bpf: Use correct #ifdef controller for trace_call_bpf()
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
f8697762
JO
129#define EVENT_OWNER_KERNEL ((void *) -1)
130
131static bool is_kernel_event(struct perf_event *event)
132{
133 return event->owner == EVENT_OWNER_KERNEL;
134}
135
e5d1367f
SE
136#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
e5d1367f 140
bce38cd5
SE
141/*
142 * branch priv levels that need permission checks
143 */
144#define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
0b3fcf17
SE
148enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152};
153
e5d1367f
SE
154/*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
c5905afb 158struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 159static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 160static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 161
cdd6c482
IM
162static atomic_t nr_mmap_events __read_mostly;
163static atomic_t nr_comm_events __read_mostly;
164static atomic_t nr_task_events __read_mostly;
948b26b6 165static atomic_t nr_freq_events __read_mostly;
45ac1403 166static atomic_t nr_switch_events __read_mostly;
9ee318a7 167
108b02cf
PZ
168static LIST_HEAD(pmus);
169static DEFINE_MUTEX(pmus_lock);
170static struct srcu_struct pmus_srcu;
171
0764771d 172/*
cdd6c482 173 * perf event paranoia level:
0fbdea19
IM
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 176 * 1 - disallow cpu events for unpriv
0fbdea19 177 * 2 - disallow kernel profiling for unpriv
0764771d 178 */
cdd6c482 179int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 180
20443384
FW
181/* Minimum for 512 kiB + 1 user control page */
182int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
183
184/*
cdd6c482 185 * max perf event sample rate
df58ab24 186 */
14c63f17
DH
187#define DEFAULT_MAX_SAMPLE_RATE 100000
188#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189#define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
d9494cb4
PZ
196static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
198
199void update_perf_cpu_limits(void)
200{
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 204 do_div(tmp, 100);
d9494cb4 205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 206}
163ec435 207
9e630205
SE
208static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
163ec435
PZ
210int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
723478c8 214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224}
225
226int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231{
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
163ec435
PZ
238
239 return 0;
240}
1ccd1549 241
14c63f17
DH
242/*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 249static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 250
6a02ad66 251static void perf_duration_warn(struct irq_work *w)
14c63f17 252{
6a02ad66 253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 254 u64 avg_local_sample_len;
e5302920 255 u64 local_samples_len;
6a02ad66 256
4a32fea9 257 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 263 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
264 sysctl_perf_event_sample_rate);
265}
266
267static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269void perf_sample_event_took(u64 sample_len_ns)
270{
d9494cb4 271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
14c63f17 274
d9494cb4 275 if (allowed_ns == 0)
14c63f17
DH
276 return;
277
278 /* decay the counter by 1 average sample */
4a32fea9 279 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
4a32fea9 282 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
d9494cb4 291 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
14c63f17 301 update_perf_cpu_limits();
6a02ad66 302
cd578abb
PZ
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
14c63f17
DH
309}
310
cdd6c482 311static atomic64_t perf_event_id;
a96bbc16 312
0b3fcf17
SE
313static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320static void update_context_time(struct perf_event_context *ctx);
321static u64 perf_event_time(struct perf_event *event);
0b3fcf17 322
cdd6c482 323void __weak perf_event_print_debug(void) { }
0793a61d 324
84c79910 325extern __weak const char *perf_pmu_name(void)
0793a61d 326{
84c79910 327 return "pmu";
0793a61d
TG
328}
329
0b3fcf17
SE
330static inline u64 perf_clock(void)
331{
332 return local_clock();
333}
334
34f43927
PZ
335static inline u64 perf_event_clock(struct perf_event *event)
336{
337 return event->clock();
338}
339
e5d1367f
SE
340static inline struct perf_cpu_context *
341__get_cpu_context(struct perf_event_context *ctx)
342{
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344}
345
facc4307
PZ
346static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348{
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352}
353
354static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356{
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360}
361
e5d1367f
SE
362#ifdef CONFIG_CGROUP_PERF
363
e5d1367f
SE
364static inline bool
365perf_cgroup_match(struct perf_event *event)
366{
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
ef824fa1
TH
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
e5d1367f
SE
386}
387
e5d1367f
SE
388static inline void perf_detach_cgroup(struct perf_event *event)
389{
4e2ba650 390 css_put(&event->cgrp->css);
e5d1367f
SE
391 event->cgrp = NULL;
392}
393
394static inline int is_cgroup_event(struct perf_event *event)
395{
396 return event->cgrp != NULL;
397}
398
399static inline u64 perf_cgroup_event_time(struct perf_event *event)
400{
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405}
406
407static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408{
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418}
419
420static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421{
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425}
426
427static inline void update_cgrp_time_from_event(struct perf_event *event)
428{
3f7cce3c
SE
429 struct perf_cgroup *cgrp;
430
e5d1367f 431 /*
3f7cce3c
SE
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
e5d1367f 434 */
3f7cce3c 435 if (!is_cgroup_event(event))
e5d1367f
SE
436 return;
437
3f7cce3c
SE
438 cgrp = perf_cgroup_from_task(current);
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
e5d1367f
SE
444}
445
446static inline void
3f7cce3c
SE
447perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
e5d1367f
SE
449{
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
3f7cce3c
SE
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
459 return;
460
461 cgrp = perf_cgroup_from_task(task);
462 info = this_cpu_ptr(cgrp->info);
3f7cce3c 463 info->timestamp = ctx->timestamp;
e5d1367f
SE
464}
465
466#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469/*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
475void perf_cgroup_switch(struct task_struct *task, int mode)
476{
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
492 rcu_read_lock();
493
494 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 495 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
496 if (cpuctx->unique_pmu != pmu)
497 continue; /* ensure we process each cpuctx once */
e5d1367f 498
e5d1367f
SE
499 /*
500 * perf_cgroup_events says at least one
501 * context on this CPU has cgroup events.
502 *
503 * ctx->nr_cgroups reports the number of cgroup
504 * events for a context.
505 */
506 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
507 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
509
510 if (mode & PERF_CGROUP_SWOUT) {
511 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 /*
513 * must not be done before ctxswout due
514 * to event_filter_match() in event_sched_out()
515 */
516 cpuctx->cgrp = NULL;
517 }
518
519 if (mode & PERF_CGROUP_SWIN) {
e566b76e 520 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
521 /*
522 * set cgrp before ctxsw in to allow
523 * event_filter_match() to not have to pass
524 * task around
e5d1367f
SE
525 */
526 cpuctx->cgrp = perf_cgroup_from_task(task);
527 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 }
facc4307
PZ
529 perf_pmu_enable(cpuctx->ctx.pmu);
530 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 531 }
e5d1367f
SE
532 }
533
534 rcu_read_unlock();
535
536 local_irq_restore(flags);
537}
538
a8d757ef
SE
539static inline void perf_cgroup_sched_out(struct task_struct *task,
540 struct task_struct *next)
e5d1367f 541{
a8d757ef
SE
542 struct perf_cgroup *cgrp1;
543 struct perf_cgroup *cgrp2 = NULL;
544
545 /*
546 * we come here when we know perf_cgroup_events > 0
547 */
548 cgrp1 = perf_cgroup_from_task(task);
549
550 /*
551 * next is NULL when called from perf_event_enable_on_exec()
552 * that will systematically cause a cgroup_switch()
553 */
554 if (next)
555 cgrp2 = perf_cgroup_from_task(next);
556
557 /*
558 * only schedule out current cgroup events if we know
559 * that we are switching to a different cgroup. Otherwise,
560 * do no touch the cgroup events.
561 */
562 if (cgrp1 != cgrp2)
563 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
564}
565
a8d757ef
SE
566static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 struct task_struct *task)
e5d1367f 568{
a8d757ef
SE
569 struct perf_cgroup *cgrp1;
570 struct perf_cgroup *cgrp2 = NULL;
571
572 /*
573 * we come here when we know perf_cgroup_events > 0
574 */
575 cgrp1 = perf_cgroup_from_task(task);
576
577 /* prev can never be NULL */
578 cgrp2 = perf_cgroup_from_task(prev);
579
580 /*
581 * only need to schedule in cgroup events if we are changing
582 * cgroup during ctxsw. Cgroup events were not scheduled
583 * out of ctxsw out if that was not the case.
584 */
585 if (cgrp1 != cgrp2)
586 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
587}
588
589static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 struct perf_event_attr *attr,
591 struct perf_event *group_leader)
592{
593 struct perf_cgroup *cgrp;
594 struct cgroup_subsys_state *css;
2903ff01
AV
595 struct fd f = fdget(fd);
596 int ret = 0;
e5d1367f 597
2903ff01 598 if (!f.file)
e5d1367f
SE
599 return -EBADF;
600
b583043e 601 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 602 &perf_event_cgrp_subsys);
3db272c0
LZ
603 if (IS_ERR(css)) {
604 ret = PTR_ERR(css);
605 goto out;
606 }
e5d1367f
SE
607
608 cgrp = container_of(css, struct perf_cgroup, css);
609 event->cgrp = cgrp;
610
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
e5d1367f 619 }
3db272c0 620out:
2903ff01 621 fdput(f);
e5d1367f
SE
622 return ret;
623}
624
625static inline void
626perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627{
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631}
632
633static inline void
634perf_cgroup_defer_enabled(struct perf_event *event)
635{
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644}
645
646static inline void
647perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649{
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665}
666#else /* !CONFIG_CGROUP_PERF */
667
668static inline bool
669perf_cgroup_match(struct perf_event *event)
670{
671 return true;
672}
673
674static inline void perf_detach_cgroup(struct perf_event *event)
675{}
676
677static inline int is_cgroup_event(struct perf_event *event)
678{
679 return 0;
680}
681
682static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683{
684 return 0;
685}
686
687static inline void update_cgrp_time_from_event(struct perf_event *event)
688{
689}
690
691static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692{
693}
694
a8d757ef
SE
695static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
e5d1367f
SE
697{
698}
699
a8d757ef
SE
700static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
e5d1367f
SE
702{
703}
704
705static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708{
709 return -EINVAL;
710}
711
712static inline void
3f7cce3c
SE
713perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
e5d1367f
SE
715{
716}
717
718void
719perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720{
721}
722
723static inline void
724perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725{
726}
727
728static inline u64 perf_cgroup_event_time(struct perf_event *event)
729{
730 return 0;
731}
732
733static inline void
734perf_cgroup_defer_enabled(struct perf_event *event)
735{
736}
737
738static inline void
739perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741{
742}
743#endif
744
9e630205
SE
745/*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749#define PERF_CPU_HRTIMER (1000 / HZ)
750/*
751 * function must be called with interrupts disbled
752 */
272325c4 753static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
754{
755 struct perf_cpu_context *cpuctx;
9e630205
SE
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
761 rotations = perf_rotate_context(cpuctx);
762
4cfafd30
PZ
763 raw_spin_lock(&cpuctx->hrtimer_lock);
764 if (rotations)
9e630205 765 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
766 else
767 cpuctx->hrtimer_active = 0;
768 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 769
4cfafd30 770 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
771}
772
272325c4 773static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 774{
272325c4 775 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 776 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 777 u64 interval;
9e630205
SE
778
779 /* no multiplexing needed for SW PMU */
780 if (pmu->task_ctx_nr == perf_sw_context)
781 return;
782
62b85639
SE
783 /*
784 * check default is sane, if not set then force to
785 * default interval (1/tick)
786 */
272325c4
PZ
787 interval = pmu->hrtimer_interval_ms;
788 if (interval < 1)
789 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 790
272325c4 791 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 792
4cfafd30
PZ
793 raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 795 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
796}
797
272325c4 798static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 799{
272325c4 800 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 801 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 802 unsigned long flags;
9e630205
SE
803
804 /* not for SW PMU */
805 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 806 return 0;
9e630205 807
4cfafd30
PZ
808 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 if (!cpuctx->hrtimer_active) {
810 cpuctx->hrtimer_active = 1;
811 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 }
814 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 815
272325c4 816 return 0;
9e630205
SE
817}
818
33696fc0 819void perf_pmu_disable(struct pmu *pmu)
9e35ad38 820{
33696fc0
PZ
821 int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 if (!(*count)++)
823 pmu->pmu_disable(pmu);
9e35ad38 824}
9e35ad38 825
33696fc0 826void perf_pmu_enable(struct pmu *pmu)
9e35ad38 827{
33696fc0
PZ
828 int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 if (!--(*count))
830 pmu->pmu_enable(pmu);
9e35ad38 831}
9e35ad38 832
2fde4f94 833static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
834
835/*
2fde4f94
MR
836 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837 * perf_event_task_tick() are fully serialized because they're strictly cpu
838 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 840 */
2fde4f94 841static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 842{
2fde4f94 843 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 844
e9d2b064 845 WARN_ON(!irqs_disabled());
b5ab4cd5 846
2fde4f94
MR
847 WARN_ON(!list_empty(&ctx->active_ctx_list));
848
849 list_add(&ctx->active_ctx_list, head);
850}
851
852static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853{
854 WARN_ON(!irqs_disabled());
855
856 WARN_ON(list_empty(&ctx->active_ctx_list));
857
858 list_del_init(&ctx->active_ctx_list);
9e35ad38 859}
9e35ad38 860
cdd6c482 861static void get_ctx(struct perf_event_context *ctx)
a63eaf34 862{
e5289d4a 863 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
864}
865
4af57ef2
YZ
866static void free_ctx(struct rcu_head *head)
867{
868 struct perf_event_context *ctx;
869
870 ctx = container_of(head, struct perf_event_context, rcu_head);
871 kfree(ctx->task_ctx_data);
872 kfree(ctx);
873}
874
cdd6c482 875static void put_ctx(struct perf_event_context *ctx)
a63eaf34 876{
564c2b21
PM
877 if (atomic_dec_and_test(&ctx->refcount)) {
878 if (ctx->parent_ctx)
879 put_ctx(ctx->parent_ctx);
c93f7669
PM
880 if (ctx->task)
881 put_task_struct(ctx->task);
4af57ef2 882 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 883 }
a63eaf34
PM
884}
885
f63a8daa
PZ
886/*
887 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888 * perf_pmu_migrate_context() we need some magic.
889 *
890 * Those places that change perf_event::ctx will hold both
891 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892 *
8b10c5e2
PZ
893 * Lock ordering is by mutex address. There are two other sites where
894 * perf_event_context::mutex nests and those are:
895 *
896 * - perf_event_exit_task_context() [ child , 0 ]
897 * __perf_event_exit_task()
898 * sync_child_event()
899 * put_event() [ parent, 1 ]
900 *
901 * - perf_event_init_context() [ parent, 0 ]
902 * inherit_task_group()
903 * inherit_group()
904 * inherit_event()
905 * perf_event_alloc()
906 * perf_init_event()
907 * perf_try_init_event() [ child , 1 ]
908 *
909 * While it appears there is an obvious deadlock here -- the parent and child
910 * nesting levels are inverted between the two. This is in fact safe because
911 * life-time rules separate them. That is an exiting task cannot fork, and a
912 * spawning task cannot (yet) exit.
913 *
914 * But remember that that these are parent<->child context relations, and
915 * migration does not affect children, therefore these two orderings should not
916 * interact.
f63a8daa
PZ
917 *
918 * The change in perf_event::ctx does not affect children (as claimed above)
919 * because the sys_perf_event_open() case will install a new event and break
920 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921 * concerned with cpuctx and that doesn't have children.
922 *
923 * The places that change perf_event::ctx will issue:
924 *
925 * perf_remove_from_context();
926 * synchronize_rcu();
927 * perf_install_in_context();
928 *
929 * to affect the change. The remove_from_context() + synchronize_rcu() should
930 * quiesce the event, after which we can install it in the new location. This
931 * means that only external vectors (perf_fops, prctl) can perturb the event
932 * while in transit. Therefore all such accessors should also acquire
933 * perf_event_context::mutex to serialize against this.
934 *
935 * However; because event->ctx can change while we're waiting to acquire
936 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937 * function.
