perf: Do not double free
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
272325c4
PZ
52typedef int (*remote_function_f)(void *);
53
fe4b04fa 54struct remote_function_call {
e7e7ee2e 55 struct task_struct *p;
272325c4 56 remote_function_f func;
e7e7ee2e
IM
57 void *info;
58 int ret;
fe4b04fa
PZ
59};
60
61static void remote_function(void *data)
62{
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
67 tfc->ret = -EAGAIN;
68 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
69 return;
70 }
71
72 tfc->ret = tfc->func(tfc->info);
73}
74
75/**
76 * task_function_call - call a function on the cpu on which a task runs
77 * @p: the task to evaluate
78 * @func: the function to be called
79 * @info: the function call argument
80 *
81 * Calls the function @func when the task is currently running. This might
82 * be on the current CPU, which just calls the function directly
83 *
84 * returns: @func return value, or
85 * -ESRCH - when the process isn't running
86 * -EAGAIN - when the process moved away
87 */
88static int
272325c4 89task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
90{
91 struct remote_function_call data = {
e7e7ee2e
IM
92 .p = p,
93 .func = func,
94 .info = info,
95 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
96 };
97
98 if (task_curr(p))
99 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
100
101 return data.ret;
102}
103
104/**
105 * cpu_function_call - call a function on the cpu
106 * @func: the function to be called
107 * @info: the function call argument
108 *
109 * Calls the function @func on the remote cpu.
110 *
111 * returns: @func return value or -ENXIO when the cpu is offline
112 */
272325c4 113static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
114{
115 struct remote_function_call data = {
e7e7ee2e
IM
116 .p = NULL,
117 .func = func,
118 .info = info,
119 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
120 };
121
122 smp_call_function_single(cpu, remote_function, &data, 1);
123
124 return data.ret;
125}
126
fae3fde6
PZ
127static inline struct perf_cpu_context *
128__get_cpu_context(struct perf_event_context *ctx)
129{
130 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
131}
132
133static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
134 struct perf_event_context *ctx)
0017960f 135{
fae3fde6
PZ
136 raw_spin_lock(&cpuctx->ctx.lock);
137 if (ctx)
138 raw_spin_lock(&ctx->lock);
139}
140
141static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
142 struct perf_event_context *ctx)
143{
144 if (ctx)
145 raw_spin_unlock(&ctx->lock);
146 raw_spin_unlock(&cpuctx->ctx.lock);
147}
148
63b6da39
PZ
149#define TASK_TOMBSTONE ((void *)-1L)
150
151static bool is_kernel_event(struct perf_event *event)
152{
f47c02c0 153 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
154}
155
39a43640
PZ
156/*
157 * On task ctx scheduling...
158 *
159 * When !ctx->nr_events a task context will not be scheduled. This means
160 * we can disable the scheduler hooks (for performance) without leaving
161 * pending task ctx state.
162 *
163 * This however results in two special cases:
164 *
165 * - removing the last event from a task ctx; this is relatively straight
166 * forward and is done in __perf_remove_from_context.
167 *
168 * - adding the first event to a task ctx; this is tricky because we cannot
169 * rely on ctx->is_active and therefore cannot use event_function_call().
170 * See perf_install_in_context().
171 *
172 * This is because we need a ctx->lock serialized variable (ctx->is_active)
173 * to reliably determine if a particular task/context is scheduled in. The
174 * task_curr() use in task_function_call() is racy in that a remote context
175 * switch is not a single atomic operation.
176 *
177 * As is, the situation is 'safe' because we set rq->curr before we do the
178 * actual context switch. This means that task_curr() will fail early, but
179 * we'll continue spinning on ctx->is_active until we've passed
180 * perf_event_task_sched_out().
181 *
182 * Without this ctx->lock serialized variable we could have race where we find
183 * the task (and hence the context) would not be active while in fact they are.
184 *
185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186 */
187
fae3fde6
PZ
188typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 struct perf_event_context *, void *);
190
191struct event_function_struct {
192 struct perf_event *event;
193 event_f func;
194 void *data;
195};
196
197static int event_function(void *info)
198{
199 struct event_function_struct *efs = info;
200 struct perf_event *event = efs->event;
0017960f 201 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 204 int ret = 0;
fae3fde6
PZ
205
206 WARN_ON_ONCE(!irqs_disabled());
207
63b6da39 208 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
209 /*
210 * Since we do the IPI call without holding ctx->lock things can have
211 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
212 */
213 if (ctx->task) {
63b6da39
PZ
214 if (ctx->task != current) {
215 ret = -EAGAIN;
216 goto unlock;
217 }
fae3fde6 218
fae3fde6
PZ
219 /*
220 * We only use event_function_call() on established contexts,
221 * and event_function() is only ever called when active (or
222 * rather, we'll have bailed in task_function_call() or the
223 * above ctx->task != current test), therefore we must have
224 * ctx->is_active here.
225 */
226 WARN_ON_ONCE(!ctx->is_active);
227 /*
228 * And since we have ctx->is_active, cpuctx->task_ctx must
229 * match.
230 */
63b6da39
PZ
231 WARN_ON_ONCE(task_ctx != ctx);
232 } else {
233 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 234 }
63b6da39 235
fae3fde6 236 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 237unlock:
fae3fde6
PZ
238 perf_ctx_unlock(cpuctx, task_ctx);
239
63b6da39 240 return ret;
fae3fde6
PZ
241}
242
243static void event_function_local(struct perf_event *event, event_f func, void *data)
244{
245 struct event_function_struct efs = {
246 .event = event,
247 .func = func,
248 .data = data,
249 };
250
251 int ret = event_function(&efs);
252 WARN_ON_ONCE(ret);
253}
254
255static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
256{
257 struct perf_event_context *ctx = event->ctx;
63b6da39 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
259 struct event_function_struct efs = {
260 .event = event,
261 .func = func,
262 .data = data,
263 };
0017960f 264
c97f4736
PZ
265 if (!event->parent) {
266 /*
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
270 */
271 lockdep_assert_held(&ctx->mutex);
272 }
0017960f
PZ
273
274 if (!task) {
fae3fde6 275 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
276 return;
277 }
278
279again:
63b6da39
PZ
280 if (task == TASK_TOMBSTONE)
281 return;
282
fae3fde6 283 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
284 return;
285
286 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
287 /*
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
290 */
291 task = ctx->task;
292 if (task != TASK_TOMBSTONE) {
293 if (ctx->is_active) {
294 raw_spin_unlock_irq(&ctx->lock);
295 goto again;
296 }
297 func(event, NULL, ctx, data);
0017960f 298 }
0017960f
PZ
299 raw_spin_unlock_irq(&ctx->lock);
300}
301
e5d1367f
SE
302#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
303 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
304 PERF_FLAG_PID_CGROUP |\
305 PERF_FLAG_FD_CLOEXEC)
e5d1367f 306
bce38cd5
SE
307/*
308 * branch priv levels that need permission checks
309 */
310#define PERF_SAMPLE_BRANCH_PERM_PLM \
311 (PERF_SAMPLE_BRANCH_KERNEL |\
312 PERF_SAMPLE_BRANCH_HV)
313
0b3fcf17
SE
314enum event_type_t {
315 EVENT_FLEXIBLE = 0x1,
316 EVENT_PINNED = 0x2,
317 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
318};
319
e5d1367f
SE
320/*
321 * perf_sched_events : >0 events exist
322 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
323 */
c5905afb 324struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 325static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 326static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 327
cdd6c482
IM
328static atomic_t nr_mmap_events __read_mostly;
329static atomic_t nr_comm_events __read_mostly;
330static atomic_t nr_task_events __read_mostly;
948b26b6 331static atomic_t nr_freq_events __read_mostly;
45ac1403 332static atomic_t nr_switch_events __read_mostly;
9ee318a7 333
108b02cf
PZ
334static LIST_HEAD(pmus);
335static DEFINE_MUTEX(pmus_lock);
336static struct srcu_struct pmus_srcu;
337
0764771d 338/*
cdd6c482 339 * perf event paranoia level:
0fbdea19
IM
340 * -1 - not paranoid at all
341 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 342 * 1 - disallow cpu events for unpriv
0fbdea19 343 * 2 - disallow kernel profiling for unpriv
0764771d 344 */
cdd6c482 345int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 346
20443384
FW
347/* Minimum for 512 kiB + 1 user control page */
348int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
349
350/*
cdd6c482 351 * max perf event sample rate
df58ab24 352 */
14c63f17
DH
353#define DEFAULT_MAX_SAMPLE_RATE 100000
354#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
355#define DEFAULT_CPU_TIME_MAX_PERCENT 25
356
357int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
358
359static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
360static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
361
d9494cb4
PZ
362static int perf_sample_allowed_ns __read_mostly =
363 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 364
18ab2cd3 365static void update_perf_cpu_limits(void)
14c63f17
DH
366{
367 u64 tmp = perf_sample_period_ns;
368
369 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 370 do_div(tmp, 100);
d9494cb4 371 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 372}
163ec435 373
9e630205
SE
374static int perf_rotate_context(struct perf_cpu_context *cpuctx);
375
163ec435
PZ
376int perf_proc_update_handler(struct ctl_table *table, int write,
377 void __user *buffer, size_t *lenp,
378 loff_t *ppos)
379{
723478c8 380 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
381
382 if (ret || !write)
383 return ret;
384
385 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
386 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
387 update_perf_cpu_limits();
388
389 return 0;
390}
391
392int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
393
394int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
395 void __user *buffer, size_t *lenp,
396 loff_t *ppos)
397{
398 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
399
400 if (ret || !write)
401 return ret;
402
403 update_perf_cpu_limits();
163ec435
PZ
404
405 return 0;
406}
1ccd1549 407
14c63f17
DH
408/*
409 * perf samples are done in some very critical code paths (NMIs).
410 * If they take too much CPU time, the system can lock up and not
411 * get any real work done. This will drop the sample rate when
412 * we detect that events are taking too long.
413 */
414#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 415static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 416
6a02ad66 417static void perf_duration_warn(struct irq_work *w)
14c63f17 418{
6a02ad66 419 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 420 u64 avg_local_sample_len;
e5302920 421 u64 local_samples_len;
6a02ad66 422
4a32fea9 423 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
424 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
425
426 printk_ratelimited(KERN_WARNING
427 "perf interrupt took too long (%lld > %lld), lowering "
428 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 429 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
430 sysctl_perf_event_sample_rate);
431}
432
433static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
434
435void perf_sample_event_took(u64 sample_len_ns)
436{
d9494cb4 437 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
438 u64 avg_local_sample_len;
439 u64 local_samples_len;
14c63f17 440
d9494cb4 441 if (allowed_ns == 0)
14c63f17
DH
442 return;
443
444 /* decay the counter by 1 average sample */
4a32fea9 445 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
446 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
447 local_samples_len += sample_len_ns;
4a32fea9 448 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
449
450 /*
451 * note: this will be biased artifically low until we have
452 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
453 * from having to maintain a count.
454 */
455 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
456
d9494cb4 457 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
458 return;
459
460 if (max_samples_per_tick <= 1)
461 return;
462
463 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
464 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
465 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
466
14c63f17 467 update_perf_cpu_limits();
6a02ad66 468
cd578abb
PZ
469 if (!irq_work_queue(&perf_duration_work)) {
470 early_printk("perf interrupt took too long (%lld > %lld), lowering "
471 "kernel.perf_event_max_sample_rate to %d\n",
472 avg_local_sample_len, allowed_ns >> 1,
473 sysctl_perf_event_sample_rate);
474 }
14c63f17
DH
475}
476
cdd6c482 477static atomic64_t perf_event_id;
a96bbc16 478
0b3fcf17
SE
479static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
480 enum event_type_t event_type);
481
482static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
483 enum event_type_t event_type,
484 struct task_struct *task);
485
486static void update_context_time(struct perf_event_context *ctx);
487static u64 perf_event_time(struct perf_event *event);
0b3fcf17 488
cdd6c482 489void __weak perf_event_print_debug(void) { }
0793a61d 490
84c79910 491extern __weak const char *perf_pmu_name(void)
0793a61d 492{
84c79910 493 return "pmu";
0793a61d
TG
494}
495
0b3fcf17
SE
496static inline u64 perf_clock(void)
497{
498 return local_clock();
499}
500
34f43927
PZ
501static inline u64 perf_event_clock(struct perf_event *event)
502{
503 return event->clock();
504}
505
e5d1367f
SE
506#ifdef CONFIG_CGROUP_PERF
507
e5d1367f
SE
508static inline bool
509perf_cgroup_match(struct perf_event *event)
510{
511 struct perf_event_context *ctx = event->ctx;
512 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
513
ef824fa1
TH
514 /* @event doesn't care about cgroup */
515 if (!event->cgrp)
516 return true;
517
518 /* wants specific cgroup scope but @cpuctx isn't associated with any */
519 if (!cpuctx->cgrp)
520 return false;
521
522 /*
523 * Cgroup scoping is recursive. An event enabled for a cgroup is
524 * also enabled for all its descendant cgroups. If @cpuctx's
525 * cgroup is a descendant of @event's (the test covers identity
526 * case), it's a match.
527 */
528 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
529 event->cgrp->css.cgroup);
e5d1367f
SE
530}
531
e5d1367f
SE
532static inline void perf_detach_cgroup(struct perf_event *event)
533{
4e2ba650 534 css_put(&event->cgrp->css);
e5d1367f
SE
535 event->cgrp = NULL;
536}
537
538static inline int is_cgroup_event(struct perf_event *event)
539{
540 return event->cgrp != NULL;
541}
542
543static inline u64 perf_cgroup_event_time(struct perf_event *event)
544{
545 struct perf_cgroup_info *t;
546
547 t = per_cpu_ptr(event->cgrp->info, event->cpu);
548 return t->time;
549}
550
551static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
552{
553 struct perf_cgroup_info *info;
554 u64 now;
555
556 now = perf_clock();
557
558 info = this_cpu_ptr(cgrp->info);
559
560 info->time += now - info->timestamp;
561 info->timestamp = now;
562}
563
564static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
565{
566 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
567 if (cgrp_out)
568 __update_cgrp_time(cgrp_out);
569}
570
571static inline void update_cgrp_time_from_event(struct perf_event *event)
572{
3f7cce3c
SE
573 struct perf_cgroup *cgrp;
574
e5d1367f 575 /*
3f7cce3c
SE
576 * ensure we access cgroup data only when needed and
577 * when we know the cgroup is pinned (css_get)
e5d1367f 578 */
3f7cce3c 579 if (!is_cgroup_event(event))
e5d1367f
SE
580 return;
581
614e4c4e 582 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
583 /*
584 * Do not update time when cgroup is not active
585 */
586 if (cgrp == event->cgrp)
587 __update_cgrp_time(event->cgrp);
e5d1367f
SE
588}
589
590static inline void
3f7cce3c
SE
591perf_cgroup_set_timestamp(struct task_struct *task,
592 struct perf_event_context *ctx)
e5d1367f
SE
593{
594 struct perf_cgroup *cgrp;
595 struct perf_cgroup_info *info;
596
3f7cce3c
SE
597 /*
598 * ctx->lock held by caller
599 * ensure we do not access cgroup data
600 * unless we have the cgroup pinned (css_get)
601 */
602 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
603 return;
604
614e4c4e 605 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 606 info = this_cpu_ptr(cgrp->info);
3f7cce3c 607 info->timestamp = ctx->timestamp;
e5d1367f
SE
608}
609
610#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
611#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
612
613/*
614 * reschedule events based on the cgroup constraint of task.
615 *
616 * mode SWOUT : schedule out everything
617 * mode SWIN : schedule in based on cgroup for next
618 */
18ab2cd3 619static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
620{
621 struct perf_cpu_context *cpuctx;
622 struct pmu *pmu;
623 unsigned long flags;
624
625 /*
626 * disable interrupts to avoid geting nr_cgroup
627 * changes via __perf_event_disable(). Also
628 * avoids preemption.
629 */
630 local_irq_save(flags);
631
632 /*
633 * we reschedule only in the presence of cgroup
634 * constrained events.
635 */
e5d1367f
SE
636
637 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 638 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
639 if (cpuctx->unique_pmu != pmu)
640 continue; /* ensure we process each cpuctx once */
e5d1367f 641
e5d1367f
SE
642 /*
643 * perf_cgroup_events says at least one
644 * context on this CPU has cgroup events.
645 *
646 * ctx->nr_cgroups reports the number of cgroup
647 * events for a context.
648 */
649 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
650 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
651 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
652
653 if (mode & PERF_CGROUP_SWOUT) {
654 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
655 /*
656 * must not be done before ctxswout due
657 * to event_filter_match() in event_sched_out()
658 */
659 cpuctx->cgrp = NULL;
660 }
661
662 if (mode & PERF_CGROUP_SWIN) {
e566b76e 663 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
664 /*
665 * set cgrp before ctxsw in to allow
666 * event_filter_match() to not have to pass
667 * task around
614e4c4e
SE
668 * we pass the cpuctx->ctx to perf_cgroup_from_task()
669 * because cgorup events are only per-cpu
e5d1367f 670 */
614e4c4e 671 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
672 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
673 }
facc4307
PZ
674 perf_pmu_enable(cpuctx->ctx.pmu);
675 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 676 }
e5d1367f
SE
677 }
678
e5d1367f
SE
679 local_irq_restore(flags);
680}
681
a8d757ef
SE
682static inline void perf_cgroup_sched_out(struct task_struct *task,
683 struct task_struct *next)
e5d1367f 684{
a8d757ef
SE
685 struct perf_cgroup *cgrp1;
686 struct perf_cgroup *cgrp2 = NULL;
687
ddaaf4e2 688 rcu_read_lock();
a8d757ef
SE
689 /*
690 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
691 * we do not need to pass the ctx here because we know
692 * we are holding the rcu lock
a8d757ef 693 */
614e4c4e 694 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 695 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
696
697 /*
698 * only schedule out current cgroup events if we know
699 * that we are switching to a different cgroup. Otherwise,
700 * do no touch the cgroup events.
701 */
702 if (cgrp1 != cgrp2)
703 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
704
705 rcu_read_unlock();
e5d1367f
SE
706}
707
a8d757ef
SE
708static inline void perf_cgroup_sched_in(struct task_struct *prev,
709 struct task_struct *task)
e5d1367f 710{
a8d757ef
SE
711 struct perf_cgroup *cgrp1;
712 struct perf_cgroup *cgrp2 = NULL;
713
ddaaf4e2 714 rcu_read_lock();
a8d757ef
SE
715 /*
716 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
717 * we do not need to pass the ctx here because we know
718 * we are holding the rcu lock
a8d757ef 719 */
614e4c4e 720 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 721 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
722
723 /*
724 * only need to schedule in cgroup events if we are changing
725 * cgroup during ctxsw. Cgroup events were not scheduled
726 * out of ctxsw out if that was not the case.
727 */
728 if (cgrp1 != cgrp2)
729 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
730
731 rcu_read_unlock();
e5d1367f
SE
732}
733
734static inline int perf_cgroup_connect(int fd, struct perf_event *event,
735 struct perf_event_attr *attr,
736 struct perf_event *group_leader)
737{
738 struct perf_cgroup *cgrp;
739 struct cgroup_subsys_state *css;
2903ff01
AV
740 struct fd f = fdget(fd);
741 int ret = 0;
e5d1367f 742
2903ff01 743 if (!f.file)
e5d1367f
SE
744 return -EBADF;
745
b583043e 746 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 747 &perf_event_cgrp_subsys);
3db272c0
LZ
748 if (IS_ERR(css)) {
749 ret = PTR_ERR(css);
750 goto out;
751 }
e5d1367f
SE
752
753 cgrp = container_of(css, struct perf_cgroup, css);
754 event->cgrp = cgrp;
755
756 /*
757 * all events in a group must monitor
758 * the same cgroup because a task belongs
759 * to only one perf cgroup at a time
760 */
761 if (group_leader && group_leader->cgrp != cgrp) {
762 perf_detach_cgroup(event);
763 ret = -EINVAL;
e5d1367f 764 }
3db272c0 765out:
2903ff01 766 fdput(f);
e5d1367f
SE
767 return ret;
768}
769
770static inline void
771perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
772{
773 struct perf_cgroup_info *t;
774 t = per_cpu_ptr(event->cgrp->info, event->cpu);
775 event->shadow_ctx_time = now - t->timestamp;
776}
777
778static inline void
779perf_cgroup_defer_enabled(struct perf_event *event)
780{
781 /*
782 * when the current task's perf cgroup does not match
783 * the event's, we need to remember to call the
784 * perf_mark_enable() function the first time a task with
785 * a matching perf cgroup is scheduled in.
786 */
787 if (is_cgroup_event(event) && !perf_cgroup_match(event))
788 event->cgrp_defer_enabled = 1;
789}
790
791static inline void
792perf_cgroup_mark_enabled(struct perf_event *event,
793 struct perf_event_context *ctx)
794{
795 struct perf_event *sub;
796 u64 tstamp = perf_event_time(event);
797
798 if (!event->cgrp_defer_enabled)
799 return;
800
801 event->cgrp_defer_enabled = 0;
802
803 event->tstamp_enabled = tstamp - event->total_time_enabled;
804 list_for_each_entry(sub, &event->sibling_list, group_entry) {
805 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
806 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
807 sub->cgrp_defer_enabled = 0;
808 }
809 }
810}
811#else /* !CONFIG_CGROUP_PERF */
812
813static inline bool
814perf_cgroup_match(struct perf_event *event)
815{
816 return true;
817}
818
819static inline void perf_detach_cgroup(struct perf_event *event)
820{}
821
822static inline int is_cgroup_event(struct perf_event *event)
823{
824 return 0;
825}
826
827static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
828{
829 return 0;
830}
831
832static inline void update_cgrp_time_from_event(struct perf_event *event)
833{
834}
835
836static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
837{
838}
839
a8d757ef
SE
840static inline void perf_cgroup_sched_out(struct task_struct *task,
841 struct task_struct *next)
e5d1367f
SE
842{
843}
844
a8d757ef
SE
845static inline void perf_cgroup_sched_in(struct task_struct *prev,
846 struct task_struct *task)
e5d1367f
SE
847{
848}
849
850static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
851 struct perf_event_attr *attr,
852 struct perf_event *group_leader)
853{
854 return -EINVAL;
855}
856
857static inline void
3f7cce3c
SE
858perf_cgroup_set_timestamp(struct task_struct *task,
859 struct perf_event_context *ctx)
e5d1367f
SE
860{
861}
862
863void
864perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
865{
866}
867
868static inline void
869perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
870{
871}
872
873static inline u64 perf_cgroup_event_time(struct perf_event *event)
874{
875 return 0;
876}
877
878static inline void
879perf_cgroup_defer_enabled(struct perf_event *event)
880{
881}
882
883static inline void
884perf_cgroup_mark_enabled(struct perf_event *event,
885 struct perf_event_context *ctx)
886{
887}
888#endif
889
9e630205
SE
890/*
891 * set default to be dependent on timer tick just
892 * like original code
893 */
894#define PERF_CPU_HRTIMER (1000 / HZ)
895/*
896 * function must be called with interrupts disbled
897 */
272325c4 898static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
899{
900 struct perf_cpu_context *cpuctx;
9e630205
SE
901 int rotations = 0;
902
903 WARN_ON(!irqs_disabled());
904
905 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
906 rotations = perf_rotate_context(cpuctx);
907
4cfafd30
PZ
908 raw_spin_lock(&cpuctx->hrtimer_lock);
909 if (rotations)
9e630205 910 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
911 else
912 cpuctx->hrtimer_active = 0;
913 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 914
4cfafd30 915 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
916}
917
272325c4 918static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 919{
272325c4 920 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 921 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 922 u64 interval;
9e630205
SE
923
924 /* no multiplexing needed for SW PMU */
925 if (pmu->task_ctx_nr == perf_sw_context)
926 return;
927
62b85639
SE
928 /*
929 * check default is sane, if not set then force to
930 * default interval (1/tick)
931 */
272325c4
PZ
932 interval = pmu->hrtimer_interval_ms;
933 if (interval < 1)
934 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 935
272325c4 936 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 937
4cfafd30
PZ
938 raw_spin_lock_init(&cpuctx->hrtimer_lock);
939 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 940 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
941}
942
272325c4 943static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 944{
272325c4 945 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 946 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 947 unsigned long flags;
9e630205
SE
948
949 /* not for SW PMU */
950 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 951 return 0;
9e630205 952
4cfafd30
PZ
953 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
954 if (!cpuctx->hrtimer_active) {
955 cpuctx->hrtimer_active = 1;
956 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
957 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
958 }
959 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 960
272325c4 961 return 0;
9e630205
SE
962}
963
33696fc0 964void perf_pmu_disable(struct pmu *pmu)
9e35ad38 965{
33696fc0
PZ
966 int *count = this_cpu_ptr(pmu->pmu_disable_count);
967 if (!(*count)++)
968 pmu->pmu_disable(pmu);
9e35ad38 969}
9e35ad38 970
33696fc0 971void perf_pmu_enable(struct pmu *pmu)
9e35ad38 972{
33696fc0
PZ
973 int *count = this_cpu_ptr(pmu->pmu_disable_count);
974 if (!--(*count))
975 pmu->pmu_enable(pmu);
9e35ad38 976}
9e35ad38 977
2fde4f94 978static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
979
980/*
2fde4f94
MR
981 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
982 * perf_event_task_tick() are fully serialized because they're strictly cpu
983 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
984 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 985 */
2fde4f94 986static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 987{
2fde4f94 988 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 989
e9d2b064 990 WARN_ON(!irqs_disabled());
b5ab4cd5 991
2fde4f94
MR
992 WARN_ON(!list_empty(&ctx->active_ctx_list));
993
994 list_add(&ctx->active_ctx_list, head);
995}
996
997static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
998{
999 WARN_ON(!irqs_disabled());
1000
1001 WARN_ON(list_empty(&ctx->active_ctx_list));
1002
1003 list_del_init(&ctx->active_ctx_list);
9e35ad38 1004}
9e35ad38 1005
cdd6c482 1006static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1007{
e5289d4a 1008 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1009}
1010
4af57ef2
YZ
1011static void free_ctx(struct rcu_head *head)
1012{
1013 struct perf_event_context *ctx;
1014
1015 ctx = container_of(head, struct perf_event_context, rcu_head);
1016 kfree(ctx->task_ctx_data);
1017 kfree(ctx);
1018}
1019
cdd6c482 1020static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1021{
564c2b21
PM
1022 if (atomic_dec_and_test(&ctx->refcount)) {
1023 if (ctx->parent_ctx)
1024 put_ctx(ctx->parent_ctx);
63b6da39 1025 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1026 put_task_struct(ctx->task);
4af57ef2 1027 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1028 }
a63eaf34
PM
1029}
1030
f63a8daa
PZ
1031/*
1032 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1033 * perf_pmu_migrate_context() we need some magic.
1034 *
1035 * Those places that change perf_event::ctx will hold both
1036 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1037 *
8b10c5e2
PZ
1038 * Lock ordering is by mutex address. There are two other sites where
1039 * perf_event_context::mutex nests and those are:
1040 *
1041 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1042 * perf_event_exit_event()
1043 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1044 *
1045 * - perf_event_init_context() [ parent, 0 ]
1046 * inherit_task_group()
1047 * inherit_group()
1048 * inherit_event()
1049 * perf_event_alloc()
1050 * perf_init_event()
1051 * perf_try_init_event() [ child , 1 ]
1052 *
1053 * While it appears there is an obvious deadlock here -- the parent and child
1054 * nesting levels are inverted between the two. This is in fact safe because
1055 * life-time rules separate them. That is an exiting task cannot fork, and a
1056 * spawning task cannot (yet) exit.
1057 *
1058 * But remember that that these are parent<->child context relations, and
1059 * migration does not affect children, therefore these two orderings should not
1060 * interact.
f63a8daa
PZ
1061 *
1062 * The change in perf_event::ctx does not affect children (as claimed above)
1063 * because the sys_perf_event_open() case will install a new event and break
1064 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1065 * concerned with cpuctx and that doesn't have children.
1066 *
1067 * The places that change perf_event::ctx will issue:
1068 *
1069 * perf_remove_from_context();
1070 * synchronize_rcu();
1071 * perf_install_in_context();
1072 *
1073 * to affect the change. The remove_from_context() + synchronize_rcu() should
1074 * quiesce the event, after which we can install it in the new location. This
1075 * means that only external vectors (perf_fops, prctl) can perturb the event
1076 * while in transit. Therefore all such accessors should also acquire
1077 * perf_event_context::mutex to serialize against this.
1078 *
1079 * However; because event->ctx can change while we're waiting to acquire
1080 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1081 * function.
1082 *
1083 * Lock order:
1084 * task_struct::perf_event_mutex
1085 * perf_event_context::mutex
f63a8daa 1086 * perf_event::child_mutex;
07c4a776 1087 * perf_event_context::lock
f63a8daa
PZ
1088 * perf_event::mmap_mutex
1089 * mmap_sem
1090 */
a83fe28e
PZ
1091static struct perf_event_context *
1092perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1093{
1094 struct perf_event_context *ctx;
1095
1096again:
1097 rcu_read_lock();
1098 ctx = ACCESS_ONCE(event->ctx);
1099 if (!atomic_inc_not_zero(&ctx->refcount)) {
1100 rcu_read_unlock();
1101 goto again;
1102 }
1103 rcu_read_unlock();
1104
a83fe28e 1105 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1106 if (event->ctx != ctx) {
1107 mutex_unlock(&ctx->mutex);
1108 put_ctx(ctx);
1109 goto again;
1110 }
1111
1112 return ctx;
1113}
1114
a83fe28e
PZ
1115static inline struct perf_event_context *
1116perf_event_ctx_lock(struct perf_event *event)
1117{
1118 return perf_event_ctx_lock_nested(event, 0);
1119}
1120
f63a8daa
PZ
1121static void perf_event_ctx_unlock(struct perf_event *event,
1122 struct perf_event_context *ctx)
1123{
1124 mutex_unlock(&ctx->mutex);
1125 put_ctx(ctx);
1126}
1127
211de6eb
PZ
1128/*
1129 * This must be done under the ctx->lock, such as to serialize against
1130 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1131 * calling scheduler related locks and ctx->lock nests inside those.
1132 */
1133static __must_check struct perf_event_context *
1134unclone_ctx(struct perf_event_context *ctx)
71a851b4 1135{
211de6eb
PZ
1136 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1137
1138 lockdep_assert_held(&ctx->lock);
1139
1140 if (parent_ctx)
71a851b4 1141 ctx->parent_ctx = NULL;
5a3126d4 1142 ctx->generation++;
211de6eb
PZ
1143
1144 return parent_ctx;
71a851b4
PZ
1145}
1146
6844c09d
ACM
1147static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1148{
1149 /*
1150 * only top level events have the pid namespace they were created in
1151 */
1152 if (event->parent)
1153 event = event->parent;
1154
1155 return task_tgid_nr_ns(p, event->ns);
1156}
1157
1158static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1159{
1160 /*
1161 * only top level events have the pid namespace they were created in
1162 */
1163 if (event->parent)
1164 event = event->parent;
1165
1166 return task_pid_nr_ns(p, event->ns);
1167}
1168
7f453c24 1169/*
cdd6c482 1170 * If we inherit events we want to return the parent event id
7f453c24
PZ
1171 * to userspace.
1172 */
cdd6c482 1173static u64 primary_event_id(struct perf_event *event)
7f453c24 1174{
cdd6c482 1175 u64 id = event->id;
7f453c24 1176
cdd6c482
IM
1177 if (event->parent)
1178 id = event->parent->id;
7f453c24
PZ
1179
1180 return id;
1181}
1182
25346b93 1183/*
cdd6c482 1184 * Get the perf_event_context for a task and lock it.
63b6da39 1185 *
25346b93
PM
1186 * This has to cope with with the fact that until it is locked,
1187 * the context could get moved to another task.
1188 */
cdd6c482 1189static struct perf_event_context *
8dc85d54 1190perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1191{
cdd6c482 1192 struct perf_event_context *ctx;
25346b93 1193
9ed6060d 1194retry:
058ebd0e
PZ
1195 /*
1196 * One of the few rules of preemptible RCU is that one cannot do
1197 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1198 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1199 * rcu_read_unlock_special().
1200 *
1201 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1202 * side critical section has interrupts disabled.
058ebd0e 1203 */
2fd59077 1204 local_irq_save(*flags);
058ebd0e 1205 rcu_read_lock();
8dc85d54 1206 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1207 if (ctx) {
1208 /*
1209 * If this context is a clone of another, it might
1210 * get swapped for another underneath us by
cdd6c482 1211 * perf_event_task_sched_out, though the
25346b93
PM
1212 * rcu_read_lock() protects us from any context
1213 * getting freed. Lock the context and check if it
1214 * got swapped before we could get the lock, and retry
1215 * if so. If we locked the right context, then it
1216 * can't get swapped on us any more.
1217 */
2fd59077 1218 raw_spin_lock(&ctx->lock);
8dc85d54 1219 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1220 raw_spin_unlock(&ctx->lock);
058ebd0e 1221 rcu_read_unlock();
2fd59077 1222 local_irq_restore(*flags);
25346b93
PM
1223 goto retry;
1224 }
b49a9e7e 1225
63b6da39
PZ
1226 if (ctx->task == TASK_TOMBSTONE ||
1227 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1228 raw_spin_unlock(&ctx->lock);
b49a9e7e 1229 ctx = NULL;
828b6f0e
PZ
1230 } else {
1231 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1232 }
25346b93
PM
1233 }
1234 rcu_read_unlock();
2fd59077
PM
1235 if (!ctx)
1236 local_irq_restore(*flags);
25346b93
PM
1237 return ctx;
1238}
1239
1240/*
1241 * Get the context for a task and increment its pin_count so it
1242 * can't get swapped to another task. This also increments its
1243 * reference count so that the context can't get freed.
1244 */
8dc85d54
PZ
1245static struct perf_event_context *
1246perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1247{
cdd6c482 1248 struct perf_event_context *ctx;
25346b93
PM
1249 unsigned long flags;
1250
8dc85d54 1251 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1252 if (ctx) {
1253 ++ctx->pin_count;
e625cce1 1254 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1255 }
1256 return ctx;
1257}
1258
cdd6c482 1259static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1260{
1261 unsigned long flags;
1262
e625cce1 1263 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1264 --ctx->pin_count;
e625cce1 1265 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1266}
1267
f67218c3
PZ
1268/*
1269 * Update the record of the current time in a context.
1270 */
1271static void update_context_time(struct perf_event_context *ctx)
1272{
1273 u64 now = perf_clock();
1274
1275 ctx->time += now - ctx->timestamp;
1276 ctx->timestamp = now;
1277}
1278
4158755d
SE
1279static u64 perf_event_time(struct perf_event *event)
1280{
1281 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1282
1283 if (is_cgroup_event(event))
1284 return perf_cgroup_event_time(event);
1285
4158755d
SE
1286 return ctx ? ctx->time : 0;
1287}
1288
f67218c3
PZ
1289/*
1290 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1291 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1292 */
1293static void update_event_times(struct perf_event *event)
1294{
1295 struct perf_event_context *ctx = event->ctx;
1296 u64 run_end;
1297
1298 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1299 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1300 return;
e5d1367f
SE
1301 /*
1302 * in cgroup mode, time_enabled represents
1303 * the time the event was enabled AND active
1304 * tasks were in the monitored cgroup. This is
1305 * independent of the activity of the context as
1306 * there may be a mix of cgroup and non-cgroup events.
1307 *
1308 * That is why we treat cgroup events differently
1309 * here.
1310 */
1311 if (is_cgroup_event(event))
46cd6a7f 1312 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1313 else if (ctx->is_active)
1314 run_end = ctx->time;
acd1d7c1
PZ
1315 else
1316 run_end = event->tstamp_stopped;
1317
1318 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1319
1320 if (event->state == PERF_EVENT_STATE_INACTIVE)
1321 run_end = event->tstamp_stopped;
1322 else
4158755d 1323 run_end = perf_event_time(event);
f67218c3
PZ
1324
1325 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1326
f67218c3
PZ
1327}
1328
96c21a46
PZ
1329/*
1330 * Update total_time_enabled and total_time_running for all events in a group.
1331 */
1332static void update_group_times(struct perf_event *leader)
1333{
1334 struct perf_event *event;
1335
1336 update_event_times(leader);
1337 list_for_each_entry(event, &leader->sibling_list, group_entry)
1338 update_event_times(event);
1339}
1340
889ff015
FW
1341static struct list_head *
1342ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1343{
1344 if (event->attr.pinned)
1345 return &ctx->pinned_groups;
1346 else
1347 return &ctx->flexible_groups;
1348}
1349
fccc714b 1350/*
cdd6c482 1351 * Add a event from the lists for its context.
fccc714b
PZ
1352 * Must be called with ctx->mutex and ctx->lock held.
