ftrace/perf: Check sample types only for sampling events
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
272325c4
PZ
52typedef int (*remote_function_f)(void *);
53
fe4b04fa 54struct remote_function_call {
e7e7ee2e 55 struct task_struct *p;
272325c4 56 remote_function_f func;
e7e7ee2e
IM
57 void *info;
58 int ret;
fe4b04fa
PZ
59};
60
61static void remote_function(void *data)
62{
63 struct remote_function_call *tfc = data;
64 struct task_struct *p = tfc->p;
65
66 if (p) {
0da4cf3e
PZ
67 /* -EAGAIN */
68 if (task_cpu(p) != smp_processor_id())
69 return;
70
71 /*
72 * Now that we're on right CPU with IRQs disabled, we can test
73 * if we hit the right task without races.
74 */
75
76 tfc->ret = -ESRCH; /* No such (running) process */
77 if (p != current)
fe4b04fa
PZ
78 return;
79 }
80
81 tfc->ret = tfc->func(tfc->info);
82}
83
84/**
85 * task_function_call - call a function on the cpu on which a task runs
86 * @p: the task to evaluate
87 * @func: the function to be called
88 * @info: the function call argument
89 *
90 * Calls the function @func when the task is currently running. This might
91 * be on the current CPU, which just calls the function directly
92 *
93 * returns: @func return value, or
94 * -ESRCH - when the process isn't running
95 * -EAGAIN - when the process moved away
96 */
97static int
272325c4 98task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
99{
100 struct remote_function_call data = {
e7e7ee2e
IM
101 .p = p,
102 .func = func,
103 .info = info,
0da4cf3e 104 .ret = -EAGAIN,
fe4b04fa 105 };
0da4cf3e 106 int ret;
fe4b04fa 107
0da4cf3e
PZ
108 do {
109 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
110 if (!ret)
111 ret = data.ret;
112 } while (ret == -EAGAIN);
fe4b04fa 113
0da4cf3e 114 return ret;
fe4b04fa
PZ
115}
116
117/**
118 * cpu_function_call - call a function on the cpu
119 * @func: the function to be called
120 * @info: the function call argument
121 *
122 * Calls the function @func on the remote cpu.
123 *
124 * returns: @func return value or -ENXIO when the cpu is offline
125 */
272325c4 126static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
127{
128 struct remote_function_call data = {
e7e7ee2e
IM
129 .p = NULL,
130 .func = func,
131 .info = info,
132 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
133 };
134
135 smp_call_function_single(cpu, remote_function, &data, 1);
136
137 return data.ret;
138}
139
fae3fde6
PZ
140static inline struct perf_cpu_context *
141__get_cpu_context(struct perf_event_context *ctx)
142{
143 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
144}
145
146static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
147 struct perf_event_context *ctx)
0017960f 148{
fae3fde6
PZ
149 raw_spin_lock(&cpuctx->ctx.lock);
150 if (ctx)
151 raw_spin_lock(&ctx->lock);
152}
153
154static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
155 struct perf_event_context *ctx)
156{
157 if (ctx)
158 raw_spin_unlock(&ctx->lock);
159 raw_spin_unlock(&cpuctx->ctx.lock);
160}
161
63b6da39
PZ
162#define TASK_TOMBSTONE ((void *)-1L)
163
164static bool is_kernel_event(struct perf_event *event)
165{
f47c02c0 166 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
167}
168
39a43640
PZ
169/*
170 * On task ctx scheduling...
171 *
172 * When !ctx->nr_events a task context will not be scheduled. This means
173 * we can disable the scheduler hooks (for performance) without leaving
174 * pending task ctx state.
175 *
176 * This however results in two special cases:
177 *
178 * - removing the last event from a task ctx; this is relatively straight
179 * forward and is done in __perf_remove_from_context.
180 *
181 * - adding the first event to a task ctx; this is tricky because we cannot
182 * rely on ctx->is_active and therefore cannot use event_function_call().
183 * See perf_install_in_context().
184 *
39a43640
PZ
185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186 */
187
fae3fde6
PZ
188typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 struct perf_event_context *, void *);
190
191struct event_function_struct {
192 struct perf_event *event;
193 event_f func;
194 void *data;
195};
196
197static int event_function(void *info)
198{
199 struct event_function_struct *efs = info;
200 struct perf_event *event = efs->event;
0017960f 201 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 204 int ret = 0;
fae3fde6
PZ
205
206 WARN_ON_ONCE(!irqs_disabled());
207
63b6da39 208 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
209 /*
210 * Since we do the IPI call without holding ctx->lock things can have
211 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
212 */
213 if (ctx->task) {
63b6da39 214 if (ctx->task != current) {
0da4cf3e 215 ret = -ESRCH;
63b6da39
PZ
216 goto unlock;
217 }
fae3fde6 218
fae3fde6
PZ
219 /*
220 * We only use event_function_call() on established contexts,
221 * and event_function() is only ever called when active (or
222 * rather, we'll have bailed in task_function_call() or the
223 * above ctx->task != current test), therefore we must have
224 * ctx->is_active here.
225 */
226 WARN_ON_ONCE(!ctx->is_active);
227 /*
228 * And since we have ctx->is_active, cpuctx->task_ctx must
229 * match.
230 */
63b6da39
PZ
231 WARN_ON_ONCE(task_ctx != ctx);
232 } else {
233 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 234 }
63b6da39 235
fae3fde6 236 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 237unlock:
fae3fde6
PZ
238 perf_ctx_unlock(cpuctx, task_ctx);
239
63b6da39 240 return ret;
fae3fde6
PZ
241}
242
243static void event_function_local(struct perf_event *event, event_f func, void *data)
244{
245 struct event_function_struct efs = {
246 .event = event,
247 .func = func,
248 .data = data,
249 };
250
251 int ret = event_function(&efs);
252 WARN_ON_ONCE(ret);
253}
254
255static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
256{
257 struct perf_event_context *ctx = event->ctx;
63b6da39 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
259 struct event_function_struct efs = {
260 .event = event,
261 .func = func,
262 .data = data,
263 };
0017960f 264
c97f4736
PZ
265 if (!event->parent) {
266 /*
267 * If this is a !child event, we must hold ctx::mutex to
268 * stabilize the the event->ctx relation. See
269 * perf_event_ctx_lock().
270 */
271 lockdep_assert_held(&ctx->mutex);
272 }
0017960f
PZ
273
274 if (!task) {
fae3fde6 275 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
276 return;
277 }
278
63b6da39
PZ
279 if (task == TASK_TOMBSTONE)
280 return;
281
a096309b 282again:
fae3fde6 283 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
284 return;
285
286 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
287 /*
288 * Reload the task pointer, it might have been changed by
289 * a concurrent perf_event_context_sched_out().
290 */
291 task = ctx->task;
a096309b
PZ
292 if (task == TASK_TOMBSTONE) {
293 raw_spin_unlock_irq(&ctx->lock);
294 return;
0017960f 295 }
a096309b
PZ
296 if (ctx->is_active) {
297 raw_spin_unlock_irq(&ctx->lock);
298 goto again;
299 }
300 func(event, NULL, ctx, data);
0017960f
PZ
301 raw_spin_unlock_irq(&ctx->lock);
302}
303
e5d1367f
SE
304#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
306 PERF_FLAG_PID_CGROUP |\
307 PERF_FLAG_FD_CLOEXEC)
e5d1367f 308
bce38cd5
SE
309/*
310 * branch priv levels that need permission checks
311 */
312#define PERF_SAMPLE_BRANCH_PERM_PLM \
313 (PERF_SAMPLE_BRANCH_KERNEL |\
314 PERF_SAMPLE_BRANCH_HV)
315
0b3fcf17
SE
316enum event_type_t {
317 EVENT_FLEXIBLE = 0x1,
318 EVENT_PINNED = 0x2,
3cbaa590 319 EVENT_TIME = 0x4,
0b3fcf17
SE
320 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
321};
322
e5d1367f
SE
323/*
324 * perf_sched_events : >0 events exist
325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
326 */
9107c89e
PZ
327
328static void perf_sched_delayed(struct work_struct *work);
329DEFINE_STATIC_KEY_FALSE(perf_sched_events);
330static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
331static DEFINE_MUTEX(perf_sched_mutex);
332static atomic_t perf_sched_count;
333
e5d1367f 334static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 335static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 336
cdd6c482
IM
337static atomic_t nr_mmap_events __read_mostly;
338static atomic_t nr_comm_events __read_mostly;
339static atomic_t nr_task_events __read_mostly;
948b26b6 340static atomic_t nr_freq_events __read_mostly;
45ac1403 341static atomic_t nr_switch_events __read_mostly;
9ee318a7 342
108b02cf
PZ
343static LIST_HEAD(pmus);
344static DEFINE_MUTEX(pmus_lock);
345static struct srcu_struct pmus_srcu;
346
0764771d 347/*
cdd6c482 348 * perf event paranoia level:
0fbdea19
IM
349 * -1 - not paranoid at all
350 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 351 * 1 - disallow cpu events for unpriv
0fbdea19 352 * 2 - disallow kernel profiling for unpriv
0764771d 353 */
cdd6c482 354int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 355
20443384
FW
356/* Minimum for 512 kiB + 1 user control page */
357int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
358
359/*
cdd6c482 360 * max perf event sample rate
df58ab24 361 */
14c63f17
DH
362#define DEFAULT_MAX_SAMPLE_RATE 100000
363#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
364#define DEFAULT_CPU_TIME_MAX_PERCENT 25
365
366int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
367
368static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
369static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
370
d9494cb4
PZ
371static int perf_sample_allowed_ns __read_mostly =
372 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 373
18ab2cd3 374static void update_perf_cpu_limits(void)
14c63f17
DH
375{
376 u64 tmp = perf_sample_period_ns;
377
378 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
379 tmp = div_u64(tmp, 100);
380 if (!tmp)
381 tmp = 1;
382
383 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 384}
163ec435 385
9e630205
SE
386static int perf_rotate_context(struct perf_cpu_context *cpuctx);
387
163ec435
PZ
388int perf_proc_update_handler(struct ctl_table *table, int write,
389 void __user *buffer, size_t *lenp,
390 loff_t *ppos)
391{
723478c8 392 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
393
394 if (ret || !write)
395 return ret;
396
397 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
398 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
399 update_perf_cpu_limits();
400
401 return 0;
402}
403
404int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
405
406int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
407 void __user *buffer, size_t *lenp,
408 loff_t *ppos)
409{
410 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
411
412 if (ret || !write)
413 return ret;
414
91a612ee
PZ
415 if (sysctl_perf_cpu_time_max_percent == 100) {
416 printk(KERN_WARNING
417 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
418 WRITE_ONCE(perf_sample_allowed_ns, 0);
419 } else {
420 update_perf_cpu_limits();
421 }
163ec435
PZ
422
423 return 0;
424}
1ccd1549 425
14c63f17
DH
426/*
427 * perf samples are done in some very critical code paths (NMIs).
428 * If they take too much CPU time, the system can lock up and not
429 * get any real work done. This will drop the sample rate when
430 * we detect that events are taking too long.
431 */
432#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 433static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 434
91a612ee
PZ
435static u64 __report_avg;
436static u64 __report_allowed;
437
6a02ad66 438static void perf_duration_warn(struct irq_work *w)
14c63f17 439{
6a02ad66 440 printk_ratelimited(KERN_WARNING
91a612ee
PZ
441 "perf: interrupt took too long (%lld > %lld), lowering "
442 "kernel.perf_event_max_sample_rate to %d\n",
443 __report_avg, __report_allowed,
444 sysctl_perf_event_sample_rate);
6a02ad66
PZ
445}
446
447static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
448
449void perf_sample_event_took(u64 sample_len_ns)
450{
91a612ee
PZ
451 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
452 u64 running_len;
453 u64 avg_len;
454 u32 max;
14c63f17 455
91a612ee 456 if (max_len == 0)
14c63f17
DH
457 return;
458
91a612ee
PZ
459 /* Decay the counter by 1 average sample. */
460 running_len = __this_cpu_read(running_sample_length);
461 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
462 running_len += sample_len_ns;
463 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
464
465 /*
91a612ee
PZ
466 * Note: this will be biased artifically low until we have
467 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
468 * from having to maintain a count.
469 */
91a612ee
PZ
470 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
471 if (avg_len <= max_len)
14c63f17
DH
472 return;
473
91a612ee
PZ
474 __report_avg = avg_len;
475 __report_allowed = max_len;
14c63f17 476
91a612ee
PZ
477 /*
478 * Compute a throttle threshold 25% below the current duration.
479 */
480 avg_len += avg_len / 4;
481 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
482 if (avg_len < max)
483 max /= (u32)avg_len;
484 else
485 max = 1;
14c63f17 486
91a612ee
PZ
487 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
488 WRITE_ONCE(max_samples_per_tick, max);
489
490 sysctl_perf_event_sample_rate = max * HZ;
491 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 492
cd578abb 493 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 494 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 495 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 496 __report_avg, __report_allowed,
cd578abb
PZ
497 sysctl_perf_event_sample_rate);
498 }
14c63f17
DH
499}
500
cdd6c482 501static atomic64_t perf_event_id;
a96bbc16 502
0b3fcf17
SE
503static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
504 enum event_type_t event_type);
505
506static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
507 enum event_type_t event_type,
508 struct task_struct *task);
509
510static void update_context_time(struct perf_event_context *ctx);
511static u64 perf_event_time(struct perf_event *event);
0b3fcf17 512
cdd6c482 513void __weak perf_event_print_debug(void) { }
0793a61d 514
84c79910 515extern __weak const char *perf_pmu_name(void)
0793a61d 516{
84c79910 517 return "pmu";
0793a61d
TG
518}
519
0b3fcf17
SE
520static inline u64 perf_clock(void)
521{
522 return local_clock();
523}
524
34f43927
PZ
525static inline u64 perf_event_clock(struct perf_event *event)
526{
527 return event->clock();
528}
529
e5d1367f
SE
530#ifdef CONFIG_CGROUP_PERF
531
e5d1367f
SE
532static inline bool
533perf_cgroup_match(struct perf_event *event)
534{
535 struct perf_event_context *ctx = event->ctx;
536 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
537
ef824fa1
TH
538 /* @event doesn't care about cgroup */
539 if (!event->cgrp)
540 return true;
541
542 /* wants specific cgroup scope but @cpuctx isn't associated with any */
543 if (!cpuctx->cgrp)
544 return false;
545
546 /*
547 * Cgroup scoping is recursive. An event enabled for a cgroup is
548 * also enabled for all its descendant cgroups. If @cpuctx's
549 * cgroup is a descendant of @event's (the test covers identity
550 * case), it's a match.
551 */
552 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
553 event->cgrp->css.cgroup);
e5d1367f
SE
554}
555
e5d1367f
SE
556static inline void perf_detach_cgroup(struct perf_event *event)
557{
4e2ba650 558 css_put(&event->cgrp->css);
e5d1367f
SE
559 event->cgrp = NULL;
560}
561
562static inline int is_cgroup_event(struct perf_event *event)
563{
564 return event->cgrp != NULL;
565}
566
567static inline u64 perf_cgroup_event_time(struct perf_event *event)
568{
569 struct perf_cgroup_info *t;
570
571 t = per_cpu_ptr(event->cgrp->info, event->cpu);
572 return t->time;
573}
574
575static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
576{
577 struct perf_cgroup_info *info;
578 u64 now;
579
580 now = perf_clock();
581
582 info = this_cpu_ptr(cgrp->info);
583
584 info->time += now - info->timestamp;
585 info->timestamp = now;
586}
587
588static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
589{
590 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
591 if (cgrp_out)
592 __update_cgrp_time(cgrp_out);
593}
594
595static inline void update_cgrp_time_from_event(struct perf_event *event)
596{
3f7cce3c
SE
597 struct perf_cgroup *cgrp;
598
e5d1367f 599 /*
3f7cce3c
SE
600 * ensure we access cgroup data only when needed and
601 * when we know the cgroup is pinned (css_get)
e5d1367f 602 */
3f7cce3c 603 if (!is_cgroup_event(event))
e5d1367f
SE
604 return;
605
614e4c4e 606 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
607 /*
608 * Do not update time when cgroup is not active
609 */
610 if (cgrp == event->cgrp)
611 __update_cgrp_time(event->cgrp);
e5d1367f
SE
612}
613
614static inline void
3f7cce3c
SE
615perf_cgroup_set_timestamp(struct task_struct *task,
616 struct perf_event_context *ctx)
e5d1367f
SE
617{
618 struct perf_cgroup *cgrp;
619 struct perf_cgroup_info *info;
620
3f7cce3c
SE
621 /*
622 * ctx->lock held by caller
623 * ensure we do not access cgroup data
624 * unless we have the cgroup pinned (css_get)
625 */
626 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
627 return;
628
614e4c4e 629 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 630 info = this_cpu_ptr(cgrp->info);
3f7cce3c 631 info->timestamp = ctx->timestamp;
e5d1367f
SE
632}
633
634#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
635#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
636
637/*
638 * reschedule events based on the cgroup constraint of task.
639 *
640 * mode SWOUT : schedule out everything
641 * mode SWIN : schedule in based on cgroup for next
642 */
18ab2cd3 643static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
644{
645 struct perf_cpu_context *cpuctx;
646 struct pmu *pmu;
647 unsigned long flags;
648
649 /*
650 * disable interrupts to avoid geting nr_cgroup
651 * changes via __perf_event_disable(). Also
652 * avoids preemption.
653 */
654 local_irq_save(flags);
655
656 /*
657 * we reschedule only in the presence of cgroup
658 * constrained events.
659 */
e5d1367f
SE
660
661 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 662 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
663 if (cpuctx->unique_pmu != pmu)
664 continue; /* ensure we process each cpuctx once */
e5d1367f 665
e5d1367f
SE
666 /*
667 * perf_cgroup_events says at least one
668 * context on this CPU has cgroup events.
669 *
670 * ctx->nr_cgroups reports the number of cgroup
671 * events for a context.
672 */
673 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
674 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
675 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
676
677 if (mode & PERF_CGROUP_SWOUT) {
678 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
679 /*
680 * must not be done before ctxswout due
681 * to event_filter_match() in event_sched_out()
682 */
683 cpuctx->cgrp = NULL;
684 }
685
686 if (mode & PERF_CGROUP_SWIN) {
e566b76e 687 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
688 /*
689 * set cgrp before ctxsw in to allow
690 * event_filter_match() to not have to pass
691 * task around
614e4c4e
SE
692 * we pass the cpuctx->ctx to perf_cgroup_from_task()
693 * because cgorup events are only per-cpu
e5d1367f 694 */
614e4c4e 695 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
696 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
697 }
facc4307
PZ
698 perf_pmu_enable(cpuctx->ctx.pmu);
699 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 700 }
e5d1367f
SE
701 }
702
e5d1367f
SE
703 local_irq_restore(flags);
704}
705
a8d757ef
SE
706static inline void perf_cgroup_sched_out(struct task_struct *task,
707 struct task_struct *next)
e5d1367f 708{
a8d757ef
SE
709 struct perf_cgroup *cgrp1;
710 struct perf_cgroup *cgrp2 = NULL;
711
ddaaf4e2 712 rcu_read_lock();
a8d757ef
SE
713 /*
714 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
715 * we do not need to pass the ctx here because we know
716 * we are holding the rcu lock
a8d757ef 717 */
614e4c4e 718 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 719 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
720
721 /*
722 * only schedule out current cgroup events if we know
723 * that we are switching to a different cgroup. Otherwise,
724 * do no touch the cgroup events.
725 */
726 if (cgrp1 != cgrp2)
727 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
728
729 rcu_read_unlock();
e5d1367f
SE
730}
731
a8d757ef
SE
732static inline void perf_cgroup_sched_in(struct task_struct *prev,
733 struct task_struct *task)
e5d1367f 734{
a8d757ef
SE
735 struct perf_cgroup *cgrp1;
736 struct perf_cgroup *cgrp2 = NULL;
737
ddaaf4e2 738 rcu_read_lock();
a8d757ef
SE
739 /*
740 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
741 * we do not need to pass the ctx here because we know
742 * we are holding the rcu lock
a8d757ef 743 */
614e4c4e 744 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 745 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
746
747 /*
748 * only need to schedule in cgroup events if we are changing
749 * cgroup during ctxsw. Cgroup events were not scheduled
750 * out of ctxsw out if that was not the case.
751 */
752 if (cgrp1 != cgrp2)
753 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
754
755 rcu_read_unlock();
e5d1367f
SE
756}
757
758static inline int perf_cgroup_connect(int fd, struct perf_event *event,
759 struct perf_event_attr *attr,
760 struct perf_event *group_leader)
761{
762 struct perf_cgroup *cgrp;
763 struct cgroup_subsys_state *css;
2903ff01
AV
764 struct fd f = fdget(fd);
765 int ret = 0;
e5d1367f 766
2903ff01 767 if (!f.file)
e5d1367f
SE
768 return -EBADF;
769
b583043e 770 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 771 &perf_event_cgrp_subsys);
3db272c0
LZ
772 if (IS_ERR(css)) {
773 ret = PTR_ERR(css);
774 goto out;
775 }
e5d1367f
SE
776
777 cgrp = container_of(css, struct perf_cgroup, css);
778 event->cgrp = cgrp;
779
780 /*
781 * all events in a group must monitor
782 * the same cgroup because a task belongs
783 * to only one perf cgroup at a time
784 */
785 if (group_leader && group_leader->cgrp != cgrp) {
786 perf_detach_cgroup(event);
787 ret = -EINVAL;
e5d1367f 788 }
3db272c0 789out:
2903ff01 790 fdput(f);
e5d1367f
SE
791 return ret;
792}
793
794static inline void
795perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
796{
797 struct perf_cgroup_info *t;
798 t = per_cpu_ptr(event->cgrp->info, event->cpu);
799 event->shadow_ctx_time = now - t->timestamp;
800}
801
802static inline void
803perf_cgroup_defer_enabled(struct perf_event *event)
804{
805 /*
806 * when the current task's perf cgroup does not match
807 * the event's, we need to remember to call the
808 * perf_mark_enable() function the first time a task with
809 * a matching perf cgroup is scheduled in.
810 */
811 if (is_cgroup_event(event) && !perf_cgroup_match(event))
812 event->cgrp_defer_enabled = 1;
813}
814
815static inline void
816perf_cgroup_mark_enabled(struct perf_event *event,
817 struct perf_event_context *ctx)
818{
819 struct perf_event *sub;
820 u64 tstamp = perf_event_time(event);
821
822 if (!event->cgrp_defer_enabled)
823 return;
824
825 event->cgrp_defer_enabled = 0;
826
827 event->tstamp_enabled = tstamp - event->total_time_enabled;
828 list_for_each_entry(sub, &event->sibling_list, group_entry) {
829 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
830 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
831 sub->cgrp_defer_enabled = 0;
832 }
833 }
834}
835#else /* !CONFIG_CGROUP_PERF */
836
837static inline bool
838perf_cgroup_match(struct perf_event *event)
839{
840 return true;
841}
842
843static inline void perf_detach_cgroup(struct perf_event *event)
844{}
845
846static inline int is_cgroup_event(struct perf_event *event)
847{
848 return 0;
849}
850
851static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
852{
853 return 0;
854}
855
856static inline void update_cgrp_time_from_event(struct perf_event *event)
857{
858}
859
860static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
861{
862}
863
a8d757ef
SE
864static inline void perf_cgroup_sched_out(struct task_struct *task,
865 struct task_struct *next)
e5d1367f
SE
866{
867}
868
a8d757ef
SE
869static inline void perf_cgroup_sched_in(struct task_struct *prev,
870 struct task_struct *task)
e5d1367f
SE
871{
872}
873
874static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
875 struct perf_event_attr *attr,
876 struct perf_event *group_leader)
877{
878 return -EINVAL;
879}
880
881static inline void
3f7cce3c
SE
882perf_cgroup_set_timestamp(struct task_struct *task,
883 struct perf_event_context *ctx)
e5d1367f
SE
884{
885}
886
887void
888perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
889{
890}
891
892static inline void
893perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
894{
895}
896
897static inline u64 perf_cgroup_event_time(struct perf_event *event)
898{
899 return 0;
900}
901
902static inline void
903perf_cgroup_defer_enabled(struct perf_event *event)
904{
905}
906
907static inline void
908perf_cgroup_mark_enabled(struct perf_event *event,
909 struct perf_event_context *ctx)
910{
911}
912#endif
913
9e630205
SE
914/*
915 * set default to be dependent on timer tick just
916 * like original code
917 */
918#define PERF_CPU_HRTIMER (1000 / HZ)
919/*
920 * function must be called with interrupts disbled
921 */
272325c4 922static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
923{
924 struct perf_cpu_context *cpuctx;
9e630205
SE
925 int rotations = 0;
926
927 WARN_ON(!irqs_disabled());
928
929 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
930 rotations = perf_rotate_context(cpuctx);
931
4cfafd30
PZ
932 raw_spin_lock(&cpuctx->hrtimer_lock);
933 if (rotations)
9e630205 934 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
935 else
936 cpuctx->hrtimer_active = 0;
937 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 938
4cfafd30 939 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
940}
941
272325c4 942static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 943{
272325c4 944 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 945 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 946 u64 interval;
9e630205
SE
947
948 /* no multiplexing needed for SW PMU */
949 if (pmu->task_ctx_nr == perf_sw_context)
950 return;
951
62b85639
SE
952 /*
953 * check default is sane, if not set then force to
954 * default interval (1/tick)
955 */
272325c4
PZ
956 interval = pmu->hrtimer_interval_ms;
957 if (interval < 1)
958 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 959
272325c4 960 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 961
4cfafd30
PZ
962 raw_spin_lock_init(&cpuctx->hrtimer_lock);
963 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 964 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
965}
966
272325c4 967static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 968{
272325c4 969 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 970 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 971 unsigned long flags;
9e630205
SE
972
973 /* not for SW PMU */
974 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 975 return 0;
9e630205 976
4cfafd30
PZ
977 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
978 if (!cpuctx->hrtimer_active) {
979 cpuctx->hrtimer_active = 1;
980 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
981 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
982 }
983 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 984
272325c4 985 return 0;
9e630205
SE
986}
987
33696fc0 988void perf_pmu_disable(struct pmu *pmu)
9e35ad38 989{
33696fc0
PZ
990 int *count = this_cpu_ptr(pmu->pmu_disable_count);
991 if (!(*count)++)
992 pmu->pmu_disable(pmu);
9e35ad38 993}
9e35ad38 994
33696fc0 995void perf_pmu_enable(struct pmu *pmu)
9e35ad38 996{
33696fc0
PZ
997 int *count = this_cpu_ptr(pmu->pmu_disable_count);
998 if (!--(*count))
999 pmu->pmu_enable(pmu);
9e35ad38 1000}
9e35ad38 1001
2fde4f94 1002static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1003
1004/*
2fde4f94
MR
1005 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1006 * perf_event_task_tick() are fully serialized because they're strictly cpu
1007 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1008 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1009 */
2fde4f94 1010static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1011{
2fde4f94 1012 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1013
e9d2b064 1014 WARN_ON(!irqs_disabled());
b5ab4cd5 1015
2fde4f94
MR
1016 WARN_ON(!list_empty(&ctx->active_ctx_list));
1017
1018 list_add(&ctx->active_ctx_list, head);
1019}
1020
1021static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1022{
1023 WARN_ON(!irqs_disabled());
1024
1025 WARN_ON(list_empty(&ctx->active_ctx_list));
1026
1027 list_del_init(&ctx->active_ctx_list);
9e35ad38 1028}
9e35ad38 1029
cdd6c482 1030static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1031{
e5289d4a 1032 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1033}
1034
4af57ef2
YZ
1035static void free_ctx(struct rcu_head *head)
1036{
1037 struct perf_event_context *ctx;
1038
1039 ctx = container_of(head, struct perf_event_context, rcu_head);
1040 kfree(ctx->task_ctx_data);
1041 kfree(ctx);
1042}
1043
cdd6c482 1044static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1045{
564c2b21
PM
1046 if (atomic_dec_and_test(&ctx->refcount)) {
1047 if (ctx->parent_ctx)
1048 put_ctx(ctx->parent_ctx);
63b6da39 1049 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1050 put_task_struct(ctx->task);
4af57ef2 1051 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1052 }
a63eaf34
PM
1053}
1054
f63a8daa
PZ
1055/*
1056 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1057 * perf_pmu_migrate_context() we need some magic.
1058 *
1059 * Those places that change perf_event::ctx will hold both
1060 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1061 *
8b10c5e2
PZ
1062 * Lock ordering is by mutex address. There are two other sites where
1063 * perf_event_context::mutex nests and those are:
1064 *
1065 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1066 * perf_event_exit_event()
1067 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1068 *
1069 * - perf_event_init_context() [ parent, 0 ]
1070 * inherit_task_group()
1071 * inherit_group()
1072 * inherit_event()
1073 * perf_event_alloc()
1074 * perf_init_event()
1075 * perf_try_init_event() [ child , 1 ]
1076 *
1077 * While it appears there is an obvious deadlock here -- the parent and child
1078 * nesting levels are inverted between the two. This is in fact safe because
1079 * life-time rules separate them. That is an exiting task cannot fork, and a
1080 * spawning task cannot (yet) exit.
1081 *
1082 * But remember that that these are parent<->child context relations, and
1083 * migration does not affect children, therefore these two orderings should not
1084 * interact.
f63a8daa
PZ
1085 *
1086 * The change in perf_event::ctx does not affect children (as claimed above)
1087 * because the sys_perf_event_open() case will install a new event and break
1088 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1089 * concerned with cpuctx and that doesn't have children.
1090 *
1091 * The places that change perf_event::ctx will issue:
1092 *
1093 * perf_remove_from_context();
1094 * synchronize_rcu();
1095 * perf_install_in_context();
1096 *
1097 * to affect the change. The remove_from_context() + synchronize_rcu() should
1098 * quiesce the event, after which we can install it in the new location. This
1099 * means that only external vectors (perf_fops, prctl) can perturb the event
1100 * while in transit. Therefore all such accessors should also acquire
1101 * perf_event_context::mutex to serialize against this.
1102 *
1103 * However; because event->ctx can change while we're waiting to acquire
1104 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1105 * function.
1106 *
1107 * Lock order:
1108 * task_struct::perf_event_mutex
1109 * perf_event_context::mutex
f63a8daa 1110 * perf_event::child_mutex;
07c4a776 1111 * perf_event_context::lock
f63a8daa
PZ
1112 * perf_event::mmap_mutex
1113 * mmap_sem
1114 */
a83fe28e
PZ
1115static struct perf_event_context *
1116perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1117{
1118 struct perf_event_context *ctx;
1119
1120again:
1121 rcu_read_lock();
1122 ctx = ACCESS_ONCE(event->ctx);
1123 if (!atomic_inc_not_zero(&ctx->refcount)) {
1124 rcu_read_unlock();
1125 goto again;
1126 }
1127 rcu_read_unlock();
1128
a83fe28e 1129 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1130 if (event->ctx != ctx) {
1131 mutex_unlock(&ctx->mutex);
1132 put_ctx(ctx);
1133 goto again;
1134 }
1135
1136 return ctx;
1137}
1138
a83fe28e
PZ
1139static inline struct perf_event_context *
1140perf_event_ctx_lock(struct perf_event *event)
1141{
1142 return perf_event_ctx_lock_nested(event, 0);
1143}
1144
f63a8daa
PZ
1145static void perf_event_ctx_unlock(struct perf_event *event,
1146 struct perf_event_context *ctx)
1147{
1148 mutex_unlock(&ctx->mutex);
1149 put_ctx(ctx);
1150}
1151
211de6eb
PZ
1152/*
1153 * This must be done under the ctx->lock, such as to serialize against
1154 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1155 * calling scheduler related locks and ctx->lock nests inside those.
1156 */
1157static __must_check struct perf_event_context *
1158unclone_ctx(struct perf_event_context *ctx)
71a851b4 1159{
211de6eb
PZ
1160 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1161
1162 lockdep_assert_held(&ctx->lock);
1163
1164 if (parent_ctx)
71a851b4 1165 ctx->parent_ctx = NULL;
5a3126d4 1166 ctx->generation++;
211de6eb
PZ
1167
1168 return parent_ctx;
71a851b4
PZ
1169}
1170
6844c09d
ACM
1171static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1172{
1173 /*
1174 * only top level events have the pid namespace they were created in
1175 */
1176 if (event->parent)
1177 event = event->parent;
1178
1179 return task_tgid_nr_ns(p, event->ns);
1180}
1181
1182static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1183{
1184 /*
1185 * only top level events have the pid namespace they were created in
1186 */
1187 if (event->parent)
1188 event = event->parent;
1189
1190 return task_pid_nr_ns(p, event->ns);
1191}
1192
7f453c24 1193/*
cdd6c482 1194 * If we inherit events we want to return the parent event id
7f453c24
PZ
1195 * to userspace.
1196 */
cdd6c482 1197static u64 primary_event_id(struct perf_event *event)
7f453c24 1198{
cdd6c482 1199 u64 id = event->id;
7f453c24 1200
cdd6c482
IM
1201 if (event->parent)
1202 id = event->parent->id;
7f453c24
PZ
1203
1204 return id;
1205}
1206
25346b93 1207/*
cdd6c482 1208 * Get the perf_event_context for a task and lock it.
63b6da39 1209 *
25346b93
PM
1210 * This has to cope with with the fact that until it is locked,
1211 * the context could get moved to another task.
1212 */
cdd6c482 1213static struct perf_event_context *
8dc85d54 1214perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1215{
cdd6c482 1216 struct perf_event_context *ctx;
25346b93 1217
9ed6060d 1218retry:
058ebd0e
PZ
1219 /*
1220 * One of the few rules of preemptible RCU is that one cannot do
1221 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1222 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1223 * rcu_read_unlock_special().
1224 *
1225 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1226 * side critical section has interrupts disabled.
058ebd0e 1227 */
2fd59077 1228 local_irq_save(*flags);
058ebd0e 1229 rcu_read_lock();
8dc85d54 1230 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1231 if (ctx) {
1232 /*
1233 * If this context is a clone of another, it might
1234 * get swapped for another underneath us by
cdd6c482 1235 * perf_event_task_sched_out, though the
25346b93
PM
1236 * rcu_read_lock() protects us from any context
1237 * getting freed. Lock the context and check if it
1238 * got swapped before we could get the lock, and retry
1239 * if so. If we locked the right context, then it
1240 * can't get swapped on us any more.
1241 */
2fd59077 1242 raw_spin_lock(&ctx->lock);
8dc85d54 1243 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1244 raw_spin_unlock(&ctx->lock);
058ebd0e 1245 rcu_read_unlock();
2fd59077 1246 local_irq_restore(*flags);
25346b93
PM
1247 goto retry;
1248 }
b49a9e7e 1249
63b6da39
PZ
1250 if (ctx->task == TASK_TOMBSTONE ||
1251 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1252 raw_spin_unlock(&ctx->lock);
b49a9e7e 1253 ctx = NULL;
828b6f0e
PZ
1254 } else {
1255 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1256 }
25346b93
PM
1257 }
1258 rcu_read_unlock();
2fd59077
PM
1259 if (!ctx)
1260 local_irq_restore(*flags);
25346b93
PM
1261 return ctx;
1262}
1263
1264/*
1265 * Get the context for a task and increment its pin_count so it
1266 * can't get swapped to another task. This also increments its
1267 * reference count so that the context can't get freed.
1268 */
8dc85d54
PZ
1269static struct perf_event_context *
1270perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1271{
cdd6c482 1272 struct perf_event_context *ctx;
25346b93
PM
1273 unsigned long flags;
1274
8dc85d54 1275 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1276 if (ctx) {
1277 ++ctx->pin_count;
e625cce1 1278 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1279 }
1280 return ctx;
1281}
1282
cdd6c482 1283static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1284{
1285 unsigned long flags;
1286
e625cce1 1287 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1288 --ctx->pin_count;
e625cce1 1289 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1290}
1291
f67218c3
PZ
1292/*
1293 * Update the record of the current time in a context.
1294 */
1295static void update_context_time(struct perf_event_context *ctx)
1296{
1297 u64 now = perf_clock();
1298
1299 ctx->time += now - ctx->timestamp;
1300 ctx->timestamp = now;
1301}
1302
4158755d
SE
1303static u64 perf_event_time(struct perf_event *event)
1304{
1305 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1306
1307 if (is_cgroup_event(event))
1308 return perf_cgroup_event_time(event);
1309
4158755d
SE
1310 return ctx ? ctx->time : 0;
1311}
1312
f67218c3
PZ
1313/*
1314 * Update the total_time_enabled and total_time_running fields for a event.
1315 */
1316static void update_event_times(struct perf_event *event)
1317{
1318 struct perf_event_context *ctx = event->ctx;
1319 u64 run_end;
1320
3cbaa590
PZ
1321 lockdep_assert_held(&ctx->lock);
1322
f67218c3
PZ
1323 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1324 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1325 return;
3cbaa590 1326
e5d1367f
SE
1327 /*
1328 * in cgroup mode, time_enabled represents
1329 * the time the event was enabled AND active
1330 * tasks were in the monitored cgroup. This is
1331 * independent of the activity of the context as
1332 * there may be a mix of cgroup and non-cgroup events.
1333 *
1334 * That is why we treat cgroup events differently
1335 * here.
1336 */
1337 if (is_cgroup_event(event))
46cd6a7f 1338 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1339 else if (ctx->is_active)
1340 run_end = ctx->time;
acd1d7c1
PZ
1341 else
1342 run_end = event->tstamp_stopped;
1343
1344 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1345
1346 if (event->state == PERF_EVENT_STATE_INACTIVE)
1347 run_end = event->tstamp_stopped;
1348 else
4158755d 1349 run_end = perf_event_time(event);
f67218c3
PZ
1350
1351 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1352
f67218c3
PZ
1353}
1354
96c21a46
PZ
1355/*
1356 * Update total_time_enabled and total_time_running for all events in a group.
1357 */
1358static void update_group_times(struct perf_event *leader)
1359{
1360 struct perf_event *event;
1361
1362 update_event_times(leader);
1363 list_for_each_entry(event, &leader->sibling_list, group_entry)
1364 update_event_times(event);
1365}
1366
889ff015
FW
1367static struct list_head *
1368ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1369{
1370 if (event->attr.pinned)
1371 return &ctx->pinned_groups;
1372 else
1373 return &ctx->flexible_groups;
1374}
1375
fccc714b 1376/*
cdd6c482 1377 * Add a event from the lists for its context.
fccc714b
PZ
1378 * Must be called with ctx->mutex and ctx->lock held.