938 *
939 * Lock order:
940 * task_struct::perf_event_mutex
941 * perf_event_context::mutex
942 * perf_event_context::lock
943 * perf_event::child_mutex;
944 * perf_event::mmap_mutex
945 * mmap_sem
946 */
a83fe28e
PZ
947static struct perf_event_context *
948perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
949{
950 struct perf_event_context *ctx;
951
952again:
953 rcu_read_lock();
954 ctx = ACCESS_ONCE(event->ctx);
955 if (!atomic_inc_not_zero(&ctx->refcount)) {
956 rcu_read_unlock();
957 goto again;
958 }
959 rcu_read_unlock();
960
a83fe28e 961 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
962 if (event->ctx != ctx) {
963 mutex_unlock(&ctx->mutex);
964 put_ctx(ctx);
965 goto again;
966 }
967
968 return ctx;
969}
970
a83fe28e
PZ
971static inline struct perf_event_context *
972perf_event_ctx_lock(struct perf_event *event)
973{
974 return perf_event_ctx_lock_nested(event, 0);
975}
976
f63a8daa
PZ
977static void perf_event_ctx_unlock(struct perf_event *event,
978 struct perf_event_context *ctx)
979{
980 mutex_unlock(&ctx->mutex);
981 put_ctx(ctx);
982}
983
211de6eb
PZ
984/*
985 * This must be done under the ctx->lock, such as to serialize against
986 * context_equiv(), therefore we cannot call put_ctx() since that might end up
987 * calling scheduler related locks and ctx->lock nests inside those.
988 */
989static __must_check struct perf_event_context *
990unclone_ctx(struct perf_event_context *ctx)
71a851b4 991{
211de6eb
PZ
992 struct perf_event_context *parent_ctx = ctx->parent_ctx;
993
994 lockdep_assert_held(&ctx->lock);
995
996 if (parent_ctx)
71a851b4 997 ctx->parent_ctx = NULL;
5a3126d4 998 ctx->generation++;
211de6eb
PZ
999
1000 return parent_ctx;
71a851b4
PZ
1001}
1002
6844c09d
ACM
1003static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004{
1005 /*
1006 * only top level events have the pid namespace they were created in
1007 */
1008 if (event->parent)
1009 event = event->parent;
1010
1011 return task_tgid_nr_ns(p, event->ns);
1012}
1013
1014static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015{
1016 /*
1017 * only top level events have the pid namespace they were created in
1018 */
1019 if (event->parent)
1020 event = event->parent;
1021
1022 return task_pid_nr_ns(p, event->ns);
1023}
1024
7f453c24 1025/*
cdd6c482 1026 * If we inherit events we want to return the parent event id
7f453c24
PZ
1027 * to userspace.
1028 */
cdd6c482 1029static u64 primary_event_id(struct perf_event *event)
7f453c24 1030{
cdd6c482 1031 u64 id = event->id;
7f453c24 1032
cdd6c482
IM
1033 if (event->parent)
1034 id = event->parent->id;
7f453c24
PZ
1035
1036 return id;
1037}
1038
25346b93 1039/*
cdd6c482 1040 * Get the perf_event_context for a task and lock it.
25346b93
PM
1041 * This has to cope with with the fact that until it is locked,
1042 * the context could get moved to another task.
1043 */
cdd6c482 1044static struct perf_event_context *
8dc85d54 1045perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1046{
cdd6c482 1047 struct perf_event_context *ctx;
25346b93 1048
9ed6060d 1049retry:
058ebd0e
PZ
1050 /*
1051 * One of the few rules of preemptible RCU is that one cannot do
1052 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 * part of the read side critical section was preemptible -- see
1054 * rcu_read_unlock_special().
1055 *
1056 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 * side critical section is non-preemptible.
1058 */
1059 preempt_disable();
1060 rcu_read_lock();
8dc85d54 1061 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1062 if (ctx) {
1063 /*
1064 * If this context is a clone of another, it might
1065 * get swapped for another underneath us by
cdd6c482 1066 * perf_event_task_sched_out, though the
25346b93
PM
1067 * rcu_read_lock() protects us from any context
1068 * getting freed. Lock the context and check if it
1069 * got swapped before we could get the lock, and retry
1070 * if so. If we locked the right context, then it
1071 * can't get swapped on us any more.
1072 */
e625cce1 1073 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 1074 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1075 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1076 rcu_read_unlock();
1077 preempt_enable();
25346b93
PM
1078 goto retry;
1079 }
b49a9e7e
PZ
1080
1081 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1082 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1083 ctx = NULL;
1084 }
25346b93
PM
1085 }
1086 rcu_read_unlock();
058ebd0e 1087 preempt_enable();
25346b93
PM
1088 return ctx;
1089}
1090
1091/*
1092 * Get the context for a task and increment its pin_count so it
1093 * can't get swapped to another task. This also increments its
1094 * reference count so that the context can't get freed.
1095 */
8dc85d54
PZ
1096static struct perf_event_context *
1097perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1098{
cdd6c482 1099 struct perf_event_context *ctx;
25346b93
PM
1100 unsigned long flags;
1101
8dc85d54 1102 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1103 if (ctx) {
1104 ++ctx->pin_count;
e625cce1 1105 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1106 }
1107 return ctx;
1108}
1109
cdd6c482 1110static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1111{
1112 unsigned long flags;
1113
e625cce1 1114 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1115 --ctx->pin_count;
e625cce1 1116 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1117}
1118
f67218c3
PZ
1119/*
1120 * Update the record of the current time in a context.
1121 */
1122static void update_context_time(struct perf_event_context *ctx)
1123{
1124 u64 now = perf_clock();
1125
1126 ctx->time += now - ctx->timestamp;
1127 ctx->timestamp = now;
1128}
1129
4158755d
SE
1130static u64 perf_event_time(struct perf_event *event)
1131{
1132 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1133
1134 if (is_cgroup_event(event))
1135 return perf_cgroup_event_time(event);
1136
4158755d
SE
1137 return ctx ? ctx->time : 0;
1138}
1139
f67218c3
PZ
1140/*
1141 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1142 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1143 */
1144static void update_event_times(struct perf_event *event)
1145{
1146 struct perf_event_context *ctx = event->ctx;
1147 u64 run_end;
1148
1149 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1150 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1151 return;
e5d1367f
SE
1152 /*
1153 * in cgroup mode, time_enabled represents
1154 * the time the event was enabled AND active
1155 * tasks were in the monitored cgroup. This is
1156 * independent of the activity of the context as
1157 * there may be a mix of cgroup and non-cgroup events.
1158 *
1159 * That is why we treat cgroup events differently
1160 * here.
1161 */
1162 if (is_cgroup_event(event))
46cd6a7f 1163 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1164 else if (ctx->is_active)
1165 run_end = ctx->time;
acd1d7c1
PZ
1166 else
1167 run_end = event->tstamp_stopped;
1168
1169 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1170
1171 if (event->state == PERF_EVENT_STATE_INACTIVE)
1172 run_end = event->tstamp_stopped;
1173 else
4158755d 1174 run_end = perf_event_time(event);
f67218c3
PZ
1175
1176 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1177
f67218c3
PZ
1178}
1179
96c21a46
PZ
1180/*
1181 * Update total_time_enabled and total_time_running for all events in a group.
1182 */
1183static void update_group_times(struct perf_event *leader)
1184{
1185 struct perf_event *event;
1186
1187 update_event_times(leader);
1188 list_for_each_entry(event, &leader->sibling_list, group_entry)
1189 update_event_times(event);
1190}
1191
889ff015
FW
1192static struct list_head *
1193ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1194{
1195 if (event->attr.pinned)
1196 return &ctx->pinned_groups;
1197 else
1198 return &ctx->flexible_groups;
1199}
1200
fccc714b 1201/*
cdd6c482 1202 * Add a event from the lists for its context.
fccc714b
PZ
1203 * Must be called with ctx->mutex and ctx->lock held.
1204 */
04289bb9 1205static void
cdd6c482 1206list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1207{
8a49542c
PZ
1208 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1209 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1210
1211 /*
8a49542c
PZ
1212 * If we're a stand alone event or group leader, we go to the context
1213 * list, group events are kept attached to the group so that
1214 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1215 */
8a49542c 1216 if (event->group_leader == event) {
889ff015
FW
1217 struct list_head *list;
1218
d6f962b5
FW
1219 if (is_software_event(event))
1220 event->group_flags |= PERF_GROUP_SOFTWARE;
1221
889ff015
FW
1222 list = ctx_group_list(event, ctx);
1223 list_add_tail(&event->group_entry, list);
5c148194 1224 }
592903cd 1225
08309379 1226 if (is_cgroup_event(event))
e5d1367f 1227 ctx->nr_cgroups++;
e5d1367f 1228
cdd6c482
IM
1229 list_add_rcu(&event->event_entry, &ctx->event_list);
1230 ctx->nr_events++;
1231 if (event->attr.inherit_stat)
bfbd3381 1232 ctx->nr_stat++;
5a3126d4
PZ
1233
1234 ctx->generation++;
04289bb9
IM
1235}
1236
0231bb53
JO
1237/*
1238 * Initialize event state based on the perf_event_attr::disabled.
1239 */
1240static inline void perf_event__state_init(struct perf_event *event)
1241{
1242 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1243 PERF_EVENT_STATE_INACTIVE;
1244}
1245
c320c7b7
ACM
1246/*
1247 * Called at perf_event creation and when events are attached/detached from a
1248 * group.
1249 */
1250static void perf_event__read_size(struct perf_event *event)
1251{
1252 int entry = sizeof(u64); /* value */
1253 int size = 0;
1254 int nr = 1;
1255
1256 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1257 size += sizeof(u64);
1258
1259 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1260 size += sizeof(u64);
1261
1262 if (event->attr.read_format & PERF_FORMAT_ID)
1263 entry += sizeof(u64);
1264
1265 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1266 nr += event->group_leader->nr_siblings;
1267 size += sizeof(u64);
1268 }
1269
1270 size += entry * nr;
1271 event->read_size = size;
1272}
1273
1274static void perf_event__header_size(struct perf_event *event)
1275{
1276 struct perf_sample_data *data;
1277 u64 sample_type = event->attr.sample_type;
1278 u16 size = 0;
1279
1280 perf_event__read_size(event);
1281
1282 if (sample_type & PERF_SAMPLE_IP)
1283 size += sizeof(data->ip);
1284
6844c09d
ACM
1285 if (sample_type & PERF_SAMPLE_ADDR)
1286 size += sizeof(data->addr);
1287
1288 if (sample_type & PERF_SAMPLE_PERIOD)
1289 size += sizeof(data->period);
1290
c3feedf2
AK
1291 if (sample_type & PERF_SAMPLE_WEIGHT)
1292 size += sizeof(data->weight);
1293
6844c09d
ACM
1294 if (sample_type & PERF_SAMPLE_READ)
1295 size += event->read_size;
1296
d6be9ad6
SE
1297 if (sample_type & PERF_SAMPLE_DATA_SRC)
1298 size += sizeof(data->data_src.val);
1299
fdfbbd07
AK
1300 if (sample_type & PERF_SAMPLE_TRANSACTION)
1301 size += sizeof(data->txn);
1302
6844c09d
ACM
1303 event->header_size = size;
1304}
1305
1306static void perf_event__id_header_size(struct perf_event *event)
1307{
1308 struct perf_sample_data *data;
1309 u64 sample_type = event->attr.sample_type;
1310 u16 size = 0;
1311
c320c7b7
ACM
1312 if (sample_type & PERF_SAMPLE_TID)
1313 size += sizeof(data->tid_entry);
1314
1315 if (sample_type & PERF_SAMPLE_TIME)
1316 size += sizeof(data->time);
1317
ff3d527c
AH
1318 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1319 size += sizeof(data->id);
1320
c320c7b7
ACM
1321 if (sample_type & PERF_SAMPLE_ID)
1322 size += sizeof(data->id);
1323
1324 if (sample_type & PERF_SAMPLE_STREAM_ID)
1325 size += sizeof(data->stream_id);
1326
1327 if (sample_type & PERF_SAMPLE_CPU)
1328 size += sizeof(data->cpu_entry);
1329
6844c09d 1330 event->id_header_size = size;
c320c7b7
ACM
1331}
1332
8a49542c
PZ
1333static void perf_group_attach(struct perf_event *event)
1334{
c320c7b7 1335 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1336
74c3337c
PZ
1337 /*
1338 * We can have double attach due to group movement in perf_event_open.
1339 */
1340 if (event->attach_state & PERF_ATTACH_GROUP)
1341 return;
1342
8a49542c
PZ
1343 event->attach_state |= PERF_ATTACH_GROUP;
1344
1345 if (group_leader == event)
1346 return;
1347
652884fe
PZ
1348 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1349
8a49542c
PZ
1350 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1351 !is_software_event(event))
1352 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1353
1354 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1355 group_leader->nr_siblings++;
c320c7b7
ACM
1356
1357 perf_event__header_size(group_leader);
1358
1359 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1360 perf_event__header_size(pos);
8a49542c
PZ
1361}
1362
a63eaf34 1363/*
cdd6c482 1364 * Remove a event from the lists for its context.
fccc714b 1365 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1366 */
04289bb9 1367static void
cdd6c482 1368list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1369{
68cacd29 1370 struct perf_cpu_context *cpuctx;
652884fe
PZ
1371
1372 WARN_ON_ONCE(event->ctx != ctx);
1373 lockdep_assert_held(&ctx->lock);
1374
8a49542c
PZ
1375 /*
1376 * We can have double detach due to exit/hot-unplug + close.
1377 */
1378 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1379 return;
8a49542c
PZ
1380
1381 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1382
68cacd29 1383 if (is_cgroup_event(event)) {
e5d1367f 1384 ctx->nr_cgroups--;
68cacd29
SE
1385 cpuctx = __get_cpu_context(ctx);
1386 /*
1387 * if there are no more cgroup events
1388 * then cler cgrp to avoid stale pointer
1389 * in update_cgrp_time_from_cpuctx()
1390 */
1391 if (!ctx->nr_cgroups)
1392 cpuctx->cgrp = NULL;
1393 }
e5d1367f 1394
cdd6c482
IM
1395 ctx->nr_events--;
1396 if (event->attr.inherit_stat)
bfbd3381 1397 ctx->nr_stat--;
8bc20959 1398
cdd6c482 1399 list_del_rcu(&event->event_entry);
04289bb9 1400
8a49542c
PZ
1401 if (event->group_leader == event)
1402 list_del_init(&event->group_entry);
5c148194 1403
96c21a46 1404 update_group_times(event);
b2e74a26
SE
1405
1406 /*
1407 * If event was in error state, then keep it
1408 * that way, otherwise bogus counts will be
1409 * returned on read(). The only way to get out
1410 * of error state is by explicit re-enabling
1411 * of the event
1412 */
1413 if (event->state > PERF_EVENT_STATE_OFF)
1414 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1415
1416 ctx->generation++;
050735b0
PZ
1417}
1418
8a49542c 1419static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1420{
1421 struct perf_event *sibling, *tmp;
8a49542c
PZ
1422 struct list_head *list = NULL;
1423
1424 /*
1425 * We can have double detach due to exit/hot-unplug + close.
1426 */
1427 if (!(event->attach_state & PERF_ATTACH_GROUP))
1428 return;
1429
1430 event->attach_state &= ~PERF_ATTACH_GROUP;
1431
1432 /*
1433 * If this is a sibling, remove it from its group.
1434 */
1435 if (event->group_leader != event) {
1436 list_del_init(&event->group_entry);
1437 event->group_leader->nr_siblings--;
c320c7b7 1438 goto out;
8a49542c
PZ
1439 }
1440
1441 if (!list_empty(&event->group_entry))
1442 list = &event->group_entry;
2e2af50b 1443
04289bb9 1444 /*
cdd6c482
IM
1445 * If this was a group event with sibling events then
1446 * upgrade the siblings to singleton events by adding them
8a49542c 1447 * to whatever list we are on.
04289bb9 1448 */
cdd6c482 1449 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1450 if (list)
1451 list_move_tail(&sibling->group_entry, list);
04289bb9 1452 sibling->group_leader = sibling;
d6f962b5
FW
1453
1454 /* Inherit group flags from the previous leader */
1455 sibling->group_flags = event->group_flags;
652884fe
PZ
1456
1457 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1458 }
c320c7b7
ACM
1459
1460out:
1461 perf_event__header_size(event->group_leader);
1462
1463 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1464 perf_event__header_size(tmp);
04289bb9
IM
1465}
1466
fadfe7be
JO
1467/*
1468 * User event without the task.
1469 */
1470static bool is_orphaned_event(struct perf_event *event)
1471{
1472 return event && !is_kernel_event(event) && !event->owner;
1473}
1474
1475/*
1476 * Event has a parent but parent's task finished and it's
1477 * alive only because of children holding refference.