1353 */
04289bb9 1354static void
cdd6c482 1355list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1356{
c994d613
PZ
1357 lockdep_assert_held(&ctx->lock);
1358
8a49542c
PZ
1359 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1360 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1361
1362 /*
8a49542c
PZ
1363 * If we're a stand alone event or group leader, we go to the context
1364 * list, group events are kept attached to the group so that
1365 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1366 */
8a49542c 1367 if (event->group_leader == event) {
889ff015
FW
1368 struct list_head *list;
1369
d6f962b5
FW
1370 if (is_software_event(event))
1371 event->group_flags |= PERF_GROUP_SOFTWARE;
1372
889ff015
FW
1373 list = ctx_group_list(event, ctx);
1374 list_add_tail(&event->group_entry, list);
5c148194 1375 }
592903cd 1376
08309379 1377 if (is_cgroup_event(event))
e5d1367f 1378 ctx->nr_cgroups++;
e5d1367f 1379
cdd6c482
IM
1380 list_add_rcu(&event->event_entry, &ctx->event_list);
1381 ctx->nr_events++;
1382 if (event->attr.inherit_stat)
bfbd3381 1383 ctx->nr_stat++;
5a3126d4
PZ
1384
1385 ctx->generation++;
04289bb9
IM
1386}
1387
0231bb53
JO
1388/*
1389 * Initialize event state based on the perf_event_attr::disabled.
1390 */
1391static inline void perf_event__state_init(struct perf_event *event)
1392{
1393 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1394 PERF_EVENT_STATE_INACTIVE;
1395}
1396
a723968c 1397static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1398{
1399 int entry = sizeof(u64); /* value */
1400 int size = 0;
1401 int nr = 1;
1402
1403 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1404 size += sizeof(u64);
1405
1406 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1407 size += sizeof(u64);
1408
1409 if (event->attr.read_format & PERF_FORMAT_ID)
1410 entry += sizeof(u64);
1411
1412 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1413 nr += nr_siblings;
c320c7b7
ACM
1414 size += sizeof(u64);
1415 }
1416
1417 size += entry * nr;
1418 event->read_size = size;
1419}
1420
a723968c 1421static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1422{
1423 struct perf_sample_data *data;
c320c7b7
ACM
1424 u16 size = 0;
1425
c320c7b7
ACM
1426 if (sample_type & PERF_SAMPLE_IP)
1427 size += sizeof(data->ip);
1428
6844c09d
ACM
1429 if (sample_type & PERF_SAMPLE_ADDR)
1430 size += sizeof(data->addr);
1431
1432 if (sample_type & PERF_SAMPLE_PERIOD)
1433 size += sizeof(data->period);
1434
c3feedf2
AK
1435 if (sample_type & PERF_SAMPLE_WEIGHT)
1436 size += sizeof(data->weight);
1437
6844c09d
ACM
1438 if (sample_type & PERF_SAMPLE_READ)
1439 size += event->read_size;
1440
d6be9ad6
SE
1441 if (sample_type & PERF_SAMPLE_DATA_SRC)
1442 size += sizeof(data->data_src.val);
1443
fdfbbd07
AK
1444 if (sample_type & PERF_SAMPLE_TRANSACTION)
1445 size += sizeof(data->txn);
1446
6844c09d
ACM
1447 event->header_size = size;
1448}
1449
a723968c
PZ
1450/*
1451 * Called at perf_event creation and when events are attached/detached from a
1452 * group.
1453 */
1454static void perf_event__header_size(struct perf_event *event)
1455{
1456 __perf_event_read_size(event,
1457 event->group_leader->nr_siblings);
1458 __perf_event_header_size(event, event->attr.sample_type);
1459}
1460
6844c09d
ACM
1461static void perf_event__id_header_size(struct perf_event *event)
1462{
1463 struct perf_sample_data *data;
1464 u64 sample_type = event->attr.sample_type;
1465 u16 size = 0;
1466
c320c7b7
ACM
1467 if (sample_type & PERF_SAMPLE_TID)
1468 size += sizeof(data->tid_entry);
1469
1470 if (sample_type & PERF_SAMPLE_TIME)
1471 size += sizeof(data->time);
1472
ff3d527c
AH
1473 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1474 size += sizeof(data->id);
1475
c320c7b7
ACM
1476 if (sample_type & PERF_SAMPLE_ID)
1477 size += sizeof(data->id);
1478
1479 if (sample_type & PERF_SAMPLE_STREAM_ID)
1480 size += sizeof(data->stream_id);
1481
1482 if (sample_type & PERF_SAMPLE_CPU)
1483 size += sizeof(data->cpu_entry);
1484
6844c09d 1485 event->id_header_size = size;
c320c7b7
ACM
1486}
1487
a723968c
PZ
1488static bool perf_event_validate_size(struct perf_event *event)
1489{
1490 /*
1491 * The values computed here will be over-written when we actually
1492 * attach the event.
1493 */
1494 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1495 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1496 perf_event__id_header_size(event);
1497
1498 /*
1499 * Sum the lot; should not exceed the 64k limit we have on records.
1500 * Conservative limit to allow for callchains and other variable fields.
1501 */
1502 if (event->read_size + event->header_size +
1503 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1504 return false;
1505
1506 return true;
1507}
1508
8a49542c
PZ
1509static void perf_group_attach(struct perf_event *event)
1510{
c320c7b7 1511 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1512
74c3337c
PZ
1513 /*
1514 * We can have double attach due to group movement in perf_event_open.
1515 */
1516 if (event->attach_state & PERF_ATTACH_GROUP)
1517 return;
1518
8a49542c
PZ
1519 event->attach_state |= PERF_ATTACH_GROUP;
1520
1521 if (group_leader == event)
1522 return;
1523
652884fe
PZ
1524 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1525
8a49542c
PZ
1526 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1527 !is_software_event(event))
1528 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1529
1530 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1531 group_leader->nr_siblings++;
c320c7b7
ACM
1532
1533 perf_event__header_size(group_leader);
1534
1535 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1536 perf_event__header_size(pos);
8a49542c
PZ
1537}
1538
a63eaf34 1539/*
cdd6c482 1540 * Remove a event from the lists for its context.
fccc714b 1541 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1542 */
04289bb9 1543static void
cdd6c482 1544list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1545{
68cacd29 1546 struct perf_cpu_context *cpuctx;
652884fe
PZ
1547
1548 WARN_ON_ONCE(event->ctx != ctx);
1549 lockdep_assert_held(&ctx->lock);
1550
8a49542c
PZ
1551 /*
1552 * We can have double detach due to exit/hot-unplug + close.
1553 */
1554 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1555 return;
8a49542c
PZ
1556
1557 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1558
68cacd29 1559 if (is_cgroup_event(event)) {
e5d1367f 1560 ctx->nr_cgroups--;
70a01657
PZ
1561 /*
1562 * Because cgroup events are always per-cpu events, this will
1563 * always be called from the right CPU.
1564 */
68cacd29
SE
1565 cpuctx = __get_cpu_context(ctx);
1566 /*
70a01657
PZ
1567 * If there are no more cgroup events then clear cgrp to avoid
1568 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1569 */
1570 if (!ctx->nr_cgroups)
1571 cpuctx->cgrp = NULL;
1572 }
e5d1367f 1573
cdd6c482
IM
1574 ctx->nr_events--;
1575 if (event->attr.inherit_stat)
bfbd3381 1576 ctx->nr_stat--;
8bc20959 1577
cdd6c482 1578 list_del_rcu(&event->event_entry);
04289bb9 1579
8a49542c
PZ
1580 if (event->group_leader == event)
1581 list_del_init(&event->group_entry);
5c148194 1582
96c21a46 1583 update_group_times(event);
b2e74a26
SE
1584
1585 /*
1586 * If event was in error state, then keep it
1587 * that way, otherwise bogus counts will be
1588 * returned on read(). The only way to get out
1589 * of error state is by explicit re-enabling
1590 * of the event
1591 */
1592 if (event->state > PERF_EVENT_STATE_OFF)
1593 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1594
1595 ctx->generation++;
050735b0
PZ
1596}
1597
8a49542c 1598static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1599{
1600 struct perf_event *sibling, *tmp;
8a49542c
PZ
1601 struct list_head *list = NULL;
1602
1603 /*
1604 * We can have double detach due to exit/hot-unplug + close.
1605 */
1606 if (!(event->attach_state & PERF_ATTACH_GROUP))
1607 return;
1608
1609 event->attach_state &= ~PERF_ATTACH_GROUP;
1610
1611 /*
1612 * If this is a sibling, remove it from its group.
1613 */
1614 if (event->group_leader != event) {
1615 list_del_init(&event->group_entry);
1616 event->group_leader->nr_siblings--;
c320c7b7 1617 goto out;
8a49542c
PZ
1618 }
1619
1620 if (!list_empty(&event->group_entry))
1621 list = &event->group_entry;
2e2af50b 1622
04289bb9 1623 /*
cdd6c482
IM
1624 * If this was a group event with sibling events then
1625 * upgrade the siblings to singleton events by adding them
8a49542c 1626 * to whatever list we are on.
04289bb9 1627 */
cdd6c482 1628 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1629 if (list)
1630 list_move_tail(&sibling->group_entry, list);
04289bb9 1631 sibling->group_leader = sibling;
d6f962b5
FW
1632
1633 /* Inherit group flags from the previous leader */
1634 sibling->group_flags = event->group_flags;
652884fe
PZ
1635
1636 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1637 }
c320c7b7
ACM
1638
1639out:
1640 perf_event__header_size(event->group_leader);
1641
1642 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1643 perf_event__header_size(tmp);
04289bb9
IM
1644}
1645
fadfe7be
JO
1646static bool is_orphaned_event(struct perf_event *event)
1647{
c6e5b732 1648 return event->state == PERF_EVENT_STATE_EXIT;
fadfe7be
JO
1649}
1650
66eb579e
MR
1651static inline int pmu_filter_match(struct perf_event *event)
1652{
1653 struct pmu *pmu = event->pmu;
1654 return pmu->filter_match ? pmu->filter_match(event) : 1;
1655}
1656
fa66f07a
SE
1657static inline int
1658event_filter_match(struct perf_event *event)
1659{
e5d1367f 1660 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1661 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1662}
1663
9ffcfa6f
SE
1664static void
1665event_sched_out(struct perf_event *event,
3b6f9e5c 1666 struct perf_cpu_context *cpuctx,
cdd6c482 1667 struct perf_event_context *ctx)
3b6f9e5c 1668{
4158755d 1669 u64 tstamp = perf_event_time(event);
fa66f07a 1670 u64 delta;
652884fe
PZ
1671
1672 WARN_ON_ONCE(event->ctx != ctx);
1673 lockdep_assert_held(&ctx->lock);
1674
fa66f07a
SE
1675 /*
1676 * An event which could not be activated because of
1677 * filter mismatch still needs to have its timings
1678 * maintained, otherwise bogus information is return
1679 * via read() for time_enabled, time_running:
1680 */
1681 if (event->state == PERF_EVENT_STATE_INACTIVE
1682 && !event_filter_match(event)) {
e5d1367f 1683 delta = tstamp - event->tstamp_stopped;
fa66f07a 1684 event->tstamp_running += delta;
4158755d 1685 event->tstamp_stopped = tstamp;
fa66f07a
SE
1686 }
1687
cdd6c482 1688 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1689 return;
3b6f9e5c 1690
44377277
AS
1691 perf_pmu_disable(event->pmu);
1692
cdd6c482
IM
1693 event->state = PERF_EVENT_STATE_INACTIVE;
1694 if (event->pending_disable) {
1695 event->pending_disable = 0;
1696 event->state = PERF_EVENT_STATE_OFF;
970892a9 1697 }
4158755d 1698 event->tstamp_stopped = tstamp;
a4eaf7f1 1699 event->pmu->del(event, 0);
cdd6c482 1700 event->oncpu = -1;
3b6f9e5c 1701
cdd6c482 1702 if (!is_software_event(event))
3b6f9e5c 1703 cpuctx->active_oncpu--;
2fde4f94
MR
1704 if (!--ctx->nr_active)
1705 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1706 if (event->attr.freq && event->attr.sample_freq)
1707 ctx->nr_freq--;
cdd6c482 1708 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1709 cpuctx->exclusive = 0;
44377277
AS
1710
1711 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1712}
1713
d859e29f 1714static void
cdd6c482 1715group_sched_out(struct perf_event *group_event,
d859e29f 1716 struct perf_cpu_context *cpuctx,
cdd6c482 1717 struct perf_event_context *ctx)
d859e29f 1718{
cdd6c482 1719 struct perf_event *event;
fa66f07a 1720 int state = group_event->state;
d859e29f 1721
cdd6c482 1722 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1723
1724 /*
1725 * Schedule out siblings (if any):
1726 */
cdd6c482
IM
1727 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1728 event_sched_out(event, cpuctx, ctx);
d859e29f 1729
fa66f07a 1730 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1731 cpuctx->exclusive = 0;
1732}
1733
45a0e07a 1734#define DETACH_GROUP 0x01UL
60beda84 1735#define DETACH_STATE 0x02UL
0017960f 1736
0793a61d 1737/*
cdd6c482 1738 * Cross CPU call to remove a performance event
0793a61d 1739 *
cdd6c482 1740 * We disable the event on the hardware level first. After that we
0793a61d
TG
1741 * remove it from the context list.
1742 */
fae3fde6
PZ
1743static void
1744__perf_remove_from_context(struct perf_event *event,
1745 struct perf_cpu_context *cpuctx,
1746 struct perf_event_context *ctx,
1747 void *info)
0793a61d 1748{
45a0e07a 1749 unsigned long flags = (unsigned long)info;
0793a61d 1750
cdd6c482 1751 event_sched_out(event, cpuctx, ctx);
45a0e07a 1752 if (flags & DETACH_GROUP)
46ce0fe9 1753 perf_group_detach(event);
cdd6c482 1754 list_del_event(event, ctx);
60beda84
PZ
1755 if (flags & DETACH_STATE)
1756 event->state = PERF_EVENT_STATE_EXIT;
39a43640
PZ
1757
1758 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1759 ctx->is_active = 0;
39a43640
PZ
1760 if (ctx->task) {
1761 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1762 cpuctx->task_ctx = NULL;
1763 }
64ce3126 1764 }
0793a61d
TG
1765}
1766
0793a61d 1767/*
cdd6c482 1768 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1769 *
cdd6c482
IM
1770 * If event->ctx is a cloned context, callers must make sure that
1771 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1772 * remains valid. This is OK when called from perf_release since
1773 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1774 * When called from perf_event_exit_task, it's OK because the
c93f7669 1775 * context has been detached from its task.
0793a61d 1776 */
45a0e07a 1777static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1778{
fae3fde6 1779 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1780
45a0e07a 1781 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1782}
1783
d859e29f 1784/*
cdd6c482 1785 * Cross CPU call to disable a performance event
d859e29f 1786 */
fae3fde6
PZ
1787static void __perf_event_disable(struct perf_event *event,
1788 struct perf_cpu_context *cpuctx,
1789 struct perf_event_context *ctx,
1790 void *info)
7b648018 1791{
fae3fde6
PZ
1792 if (event->state < PERF_EVENT_STATE_INACTIVE)
1793 return;
7b648018 1794
fae3fde6
PZ
1795 update_context_time(ctx);
1796 update_cgrp_time_from_event(event);
1797 update_group_times(event);
1798 if (event == event->group_leader)
1799 group_sched_out(event, cpuctx, ctx);
1800 else
1801 event_sched_out(event, cpuctx, ctx);
1802 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1803}
1804
d859e29f 1805/*
cdd6c482 1806 * Disable a event.
c93f7669 1807 *
cdd6c482
IM
1808 * If event->ctx is a cloned context, callers must make sure that
1809 * every task struct that event->ctx->task could possibly point to
c93f7669 1810 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1811 * perf_event_for_each_child or perf_event_for_each because they
1812 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1813 * goes to exit will block in perf_event_exit_event().
1814 *
cdd6c482 1815 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1816 * is the current context on this CPU and preemption is disabled,
cdd6c482 1817 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1818 */
f63a8daa 1819static void _perf_event_disable(struct perf_event *event)
d859e29f 1820{
cdd6c482 1821 struct perf_event_context *ctx = event->ctx;
d859e29f 1822
e625cce1 1823 raw_spin_lock_irq(&ctx->lock);
7b648018 1824 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1825 raw_spin_unlock_irq(&ctx->lock);
7b648018 1826 return;
53cfbf59 1827 }
e625cce1 1828 raw_spin_unlock_irq(&ctx->lock);
7b648018 1829
fae3fde6
PZ
1830 event_function_call(event, __perf_event_disable, NULL);
1831}
1832
1833void perf_event_disable_local(struct perf_event *event)
1834{
1835 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1836}
f63a8daa
PZ
1837
1838/*
1839 * Strictly speaking kernel users cannot create groups and therefore this
1840 * interface does not need the perf_event_ctx_lock() magic.
1841 */
1842void perf_event_disable(struct perf_event *event)
1843{
1844 struct perf_event_context *ctx;
1845
1846 ctx = perf_event_ctx_lock(event);
1847 _perf_event_disable(event);
1848 perf_event_ctx_unlock(event, ctx);
1849}
dcfce4a0 1850EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1851
e5d1367f
SE
1852static void perf_set_shadow_time(struct perf_event *event,
1853 struct perf_event_context *ctx,
1854 u64 tstamp)
1855{
1856 /*
1857 * use the correct time source for the time snapshot
1858 *
1859 * We could get by without this by leveraging the
1860 * fact that to get to this function, the caller
1861 * has most likely already called update_context_time()
1862 * and update_cgrp_time_xx() and thus both timestamp
1863 * are identical (or very close). Given that tstamp is,
1864 * already adjusted for cgroup, we could say that:
1865 * tstamp - ctx->timestamp
1866 * is equivalent to
1867 * tstamp - cgrp->timestamp.
1868 *
1869 * Then, in perf_output_read(), the calculation would
1870 * work with no changes because:
1871 * - event is guaranteed scheduled in
1872 * - no scheduled out in between
1873 * - thus the timestamp would be the same
1874 *
1875 * But this is a bit hairy.
1876 *
1877 * So instead, we have an explicit cgroup call to remain
1878 * within the time time source all along. We believe it
1879 * is cleaner and simpler to understand.
1880 */
1881 if (is_cgroup_event(event))
1882 perf_cgroup_set_shadow_time(event, tstamp);
1883 else
1884 event->shadow_ctx_time = tstamp - ctx->timestamp;
1885}
1886
4fe757dd
PZ
1887#define MAX_INTERRUPTS (~0ULL)
1888
1889static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1890static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1891
235c7fc7 1892static int
9ffcfa6f 1893event_sched_in(struct perf_event *event,
235c7fc7 1894 struct perf_cpu_context *cpuctx,
6e37738a 1895 struct perf_event_context *ctx)
235c7fc7 1896{
4158755d 1897 u64 tstamp = perf_event_time(event);
44377277 1898 int ret = 0;
4158755d 1899
63342411
PZ
1900 lockdep_assert_held(&ctx->lock);
1901
cdd6c482 1902 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1903 return 0;
1904
cdd6c482 1905 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1906 event->oncpu = smp_processor_id();
4fe757dd
PZ
1907
1908 /*
1909 * Unthrottle events, since we scheduled we might have missed several
1910 * ticks already, also for a heavily scheduling task there is little
1911 * guarantee it'll get a tick in a timely manner.
1912 */
1913 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1914 perf_log_throttle(event, 1);
1915 event->hw.interrupts = 0;
1916 }
1917
235c7fc7
IM
1918 /*
1919 * The new state must be visible before we turn it on in the hardware:
1920 */
1921 smp_wmb();
1922
44377277
AS
1923 perf_pmu_disable(event->pmu);
1924
72f669c0
SL
1925 perf_set_shadow_time(event, ctx, tstamp);
1926
ec0d7729
AS
1927 perf_log_itrace_start(event);
1928
a4eaf7f1 1929 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1930 event->state = PERF_EVENT_STATE_INACTIVE;
1931 event->oncpu = -1;
44377277
AS
1932 ret = -EAGAIN;
1933 goto out;
235c7fc7
IM
1934 }
1935
00a2916f
PZ
1936 event->tstamp_running += tstamp - event->tstamp_stopped;
1937
cdd6c482 1938 if (!is_software_event(event))
3b6f9e5c 1939 cpuctx->active_oncpu++;
2fde4f94
MR
1940 if (!ctx->nr_active++)
1941 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1942 if (event->attr.freq && event->attr.sample_freq)
1943 ctx->nr_freq++;
235c7fc7 1944
cdd6c482 1945 if (event->attr.exclusive)
3b6f9e5c
PM
1946 cpuctx->exclusive = 1;
1947
44377277
AS
1948out:
1949 perf_pmu_enable(event->pmu);
1950
1951 return ret;
235c7fc7
IM
1952}
1953
6751b71e 1954static int
cdd6c482 1955group_sched_in(struct perf_event *group_event,
6751b71e 1956 struct perf_cpu_context *cpuctx,
6e37738a 1957 struct perf_event_context *ctx)
6751b71e 1958{
6bde9b6c 1959 struct perf_event *event, *partial_group = NULL;
4a234593 1960 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1961 u64 now = ctx->time;
1962 bool simulate = false;
6751b71e 1963
cdd6c482 1964 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1965 return 0;
1966
fbbe0701 1967 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1968
9ffcfa6f 1969 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1970 pmu->cancel_txn(pmu);
272325c4 1971 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1972 return -EAGAIN;
90151c35 1973 }
6751b71e
PM
1974
1975 /*
1976 * Schedule in siblings as one group (if any):
1977 */
cdd6c482 1978 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1979 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1980 partial_group = event;
6751b71e
PM
1981 goto group_error;
1982 }
1983 }
1984
9ffcfa6f 1985 if (!pmu->commit_txn(pmu))
6e85158c 1986 return 0;
9ffcfa6f 1987
6751b71e
PM
1988group_error:
1989 /*
1990 * Groups can be scheduled in as one unit only, so undo any
1991 * partial group before returning:
d7842da4
SE
1992 * The events up to the failed event are scheduled out normally,
1993 * tstamp_stopped will be updated.
1994 *
1995 * The failed events and the remaining siblings need to have
1996 * their timings updated as if they had gone thru event_sched_in()
1997 * and event_sched_out(). This is required to get consistent timings
1998 * across the group. This also takes care of the case where the group
1999 * could never be scheduled by ensuring tstamp_stopped is set to mark
2000 * the time the event was actually stopped, such that time delta
2001 * calculation in update_event_times() is correct.
6751b71e 2002 */
cdd6c482
IM
2003 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2004 if (event == partial_group)
d7842da4
SE
2005 simulate = true;
2006
2007 if (simulate) {
2008 event->tstamp_running += now - event->tstamp_stopped;
2009 event->tstamp_stopped = now;
2010 } else {
2011 event_sched_out(event, cpuctx, ctx);
2012 }
6751b71e 2013 }
9ffcfa6f 2014 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2015
ad5133b7 2016 pmu->cancel_txn(pmu);
90151c35 2017
272325c4 2018 perf_mux_hrtimer_restart(cpuctx);
9e630205 2019
6751b71e
PM
2020 return -EAGAIN;
2021}
2022
3b6f9e5c 2023/*
cdd6c482 2024 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2025 */
cdd6c482 2026static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2027 struct perf_cpu_context *cpuctx,
2028 int can_add_hw)
2029{
2030 /*
cdd6c482 2031 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2032 */
d6f962b5 2033 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2034 return 1;
2035 /*
2036 * If an exclusive group is already on, no other hardware
cdd6c482 2037 * events can go on.
3b6f9e5c
PM
2038 */
2039 if (cpuctx->exclusive)
2040 return 0;
2041 /*
2042 * If this group is exclusive and there are already
cdd6c482 2043 * events on the CPU, it can't go on.
3b6f9e5c 2044 */
cdd6c482 2045 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2046 return 0;
2047 /*
2048 * Otherwise, try to add it if all previous groups were able
2049 * to go on.
2050 */
2051 return can_add_hw;
2052}
2053
cdd6c482
IM
2054static void add_event_to_ctx(struct perf_event *event,
2055 struct perf_event_context *ctx)
53cfbf59 2056{
4158755d
SE
2057 u64 tstamp = perf_event_time(event);
2058
cdd6c482 2059 list_add_event(event, ctx);
8a49542c 2060 perf_group_attach(event);
4158755d
SE
2061 event->tstamp_enabled = tstamp;
2062 event->tstamp_running = tstamp;
2063 event->tstamp_stopped = tstamp;
53cfbf59
PM
2064}
2065
3e349507
PZ
2066static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2067 struct perf_event_context *ctx);
2c29ef0f
PZ
2068static void
2069ctx_sched_in(struct perf_event_context *ctx,
2070 struct perf_cpu_context *cpuctx,
2071 enum event_type_t event_type,
2072 struct task_struct *task);
fe4b04fa 2073
dce5855b
PZ
2074static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2075 struct perf_event_context *ctx,
2076 struct task_struct *task)
2077{
2078 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2079 if (ctx)
2080 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2081 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2082 if (ctx)
2083 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2084}
2085
3e349507
PZ
2086static void ctx_resched(struct perf_cpu_context *cpuctx,
2087 struct perf_event_context *task_ctx)
0017960f 2088{
3e349507
PZ
2089 perf_pmu_disable(cpuctx->ctx.pmu);
2090 if (task_ctx)
2091 task_ctx_sched_out(cpuctx, task_ctx);
2092 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2093 perf_event_sched_in(cpuctx, task_ctx, current);
2094 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2095}
2096
0793a61d 2097/*
cdd6c482 2098 * Cross CPU call to install and enable a performance event
682076ae
PZ
2099 *
2100 * Must be called with ctx->mutex held
0793a61d 2101 */
fe4b04fa 2102static int __perf_install_in_context(void *info)
0793a61d 2103{
39a43640 2104 struct perf_event_context *ctx = info;
108b02cf 2105 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2106 struct perf_event_context *task_ctx = cpuctx->task_ctx;
0793a61d 2107
63b6da39 2108 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2109 if (ctx->task) {
b58f6b0d 2110 raw_spin_lock(&ctx->lock);
39a43640
PZ
2111 /*
2112 * If we hit the 'wrong' task, we've since scheduled and
2113 * everything should be sorted, nothing to do!
2114 */
b58f6b0d 2115 task_ctx = ctx;
39a43640 2116 if (ctx->task != current)
63b6da39 2117 goto unlock;
b58f6b0d 2118
39a43640
PZ
2119 /*
2120 * If task_ctx is set, it had better be to us.
2121 */
2122 WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
63b6da39
PZ
2123 } else if (task_ctx) {
2124 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2125 }
b58f6b0d 2126
39a43640 2127 ctx_resched(cpuctx, task_ctx);
63b6da39 2128unlock:
2c29ef0f 2129 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2130
2131 return 0;
0793a61d
TG
2132}
2133
2134/*
cdd6c482 2135 * Attach a performance event to a context
0793a61d
TG
2136 */
2137static void
cdd6c482
IM
2138perf_install_in_context(struct perf_event_context *ctx,
2139 struct perf_event *event,
0793a61d
TG
2140 int cpu)
2141{
39a43640
PZ
2142 struct task_struct *task = NULL;
2143
fe4b04fa
PZ
2144 lockdep_assert_held(&ctx->mutex);
2145
c3f00c70 2146 event->ctx = ctx;
0cda4c02
YZ
2147 if (event->cpu != -1)
2148 event->cpu = cpu;
c3f00c70 2149
39a43640
PZ
2150 /*
2151 * Installing events is tricky because we cannot rely on ctx->is_active
2152 * to be set in case this is the nr_events 0 -> 1 transition.
2153 *
2154 * So what we do is we add the event to the list here, which will allow
2155 * a future context switch to DTRT and then send a racy IPI. If the IPI
2156 * fails to hit the right task, this means a context switch must have
2157 * happened and that will have taken care of business.
2158 */
2159 raw_spin_lock_irq(&ctx->lock);
63b6da39 2160 task = ctx->task;
84c4e620 2161
63b6da39 2162 /*
84c4e620
PZ
2163 * If between ctx = find_get_context() and mutex_lock(&ctx->mutex) the
2164 * ctx gets destroyed, we must not install an event into it.
2165 *
2166 * This is normally tested for after we acquire the mutex, so this is
2167 * a sanity check.
63b6da39 2168 */
84c4e620 2169 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
63b6da39
PZ
2170 raw_spin_unlock_irq(&ctx->lock);
2171 return;
2172 }
39a43640
PZ
2173 update_context_time(ctx);
2174 /*
2175 * Update cgrp time only if current cgrp matches event->cgrp.
2176 * Must be done before calling add_event_to_ctx().
2177 */
2178 update_cgrp_time_from_event(event);
2179 add_event_to_ctx(event, ctx);
39a43640
PZ
2180 raw_spin_unlock_irq(&ctx->lock);
2181
2182 if (task)
2183 task_function_call(task, __perf_install_in_context, ctx);
2184 else
2185 cpu_function_call(cpu, __perf_install_in_context, ctx);
0793a61d
TG
2186}
2187
fa289bec 2188/*
cdd6c482 2189 * Put a event into inactive state and update time fields.
fa289bec
PM
2190 * Enabling the leader of a group effectively enables all
2191 * the group members that aren't explicitly disabled, so we
2192 * have to update their ->tstamp_enabled also.
2193 * Note: this works for group members as well as group leaders
2194 * since the non-leader members' sibling_lists will be empty.
2195 */
1d9b482e 2196static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2197{
cdd6c482 2198 struct perf_event *sub;
4158755d 2199 u64 tstamp = perf_event_time(event);
fa289bec 2200
cdd6c482 2201 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2202 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2203 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2204 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2205 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2206 }
fa289bec
PM
2207}
2208
d859e29f 2209/*
cdd6c482 2210 * Cross CPU call to enable a performance event
d859e29f 2211 */
fae3fde6
PZ
2212static void __perf_event_enable(struct perf_event *event,
2213 struct perf_cpu_context *cpuctx,
2214 struct perf_event_context *ctx,
2215 void *info)
04289bb9 2216{
cdd6c482 2217 struct perf_event *leader = event->group_leader;
fae3fde6 2218 struct perf_event_context *task_ctx;
04289bb9 2219
6e801e01
PZ
2220 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2221 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2222 return;
3cbed429 2223
4af4998b 2224 update_context_time(ctx);
1d9b482e 2225 __perf_event_mark_enabled(event);
04289bb9 2226
fae3fde6
PZ
2227 if (!ctx->is_active)
2228 return;
2229
e5d1367f 2230 if (!event_filter_match(event)) {
fae3fde6
PZ
2231 if (is_cgroup_event(event)) {
2232 perf_cgroup_set_timestamp(current, ctx); // XXX ?
e5d1367f 2233 perf_cgroup_defer_enabled(event);
fae3fde6
PZ
2234 }
2235 return;
e5d1367f 2236 }
f4c4176f 2237
04289bb9 2238 /*
cdd6c482 2239 * If the event is in a group and isn't the group leader,
d859e29f 2240 * then don't put it on unless the group is on.
04289bb9 2241 */
cdd6c482 2242 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
fae3fde6 2243 return;
fe4b04fa 2244
fae3fde6
PZ
2245 task_ctx = cpuctx->task_ctx;
2246 if (ctx->task)
2247 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2248
fae3fde6 2249 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2250}
2251
d859e29f 2252/*
cdd6c482 2253 * Enable a event.
c93f7669 2254 *
cdd6c482
IM
2255 * If event->ctx is a cloned context, callers must make sure that
2256 * every task struct that event->ctx->task could possibly point to
c93f7669 2257 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2258 * perf_event_for_each_child or perf_event_for_each as described
2259 * for perf_event_disable.
d859e29f 2260 */
f63a8daa 2261static void _perf_event_enable(struct perf_event *event)
d859e29f 2262{
cdd6c482 2263 struct perf_event_context *ctx = event->ctx;
d859e29f 2264
7b648018 2265 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2266 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2267 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2268 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2269 return;
2270 }
2271
d859e29f 2272 /*
cdd6c482 2273 * If the event is in error state, clear that first.
7b648018
PZ
2274 *
2275 * That way, if we see the event in error state below, we know that it
2276 * has gone back into error state, as distinct from the task having
2277 * been scheduled away before the cross-call arrived.
d859e29f 2278 */
cdd6c482
IM
2279 if (event->state == PERF_EVENT_STATE_ERROR)
2280 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2281 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2282
fae3fde6 2283 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2284}
f63a8daa
PZ
2285
2286/*
2287 * See perf_event_disable();
2288 */
2289void perf_event_enable(struct perf_event *event)
2290{
2291 struct perf_event_context *ctx;
2292
2293 ctx = perf_event_ctx_lock(event);
2294 _perf_event_enable(event);
2295 perf_event_ctx_unlock(event, ctx);
2296}
dcfce4a0 2297EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2298
f63a8daa 2299static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2300{
2023b359 2301 /*
cdd6c482 2302 * not supported on inherited events
2023b359 2303 */
2e939d1d 2304 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2305 return -EINVAL;
2306
cdd6c482 2307 atomic_add(refresh, &event->event_limit);
f63a8daa 2308 _perf_event_enable(event);
2023b359
PZ
2309
2310 return 0;
79f14641 2311}
f63a8daa
PZ
2312
2313/*
2314 * See perf_event_disable()
2315 */
2316int perf_event_refresh(struct perf_event *event, int refresh)
2317{
2318 struct perf_event_context *ctx;
2319 int ret;
2320
2321 ctx = perf_event_ctx_lock(event);
2322 ret = _perf_event_refresh(event, refresh);
2323 perf_event_ctx_unlock(event, ctx);
2324
2325 return ret;
2326}
26ca5c11 2327EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2328
5b0311e1
FW
2329static void ctx_sched_out(struct perf_event_context *ctx,
2330 struct perf_cpu_context *cpuctx,
2331 enum event_type_t event_type)
235c7fc7 2332{
db24d33e 2333 int is_active = ctx->is_active;
c994d613 2334 struct perf_event *event;
235c7fc7 2335
c994d613 2336 lockdep_assert_held(&ctx->lock);
235c7fc7 2337
39a43640
PZ
2338 if (likely(!ctx->nr_events)) {
2339 /*
2340 * See __perf_remove_from_context().
2341 */
2342 WARN_ON_ONCE(ctx->is_active);
2343 if (ctx->task)
2344 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2345 return;
39a43640
PZ
2346 }
2347
db24d33e 2348 ctx->is_active &= ~event_type;
63e30d3e
PZ
2349 if (ctx->task) {
2350 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2351 if (!ctx->is_active)
2352 cpuctx->task_ctx = NULL;
2353 }
facc4307 2354
4af4998b 2355 update_context_time(ctx);
e5d1367f 2356 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2357 if (!ctx->nr_active)
facc4307 2358 return;
5b0311e1 2359
075e0b00 2360 perf_pmu_disable(ctx->pmu);
db24d33e 2361 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2362 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2363 group_sched_out(event, cpuctx, ctx);
9ed6060d 2364 }
889ff015 2365
db24d33e 2366 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2367 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2368 group_sched_out(event, cpuctx, ctx);
9ed6060d 2369 }
1b9a644f 2370 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2371}
2372
564c2b21 2373/*
5a3126d4
PZ
2374 * Test whether two contexts are equivalent, i.e. whether they have both been
2375 * cloned from the same version of the same context.
2376 *
2377 * Equivalence is measured using a generation number in the context that is
2378 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2379 * and list_del_event().
564c2b21 2380 */
cdd6c482
IM
2381static int context_equiv(struct perf_event_context *ctx1,
2382 struct perf_event_context *ctx2)
564c2b21 2383{
211de6eb
PZ
2384 lockdep_assert_held(&ctx1->lock);
2385 lockdep_assert_held(&ctx2->lock);
2386
5a3126d4
PZ
2387 /* Pinning disables the swap optimization */
2388 if (ctx1->pin_count || ctx2->pin_count)
2389 return 0;
2390
2391 /* If ctx1 is the parent of ctx2 */
2392 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2393 return 1;
2394
2395 /* If ctx2 is the parent of ctx1 */
2396 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2397 return 1;
2398
2399 /*
2400 * If ctx1 and ctx2 have the same parent; we flatten the parent
2401 * hierarchy, see perf_event_init_context().
2402 */
2403 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2404 ctx1->parent_gen == ctx2->parent_gen)
2405 return 1;
2406
2407 /* Unmatched */
2408 return 0;
564c2b21
PM
2409}
2410
cdd6c482
IM
2411static void __perf_event_sync_stat(struct perf_event *event,
2412 struct perf_event *next_event)
bfbd3381
PZ
2413{
2414 u64 value;
2415
cdd6c482 2416 if (!event->attr.inherit_stat)
bfbd3381
PZ
2417 return;
2418
2419 /*
cdd6c482 2420 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2421 * because we're in the middle of a context switch and have IRQs
2422 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2423 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2424 * don't need to use it.
2425 */
cdd6c482
IM
2426 switch (event->state) {
2427 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2428 event->pmu->read(event);
2429 /* fall-through */
bfbd3381 2430
cdd6c482
IM
2431 case PERF_EVENT_STATE_INACTIVE:
2432 update_event_times(event);
bfbd3381
PZ
2433 break;
2434
2435 default:
2436 break;
2437 }
2438
2439 /*
cdd6c482 2440 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2441 * values when we flip the contexts.