1379 */
04289bb9 1380static void
cdd6c482 1381list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1382{
c994d613
PZ
1383 lockdep_assert_held(&ctx->lock);
1384
8a49542c
PZ
1385 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1386 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1387
1388 /*
8a49542c
PZ
1389 * If we're a stand alone event or group leader, we go to the context
1390 * list, group events are kept attached to the group so that
1391 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1392 */
8a49542c 1393 if (event->group_leader == event) {
889ff015
FW
1394 struct list_head *list;
1395
d6f962b5
FW
1396 if (is_software_event(event))
1397 event->group_flags |= PERF_GROUP_SOFTWARE;
1398
889ff015
FW
1399 list = ctx_group_list(event, ctx);
1400 list_add_tail(&event->group_entry, list);
5c148194 1401 }
592903cd 1402
08309379 1403 if (is_cgroup_event(event))
e5d1367f 1404 ctx->nr_cgroups++;
e5d1367f 1405
cdd6c482
IM
1406 list_add_rcu(&event->event_entry, &ctx->event_list);
1407 ctx->nr_events++;
1408 if (event->attr.inherit_stat)
bfbd3381 1409 ctx->nr_stat++;
5a3126d4
PZ
1410
1411 ctx->generation++;
04289bb9
IM
1412}
1413
0231bb53
JO
1414/*
1415 * Initialize event state based on the perf_event_attr::disabled.
1416 */
1417static inline void perf_event__state_init(struct perf_event *event)
1418{
1419 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1420 PERF_EVENT_STATE_INACTIVE;
1421}
1422
a723968c 1423static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1424{
1425 int entry = sizeof(u64); /* value */
1426 int size = 0;
1427 int nr = 1;
1428
1429 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1430 size += sizeof(u64);
1431
1432 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1433 size += sizeof(u64);
1434
1435 if (event->attr.read_format & PERF_FORMAT_ID)
1436 entry += sizeof(u64);
1437
1438 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1439 nr += nr_siblings;
c320c7b7
ACM
1440 size += sizeof(u64);
1441 }
1442
1443 size += entry * nr;
1444 event->read_size = size;
1445}
1446
a723968c 1447static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1448{
1449 struct perf_sample_data *data;
c320c7b7
ACM
1450 u16 size = 0;
1451
c320c7b7
ACM
1452 if (sample_type & PERF_SAMPLE_IP)
1453 size += sizeof(data->ip);
1454
6844c09d
ACM
1455 if (sample_type & PERF_SAMPLE_ADDR)
1456 size += sizeof(data->addr);
1457
1458 if (sample_type & PERF_SAMPLE_PERIOD)
1459 size += sizeof(data->period);
1460
c3feedf2
AK
1461 if (sample_type & PERF_SAMPLE_WEIGHT)
1462 size += sizeof(data->weight);
1463
6844c09d
ACM
1464 if (sample_type & PERF_SAMPLE_READ)
1465 size += event->read_size;
1466
d6be9ad6
SE
1467 if (sample_type & PERF_SAMPLE_DATA_SRC)
1468 size += sizeof(data->data_src.val);
1469
fdfbbd07
AK
1470 if (sample_type & PERF_SAMPLE_TRANSACTION)
1471 size += sizeof(data->txn);
1472
6844c09d
ACM
1473 event->header_size = size;
1474}
1475
a723968c
PZ
1476/*
1477 * Called at perf_event creation and when events are attached/detached from a
1478 * group.
1479 */
1480static void perf_event__header_size(struct perf_event *event)
1481{
1482 __perf_event_read_size(event,
1483 event->group_leader->nr_siblings);
1484 __perf_event_header_size(event, event->attr.sample_type);
1485}
1486
6844c09d
ACM
1487static void perf_event__id_header_size(struct perf_event *event)
1488{
1489 struct perf_sample_data *data;
1490 u64 sample_type = event->attr.sample_type;
1491 u16 size = 0;
1492
c320c7b7
ACM
1493 if (sample_type & PERF_SAMPLE_TID)
1494 size += sizeof(data->tid_entry);
1495
1496 if (sample_type & PERF_SAMPLE_TIME)
1497 size += sizeof(data->time);
1498
ff3d527c
AH
1499 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1500 size += sizeof(data->id);
1501
c320c7b7
ACM
1502 if (sample_type & PERF_SAMPLE_ID)
1503 size += sizeof(data->id);
1504
1505 if (sample_type & PERF_SAMPLE_STREAM_ID)
1506 size += sizeof(data->stream_id);
1507
1508 if (sample_type & PERF_SAMPLE_CPU)
1509 size += sizeof(data->cpu_entry);
1510
6844c09d 1511 event->id_header_size = size;
c320c7b7
ACM
1512}
1513
a723968c
PZ
1514static bool perf_event_validate_size(struct perf_event *event)
1515{
1516 /*
1517 * The values computed here will be over-written when we actually
1518 * attach the event.
1519 */
1520 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1521 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1522 perf_event__id_header_size(event);
1523
1524 /*
1525 * Sum the lot; should not exceed the 64k limit we have on records.
1526 * Conservative limit to allow for callchains and other variable fields.
1527 */
1528 if (event->read_size + event->header_size +
1529 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1530 return false;
1531
1532 return true;
1533}
1534
8a49542c
PZ
1535static void perf_group_attach(struct perf_event *event)
1536{
c320c7b7 1537 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1538
74c3337c
PZ
1539 /*
1540 * We can have double attach due to group movement in perf_event_open.
1541 */
1542 if (event->attach_state & PERF_ATTACH_GROUP)
1543 return;
1544
8a49542c
PZ
1545 event->attach_state |= PERF_ATTACH_GROUP;
1546
1547 if (group_leader == event)
1548 return;
1549
652884fe
PZ
1550 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1551
8a49542c
PZ
1552 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1553 !is_software_event(event))
1554 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1555
1556 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1557 group_leader->nr_siblings++;
c320c7b7
ACM
1558
1559 perf_event__header_size(group_leader);
1560
1561 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1562 perf_event__header_size(pos);
8a49542c
PZ
1563}
1564
a63eaf34 1565/*
cdd6c482 1566 * Remove a event from the lists for its context.
fccc714b 1567 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1568 */
04289bb9 1569static void
cdd6c482 1570list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1571{
68cacd29 1572 struct perf_cpu_context *cpuctx;
652884fe
PZ
1573
1574 WARN_ON_ONCE(event->ctx != ctx);
1575 lockdep_assert_held(&ctx->lock);
1576
8a49542c
PZ
1577 /*
1578 * We can have double detach due to exit/hot-unplug + close.
1579 */
1580 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1581 return;
8a49542c
PZ
1582
1583 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1584
68cacd29 1585 if (is_cgroup_event(event)) {
e5d1367f 1586 ctx->nr_cgroups--;
70a01657
PZ
1587 /*
1588 * Because cgroup events are always per-cpu events, this will
1589 * always be called from the right CPU.
1590 */
68cacd29
SE
1591 cpuctx = __get_cpu_context(ctx);
1592 /*
70a01657
PZ
1593 * If there are no more cgroup events then clear cgrp to avoid
1594 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1595 */
1596 if (!ctx->nr_cgroups)
1597 cpuctx->cgrp = NULL;
1598 }
e5d1367f 1599
cdd6c482
IM
1600 ctx->nr_events--;
1601 if (event->attr.inherit_stat)
bfbd3381 1602 ctx->nr_stat--;
8bc20959 1603
cdd6c482 1604 list_del_rcu(&event->event_entry);
04289bb9 1605
8a49542c
PZ
1606 if (event->group_leader == event)
1607 list_del_init(&event->group_entry);
5c148194 1608
96c21a46 1609 update_group_times(event);
b2e74a26
SE
1610
1611 /*
1612 * If event was in error state, then keep it
1613 * that way, otherwise bogus counts will be
1614 * returned on read(). The only way to get out
1615 * of error state is by explicit re-enabling
1616 * of the event
1617 */
1618 if (event->state > PERF_EVENT_STATE_OFF)
1619 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1620
1621 ctx->generation++;
050735b0
PZ
1622}
1623
8a49542c 1624static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1625{
1626 struct perf_event *sibling, *tmp;
8a49542c
PZ
1627 struct list_head *list = NULL;
1628
1629 /*
1630 * We can have double detach due to exit/hot-unplug + close.
1631 */
1632 if (!(event->attach_state & PERF_ATTACH_GROUP))
1633 return;
1634
1635 event->attach_state &= ~PERF_ATTACH_GROUP;
1636
1637 /*
1638 * If this is a sibling, remove it from its group.
1639 */
1640 if (event->group_leader != event) {
1641 list_del_init(&event->group_entry);
1642 event->group_leader->nr_siblings--;
c320c7b7 1643 goto out;
8a49542c
PZ
1644 }
1645
1646 if (!list_empty(&event->group_entry))
1647 list = &event->group_entry;
2e2af50b 1648
04289bb9 1649 /*
cdd6c482
IM
1650 * If this was a group event with sibling events then
1651 * upgrade the siblings to singleton events by adding them
8a49542c 1652 * to whatever list we are on.
04289bb9 1653 */
cdd6c482 1654 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1655 if (list)
1656 list_move_tail(&sibling->group_entry, list);
04289bb9 1657 sibling->group_leader = sibling;
d6f962b5
FW
1658
1659 /* Inherit group flags from the previous leader */
1660 sibling->group_flags = event->group_flags;
652884fe
PZ
1661
1662 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1663 }
c320c7b7
ACM
1664
1665out:
1666 perf_event__header_size(event->group_leader);
1667
1668 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1669 perf_event__header_size(tmp);
04289bb9
IM
1670}
1671
fadfe7be
JO
1672static bool is_orphaned_event(struct perf_event *event)
1673{
a69b0ca4 1674 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1675}
1676
66eb579e
MR
1677static inline int pmu_filter_match(struct perf_event *event)
1678{
1679 struct pmu *pmu = event->pmu;
1680 return pmu->filter_match ? pmu->filter_match(event) : 1;
1681}
1682
fa66f07a
SE
1683static inline int
1684event_filter_match(struct perf_event *event)
1685{
e5d1367f 1686 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1687 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1688}
1689
9ffcfa6f
SE
1690static void
1691event_sched_out(struct perf_event *event,
3b6f9e5c 1692 struct perf_cpu_context *cpuctx,
cdd6c482 1693 struct perf_event_context *ctx)
3b6f9e5c 1694{
4158755d 1695 u64 tstamp = perf_event_time(event);
fa66f07a 1696 u64 delta;
652884fe
PZ
1697
1698 WARN_ON_ONCE(event->ctx != ctx);
1699 lockdep_assert_held(&ctx->lock);
1700
fa66f07a
SE
1701 /*
1702 * An event which could not be activated because of
1703 * filter mismatch still needs to have its timings
1704 * maintained, otherwise bogus information is return
1705 * via read() for time_enabled, time_running:
1706 */
1707 if (event->state == PERF_EVENT_STATE_INACTIVE
1708 && !event_filter_match(event)) {
e5d1367f 1709 delta = tstamp - event->tstamp_stopped;
fa66f07a 1710 event->tstamp_running += delta;
4158755d 1711 event->tstamp_stopped = tstamp;
fa66f07a
SE
1712 }
1713
cdd6c482 1714 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1715 return;
3b6f9e5c 1716
44377277
AS
1717 perf_pmu_disable(event->pmu);
1718
28a967c3
PZ
1719 event->tstamp_stopped = tstamp;
1720 event->pmu->del(event, 0);
1721 event->oncpu = -1;
cdd6c482
IM
1722 event->state = PERF_EVENT_STATE_INACTIVE;
1723 if (event->pending_disable) {
1724 event->pending_disable = 0;
1725 event->state = PERF_EVENT_STATE_OFF;
970892a9 1726 }
3b6f9e5c 1727
cdd6c482 1728 if (!is_software_event(event))
3b6f9e5c 1729 cpuctx->active_oncpu--;
2fde4f94
MR
1730 if (!--ctx->nr_active)
1731 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1732 if (event->attr.freq && event->attr.sample_freq)
1733 ctx->nr_freq--;
cdd6c482 1734 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1735 cpuctx->exclusive = 0;
44377277
AS
1736
1737 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1738}
1739
d859e29f 1740static void
cdd6c482 1741group_sched_out(struct perf_event *group_event,
d859e29f 1742 struct perf_cpu_context *cpuctx,
cdd6c482 1743 struct perf_event_context *ctx)
d859e29f 1744{
cdd6c482 1745 struct perf_event *event;
fa66f07a 1746 int state = group_event->state;
d859e29f 1747
cdd6c482 1748 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1749
1750 /*
1751 * Schedule out siblings (if any):
1752 */
cdd6c482
IM
1753 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1754 event_sched_out(event, cpuctx, ctx);
d859e29f 1755
fa66f07a 1756 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1757 cpuctx->exclusive = 0;
1758}
1759
45a0e07a 1760#define DETACH_GROUP 0x01UL
0017960f 1761
0793a61d 1762/*
cdd6c482 1763 * Cross CPU call to remove a performance event
0793a61d 1764 *
cdd6c482 1765 * We disable the event on the hardware level first. After that we
0793a61d
TG
1766 * remove it from the context list.
1767 */
fae3fde6
PZ
1768static void
1769__perf_remove_from_context(struct perf_event *event,
1770 struct perf_cpu_context *cpuctx,
1771 struct perf_event_context *ctx,
1772 void *info)
0793a61d 1773{
45a0e07a 1774 unsigned long flags = (unsigned long)info;
0793a61d 1775
cdd6c482 1776 event_sched_out(event, cpuctx, ctx);
45a0e07a 1777 if (flags & DETACH_GROUP)
46ce0fe9 1778 perf_group_detach(event);
cdd6c482 1779 list_del_event(event, ctx);
39a43640
PZ
1780
1781 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1782 ctx->is_active = 0;
39a43640
PZ
1783 if (ctx->task) {
1784 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1785 cpuctx->task_ctx = NULL;
1786 }
64ce3126 1787 }
0793a61d
TG
1788}
1789
0793a61d 1790/*
cdd6c482 1791 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1792 *
cdd6c482
IM
1793 * If event->ctx is a cloned context, callers must make sure that
1794 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1795 * remains valid. This is OK when called from perf_release since
1796 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1797 * When called from perf_event_exit_task, it's OK because the
c93f7669 1798 * context has been detached from its task.
0793a61d 1799 */
45a0e07a 1800static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1801{
fae3fde6 1802 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1803
45a0e07a 1804 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1805}
1806
d859e29f 1807/*
cdd6c482 1808 * Cross CPU call to disable a performance event
d859e29f 1809 */
fae3fde6
PZ
1810static void __perf_event_disable(struct perf_event *event,
1811 struct perf_cpu_context *cpuctx,
1812 struct perf_event_context *ctx,
1813 void *info)
7b648018 1814{
fae3fde6
PZ
1815 if (event->state < PERF_EVENT_STATE_INACTIVE)
1816 return;
7b648018 1817
fae3fde6
PZ
1818 update_context_time(ctx);
1819 update_cgrp_time_from_event(event);
1820 update_group_times(event);
1821 if (event == event->group_leader)
1822 group_sched_out(event, cpuctx, ctx);
1823 else
1824 event_sched_out(event, cpuctx, ctx);
1825 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1826}
1827
d859e29f 1828/*
cdd6c482 1829 * Disable a event.
c93f7669 1830 *
cdd6c482
IM
1831 * If event->ctx is a cloned context, callers must make sure that
1832 * every task struct that event->ctx->task could possibly point to
c93f7669 1833 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1834 * perf_event_for_each_child or perf_event_for_each because they
1835 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1836 * goes to exit will block in perf_event_exit_event().
1837 *
cdd6c482 1838 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1839 * is the current context on this CPU and preemption is disabled,
cdd6c482 1840 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1841 */
f63a8daa 1842static void _perf_event_disable(struct perf_event *event)
d859e29f 1843{
cdd6c482 1844 struct perf_event_context *ctx = event->ctx;
d859e29f 1845
e625cce1 1846 raw_spin_lock_irq(&ctx->lock);
7b648018 1847 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1848 raw_spin_unlock_irq(&ctx->lock);
7b648018 1849 return;
53cfbf59 1850 }
e625cce1 1851 raw_spin_unlock_irq(&ctx->lock);
7b648018 1852
fae3fde6
PZ
1853 event_function_call(event, __perf_event_disable, NULL);
1854}
1855
1856void perf_event_disable_local(struct perf_event *event)
1857{
1858 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1859}
f63a8daa
PZ
1860
1861/*
1862 * Strictly speaking kernel users cannot create groups and therefore this
1863 * interface does not need the perf_event_ctx_lock() magic.
1864 */
1865void perf_event_disable(struct perf_event *event)
1866{
1867 struct perf_event_context *ctx;
1868
1869 ctx = perf_event_ctx_lock(event);
1870 _perf_event_disable(event);
1871 perf_event_ctx_unlock(event, ctx);
1872}
dcfce4a0 1873EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1874
e5d1367f
SE
1875static void perf_set_shadow_time(struct perf_event *event,
1876 struct perf_event_context *ctx,
1877 u64 tstamp)
1878{
1879 /*
1880 * use the correct time source for the time snapshot
1881 *
1882 * We could get by without this by leveraging the
1883 * fact that to get to this function, the caller
1884 * has most likely already called update_context_time()
1885 * and update_cgrp_time_xx() and thus both timestamp
1886 * are identical (or very close). Given that tstamp is,
1887 * already adjusted for cgroup, we could say that:
1888 * tstamp - ctx->timestamp
1889 * is equivalent to
1890 * tstamp - cgrp->timestamp.
1891 *
1892 * Then, in perf_output_read(), the calculation would
1893 * work with no changes because:
1894 * - event is guaranteed scheduled in
1895 * - no scheduled out in between
1896 * - thus the timestamp would be the same
1897 *
1898 * But this is a bit hairy.
1899 *
1900 * So instead, we have an explicit cgroup call to remain
1901 * within the time time source all along. We believe it
1902 * is cleaner and simpler to understand.
1903 */
1904 if (is_cgroup_event(event))
1905 perf_cgroup_set_shadow_time(event, tstamp);
1906 else
1907 event->shadow_ctx_time = tstamp - ctx->timestamp;
1908}
1909
4fe757dd
PZ
1910#define MAX_INTERRUPTS (~0ULL)
1911
1912static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1913static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1914
235c7fc7 1915static int
9ffcfa6f 1916event_sched_in(struct perf_event *event,
235c7fc7 1917 struct perf_cpu_context *cpuctx,
6e37738a 1918 struct perf_event_context *ctx)
235c7fc7 1919{
4158755d 1920 u64 tstamp = perf_event_time(event);
44377277 1921 int ret = 0;
4158755d 1922
63342411
PZ
1923 lockdep_assert_held(&ctx->lock);
1924
cdd6c482 1925 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1926 return 0;
1927
95ff4ca2
AS
1928 WRITE_ONCE(event->oncpu, smp_processor_id());
1929 /*
1930 * Order event::oncpu write to happen before the ACTIVE state
1931 * is visible.
1932 */
1933 smp_wmb();
1934 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
1935
1936 /*
1937 * Unthrottle events, since we scheduled we might have missed several
1938 * ticks already, also for a heavily scheduling task there is little
1939 * guarantee it'll get a tick in a timely manner.
1940 */
1941 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1942 perf_log_throttle(event, 1);
1943 event->hw.interrupts = 0;
1944 }
1945
235c7fc7
IM
1946 /*
1947 * The new state must be visible before we turn it on in the hardware:
1948 */
1949 smp_wmb();
1950
44377277
AS
1951 perf_pmu_disable(event->pmu);
1952
72f669c0
SL
1953 perf_set_shadow_time(event, ctx, tstamp);
1954
ec0d7729
AS
1955 perf_log_itrace_start(event);
1956
a4eaf7f1 1957 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1958 event->state = PERF_EVENT_STATE_INACTIVE;
1959 event->oncpu = -1;
44377277
AS
1960 ret = -EAGAIN;
1961 goto out;
235c7fc7
IM
1962 }
1963
00a2916f
PZ
1964 event->tstamp_running += tstamp - event->tstamp_stopped;
1965
cdd6c482 1966 if (!is_software_event(event))
3b6f9e5c 1967 cpuctx->active_oncpu++;
2fde4f94
MR
1968 if (!ctx->nr_active++)
1969 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1970 if (event->attr.freq && event->attr.sample_freq)
1971 ctx->nr_freq++;
235c7fc7 1972
cdd6c482 1973 if (event->attr.exclusive)
3b6f9e5c
PM
1974 cpuctx->exclusive = 1;
1975
44377277
AS
1976out:
1977 perf_pmu_enable(event->pmu);
1978
1979 return ret;
235c7fc7
IM
1980}
1981
6751b71e 1982static int
cdd6c482 1983group_sched_in(struct perf_event *group_event,
6751b71e 1984 struct perf_cpu_context *cpuctx,
6e37738a 1985 struct perf_event_context *ctx)
6751b71e 1986{
6bde9b6c 1987 struct perf_event *event, *partial_group = NULL;
4a234593 1988 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1989 u64 now = ctx->time;
1990 bool simulate = false;
6751b71e 1991
cdd6c482 1992 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1993 return 0;
1994
fbbe0701 1995 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1996
9ffcfa6f 1997 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1998 pmu->cancel_txn(pmu);
272325c4 1999 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2000 return -EAGAIN;
90151c35 2001 }
6751b71e
PM
2002
2003 /*
2004 * Schedule in siblings as one group (if any):
2005 */
cdd6c482 2006 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2007 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2008 partial_group = event;
6751b71e
PM
2009 goto group_error;
2010 }
2011 }
2012
9ffcfa6f 2013 if (!pmu->commit_txn(pmu))
6e85158c 2014 return 0;
9ffcfa6f 2015
6751b71e
PM
2016group_error:
2017 /*
2018 * Groups can be scheduled in as one unit only, so undo any
2019 * partial group before returning:
d7842da4
SE
2020 * The events up to the failed event are scheduled out normally,
2021 * tstamp_stopped will be updated.
2022 *
2023 * The failed events and the remaining siblings need to have
2024 * their timings updated as if they had gone thru event_sched_in()
2025 * and event_sched_out(). This is required to get consistent timings
2026 * across the group. This also takes care of the case where the group
2027 * could never be scheduled by ensuring tstamp_stopped is set to mark
2028 * the time the event was actually stopped, such that time delta
2029 * calculation in update_event_times() is correct.
6751b71e 2030 */
cdd6c482
IM
2031 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2032 if (event == partial_group)
d7842da4
SE
2033 simulate = true;
2034
2035 if (simulate) {
2036 event->tstamp_running += now - event->tstamp_stopped;
2037 event->tstamp_stopped = now;
2038 } else {
2039 event_sched_out(event, cpuctx, ctx);
2040 }
6751b71e 2041 }
9ffcfa6f 2042 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2043
ad5133b7 2044 pmu->cancel_txn(pmu);
90151c35 2045
272325c4 2046 perf_mux_hrtimer_restart(cpuctx);
9e630205 2047
6751b71e
PM
2048 return -EAGAIN;
2049}
2050
3b6f9e5c 2051/*
cdd6c482 2052 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2053 */
cdd6c482 2054static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2055 struct perf_cpu_context *cpuctx,
2056 int can_add_hw)
2057{
2058 /*
cdd6c482 2059 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2060 */
d6f962b5 2061 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2062 return 1;
2063 /*
2064 * If an exclusive group is already on, no other hardware
cdd6c482 2065 * events can go on.
3b6f9e5c
PM
2066 */
2067 if (cpuctx->exclusive)
2068 return 0;
2069 /*
2070 * If this group is exclusive and there are already
cdd6c482 2071 * events on the CPU, it can't go on.
3b6f9e5c 2072 */
cdd6c482 2073 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2074 return 0;
2075 /*
2076 * Otherwise, try to add it if all previous groups were able
2077 * to go on.
2078 */
2079 return can_add_hw;
2080}
2081
cdd6c482
IM
2082static void add_event_to_ctx(struct perf_event *event,
2083 struct perf_event_context *ctx)
53cfbf59 2084{
4158755d
SE
2085 u64 tstamp = perf_event_time(event);
2086
cdd6c482 2087 list_add_event(event, ctx);
8a49542c 2088 perf_group_attach(event);
4158755d
SE
2089 event->tstamp_enabled = tstamp;
2090 event->tstamp_running = tstamp;
2091 event->tstamp_stopped = tstamp;
53cfbf59
PM
2092}
2093
bd2afa49
PZ
2094static void ctx_sched_out(struct perf_event_context *ctx,
2095 struct perf_cpu_context *cpuctx,
2096 enum event_type_t event_type);
2c29ef0f
PZ
2097static void
2098ctx_sched_in(struct perf_event_context *ctx,
2099 struct perf_cpu_context *cpuctx,
2100 enum event_type_t event_type,
2101 struct task_struct *task);
fe4b04fa 2102
bd2afa49
PZ
2103static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2104 struct perf_event_context *ctx)
2105{
2106 if (!cpuctx->task_ctx)
2107 return;
2108
2109 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2110 return;
2111
2112 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2113}
2114
dce5855b
PZ
2115static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2116 struct perf_event_context *ctx,
2117 struct task_struct *task)
2118{
2119 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2120 if (ctx)
2121 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2122 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2123 if (ctx)
2124 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2125}
2126
3e349507
PZ
2127static void ctx_resched(struct perf_cpu_context *cpuctx,
2128 struct perf_event_context *task_ctx)
0017960f 2129{
3e349507
PZ
2130 perf_pmu_disable(cpuctx->ctx.pmu);
2131 if (task_ctx)
2132 task_ctx_sched_out(cpuctx, task_ctx);
2133 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2134 perf_event_sched_in(cpuctx, task_ctx, current);
2135 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2136}
2137
0793a61d 2138/*
cdd6c482 2139 * Cross CPU call to install and enable a performance event
682076ae 2140 *
a096309b
PZ
2141 * Very similar to remote_function() + event_function() but cannot assume that
2142 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2143 */
fe4b04fa 2144static int __perf_install_in_context(void *info)
0793a61d 2145{
a096309b
PZ
2146 struct perf_event *event = info;
2147 struct perf_event_context *ctx = event->ctx;
108b02cf 2148 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2149 struct perf_event_context *task_ctx = cpuctx->task_ctx;
a096309b
PZ
2150 bool activate = true;
2151 int ret = 0;
0793a61d 2152
63b6da39 2153 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2154 if (ctx->task) {
b58f6b0d
PZ
2155 raw_spin_lock(&ctx->lock);
2156 task_ctx = ctx;
a096309b
PZ
2157
2158 /* If we're on the wrong CPU, try again */
2159 if (task_cpu(ctx->task) != smp_processor_id()) {
2160 ret = -ESRCH;
63b6da39 2161 goto unlock;
a096309b 2162 }
b58f6b0d 2163
39a43640 2164 /*
a096309b
PZ
2165 * If we're on the right CPU, see if the task we target is
2166 * current, if not we don't have to activate the ctx, a future
2167 * context switch will do that for us.
39a43640 2168 */
a096309b
PZ
2169 if (ctx->task != current)
2170 activate = false;
2171 else
2172 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2173
63b6da39
PZ
2174 } else if (task_ctx) {
2175 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2176 }
b58f6b0d 2177
a096309b
PZ
2178 if (activate) {
2179 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2180 add_event_to_ctx(event, ctx);
2181 ctx_resched(cpuctx, task_ctx);
2182 } else {
2183 add_event_to_ctx(event, ctx);
2184 }
2185
63b6da39 2186unlock:
2c29ef0f 2187 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2188
a096309b 2189 return ret;
0793a61d
TG
2190}
2191
2192/*
a096309b
PZ
2193 * Attach a performance event to a context.
2194 *
2195 * Very similar to event_function_call, see comment there.
0793a61d
TG
2196 */
2197static void
cdd6c482
IM
2198perf_install_in_context(struct perf_event_context *ctx,
2199 struct perf_event *event,
0793a61d
TG
2200 int cpu)
2201{
a096309b 2202 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2203
fe4b04fa
PZ
2204 lockdep_assert_held(&ctx->mutex);
2205
c3f00c70 2206 event->ctx = ctx;
0cda4c02
YZ
2207 if (event->cpu != -1)
2208 event->cpu = cpu;
c3f00c70 2209
a096309b
PZ
2210 if (!task) {
2211 cpu_function_call(cpu, __perf_install_in_context, event);
2212 return;
2213 }
2214
2215 /*
2216 * Should not happen, we validate the ctx is still alive before calling.
2217 */
2218 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2219 return;
2220
39a43640
PZ
2221 /*
2222 * Installing events is tricky because we cannot rely on ctx->is_active
2223 * to be set in case this is the nr_events 0 -> 1 transition.
39a43640 2224 */
a096309b 2225again:
63b6da39 2226 /*
a096309b
PZ
2227 * Cannot use task_function_call() because we need to run on the task's
2228 * CPU regardless of whether its current or not.
63b6da39 2229 */
a096309b
PZ
2230 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2231 return;
2232
2233 raw_spin_lock_irq(&ctx->lock);
2234 task = ctx->task;
84c4e620 2235 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2236 /*
2237 * Cannot happen because we already checked above (which also
2238 * cannot happen), and we hold ctx->mutex, which serializes us
2239 * against perf_event_exit_task_context().
2240 */
63b6da39
PZ
2241 raw_spin_unlock_irq(&ctx->lock);
2242 return;
2243 }
39a43640 2244 raw_spin_unlock_irq(&ctx->lock);
39a43640 2245 /*
a096309b
PZ
2246 * Since !ctx->is_active doesn't mean anything, we must IPI
2247 * unconditionally.
39a43640 2248 */
a096309b 2249 goto again;
0793a61d
TG
2250}
2251
fa289bec 2252/*
cdd6c482 2253 * Put a event into inactive state and update time fields.
fa289bec
PM
2254 * Enabling the leader of a group effectively enables all
2255 * the group members that aren't explicitly disabled, so we
2256 * have to update their ->tstamp_enabled also.
2257 * Note: this works for group members as well as group leaders
2258 * since the non-leader members' sibling_lists will be empty.
2259 */
1d9b482e 2260static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2261{
cdd6c482 2262 struct perf_event *sub;
4158755d 2263 u64 tstamp = perf_event_time(event);
fa289bec 2264
cdd6c482 2265 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2266 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2267 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2268 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2269 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2270 }
fa289bec
PM
2271}
2272
d859e29f 2273/*
cdd6c482 2274 * Cross CPU call to enable a performance event
d859e29f 2275 */
fae3fde6
PZ
2276static void __perf_event_enable(struct perf_event *event,
2277 struct perf_cpu_context *cpuctx,
2278 struct perf_event_context *ctx,
2279 void *info)
04289bb9 2280{
cdd6c482 2281 struct perf_event *leader = event->group_leader;
fae3fde6 2282 struct perf_event_context *task_ctx;
04289bb9 2283
6e801e01
PZ
2284 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2285 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2286 return;
3cbed429 2287
bd2afa49
PZ
2288 if (ctx->is_active)
2289 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2290
1d9b482e 2291 __perf_event_mark_enabled(event);
04289bb9 2292
fae3fde6
PZ
2293 if (!ctx->is_active)
2294 return;
2295
e5d1367f 2296 if (!event_filter_match(event)) {
bd2afa49 2297 if (is_cgroup_event(event))
e5d1367f 2298 perf_cgroup_defer_enabled(event);
bd2afa49 2299 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2300 return;
e5d1367f 2301 }
f4c4176f 2302
04289bb9 2303 /*
cdd6c482 2304 * If the event is in a group and isn't the group leader,
d859e29f 2305 * then don't put it on unless the group is on.
04289bb9 2306 */
bd2afa49
PZ
2307 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2308 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2309 return;
bd2afa49 2310 }
fe4b04fa 2311
fae3fde6
PZ
2312 task_ctx = cpuctx->task_ctx;
2313 if (ctx->task)
2314 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2315
fae3fde6 2316 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2317}
2318
d859e29f 2319/*
cdd6c482 2320 * Enable a event.
c93f7669 2321 *
cdd6c482
IM
2322 * If event->ctx is a cloned context, callers must make sure that
2323 * every task struct that event->ctx->task could possibly point to
c93f7669 2324 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2325 * perf_event_for_each_child or perf_event_for_each as described
2326 * for perf_event_disable.
d859e29f 2327 */
f63a8daa 2328static void _perf_event_enable(struct perf_event *event)
d859e29f 2329{
cdd6c482 2330 struct perf_event_context *ctx = event->ctx;
d859e29f 2331
7b648018 2332 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2333 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2334 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2335 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2336 return;
2337 }
2338
d859e29f 2339 /*
cdd6c482 2340 * If the event is in error state, clear that first.
7b648018
PZ
2341 *
2342 * That way, if we see the event in error state below, we know that it
2343 * has gone back into error state, as distinct from the task having
2344 * been scheduled away before the cross-call arrived.
d859e29f 2345 */
cdd6c482
IM
2346 if (event->state == PERF_EVENT_STATE_ERROR)
2347 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2348 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2349
fae3fde6 2350 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2351}
f63a8daa
PZ
2352
2353/*
2354 * See perf_event_disable();
2355 */
2356void perf_event_enable(struct perf_event *event)
2357{
2358 struct perf_event_context *ctx;
2359
2360 ctx = perf_event_ctx_lock(event);
2361 _perf_event_enable(event);
2362 perf_event_ctx_unlock(event, ctx);
2363}
dcfce4a0 2364EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2365
95ff4ca2
AS
2366static int __perf_event_stop(void *info)
2367{
2368 struct perf_event *event = info;
2369
2370 /* for AUX events, our job is done if the event is already inactive */
2371 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2372 return 0;
2373
2374 /* matches smp_wmb() in event_sched_in() */
2375 smp_rmb();
2376
2377 /*
2378 * There is a window with interrupts enabled before we get here,
2379 * so we need to check again lest we try to stop another CPU's event.
2380 */
2381 if (READ_ONCE(event->oncpu) != smp_processor_id())
2382 return -EAGAIN;
2383
2384 event->pmu->stop(event, PERF_EF_UPDATE);
2385
2386 return 0;
2387}
2388
f63a8daa 2389static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2390{
2023b359 2391 /*
cdd6c482 2392 * not supported on inherited events
2023b359 2393 */
2e939d1d 2394 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2395 return -EINVAL;
2396
cdd6c482 2397 atomic_add(refresh, &event->event_limit);
f63a8daa 2398 _perf_event_enable(event);
2023b359
PZ
2399
2400 return 0;
79f14641 2401}
f63a8daa
PZ
2402
2403/*
2404 * See perf_event_disable()
2405 */
2406int perf_event_refresh(struct perf_event *event, int refresh)
2407{
2408 struct perf_event_context *ctx;
2409 int ret;
2410
2411 ctx = perf_event_ctx_lock(event);
2412 ret = _perf_event_refresh(event, refresh);
2413 perf_event_ctx_unlock(event, ctx);
2414
2415 return ret;
2416}
26ca5c11 2417EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2418
5b0311e1
FW
2419static void ctx_sched_out(struct perf_event_context *ctx,
2420 struct perf_cpu_context *cpuctx,
2421 enum event_type_t event_type)
235c7fc7 2422{
db24d33e 2423 int is_active = ctx->is_active;
c994d613 2424 struct perf_event *event;
235c7fc7 2425
c994d613 2426 lockdep_assert_held(&ctx->lock);
235c7fc7 2427
39a43640
PZ
2428 if (likely(!ctx->nr_events)) {
2429 /*
2430 * See __perf_remove_from_context().
2431 */
2432 WARN_ON_ONCE(ctx->is_active);
2433 if (ctx->task)
2434 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2435 return;
39a43640
PZ
2436 }
2437
db24d33e 2438 ctx->is_active &= ~event_type;
3cbaa590
PZ
2439 if (!(ctx->is_active & EVENT_ALL))
2440 ctx->is_active = 0;
2441
63e30d3e
PZ
2442 if (ctx->task) {
2443 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2444 if (!ctx->is_active)
2445 cpuctx->task_ctx = NULL;
2446 }
facc4307 2447
8fdc6539
PZ
2448 /*
2449 * Always update time if it was set; not only when it changes.
2450 * Otherwise we can 'forget' to update time for any but the last
2451 * context we sched out. For example:
2452 *
2453 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2454 * ctx_sched_out(.event_type = EVENT_PINNED)
2455 *
2456 * would only update time for the pinned events.
2457 */
3cbaa590
PZ
2458 if (is_active & EVENT_TIME) {
2459 /* update (and stop) ctx time */
2460 update_context_time(ctx);
2461 update_cgrp_time_from_cpuctx(cpuctx);
2462 }
2463
8fdc6539
PZ
2464 is_active ^= ctx->is_active; /* changed bits */
2465
3cbaa590 2466 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2467 return;
5b0311e1 2468
075e0b00 2469 perf_pmu_disable(ctx->pmu);
3cbaa590 2470 if (is_active & EVENT_PINNED) {
889ff015
FW
2471 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2472 group_sched_out(event, cpuctx, ctx);
9ed6060d 2473 }
889ff015 2474
3cbaa590 2475 if (is_active & EVENT_FLEXIBLE) {
889ff015 2476 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2477 group_sched_out(event, cpuctx, ctx);
9ed6060d 2478 }
1b9a644f 2479 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2480}
2481
564c2b21 2482/*
5a3126d4
PZ
2483 * Test whether two contexts are equivalent, i.e. whether they have both been
2484 * cloned from the same version of the same context.
2485 *
2486 * Equivalence is measured using a generation number in the context that is
2487 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2488 * and list_del_event().
564c2b21 2489 */
cdd6c482
IM
2490static int context_equiv(struct perf_event_context *ctx1,
2491 struct perf_event_context *ctx2)
564c2b21 2492{
211de6eb
PZ
2493 lockdep_assert_held(&ctx1->lock);
2494 lockdep_assert_held(&ctx2->lock);
2495
5a3126d4
PZ
2496 /* Pinning disables the swap optimization */
2497 if (ctx1->pin_count || ctx2->pin_count)
2498 return 0;
2499
2500 /* If ctx1 is the parent of ctx2 */
2501 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2502 return 1;
2503
2504 /* If ctx2 is the parent of ctx1 */
2505 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2506 return 1;
2507
2508 /*
2509 * If ctx1 and ctx2 have the same parent; we flatten the parent
2510 * hierarchy, see perf_event_init_context().