1478 */
1479static bool is_orphaned_child(struct perf_event *event)
1480{
1481 return is_orphaned_event(event->parent);
1482}
1483
1484static void orphans_remove_work(struct work_struct *work);
1485
1486static void schedule_orphans_remove(struct perf_event_context *ctx)
1487{
1488 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1489 return;
1490
1491 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1492 get_ctx(ctx);
1493 ctx->orphans_remove_sched = true;
1494 }
1495}
1496
1497static int __init perf_workqueue_init(void)
1498{
1499 perf_wq = create_singlethread_workqueue("perf");
1500 WARN(!perf_wq, "failed to create perf workqueue\n");
1501 return perf_wq ? 0 : -1;
1502}
1503
1504core_initcall(perf_workqueue_init);
1505
66eb579e
MR
1506static inline int pmu_filter_match(struct perf_event *event)
1507{
1508 struct pmu *pmu = event->pmu;
1509 return pmu->filter_match ? pmu->filter_match(event) : 1;
1510}
1511
fa66f07a
SE
1512static inline int
1513event_filter_match(struct perf_event *event)
1514{
e5d1367f 1515 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1516 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1517}
1518
9ffcfa6f
SE
1519static void
1520event_sched_out(struct perf_event *event,
3b6f9e5c 1521 struct perf_cpu_context *cpuctx,
cdd6c482 1522 struct perf_event_context *ctx)
3b6f9e5c 1523{
4158755d 1524 u64 tstamp = perf_event_time(event);
fa66f07a 1525 u64 delta;
652884fe
PZ
1526
1527 WARN_ON_ONCE(event->ctx != ctx);
1528 lockdep_assert_held(&ctx->lock);
1529
fa66f07a
SE
1530 /*
1531 * An event which could not be activated because of
1532 * filter mismatch still needs to have its timings
1533 * maintained, otherwise bogus information is return
1534 * via read() for time_enabled, time_running:
1535 */
1536 if (event->state == PERF_EVENT_STATE_INACTIVE
1537 && !event_filter_match(event)) {
e5d1367f 1538 delta = tstamp - event->tstamp_stopped;
fa66f07a 1539 event->tstamp_running += delta;
4158755d 1540 event->tstamp_stopped = tstamp;
fa66f07a
SE
1541 }
1542
cdd6c482 1543 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1544 return;
3b6f9e5c 1545
44377277
AS
1546 perf_pmu_disable(event->pmu);
1547
cdd6c482
IM
1548 event->state = PERF_EVENT_STATE_INACTIVE;
1549 if (event->pending_disable) {
1550 event->pending_disable = 0;
1551 event->state = PERF_EVENT_STATE_OFF;
970892a9 1552 }
4158755d 1553 event->tstamp_stopped = tstamp;
a4eaf7f1 1554 event->pmu->del(event, 0);
cdd6c482 1555 event->oncpu = -1;
3b6f9e5c 1556
cdd6c482 1557 if (!is_software_event(event))
3b6f9e5c 1558 cpuctx->active_oncpu--;
2fde4f94
MR
1559 if (!--ctx->nr_active)
1560 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1561 if (event->attr.freq && event->attr.sample_freq)
1562 ctx->nr_freq--;
cdd6c482 1563 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1564 cpuctx->exclusive = 0;
44377277 1565
fadfe7be
JO
1566 if (is_orphaned_child(event))
1567 schedule_orphans_remove(ctx);
1568
44377277 1569 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1570}
1571
d859e29f 1572static void
cdd6c482 1573group_sched_out(struct perf_event *group_event,
d859e29f 1574 struct perf_cpu_context *cpuctx,
cdd6c482 1575 struct perf_event_context *ctx)
d859e29f 1576{
cdd6c482 1577 struct perf_event *event;
fa66f07a 1578 int state = group_event->state;
d859e29f 1579
cdd6c482 1580 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1581
1582 /*
1583 * Schedule out siblings (if any):
1584 */
cdd6c482
IM
1585 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1586 event_sched_out(event, cpuctx, ctx);
d859e29f 1587
fa66f07a 1588 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1589 cpuctx->exclusive = 0;
1590}
1591
46ce0fe9
PZ
1592struct remove_event {
1593 struct perf_event *event;
1594 bool detach_group;
1595};
1596
0793a61d 1597/*
cdd6c482 1598 * Cross CPU call to remove a performance event
0793a61d 1599 *
cdd6c482 1600 * We disable the event on the hardware level first. After that we
0793a61d
TG
1601 * remove it from the context list.
1602 */
fe4b04fa 1603static int __perf_remove_from_context(void *info)
0793a61d 1604{
46ce0fe9
PZ
1605 struct remove_event *re = info;
1606 struct perf_event *event = re->event;
cdd6c482 1607 struct perf_event_context *ctx = event->ctx;
108b02cf 1608 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1609
e625cce1 1610 raw_spin_lock(&ctx->lock);
cdd6c482 1611 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1612 if (re->detach_group)
1613 perf_group_detach(event);
cdd6c482 1614 list_del_event(event, ctx);
64ce3126
PZ
1615 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1616 ctx->is_active = 0;
1617 cpuctx->task_ctx = NULL;
1618 }
e625cce1 1619 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1620
1621 return 0;
0793a61d
TG
1622}
1623
1624
1625/*
cdd6c482 1626 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1627 *
cdd6c482 1628 * CPU events are removed with a smp call. For task events we only
0793a61d 1629 * call when the task is on a CPU.
c93f7669 1630 *
cdd6c482
IM
1631 * If event->ctx is a cloned context, callers must make sure that
1632 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1633 * remains valid. This is OK when called from perf_release since
1634 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1635 * When called from perf_event_exit_task, it's OK because the
c93f7669 1636 * context has been detached from its task.
0793a61d 1637 */
46ce0fe9 1638static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1639{
cdd6c482 1640 struct perf_event_context *ctx = event->ctx;
0793a61d 1641 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1642 struct remove_event re = {
1643 .event = event,
1644 .detach_group = detach_group,
1645 };
0793a61d 1646
fe4b04fa
PZ
1647 lockdep_assert_held(&ctx->mutex);
1648
0793a61d
TG
1649 if (!task) {
1650 /*
226424ee
MR
1651 * Per cpu events are removed via an smp call. The removal can
1652 * fail if the CPU is currently offline, but in that case we
1653 * already called __perf_remove_from_context from
1654 * perf_event_exit_cpu.
0793a61d 1655 */
46ce0fe9 1656 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1657 return;
1658 }
1659
1660retry:
46ce0fe9 1661 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1662 return;
0793a61d 1663
e625cce1 1664 raw_spin_lock_irq(&ctx->lock);
0793a61d 1665 /*
fe4b04fa
PZ
1666 * If we failed to find a running task, but find the context active now
1667 * that we've acquired the ctx->lock, retry.
0793a61d 1668 */
fe4b04fa 1669 if (ctx->is_active) {
e625cce1 1670 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1671 /*
1672 * Reload the task pointer, it might have been changed by
1673 * a concurrent perf_event_context_sched_out().
1674 */
1675 task = ctx->task;
0793a61d
TG
1676 goto retry;
1677 }
1678
1679 /*
fe4b04fa
PZ
1680 * Since the task isn't running, its safe to remove the event, us
1681 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1682 */
46ce0fe9
PZ
1683 if (detach_group)
1684 perf_group_detach(event);
fe4b04fa 1685 list_del_event(event, ctx);
e625cce1 1686 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1687}
1688
d859e29f 1689/*
cdd6c482 1690 * Cross CPU call to disable a performance event
d859e29f 1691 */
500ad2d8 1692int __perf_event_disable(void *info)
d859e29f 1693{
cdd6c482 1694 struct perf_event *event = info;
cdd6c482 1695 struct perf_event_context *ctx = event->ctx;
108b02cf 1696 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1697
1698 /*
cdd6c482
IM
1699 * If this is a per-task event, need to check whether this
1700 * event's task is the current task on this cpu.
fe4b04fa
PZ
1701 *
1702 * Can trigger due to concurrent perf_event_context_sched_out()
1703 * flipping contexts around.
d859e29f 1704 */
665c2142 1705 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1706 return -EINVAL;
d859e29f 1707
e625cce1 1708 raw_spin_lock(&ctx->lock);
d859e29f
PM
1709
1710 /*
cdd6c482 1711 * If the event is on, turn it off.
d859e29f
PM
1712 * If it is in error state, leave it in error state.
1713 */
cdd6c482 1714 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1715 update_context_time(ctx);
e5d1367f 1716 update_cgrp_time_from_event(event);
cdd6c482
IM
1717 update_group_times(event);
1718 if (event == event->group_leader)
1719 group_sched_out(event, cpuctx, ctx);
d859e29f 1720 else
cdd6c482
IM
1721 event_sched_out(event, cpuctx, ctx);
1722 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1723 }
1724
e625cce1 1725 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1726
1727 return 0;
d859e29f
PM
1728}
1729
1730/*
cdd6c482 1731 * Disable a event.
c93f7669 1732 *
cdd6c482
IM
1733 * If event->ctx is a cloned context, callers must make sure that
1734 * every task struct that event->ctx->task could possibly point to
c93f7669 1735 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1736 * perf_event_for_each_child or perf_event_for_each because they
1737 * hold the top-level event's child_mutex, so any descendant that
1738 * goes to exit will block in sync_child_event.
1739 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1740 * is the current context on this CPU and preemption is disabled,
cdd6c482 1741 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1742 */
f63a8daa 1743static void _perf_event_disable(struct perf_event *event)
d859e29f 1744{
cdd6c482 1745 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1746 struct task_struct *task = ctx->task;
1747
1748 if (!task) {
1749 /*
cdd6c482 1750 * Disable the event on the cpu that it's on
d859e29f 1751 */
fe4b04fa 1752 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1753 return;
1754 }
1755
9ed6060d 1756retry:
fe4b04fa
PZ
1757 if (!task_function_call(task, __perf_event_disable, event))
1758 return;
d859e29f 1759
e625cce1 1760 raw_spin_lock_irq(&ctx->lock);
d859e29f 1761 /*
cdd6c482 1762 * If the event is still active, we need to retry the cross-call.
d859e29f 1763 */
cdd6c482 1764 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1765 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1766 /*
1767 * Reload the task pointer, it might have been changed by
1768 * a concurrent perf_event_context_sched_out().
1769 */
1770 task = ctx->task;
d859e29f
PM
1771 goto retry;
1772 }
1773
1774 /*
1775 * Since we have the lock this context can't be scheduled
1776 * in, so we can change the state safely.
1777 */
cdd6c482
IM
1778 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1779 update_group_times(event);
1780 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1781 }
e625cce1 1782 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1783}
f63a8daa
PZ
1784
1785/*
1786 * Strictly speaking kernel users cannot create groups and therefore this
1787 * interface does not need the perf_event_ctx_lock() magic.
1788 */
1789void perf_event_disable(struct perf_event *event)
1790{
1791 struct perf_event_context *ctx;
1792
1793 ctx = perf_event_ctx_lock(event);
1794 _perf_event_disable(event);
1795 perf_event_ctx_unlock(event, ctx);
1796}
dcfce4a0 1797EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1798
e5d1367f
SE
1799static void perf_set_shadow_time(struct perf_event *event,
1800 struct perf_event_context *ctx,
1801 u64 tstamp)
1802{
1803 /*
1804 * use the correct time source for the time snapshot
1805 *
1806 * We could get by without this by leveraging the
1807 * fact that to get to this function, the caller
1808 * has most likely already called update_context_time()
1809 * and update_cgrp_time_xx() and thus both timestamp
1810 * are identical (or very close). Given that tstamp is,
1811 * already adjusted for cgroup, we could say that:
1812 * tstamp - ctx->timestamp
1813 * is equivalent to
1814 * tstamp - cgrp->timestamp.
1815 *
1816 * Then, in perf_output_read(), the calculation would
1817 * work with no changes because:
1818 * - event is guaranteed scheduled in
1819 * - no scheduled out in between
1820 * - thus the timestamp would be the same
1821 *
1822 * But this is a bit hairy.
1823 *
1824 * So instead, we have an explicit cgroup call to remain
1825 * within the time time source all along. We believe it
1826 * is cleaner and simpler to understand.
1827 */
1828 if (is_cgroup_event(event))
1829 perf_cgroup_set_shadow_time(event, tstamp);
1830 else
1831 event->shadow_ctx_time = tstamp - ctx->timestamp;
1832}
1833
4fe757dd
PZ
1834#define MAX_INTERRUPTS (~0ULL)
1835
1836static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1837static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1838
235c7fc7 1839static int
9ffcfa6f 1840event_sched_in(struct perf_event *event,
235c7fc7 1841 struct perf_cpu_context *cpuctx,
6e37738a 1842 struct perf_event_context *ctx)
235c7fc7 1843{
4158755d 1844 u64 tstamp = perf_event_time(event);
44377277 1845 int ret = 0;
4158755d 1846
63342411
PZ
1847 lockdep_assert_held(&ctx->lock);
1848
cdd6c482 1849 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1850 return 0;
1851
cdd6c482 1852 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1853 event->oncpu = smp_processor_id();
4fe757dd
PZ
1854
1855 /*
1856 * Unthrottle events, since we scheduled we might have missed several
1857 * ticks already, also for a heavily scheduling task there is little
1858 * guarantee it'll get a tick in a timely manner.
1859 */
1860 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1861 perf_log_throttle(event, 1);
1862 event->hw.interrupts = 0;
1863 }
1864
235c7fc7
IM
1865 /*
1866 * The new state must be visible before we turn it on in the hardware:
1867 */
1868 smp_wmb();
1869
44377277
AS
1870 perf_pmu_disable(event->pmu);
1871
72f669c0
SL
1872 perf_set_shadow_time(event, ctx, tstamp);
1873
ec0d7729
AS
1874 perf_log_itrace_start(event);
1875
a4eaf7f1 1876 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1877 event->state = PERF_EVENT_STATE_INACTIVE;
1878 event->oncpu = -1;
44377277
AS
1879 ret = -EAGAIN;
1880 goto out;
235c7fc7
IM
1881 }
1882
00a2916f
PZ
1883 event->tstamp_running += tstamp - event->tstamp_stopped;
1884
cdd6c482 1885 if (!is_software_event(event))
3b6f9e5c 1886 cpuctx->active_oncpu++;
2fde4f94
MR
1887 if (!ctx->nr_active++)
1888 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1889 if (event->attr.freq && event->attr.sample_freq)
1890 ctx->nr_freq++;
235c7fc7 1891
cdd6c482 1892 if (event->attr.exclusive)
3b6f9e5c
PM
1893 cpuctx->exclusive = 1;
1894
fadfe7be
JO
1895 if (is_orphaned_child(event))
1896 schedule_orphans_remove(ctx);
1897
44377277
AS
1898out:
1899 perf_pmu_enable(event->pmu);
1900
1901 return ret;
235c7fc7
IM
1902}
1903
6751b71e 1904static int
cdd6c482 1905group_sched_in(struct perf_event *group_event,
6751b71e 1906 struct perf_cpu_context *cpuctx,
6e37738a 1907 struct perf_event_context *ctx)
6751b71e 1908{
6bde9b6c 1909 struct perf_event *event, *partial_group = NULL;
4a234593 1910 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1911 u64 now = ctx->time;
1912 bool simulate = false;
6751b71e 1913
cdd6c482 1914 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1915 return 0;
1916
ad5133b7 1917 pmu->start_txn(pmu);
6bde9b6c 1918
9ffcfa6f 1919 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1920 pmu->cancel_txn(pmu);
272325c4 1921 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1922 return -EAGAIN;
90151c35 1923 }
6751b71e
PM
1924
1925 /*
1926 * Schedule in siblings as one group (if any):
1927 */
cdd6c482 1928 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1929 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1930 partial_group = event;
6751b71e
PM
1931 goto group_error;
1932 }
1933 }
1934
9ffcfa6f 1935 if (!pmu->commit_txn(pmu))
6e85158c 1936 return 0;
9ffcfa6f 1937
6751b71e
PM
1938group_error:
1939 /*
1940 * Groups can be scheduled in as one unit only, so undo any
1941 * partial group before returning:
d7842da4
SE
1942 * The events up to the failed event are scheduled out normally,
1943 * tstamp_stopped will be updated.
1944 *
1945 * The failed events and the remaining siblings need to have
1946 * their timings updated as if they had gone thru event_sched_in()
1947 * and event_sched_out(). This is required to get consistent timings
1948 * across the group. This also takes care of the case where the group
1949 * could never be scheduled by ensuring tstamp_stopped is set to mark
1950 * the time the event was actually stopped, such that time delta
1951 * calculation in update_event_times() is correct.