2442 */
e7850595
PZ
2443 value = local64_read(&next_event->count);
2444 value = local64_xchg(&event->count, value);
2445 local64_set(&next_event->count, value);
bfbd3381 2446
cdd6c482
IM
2447 swap(event->total_time_enabled, next_event->total_time_enabled);
2448 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2449
bfbd3381 2450 /*
19d2e755 2451 * Since we swizzled the values, update the user visible data too.
bfbd3381 2452 */
cdd6c482
IM
2453 perf_event_update_userpage(event);
2454 perf_event_update_userpage(next_event);
bfbd3381
PZ
2455}
2456
cdd6c482
IM
2457static void perf_event_sync_stat(struct perf_event_context *ctx,
2458 struct perf_event_context *next_ctx)
bfbd3381 2459{
cdd6c482 2460 struct perf_event *event, *next_event;
bfbd3381
PZ
2461
2462 if (!ctx->nr_stat)
2463 return;
2464
02ffdbc8
PZ
2465 update_context_time(ctx);
2466
cdd6c482
IM
2467 event = list_first_entry(&ctx->event_list,
2468 struct perf_event, event_entry);
bfbd3381 2469
cdd6c482
IM
2470 next_event = list_first_entry(&next_ctx->event_list,
2471 struct perf_event, event_entry);
bfbd3381 2472
cdd6c482
IM
2473 while (&event->event_entry != &ctx->event_list &&
2474 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2475
cdd6c482 2476 __perf_event_sync_stat(event, next_event);
bfbd3381 2477
cdd6c482
IM
2478 event = list_next_entry(event, event_entry);
2479 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2480 }
2481}
2482
fe4b04fa
PZ
2483static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2484 struct task_struct *next)
0793a61d 2485{
8dc85d54 2486 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2487 struct perf_event_context *next_ctx;
5a3126d4 2488 struct perf_event_context *parent, *next_parent;
108b02cf 2489 struct perf_cpu_context *cpuctx;
c93f7669 2490 int do_switch = 1;
0793a61d 2491
108b02cf
PZ
2492 if (likely(!ctx))
2493 return;
10989fb2 2494
108b02cf
PZ
2495 cpuctx = __get_cpu_context(ctx);
2496 if (!cpuctx->task_ctx)
0793a61d
TG
2497 return;
2498
c93f7669 2499 rcu_read_lock();
8dc85d54 2500 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2501 if (!next_ctx)
2502 goto unlock;
2503
2504 parent = rcu_dereference(ctx->parent_ctx);
2505 next_parent = rcu_dereference(next_ctx->parent_ctx);
2506
2507 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2508 if (!parent && !next_parent)
5a3126d4
PZ
2509 goto unlock;
2510
2511 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2512 /*
2513 * Looks like the two contexts are clones, so we might be
2514 * able to optimize the context switch. We lock both
2515 * contexts and check that they are clones under the
2516 * lock (including re-checking that neither has been
2517 * uncloned in the meantime). It doesn't matter which
2518 * order we take the locks because no other cpu could
2519 * be trying to lock both of these tasks.
2520 */
e625cce1
TG
2521 raw_spin_lock(&ctx->lock);
2522 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2523 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2524 WRITE_ONCE(ctx->task, next);
2525 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2526
2527 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2528
63b6da39
PZ
2529 /*
2530 * RCU_INIT_POINTER here is safe because we've not
2531 * modified the ctx and the above modification of
2532 * ctx->task and ctx->task_ctx_data are immaterial
2533 * since those values are always verified under
2534 * ctx->lock which we're now holding.
2535 */
2536 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2537 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2538
c93f7669 2539 do_switch = 0;
bfbd3381 2540
cdd6c482 2541 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2542 }
e625cce1
TG
2543 raw_spin_unlock(&next_ctx->lock);
2544 raw_spin_unlock(&ctx->lock);
564c2b21 2545 }
5a3126d4 2546unlock:
c93f7669 2547 rcu_read_unlock();
564c2b21 2548
c93f7669 2549 if (do_switch) {
facc4307 2550 raw_spin_lock(&ctx->lock);
8833d0e2 2551 task_ctx_sched_out(cpuctx, ctx);
facc4307 2552 raw_spin_unlock(&ctx->lock);
c93f7669 2553 }
0793a61d
TG
2554}
2555
ba532500
YZ
2556void perf_sched_cb_dec(struct pmu *pmu)
2557{
2558 this_cpu_dec(perf_sched_cb_usages);
2559}
2560
2561void perf_sched_cb_inc(struct pmu *pmu)
2562{
2563 this_cpu_inc(perf_sched_cb_usages);
2564}
2565
2566/*
2567 * This function provides the context switch callback to the lower code
2568 * layer. It is invoked ONLY when the context switch callback is enabled.
2569 */
2570static void perf_pmu_sched_task(struct task_struct *prev,
2571 struct task_struct *next,
2572 bool sched_in)
2573{
2574 struct perf_cpu_context *cpuctx;
2575 struct pmu *pmu;
2576 unsigned long flags;
2577
2578 if (prev == next)
2579 return;
2580
2581 local_irq_save(flags);
2582
2583 rcu_read_lock();
2584
2585 list_for_each_entry_rcu(pmu, &pmus, entry) {
2586 if (pmu->sched_task) {
2587 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2588
2589 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2590
2591 perf_pmu_disable(pmu);
2592
2593 pmu->sched_task(cpuctx->task_ctx, sched_in);
2594
2595 perf_pmu_enable(pmu);
2596
2597 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2598 }
2599 }
2600
2601 rcu_read_unlock();
2602
2603 local_irq_restore(flags);
2604}
2605
45ac1403
AH
2606static void perf_event_switch(struct task_struct *task,
2607 struct task_struct *next_prev, bool sched_in);
2608
8dc85d54
PZ
2609#define for_each_task_context_nr(ctxn) \
2610 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2611
2612/*
2613 * Called from scheduler to remove the events of the current task,
2614 * with interrupts disabled.
2615 *
2616 * We stop each event and update the event value in event->count.
2617 *
2618 * This does not protect us against NMI, but disable()
2619 * sets the disabled bit in the control field of event _before_
2620 * accessing the event control register. If a NMI hits, then it will
2621 * not restart the event.
2622 */
ab0cce56
JO
2623void __perf_event_task_sched_out(struct task_struct *task,
2624 struct task_struct *next)
8dc85d54
PZ
2625{
2626 int ctxn;
2627
ba532500
YZ
2628 if (__this_cpu_read(perf_sched_cb_usages))
2629 perf_pmu_sched_task(task, next, false);
2630
45ac1403
AH
2631 if (atomic_read(&nr_switch_events))
2632 perf_event_switch(task, next, false);
2633
8dc85d54
PZ
2634 for_each_task_context_nr(ctxn)
2635 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2636
2637 /*
2638 * if cgroup events exist on this CPU, then we need
2639 * to check if we have to switch out PMU state.
2640 * cgroup event are system-wide mode only
2641 */
4a32fea9 2642 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2643 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2644}
2645
3e349507
PZ
2646static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2647 struct perf_event_context *ctx)
a08b159f 2648{
a63eaf34
PM
2649 if (!cpuctx->task_ctx)
2650 return;
012b84da
IM
2651
2652 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2653 return;
2654
04dc2dbb 2655 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2656}
2657
5b0311e1
FW
2658/*
2659 * Called with IRQs disabled
2660 */
2661static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2662 enum event_type_t event_type)
2663{
2664 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2665}
2666
235c7fc7 2667static void
5b0311e1 2668ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2669 struct perf_cpu_context *cpuctx)
0793a61d 2670{
cdd6c482 2671 struct perf_event *event;
0793a61d 2672
889ff015
FW
2673 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2674 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2675 continue;
5632ab12 2676 if (!event_filter_match(event))
3b6f9e5c
PM
2677 continue;
2678
e5d1367f
SE
2679 /* may need to reset tstamp_enabled */
2680 if (is_cgroup_event(event))
2681 perf_cgroup_mark_enabled(event, ctx);
2682
8c9ed8e1 2683 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2684 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2685
2686 /*
2687 * If this pinned group hasn't been scheduled,
2688 * put it in error state.
2689 */
cdd6c482
IM
2690 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2691 update_group_times(event);
2692 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2693 }
3b6f9e5c 2694 }
5b0311e1
FW
2695}
2696
2697static void
2698ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2699 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2700{
2701 struct perf_event *event;
2702 int can_add_hw = 1;
3b6f9e5c 2703
889ff015
FW
2704 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2705 /* Ignore events in OFF or ERROR state */
2706 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2707 continue;
04289bb9
IM
2708 /*
2709 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2710 * of events:
04289bb9 2711 */
5632ab12 2712 if (!event_filter_match(event))
0793a61d
TG
2713 continue;
2714
e5d1367f
SE
2715 /* may need to reset tstamp_enabled */
2716 if (is_cgroup_event(event))
2717 perf_cgroup_mark_enabled(event, ctx);
2718
9ed6060d 2719 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2720 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2721 can_add_hw = 0;
9ed6060d 2722 }
0793a61d 2723 }
5b0311e1
FW
2724}
2725
2726static void
2727ctx_sched_in(struct perf_event_context *ctx,
2728 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2729 enum event_type_t event_type,
2730 struct task_struct *task)
5b0311e1 2731{
db24d33e 2732 int is_active = ctx->is_active;
c994d613
PZ
2733 u64 now;
2734
2735 lockdep_assert_held(&ctx->lock);
e5d1367f 2736
5b0311e1 2737 if (likely(!ctx->nr_events))
facc4307 2738 return;
5b0311e1 2739
db24d33e 2740 ctx->is_active |= event_type;
63e30d3e
PZ
2741 if (ctx->task) {
2742 if (!is_active)
2743 cpuctx->task_ctx = ctx;
2744 else
2745 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2746 }
2747
e5d1367f
SE
2748 now = perf_clock();
2749 ctx->timestamp = now;
3f7cce3c 2750 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2751 /*
2752 * First go through the list and put on any pinned groups
2753 * in order to give them the best chance of going on.
2754 */
db24d33e 2755 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2756 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2757
2758 /* Then walk through the lower prio flexible groups */
db24d33e 2759 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2760 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2761}
2762
329c0e01 2763static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2764 enum event_type_t event_type,
2765 struct task_struct *task)
329c0e01
FW
2766{
2767 struct perf_event_context *ctx = &cpuctx->ctx;
2768
e5d1367f 2769 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2770}
2771
e5d1367f
SE
2772static void perf_event_context_sched_in(struct perf_event_context *ctx,
2773 struct task_struct *task)
235c7fc7 2774{
108b02cf 2775 struct perf_cpu_context *cpuctx;
235c7fc7 2776
108b02cf 2777 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2778 if (cpuctx->task_ctx == ctx)
2779 return;
2780
facc4307 2781 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2782 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2783 /*
2784 * We want to keep the following priority order:
2785 * cpu pinned (that don't need to move), task pinned,
2786 * cpu flexible, task flexible.
2787 */
2788 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 2789 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
2790 perf_pmu_enable(ctx->pmu);
2791 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2792}
2793
8dc85d54
PZ
2794/*
2795 * Called from scheduler to add the events of the current task
2796 * with interrupts disabled.
2797 *
2798 * We restore the event value and then enable it.
2799 *
2800 * This does not protect us against NMI, but enable()
2801 * sets the enabled bit in the control field of event _before_
2802 * accessing the event control register. If a NMI hits, then it will
2803 * keep the event running.
2804 */
ab0cce56
JO
2805void __perf_event_task_sched_in(struct task_struct *prev,
2806 struct task_struct *task)
8dc85d54
PZ
2807{
2808 struct perf_event_context *ctx;
2809 int ctxn;
2810
7e41d177
PZ
2811 /*
2812 * If cgroup events exist on this CPU, then we need to check if we have
2813 * to switch in PMU state; cgroup event are system-wide mode only.
2814 *
2815 * Since cgroup events are CPU events, we must schedule these in before
2816 * we schedule in the task events.
2817 */
2818 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2819 perf_cgroup_sched_in(prev, task);
2820
8dc85d54
PZ
2821 for_each_task_context_nr(ctxn) {
2822 ctx = task->perf_event_ctxp[ctxn];
2823 if (likely(!ctx))
2824 continue;
2825
e5d1367f 2826 perf_event_context_sched_in(ctx, task);
8dc85d54 2827 }
d010b332 2828
45ac1403
AH
2829 if (atomic_read(&nr_switch_events))
2830 perf_event_switch(task, prev, true);
2831
ba532500
YZ
2832 if (__this_cpu_read(perf_sched_cb_usages))
2833 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2834}
2835
abd50713
PZ
2836static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2837{
2838 u64 frequency = event->attr.sample_freq;
2839 u64 sec = NSEC_PER_SEC;
2840 u64 divisor, dividend;
2841
2842 int count_fls, nsec_fls, frequency_fls, sec_fls;
2843
2844 count_fls = fls64(count);
2845 nsec_fls = fls64(nsec);
2846 frequency_fls = fls64(frequency);
2847 sec_fls = 30;
2848
2849 /*
2850 * We got @count in @nsec, with a target of sample_freq HZ
2851 * the target period becomes:
2852 *
2853 * @count * 10^9
2854 * period = -------------------
2855 * @nsec * sample_freq
2856 *
2857 */
2858
2859 /*
2860 * Reduce accuracy by one bit such that @a and @b converge
2861 * to a similar magnitude.
2862 */
fe4b04fa 2863#define REDUCE_FLS(a, b) \
abd50713
PZ
2864do { \
2865 if (a##_fls > b##_fls) { \
2866 a >>= 1; \
2867 a##_fls--; \
2868 } else { \
2869 b >>= 1; \
2870 b##_fls--; \
2871 } \
2872} while (0)
2873
2874 /*
2875 * Reduce accuracy until either term fits in a u64, then proceed with
2876 * the other, so that finally we can do a u64/u64 division.
2877 */
2878 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2879 REDUCE_FLS(nsec, frequency);
2880 REDUCE_FLS(sec, count);
2881 }
2882
2883 if (count_fls + sec_fls > 64) {
2884 divisor = nsec * frequency;
2885
2886 while (count_fls + sec_fls > 64) {
2887 REDUCE_FLS(count, sec);
2888 divisor >>= 1;
2889 }
2890
2891 dividend = count * sec;
2892 } else {
2893 dividend = count * sec;
2894
2895 while (nsec_fls + frequency_fls > 64) {
2896 REDUCE_FLS(nsec, frequency);
2897 dividend >>= 1;
2898 }
2899
2900 divisor = nsec * frequency;
2901 }
2902
f6ab91ad
PZ
2903 if (!divisor)
2904 return dividend;
2905
abd50713
PZ
2906 return div64_u64(dividend, divisor);
2907}
2908
e050e3f0
SE
2909static DEFINE_PER_CPU(int, perf_throttled_count);
2910static DEFINE_PER_CPU(u64, perf_throttled_seq);
2911
f39d47ff 2912static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2913{
cdd6c482 2914 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2915 s64 period, sample_period;
bd2b5b12
PZ
2916 s64 delta;
2917
abd50713 2918 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2919
2920 delta = (s64)(period - hwc->sample_period);
2921 delta = (delta + 7) / 8; /* low pass filter */
2922
2923 sample_period = hwc->sample_period + delta;
2924
2925 if (!sample_period)
2926 sample_period = 1;
2927
bd2b5b12 2928 hwc->sample_period = sample_period;
abd50713 2929
e7850595 2930 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2931 if (disable)
2932 event->pmu->stop(event, PERF_EF_UPDATE);
2933
e7850595 2934 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2935
2936 if (disable)
2937 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2938 }
bd2b5b12
PZ
2939}
2940
e050e3f0
SE
2941/*
2942 * combine freq adjustment with unthrottling to avoid two passes over the
2943 * events. At the same time, make sure, having freq events does not change
2944 * the rate of unthrottling as that would introduce bias.
2945 */
2946static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2947 int needs_unthr)
60db5e09 2948{
cdd6c482
IM
2949 struct perf_event *event;
2950 struct hw_perf_event *hwc;
e050e3f0 2951 u64 now, period = TICK_NSEC;
abd50713 2952 s64 delta;
60db5e09 2953
e050e3f0
SE
2954 /*
2955 * only need to iterate over all events iff:
2956 * - context have events in frequency mode (needs freq adjust)
2957 * - there are events to unthrottle on this cpu
2958 */
2959 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2960 return;
2961
e050e3f0 2962 raw_spin_lock(&ctx->lock);
f39d47ff 2963 perf_pmu_disable(ctx->pmu);
e050e3f0 2964
03541f8b 2965 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2966 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2967 continue;
2968
5632ab12 2969 if (!event_filter_match(event))
5d27c23d
PZ
2970 continue;
2971
44377277
AS
2972 perf_pmu_disable(event->pmu);
2973
cdd6c482 2974 hwc = &event->hw;
6a24ed6c 2975
ae23bff1 2976 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2977 hwc->interrupts = 0;
cdd6c482 2978 perf_log_throttle(event, 1);
a4eaf7f1 2979 event->pmu->start(event, 0);
a78ac325
PZ
2980 }
2981
cdd6c482 2982 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2983 goto next;
60db5e09 2984
e050e3f0
SE
2985 /*
2986 * stop the event and update event->count
2987 */
2988 event->pmu->stop(event, PERF_EF_UPDATE);
2989
e7850595 2990 now = local64_read(&event->count);
abd50713
PZ
2991 delta = now - hwc->freq_count_stamp;
2992 hwc->freq_count_stamp = now;
60db5e09 2993
e050e3f0
SE
2994 /*
2995 * restart the event
2996 * reload only if value has changed
f39d47ff
SE
2997 * we have stopped the event so tell that
2998 * to perf_adjust_period() to avoid stopping it
2999 * twice.
e050e3f0 3000 */
abd50713 3001 if (delta > 0)
f39d47ff 3002 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3003
3004 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3005 next:
3006 perf_pmu_enable(event->pmu);
60db5e09 3007 }
e050e3f0 3008
f39d47ff 3009 perf_pmu_enable(ctx->pmu);
e050e3f0 3010 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3011}
3012
235c7fc7 3013/*
cdd6c482 3014 * Round-robin a context's events:
235c7fc7 3015 */
cdd6c482 3016static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3017{
dddd3379
TG
3018 /*
3019 * Rotate the first entry last of non-pinned groups. Rotation might be
3020 * disabled by the inheritance code.
3021 */
3022 if (!ctx->rotate_disable)
3023 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3024}
3025
9e630205 3026static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3027{
8dc85d54 3028 struct perf_event_context *ctx = NULL;
2fde4f94 3029 int rotate = 0;
7fc23a53 3030
b5ab4cd5 3031 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3032 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3033 rotate = 1;
3034 }
235c7fc7 3035
8dc85d54 3036 ctx = cpuctx->task_ctx;
b5ab4cd5 3037 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3038 if (ctx->nr_events != ctx->nr_active)
3039 rotate = 1;
3040 }
9717e6cd 3041
e050e3f0 3042 if (!rotate)
0f5a2601
PZ
3043 goto done;
3044
facc4307 3045 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3046 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3047
e050e3f0
SE
3048 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3049 if (ctx)
3050 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3051
e050e3f0
SE
3052 rotate_ctx(&cpuctx->ctx);
3053 if (ctx)
3054 rotate_ctx(ctx);
235c7fc7 3055
e050e3f0 3056 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3057
0f5a2601
PZ
3058 perf_pmu_enable(cpuctx->ctx.pmu);
3059 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3060done:
9e630205
SE
3061
3062 return rotate;
e9d2b064
PZ
3063}
3064
026249ef
FW
3065#ifdef CONFIG_NO_HZ_FULL
3066bool perf_event_can_stop_tick(void)
3067{
948b26b6 3068 if (atomic_read(&nr_freq_events) ||
d84153d6 3069 __this_cpu_read(perf_throttled_count))
026249ef 3070 return false;
d84153d6
FW
3071 else
3072 return true;
026249ef
FW
3073}
3074#endif
3075
e9d2b064
PZ
3076void perf_event_task_tick(void)
3077{
2fde4f94
MR
3078 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3079 struct perf_event_context *ctx, *tmp;
e050e3f0 3080 int throttled;
b5ab4cd5 3081
e9d2b064
PZ
3082 WARN_ON(!irqs_disabled());
3083
e050e3f0
SE
3084 __this_cpu_inc(perf_throttled_seq);
3085 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3086
2fde4f94 3087 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3088 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3089}
3090
889ff015
FW
3091static int event_enable_on_exec(struct perf_event *event,
3092 struct perf_event_context *ctx)
3093{
3094 if (!event->attr.enable_on_exec)
3095 return 0;
3096
3097 event->attr.enable_on_exec = 0;
3098 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3099 return 0;
3100
1d9b482e 3101 __perf_event_mark_enabled(event);
889ff015
FW
3102
3103 return 1;
3104}
3105
57e7986e 3106/*
cdd6c482 3107 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3108 * This expects task == current.
3109 */
c1274499 3110static void perf_event_enable_on_exec(int ctxn)
57e7986e 3111{
c1274499 3112 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3113 struct perf_cpu_context *cpuctx;
cdd6c482 3114 struct perf_event *event;
57e7986e
PM
3115 unsigned long flags;
3116 int enabled = 0;
3117
3118 local_irq_save(flags);
c1274499 3119 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3120 if (!ctx || !ctx->nr_events)
57e7986e
PM
3121 goto out;
3122
3e349507
PZ
3123 cpuctx = __get_cpu_context(ctx);
3124 perf_ctx_lock(cpuctx, ctx);
3125 list_for_each_entry(event, &ctx->event_list, event_entry)
3126 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3127
3128 /*
3e349507 3129 * Unclone and reschedule this context if we enabled any event.
57e7986e 3130 */
3e349507 3131 if (enabled) {
211de6eb 3132 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3133 ctx_resched(cpuctx, ctx);
3134 }
3135 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3136
9ed6060d 3137out:
57e7986e 3138 local_irq_restore(flags);
211de6eb
PZ
3139
3140 if (clone_ctx)
3141 put_ctx(clone_ctx);
57e7986e
PM
3142}
3143
e041e328
PZ
3144void perf_event_exec(void)
3145{
e041e328
PZ
3146 int ctxn;
3147
3148 rcu_read_lock();
c1274499
PZ
3149 for_each_task_context_nr(ctxn)
3150 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3151 rcu_read_unlock();
3152}
3153
0492d4c5
PZ
3154struct perf_read_data {
3155 struct perf_event *event;
3156 bool group;
7d88962e 3157 int ret;
0492d4c5
PZ
3158};
3159
0793a61d 3160/*
cdd6c482 3161 * Cross CPU call to read the hardware event
0793a61d 3162 */
cdd6c482 3163static void __perf_event_read(void *info)
0793a61d 3164{
0492d4c5
PZ
3165 struct perf_read_data *data = info;
3166 struct perf_event *sub, *event = data->event;
cdd6c482 3167 struct perf_event_context *ctx = event->ctx;
108b02cf 3168 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3169 struct pmu *pmu = event->pmu;
621a01ea 3170
e1ac3614
PM
3171 /*
3172 * If this is a task context, we need to check whether it is
3173 * the current task context of this cpu. If not it has been
3174 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3175 * event->count would have been updated to a recent sample
3176 * when the event was scheduled out.
e1ac3614
PM
3177 */
3178 if (ctx->task && cpuctx->task_ctx != ctx)
3179 return;
3180
e625cce1 3181 raw_spin_lock(&ctx->lock);
e5d1367f 3182 if (ctx->is_active) {
542e72fc 3183 update_context_time(ctx);
e5d1367f
SE
3184 update_cgrp_time_from_event(event);
3185 }
0492d4c5 3186
cdd6c482 3187 update_event_times(event);
4a00c16e
SB
3188 if (event->state != PERF_EVENT_STATE_ACTIVE)
3189 goto unlock;
0492d4c5 3190
4a00c16e
SB
3191 if (!data->group) {
3192 pmu->read(event);
3193 data->ret = 0;
0492d4c5 3194 goto unlock;
4a00c16e
SB
3195 }
3196
3197 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3198
3199 pmu->read(event);
0492d4c5
PZ
3200
3201 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3202 update_event_times(sub);
4a00c16e
SB
3203 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3204 /*
3205 * Use sibling's PMU rather than @event's since
3206 * sibling could be on different (eg: software) PMU.
3207 */
0492d4c5 3208 sub->pmu->read(sub);
4a00c16e 3209 }
0492d4c5 3210 }
4a00c16e
SB
3211
3212 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3213
3214unlock:
e625cce1 3215 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3216}
3217
b5e58793
PZ
3218static inline u64 perf_event_count(struct perf_event *event)
3219{
eacd3ecc
MF
3220 if (event->pmu->count)
3221 return event->pmu->count(event);
3222
3223 return __perf_event_count(event);
b5e58793
PZ
3224}
3225
ffe8690c
KX
3226/*
3227 * NMI-safe method to read a local event, that is an event that
3228 * is:
3229 * - either for the current task, or for this CPU
3230 * - does not have inherit set, for inherited task events
3231 * will not be local and we cannot read them atomically
3232 * - must not have a pmu::count method
3233 */
3234u64 perf_event_read_local(struct perf_event *event)
3235{
3236 unsigned long flags;
3237 u64 val;
3238
3239 /*
3240 * Disabling interrupts avoids all counter scheduling (context
3241 * switches, timer based rotation and IPIs).
3242 */
3243 local_irq_save(flags);
3244
3245 /* If this is a per-task event, it must be for current */
3246 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3247 event->hw.target != current);
3248
3249 /* If this is a per-CPU event, it must be for this CPU */
3250 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3251 event->cpu != smp_processor_id());
3252
3253 /*
3254 * It must not be an event with inherit set, we cannot read
3255 * all child counters from atomic context.
3256 */
3257 WARN_ON_ONCE(event->attr.inherit);
3258
3259 /*
3260 * It must not have a pmu::count method, those are not
3261 * NMI safe.
3262 */
3263 WARN_ON_ONCE(event->pmu->count);
3264
3265 /*
3266 * If the event is currently on this CPU, its either a per-task event,
3267 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3268 * oncpu == -1).
3269 */
3270 if (event->oncpu == smp_processor_id())
3271 event->pmu->read(event);
3272
3273 val = local64_read(&event->count);
3274 local_irq_restore(flags);
3275
3276 return val;
3277}
3278
7d88962e 3279static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3280{
7d88962e
SB
3281 int ret = 0;
3282
0793a61d 3283 /*
cdd6c482
IM
3284 * If event is enabled and currently active on a CPU, update the
3285 * value in the event structure:
0793a61d 3286 */
cdd6c482 3287 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3288 struct perf_read_data data = {
3289 .event = event,
3290 .group = group,
7d88962e 3291 .ret = 0,
0492d4c5 3292 };
cdd6c482 3293 smp_call_function_single(event->oncpu,
0492d4c5 3294 __perf_event_read, &data, 1);
7d88962e 3295 ret = data.ret;
cdd6c482 3296 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3297 struct perf_event_context *ctx = event->ctx;
3298 unsigned long flags;
3299
e625cce1 3300 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3301 /*
3302 * may read while context is not active
3303 * (e.g., thread is blocked), in that case
3304 * we cannot update context time
3305 */
e5d1367f 3306 if (ctx->is_active) {
c530ccd9 3307 update_context_time(ctx);
e5d1367f
SE
3308 update_cgrp_time_from_event(event);
3309 }
0492d4c5
PZ
3310 if (group)
3311 update_group_times(event);
3312 else
3313 update_event_times(event);
e625cce1 3314 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3315 }
7d88962e
SB
3316
3317 return ret;
0793a61d
TG
3318}
3319
a63eaf34 3320/*
cdd6c482 3321 * Initialize the perf_event context in a task_struct:
a63eaf34 3322 */
eb184479 3323static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3324{
e625cce1 3325 raw_spin_lock_init(&ctx->lock);
a63eaf34 3326 mutex_init(&ctx->mutex);
2fde4f94 3327 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3328 INIT_LIST_HEAD(&ctx->pinned_groups);
3329 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3330 INIT_LIST_HEAD(&ctx->event_list);
3331 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3332}
3333
3334static struct perf_event_context *
3335alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3336{
3337 struct perf_event_context *ctx;
3338
3339 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3340 if (!ctx)
3341 return NULL;
3342
3343 __perf_event_init_context(ctx);
3344 if (task) {
3345 ctx->task = task;
3346 get_task_struct(task);
0793a61d 3347 }
eb184479
PZ
3348 ctx->pmu = pmu;
3349
3350 return ctx;
a63eaf34
PM
3351}
3352
2ebd4ffb
MH
3353static struct task_struct *
3354find_lively_task_by_vpid(pid_t vpid)
3355{
3356 struct task_struct *task;
3357 int err;
0793a61d
TG
3358
3359 rcu_read_lock();
2ebd4ffb 3360 if (!vpid)
0793a61d
TG
3361 task = current;
3362 else
2ebd4ffb 3363 task = find_task_by_vpid(vpid);
0793a61d
TG
3364 if (task)
3365 get_task_struct(task);
3366 rcu_read_unlock();
3367
3368 if (!task)
3369 return ERR_PTR(-ESRCH);
3370
0793a61d 3371 /* Reuse ptrace permission checks for now. */
c93f7669 3372 err = -EACCES;
caaee623 3373 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
c93f7669
PM
3374 goto errout;
3375
2ebd4ffb
MH
3376 return task;
3377errout:
3378 put_task_struct(task);
3379 return ERR_PTR(err);
3380
3381}
3382
fe4b04fa
PZ
3383/*
3384 * Returns a matching context with refcount and pincount.
3385 */
108b02cf 3386static struct perf_event_context *
4af57ef2
YZ
3387find_get_context(struct pmu *pmu, struct task_struct *task,
3388 struct perf_event *event)
0793a61d 3389{
211de6eb 3390 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3391 struct perf_cpu_context *cpuctx;
4af57ef2 3392 void *task_ctx_data = NULL;
25346b93 3393 unsigned long flags;
8dc85d54 3394 int ctxn, err;
4af57ef2 3395 int cpu = event->cpu;
0793a61d 3396
22a4ec72 3397 if (!task) {
cdd6c482 3398 /* Must be root to operate on a CPU event: */
0764771d 3399 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3400 return ERR_PTR(-EACCES);
3401
0793a61d 3402 /*
cdd6c482 3403 * We could be clever and allow to attach a event to an
0793a61d
TG
3404 * offline CPU and activate it when the CPU comes up, but
3405 * that's for later.
3406 */
f6325e30 3407 if (!cpu_online(cpu))
0793a61d
TG
3408 return ERR_PTR(-ENODEV);
3409
108b02cf 3410 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3411 ctx = &cpuctx->ctx;
c93f7669 3412 get_ctx(ctx);
fe4b04fa 3413 ++ctx->pin_count;
0793a61d 3414
0793a61d
TG
3415 return ctx;
3416 }
3417
8dc85d54
PZ
3418 err = -EINVAL;
3419 ctxn = pmu->task_ctx_nr;
3420 if (ctxn < 0)
3421 goto errout;
3422
4af57ef2
YZ
3423 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3424 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3425 if (!task_ctx_data) {
3426 err = -ENOMEM;
3427 goto errout;
3428 }
3429 }
3430
9ed6060d 3431retry:
8dc85d54 3432 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3433 if (ctx) {
211de6eb 3434 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3435 ++ctx->pin_count;
4af57ef2
YZ
3436
3437 if (task_ctx_data && !ctx->task_ctx_data) {
3438 ctx->task_ctx_data = task_ctx_data;
3439 task_ctx_data = NULL;
3440 }
e625cce1 3441 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3442
3443 if (clone_ctx)
3444 put_ctx(clone_ctx);
9137fb28 3445 } else {
eb184479 3446 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3447 err = -ENOMEM;
3448 if (!ctx)
3449 goto errout;
eb184479 3450
4af57ef2
YZ
3451 if (task_ctx_data) {
3452 ctx->task_ctx_data = task_ctx_data;
3453 task_ctx_data = NULL;
3454 }
3455
dbe08d82
ON
3456 err = 0;
3457 mutex_lock(&task->perf_event_mutex);
3458 /*
3459 * If it has already passed perf_event_exit_task().
3460 * we must see PF_EXITING, it takes this mutex too.
3461 */
3462 if (task->flags & PF_EXITING)
3463 err = -ESRCH;
3464 else if (task->perf_event_ctxp[ctxn])
3465 err = -EAGAIN;
fe4b04fa 3466 else {
9137fb28 3467 get_ctx(ctx);
fe4b04fa 3468 ++ctx->pin_count;
dbe08d82 3469 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3470 }
dbe08d82
ON
3471 mutex_unlock(&task->perf_event_mutex);
3472
3473 if (unlikely(err)) {
9137fb28 3474 put_ctx(ctx);
dbe08d82
ON
3475
3476 if (err == -EAGAIN)
3477 goto retry;
3478 goto errout;
a63eaf34
PM
3479 }
3480 }
3481
4af57ef2 3482 kfree(task_ctx_data);
0793a61d 3483 return ctx;
c93f7669 3484
9ed6060d 3485errout:
4af57ef2 3486 kfree(task_ctx_data);
c93f7669 3487 return ERR_PTR(err);
0793a61d
TG
3488}
3489
6fb2915d 3490static void perf_event_free_filter(struct perf_event *event);
2541517c 3491static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3492
cdd6c482 3493static void free_event_rcu(struct rcu_head *head)
592903cd 3494{
cdd6c482 3495 struct perf_event *event;
592903cd 3496
cdd6c482
IM
3497 event = container_of(head, struct perf_event, rcu_head);
3498 if (event->ns)
3499 put_pid_ns(event->ns);
6fb2915d 3500 perf_event_free_filter(event);
cdd6c482 3501 kfree(event);
592903cd
PZ
3502}
3503
b69cf536
PZ
3504static void ring_buffer_attach(struct perf_event *event,
3505 struct ring_buffer *rb);
925d519a 3506
4beb31f3 3507static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3508{
4beb31f3
FW
3509 if (event->parent)
3510 return;
3511
4beb31f3
FW
3512 if (is_cgroup_event(event))
3513 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3514}
925d519a 3515
4beb31f3
FW
3516static void unaccount_event(struct perf_event *event)
3517{
25432ae9
PZ
3518 bool dec = false;
3519
4beb31f3
FW
3520 if (event->parent)
3521 return;
3522
3523 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3524 dec = true;
4beb31f3
FW
3525 if (event->attr.mmap || event->attr.mmap_data)
3526 atomic_dec(&nr_mmap_events);
3527 if (event->attr.comm)
3528 atomic_dec(&nr_comm_events);
3529 if (event->attr.task)
3530 atomic_dec(&nr_task_events);
948b26b6
FW
3531 if (event->attr.freq)
3532 atomic_dec(&nr_freq_events);
45ac1403 3533 if (event->attr.context_switch) {
25432ae9 3534 dec = true;
45ac1403
AH
3535 atomic_dec(&nr_switch_events);
3536 }
4beb31f3 3537 if (is_cgroup_event(event))
25432ae9 3538 dec = true;
4beb31f3 3539 if (has_branch_stack(event))
25432ae9
PZ
3540 dec = true;
3541
3542 if (dec)
4beb31f3
FW
3543 static_key_slow_dec_deferred(&perf_sched_events);
3544
3545 unaccount_event_cpu(event, event->cpu);
3546}
925d519a 3547
bed5b25a
AS
3548/*
3549 * The following implement mutual exclusion of events on "exclusive" pmus
3550 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3551 * at a time, so we disallow creating events that might conflict, namely:
3552 *
3553 * 1) cpu-wide events in the presence of per-task events,
3554 * 2) per-task events in the presence of cpu-wide events,
3555 * 3) two matching events on the same context.
3556 *
3557 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3558 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3559 */
3560static int exclusive_event_init(struct perf_event *event)
3561{
3562 struct pmu *pmu = event->pmu;
3563
3564 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3565 return 0;
3566
3567 /*
3568 * Prevent co-existence of per-task and cpu-wide events on the
3569 * same exclusive pmu.
3570 *
3571 * Negative pmu::exclusive_cnt means there are cpu-wide
3572 * events on this "exclusive" pmu, positive means there are
3573 * per-task events.
3574 *
3575 * Since this is called in perf_event_alloc() path, event::ctx
3576 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3577 * to mean "per-task event", because unlike other attach states it
3578 * never gets cleared.