2511 */
2512 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2513 ctx1->parent_gen == ctx2->parent_gen)
2514 return 1;
2515
2516 /* Unmatched */
2517 return 0;
564c2b21
PM
2518}
2519
cdd6c482
IM
2520static void __perf_event_sync_stat(struct perf_event *event,
2521 struct perf_event *next_event)
bfbd3381
PZ
2522{
2523 u64 value;
2524
cdd6c482 2525 if (!event->attr.inherit_stat)
bfbd3381
PZ
2526 return;
2527
2528 /*
cdd6c482 2529 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2530 * because we're in the middle of a context switch and have IRQs
2531 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2532 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2533 * don't need to use it.
2534 */
cdd6c482
IM
2535 switch (event->state) {
2536 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2537 event->pmu->read(event);
2538 /* fall-through */
bfbd3381 2539
cdd6c482
IM
2540 case PERF_EVENT_STATE_INACTIVE:
2541 update_event_times(event);
bfbd3381
PZ
2542 break;
2543
2544 default:
2545 break;
2546 }
2547
2548 /*
cdd6c482 2549 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2550 * values when we flip the contexts.
2551 */
e7850595
PZ
2552 value = local64_read(&next_event->count);
2553 value = local64_xchg(&event->count, value);
2554 local64_set(&next_event->count, value);
bfbd3381 2555
cdd6c482
IM
2556 swap(event->total_time_enabled, next_event->total_time_enabled);
2557 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2558
bfbd3381 2559 /*
19d2e755 2560 * Since we swizzled the values, update the user visible data too.
bfbd3381 2561 */
cdd6c482
IM
2562 perf_event_update_userpage(event);
2563 perf_event_update_userpage(next_event);
bfbd3381
PZ
2564}
2565
cdd6c482
IM
2566static void perf_event_sync_stat(struct perf_event_context *ctx,
2567 struct perf_event_context *next_ctx)
bfbd3381 2568{
cdd6c482 2569 struct perf_event *event, *next_event;
bfbd3381
PZ
2570
2571 if (!ctx->nr_stat)
2572 return;
2573
02ffdbc8
PZ
2574 update_context_time(ctx);
2575
cdd6c482
IM
2576 event = list_first_entry(&ctx->event_list,
2577 struct perf_event, event_entry);
bfbd3381 2578
cdd6c482
IM
2579 next_event = list_first_entry(&next_ctx->event_list,
2580 struct perf_event, event_entry);
bfbd3381 2581
cdd6c482
IM
2582 while (&event->event_entry != &ctx->event_list &&
2583 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2584
cdd6c482 2585 __perf_event_sync_stat(event, next_event);
bfbd3381 2586
cdd6c482
IM
2587 event = list_next_entry(event, event_entry);
2588 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2589 }
2590}
2591
fe4b04fa
PZ
2592static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2593 struct task_struct *next)
0793a61d 2594{
8dc85d54 2595 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2596 struct perf_event_context *next_ctx;
5a3126d4 2597 struct perf_event_context *parent, *next_parent;
108b02cf 2598 struct perf_cpu_context *cpuctx;
c93f7669 2599 int do_switch = 1;
0793a61d 2600
108b02cf
PZ
2601 if (likely(!ctx))
2602 return;
10989fb2 2603
108b02cf
PZ
2604 cpuctx = __get_cpu_context(ctx);
2605 if (!cpuctx->task_ctx)
0793a61d
TG
2606 return;
2607
c93f7669 2608 rcu_read_lock();
8dc85d54 2609 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2610 if (!next_ctx)
2611 goto unlock;
2612
2613 parent = rcu_dereference(ctx->parent_ctx);
2614 next_parent = rcu_dereference(next_ctx->parent_ctx);
2615
2616 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2617 if (!parent && !next_parent)
5a3126d4
PZ
2618 goto unlock;
2619
2620 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2621 /*
2622 * Looks like the two contexts are clones, so we might be
2623 * able to optimize the context switch. We lock both
2624 * contexts and check that they are clones under the
2625 * lock (including re-checking that neither has been
2626 * uncloned in the meantime). It doesn't matter which
2627 * order we take the locks because no other cpu could
2628 * be trying to lock both of these tasks.
2629 */
e625cce1
TG
2630 raw_spin_lock(&ctx->lock);
2631 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2632 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2633 WRITE_ONCE(ctx->task, next);
2634 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2635
2636 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2637
63b6da39
PZ
2638 /*
2639 * RCU_INIT_POINTER here is safe because we've not
2640 * modified the ctx and the above modification of
2641 * ctx->task and ctx->task_ctx_data are immaterial
2642 * since those values are always verified under
2643 * ctx->lock which we're now holding.
2644 */
2645 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2646 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2647
c93f7669 2648 do_switch = 0;
bfbd3381 2649
cdd6c482 2650 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2651 }
e625cce1
TG
2652 raw_spin_unlock(&next_ctx->lock);
2653 raw_spin_unlock(&ctx->lock);
564c2b21 2654 }
5a3126d4 2655unlock:
c93f7669 2656 rcu_read_unlock();
564c2b21 2657
c93f7669 2658 if (do_switch) {
facc4307 2659 raw_spin_lock(&ctx->lock);
8833d0e2 2660 task_ctx_sched_out(cpuctx, ctx);
facc4307 2661 raw_spin_unlock(&ctx->lock);
c93f7669 2662 }
0793a61d
TG
2663}
2664
ba532500
YZ
2665void perf_sched_cb_dec(struct pmu *pmu)
2666{
2667 this_cpu_dec(perf_sched_cb_usages);
2668}
2669
2670void perf_sched_cb_inc(struct pmu *pmu)
2671{
2672 this_cpu_inc(perf_sched_cb_usages);
2673}
2674
2675/*
2676 * This function provides the context switch callback to the lower code
2677 * layer. It is invoked ONLY when the context switch callback is enabled.
2678 */
2679static void perf_pmu_sched_task(struct task_struct *prev,
2680 struct task_struct *next,
2681 bool sched_in)
2682{
2683 struct perf_cpu_context *cpuctx;
2684 struct pmu *pmu;
2685 unsigned long flags;
2686
2687 if (prev == next)
2688 return;
2689
2690 local_irq_save(flags);
2691
2692 rcu_read_lock();
2693
2694 list_for_each_entry_rcu(pmu, &pmus, entry) {
2695 if (pmu->sched_task) {
2696 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2697
2698 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2699
2700 perf_pmu_disable(pmu);
2701
2702 pmu->sched_task(cpuctx->task_ctx, sched_in);
2703
2704 perf_pmu_enable(pmu);
2705
2706 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2707 }
2708 }
2709
2710 rcu_read_unlock();
2711
2712 local_irq_restore(flags);
2713}
2714
45ac1403
AH
2715static void perf_event_switch(struct task_struct *task,
2716 struct task_struct *next_prev, bool sched_in);
2717
8dc85d54
PZ
2718#define for_each_task_context_nr(ctxn) \
2719 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2720
2721/*
2722 * Called from scheduler to remove the events of the current task,
2723 * with interrupts disabled.
2724 *
2725 * We stop each event and update the event value in event->count.
2726 *
2727 * This does not protect us against NMI, but disable()
2728 * sets the disabled bit in the control field of event _before_
2729 * accessing the event control register. If a NMI hits, then it will
2730 * not restart the event.
2731 */
ab0cce56
JO
2732void __perf_event_task_sched_out(struct task_struct *task,
2733 struct task_struct *next)
8dc85d54
PZ
2734{
2735 int ctxn;
2736
ba532500
YZ
2737 if (__this_cpu_read(perf_sched_cb_usages))
2738 perf_pmu_sched_task(task, next, false);
2739
45ac1403
AH
2740 if (atomic_read(&nr_switch_events))
2741 perf_event_switch(task, next, false);
2742
8dc85d54
PZ
2743 for_each_task_context_nr(ctxn)
2744 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2745
2746 /*
2747 * if cgroup events exist on this CPU, then we need
2748 * to check if we have to switch out PMU state.
2749 * cgroup event are system-wide mode only
2750 */
4a32fea9 2751 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2752 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2753}
2754
5b0311e1
FW
2755/*
2756 * Called with IRQs disabled
2757 */
2758static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2759 enum event_type_t event_type)
2760{
2761 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2762}
2763
235c7fc7 2764static void
5b0311e1 2765ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2766 struct perf_cpu_context *cpuctx)
0793a61d 2767{
cdd6c482 2768 struct perf_event *event;
0793a61d 2769
889ff015
FW
2770 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2771 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2772 continue;
5632ab12 2773 if (!event_filter_match(event))
3b6f9e5c
PM
2774 continue;
2775
e5d1367f
SE
2776 /* may need to reset tstamp_enabled */
2777 if (is_cgroup_event(event))
2778 perf_cgroup_mark_enabled(event, ctx);
2779
8c9ed8e1 2780 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2781 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2782
2783 /*
2784 * If this pinned group hasn't been scheduled,
2785 * put it in error state.
2786 */
cdd6c482
IM
2787 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2788 update_group_times(event);
2789 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2790 }
3b6f9e5c 2791 }
5b0311e1
FW
2792}
2793
2794static void
2795ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2796 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2797{
2798 struct perf_event *event;
2799 int can_add_hw = 1;
3b6f9e5c 2800
889ff015
FW
2801 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2802 /* Ignore events in OFF or ERROR state */
2803 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2804 continue;
04289bb9
IM
2805 /*
2806 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2807 * of events:
04289bb9 2808 */
5632ab12 2809 if (!event_filter_match(event))
0793a61d
TG
2810 continue;
2811
e5d1367f
SE
2812 /* may need to reset tstamp_enabled */
2813 if (is_cgroup_event(event))
2814 perf_cgroup_mark_enabled(event, ctx);
2815
9ed6060d 2816 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2817 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2818 can_add_hw = 0;
9ed6060d 2819 }
0793a61d 2820 }
5b0311e1
FW
2821}
2822
2823static void
2824ctx_sched_in(struct perf_event_context *ctx,
2825 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2826 enum event_type_t event_type,
2827 struct task_struct *task)
5b0311e1 2828{
db24d33e 2829 int is_active = ctx->is_active;
c994d613
PZ
2830 u64 now;
2831
2832 lockdep_assert_held(&ctx->lock);
e5d1367f 2833
5b0311e1 2834 if (likely(!ctx->nr_events))
facc4307 2835 return;
5b0311e1 2836
3cbaa590 2837 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
2838 if (ctx->task) {
2839 if (!is_active)
2840 cpuctx->task_ctx = ctx;
2841 else
2842 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2843 }
2844
3cbaa590
PZ
2845 is_active ^= ctx->is_active; /* changed bits */
2846
2847 if (is_active & EVENT_TIME) {
2848 /* start ctx time */
2849 now = perf_clock();
2850 ctx->timestamp = now;
2851 perf_cgroup_set_timestamp(task, ctx);
2852 }
2853
5b0311e1
FW
2854 /*
2855 * First go through the list and put on any pinned groups
2856 * in order to give them the best chance of going on.
2857 */
3cbaa590 2858 if (is_active & EVENT_PINNED)
6e37738a 2859 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2860
2861 /* Then walk through the lower prio flexible groups */
3cbaa590 2862 if (is_active & EVENT_FLEXIBLE)
6e37738a 2863 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2864}
2865
329c0e01 2866static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2867 enum event_type_t event_type,
2868 struct task_struct *task)
329c0e01
FW
2869{
2870 struct perf_event_context *ctx = &cpuctx->ctx;
2871
e5d1367f 2872 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2873}
2874
e5d1367f
SE
2875static void perf_event_context_sched_in(struct perf_event_context *ctx,
2876 struct task_struct *task)
235c7fc7 2877{
108b02cf 2878 struct perf_cpu_context *cpuctx;
235c7fc7 2879
108b02cf 2880 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2881 if (cpuctx->task_ctx == ctx)
2882 return;
2883
facc4307 2884 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2885 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2886 /*
2887 * We want to keep the following priority order:
2888 * cpu pinned (that don't need to move), task pinned,
2889 * cpu flexible, task flexible.
2890 */
2891 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 2892 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
2893 perf_pmu_enable(ctx->pmu);
2894 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2895}
2896
8dc85d54
PZ
2897/*
2898 * Called from scheduler to add the events of the current task
2899 * with interrupts disabled.
2900 *
2901 * We restore the event value and then enable it.
2902 *
2903 * This does not protect us against NMI, but enable()
2904 * sets the enabled bit in the control field of event _before_
2905 * accessing the event control register. If a NMI hits, then it will
2906 * keep the event running.
2907 */
ab0cce56
JO
2908void __perf_event_task_sched_in(struct task_struct *prev,
2909 struct task_struct *task)
8dc85d54
PZ
2910{
2911 struct perf_event_context *ctx;
2912 int ctxn;
2913
7e41d177
PZ
2914 /*
2915 * If cgroup events exist on this CPU, then we need to check if we have
2916 * to switch in PMU state; cgroup event are system-wide mode only.
2917 *
2918 * Since cgroup events are CPU events, we must schedule these in before
2919 * we schedule in the task events.
2920 */
2921 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2922 perf_cgroup_sched_in(prev, task);
2923
8dc85d54
PZ
2924 for_each_task_context_nr(ctxn) {
2925 ctx = task->perf_event_ctxp[ctxn];
2926 if (likely(!ctx))
2927 continue;
2928
e5d1367f 2929 perf_event_context_sched_in(ctx, task);
8dc85d54 2930 }
d010b332 2931
45ac1403
AH
2932 if (atomic_read(&nr_switch_events))
2933 perf_event_switch(task, prev, true);
2934
ba532500
YZ
2935 if (__this_cpu_read(perf_sched_cb_usages))
2936 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2937}
2938
abd50713
PZ
2939static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2940{
2941 u64 frequency = event->attr.sample_freq;
2942 u64 sec = NSEC_PER_SEC;
2943 u64 divisor, dividend;
2944
2945 int count_fls, nsec_fls, frequency_fls, sec_fls;
2946
2947 count_fls = fls64(count);
2948 nsec_fls = fls64(nsec);
2949 frequency_fls = fls64(frequency);
2950 sec_fls = 30;
2951
2952 /*
2953 * We got @count in @nsec, with a target of sample_freq HZ
2954 * the target period becomes:
2955 *
2956 * @count * 10^9
2957 * period = -------------------
2958 * @nsec * sample_freq
2959 *
2960 */
2961
2962 /*
2963 * Reduce accuracy by one bit such that @a and @b converge
2964 * to a similar magnitude.
2965 */
fe4b04fa 2966#define REDUCE_FLS(a, b) \
abd50713
PZ
2967do { \
2968 if (a##_fls > b##_fls) { \
2969 a >>= 1; \
2970 a##_fls--; \
2971 } else { \
2972 b >>= 1; \
2973 b##_fls--; \
2974 } \
2975} while (0)
2976
2977 /*
2978 * Reduce accuracy until either term fits in a u64, then proceed with
2979 * the other, so that finally we can do a u64/u64 division.
2980 */
2981 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2982 REDUCE_FLS(nsec, frequency);
2983 REDUCE_FLS(sec, count);
2984 }
2985
2986 if (count_fls + sec_fls > 64) {
2987 divisor = nsec * frequency;
2988
2989 while (count_fls + sec_fls > 64) {
2990 REDUCE_FLS(count, sec);
2991 divisor >>= 1;
2992 }
2993
2994 dividend = count * sec;
2995 } else {
2996 dividend = count * sec;
2997
2998 while (nsec_fls + frequency_fls > 64) {
2999 REDUCE_FLS(nsec, frequency);
3000 dividend >>= 1;
3001 }
3002
3003 divisor = nsec * frequency;
3004 }
3005
f6ab91ad
PZ
3006 if (!divisor)
3007 return dividend;
3008
abd50713
PZ
3009 return div64_u64(dividend, divisor);
3010}
3011
e050e3f0
SE
3012static DEFINE_PER_CPU(int, perf_throttled_count);
3013static DEFINE_PER_CPU(u64, perf_throttled_seq);
3014
f39d47ff 3015static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3016{
cdd6c482 3017 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3018 s64 period, sample_period;
bd2b5b12
PZ
3019 s64 delta;
3020
abd50713 3021 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3022
3023 delta = (s64)(period - hwc->sample_period);
3024 delta = (delta + 7) / 8; /* low pass filter */
3025
3026 sample_period = hwc->sample_period + delta;
3027
3028 if (!sample_period)
3029 sample_period = 1;
3030
bd2b5b12 3031 hwc->sample_period = sample_period;
abd50713 3032
e7850595 3033 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3034 if (disable)
3035 event->pmu->stop(event, PERF_EF_UPDATE);
3036
e7850595 3037 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3038
3039 if (disable)
3040 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3041 }
bd2b5b12
PZ
3042}
3043
e050e3f0
SE
3044/*
3045 * combine freq adjustment with unthrottling to avoid two passes over the
3046 * events. At the same time, make sure, having freq events does not change
3047 * the rate of unthrottling as that would introduce bias.
3048 */
3049static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3050 int needs_unthr)
60db5e09 3051{
cdd6c482
IM
3052 struct perf_event *event;
3053 struct hw_perf_event *hwc;
e050e3f0 3054 u64 now, period = TICK_NSEC;
abd50713 3055 s64 delta;
60db5e09 3056
e050e3f0
SE
3057 /*
3058 * only need to iterate over all events iff:
3059 * - context have events in frequency mode (needs freq adjust)
3060 * - there are events to unthrottle on this cpu
3061 */
3062 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3063 return;
3064
e050e3f0 3065 raw_spin_lock(&ctx->lock);
f39d47ff 3066 perf_pmu_disable(ctx->pmu);
e050e3f0 3067
03541f8b 3068 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3069 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3070 continue;
3071
5632ab12 3072 if (!event_filter_match(event))
5d27c23d
PZ
3073 continue;
3074
44377277
AS
3075 perf_pmu_disable(event->pmu);
3076
cdd6c482 3077 hwc = &event->hw;
6a24ed6c 3078
ae23bff1 3079 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3080 hwc->interrupts = 0;
cdd6c482 3081 perf_log_throttle(event, 1);
a4eaf7f1 3082 event->pmu->start(event, 0);
a78ac325
PZ
3083 }
3084
cdd6c482 3085 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3086 goto next;
60db5e09 3087
e050e3f0
SE
3088 /*
3089 * stop the event and update event->count
3090 */
3091 event->pmu->stop(event, PERF_EF_UPDATE);
3092
e7850595 3093 now = local64_read(&event->count);
abd50713
PZ
3094 delta = now - hwc->freq_count_stamp;
3095 hwc->freq_count_stamp = now;
60db5e09 3096
e050e3f0
SE
3097 /*
3098 * restart the event
3099 * reload only if value has changed
f39d47ff
SE
3100 * we have stopped the event so tell that
3101 * to perf_adjust_period() to avoid stopping it
3102 * twice.
e050e3f0 3103 */
abd50713 3104 if (delta > 0)
f39d47ff 3105 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3106
3107 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3108 next:
3109 perf_pmu_enable(event->pmu);
60db5e09 3110 }
e050e3f0 3111
f39d47ff 3112 perf_pmu_enable(ctx->pmu);
e050e3f0 3113 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3114}
3115
235c7fc7 3116/*
cdd6c482 3117 * Round-robin a context's events:
235c7fc7 3118 */
cdd6c482 3119static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3120{
dddd3379
TG
3121 /*
3122 * Rotate the first entry last of non-pinned groups. Rotation might be
3123 * disabled by the inheritance code.
3124 */
3125 if (!ctx->rotate_disable)
3126 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3127}
3128
9e630205 3129static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3130{
8dc85d54 3131 struct perf_event_context *ctx = NULL;
2fde4f94 3132 int rotate = 0;
7fc23a53 3133
b5ab4cd5 3134 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3135 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3136 rotate = 1;
3137 }
235c7fc7 3138
8dc85d54 3139 ctx = cpuctx->task_ctx;
b5ab4cd5 3140 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3141 if (ctx->nr_events != ctx->nr_active)
3142 rotate = 1;
3143 }
9717e6cd 3144
e050e3f0 3145 if (!rotate)
0f5a2601
PZ
3146 goto done;
3147
facc4307 3148 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3149 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3150
e050e3f0
SE
3151 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3152 if (ctx)
3153 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3154
e050e3f0
SE
3155 rotate_ctx(&cpuctx->ctx);
3156 if (ctx)
3157 rotate_ctx(ctx);
235c7fc7 3158
e050e3f0 3159 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3160
0f5a2601
PZ
3161 perf_pmu_enable(cpuctx->ctx.pmu);
3162 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3163done:
9e630205
SE
3164
3165 return rotate;
e9d2b064
PZ
3166}
3167
3168void perf_event_task_tick(void)
3169{
2fde4f94
MR
3170 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3171 struct perf_event_context *ctx, *tmp;
e050e3f0 3172 int throttled;
b5ab4cd5 3173
e9d2b064
PZ
3174 WARN_ON(!irqs_disabled());
3175
e050e3f0
SE
3176 __this_cpu_inc(perf_throttled_seq);
3177 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3178 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3179
2fde4f94 3180 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3181 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3182}
3183
889ff015
FW
3184static int event_enable_on_exec(struct perf_event *event,
3185 struct perf_event_context *ctx)
3186{
3187 if (!event->attr.enable_on_exec)
3188 return 0;
3189
3190 event->attr.enable_on_exec = 0;
3191 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3192 return 0;
3193
1d9b482e 3194 __perf_event_mark_enabled(event);
889ff015
FW
3195
3196 return 1;
3197}
3198
57e7986e 3199/*
cdd6c482 3200 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3201 * This expects task == current.
3202 */
c1274499 3203static void perf_event_enable_on_exec(int ctxn)
57e7986e 3204{
c1274499 3205 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3206 struct perf_cpu_context *cpuctx;
cdd6c482 3207 struct perf_event *event;
57e7986e
PM
3208 unsigned long flags;
3209 int enabled = 0;
3210
3211 local_irq_save(flags);
c1274499 3212 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3213 if (!ctx || !ctx->nr_events)
57e7986e
PM
3214 goto out;
3215
3e349507
PZ
3216 cpuctx = __get_cpu_context(ctx);
3217 perf_ctx_lock(cpuctx, ctx);
7fce2509 3218 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3e349507
PZ
3219 list_for_each_entry(event, &ctx->event_list, event_entry)
3220 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3221
3222 /*
3e349507 3223 * Unclone and reschedule this context if we enabled any event.
57e7986e 3224 */
3e349507 3225 if (enabled) {
211de6eb 3226 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3227 ctx_resched(cpuctx, ctx);
3228 }
3229 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3230
9ed6060d 3231out:
57e7986e 3232 local_irq_restore(flags);
211de6eb
PZ
3233
3234 if (clone_ctx)
3235 put_ctx(clone_ctx);
57e7986e
PM
3236}
3237
e041e328
PZ
3238void perf_event_exec(void)
3239{
e041e328
PZ
3240 int ctxn;
3241
3242 rcu_read_lock();
c1274499
PZ
3243 for_each_task_context_nr(ctxn)
3244 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3245 rcu_read_unlock();
3246}
3247
0492d4c5
PZ
3248struct perf_read_data {
3249 struct perf_event *event;
3250 bool group;
7d88962e 3251 int ret;
0492d4c5
PZ
3252};
3253
0793a61d 3254/*
cdd6c482 3255 * Cross CPU call to read the hardware event
0793a61d 3256 */
cdd6c482 3257static void __perf_event_read(void *info)
0793a61d 3258{
0492d4c5
PZ
3259 struct perf_read_data *data = info;
3260 struct perf_event *sub, *event = data->event;
cdd6c482 3261 struct perf_event_context *ctx = event->ctx;
108b02cf 3262 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3263 struct pmu *pmu = event->pmu;
621a01ea 3264
e1ac3614
PM
3265 /*
3266 * If this is a task context, we need to check whether it is
3267 * the current task context of this cpu. If not it has been
3268 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3269 * event->count would have been updated to a recent sample
3270 * when the event was scheduled out.
e1ac3614
PM
3271 */
3272 if (ctx->task && cpuctx->task_ctx != ctx)
3273 return;
3274
e625cce1 3275 raw_spin_lock(&ctx->lock);
e5d1367f 3276 if (ctx->is_active) {
542e72fc 3277 update_context_time(ctx);
e5d1367f
SE
3278 update_cgrp_time_from_event(event);
3279 }
0492d4c5 3280
cdd6c482 3281 update_event_times(event);
4a00c16e
SB
3282 if (event->state != PERF_EVENT_STATE_ACTIVE)
3283 goto unlock;
0492d4c5 3284
4a00c16e
SB
3285 if (!data->group) {
3286 pmu->read(event);
3287 data->ret = 0;
0492d4c5 3288 goto unlock;
4a00c16e
SB
3289 }
3290
3291 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3292
3293 pmu->read(event);
0492d4c5
PZ
3294
3295 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3296 update_event_times(sub);
4a00c16e
SB
3297 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3298 /*
3299 * Use sibling's PMU rather than @event's since
3300 * sibling could be on different (eg: software) PMU.
3301 */
0492d4c5 3302 sub->pmu->read(sub);
4a00c16e 3303 }
0492d4c5 3304 }
4a00c16e
SB
3305
3306 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3307
3308unlock:
e625cce1 3309 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3310}
3311
b5e58793
PZ
3312static inline u64 perf_event_count(struct perf_event *event)
3313{
eacd3ecc
MF
3314 if (event->pmu->count)
3315 return event->pmu->count(event);
3316
3317 return __perf_event_count(event);
b5e58793
PZ
3318}
3319
ffe8690c
KX
3320/*
3321 * NMI-safe method to read a local event, that is an event that
3322 * is:
3323 * - either for the current task, or for this CPU
3324 * - does not have inherit set, for inherited task events
3325 * will not be local and we cannot read them atomically
3326 * - must not have a pmu::count method
3327 */
3328u64 perf_event_read_local(struct perf_event *event)
3329{
3330 unsigned long flags;
3331 u64 val;
3332
3333 /*
3334 * Disabling interrupts avoids all counter scheduling (context
3335 * switches, timer based rotation and IPIs).
3336 */
3337 local_irq_save(flags);
3338
3339 /* If this is a per-task event, it must be for current */
3340 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3341 event->hw.target != current);
3342
3343 /* If this is a per-CPU event, it must be for this CPU */
3344 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3345 event->cpu != smp_processor_id());
3346
3347 /*
3348 * It must not be an event with inherit set, we cannot read
3349 * all child counters from atomic context.
3350 */
3351 WARN_ON_ONCE(event->attr.inherit);
3352
3353 /*
3354 * It must not have a pmu::count method, those are not
3355 * NMI safe.
3356 */
3357 WARN_ON_ONCE(event->pmu->count);
3358
3359 /*
3360 * If the event is currently on this CPU, its either a per-task event,
3361 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3362 * oncpu == -1).
3363 */
3364 if (event->oncpu == smp_processor_id())
3365 event->pmu->read(event);
3366
3367 val = local64_read(&event->count);
3368 local_irq_restore(flags);
3369
3370 return val;
3371}
3372
7d88962e 3373static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3374{
7d88962e
SB
3375 int ret = 0;
3376
0793a61d 3377 /*
cdd6c482
IM
3378 * If event is enabled and currently active on a CPU, update the
3379 * value in the event structure:
0793a61d 3380 */
cdd6c482 3381 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3382 struct perf_read_data data = {
3383 .event = event,
3384 .group = group,
7d88962e 3385 .ret = 0,
0492d4c5 3386 };
cdd6c482 3387 smp_call_function_single(event->oncpu,
0492d4c5 3388 __perf_event_read, &data, 1);
7d88962e 3389 ret = data.ret;
cdd6c482 3390 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3391 struct perf_event_context *ctx = event->ctx;
3392 unsigned long flags;
3393
e625cce1 3394 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3395 /*
3396 * may read while context is not active
3397 * (e.g., thread is blocked), in that case
3398 * we cannot update context time
3399 */
e5d1367f 3400 if (ctx->is_active) {
c530ccd9 3401 update_context_time(ctx);
e5d1367f
SE
3402 update_cgrp_time_from_event(event);
3403 }
0492d4c5
PZ
3404 if (group)
3405 update_group_times(event);
3406 else
3407 update_event_times(event);
e625cce1 3408 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3409 }
7d88962e
SB
3410
3411 return ret;
0793a61d
TG
3412}
3413
a63eaf34 3414/*
cdd6c482 3415 * Initialize the perf_event context in a task_struct:
a63eaf34 3416 */
eb184479 3417static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3418{
e625cce1 3419 raw_spin_lock_init(&ctx->lock);
a63eaf34 3420 mutex_init(&ctx->mutex);
2fde4f94 3421 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3422 INIT_LIST_HEAD(&ctx->pinned_groups);
3423 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3424 INIT_LIST_HEAD(&ctx->event_list);
3425 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3426}
3427
3428static struct perf_event_context *
3429alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3430{
3431 struct perf_event_context *ctx;
3432
3433 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3434 if (!ctx)
3435 return NULL;
3436
3437 __perf_event_init_context(ctx);
3438 if (task) {
3439 ctx->task = task;
3440 get_task_struct(task);
0793a61d 3441 }
eb184479
PZ
3442 ctx->pmu = pmu;
3443
3444 return ctx;
a63eaf34
PM
3445}
3446
2ebd4ffb
MH
3447static struct task_struct *
3448find_lively_task_by_vpid(pid_t vpid)
3449{
3450 struct task_struct *task;
3451 int err;
0793a61d
TG
3452
3453 rcu_read_lock();
2ebd4ffb 3454 if (!vpid)
0793a61d
TG
3455 task = current;
3456 else
2ebd4ffb 3457 task = find_task_by_vpid(vpid);
0793a61d
TG
3458 if (task)
3459 get_task_struct(task);
3460 rcu_read_unlock();
3461
3462 if (!task)
3463 return ERR_PTR(-ESRCH);
3464
0793a61d 3465 /* Reuse ptrace permission checks for now. */
c93f7669 3466 err = -EACCES;
caaee623 3467 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
c93f7669
PM
3468 goto errout;
3469
2ebd4ffb
MH
3470 return task;
3471errout:
3472 put_task_struct(task);
3473 return ERR_PTR(err);
3474
3475}
3476
fe4b04fa
PZ
3477/*
3478 * Returns a matching context with refcount and pincount.
3479 */
108b02cf 3480static struct perf_event_context *
4af57ef2
YZ
3481find_get_context(struct pmu *pmu, struct task_struct *task,
3482 struct perf_event *event)
0793a61d 3483{
211de6eb 3484 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3485 struct perf_cpu_context *cpuctx;
4af57ef2 3486 void *task_ctx_data = NULL;
25346b93 3487 unsigned long flags;
8dc85d54 3488 int ctxn, err;
4af57ef2 3489 int cpu = event->cpu;
0793a61d 3490
22a4ec72 3491 if (!task) {
cdd6c482 3492 /* Must be root to operate on a CPU event: */
0764771d 3493 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3494 return ERR_PTR(-EACCES);
3495
0793a61d 3496 /*
cdd6c482 3497 * We could be clever and allow to attach a event to an
0793a61d
TG
3498 * offline CPU and activate it when the CPU comes up, but
3499 * that's for later.
3500 */
f6325e30 3501 if (!cpu_online(cpu))
0793a61d
TG
3502 return ERR_PTR(-ENODEV);
3503
108b02cf 3504 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3505 ctx = &cpuctx->ctx;
c93f7669 3506 get_ctx(ctx);
fe4b04fa 3507 ++ctx->pin_count;
0793a61d 3508
0793a61d
TG
3509 return ctx;
3510 }
3511
8dc85d54
PZ
3512 err = -EINVAL;
3513 ctxn = pmu->task_ctx_nr;
3514 if (ctxn < 0)
3515 goto errout;
3516
4af57ef2
YZ
3517 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3518 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3519 if (!task_ctx_data) {
3520 err = -ENOMEM;
3521 goto errout;
3522 }
3523 }
3524
9ed6060d 3525retry:
8dc85d54 3526 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3527 if (ctx) {
211de6eb 3528 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3529 ++ctx->pin_count;
4af57ef2
YZ
3530
3531 if (task_ctx_data && !ctx->task_ctx_data) {
3532 ctx->task_ctx_data = task_ctx_data;
3533 task_ctx_data = NULL;
3534 }
e625cce1 3535 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3536
3537 if (clone_ctx)
3538 put_ctx(clone_ctx);
9137fb28 3539 } else {
eb184479 3540 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3541 err = -ENOMEM;
3542 if (!ctx)
3543 goto errout;
eb184479 3544
4af57ef2
YZ
3545 if (task_ctx_data) {
3546 ctx->task_ctx_data = task_ctx_data;
3547 task_ctx_data = NULL;
3548 }
3549
dbe08d82
ON
3550 err = 0;
3551 mutex_lock(&task->perf_event_mutex);
3552 /*
3553 * If it has already passed perf_event_exit_task().
3554 * we must see PF_EXITING, it takes this mutex too.
3555 */
3556 if (task->flags & PF_EXITING)
3557 err = -ESRCH;
3558 else if (task->perf_event_ctxp[ctxn])
3559 err = -EAGAIN;
fe4b04fa 3560 else {
9137fb28 3561 get_ctx(ctx);
fe4b04fa 3562 ++ctx->pin_count;
dbe08d82 3563 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3564 }
dbe08d82
ON
3565 mutex_unlock(&task->perf_event_mutex);
3566
3567 if (unlikely(err)) {
9137fb28 3568 put_ctx(ctx);
dbe08d82
ON
3569
3570 if (err == -EAGAIN)
3571 goto retry;
3572 goto errout;
a63eaf34
PM
3573 }
3574 }
3575
4af57ef2 3576 kfree(task_ctx_data);
0793a61d 3577 return ctx;
c93f7669 3578
9ed6060d 3579errout:
4af57ef2 3580 kfree(task_ctx_data);
c93f7669 3581 return ERR_PTR(err);
0793a61d
TG
3582}
3583
6fb2915d 3584static void perf_event_free_filter(struct perf_event *event);
2541517c 3585static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3586
cdd6c482 3587static void free_event_rcu(struct rcu_head *head)
592903cd 3588{
cdd6c482 3589 struct perf_event *event;
592903cd 3590
cdd6c482
IM
3591 event = container_of(head, struct perf_event, rcu_head);
3592 if (event->ns)
3593 put_pid_ns(event->ns);
6fb2915d 3594 perf_event_free_filter(event);
cdd6c482 3595 kfree(event);
592903cd
PZ
3596}
3597
b69cf536
PZ
3598static void ring_buffer_attach(struct perf_event *event,
3599 struct ring_buffer *rb);
925d519a 3600
4beb31f3 3601static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3602{
4beb31f3
FW
3603 if (event->parent)
3604 return;
3605
4beb31f3
FW
3606 if (is_cgroup_event(event))
3607 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3608}
925d519a 3609
555e0c1e
FW
3610#ifdef CONFIG_NO_HZ_FULL
3611static DEFINE_SPINLOCK(nr_freq_lock);
3612#endif
3613
3614static void unaccount_freq_event_nohz(void)
3615{
3616#ifdef CONFIG_NO_HZ_FULL
3617 spin_lock(&nr_freq_lock);
3618 if (atomic_dec_and_test(&nr_freq_events))
3619 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3620 spin_unlock(&nr_freq_lock);
3621#endif
3622}
3623
3624static void unaccount_freq_event(void)
3625{
3626 if (tick_nohz_full_enabled())
3627 unaccount_freq_event_nohz();
3628 else
3629 atomic_dec(&nr_freq_events);
3630}
3631
4beb31f3
FW
3632static void unaccount_event(struct perf_event *event)
3633{
25432ae9
PZ
3634 bool dec = false;
3635
4beb31f3
FW
3636 if (event->parent)
3637 return;
3638
3639 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3640 dec = true;
4beb31f3
FW
3641 if (event->attr.mmap || event->attr.mmap_data)
3642 atomic_dec(&nr_mmap_events);
3643 if (event->attr.comm)
3644 atomic_dec(&nr_comm_events);
3645 if (event->attr.task)
3646 atomic_dec(&nr_task_events);
948b26b6 3647 if (event->attr.freq)
555e0c1e 3648 unaccount_freq_event();
45ac1403 3649 if (event->attr.context_switch) {
25432ae9 3650 dec = true;
45ac1403
AH
3651 atomic_dec(&nr_switch_events);
3652 }
4beb31f3 3653 if (is_cgroup_event(event))
25432ae9 3654 dec = true;
4beb31f3 3655 if (has_branch_stack(event))
25432ae9
PZ
3656 dec = true;
3657
9107c89e
PZ
3658 if (dec) {
3659 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3660 schedule_delayed_work(&perf_sched_work, HZ);
3661 }
4beb31f3
FW
3662
3663 unaccount_event_cpu(event, event->cpu);
3664}
925d519a 3665
9107c89e
PZ
3666static void perf_sched_delayed(struct work_struct *work)
3667{
3668 mutex_lock(&perf_sched_mutex);
3669 if (atomic_dec_and_test(&perf_sched_count))
3670 static_branch_disable(&perf_sched_events);
3671 mutex_unlock(&perf_sched_mutex);
3672}
3673
bed5b25a
AS
3674/*
3675 * The following implement mutual exclusion of events on "exclusive" pmus
3676 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3677 * at a time, so we disallow creating events that might conflict, namely:
3678 *
3679 * 1) cpu-wide events in the presence of per-task events,
3680 * 2) per-task events in the presence of cpu-wide events,
3681 * 3) two matching events on the same context.
3682 *
3683 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3684 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3685 */
3686static int exclusive_event_init(struct perf_event *event)
3687{
3688 struct pmu *pmu = event->pmu;
3689
3690 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3691 return 0;
3692
3693 /*
3694 * Prevent co-existence of per-task and cpu-wide events on the
3695 * same exclusive pmu.
3696 *
3697 * Negative pmu::exclusive_cnt means there are cpu-wide
3698 * events on this "exclusive" pmu, positive means there are
3699 * per-task events.
3700 *
3701 * Since this is called in perf_event_alloc() path, event::ctx
3702 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3703 * to mean "per-task event", because unlike other attach states it
3704 * never gets cleared.