6751b71e 1952 */
cdd6c482
IM
1953 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954 if (event == partial_group)
d7842da4
SE
1955 simulate = true;
1956
1957 if (simulate) {
1958 event->tstamp_running += now - event->tstamp_stopped;
1959 event->tstamp_stopped = now;
1960 } else {
1961 event_sched_out(event, cpuctx, ctx);
1962 }
6751b71e 1963 }
9ffcfa6f 1964 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1965
ad5133b7 1966 pmu->cancel_txn(pmu);
90151c35 1967
272325c4 1968 perf_mux_hrtimer_restart(cpuctx);
9e630205 1969
6751b71e
PM
1970 return -EAGAIN;
1971}
1972
3b6f9e5c 1973/*
cdd6c482 1974 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1975 */
cdd6c482 1976static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1977 struct perf_cpu_context *cpuctx,
1978 int can_add_hw)
1979{
1980 /*
cdd6c482 1981 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1982 */
d6f962b5 1983 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1984 return 1;
1985 /*
1986 * If an exclusive group is already on, no other hardware
cdd6c482 1987 * events can go on.
3b6f9e5c
PM
1988 */
1989 if (cpuctx->exclusive)
1990 return 0;
1991 /*
1992 * If this group is exclusive and there are already
cdd6c482 1993 * events on the CPU, it can't go on.
3b6f9e5c 1994 */
cdd6c482 1995 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1996 return 0;
1997 /*
1998 * Otherwise, try to add it if all previous groups were able
1999 * to go on.
2000 */
2001 return can_add_hw;
2002}
2003
cdd6c482
IM
2004static void add_event_to_ctx(struct perf_event *event,
2005 struct perf_event_context *ctx)
53cfbf59 2006{
4158755d
SE
2007 u64 tstamp = perf_event_time(event);
2008
cdd6c482 2009 list_add_event(event, ctx);
8a49542c 2010 perf_group_attach(event);
4158755d
SE
2011 event->tstamp_enabled = tstamp;
2012 event->tstamp_running = tstamp;
2013 event->tstamp_stopped = tstamp;
53cfbf59
PM
2014}
2015
2c29ef0f
PZ
2016static void task_ctx_sched_out(struct perf_event_context *ctx);
2017static void
2018ctx_sched_in(struct perf_event_context *ctx,
2019 struct perf_cpu_context *cpuctx,
2020 enum event_type_t event_type,
2021 struct task_struct *task);
fe4b04fa 2022
dce5855b
PZ
2023static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2024 struct perf_event_context *ctx,
2025 struct task_struct *task)
2026{
2027 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2028 if (ctx)
2029 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2030 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2031 if (ctx)
2032 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2033}
2034
0793a61d 2035/*
cdd6c482 2036 * Cross CPU call to install and enable a performance event
682076ae
PZ
2037 *
2038 * Must be called with ctx->mutex held
0793a61d 2039 */
fe4b04fa 2040static int __perf_install_in_context(void *info)
0793a61d 2041{
cdd6c482
IM
2042 struct perf_event *event = info;
2043 struct perf_event_context *ctx = event->ctx;
108b02cf 2044 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2045 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2046 struct task_struct *task = current;
2047
b58f6b0d 2048 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2049 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2050
2051 /*
2c29ef0f 2052 * If there was an active task_ctx schedule it out.
0793a61d 2053 */
b58f6b0d 2054 if (task_ctx)
2c29ef0f 2055 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2056
2057 /*
2058 * If the context we're installing events in is not the
2059 * active task_ctx, flip them.
2060 */
2061 if (ctx->task && task_ctx != ctx) {
2062 if (task_ctx)
2063 raw_spin_unlock(&task_ctx->lock);
2064 raw_spin_lock(&ctx->lock);
2065 task_ctx = ctx;
2066 }
2067
2068 if (task_ctx) {
2069 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2070 task = task_ctx->task;
2071 }
b58f6b0d 2072
2c29ef0f 2073 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2074
4af4998b 2075 update_context_time(ctx);
e5d1367f
SE
2076 /*
2077 * update cgrp time only if current cgrp
2078 * matches event->cgrp. Must be done before
2079 * calling add_event_to_ctx()
2080 */
2081 update_cgrp_time_from_event(event);
0793a61d 2082
cdd6c482 2083 add_event_to_ctx(event, ctx);
0793a61d 2084
d859e29f 2085 /*
2c29ef0f 2086 * Schedule everything back in
d859e29f 2087 */
dce5855b 2088 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2089
2090 perf_pmu_enable(cpuctx->ctx.pmu);
2091 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2092
2093 return 0;
0793a61d
TG
2094}
2095
2096/*
cdd6c482 2097 * Attach a performance event to a context
0793a61d 2098 *
cdd6c482
IM
2099 * First we add the event to the list with the hardware enable bit
2100 * in event->hw_config cleared.
0793a61d 2101 *
cdd6c482 2102 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2103 * call to enable it in the task context. The task might have been
2104 * scheduled away, but we check this in the smp call again.
2105 */
2106static void
cdd6c482
IM
2107perf_install_in_context(struct perf_event_context *ctx,
2108 struct perf_event *event,
0793a61d
TG
2109 int cpu)
2110{
2111 struct task_struct *task = ctx->task;
2112
fe4b04fa
PZ
2113 lockdep_assert_held(&ctx->mutex);
2114
c3f00c70 2115 event->ctx = ctx;
0cda4c02
YZ
2116 if (event->cpu != -1)
2117 event->cpu = cpu;
c3f00c70 2118
0793a61d
TG
2119 if (!task) {
2120 /*
cdd6c482 2121 * Per cpu events are installed via an smp call and
af901ca1 2122 * the install is always successful.
0793a61d 2123 */
fe4b04fa 2124 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2125 return;
2126 }
2127
0793a61d 2128retry:
fe4b04fa
PZ
2129 if (!task_function_call(task, __perf_install_in_context, event))
2130 return;
0793a61d 2131
e625cce1 2132 raw_spin_lock_irq(&ctx->lock);
0793a61d 2133 /*
fe4b04fa
PZ
2134 * If we failed to find a running task, but find the context active now
2135 * that we've acquired the ctx->lock, retry.
0793a61d 2136 */
fe4b04fa 2137 if (ctx->is_active) {
e625cce1 2138 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2139 /*
2140 * Reload the task pointer, it might have been changed by
2141 * a concurrent perf_event_context_sched_out().
2142 */
2143 task = ctx->task;
0793a61d
TG
2144 goto retry;
2145 }
2146
2147 /*
fe4b04fa
PZ
2148 * Since the task isn't running, its safe to add the event, us holding
2149 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2150 */
fe4b04fa 2151 add_event_to_ctx(event, ctx);
e625cce1 2152 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2153}
2154
fa289bec 2155/*
cdd6c482 2156 * Put a event into inactive state and update time fields.
fa289bec
PM
2157 * Enabling the leader of a group effectively enables all
2158 * the group members that aren't explicitly disabled, so we
2159 * have to update their ->tstamp_enabled also.
2160 * Note: this works for group members as well as group leaders
2161 * since the non-leader members' sibling_lists will be empty.
2162 */
1d9b482e 2163static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2164{
cdd6c482 2165 struct perf_event *sub;
4158755d 2166 u64 tstamp = perf_event_time(event);
fa289bec 2167
cdd6c482 2168 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2169 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2170 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2171 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2172 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2173 }
fa289bec
PM
2174}
2175
d859e29f 2176/*
cdd6c482 2177 * Cross CPU call to enable a performance event
d859e29f 2178 */
fe4b04fa 2179static int __perf_event_enable(void *info)
04289bb9 2180{
cdd6c482 2181 struct perf_event *event = info;
cdd6c482
IM
2182 struct perf_event_context *ctx = event->ctx;
2183 struct perf_event *leader = event->group_leader;
108b02cf 2184 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2185 int err;
04289bb9 2186
06f41796
JO
2187 /*
2188 * There's a time window between 'ctx->is_active' check
2189 * in perf_event_enable function and this place having:
2190 * - IRQs on
2191 * - ctx->lock unlocked
2192 *
2193 * where the task could be killed and 'ctx' deactivated
2194 * by perf_event_exit_task.
2195 */
2196 if (!ctx->is_active)
fe4b04fa 2197 return -EINVAL;
3cbed429 2198
e625cce1 2199 raw_spin_lock(&ctx->lock);
4af4998b 2200 update_context_time(ctx);
d859e29f 2201
cdd6c482 2202 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2203 goto unlock;
e5d1367f
SE
2204
2205 /*
2206 * set current task's cgroup time reference point
2207 */
3f7cce3c 2208 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2209
1d9b482e 2210 __perf_event_mark_enabled(event);
04289bb9 2211
e5d1367f
SE
2212 if (!event_filter_match(event)) {
2213 if (is_cgroup_event(event))
2214 perf_cgroup_defer_enabled(event);
f4c4176f 2215 goto unlock;
e5d1367f 2216 }
f4c4176f 2217
04289bb9 2218 /*
cdd6c482 2219 * If the event is in a group and isn't the group leader,
d859e29f 2220 * then don't put it on unless the group is on.
04289bb9 2221 */
cdd6c482 2222 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2223 goto unlock;
3b6f9e5c 2224
cdd6c482 2225 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2226 err = -EEXIST;
e758a33d 2227 } else {
cdd6c482 2228 if (event == leader)
6e37738a 2229 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2230 else
6e37738a 2231 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2232 }
d859e29f
PM
2233
2234 if (err) {
2235 /*
cdd6c482 2236 * If this event can't go on and it's part of a
d859e29f
PM
2237 * group, then the whole group has to come off.
2238 */
9e630205 2239 if (leader != event) {
d859e29f 2240 group_sched_out(leader, cpuctx, ctx);
272325c4 2241 perf_mux_hrtimer_restart(cpuctx);
9e630205 2242 }
0d48696f 2243 if (leader->attr.pinned) {
53cfbf59 2244 update_group_times(leader);
cdd6c482 2245 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2246 }
d859e29f
PM
2247 }
2248
9ed6060d 2249unlock:
e625cce1 2250 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2251
2252 return 0;
d859e29f
PM
2253}
2254
2255/*
cdd6c482 2256 * Enable a event.
c93f7669 2257 *
cdd6c482
IM
2258 * If event->ctx is a cloned context, callers must make sure that
2259 * every task struct that event->ctx->task could possibly point to
c93f7669 2260 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2261 * perf_event_for_each_child or perf_event_for_each as described
2262 * for perf_event_disable.
d859e29f 2263 */
f63a8daa 2264static void _perf_event_enable(struct perf_event *event)
d859e29f 2265{
cdd6c482 2266 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2267 struct task_struct *task = ctx->task;
2268
2269 if (!task) {
2270 /*
cdd6c482 2271 * Enable the event on the cpu that it's on
d859e29f 2272 */
fe4b04fa 2273 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2274 return;
2275 }
2276
e625cce1 2277 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2278 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2279 goto out;
2280
2281 /*
cdd6c482
IM
2282 * If the event is in error state, clear that first.
2283 * That way, if we see the event in error state below, we
d859e29f
PM
2284 * know that it has gone back into error state, as distinct
2285 * from the task having been scheduled away before the
2286 * cross-call arrived.
2287 */
cdd6c482
IM
2288 if (event->state == PERF_EVENT_STATE_ERROR)
2289 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2290
9ed6060d 2291retry:
fe4b04fa 2292 if (!ctx->is_active) {
1d9b482e 2293 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2294 goto out;
2295 }
2296
e625cce1 2297 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2298
2299 if (!task_function_call(task, __perf_event_enable, event))
2300 return;
d859e29f 2301
e625cce1 2302 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2303
2304 /*
cdd6c482 2305 * If the context is active and the event is still off,
d859e29f
PM
2306 * we need to retry the cross-call.
2307 */
fe4b04fa
PZ
2308 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2309 /*
2310 * task could have been flipped by a concurrent
2311 * perf_event_context_sched_out()
2312 */
2313 task = ctx->task;
d859e29f 2314 goto retry;
fe4b04fa 2315 }
fa289bec 2316
9ed6060d 2317out:
e625cce1 2318 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2319}
f63a8daa
PZ
2320
2321/*
2322 * See perf_event_disable();
2323 */
2324void perf_event_enable(struct perf_event *event)
2325{
2326 struct perf_event_context *ctx;
2327
2328 ctx = perf_event_ctx_lock(event);
2329 _perf_event_enable(event);
2330 perf_event_ctx_unlock(event, ctx);
2331}
dcfce4a0 2332EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2333
f63a8daa 2334static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2335{
2023b359 2336 /*
cdd6c482 2337 * not supported on inherited events
2023b359 2338 */
2e939d1d 2339 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2340 return -EINVAL;
2341
cdd6c482 2342 atomic_add(refresh, &event->event_limit);
f63a8daa 2343 _perf_event_enable(event);
2023b359
PZ
2344
2345 return 0;
79f14641 2346}
f63a8daa
PZ
2347
2348/*
2349 * See perf_event_disable()
2350 */
2351int perf_event_refresh(struct perf_event *event, int refresh)
2352{
2353 struct perf_event_context *ctx;
2354 int ret;
2355
2356 ctx = perf_event_ctx_lock(event);
2357 ret = _perf_event_refresh(event, refresh);
2358 perf_event_ctx_unlock(event, ctx);
2359
2360 return ret;
2361}
26ca5c11 2362EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2363
5b0311e1
FW
2364static void ctx_sched_out(struct perf_event_context *ctx,
2365 struct perf_cpu_context *cpuctx,
2366 enum event_type_t event_type)
235c7fc7 2367{
cdd6c482 2368 struct perf_event *event;
db24d33e 2369 int is_active = ctx->is_active;
235c7fc7 2370
db24d33e 2371 ctx->is_active &= ~event_type;
cdd6c482 2372 if (likely(!ctx->nr_events))
facc4307
PZ
2373 return;
2374
4af4998b 2375 update_context_time(ctx);
e5d1367f 2376 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2377 if (!ctx->nr_active)
facc4307 2378 return;
5b0311e1 2379
075e0b00 2380 perf_pmu_disable(ctx->pmu);
db24d33e 2381 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2382 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2383 group_sched_out(event, cpuctx, ctx);
9ed6060d 2384 }
889ff015 2385
db24d33e 2386 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2387 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2388 group_sched_out(event, cpuctx, ctx);
9ed6060d 2389 }
1b9a644f 2390 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2391}
2392
564c2b21 2393/*
5a3126d4
PZ
2394 * Test whether two contexts are equivalent, i.e. whether they have both been
2395 * cloned from the same version of the same context.
2396 *
2397 * Equivalence is measured using a generation number in the context that is
2398 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2399 * and list_del_event().
564c2b21 2400 */
cdd6c482
IM
2401static int context_equiv(struct perf_event_context *ctx1,
2402 struct perf_event_context *ctx2)
564c2b21 2403{
211de6eb
PZ
2404 lockdep_assert_held(&ctx1->lock);
2405 lockdep_assert_held(&ctx2->lock);
2406
5a3126d4
PZ
2407 /* Pinning disables the swap optimization */
2408 if (ctx1->pin_count || ctx2->pin_count)
2409 return 0;
2410
2411 /* If ctx1 is the parent of ctx2 */
2412 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2413 return 1;
2414
2415 /* If ctx2 is the parent of ctx1 */
2416 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2417 return 1;
2418
2419 /*
2420 * If ctx1 and ctx2 have the same parent; we flatten the parent
2421 * hierarchy, see perf_event_init_context().
2422 */
2423 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2424 ctx1->parent_gen == ctx2->parent_gen)
2425 return 1;
2426
2427 /* Unmatched */
2428 return 0;
564c2b21
PM
2429}
2430
cdd6c482
IM
2431static void __perf_event_sync_stat(struct perf_event *event,
2432 struct perf_event *next_event)
bfbd3381
PZ
2433{
2434 u64 value;
2435
cdd6c482 2436 if (!event->attr.inherit_stat)
bfbd3381
PZ
2437 return;
2438
2439 /*
cdd6c482 2440 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2441 * because we're in the middle of a context switch and have IRQs
2442 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2443 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2444 * don't need to use it.
2445 */
cdd6c482
IM
2446 switch (event->state) {
2447 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2448 event->pmu->read(event);
2449 /* fall-through */
bfbd3381 2450
cdd6c482
IM
2451 case PERF_EVENT_STATE_INACTIVE:
2452 update_event_times(event);
bfbd3381
PZ
2453 break;
2454
2455 default:
2456 break;
2457 }
2458
2459 /*
cdd6c482 2460 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2461 * values when we flip the contexts.