3579 */
3580 if (event->attach_state & PERF_ATTACH_TASK) {
3581 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3582 return -EBUSY;
3583 } else {
3584 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3585 return -EBUSY;
3586 }
3587
3588 return 0;
3589}
3590
3591static void exclusive_event_destroy(struct perf_event *event)
3592{
3593 struct pmu *pmu = event->pmu;
3594
3595 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3596 return;
3597
3598 /* see comment in exclusive_event_init() */
3599 if (event->attach_state & PERF_ATTACH_TASK)
3600 atomic_dec(&pmu->exclusive_cnt);
3601 else
3602 atomic_inc(&pmu->exclusive_cnt);
3603}
3604
3605static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3606{
3607 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3608 (e1->cpu == e2->cpu ||
3609 e1->cpu == -1 ||
3610 e2->cpu == -1))
3611 return true;
3612 return false;
3613}
3614
3615/* Called under the same ctx::mutex as perf_install_in_context() */
3616static bool exclusive_event_installable(struct perf_event *event,
3617 struct perf_event_context *ctx)
3618{
3619 struct perf_event *iter_event;
3620 struct pmu *pmu = event->pmu;
3621
3622 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3623 return true;
3624
3625 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3626 if (exclusive_event_match(iter_event, event))
3627 return false;
3628 }
3629
3630 return true;
3631}
3632
683ede43 3633static void _free_event(struct perf_event *event)
f1600952 3634{
e360adbe 3635 irq_work_sync(&event->pending);
925d519a 3636
4beb31f3 3637 unaccount_event(event);
9ee318a7 3638
76369139 3639 if (event->rb) {
9bb5d40c
PZ
3640 /*
3641 * Can happen when we close an event with re-directed output.
3642 *
3643 * Since we have a 0 refcount, perf_mmap_close() will skip
3644 * over us; possibly making our ring_buffer_put() the last.
3645 */
3646 mutex_lock(&event->mmap_mutex);
b69cf536 3647 ring_buffer_attach(event, NULL);
9bb5d40c 3648 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3649 }
3650
e5d1367f
SE
3651 if (is_cgroup_event(event))
3652 perf_detach_cgroup(event);
3653
a0733e69
PZ
3654 if (!event->parent) {
3655 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3656 put_callchain_buffers();
3657 }
3658
3659 perf_event_free_bpf_prog(event);
3660
3661 if (event->destroy)
3662 event->destroy(event);
3663
3664 if (event->ctx)
3665 put_ctx(event->ctx);
3666
3667 if (event->pmu) {
3668 exclusive_event_destroy(event);
3669 module_put(event->pmu->module);
3670 }
3671
3672 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3673}
3674
683ede43
PZ
3675/*
3676 * Used to free events which have a known refcount of 1, such as in error paths
3677 * where the event isn't exposed yet and inherited events.
3678 */
3679static void free_event(struct perf_event *event)
0793a61d 3680{
683ede43
PZ
3681 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3682 "unexpected event refcount: %ld; ptr=%p\n",
3683 atomic_long_read(&event->refcount), event)) {
3684 /* leak to avoid use-after-free */
3685 return;
3686 }
0793a61d 3687
683ede43 3688 _free_event(event);
0793a61d
TG
3689}
3690
a66a3052 3691/*
f8697762 3692 * Remove user event from the owner task.
a66a3052 3693 */
f8697762 3694static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3695{
8882135b 3696 struct task_struct *owner;
fb0459d7 3697
8882135b 3698 rcu_read_lock();
8882135b 3699 /*
f47c02c0
PZ
3700 * Matches the smp_store_release() in perf_event_exit_task(). If we
3701 * observe !owner it means the list deletion is complete and we can
3702 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
3703 * owner->perf_event_mutex.
3704 */
f47c02c0 3705 owner = lockless_dereference(event->owner);
8882135b
PZ
3706 if (owner) {
3707 /*
3708 * Since delayed_put_task_struct() also drops the last
3709 * task reference we can safely take a new reference
3710 * while holding the rcu_read_lock().
3711 */
3712 get_task_struct(owner);
3713 }
3714 rcu_read_unlock();
3715
3716 if (owner) {
f63a8daa
PZ
3717 /*
3718 * If we're here through perf_event_exit_task() we're already
3719 * holding ctx->mutex which would be an inversion wrt. the
3720 * normal lock order.
3721 *
3722 * However we can safely take this lock because its the child
3723 * ctx->mutex.
3724 */
3725 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3726
8882135b
PZ
3727 /*
3728 * We have to re-check the event->owner field, if it is cleared
3729 * we raced with perf_event_exit_task(), acquiring the mutex
3730 * ensured they're done, and we can proceed with freeing the
3731 * event.
3732 */
f47c02c0 3733 if (event->owner) {
8882135b 3734 list_del_init(&event->owner_entry);
f47c02c0
PZ
3735 smp_store_release(&event->owner, NULL);
3736 }
8882135b
PZ
3737 mutex_unlock(&owner->perf_event_mutex);
3738 put_task_struct(owner);
3739 }
f8697762
JO
3740}
3741
f8697762
JO
3742static void put_event(struct perf_event *event)
3743{
f8697762
JO
3744 if (!atomic_long_dec_and_test(&event->refcount))
3745 return;
3746
c6e5b732
PZ
3747 _free_event(event);
3748}
3749
3750/*
3751 * Kill an event dead; while event:refcount will preserve the event
3752 * object, it will not preserve its functionality. Once the last 'user'
3753 * gives up the object, we'll destroy the thing.
3754 */
3755int perf_event_release_kernel(struct perf_event *event)
3756{
3757 struct perf_event_context *ctx;
3758 struct perf_event *child, *tmp;
3759
f8697762
JO
3760 if (!is_kernel_event(event))
3761 perf_remove_from_owner(event);
8882135b 3762
5fa7c8ec 3763 ctx = perf_event_ctx_lock(event);
a83fe28e 3764 WARN_ON_ONCE(ctx->parent_ctx);
60beda84 3765 perf_remove_from_context(event, DETACH_GROUP | DETACH_STATE);
d415a7f1 3766 perf_event_ctx_unlock(event, ctx);
683ede43 3767
683ede43 3768 /*
60beda84
PZ
3769 * At this point we must have event->state == PERF_EVENT_STATE_EXIT,
3770 * either from the above perf_remove_from_context() or through
3771 * perf_event_exit_event().
683ede43 3772 *
c6e5b732
PZ
3773 * Therefore, anybody acquiring event->child_mutex after the below
3774 * loop _must_ also see this, most importantly inherit_event() which
3775 * will avoid placing more children on the list.
683ede43 3776 *
c6e5b732
PZ
3777 * Thus this guarantees that we will in fact observe and kill _ALL_
3778 * child events.
683ede43 3779 */
60beda84 3780 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_EXIT);
683ede43 3781
c6e5b732
PZ
3782again:
3783 mutex_lock(&event->child_mutex);
3784 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 3785
c6e5b732
PZ
3786 /*
3787 * Cannot change, child events are not migrated, see the
3788 * comment with perf_event_ctx_lock_nested().
3789 */
3790 ctx = lockless_dereference(child->ctx);
3791 /*
3792 * Since child_mutex nests inside ctx::mutex, we must jump
3793 * through hoops. We start by grabbing a reference on the ctx.
3794 *
3795 * Since the event cannot get freed while we hold the
3796 * child_mutex, the context must also exist and have a !0
3797 * reference count.
3798 */
3799 get_ctx(ctx);
3800
3801 /*
3802 * Now that we have a ctx ref, we can drop child_mutex, and
3803 * acquire ctx::mutex without fear of it going away. Then we
3804 * can re-acquire child_mutex.
3805 */
3806 mutex_unlock(&event->child_mutex);
3807 mutex_lock(&ctx->mutex);
3808 mutex_lock(&event->child_mutex);
3809
3810 /*
3811 * Now that we hold ctx::mutex and child_mutex, revalidate our
3812 * state, if child is still the first entry, it didn't get freed
3813 * and we can continue doing so.
3814 */
3815 tmp = list_first_entry_or_null(&event->child_list,
3816 struct perf_event, child_list);
3817 if (tmp == child) {
3818 perf_remove_from_context(child, DETACH_GROUP);
3819 list_del(&child->child_list);
3820 free_event(child);
3821 /*
3822 * This matches the refcount bump in inherit_event();
3823 * this can't be the last reference.
3824 */
3825 put_event(event);
3826 }
3827
3828 mutex_unlock(&event->child_mutex);
3829 mutex_unlock(&ctx->mutex);
3830 put_ctx(ctx);
3831 goto again;
3832 }
3833 mutex_unlock(&event->child_mutex);
3834
3835 /* Must be the last reference */
683ede43
PZ
3836 put_event(event);
3837 return 0;
3838}
3839EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3840
8b10c5e2
PZ
3841/*
3842 * Called when the last reference to the file is gone.
3843 */
a6fa941d
AV
3844static int perf_release(struct inode *inode, struct file *file)
3845{
c6e5b732 3846 perf_event_release_kernel(file->private_data);
a6fa941d 3847 return 0;
fb0459d7 3848}
fb0459d7 3849
59ed446f 3850u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3851{
cdd6c482 3852 struct perf_event *child;
e53c0994
PZ
3853 u64 total = 0;
3854
59ed446f
PZ
3855 *enabled = 0;
3856 *running = 0;
3857
6f10581a 3858 mutex_lock(&event->child_mutex);
01add3ea 3859
7d88962e 3860 (void)perf_event_read(event, false);
01add3ea
SB
3861 total += perf_event_count(event);
3862
59ed446f
PZ
3863 *enabled += event->total_time_enabled +
3864 atomic64_read(&event->child_total_time_enabled);
3865 *running += event->total_time_running +
3866 atomic64_read(&event->child_total_time_running);
3867
3868 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3869 (void)perf_event_read(child, false);
01add3ea 3870 total += perf_event_count(child);
59ed446f
PZ
3871 *enabled += child->total_time_enabled;
3872 *running += child->total_time_running;
3873 }
6f10581a 3874 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3875
3876 return total;
3877}
fb0459d7 3878EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3879
7d88962e 3880static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3881 u64 read_format, u64 *values)
3dab77fb 3882{
fa8c2693
PZ
3883 struct perf_event *sub;
3884 int n = 1; /* skip @nr */
7d88962e 3885 int ret;
f63a8daa 3886
7d88962e
SB
3887 ret = perf_event_read(leader, true);
3888 if (ret)
3889 return ret;
abf4868b 3890
fa8c2693
PZ
3891 /*
3892 * Since we co-schedule groups, {enabled,running} times of siblings
3893 * will be identical to those of the leader, so we only publish one
3894 * set.
3895 */
3896 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3897 values[n++] += leader->total_time_enabled +
3898 atomic64_read(&leader->child_total_time_enabled);
3899 }
3dab77fb 3900
fa8c2693
PZ
3901 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3902 values[n++] += leader->total_time_running +
3903 atomic64_read(&leader->child_total_time_running);
3904 }
3905
3906 /*
3907 * Write {count,id} tuples for every sibling.
3908 */
3909 values[n++] += perf_event_count(leader);
abf4868b
PZ
3910 if (read_format & PERF_FORMAT_ID)
3911 values[n++] = primary_event_id(leader);
3dab77fb 3912
fa8c2693
PZ
3913 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3914 values[n++] += perf_event_count(sub);
3915 if (read_format & PERF_FORMAT_ID)
3916 values[n++] = primary_event_id(sub);
3917 }
7d88962e
SB
3918
3919 return 0;
fa8c2693 3920}
3dab77fb 3921
fa8c2693
PZ
3922static int perf_read_group(struct perf_event *event,
3923 u64 read_format, char __user *buf)
3924{
3925 struct perf_event *leader = event->group_leader, *child;
3926 struct perf_event_context *ctx = leader->ctx;
7d88962e 3927 int ret;
fa8c2693 3928 u64 *values;
3dab77fb 3929
fa8c2693 3930 lockdep_assert_held(&ctx->mutex);
3dab77fb 3931
fa8c2693
PZ
3932 values = kzalloc(event->read_size, GFP_KERNEL);
3933 if (!values)
3934 return -ENOMEM;
3dab77fb 3935
fa8c2693
PZ
3936 values[0] = 1 + leader->nr_siblings;
3937
3938 /*
3939 * By locking the child_mutex of the leader we effectively
3940 * lock the child list of all siblings.. XXX explain how.
3941 */
3942 mutex_lock(&leader->child_mutex);
abf4868b 3943
7d88962e
SB
3944 ret = __perf_read_group_add(leader, read_format, values);
3945 if (ret)
3946 goto unlock;
3947
3948 list_for_each_entry(child, &leader->child_list, child_list) {
3949 ret = __perf_read_group_add(child, read_format, values);
3950 if (ret)
3951 goto unlock;
3952 }
abf4868b 3953
fa8c2693 3954 mutex_unlock(&leader->child_mutex);
abf4868b 3955
7d88962e 3956 ret = event->read_size;
fa8c2693
PZ
3957 if (copy_to_user(buf, values, event->read_size))
3958 ret = -EFAULT;
7d88962e 3959 goto out;
fa8c2693 3960
7d88962e
SB
3961unlock:
3962 mutex_unlock(&leader->child_mutex);
3963out:
fa8c2693 3964 kfree(values);
abf4868b 3965 return ret;
3dab77fb
PZ
3966}
3967
b15f495b 3968static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
3969 u64 read_format, char __user *buf)
3970{
59ed446f 3971 u64 enabled, running;
3dab77fb
PZ
3972 u64 values[4];
3973 int n = 0;
3974
59ed446f
PZ
3975 values[n++] = perf_event_read_value(event, &enabled, &running);
3976 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3977 values[n++] = enabled;
3978 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3979 values[n++] = running;
3dab77fb 3980 if (read_format & PERF_FORMAT_ID)
cdd6c482 3981 values[n++] = primary_event_id(event);
3dab77fb
PZ
3982
3983 if (copy_to_user(buf, values, n * sizeof(u64)))
3984 return -EFAULT;
3985
3986 return n * sizeof(u64);
3987}
3988
dc633982
JO
3989static bool is_event_hup(struct perf_event *event)
3990{
3991 bool no_children;
3992
3993 if (event->state != PERF_EVENT_STATE_EXIT)
3994 return false;
3995
3996 mutex_lock(&event->child_mutex);
3997 no_children = list_empty(&event->child_list);
3998 mutex_unlock(&event->child_mutex);
3999 return no_children;
4000}
4001
0793a61d 4002/*
cdd6c482 4003 * Read the performance event - simple non blocking version for now
0793a61d
TG
4004 */
4005static ssize_t
b15f495b 4006__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4007{
cdd6c482 4008 u64 read_format = event->attr.read_format;
3dab77fb 4009 int ret;
0793a61d 4010
3b6f9e5c 4011 /*
cdd6c482 4012 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4013 * error state (i.e. because it was pinned but it couldn't be
4014 * scheduled on to the CPU at some point).
4015 */
cdd6c482 4016 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4017 return 0;
4018
c320c7b7 4019 if (count < event->read_size)
3dab77fb
PZ
4020 return -ENOSPC;
4021
cdd6c482 4022 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4023 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4024 ret = perf_read_group(event, read_format, buf);
3dab77fb 4025 else
b15f495b 4026 ret = perf_read_one(event, read_format, buf);
0793a61d 4027
3dab77fb 4028 return ret;
0793a61d
TG
4029}
4030
0793a61d
TG
4031static ssize_t
4032perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4033{
cdd6c482 4034 struct perf_event *event = file->private_data;
f63a8daa
PZ
4035 struct perf_event_context *ctx;
4036 int ret;
0793a61d 4037
f63a8daa 4038 ctx = perf_event_ctx_lock(event);
b15f495b 4039 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4040 perf_event_ctx_unlock(event, ctx);
4041
4042 return ret;
0793a61d
TG
4043}
4044
4045static unsigned int perf_poll(struct file *file, poll_table *wait)
4046{
cdd6c482 4047 struct perf_event *event = file->private_data;
76369139 4048 struct ring_buffer *rb;
61b67684 4049 unsigned int events = POLLHUP;
c7138f37 4050
e708d7ad 4051 poll_wait(file, &event->waitq, wait);
179033b3 4052
dc633982 4053 if (is_event_hup(event))
179033b3 4054 return events;
c7138f37 4055
10c6db11 4056 /*
9bb5d40c
PZ
4057 * Pin the event->rb by taking event->mmap_mutex; otherwise
4058 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4059 */
4060 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4061 rb = event->rb;
4062 if (rb)
76369139 4063 events = atomic_xchg(&rb->poll, 0);
10c6db11 4064 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4065 return events;
4066}
4067
f63a8daa 4068static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4069{
7d88962e 4070 (void)perf_event_read(event, false);
e7850595 4071 local64_set(&event->count, 0);
cdd6c482 4072 perf_event_update_userpage(event);
3df5edad
PZ
4073}
4074
c93f7669 4075/*
cdd6c482
IM
4076 * Holding the top-level event's child_mutex means that any
4077 * descendant process that has inherited this event will block
8ba289b8 4078 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4079 * task existence requirements of perf_event_enable/disable.
c93f7669 4080 */
cdd6c482
IM
4081static void perf_event_for_each_child(struct perf_event *event,
4082 void (*func)(struct perf_event *))
3df5edad 4083{
cdd6c482 4084 struct perf_event *child;
3df5edad 4085
cdd6c482 4086 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4087
cdd6c482
IM
4088 mutex_lock(&event->child_mutex);
4089 func(event);
4090 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4091 func(child);
cdd6c482 4092 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4093}
4094
cdd6c482
IM
4095static void perf_event_for_each(struct perf_event *event,
4096 void (*func)(struct perf_event *))
3df5edad 4097{
cdd6c482
IM
4098 struct perf_event_context *ctx = event->ctx;
4099 struct perf_event *sibling;
3df5edad 4100
f63a8daa
PZ
4101 lockdep_assert_held(&ctx->mutex);
4102
cdd6c482 4103 event = event->group_leader;
75f937f2 4104
cdd6c482 4105 perf_event_for_each_child(event, func);
cdd6c482 4106 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4107 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4108}
4109
fae3fde6
PZ
4110static void __perf_event_period(struct perf_event *event,
4111 struct perf_cpu_context *cpuctx,
4112 struct perf_event_context *ctx,
4113 void *info)
c7999c6f 4114{
fae3fde6 4115 u64 value = *((u64 *)info);
c7999c6f 4116 bool active;
08247e31 4117
cdd6c482 4118 if (event->attr.freq) {
cdd6c482 4119 event->attr.sample_freq = value;
08247e31 4120 } else {
cdd6c482
IM
4121 event->attr.sample_period = value;
4122 event->hw.sample_period = value;
08247e31 4123 }
bad7192b
PZ
4124
4125 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4126 if (active) {
4127 perf_pmu_disable(ctx->pmu);
4128 event->pmu->stop(event, PERF_EF_UPDATE);
4129 }
4130
4131 local64_set(&event->hw.period_left, 0);
4132
4133 if (active) {
4134 event->pmu->start(event, PERF_EF_RELOAD);
4135 perf_pmu_enable(ctx->pmu);
4136 }
c7999c6f
PZ
4137}
4138
4139static int perf_event_period(struct perf_event *event, u64 __user *arg)
4140{
c7999c6f
PZ
4141 u64 value;
4142
4143 if (!is_sampling_event(event))
4144 return -EINVAL;
4145
4146 if (copy_from_user(&value, arg, sizeof(value)))
4147 return -EFAULT;
4148
4149 if (!value)
4150 return -EINVAL;
4151
4152 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4153 return -EINVAL;
4154
fae3fde6 4155 event_function_call(event, __perf_event_period, &value);
08247e31 4156
c7999c6f 4157 return 0;
08247e31
PZ
4158}
4159
ac9721f3
PZ
4160static const struct file_operations perf_fops;
4161
2903ff01 4162static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4163{
2903ff01
AV
4164 struct fd f = fdget(fd);
4165 if (!f.file)
4166 return -EBADF;
ac9721f3 4167
2903ff01
AV
4168 if (f.file->f_op != &perf_fops) {
4169 fdput(f);
4170 return -EBADF;
ac9721f3 4171 }
2903ff01
AV
4172 *p = f;
4173 return 0;
ac9721f3
PZ
4174}
4175
4176static int perf_event_set_output(struct perf_event *event,
4177 struct perf_event *output_event);
6fb2915d 4178static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4179static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4180
f63a8daa 4181static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4182{
cdd6c482 4183 void (*func)(struct perf_event *);
3df5edad 4184 u32 flags = arg;
d859e29f
PM
4185
4186 switch (cmd) {
cdd6c482 4187 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4188 func = _perf_event_enable;
d859e29f 4189 break;
cdd6c482 4190 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4191 func = _perf_event_disable;
79f14641 4192 break;
cdd6c482 4193 case PERF_EVENT_IOC_RESET:
f63a8daa 4194 func = _perf_event_reset;
6de6a7b9 4195 break;
3df5edad 4196
cdd6c482 4197 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4198 return _perf_event_refresh(event, arg);
08247e31 4199
cdd6c482
IM
4200 case PERF_EVENT_IOC_PERIOD:
4201 return perf_event_period(event, (u64 __user *)arg);
08247e31 4202
cf4957f1
JO
4203 case PERF_EVENT_IOC_ID:
4204 {
4205 u64 id = primary_event_id(event);
4206
4207 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4208 return -EFAULT;
4209 return 0;
4210 }
4211
cdd6c482 4212 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4213 {
ac9721f3 4214 int ret;
ac9721f3 4215 if (arg != -1) {
2903ff01
AV
4216 struct perf_event *output_event;
4217 struct fd output;
4218 ret = perf_fget_light(arg, &output);
4219 if (ret)
4220 return ret;
4221 output_event = output.file->private_data;
4222 ret = perf_event_set_output(event, output_event);
4223 fdput(output);
4224 } else {
4225 ret = perf_event_set_output(event, NULL);
ac9721f3 4226 }
ac9721f3
PZ
4227 return ret;
4228 }
a4be7c27 4229
6fb2915d
LZ
4230 case PERF_EVENT_IOC_SET_FILTER:
4231 return perf_event_set_filter(event, (void __user *)arg);
4232
2541517c
AS
4233 case PERF_EVENT_IOC_SET_BPF:
4234 return perf_event_set_bpf_prog(event, arg);
4235
d859e29f 4236 default:
3df5edad 4237 return -ENOTTY;
d859e29f 4238 }
3df5edad
PZ
4239
4240 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4241 perf_event_for_each(event, func);
3df5edad 4242 else
cdd6c482 4243 perf_event_for_each_child(event, func);
3df5edad
PZ
4244
4245 return 0;
d859e29f
PM
4246}
4247
f63a8daa
PZ
4248static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4249{
4250 struct perf_event *event = file->private_data;
4251 struct perf_event_context *ctx;
4252 long ret;
4253
4254 ctx = perf_event_ctx_lock(event);
4255 ret = _perf_ioctl(event, cmd, arg);
4256 perf_event_ctx_unlock(event, ctx);
4257
4258 return ret;
4259}
4260
b3f20785
PM
4261#ifdef CONFIG_COMPAT
4262static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4263 unsigned long arg)
4264{
4265 switch (_IOC_NR(cmd)) {
4266 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4267 case _IOC_NR(PERF_EVENT_IOC_ID):
4268 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4269 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4270 cmd &= ~IOCSIZE_MASK;
4271 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4272 }
4273 break;
4274 }
4275 return perf_ioctl(file, cmd, arg);
4276}
4277#else
4278# define perf_compat_ioctl NULL
4279#endif
4280
cdd6c482 4281int perf_event_task_enable(void)
771d7cde 4282{
f63a8daa 4283 struct perf_event_context *ctx;
cdd6c482 4284 struct perf_event *event;
771d7cde 4285
cdd6c482 4286 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4287 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4288 ctx = perf_event_ctx_lock(event);
4289 perf_event_for_each_child(event, _perf_event_enable);
4290 perf_event_ctx_unlock(event, ctx);
4291 }
cdd6c482 4292 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4293
4294 return 0;
4295}
4296
cdd6c482 4297int perf_event_task_disable(void)
771d7cde 4298{
f63a8daa 4299 struct perf_event_context *ctx;
cdd6c482 4300 struct perf_event *event;
771d7cde 4301
cdd6c482 4302 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4303 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4304 ctx = perf_event_ctx_lock(event);
4305 perf_event_for_each_child(event, _perf_event_disable);
4306 perf_event_ctx_unlock(event, ctx);
4307 }
cdd6c482 4308 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4309
4310 return 0;
4311}
4312
cdd6c482 4313static int perf_event_index(struct perf_event *event)
194002b2 4314{
a4eaf7f1
PZ
4315 if (event->hw.state & PERF_HES_STOPPED)
4316 return 0;
4317
cdd6c482 4318 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4319 return 0;
4320
35edc2a5 4321 return event->pmu->event_idx(event);
194002b2
PZ
4322}
4323
c4794295 4324static void calc_timer_values(struct perf_event *event,
e3f3541c 4325 u64 *now,
7f310a5d
EM
4326 u64 *enabled,
4327 u64 *running)
c4794295 4328{
e3f3541c 4329 u64 ctx_time;
c4794295 4330
e3f3541c
PZ
4331 *now = perf_clock();
4332 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4333 *enabled = ctx_time - event->tstamp_enabled;
4334 *running = ctx_time - event->tstamp_running;
4335}
4336
fa731587
PZ
4337static void perf_event_init_userpage(struct perf_event *event)
4338{
4339 struct perf_event_mmap_page *userpg;
4340 struct ring_buffer *rb;
4341
4342 rcu_read_lock();
4343 rb = rcu_dereference(event->rb);
4344 if (!rb)
4345 goto unlock;
4346
4347 userpg = rb->user_page;
4348
4349 /* Allow new userspace to detect that bit 0 is deprecated */
4350 userpg->cap_bit0_is_deprecated = 1;
4351 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4352 userpg->data_offset = PAGE_SIZE;
4353 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4354
4355unlock:
4356 rcu_read_unlock();
4357}
4358
c1317ec2
AL
4359void __weak arch_perf_update_userpage(
4360 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4361{
4362}
4363
38ff667b
PZ
4364/*
4365 * Callers need to ensure there can be no nesting of this function, otherwise
4366 * the seqlock logic goes bad. We can not serialize this because the arch
4367 * code calls this from NMI context.
4368 */
cdd6c482 4369void perf_event_update_userpage(struct perf_event *event)
37d81828 4370{
cdd6c482 4371 struct perf_event_mmap_page *userpg;
76369139 4372 struct ring_buffer *rb;
e3f3541c 4373 u64 enabled, running, now;
38ff667b
PZ
4374
4375 rcu_read_lock();
5ec4c599
PZ
4376 rb = rcu_dereference(event->rb);
4377 if (!rb)
4378 goto unlock;
4379
0d641208
EM
4380 /*
4381 * compute total_time_enabled, total_time_running
4382 * based on snapshot values taken when the event
4383 * was last scheduled in.
4384 *
4385 * we cannot simply called update_context_time()
4386 * because of locking issue as we can be called in
4387 * NMI context
4388 */
e3f3541c 4389 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4390
76369139 4391 userpg = rb->user_page;
7b732a75
PZ
4392 /*
4393 * Disable preemption so as to not let the corresponding user-space
4394 * spin too long if we get preempted.
4395 */
4396 preempt_disable();
37d81828 4397 ++userpg->lock;
92f22a38 4398 barrier();
cdd6c482 4399 userpg->index = perf_event_index(event);
b5e58793 4400 userpg->offset = perf_event_count(event);
365a4038 4401 if (userpg->index)
e7850595 4402 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4403
0d641208 4404 userpg->time_enabled = enabled +
cdd6c482 4405 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4406
0d641208 4407 userpg->time_running = running +
cdd6c482 4408 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4409
c1317ec2 4410 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4411
92f22a38 4412 barrier();
37d81828 4413 ++userpg->lock;
7b732a75 4414 preempt_enable();
38ff667b 4415unlock:
7b732a75 4416 rcu_read_unlock();
37d81828
PM
4417}
4418
906010b2
PZ
4419static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4420{
4421 struct perf_event *event = vma->vm_file->private_data;
76369139 4422 struct ring_buffer *rb;
906010b2
PZ
4423 int ret = VM_FAULT_SIGBUS;
4424
4425 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4426 if (vmf->pgoff == 0)
4427 ret = 0;
4428 return ret;
4429 }
4430
4431 rcu_read_lock();
76369139
FW
4432 rb = rcu_dereference(event->rb);
4433 if (!rb)
906010b2
PZ
4434 goto unlock;
4435
4436 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4437 goto unlock;
4438
76369139 4439 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4440 if (!vmf->page)
4441 goto unlock;
4442
4443 get_page(vmf->page);
4444 vmf->page->mapping = vma->vm_file->f_mapping;
4445 vmf->page->index = vmf->pgoff;
4446
4447 ret = 0;
4448unlock:
4449 rcu_read_unlock();
4450
4451 return ret;
4452}
4453
10c6db11
PZ
4454static void ring_buffer_attach(struct perf_event *event,
4455 struct ring_buffer *rb)
4456{
b69cf536 4457 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4458 unsigned long flags;
4459
b69cf536
PZ
4460 if (event->rb) {
4461 /*
4462 * Should be impossible, we set this when removing
4463 * event->rb_entry and wait/clear when adding event->rb_entry.
4464 */
4465 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4466
b69cf536 4467 old_rb = event->rb;
b69cf536
PZ
4468 spin_lock_irqsave(&old_rb->event_lock, flags);
4469 list_del_rcu(&event->rb_entry);
4470 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4471
2f993cf0
ON
4472 event->rcu_batches = get_state_synchronize_rcu();
4473 event->rcu_pending = 1;
b69cf536 4474 }
10c6db11 4475
b69cf536 4476 if (rb) {
2f993cf0
ON
4477 if (event->rcu_pending) {
4478 cond_synchronize_rcu(event->rcu_batches);
4479 event->rcu_pending = 0;
4480 }
4481
b69cf536
PZ
4482 spin_lock_irqsave(&rb->event_lock, flags);
4483 list_add_rcu(&event->rb_entry, &rb->event_list);
4484 spin_unlock_irqrestore(&rb->event_lock, flags);
4485 }
4486
4487 rcu_assign_pointer(event->rb, rb);
4488
4489 if (old_rb) {
4490 ring_buffer_put(old_rb);
4491 /*
4492 * Since we detached before setting the new rb, so that we
4493 * could attach the new rb, we could have missed a wakeup.
4494 * Provide it now.
4495 */
4496 wake_up_all(&event->waitq);
4497 }
10c6db11
PZ
4498}
4499
4500static void ring_buffer_wakeup(struct perf_event *event)
4501{
4502 struct ring_buffer *rb;
4503
4504 rcu_read_lock();
4505 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4506 if (rb) {
4507 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4508 wake_up_all(&event->waitq);
4509 }
10c6db11
PZ
4510 rcu_read_unlock();
4511}
4512
fdc26706 4513struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4514{
76369139 4515 struct ring_buffer *rb;
7b732a75 4516
ac9721f3 4517 rcu_read_lock();
76369139
FW
4518 rb = rcu_dereference(event->rb);
4519 if (rb) {
4520 if (!atomic_inc_not_zero(&rb->refcount))
4521 rb = NULL;
ac9721f3
PZ
4522 }
4523 rcu_read_unlock();
4524
76369139 4525 return rb;
ac9721f3
PZ
4526}
4527
fdc26706 4528void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4529{
76369139 4530 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4531 return;
7b732a75 4532
9bb5d40c 4533 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4534
76369139 4535 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4536}
4537
4538static void perf_mmap_open(struct vm_area_struct *vma)
4539{
cdd6c482 4540 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4541
cdd6c482 4542 atomic_inc(&event->mmap_count);
9bb5d40c 4543 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4544
45bfb2e5
PZ
4545 if (vma->vm_pgoff)
4546 atomic_inc(&event->rb->aux_mmap_count);
4547
1e0fb9ec
AL
4548 if (event->pmu->event_mapped)
4549 event->pmu->event_mapped(event);
7b732a75
PZ
4550}
4551
9bb5d40c
PZ
4552/*
4553 * A buffer can be mmap()ed multiple times; either directly through the same
4554 * event, or through other events by use of perf_event_set_output().
4555 *
4556 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4557 * the buffer here, where we still have a VM context. This means we need
4558 * to detach all events redirecting to us.
4559 */
7b732a75
PZ
4560static void perf_mmap_close(struct vm_area_struct *vma)
4561{
cdd6c482 4562 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4563
b69cf536 4564 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4565 struct user_struct *mmap_user = rb->mmap_user;
4566 int mmap_locked = rb->mmap_locked;
4567 unsigned long size = perf_data_size(rb);
789f90fc 4568
1e0fb9ec
AL
4569 if (event->pmu->event_unmapped)
4570 event->pmu->event_unmapped(event);
4571
45bfb2e5
PZ
4572 /*
4573 * rb->aux_mmap_count will always drop before rb->mmap_count and
4574 * event->mmap_count, so it is ok to use event->mmap_mutex to
4575 * serialize with perf_mmap here.
4576 */
4577 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4578 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4579 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4580 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4581
4582 rb_free_aux(rb);
4583 mutex_unlock(&event->mmap_mutex);
4584 }
4585
9bb5d40c
PZ
4586 atomic_dec(&rb->mmap_count);
4587
4588 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4589 goto out_put;
9bb5d40c 4590
b69cf536 4591 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4592 mutex_unlock(&event->mmap_mutex);
4593
4594 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4595 if (atomic_read(&rb->mmap_count))
4596 goto out_put;
ac9721f3 4597
9bb5d40c
PZ
4598 /*
4599 * No other mmap()s, detach from all other events that might redirect
4600 * into the now unreachable buffer. Somewhat complicated by the
4601 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4602 */
4603again:
4604 rcu_read_lock();
4605 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4606 if (!atomic_long_inc_not_zero(&event->refcount)) {
4607 /*
4608 * This event is en-route to free_event() which will
4609 * detach it and remove it from the list.
4610 */
4611 continue;
4612 }
4613 rcu_read_unlock();
789f90fc 4614
9bb5d40c
PZ
4615 mutex_lock(&event->mmap_mutex);
4616 /*
4617 * Check we didn't race with perf_event_set_output() which can
4618 * swizzle the rb from under us while we were waiting to
4619 * acquire mmap_mutex.
4620 *
4621 * If we find a different rb; ignore this event, a next
4622 * iteration will no longer find it on the list. We have to
4623 * still restart the iteration to make sure we're not now
4624 * iterating the wrong list.
4625 */
b69cf536
PZ
4626 if (event->rb == rb)
4627 ring_buffer_attach(event, NULL);
4628
cdd6c482 4629 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4630 put_event(event);
ac9721f3 4631
9bb5d40c
PZ
4632 /*
4633 * Restart the iteration; either we're on the wrong list or
4634 * destroyed its integrity by doing a deletion.
4635 */
4636 goto again;
7b732a75 4637 }
9bb5d40c
PZ
4638 rcu_read_unlock();
4639
4640 /*
4641 * It could be there's still a few 0-ref events on the list; they'll
4642 * get cleaned up by free_event() -- they'll also still have their
4643 * ref on the rb and will free it whenever they are done with it.
4644 *
4645 * Aside from that, this buffer is 'fully' detached and unmapped,
4646 * undo the VM accounting.
4647 */
4648
4649 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4650 vma->vm_mm->pinned_vm -= mmap_locked;
4651 free_uid(mmap_user);
4652
b69cf536 4653out_put:
9bb5d40c 4654 ring_buffer_put(rb); /* could be last */
37d81828
PM
4655}
4656
f0f37e2f 4657static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4658 .open = perf_mmap_open,
45bfb2e5 4659 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4660 .fault = perf_mmap_fault,
4661 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4662};
4663
4664static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4665{
cdd6c482 4666 struct perf_event *event = file->private_data;
22a4f650 4667 unsigned long user_locked, user_lock_limit;
789f90fc 4668 struct user_struct *user = current_user();
22a4f650 4669 unsigned long locked, lock_limit;
45bfb2e5 4670 struct ring_buffer *rb = NULL;
7b732a75
PZ
4671 unsigned long vma_size;
4672 unsigned long nr_pages;
45bfb2e5 4673 long user_extra = 0, extra = 0;
d57e34fd 4674 int ret = 0, flags = 0;
37d81828 4675
c7920614
PZ
4676 /*
4677 * Don't allow mmap() of inherited per-task counters. This would
4678 * create a performance issue due to all children writing to the
76369139 4679 * same rb.
c7920614
PZ
4680 */
4681 if (event->cpu == -1 && event->attr.inherit)
4682 return -EINVAL;
4683
43a21ea8 4684 if (!(vma->vm_flags & VM_SHARED))
37d81828 4685 return -EINVAL;
7b732a75
PZ
4686
4687 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4688
4689 if (vma->vm_pgoff == 0) {
4690 nr_pages = (vma_size / PAGE_SIZE) - 1;
4691 } else {
4692 /*
4693 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4694 * mapped, all subsequent mappings should have the same size
4695 * and offset. Must be above the normal perf buffer.
4696 */
4697 u64 aux_offset, aux_size;
4698
4699 if (!event->rb)
4700 return -EINVAL;
4701
4702 nr_pages = vma_size / PAGE_SIZE;
4703
4704 mutex_lock(&event->mmap_mutex);
4705 ret = -EINVAL;
4706
4707 rb = event->rb;
4708 if (!rb)
4709 goto aux_unlock;
4710
4711 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4712 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4713
4714 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4715 goto aux_unlock;
4716
4717 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4718 goto aux_unlock;
4719
4720 /* already mapped with a different offset */
4721 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4722 goto aux_unlock;
4723
4724 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4725 goto aux_unlock;
4726
4727 /* already mapped with a different size */
4728 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4729 goto aux_unlock;
4730
4731 if (!is_power_of_2(nr_pages))
4732 goto aux_unlock;
4733
4734 if (!atomic_inc_not_zero(&rb->mmap_count))
4735 goto aux_unlock;
4736
4737 if (rb_has_aux(rb)) {
4738 atomic_inc(&rb->aux_mmap_count);
4739 ret = 0;
4740 goto unlock;
4741 }
4742
4743 atomic_set(&rb->aux_mmap_count, 1);
4744 user_extra = nr_pages;
4745
4746 goto accounting;
4747 }
7b732a75 4748
7730d865 4749 /*
76369139 4750 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4751 * can do bitmasks instead of modulo.