3705 */
3706 if (event->attach_state & PERF_ATTACH_TASK) {
3707 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3708 return -EBUSY;
3709 } else {
3710 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3711 return -EBUSY;
3712 }
3713
3714 return 0;
3715}
3716
3717static void exclusive_event_destroy(struct perf_event *event)
3718{
3719 struct pmu *pmu = event->pmu;
3720
3721 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3722 return;
3723
3724 /* see comment in exclusive_event_init() */
3725 if (event->attach_state & PERF_ATTACH_TASK)
3726 atomic_dec(&pmu->exclusive_cnt);
3727 else
3728 atomic_inc(&pmu->exclusive_cnt);
3729}
3730
3731static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3732{
3733 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3734 (e1->cpu == e2->cpu ||
3735 e1->cpu == -1 ||
3736 e2->cpu == -1))
3737 return true;
3738 return false;
3739}
3740
3741/* Called under the same ctx::mutex as perf_install_in_context() */
3742static bool exclusive_event_installable(struct perf_event *event,
3743 struct perf_event_context *ctx)
3744{
3745 struct perf_event *iter_event;
3746 struct pmu *pmu = event->pmu;
3747
3748 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3749 return true;
3750
3751 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3752 if (exclusive_event_match(iter_event, event))
3753 return false;
3754 }
3755
3756 return true;
3757}
3758
683ede43 3759static void _free_event(struct perf_event *event)
f1600952 3760{
e360adbe 3761 irq_work_sync(&event->pending);
925d519a 3762
4beb31f3 3763 unaccount_event(event);
9ee318a7 3764
76369139 3765 if (event->rb) {
9bb5d40c
PZ
3766 /*
3767 * Can happen when we close an event with re-directed output.
3768 *
3769 * Since we have a 0 refcount, perf_mmap_close() will skip
3770 * over us; possibly making our ring_buffer_put() the last.
3771 */
3772 mutex_lock(&event->mmap_mutex);
b69cf536 3773 ring_buffer_attach(event, NULL);
9bb5d40c 3774 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3775 }
3776
e5d1367f
SE
3777 if (is_cgroup_event(event))
3778 perf_detach_cgroup(event);
3779
a0733e69
PZ
3780 if (!event->parent) {
3781 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3782 put_callchain_buffers();
3783 }
3784
3785 perf_event_free_bpf_prog(event);
3786
3787 if (event->destroy)
3788 event->destroy(event);
3789
3790 if (event->ctx)
3791 put_ctx(event->ctx);
3792
3793 if (event->pmu) {
3794 exclusive_event_destroy(event);
3795 module_put(event->pmu->module);
3796 }
3797
3798 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3799}
3800
683ede43
PZ
3801/*
3802 * Used to free events which have a known refcount of 1, such as in error paths
3803 * where the event isn't exposed yet and inherited events.
3804 */
3805static void free_event(struct perf_event *event)
0793a61d 3806{
683ede43
PZ
3807 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3808 "unexpected event refcount: %ld; ptr=%p\n",
3809 atomic_long_read(&event->refcount), event)) {
3810 /* leak to avoid use-after-free */
3811 return;
3812 }
0793a61d 3813
683ede43 3814 _free_event(event);
0793a61d
TG
3815}
3816
a66a3052 3817/*
f8697762 3818 * Remove user event from the owner task.
a66a3052 3819 */
f8697762 3820static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3821{
8882135b 3822 struct task_struct *owner;
fb0459d7 3823
8882135b 3824 rcu_read_lock();
8882135b 3825 /*
f47c02c0
PZ
3826 * Matches the smp_store_release() in perf_event_exit_task(). If we
3827 * observe !owner it means the list deletion is complete and we can
3828 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
3829 * owner->perf_event_mutex.
3830 */
f47c02c0 3831 owner = lockless_dereference(event->owner);
8882135b
PZ
3832 if (owner) {
3833 /*
3834 * Since delayed_put_task_struct() also drops the last
3835 * task reference we can safely take a new reference
3836 * while holding the rcu_read_lock().
3837 */
3838 get_task_struct(owner);
3839 }
3840 rcu_read_unlock();
3841
3842 if (owner) {
f63a8daa
PZ
3843 /*
3844 * If we're here through perf_event_exit_task() we're already
3845 * holding ctx->mutex which would be an inversion wrt. the
3846 * normal lock order.
3847 *
3848 * However we can safely take this lock because its the child
3849 * ctx->mutex.
3850 */
3851 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3852
8882135b
PZ
3853 /*
3854 * We have to re-check the event->owner field, if it is cleared
3855 * we raced with perf_event_exit_task(), acquiring the mutex
3856 * ensured they're done, and we can proceed with freeing the
3857 * event.
3858 */
f47c02c0 3859 if (event->owner) {
8882135b 3860 list_del_init(&event->owner_entry);
f47c02c0
PZ
3861 smp_store_release(&event->owner, NULL);
3862 }
8882135b
PZ
3863 mutex_unlock(&owner->perf_event_mutex);
3864 put_task_struct(owner);
3865 }
f8697762
JO
3866}
3867
f8697762
JO
3868static void put_event(struct perf_event *event)
3869{
f8697762
JO
3870 if (!atomic_long_dec_and_test(&event->refcount))
3871 return;
3872
c6e5b732
PZ
3873 _free_event(event);
3874}
3875
3876/*
3877 * Kill an event dead; while event:refcount will preserve the event
3878 * object, it will not preserve its functionality. Once the last 'user'
3879 * gives up the object, we'll destroy the thing.
3880 */
3881int perf_event_release_kernel(struct perf_event *event)
3882{
a4f4bb6d 3883 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
3884 struct perf_event *child, *tmp;
3885
a4f4bb6d
PZ
3886 /*
3887 * If we got here through err_file: fput(event_file); we will not have
3888 * attached to a context yet.
3889 */
3890 if (!ctx) {
3891 WARN_ON_ONCE(event->attach_state &
3892 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3893 goto no_ctx;
3894 }
3895
f8697762
JO
3896 if (!is_kernel_event(event))
3897 perf_remove_from_owner(event);
8882135b 3898
5fa7c8ec 3899 ctx = perf_event_ctx_lock(event);
a83fe28e 3900 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 3901 perf_remove_from_context(event, DETACH_GROUP);
683ede43 3902
a69b0ca4 3903 raw_spin_lock_irq(&ctx->lock);
683ede43 3904 /*
a69b0ca4
PZ
3905 * Mark this even as STATE_DEAD, there is no external reference to it
3906 * anymore.
683ede43 3907 *
a69b0ca4
PZ
3908 * Anybody acquiring event->child_mutex after the below loop _must_
3909 * also see this, most importantly inherit_event() which will avoid
3910 * placing more children on the list.
683ede43 3911 *
c6e5b732
PZ
3912 * Thus this guarantees that we will in fact observe and kill _ALL_
3913 * child events.
683ede43 3914 */
a69b0ca4
PZ
3915 event->state = PERF_EVENT_STATE_DEAD;
3916 raw_spin_unlock_irq(&ctx->lock);
3917
3918 perf_event_ctx_unlock(event, ctx);
683ede43 3919
c6e5b732
PZ
3920again:
3921 mutex_lock(&event->child_mutex);
3922 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 3923
c6e5b732
PZ
3924 /*
3925 * Cannot change, child events are not migrated, see the
3926 * comment with perf_event_ctx_lock_nested().
3927 */
3928 ctx = lockless_dereference(child->ctx);
3929 /*
3930 * Since child_mutex nests inside ctx::mutex, we must jump
3931 * through hoops. We start by grabbing a reference on the ctx.
3932 *
3933 * Since the event cannot get freed while we hold the
3934 * child_mutex, the context must also exist and have a !0
3935 * reference count.
3936 */
3937 get_ctx(ctx);
3938
3939 /*
3940 * Now that we have a ctx ref, we can drop child_mutex, and
3941 * acquire ctx::mutex without fear of it going away. Then we
3942 * can re-acquire child_mutex.
3943 */
3944 mutex_unlock(&event->child_mutex);
3945 mutex_lock(&ctx->mutex);
3946 mutex_lock(&event->child_mutex);
3947
3948 /*
3949 * Now that we hold ctx::mutex and child_mutex, revalidate our
3950 * state, if child is still the first entry, it didn't get freed
3951 * and we can continue doing so.
3952 */
3953 tmp = list_first_entry_or_null(&event->child_list,
3954 struct perf_event, child_list);
3955 if (tmp == child) {
3956 perf_remove_from_context(child, DETACH_GROUP);
3957 list_del(&child->child_list);
3958 free_event(child);
3959 /*
3960 * This matches the refcount bump in inherit_event();
3961 * this can't be the last reference.
3962 */
3963 put_event(event);
3964 }
3965
3966 mutex_unlock(&event->child_mutex);
3967 mutex_unlock(&ctx->mutex);
3968 put_ctx(ctx);
3969 goto again;
3970 }
3971 mutex_unlock(&event->child_mutex);
3972
a4f4bb6d
PZ
3973no_ctx:
3974 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
3975 return 0;
3976}
3977EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3978
8b10c5e2
PZ
3979/*
3980 * Called when the last reference to the file is gone.
3981 */
a6fa941d
AV
3982static int perf_release(struct inode *inode, struct file *file)
3983{
c6e5b732 3984 perf_event_release_kernel(file->private_data);
a6fa941d 3985 return 0;
fb0459d7 3986}
fb0459d7 3987
59ed446f 3988u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3989{
cdd6c482 3990 struct perf_event *child;
e53c0994
PZ
3991 u64 total = 0;
3992
59ed446f
PZ
3993 *enabled = 0;
3994 *running = 0;
3995
6f10581a 3996 mutex_lock(&event->child_mutex);
01add3ea 3997
7d88962e 3998 (void)perf_event_read(event, false);
01add3ea
SB
3999 total += perf_event_count(event);
4000
59ed446f
PZ
4001 *enabled += event->total_time_enabled +
4002 atomic64_read(&event->child_total_time_enabled);
4003 *running += event->total_time_running +
4004 atomic64_read(&event->child_total_time_running);
4005
4006 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4007 (void)perf_event_read(child, false);
01add3ea 4008 total += perf_event_count(child);
59ed446f
PZ
4009 *enabled += child->total_time_enabled;
4010 *running += child->total_time_running;
4011 }
6f10581a 4012 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4013
4014 return total;
4015}
fb0459d7 4016EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4017
7d88962e 4018static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4019 u64 read_format, u64 *values)
3dab77fb 4020{
fa8c2693
PZ
4021 struct perf_event *sub;
4022 int n = 1; /* skip @nr */
7d88962e 4023 int ret;
f63a8daa 4024
7d88962e
SB
4025 ret = perf_event_read(leader, true);
4026 if (ret)
4027 return ret;
abf4868b 4028
fa8c2693
PZ
4029 /*
4030 * Since we co-schedule groups, {enabled,running} times of siblings
4031 * will be identical to those of the leader, so we only publish one
4032 * set.
4033 */
4034 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4035 values[n++] += leader->total_time_enabled +
4036 atomic64_read(&leader->child_total_time_enabled);
4037 }
3dab77fb 4038
fa8c2693
PZ
4039 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4040 values[n++] += leader->total_time_running +
4041 atomic64_read(&leader->child_total_time_running);
4042 }
4043
4044 /*
4045 * Write {count,id} tuples for every sibling.
4046 */
4047 values[n++] += perf_event_count(leader);
abf4868b
PZ
4048 if (read_format & PERF_FORMAT_ID)
4049 values[n++] = primary_event_id(leader);
3dab77fb 4050
fa8c2693
PZ
4051 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4052 values[n++] += perf_event_count(sub);
4053 if (read_format & PERF_FORMAT_ID)
4054 values[n++] = primary_event_id(sub);
4055 }
7d88962e
SB
4056
4057 return 0;
fa8c2693 4058}
3dab77fb 4059
fa8c2693
PZ
4060static int perf_read_group(struct perf_event *event,
4061 u64 read_format, char __user *buf)
4062{
4063 struct perf_event *leader = event->group_leader, *child;
4064 struct perf_event_context *ctx = leader->ctx;
7d88962e 4065 int ret;
fa8c2693 4066 u64 *values;
3dab77fb 4067
fa8c2693 4068 lockdep_assert_held(&ctx->mutex);
3dab77fb 4069
fa8c2693
PZ
4070 values = kzalloc(event->read_size, GFP_KERNEL);
4071 if (!values)
4072 return -ENOMEM;
3dab77fb 4073
fa8c2693
PZ
4074 values[0] = 1 + leader->nr_siblings;
4075
4076 /*
4077 * By locking the child_mutex of the leader we effectively
4078 * lock the child list of all siblings.. XXX explain how.
4079 */
4080 mutex_lock(&leader->child_mutex);
abf4868b 4081
7d88962e
SB
4082 ret = __perf_read_group_add(leader, read_format, values);
4083 if (ret)
4084 goto unlock;
4085
4086 list_for_each_entry(child, &leader->child_list, child_list) {
4087 ret = __perf_read_group_add(child, read_format, values);
4088 if (ret)
4089 goto unlock;
4090 }
abf4868b 4091
fa8c2693 4092 mutex_unlock(&leader->child_mutex);
abf4868b 4093
7d88962e 4094 ret = event->read_size;
fa8c2693
PZ
4095 if (copy_to_user(buf, values, event->read_size))
4096 ret = -EFAULT;
7d88962e 4097 goto out;
fa8c2693 4098
7d88962e
SB
4099unlock:
4100 mutex_unlock(&leader->child_mutex);
4101out:
fa8c2693 4102 kfree(values);
abf4868b 4103 return ret;
3dab77fb
PZ
4104}
4105
b15f495b 4106static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4107 u64 read_format, char __user *buf)
4108{
59ed446f 4109 u64 enabled, running;
3dab77fb
PZ
4110 u64 values[4];
4111 int n = 0;
4112
59ed446f
PZ
4113 values[n++] = perf_event_read_value(event, &enabled, &running);
4114 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4115 values[n++] = enabled;
4116 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4117 values[n++] = running;
3dab77fb 4118 if (read_format & PERF_FORMAT_ID)
cdd6c482 4119 values[n++] = primary_event_id(event);
3dab77fb
PZ
4120
4121 if (copy_to_user(buf, values, n * sizeof(u64)))
4122 return -EFAULT;
4123
4124 return n * sizeof(u64);
4125}
4126
dc633982
JO
4127static bool is_event_hup(struct perf_event *event)
4128{
4129 bool no_children;
4130
a69b0ca4 4131 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4132 return false;
4133
4134 mutex_lock(&event->child_mutex);
4135 no_children = list_empty(&event->child_list);
4136 mutex_unlock(&event->child_mutex);
4137 return no_children;
4138}
4139
0793a61d 4140/*
cdd6c482 4141 * Read the performance event - simple non blocking version for now
0793a61d
TG
4142 */
4143static ssize_t
b15f495b 4144__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4145{
cdd6c482 4146 u64 read_format = event->attr.read_format;
3dab77fb 4147 int ret;
0793a61d 4148
3b6f9e5c 4149 /*
cdd6c482 4150 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4151 * error state (i.e. because it was pinned but it couldn't be
4152 * scheduled on to the CPU at some point).
4153 */
cdd6c482 4154 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4155 return 0;
4156
c320c7b7 4157 if (count < event->read_size)
3dab77fb
PZ
4158 return -ENOSPC;
4159
cdd6c482 4160 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4161 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4162 ret = perf_read_group(event, read_format, buf);
3dab77fb 4163 else
b15f495b 4164 ret = perf_read_one(event, read_format, buf);
0793a61d 4165
3dab77fb 4166 return ret;
0793a61d
TG
4167}
4168
0793a61d
TG
4169static ssize_t
4170perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4171{
cdd6c482 4172 struct perf_event *event = file->private_data;
f63a8daa
PZ
4173 struct perf_event_context *ctx;
4174 int ret;
0793a61d 4175
f63a8daa 4176 ctx = perf_event_ctx_lock(event);
b15f495b 4177 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4178 perf_event_ctx_unlock(event, ctx);
4179
4180 return ret;
0793a61d
TG
4181}
4182
4183static unsigned int perf_poll(struct file *file, poll_table *wait)
4184{
cdd6c482 4185 struct perf_event *event = file->private_data;
76369139 4186 struct ring_buffer *rb;
61b67684 4187 unsigned int events = POLLHUP;
c7138f37 4188
e708d7ad 4189 poll_wait(file, &event->waitq, wait);
179033b3 4190
dc633982 4191 if (is_event_hup(event))
179033b3 4192 return events;
c7138f37 4193
10c6db11 4194 /*
9bb5d40c
PZ
4195 * Pin the event->rb by taking event->mmap_mutex; otherwise
4196 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4197 */
4198 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4199 rb = event->rb;
4200 if (rb)
76369139 4201 events = atomic_xchg(&rb->poll, 0);
10c6db11 4202 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4203 return events;
4204}
4205
f63a8daa 4206static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4207{
7d88962e 4208 (void)perf_event_read(event, false);
e7850595 4209 local64_set(&event->count, 0);
cdd6c482 4210 perf_event_update_userpage(event);
3df5edad
PZ
4211}
4212
c93f7669 4213/*
cdd6c482
IM
4214 * Holding the top-level event's child_mutex means that any
4215 * descendant process that has inherited this event will block
8ba289b8 4216 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4217 * task existence requirements of perf_event_enable/disable.
c93f7669 4218 */
cdd6c482
IM
4219static void perf_event_for_each_child(struct perf_event *event,
4220 void (*func)(struct perf_event *))
3df5edad 4221{
cdd6c482 4222 struct perf_event *child;
3df5edad 4223
cdd6c482 4224 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4225
cdd6c482
IM
4226 mutex_lock(&event->child_mutex);
4227 func(event);
4228 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4229 func(child);
cdd6c482 4230 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4231}
4232
cdd6c482
IM
4233static void perf_event_for_each(struct perf_event *event,
4234 void (*func)(struct perf_event *))
3df5edad 4235{
cdd6c482
IM
4236 struct perf_event_context *ctx = event->ctx;
4237 struct perf_event *sibling;
3df5edad 4238
f63a8daa
PZ
4239 lockdep_assert_held(&ctx->mutex);
4240
cdd6c482 4241 event = event->group_leader;
75f937f2 4242
cdd6c482 4243 perf_event_for_each_child(event, func);
cdd6c482 4244 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4245 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4246}
4247
fae3fde6
PZ
4248static void __perf_event_period(struct perf_event *event,
4249 struct perf_cpu_context *cpuctx,
4250 struct perf_event_context *ctx,
4251 void *info)
c7999c6f 4252{
fae3fde6 4253 u64 value = *((u64 *)info);
c7999c6f 4254 bool active;
08247e31 4255
cdd6c482 4256 if (event->attr.freq) {
cdd6c482 4257 event->attr.sample_freq = value;
08247e31 4258 } else {
cdd6c482
IM
4259 event->attr.sample_period = value;
4260 event->hw.sample_period = value;
08247e31 4261 }
bad7192b
PZ
4262
4263 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4264 if (active) {
4265 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4266 /*
4267 * We could be throttled; unthrottle now to avoid the tick
4268 * trying to unthrottle while we already re-started the event.
4269 */
4270 if (event->hw.interrupts == MAX_INTERRUPTS) {
4271 event->hw.interrupts = 0;
4272 perf_log_throttle(event, 1);
4273 }
bad7192b
PZ
4274 event->pmu->stop(event, PERF_EF_UPDATE);
4275 }
4276
4277 local64_set(&event->hw.period_left, 0);
4278
4279 if (active) {
4280 event->pmu->start(event, PERF_EF_RELOAD);
4281 perf_pmu_enable(ctx->pmu);
4282 }
c7999c6f
PZ
4283}
4284
4285static int perf_event_period(struct perf_event *event, u64 __user *arg)
4286{
c7999c6f
PZ
4287 u64 value;
4288
4289 if (!is_sampling_event(event))
4290 return -EINVAL;
4291
4292 if (copy_from_user(&value, arg, sizeof(value)))
4293 return -EFAULT;
4294
4295 if (!value)
4296 return -EINVAL;
4297
4298 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4299 return -EINVAL;
4300
fae3fde6 4301 event_function_call(event, __perf_event_period, &value);
08247e31 4302
c7999c6f 4303 return 0;
08247e31
PZ
4304}
4305
ac9721f3
PZ
4306static const struct file_operations perf_fops;
4307
2903ff01 4308static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4309{
2903ff01
AV
4310 struct fd f = fdget(fd);
4311 if (!f.file)
4312 return -EBADF;
ac9721f3 4313
2903ff01
AV
4314 if (f.file->f_op != &perf_fops) {
4315 fdput(f);
4316 return -EBADF;
ac9721f3 4317 }
2903ff01
AV
4318 *p = f;
4319 return 0;
ac9721f3
PZ
4320}
4321
4322static int perf_event_set_output(struct perf_event *event,
4323 struct perf_event *output_event);
6fb2915d 4324static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4325static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4326
f63a8daa 4327static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4328{
cdd6c482 4329 void (*func)(struct perf_event *);
3df5edad 4330 u32 flags = arg;
d859e29f
PM
4331
4332 switch (cmd) {
cdd6c482 4333 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4334 func = _perf_event_enable;
d859e29f 4335 break;
cdd6c482 4336 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4337 func = _perf_event_disable;
79f14641 4338 break;
cdd6c482 4339 case PERF_EVENT_IOC_RESET:
f63a8daa 4340 func = _perf_event_reset;
6de6a7b9 4341 break;
3df5edad 4342
cdd6c482 4343 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4344 return _perf_event_refresh(event, arg);
08247e31 4345
cdd6c482
IM
4346 case PERF_EVENT_IOC_PERIOD:
4347 return perf_event_period(event, (u64 __user *)arg);
08247e31 4348
cf4957f1
JO
4349 case PERF_EVENT_IOC_ID:
4350 {
4351 u64 id = primary_event_id(event);
4352
4353 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4354 return -EFAULT;
4355 return 0;
4356 }
4357
cdd6c482 4358 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4359 {
ac9721f3 4360 int ret;
ac9721f3 4361 if (arg != -1) {
2903ff01
AV
4362 struct perf_event *output_event;
4363 struct fd output;
4364 ret = perf_fget_light(arg, &output);
4365 if (ret)
4366 return ret;
4367 output_event = output.file->private_data;
4368 ret = perf_event_set_output(event, output_event);
4369 fdput(output);
4370 } else {
4371 ret = perf_event_set_output(event, NULL);
ac9721f3 4372 }
ac9721f3
PZ
4373 return ret;
4374 }
a4be7c27 4375
6fb2915d
LZ
4376 case PERF_EVENT_IOC_SET_FILTER:
4377 return perf_event_set_filter(event, (void __user *)arg);
4378
2541517c
AS
4379 case PERF_EVENT_IOC_SET_BPF:
4380 return perf_event_set_bpf_prog(event, arg);
4381
d859e29f 4382 default:
3df5edad 4383 return -ENOTTY;
d859e29f 4384 }
3df5edad
PZ
4385
4386 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4387 perf_event_for_each(event, func);
3df5edad 4388 else
cdd6c482 4389 perf_event_for_each_child(event, func);
3df5edad
PZ
4390
4391 return 0;
d859e29f
PM
4392}
4393
f63a8daa
PZ
4394static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4395{
4396 struct perf_event *event = file->private_data;
4397 struct perf_event_context *ctx;
4398 long ret;
4399
4400 ctx = perf_event_ctx_lock(event);
4401 ret = _perf_ioctl(event, cmd, arg);
4402 perf_event_ctx_unlock(event, ctx);
4403
4404 return ret;
4405}
4406
b3f20785
PM
4407#ifdef CONFIG_COMPAT
4408static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4409 unsigned long arg)
4410{
4411 switch (_IOC_NR(cmd)) {
4412 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4413 case _IOC_NR(PERF_EVENT_IOC_ID):
4414 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4415 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4416 cmd &= ~IOCSIZE_MASK;
4417 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4418 }
4419 break;
4420 }
4421 return perf_ioctl(file, cmd, arg);
4422}
4423#else
4424# define perf_compat_ioctl NULL
4425#endif
4426
cdd6c482 4427int perf_event_task_enable(void)
771d7cde 4428{
f63a8daa 4429 struct perf_event_context *ctx;
cdd6c482 4430 struct perf_event *event;
771d7cde 4431
cdd6c482 4432 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4433 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4434 ctx = perf_event_ctx_lock(event);
4435 perf_event_for_each_child(event, _perf_event_enable);
4436 perf_event_ctx_unlock(event, ctx);
4437 }
cdd6c482 4438 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4439
4440 return 0;
4441}
4442
cdd6c482 4443int perf_event_task_disable(void)
771d7cde 4444{
f63a8daa 4445 struct perf_event_context *ctx;
cdd6c482 4446 struct perf_event *event;
771d7cde 4447
cdd6c482 4448 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4449 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4450 ctx = perf_event_ctx_lock(event);
4451 perf_event_for_each_child(event, _perf_event_disable);
4452 perf_event_ctx_unlock(event, ctx);
4453 }
cdd6c482 4454 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4455
4456 return 0;
4457}
4458
cdd6c482 4459static int perf_event_index(struct perf_event *event)
194002b2 4460{
a4eaf7f1
PZ
4461 if (event->hw.state & PERF_HES_STOPPED)
4462 return 0;
4463
cdd6c482 4464 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4465 return 0;
4466
35edc2a5 4467 return event->pmu->event_idx(event);
194002b2
PZ
4468}
4469
c4794295 4470static void calc_timer_values(struct perf_event *event,
e3f3541c 4471 u64 *now,
7f310a5d
EM
4472 u64 *enabled,
4473 u64 *running)
c4794295 4474{
e3f3541c 4475 u64 ctx_time;
c4794295 4476
e3f3541c
PZ
4477 *now = perf_clock();
4478 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4479 *enabled = ctx_time - event->tstamp_enabled;
4480 *running = ctx_time - event->tstamp_running;
4481}
4482
fa731587
PZ
4483static void perf_event_init_userpage(struct perf_event *event)
4484{
4485 struct perf_event_mmap_page *userpg;
4486 struct ring_buffer *rb;
4487
4488 rcu_read_lock();
4489 rb = rcu_dereference(event->rb);
4490 if (!rb)
4491 goto unlock;
4492
4493 userpg = rb->user_page;
4494
4495 /* Allow new userspace to detect that bit 0 is deprecated */
4496 userpg->cap_bit0_is_deprecated = 1;
4497 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4498 userpg->data_offset = PAGE_SIZE;
4499 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4500
4501unlock:
4502 rcu_read_unlock();
4503}
4504
c1317ec2
AL
4505void __weak arch_perf_update_userpage(
4506 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4507{
4508}
4509
38ff667b
PZ
4510/*
4511 * Callers need to ensure there can be no nesting of this function, otherwise
4512 * the seqlock logic goes bad. We can not serialize this because the arch
4513 * code calls this from NMI context.
4514 */
cdd6c482 4515void perf_event_update_userpage(struct perf_event *event)
37d81828 4516{
cdd6c482 4517 struct perf_event_mmap_page *userpg;
76369139 4518 struct ring_buffer *rb;
e3f3541c 4519 u64 enabled, running, now;
38ff667b
PZ
4520
4521 rcu_read_lock();
5ec4c599
PZ
4522 rb = rcu_dereference(event->rb);
4523 if (!rb)
4524 goto unlock;
4525
0d641208
EM
4526 /*
4527 * compute total_time_enabled, total_time_running
4528 * based on snapshot values taken when the event
4529 * was last scheduled in.
4530 *
4531 * we cannot simply called update_context_time()
4532 * because of locking issue as we can be called in
4533 * NMI context
4534 */
e3f3541c 4535 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4536
76369139 4537 userpg = rb->user_page;
7b732a75
PZ
4538 /*
4539 * Disable preemption so as to not let the corresponding user-space
4540 * spin too long if we get preempted.
4541 */
4542 preempt_disable();
37d81828 4543 ++userpg->lock;
92f22a38 4544 barrier();
cdd6c482 4545 userpg->index = perf_event_index(event);
b5e58793 4546 userpg->offset = perf_event_count(event);
365a4038 4547 if (userpg->index)
e7850595 4548 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4549
0d641208 4550 userpg->time_enabled = enabled +
cdd6c482 4551 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4552
0d641208 4553 userpg->time_running = running +
cdd6c482 4554 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4555
c1317ec2 4556 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4557
92f22a38 4558 barrier();
37d81828 4559 ++userpg->lock;
7b732a75 4560 preempt_enable();
38ff667b 4561unlock:
7b732a75 4562 rcu_read_unlock();
37d81828
PM
4563}
4564
906010b2
PZ
4565static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4566{
4567 struct perf_event *event = vma->vm_file->private_data;
76369139 4568 struct ring_buffer *rb;
906010b2
PZ
4569 int ret = VM_FAULT_SIGBUS;
4570
4571 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4572 if (vmf->pgoff == 0)
4573 ret = 0;
4574 return ret;
4575 }
4576
4577 rcu_read_lock();
76369139
FW
4578 rb = rcu_dereference(event->rb);
4579 if (!rb)
906010b2
PZ
4580 goto unlock;
4581
4582 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4583 goto unlock;
4584
76369139 4585 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4586 if (!vmf->page)
4587 goto unlock;
4588
4589 get_page(vmf->page);
4590 vmf->page->mapping = vma->vm_file->f_mapping;
4591 vmf->page->index = vmf->pgoff;
4592
4593 ret = 0;
4594unlock:
4595 rcu_read_unlock();
4596
4597 return ret;
4598}
4599
10c6db11
PZ
4600static void ring_buffer_attach(struct perf_event *event,
4601 struct ring_buffer *rb)
4602{
b69cf536 4603 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4604 unsigned long flags;
4605
b69cf536
PZ
4606 if (event->rb) {
4607 /*
4608 * Should be impossible, we set this when removing
4609 * event->rb_entry and wait/clear when adding event->rb_entry.
4610 */
4611 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4612
b69cf536 4613 old_rb = event->rb;
b69cf536
PZ
4614 spin_lock_irqsave(&old_rb->event_lock, flags);
4615 list_del_rcu(&event->rb_entry);
4616 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4617
2f993cf0
ON
4618 event->rcu_batches = get_state_synchronize_rcu();
4619 event->rcu_pending = 1;
b69cf536 4620 }
10c6db11 4621
b69cf536 4622 if (rb) {
2f993cf0
ON
4623 if (event->rcu_pending) {
4624 cond_synchronize_rcu(event->rcu_batches);
4625 event->rcu_pending = 0;
4626 }
4627
b69cf536
PZ
4628 spin_lock_irqsave(&rb->event_lock, flags);
4629 list_add_rcu(&event->rb_entry, &rb->event_list);
4630 spin_unlock_irqrestore(&rb->event_lock, flags);
4631 }
4632
4633 rcu_assign_pointer(event->rb, rb);
4634
4635 if (old_rb) {
4636 ring_buffer_put(old_rb);
4637 /*
4638 * Since we detached before setting the new rb, so that we
4639 * could attach the new rb, we could have missed a wakeup.
4640 * Provide it now.
4641 */
4642 wake_up_all(&event->waitq);
4643 }
10c6db11
PZ
4644}
4645
4646static void ring_buffer_wakeup(struct perf_event *event)
4647{
4648 struct ring_buffer *rb;
4649
4650 rcu_read_lock();
4651 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4652 if (rb) {
4653 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4654 wake_up_all(&event->waitq);
4655 }
10c6db11
PZ
4656 rcu_read_unlock();
4657}
4658
fdc26706 4659struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4660{
76369139 4661 struct ring_buffer *rb;
7b732a75 4662
ac9721f3 4663 rcu_read_lock();
76369139
FW
4664 rb = rcu_dereference(event->rb);
4665 if (rb) {
4666 if (!atomic_inc_not_zero(&rb->refcount))
4667 rb = NULL;
ac9721f3
PZ
4668 }
4669 rcu_read_unlock();
4670
76369139 4671 return rb;
ac9721f3
PZ
4672}
4673
fdc26706 4674void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4675{
76369139 4676 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4677 return;
7b732a75 4678
9bb5d40c 4679 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4680
76369139 4681 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4682}
4683
4684static void perf_mmap_open(struct vm_area_struct *vma)
4685{
cdd6c482 4686 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4687
cdd6c482 4688 atomic_inc(&event->mmap_count);
9bb5d40c 4689 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4690
45bfb2e5
PZ
4691 if (vma->vm_pgoff)
4692 atomic_inc(&event->rb->aux_mmap_count);
4693
1e0fb9ec
AL
4694 if (event->pmu->event_mapped)
4695 event->pmu->event_mapped(event);
7b732a75
PZ
4696}
4697
95ff4ca2
AS
4698static void perf_pmu_output_stop(struct perf_event *event);
4699
9bb5d40c
PZ
4700/*
4701 * A buffer can be mmap()ed multiple times; either directly through the same
4702 * event, or through other events by use of perf_event_set_output().
4703 *
4704 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4705 * the buffer here, where we still have a VM context. This means we need
4706 * to detach all events redirecting to us.
4707 */
7b732a75
PZ
4708static void perf_mmap_close(struct vm_area_struct *vma)
4709{
cdd6c482 4710 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4711
b69cf536 4712 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4713 struct user_struct *mmap_user = rb->mmap_user;
4714 int mmap_locked = rb->mmap_locked;
4715 unsigned long size = perf_data_size(rb);
789f90fc 4716
1e0fb9ec
AL
4717 if (event->pmu->event_unmapped)
4718 event->pmu->event_unmapped(event);
4719
45bfb2e5
PZ
4720 /*
4721 * rb->aux_mmap_count will always drop before rb->mmap_count and
4722 * event->mmap_count, so it is ok to use event->mmap_mutex to
4723 * serialize with perf_mmap here.
4724 */
4725 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4726 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
4727 /*
4728 * Stop all AUX events that are writing to this buffer,
4729 * so that we can free its AUX pages and corresponding PMU
4730 * data. Note that after rb::aux_mmap_count dropped to zero,
4731 * they won't start any more (see perf_aux_output_begin()).
4732 */
4733 perf_pmu_output_stop(event);
4734
4735 /* now it's safe to free the pages */
45bfb2e5
PZ
4736 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4737 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4738
95ff4ca2 4739 /* this has to be the last one */
45bfb2e5 4740 rb_free_aux(rb);
95ff4ca2
AS
4741 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4742
45bfb2e5
PZ
4743 mutex_unlock(&event->mmap_mutex);
4744 }
4745
9bb5d40c
PZ
4746 atomic_dec(&rb->mmap_count);
4747
4748 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4749 goto out_put;
9bb5d40c 4750
b69cf536 4751 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4752 mutex_unlock(&event->mmap_mutex);
4753
4754 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4755 if (atomic_read(&rb->mmap_count))
4756 goto out_put;
ac9721f3 4757
9bb5d40c
PZ
4758 /*
4759 * No other mmap()s, detach from all other events that might redirect
4760 * into the now unreachable buffer. Somewhat complicated by the
4761 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4762 */
4763again:
4764 rcu_read_lock();
4765 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4766 if (!atomic_long_inc_not_zero(&event->refcount)) {
4767 /*
4768 * This event is en-route to free_event() which will
4769 * detach it and remove it from the list.
4770 */
4771 continue;
4772 }
4773 rcu_read_unlock();
789f90fc 4774
9bb5d40c
PZ
4775 mutex_lock(&event->mmap_mutex);
4776 /*
4777 * Check we didn't race with perf_event_set_output() which can
4778 * swizzle the rb from under us while we were waiting to
4779 * acquire mmap_mutex.
4780 *
4781 * If we find a different rb; ignore this event, a next
4782 * iteration will no longer find it on the list. We have to
4783 * still restart the iteration to make sure we're not now
4784 * iterating the wrong list.
4785 */
b69cf536
PZ
4786 if (event->rb == rb)
4787 ring_buffer_attach(event, NULL);
4788
cdd6c482 4789 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4790 put_event(event);
ac9721f3 4791
9bb5d40c
PZ
4792 /*
4793 * Restart the iteration; either we're on the wrong list or
4794 * destroyed its integrity by doing a deletion.
4795 */
4796 goto again;
7b732a75 4797 }
9bb5d40c
PZ
4798 rcu_read_unlock();
4799
4800 /*
4801 * It could be there's still a few 0-ref events on the list; they'll
4802 * get cleaned up by free_event() -- they'll also still have their
4803 * ref on the rb and will free it whenever they are done with it.
4804 *
4805 * Aside from that, this buffer is 'fully' detached and unmapped,
4806 * undo the VM accounting.
4807 */
4808
4809 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4810 vma->vm_mm->pinned_vm -= mmap_locked;
4811 free_uid(mmap_user);
4812
b69cf536 4813out_put:
9bb5d40c 4814 ring_buffer_put(rb); /* could be last */
37d81828
PM
4815}
4816
f0f37e2f 4817static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4818 .open = perf_mmap_open,
45bfb2e5 4819 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4820 .fault = perf_mmap_fault,
4821 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4822};
4823
4824static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4825{
cdd6c482 4826 struct perf_event *event = file->private_data;
22a4f650 4827 unsigned long user_locked, user_lock_limit;
789f90fc 4828 struct user_struct *user = current_user();
22a4f650 4829 unsigned long locked, lock_limit;
45bfb2e5 4830 struct ring_buffer *rb = NULL;
7b732a75
PZ
4831 unsigned long vma_size;
4832 unsigned long nr_pages;
45bfb2e5 4833 long user_extra = 0, extra = 0;
d57e34fd 4834 int ret = 0, flags = 0;
37d81828 4835
c7920614
PZ
4836 /*
4837 * Don't allow mmap() of inherited per-task counters. This would
4838 * create a performance issue due to all children writing to the
76369139 4839 * same rb.
c7920614
PZ
4840 */
4841 if (event->cpu == -1 && event->attr.inherit)
4842 return -EINVAL;
4843
43a21ea8 4844 if (!(vma->vm_flags & VM_SHARED))
37d81828 4845 return -EINVAL;
7b732a75
PZ
4846
4847 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4848
4849 if (vma->vm_pgoff == 0) {
4850 nr_pages = (vma_size / PAGE_SIZE) - 1;
4851 } else {
4852 /*
4853 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4854 * mapped, all subsequent mappings should have the same size
4855 * and offset. Must be above the normal perf buffer.