2462 */
e7850595
PZ
2463 value = local64_read(&next_event->count);
2464 value = local64_xchg(&event->count, value);
2465 local64_set(&next_event->count, value);
bfbd3381 2466
cdd6c482
IM
2467 swap(event->total_time_enabled, next_event->total_time_enabled);
2468 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2469
bfbd3381 2470 /*
19d2e755 2471 * Since we swizzled the values, update the user visible data too.
bfbd3381 2472 */
cdd6c482
IM
2473 perf_event_update_userpage(event);
2474 perf_event_update_userpage(next_event);
bfbd3381
PZ
2475}
2476
cdd6c482
IM
2477static void perf_event_sync_stat(struct perf_event_context *ctx,
2478 struct perf_event_context *next_ctx)
bfbd3381 2479{
cdd6c482 2480 struct perf_event *event, *next_event;
bfbd3381
PZ
2481
2482 if (!ctx->nr_stat)
2483 return;
2484
02ffdbc8
PZ
2485 update_context_time(ctx);
2486
cdd6c482
IM
2487 event = list_first_entry(&ctx->event_list,
2488 struct perf_event, event_entry);
bfbd3381 2489
cdd6c482
IM
2490 next_event = list_first_entry(&next_ctx->event_list,
2491 struct perf_event, event_entry);
bfbd3381 2492
cdd6c482
IM
2493 while (&event->event_entry != &ctx->event_list &&
2494 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2495
cdd6c482 2496 __perf_event_sync_stat(event, next_event);
bfbd3381 2497
cdd6c482
IM
2498 event = list_next_entry(event, event_entry);
2499 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2500 }
2501}
2502
fe4b04fa
PZ
2503static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2504 struct task_struct *next)
0793a61d 2505{
8dc85d54 2506 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2507 struct perf_event_context *next_ctx;
5a3126d4 2508 struct perf_event_context *parent, *next_parent;
108b02cf 2509 struct perf_cpu_context *cpuctx;
c93f7669 2510 int do_switch = 1;
0793a61d 2511
108b02cf
PZ
2512 if (likely(!ctx))
2513 return;
10989fb2 2514
108b02cf
PZ
2515 cpuctx = __get_cpu_context(ctx);
2516 if (!cpuctx->task_ctx)
0793a61d
TG
2517 return;
2518
c93f7669 2519 rcu_read_lock();
8dc85d54 2520 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2521 if (!next_ctx)
2522 goto unlock;
2523
2524 parent = rcu_dereference(ctx->parent_ctx);
2525 next_parent = rcu_dereference(next_ctx->parent_ctx);
2526
2527 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2528 if (!parent && !next_parent)
5a3126d4
PZ
2529 goto unlock;
2530
2531 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2532 /*
2533 * Looks like the two contexts are clones, so we might be
2534 * able to optimize the context switch. We lock both
2535 * contexts and check that they are clones under the
2536 * lock (including re-checking that neither has been
2537 * uncloned in the meantime). It doesn't matter which
2538 * order we take the locks because no other cpu could
2539 * be trying to lock both of these tasks.
2540 */
e625cce1
TG
2541 raw_spin_lock(&ctx->lock);
2542 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2543 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2544 /*
2545 * XXX do we need a memory barrier of sorts
cdd6c482 2546 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2547 */
8dc85d54
PZ
2548 task->perf_event_ctxp[ctxn] = next_ctx;
2549 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2550 ctx->task = next;
2551 next_ctx->task = task;
5a158c3c
YZ
2552
2553 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2554
c93f7669 2555 do_switch = 0;
bfbd3381 2556
cdd6c482 2557 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2558 }
e625cce1
TG
2559 raw_spin_unlock(&next_ctx->lock);
2560 raw_spin_unlock(&ctx->lock);
564c2b21 2561 }
5a3126d4 2562unlock:
c93f7669 2563 rcu_read_unlock();
564c2b21 2564
c93f7669 2565 if (do_switch) {
facc4307 2566 raw_spin_lock(&ctx->lock);
5b0311e1 2567 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2568 cpuctx->task_ctx = NULL;
facc4307 2569 raw_spin_unlock(&ctx->lock);
c93f7669 2570 }
0793a61d
TG
2571}
2572
ba532500
YZ
2573void perf_sched_cb_dec(struct pmu *pmu)
2574{
2575 this_cpu_dec(perf_sched_cb_usages);
2576}
2577
2578void perf_sched_cb_inc(struct pmu *pmu)
2579{
2580 this_cpu_inc(perf_sched_cb_usages);
2581}
2582
2583/*
2584 * This function provides the context switch callback to the lower code
2585 * layer. It is invoked ONLY when the context switch callback is enabled.
2586 */
2587static void perf_pmu_sched_task(struct task_struct *prev,
2588 struct task_struct *next,
2589 bool sched_in)
2590{
2591 struct perf_cpu_context *cpuctx;
2592 struct pmu *pmu;
2593 unsigned long flags;
2594
2595 if (prev == next)
2596 return;
2597
2598 local_irq_save(flags);
2599
2600 rcu_read_lock();
2601
2602 list_for_each_entry_rcu(pmu, &pmus, entry) {
2603 if (pmu->sched_task) {
2604 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2605
2606 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2607
2608 perf_pmu_disable(pmu);
2609
2610 pmu->sched_task(cpuctx->task_ctx, sched_in);
2611
2612 perf_pmu_enable(pmu);
2613
2614 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2615 }
2616 }
2617
2618 rcu_read_unlock();
2619
2620 local_irq_restore(flags);
2621}
2622
45ac1403
AH
2623static void perf_event_switch(struct task_struct *task,
2624 struct task_struct *next_prev, bool sched_in);
2625
8dc85d54
PZ
2626#define for_each_task_context_nr(ctxn) \
2627 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2628
2629/*
2630 * Called from scheduler to remove the events of the current task,
2631 * with interrupts disabled.
2632 *
2633 * We stop each event and update the event value in event->count.
2634 *
2635 * This does not protect us against NMI, but disable()
2636 * sets the disabled bit in the control field of event _before_
2637 * accessing the event control register. If a NMI hits, then it will
2638 * not restart the event.
2639 */
ab0cce56
JO
2640void __perf_event_task_sched_out(struct task_struct *task,
2641 struct task_struct *next)
8dc85d54
PZ
2642{
2643 int ctxn;
2644
ba532500
YZ
2645 if (__this_cpu_read(perf_sched_cb_usages))
2646 perf_pmu_sched_task(task, next, false);
2647
45ac1403
AH
2648 if (atomic_read(&nr_switch_events))
2649 perf_event_switch(task, next, false);
2650
8dc85d54
PZ
2651 for_each_task_context_nr(ctxn)
2652 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2653
2654 /*
2655 * if cgroup events exist on this CPU, then we need
2656 * to check if we have to switch out PMU state.
2657 * cgroup event are system-wide mode only
2658 */
4a32fea9 2659 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2660 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2661}
2662
04dc2dbb 2663static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2664{
108b02cf 2665 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2666
a63eaf34
PM
2667 if (!cpuctx->task_ctx)
2668 return;
012b84da
IM
2669
2670 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2671 return;
2672
04dc2dbb 2673 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2674 cpuctx->task_ctx = NULL;
2675}
2676
5b0311e1
FW
2677/*
2678 * Called with IRQs disabled
2679 */
2680static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2681 enum event_type_t event_type)
2682{
2683 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2684}
2685
235c7fc7 2686static void
5b0311e1 2687ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2688 struct perf_cpu_context *cpuctx)
0793a61d 2689{
cdd6c482 2690 struct perf_event *event;
0793a61d 2691
889ff015
FW
2692 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2693 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2694 continue;
5632ab12 2695 if (!event_filter_match(event))
3b6f9e5c
PM
2696 continue;
2697
e5d1367f
SE
2698 /* may need to reset tstamp_enabled */
2699 if (is_cgroup_event(event))
2700 perf_cgroup_mark_enabled(event, ctx);
2701
8c9ed8e1 2702 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2703 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2704
2705 /*
2706 * If this pinned group hasn't been scheduled,
2707 * put it in error state.
2708 */
cdd6c482
IM
2709 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2710 update_group_times(event);
2711 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2712 }
3b6f9e5c 2713 }
5b0311e1
FW
2714}
2715
2716static void
2717ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2718 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2719{
2720 struct perf_event *event;
2721 int can_add_hw = 1;
3b6f9e5c 2722
889ff015
FW
2723 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2724 /* Ignore events in OFF or ERROR state */
2725 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2726 continue;
04289bb9
IM
2727 /*
2728 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2729 * of events:
04289bb9 2730 */
5632ab12 2731 if (!event_filter_match(event))
0793a61d
TG
2732 continue;
2733
e5d1367f
SE
2734 /* may need to reset tstamp_enabled */
2735 if (is_cgroup_event(event))
2736 perf_cgroup_mark_enabled(event, ctx);
2737
9ed6060d 2738 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2739 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2740 can_add_hw = 0;
9ed6060d 2741 }
0793a61d 2742 }
5b0311e1
FW
2743}
2744
2745static void
2746ctx_sched_in(struct perf_event_context *ctx,
2747 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2748 enum event_type_t event_type,
2749 struct task_struct *task)
5b0311e1 2750{
e5d1367f 2751 u64 now;
db24d33e 2752 int is_active = ctx->is_active;
e5d1367f 2753
db24d33e 2754 ctx->is_active |= event_type;
5b0311e1 2755 if (likely(!ctx->nr_events))
facc4307 2756 return;
5b0311e1 2757
e5d1367f
SE
2758 now = perf_clock();
2759 ctx->timestamp = now;
3f7cce3c 2760 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2761 /*
2762 * First go through the list and put on any pinned groups
2763 * in order to give them the best chance of going on.
2764 */
db24d33e 2765 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2766 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2767
2768 /* Then walk through the lower prio flexible groups */
db24d33e 2769 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2770 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2771}
2772
329c0e01 2773static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2774 enum event_type_t event_type,
2775 struct task_struct *task)
329c0e01
FW
2776{
2777 struct perf_event_context *ctx = &cpuctx->ctx;
2778
e5d1367f 2779 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2780}
2781
e5d1367f
SE
2782static void perf_event_context_sched_in(struct perf_event_context *ctx,
2783 struct task_struct *task)
235c7fc7 2784{
108b02cf 2785 struct perf_cpu_context *cpuctx;
235c7fc7 2786
108b02cf 2787 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2788 if (cpuctx->task_ctx == ctx)
2789 return;
2790
facc4307 2791 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2792 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2793 /*
2794 * We want to keep the following priority order:
2795 * cpu pinned (that don't need to move), task pinned,
2796 * cpu flexible, task flexible.
2797 */
2798 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2799
1d5f003f
GN
2800 if (ctx->nr_events)
2801 cpuctx->task_ctx = ctx;
9b33fa6b 2802
86b47c25
GN
2803 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2804
facc4307
PZ
2805 perf_pmu_enable(ctx->pmu);
2806 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2807}
2808
8dc85d54
PZ
2809/*
2810 * Called from scheduler to add the events of the current task
2811 * with interrupts disabled.
2812 *
2813 * We restore the event value and then enable it.
2814 *
2815 * This does not protect us against NMI, but enable()
2816 * sets the enabled bit in the control field of event _before_
2817 * accessing the event control register. If a NMI hits, then it will
2818 * keep the event running.
2819 */
ab0cce56
JO
2820void __perf_event_task_sched_in(struct task_struct *prev,
2821 struct task_struct *task)
8dc85d54
PZ
2822{
2823 struct perf_event_context *ctx;
2824 int ctxn;
2825
2826 for_each_task_context_nr(ctxn) {
2827 ctx = task->perf_event_ctxp[ctxn];
2828 if (likely(!ctx))
2829 continue;
2830
e5d1367f 2831 perf_event_context_sched_in(ctx, task);
8dc85d54 2832 }
e5d1367f
SE
2833 /*
2834 * if cgroup events exist on this CPU, then we need
2835 * to check if we have to switch in PMU state.
2836 * cgroup event are system-wide mode only
2837 */
4a32fea9 2838 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2839 perf_cgroup_sched_in(prev, task);
d010b332 2840
45ac1403
AH
2841 if (atomic_read(&nr_switch_events))
2842 perf_event_switch(task, prev, true);
2843
ba532500
YZ
2844 if (__this_cpu_read(perf_sched_cb_usages))
2845 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2846}
2847
abd50713
PZ
2848static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2849{
2850 u64 frequency = event->attr.sample_freq;
2851 u64 sec = NSEC_PER_SEC;
2852 u64 divisor, dividend;
2853
2854 int count_fls, nsec_fls, frequency_fls, sec_fls;
2855
2856 count_fls = fls64(count);
2857 nsec_fls = fls64(nsec);
2858 frequency_fls = fls64(frequency);
2859 sec_fls = 30;
2860
2861 /*
2862 * We got @count in @nsec, with a target of sample_freq HZ
2863 * the target period becomes:
2864 *
2865 * @count * 10^9
2866 * period = -------------------
2867 * @nsec * sample_freq
2868 *
2869 */
2870
2871 /*
2872 * Reduce accuracy by one bit such that @a and @b converge
2873 * to a similar magnitude.
2874 */
fe4b04fa 2875#define REDUCE_FLS(a, b) \
abd50713
PZ
2876do { \
2877 if (a##_fls > b##_fls) { \
2878 a >>= 1; \
2879 a##_fls--; \
2880 } else { \
2881 b >>= 1; \
2882 b##_fls--; \
2883 } \
2884} while (0)
2885
2886 /*
2887 * Reduce accuracy until either term fits in a u64, then proceed with
2888 * the other, so that finally we can do a u64/u64 division.
2889 */
2890 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2891 REDUCE_FLS(nsec, frequency);
2892 REDUCE_FLS(sec, count);
2893 }
2894
2895 if (count_fls + sec_fls > 64) {
2896 divisor = nsec * frequency;
2897
2898 while (count_fls + sec_fls > 64) {
2899 REDUCE_FLS(count, sec);
2900 divisor >>= 1;
2901 }
2902
2903 dividend = count * sec;
2904 } else {
2905 dividend = count * sec;
2906
2907 while (nsec_fls + frequency_fls > 64) {
2908 REDUCE_FLS(nsec, frequency);
2909 dividend >>= 1;
2910 }
2911
2912 divisor = nsec * frequency;
2913 }
2914
f6ab91ad
PZ
2915 if (!divisor)
2916 return dividend;
2917
abd50713
PZ
2918 return div64_u64(dividend, divisor);
2919}
2920
e050e3f0
SE
2921static DEFINE_PER_CPU(int, perf_throttled_count);
2922static DEFINE_PER_CPU(u64, perf_throttled_seq);
2923
f39d47ff 2924static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2925{
cdd6c482 2926 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2927 s64 period, sample_period;
bd2b5b12
PZ
2928 s64 delta;
2929
abd50713 2930 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2931
2932 delta = (s64)(period - hwc->sample_period);
2933 delta = (delta + 7) / 8; /* low pass filter */
2934
2935 sample_period = hwc->sample_period + delta;
2936
2937 if (!sample_period)
2938 sample_period = 1;
2939
bd2b5b12 2940 hwc->sample_period = sample_period;
abd50713 2941
e7850595 2942 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2943 if (disable)
2944 event->pmu->stop(event, PERF_EF_UPDATE);
2945
e7850595 2946 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2947
2948 if (disable)
2949 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2950 }
bd2b5b12
PZ
2951}
2952
e050e3f0
SE
2953/*
2954 * combine freq adjustment with unthrottling to avoid two passes over the
2955 * events. At the same time, make sure, having freq events does not change
2956 * the rate of unthrottling as that would introduce bias.