4752 */
2ed11312 4753 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4754 return -EINVAL;
4755
7b732a75 4756 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4757 return -EINVAL;
4758
cdd6c482 4759 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4760again:
cdd6c482 4761 mutex_lock(&event->mmap_mutex);
76369139 4762 if (event->rb) {
9bb5d40c 4763 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4764 ret = -EINVAL;
9bb5d40c
PZ
4765 goto unlock;
4766 }
4767
4768 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4769 /*
4770 * Raced against perf_mmap_close() through
4771 * perf_event_set_output(). Try again, hope for better
4772 * luck.
4773 */
4774 mutex_unlock(&event->mmap_mutex);
4775 goto again;
4776 }
4777
ebb3c4c4
PZ
4778 goto unlock;
4779 }
4780
789f90fc 4781 user_extra = nr_pages + 1;
45bfb2e5
PZ
4782
4783accounting:
cdd6c482 4784 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4785
4786 /*
4787 * Increase the limit linearly with more CPUs:
4788 */
4789 user_lock_limit *= num_online_cpus();
4790
789f90fc 4791 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4792
789f90fc
PZ
4793 if (user_locked > user_lock_limit)
4794 extra = user_locked - user_lock_limit;
7b732a75 4795
78d7d407 4796 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4797 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4798 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4799
459ec28a
IM
4800 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4801 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4802 ret = -EPERM;
4803 goto unlock;
4804 }
7b732a75 4805
45bfb2e5 4806 WARN_ON(!rb && event->rb);
906010b2 4807
d57e34fd 4808 if (vma->vm_flags & VM_WRITE)
76369139 4809 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4810
76369139 4811 if (!rb) {
45bfb2e5
PZ
4812 rb = rb_alloc(nr_pages,
4813 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4814 event->cpu, flags);
26cb63ad 4815
45bfb2e5
PZ
4816 if (!rb) {
4817 ret = -ENOMEM;
4818 goto unlock;
4819 }
43a21ea8 4820
45bfb2e5
PZ
4821 atomic_set(&rb->mmap_count, 1);
4822 rb->mmap_user = get_current_user();
4823 rb->mmap_locked = extra;
26cb63ad 4824
45bfb2e5 4825 ring_buffer_attach(event, rb);
ac9721f3 4826
45bfb2e5
PZ
4827 perf_event_init_userpage(event);
4828 perf_event_update_userpage(event);
4829 } else {
1a594131
AS
4830 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4831 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4832 if (!ret)
4833 rb->aux_mmap_locked = extra;
4834 }
9a0f05cb 4835
ebb3c4c4 4836unlock:
45bfb2e5
PZ
4837 if (!ret) {
4838 atomic_long_add(user_extra, &user->locked_vm);
4839 vma->vm_mm->pinned_vm += extra;
4840
ac9721f3 4841 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4842 } else if (rb) {
4843 atomic_dec(&rb->mmap_count);
4844 }
4845aux_unlock:
cdd6c482 4846 mutex_unlock(&event->mmap_mutex);
37d81828 4847
9bb5d40c
PZ
4848 /*
4849 * Since pinned accounting is per vm we cannot allow fork() to copy our
4850 * vma.
4851 */
26cb63ad 4852 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4853 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4854
1e0fb9ec
AL
4855 if (event->pmu->event_mapped)
4856 event->pmu->event_mapped(event);
4857
7b732a75 4858 return ret;
37d81828
PM
4859}
4860
3c446b3d
PZ
4861static int perf_fasync(int fd, struct file *filp, int on)
4862{
496ad9aa 4863 struct inode *inode = file_inode(filp);
cdd6c482 4864 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4865 int retval;
4866
5955102c 4867 inode_lock(inode);
cdd6c482 4868 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 4869 inode_unlock(inode);
3c446b3d
PZ
4870
4871 if (retval < 0)
4872 return retval;
4873
4874 return 0;
4875}
4876
0793a61d 4877static const struct file_operations perf_fops = {
3326c1ce 4878 .llseek = no_llseek,
0793a61d
TG
4879 .release = perf_release,
4880 .read = perf_read,
4881 .poll = perf_poll,
d859e29f 4882 .unlocked_ioctl = perf_ioctl,
b3f20785 4883 .compat_ioctl = perf_compat_ioctl,
37d81828 4884 .mmap = perf_mmap,
3c446b3d 4885 .fasync = perf_fasync,
0793a61d
TG
4886};
4887
925d519a 4888/*
cdd6c482 4889 * Perf event wakeup
925d519a
PZ
4890 *
4891 * If there's data, ensure we set the poll() state and publish everything
4892 * to user-space before waking everybody up.
4893 */
4894
fed66e2c
PZ
4895static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4896{
4897 /* only the parent has fasync state */
4898 if (event->parent)
4899 event = event->parent;
4900 return &event->fasync;
4901}
4902
cdd6c482 4903void perf_event_wakeup(struct perf_event *event)
925d519a 4904{
10c6db11 4905 ring_buffer_wakeup(event);
4c9e2542 4906
cdd6c482 4907 if (event->pending_kill) {
fed66e2c 4908 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4909 event->pending_kill = 0;
4c9e2542 4910 }
925d519a
PZ
4911}
4912
e360adbe 4913static void perf_pending_event(struct irq_work *entry)
79f14641 4914{
cdd6c482
IM
4915 struct perf_event *event = container_of(entry,
4916 struct perf_event, pending);
d525211f
PZ
4917 int rctx;
4918
4919 rctx = perf_swevent_get_recursion_context();
4920 /*
4921 * If we 'fail' here, that's OK, it means recursion is already disabled
4922 * and we won't recurse 'further'.
4923 */
79f14641 4924
cdd6c482
IM
4925 if (event->pending_disable) {
4926 event->pending_disable = 0;
fae3fde6 4927 perf_event_disable_local(event);
79f14641
PZ
4928 }
4929
cdd6c482
IM
4930 if (event->pending_wakeup) {
4931 event->pending_wakeup = 0;
4932 perf_event_wakeup(event);
79f14641 4933 }
d525211f
PZ
4934
4935 if (rctx >= 0)
4936 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4937}
4938
39447b38
ZY
4939/*
4940 * We assume there is only KVM supporting the callbacks.
4941 * Later on, we might change it to a list if there is
4942 * another virtualization implementation supporting the callbacks.
4943 */
4944struct perf_guest_info_callbacks *perf_guest_cbs;
4945
4946int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4947{
4948 perf_guest_cbs = cbs;
4949 return 0;
4950}
4951EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4952
4953int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4954{
4955 perf_guest_cbs = NULL;
4956 return 0;
4957}
4958EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4959
4018994f
JO
4960static void
4961perf_output_sample_regs(struct perf_output_handle *handle,
4962 struct pt_regs *regs, u64 mask)
4963{
4964 int bit;
4965
4966 for_each_set_bit(bit, (const unsigned long *) &mask,
4967 sizeof(mask) * BITS_PER_BYTE) {
4968 u64 val;
4969
4970 val = perf_reg_value(regs, bit);
4971 perf_output_put(handle, val);
4972 }
4973}
4974
60e2364e 4975static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4976 struct pt_regs *regs,
4977 struct pt_regs *regs_user_copy)
4018994f 4978{
88a7c26a
AL
4979 if (user_mode(regs)) {
4980 regs_user->abi = perf_reg_abi(current);
2565711f 4981 regs_user->regs = regs;
88a7c26a
AL
4982 } else if (current->mm) {
4983 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4984 } else {
4985 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4986 regs_user->regs = NULL;
4018994f
JO
4987 }
4988}
4989
60e2364e
SE
4990static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4991 struct pt_regs *regs)
4992{
4993 regs_intr->regs = regs;
4994 regs_intr->abi = perf_reg_abi(current);
4995}
4996
4997
c5ebcedb
JO
4998/*
4999 * Get remaining task size from user stack pointer.
5000 *
5001 * It'd be better to take stack vma map and limit this more
5002 * precisly, but there's no way to get it safely under interrupt,
5003 * so using TASK_SIZE as limit.
5004 */
5005static u64 perf_ustack_task_size(struct pt_regs *regs)
5006{
5007 unsigned long addr = perf_user_stack_pointer(regs);
5008
5009 if (!addr || addr >= TASK_SIZE)
5010 return 0;
5011
5012 return TASK_SIZE - addr;
5013}
5014
5015static u16
5016perf_sample_ustack_size(u16 stack_size, u16 header_size,
5017 struct pt_regs *regs)
5018{
5019 u64 task_size;
5020
5021 /* No regs, no stack pointer, no dump. */
5022 if (!regs)
5023 return 0;
5024
5025 /*
5026 * Check if we fit in with the requested stack size into the:
5027 * - TASK_SIZE
5028 * If we don't, we limit the size to the TASK_SIZE.
5029 *
5030 * - remaining sample size
5031 * If we don't, we customize the stack size to
5032 * fit in to the remaining sample size.
5033 */
5034
5035 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5036 stack_size = min(stack_size, (u16) task_size);
5037
5038 /* Current header size plus static size and dynamic size. */
5039 header_size += 2 * sizeof(u64);
5040
5041 /* Do we fit in with the current stack dump size? */
5042 if ((u16) (header_size + stack_size) < header_size) {
5043 /*
5044 * If we overflow the maximum size for the sample,
5045 * we customize the stack dump size to fit in.
5046 */
5047 stack_size = USHRT_MAX - header_size - sizeof(u64);
5048 stack_size = round_up(stack_size, sizeof(u64));
5049 }
5050
5051 return stack_size;
5052}
5053
5054static void
5055perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5056 struct pt_regs *regs)
5057{
5058 /* Case of a kernel thread, nothing to dump */
5059 if (!regs) {
5060 u64 size = 0;
5061 perf_output_put(handle, size);
5062 } else {
5063 unsigned long sp;
5064 unsigned int rem;
5065 u64 dyn_size;
5066
5067 /*
5068 * We dump:
5069 * static size
5070 * - the size requested by user or the best one we can fit
5071 * in to the sample max size
5072 * data
5073 * - user stack dump data
5074 * dynamic size
5075 * - the actual dumped size
5076 */
5077
5078 /* Static size. */
5079 perf_output_put(handle, dump_size);
5080
5081 /* Data. */
5082 sp = perf_user_stack_pointer(regs);
5083 rem = __output_copy_user(handle, (void *) sp, dump_size);
5084 dyn_size = dump_size - rem;
5085
5086 perf_output_skip(handle, rem);
5087
5088 /* Dynamic size. */
5089 perf_output_put(handle, dyn_size);
5090 }
5091}
5092
c980d109
ACM
5093static void __perf_event_header__init_id(struct perf_event_header *header,
5094 struct perf_sample_data *data,
5095 struct perf_event *event)
6844c09d
ACM
5096{
5097 u64 sample_type = event->attr.sample_type;
5098
5099 data->type = sample_type;
5100 header->size += event->id_header_size;
5101
5102 if (sample_type & PERF_SAMPLE_TID) {
5103 /* namespace issues */
5104 data->tid_entry.pid = perf_event_pid(event, current);
5105 data->tid_entry.tid = perf_event_tid(event, current);
5106 }
5107
5108 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5109 data->time = perf_event_clock(event);
6844c09d 5110
ff3d527c 5111 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5112 data->id = primary_event_id(event);
5113
5114 if (sample_type & PERF_SAMPLE_STREAM_ID)
5115 data->stream_id = event->id;
5116
5117 if (sample_type & PERF_SAMPLE_CPU) {
5118 data->cpu_entry.cpu = raw_smp_processor_id();
5119 data->cpu_entry.reserved = 0;
5120 }
5121}
5122
76369139
FW
5123void perf_event_header__init_id(struct perf_event_header *header,
5124 struct perf_sample_data *data,
5125 struct perf_event *event)
c980d109
ACM
5126{
5127 if (event->attr.sample_id_all)
5128 __perf_event_header__init_id(header, data, event);
5129}
5130
5131static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5132 struct perf_sample_data *data)
5133{
5134 u64 sample_type = data->type;
5135
5136 if (sample_type & PERF_SAMPLE_TID)
5137 perf_output_put(handle, data->tid_entry);
5138
5139 if (sample_type & PERF_SAMPLE_TIME)
5140 perf_output_put(handle, data->time);
5141
5142 if (sample_type & PERF_SAMPLE_ID)
5143 perf_output_put(handle, data->id);
5144
5145 if (sample_type & PERF_SAMPLE_STREAM_ID)
5146 perf_output_put(handle, data->stream_id);
5147
5148 if (sample_type & PERF_SAMPLE_CPU)
5149 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5150
5151 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5152 perf_output_put(handle, data->id);
c980d109
ACM
5153}
5154
76369139
FW
5155void perf_event__output_id_sample(struct perf_event *event,
5156 struct perf_output_handle *handle,
5157 struct perf_sample_data *sample)
c980d109
ACM
5158{
5159 if (event->attr.sample_id_all)
5160 __perf_event__output_id_sample(handle, sample);
5161}
5162
3dab77fb 5163static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5164 struct perf_event *event,
5165 u64 enabled, u64 running)
3dab77fb 5166{
cdd6c482 5167 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5168 u64 values[4];
5169 int n = 0;
5170
b5e58793 5171 values[n++] = perf_event_count(event);
3dab77fb 5172 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5173 values[n++] = enabled +
cdd6c482 5174 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5175 }
5176 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5177 values[n++] = running +
cdd6c482 5178 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5179 }
5180 if (read_format & PERF_FORMAT_ID)
cdd6c482 5181 values[n++] = primary_event_id(event);
3dab77fb 5182
76369139 5183 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5184}
5185
5186/*
cdd6c482 5187 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5188 */
5189static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5190 struct perf_event *event,
5191 u64 enabled, u64 running)
3dab77fb 5192{
cdd6c482
IM
5193 struct perf_event *leader = event->group_leader, *sub;
5194 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5195 u64 values[5];
5196 int n = 0;
5197
5198 values[n++] = 1 + leader->nr_siblings;
5199
5200 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5201 values[n++] = enabled;
3dab77fb
PZ
5202
5203 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5204 values[n++] = running;
3dab77fb 5205
cdd6c482 5206 if (leader != event)
3dab77fb
PZ
5207 leader->pmu->read(leader);
5208
b5e58793 5209 values[n++] = perf_event_count(leader);
3dab77fb 5210 if (read_format & PERF_FORMAT_ID)
cdd6c482 5211 values[n++] = primary_event_id(leader);
3dab77fb 5212
76369139 5213 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5214
65abc865 5215 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5216 n = 0;
5217
6f5ab001
JO
5218 if ((sub != event) &&
5219 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5220 sub->pmu->read(sub);
5221
b5e58793 5222 values[n++] = perf_event_count(sub);
3dab77fb 5223 if (read_format & PERF_FORMAT_ID)
cdd6c482 5224 values[n++] = primary_event_id(sub);
3dab77fb 5225
76369139 5226 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5227 }
5228}
5229
eed01528
SE
5230#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5231 PERF_FORMAT_TOTAL_TIME_RUNNING)
5232
3dab77fb 5233static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5234 struct perf_event *event)
3dab77fb 5235{
e3f3541c 5236 u64 enabled = 0, running = 0, now;
eed01528
SE
5237 u64 read_format = event->attr.read_format;
5238
5239 /*
5240 * compute total_time_enabled, total_time_running
5241 * based on snapshot values taken when the event
5242 * was last scheduled in.
5243 *
5244 * we cannot simply called update_context_time()
5245 * because of locking issue as we are called in
5246 * NMI context
5247 */
c4794295 5248 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5249 calc_timer_values(event, &now, &enabled, &running);
eed01528 5250
cdd6c482 5251 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5252 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5253 else
eed01528 5254 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5255}
5256
5622f295
MM
5257void perf_output_sample(struct perf_output_handle *handle,
5258 struct perf_event_header *header,
5259 struct perf_sample_data *data,
cdd6c482 5260 struct perf_event *event)
5622f295
MM
5261{
5262 u64 sample_type = data->type;
5263
5264 perf_output_put(handle, *header);
5265
ff3d527c
AH
5266 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5267 perf_output_put(handle, data->id);
5268
5622f295
MM
5269 if (sample_type & PERF_SAMPLE_IP)
5270 perf_output_put(handle, data->ip);
5271
5272 if (sample_type & PERF_SAMPLE_TID)
5273 perf_output_put(handle, data->tid_entry);
5274
5275 if (sample_type & PERF_SAMPLE_TIME)
5276 perf_output_put(handle, data->time);
5277
5278 if (sample_type & PERF_SAMPLE_ADDR)
5279 perf_output_put(handle, data->addr);
5280
5281 if (sample_type & PERF_SAMPLE_ID)
5282 perf_output_put(handle, data->id);
5283
5284 if (sample_type & PERF_SAMPLE_STREAM_ID)
5285 perf_output_put(handle, data->stream_id);
5286
5287 if (sample_type & PERF_SAMPLE_CPU)
5288 perf_output_put(handle, data->cpu_entry);
5289
5290 if (sample_type & PERF_SAMPLE_PERIOD)
5291 perf_output_put(handle, data->period);
5292
5293 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5294 perf_output_read(handle, event);
5622f295
MM
5295
5296 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5297 if (data->callchain) {
5298 int size = 1;
5299
5300 if (data->callchain)
5301 size += data->callchain->nr;
5302
5303 size *= sizeof(u64);
5304
76369139 5305 __output_copy(handle, data->callchain, size);
5622f295
MM
5306 } else {
5307 u64 nr = 0;
5308 perf_output_put(handle, nr);
5309 }
5310 }
5311
5312 if (sample_type & PERF_SAMPLE_RAW) {
5313 if (data->raw) {
fa128e6a
AS
5314 u32 raw_size = data->raw->size;
5315 u32 real_size = round_up(raw_size + sizeof(u32),
5316 sizeof(u64)) - sizeof(u32);
5317 u64 zero = 0;
5318
5319 perf_output_put(handle, real_size);
5320 __output_copy(handle, data->raw->data, raw_size);
5321 if (real_size - raw_size)
5322 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5323 } else {
5324 struct {
5325 u32 size;
5326 u32 data;
5327 } raw = {
5328 .size = sizeof(u32),
5329 .data = 0,
5330 };
5331 perf_output_put(handle, raw);
5332 }
5333 }
a7ac67ea 5334
bce38cd5
SE
5335 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5336 if (data->br_stack) {
5337 size_t size;
5338
5339 size = data->br_stack->nr
5340 * sizeof(struct perf_branch_entry);
5341
5342 perf_output_put(handle, data->br_stack->nr);
5343 perf_output_copy(handle, data->br_stack->entries, size);
5344 } else {
5345 /*
5346 * we always store at least the value of nr
5347 */
5348 u64 nr = 0;
5349 perf_output_put(handle, nr);
5350 }
5351 }
4018994f
JO
5352
5353 if (sample_type & PERF_SAMPLE_REGS_USER) {
5354 u64 abi = data->regs_user.abi;
5355
5356 /*
5357 * If there are no regs to dump, notice it through
5358 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5359 */
5360 perf_output_put(handle, abi);
5361
5362 if (abi) {
5363 u64 mask = event->attr.sample_regs_user;
5364 perf_output_sample_regs(handle,
5365 data->regs_user.regs,
5366 mask);
5367 }
5368 }
c5ebcedb 5369
a5cdd40c 5370 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5371 perf_output_sample_ustack(handle,
5372 data->stack_user_size,
5373 data->regs_user.regs);
a5cdd40c 5374 }
c3feedf2
AK
5375
5376 if (sample_type & PERF_SAMPLE_WEIGHT)
5377 perf_output_put(handle, data->weight);
d6be9ad6
SE
5378
5379 if (sample_type & PERF_SAMPLE_DATA_SRC)
5380 perf_output_put(handle, data->data_src.val);
a5cdd40c 5381
fdfbbd07
AK
5382 if (sample_type & PERF_SAMPLE_TRANSACTION)
5383 perf_output_put(handle, data->txn);
5384
60e2364e
SE
5385 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5386 u64 abi = data->regs_intr.abi;
5387 /*
5388 * If there are no regs to dump, notice it through
5389 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5390 */
5391 perf_output_put(handle, abi);
5392
5393 if (abi) {
5394 u64 mask = event->attr.sample_regs_intr;
5395
5396 perf_output_sample_regs(handle,
5397 data->regs_intr.regs,
5398 mask);
5399 }
5400 }
5401
a5cdd40c
PZ
5402 if (!event->attr.watermark) {
5403 int wakeup_events = event->attr.wakeup_events;
5404
5405 if (wakeup_events) {
5406 struct ring_buffer *rb = handle->rb;
5407 int events = local_inc_return(&rb->events);
5408
5409 if (events >= wakeup_events) {
5410 local_sub(wakeup_events, &rb->events);
5411 local_inc(&rb->wakeup);
5412 }
5413 }
5414 }
5622f295
MM
5415}
5416
5417void perf_prepare_sample(struct perf_event_header *header,
5418 struct perf_sample_data *data,
cdd6c482 5419 struct perf_event *event,
5622f295 5420 struct pt_regs *regs)
7b732a75 5421{
cdd6c482 5422 u64 sample_type = event->attr.sample_type;
7b732a75 5423
cdd6c482 5424 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5425 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5426
5427 header->misc = 0;
5428 header->misc |= perf_misc_flags(regs);
6fab0192 5429
c980d109 5430 __perf_event_header__init_id(header, data, event);
6844c09d 5431
c320c7b7 5432 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5433 data->ip = perf_instruction_pointer(regs);
5434
b23f3325 5435 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5436 int size = 1;
394ee076 5437
e6dab5ff 5438 data->callchain = perf_callchain(event, regs);
5622f295
MM
5439
5440 if (data->callchain)
5441 size += data->callchain->nr;
5442
5443 header->size += size * sizeof(u64);
394ee076
PZ
5444 }
5445
3a43ce68 5446 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5447 int size = sizeof(u32);
5448
5449 if (data->raw)
5450 size += data->raw->size;
5451 else
5452 size += sizeof(u32);
5453
fa128e6a 5454 header->size += round_up(size, sizeof(u64));
7f453c24 5455 }
bce38cd5
SE
5456
5457 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5458 int size = sizeof(u64); /* nr */
5459 if (data->br_stack) {
5460 size += data->br_stack->nr
5461 * sizeof(struct perf_branch_entry);
5462 }
5463 header->size += size;
5464 }
4018994f 5465
2565711f 5466 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5467 perf_sample_regs_user(&data->regs_user, regs,
5468 &data->regs_user_copy);
2565711f 5469
4018994f
JO
5470 if (sample_type & PERF_SAMPLE_REGS_USER) {
5471 /* regs dump ABI info */
5472 int size = sizeof(u64);
5473
4018994f
JO
5474 if (data->regs_user.regs) {
5475 u64 mask = event->attr.sample_regs_user;
5476 size += hweight64(mask) * sizeof(u64);
5477 }
5478
5479 header->size += size;
5480 }
c5ebcedb
JO
5481
5482 if (sample_type & PERF_SAMPLE_STACK_USER) {
5483 /*
5484 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5485 * processed as the last one or have additional check added
5486 * in case new sample type is added, because we could eat
5487 * up the rest of the sample size.
5488 */
c5ebcedb
JO
5489 u16 stack_size = event->attr.sample_stack_user;
5490 u16 size = sizeof(u64);
5491
c5ebcedb 5492 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5493 data->regs_user.regs);
c5ebcedb
JO
5494
5495 /*
5496 * If there is something to dump, add space for the dump
5497 * itself and for the field that tells the dynamic size,
5498 * which is how many have been actually dumped.
5499 */
5500 if (stack_size)
5501 size += sizeof(u64) + stack_size;
5502
5503 data->stack_user_size = stack_size;
5504 header->size += size;
5505 }
60e2364e
SE
5506
5507 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5508 /* regs dump ABI info */
5509 int size = sizeof(u64);
5510
5511 perf_sample_regs_intr(&data->regs_intr, regs);
5512
5513 if (data->regs_intr.regs) {
5514 u64 mask = event->attr.sample_regs_intr;
5515
5516 size += hweight64(mask) * sizeof(u64);
5517 }
5518
5519 header->size += size;
5520 }
5622f295 5521}
7f453c24 5522
21509084
YZ
5523void perf_event_output(struct perf_event *event,
5524 struct perf_sample_data *data,
5525 struct pt_regs *regs)
5622f295
MM
5526{
5527 struct perf_output_handle handle;
5528 struct perf_event_header header;
689802b2 5529
927c7a9e
FW
5530 /* protect the callchain buffers */
5531 rcu_read_lock();
5532
cdd6c482 5533 perf_prepare_sample(&header, data, event, regs);
5c148194 5534
a7ac67ea 5535 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5536 goto exit;
0322cd6e 5537
cdd6c482 5538 perf_output_sample(&handle, &header, data, event);
f413cdb8 5539
8a057d84 5540 perf_output_end(&handle);
927c7a9e
FW
5541
5542exit:
5543 rcu_read_unlock();
0322cd6e
PZ
5544}
5545
38b200d6 5546/*
cdd6c482 5547 * read event_id
38b200d6
PZ
5548 */
5549
5550struct perf_read_event {
5551 struct perf_event_header header;
5552
5553 u32 pid;
5554 u32 tid;
38b200d6
PZ
5555};
5556
5557static void
cdd6c482 5558perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5559 struct task_struct *task)
5560{
5561 struct perf_output_handle handle;
c980d109 5562 struct perf_sample_data sample;
dfc65094 5563 struct perf_read_event read_event = {
38b200d6 5564 .header = {
cdd6c482 5565 .type = PERF_RECORD_READ,
38b200d6 5566 .misc = 0,
c320c7b7 5567 .size = sizeof(read_event) + event->read_size,
38b200d6 5568 },
cdd6c482
IM
5569 .pid = perf_event_pid(event, task),
5570 .tid = perf_event_tid(event, task),
38b200d6 5571 };
3dab77fb 5572 int ret;
38b200d6 5573
c980d109 5574 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5575 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5576 if (ret)
5577 return;
5578
dfc65094 5579 perf_output_put(&handle, read_event);
cdd6c482 5580 perf_output_read(&handle, event);
c980d109 5581 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5582
38b200d6
PZ
5583 perf_output_end(&handle);
5584}
5585
52d857a8
JO
5586typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5587
5588static void
5589perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5590 perf_event_aux_output_cb output,
5591 void *data)
5592{
5593 struct perf_event *event;
5594
5595 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5596 if (event->state < PERF_EVENT_STATE_INACTIVE)
5597 continue;
5598 if (!event_filter_match(event))
5599 continue;
67516844 5600 output(event, data);
52d857a8
JO
5601 }
5602}
5603
4e93ad60
JO
5604static void
5605perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5606 struct perf_event_context *task_ctx)
5607{
5608 rcu_read_lock();
5609 preempt_disable();
5610 perf_event_aux_ctx(task_ctx, output, data);
5611 preempt_enable();
5612 rcu_read_unlock();
5613}
5614
52d857a8 5615static void
67516844 5616perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5617 struct perf_event_context *task_ctx)
5618{
5619 struct perf_cpu_context *cpuctx;
5620 struct perf_event_context *ctx;
5621 struct pmu *pmu;
5622 int ctxn;
5623
4e93ad60
JO
5624 /*
5625 * If we have task_ctx != NULL we only notify
5626 * the task context itself. The task_ctx is set
5627 * only for EXIT events before releasing task
5628 * context.
5629 */
5630 if (task_ctx) {
5631 perf_event_aux_task_ctx(output, data, task_ctx);
5632 return;
5633 }
5634
52d857a8
JO
5635 rcu_read_lock();
5636 list_for_each_entry_rcu(pmu, &pmus, entry) {
5637 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5638 if (cpuctx->unique_pmu != pmu)
5639 goto next;
67516844 5640 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5641 ctxn = pmu->task_ctx_nr;
5642 if (ctxn < 0)
5643 goto next;
5644 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5645 if (ctx)
67516844 5646 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5647next:
5648 put_cpu_ptr(pmu->pmu_cpu_context);
5649 }
52d857a8
JO
5650 rcu_read_unlock();
5651}
5652
60313ebe 5653/*
9f498cc5
PZ
5654 * task tracking -- fork/exit
5655 *
13d7a241 5656 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5657 */
5658
9f498cc5 5659struct perf_task_event {
3a80b4a3 5660 struct task_struct *task;
cdd6c482 5661 struct perf_event_context *task_ctx;
60313ebe
PZ
5662
5663 struct {
5664 struct perf_event_header header;
5665
5666 u32 pid;
5667 u32 ppid;
9f498cc5
PZ
5668 u32 tid;
5669 u32 ptid;
393b2ad8 5670 u64 time;
cdd6c482 5671 } event_id;
60313ebe
PZ
5672};
5673
67516844
JO
5674static int perf_event_task_match(struct perf_event *event)
5675{
13d7a241
SE
5676 return event->attr.comm || event->attr.mmap ||
5677 event->attr.mmap2 || event->attr.mmap_data ||
5678 event->attr.task;
67516844
JO
5679}
5680
cdd6c482 5681static void perf_event_task_output(struct perf_event *event,
52d857a8 5682 void *data)
60313ebe 5683{
52d857a8 5684 struct perf_task_event *task_event = data;
60313ebe 5685 struct perf_output_handle handle;
c980d109 5686 struct perf_sample_data sample;
9f498cc5 5687 struct task_struct *task = task_event->task;
c980d109 5688 int ret, size = task_event->event_id.header.size;
8bb39f9a 5689
67516844
JO
5690 if (!perf_event_task_match(event))
5691 return;
5692
c980d109 5693 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5694
c980d109 5695 ret = perf_output_begin(&handle, event,
a7ac67ea 5696 task_event->event_id.header.size);
ef60777c 5697 if (ret)
c980d109 5698 goto out;
60313ebe 5699
cdd6c482
IM
5700 task_event->event_id.pid = perf_event_pid(event, task);
5701 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5702
cdd6c482
IM
5703 task_event->event_id.tid = perf_event_tid(event, task);
5704 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5705
34f43927
PZ
5706 task_event->event_id.time = perf_event_clock(event);
5707
cdd6c482 5708 perf_output_put(&handle, task_event->event_id);
393b2ad8 5709
c980d109
ACM
5710 perf_event__output_id_sample(event, &handle, &sample);
5711
60313ebe 5712 perf_output_end(&handle);
c980d109
ACM
5713out:
5714 task_event->event_id.header.size = size;
60313ebe
PZ
5715}
5716
cdd6c482
IM
5717static void perf_event_task(struct task_struct *task,
5718 struct perf_event_context *task_ctx,
3a80b4a3 5719 int new)
60313ebe 5720{
9f498cc5 5721 struct perf_task_event task_event;
60313ebe 5722
cdd6c482
IM
5723 if (!atomic_read(&nr_comm_events) &&
5724 !atomic_read(&nr_mmap_events) &&
5725 !atomic_read(&nr_task_events))
60313ebe
PZ
5726 return;
5727
9f498cc5 5728 task_event = (struct perf_task_event){
3a80b4a3
PZ
5729 .task = task,
5730 .task_ctx = task_ctx,
cdd6c482 5731 .event_id = {
60313ebe 5732 .header = {
cdd6c482 5733 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5734 .misc = 0,
cdd6c482 5735 .size = sizeof(task_event.event_id),
60313ebe 5736 },
573402db
PZ
5737 /* .pid */
5738 /* .ppid */
9f498cc5
PZ
5739 /* .tid */
5740 /* .ptid */
34f43927 5741 /* .time */
60313ebe
PZ
5742 },
5743 };
5744
67516844 5745 perf_event_aux(perf_event_task_output,
52d857a8
JO
5746 &task_event,
5747 task_ctx);
9f498cc5
PZ
5748}
5749
cdd6c482 5750void perf_event_fork(struct task_struct *task)
9f498cc5 5751{
cdd6c482 5752 perf_event_task(task, NULL, 1);
60313ebe
PZ
5753}
5754
8d1b2d93
PZ
5755/*
5756 * comm tracking
5757 */
5758
5759struct perf_comm_event {
22a4f650
IM
5760 struct task_struct *task;
5761 char *comm;
8d1b2d93
PZ
5762 int comm_size;
5763
5764 struct {
5765 struct perf_event_header header;
5766
5767 u32 pid;
5768 u32 tid;
cdd6c482 5769 } event_id;
8d1b2d93
PZ
5770};
5771
67516844
JO
5772static int perf_event_comm_match(struct perf_event *event)
5773{
5774 return event->attr.comm;
5775}
5776
cdd6c482 5777static void perf_event_comm_output(struct perf_event *event,
52d857a8 5778 void *data)
8d1b2d93 5779{
52d857a8 5780 struct perf_comm_event *comm_event = data;
8d1b2d93 5781 struct perf_output_handle handle;
c980d109 5782 struct perf_sample_data sample;
cdd6c482 5783 int size = comm_event->event_id.header.size;
c980d109
ACM
5784 int ret;
5785
67516844
JO
5786 if (!perf_event_comm_match(event))
5787 return;
5788
c980d109
ACM
5789 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5790 ret = perf_output_begin(&handle, event,
a7ac67ea 5791 comm_event->event_id.header.size);
8d1b2d93
PZ
5792
5793 if (ret)
c980d109 5794 goto out;
8d1b2d93 5795
cdd6c482
IM
5796 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5797 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5798
cdd6c482 5799 perf_output_put(&handle, comm_event->event_id);
76369139 5800 __output_copy(&handle, comm_event->comm,
8d1b2d93 5801 comm_event->comm_size);
c980d109
ACM
5802
5803 perf_event__output_id_sample(event, &handle, &sample);
5804
8d1b2d93 5805 perf_output_end(&handle);
c980d109
ACM
5806out:
5807 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5808}
5809
cdd6c482 5810static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5811{
413ee3b4 5812 char comm[TASK_COMM_LEN];
8d1b2d93 5813 unsigned int size;
8d1b2d93 5814
413ee3b4 5815 memset(comm, 0, sizeof(comm));
96b02d78 5816 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5817 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5818
5819 comm_event->comm = comm;
5820 comm_event->comm_size = size;
5821
cdd6c482 5822 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5823
67516844 5824 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5825 comm_event,
5826 NULL);
8d1b2d93
PZ
5827}
5828
82b89778 5829void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5830{
9ee318a7
PZ
5831 struct perf_comm_event comm_event;
5832
cdd6c482 5833 if (!atomic_read(&nr_comm_events))
9ee318a7 5834 return;
a63eaf34 5835
9ee318a7 5836 comm_event = (struct perf_comm_event){
8d1b2d93 5837 .task = task,
573402db
PZ
5838 /* .comm */
5839 /* .comm_size */
cdd6c482 5840 .event_id = {
573402db 5841 .header = {
cdd6c482 5842 .type = PERF_RECORD_COMM,
82b89778 5843 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5844 /* .size */
5845 },
5846 /* .pid */
5847 /* .tid */
8d1b2d93
PZ
5848 },
5849 };
5850
cdd6c482 5851 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5852}
5853
0a4a9391
PZ
5854/*
5855 * mmap tracking
5856 */
5857
5858struct perf_mmap_event {
089dd79d
PZ
5859 struct vm_area_struct *vma;
5860
5861 const char *file_name;
5862 int file_size;
13d7a241
SE
5863 int maj, min;
5864 u64 ino;
5865 u64 ino_generation;
f972eb63 5866 u32 prot, flags;
0a4a9391
PZ
5867
5868 struct {
5869 struct perf_event_header header;
5870
5871 u32 pid;
5872 u32 tid;
5873 u64 start;
5874 u64 len;
5875 u64 pgoff;
cdd6c482 5876 } event_id;
0a4a9391
PZ
5877};
5878
67516844
JO
5879static int perf_event_mmap_match(struct perf_event *event,
5880 void *data)
5881{
5882 struct perf_mmap_event *mmap_event = data;
5883 struct vm_area_struct *vma = mmap_event->vma;
5884 int executable = vma->vm_flags & VM_EXEC;
5885
5886 return (!executable && event->attr.mmap_data) ||
13d7a241 5887 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5888}
5889
cdd6c482 5890static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5891 void *data)
0a4a9391 5892{
52d857a8 5893 struct perf_mmap_event *mmap_event = data;
0a4a9391 5894 struct perf_output_handle handle;
c980d109 5895 struct perf_sample_data sample;
cdd6c482 5896 int size = mmap_event->event_id.header.size;
c980d109 5897 int ret;
0a4a9391 5898
67516844
JO
5899 if (!perf_event_mmap_match(event, data))
5900 return;
5901
13d7a241
SE
5902 if (event->attr.mmap2) {
5903 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5904 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5905 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5906 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5907 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5908 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5909 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5910 }
5911
c980d109
ACM
5912 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5913 ret = perf_output_begin(&handle, event,
a7ac67ea 5914 mmap_event->event_id.header.size);
0a4a9391 5915 if (ret)
c980d109 5916 goto out;
0a4a9391 5917
cdd6c482
IM
5918 mmap_event->event_id.pid = perf_event_pid(event, current);
5919 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5920
cdd6c482 5921 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5922
5923 if (event->attr.mmap2) {
5924 perf_output_put(&handle, mmap_event->maj);
5925 perf_output_put(&handle, mmap_event->min);
5926 perf_output_put(&handle, mmap_event->ino);
5927 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5928 perf_output_put(&handle, mmap_event->prot);
5929 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5930 }
5931
76369139 5932 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5933 mmap_event->file_size);
c980d109
ACM
5934
5935 perf_event__output_id_sample(event, &handle, &sample);
5936
78d613eb 5937 perf_output_end(&handle);
c980d109
ACM
5938out:
5939 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5940}
5941
cdd6c482 5942static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5943{
089dd79d
PZ
5944 struct vm_area_struct *vma = mmap_event->vma;
5945 struct file *file = vma->vm_file;
13d7a241
SE
5946 int maj = 0, min = 0;
5947 u64 ino = 0, gen = 0;
f972eb63 5948 u32 prot = 0, flags = 0;
0a4a9391
PZ
5949 unsigned int size;
5950 char tmp[16];
5951 char *buf = NULL;
2c42cfbf 5952 char *name;
413ee3b4 5953
0a4a9391 5954 if (file) {
13d7a241
SE
5955 struct inode *inode;
5956 dev_t dev;
3ea2f2b9 5957
2c42cfbf 5958 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5959 if (!buf) {
c7e548b4
ON
5960 name = "//enomem";
5961 goto cpy_name;
0a4a9391 5962 }
413ee3b4 5963 /*
3ea2f2b9 5964 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5965 * need to add enough zero bytes after the string to handle
5966 * the 64bit alignment we do later.
