7815 child_ctx->parent_ctx = parent_ctx;
7816 child_ctx->parent_gen = parent_ctx->generation;
7817 }
7818 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7819 }
7820
c5ed5145 7821 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7822 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7823
25346b93 7824 perf_unpin_context(parent_ctx);
fe4b04fa 7825 put_ctx(parent_ctx);
ad3a37de 7826
6ab423e0 7827 return ret;
9b51f66d
IM
7828}
7829
8dc85d54
PZ
7830/*
7831 * Initialize the perf_event context in task_struct
7832 */
7833int perf_event_init_task(struct task_struct *child)
7834{
7835 int ctxn, ret;
7836
8550d7cb
ON
7837 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7838 mutex_init(&child->perf_event_mutex);
7839 INIT_LIST_HEAD(&child->perf_event_list);
7840
8dc85d54
PZ
7841 for_each_task_context_nr(ctxn) {
7842 ret = perf_event_init_context(child, ctxn);
7843 if (ret)
7844 return ret;
7845 }
7846
7847 return 0;
7848}
7849
220b140b
PM
7850static void __init perf_event_init_all_cpus(void)
7851{
b28ab83c 7852 struct swevent_htable *swhash;
220b140b 7853 int cpu;
220b140b
PM
7854
7855 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7856 swhash = &per_cpu(swevent_htable, cpu);
7857 mutex_init(&swhash->hlist_mutex);
e9d2b064 7858 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7859 }
7860}
7861
0db0628d 7862static void perf_event_init_cpu(int cpu)
0793a61d 7863{
108b02cf 7864 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7865
b28ab83c 7866 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7867 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7868 struct swevent_hlist *hlist;
7869
b28ab83c
PZ
7870 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7871 WARN_ON(!hlist);
7872 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7873 }
b28ab83c 7874 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7875}
7876
c277443c 7877#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7878static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7879{
e9d2b064
PZ
7880 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7881
7882 WARN_ON(!irqs_disabled());
7883
7884 list_del_init(&cpuctx->rotation_list);
7885}
7886
108b02cf 7887static void __perf_event_exit_context(void *__info)
0793a61d 7888{
46ce0fe9 7889 struct remove_event re = { .detach_group = false };
108b02cf 7890 struct perf_event_context *ctx = __info;
0793a61d 7891
108b02cf 7892 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7893
e3703f8c 7894 rcu_read_lock();
46ce0fe9
PZ
7895 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
7896 __perf_remove_from_context(&re);
e3703f8c 7897 rcu_read_unlock();
0793a61d 7898}
108b02cf
PZ
7899
7900static void perf_event_exit_cpu_context(int cpu)
7901{
7902 struct perf_event_context *ctx;
7903 struct pmu *pmu;
7904 int idx;
7905
7906 idx = srcu_read_lock(&pmus_srcu);
7907 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7908 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7909
7910 mutex_lock(&ctx->mutex);
7911 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7912 mutex_unlock(&ctx->mutex);
7913 }
7914 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7915}
7916
cdd6c482 7917static void perf_event_exit_cpu(int cpu)
0793a61d 7918{
b28ab83c 7919 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7920
e3703f8c
PZ
7921 perf_event_exit_cpu_context(cpu);
7922
b28ab83c
PZ
7923 mutex_lock(&swhash->hlist_mutex);
7924 swevent_hlist_release(swhash);
7925 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7926}
7927#else
cdd6c482 7928static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7929#endif
7930
c277443c
PZ
7931static int
7932perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7933{
7934 int cpu;
7935
7936 for_each_online_cpu(cpu)
7937 perf_event_exit_cpu(cpu);
7938
7939 return NOTIFY_OK;
7940}
7941
7942/*
7943 * Run the perf reboot notifier at the very last possible moment so that
7944 * the generic watchdog code runs as long as possible.