2957 */
2958static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2959 int needs_unthr)
60db5e09 2960{
cdd6c482
IM
2961 struct perf_event *event;
2962 struct hw_perf_event *hwc;
e050e3f0 2963 u64 now, period = TICK_NSEC;
abd50713 2964 s64 delta;
60db5e09 2965
e050e3f0
SE
2966 /*
2967 * only need to iterate over all events iff:
2968 * - context have events in frequency mode (needs freq adjust)
2969 * - there are events to unthrottle on this cpu
2970 */
2971 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2972 return;
2973
e050e3f0 2974 raw_spin_lock(&ctx->lock);
f39d47ff 2975 perf_pmu_disable(ctx->pmu);
e050e3f0 2976
03541f8b 2977 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2978 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2979 continue;
2980
5632ab12 2981 if (!event_filter_match(event))
5d27c23d
PZ
2982 continue;
2983
44377277
AS
2984 perf_pmu_disable(event->pmu);
2985
cdd6c482 2986 hwc = &event->hw;
6a24ed6c 2987
ae23bff1 2988 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2989 hwc->interrupts = 0;
cdd6c482 2990 perf_log_throttle(event, 1);
a4eaf7f1 2991 event->pmu->start(event, 0);
a78ac325
PZ
2992 }
2993
cdd6c482 2994 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2995 goto next;
60db5e09 2996
e050e3f0
SE
2997 /*
2998 * stop the event and update event->count
2999 */
3000 event->pmu->stop(event, PERF_EF_UPDATE);
3001
e7850595 3002 now = local64_read(&event->count);
abd50713
PZ
3003 delta = now - hwc->freq_count_stamp;
3004 hwc->freq_count_stamp = now;
60db5e09 3005
e050e3f0
SE
3006 /*
3007 * restart the event
3008 * reload only if value has changed
f39d47ff
SE
3009 * we have stopped the event so tell that
3010 * to perf_adjust_period() to avoid stopping it
3011 * twice.
e050e3f0 3012 */
abd50713 3013 if (delta > 0)
f39d47ff 3014 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3015
3016 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3017 next:
3018 perf_pmu_enable(event->pmu);
60db5e09 3019 }
e050e3f0 3020
f39d47ff 3021 perf_pmu_enable(ctx->pmu);
e050e3f0 3022 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3023}
3024
235c7fc7 3025/*
cdd6c482 3026 * Round-robin a context's events:
235c7fc7 3027 */
cdd6c482 3028static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3029{
dddd3379
TG
3030 /*
3031 * Rotate the first entry last of non-pinned groups. Rotation might be
3032 * disabled by the inheritance code.
3033 */
3034 if (!ctx->rotate_disable)
3035 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3036}
3037
9e630205 3038static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3039{
8dc85d54 3040 struct perf_event_context *ctx = NULL;
2fde4f94 3041 int rotate = 0;
7fc23a53 3042
b5ab4cd5 3043 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3044 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3045 rotate = 1;
3046 }
235c7fc7 3047
8dc85d54 3048 ctx = cpuctx->task_ctx;
b5ab4cd5 3049 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3050 if (ctx->nr_events != ctx->nr_active)
3051 rotate = 1;
3052 }
9717e6cd 3053
e050e3f0 3054 if (!rotate)
0f5a2601
PZ
3055 goto done;
3056
facc4307 3057 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3058 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3059
e050e3f0
SE
3060 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3061 if (ctx)
3062 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3063
e050e3f0
SE
3064 rotate_ctx(&cpuctx->ctx);
3065 if (ctx)
3066 rotate_ctx(ctx);
235c7fc7 3067
e050e3f0 3068 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3069
0f5a2601
PZ
3070 perf_pmu_enable(cpuctx->ctx.pmu);
3071 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3072done:
9e630205
SE
3073
3074 return rotate;
e9d2b064
PZ
3075}
3076
026249ef
FW
3077#ifdef CONFIG_NO_HZ_FULL
3078bool perf_event_can_stop_tick(void)
3079{
948b26b6 3080 if (atomic_read(&nr_freq_events) ||
d84153d6 3081 __this_cpu_read(perf_throttled_count))
026249ef 3082 return false;
d84153d6
FW
3083 else
3084 return true;
026249ef
FW
3085}
3086#endif
3087
e9d2b064
PZ
3088void perf_event_task_tick(void)
3089{
2fde4f94
MR
3090 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3091 struct perf_event_context *ctx, *tmp;
e050e3f0 3092 int throttled;
b5ab4cd5 3093
e9d2b064
PZ
3094 WARN_ON(!irqs_disabled());
3095
e050e3f0
SE
3096 __this_cpu_inc(perf_throttled_seq);
3097 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3098
2fde4f94 3099 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3100 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3101}
3102
889ff015
FW
3103static int event_enable_on_exec(struct perf_event *event,
3104 struct perf_event_context *ctx)
3105{
3106 if (!event->attr.enable_on_exec)
3107 return 0;
3108
3109 event->attr.enable_on_exec = 0;
3110 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3111 return 0;
3112
1d9b482e 3113 __perf_event_mark_enabled(event);
889ff015
FW
3114
3115 return 1;
3116}
3117
57e7986e 3118/*
cdd6c482 3119 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3120 * This expects task == current.
3121 */
8dc85d54 3122static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3123{
211de6eb 3124 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3125 struct perf_event *event;
57e7986e
PM
3126 unsigned long flags;
3127 int enabled = 0;
889ff015 3128 int ret;
57e7986e
PM
3129
3130 local_irq_save(flags);
cdd6c482 3131 if (!ctx || !ctx->nr_events)
57e7986e
PM
3132 goto out;
3133
e566b76e
SE
3134 /*
3135 * We must ctxsw out cgroup events to avoid conflict
3136 * when invoking perf_task_event_sched_in() later on
3137 * in this function. Otherwise we end up trying to
3138 * ctxswin cgroup events which are already scheduled
3139 * in.
3140 */
a8d757ef 3141 perf_cgroup_sched_out(current, NULL);
57e7986e 3142
e625cce1 3143 raw_spin_lock(&ctx->lock);
04dc2dbb 3144 task_ctx_sched_out(ctx);
57e7986e 3145
b79387ef 3146 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3147 ret = event_enable_on_exec(event, ctx);
3148 if (ret)
3149 enabled = 1;
57e7986e
PM
3150 }
3151
3152 /*
cdd6c482 3153 * Unclone this context if we enabled any event.
57e7986e 3154 */
71a851b4 3155 if (enabled)
211de6eb 3156 clone_ctx = unclone_ctx(ctx);
57e7986e 3157
e625cce1 3158 raw_spin_unlock(&ctx->lock);
57e7986e 3159
e566b76e
SE
3160 /*
3161 * Also calls ctxswin for cgroup events, if any:
3162 */
e5d1367f 3163 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3164out:
57e7986e 3165 local_irq_restore(flags);
211de6eb
PZ
3166
3167 if (clone_ctx)
3168 put_ctx(clone_ctx);
57e7986e
PM
3169}
3170
e041e328
PZ
3171void perf_event_exec(void)
3172{
3173 struct perf_event_context *ctx;
3174 int ctxn;
3175
3176 rcu_read_lock();
3177 for_each_task_context_nr(ctxn) {
3178 ctx = current->perf_event_ctxp[ctxn];
3179 if (!ctx)
3180 continue;
3181
3182 perf_event_enable_on_exec(ctx);
3183 }
3184 rcu_read_unlock();
3185}
3186
0793a61d 3187/*
cdd6c482 3188 * Cross CPU call to read the hardware event
0793a61d 3189 */
cdd6c482 3190static void __perf_event_read(void *info)
0793a61d 3191{
cdd6c482
IM
3192 struct perf_event *event = info;
3193 struct perf_event_context *ctx = event->ctx;
108b02cf 3194 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3195
e1ac3614
PM
3196 /*
3197 * If this is a task context, we need to check whether it is
3198 * the current task context of this cpu. If not it has been
3199 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3200 * event->count would have been updated to a recent sample
3201 * when the event was scheduled out.
e1ac3614
PM
3202 */
3203 if (ctx->task && cpuctx->task_ctx != ctx)
3204 return;
3205
e625cce1 3206 raw_spin_lock(&ctx->lock);
e5d1367f 3207 if (ctx->is_active) {
542e72fc 3208 update_context_time(ctx);
e5d1367f
SE
3209 update_cgrp_time_from_event(event);
3210 }
cdd6c482 3211 update_event_times(event);
542e72fc
PZ
3212 if (event->state == PERF_EVENT_STATE_ACTIVE)
3213 event->pmu->read(event);
e625cce1 3214 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3215}
3216
b5e58793
PZ
3217static inline u64 perf_event_count(struct perf_event *event)
3218{
eacd3ecc
MF
3219 if (event->pmu->count)
3220 return event->pmu->count(event);
3221
3222 return __perf_event_count(event);
b5e58793
PZ
3223}
3224
cdd6c482 3225static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
3226{
3227 /*
cdd6c482
IM
3228 * If event is enabled and currently active on a CPU, update the
3229 * value in the event structure:
0793a61d 3230 */
cdd6c482
IM
3231 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3232 smp_call_function_single(event->oncpu,
3233 __perf_event_read, event, 1);
3234 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3235 struct perf_event_context *ctx = event->ctx;
3236 unsigned long flags;
3237
e625cce1 3238 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3239 /*
3240 * may read while context is not active
3241 * (e.g., thread is blocked), in that case
3242 * we cannot update context time
3243 */
e5d1367f 3244 if (ctx->is_active) {
c530ccd9 3245 update_context_time(ctx);
e5d1367f
SE
3246 update_cgrp_time_from_event(event);
3247 }
cdd6c482 3248 update_event_times(event);
e625cce1 3249 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
3250 }
3251
b5e58793 3252 return perf_event_count(event);
0793a61d
TG
3253}
3254
a63eaf34 3255/*
cdd6c482 3256 * Initialize the perf_event context in a task_struct:
a63eaf34 3257 */
eb184479 3258static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3259{
e625cce1 3260 raw_spin_lock_init(&ctx->lock);
a63eaf34 3261 mutex_init(&ctx->mutex);
2fde4f94 3262 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3263 INIT_LIST_HEAD(&ctx->pinned_groups);
3264 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3265 INIT_LIST_HEAD(&ctx->event_list);
3266 atomic_set(&ctx->refcount, 1);
fadfe7be 3267 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3268}
3269
3270static struct perf_event_context *
3271alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3272{
3273 struct perf_event_context *ctx;
3274
3275 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3276 if (!ctx)
3277 return NULL;
3278
3279 __perf_event_init_context(ctx);
3280 if (task) {
3281 ctx->task = task;
3282 get_task_struct(task);
0793a61d 3283 }
eb184479
PZ
3284 ctx->pmu = pmu;
3285
3286 return ctx;
a63eaf34
PM
3287}
3288
2ebd4ffb
MH
3289static struct task_struct *
3290find_lively_task_by_vpid(pid_t vpid)
3291{
3292 struct task_struct *task;
3293 int err;
0793a61d
TG
3294
3295 rcu_read_lock();
2ebd4ffb 3296 if (!vpid)
0793a61d
TG
3297 task = current;
3298 else
2ebd4ffb 3299 task = find_task_by_vpid(vpid);
0793a61d
TG
3300 if (task)
3301 get_task_struct(task);
3302 rcu_read_unlock();
3303
3304 if (!task)
3305 return ERR_PTR(-ESRCH);
3306
0793a61d 3307 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3308 err = -EACCES;
3309 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3310 goto errout;
3311
2ebd4ffb
MH
3312 return task;
3313errout:
3314 put_task_struct(task);
3315 return ERR_PTR(err);
3316
3317}
3318
fe4b04fa
PZ
3319/*
3320 * Returns a matching context with refcount and pincount.
3321 */
108b02cf 3322static struct perf_event_context *
4af57ef2
YZ
3323find_get_context(struct pmu *pmu, struct task_struct *task,
3324 struct perf_event *event)
0793a61d 3325{
211de6eb 3326 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3327 struct perf_cpu_context *cpuctx;
4af57ef2 3328 void *task_ctx_data = NULL;
25346b93 3329 unsigned long flags;
8dc85d54 3330 int ctxn, err;
4af57ef2 3331 int cpu = event->cpu;
0793a61d 3332
22a4ec72 3333 if (!task) {
cdd6c482 3334 /* Must be root to operate on a CPU event: */
0764771d 3335 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3336 return ERR_PTR(-EACCES);
3337
0793a61d 3338 /*
cdd6c482 3339 * We could be clever and allow to attach a event to an
0793a61d
TG
3340 * offline CPU and activate it when the CPU comes up, but
3341 * that's for later.
3342 */
f6325e30 3343 if (!cpu_online(cpu))
0793a61d
TG
3344 return ERR_PTR(-ENODEV);
3345
108b02cf 3346 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3347 ctx = &cpuctx->ctx;
c93f7669 3348 get_ctx(ctx);
fe4b04fa 3349 ++ctx->pin_count;
0793a61d 3350
0793a61d
TG
3351 return ctx;
3352 }
3353
8dc85d54
PZ
3354 err = -EINVAL;
3355 ctxn = pmu->task_ctx_nr;
3356 if (ctxn < 0)
3357 goto errout;
3358
4af57ef2
YZ
3359 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3360 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3361 if (!task_ctx_data) {
3362 err = -ENOMEM;
3363 goto errout;
3364 }
3365 }
3366
9ed6060d 3367retry:
8dc85d54 3368 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3369 if (ctx) {
211de6eb 3370 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3371 ++ctx->pin_count;
4af57ef2
YZ
3372
3373 if (task_ctx_data && !ctx->task_ctx_data) {
3374 ctx->task_ctx_data = task_ctx_data;
3375 task_ctx_data = NULL;
3376 }
e625cce1 3377 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3378
3379 if (clone_ctx)
3380 put_ctx(clone_ctx);
9137fb28 3381 } else {
eb184479 3382 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3383 err = -ENOMEM;
3384 if (!ctx)
3385 goto errout;
eb184479 3386
4af57ef2
YZ
3387 if (task_ctx_data) {
3388 ctx->task_ctx_data = task_ctx_data;
3389 task_ctx_data = NULL;
3390 }
3391
dbe08d82
ON
3392 err = 0;
3393 mutex_lock(&task->perf_event_mutex);
3394 /*
3395 * If it has already passed perf_event_exit_task().
3396 * we must see PF_EXITING, it takes this mutex too.
3397 */
3398 if (task->flags & PF_EXITING)
3399 err = -ESRCH;
3400 else if (task->perf_event_ctxp[ctxn])
3401 err = -EAGAIN;
fe4b04fa 3402 else {
9137fb28 3403 get_ctx(ctx);
fe4b04fa 3404 ++ctx->pin_count;
dbe08d82 3405 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3406 }
dbe08d82
ON
3407 mutex_unlock(&task->perf_event_mutex);
3408
3409 if (unlikely(err)) {
9137fb28 3410 put_ctx(ctx);
dbe08d82
ON
3411
3412 if (err == -EAGAIN)
3413 goto retry;
3414 goto errout;
a63eaf34
PM
3415 }
3416 }
3417
4af57ef2 3418 kfree(task_ctx_data);
0793a61d 3419 return ctx;
c93f7669 3420
9ed6060d 3421errout:
4af57ef2 3422 kfree(task_ctx_data);
c93f7669 3423 return ERR_PTR(err);
0793a61d
TG
3424}
3425
6fb2915d 3426static void perf_event_free_filter(struct perf_event *event);
2541517c 3427static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3428
cdd6c482 3429static void free_event_rcu(struct rcu_head *head)
592903cd 3430{
cdd6c482 3431 struct perf_event *event;
592903cd 3432
cdd6c482
IM
3433 event = container_of(head, struct perf_event, rcu_head);
3434 if (event->ns)
3435 put_pid_ns(event->ns);
6fb2915d 3436 perf_event_free_filter(event);
cdd6c482 3437 kfree(event);
592903cd
PZ
3438}
3439
b69cf536
PZ
3440static void ring_buffer_attach(struct perf_event *event,
3441 struct ring_buffer *rb);
925d519a 3442
4beb31f3 3443static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3444{
4beb31f3
FW
3445 if (event->parent)
3446 return;
3447
4beb31f3
FW
3448 if (is_cgroup_event(event))
3449 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3450}
925d519a 3451
4beb31f3
FW
3452static void unaccount_event(struct perf_event *event)
3453{
3454 if (event->parent)
3455 return;
3456
3457 if (event->attach_state & PERF_ATTACH_TASK)
3458 static_key_slow_dec_deferred(&perf_sched_events);
3459 if (event->attr.mmap || event->attr.mmap_data)
3460 atomic_dec(&nr_mmap_events);
3461 if (event->attr.comm)
3462 atomic_dec(&nr_comm_events);
3463 if (event->attr.task)
3464 atomic_dec(&nr_task_events);
948b26b6
FW
3465 if (event->attr.freq)
3466 atomic_dec(&nr_freq_events);
45ac1403
AH
3467 if (event->attr.context_switch) {
3468 static_key_slow_dec_deferred(&perf_sched_events);
3469 atomic_dec(&nr_switch_events);
3470 }
4beb31f3
FW
3471 if (is_cgroup_event(event))
3472 static_key_slow_dec_deferred(&perf_sched_events);
3473 if (has_branch_stack(event))
3474 static_key_slow_dec_deferred(&perf_sched_events);
3475
3476 unaccount_event_cpu(event, event->cpu);
3477}
925d519a 3478
bed5b25a
AS
3479/*
3480 * The following implement mutual exclusion of events on "exclusive" pmus
3481 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3482 * at a time, so we disallow creating events that might conflict, namely:
3483 *
3484 * 1) cpu-wide events in the presence of per-task events,
3485 * 2) per-task events in the presence of cpu-wide events,
3486 * 3) two matching events on the same context.