4856 */
4857 u64 aux_offset, aux_size;
4858
4859 if (!event->rb)
4860 return -EINVAL;
4861
4862 nr_pages = vma_size / PAGE_SIZE;
4863
4864 mutex_lock(&event->mmap_mutex);
4865 ret = -EINVAL;
4866
4867 rb = event->rb;
4868 if (!rb)
4869 goto aux_unlock;
4870
4871 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4872 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4873
4874 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4875 goto aux_unlock;
4876
4877 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4878 goto aux_unlock;
4879
4880 /* already mapped with a different offset */
4881 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4882 goto aux_unlock;
4883
4884 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4885 goto aux_unlock;
4886
4887 /* already mapped with a different size */
4888 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4889 goto aux_unlock;
4890
4891 if (!is_power_of_2(nr_pages))
4892 goto aux_unlock;
4893
4894 if (!atomic_inc_not_zero(&rb->mmap_count))
4895 goto aux_unlock;
4896
4897 if (rb_has_aux(rb)) {
4898 atomic_inc(&rb->aux_mmap_count);
4899 ret = 0;
4900 goto unlock;
4901 }
4902
4903 atomic_set(&rb->aux_mmap_count, 1);
4904 user_extra = nr_pages;
4905
4906 goto accounting;
4907 }
7b732a75 4908
7730d865 4909 /*
76369139 4910 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4911 * can do bitmasks instead of modulo.
4912 */
2ed11312 4913 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4914 return -EINVAL;
4915
7b732a75 4916 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4917 return -EINVAL;
4918
cdd6c482 4919 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4920again:
cdd6c482 4921 mutex_lock(&event->mmap_mutex);
76369139 4922 if (event->rb) {
9bb5d40c 4923 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4924 ret = -EINVAL;
9bb5d40c
PZ
4925 goto unlock;
4926 }
4927
4928 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4929 /*
4930 * Raced against perf_mmap_close() through
4931 * perf_event_set_output(). Try again, hope for better
4932 * luck.
4933 */
4934 mutex_unlock(&event->mmap_mutex);
4935 goto again;
4936 }
4937
ebb3c4c4
PZ
4938 goto unlock;
4939 }
4940
789f90fc 4941 user_extra = nr_pages + 1;
45bfb2e5
PZ
4942
4943accounting:
cdd6c482 4944 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4945
4946 /*
4947 * Increase the limit linearly with more CPUs:
4948 */
4949 user_lock_limit *= num_online_cpus();
4950
789f90fc 4951 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4952
789f90fc
PZ
4953 if (user_locked > user_lock_limit)
4954 extra = user_locked - user_lock_limit;
7b732a75 4955
78d7d407 4956 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4957 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4958 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4959
459ec28a
IM
4960 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4961 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4962 ret = -EPERM;
4963 goto unlock;
4964 }
7b732a75 4965
45bfb2e5 4966 WARN_ON(!rb && event->rb);
906010b2 4967
d57e34fd 4968 if (vma->vm_flags & VM_WRITE)
76369139 4969 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4970
76369139 4971 if (!rb) {
45bfb2e5
PZ
4972 rb = rb_alloc(nr_pages,
4973 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4974 event->cpu, flags);
26cb63ad 4975
45bfb2e5
PZ
4976 if (!rb) {
4977 ret = -ENOMEM;
4978 goto unlock;
4979 }
43a21ea8 4980
45bfb2e5
PZ
4981 atomic_set(&rb->mmap_count, 1);
4982 rb->mmap_user = get_current_user();
4983 rb->mmap_locked = extra;
26cb63ad 4984
45bfb2e5 4985 ring_buffer_attach(event, rb);
ac9721f3 4986
45bfb2e5
PZ
4987 perf_event_init_userpage(event);
4988 perf_event_update_userpage(event);
4989 } else {
1a594131
AS
4990 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4991 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4992 if (!ret)
4993 rb->aux_mmap_locked = extra;
4994 }
9a0f05cb 4995
ebb3c4c4 4996unlock:
45bfb2e5
PZ
4997 if (!ret) {
4998 atomic_long_add(user_extra, &user->locked_vm);
4999 vma->vm_mm->pinned_vm += extra;
5000
ac9721f3 5001 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5002 } else if (rb) {
5003 atomic_dec(&rb->mmap_count);
5004 }
5005aux_unlock:
cdd6c482 5006 mutex_unlock(&event->mmap_mutex);
37d81828 5007
9bb5d40c
PZ
5008 /*
5009 * Since pinned accounting is per vm we cannot allow fork() to copy our
5010 * vma.
5011 */
26cb63ad 5012 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5013 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5014
1e0fb9ec
AL
5015 if (event->pmu->event_mapped)
5016 event->pmu->event_mapped(event);
5017
7b732a75 5018 return ret;
37d81828
PM
5019}
5020
3c446b3d
PZ
5021static int perf_fasync(int fd, struct file *filp, int on)
5022{
496ad9aa 5023 struct inode *inode = file_inode(filp);
cdd6c482 5024 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5025 int retval;
5026
5955102c 5027 inode_lock(inode);
cdd6c482 5028 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5029 inode_unlock(inode);
3c446b3d
PZ
5030
5031 if (retval < 0)
5032 return retval;
5033
5034 return 0;
5035}
5036
0793a61d 5037static const struct file_operations perf_fops = {
3326c1ce 5038 .llseek = no_llseek,
0793a61d
TG
5039 .release = perf_release,
5040 .read = perf_read,
5041 .poll = perf_poll,
d859e29f 5042 .unlocked_ioctl = perf_ioctl,
b3f20785 5043 .compat_ioctl = perf_compat_ioctl,
37d81828 5044 .mmap = perf_mmap,
3c446b3d 5045 .fasync = perf_fasync,
0793a61d
TG
5046};
5047
925d519a 5048/*
cdd6c482 5049 * Perf event wakeup
925d519a
PZ
5050 *
5051 * If there's data, ensure we set the poll() state and publish everything
5052 * to user-space before waking everybody up.
5053 */
5054
fed66e2c
PZ
5055static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5056{
5057 /* only the parent has fasync state */
5058 if (event->parent)
5059 event = event->parent;
5060 return &event->fasync;
5061}
5062
cdd6c482 5063void perf_event_wakeup(struct perf_event *event)
925d519a 5064{
10c6db11 5065 ring_buffer_wakeup(event);
4c9e2542 5066
cdd6c482 5067 if (event->pending_kill) {
fed66e2c 5068 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5069 event->pending_kill = 0;
4c9e2542 5070 }
925d519a
PZ
5071}
5072
e360adbe 5073static void perf_pending_event(struct irq_work *entry)
79f14641 5074{
cdd6c482
IM
5075 struct perf_event *event = container_of(entry,
5076 struct perf_event, pending);
d525211f
PZ
5077 int rctx;
5078
5079 rctx = perf_swevent_get_recursion_context();
5080 /*
5081 * If we 'fail' here, that's OK, it means recursion is already disabled
5082 * and we won't recurse 'further'.
5083 */
79f14641 5084
cdd6c482
IM
5085 if (event->pending_disable) {
5086 event->pending_disable = 0;
fae3fde6 5087 perf_event_disable_local(event);
79f14641
PZ
5088 }
5089
cdd6c482
IM
5090 if (event->pending_wakeup) {
5091 event->pending_wakeup = 0;
5092 perf_event_wakeup(event);
79f14641 5093 }
d525211f
PZ
5094
5095 if (rctx >= 0)
5096 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5097}
5098
39447b38
ZY
5099/*
5100 * We assume there is only KVM supporting the callbacks.
5101 * Later on, we might change it to a list if there is
5102 * another virtualization implementation supporting the callbacks.
5103 */
5104struct perf_guest_info_callbacks *perf_guest_cbs;
5105
5106int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5107{
5108 perf_guest_cbs = cbs;
5109 return 0;
5110}
5111EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5112
5113int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5114{
5115 perf_guest_cbs = NULL;
5116 return 0;
5117}
5118EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5119
4018994f
JO
5120static void
5121perf_output_sample_regs(struct perf_output_handle *handle,
5122 struct pt_regs *regs, u64 mask)
5123{
5124 int bit;
5125
5126 for_each_set_bit(bit, (const unsigned long *) &mask,
5127 sizeof(mask) * BITS_PER_BYTE) {
5128 u64 val;
5129
5130 val = perf_reg_value(regs, bit);
5131 perf_output_put(handle, val);
5132 }
5133}
5134
60e2364e 5135static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5136 struct pt_regs *regs,
5137 struct pt_regs *regs_user_copy)
4018994f 5138{
88a7c26a
AL
5139 if (user_mode(regs)) {
5140 regs_user->abi = perf_reg_abi(current);
2565711f 5141 regs_user->regs = regs;
88a7c26a
AL
5142 } else if (current->mm) {
5143 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5144 } else {
5145 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5146 regs_user->regs = NULL;
4018994f
JO
5147 }
5148}
5149
60e2364e
SE
5150static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5151 struct pt_regs *regs)
5152{
5153 regs_intr->regs = regs;
5154 regs_intr->abi = perf_reg_abi(current);
5155}
5156
5157
c5ebcedb
JO
5158/*
5159 * Get remaining task size from user stack pointer.
5160 *
5161 * It'd be better to take stack vma map and limit this more
5162 * precisly, but there's no way to get it safely under interrupt,
5163 * so using TASK_SIZE as limit.
5164 */
5165static u64 perf_ustack_task_size(struct pt_regs *regs)
5166{
5167 unsigned long addr = perf_user_stack_pointer(regs);
5168
5169 if (!addr || addr >= TASK_SIZE)
5170 return 0;
5171
5172 return TASK_SIZE - addr;
5173}
5174
5175static u16
5176perf_sample_ustack_size(u16 stack_size, u16 header_size,
5177 struct pt_regs *regs)
5178{
5179 u64 task_size;
5180
5181 /* No regs, no stack pointer, no dump. */
5182 if (!regs)
5183 return 0;
5184
5185 /*
5186 * Check if we fit in with the requested stack size into the:
5187 * - TASK_SIZE
5188 * If we don't, we limit the size to the TASK_SIZE.
5189 *
5190 * - remaining sample size
5191 * If we don't, we customize the stack size to
5192 * fit in to the remaining sample size.
5193 */
5194
5195 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5196 stack_size = min(stack_size, (u16) task_size);
5197
5198 /* Current header size plus static size and dynamic size. */
5199 header_size += 2 * sizeof(u64);
5200
5201 /* Do we fit in with the current stack dump size? */
5202 if ((u16) (header_size + stack_size) < header_size) {
5203 /*
5204 * If we overflow the maximum size for the sample,
5205 * we customize the stack dump size to fit in.
5206 */
5207 stack_size = USHRT_MAX - header_size - sizeof(u64);
5208 stack_size = round_up(stack_size, sizeof(u64));
5209 }
5210
5211 return stack_size;
5212}
5213
5214static void
5215perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5216 struct pt_regs *regs)
5217{
5218 /* Case of a kernel thread, nothing to dump */
5219 if (!regs) {
5220 u64 size = 0;
5221 perf_output_put(handle, size);
5222 } else {
5223 unsigned long sp;
5224 unsigned int rem;
5225 u64 dyn_size;
5226
5227 /*
5228 * We dump:
5229 * static size
5230 * - the size requested by user or the best one we can fit
5231 * in to the sample max size
5232 * data
5233 * - user stack dump data
5234 * dynamic size
5235 * - the actual dumped size
5236 */
5237
5238 /* Static size. */
5239 perf_output_put(handle, dump_size);
5240
5241 /* Data. */
5242 sp = perf_user_stack_pointer(regs);
5243 rem = __output_copy_user(handle, (void *) sp, dump_size);
5244 dyn_size = dump_size - rem;
5245
5246 perf_output_skip(handle, rem);
5247
5248 /* Dynamic size. */
5249 perf_output_put(handle, dyn_size);
5250 }
5251}
5252
c980d109
ACM
5253static void __perf_event_header__init_id(struct perf_event_header *header,
5254 struct perf_sample_data *data,
5255 struct perf_event *event)
6844c09d
ACM
5256{
5257 u64 sample_type = event->attr.sample_type;
5258
5259 data->type = sample_type;
5260 header->size += event->id_header_size;
5261
5262 if (sample_type & PERF_SAMPLE_TID) {
5263 /* namespace issues */
5264 data->tid_entry.pid = perf_event_pid(event, current);
5265 data->tid_entry.tid = perf_event_tid(event, current);
5266 }
5267
5268 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5269 data->time = perf_event_clock(event);
6844c09d 5270
ff3d527c 5271 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5272 data->id = primary_event_id(event);
5273
5274 if (sample_type & PERF_SAMPLE_STREAM_ID)
5275 data->stream_id = event->id;
5276
5277 if (sample_type & PERF_SAMPLE_CPU) {
5278 data->cpu_entry.cpu = raw_smp_processor_id();
5279 data->cpu_entry.reserved = 0;
5280 }
5281}
5282
76369139
FW
5283void perf_event_header__init_id(struct perf_event_header *header,
5284 struct perf_sample_data *data,
5285 struct perf_event *event)
c980d109
ACM
5286{
5287 if (event->attr.sample_id_all)
5288 __perf_event_header__init_id(header, data, event);
5289}
5290
5291static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5292 struct perf_sample_data *data)
5293{
5294 u64 sample_type = data->type;
5295
5296 if (sample_type & PERF_SAMPLE_TID)
5297 perf_output_put(handle, data->tid_entry);
5298
5299 if (sample_type & PERF_SAMPLE_TIME)
5300 perf_output_put(handle, data->time);
5301
5302 if (sample_type & PERF_SAMPLE_ID)
5303 perf_output_put(handle, data->id);
5304
5305 if (sample_type & PERF_SAMPLE_STREAM_ID)
5306 perf_output_put(handle, data->stream_id);
5307
5308 if (sample_type & PERF_SAMPLE_CPU)
5309 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5310
5311 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5312 perf_output_put(handle, data->id);
c980d109
ACM
5313}
5314
76369139
FW
5315void perf_event__output_id_sample(struct perf_event *event,
5316 struct perf_output_handle *handle,
5317 struct perf_sample_data *sample)
c980d109
ACM
5318{
5319 if (event->attr.sample_id_all)
5320 __perf_event__output_id_sample(handle, sample);
5321}
5322
3dab77fb 5323static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5324 struct perf_event *event,
5325 u64 enabled, u64 running)
3dab77fb 5326{
cdd6c482 5327 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5328 u64 values[4];
5329 int n = 0;
5330
b5e58793 5331 values[n++] = perf_event_count(event);
3dab77fb 5332 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5333 values[n++] = enabled +
cdd6c482 5334 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5335 }
5336 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5337 values[n++] = running +
cdd6c482 5338 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5339 }
5340 if (read_format & PERF_FORMAT_ID)
cdd6c482 5341 values[n++] = primary_event_id(event);
3dab77fb 5342
76369139 5343 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5344}
5345
5346/*
cdd6c482 5347 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5348 */
5349static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5350 struct perf_event *event,
5351 u64 enabled, u64 running)
3dab77fb 5352{
cdd6c482
IM
5353 struct perf_event *leader = event->group_leader, *sub;
5354 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5355 u64 values[5];
5356 int n = 0;
5357
5358 values[n++] = 1 + leader->nr_siblings;
5359
5360 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5361 values[n++] = enabled;
3dab77fb
PZ
5362
5363 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5364 values[n++] = running;
3dab77fb 5365
cdd6c482 5366 if (leader != event)
3dab77fb
PZ
5367 leader->pmu->read(leader);
5368
b5e58793 5369 values[n++] = perf_event_count(leader);
3dab77fb 5370 if (read_format & PERF_FORMAT_ID)
cdd6c482 5371 values[n++] = primary_event_id(leader);
3dab77fb 5372
76369139 5373 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5374
65abc865 5375 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5376 n = 0;
5377
6f5ab001
JO
5378 if ((sub != event) &&
5379 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5380 sub->pmu->read(sub);
5381
b5e58793 5382 values[n++] = perf_event_count(sub);
3dab77fb 5383 if (read_format & PERF_FORMAT_ID)
cdd6c482 5384 values[n++] = primary_event_id(sub);
3dab77fb 5385
76369139 5386 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5387 }
5388}
5389
eed01528
SE
5390#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5391 PERF_FORMAT_TOTAL_TIME_RUNNING)
5392
3dab77fb 5393static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5394 struct perf_event *event)
3dab77fb 5395{
e3f3541c 5396 u64 enabled = 0, running = 0, now;
eed01528
SE
5397 u64 read_format = event->attr.read_format;
5398
5399 /*
5400 * compute total_time_enabled, total_time_running
5401 * based on snapshot values taken when the event
5402 * was last scheduled in.
5403 *
5404 * we cannot simply called update_context_time()
5405 * because of locking issue as we are called in
5406 * NMI context
5407 */
c4794295 5408 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5409 calc_timer_values(event, &now, &enabled, &running);
eed01528 5410
cdd6c482 5411 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5412 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5413 else
eed01528 5414 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5415}
5416
5622f295
MM
5417void perf_output_sample(struct perf_output_handle *handle,
5418 struct perf_event_header *header,
5419 struct perf_sample_data *data,
cdd6c482 5420 struct perf_event *event)
5622f295
MM
5421{
5422 u64 sample_type = data->type;
5423
5424 perf_output_put(handle, *header);
5425
ff3d527c
AH
5426 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5427 perf_output_put(handle, data->id);
5428
5622f295
MM
5429 if (sample_type & PERF_SAMPLE_IP)
5430 perf_output_put(handle, data->ip);
5431
5432 if (sample_type & PERF_SAMPLE_TID)
5433 perf_output_put(handle, data->tid_entry);
5434
5435 if (sample_type & PERF_SAMPLE_TIME)
5436 perf_output_put(handle, data->time);
5437
5438 if (sample_type & PERF_SAMPLE_ADDR)
5439 perf_output_put(handle, data->addr);
5440
5441 if (sample_type & PERF_SAMPLE_ID)
5442 perf_output_put(handle, data->id);
5443
5444 if (sample_type & PERF_SAMPLE_STREAM_ID)
5445 perf_output_put(handle, data->stream_id);
5446
5447 if (sample_type & PERF_SAMPLE_CPU)
5448 perf_output_put(handle, data->cpu_entry);
5449
5450 if (sample_type & PERF_SAMPLE_PERIOD)
5451 perf_output_put(handle, data->period);
5452
5453 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5454 perf_output_read(handle, event);
5622f295
MM
5455
5456 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5457 if (data->callchain) {
5458 int size = 1;
5459
5460 if (data->callchain)
5461 size += data->callchain->nr;
5462
5463 size *= sizeof(u64);
5464
76369139 5465 __output_copy(handle, data->callchain, size);
5622f295
MM
5466 } else {
5467 u64 nr = 0;
5468 perf_output_put(handle, nr);
5469 }
5470 }
5471
5472 if (sample_type & PERF_SAMPLE_RAW) {
5473 if (data->raw) {
fa128e6a
AS
5474 u32 raw_size = data->raw->size;
5475 u32 real_size = round_up(raw_size + sizeof(u32),
5476 sizeof(u64)) - sizeof(u32);
5477 u64 zero = 0;
5478
5479 perf_output_put(handle, real_size);
5480 __output_copy(handle, data->raw->data, raw_size);
5481 if (real_size - raw_size)
5482 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5483 } else {
5484 struct {
5485 u32 size;
5486 u32 data;
5487 } raw = {
5488 .size = sizeof(u32),
5489 .data = 0,
5490 };
5491 perf_output_put(handle, raw);
5492 }
5493 }
a7ac67ea 5494
bce38cd5
SE
5495 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5496 if (data->br_stack) {
5497 size_t size;
5498
5499 size = data->br_stack->nr
5500 * sizeof(struct perf_branch_entry);
5501
5502 perf_output_put(handle, data->br_stack->nr);
5503 perf_output_copy(handle, data->br_stack->entries, size);
5504 } else {
5505 /*
5506 * we always store at least the value of nr
5507 */
5508 u64 nr = 0;
5509 perf_output_put(handle, nr);
5510 }
5511 }
4018994f
JO
5512
5513 if (sample_type & PERF_SAMPLE_REGS_USER) {
5514 u64 abi = data->regs_user.abi;
5515
5516 /*
5517 * If there are no regs to dump, notice it through
5518 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5519 */
5520 perf_output_put(handle, abi);
5521
5522 if (abi) {
5523 u64 mask = event->attr.sample_regs_user;
5524 perf_output_sample_regs(handle,
5525 data->regs_user.regs,
5526 mask);
5527 }
5528 }
c5ebcedb 5529
a5cdd40c 5530 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5531 perf_output_sample_ustack(handle,
5532 data->stack_user_size,
5533 data->regs_user.regs);
a5cdd40c 5534 }
c3feedf2
AK
5535
5536 if (sample_type & PERF_SAMPLE_WEIGHT)
5537 perf_output_put(handle, data->weight);
d6be9ad6
SE
5538
5539 if (sample_type & PERF_SAMPLE_DATA_SRC)
5540 perf_output_put(handle, data->data_src.val);
a5cdd40c 5541
fdfbbd07
AK
5542 if (sample_type & PERF_SAMPLE_TRANSACTION)
5543 perf_output_put(handle, data->txn);
5544
60e2364e
SE
5545 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5546 u64 abi = data->regs_intr.abi;
5547 /*
5548 * If there are no regs to dump, notice it through
5549 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5550 */
5551 perf_output_put(handle, abi);
5552
5553 if (abi) {
5554 u64 mask = event->attr.sample_regs_intr;
5555
5556 perf_output_sample_regs(handle,
5557 data->regs_intr.regs,
5558 mask);
5559 }
5560 }
5561
a5cdd40c
PZ
5562 if (!event->attr.watermark) {
5563 int wakeup_events = event->attr.wakeup_events;
5564
5565 if (wakeup_events) {
5566 struct ring_buffer *rb = handle->rb;
5567 int events = local_inc_return(&rb->events);
5568
5569 if (events >= wakeup_events) {
5570 local_sub(wakeup_events, &rb->events);
5571 local_inc(&rb->wakeup);
5572 }
5573 }
5574 }
5622f295
MM
5575}
5576
5577void perf_prepare_sample(struct perf_event_header *header,
5578 struct perf_sample_data *data,
cdd6c482 5579 struct perf_event *event,
5622f295 5580 struct pt_regs *regs)
7b732a75 5581{
cdd6c482 5582 u64 sample_type = event->attr.sample_type;
7b732a75 5583
cdd6c482 5584 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5585 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5586
5587 header->misc = 0;
5588 header->misc |= perf_misc_flags(regs);
6fab0192 5589
c980d109 5590 __perf_event_header__init_id(header, data, event);
6844c09d 5591
c320c7b7 5592 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5593 data->ip = perf_instruction_pointer(regs);
5594
b23f3325 5595 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5596 int size = 1;
394ee076 5597
e6dab5ff 5598 data->callchain = perf_callchain(event, regs);
5622f295
MM
5599
5600 if (data->callchain)
5601 size += data->callchain->nr;
5602
5603 header->size += size * sizeof(u64);
394ee076
PZ
5604 }
5605
3a43ce68 5606 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5607 int size = sizeof(u32);
5608
5609 if (data->raw)
5610 size += data->raw->size;
5611 else
5612 size += sizeof(u32);
5613
fa128e6a 5614 header->size += round_up(size, sizeof(u64));
7f453c24 5615 }
bce38cd5
SE
5616
5617 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5618 int size = sizeof(u64); /* nr */
5619 if (data->br_stack) {
5620 size += data->br_stack->nr
5621 * sizeof(struct perf_branch_entry);
5622 }
5623 header->size += size;
5624 }
4018994f 5625
2565711f 5626 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5627 perf_sample_regs_user(&data->regs_user, regs,
5628 &data->regs_user_copy);
2565711f 5629
4018994f
JO
5630 if (sample_type & PERF_SAMPLE_REGS_USER) {
5631 /* regs dump ABI info */
5632 int size = sizeof(u64);
5633
4018994f
JO
5634 if (data->regs_user.regs) {
5635 u64 mask = event->attr.sample_regs_user;
5636 size += hweight64(mask) * sizeof(u64);
5637 }
5638
5639 header->size += size;
5640 }
c5ebcedb
JO
5641
5642 if (sample_type & PERF_SAMPLE_STACK_USER) {
5643 /*
5644 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5645 * processed as the last one or have additional check added
5646 * in case new sample type is added, because we could eat
5647 * up the rest of the sample size.
5648 */
c5ebcedb
JO
5649 u16 stack_size = event->attr.sample_stack_user;
5650 u16 size = sizeof(u64);
5651
c5ebcedb 5652 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5653 data->regs_user.regs);
c5ebcedb
JO
5654
5655 /*
5656 * If there is something to dump, add space for the dump
5657 * itself and for the field that tells the dynamic size,
5658 * which is how many have been actually dumped.
5659 */
5660 if (stack_size)
5661 size += sizeof(u64) + stack_size;
5662
5663 data->stack_user_size = stack_size;
5664 header->size += size;
5665 }
60e2364e
SE
5666
5667 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5668 /* regs dump ABI info */
5669 int size = sizeof(u64);
5670
5671 perf_sample_regs_intr(&data->regs_intr, regs);
5672
5673 if (data->regs_intr.regs) {
5674 u64 mask = event->attr.sample_regs_intr;
5675
5676 size += hweight64(mask) * sizeof(u64);
5677 }
5678
5679 header->size += size;
5680 }
5622f295 5681}
7f453c24 5682
21509084
YZ
5683void perf_event_output(struct perf_event *event,
5684 struct perf_sample_data *data,
5685 struct pt_regs *regs)
5622f295
MM
5686{
5687 struct perf_output_handle handle;
5688 struct perf_event_header header;
689802b2 5689
927c7a9e
FW
5690 /* protect the callchain buffers */
5691 rcu_read_lock();
5692
cdd6c482 5693 perf_prepare_sample(&header, data, event, regs);
5c148194 5694
a7ac67ea 5695 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5696 goto exit;
0322cd6e 5697
cdd6c482 5698 perf_output_sample(&handle, &header, data, event);
f413cdb8 5699
8a057d84 5700 perf_output_end(&handle);
927c7a9e
FW
5701
5702exit:
5703 rcu_read_unlock();
0322cd6e
PZ
5704}
5705
38b200d6 5706/*
cdd6c482 5707 * read event_id
38b200d6
PZ
5708 */
5709
5710struct perf_read_event {
5711 struct perf_event_header header;
5712
5713 u32 pid;
5714 u32 tid;
38b200d6
PZ
5715};
5716
5717static void
cdd6c482 5718perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5719 struct task_struct *task)
5720{
5721 struct perf_output_handle handle;
c980d109 5722 struct perf_sample_data sample;
dfc65094 5723 struct perf_read_event read_event = {
38b200d6 5724 .header = {
cdd6c482 5725 .type = PERF_RECORD_READ,
38b200d6 5726 .misc = 0,
c320c7b7 5727 .size = sizeof(read_event) + event->read_size,
38b200d6 5728 },
cdd6c482
IM
5729 .pid = perf_event_pid(event, task),
5730 .tid = perf_event_tid(event, task),
38b200d6 5731 };
3dab77fb 5732 int ret;
38b200d6 5733
c980d109 5734 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5735 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5736 if (ret)
5737 return;
5738
dfc65094 5739 perf_output_put(&handle, read_event);
cdd6c482 5740 perf_output_read(&handle, event);
c980d109 5741 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5742
38b200d6
PZ
5743 perf_output_end(&handle);
5744}
5745
52d857a8
JO
5746typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5747
5748static void
5749perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5750 perf_event_aux_output_cb output,
5751 void *data)
5752{
5753 struct perf_event *event;
5754
5755 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5756 if (event->state < PERF_EVENT_STATE_INACTIVE)
5757 continue;
5758 if (!event_filter_match(event))
5759 continue;
67516844 5760 output(event, data);
52d857a8
JO
5761 }
5762}
5763
4e93ad60
JO
5764static void
5765perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5766 struct perf_event_context *task_ctx)
5767{
5768 rcu_read_lock();
5769 preempt_disable();
5770 perf_event_aux_ctx(task_ctx, output, data);
5771 preempt_enable();
5772 rcu_read_unlock();
5773}
5774
52d857a8 5775static void
67516844 5776perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5777 struct perf_event_context *task_ctx)
5778{
5779 struct perf_cpu_context *cpuctx;
5780 struct perf_event_context *ctx;
5781 struct pmu *pmu;
5782 int ctxn;
5783
4e93ad60
JO
5784 /*
5785 * If we have task_ctx != NULL we only notify
5786 * the task context itself. The task_ctx is set
5787 * only for EXIT events before releasing task
5788 * context.
5789 */
5790 if (task_ctx) {
5791 perf_event_aux_task_ctx(output, data, task_ctx);
5792 return;
5793 }
5794
52d857a8
JO
5795 rcu_read_lock();
5796 list_for_each_entry_rcu(pmu, &pmus, entry) {
5797 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5798 if (cpuctx->unique_pmu != pmu)
5799 goto next;
67516844 5800 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5801 ctxn = pmu->task_ctx_nr;
5802 if (ctxn < 0)
5803 goto next;
5804 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5805 if (ctx)
67516844 5806 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5807next:
5808 put_cpu_ptr(pmu->pmu_cpu_context);
5809 }
52d857a8 5810 rcu_read_unlock();
95ff4ca2
AS
5811}
5812
5813struct remote_output {
5814 struct ring_buffer *rb;
5815 int err;
5816};
5817
5818static void __perf_event_output_stop(struct perf_event *event, void *data)
5819{
5820 struct perf_event *parent = event->parent;
5821 struct remote_output *ro = data;
5822 struct ring_buffer *rb = ro->rb;
5823
5824 if (!has_aux(event))
5825 return;
5826
5827 if (!parent)
5828 parent = event;
5829
5830 /*
5831 * In case of inheritance, it will be the parent that links to the
5832 * ring-buffer, but it will be the child that's actually using it:
5833 */
5834 if (rcu_dereference(parent->rb) == rb)
5835 ro->err = __perf_event_stop(event);
5836}
5837
5838static int __perf_pmu_output_stop(void *info)
5839{
5840 struct perf_event *event = info;
5841 struct pmu *pmu = event->pmu;
5842 struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5843 struct remote_output ro = {
5844 .rb = event->rb,
5845 };
5846
5847 rcu_read_lock();
5848 perf_event_aux_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro);
5849 if (cpuctx->task_ctx)
5850 perf_event_aux_ctx(cpuctx->task_ctx, __perf_event_output_stop,
5851 &ro);
5852 rcu_read_unlock();
5853
5854 return ro.err;
5855}
5856
5857static void perf_pmu_output_stop(struct perf_event *event)
5858{
5859 struct perf_event *iter;
5860 int err, cpu;
5861
5862restart:
5863 rcu_read_lock();
5864 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
5865 /*
5866 * For per-CPU events, we need to make sure that neither they
5867 * nor their children are running; for cpu==-1 events it's
5868 * sufficient to stop the event itself if it's active, since
5869 * it can't have children.
5870 */
5871 cpu = iter->cpu;
5872 if (cpu == -1)
5873 cpu = READ_ONCE(iter->oncpu);
5874
5875 if (cpu == -1)
5876 continue;
5877
5878 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
5879 if (err == -EAGAIN) {
5880 rcu_read_unlock();
5881 goto restart;
5882 }
5883 }
5884 rcu_read_unlock();
52d857a8
JO
5885}
5886
60313ebe 5887/*
9f498cc5
PZ
5888 * task tracking -- fork/exit
5889 *
13d7a241 5890 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5891 */
5892
9f498cc5 5893struct perf_task_event {
3a80b4a3 5894 struct task_struct *task;
cdd6c482 5895 struct perf_event_context *task_ctx;
60313ebe
PZ
5896
5897 struct {
5898 struct perf_event_header header;
5899
5900 u32 pid;
5901 u32 ppid;
9f498cc5
PZ
5902 u32 tid;
5903 u32 ptid;
393b2ad8 5904 u64 time;
cdd6c482 5905 } event_id;
60313ebe
PZ
5906};
5907
67516844
JO
5908static int perf_event_task_match(struct perf_event *event)
5909{
13d7a241
SE
5910 return event->attr.comm || event->attr.mmap ||
5911 event->attr.mmap2 || event->attr.mmap_data ||
5912 event->attr.task;
67516844
JO
5913}
5914
cdd6c482 5915static void perf_event_task_output(struct perf_event *event,
52d857a8 5916 void *data)
60313ebe 5917{
52d857a8 5918 struct perf_task_event *task_event = data;
60313ebe 5919 struct perf_output_handle handle;
c980d109 5920 struct perf_sample_data sample;
9f498cc5 5921 struct task_struct *task = task_event->task;
c980d109 5922 int ret, size = task_event->event_id.header.size;
8bb39f9a 5923
67516844
JO
5924 if (!perf_event_task_match(event))
5925 return;
5926
c980d109 5927 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5928
c980d109 5929 ret = perf_output_begin(&handle, event,
a7ac67ea 5930 task_event->event_id.header.size);
ef60777c 5931 if (ret)
c980d109 5932 goto out;
60313ebe 5933
cdd6c482
IM
5934 task_event->event_id.pid = perf_event_pid(event, task);
5935 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5936
cdd6c482
IM
5937 task_event->event_id.tid = perf_event_tid(event, task);
5938 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5939
34f43927
PZ
5940 task_event->event_id.time = perf_event_clock(event);
5941
cdd6c482 5942 perf_output_put(&handle, task_event->event_id);
393b2ad8 5943
c980d109
ACM
5944 perf_event__output_id_sample(event, &handle, &sample);
5945
60313ebe 5946 perf_output_end(&handle);
c980d109
ACM
5947out:
5948 task_event->event_id.header.size = size;
60313ebe
PZ
5949}
5950
cdd6c482
IM
5951static void perf_event_task(struct task_struct *task,
5952 struct perf_event_context *task_ctx,
3a80b4a3 5953 int new)
60313ebe 5954{
9f498cc5 5955 struct perf_task_event task_event;
60313ebe 5956
cdd6c482
IM
5957 if (!atomic_read(&nr_comm_events) &&
5958 !atomic_read(&nr_mmap_events) &&
5959 !atomic_read(&nr_task_events))
60313ebe
PZ
5960 return;
5961
9f498cc5 5962 task_event = (struct perf_task_event){
3a80b4a3
PZ
5963 .task = task,
5964 .task_ctx = task_ctx,
cdd6c482 5965 .event_id = {
60313ebe 5966 .header = {
cdd6c482 5967 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5968 .misc = 0,
cdd6c482 5969 .size = sizeof(task_event.event_id),
60313ebe 5970 },
573402db
PZ
5971 /* .pid */
5972 /* .ppid */
9f498cc5
PZ
5973 /* .tid */
5974 /* .ptid */
34f43927 5975 /* .time */
60313ebe
PZ
5976 },
5977 };
5978
67516844 5979 perf_event_aux(perf_event_task_output,
52d857a8
JO
5980 &task_event,
5981 task_ctx);
9f498cc5
PZ
5982}
5983
cdd6c482 5984void perf_event_fork(struct task_struct *task)
9f498cc5 5985{
cdd6c482 5986 perf_event_task(task, NULL, 1);
60313ebe
PZ
5987}
5988
8d1b2d93
PZ
5989/*
5990 * comm tracking
5991 */
5992
5993struct perf_comm_event {
22a4f650
IM
5994 struct task_struct *task;
5995 char *comm;
8d1b2d93
PZ
5996 int comm_size;
5997
5998 struct {
5999 struct perf_event_header header;
6000
6001 u32 pid;
6002 u32 tid;
cdd6c482 6003 } event_id;
8d1b2d93
PZ
6004};
6005
67516844
JO
6006static int perf_event_comm_match(struct perf_event *event)
6007{
6008 return event->attr.comm;
6009}
6010
cdd6c482 6011static void perf_event_comm_output(struct perf_event *event,
52d857a8 6012 void *data)
8d1b2d93 6013{
52d857a8 6014 struct perf_comm_event *comm_event = data;
8d1b2d93 6015 struct perf_output_handle handle;
c980d109 6016 struct perf_sample_data sample;
cdd6c482 6017 int size = comm_event->event_id.header.size;
c980d109
ACM
6018 int ret;
6019
67516844
JO
6020 if (!perf_event_comm_match(event))
6021 return;
6022
c980d109
ACM
6023 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6024 ret = perf_output_begin(&handle, event,
a7ac67ea 6025 comm_event->event_id.header.size);
8d1b2d93
PZ
6026
6027 if (ret)
c980d109 6028 goto out;
8d1b2d93 6029
cdd6c482
IM
6030 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6031 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6032
cdd6c482 6033 perf_output_put(&handle, comm_event->event_id);
76369139 6034 __output_copy(&handle, comm_event->comm,
8d1b2d93 6035 comm_event->comm_size);
c980d109
ACM
6036
6037 perf_event__output_id_sample(event, &handle, &sample);
6038
8d1b2d93 6039 perf_output_end(&handle);
c980d109
ACM
6040out:
6041 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6042}
6043
cdd6c482 6044static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6045{
413ee3b4 6046 char comm[TASK_COMM_LEN];
8d1b2d93 6047 unsigned int size;
8d1b2d93 6048
413ee3b4 6049 memset(comm, 0, sizeof(comm));
96b02d78 6050 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6051 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6052
6053 comm_event->comm = comm;
6054 comm_event->comm_size = size;
6055
cdd6c482 6056 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6057
67516844 6058 perf_event_aux(perf_event_comm_output,
52d857a8
JO
6059 comm_event,
6060 NULL);
8d1b2d93
PZ
6061}
6062
82b89778 6063void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6064{
9ee318a7
PZ
6065 struct perf_comm_event comm_event;
6066
cdd6c482 6067 if (!atomic_read(&nr_comm_events))
9ee318a7 6068 return;
a63eaf34 6069
9ee318a7 6070 comm_event = (struct perf_comm_event){
8d1b2d93 6071 .task = task,
573402db
PZ
6072 /* .comm */
6073 /* .comm_size */
cdd6c482 6074 .event_id = {
573402db 6075 .header = {
cdd6c482 6076 .type = PERF_RECORD_COMM,
82b89778 6077 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6078 /* .size */
6079 },
6080 /* .pid */
6081 /* .tid */
8d1b2d93
PZ
6082 },
6083 };
6084
cdd6c482 6085 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6086}
6087
0a4a9391
PZ
6088/*
6089 * mmap tracking
6090 */
6091
6092struct perf_mmap_event {
089dd79d
PZ
6093 struct vm_area_struct *vma;
6094
6095 const char *file_name;
6096 int file_size;
13d7a241
SE
6097 int maj, min;
6098 u64 ino;
6099 u64 ino_generation;
f972eb63 6100 u32 prot, flags;
0a4a9391
PZ
6101
6102 struct {
6103 struct perf_event_header header;
6104
6105 u32 pid;
6106 u32 tid;
6107 u64 start;
6108 u64 len;
6109 u64 pgoff;
cdd6c482 6110 } event_id;
0a4a9391
PZ
6111};
6112
67516844
JO
6113static int perf_event_mmap_match(struct perf_event *event,
6114 void *data)
6115{
6116 struct perf_mmap_event *mmap_event = data;
6117 struct vm_area_struct *vma = mmap_event->vma;
6118 int executable = vma->vm_flags & VM_EXEC;
6119
6120 return (!executable && event->attr.mmap_data) ||
13d7a241 6121 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6122}
6123
cdd6c482 6124static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6125 void *data)
0a4a9391 6126{
52d857a8 6127 struct perf_mmap_event *mmap_event = data;
0a4a9391 6128 struct perf_output_handle handle;
c980d109 6129 struct perf_sample_data sample;
cdd6c482 6130 int size = mmap_event->event_id.header.size;
c980d109 6131 int ret;
0a4a9391 6132
67516844
JO
6133 if (!perf_event_mmap_match(event, data))
6134 return;
6135
13d7a241
SE
6136 if (event->attr.mmap2) {
6137 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6138 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6139 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6140 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6141 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6142 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6143 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6144 }
6145
c980d109
ACM
6146 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6147 ret = perf_output_begin(&handle, event,
a7ac67ea 6148 mmap_event->event_id.header.size);
0a4a9391 6149 if (ret)
c980d109 6150 goto out;
0a4a9391 6151
cdd6c482
IM
6152 mmap_event->event_id.pid = perf_event_pid(event, current);
6153 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6154
cdd6c482 6155 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6156
6157 if (event->attr.mmap2) {
6158 perf_output_put(&handle, mmap_event->maj);
6159 perf_output_put(&handle, mmap_event->min);
6160 perf_output_put(&handle, mmap_event->ino);
6161 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6162 perf_output_put(&handle, mmap_event->prot);
6163 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6164 }
6165
76369139 6166 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6167 mmap_event->file_size);
c980d109
ACM
6168
6169 perf_event__output_id_sample(event, &handle, &sample);
6170
78d613eb 6171 perf_output_end(&handle);
c980d109
ACM
6172out:
6173 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6174}
6175
cdd6c482 6176static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6177{
089dd79d
PZ
6178 struct vm_area_struct *vma = mmap_event->vma;
6179 struct file *file = vma->vm_file;
13d7a241
SE
6180 int maj = 0, min = 0;
6181 u64 ino = 0, gen = 0;
f972eb63 6182 u32 prot = 0, flags = 0;
0a4a9391
PZ
6183 unsigned int size;
6184 char tmp[16];
6185 char *buf = NULL;
2c42cfbf 6186 char *name;
413ee3b4 6187
0a4a9391 6188 if (file) {
13d7a241
SE
6189 struct inode *inode;
6190 dev_t dev;
3ea2f2b9 6191
2c42cfbf 6192 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6193 if (!buf) {
c7e548b4
ON
6194 name = "//enomem";
6195 goto cpy_name;
0a4a9391 6196 }
413ee3b4 6197 /*
3ea2f2b9 6198 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6199 * need to add enough zero bytes after the string to handle
6200 * the 64bit alignment we do later.