5967 */
9bf39ab2 5968 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 5969 if (IS_ERR(name)) {
c7e548b4
ON
5970 name = "//toolong";
5971 goto cpy_name;
0a4a9391 5972 }
13d7a241
SE
5973 inode = file_inode(vma->vm_file);
5974 dev = inode->i_sb->s_dev;
5975 ino = inode->i_ino;
5976 gen = inode->i_generation;
5977 maj = MAJOR(dev);
5978 min = MINOR(dev);
f972eb63
PZ
5979
5980 if (vma->vm_flags & VM_READ)
5981 prot |= PROT_READ;
5982 if (vma->vm_flags & VM_WRITE)
5983 prot |= PROT_WRITE;
5984 if (vma->vm_flags & VM_EXEC)
5985 prot |= PROT_EXEC;
5986
5987 if (vma->vm_flags & VM_MAYSHARE)
5988 flags = MAP_SHARED;
5989 else
5990 flags = MAP_PRIVATE;
5991
5992 if (vma->vm_flags & VM_DENYWRITE)
5993 flags |= MAP_DENYWRITE;
5994 if (vma->vm_flags & VM_MAYEXEC)
5995 flags |= MAP_EXECUTABLE;
5996 if (vma->vm_flags & VM_LOCKED)
5997 flags |= MAP_LOCKED;
5998 if (vma->vm_flags & VM_HUGETLB)
5999 flags |= MAP_HUGETLB;
6000
c7e548b4 6001 goto got_name;
0a4a9391 6002 } else {
fbe26abe
JO
6003 if (vma->vm_ops && vma->vm_ops->name) {
6004 name = (char *) vma->vm_ops->name(vma);
6005 if (name)
6006 goto cpy_name;
6007 }
6008
2c42cfbf 6009 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6010 if (name)
6011 goto cpy_name;
089dd79d 6012
32c5fb7e 6013 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6014 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6015 name = "[heap]";
6016 goto cpy_name;
32c5fb7e
ON
6017 }
6018 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6019 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6020 name = "[stack]";
6021 goto cpy_name;
089dd79d
PZ
6022 }
6023
c7e548b4
ON
6024 name = "//anon";
6025 goto cpy_name;
0a4a9391
PZ
6026 }
6027
c7e548b4
ON
6028cpy_name:
6029 strlcpy(tmp, name, sizeof(tmp));
6030 name = tmp;
0a4a9391 6031got_name:
2c42cfbf
PZ
6032 /*
6033 * Since our buffer works in 8 byte units we need to align our string
6034 * size to a multiple of 8. However, we must guarantee the tail end is
6035 * zero'd out to avoid leaking random bits to userspace.
6036 */
6037 size = strlen(name)+1;
6038 while (!IS_ALIGNED(size, sizeof(u64)))
6039 name[size++] = '\0';
0a4a9391
PZ
6040
6041 mmap_event->file_name = name;
6042 mmap_event->file_size = size;
13d7a241
SE
6043 mmap_event->maj = maj;
6044 mmap_event->min = min;
6045 mmap_event->ino = ino;
6046 mmap_event->ino_generation = gen;
f972eb63
PZ
6047 mmap_event->prot = prot;
6048 mmap_event->flags = flags;
0a4a9391 6049
2fe85427
SE
6050 if (!(vma->vm_flags & VM_EXEC))
6051 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6052
cdd6c482 6053 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6054
67516844 6055 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6056 mmap_event,
6057 NULL);
665c2142 6058
0a4a9391
PZ
6059 kfree(buf);
6060}
6061
3af9e859 6062void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6063{
9ee318a7
PZ
6064 struct perf_mmap_event mmap_event;
6065
cdd6c482 6066 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6067 return;
6068
6069 mmap_event = (struct perf_mmap_event){
089dd79d 6070 .vma = vma,
573402db
PZ
6071 /* .file_name */
6072 /* .file_size */
cdd6c482 6073 .event_id = {
573402db 6074 .header = {
cdd6c482 6075 .type = PERF_RECORD_MMAP,
39447b38 6076 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6077 /* .size */
6078 },
6079 /* .pid */
6080 /* .tid */
089dd79d
PZ
6081 .start = vma->vm_start,
6082 .len = vma->vm_end - vma->vm_start,
3a0304e9 6083 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6084 },
13d7a241
SE
6085 /* .maj (attr_mmap2 only) */
6086 /* .min (attr_mmap2 only) */
6087 /* .ino (attr_mmap2 only) */
6088 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6089 /* .prot (attr_mmap2 only) */
6090 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6091 };
6092
cdd6c482 6093 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6094}
6095
68db7e98
AS
6096void perf_event_aux_event(struct perf_event *event, unsigned long head,
6097 unsigned long size, u64 flags)
6098{
6099 struct perf_output_handle handle;
6100 struct perf_sample_data sample;
6101 struct perf_aux_event {
6102 struct perf_event_header header;
6103 u64 offset;
6104 u64 size;
6105 u64 flags;
6106 } rec = {
6107 .header = {
6108 .type = PERF_RECORD_AUX,
6109 .misc = 0,
6110 .size = sizeof(rec),
6111 },
6112 .offset = head,
6113 .size = size,
6114 .flags = flags,
6115 };
6116 int ret;
6117
6118 perf_event_header__init_id(&rec.header, &sample, event);
6119 ret = perf_output_begin(&handle, event, rec.header.size);
6120
6121 if (ret)
6122 return;
6123
6124 perf_output_put(&handle, rec);
6125 perf_event__output_id_sample(event, &handle, &sample);
6126
6127 perf_output_end(&handle);
6128}
6129
f38b0dbb
KL
6130/*
6131 * Lost/dropped samples logging
6132 */
6133void perf_log_lost_samples(struct perf_event *event, u64 lost)
6134{
6135 struct perf_output_handle handle;
6136 struct perf_sample_data sample;
6137 int ret;
6138
6139 struct {
6140 struct perf_event_header header;
6141 u64 lost;
6142 } lost_samples_event = {
6143 .header = {
6144 .type = PERF_RECORD_LOST_SAMPLES,
6145 .misc = 0,
6146 .size = sizeof(lost_samples_event),
6147 },
6148 .lost = lost,
6149 };
6150
6151 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6152
6153 ret = perf_output_begin(&handle, event,
6154 lost_samples_event.header.size);
6155 if (ret)
6156 return;
6157
6158 perf_output_put(&handle, lost_samples_event);
6159 perf_event__output_id_sample(event, &handle, &sample);
6160 perf_output_end(&handle);
6161}
6162
45ac1403
AH
6163/*
6164 * context_switch tracking
6165 */
6166
6167struct perf_switch_event {
6168 struct task_struct *task;
6169 struct task_struct *next_prev;
6170
6171 struct {
6172 struct perf_event_header header;
6173 u32 next_prev_pid;
6174 u32 next_prev_tid;
6175 } event_id;
6176};
6177
6178static int perf_event_switch_match(struct perf_event *event)
6179{
6180 return event->attr.context_switch;
6181}
6182
6183static void perf_event_switch_output(struct perf_event *event, void *data)
6184{
6185 struct perf_switch_event *se = data;
6186 struct perf_output_handle handle;
6187 struct perf_sample_data sample;
6188 int ret;
6189
6190 if (!perf_event_switch_match(event))
6191 return;
6192
6193 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6194 if (event->ctx->task) {
6195 se->event_id.header.type = PERF_RECORD_SWITCH;
6196 se->event_id.header.size = sizeof(se->event_id.header);
6197 } else {
6198 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6199 se->event_id.header.size = sizeof(se->event_id);
6200 se->event_id.next_prev_pid =
6201 perf_event_pid(event, se->next_prev);
6202 se->event_id.next_prev_tid =
6203 perf_event_tid(event, se->next_prev);
6204 }
6205
6206 perf_event_header__init_id(&se->event_id.header, &sample, event);
6207
6208 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6209 if (ret)
6210 return;
6211
6212 if (event->ctx->task)
6213 perf_output_put(&handle, se->event_id.header);
6214 else
6215 perf_output_put(&handle, se->event_id);
6216
6217 perf_event__output_id_sample(event, &handle, &sample);
6218
6219 perf_output_end(&handle);
6220}
6221
6222static void perf_event_switch(struct task_struct *task,
6223 struct task_struct *next_prev, bool sched_in)
6224{
6225 struct perf_switch_event switch_event;
6226
6227 /* N.B. caller checks nr_switch_events != 0 */
6228
6229 switch_event = (struct perf_switch_event){
6230 .task = task,
6231 .next_prev = next_prev,
6232 .event_id = {
6233 .header = {
6234 /* .type */
6235 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6236 /* .size */
6237 },
6238 /* .next_prev_pid */
6239 /* .next_prev_tid */
6240 },
6241 };
6242
6243 perf_event_aux(perf_event_switch_output,
6244 &switch_event,
6245 NULL);
6246}
6247
a78ac325
PZ
6248/*
6249 * IRQ throttle logging
6250 */
6251
cdd6c482 6252static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6253{
6254 struct perf_output_handle handle;
c980d109 6255 struct perf_sample_data sample;
a78ac325
PZ
6256 int ret;
6257
6258 struct {
6259 struct perf_event_header header;
6260 u64 time;
cca3f454 6261 u64 id;
7f453c24 6262 u64 stream_id;
a78ac325
PZ
6263 } throttle_event = {
6264 .header = {
cdd6c482 6265 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6266 .misc = 0,
6267 .size = sizeof(throttle_event),
6268 },
34f43927 6269 .time = perf_event_clock(event),
cdd6c482
IM
6270 .id = primary_event_id(event),
6271 .stream_id = event->id,
a78ac325
PZ
6272 };
6273
966ee4d6 6274 if (enable)
cdd6c482 6275 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6276
c980d109
ACM
6277 perf_event_header__init_id(&throttle_event.header, &sample, event);
6278
6279 ret = perf_output_begin(&handle, event,
a7ac67ea 6280 throttle_event.header.size);
a78ac325
PZ
6281 if (ret)
6282 return;
6283
6284 perf_output_put(&handle, throttle_event);
c980d109 6285 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6286 perf_output_end(&handle);
6287}
6288
ec0d7729
AS
6289static void perf_log_itrace_start(struct perf_event *event)
6290{
6291 struct perf_output_handle handle;
6292 struct perf_sample_data sample;
6293 struct perf_aux_event {
6294 struct perf_event_header header;
6295 u32 pid;
6296 u32 tid;
6297 } rec;
6298 int ret;
6299
6300 if (event->parent)
6301 event = event->parent;
6302
6303 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6304 event->hw.itrace_started)
6305 return;
6306
ec0d7729
AS
6307 rec.header.type = PERF_RECORD_ITRACE_START;
6308 rec.header.misc = 0;
6309 rec.header.size = sizeof(rec);
6310 rec.pid = perf_event_pid(event, current);
6311 rec.tid = perf_event_tid(event, current);
6312
6313 perf_event_header__init_id(&rec.header, &sample, event);
6314 ret = perf_output_begin(&handle, event, rec.header.size);
6315
6316 if (ret)
6317 return;
6318
6319 perf_output_put(&handle, rec);
6320 perf_event__output_id_sample(event, &handle, &sample);
6321
6322 perf_output_end(&handle);
6323}
6324
f6c7d5fe 6325/*
cdd6c482 6326 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6327 */
6328
a8b0ca17 6329static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6330 int throttle, struct perf_sample_data *data,
6331 struct pt_regs *regs)
f6c7d5fe 6332{
cdd6c482
IM
6333 int events = atomic_read(&event->event_limit);
6334 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6335 u64 seq;
79f14641
PZ
6336 int ret = 0;
6337
96398826
PZ
6338 /*
6339 * Non-sampling counters might still use the PMI to fold short
6340 * hardware counters, ignore those.
6341 */
6342 if (unlikely(!is_sampling_event(event)))
6343 return 0;
6344
e050e3f0
SE
6345 seq = __this_cpu_read(perf_throttled_seq);
6346 if (seq != hwc->interrupts_seq) {
6347 hwc->interrupts_seq = seq;
6348 hwc->interrupts = 1;
6349 } else {
6350 hwc->interrupts++;
6351 if (unlikely(throttle
6352 && hwc->interrupts >= max_samples_per_tick)) {
6353 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6354 hwc->interrupts = MAX_INTERRUPTS;
6355 perf_log_throttle(event, 0);
d84153d6 6356 tick_nohz_full_kick();
a78ac325
PZ
6357 ret = 1;
6358 }
e050e3f0 6359 }
60db5e09 6360
cdd6c482 6361 if (event->attr.freq) {
def0a9b2 6362 u64 now = perf_clock();
abd50713 6363 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6364
abd50713 6365 hwc->freq_time_stamp = now;
bd2b5b12 6366
abd50713 6367 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6368 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6369 }
6370
2023b359
PZ
6371 /*
6372 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6373 * events
2023b359
PZ
6374 */
6375
cdd6c482
IM
6376 event->pending_kill = POLL_IN;
6377 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6378 ret = 1;
cdd6c482 6379 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6380 event->pending_disable = 1;
6381 irq_work_queue(&event->pending);
79f14641
PZ
6382 }
6383
453f19ee 6384 if (event->overflow_handler)
a8b0ca17 6385 event->overflow_handler(event, data, regs);
453f19ee 6386 else
a8b0ca17 6387 perf_event_output(event, data, regs);
453f19ee 6388
fed66e2c 6389 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6390 event->pending_wakeup = 1;
6391 irq_work_queue(&event->pending);
f506b3dc
PZ
6392 }
6393
79f14641 6394 return ret;
f6c7d5fe
PZ
6395}
6396
a8b0ca17 6397int perf_event_overflow(struct perf_event *event,
5622f295
MM
6398 struct perf_sample_data *data,
6399 struct pt_regs *regs)
850bc73f 6400{
a8b0ca17 6401 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6402}
6403
15dbf27c 6404/*
cdd6c482 6405 * Generic software event infrastructure
15dbf27c
PZ
6406 */
6407
b28ab83c
PZ
6408struct swevent_htable {
6409 struct swevent_hlist *swevent_hlist;
6410 struct mutex hlist_mutex;
6411 int hlist_refcount;
6412
6413 /* Recursion avoidance in each contexts */
6414 int recursion[PERF_NR_CONTEXTS];
6415};
6416
6417static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6418
7b4b6658 6419/*
cdd6c482
IM
6420 * We directly increment event->count and keep a second value in
6421 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6422 * is kept in the range [-sample_period, 0] so that we can use the
6423 * sign as trigger.
6424 */
6425
ab573844 6426u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6427{
cdd6c482 6428 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6429 u64 period = hwc->last_period;
6430 u64 nr, offset;
6431 s64 old, val;
6432
6433 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6434
6435again:
e7850595 6436 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6437 if (val < 0)
6438 return 0;
15dbf27c 6439
7b4b6658
PZ
6440 nr = div64_u64(period + val, period);
6441 offset = nr * period;
6442 val -= offset;
e7850595 6443 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6444 goto again;
15dbf27c 6445
7b4b6658 6446 return nr;
15dbf27c
PZ
6447}
6448
0cff784a 6449static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6450 struct perf_sample_data *data,
5622f295 6451 struct pt_regs *regs)
15dbf27c 6452{
cdd6c482 6453 struct hw_perf_event *hwc = &event->hw;
850bc73f 6454 int throttle = 0;
15dbf27c 6455
0cff784a
PZ
6456 if (!overflow)
6457 overflow = perf_swevent_set_period(event);
15dbf27c 6458
7b4b6658
PZ
6459 if (hwc->interrupts == MAX_INTERRUPTS)
6460 return;
15dbf27c 6461
7b4b6658 6462 for (; overflow; overflow--) {
a8b0ca17 6463 if (__perf_event_overflow(event, throttle,
5622f295 6464 data, regs)) {
7b4b6658
PZ
6465 /*
6466 * We inhibit the overflow from happening when
6467 * hwc->interrupts == MAX_INTERRUPTS.
6468 */
6469 break;
6470 }
cf450a73 6471 throttle = 1;
7b4b6658 6472 }
15dbf27c
PZ
6473}
6474
a4eaf7f1 6475static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6476 struct perf_sample_data *data,
5622f295 6477 struct pt_regs *regs)
7b4b6658 6478{
cdd6c482 6479 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6480
e7850595 6481 local64_add(nr, &event->count);
d6d020e9 6482
0cff784a
PZ
6483 if (!regs)
6484 return;
6485
6c7e550f 6486 if (!is_sampling_event(event))
7b4b6658 6487 return;
d6d020e9 6488
5d81e5cf
AV
6489 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6490 data->period = nr;
6491 return perf_swevent_overflow(event, 1, data, regs);
6492 } else
6493 data->period = event->hw.last_period;
6494
0cff784a 6495 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6496 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6497
e7850595 6498 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6499 return;
df1a132b 6500
a8b0ca17 6501 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6502}
6503
f5ffe02e
FW
6504static int perf_exclude_event(struct perf_event *event,
6505 struct pt_regs *regs)
6506{
a4eaf7f1 6507 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6508 return 1;
a4eaf7f1 6509
f5ffe02e
FW
6510 if (regs) {
6511 if (event->attr.exclude_user && user_mode(regs))
6512 return 1;
6513
6514 if (event->attr.exclude_kernel && !user_mode(regs))
6515 return 1;
6516 }
6517
6518 return 0;
6519}
6520
cdd6c482 6521static int perf_swevent_match(struct perf_event *event,
1c432d89 6522 enum perf_type_id type,
6fb2915d
LZ
6523 u32 event_id,
6524 struct perf_sample_data *data,
6525 struct pt_regs *regs)
15dbf27c 6526{
cdd6c482 6527 if (event->attr.type != type)
a21ca2ca 6528 return 0;
f5ffe02e 6529
cdd6c482 6530 if (event->attr.config != event_id)
15dbf27c
PZ
6531 return 0;
6532
f5ffe02e
FW
6533 if (perf_exclude_event(event, regs))
6534 return 0;
15dbf27c
PZ
6535
6536 return 1;
6537}
6538
76e1d904
FW
6539static inline u64 swevent_hash(u64 type, u32 event_id)
6540{
6541 u64 val = event_id | (type << 32);
6542
6543 return hash_64(val, SWEVENT_HLIST_BITS);
6544}
6545
49f135ed
FW
6546static inline struct hlist_head *
6547__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6548{
49f135ed
FW
6549 u64 hash = swevent_hash(type, event_id);
6550
6551 return &hlist->heads[hash];
6552}
76e1d904 6553
49f135ed
FW
6554/* For the read side: events when they trigger */
6555static inline struct hlist_head *
b28ab83c 6556find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6557{
6558 struct swevent_hlist *hlist;
76e1d904 6559
b28ab83c 6560 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6561 if (!hlist)
6562 return NULL;
6563
49f135ed
FW
6564 return __find_swevent_head(hlist, type, event_id);
6565}
6566
6567/* For the event head insertion and removal in the hlist */
6568static inline struct hlist_head *
b28ab83c 6569find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6570{
6571 struct swevent_hlist *hlist;
6572 u32 event_id = event->attr.config;
6573 u64 type = event->attr.type;
6574
6575 /*
6576 * Event scheduling is always serialized against hlist allocation
6577 * and release. Which makes the protected version suitable here.
6578 * The context lock guarantees that.
6579 */
b28ab83c 6580 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6581 lockdep_is_held(&event->ctx->lock));
6582 if (!hlist)
6583 return NULL;
6584
6585 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6586}
6587
6588static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6589 u64 nr,
76e1d904
FW
6590 struct perf_sample_data *data,
6591 struct pt_regs *regs)
15dbf27c 6592{
4a32fea9 6593 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6594 struct perf_event *event;
76e1d904 6595 struct hlist_head *head;
15dbf27c 6596
76e1d904 6597 rcu_read_lock();
b28ab83c 6598 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6599 if (!head)
6600 goto end;
6601
b67bfe0d 6602 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6603 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6604 perf_swevent_event(event, nr, data, regs);
15dbf27c 6605 }
76e1d904
FW
6606end:
6607 rcu_read_unlock();
15dbf27c
PZ
6608}
6609
86038c5e
PZI
6610DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6611
4ed7c92d 6612int perf_swevent_get_recursion_context(void)
96f6d444 6613{
4a32fea9 6614 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6615
b28ab83c 6616 return get_recursion_context(swhash->recursion);
96f6d444 6617}
645e8cc0 6618EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6619
fa9f90be 6620inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6621{
4a32fea9 6622 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6623
b28ab83c 6624 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6625}
15dbf27c 6626
86038c5e 6627void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6628{
a4234bfc 6629 struct perf_sample_data data;
4ed7c92d 6630
86038c5e 6631 if (WARN_ON_ONCE(!regs))
4ed7c92d 6632 return;
a4234bfc 6633
fd0d000b 6634 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6635 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6636}
6637
6638void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6639{
6640 int rctx;
6641
6642 preempt_disable_notrace();
6643 rctx = perf_swevent_get_recursion_context();
6644 if (unlikely(rctx < 0))
6645 goto fail;
6646
6647 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6648
6649 perf_swevent_put_recursion_context(rctx);
86038c5e 6650fail:
1c024eca 6651 preempt_enable_notrace();
b8e83514
PZ
6652}
6653
cdd6c482 6654static void perf_swevent_read(struct perf_event *event)
15dbf27c 6655{
15dbf27c
PZ
6656}
6657
a4eaf7f1 6658static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6659{
4a32fea9 6660 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6661 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6662 struct hlist_head *head;
6663
6c7e550f 6664 if (is_sampling_event(event)) {
7b4b6658 6665 hwc->last_period = hwc->sample_period;
cdd6c482 6666 perf_swevent_set_period(event);
7b4b6658 6667 }
76e1d904 6668
a4eaf7f1
PZ
6669 hwc->state = !(flags & PERF_EF_START);
6670
b28ab83c 6671 head = find_swevent_head(swhash, event);
12ca6ad2 6672 if (WARN_ON_ONCE(!head))
76e1d904
FW
6673 return -EINVAL;
6674
6675 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6676 perf_event_update_userpage(event);
76e1d904 6677
15dbf27c
PZ
6678 return 0;
6679}
6680
a4eaf7f1 6681static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6682{
76e1d904 6683 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6684}
6685
a4eaf7f1 6686static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6687{
a4eaf7f1 6688 event->hw.state = 0;
d6d020e9 6689}
aa9c4c0f 6690
a4eaf7f1 6691static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6692{
a4eaf7f1 6693 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6694}
6695
49f135ed
FW
6696/* Deref the hlist from the update side */
6697static inline struct swevent_hlist *
b28ab83c 6698swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6699{
b28ab83c
PZ
6700 return rcu_dereference_protected(swhash->swevent_hlist,
6701 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6702}
6703
b28ab83c 6704static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6705{
b28ab83c 6706 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6707
49f135ed 6708 if (!hlist)
76e1d904
FW
6709 return;
6710
70691d4a 6711 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6712 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6713}
6714
6715static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6716{
b28ab83c 6717 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6718
b28ab83c 6719 mutex_lock(&swhash->hlist_mutex);
76e1d904 6720
b28ab83c
PZ
6721 if (!--swhash->hlist_refcount)
6722 swevent_hlist_release(swhash);
76e1d904 6723
b28ab83c 6724 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6725}
6726
6727static void swevent_hlist_put(struct perf_event *event)
6728{
6729 int cpu;
6730
76e1d904
FW
6731 for_each_possible_cpu(cpu)
6732 swevent_hlist_put_cpu(event, cpu);
6733}
6734
6735static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6736{
b28ab83c 6737 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6738 int err = 0;
6739
b28ab83c 6740 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6741 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6742 struct swevent_hlist *hlist;
6743
6744 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6745 if (!hlist) {
6746 err = -ENOMEM;
6747 goto exit;
6748 }
b28ab83c 6749 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6750 }
b28ab83c 6751 swhash->hlist_refcount++;
9ed6060d 6752exit:
b28ab83c 6753 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6754
6755 return err;
6756}
6757
6758static int swevent_hlist_get(struct perf_event *event)
6759{
6760 int err;
6761 int cpu, failed_cpu;
6762
76e1d904
FW
6763 get_online_cpus();
6764 for_each_possible_cpu(cpu) {
6765 err = swevent_hlist_get_cpu(event, cpu);
6766 if (err) {
6767 failed_cpu = cpu;
6768 goto fail;
6769 }
6770 }
6771 put_online_cpus();
6772
6773 return 0;
9ed6060d 6774fail:
76e1d904
FW
6775 for_each_possible_cpu(cpu) {
6776 if (cpu == failed_cpu)
6777 break;
6778 swevent_hlist_put_cpu(event, cpu);
6779 }
6780
6781 put_online_cpus();
6782 return err;
6783}
6784
c5905afb 6785struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6786
b0a873eb
PZ
6787static void sw_perf_event_destroy(struct perf_event *event)
6788{
6789 u64 event_id = event->attr.config;
95476b64 6790
b0a873eb
PZ
6791 WARN_ON(event->parent);
6792
c5905afb 6793 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6794 swevent_hlist_put(event);
6795}
6796
6797static int perf_swevent_init(struct perf_event *event)
6798{
8176cced 6799 u64 event_id = event->attr.config;
b0a873eb
PZ
6800
6801 if (event->attr.type != PERF_TYPE_SOFTWARE)
6802 return -ENOENT;
6803
2481c5fa
SE
6804 /*
6805 * no branch sampling for software events
6806 */
6807 if (has_branch_stack(event))
6808 return -EOPNOTSUPP;
6809
b0a873eb
PZ
6810 switch (event_id) {
6811 case PERF_COUNT_SW_CPU_CLOCK:
6812 case PERF_COUNT_SW_TASK_CLOCK:
6813 return -ENOENT;
6814
6815 default:
6816 break;
6817 }
6818
ce677831 6819 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6820 return -ENOENT;
6821
6822 if (!event->parent) {
6823 int err;
6824
6825 err = swevent_hlist_get(event);
6826 if (err)
6827 return err;
6828
c5905afb 6829 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6830 event->destroy = sw_perf_event_destroy;
6831 }
6832
6833 return 0;
6834}
6835
6836static struct pmu perf_swevent = {
89a1e187 6837 .task_ctx_nr = perf_sw_context,
95476b64 6838
34f43927
PZ
6839 .capabilities = PERF_PMU_CAP_NO_NMI,
6840
b0a873eb 6841 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6842 .add = perf_swevent_add,
6843 .del = perf_swevent_del,
6844 .start = perf_swevent_start,
6845 .stop = perf_swevent_stop,
1c024eca 6846 .read = perf_swevent_read,
1c024eca
PZ
6847};
6848
b0a873eb
PZ
6849#ifdef CONFIG_EVENT_TRACING
6850
1c024eca
PZ
6851static int perf_tp_filter_match(struct perf_event *event,
6852 struct perf_sample_data *data)
6853{
6854 void *record = data->raw->data;
6855
b71b437e
PZ
6856 /* only top level events have filters set */
6857 if (event->parent)
6858 event = event->parent;
6859
1c024eca
PZ
6860 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6861 return 1;
6862 return 0;
6863}
6864
6865static int perf_tp_event_match(struct perf_event *event,
6866 struct perf_sample_data *data,
6867 struct pt_regs *regs)
6868{
a0f7d0f7
FW
6869 if (event->hw.state & PERF_HES_STOPPED)
6870 return 0;
580d607c
PZ
6871 /*
6872 * All tracepoints are from kernel-space.
6873 */
6874 if (event->attr.exclude_kernel)
1c024eca
PZ
6875 return 0;
6876
6877 if (!perf_tp_filter_match(event, data))
6878 return 0;
6879
6880 return 1;
6881}
6882
6883void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6884 struct pt_regs *regs, struct hlist_head *head, int rctx,
6885 struct task_struct *task)
95476b64
FW
6886{
6887 struct perf_sample_data data;
1c024eca 6888 struct perf_event *event;
1c024eca 6889
95476b64
FW
6890 struct perf_raw_record raw = {
6891 .size = entry_size,
6892 .data = record,
6893 };
6894
fd0d000b 6895 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6896 data.raw = &raw;
6897
b67bfe0d 6898 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6899 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6900 perf_swevent_event(event, count, &data, regs);
4f41c013 6901 }
ecc55f84 6902
e6dab5ff
AV
6903 /*
6904 * If we got specified a target task, also iterate its context and
6905 * deliver this event there too.
6906 */
6907 if (task && task != current) {
6908 struct perf_event_context *ctx;
6909 struct trace_entry *entry = record;
6910
6911 rcu_read_lock();
6912 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6913 if (!ctx)
6914 goto unlock;
6915
6916 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6917 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6918 continue;
6919 if (event->attr.config != entry->type)
6920 continue;
6921 if (perf_tp_event_match(event, &data, regs))
6922 perf_swevent_event(event, count, &data, regs);
6923 }
6924unlock:
6925 rcu_read_unlock();
6926 }
6927
ecc55f84 6928 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6929}
6930EXPORT_SYMBOL_GPL(perf_tp_event);
6931
cdd6c482 6932static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6933{
1c024eca 6934 perf_trace_destroy(event);
e077df4f
PZ
6935}
6936
b0a873eb 6937static int perf_tp_event_init(struct perf_event *event)
e077df4f 6938{
76e1d904
FW
6939 int err;
6940
b0a873eb
PZ
6941 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6942 return -ENOENT;
6943
2481c5fa
SE
6944 /*
6945 * no branch sampling for tracepoint events
6946 */
6947 if (has_branch_stack(event))
6948 return -EOPNOTSUPP;
6949
1c024eca
PZ
6950 err = perf_trace_init(event);
6951 if (err)
b0a873eb 6952 return err;
e077df4f 6953
cdd6c482 6954 event->destroy = tp_perf_event_destroy;
e077df4f 6955
b0a873eb
PZ
6956 return 0;
6957}
6958
6959static struct pmu perf_tracepoint = {
89a1e187
PZ
6960 .task_ctx_nr = perf_sw_context,
6961
b0a873eb 6962 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6963 .add = perf_trace_add,
6964 .del = perf_trace_del,
6965 .start = perf_swevent_start,
6966 .stop = perf_swevent_stop,
b0a873eb 6967 .read = perf_swevent_read,
b0a873eb
PZ
6968};
6969
6970static inline void perf_tp_register(void)
6971{
2e80a82a 6972 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6973}
6fb2915d
LZ
6974
6975static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6976{
6977 char *filter_str;
6978 int ret;
6979
6980 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6981 return -EINVAL;
6982
6983 filter_str = strndup_user(arg, PAGE_SIZE);
6984 if (IS_ERR(filter_str))
6985 return PTR_ERR(filter_str);
6986
6987 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6988
6989 kfree(filter_str);
6990 return ret;
6991}
6992
6993static void perf_event_free_filter(struct perf_event *event)
6994{
6995 ftrace_profile_free_filter(event);
6996}
6997
2541517c
AS
6998static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6999{
7000 struct bpf_prog *prog;
7001
7002 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7003 return -EINVAL;
7004
7005 if (event->tp_event->prog)
7006 return -EEXIST;
7007
04a22fae
WN
7008 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7009 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7010 return -EINVAL;
7011
7012 prog = bpf_prog_get(prog_fd);
7013 if (IS_ERR(prog))
7014 return PTR_ERR(prog);
7015
6c373ca8 7016 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7017 /* valid fd, but invalid bpf program type */
7018 bpf_prog_put(prog);
7019 return -EINVAL;
7020 }
7021
7022 event->tp_event->prog = prog;
7023
7024 return 0;
7025}
7026
7027static void perf_event_free_bpf_prog(struct perf_event *event)
7028{
7029 struct bpf_prog *prog;
7030
7031 if (!event->tp_event)
7032 return;
7033
7034 prog = event->tp_event->prog;
7035 if (prog) {
7036 event->tp_event->prog = NULL;
7037 bpf_prog_put(prog);
7038 }
7039}
7040
e077df4f 7041#else
6fb2915d 7042
b0a873eb 7043static inline void perf_tp_register(void)
e077df4f 7044{
e077df4f 7045}
6fb2915d
LZ
7046
7047static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7048{
7049 return -ENOENT;
7050}
7051
7052static void perf_event_free_filter(struct perf_event *event)
7053{
7054}
7055
2541517c
AS
7056static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7057{
7058 return -ENOENT;
7059}
7060
7061static void perf_event_free_bpf_prog(struct perf_event *event)
7062{
7063}
07b139c8 7064#endif /* CONFIG_EVENT_TRACING */
e077df4f 7065
24f1e32c 7066#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7067void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7068{
f5ffe02e
FW
7069 struct perf_sample_data sample;
7070 struct pt_regs *regs = data;
7071
fd0d000b 7072 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7073
a4eaf7f1 7074 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7075 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7076}
7077#endif
7078
b0a873eb
PZ
7079/*
7080 * hrtimer based swevent callback
7081 */
f29ac756 7082
b0a873eb 7083static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7084{
b0a873eb
PZ
7085 enum hrtimer_restart ret = HRTIMER_RESTART;
7086 struct perf_sample_data data;
7087 struct pt_regs *regs;
7088 struct perf_event *event;
7089 u64 period;
f29ac756 7090
b0a873eb 7091 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7092
7093 if (event->state != PERF_EVENT_STATE_ACTIVE)
7094 return HRTIMER_NORESTART;
7095
b0a873eb 7096 event->pmu->read(event);
f344011c 7097
fd0d000b 7098 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7099 regs = get_irq_regs();
7100
7101 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7102 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7103 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7104 ret = HRTIMER_NORESTART;
7105 }
24f1e32c 7106
b0a873eb
PZ
7107 period = max_t(u64, 10000, event->hw.sample_period);
7108 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7109
b0a873eb 7110 return ret;
f29ac756
PZ
7111}
7112
b0a873eb 7113static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7114{
b0a873eb 7115 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7116 s64 period;
7117
7118 if (!is_sampling_event(event))
7119 return;
f5ffe02e 7120
5d508e82
FBH
7121 period = local64_read(&hwc->period_left);
7122 if (period) {
7123 if (period < 0)
7124 period = 10000;
fa407f35 7125
5d508e82
FBH
7126 local64_set(&hwc->period_left, 0);
7127 } else {
7128 period = max_t(u64, 10000, hwc->sample_period);
7129 }
3497d206
TG
7130 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7131 HRTIMER_MODE_REL_PINNED);
24f1e32c 7132}
b0a873eb
PZ
7133
7134static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7135{
b0a873eb
PZ
7136 struct hw_perf_event *hwc = &event->hw;
7137
6c7e550f 7138 if (is_sampling_event(event)) {
b0a873eb 7139 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7140 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7141
7142 hrtimer_cancel(&hwc->hrtimer);
7143 }
24f1e32c
FW
7144}
7145
ba3dd36c
PZ
7146static void perf_swevent_init_hrtimer(struct perf_event *event)
7147{
7148 struct hw_perf_event *hwc = &event->hw;
7149
7150 if (!is_sampling_event(event))
7151 return;
7152
7153 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7154 hwc->hrtimer.function = perf_swevent_hrtimer;
7155
7156 /*
7157 * Since hrtimers have a fixed rate, we can do a static freq->period
7158 * mapping and avoid the whole period adjust feedback stuff.