7945 */
7946static struct notifier_block perf_reboot_notifier = {
7947 .notifier_call = perf_reboot,
7948 .priority = INT_MIN,
7949};
7950
0db0628d 7951static int
0793a61d
TG
7952perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7953{
7954 unsigned int cpu = (long)hcpu;
7955
4536e4d1 7956 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7957
7958 case CPU_UP_PREPARE:
5e11637e 7959 case CPU_DOWN_FAILED:
cdd6c482 7960 perf_event_init_cpu(cpu);
0793a61d
TG
7961 break;
7962
5e11637e 7963 case CPU_UP_CANCELED:
0793a61d 7964 case CPU_DOWN_PREPARE:
cdd6c482 7965 perf_event_exit_cpu(cpu);
0793a61d 7966 break;
0793a61d
TG
7967 default:
7968 break;
7969 }
7970
7971 return NOTIFY_OK;
7972}
7973
cdd6c482 7974void __init perf_event_init(void)
0793a61d 7975{
3c502e7a
JW
7976 int ret;
7977
2e80a82a
PZ
7978 idr_init(&pmu_idr);
7979
220b140b 7980 perf_event_init_all_cpus();
b0a873eb 7981 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7982 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7983 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7984 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7985 perf_tp_register();
7986 perf_cpu_notifier(perf_cpu_notify);
c277443c 7987 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7988
7989 ret = init_hw_breakpoint();
7990 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7991
7992 /* do not patch jump label more than once per second */
7993 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7994
7995 /*
7996 * Build time assertion that we keep the data_head at the intended
7997 * location. IOW, validation we got the __reserved[] size right.
7998 */
7999 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
8000 != 1024);
0793a61d 8001}
abe43400
PZ
8002
8003static int __init perf_event_sysfs_init(void)
8004{
8005 struct pmu *pmu;
8006 int ret;
8007
8008 mutex_lock(&pmus_lock);
8009
8010 ret = bus_register(&pmu_bus);
8011 if (ret)
8012 goto unlock;
8013
8014 list_for_each_entry(pmu, &pmus, entry) {
8015 if (!pmu->name || pmu->type < 0)
8016 continue;
8017
8018 ret = pmu_dev_alloc(pmu);
8019 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
8020 }
8021 pmu_bus_running = 1;
8022 ret = 0;
8023
8024unlock:
8025 mutex_unlock(&pmus_lock);
8026
8027 return ret;
8028}
8029device_initcall(perf_event_sysfs_init);
e5d1367f
SE
8030
8031#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
8032static struct cgroup_subsys_state *
8033perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
8034{
8035 struct perf_cgroup *jc;
e5d1367f 8036
1b15d055 8037 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
8038 if (!jc)
8039 return ERR_PTR(-ENOMEM);
8040
e5d1367f
SE
8041 jc->info = alloc_percpu(struct perf_cgroup_info);
8042 if (!jc->info) {
8043 kfree(jc);
8044 return ERR_PTR(-ENOMEM);
8045 }
8046
e5d1367f
SE
8047 return &jc->css;
8048}
8049
eb95419b 8050static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 8051{
eb95419b
TH
8052 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
8053
e5d1367f
SE
8054 free_percpu(jc->info);
8055 kfree(jc);
8056}
8057
8058static int __perf_cgroup_move(void *info)
8059{
8060 struct task_struct *task = info;
8061 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8062 return 0;
8063}
8064
eb95419b
TH
8065static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8066 struct cgroup_taskset *tset)
e5d1367f 8067{
bb9d97b6
TH
8068 struct task_struct *task;
8069
924f0d9a 8070 cgroup_taskset_for_each(task, tset)
bb9d97b6 8071 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8072}
8073
eb95419b
TH
8074static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8075 struct cgroup_subsys_state *old_css,
761b3ef5 8076 struct task_struct *task)
e5d1367f
SE
8077{
8078 /*
8079 * cgroup_exit() is called in the copy_process() failure path.
8080 * Ignore this case since the task hasn't ran yet, this avoids
8081 * trying to poke a half freed task state from generic code.
8082 */
8083 if (!(task->flags & PF_EXITING))
8084 return;
8085
bb9d97b6 8086 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
8087}
8088
073219e9 8089struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
8090 .css_alloc = perf_cgroup_css_alloc,
8091 .css_free = perf_cgroup_css_free,
e7e7ee2e 8092 .exit = perf_cgroup_exit,
bb9d97b6 8093 .attach = perf_cgroup_attach,
e5d1367f
SE
8094};
8095#endif /* CONFIG_CGROUP_PERF */