6201 */
9bf39ab2 6202 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6203 if (IS_ERR(name)) {
c7e548b4
ON
6204 name = "//toolong";
6205 goto cpy_name;
0a4a9391 6206 }
13d7a241
SE
6207 inode = file_inode(vma->vm_file);
6208 dev = inode->i_sb->s_dev;
6209 ino = inode->i_ino;
6210 gen = inode->i_generation;
6211 maj = MAJOR(dev);
6212 min = MINOR(dev);
f972eb63
PZ
6213
6214 if (vma->vm_flags & VM_READ)
6215 prot |= PROT_READ;
6216 if (vma->vm_flags & VM_WRITE)
6217 prot |= PROT_WRITE;
6218 if (vma->vm_flags & VM_EXEC)
6219 prot |= PROT_EXEC;
6220
6221 if (vma->vm_flags & VM_MAYSHARE)
6222 flags = MAP_SHARED;
6223 else
6224 flags = MAP_PRIVATE;
6225
6226 if (vma->vm_flags & VM_DENYWRITE)
6227 flags |= MAP_DENYWRITE;
6228 if (vma->vm_flags & VM_MAYEXEC)
6229 flags |= MAP_EXECUTABLE;
6230 if (vma->vm_flags & VM_LOCKED)
6231 flags |= MAP_LOCKED;
6232 if (vma->vm_flags & VM_HUGETLB)
6233 flags |= MAP_HUGETLB;
6234
c7e548b4 6235 goto got_name;
0a4a9391 6236 } else {
fbe26abe
JO
6237 if (vma->vm_ops && vma->vm_ops->name) {
6238 name = (char *) vma->vm_ops->name(vma);
6239 if (name)
6240 goto cpy_name;
6241 }
6242
2c42cfbf 6243 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6244 if (name)
6245 goto cpy_name;
089dd79d 6246
32c5fb7e 6247 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6248 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6249 name = "[heap]";
6250 goto cpy_name;
32c5fb7e
ON
6251 }
6252 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6253 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6254 name = "[stack]";
6255 goto cpy_name;
089dd79d
PZ
6256 }
6257
c7e548b4
ON
6258 name = "//anon";
6259 goto cpy_name;
0a4a9391
PZ
6260 }
6261
c7e548b4
ON
6262cpy_name:
6263 strlcpy(tmp, name, sizeof(tmp));
6264 name = tmp;
0a4a9391 6265got_name:
2c42cfbf
PZ
6266 /*
6267 * Since our buffer works in 8 byte units we need to align our string
6268 * size to a multiple of 8. However, we must guarantee the tail end is
6269 * zero'd out to avoid leaking random bits to userspace.
6270 */
6271 size = strlen(name)+1;
6272 while (!IS_ALIGNED(size, sizeof(u64)))
6273 name[size++] = '\0';
0a4a9391
PZ
6274
6275 mmap_event->file_name = name;
6276 mmap_event->file_size = size;
13d7a241
SE
6277 mmap_event->maj = maj;
6278 mmap_event->min = min;
6279 mmap_event->ino = ino;
6280 mmap_event->ino_generation = gen;
f972eb63
PZ
6281 mmap_event->prot = prot;
6282 mmap_event->flags = flags;
0a4a9391 6283
2fe85427
SE
6284 if (!(vma->vm_flags & VM_EXEC))
6285 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6286
cdd6c482 6287 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6288
67516844 6289 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6290 mmap_event,
6291 NULL);
665c2142 6292
0a4a9391
PZ
6293 kfree(buf);
6294}
6295
3af9e859 6296void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6297{
9ee318a7
PZ
6298 struct perf_mmap_event mmap_event;
6299
cdd6c482 6300 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6301 return;
6302
6303 mmap_event = (struct perf_mmap_event){
089dd79d 6304 .vma = vma,
573402db
PZ
6305 /* .file_name */
6306 /* .file_size */
cdd6c482 6307 .event_id = {
573402db 6308 .header = {
cdd6c482 6309 .type = PERF_RECORD_MMAP,
39447b38 6310 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6311 /* .size */
6312 },
6313 /* .pid */
6314 /* .tid */
089dd79d
PZ
6315 .start = vma->vm_start,
6316 .len = vma->vm_end - vma->vm_start,
3a0304e9 6317 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6318 },
13d7a241
SE
6319 /* .maj (attr_mmap2 only) */
6320 /* .min (attr_mmap2 only) */
6321 /* .ino (attr_mmap2 only) */
6322 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6323 /* .prot (attr_mmap2 only) */
6324 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6325 };
6326
cdd6c482 6327 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6328}
6329
68db7e98
AS
6330void perf_event_aux_event(struct perf_event *event, unsigned long head,
6331 unsigned long size, u64 flags)
6332{
6333 struct perf_output_handle handle;
6334 struct perf_sample_data sample;
6335 struct perf_aux_event {
6336 struct perf_event_header header;
6337 u64 offset;
6338 u64 size;
6339 u64 flags;
6340 } rec = {
6341 .header = {
6342 .type = PERF_RECORD_AUX,
6343 .misc = 0,
6344 .size = sizeof(rec),
6345 },
6346 .offset = head,
6347 .size = size,
6348 .flags = flags,
6349 };
6350 int ret;
6351
6352 perf_event_header__init_id(&rec.header, &sample, event);
6353 ret = perf_output_begin(&handle, event, rec.header.size);
6354
6355 if (ret)
6356 return;
6357
6358 perf_output_put(&handle, rec);
6359 perf_event__output_id_sample(event, &handle, &sample);
6360
6361 perf_output_end(&handle);
6362}
6363
f38b0dbb
KL
6364/*
6365 * Lost/dropped samples logging
6366 */
6367void perf_log_lost_samples(struct perf_event *event, u64 lost)
6368{
6369 struct perf_output_handle handle;
6370 struct perf_sample_data sample;
6371 int ret;
6372
6373 struct {
6374 struct perf_event_header header;
6375 u64 lost;
6376 } lost_samples_event = {
6377 .header = {
6378 .type = PERF_RECORD_LOST_SAMPLES,
6379 .misc = 0,
6380 .size = sizeof(lost_samples_event),
6381 },
6382 .lost = lost,
6383 };
6384
6385 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6386
6387 ret = perf_output_begin(&handle, event,
6388 lost_samples_event.header.size);
6389 if (ret)
6390 return;
6391
6392 perf_output_put(&handle, lost_samples_event);
6393 perf_event__output_id_sample(event, &handle, &sample);
6394 perf_output_end(&handle);
6395}
6396
45ac1403
AH
6397/*
6398 * context_switch tracking
6399 */
6400
6401struct perf_switch_event {
6402 struct task_struct *task;
6403 struct task_struct *next_prev;
6404
6405 struct {
6406 struct perf_event_header header;
6407 u32 next_prev_pid;
6408 u32 next_prev_tid;
6409 } event_id;
6410};
6411
6412static int perf_event_switch_match(struct perf_event *event)
6413{
6414 return event->attr.context_switch;
6415}
6416
6417static void perf_event_switch_output(struct perf_event *event, void *data)
6418{
6419 struct perf_switch_event *se = data;
6420 struct perf_output_handle handle;
6421 struct perf_sample_data sample;
6422 int ret;
6423
6424 if (!perf_event_switch_match(event))
6425 return;
6426
6427 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6428 if (event->ctx->task) {
6429 se->event_id.header.type = PERF_RECORD_SWITCH;
6430 se->event_id.header.size = sizeof(se->event_id.header);
6431 } else {
6432 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6433 se->event_id.header.size = sizeof(se->event_id);
6434 se->event_id.next_prev_pid =
6435 perf_event_pid(event, se->next_prev);
6436 se->event_id.next_prev_tid =
6437 perf_event_tid(event, se->next_prev);
6438 }
6439
6440 perf_event_header__init_id(&se->event_id.header, &sample, event);
6441
6442 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6443 if (ret)
6444 return;
6445
6446 if (event->ctx->task)
6447 perf_output_put(&handle, se->event_id.header);
6448 else
6449 perf_output_put(&handle, se->event_id);
6450
6451 perf_event__output_id_sample(event, &handle, &sample);
6452
6453 perf_output_end(&handle);
6454}
6455
6456static void perf_event_switch(struct task_struct *task,
6457 struct task_struct *next_prev, bool sched_in)
6458{
6459 struct perf_switch_event switch_event;
6460
6461 /* N.B. caller checks nr_switch_events != 0 */
6462
6463 switch_event = (struct perf_switch_event){
6464 .task = task,
6465 .next_prev = next_prev,
6466 .event_id = {
6467 .header = {
6468 /* .type */
6469 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6470 /* .size */
6471 },
6472 /* .next_prev_pid */
6473 /* .next_prev_tid */
6474 },
6475 };
6476
6477 perf_event_aux(perf_event_switch_output,
6478 &switch_event,
6479 NULL);
6480}
6481
a78ac325
PZ
6482/*
6483 * IRQ throttle logging
6484 */
6485
cdd6c482 6486static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6487{
6488 struct perf_output_handle handle;
c980d109 6489 struct perf_sample_data sample;
a78ac325
PZ
6490 int ret;
6491
6492 struct {
6493 struct perf_event_header header;
6494 u64 time;
cca3f454 6495 u64 id;
7f453c24 6496 u64 stream_id;
a78ac325
PZ
6497 } throttle_event = {
6498 .header = {
cdd6c482 6499 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6500 .misc = 0,
6501 .size = sizeof(throttle_event),
6502 },
34f43927 6503 .time = perf_event_clock(event),
cdd6c482
IM
6504 .id = primary_event_id(event),
6505 .stream_id = event->id,
a78ac325
PZ
6506 };
6507
966ee4d6 6508 if (enable)
cdd6c482 6509 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6510
c980d109
ACM
6511 perf_event_header__init_id(&throttle_event.header, &sample, event);
6512
6513 ret = perf_output_begin(&handle, event,
a7ac67ea 6514 throttle_event.header.size);
a78ac325
PZ
6515 if (ret)
6516 return;
6517
6518 perf_output_put(&handle, throttle_event);
c980d109 6519 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6520 perf_output_end(&handle);
6521}
6522
ec0d7729
AS
6523static void perf_log_itrace_start(struct perf_event *event)
6524{
6525 struct perf_output_handle handle;
6526 struct perf_sample_data sample;
6527 struct perf_aux_event {
6528 struct perf_event_header header;
6529 u32 pid;
6530 u32 tid;
6531 } rec;
6532 int ret;
6533
6534 if (event->parent)
6535 event = event->parent;
6536
6537 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6538 event->hw.itrace_started)
6539 return;
6540
ec0d7729
AS
6541 rec.header.type = PERF_RECORD_ITRACE_START;
6542 rec.header.misc = 0;
6543 rec.header.size = sizeof(rec);
6544 rec.pid = perf_event_pid(event, current);
6545 rec.tid = perf_event_tid(event, current);
6546
6547 perf_event_header__init_id(&rec.header, &sample, event);
6548 ret = perf_output_begin(&handle, event, rec.header.size);
6549
6550 if (ret)
6551 return;
6552
6553 perf_output_put(&handle, rec);
6554 perf_event__output_id_sample(event, &handle, &sample);
6555
6556 perf_output_end(&handle);
6557}
6558
f6c7d5fe 6559/*
cdd6c482 6560 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6561 */
6562
a8b0ca17 6563static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6564 int throttle, struct perf_sample_data *data,
6565 struct pt_regs *regs)
f6c7d5fe 6566{
cdd6c482
IM
6567 int events = atomic_read(&event->event_limit);
6568 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6569 u64 seq;
79f14641
PZ
6570 int ret = 0;
6571
96398826
PZ
6572 /*
6573 * Non-sampling counters might still use the PMI to fold short
6574 * hardware counters, ignore those.
6575 */
6576 if (unlikely(!is_sampling_event(event)))
6577 return 0;
6578
e050e3f0
SE
6579 seq = __this_cpu_read(perf_throttled_seq);
6580 if (seq != hwc->interrupts_seq) {
6581 hwc->interrupts_seq = seq;
6582 hwc->interrupts = 1;
6583 } else {
6584 hwc->interrupts++;
6585 if (unlikely(throttle
6586 && hwc->interrupts >= max_samples_per_tick)) {
6587 __this_cpu_inc(perf_throttled_count);
555e0c1e 6588 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
6589 hwc->interrupts = MAX_INTERRUPTS;
6590 perf_log_throttle(event, 0);
a78ac325
PZ
6591 ret = 1;
6592 }
e050e3f0 6593 }
60db5e09 6594
cdd6c482 6595 if (event->attr.freq) {
def0a9b2 6596 u64 now = perf_clock();
abd50713 6597 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6598
abd50713 6599 hwc->freq_time_stamp = now;
bd2b5b12 6600
abd50713 6601 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6602 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6603 }
6604
2023b359
PZ
6605 /*
6606 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6607 * events
2023b359
PZ
6608 */
6609
cdd6c482
IM
6610 event->pending_kill = POLL_IN;
6611 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6612 ret = 1;
cdd6c482 6613 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6614 event->pending_disable = 1;
6615 irq_work_queue(&event->pending);
79f14641
PZ
6616 }
6617
453f19ee 6618 if (event->overflow_handler)
a8b0ca17 6619 event->overflow_handler(event, data, regs);
453f19ee 6620 else
a8b0ca17 6621 perf_event_output(event, data, regs);
453f19ee 6622
fed66e2c 6623 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6624 event->pending_wakeup = 1;
6625 irq_work_queue(&event->pending);
f506b3dc
PZ
6626 }
6627
79f14641 6628 return ret;
f6c7d5fe
PZ
6629}
6630
a8b0ca17 6631int perf_event_overflow(struct perf_event *event,
5622f295
MM
6632 struct perf_sample_data *data,
6633 struct pt_regs *regs)
850bc73f 6634{
a8b0ca17 6635 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6636}
6637
15dbf27c 6638/*
cdd6c482 6639 * Generic software event infrastructure
15dbf27c
PZ
6640 */
6641
b28ab83c
PZ
6642struct swevent_htable {
6643 struct swevent_hlist *swevent_hlist;
6644 struct mutex hlist_mutex;
6645 int hlist_refcount;
6646
6647 /* Recursion avoidance in each contexts */
6648 int recursion[PERF_NR_CONTEXTS];
6649};
6650
6651static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6652
7b4b6658 6653/*
cdd6c482
IM
6654 * We directly increment event->count and keep a second value in
6655 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6656 * is kept in the range [-sample_period, 0] so that we can use the
6657 * sign as trigger.
6658 */
6659
ab573844 6660u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6661{
cdd6c482 6662 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6663 u64 period = hwc->last_period;
6664 u64 nr, offset;
6665 s64 old, val;
6666
6667 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6668
6669again:
e7850595 6670 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6671 if (val < 0)
6672 return 0;
15dbf27c 6673
7b4b6658
PZ
6674 nr = div64_u64(period + val, period);
6675 offset = nr * period;
6676 val -= offset;
e7850595 6677 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6678 goto again;
15dbf27c 6679
7b4b6658 6680 return nr;
15dbf27c
PZ
6681}
6682
0cff784a 6683static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6684 struct perf_sample_data *data,
5622f295 6685 struct pt_regs *regs)
15dbf27c 6686{
cdd6c482 6687 struct hw_perf_event *hwc = &event->hw;
850bc73f 6688 int throttle = 0;
15dbf27c 6689
0cff784a
PZ
6690 if (!overflow)
6691 overflow = perf_swevent_set_period(event);
15dbf27c 6692
7b4b6658
PZ
6693 if (hwc->interrupts == MAX_INTERRUPTS)
6694 return;
15dbf27c 6695
7b4b6658 6696 for (; overflow; overflow--) {
a8b0ca17 6697 if (__perf_event_overflow(event, throttle,
5622f295 6698 data, regs)) {
7b4b6658
PZ
6699 /*
6700 * We inhibit the overflow from happening when
6701 * hwc->interrupts == MAX_INTERRUPTS.
6702 */
6703 break;
6704 }
cf450a73 6705 throttle = 1;
7b4b6658 6706 }
15dbf27c
PZ
6707}
6708
a4eaf7f1 6709static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6710 struct perf_sample_data *data,
5622f295 6711 struct pt_regs *regs)
7b4b6658 6712{
cdd6c482 6713 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6714
e7850595 6715 local64_add(nr, &event->count);
d6d020e9 6716
0cff784a
PZ
6717 if (!regs)
6718 return;
6719
6c7e550f 6720 if (!is_sampling_event(event))
7b4b6658 6721 return;
d6d020e9 6722
5d81e5cf
AV
6723 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6724 data->period = nr;
6725 return perf_swevent_overflow(event, 1, data, regs);
6726 } else
6727 data->period = event->hw.last_period;
6728
0cff784a 6729 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6730 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6731
e7850595 6732 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6733 return;
df1a132b 6734
a8b0ca17 6735 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6736}
6737
f5ffe02e
FW
6738static int perf_exclude_event(struct perf_event *event,
6739 struct pt_regs *regs)
6740{
a4eaf7f1 6741 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6742 return 1;
a4eaf7f1 6743
f5ffe02e
FW
6744 if (regs) {
6745 if (event->attr.exclude_user && user_mode(regs))
6746 return 1;
6747
6748 if (event->attr.exclude_kernel && !user_mode(regs))
6749 return 1;
6750 }
6751
6752 return 0;
6753}
6754
cdd6c482 6755static int perf_swevent_match(struct perf_event *event,
1c432d89 6756 enum perf_type_id type,
6fb2915d
LZ
6757 u32 event_id,
6758 struct perf_sample_data *data,
6759 struct pt_regs *regs)
15dbf27c 6760{
cdd6c482 6761 if (event->attr.type != type)
a21ca2ca 6762 return 0;
f5ffe02e 6763
cdd6c482 6764 if (event->attr.config != event_id)
15dbf27c
PZ
6765 return 0;
6766
f5ffe02e
FW
6767 if (perf_exclude_event(event, regs))
6768 return 0;
15dbf27c
PZ
6769
6770 return 1;
6771}
6772
76e1d904
FW
6773static inline u64 swevent_hash(u64 type, u32 event_id)
6774{
6775 u64 val = event_id | (type << 32);
6776
6777 return hash_64(val, SWEVENT_HLIST_BITS);
6778}
6779
49f135ed
FW
6780static inline struct hlist_head *
6781__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6782{
49f135ed
FW
6783 u64 hash = swevent_hash(type, event_id);
6784
6785 return &hlist->heads[hash];
6786}
76e1d904 6787
49f135ed
FW
6788/* For the read side: events when they trigger */
6789static inline struct hlist_head *
b28ab83c 6790find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6791{
6792 struct swevent_hlist *hlist;
76e1d904 6793
b28ab83c 6794 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6795 if (!hlist)
6796 return NULL;
6797
49f135ed
FW
6798 return __find_swevent_head(hlist, type, event_id);
6799}
6800
6801/* For the event head insertion and removal in the hlist */
6802static inline struct hlist_head *
b28ab83c 6803find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6804{
6805 struct swevent_hlist *hlist;
6806 u32 event_id = event->attr.config;
6807 u64 type = event->attr.type;
6808
6809 /*
6810 * Event scheduling is always serialized against hlist allocation
6811 * and release. Which makes the protected version suitable here.
6812 * The context lock guarantees that.
6813 */
b28ab83c 6814 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6815 lockdep_is_held(&event->ctx->lock));
6816 if (!hlist)
6817 return NULL;
6818
6819 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6820}
6821
6822static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6823 u64 nr,
76e1d904
FW
6824 struct perf_sample_data *data,
6825 struct pt_regs *regs)
15dbf27c 6826{
4a32fea9 6827 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6828 struct perf_event *event;
76e1d904 6829 struct hlist_head *head;
15dbf27c 6830
76e1d904 6831 rcu_read_lock();
b28ab83c 6832 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6833 if (!head)
6834 goto end;
6835
b67bfe0d 6836 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6837 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6838 perf_swevent_event(event, nr, data, regs);
15dbf27c 6839 }
76e1d904
FW
6840end:
6841 rcu_read_unlock();
15dbf27c
PZ
6842}
6843
86038c5e
PZI
6844DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6845
4ed7c92d 6846int perf_swevent_get_recursion_context(void)
96f6d444 6847{
4a32fea9 6848 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6849
b28ab83c 6850 return get_recursion_context(swhash->recursion);
96f6d444 6851}
645e8cc0 6852EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6853
fa9f90be 6854inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6855{
4a32fea9 6856 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6857
b28ab83c 6858 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6859}
15dbf27c 6860
86038c5e 6861void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6862{
a4234bfc 6863 struct perf_sample_data data;
4ed7c92d 6864
86038c5e 6865 if (WARN_ON_ONCE(!regs))
4ed7c92d 6866 return;
a4234bfc 6867
fd0d000b 6868 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6869 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6870}
6871
6872void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6873{
6874 int rctx;
6875
6876 preempt_disable_notrace();
6877 rctx = perf_swevent_get_recursion_context();
6878 if (unlikely(rctx < 0))
6879 goto fail;
6880
6881 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6882
6883 perf_swevent_put_recursion_context(rctx);
86038c5e 6884fail:
1c024eca 6885 preempt_enable_notrace();
b8e83514
PZ
6886}
6887
cdd6c482 6888static void perf_swevent_read(struct perf_event *event)
15dbf27c 6889{
15dbf27c
PZ
6890}
6891
a4eaf7f1 6892static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6893{
4a32fea9 6894 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6895 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6896 struct hlist_head *head;
6897
6c7e550f 6898 if (is_sampling_event(event)) {
7b4b6658 6899 hwc->last_period = hwc->sample_period;
cdd6c482 6900 perf_swevent_set_period(event);
7b4b6658 6901 }
76e1d904 6902
a4eaf7f1
PZ
6903 hwc->state = !(flags & PERF_EF_START);
6904
b28ab83c 6905 head = find_swevent_head(swhash, event);
12ca6ad2 6906 if (WARN_ON_ONCE(!head))
76e1d904
FW
6907 return -EINVAL;
6908
6909 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6910 perf_event_update_userpage(event);
76e1d904 6911
15dbf27c
PZ
6912 return 0;
6913}
6914
a4eaf7f1 6915static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6916{
76e1d904 6917 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6918}
6919
a4eaf7f1 6920static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6921{
a4eaf7f1 6922 event->hw.state = 0;
d6d020e9 6923}
aa9c4c0f 6924
a4eaf7f1 6925static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6926{
a4eaf7f1 6927 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6928}
6929
49f135ed
FW
6930/* Deref the hlist from the update side */
6931static inline struct swevent_hlist *
b28ab83c 6932swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6933{
b28ab83c
PZ
6934 return rcu_dereference_protected(swhash->swevent_hlist,
6935 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6936}
6937
b28ab83c 6938static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6939{
b28ab83c 6940 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6941
49f135ed 6942 if (!hlist)
76e1d904
FW
6943 return;
6944
70691d4a 6945 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6946 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6947}
6948
3b364d7b 6949static void swevent_hlist_put_cpu(int cpu)
76e1d904 6950{
b28ab83c 6951 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6952
b28ab83c 6953 mutex_lock(&swhash->hlist_mutex);
76e1d904 6954
b28ab83c
PZ
6955 if (!--swhash->hlist_refcount)
6956 swevent_hlist_release(swhash);
76e1d904 6957
b28ab83c 6958 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6959}
6960
3b364d7b 6961static void swevent_hlist_put(void)
76e1d904
FW
6962{
6963 int cpu;
6964
76e1d904 6965 for_each_possible_cpu(cpu)
3b364d7b 6966 swevent_hlist_put_cpu(cpu);
76e1d904
FW
6967}
6968
3b364d7b 6969static int swevent_hlist_get_cpu(int cpu)
76e1d904 6970{
b28ab83c 6971 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6972 int err = 0;
6973
b28ab83c 6974 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6975 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6976 struct swevent_hlist *hlist;
6977
6978 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6979 if (!hlist) {
6980 err = -ENOMEM;
6981 goto exit;
6982 }
b28ab83c 6983 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6984 }
b28ab83c 6985 swhash->hlist_refcount++;
9ed6060d 6986exit:
b28ab83c 6987 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6988
6989 return err;
6990}
6991
3b364d7b 6992static int swevent_hlist_get(void)
76e1d904 6993{
3b364d7b 6994 int err, cpu, failed_cpu;
76e1d904 6995
76e1d904
FW
6996 get_online_cpus();
6997 for_each_possible_cpu(cpu) {
3b364d7b 6998 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
6999 if (err) {
7000 failed_cpu = cpu;
7001 goto fail;
7002 }
7003 }
7004 put_online_cpus();
7005
7006 return 0;
9ed6060d 7007fail:
76e1d904
FW
7008 for_each_possible_cpu(cpu) {
7009 if (cpu == failed_cpu)
7010 break;
3b364d7b 7011 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7012 }
7013
7014 put_online_cpus();
7015 return err;
7016}
7017
c5905afb 7018struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7019
b0a873eb
PZ
7020static void sw_perf_event_destroy(struct perf_event *event)
7021{
7022 u64 event_id = event->attr.config;
95476b64 7023
b0a873eb
PZ
7024 WARN_ON(event->parent);
7025
c5905afb 7026 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7027 swevent_hlist_put();
b0a873eb
PZ
7028}
7029
7030static int perf_swevent_init(struct perf_event *event)
7031{
8176cced 7032 u64 event_id = event->attr.config;
b0a873eb
PZ
7033
7034 if (event->attr.type != PERF_TYPE_SOFTWARE)
7035 return -ENOENT;
7036
2481c5fa
SE
7037 /*
7038 * no branch sampling for software events
7039 */
7040 if (has_branch_stack(event))
7041 return -EOPNOTSUPP;
7042
b0a873eb
PZ
7043 switch (event_id) {
7044 case PERF_COUNT_SW_CPU_CLOCK:
7045 case PERF_COUNT_SW_TASK_CLOCK:
7046 return -ENOENT;
7047
7048 default:
7049 break;
7050 }
7051
ce677831 7052 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7053 return -ENOENT;
7054
7055 if (!event->parent) {
7056 int err;
7057
3b364d7b 7058 err = swevent_hlist_get();
b0a873eb
PZ
7059 if (err)
7060 return err;
7061
c5905afb 7062 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7063 event->destroy = sw_perf_event_destroy;
7064 }
7065
7066 return 0;
7067}
7068
7069static struct pmu perf_swevent = {
89a1e187 7070 .task_ctx_nr = perf_sw_context,
95476b64 7071
34f43927
PZ
7072 .capabilities = PERF_PMU_CAP_NO_NMI,
7073
b0a873eb 7074 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7075 .add = perf_swevent_add,
7076 .del = perf_swevent_del,
7077 .start = perf_swevent_start,
7078 .stop = perf_swevent_stop,
1c024eca 7079 .read = perf_swevent_read,
1c024eca
PZ
7080};
7081
b0a873eb
PZ
7082#ifdef CONFIG_EVENT_TRACING
7083
1c024eca
PZ
7084static int perf_tp_filter_match(struct perf_event *event,
7085 struct perf_sample_data *data)
7086{
7087 void *record = data->raw->data;
7088
b71b437e
PZ
7089 /* only top level events have filters set */
7090 if (event->parent)
7091 event = event->parent;
7092
1c024eca
PZ
7093 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7094 return 1;
7095 return 0;
7096}
7097
7098static int perf_tp_event_match(struct perf_event *event,
7099 struct perf_sample_data *data,
7100 struct pt_regs *regs)
7101{
a0f7d0f7
FW
7102 if (event->hw.state & PERF_HES_STOPPED)
7103 return 0;
580d607c
PZ
7104 /*
7105 * All tracepoints are from kernel-space.
7106 */
7107 if (event->attr.exclude_kernel)
1c024eca
PZ
7108 return 0;
7109
7110 if (!perf_tp_filter_match(event, data))
7111 return 0;
7112
7113 return 1;
7114}
7115
7116void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
7117 struct pt_regs *regs, struct hlist_head *head, int rctx,
7118 struct task_struct *task)
95476b64
FW
7119{
7120 struct perf_sample_data data;
1c024eca 7121 struct perf_event *event;
1c024eca 7122
95476b64
FW
7123 struct perf_raw_record raw = {
7124 .size = entry_size,
7125 .data = record,
7126 };
7127
fd0d000b 7128 perf_sample_data_init(&data, addr, 0);
95476b64
FW
7129 data.raw = &raw;
7130
b67bfe0d 7131 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7132 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7133 perf_swevent_event(event, count, &data, regs);
4f41c013 7134 }
ecc55f84 7135
e6dab5ff
AV
7136 /*
7137 * If we got specified a target task, also iterate its context and
7138 * deliver this event there too.
7139 */
7140 if (task && task != current) {
7141 struct perf_event_context *ctx;
7142 struct trace_entry *entry = record;
7143
7144 rcu_read_lock();
7145 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7146 if (!ctx)
7147 goto unlock;
7148
7149 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7150 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7151 continue;
7152 if (event->attr.config != entry->type)
7153 continue;
7154 if (perf_tp_event_match(event, &data, regs))
7155 perf_swevent_event(event, count, &data, regs);
7156 }
7157unlock:
7158 rcu_read_unlock();
7159 }
7160
ecc55f84 7161 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7162}
7163EXPORT_SYMBOL_GPL(perf_tp_event);
7164
cdd6c482 7165static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7166{
1c024eca 7167 perf_trace_destroy(event);
e077df4f
PZ
7168}
7169
b0a873eb 7170static int perf_tp_event_init(struct perf_event *event)
e077df4f 7171{
76e1d904
FW
7172 int err;
7173
b0a873eb
PZ
7174 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7175 return -ENOENT;
7176
2481c5fa
SE
7177 /*
7178 * no branch sampling for tracepoint events
7179 */
7180 if (has_branch_stack(event))
7181 return -EOPNOTSUPP;
7182
1c024eca
PZ
7183 err = perf_trace_init(event);
7184 if (err)
b0a873eb 7185 return err;
e077df4f 7186
cdd6c482 7187 event->destroy = tp_perf_event_destroy;
e077df4f 7188
b0a873eb
PZ
7189 return 0;
7190}
7191
7192static struct pmu perf_tracepoint = {
89a1e187
PZ
7193 .task_ctx_nr = perf_sw_context,
7194
b0a873eb 7195 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7196 .add = perf_trace_add,
7197 .del = perf_trace_del,
7198 .start = perf_swevent_start,
7199 .stop = perf_swevent_stop,
b0a873eb 7200 .read = perf_swevent_read,
b0a873eb
PZ
7201};
7202
7203static inline void perf_tp_register(void)
7204{
2e80a82a 7205 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7206}
6fb2915d
LZ
7207
7208static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7209{
7210 char *filter_str;
7211 int ret;
7212
7213 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7214 return -EINVAL;
7215
7216 filter_str = strndup_user(arg, PAGE_SIZE);
7217 if (IS_ERR(filter_str))
7218 return PTR_ERR(filter_str);
7219
7220 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7221
7222 kfree(filter_str);
7223 return ret;
7224}
7225
7226static void perf_event_free_filter(struct perf_event *event)
7227{
7228 ftrace_profile_free_filter(event);
7229}
7230
2541517c
AS
7231static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7232{
7233 struct bpf_prog *prog;
7234
7235 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7236 return -EINVAL;
7237
7238 if (event->tp_event->prog)
7239 return -EEXIST;
7240
04a22fae
WN
7241 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7242 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7243 return -EINVAL;
7244
7245 prog = bpf_prog_get(prog_fd);
7246 if (IS_ERR(prog))
7247 return PTR_ERR(prog);
7248
6c373ca8 7249 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7250 /* valid fd, but invalid bpf program type */
7251 bpf_prog_put(prog);
7252 return -EINVAL;
7253 }
7254
7255 event->tp_event->prog = prog;
7256
7257 return 0;
7258}
7259
7260static void perf_event_free_bpf_prog(struct perf_event *event)
7261{
7262 struct bpf_prog *prog;
7263
7264 if (!event->tp_event)
7265 return;
7266
7267 prog = event->tp_event->prog;
7268 if (prog) {
7269 event->tp_event->prog = NULL;
7270 bpf_prog_put(prog);
7271 }
7272}
7273
e077df4f 7274#else
6fb2915d 7275
b0a873eb 7276static inline void perf_tp_register(void)
e077df4f 7277{
e077df4f 7278}
6fb2915d
LZ
7279
7280static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7281{
7282 return -ENOENT;
7283}
7284
7285static void perf_event_free_filter(struct perf_event *event)
7286{
7287}
7288
2541517c
AS
7289static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7290{
7291 return -ENOENT;
7292}
7293
7294static void perf_event_free_bpf_prog(struct perf_event *event)
7295{
7296}
07b139c8 7297#endif /* CONFIG_EVENT_TRACING */
e077df4f 7298
24f1e32c 7299#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7300void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7301{
f5ffe02e
FW
7302 struct perf_sample_data sample;
7303 struct pt_regs *regs = data;
7304
fd0d000b 7305 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7306
a4eaf7f1 7307 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7308 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7309}
7310#endif
7311
b0a873eb
PZ
7312/*
7313 * hrtimer based swevent callback
7314 */
f29ac756 7315
b0a873eb 7316static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7317{
b0a873eb
PZ
7318 enum hrtimer_restart ret = HRTIMER_RESTART;
7319 struct perf_sample_data data;
7320 struct pt_regs *regs;
7321 struct perf_event *event;
7322 u64 period;
f29ac756 7323
b0a873eb 7324 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7325
7326 if (event->state != PERF_EVENT_STATE_ACTIVE)
7327 return HRTIMER_NORESTART;
7328
b0a873eb 7329 event->pmu->read(event);
f344011c 7330
fd0d000b 7331 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7332 regs = get_irq_regs();
7333
7334 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7335 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7336 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7337 ret = HRTIMER_NORESTART;
7338 }
24f1e32c 7339
b0a873eb
PZ
7340 period = max_t(u64, 10000, event->hw.sample_period);
7341 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7342
b0a873eb 7343 return ret;
f29ac756
PZ
7344}
7345
b0a873eb 7346static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7347{
b0a873eb 7348 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7349 s64 period;
7350
7351 if (!is_sampling_event(event))
7352 return;
f5ffe02e 7353
5d508e82
FBH
7354 period = local64_read(&hwc->period_left);
7355 if (period) {
7356 if (period < 0)
7357 period = 10000;
fa407f35 7358
5d508e82
FBH
7359 local64_set(&hwc->period_left, 0);
7360 } else {
7361 period = max_t(u64, 10000, hwc->sample_period);
7362 }
3497d206
TG
7363 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7364 HRTIMER_MODE_REL_PINNED);
24f1e32c 7365}
b0a873eb
PZ
7366
7367static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7368{
b0a873eb
PZ
7369 struct hw_perf_event *hwc = &event->hw;
7370
6c7e550f 7371 if (is_sampling_event(event)) {
b0a873eb 7372 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7373 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7374
7375 hrtimer_cancel(&hwc->hrtimer);
7376 }
24f1e32c
FW
7377}
7378
ba3dd36c
PZ
7379static void perf_swevent_init_hrtimer(struct perf_event *event)
7380{
7381 struct hw_perf_event *hwc = &event->hw;
7382
7383 if (!is_sampling_event(event))
7384 return;
7385
7386 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7387 hwc->hrtimer.function = perf_swevent_hrtimer;
7388
7389 /*
7390 * Since hrtimers have a fixed rate, we can do a static freq->period
7391 * mapping and avoid the whole period adjust feedback stuff.