7159 */
7160 if (event->attr.freq) {
7161 long freq = event->attr.sample_freq;
7162
7163 event->attr.sample_period = NSEC_PER_SEC / freq;
7164 hwc->sample_period = event->attr.sample_period;
7165 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7166 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7167 event->attr.freq = 0;
7168 }
7169}
7170
b0a873eb
PZ
7171/*
7172 * Software event: cpu wall time clock
7173 */
7174
7175static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7176{
b0a873eb
PZ
7177 s64 prev;
7178 u64 now;
7179
a4eaf7f1 7180 now = local_clock();
b0a873eb
PZ
7181 prev = local64_xchg(&event->hw.prev_count, now);
7182 local64_add(now - prev, &event->count);
24f1e32c 7183}
24f1e32c 7184
a4eaf7f1 7185static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7186{
a4eaf7f1 7187 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7188 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7189}
7190
a4eaf7f1 7191static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7192{
b0a873eb
PZ
7193 perf_swevent_cancel_hrtimer(event);
7194 cpu_clock_event_update(event);
7195}
f29ac756 7196
a4eaf7f1
PZ
7197static int cpu_clock_event_add(struct perf_event *event, int flags)
7198{
7199 if (flags & PERF_EF_START)
7200 cpu_clock_event_start(event, flags);
6a694a60 7201 perf_event_update_userpage(event);
a4eaf7f1
PZ
7202
7203 return 0;
7204}
7205
7206static void cpu_clock_event_del(struct perf_event *event, int flags)
7207{
7208 cpu_clock_event_stop(event, flags);
7209}
7210
b0a873eb
PZ
7211static void cpu_clock_event_read(struct perf_event *event)
7212{
7213 cpu_clock_event_update(event);
7214}
f344011c 7215
b0a873eb
PZ
7216static int cpu_clock_event_init(struct perf_event *event)
7217{
7218 if (event->attr.type != PERF_TYPE_SOFTWARE)
7219 return -ENOENT;
7220
7221 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7222 return -ENOENT;
7223
2481c5fa
SE
7224 /*
7225 * no branch sampling for software events
7226 */
7227 if (has_branch_stack(event))
7228 return -EOPNOTSUPP;
7229
ba3dd36c
PZ
7230 perf_swevent_init_hrtimer(event);
7231
b0a873eb 7232 return 0;
f29ac756
PZ
7233}
7234
b0a873eb 7235static struct pmu perf_cpu_clock = {
89a1e187
PZ
7236 .task_ctx_nr = perf_sw_context,
7237
34f43927
PZ
7238 .capabilities = PERF_PMU_CAP_NO_NMI,
7239
b0a873eb 7240 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7241 .add = cpu_clock_event_add,
7242 .del = cpu_clock_event_del,
7243 .start = cpu_clock_event_start,
7244 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7245 .read = cpu_clock_event_read,
7246};
7247
7248/*
7249 * Software event: task time clock
7250 */
7251
7252static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7253{
b0a873eb
PZ
7254 u64 prev;
7255 s64 delta;
5c92d124 7256
b0a873eb
PZ
7257 prev = local64_xchg(&event->hw.prev_count, now);
7258 delta = now - prev;
7259 local64_add(delta, &event->count);
7260}
5c92d124 7261
a4eaf7f1 7262static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7263{
a4eaf7f1 7264 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7265 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7266}
7267
a4eaf7f1 7268static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7269{
7270 perf_swevent_cancel_hrtimer(event);
7271 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7272}
7273
7274static int task_clock_event_add(struct perf_event *event, int flags)
7275{
7276 if (flags & PERF_EF_START)
7277 task_clock_event_start(event, flags);
6a694a60 7278 perf_event_update_userpage(event);
b0a873eb 7279
a4eaf7f1
PZ
7280 return 0;
7281}
7282
7283static void task_clock_event_del(struct perf_event *event, int flags)
7284{
7285 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7286}
7287
7288static void task_clock_event_read(struct perf_event *event)
7289{
768a06e2
PZ
7290 u64 now = perf_clock();
7291 u64 delta = now - event->ctx->timestamp;
7292 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7293
7294 task_clock_event_update(event, time);
7295}
7296
7297static int task_clock_event_init(struct perf_event *event)
6fb2915d 7298{
b0a873eb
PZ
7299 if (event->attr.type != PERF_TYPE_SOFTWARE)
7300 return -ENOENT;
7301
7302 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7303 return -ENOENT;
7304
2481c5fa
SE
7305 /*
7306 * no branch sampling for software events
7307 */
7308 if (has_branch_stack(event))
7309 return -EOPNOTSUPP;
7310
ba3dd36c
PZ
7311 perf_swevent_init_hrtimer(event);
7312
b0a873eb 7313 return 0;
6fb2915d
LZ
7314}
7315
b0a873eb 7316static struct pmu perf_task_clock = {
89a1e187
PZ
7317 .task_ctx_nr = perf_sw_context,
7318
34f43927
PZ
7319 .capabilities = PERF_PMU_CAP_NO_NMI,
7320
b0a873eb 7321 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7322 .add = task_clock_event_add,
7323 .del = task_clock_event_del,
7324 .start = task_clock_event_start,
7325 .stop = task_clock_event_stop,
b0a873eb
PZ
7326 .read = task_clock_event_read,
7327};
6fb2915d 7328
ad5133b7 7329static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7330{
e077df4f 7331}
6fb2915d 7332
fbbe0701
SB
7333static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7334{
7335}
7336
ad5133b7 7337static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7338{
ad5133b7 7339 return 0;
6fb2915d
LZ
7340}
7341
18ab2cd3 7342static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7343
7344static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7345{
fbbe0701
SB
7346 __this_cpu_write(nop_txn_flags, flags);
7347
7348 if (flags & ~PERF_PMU_TXN_ADD)
7349 return;
7350
ad5133b7 7351 perf_pmu_disable(pmu);
6fb2915d
LZ
7352}
7353
ad5133b7
PZ
7354static int perf_pmu_commit_txn(struct pmu *pmu)
7355{
fbbe0701
SB
7356 unsigned int flags = __this_cpu_read(nop_txn_flags);
7357
7358 __this_cpu_write(nop_txn_flags, 0);
7359
7360 if (flags & ~PERF_PMU_TXN_ADD)
7361 return 0;
7362
ad5133b7
PZ
7363 perf_pmu_enable(pmu);
7364 return 0;
7365}
e077df4f 7366
ad5133b7 7367static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7368{
fbbe0701
SB
7369 unsigned int flags = __this_cpu_read(nop_txn_flags);
7370
7371 __this_cpu_write(nop_txn_flags, 0);
7372
7373 if (flags & ~PERF_PMU_TXN_ADD)
7374 return;
7375
ad5133b7 7376 perf_pmu_enable(pmu);
24f1e32c
FW
7377}
7378
35edc2a5
PZ
7379static int perf_event_idx_default(struct perf_event *event)
7380{
c719f560 7381 return 0;
35edc2a5
PZ
7382}
7383
8dc85d54
PZ
7384/*
7385 * Ensures all contexts with the same task_ctx_nr have the same
7386 * pmu_cpu_context too.
7387 */
9e317041 7388static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7389{
8dc85d54 7390 struct pmu *pmu;
b326e956 7391
8dc85d54
PZ
7392 if (ctxn < 0)
7393 return NULL;
24f1e32c 7394
8dc85d54
PZ
7395 list_for_each_entry(pmu, &pmus, entry) {
7396 if (pmu->task_ctx_nr == ctxn)
7397 return pmu->pmu_cpu_context;
7398 }
24f1e32c 7399
8dc85d54 7400 return NULL;
24f1e32c
FW
7401}
7402
51676957 7403static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7404{
51676957
PZ
7405 int cpu;
7406
7407 for_each_possible_cpu(cpu) {
7408 struct perf_cpu_context *cpuctx;
7409
7410 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7411
3f1f3320
PZ
7412 if (cpuctx->unique_pmu == old_pmu)
7413 cpuctx->unique_pmu = pmu;
51676957
PZ
7414 }
7415}
7416
7417static void free_pmu_context(struct pmu *pmu)
7418{
7419 struct pmu *i;
f5ffe02e 7420
8dc85d54 7421 mutex_lock(&pmus_lock);
0475f9ea 7422 /*
8dc85d54 7423 * Like a real lame refcount.
0475f9ea 7424 */
51676957
PZ
7425 list_for_each_entry(i, &pmus, entry) {
7426 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7427 update_pmu_context(i, pmu);
8dc85d54 7428 goto out;
51676957 7429 }
8dc85d54 7430 }
d6d020e9 7431
51676957 7432 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7433out:
7434 mutex_unlock(&pmus_lock);
24f1e32c 7435}
2e80a82a 7436static struct idr pmu_idr;
d6d020e9 7437
abe43400
PZ
7438static ssize_t
7439type_show(struct device *dev, struct device_attribute *attr, char *page)
7440{
7441 struct pmu *pmu = dev_get_drvdata(dev);
7442
7443 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7444}
90826ca7 7445static DEVICE_ATTR_RO(type);
abe43400 7446
62b85639
SE
7447static ssize_t
7448perf_event_mux_interval_ms_show(struct device *dev,
7449 struct device_attribute *attr,
7450 char *page)
7451{
7452 struct pmu *pmu = dev_get_drvdata(dev);
7453
7454 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7455}
7456
272325c4
PZ
7457static DEFINE_MUTEX(mux_interval_mutex);
7458
62b85639
SE
7459static ssize_t
7460perf_event_mux_interval_ms_store(struct device *dev,
7461 struct device_attribute *attr,
7462 const char *buf, size_t count)
7463{
7464 struct pmu *pmu = dev_get_drvdata(dev);
7465 int timer, cpu, ret;
7466
7467 ret = kstrtoint(buf, 0, &timer);
7468 if (ret)
7469 return ret;
7470
7471 if (timer < 1)
7472 return -EINVAL;
7473
7474 /* same value, noting to do */
7475 if (timer == pmu->hrtimer_interval_ms)
7476 return count;
7477
272325c4 7478 mutex_lock(&mux_interval_mutex);
62b85639
SE
7479 pmu->hrtimer_interval_ms = timer;
7480
7481 /* update all cpuctx for this PMU */
272325c4
PZ
7482 get_online_cpus();
7483 for_each_online_cpu(cpu) {
62b85639
SE
7484 struct perf_cpu_context *cpuctx;
7485 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7486 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7487
272325c4
PZ
7488 cpu_function_call(cpu,
7489 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7490 }
272325c4
PZ
7491 put_online_cpus();
7492 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7493
7494 return count;
7495}
90826ca7 7496static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7497
90826ca7
GKH
7498static struct attribute *pmu_dev_attrs[] = {
7499 &dev_attr_type.attr,
7500 &dev_attr_perf_event_mux_interval_ms.attr,
7501 NULL,
abe43400 7502};
90826ca7 7503ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7504
7505static int pmu_bus_running;
7506static struct bus_type pmu_bus = {
7507 .name = "event_source",
90826ca7 7508 .dev_groups = pmu_dev_groups,
abe43400
PZ
7509};
7510
7511static void pmu_dev_release(struct device *dev)
7512{
7513 kfree(dev);
7514}
7515
7516static int pmu_dev_alloc(struct pmu *pmu)
7517{
7518 int ret = -ENOMEM;
7519
7520 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7521 if (!pmu->dev)
7522 goto out;
7523
0c9d42ed 7524 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7525 device_initialize(pmu->dev);
7526 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7527 if (ret)
7528 goto free_dev;
7529
7530 dev_set_drvdata(pmu->dev, pmu);
7531 pmu->dev->bus = &pmu_bus;
7532 pmu->dev->release = pmu_dev_release;
7533 ret = device_add(pmu->dev);
7534 if (ret)
7535 goto free_dev;
7536
7537out:
7538 return ret;
7539
7540free_dev:
7541 put_device(pmu->dev);
7542 goto out;
7543}
7544
547e9fd7 7545static struct lock_class_key cpuctx_mutex;
facc4307 7546static struct lock_class_key cpuctx_lock;
547e9fd7 7547
03d8e80b 7548int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7549{
108b02cf 7550 int cpu, ret;
24f1e32c 7551
b0a873eb 7552 mutex_lock(&pmus_lock);
33696fc0
PZ
7553 ret = -ENOMEM;
7554 pmu->pmu_disable_count = alloc_percpu(int);
7555 if (!pmu->pmu_disable_count)
7556 goto unlock;
f29ac756 7557
2e80a82a
PZ
7558 pmu->type = -1;
7559 if (!name)
7560 goto skip_type;
7561 pmu->name = name;
7562
7563 if (type < 0) {
0e9c3be2
TH
7564 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7565 if (type < 0) {
7566 ret = type;
2e80a82a
PZ
7567 goto free_pdc;
7568 }
7569 }
7570 pmu->type = type;
7571
abe43400
PZ
7572 if (pmu_bus_running) {
7573 ret = pmu_dev_alloc(pmu);
7574 if (ret)
7575 goto free_idr;
7576 }
7577
2e80a82a 7578skip_type:
8dc85d54
PZ
7579 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7580 if (pmu->pmu_cpu_context)
7581 goto got_cpu_context;
f29ac756 7582
c4814202 7583 ret = -ENOMEM;
108b02cf
PZ
7584 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7585 if (!pmu->pmu_cpu_context)
abe43400 7586 goto free_dev;
f344011c 7587
108b02cf
PZ
7588 for_each_possible_cpu(cpu) {
7589 struct perf_cpu_context *cpuctx;
7590
7591 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7592 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7593 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7594 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7595 cpuctx->ctx.pmu = pmu;
9e630205 7596
272325c4 7597 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7598
3f1f3320 7599 cpuctx->unique_pmu = pmu;
108b02cf 7600 }
76e1d904 7601
8dc85d54 7602got_cpu_context:
ad5133b7
PZ
7603 if (!pmu->start_txn) {
7604 if (pmu->pmu_enable) {
7605 /*
7606 * If we have pmu_enable/pmu_disable calls, install
7607 * transaction stubs that use that to try and batch
7608 * hardware accesses.
7609 */
7610 pmu->start_txn = perf_pmu_start_txn;
7611 pmu->commit_txn = perf_pmu_commit_txn;
7612 pmu->cancel_txn = perf_pmu_cancel_txn;
7613 } else {
fbbe0701 7614 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7615 pmu->commit_txn = perf_pmu_nop_int;
7616 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7617 }
5c92d124 7618 }
15dbf27c 7619
ad5133b7
PZ
7620 if (!pmu->pmu_enable) {
7621 pmu->pmu_enable = perf_pmu_nop_void;
7622 pmu->pmu_disable = perf_pmu_nop_void;
7623 }
7624
35edc2a5
PZ
7625 if (!pmu->event_idx)
7626 pmu->event_idx = perf_event_idx_default;
7627
b0a873eb 7628 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7629 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7630 ret = 0;
7631unlock:
b0a873eb
PZ
7632 mutex_unlock(&pmus_lock);
7633
33696fc0 7634 return ret;
108b02cf 7635
abe43400
PZ
7636free_dev:
7637 device_del(pmu->dev);
7638 put_device(pmu->dev);
7639
2e80a82a
PZ
7640free_idr:
7641 if (pmu->type >= PERF_TYPE_MAX)
7642 idr_remove(&pmu_idr, pmu->type);
7643
108b02cf
PZ
7644free_pdc:
7645 free_percpu(pmu->pmu_disable_count);
7646 goto unlock;
f29ac756 7647}
c464c76e 7648EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7649
b0a873eb 7650void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7651{
b0a873eb
PZ
7652 mutex_lock(&pmus_lock);
7653 list_del_rcu(&pmu->entry);
7654 mutex_unlock(&pmus_lock);
5c92d124 7655
0475f9ea 7656 /*
cde8e884
PZ
7657 * We dereference the pmu list under both SRCU and regular RCU, so
7658 * synchronize against both of those.
0475f9ea 7659 */
b0a873eb 7660 synchronize_srcu(&pmus_srcu);
cde8e884 7661 synchronize_rcu();
d6d020e9 7662
33696fc0 7663 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7664 if (pmu->type >= PERF_TYPE_MAX)
7665 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7666 device_del(pmu->dev);
7667 put_device(pmu->dev);
51676957 7668 free_pmu_context(pmu);
b0a873eb 7669}
c464c76e 7670EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7671
cc34b98b
MR
7672static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7673{
ccd41c86 7674 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7675 int ret;
7676
7677 if (!try_module_get(pmu->module))
7678 return -ENODEV;
ccd41c86
PZ
7679
7680 if (event->group_leader != event) {
8b10c5e2
PZ
7681 /*
7682 * This ctx->mutex can nest when we're called through
7683 * inheritance. See the perf_event_ctx_lock_nested() comment.
7684 */
7685 ctx = perf_event_ctx_lock_nested(event->group_leader,
7686 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7687 BUG_ON(!ctx);
7688 }
7689
cc34b98b
MR
7690 event->pmu = pmu;
7691 ret = pmu->event_init(event);
ccd41c86
PZ
7692
7693 if (ctx)
7694 perf_event_ctx_unlock(event->group_leader, ctx);
7695
cc34b98b
MR
7696 if (ret)
7697 module_put(pmu->module);
7698
7699 return ret;
7700}
7701
18ab2cd3 7702static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7703{
7704 struct pmu *pmu = NULL;
7705 int idx;
940c5b29 7706 int ret;
b0a873eb
PZ
7707
7708 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7709
7710 rcu_read_lock();
7711 pmu = idr_find(&pmu_idr, event->attr.type);
7712 rcu_read_unlock();
940c5b29 7713 if (pmu) {
cc34b98b 7714 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7715 if (ret)
7716 pmu = ERR_PTR(ret);
2e80a82a 7717 goto unlock;
940c5b29 7718 }
2e80a82a 7719
b0a873eb 7720 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7721 ret = perf_try_init_event(pmu, event);
b0a873eb 7722 if (!ret)
e5f4d339 7723 goto unlock;
76e1d904 7724
b0a873eb
PZ
7725 if (ret != -ENOENT) {
7726 pmu = ERR_PTR(ret);
e5f4d339 7727 goto unlock;
f344011c 7728 }
5c92d124 7729 }
e5f4d339
PZ
7730 pmu = ERR_PTR(-ENOENT);
7731unlock:
b0a873eb 7732 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7733
4aeb0b42 7734 return pmu;
5c92d124
IM
7735}
7736
4beb31f3
FW
7737static void account_event_cpu(struct perf_event *event, int cpu)
7738{
7739 if (event->parent)
7740 return;
7741
4beb31f3
FW
7742 if (is_cgroup_event(event))
7743 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7744}
7745
766d6c07
FW
7746static void account_event(struct perf_event *event)
7747{
25432ae9
PZ
7748 bool inc = false;
7749
4beb31f3
FW
7750 if (event->parent)
7751 return;
7752
766d6c07 7753 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 7754 inc = true;
766d6c07
FW
7755 if (event->attr.mmap || event->attr.mmap_data)
7756 atomic_inc(&nr_mmap_events);
7757 if (event->attr.comm)
7758 atomic_inc(&nr_comm_events);
7759 if (event->attr.task)
7760 atomic_inc(&nr_task_events);
948b26b6
FW
7761 if (event->attr.freq) {
7762 if (atomic_inc_return(&nr_freq_events) == 1)
7763 tick_nohz_full_kick_all();
7764 }
45ac1403
AH
7765 if (event->attr.context_switch) {
7766 atomic_inc(&nr_switch_events);
25432ae9 7767 inc = true;
45ac1403 7768 }
4beb31f3 7769 if (has_branch_stack(event))
25432ae9 7770 inc = true;
4beb31f3 7771 if (is_cgroup_event(event))
25432ae9
PZ
7772 inc = true;
7773
7774 if (inc)
766d6c07 7775 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7776
7777 account_event_cpu(event, event->cpu);
766d6c07
FW
7778}
7779
0793a61d 7780/*
cdd6c482 7781 * Allocate and initialize a event structure
0793a61d 7782 */
cdd6c482 7783static struct perf_event *
c3f00c70 7784perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7785 struct task_struct *task,
7786 struct perf_event *group_leader,
7787 struct perf_event *parent_event,
4dc0da86 7788 perf_overflow_handler_t overflow_handler,
79dff51e 7789 void *context, int cgroup_fd)
0793a61d 7790{
51b0fe39 7791 struct pmu *pmu;
cdd6c482
IM
7792 struct perf_event *event;
7793 struct hw_perf_event *hwc;
90983b16 7794 long err = -EINVAL;
0793a61d 7795
66832eb4
ON
7796 if ((unsigned)cpu >= nr_cpu_ids) {
7797 if (!task || cpu != -1)
7798 return ERR_PTR(-EINVAL);
7799 }
7800
c3f00c70 7801 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7802 if (!event)
d5d2bc0d 7803 return ERR_PTR(-ENOMEM);
0793a61d 7804
04289bb9 7805 /*
cdd6c482 7806 * Single events are their own group leaders, with an
04289bb9
IM
7807 * empty sibling list:
7808 */
7809 if (!group_leader)
cdd6c482 7810 group_leader = event;
04289bb9 7811
cdd6c482
IM
7812 mutex_init(&event->child_mutex);
7813 INIT_LIST_HEAD(&event->child_list);
fccc714b 7814
cdd6c482
IM
7815 INIT_LIST_HEAD(&event->group_entry);
7816 INIT_LIST_HEAD(&event->event_entry);
7817 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7818 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7819 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7820 INIT_HLIST_NODE(&event->hlist_entry);
7821
10c6db11 7822
cdd6c482 7823 init_waitqueue_head(&event->waitq);
e360adbe 7824 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7825
cdd6c482 7826 mutex_init(&event->mmap_mutex);
7b732a75 7827
a6fa941d 7828 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7829 event->cpu = cpu;
7830 event->attr = *attr;
7831 event->group_leader = group_leader;
7832 event->pmu = NULL;
cdd6c482 7833 event->oncpu = -1;
a96bbc16 7834
cdd6c482 7835 event->parent = parent_event;
b84fbc9f 7836
17cf22c3 7837 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7838 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7839
cdd6c482 7840 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7841
d580ff86
PZ
7842 if (task) {
7843 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7844 /*
50f16a8b
PZ
7845 * XXX pmu::event_init needs to know what task to account to
7846 * and we cannot use the ctx information because we need the
7847 * pmu before we get a ctx.
d580ff86 7848 */
50f16a8b 7849 event->hw.target = task;
d580ff86
PZ
7850 }
7851
34f43927
PZ
7852 event->clock = &local_clock;
7853 if (parent_event)
7854 event->clock = parent_event->clock;
7855
4dc0da86 7856 if (!overflow_handler && parent_event) {
b326e956 7857 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7858 context = parent_event->overflow_handler_context;
7859 }
66832eb4 7860
b326e956 7861 event->overflow_handler = overflow_handler;
4dc0da86 7862 event->overflow_handler_context = context;
97eaf530 7863
0231bb53 7864 perf_event__state_init(event);
a86ed508 7865
4aeb0b42 7866 pmu = NULL;
b8e83514 7867
cdd6c482 7868 hwc = &event->hw;
bd2b5b12 7869 hwc->sample_period = attr->sample_period;
0d48696f 7870 if (attr->freq && attr->sample_freq)
bd2b5b12 7871 hwc->sample_period = 1;
eced1dfc 7872 hwc->last_period = hwc->sample_period;
bd2b5b12 7873
e7850595 7874 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7875
2023b359 7876 /*
cdd6c482 7877 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7878 */
3dab77fb 7879 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7880 goto err_ns;
a46a2300
YZ
7881
7882 if (!has_branch_stack(event))
7883 event->attr.branch_sample_type = 0;
2023b359 7884
79dff51e
MF
7885 if (cgroup_fd != -1) {
7886 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7887 if (err)
7888 goto err_ns;
7889 }
7890
b0a873eb 7891 pmu = perf_init_event(event);
4aeb0b42 7892 if (!pmu)
90983b16
FW
7893 goto err_ns;
7894 else if (IS_ERR(pmu)) {
4aeb0b42 7895 err = PTR_ERR(pmu);
90983b16 7896 goto err_ns;
621a01ea 7897 }
d5d2bc0d 7898
bed5b25a
AS
7899 err = exclusive_event_init(event);
7900 if (err)
7901 goto err_pmu;
7902
cdd6c482 7903 if (!event->parent) {
927c7a9e
FW
7904 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7905 err = get_callchain_buffers();
90983b16 7906 if (err)
bed5b25a 7907 goto err_per_task;
d010b332 7908 }
f344011c 7909 }
9ee318a7 7910
cdd6c482 7911 return event;
90983b16 7912
bed5b25a
AS
7913err_per_task:
7914 exclusive_event_destroy(event);
7915
90983b16
FW
7916err_pmu:
7917 if (event->destroy)
7918 event->destroy(event);
c464c76e 7919 module_put(pmu->module);
90983b16 7920err_ns:
79dff51e
MF
7921 if (is_cgroup_event(event))
7922 perf_detach_cgroup(event);
90983b16
FW
7923 if (event->ns)
7924 put_pid_ns(event->ns);
7925 kfree(event);
7926
7927 return ERR_PTR(err);
0793a61d
TG
7928}
7929
cdd6c482
IM
7930static int perf_copy_attr(struct perf_event_attr __user *uattr,
7931 struct perf_event_attr *attr)
974802ea 7932{
974802ea 7933 u32 size;
cdf8073d 7934 int ret;
974802ea
PZ
7935
7936 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7937 return -EFAULT;
7938
7939 /*
7940 * zero the full structure, so that a short copy will be nice.
7941 */
7942 memset(attr, 0, sizeof(*attr));
7943
7944 ret = get_user(size, &uattr->size);
7945 if (ret)
7946 return ret;
7947
7948 if (size > PAGE_SIZE) /* silly large */
7949 goto err_size;
7950
7951 if (!size) /* abi compat */
7952 size = PERF_ATTR_SIZE_VER0;
7953
7954 if (size < PERF_ATTR_SIZE_VER0)
7955 goto err_size;
7956
7957 /*
7958 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7959 * ensure all the unknown bits are 0 - i.e. new
7960 * user-space does not rely on any kernel feature
7961 * extensions we dont know about yet.
974802ea
PZ
7962 */
7963 if (size > sizeof(*attr)) {
cdf8073d
IS
7964 unsigned char __user *addr;
7965 unsigned char __user *end;
7966 unsigned char val;
974802ea 7967
cdf8073d
IS
7968 addr = (void __user *)uattr + sizeof(*attr);
7969 end = (void __user *)uattr + size;
974802ea 7970
cdf8073d 7971 for (; addr < end; addr++) {
974802ea
PZ
7972 ret = get_user(val, addr);
7973 if (ret)
7974 return ret;
7975 if (val)
7976 goto err_size;
7977 }
b3e62e35 7978 size = sizeof(*attr);
974802ea
PZ
7979 }
7980
7981 ret = copy_from_user(attr, uattr, size);
7982 if (ret)
7983 return -EFAULT;
7984
cd757645 7985 if (attr->__reserved_1)
974802ea
PZ
7986 return -EINVAL;
7987
7988 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7989 return -EINVAL;
7990
7991 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7992 return -EINVAL;
7993
bce38cd5
SE
7994 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7995 u64 mask = attr->branch_sample_type;
7996
7997 /* only using defined bits */
7998 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7999 return -EINVAL;
8000
8001 /* at least one branch bit must be set */
8002 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8003 return -EINVAL;
8004
bce38cd5
SE
8005 /* propagate priv level, when not set for branch */
8006 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8007
8008 /* exclude_kernel checked on syscall entry */
8009 if (!attr->exclude_kernel)
8010 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8011
8012 if (!attr->exclude_user)
8013 mask |= PERF_SAMPLE_BRANCH_USER;
8014
8015 if (!attr->exclude_hv)
8016 mask |= PERF_SAMPLE_BRANCH_HV;
8017 /*
8018 * adjust user setting (for HW filter setup)
8019 */
8020 attr->branch_sample_type = mask;
8021 }
e712209a
SE
8022 /* privileged levels capture (kernel, hv): check permissions */
8023 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8024 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8025 return -EACCES;
bce38cd5 8026 }
4018994f 8027
c5ebcedb 8028 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8029 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8030 if (ret)
8031 return ret;
8032 }
8033
8034 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8035 if (!arch_perf_have_user_stack_dump())
8036 return -ENOSYS;
8037
8038 /*
8039 * We have __u32 type for the size, but so far
8040 * we can only use __u16 as maximum due to the
8041 * __u16 sample size limit.
8042 */
8043 if (attr->sample_stack_user >= USHRT_MAX)
8044 ret = -EINVAL;
8045 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8046 ret = -EINVAL;
8047 }
4018994f 8048
60e2364e
SE
8049 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8050 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8051out:
8052 return ret;
8053
8054err_size:
8055 put_user(sizeof(*attr), &uattr->size);
8056 ret = -E2BIG;
8057 goto out;
8058}
8059
ac9721f3
PZ
8060static int
8061perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8062{
b69cf536 8063 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8064 int ret = -EINVAL;
8065
ac9721f3 8066 if (!output_event)
a4be7c27
PZ
8067 goto set;
8068
ac9721f3
PZ
8069 /* don't allow circular references */
8070 if (event == output_event)
a4be7c27
PZ
8071 goto out;
8072
0f139300
PZ
8073 /*
8074 * Don't allow cross-cpu buffers
8075 */
8076 if (output_event->cpu != event->cpu)
8077 goto out;
8078
8079 /*
76369139 8080 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8081 */
8082 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8083 goto out;
8084
34f43927
PZ
8085 /*
8086 * Mixing clocks in the same buffer is trouble you don't need.
8087 */
8088 if (output_event->clock != event->clock)
8089 goto out;
8090
45bfb2e5
PZ
8091 /*
8092 * If both events generate aux data, they must be on the same PMU
8093 */
8094 if (has_aux(event) && has_aux(output_event) &&
8095 event->pmu != output_event->pmu)
8096 goto out;
8097
a4be7c27 8098set:
cdd6c482 8099 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8100 /* Can't redirect output if we've got an active mmap() */
8101 if (atomic_read(&event->mmap_count))
8102 goto unlock;
a4be7c27 8103
ac9721f3 8104 if (output_event) {
76369139
FW
8105 /* get the rb we want to redirect to */
8106 rb = ring_buffer_get(output_event);
8107 if (!rb)
ac9721f3 8108 goto unlock;
a4be7c27
PZ
8109 }
8110
b69cf536 8111 ring_buffer_attach(event, rb);
9bb5d40c 8112
a4be7c27 8113 ret = 0;
ac9721f3
PZ
8114unlock:
8115 mutex_unlock(&event->mmap_mutex);
8116
a4be7c27 8117out:
a4be7c27
PZ
8118 return ret;
8119}
8120
f63a8daa
PZ
8121static void mutex_lock_double(struct mutex *a, struct mutex *b)
8122{
8123 if (b < a)
8124 swap(a, b);
8125
8126 mutex_lock(a);
8127 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8128}
8129
34f43927
PZ
8130static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8131{
8132 bool nmi_safe = false;
8133
8134 switch (clk_id) {
8135 case CLOCK_MONOTONIC:
8136 event->clock = &ktime_get_mono_fast_ns;
8137 nmi_safe = true;
8138 break;
8139
8140 case CLOCK_MONOTONIC_RAW:
8141 event->clock = &ktime_get_raw_fast_ns;
8142 nmi_safe = true;
8143 break;
8144
8145 case CLOCK_REALTIME:
8146 event->clock = &ktime_get_real_ns;
8147 break;
8148
8149 case CLOCK_BOOTTIME:
8150 event->clock = &ktime_get_boot_ns;
8151 break;
8152
8153 case CLOCK_TAI:
8154 event->clock = &ktime_get_tai_ns;
8155 break;
8156
8157 default:
8158 return -EINVAL;
8159 }
8160
8161 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8162 return -EINVAL;
8163
8164 return 0;
8165}
8166
0793a61d 8167/**
cdd6c482 8168 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8169 *
cdd6c482 8170 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8171 * @pid: target pid
9f66a381 8172 * @cpu: target cpu
cdd6c482 8173 * @group_fd: group leader event fd
0793a61d 8174 */
cdd6c482
IM
8175SYSCALL_DEFINE5(perf_event_open,
8176 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8177 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8178{
b04243ef
PZ
8179 struct perf_event *group_leader = NULL, *output_event = NULL;
8180 struct perf_event *event, *sibling;
cdd6c482 8181 struct perf_event_attr attr;
f63a8daa 8182 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8183 struct file *event_file = NULL;
2903ff01 8184 struct fd group = {NULL, 0};
38a81da2 8185 struct task_struct *task = NULL;
89a1e187 8186 struct pmu *pmu;
ea635c64 8187 int event_fd;
b04243ef 8188 int move_group = 0;
dc86cabe 8189 int err;
a21b0b35 8190 int f_flags = O_RDWR;
79dff51e 8191 int cgroup_fd = -1;
0793a61d 8192
2743a5b0 8193 /* for future expandability... */
e5d1367f 8194 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8195 return -EINVAL;
8196
dc86cabe
IM
8197 err = perf_copy_attr(attr_uptr, &attr);
8198 if (err)
8199 return err;
eab656ae 8200
0764771d
PZ
8201 if (!attr.exclude_kernel) {
8202 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8203 return -EACCES;
8204 }
8205
df58ab24 8206 if (attr.freq) {
cdd6c482 8207 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8208 return -EINVAL;
0819b2e3
PZ
8209 } else {
8210 if (attr.sample_period & (1ULL << 63))
8211 return -EINVAL;
df58ab24
PZ
8212 }
8213
e5d1367f
SE
8214 /*
8215 * In cgroup mode, the pid argument is used to pass the fd
8216 * opened to the cgroup directory in cgroupfs. The cpu argument
8217 * designates the cpu on which to monitor threads from that
8218 * cgroup.
8219 */
8220 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8221 return -EINVAL;
8222
a21b0b35
YD
8223 if (flags & PERF_FLAG_FD_CLOEXEC)
8224 f_flags |= O_CLOEXEC;
8225
8226 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8227 if (event_fd < 0)
8228 return event_fd;
8229
ac9721f3 8230 if (group_fd != -1) {
2903ff01
AV
8231 err = perf_fget_light(group_fd, &group);
8232 if (err)
d14b12d7 8233 goto err_fd;
2903ff01 8234 group_leader = group.file->private_data;
ac9721f3
PZ
8235 if (flags & PERF_FLAG_FD_OUTPUT)
8236 output_event = group_leader;
8237 if (flags & PERF_FLAG_FD_NO_GROUP)
8238 group_leader = NULL;
8239 }
8240
e5d1367f 8241 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8242 task = find_lively_task_by_vpid(pid);
8243 if (IS_ERR(task)) {
8244 err = PTR_ERR(task);
8245 goto err_group_fd;
8246 }
8247 }
8248
1f4ee503
PZ
8249 if (task && group_leader &&
8250 group_leader->attr.inherit != attr.inherit) {
8251 err = -EINVAL;
8252 goto err_task;
8253 }
8254
fbfc623f
YZ
8255 get_online_cpus();
8256
79dff51e
MF
8257 if (flags & PERF_FLAG_PID_CGROUP)
8258 cgroup_fd = pid;
8259
4dc0da86 8260 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8261 NULL, NULL, cgroup_fd);
d14b12d7
SE
8262 if (IS_ERR(event)) {
8263 err = PTR_ERR(event);
1f4ee503 8264 goto err_cpus;
d14b12d7
SE
8265 }
8266
53b25335
VW
8267 if (is_sampling_event(event)) {
8268 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8269 err = -ENOTSUPP;
8270 goto err_alloc;
8271 }
8272 }
8273
766d6c07
FW
8274 account_event(event);
8275
89a1e187
PZ
8276 /*
8277 * Special case software events and allow them to be part of
8278 * any hardware group.
8279 */
8280 pmu = event->pmu;
b04243ef 8281
34f43927
PZ
8282 if (attr.use_clockid) {
8283 err = perf_event_set_clock(event, attr.clockid);
8284 if (err)
8285 goto err_alloc;
8286 }
8287
b04243ef
PZ
8288 if (group_leader &&
8289 (is_software_event(event) != is_software_event(group_leader))) {
8290 if (is_software_event(event)) {
8291 /*
8292 * If event and group_leader are not both a software
8293 * event, and event is, then group leader is not.
8294 *
8295 * Allow the addition of software events to !software
8296 * groups, this is safe because software events never
8297 * fail to schedule.
8298 */
8299 pmu = group_leader->pmu;
8300 } else if (is_software_event(group_leader) &&
8301 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8302 /*
8303 * In case the group is a pure software group, and we
8304 * try to add a hardware event, move the whole group to
8305 * the hardware context.