3487 *
3488 * The former two cases are handled in the allocation path (perf_event_alloc(),
3489 * __free_event()), the latter -- before the first perf_install_in_context().
3490 */
3491static int exclusive_event_init(struct perf_event *event)
3492{
3493 struct pmu *pmu = event->pmu;
3494
3495 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3496 return 0;
3497
3498 /*
3499 * Prevent co-existence of per-task and cpu-wide events on the
3500 * same exclusive pmu.
3501 *
3502 * Negative pmu::exclusive_cnt means there are cpu-wide
3503 * events on this "exclusive" pmu, positive means there are
3504 * per-task events.
3505 *
3506 * Since this is called in perf_event_alloc() path, event::ctx
3507 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3508 * to mean "per-task event", because unlike other attach states it
3509 * never gets cleared.
3510 */
3511 if (event->attach_state & PERF_ATTACH_TASK) {
3512 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3513 return -EBUSY;
3514 } else {
3515 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3516 return -EBUSY;
3517 }
3518
3519 return 0;
3520}
3521
3522static void exclusive_event_destroy(struct perf_event *event)
3523{
3524 struct pmu *pmu = event->pmu;
3525
3526 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3527 return;
3528
3529 /* see comment in exclusive_event_init() */
3530 if (event->attach_state & PERF_ATTACH_TASK)
3531 atomic_dec(&pmu->exclusive_cnt);
3532 else
3533 atomic_inc(&pmu->exclusive_cnt);
3534}
3535
3536static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3537{
3538 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3539 (e1->cpu == e2->cpu ||
3540 e1->cpu == -1 ||
3541 e2->cpu == -1))
3542 return true;
3543 return false;
3544}
3545
3546/* Called under the same ctx::mutex as perf_install_in_context() */
3547static bool exclusive_event_installable(struct perf_event *event,
3548 struct perf_event_context *ctx)
3549{
3550 struct perf_event *iter_event;
3551 struct pmu *pmu = event->pmu;
3552
3553 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3554 return true;
3555
3556 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3557 if (exclusive_event_match(iter_event, event))
3558 return false;
3559 }
3560
3561 return true;
3562}
3563
766d6c07
FW
3564static void __free_event(struct perf_event *event)
3565{
cdd6c482 3566 if (!event->parent) {
927c7a9e
FW
3567 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3568 put_callchain_buffers();
f344011c 3569 }
9ee318a7 3570
dead9f29
AS
3571 perf_event_free_bpf_prog(event);
3572
766d6c07
FW
3573 if (event->destroy)
3574 event->destroy(event);
3575
3576 if (event->ctx)
3577 put_ctx(event->ctx);
3578
bed5b25a
AS
3579 if (event->pmu) {
3580 exclusive_event_destroy(event);
c464c76e 3581 module_put(event->pmu->module);
bed5b25a 3582 }
c464c76e 3583
766d6c07
FW
3584 call_rcu(&event->rcu_head, free_event_rcu);
3585}
683ede43
PZ
3586
3587static void _free_event(struct perf_event *event)
f1600952 3588{
e360adbe 3589 irq_work_sync(&event->pending);
925d519a 3590
4beb31f3 3591 unaccount_event(event);
9ee318a7 3592
76369139 3593 if (event->rb) {
9bb5d40c
PZ
3594 /*
3595 * Can happen when we close an event with re-directed output.
3596 *
3597 * Since we have a 0 refcount, perf_mmap_close() will skip
3598 * over us; possibly making our ring_buffer_put() the last.
3599 */
3600 mutex_lock(&event->mmap_mutex);
b69cf536 3601 ring_buffer_attach(event, NULL);
9bb5d40c 3602 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3603 }
3604
e5d1367f
SE
3605 if (is_cgroup_event(event))
3606 perf_detach_cgroup(event);
3607
766d6c07 3608 __free_event(event);
f1600952
PZ
3609}
3610
683ede43
PZ
3611/*
3612 * Used to free events which have a known refcount of 1, such as in error paths
3613 * where the event isn't exposed yet and inherited events.
3614 */
3615static void free_event(struct perf_event *event)
0793a61d 3616{
683ede43
PZ
3617 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3618 "unexpected event refcount: %ld; ptr=%p\n",
3619 atomic_long_read(&event->refcount), event)) {
3620 /* leak to avoid use-after-free */
3621 return;
3622 }
0793a61d 3623
683ede43 3624 _free_event(event);
0793a61d
TG
3625}
3626
a66a3052 3627/*
f8697762 3628 * Remove user event from the owner task.
a66a3052 3629 */
f8697762 3630static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3631{
8882135b 3632 struct task_struct *owner;
fb0459d7 3633
8882135b
PZ
3634 rcu_read_lock();
3635 owner = ACCESS_ONCE(event->owner);
3636 /*
3637 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3638 * !owner it means the list deletion is complete and we can indeed
3639 * free this event, otherwise we need to serialize on
3640 * owner->perf_event_mutex.
3641 */
3642 smp_read_barrier_depends();
3643 if (owner) {
3644 /*
3645 * Since delayed_put_task_struct() also drops the last
3646 * task reference we can safely take a new reference
3647 * while holding the rcu_read_lock().
3648 */
3649 get_task_struct(owner);
3650 }
3651 rcu_read_unlock();
3652
3653 if (owner) {
f63a8daa
PZ
3654 /*
3655 * If we're here through perf_event_exit_task() we're already
3656 * holding ctx->mutex which would be an inversion wrt. the
3657 * normal lock order.
3658 *
3659 * However we can safely take this lock because its the child
3660 * ctx->mutex.
3661 */
3662 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3663
8882135b
PZ
3664 /*
3665 * We have to re-check the event->owner field, if it is cleared
3666 * we raced with perf_event_exit_task(), acquiring the mutex
3667 * ensured they're done, and we can proceed with freeing the
3668 * event.
3669 */
3670 if (event->owner)
3671 list_del_init(&event->owner_entry);
3672 mutex_unlock(&owner->perf_event_mutex);
3673 put_task_struct(owner);
3674 }
f8697762
JO
3675}
3676
f8697762
JO
3677static void put_event(struct perf_event *event)
3678{
a83fe28e 3679 struct perf_event_context *ctx;
f8697762
JO
3680
3681 if (!atomic_long_dec_and_test(&event->refcount))
3682 return;
3683
3684 if (!is_kernel_event(event))
3685 perf_remove_from_owner(event);
8882135b 3686
683ede43
PZ
3687 /*
3688 * There are two ways this annotation is useful:
3689 *
3690 * 1) there is a lock recursion from perf_event_exit_task
3691 * see the comment there.
3692 *
3693 * 2) there is a lock-inversion with mmap_sem through
3694 * perf_event_read_group(), which takes faults while
3695 * holding ctx->mutex, however this is called after
3696 * the last filedesc died, so there is no possibility
3697 * to trigger the AB-BA case.
3698 */
a83fe28e
PZ
3699 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3700 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3701 perf_remove_from_context(event, true);
d415a7f1 3702 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3703
3704 _free_event(event);
a6fa941d
AV
3705}
3706
683ede43
PZ
3707int perf_event_release_kernel(struct perf_event *event)
3708{
3709 put_event(event);
3710 return 0;
3711}
3712EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3713
8b10c5e2
PZ
3714/*
3715 * Called when the last reference to the file is gone.
3716 */
a6fa941d
AV
3717static int perf_release(struct inode *inode, struct file *file)
3718{
3719 put_event(file->private_data);
3720 return 0;
fb0459d7 3721}
fb0459d7 3722
fadfe7be
JO
3723/*
3724 * Remove all orphanes events from the context.
3725 */
3726static void orphans_remove_work(struct work_struct *work)
3727{
3728 struct perf_event_context *ctx;
3729 struct perf_event *event, *tmp;
3730
3731 ctx = container_of(work, struct perf_event_context,
3732 orphans_remove.work);
3733
3734 mutex_lock(&ctx->mutex);
3735 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3736 struct perf_event *parent_event = event->parent;
3737
3738 if (!is_orphaned_child(event))
3739 continue;
3740
3741 perf_remove_from_context(event, true);
3742
3743 mutex_lock(&parent_event->child_mutex);
3744 list_del_init(&event->child_list);
3745 mutex_unlock(&parent_event->child_mutex);
3746
3747 free_event(event);
3748 put_event(parent_event);
3749 }
3750
3751 raw_spin_lock_irq(&ctx->lock);
3752 ctx->orphans_remove_sched = false;
3753 raw_spin_unlock_irq(&ctx->lock);
3754 mutex_unlock(&ctx->mutex);
3755
3756 put_ctx(ctx);
3757}
3758
59ed446f 3759u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3760{
cdd6c482 3761 struct perf_event *child;
e53c0994
PZ
3762 u64 total = 0;
3763
59ed446f
PZ
3764 *enabled = 0;
3765 *running = 0;
3766
6f10581a 3767 mutex_lock(&event->child_mutex);
cdd6c482 3768 total += perf_event_read(event);
59ed446f
PZ
3769 *enabled += event->total_time_enabled +
3770 atomic64_read(&event->child_total_time_enabled);
3771 *running += event->total_time_running +
3772 atomic64_read(&event->child_total_time_running);
3773
3774 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3775 total += perf_event_read(child);
59ed446f
PZ
3776 *enabled += child->total_time_enabled;
3777 *running += child->total_time_running;
3778 }
6f10581a 3779 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3780
3781 return total;
3782}
fb0459d7 3783EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3784
cdd6c482 3785static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3786 u64 read_format, char __user *buf)
3787{
cdd6c482 3788 struct perf_event *leader = event->group_leader, *sub;
6f10581a 3789 struct perf_event_context *ctx = leader->ctx;
f63a8daa 3790 int n = 0, size = 0, ret;
59ed446f 3791 u64 count, enabled, running;
f63a8daa
PZ
3792 u64 values[5];
3793
3794 lockdep_assert_held(&ctx->mutex);
abf4868b 3795
59ed446f 3796 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3797
3798 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3799 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3800 values[n++] = enabled;
3801 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3802 values[n++] = running;
abf4868b
PZ
3803 values[n++] = count;
3804 if (read_format & PERF_FORMAT_ID)
3805 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3806
3807 size = n * sizeof(u64);
3808
3809 if (copy_to_user(buf, values, size))
f63a8daa 3810 return -EFAULT;
3dab77fb 3811
6f10581a 3812 ret = size;
3dab77fb 3813
65abc865 3814 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3815 n = 0;
3dab77fb 3816
59ed446f 3817 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3818 if (read_format & PERF_FORMAT_ID)
3819 values[n++] = primary_event_id(sub);
3820
3821 size = n * sizeof(u64);
3822
184d3da8 3823 if (copy_to_user(buf + ret, values, size)) {
f63a8daa 3824 return -EFAULT;
6f10581a 3825 }
abf4868b
PZ
3826
3827 ret += size;
3dab77fb
PZ
3828 }
3829
abf4868b 3830 return ret;
3dab77fb
PZ
3831}
3832
cdd6c482 3833static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3834 u64 read_format, char __user *buf)
3835{
59ed446f 3836 u64 enabled, running;
3dab77fb
PZ
3837 u64 values[4];
3838 int n = 0;
3839
59ed446f
PZ
3840 values[n++] = perf_event_read_value(event, &enabled, &running);
3841 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3842 values[n++] = enabled;
3843 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3844 values[n++] = running;
3dab77fb 3845 if (read_format & PERF_FORMAT_ID)
cdd6c482 3846 values[n++] = primary_event_id(event);
3dab77fb
PZ
3847
3848 if (copy_to_user(buf, values, n * sizeof(u64)))
3849 return -EFAULT;
3850
3851 return n * sizeof(u64);
3852}
3853
dc633982
JO
3854static bool is_event_hup(struct perf_event *event)
3855{
3856 bool no_children;
3857
3858 if (event->state != PERF_EVENT_STATE_EXIT)
3859 return false;
3860
3861 mutex_lock(&event->child_mutex);
3862 no_children = list_empty(&event->child_list);
3863 mutex_unlock(&event->child_mutex);
3864 return no_children;
3865}
3866
0793a61d 3867/*
cdd6c482 3868 * Read the performance event - simple non blocking version for now
0793a61d
TG
3869 */
3870static ssize_t
cdd6c482 3871perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3872{
cdd6c482 3873 u64 read_format = event->attr.read_format;
3dab77fb 3874 int ret;
0793a61d 3875
3b6f9e5c 3876 /*
cdd6c482 3877 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3878 * error state (i.e. because it was pinned but it couldn't be
3879 * scheduled on to the CPU at some point).
3880 */
cdd6c482 3881 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3882 return 0;
3883
c320c7b7 3884 if (count < event->read_size)
3dab77fb
PZ
3885 return -ENOSPC;
3886
cdd6c482 3887 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3888 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3889 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3890 else
cdd6c482 3891 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3892
3dab77fb 3893 return ret;
0793a61d
TG
3894}
3895
0793a61d
TG
3896static ssize_t
3897perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3898{
cdd6c482 3899 struct perf_event *event = file->private_data;
f63a8daa
PZ
3900 struct perf_event_context *ctx;
3901 int ret;
0793a61d 3902
f63a8daa
PZ
3903 ctx = perf_event_ctx_lock(event);
3904 ret = perf_read_hw(event, buf, count);
3905 perf_event_ctx_unlock(event, ctx);
3906
3907 return ret;
0793a61d
TG
3908}
3909
3910static unsigned int perf_poll(struct file *file, poll_table *wait)
3911{
cdd6c482 3912 struct perf_event *event = file->private_data;
76369139 3913 struct ring_buffer *rb;
61b67684 3914 unsigned int events = POLLHUP;
c7138f37 3915
e708d7ad 3916 poll_wait(file, &event->waitq, wait);
179033b3 3917
dc633982 3918 if (is_event_hup(event))
179033b3 3919 return events;
c7138f37 3920
10c6db11 3921 /*
9bb5d40c
PZ
3922 * Pin the event->rb by taking event->mmap_mutex; otherwise
3923 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3924 */
3925 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3926 rb = event->rb;
3927 if (rb)
76369139 3928 events = atomic_xchg(&rb->poll, 0);
10c6db11 3929 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
3930 return events;
3931}
3932
f63a8daa 3933static void _perf_event_reset(struct perf_event *event)
6de6a7b9 3934{
cdd6c482 3935 (void)perf_event_read(event);
e7850595 3936 local64_set(&event->count, 0);
cdd6c482 3937 perf_event_update_userpage(event);
3df5edad
PZ
3938}
3939
c93f7669 3940/*
cdd6c482
IM
3941 * Holding the top-level event's child_mutex means that any
3942 * descendant process that has inherited this event will block
3943 * in sync_child_event if it goes to exit, thus satisfying the
3944 * task existence requirements of perf_event_enable/disable.