7392 */
7393 if (event->attr.freq) {
7394 long freq = event->attr.sample_freq;
7395
7396 event->attr.sample_period = NSEC_PER_SEC / freq;
7397 hwc->sample_period = event->attr.sample_period;
7398 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7399 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7400 event->attr.freq = 0;
7401 }
7402}
7403
b0a873eb
PZ
7404/*
7405 * Software event: cpu wall time clock
7406 */
7407
7408static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7409{
b0a873eb
PZ
7410 s64 prev;
7411 u64 now;
7412
a4eaf7f1 7413 now = local_clock();
b0a873eb
PZ
7414 prev = local64_xchg(&event->hw.prev_count, now);
7415 local64_add(now - prev, &event->count);
24f1e32c 7416}
24f1e32c 7417
a4eaf7f1 7418static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7419{
a4eaf7f1 7420 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7421 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7422}
7423
a4eaf7f1 7424static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7425{
b0a873eb
PZ
7426 perf_swevent_cancel_hrtimer(event);
7427 cpu_clock_event_update(event);
7428}
f29ac756 7429
a4eaf7f1
PZ
7430static int cpu_clock_event_add(struct perf_event *event, int flags)
7431{
7432 if (flags & PERF_EF_START)
7433 cpu_clock_event_start(event, flags);
6a694a60 7434 perf_event_update_userpage(event);
a4eaf7f1
PZ
7435
7436 return 0;
7437}
7438
7439static void cpu_clock_event_del(struct perf_event *event, int flags)
7440{
7441 cpu_clock_event_stop(event, flags);
7442}
7443
b0a873eb
PZ
7444static void cpu_clock_event_read(struct perf_event *event)
7445{
7446 cpu_clock_event_update(event);
7447}
f344011c 7448
b0a873eb
PZ
7449static int cpu_clock_event_init(struct perf_event *event)
7450{
7451 if (event->attr.type != PERF_TYPE_SOFTWARE)
7452 return -ENOENT;
7453
7454 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7455 return -ENOENT;
7456
2481c5fa
SE
7457 /*
7458 * no branch sampling for software events
7459 */
7460 if (has_branch_stack(event))
7461 return -EOPNOTSUPP;
7462
ba3dd36c
PZ
7463 perf_swevent_init_hrtimer(event);
7464
b0a873eb 7465 return 0;
f29ac756
PZ
7466}
7467
b0a873eb 7468static struct pmu perf_cpu_clock = {
89a1e187
PZ
7469 .task_ctx_nr = perf_sw_context,
7470
34f43927
PZ
7471 .capabilities = PERF_PMU_CAP_NO_NMI,
7472
b0a873eb 7473 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7474 .add = cpu_clock_event_add,
7475 .del = cpu_clock_event_del,
7476 .start = cpu_clock_event_start,
7477 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7478 .read = cpu_clock_event_read,
7479};
7480
7481/*
7482 * Software event: task time clock
7483 */
7484
7485static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7486{
b0a873eb
PZ
7487 u64 prev;
7488 s64 delta;
5c92d124 7489
b0a873eb
PZ
7490 prev = local64_xchg(&event->hw.prev_count, now);
7491 delta = now - prev;
7492 local64_add(delta, &event->count);
7493}
5c92d124 7494
a4eaf7f1 7495static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7496{
a4eaf7f1 7497 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7498 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7499}
7500
a4eaf7f1 7501static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7502{
7503 perf_swevent_cancel_hrtimer(event);
7504 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7505}
7506
7507static int task_clock_event_add(struct perf_event *event, int flags)
7508{
7509 if (flags & PERF_EF_START)
7510 task_clock_event_start(event, flags);
6a694a60 7511 perf_event_update_userpage(event);
b0a873eb 7512
a4eaf7f1
PZ
7513 return 0;
7514}
7515
7516static void task_clock_event_del(struct perf_event *event, int flags)
7517{
7518 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7519}
7520
7521static void task_clock_event_read(struct perf_event *event)
7522{
768a06e2
PZ
7523 u64 now = perf_clock();
7524 u64 delta = now - event->ctx->timestamp;
7525 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7526
7527 task_clock_event_update(event, time);
7528}
7529
7530static int task_clock_event_init(struct perf_event *event)
6fb2915d 7531{
b0a873eb
PZ
7532 if (event->attr.type != PERF_TYPE_SOFTWARE)
7533 return -ENOENT;
7534
7535 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7536 return -ENOENT;
7537
2481c5fa
SE
7538 /*
7539 * no branch sampling for software events
7540 */
7541 if (has_branch_stack(event))
7542 return -EOPNOTSUPP;
7543
ba3dd36c
PZ
7544 perf_swevent_init_hrtimer(event);
7545
b0a873eb 7546 return 0;
6fb2915d
LZ
7547}
7548
b0a873eb 7549static struct pmu perf_task_clock = {
89a1e187
PZ
7550 .task_ctx_nr = perf_sw_context,
7551
34f43927
PZ
7552 .capabilities = PERF_PMU_CAP_NO_NMI,
7553
b0a873eb 7554 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7555 .add = task_clock_event_add,
7556 .del = task_clock_event_del,
7557 .start = task_clock_event_start,
7558 .stop = task_clock_event_stop,
b0a873eb
PZ
7559 .read = task_clock_event_read,
7560};
6fb2915d 7561
ad5133b7 7562static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7563{
e077df4f 7564}
6fb2915d 7565
fbbe0701
SB
7566static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7567{
7568}
7569
ad5133b7 7570static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7571{
ad5133b7 7572 return 0;
6fb2915d
LZ
7573}
7574
18ab2cd3 7575static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7576
7577static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7578{
fbbe0701
SB
7579 __this_cpu_write(nop_txn_flags, flags);
7580
7581 if (flags & ~PERF_PMU_TXN_ADD)
7582 return;
7583
ad5133b7 7584 perf_pmu_disable(pmu);
6fb2915d
LZ
7585}
7586
ad5133b7
PZ
7587static int perf_pmu_commit_txn(struct pmu *pmu)
7588{
fbbe0701
SB
7589 unsigned int flags = __this_cpu_read(nop_txn_flags);
7590
7591 __this_cpu_write(nop_txn_flags, 0);
7592
7593 if (flags & ~PERF_PMU_TXN_ADD)
7594 return 0;
7595
ad5133b7
PZ
7596 perf_pmu_enable(pmu);
7597 return 0;
7598}
e077df4f 7599
ad5133b7 7600static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7601{
fbbe0701
SB
7602 unsigned int flags = __this_cpu_read(nop_txn_flags);
7603
7604 __this_cpu_write(nop_txn_flags, 0);
7605
7606 if (flags & ~PERF_PMU_TXN_ADD)
7607 return;
7608
ad5133b7 7609 perf_pmu_enable(pmu);
24f1e32c
FW
7610}
7611
35edc2a5
PZ
7612static int perf_event_idx_default(struct perf_event *event)
7613{
c719f560 7614 return 0;
35edc2a5
PZ
7615}
7616
8dc85d54
PZ
7617/*
7618 * Ensures all contexts with the same task_ctx_nr have the same
7619 * pmu_cpu_context too.
7620 */
9e317041 7621static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7622{
8dc85d54 7623 struct pmu *pmu;
b326e956 7624
8dc85d54
PZ
7625 if (ctxn < 0)
7626 return NULL;
24f1e32c 7627
8dc85d54
PZ
7628 list_for_each_entry(pmu, &pmus, entry) {
7629 if (pmu->task_ctx_nr == ctxn)
7630 return pmu->pmu_cpu_context;
7631 }
24f1e32c 7632
8dc85d54 7633 return NULL;
24f1e32c
FW
7634}
7635
51676957 7636static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7637{
51676957
PZ
7638 int cpu;
7639
7640 for_each_possible_cpu(cpu) {
7641 struct perf_cpu_context *cpuctx;
7642
7643 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7644
3f1f3320
PZ
7645 if (cpuctx->unique_pmu == old_pmu)
7646 cpuctx->unique_pmu = pmu;
51676957
PZ
7647 }
7648}
7649
7650static void free_pmu_context(struct pmu *pmu)
7651{
7652 struct pmu *i;
f5ffe02e 7653
8dc85d54 7654 mutex_lock(&pmus_lock);
0475f9ea 7655 /*
8dc85d54 7656 * Like a real lame refcount.
0475f9ea 7657 */
51676957
PZ
7658 list_for_each_entry(i, &pmus, entry) {
7659 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7660 update_pmu_context(i, pmu);
8dc85d54 7661 goto out;
51676957 7662 }
8dc85d54 7663 }
d6d020e9 7664
51676957 7665 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7666out:
7667 mutex_unlock(&pmus_lock);
24f1e32c 7668}
2e80a82a 7669static struct idr pmu_idr;
d6d020e9 7670
abe43400
PZ
7671static ssize_t
7672type_show(struct device *dev, struct device_attribute *attr, char *page)
7673{
7674 struct pmu *pmu = dev_get_drvdata(dev);
7675
7676 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7677}
90826ca7 7678static DEVICE_ATTR_RO(type);
abe43400 7679
62b85639
SE
7680static ssize_t
7681perf_event_mux_interval_ms_show(struct device *dev,
7682 struct device_attribute *attr,
7683 char *page)
7684{
7685 struct pmu *pmu = dev_get_drvdata(dev);
7686
7687 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7688}
7689
272325c4
PZ
7690static DEFINE_MUTEX(mux_interval_mutex);
7691
62b85639
SE
7692static ssize_t
7693perf_event_mux_interval_ms_store(struct device *dev,
7694 struct device_attribute *attr,
7695 const char *buf, size_t count)
7696{
7697 struct pmu *pmu = dev_get_drvdata(dev);
7698 int timer, cpu, ret;
7699
7700 ret = kstrtoint(buf, 0, &timer);
7701 if (ret)
7702 return ret;
7703
7704 if (timer < 1)
7705 return -EINVAL;
7706
7707 /* same value, noting to do */
7708 if (timer == pmu->hrtimer_interval_ms)
7709 return count;
7710
272325c4 7711 mutex_lock(&mux_interval_mutex);
62b85639
SE
7712 pmu->hrtimer_interval_ms = timer;
7713
7714 /* update all cpuctx for this PMU */
272325c4
PZ
7715 get_online_cpus();
7716 for_each_online_cpu(cpu) {
62b85639
SE
7717 struct perf_cpu_context *cpuctx;
7718 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7719 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7720
272325c4
PZ
7721 cpu_function_call(cpu,
7722 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7723 }
272325c4
PZ
7724 put_online_cpus();
7725 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7726
7727 return count;
7728}
90826ca7 7729static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7730
90826ca7
GKH
7731static struct attribute *pmu_dev_attrs[] = {
7732 &dev_attr_type.attr,
7733 &dev_attr_perf_event_mux_interval_ms.attr,
7734 NULL,
abe43400 7735};
90826ca7 7736ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7737
7738static int pmu_bus_running;
7739static struct bus_type pmu_bus = {
7740 .name = "event_source",
90826ca7 7741 .dev_groups = pmu_dev_groups,
abe43400
PZ
7742};
7743
7744static void pmu_dev_release(struct device *dev)
7745{
7746 kfree(dev);
7747}
7748
7749static int pmu_dev_alloc(struct pmu *pmu)
7750{
7751 int ret = -ENOMEM;
7752
7753 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7754 if (!pmu->dev)
7755 goto out;
7756
0c9d42ed 7757 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7758 device_initialize(pmu->dev);
7759 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7760 if (ret)
7761 goto free_dev;
7762
7763 dev_set_drvdata(pmu->dev, pmu);
7764 pmu->dev->bus = &pmu_bus;
7765 pmu->dev->release = pmu_dev_release;
7766 ret = device_add(pmu->dev);
7767 if (ret)
7768 goto free_dev;
7769
7770out:
7771 return ret;
7772
7773free_dev:
7774 put_device(pmu->dev);
7775 goto out;
7776}
7777
547e9fd7 7778static struct lock_class_key cpuctx_mutex;
facc4307 7779static struct lock_class_key cpuctx_lock;
547e9fd7 7780
03d8e80b 7781int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7782{
108b02cf 7783 int cpu, ret;
24f1e32c 7784
b0a873eb 7785 mutex_lock(&pmus_lock);
33696fc0
PZ
7786 ret = -ENOMEM;
7787 pmu->pmu_disable_count = alloc_percpu(int);
7788 if (!pmu->pmu_disable_count)
7789 goto unlock;
f29ac756 7790
2e80a82a
PZ
7791 pmu->type = -1;
7792 if (!name)
7793 goto skip_type;
7794 pmu->name = name;
7795
7796 if (type < 0) {
0e9c3be2
TH
7797 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7798 if (type < 0) {
7799 ret = type;
2e80a82a
PZ
7800 goto free_pdc;
7801 }
7802 }
7803 pmu->type = type;
7804
abe43400
PZ
7805 if (pmu_bus_running) {
7806 ret = pmu_dev_alloc(pmu);
7807 if (ret)
7808 goto free_idr;
7809 }
7810
2e80a82a 7811skip_type:
26657848
PZ
7812 if (pmu->task_ctx_nr == perf_hw_context) {
7813 static int hw_context_taken = 0;
7814
7815 if (WARN_ON_ONCE(hw_context_taken))
7816 pmu->task_ctx_nr = perf_invalid_context;
7817
7818 hw_context_taken = 1;
7819 }
7820
8dc85d54
PZ
7821 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7822 if (pmu->pmu_cpu_context)
7823 goto got_cpu_context;
f29ac756 7824
c4814202 7825 ret = -ENOMEM;
108b02cf
PZ
7826 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7827 if (!pmu->pmu_cpu_context)
abe43400 7828 goto free_dev;
f344011c 7829
108b02cf
PZ
7830 for_each_possible_cpu(cpu) {
7831 struct perf_cpu_context *cpuctx;
7832
7833 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7834 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7835 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7836 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7837 cpuctx->ctx.pmu = pmu;
9e630205 7838
272325c4 7839 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7840
3f1f3320 7841 cpuctx->unique_pmu = pmu;
108b02cf 7842 }
76e1d904 7843
8dc85d54 7844got_cpu_context:
ad5133b7
PZ
7845 if (!pmu->start_txn) {
7846 if (pmu->pmu_enable) {
7847 /*
7848 * If we have pmu_enable/pmu_disable calls, install
7849 * transaction stubs that use that to try and batch
7850 * hardware accesses.
7851 */
7852 pmu->start_txn = perf_pmu_start_txn;
7853 pmu->commit_txn = perf_pmu_commit_txn;
7854 pmu->cancel_txn = perf_pmu_cancel_txn;
7855 } else {
fbbe0701 7856 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7857 pmu->commit_txn = perf_pmu_nop_int;
7858 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7859 }
5c92d124 7860 }
15dbf27c 7861
ad5133b7
PZ
7862 if (!pmu->pmu_enable) {
7863 pmu->pmu_enable = perf_pmu_nop_void;
7864 pmu->pmu_disable = perf_pmu_nop_void;
7865 }
7866
35edc2a5
PZ
7867 if (!pmu->event_idx)
7868 pmu->event_idx = perf_event_idx_default;
7869
b0a873eb 7870 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7871 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7872 ret = 0;
7873unlock:
b0a873eb
PZ
7874 mutex_unlock(&pmus_lock);
7875
33696fc0 7876 return ret;
108b02cf 7877
abe43400
PZ
7878free_dev:
7879 device_del(pmu->dev);
7880 put_device(pmu->dev);
7881
2e80a82a
PZ
7882free_idr:
7883 if (pmu->type >= PERF_TYPE_MAX)
7884 idr_remove(&pmu_idr, pmu->type);
7885
108b02cf
PZ
7886free_pdc:
7887 free_percpu(pmu->pmu_disable_count);
7888 goto unlock;
f29ac756 7889}
c464c76e 7890EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7891
b0a873eb 7892void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7893{
b0a873eb
PZ
7894 mutex_lock(&pmus_lock);
7895 list_del_rcu(&pmu->entry);
7896 mutex_unlock(&pmus_lock);
5c92d124 7897
0475f9ea 7898 /*
cde8e884
PZ
7899 * We dereference the pmu list under both SRCU and regular RCU, so
7900 * synchronize against both of those.
0475f9ea 7901 */
b0a873eb 7902 synchronize_srcu(&pmus_srcu);
cde8e884 7903 synchronize_rcu();
d6d020e9 7904
33696fc0 7905 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7906 if (pmu->type >= PERF_TYPE_MAX)
7907 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7908 device_del(pmu->dev);
7909 put_device(pmu->dev);
51676957 7910 free_pmu_context(pmu);
b0a873eb 7911}
c464c76e 7912EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7913
cc34b98b
MR
7914static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7915{
ccd41c86 7916 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7917 int ret;
7918
7919 if (!try_module_get(pmu->module))
7920 return -ENODEV;
ccd41c86
PZ
7921
7922 if (event->group_leader != event) {
8b10c5e2
PZ
7923 /*
7924 * This ctx->mutex can nest when we're called through
7925 * inheritance. See the perf_event_ctx_lock_nested() comment.
7926 */
7927 ctx = perf_event_ctx_lock_nested(event->group_leader,
7928 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7929 BUG_ON(!ctx);
7930 }
7931
cc34b98b
MR
7932 event->pmu = pmu;
7933 ret = pmu->event_init(event);
ccd41c86
PZ
7934
7935 if (ctx)
7936 perf_event_ctx_unlock(event->group_leader, ctx);
7937
cc34b98b
MR
7938 if (ret)
7939 module_put(pmu->module);
7940
7941 return ret;
7942}
7943
18ab2cd3 7944static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7945{
7946 struct pmu *pmu = NULL;
7947 int idx;
940c5b29 7948 int ret;
b0a873eb
PZ
7949
7950 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7951
7952 rcu_read_lock();
7953 pmu = idr_find(&pmu_idr, event->attr.type);
7954 rcu_read_unlock();
940c5b29 7955 if (pmu) {
cc34b98b 7956 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7957 if (ret)
7958 pmu = ERR_PTR(ret);
2e80a82a 7959 goto unlock;
940c5b29 7960 }
2e80a82a 7961
b0a873eb 7962 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7963 ret = perf_try_init_event(pmu, event);
b0a873eb 7964 if (!ret)
e5f4d339 7965 goto unlock;
76e1d904 7966
b0a873eb
PZ
7967 if (ret != -ENOENT) {
7968 pmu = ERR_PTR(ret);
e5f4d339 7969 goto unlock;
f344011c 7970 }
5c92d124 7971 }
e5f4d339
PZ
7972 pmu = ERR_PTR(-ENOENT);
7973unlock:
b0a873eb 7974 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7975
4aeb0b42 7976 return pmu;
5c92d124
IM
7977}
7978
4beb31f3
FW
7979static void account_event_cpu(struct perf_event *event, int cpu)
7980{
7981 if (event->parent)
7982 return;
7983
4beb31f3
FW
7984 if (is_cgroup_event(event))
7985 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7986}
7987
555e0c1e
FW
7988/* Freq events need the tick to stay alive (see perf_event_task_tick). */
7989static void account_freq_event_nohz(void)
7990{
7991#ifdef CONFIG_NO_HZ_FULL
7992 /* Lock so we don't race with concurrent unaccount */
7993 spin_lock(&nr_freq_lock);
7994 if (atomic_inc_return(&nr_freq_events) == 1)
7995 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
7996 spin_unlock(&nr_freq_lock);
7997#endif
7998}
7999
8000static void account_freq_event(void)
8001{
8002 if (tick_nohz_full_enabled())
8003 account_freq_event_nohz();
8004 else
8005 atomic_inc(&nr_freq_events);
8006}
8007
8008
766d6c07
FW
8009static void account_event(struct perf_event *event)
8010{
25432ae9
PZ
8011 bool inc = false;
8012
4beb31f3
FW
8013 if (event->parent)
8014 return;
8015
766d6c07 8016 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 8017 inc = true;
766d6c07
FW
8018 if (event->attr.mmap || event->attr.mmap_data)
8019 atomic_inc(&nr_mmap_events);
8020 if (event->attr.comm)
8021 atomic_inc(&nr_comm_events);
8022 if (event->attr.task)
8023 atomic_inc(&nr_task_events);
555e0c1e
FW
8024 if (event->attr.freq)
8025 account_freq_event();
45ac1403
AH
8026 if (event->attr.context_switch) {
8027 atomic_inc(&nr_switch_events);
25432ae9 8028 inc = true;
45ac1403 8029 }
4beb31f3 8030 if (has_branch_stack(event))
25432ae9 8031 inc = true;
4beb31f3 8032 if (is_cgroup_event(event))
25432ae9
PZ
8033 inc = true;
8034
9107c89e
PZ
8035 if (inc) {
8036 if (atomic_inc_not_zero(&perf_sched_count))
8037 goto enabled;
8038
8039 mutex_lock(&perf_sched_mutex);
8040 if (!atomic_read(&perf_sched_count)) {
8041 static_branch_enable(&perf_sched_events);
8042 /*
8043 * Guarantee that all CPUs observe they key change and
8044 * call the perf scheduling hooks before proceeding to
8045 * install events that need them.
8046 */
8047 synchronize_sched();
8048 }
8049 /*
8050 * Now that we have waited for the sync_sched(), allow further
8051 * increments to by-pass the mutex.
8052 */
8053 atomic_inc(&perf_sched_count);
8054 mutex_unlock(&perf_sched_mutex);
8055 }
8056enabled:
4beb31f3
FW
8057
8058 account_event_cpu(event, event->cpu);
766d6c07
FW
8059}
8060
0793a61d 8061/*
cdd6c482 8062 * Allocate and initialize a event structure
0793a61d 8063 */
cdd6c482 8064static struct perf_event *
c3f00c70 8065perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
8066 struct task_struct *task,
8067 struct perf_event *group_leader,
8068 struct perf_event *parent_event,
4dc0da86 8069 perf_overflow_handler_t overflow_handler,
79dff51e 8070 void *context, int cgroup_fd)
0793a61d 8071{
51b0fe39 8072 struct pmu *pmu;
cdd6c482
IM
8073 struct perf_event *event;
8074 struct hw_perf_event *hwc;
90983b16 8075 long err = -EINVAL;
0793a61d 8076
66832eb4
ON
8077 if ((unsigned)cpu >= nr_cpu_ids) {
8078 if (!task || cpu != -1)
8079 return ERR_PTR(-EINVAL);
8080 }
8081
c3f00c70 8082 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 8083 if (!event)
d5d2bc0d 8084 return ERR_PTR(-ENOMEM);
0793a61d 8085
04289bb9 8086 /*
cdd6c482 8087 * Single events are their own group leaders, with an
04289bb9
IM
8088 * empty sibling list:
8089 */
8090 if (!group_leader)
cdd6c482 8091 group_leader = event;
04289bb9 8092
cdd6c482
IM
8093 mutex_init(&event->child_mutex);
8094 INIT_LIST_HEAD(&event->child_list);
fccc714b 8095
cdd6c482
IM
8096 INIT_LIST_HEAD(&event->group_entry);
8097 INIT_LIST_HEAD(&event->event_entry);
8098 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 8099 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 8100 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
8101 INIT_HLIST_NODE(&event->hlist_entry);
8102
10c6db11 8103
cdd6c482 8104 init_waitqueue_head(&event->waitq);
e360adbe 8105 init_irq_work(&event->pending, perf_pending_event);
0793a61d 8106
cdd6c482 8107 mutex_init(&event->mmap_mutex);
7b732a75 8108
a6fa941d 8109 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
8110 event->cpu = cpu;
8111 event->attr = *attr;
8112 event->group_leader = group_leader;
8113 event->pmu = NULL;
cdd6c482 8114 event->oncpu = -1;
a96bbc16 8115
cdd6c482 8116 event->parent = parent_event;
b84fbc9f 8117
17cf22c3 8118 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 8119 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 8120
cdd6c482 8121 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 8122
d580ff86
PZ
8123 if (task) {
8124 event->attach_state = PERF_ATTACH_TASK;
d580ff86 8125 /*
50f16a8b
PZ
8126 * XXX pmu::event_init needs to know what task to account to
8127 * and we cannot use the ctx information because we need the
8128 * pmu before we get a ctx.
d580ff86 8129 */
50f16a8b 8130 event->hw.target = task;
d580ff86
PZ
8131 }
8132
34f43927
PZ
8133 event->clock = &local_clock;
8134 if (parent_event)
8135 event->clock = parent_event->clock;
8136
4dc0da86 8137 if (!overflow_handler && parent_event) {
b326e956 8138 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8139 context = parent_event->overflow_handler_context;
8140 }
66832eb4 8141
b326e956 8142 event->overflow_handler = overflow_handler;
4dc0da86 8143 event->overflow_handler_context = context;
97eaf530 8144
0231bb53 8145 perf_event__state_init(event);
a86ed508 8146
4aeb0b42 8147 pmu = NULL;
b8e83514 8148
cdd6c482 8149 hwc = &event->hw;
bd2b5b12 8150 hwc->sample_period = attr->sample_period;
0d48696f 8151 if (attr->freq && attr->sample_freq)
bd2b5b12 8152 hwc->sample_period = 1;
eced1dfc 8153 hwc->last_period = hwc->sample_period;
bd2b5b12 8154
e7850595 8155 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 8156
2023b359 8157 /*
cdd6c482 8158 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 8159 */
3dab77fb 8160 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 8161 goto err_ns;
a46a2300
YZ
8162
8163 if (!has_branch_stack(event))
8164 event->attr.branch_sample_type = 0;
2023b359 8165
79dff51e
MF
8166 if (cgroup_fd != -1) {
8167 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8168 if (err)
8169 goto err_ns;
8170 }
8171
b0a873eb 8172 pmu = perf_init_event(event);
4aeb0b42 8173 if (!pmu)
90983b16
FW
8174 goto err_ns;
8175 else if (IS_ERR(pmu)) {
4aeb0b42 8176 err = PTR_ERR(pmu);
90983b16 8177 goto err_ns;
621a01ea 8178 }
d5d2bc0d 8179
bed5b25a
AS
8180 err = exclusive_event_init(event);
8181 if (err)
8182 goto err_pmu;
8183
cdd6c482 8184 if (!event->parent) {
927c7a9e
FW
8185 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8186 err = get_callchain_buffers();
90983b16 8187 if (err)
bed5b25a 8188 goto err_per_task;
d010b332 8189 }
f344011c 8190 }
9ee318a7 8191
927a5570
AS
8192 /* symmetric to unaccount_event() in _free_event() */
8193 account_event(event);
8194
cdd6c482 8195 return event;
90983b16 8196
bed5b25a
AS
8197err_per_task:
8198 exclusive_event_destroy(event);
8199
90983b16
FW
8200err_pmu:
8201 if (event->destroy)
8202 event->destroy(event);
c464c76e 8203 module_put(pmu->module);
90983b16 8204err_ns:
79dff51e
MF
8205 if (is_cgroup_event(event))
8206 perf_detach_cgroup(event);
90983b16
FW
8207 if (event->ns)
8208 put_pid_ns(event->ns);
8209 kfree(event);
8210
8211 return ERR_PTR(err);
0793a61d
TG
8212}
8213
cdd6c482
IM
8214static int perf_copy_attr(struct perf_event_attr __user *uattr,
8215 struct perf_event_attr *attr)
974802ea 8216{
974802ea 8217 u32 size;
cdf8073d 8218 int ret;
974802ea
PZ
8219
8220 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8221 return -EFAULT;
8222
8223 /*
8224 * zero the full structure, so that a short copy will be nice.
8225 */
8226 memset(attr, 0, sizeof(*attr));
8227
8228 ret = get_user(size, &uattr->size);
8229 if (ret)
8230 return ret;
8231
8232 if (size > PAGE_SIZE) /* silly large */
8233 goto err_size;
8234
8235 if (!size) /* abi compat */
8236 size = PERF_ATTR_SIZE_VER0;
8237
8238 if (size < PERF_ATTR_SIZE_VER0)
8239 goto err_size;
8240
8241 /*
8242 * If we're handed a bigger struct than we know of,
cdf8073d
IS
8243 * ensure all the unknown bits are 0 - i.e. new
8244 * user-space does not rely on any kernel feature
8245 * extensions we dont know about yet.
974802ea
PZ
8246 */
8247 if (size > sizeof(*attr)) {
cdf8073d
IS
8248 unsigned char __user *addr;
8249 unsigned char __user *end;
8250 unsigned char val;
974802ea 8251
cdf8073d
IS
8252 addr = (void __user *)uattr + sizeof(*attr);
8253 end = (void __user *)uattr + size;
974802ea 8254
cdf8073d 8255 for (; addr < end; addr++) {
974802ea
PZ
8256 ret = get_user(val, addr);
8257 if (ret)
8258 return ret;
8259 if (val)
8260 goto err_size;
8261 }
b3e62e35 8262 size = sizeof(*attr);
974802ea
PZ
8263 }
8264
8265 ret = copy_from_user(attr, uattr, size);
8266 if (ret)
8267 return -EFAULT;
8268
cd757645 8269 if (attr->__reserved_1)
974802ea
PZ
8270 return -EINVAL;
8271
8272 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8273 return -EINVAL;
8274
8275 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8276 return -EINVAL;
8277
bce38cd5
SE
8278 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8279 u64 mask = attr->branch_sample_type;
8280
8281 /* only using defined bits */
8282 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8283 return -EINVAL;
8284
8285 /* at least one branch bit must be set */
8286 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8287 return -EINVAL;
8288
bce38cd5
SE
8289 /* propagate priv level, when not set for branch */
8290 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8291
8292 /* exclude_kernel checked on syscall entry */
8293 if (!attr->exclude_kernel)
8294 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8295
8296 if (!attr->exclude_user)
8297 mask |= PERF_SAMPLE_BRANCH_USER;
8298
8299 if (!attr->exclude_hv)
8300 mask |= PERF_SAMPLE_BRANCH_HV;
8301 /*
8302 * adjust user setting (for HW filter setup)
8303 */
8304 attr->branch_sample_type = mask;
8305 }
e712209a
SE
8306 /* privileged levels capture (kernel, hv): check permissions */
8307 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8308 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8309 return -EACCES;
bce38cd5 8310 }
4018994f 8311
c5ebcedb 8312 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8313 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8314 if (ret)
8315 return ret;
8316 }
8317
8318 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8319 if (!arch_perf_have_user_stack_dump())
8320 return -ENOSYS;
8321
8322 /*
8323 * We have __u32 type for the size, but so far
8324 * we can only use __u16 as maximum due to the
8325 * __u16 sample size limit.
8326 */
8327 if (attr->sample_stack_user >= USHRT_MAX)
8328 ret = -EINVAL;
8329 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8330 ret = -EINVAL;
8331 }
4018994f 8332
60e2364e
SE
8333 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8334 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8335out:
8336 return ret;
8337
8338err_size:
8339 put_user(sizeof(*attr), &uattr->size);
8340 ret = -E2BIG;
8341 goto out;
8342}
8343
ac9721f3
PZ
8344static int
8345perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8346{
b69cf536 8347 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8348 int ret = -EINVAL;
8349
ac9721f3 8350 if (!output_event)
a4be7c27
PZ
8351 goto set;
8352
ac9721f3
PZ
8353 /* don't allow circular references */
8354 if (event == output_event)
a4be7c27
PZ
8355 goto out;
8356
0f139300
PZ
8357 /*
8358 * Don't allow cross-cpu buffers
8359 */
8360 if (output_event->cpu != event->cpu)
8361 goto out;
8362
8363 /*
76369139 8364 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8365 */
8366 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8367 goto out;
8368
34f43927
PZ
8369 /*
8370 * Mixing clocks in the same buffer is trouble you don't need.
8371 */
8372 if (output_event->clock != event->clock)
8373 goto out;
8374
45bfb2e5
PZ
8375 /*
8376 * If both events generate aux data, they must be on the same PMU
8377 */
8378 if (has_aux(event) && has_aux(output_event) &&
8379 event->pmu != output_event->pmu)
8380 goto out;
8381
a4be7c27 8382set:
cdd6c482 8383 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8384 /* Can't redirect output if we've got an active mmap() */
8385 if (atomic_read(&event->mmap_count))
8386 goto unlock;
a4be7c27 8387
ac9721f3 8388 if (output_event) {
76369139
FW
8389 /* get the rb we want to redirect to */
8390 rb = ring_buffer_get(output_event);
8391 if (!rb)
ac9721f3 8392 goto unlock;
a4be7c27
PZ
8393 }
8394
b69cf536 8395 ring_buffer_attach(event, rb);
9bb5d40c 8396
a4be7c27 8397 ret = 0;
ac9721f3
PZ
8398unlock:
8399 mutex_unlock(&event->mmap_mutex);
8400
a4be7c27 8401out:
a4be7c27
PZ
8402 return ret;
8403}
8404
f63a8daa
PZ
8405static void mutex_lock_double(struct mutex *a, struct mutex *b)
8406{
8407 if (b < a)
8408 swap(a, b);
8409
8410 mutex_lock(a);
8411 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8412}
8413
34f43927
PZ
8414static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8415{
8416 bool nmi_safe = false;
8417
8418 switch (clk_id) {
8419 case CLOCK_MONOTONIC:
8420 event->clock = &ktime_get_mono_fast_ns;
8421 nmi_safe = true;
8422 break;
8423
8424 case CLOCK_MONOTONIC_RAW:
8425 event->clock = &ktime_get_raw_fast_ns;
8426 nmi_safe = true;
8427 break;
8428
8429 case CLOCK_REALTIME:
8430 event->clock = &ktime_get_real_ns;
8431 break;
8432
8433 case CLOCK_BOOTTIME:
8434 event->clock = &ktime_get_boot_ns;
8435 break;
8436
8437 case CLOCK_TAI:
8438 event->clock = &ktime_get_tai_ns;
8439 break;
8440
8441 default:
8442 return -EINVAL;
8443 }
8444
8445 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8446 return -EINVAL;
8447
8448 return 0;
8449}
8450
0793a61d 8451/**
cdd6c482 8452 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8453 *
cdd6c482 8454 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8455 * @pid: target pid
9f66a381 8456 * @cpu: target cpu
cdd6c482 8457 * @group_fd: group leader event fd
0793a61d 8458 */
cdd6c482
IM
8459SYSCALL_DEFINE5(perf_event_open,
8460 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8461 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8462{
b04243ef
PZ
8463 struct perf_event *group_leader = NULL, *output_event = NULL;
8464 struct perf_event *event, *sibling;
cdd6c482 8465 struct perf_event_attr attr;
f63a8daa 8466 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8467 struct file *event_file = NULL;
2903ff01 8468 struct fd group = {NULL, 0};
38a81da2 8469 struct task_struct *task = NULL;
89a1e187 8470 struct pmu *pmu;
ea635c64 8471 int event_fd;
b04243ef 8472 int move_group = 0;
dc86cabe 8473 int err;
a21b0b35 8474 int f_flags = O_RDWR;
79dff51e 8475 int cgroup_fd = -1;
0793a61d 8476
2743a5b0 8477 /* for future expandability... */
e5d1367f 8478 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8479 return -EINVAL;
8480
dc86cabe
IM
8481 err = perf_copy_attr(attr_uptr, &attr);
8482 if (err)
8483 return err;
eab656ae 8484
0764771d
PZ
8485 if (!attr.exclude_kernel) {
8486 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8487 return -EACCES;
8488 }
8489
df58ab24 8490 if (attr.freq) {
cdd6c482 8491 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8492 return -EINVAL;
0819b2e3
PZ
8493 } else {
8494 if (attr.sample_period & (1ULL << 63))
8495 return -EINVAL;
df58ab24
PZ
8496 }
8497
e5d1367f
SE
8498 /*
8499 * In cgroup mode, the pid argument is used to pass the fd
8500 * opened to the cgroup directory in cgroupfs. The cpu argument
8501 * designates the cpu on which to monitor threads from that
8502 * cgroup.
8503 */
8504 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8505 return -EINVAL;
8506
a21b0b35
YD
8507 if (flags & PERF_FLAG_FD_CLOEXEC)
8508 f_flags |= O_CLOEXEC;
8509
8510 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8511 if (event_fd < 0)
8512 return event_fd;
8513
ac9721f3 8514 if (group_fd != -1) {
2903ff01
AV
8515 err = perf_fget_light(group_fd, &group);
8516 if (err)
d14b12d7 8517 goto err_fd;
2903ff01 8518 group_leader = group.file->private_data;
ac9721f3
PZ
8519 if (flags & PERF_FLAG_FD_OUTPUT)
8520 output_event = group_leader;
8521 if (flags & PERF_FLAG_FD_NO_GROUP)
8522 group_leader = NULL;
8523 }
8524
e5d1367f 8525 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8526 task = find_lively_task_by_vpid(pid);
8527 if (IS_ERR(task)) {
8528 err = PTR_ERR(task);
8529 goto err_group_fd;
8530 }
8531 }
8532
1f4ee503
PZ
8533 if (task && group_leader &&
8534 group_leader->attr.inherit != attr.inherit) {
8535 err = -EINVAL;
8536 goto err_task;
8537 }
8538
fbfc623f
YZ
8539 get_online_cpus();
8540
79dff51e
MF
8541 if (flags & PERF_FLAG_PID_CGROUP)
8542 cgroup_fd = pid;
8543
4dc0da86 8544 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8545 NULL, NULL, cgroup_fd);
d14b12d7
SE
8546 if (IS_ERR(event)) {
8547 err = PTR_ERR(event);
1f4ee503 8548 goto err_cpus;
d14b12d7
SE
8549 }
8550
53b25335
VW
8551 if (is_sampling_event(event)) {
8552 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8553 err = -ENOTSUPP;
8554 goto err_alloc;
8555 }
8556 }
8557
89a1e187
PZ
8558 /*
8559 * Special case software events and allow them to be part of
8560 * any hardware group.
8561 */
8562 pmu = event->pmu;
b04243ef 8563
34f43927
PZ
8564 if (attr.use_clockid) {
8565 err = perf_event_set_clock(event, attr.clockid);
8566 if (err)
8567 goto err_alloc;
8568 }
8569
b04243ef
PZ
8570 if (group_leader &&
8571 (is_software_event(event) != is_software_event(group_leader))) {
8572 if (is_software_event(event)) {
8573 /*
8574 * If event and group_leader are not both a software
8575 * event, and event is, then group leader is not.
8576 *
8577 * Allow the addition of software events to !software
8578 * groups, this is safe because software events never
8579 * fail to schedule.