8306 */
8307 move_group = 1;
8308 }
8309 }
89a1e187
PZ
8310
8311 /*
8312 * Get the target context (task or percpu):
8313 */
4af57ef2 8314 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8315 if (IS_ERR(ctx)) {
8316 err = PTR_ERR(ctx);
c6be5a5c 8317 goto err_alloc;
89a1e187
PZ
8318 }
8319
bed5b25a
AS
8320 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8321 err = -EBUSY;
8322 goto err_context;
8323 }
8324
fd1edb3a
PZ
8325 if (task) {
8326 put_task_struct(task);
8327 task = NULL;
8328 }
8329
ccff286d 8330 /*
cdd6c482 8331 * Look up the group leader (we will attach this event to it):
04289bb9 8332 */
ac9721f3 8333 if (group_leader) {
dc86cabe 8334 err = -EINVAL;
04289bb9 8335
04289bb9 8336 /*
ccff286d
IM
8337 * Do not allow a recursive hierarchy (this new sibling
8338 * becoming part of another group-sibling):
8339 */
8340 if (group_leader->group_leader != group_leader)
c3f00c70 8341 goto err_context;
34f43927
PZ
8342
8343 /* All events in a group should have the same clock */
8344 if (group_leader->clock != event->clock)
8345 goto err_context;
8346
ccff286d
IM
8347 /*
8348 * Do not allow to attach to a group in a different
8349 * task or CPU context:
04289bb9 8350 */
b04243ef 8351 if (move_group) {
c3c87e77
PZ
8352 /*
8353 * Make sure we're both on the same task, or both
8354 * per-cpu events.
8355 */
8356 if (group_leader->ctx->task != ctx->task)
8357 goto err_context;
8358
8359 /*
8360 * Make sure we're both events for the same CPU;
8361 * grouping events for different CPUs is broken; since
8362 * you can never concurrently schedule them anyhow.
8363 */
8364 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8365 goto err_context;
8366 } else {
8367 if (group_leader->ctx != ctx)
8368 goto err_context;
8369 }
8370
3b6f9e5c
PM
8371 /*
8372 * Only a group leader can be exclusive or pinned
8373 */
0d48696f 8374 if (attr.exclusive || attr.pinned)
c3f00c70 8375 goto err_context;
ac9721f3
PZ
8376 }
8377
8378 if (output_event) {
8379 err = perf_event_set_output(event, output_event);
8380 if (err)
c3f00c70 8381 goto err_context;
ac9721f3 8382 }
0793a61d 8383
a21b0b35
YD
8384 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8385 f_flags);
ea635c64
AV
8386 if (IS_ERR(event_file)) {
8387 err = PTR_ERR(event_file);
c3f00c70 8388 goto err_context;
ea635c64 8389 }
9b51f66d 8390
b04243ef 8391 if (move_group) {
f63a8daa 8392 gctx = group_leader->ctx;
f55fc2a5 8393 mutex_lock_double(&gctx->mutex, &ctx->mutex);
84c4e620
PZ
8394 if (gctx->task == TASK_TOMBSTONE) {
8395 err = -ESRCH;
8396 goto err_locked;
8397 }
f55fc2a5
PZ
8398 } else {
8399 mutex_lock(&ctx->mutex);
8400 }
8401
84c4e620
PZ
8402 if (ctx->task == TASK_TOMBSTONE) {
8403 err = -ESRCH;
8404 goto err_locked;
8405 }
8406
a723968c
PZ
8407 if (!perf_event_validate_size(event)) {
8408 err = -E2BIG;
8409 goto err_locked;
8410 }
8411
f55fc2a5
PZ
8412 /*
8413 * Must be under the same ctx::mutex as perf_install_in_context(),
8414 * because we need to serialize with concurrent event creation.
8415 */
8416 if (!exclusive_event_installable(event, ctx)) {
8417 /* exclusive and group stuff are assumed mutually exclusive */
8418 WARN_ON_ONCE(move_group);
f63a8daa 8419
f55fc2a5
PZ
8420 err = -EBUSY;
8421 goto err_locked;
8422 }
f63a8daa 8423
f55fc2a5
PZ
8424 WARN_ON_ONCE(ctx->parent_ctx);
8425
8426 if (move_group) {
f63a8daa
PZ
8427 /*
8428 * See perf_event_ctx_lock() for comments on the details
8429 * of swizzling perf_event::ctx.
8430 */
45a0e07a 8431 perf_remove_from_context(group_leader, 0);
0231bb53 8432
b04243ef
PZ
8433 list_for_each_entry(sibling, &group_leader->sibling_list,
8434 group_entry) {
45a0e07a 8435 perf_remove_from_context(sibling, 0);
b04243ef
PZ
8436 put_ctx(gctx);
8437 }
b04243ef 8438
f63a8daa
PZ
8439 /*
8440 * Wait for everybody to stop referencing the events through
8441 * the old lists, before installing it on new lists.
8442 */
0cda4c02 8443 synchronize_rcu();
f63a8daa 8444
8f95b435
PZI
8445 /*
8446 * Install the group siblings before the group leader.
8447 *
8448 * Because a group leader will try and install the entire group
8449 * (through the sibling list, which is still in-tact), we can
8450 * end up with siblings installed in the wrong context.
8451 *
8452 * By installing siblings first we NO-OP because they're not
8453 * reachable through the group lists.
8454 */
b04243ef
PZ
8455 list_for_each_entry(sibling, &group_leader->sibling_list,
8456 group_entry) {
8f95b435 8457 perf_event__state_init(sibling);
9fc81d87 8458 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8459 get_ctx(ctx);
8460 }
8f95b435
PZI
8461
8462 /*
8463 * Removing from the context ends up with disabled
8464 * event. What we want here is event in the initial
8465 * startup state, ready to be add into new context.
8466 */
8467 perf_event__state_init(group_leader);
8468 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8469 get_ctx(ctx);
b04243ef 8470
f55fc2a5
PZ
8471 /*
8472 * Now that all events are installed in @ctx, nothing
8473 * references @gctx anymore, so drop the last reference we have
8474 * on it.
8475 */
8476 put_ctx(gctx);
bed5b25a
AS
8477 }
8478
f73e22ab
PZ
8479 /*
8480 * Precalculate sample_data sizes; do while holding ctx::mutex such
8481 * that we're serialized against further additions and before
8482 * perf_install_in_context() which is the point the event is active and
8483 * can use these values.
8484 */
8485 perf_event__header_size(event);
8486 perf_event__id_header_size(event);
8487
78cd2c74
PZ
8488 event->owner = current;
8489
e2d37cd2 8490 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8491 perf_unpin_context(ctx);
f63a8daa 8492
f55fc2a5 8493 if (move_group)
f63a8daa 8494 mutex_unlock(&gctx->mutex);
d859e29f 8495 mutex_unlock(&ctx->mutex);
9b51f66d 8496
fbfc623f
YZ
8497 put_online_cpus();
8498
cdd6c482
IM
8499 mutex_lock(&current->perf_event_mutex);
8500 list_add_tail(&event->owner_entry, &current->perf_event_list);
8501 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8502
8a49542c
PZ
8503 /*
8504 * Drop the reference on the group_event after placing the
8505 * new event on the sibling_list. This ensures destruction
8506 * of the group leader will find the pointer to itself in
8507 * perf_group_detach().
8508 */
2903ff01 8509 fdput(group);
ea635c64
AV
8510 fd_install(event_fd, event_file);
8511 return event_fd;
0793a61d 8512
f55fc2a5
PZ
8513err_locked:
8514 if (move_group)
8515 mutex_unlock(&gctx->mutex);
8516 mutex_unlock(&ctx->mutex);
8517/* err_file: */
8518 fput(event_file);
c3f00c70 8519err_context:
fe4b04fa 8520 perf_unpin_context(ctx);
ea635c64 8521 put_ctx(ctx);
c6be5a5c 8522err_alloc:
13005627
PZ
8523 /*
8524 * If event_file is set, the fput() above will have called ->release()
8525 * and that will take care of freeing the event.
8526 */
8527 if (!event_file)
8528 free_event(event);
1f4ee503 8529err_cpus:
fbfc623f 8530 put_online_cpus();
1f4ee503 8531err_task:
e7d0bc04
PZ
8532 if (task)
8533 put_task_struct(task);
89a1e187 8534err_group_fd:
2903ff01 8535 fdput(group);
ea635c64
AV
8536err_fd:
8537 put_unused_fd(event_fd);
dc86cabe 8538 return err;
0793a61d
TG
8539}
8540
fb0459d7
AV
8541/**
8542 * perf_event_create_kernel_counter
8543 *
8544 * @attr: attributes of the counter to create
8545 * @cpu: cpu in which the counter is bound
38a81da2 8546 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8547 */
8548struct perf_event *
8549perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8550 struct task_struct *task,
4dc0da86
AK
8551 perf_overflow_handler_t overflow_handler,
8552 void *context)
fb0459d7 8553{
fb0459d7 8554 struct perf_event_context *ctx;
c3f00c70 8555 struct perf_event *event;
fb0459d7 8556 int err;
d859e29f 8557
fb0459d7
AV
8558 /*
8559 * Get the target context (task or percpu):
8560 */
d859e29f 8561
4dc0da86 8562 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8563 overflow_handler, context, -1);
c3f00c70
PZ
8564 if (IS_ERR(event)) {
8565 err = PTR_ERR(event);
8566 goto err;
8567 }
d859e29f 8568
f8697762 8569 /* Mark owner so we could distinguish it from user events. */
63b6da39 8570 event->owner = TASK_TOMBSTONE;
f8697762 8571
766d6c07
FW
8572 account_event(event);
8573
4af57ef2 8574 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8575 if (IS_ERR(ctx)) {
8576 err = PTR_ERR(ctx);
c3f00c70 8577 goto err_free;
d859e29f 8578 }
fb0459d7 8579
fb0459d7
AV
8580 WARN_ON_ONCE(ctx->parent_ctx);
8581 mutex_lock(&ctx->mutex);
84c4e620
PZ
8582 if (ctx->task == TASK_TOMBSTONE) {
8583 err = -ESRCH;
8584 goto err_unlock;
8585 }
8586
bed5b25a 8587 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 8588 err = -EBUSY;
84c4e620 8589 goto err_unlock;
bed5b25a
AS
8590 }
8591
fb0459d7 8592 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8593 perf_unpin_context(ctx);
fb0459d7
AV
8594 mutex_unlock(&ctx->mutex);
8595
fb0459d7
AV
8596 return event;
8597
84c4e620
PZ
8598err_unlock:
8599 mutex_unlock(&ctx->mutex);
8600 perf_unpin_context(ctx);
8601 put_ctx(ctx);
c3f00c70
PZ
8602err_free:
8603 free_event(event);
8604err:
c6567f64 8605 return ERR_PTR(err);
9b51f66d 8606}
fb0459d7 8607EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8608
0cda4c02
YZ
8609void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8610{
8611 struct perf_event_context *src_ctx;
8612 struct perf_event_context *dst_ctx;
8613 struct perf_event *event, *tmp;
8614 LIST_HEAD(events);
8615
8616 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8617 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8618
f63a8daa
PZ
8619 /*
8620 * See perf_event_ctx_lock() for comments on the details
8621 * of swizzling perf_event::ctx.
8622 */
8623 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8624 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8625 event_entry) {
45a0e07a 8626 perf_remove_from_context(event, 0);
9a545de0 8627 unaccount_event_cpu(event, src_cpu);
0cda4c02 8628 put_ctx(src_ctx);
9886167d 8629 list_add(&event->migrate_entry, &events);
0cda4c02 8630 }
0cda4c02 8631
8f95b435
PZI
8632 /*
8633 * Wait for the events to quiesce before re-instating them.
8634 */
0cda4c02
YZ
8635 synchronize_rcu();
8636
8f95b435
PZI
8637 /*
8638 * Re-instate events in 2 passes.
8639 *
8640 * Skip over group leaders and only install siblings on this first
8641 * pass, siblings will not get enabled without a leader, however a
8642 * leader will enable its siblings, even if those are still on the old
8643 * context.
8644 */
8645 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8646 if (event->group_leader == event)
8647 continue;
8648
8649 list_del(&event->migrate_entry);
8650 if (event->state >= PERF_EVENT_STATE_OFF)
8651 event->state = PERF_EVENT_STATE_INACTIVE;
8652 account_event_cpu(event, dst_cpu);
8653 perf_install_in_context(dst_ctx, event, dst_cpu);
8654 get_ctx(dst_ctx);
8655 }
8656
8657 /*
8658 * Once all the siblings are setup properly, install the group leaders
8659 * to make it go.
8660 */
9886167d
PZ
8661 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8662 list_del(&event->migrate_entry);
0cda4c02
YZ
8663 if (event->state >= PERF_EVENT_STATE_OFF)
8664 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8665 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8666 perf_install_in_context(dst_ctx, event, dst_cpu);
8667 get_ctx(dst_ctx);
8668 }
8669 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8670 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8671}
8672EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8673
cdd6c482 8674static void sync_child_event(struct perf_event *child_event,
38b200d6 8675 struct task_struct *child)
d859e29f 8676{
cdd6c482 8677 struct perf_event *parent_event = child_event->parent;
8bc20959 8678 u64 child_val;
d859e29f 8679
cdd6c482
IM
8680 if (child_event->attr.inherit_stat)
8681 perf_event_read_event(child_event, child);
38b200d6 8682
b5e58793 8683 child_val = perf_event_count(child_event);
d859e29f
PM
8684
8685 /*
8686 * Add back the child's count to the parent's count:
8687 */
a6e6dea6 8688 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8689 atomic64_add(child_event->total_time_enabled,
8690 &parent_event->child_total_time_enabled);
8691 atomic64_add(child_event->total_time_running,
8692 &parent_event->child_total_time_running);
d859e29f
PM
8693}
8694
9b51f66d 8695static void
8ba289b8
PZ
8696perf_event_exit_event(struct perf_event *child_event,
8697 struct perf_event_context *child_ctx,
8698 struct task_struct *child)
9b51f66d 8699{
8ba289b8
PZ
8700 struct perf_event *parent_event = child_event->parent;
8701
1903d50c
PZ
8702 /*
8703 * Do not destroy the 'original' grouping; because of the context
8704 * switch optimization the original events could've ended up in a
8705 * random child task.
8706 *
8707 * If we were to destroy the original group, all group related
8708 * operations would cease to function properly after this random
8709 * child dies.
8710 *
8711 * Do destroy all inherited groups, we don't care about those
8712 * and being thorough is better.
8713 */
32132a3d
PZ
8714 raw_spin_lock_irq(&child_ctx->lock);
8715 WARN_ON_ONCE(child_ctx->is_active);
8716
8ba289b8 8717 if (parent_event)
32132a3d
PZ
8718 perf_group_detach(child_event);
8719 list_del_event(child_event, child_ctx);
c6e5b732 8720 child_event->state = PERF_EVENT_STATE_EXIT; /* see perf_event_release_kernel() */
32132a3d 8721 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 8722
9b51f66d 8723 /*
8ba289b8 8724 * Parent events are governed by their filedesc, retain them.
9b51f66d 8725 */
8ba289b8 8726 if (!parent_event) {
179033b3 8727 perf_event_wakeup(child_event);
8ba289b8 8728 return;
4bcf349a 8729 }
8ba289b8
PZ
8730 /*
8731 * Child events can be cleaned up.
8732 */
8733
8734 sync_child_event(child_event, child);
8735
8736 /*
8737 * Remove this event from the parent's list
8738 */
8739 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8740 mutex_lock(&parent_event->child_mutex);
8741 list_del_init(&child_event->child_list);
8742 mutex_unlock(&parent_event->child_mutex);
8743
8744 /*
8745 * Kick perf_poll() for is_event_hup().
8746 */
8747 perf_event_wakeup(parent_event);
8748 free_event(child_event);
8749 put_event(parent_event);
9b51f66d
IM
8750}
8751
8dc85d54 8752static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8753{
211de6eb 8754 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 8755 struct perf_event *child_event, *next;
63b6da39
PZ
8756
8757 WARN_ON_ONCE(child != current);
9b51f66d 8758
6a3351b6 8759 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 8760 if (!child_ctx)
9b51f66d
IM
8761 return;
8762
ad3a37de 8763 /*
6a3351b6
PZ
8764 * In order to reduce the amount of tricky in ctx tear-down, we hold
8765 * ctx::mutex over the entire thing. This serializes against almost
8766 * everything that wants to access the ctx.
8767 *
8768 * The exception is sys_perf_event_open() /
8769 * perf_event_create_kernel_count() which does find_get_context()
8770 * without ctx::mutex (it cannot because of the move_group double mutex
8771 * lock thing). See the comments in perf_install_in_context().
ad3a37de 8772 */
6a3351b6 8773 mutex_lock(&child_ctx->mutex);
c93f7669
PM
8774
8775 /*
6a3351b6
PZ
8776 * In a single ctx::lock section, de-schedule the events and detach the
8777 * context from the task such that we cannot ever get it scheduled back
8778 * in.
c93f7669 8779 */
6a3351b6 8780 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 8781 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 8782
71a851b4 8783 /*
63b6da39
PZ
8784 * Now that the context is inactive, destroy the task <-> ctx relation
8785 * and mark the context dead.
71a851b4 8786 */
63b6da39
PZ
8787 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8788 put_ctx(child_ctx); /* cannot be last */
8789 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8790 put_task_struct(current); /* cannot be last */
4a1c0f26 8791
211de6eb 8792 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 8793 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 8794
211de6eb
PZ
8795 if (clone_ctx)
8796 put_ctx(clone_ctx);
4a1c0f26 8797
9f498cc5 8798 /*
cdd6c482
IM
8799 * Report the task dead after unscheduling the events so that we
8800 * won't get any samples after PERF_RECORD_EXIT. We can however still
8801 * get a few PERF_RECORD_READ events.
9f498cc5 8802 */
cdd6c482 8803 perf_event_task(child, child_ctx, 0);
a63eaf34 8804
ebf905fc 8805 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 8806 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 8807
a63eaf34
PM
8808 mutex_unlock(&child_ctx->mutex);
8809
8810 put_ctx(child_ctx);
9b51f66d
IM
8811}
8812
8dc85d54
PZ
8813/*
8814 * When a child task exits, feed back event values to parent events.
8815 */
8816void perf_event_exit_task(struct task_struct *child)
8817{
8882135b 8818 struct perf_event *event, *tmp;
8dc85d54
PZ
8819 int ctxn;
8820
8882135b
PZ
8821 mutex_lock(&child->perf_event_mutex);
8822 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8823 owner_entry) {
8824 list_del_init(&event->owner_entry);
8825
8826 /*
8827 * Ensure the list deletion is visible before we clear
8828 * the owner, closes a race against perf_release() where
8829 * we need to serialize on the owner->perf_event_mutex.
8830 */
f47c02c0 8831 smp_store_release(&event->owner, NULL);
8882135b
PZ
8832 }
8833 mutex_unlock(&child->perf_event_mutex);
8834
8dc85d54
PZ
8835 for_each_task_context_nr(ctxn)
8836 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
8837
8838 /*
8839 * The perf_event_exit_task_context calls perf_event_task
8840 * with child's task_ctx, which generates EXIT events for
8841 * child contexts and sets child->perf_event_ctxp[] to NULL.
8842 * At this point we need to send EXIT events to cpu contexts.
8843 */
8844 perf_event_task(child, NULL, 0);
8dc85d54
PZ
8845}
8846
889ff015
FW
8847static void perf_free_event(struct perf_event *event,
8848 struct perf_event_context *ctx)
8849{
8850 struct perf_event *parent = event->parent;
8851
8852 if (WARN_ON_ONCE(!parent))
8853 return;
8854
8855 mutex_lock(&parent->child_mutex);
8856 list_del_init(&event->child_list);
8857 mutex_unlock(&parent->child_mutex);
8858
a6fa941d 8859 put_event(parent);
889ff015 8860
652884fe 8861 raw_spin_lock_irq(&ctx->lock);
8a49542c 8862 perf_group_detach(event);
889ff015 8863 list_del_event(event, ctx);
652884fe 8864 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8865 free_event(event);
8866}
8867
bbbee908 8868/*
652884fe 8869 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8870 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8871 *
8872 * Not all locks are strictly required, but take them anyway to be nice and
8873 * help out with the lockdep assertions.
bbbee908 8874 */
cdd6c482 8875void perf_event_free_task(struct task_struct *task)
bbbee908 8876{
8dc85d54 8877 struct perf_event_context *ctx;
cdd6c482 8878 struct perf_event *event, *tmp;
8dc85d54 8879 int ctxn;
bbbee908 8880
8dc85d54
PZ
8881 for_each_task_context_nr(ctxn) {
8882 ctx = task->perf_event_ctxp[ctxn];
8883 if (!ctx)
8884 continue;
bbbee908 8885
8dc85d54 8886 mutex_lock(&ctx->mutex);
bbbee908 8887again:
8dc85d54
PZ
8888 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8889 group_entry)
8890 perf_free_event(event, ctx);
bbbee908 8891
8dc85d54
PZ
8892 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8893 group_entry)
8894 perf_free_event(event, ctx);
bbbee908 8895
8dc85d54
PZ
8896 if (!list_empty(&ctx->pinned_groups) ||
8897 !list_empty(&ctx->flexible_groups))
8898 goto again;
bbbee908 8899
8dc85d54 8900 mutex_unlock(&ctx->mutex);
bbbee908 8901
8dc85d54
PZ
8902 put_ctx(ctx);
8903 }
889ff015
FW
8904}
8905
4e231c79
PZ
8906void perf_event_delayed_put(struct task_struct *task)
8907{
8908 int ctxn;
8909
8910 for_each_task_context_nr(ctxn)
8911 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8912}
8913
e03e7ee3 8914struct file *perf_event_get(unsigned int fd)
ffe8690c 8915{
e03e7ee3 8916 struct file *file;
ffe8690c 8917
e03e7ee3
AS
8918 file = fget_raw(fd);
8919 if (!file)
8920 return ERR_PTR(-EBADF);
ffe8690c 8921
e03e7ee3
AS
8922 if (file->f_op != &perf_fops) {
8923 fput(file);
8924 return ERR_PTR(-EBADF);
8925 }
ffe8690c 8926
e03e7ee3 8927 return file;
ffe8690c
KX
8928}
8929
8930const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8931{
8932 if (!event)
8933 return ERR_PTR(-EINVAL);
8934
8935 return &event->attr;
8936}
8937
97dee4f3
PZ
8938/*
8939 * inherit a event from parent task to child task:
8940 */
8941static struct perf_event *
8942inherit_event(struct perf_event *parent_event,
8943 struct task_struct *parent,
8944 struct perf_event_context *parent_ctx,
8945 struct task_struct *child,
8946 struct perf_event *group_leader,
8947 struct perf_event_context *child_ctx)
8948{
1929def9 8949 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8950 struct perf_event *child_event;
cee010ec 8951 unsigned long flags;
97dee4f3
PZ
8952
8953 /*
8954 * Instead of creating recursive hierarchies of events,
8955 * we link inherited events back to the original parent,
8956 * which has a filp for sure, which we use as the reference
8957 * count:
8958 */
8959 if (parent_event->parent)
8960 parent_event = parent_event->parent;
8961
8962 child_event = perf_event_alloc(&parent_event->attr,
8963 parent_event->cpu,
d580ff86 8964 child,
97dee4f3 8965 group_leader, parent_event,
79dff51e 8966 NULL, NULL, -1);
97dee4f3
PZ
8967 if (IS_ERR(child_event))
8968 return child_event;
a6fa941d 8969
c6e5b732
PZ
8970 /*
8971 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
8972 * must be under the same lock in order to serialize against
8973 * perf_event_release_kernel(), such that either we must observe
8974 * is_orphaned_event() or they will observe us on the child_list.
8975 */
8976 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
8977 if (is_orphaned_event(parent_event) ||
8978 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 8979 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
8980 free_event(child_event);
8981 return NULL;
8982 }
8983
97dee4f3
PZ
8984 get_ctx(child_ctx);
8985
8986 /*
8987 * Make the child state follow the state of the parent event,
8988 * not its attr.disabled bit. We hold the parent's mutex,
8989 * so we won't race with perf_event_{en, dis}able_family.
8990 */
1929def9 8991 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8992 child_event->state = PERF_EVENT_STATE_INACTIVE;
8993 else
8994 child_event->state = PERF_EVENT_STATE_OFF;
8995
8996 if (parent_event->attr.freq) {
8997 u64 sample_period = parent_event->hw.sample_period;
8998 struct hw_perf_event *hwc = &child_event->hw;
8999
9000 hwc->sample_period = sample_period;
9001 hwc->last_period = sample_period;
9002
9003 local64_set(&hwc->period_left, sample_period);
9004 }
9005
9006 child_event->ctx = child_ctx;
9007 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9008 child_event->overflow_handler_context
9009 = parent_event->overflow_handler_context;
97dee4f3 9010
614b6780
TG
9011 /*
9012 * Precalculate sample_data sizes
9013 */
9014 perf_event__header_size(child_event);
6844c09d 9015 perf_event__id_header_size(child_event);
614b6780 9016
97dee4f3
PZ
9017 /*
9018 * Link it up in the child's context:
9019 */
cee010ec 9020 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9021 add_event_to_ctx(child_event, child_ctx);
cee010ec 9022 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9023
97dee4f3
PZ
9024 /*
9025 * Link this into the parent event's child list
9026 */
97dee4f3
PZ
9027 list_add_tail(&child_event->child_list, &parent_event->child_list);
9028 mutex_unlock(&parent_event->child_mutex);
9029
9030 return child_event;
9031}
9032
9033static int inherit_group(struct perf_event *parent_event,
9034 struct task_struct *parent,
9035 struct perf_event_context *parent_ctx,
9036 struct task_struct *child,
9037 struct perf_event_context *child_ctx)
9038{
9039 struct perf_event *leader;
9040 struct perf_event *sub;
9041 struct perf_event *child_ctr;
9042
9043 leader = inherit_event(parent_event, parent, parent_ctx,
9044 child, NULL, child_ctx);
9045 if (IS_ERR(leader))
9046 return PTR_ERR(leader);
9047 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9048 child_ctr = inherit_event(sub, parent, parent_ctx,
9049 child, leader, child_ctx);
9050 if (IS_ERR(child_ctr))
9051 return PTR_ERR(child_ctr);
9052 }
9053 return 0;
889ff015
FW
9054}
9055
9056static int
9057inherit_task_group(struct perf_event *event, struct task_struct *parent,
9058 struct perf_event_context *parent_ctx,
8dc85d54 9059 struct task_struct *child, int ctxn,
889ff015
FW
9060 int *inherited_all)
9061{
9062 int ret;
8dc85d54 9063 struct perf_event_context *child_ctx;
889ff015
FW
9064
9065 if (!event->attr.inherit) {
9066 *inherited_all = 0;
9067 return 0;
bbbee908
PZ
9068 }
9069
fe4b04fa 9070 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9071 if (!child_ctx) {
9072 /*
9073 * This is executed from the parent task context, so
9074 * inherit events that have been marked for cloning.
9075 * First allocate and initialize a context for the
9076 * child.
9077 */
bbbee908 9078
734df5ab 9079 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9080 if (!child_ctx)
9081 return -ENOMEM;
bbbee908 9082
8dc85d54 9083 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9084 }
9085
9086 ret = inherit_group(event, parent, parent_ctx,
9087 child, child_ctx);
9088
9089 if (ret)
9090 *inherited_all = 0;
9091
9092 return ret;
bbbee908
PZ
9093}
9094
9b51f66d 9095/*
cdd6c482 9096 * Initialize the perf_event context in task_struct
9b51f66d 9097 */
985c8dcb 9098static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9099{
889ff015 9100 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9101 struct perf_event_context *cloned_ctx;
9102 struct perf_event *event;
9b51f66d 9103 struct task_struct *parent = current;
564c2b21 9104 int inherited_all = 1;
dddd3379 9105 unsigned long flags;
6ab423e0 9106 int ret = 0;
9b51f66d 9107
8dc85d54 9108 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9109 return 0;
9110
ad3a37de 9111 /*
25346b93
PM
9112 * If the parent's context is a clone, pin it so it won't get
9113 * swapped under us.
ad3a37de 9114 */
8dc85d54 9115 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9116 if (!parent_ctx)
9117 return 0;
25346b93 9118
ad3a37de
PM
9119 /*
9120 * No need to check if parent_ctx != NULL here; since we saw
9121 * it non-NULL earlier, the only reason for it to become NULL
9122 * is if we exit, and since we're currently in the middle of
9123 * a fork we can't be exiting at the same time.
9124 */
ad3a37de 9125
9b51f66d
IM
9126 /*
9127 * Lock the parent list. No need to lock the child - not PID
9128 * hashed yet and not running, so nobody can access it.
9129 */
d859e29f 9130 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9131
9132 /*
9133 * We dont have to disable NMIs - we are only looking at
9134 * the list, not manipulating it:
9135 */
889ff015 9136 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9137 ret = inherit_task_group(event, parent, parent_ctx,
9138 child, ctxn, &inherited_all);
889ff015
FW
9139 if (ret)
9140 break;
9141 }
b93f7978 9142
dddd3379
TG
9143 /*
9144 * We can't hold ctx->lock when iterating the ->flexible_group list due
9145 * to allocations, but we need to prevent rotation because
9146 * rotate_ctx() will change the list from interrupt context.
9147 */
9148 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9149 parent_ctx->rotate_disable = 1;
9150 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9151
889ff015 9152 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9153 ret = inherit_task_group(event, parent, parent_ctx,
9154 child, ctxn, &inherited_all);
889ff015 9155 if (ret)
9b51f66d 9156 break;
564c2b21
PM
9157 }
9158
dddd3379
TG
9159 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9160 parent_ctx->rotate_disable = 0;
dddd3379 9161
8dc85d54 9162 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9163
05cbaa28 9164 if (child_ctx && inherited_all) {
564c2b21
PM
9165 /*
9166 * Mark the child context as a clone of the parent
9167 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9168 *
9169 * Note that if the parent is a clone, the holding of
9170 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9171 */
c5ed5145 9172 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9173 if (cloned_ctx) {
9174 child_ctx->parent_ctx = cloned_ctx;
25346b93 9175 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9176 } else {
9177 child_ctx->parent_ctx = parent_ctx;
9178 child_ctx->parent_gen = parent_ctx->generation;
9179 }
9180 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9181 }
9182
c5ed5145 9183 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9184 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9185
25346b93 9186 perf_unpin_context(parent_ctx);
fe4b04fa 9187 put_ctx(parent_ctx);
ad3a37de 9188
6ab423e0 9189 return ret;
9b51f66d
IM
9190}
9191
8dc85d54
PZ
9192/*
9193 * Initialize the perf_event context in task_struct
9194 */
9195int perf_event_init_task(struct task_struct *child)
9196{
9197 int ctxn, ret;
9198
8550d7cb
ON
9199 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9200 mutex_init(&child->perf_event_mutex);
9201 INIT_LIST_HEAD(&child->perf_event_list);
9202
8dc85d54
PZ
9203 for_each_task_context_nr(ctxn) {
9204 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9205 if (ret) {
9206 perf_event_free_task(child);
8dc85d54 9207 return ret;
6c72e350 9208 }
8dc85d54
PZ
9209 }
9210
9211 return 0;
9212}
9213
220b140b
PM
9214static void __init perf_event_init_all_cpus(void)
9215{
b28ab83c 9216 struct swevent_htable *swhash;
220b140b 9217 int cpu;
220b140b
PM
9218
9219 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9220 swhash = &per_cpu(swevent_htable, cpu);
9221 mutex_init(&swhash->hlist_mutex);
2fde4f94 9222 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9223 }
9224}
9225
0db0628d 9226static void perf_event_init_cpu(int cpu)
0793a61d 9227{
108b02cf 9228 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9229
b28ab83c 9230 mutex_lock(&swhash->hlist_mutex);
059fcd8c 9231 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
9232 struct swevent_hlist *hlist;
9233
b28ab83c
PZ
9234 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9235 WARN_ON(!hlist);
9236 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9237 }
b28ab83c 9238 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9239}
9240
2965faa5 9241#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9242static void __perf_event_exit_context(void *__info)
0793a61d 9243{
108b02cf 9244 struct perf_event_context *ctx = __info;
fae3fde6
PZ
9245 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9246 struct perf_event *event;
0793a61d 9247
fae3fde6
PZ
9248 raw_spin_lock(&ctx->lock);
9249 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 9250 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 9251 raw_spin_unlock(&ctx->lock);
0793a61d 9252}
108b02cf
PZ
9253
9254static void perf_event_exit_cpu_context(int cpu)
9255{
9256 struct perf_event_context *ctx;
9257 struct pmu *pmu;
9258 int idx;
9259
9260 idx = srcu_read_lock(&pmus_srcu);
9261 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9262 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9263
9264 mutex_lock(&ctx->mutex);
9265 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9266 mutex_unlock(&ctx->mutex);
9267 }
9268 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9269}
9270
cdd6c482 9271static void perf_event_exit_cpu(int cpu)
0793a61d 9272{
e3703f8c 9273 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9274}
9275#else
cdd6c482 9276static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9277#endif
9278
c277443c
PZ
9279static int
9280perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9281{
9282 int cpu;
9283
9284 for_each_online_cpu(cpu)
9285 perf_event_exit_cpu(cpu);
9286
9287 return NOTIFY_OK;
9288}
9289
9290/*
9291 * Run the perf reboot notifier at the very last possible moment so that
9292 * the generic watchdog code runs as long as possible.
9293 */
9294static struct notifier_block perf_reboot_notifier = {
9295 .notifier_call = perf_reboot,
9296 .priority = INT_MIN,
9297};
9298
0db0628d 9299static int
0793a61d
TG
9300perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9301{
9302 unsigned int cpu = (long)hcpu;
9303
4536e4d1 9304 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9305
9306 case CPU_UP_PREPARE:
cdd6c482 9307 perf_event_init_cpu(cpu);
0793a61d
TG
9308 break;
9309
9310 case CPU_DOWN_PREPARE:
cdd6c482 9311 perf_event_exit_cpu(cpu);
0793a61d 9312 break;
0793a61d
TG
9313 default:
9314 break;
9315 }
9316
9317 return NOTIFY_OK;
9318}
9319
cdd6c482 9320void __init perf_event_init(void)
0793a61d 9321{
3c502e7a
JW
9322 int ret;
9323
2e80a82a
PZ
9324 idr_init(&pmu_idr);
9325
220b140b 9326 perf_event_init_all_cpus();
b0a873eb 9327 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9328 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9329 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9330 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9331 perf_tp_register();
9332 perf_cpu_notifier(perf_cpu_notify);
c277443c 9333 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9334
9335 ret = init_hw_breakpoint();
9336 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9337
9338 /* do not patch jump label more than once per second */
9339 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9340
9341 /*
9342 * Build time assertion that we keep the data_head at the intended
9343 * location. IOW, validation we got the __reserved[] size right.
9344 */
9345 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9346 != 1024);
0793a61d 9347}
abe43400 9348
fd979c01
CS
9349ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9350 char *page)
9351{
9352 struct perf_pmu_events_attr *pmu_attr =
9353 container_of(attr, struct perf_pmu_events_attr, attr);
9354
9355 if (pmu_attr->event_str)
9356 return sprintf(page, "%s\n", pmu_attr->event_str);
9357
9358 return 0;
9359}
9360
abe43400
PZ
9361static int __init perf_event_sysfs_init(void)
9362{
9363 struct pmu *pmu;
9364 int ret;
9365
9366 mutex_lock(&pmus_lock);
9367
9368 ret = bus_register(&pmu_bus);
9369 if (ret)
9370 goto unlock;
9371
9372 list_for_each_entry(pmu, &pmus, entry) {
9373 if (!pmu->name || pmu->type < 0)
9374 continue;
9375
9376 ret = pmu_dev_alloc(pmu);
9377 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9378 }
9379 pmu_bus_running = 1;
9380 ret = 0;
9381
9382unlock:
9383 mutex_unlock(&pmus_lock);
9384
9385 return ret;
9386}
9387device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9388
9389#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9390static struct cgroup_subsys_state *
9391perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9392{
9393 struct perf_cgroup *jc;
e5d1367f 9394
1b15d055 9395 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9396 if (!jc)
9397 return ERR_PTR(-ENOMEM);
9398
e5d1367f
SE
9399 jc->info = alloc_percpu(struct perf_cgroup_info);
9400 if (!jc->info) {
9401 kfree(jc);
9402 return ERR_PTR(-ENOMEM);
9403 }
9404
e5d1367f
SE
9405 return &jc->css;
9406}
9407
eb95419b 9408static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9409{
eb95419b
TH
9410 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9411
e5d1367f
SE
9412 free_percpu(jc->info);
9413 kfree(jc);
9414}
9415
9416static int __perf_cgroup_move(void *info)
9417{
9418 struct task_struct *task = info;
ddaaf4e2 9419 rcu_read_lock();
e5d1367f 9420 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9421 rcu_read_unlock();
e5d1367f
SE
9422 return 0;
9423}
9424
1f7dd3e5 9425static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9426{
bb9d97b6 9427 struct task_struct *task;
1f7dd3e5 9428 struct cgroup_subsys_state *css;
bb9d97b6 9429
1f7dd3e5 9430 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9431 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9432}
9433
073219e9 9434struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9435 .css_alloc = perf_cgroup_css_alloc,
9436 .css_free = perf_cgroup_css_free,
bb9d97b6 9437 .attach = perf_cgroup_attach,
e5d1367f
SE
9438};
9439#endif /* CONFIG_CGROUP_PERF */