8580 */
8581 pmu = group_leader->pmu;
8582 } else if (is_software_event(group_leader) &&
8583 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8584 /*
8585 * In case the group is a pure software group, and we
8586 * try to add a hardware event, move the whole group to
8587 * the hardware context.
8588 */
8589 move_group = 1;
8590 }
8591 }
89a1e187
PZ
8592
8593 /*
8594 * Get the target context (task or percpu):
8595 */
4af57ef2 8596 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8597 if (IS_ERR(ctx)) {
8598 err = PTR_ERR(ctx);
c6be5a5c 8599 goto err_alloc;
89a1e187
PZ
8600 }
8601
bed5b25a
AS
8602 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8603 err = -EBUSY;
8604 goto err_context;
8605 }
8606
fd1edb3a
PZ
8607 if (task) {
8608 put_task_struct(task);
8609 task = NULL;
8610 }
8611
ccff286d 8612 /*
cdd6c482 8613 * Look up the group leader (we will attach this event to it):
04289bb9 8614 */
ac9721f3 8615 if (group_leader) {
dc86cabe 8616 err = -EINVAL;
04289bb9 8617
04289bb9 8618 /*
ccff286d
IM
8619 * Do not allow a recursive hierarchy (this new sibling
8620 * becoming part of another group-sibling):
8621 */
8622 if (group_leader->group_leader != group_leader)
c3f00c70 8623 goto err_context;
34f43927
PZ
8624
8625 /* All events in a group should have the same clock */
8626 if (group_leader->clock != event->clock)
8627 goto err_context;
8628
ccff286d
IM
8629 /*
8630 * Do not allow to attach to a group in a different
8631 * task or CPU context:
04289bb9 8632 */
b04243ef 8633 if (move_group) {
c3c87e77
PZ
8634 /*
8635 * Make sure we're both on the same task, or both
8636 * per-cpu events.
8637 */
8638 if (group_leader->ctx->task != ctx->task)
8639 goto err_context;
8640
8641 /*
8642 * Make sure we're both events for the same CPU;
8643 * grouping events for different CPUs is broken; since
8644 * you can never concurrently schedule them anyhow.
8645 */
8646 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8647 goto err_context;
8648 } else {
8649 if (group_leader->ctx != ctx)
8650 goto err_context;
8651 }
8652
3b6f9e5c
PM
8653 /*
8654 * Only a group leader can be exclusive or pinned
8655 */
0d48696f 8656 if (attr.exclusive || attr.pinned)
c3f00c70 8657 goto err_context;
ac9721f3
PZ
8658 }
8659
8660 if (output_event) {
8661 err = perf_event_set_output(event, output_event);
8662 if (err)
c3f00c70 8663 goto err_context;
ac9721f3 8664 }
0793a61d 8665
a21b0b35
YD
8666 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8667 f_flags);
ea635c64
AV
8668 if (IS_ERR(event_file)) {
8669 err = PTR_ERR(event_file);
201c2f85 8670 event_file = NULL;
c3f00c70 8671 goto err_context;
ea635c64 8672 }
9b51f66d 8673
b04243ef 8674 if (move_group) {
f63a8daa 8675 gctx = group_leader->ctx;
f55fc2a5 8676 mutex_lock_double(&gctx->mutex, &ctx->mutex);
84c4e620
PZ
8677 if (gctx->task == TASK_TOMBSTONE) {
8678 err = -ESRCH;
8679 goto err_locked;
8680 }
f55fc2a5
PZ
8681 } else {
8682 mutex_lock(&ctx->mutex);
8683 }
8684
84c4e620
PZ
8685 if (ctx->task == TASK_TOMBSTONE) {
8686 err = -ESRCH;
8687 goto err_locked;
8688 }
8689
a723968c
PZ
8690 if (!perf_event_validate_size(event)) {
8691 err = -E2BIG;
8692 goto err_locked;
8693 }
8694
f55fc2a5
PZ
8695 /*
8696 * Must be under the same ctx::mutex as perf_install_in_context(),
8697 * because we need to serialize with concurrent event creation.
8698 */
8699 if (!exclusive_event_installable(event, ctx)) {
8700 /* exclusive and group stuff are assumed mutually exclusive */
8701 WARN_ON_ONCE(move_group);
f63a8daa 8702
f55fc2a5
PZ
8703 err = -EBUSY;
8704 goto err_locked;
8705 }
f63a8daa 8706
f55fc2a5
PZ
8707 WARN_ON_ONCE(ctx->parent_ctx);
8708
8709 if (move_group) {
f63a8daa
PZ
8710 /*
8711 * See perf_event_ctx_lock() for comments on the details
8712 * of swizzling perf_event::ctx.
8713 */
45a0e07a 8714 perf_remove_from_context(group_leader, 0);
0231bb53 8715
b04243ef
PZ
8716 list_for_each_entry(sibling, &group_leader->sibling_list,
8717 group_entry) {
45a0e07a 8718 perf_remove_from_context(sibling, 0);
b04243ef
PZ
8719 put_ctx(gctx);
8720 }
b04243ef 8721
f63a8daa
PZ
8722 /*
8723 * Wait for everybody to stop referencing the events through
8724 * the old lists, before installing it on new lists.
8725 */
0cda4c02 8726 synchronize_rcu();
f63a8daa 8727
8f95b435
PZI
8728 /*
8729 * Install the group siblings before the group leader.
8730 *
8731 * Because a group leader will try and install the entire group
8732 * (through the sibling list, which is still in-tact), we can
8733 * end up with siblings installed in the wrong context.
8734 *
8735 * By installing siblings first we NO-OP because they're not
8736 * reachable through the group lists.
8737 */
b04243ef
PZ
8738 list_for_each_entry(sibling, &group_leader->sibling_list,
8739 group_entry) {
8f95b435 8740 perf_event__state_init(sibling);
9fc81d87 8741 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8742 get_ctx(ctx);
8743 }
8f95b435
PZI
8744
8745 /*
8746 * Removing from the context ends up with disabled
8747 * event. What we want here is event in the initial
8748 * startup state, ready to be add into new context.
8749 */
8750 perf_event__state_init(group_leader);
8751 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8752 get_ctx(ctx);
b04243ef 8753
f55fc2a5
PZ
8754 /*
8755 * Now that all events are installed in @ctx, nothing
8756 * references @gctx anymore, so drop the last reference we have
8757 * on it.
8758 */
8759 put_ctx(gctx);
bed5b25a
AS
8760 }
8761
f73e22ab
PZ
8762 /*
8763 * Precalculate sample_data sizes; do while holding ctx::mutex such
8764 * that we're serialized against further additions and before
8765 * perf_install_in_context() which is the point the event is active and
8766 * can use these values.
8767 */
8768 perf_event__header_size(event);
8769 perf_event__id_header_size(event);
8770
78cd2c74
PZ
8771 event->owner = current;
8772
e2d37cd2 8773 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8774 perf_unpin_context(ctx);
f63a8daa 8775
f55fc2a5 8776 if (move_group)
f63a8daa 8777 mutex_unlock(&gctx->mutex);
d859e29f 8778 mutex_unlock(&ctx->mutex);
9b51f66d 8779
fbfc623f
YZ
8780 put_online_cpus();
8781
cdd6c482
IM
8782 mutex_lock(&current->perf_event_mutex);
8783 list_add_tail(&event->owner_entry, &current->perf_event_list);
8784 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8785
8a49542c
PZ
8786 /*
8787 * Drop the reference on the group_event after placing the
8788 * new event on the sibling_list. This ensures destruction
8789 * of the group leader will find the pointer to itself in
8790 * perf_group_detach().
8791 */
2903ff01 8792 fdput(group);
ea635c64
AV
8793 fd_install(event_fd, event_file);
8794 return event_fd;
0793a61d 8795
f55fc2a5
PZ
8796err_locked:
8797 if (move_group)
8798 mutex_unlock(&gctx->mutex);
8799 mutex_unlock(&ctx->mutex);
8800/* err_file: */
8801 fput(event_file);
c3f00c70 8802err_context:
fe4b04fa 8803 perf_unpin_context(ctx);
ea635c64 8804 put_ctx(ctx);
c6be5a5c 8805err_alloc:
13005627
PZ
8806 /*
8807 * If event_file is set, the fput() above will have called ->release()
8808 * and that will take care of freeing the event.
8809 */
8810 if (!event_file)
8811 free_event(event);
1f4ee503 8812err_cpus:
fbfc623f 8813 put_online_cpus();
1f4ee503 8814err_task:
e7d0bc04
PZ
8815 if (task)
8816 put_task_struct(task);
89a1e187 8817err_group_fd:
2903ff01 8818 fdput(group);
ea635c64
AV
8819err_fd:
8820 put_unused_fd(event_fd);
dc86cabe 8821 return err;
0793a61d
TG
8822}
8823
fb0459d7
AV
8824/**
8825 * perf_event_create_kernel_counter
8826 *
8827 * @attr: attributes of the counter to create
8828 * @cpu: cpu in which the counter is bound
38a81da2 8829 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8830 */
8831struct perf_event *
8832perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8833 struct task_struct *task,
4dc0da86
AK
8834 perf_overflow_handler_t overflow_handler,
8835 void *context)
fb0459d7 8836{
fb0459d7 8837 struct perf_event_context *ctx;
c3f00c70 8838 struct perf_event *event;
fb0459d7 8839 int err;
d859e29f 8840
fb0459d7
AV
8841 /*
8842 * Get the target context (task or percpu):
8843 */
d859e29f 8844
4dc0da86 8845 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8846 overflow_handler, context, -1);
c3f00c70
PZ
8847 if (IS_ERR(event)) {
8848 err = PTR_ERR(event);
8849 goto err;
8850 }
d859e29f 8851
f8697762 8852 /* Mark owner so we could distinguish it from user events. */
63b6da39 8853 event->owner = TASK_TOMBSTONE;
f8697762 8854
4af57ef2 8855 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8856 if (IS_ERR(ctx)) {
8857 err = PTR_ERR(ctx);
c3f00c70 8858 goto err_free;
d859e29f 8859 }
fb0459d7 8860
fb0459d7
AV
8861 WARN_ON_ONCE(ctx->parent_ctx);
8862 mutex_lock(&ctx->mutex);
84c4e620
PZ
8863 if (ctx->task == TASK_TOMBSTONE) {
8864 err = -ESRCH;
8865 goto err_unlock;
8866 }
8867
bed5b25a 8868 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 8869 err = -EBUSY;
84c4e620 8870 goto err_unlock;
bed5b25a
AS
8871 }
8872
fb0459d7 8873 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8874 perf_unpin_context(ctx);
fb0459d7
AV
8875 mutex_unlock(&ctx->mutex);
8876
fb0459d7
AV
8877 return event;
8878
84c4e620
PZ
8879err_unlock:
8880 mutex_unlock(&ctx->mutex);
8881 perf_unpin_context(ctx);
8882 put_ctx(ctx);
c3f00c70
PZ
8883err_free:
8884 free_event(event);
8885err:
c6567f64 8886 return ERR_PTR(err);
9b51f66d 8887}
fb0459d7 8888EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8889
0cda4c02
YZ
8890void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8891{
8892 struct perf_event_context *src_ctx;
8893 struct perf_event_context *dst_ctx;
8894 struct perf_event *event, *tmp;
8895 LIST_HEAD(events);
8896
8897 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8898 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8899
f63a8daa
PZ
8900 /*
8901 * See perf_event_ctx_lock() for comments on the details
8902 * of swizzling perf_event::ctx.
8903 */
8904 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8905 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8906 event_entry) {
45a0e07a 8907 perf_remove_from_context(event, 0);
9a545de0 8908 unaccount_event_cpu(event, src_cpu);
0cda4c02 8909 put_ctx(src_ctx);
9886167d 8910 list_add(&event->migrate_entry, &events);
0cda4c02 8911 }
0cda4c02 8912
8f95b435
PZI
8913 /*
8914 * Wait for the events to quiesce before re-instating them.
8915 */
0cda4c02
YZ
8916 synchronize_rcu();
8917
8f95b435
PZI
8918 /*
8919 * Re-instate events in 2 passes.
8920 *
8921 * Skip over group leaders and only install siblings on this first
8922 * pass, siblings will not get enabled without a leader, however a
8923 * leader will enable its siblings, even if those are still on the old
8924 * context.
8925 */
8926 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8927 if (event->group_leader == event)
8928 continue;
8929
8930 list_del(&event->migrate_entry);
8931 if (event->state >= PERF_EVENT_STATE_OFF)
8932 event->state = PERF_EVENT_STATE_INACTIVE;
8933 account_event_cpu(event, dst_cpu);
8934 perf_install_in_context(dst_ctx, event, dst_cpu);
8935 get_ctx(dst_ctx);
8936 }
8937
8938 /*
8939 * Once all the siblings are setup properly, install the group leaders
8940 * to make it go.
8941 */
9886167d
PZ
8942 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8943 list_del(&event->migrate_entry);
0cda4c02
YZ
8944 if (event->state >= PERF_EVENT_STATE_OFF)
8945 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8946 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8947 perf_install_in_context(dst_ctx, event, dst_cpu);
8948 get_ctx(dst_ctx);
8949 }
8950 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8951 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8952}
8953EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8954
cdd6c482 8955static void sync_child_event(struct perf_event *child_event,
38b200d6 8956 struct task_struct *child)
d859e29f 8957{
cdd6c482 8958 struct perf_event *parent_event = child_event->parent;
8bc20959 8959 u64 child_val;
d859e29f 8960
cdd6c482
IM
8961 if (child_event->attr.inherit_stat)
8962 perf_event_read_event(child_event, child);
38b200d6 8963
b5e58793 8964 child_val = perf_event_count(child_event);
d859e29f
PM
8965
8966 /*
8967 * Add back the child's count to the parent's count:
8968 */
a6e6dea6 8969 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8970 atomic64_add(child_event->total_time_enabled,
8971 &parent_event->child_total_time_enabled);
8972 atomic64_add(child_event->total_time_running,
8973 &parent_event->child_total_time_running);
d859e29f
PM
8974}
8975
9b51f66d 8976static void
8ba289b8
PZ
8977perf_event_exit_event(struct perf_event *child_event,
8978 struct perf_event_context *child_ctx,
8979 struct task_struct *child)
9b51f66d 8980{
8ba289b8
PZ
8981 struct perf_event *parent_event = child_event->parent;
8982
1903d50c
PZ
8983 /*
8984 * Do not destroy the 'original' grouping; because of the context
8985 * switch optimization the original events could've ended up in a
8986 * random child task.
8987 *
8988 * If we were to destroy the original group, all group related
8989 * operations would cease to function properly after this random
8990 * child dies.
8991 *
8992 * Do destroy all inherited groups, we don't care about those
8993 * and being thorough is better.
8994 */
32132a3d
PZ
8995 raw_spin_lock_irq(&child_ctx->lock);
8996 WARN_ON_ONCE(child_ctx->is_active);
8997
8ba289b8 8998 if (parent_event)
32132a3d
PZ
8999 perf_group_detach(child_event);
9000 list_del_event(child_event, child_ctx);
a69b0ca4 9001 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 9002 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 9003
9b51f66d 9004 /*
8ba289b8 9005 * Parent events are governed by their filedesc, retain them.
9b51f66d 9006 */
8ba289b8 9007 if (!parent_event) {
179033b3 9008 perf_event_wakeup(child_event);
8ba289b8 9009 return;
4bcf349a 9010 }
8ba289b8
PZ
9011 /*
9012 * Child events can be cleaned up.
9013 */
9014
9015 sync_child_event(child_event, child);
9016
9017 /*
9018 * Remove this event from the parent's list
9019 */
9020 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9021 mutex_lock(&parent_event->child_mutex);
9022 list_del_init(&child_event->child_list);
9023 mutex_unlock(&parent_event->child_mutex);
9024
9025 /*
9026 * Kick perf_poll() for is_event_hup().
9027 */
9028 perf_event_wakeup(parent_event);
9029 free_event(child_event);
9030 put_event(parent_event);
9b51f66d
IM
9031}
9032
8dc85d54 9033static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 9034{
211de6eb 9035 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 9036 struct perf_event *child_event, *next;
63b6da39
PZ
9037
9038 WARN_ON_ONCE(child != current);
9b51f66d 9039
6a3351b6 9040 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 9041 if (!child_ctx)
9b51f66d
IM
9042 return;
9043
ad3a37de 9044 /*
6a3351b6
PZ
9045 * In order to reduce the amount of tricky in ctx tear-down, we hold
9046 * ctx::mutex over the entire thing. This serializes against almost
9047 * everything that wants to access the ctx.
9048 *
9049 * The exception is sys_perf_event_open() /
9050 * perf_event_create_kernel_count() which does find_get_context()
9051 * without ctx::mutex (it cannot because of the move_group double mutex
9052 * lock thing). See the comments in perf_install_in_context().
ad3a37de 9053 */
6a3351b6 9054 mutex_lock(&child_ctx->mutex);
c93f7669
PM
9055
9056 /*
6a3351b6
PZ
9057 * In a single ctx::lock section, de-schedule the events and detach the
9058 * context from the task such that we cannot ever get it scheduled back
9059 * in.
c93f7669 9060 */
6a3351b6 9061 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 9062 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 9063
71a851b4 9064 /*
63b6da39
PZ
9065 * Now that the context is inactive, destroy the task <-> ctx relation
9066 * and mark the context dead.
71a851b4 9067 */
63b6da39
PZ
9068 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9069 put_ctx(child_ctx); /* cannot be last */
9070 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9071 put_task_struct(current); /* cannot be last */
4a1c0f26 9072
211de6eb 9073 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 9074 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 9075
211de6eb
PZ
9076 if (clone_ctx)
9077 put_ctx(clone_ctx);
4a1c0f26 9078
9f498cc5 9079 /*
cdd6c482
IM
9080 * Report the task dead after unscheduling the events so that we
9081 * won't get any samples after PERF_RECORD_EXIT. We can however still
9082 * get a few PERF_RECORD_READ events.
9f498cc5 9083 */
cdd6c482 9084 perf_event_task(child, child_ctx, 0);
a63eaf34 9085
ebf905fc 9086 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 9087 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 9088
a63eaf34
PM
9089 mutex_unlock(&child_ctx->mutex);
9090
9091 put_ctx(child_ctx);
9b51f66d
IM
9092}
9093
8dc85d54
PZ
9094/*
9095 * When a child task exits, feed back event values to parent events.
9096 */
9097void perf_event_exit_task(struct task_struct *child)
9098{
8882135b 9099 struct perf_event *event, *tmp;
8dc85d54
PZ
9100 int ctxn;
9101
8882135b
PZ
9102 mutex_lock(&child->perf_event_mutex);
9103 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9104 owner_entry) {
9105 list_del_init(&event->owner_entry);
9106
9107 /*
9108 * Ensure the list deletion is visible before we clear
9109 * the owner, closes a race against perf_release() where
9110 * we need to serialize on the owner->perf_event_mutex.
9111 */
f47c02c0 9112 smp_store_release(&event->owner, NULL);
8882135b
PZ
9113 }
9114 mutex_unlock(&child->perf_event_mutex);
9115
8dc85d54
PZ
9116 for_each_task_context_nr(ctxn)
9117 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
9118
9119 /*
9120 * The perf_event_exit_task_context calls perf_event_task
9121 * with child's task_ctx, which generates EXIT events for
9122 * child contexts and sets child->perf_event_ctxp[] to NULL.
9123 * At this point we need to send EXIT events to cpu contexts.
9124 */
9125 perf_event_task(child, NULL, 0);
8dc85d54
PZ
9126}
9127
889ff015
FW
9128static void perf_free_event(struct perf_event *event,
9129 struct perf_event_context *ctx)
9130{
9131 struct perf_event *parent = event->parent;
9132
9133 if (WARN_ON_ONCE(!parent))
9134 return;
9135
9136 mutex_lock(&parent->child_mutex);
9137 list_del_init(&event->child_list);
9138 mutex_unlock(&parent->child_mutex);
9139
a6fa941d 9140 put_event(parent);
889ff015 9141
652884fe 9142 raw_spin_lock_irq(&ctx->lock);
8a49542c 9143 perf_group_detach(event);
889ff015 9144 list_del_event(event, ctx);
652884fe 9145 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
9146 free_event(event);
9147}
9148
bbbee908 9149/*
652884fe 9150 * Free an unexposed, unused context as created by inheritance by
8dc85d54 9151 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
9152 *
9153 * Not all locks are strictly required, but take them anyway to be nice and
9154 * help out with the lockdep assertions.
bbbee908 9155 */
cdd6c482 9156void perf_event_free_task(struct task_struct *task)
bbbee908 9157{
8dc85d54 9158 struct perf_event_context *ctx;
cdd6c482 9159 struct perf_event *event, *tmp;
8dc85d54 9160 int ctxn;
bbbee908 9161
8dc85d54
PZ
9162 for_each_task_context_nr(ctxn) {
9163 ctx = task->perf_event_ctxp[ctxn];
9164 if (!ctx)
9165 continue;
bbbee908 9166
8dc85d54 9167 mutex_lock(&ctx->mutex);
bbbee908 9168again:
8dc85d54
PZ
9169 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9170 group_entry)
9171 perf_free_event(event, ctx);
bbbee908 9172
8dc85d54
PZ
9173 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9174 group_entry)
9175 perf_free_event(event, ctx);
bbbee908 9176
8dc85d54
PZ
9177 if (!list_empty(&ctx->pinned_groups) ||
9178 !list_empty(&ctx->flexible_groups))
9179 goto again;
bbbee908 9180
8dc85d54 9181 mutex_unlock(&ctx->mutex);
bbbee908 9182
8dc85d54
PZ
9183 put_ctx(ctx);
9184 }
889ff015
FW
9185}
9186
4e231c79
PZ
9187void perf_event_delayed_put(struct task_struct *task)
9188{
9189 int ctxn;
9190
9191 for_each_task_context_nr(ctxn)
9192 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9193}
9194
e03e7ee3 9195struct file *perf_event_get(unsigned int fd)
ffe8690c 9196{
e03e7ee3 9197 struct file *file;
ffe8690c 9198
e03e7ee3
AS
9199 file = fget_raw(fd);
9200 if (!file)
9201 return ERR_PTR(-EBADF);
ffe8690c 9202
e03e7ee3
AS
9203 if (file->f_op != &perf_fops) {
9204 fput(file);
9205 return ERR_PTR(-EBADF);
9206 }
ffe8690c 9207
e03e7ee3 9208 return file;
ffe8690c
KX
9209}
9210
9211const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9212{
9213 if (!event)
9214 return ERR_PTR(-EINVAL);
9215
9216 return &event->attr;
9217}
9218
97dee4f3
PZ
9219/*
9220 * inherit a event from parent task to child task:
9221 */
9222static struct perf_event *
9223inherit_event(struct perf_event *parent_event,
9224 struct task_struct *parent,
9225 struct perf_event_context *parent_ctx,
9226 struct task_struct *child,
9227 struct perf_event *group_leader,
9228 struct perf_event_context *child_ctx)
9229{
1929def9 9230 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 9231 struct perf_event *child_event;
cee010ec 9232 unsigned long flags;
97dee4f3
PZ
9233
9234 /*
9235 * Instead of creating recursive hierarchies of events,
9236 * we link inherited events back to the original parent,
9237 * which has a filp for sure, which we use as the reference
9238 * count:
9239 */
9240 if (parent_event->parent)
9241 parent_event = parent_event->parent;
9242
9243 child_event = perf_event_alloc(&parent_event->attr,
9244 parent_event->cpu,
d580ff86 9245 child,
97dee4f3 9246 group_leader, parent_event,
79dff51e 9247 NULL, NULL, -1);
97dee4f3
PZ
9248 if (IS_ERR(child_event))
9249 return child_event;
a6fa941d 9250
c6e5b732
PZ
9251 /*
9252 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9253 * must be under the same lock in order to serialize against
9254 * perf_event_release_kernel(), such that either we must observe
9255 * is_orphaned_event() or they will observe us on the child_list.
9256 */
9257 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
9258 if (is_orphaned_event(parent_event) ||
9259 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 9260 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
9261 free_event(child_event);
9262 return NULL;
9263 }
9264
97dee4f3
PZ
9265 get_ctx(child_ctx);
9266
9267 /*
9268 * Make the child state follow the state of the parent event,
9269 * not its attr.disabled bit. We hold the parent's mutex,
9270 * so we won't race with perf_event_{en, dis}able_family.
9271 */
1929def9 9272 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
9273 child_event->state = PERF_EVENT_STATE_INACTIVE;
9274 else
9275 child_event->state = PERF_EVENT_STATE_OFF;
9276
9277 if (parent_event->attr.freq) {
9278 u64 sample_period = parent_event->hw.sample_period;
9279 struct hw_perf_event *hwc = &child_event->hw;
9280
9281 hwc->sample_period = sample_period;
9282 hwc->last_period = sample_period;
9283
9284 local64_set(&hwc->period_left, sample_period);
9285 }
9286
9287 child_event->ctx = child_ctx;
9288 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9289 child_event->overflow_handler_context
9290 = parent_event->overflow_handler_context;
97dee4f3 9291
614b6780
TG
9292 /*
9293 * Precalculate sample_data sizes
9294 */
9295 perf_event__header_size(child_event);
6844c09d 9296 perf_event__id_header_size(child_event);
614b6780 9297
97dee4f3
PZ
9298 /*
9299 * Link it up in the child's context:
9300 */
cee010ec 9301 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9302 add_event_to_ctx(child_event, child_ctx);
cee010ec 9303 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9304
97dee4f3
PZ
9305 /*
9306 * Link this into the parent event's child list
9307 */
97dee4f3
PZ
9308 list_add_tail(&child_event->child_list, &parent_event->child_list);
9309 mutex_unlock(&parent_event->child_mutex);
9310
9311 return child_event;
9312}
9313
9314static int inherit_group(struct perf_event *parent_event,
9315 struct task_struct *parent,
9316 struct perf_event_context *parent_ctx,
9317 struct task_struct *child,
9318 struct perf_event_context *child_ctx)
9319{
9320 struct perf_event *leader;
9321 struct perf_event *sub;
9322 struct perf_event *child_ctr;
9323
9324 leader = inherit_event(parent_event, parent, parent_ctx,
9325 child, NULL, child_ctx);
9326 if (IS_ERR(leader))
9327 return PTR_ERR(leader);
9328 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9329 child_ctr = inherit_event(sub, parent, parent_ctx,
9330 child, leader, child_ctx);
9331 if (IS_ERR(child_ctr))
9332 return PTR_ERR(child_ctr);
9333 }
9334 return 0;
889ff015
FW
9335}
9336
9337static int
9338inherit_task_group(struct perf_event *event, struct task_struct *parent,
9339 struct perf_event_context *parent_ctx,
8dc85d54 9340 struct task_struct *child, int ctxn,
889ff015
FW
9341 int *inherited_all)
9342{
9343 int ret;
8dc85d54 9344 struct perf_event_context *child_ctx;
889ff015
FW
9345
9346 if (!event->attr.inherit) {
9347 *inherited_all = 0;
9348 return 0;
bbbee908
PZ
9349 }
9350
fe4b04fa 9351 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9352 if (!child_ctx) {
9353 /*
9354 * This is executed from the parent task context, so
9355 * inherit events that have been marked for cloning.
9356 * First allocate and initialize a context for the
9357 * child.
9358 */
bbbee908 9359
734df5ab 9360 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9361 if (!child_ctx)
9362 return -ENOMEM;
bbbee908 9363
8dc85d54 9364 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9365 }
9366
9367 ret = inherit_group(event, parent, parent_ctx,
9368 child, child_ctx);
9369
9370 if (ret)
9371 *inherited_all = 0;
9372
9373 return ret;
bbbee908
PZ
9374}
9375
9b51f66d 9376/*
cdd6c482 9377 * Initialize the perf_event context in task_struct
9b51f66d 9378 */
985c8dcb 9379static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9380{
889ff015 9381 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9382 struct perf_event_context *cloned_ctx;
9383 struct perf_event *event;
9b51f66d 9384 struct task_struct *parent = current;
564c2b21 9385 int inherited_all = 1;
dddd3379 9386 unsigned long flags;
6ab423e0 9387 int ret = 0;
9b51f66d 9388
8dc85d54 9389 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9390 return 0;
9391
ad3a37de 9392 /*
25346b93
PM
9393 * If the parent's context is a clone, pin it so it won't get
9394 * swapped under us.
ad3a37de 9395 */
8dc85d54 9396 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9397 if (!parent_ctx)
9398 return 0;
25346b93 9399
ad3a37de
PM
9400 /*
9401 * No need to check if parent_ctx != NULL here; since we saw
9402 * it non-NULL earlier, the only reason for it to become NULL
9403 * is if we exit, and since we're currently in the middle of
9404 * a fork we can't be exiting at the same time.
9405 */
ad3a37de 9406
9b51f66d
IM
9407 /*
9408 * Lock the parent list. No need to lock the child - not PID
9409 * hashed yet and not running, so nobody can access it.
9410 */
d859e29f 9411 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9412
9413 /*
9414 * We dont have to disable NMIs - we are only looking at
9415 * the list, not manipulating it:
9416 */
889ff015 9417 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9418 ret = inherit_task_group(event, parent, parent_ctx,
9419 child, ctxn, &inherited_all);
889ff015
FW
9420 if (ret)
9421 break;
9422 }
b93f7978 9423
dddd3379
TG
9424 /*
9425 * We can't hold ctx->lock when iterating the ->flexible_group list due
9426 * to allocations, but we need to prevent rotation because
9427 * rotate_ctx() will change the list from interrupt context.
9428 */
9429 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9430 parent_ctx->rotate_disable = 1;
9431 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9432
889ff015 9433 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9434 ret = inherit_task_group(event, parent, parent_ctx,
9435 child, ctxn, &inherited_all);
889ff015 9436 if (ret)
9b51f66d 9437 break;
564c2b21
PM
9438 }
9439
dddd3379
TG
9440 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9441 parent_ctx->rotate_disable = 0;
dddd3379 9442
8dc85d54 9443 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9444
05cbaa28 9445 if (child_ctx && inherited_all) {
564c2b21
PM
9446 /*
9447 * Mark the child context as a clone of the parent
9448 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9449 *
9450 * Note that if the parent is a clone, the holding of
9451 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9452 */
c5ed5145 9453 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9454 if (cloned_ctx) {
9455 child_ctx->parent_ctx = cloned_ctx;
25346b93 9456 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9457 } else {
9458 child_ctx->parent_ctx = parent_ctx;
9459 child_ctx->parent_gen = parent_ctx->generation;
9460 }
9461 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9462 }
9463
c5ed5145 9464 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9465 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9466
25346b93 9467 perf_unpin_context(parent_ctx);
fe4b04fa 9468 put_ctx(parent_ctx);
ad3a37de 9469
6ab423e0 9470 return ret;
9b51f66d
IM
9471}
9472
8dc85d54
PZ
9473/*
9474 * Initialize the perf_event context in task_struct
9475 */
9476int perf_event_init_task(struct task_struct *child)
9477{
9478 int ctxn, ret;
9479
8550d7cb
ON
9480 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9481 mutex_init(&child->perf_event_mutex);
9482 INIT_LIST_HEAD(&child->perf_event_list);
9483
8dc85d54
PZ
9484 for_each_task_context_nr(ctxn) {
9485 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9486 if (ret) {
9487 perf_event_free_task(child);
8dc85d54 9488 return ret;
6c72e350 9489 }
8dc85d54
PZ
9490 }
9491
9492 return 0;
9493}
9494
220b140b
PM
9495static void __init perf_event_init_all_cpus(void)
9496{
b28ab83c 9497 struct swevent_htable *swhash;
220b140b 9498 int cpu;
220b140b
PM
9499
9500 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9501 swhash = &per_cpu(swevent_htable, cpu);
9502 mutex_init(&swhash->hlist_mutex);
2fde4f94 9503 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9504 }
9505}
9506
0db0628d 9507static void perf_event_init_cpu(int cpu)
0793a61d 9508{
108b02cf 9509 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9510
b28ab83c 9511 mutex_lock(&swhash->hlist_mutex);
059fcd8c 9512 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
9513 struct swevent_hlist *hlist;
9514
b28ab83c
PZ
9515 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9516 WARN_ON(!hlist);
9517 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9518 }
b28ab83c 9519 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9520}
9521
2965faa5 9522#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9523static void __perf_event_exit_context(void *__info)
0793a61d 9524{
108b02cf 9525 struct perf_event_context *ctx = __info;
fae3fde6
PZ
9526 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9527 struct perf_event *event;
0793a61d 9528
fae3fde6
PZ
9529 raw_spin_lock(&ctx->lock);
9530 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 9531 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 9532 raw_spin_unlock(&ctx->lock);
0793a61d 9533}
108b02cf
PZ
9534
9535static void perf_event_exit_cpu_context(int cpu)
9536{
9537 struct perf_event_context *ctx;
9538 struct pmu *pmu;
9539 int idx;
9540
9541 idx = srcu_read_lock(&pmus_srcu);
9542 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9543 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9544
9545 mutex_lock(&ctx->mutex);
9546 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9547 mutex_unlock(&ctx->mutex);
9548 }
9549 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9550}
9551
cdd6c482 9552static void perf_event_exit_cpu(int cpu)
0793a61d 9553{
e3703f8c 9554 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9555}
9556#else
cdd6c482 9557static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9558#endif
9559
c277443c
PZ
9560static int
9561perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9562{
9563 int cpu;
9564
9565 for_each_online_cpu(cpu)
9566 perf_event_exit_cpu(cpu);
9567
9568 return NOTIFY_OK;
9569}
9570
9571/*
9572 * Run the perf reboot notifier at the very last possible moment so that
9573 * the generic watchdog code runs as long as possible.
9574 */
9575static struct notifier_block perf_reboot_notifier = {
9576 .notifier_call = perf_reboot,
9577 .priority = INT_MIN,
9578};
9579
0db0628d 9580static int
0793a61d
TG
9581perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9582{
9583 unsigned int cpu = (long)hcpu;
9584
4536e4d1 9585 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9586
9587 case CPU_UP_PREPARE:
1dcaac1c
PZ
9588 /*
9589 * This must be done before the CPU comes alive, because the
9590 * moment we can run tasks we can encounter (software) events.
9591 *
9592 * Specifically, someone can have inherited events on kthreadd
9593 * or a pre-existing worker thread that gets re-bound.
9594 */
cdd6c482 9595 perf_event_init_cpu(cpu);
0793a61d
TG
9596 break;
9597
9598 case CPU_DOWN_PREPARE:
1dcaac1c
PZ
9599 /*
9600 * This must be done before the CPU dies because after that an
9601 * active event might want to IPI the CPU and that'll not work
9602 * so great for dead CPUs.
9603 *
9604 * XXX smp_call_function_single() return -ENXIO without a warn
9605 * so we could possibly deal with this.
9606 *
9607 * This is safe against new events arriving because
9608 * sys_perf_event_open() serializes against hotplug using
9609 * get_online_cpus().
9610 */
cdd6c482 9611 perf_event_exit_cpu(cpu);
0793a61d 9612 break;
0793a61d
TG
9613 default:
9614 break;
9615 }
9616
9617 return NOTIFY_OK;
9618}
9619
cdd6c482 9620void __init perf_event_init(void)
0793a61d 9621{
3c502e7a
JW
9622 int ret;
9623
2e80a82a
PZ
9624 idr_init(&pmu_idr);
9625
220b140b 9626 perf_event_init_all_cpus();
b0a873eb 9627 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9628 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9629 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9630 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9631 perf_tp_register();
9632 perf_cpu_notifier(perf_cpu_notify);
c277443c 9633 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9634
9635 ret = init_hw_breakpoint();
9636 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 9637
b01c3a00
JO
9638 /*
9639 * Build time assertion that we keep the data_head at the intended
9640 * location. IOW, validation we got the __reserved[] size right.
9641 */
9642 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9643 != 1024);
0793a61d 9644}
abe43400 9645
fd979c01
CS
9646ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9647 char *page)
9648{
9649 struct perf_pmu_events_attr *pmu_attr =
9650 container_of(attr, struct perf_pmu_events_attr, attr);
9651
9652 if (pmu_attr->event_str)
9653 return sprintf(page, "%s\n", pmu_attr->event_str);
9654
9655 return 0;
9656}
675965b0 9657EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 9658
abe43400
PZ
9659static int __init perf_event_sysfs_init(void)
9660{
9661 struct pmu *pmu;
9662 int ret;
9663
9664 mutex_lock(&pmus_lock);
9665
9666 ret = bus_register(&pmu_bus);
9667 if (ret)
9668 goto unlock;
9669
9670 list_for_each_entry(pmu, &pmus, entry) {
9671 if (!pmu->name || pmu->type < 0)
9672 continue;
9673
9674 ret = pmu_dev_alloc(pmu);
9675 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9676 }
9677 pmu_bus_running = 1;
9678 ret = 0;
9679
9680unlock:
9681 mutex_unlock(&pmus_lock);
9682
9683 return ret;
9684}
9685device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9686
9687#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9688static struct cgroup_subsys_state *
9689perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9690{
9691 struct perf_cgroup *jc;
e5d1367f 9692
1b15d055 9693 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9694 if (!jc)
9695 return ERR_PTR(-ENOMEM);
9696
e5d1367f
SE
9697 jc->info = alloc_percpu(struct perf_cgroup_info);
9698 if (!jc->info) {
9699 kfree(jc);
9700 return ERR_PTR(-ENOMEM);
9701 }
9702
e5d1367f
SE
9703 return &jc->css;
9704}
9705
eb95419b 9706static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9707{
eb95419b
TH
9708 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9709
e5d1367f
SE
9710 free_percpu(jc->info);
9711 kfree(jc);
9712}
9713
9714static int __perf_cgroup_move(void *info)
9715{
9716 struct task_struct *task = info;
ddaaf4e2 9717 rcu_read_lock();
e5d1367f 9718 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9719 rcu_read_unlock();
e5d1367f
SE
9720 return 0;
9721}
9722
1f7dd3e5 9723static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9724{
bb9d97b6 9725 struct task_struct *task;
1f7dd3e5 9726 struct cgroup_subsys_state *css;
bb9d97b6 9727
1f7dd3e5 9728 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9729 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9730}
9731
073219e9 9732struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9733 .css_alloc = perf_cgroup_css_alloc,
9734 .css_free = perf_cgroup_css_free,
bb9d97b6 9735 .attach = perf_cgroup_attach,
e5d1367f
SE
9736};
9737#endif /* CONFIG_CGROUP_PERF */