c93f7669 3945 */
cdd6c482
IM
3946static void perf_event_for_each_child(struct perf_event *event,
3947 void (*func)(struct perf_event *))
3df5edad 3948{
cdd6c482 3949 struct perf_event *child;
3df5edad 3950
cdd6c482 3951 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 3952
cdd6c482
IM
3953 mutex_lock(&event->child_mutex);
3954 func(event);
3955 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3956 func(child);
cdd6c482 3957 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3958}
3959
cdd6c482
IM
3960static void perf_event_for_each(struct perf_event *event,
3961 void (*func)(struct perf_event *))
3df5edad 3962{
cdd6c482
IM
3963 struct perf_event_context *ctx = event->ctx;
3964 struct perf_event *sibling;
3df5edad 3965
f63a8daa
PZ
3966 lockdep_assert_held(&ctx->mutex);
3967
cdd6c482 3968 event = event->group_leader;
75f937f2 3969
cdd6c482 3970 perf_event_for_each_child(event, func);
cdd6c482 3971 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3972 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
3973}
3974
cdd6c482 3975static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3976{
cdd6c482 3977 struct perf_event_context *ctx = event->ctx;
bad7192b 3978 int ret = 0, active;
08247e31
PZ
3979 u64 value;
3980
6c7e550f 3981 if (!is_sampling_event(event))
08247e31
PZ
3982 return -EINVAL;
3983
ad0cf347 3984 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3985 return -EFAULT;
3986
3987 if (!value)
3988 return -EINVAL;
3989
e625cce1 3990 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3991 if (event->attr.freq) {
3992 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3993 ret = -EINVAL;
3994 goto unlock;
3995 }
3996
cdd6c482 3997 event->attr.sample_freq = value;
08247e31 3998 } else {
cdd6c482
IM
3999 event->attr.sample_period = value;
4000 event->hw.sample_period = value;
08247e31 4001 }
bad7192b
PZ
4002
4003 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4004 if (active) {
4005 perf_pmu_disable(ctx->pmu);
4006 event->pmu->stop(event, PERF_EF_UPDATE);
4007 }
4008
4009 local64_set(&event->hw.period_left, 0);
4010
4011 if (active) {
4012 event->pmu->start(event, PERF_EF_RELOAD);
4013 perf_pmu_enable(ctx->pmu);
4014 }
4015
08247e31 4016unlock:
e625cce1 4017 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
4018
4019 return ret;
4020}
4021
ac9721f3
PZ
4022static const struct file_operations perf_fops;
4023
2903ff01 4024static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4025{
2903ff01
AV
4026 struct fd f = fdget(fd);
4027 if (!f.file)
4028 return -EBADF;
ac9721f3 4029
2903ff01
AV
4030 if (f.file->f_op != &perf_fops) {
4031 fdput(f);
4032 return -EBADF;
ac9721f3 4033 }
2903ff01
AV
4034 *p = f;
4035 return 0;
ac9721f3
PZ
4036}
4037
4038static int perf_event_set_output(struct perf_event *event,
4039 struct perf_event *output_event);
6fb2915d 4040static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4041static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4042
f63a8daa 4043static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4044{
cdd6c482 4045 void (*func)(struct perf_event *);
3df5edad 4046 u32 flags = arg;
d859e29f
PM
4047
4048 switch (cmd) {
cdd6c482 4049 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4050 func = _perf_event_enable;
d859e29f 4051 break;
cdd6c482 4052 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4053 func = _perf_event_disable;
79f14641 4054 break;
cdd6c482 4055 case PERF_EVENT_IOC_RESET:
f63a8daa 4056 func = _perf_event_reset;
6de6a7b9 4057 break;
3df5edad 4058
cdd6c482 4059 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4060 return _perf_event_refresh(event, arg);
08247e31 4061
cdd6c482
IM
4062 case PERF_EVENT_IOC_PERIOD:
4063 return perf_event_period(event, (u64 __user *)arg);
08247e31 4064
cf4957f1
JO
4065 case PERF_EVENT_IOC_ID:
4066 {
4067 u64 id = primary_event_id(event);
4068
4069 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4070 return -EFAULT;
4071 return 0;
4072 }
4073
cdd6c482 4074 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4075 {
ac9721f3 4076 int ret;
ac9721f3 4077 if (arg != -1) {
2903ff01
AV
4078 struct perf_event *output_event;
4079 struct fd output;
4080 ret = perf_fget_light(arg, &output);
4081 if (ret)
4082 return ret;
4083 output_event = output.file->private_data;
4084 ret = perf_event_set_output(event, output_event);
4085 fdput(output);
4086 } else {
4087 ret = perf_event_set_output(event, NULL);
ac9721f3 4088 }
ac9721f3
PZ
4089 return ret;
4090 }
a4be7c27 4091
6fb2915d
LZ
4092 case PERF_EVENT_IOC_SET_FILTER:
4093 return perf_event_set_filter(event, (void __user *)arg);
4094
2541517c
AS
4095 case PERF_EVENT_IOC_SET_BPF:
4096 return perf_event_set_bpf_prog(event, arg);
4097
d859e29f 4098 default:
3df5edad 4099 return -ENOTTY;
d859e29f 4100 }
3df5edad
PZ
4101
4102 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4103 perf_event_for_each(event, func);
3df5edad 4104 else
cdd6c482 4105 perf_event_for_each_child(event, func);
3df5edad
PZ
4106
4107 return 0;
d859e29f
PM
4108}
4109
f63a8daa
PZ
4110static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4111{
4112 struct perf_event *event = file->private_data;
4113 struct perf_event_context *ctx;
4114 long ret;
4115
4116 ctx = perf_event_ctx_lock(event);
4117 ret = _perf_ioctl(event, cmd, arg);
4118 perf_event_ctx_unlock(event, ctx);
4119
4120 return ret;
4121}
4122
b3f20785
PM
4123#ifdef CONFIG_COMPAT
4124static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4125 unsigned long arg)
4126{
4127 switch (_IOC_NR(cmd)) {
4128 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4129 case _IOC_NR(PERF_EVENT_IOC_ID):
4130 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4131 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4132 cmd &= ~IOCSIZE_MASK;
4133 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4134 }
4135 break;
4136 }
4137 return perf_ioctl(file, cmd, arg);
4138}
4139#else
4140# define perf_compat_ioctl NULL
4141#endif
4142
cdd6c482 4143int perf_event_task_enable(void)
771d7cde 4144{
f63a8daa 4145 struct perf_event_context *ctx;
cdd6c482 4146 struct perf_event *event;
771d7cde 4147
cdd6c482 4148 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4149 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4150 ctx = perf_event_ctx_lock(event);
4151 perf_event_for_each_child(event, _perf_event_enable);
4152 perf_event_ctx_unlock(event, ctx);
4153 }
cdd6c482 4154 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4155
4156 return 0;
4157}
4158
cdd6c482 4159int perf_event_task_disable(void)
771d7cde 4160{
f63a8daa 4161 struct perf_event_context *ctx;
cdd6c482 4162 struct perf_event *event;
771d7cde 4163
cdd6c482 4164 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4165 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4166 ctx = perf_event_ctx_lock(event);
4167 perf_event_for_each_child(event, _perf_event_disable);
4168 perf_event_ctx_unlock(event, ctx);
4169 }
cdd6c482 4170 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4171
4172 return 0;
4173}
4174
cdd6c482 4175static int perf_event_index(struct perf_event *event)
194002b2 4176{
a4eaf7f1
PZ
4177 if (event->hw.state & PERF_HES_STOPPED)
4178 return 0;
4179
cdd6c482 4180 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4181 return 0;
4182
35edc2a5 4183 return event->pmu->event_idx(event);
194002b2
PZ
4184}
4185
c4794295 4186static void calc_timer_values(struct perf_event *event,
e3f3541c 4187 u64 *now,
7f310a5d
EM
4188 u64 *enabled,
4189 u64 *running)
c4794295 4190{
e3f3541c 4191 u64 ctx_time;
c4794295 4192
e3f3541c
PZ
4193 *now = perf_clock();
4194 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4195 *enabled = ctx_time - event->tstamp_enabled;
4196 *running = ctx_time - event->tstamp_running;
4197}
4198
fa731587
PZ
4199static void perf_event_init_userpage(struct perf_event *event)
4200{
4201 struct perf_event_mmap_page *userpg;
4202 struct ring_buffer *rb;
4203
4204 rcu_read_lock();
4205 rb = rcu_dereference(event->rb);
4206 if (!rb)
4207 goto unlock;
4208
4209 userpg = rb->user_page;
4210
4211 /* Allow new userspace to detect that bit 0 is deprecated */
4212 userpg->cap_bit0_is_deprecated = 1;
4213 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4214 userpg->data_offset = PAGE_SIZE;
4215 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4216
4217unlock:
4218 rcu_read_unlock();
4219}
4220
c1317ec2
AL
4221void __weak arch_perf_update_userpage(
4222 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4223{
4224}
4225
38ff667b
PZ
4226/*
4227 * Callers need to ensure there can be no nesting of this function, otherwise
4228 * the seqlock logic goes bad. We can not serialize this because the arch
4229 * code calls this from NMI context.
4230 */
cdd6c482 4231void perf_event_update_userpage(struct perf_event *event)
37d81828 4232{
cdd6c482 4233 struct perf_event_mmap_page *userpg;
76369139 4234 struct ring_buffer *rb;
e3f3541c 4235 u64 enabled, running, now;
38ff667b
PZ
4236
4237 rcu_read_lock();
5ec4c599
PZ
4238 rb = rcu_dereference(event->rb);
4239 if (!rb)
4240 goto unlock;
4241
0d641208
EM
4242 /*
4243 * compute total_time_enabled, total_time_running
4244 * based on snapshot values taken when the event
4245 * was last scheduled in.
4246 *
4247 * we cannot simply called update_context_time()
4248 * because of locking issue as we can be called in
4249 * NMI context
4250 */
e3f3541c 4251 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4252
76369139 4253 userpg = rb->user_page;
7b732a75
PZ
4254 /*
4255 * Disable preemption so as to not let the corresponding user-space
4256 * spin too long if we get preempted.
4257 */
4258 preempt_disable();
37d81828 4259 ++userpg->lock;
92f22a38 4260 barrier();
cdd6c482 4261 userpg->index = perf_event_index(event);
b5e58793 4262 userpg->offset = perf_event_count(event);
365a4038 4263 if (userpg->index)
e7850595 4264 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4265
0d641208 4266 userpg->time_enabled = enabled +
cdd6c482 4267 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4268
0d641208 4269 userpg->time_running = running +
cdd6c482 4270 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4271
c1317ec2 4272 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4273
92f22a38 4274 barrier();
37d81828 4275 ++userpg->lock;
7b732a75 4276 preempt_enable();
38ff667b 4277unlock:
7b732a75 4278 rcu_read_unlock();
37d81828
PM
4279}
4280
906010b2
PZ
4281static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4282{
4283 struct perf_event *event = vma->vm_file->private_data;
76369139 4284 struct ring_buffer *rb;
906010b2
PZ
4285 int ret = VM_FAULT_SIGBUS;
4286
4287 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4288 if (vmf->pgoff == 0)
4289 ret = 0;
4290 return ret;
4291 }
4292
4293 rcu_read_lock();
76369139
FW
4294 rb = rcu_dereference(event->rb);
4295 if (!rb)
906010b2
PZ
4296 goto unlock;
4297
4298 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4299 goto unlock;
4300
76369139 4301 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4302 if (!vmf->page)
4303 goto unlock;
4304
4305 get_page(vmf->page);
4306 vmf->page->mapping = vma->vm_file->f_mapping;
4307 vmf->page->index = vmf->pgoff;
4308
4309 ret = 0;
4310unlock:
4311 rcu_read_unlock();
4312
4313 return ret;
4314}
4315
10c6db11
PZ
4316static void ring_buffer_attach(struct perf_event *event,
4317 struct ring_buffer *rb)
4318{
b69cf536 4319 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4320 unsigned long flags;
4321
b69cf536
PZ
4322 if (event->rb) {
4323 /*
4324 * Should be impossible, we set this when removing
4325 * event->rb_entry and wait/clear when adding event->rb_entry.
4326 */
4327 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4328
b69cf536 4329 old_rb = event->rb;
b69cf536
PZ
4330 spin_lock_irqsave(&old_rb->event_lock, flags);
4331 list_del_rcu(&event->rb_entry);
4332 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4333
2f993cf0
ON
4334 event->rcu_batches = get_state_synchronize_rcu();
4335 event->rcu_pending = 1;
b69cf536 4336 }
10c6db11 4337
b69cf536 4338 if (rb) {
2f993cf0
ON
4339 if (event->rcu_pending) {
4340 cond_synchronize_rcu(event->rcu_batches);
4341 event->rcu_pending = 0;
4342 }
4343
b69cf536
PZ
4344 spin_lock_irqsave(&rb->event_lock, flags);
4345 list_add_rcu(&event->rb_entry, &rb->event_list);
4346 spin_unlock_irqrestore(&rb->event_lock, flags);
4347 }
4348
4349 rcu_assign_pointer(event->rb, rb);
4350
4351 if (old_rb) {
4352 ring_buffer_put(old_rb);
4353 /*
4354 * Since we detached before setting the new rb, so that we
4355 * could attach the new rb, we could have missed a wakeup.
4356 * Provide it now.
4357 */
4358 wake_up_all(&event->waitq);
4359 }
10c6db11
PZ
4360}
4361
4362static void ring_buffer_wakeup(struct perf_event *event)
4363{
4364 struct ring_buffer *rb;
4365
4366 rcu_read_lock();
4367 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4368 if (rb) {
4369 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4370 wake_up_all(&event->waitq);
4371 }
10c6db11
PZ
4372 rcu_read_unlock();
4373}
4374
fdc26706 4375struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4376{
76369139 4377 struct ring_buffer *rb;
7b732a75 4378
ac9721f3 4379 rcu_read_lock();
76369139
FW
4380 rb = rcu_dereference(event->rb);
4381 if (rb) {
4382 if (!atomic_inc_not_zero(&rb->refcount))
4383 rb = NULL;
ac9721f3
PZ
4384 }
4385 rcu_read_unlock();
4386
76369139 4387 return rb;
ac9721f3
PZ
4388}
4389
fdc26706 4390void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4391{
76369139 4392 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4393 return;
7b732a75 4394
9bb5d40c 4395 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4396
76369139 4397 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4398}
4399
4400static void perf_mmap_open(struct vm_area_struct *vma)
4401{
cdd6c482 4402 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4403
cdd6c482 4404 atomic_inc(&event->mmap_count);
9bb5d40c 4405 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4406
45bfb2e5
PZ
4407 if (vma->vm_pgoff)
4408 atomic_inc(&event->rb->aux_mmap_count);
4409
1e0fb9ec
AL
4410 if (event->pmu->event_mapped)
4411 event->pmu->event_mapped(event);
7b732a75
PZ
4412}
4413
9bb5d40c
PZ
4414/*
4415 * A buffer can be mmap()ed multiple times; either directly through the same
4416 * event, or through other events by use of perf_event_set_output().
4417 *
4418 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4419 * the buffer here, where we still have a VM context. This means we need
4420 * to detach all events redirecting to us.
4421 */
7b732a75
PZ
4422static void perf_mmap_close(struct vm_area_struct *vma)
4423{
cdd6c482 4424 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4425
b69cf536 4426 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4427 struct user_struct *mmap_user = rb->mmap_user;
4428 int mmap_locked = rb->mmap_locked;
4429 unsigned long size = perf_data_size(rb);
789f90fc 4430
1e0fb9ec
AL
4431 if (event->pmu->event_unmapped)
4432 event->pmu->event_unmapped(event);
4433
45bfb2e5
PZ
4434 /*
4435 * rb->aux_mmap_count will always drop before rb->mmap_count and
4436 * event->mmap_count, so it is ok to use event->mmap_mutex to
4437 * serialize with perf_mmap here.
4438 */
4439 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4440 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4441 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4442 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4443
4444 rb_free_aux(rb);
4445 mutex_unlock(&event->mmap_mutex);
4446 }
4447
9bb5d40c
PZ
4448 atomic_dec(&rb->mmap_count);
4449
4450 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4451 goto out_put;
9bb5d40c 4452
b69cf536 4453 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4454 mutex_unlock(&event->mmap_mutex);
4455
4456 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4457 if (atomic_read(&rb->mmap_count))
4458 goto out_put;
ac9721f3 4459
9bb5d40c
PZ
4460 /*
4461 * No other mmap()s, detach from all other events that might redirect
4462 * into the now unreachable buffer. Somewhat complicated by the
4463 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4464 */
4465again:
4466 rcu_read_lock();
4467 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4468 if (!atomic_long_inc_not_zero(&event->refcount)) {
4469 /*
4470 * This event is en-route to free_event() which will
4471 * detach it and remove it from the list.
4472 */
4473 continue;
4474 }
4475 rcu_read_unlock();
789f90fc 4476
9bb5d40c
PZ
4477 mutex_lock(&event->mmap_mutex);
4478 /*
4479 * Check we didn't race with perf_event_set_output() which can
4480 * swizzle the rb from under us while we were waiting to
4481 * acquire mmap_mutex.
4482 *
4483 * If we find a different rb; ignore this event, a next
4484 * iteration will no longer find it on the list. We have to
4485 * still restart the iteration to make sure we're not now
4486 * iterating the wrong list.
4487 */
b69cf536
PZ
4488 if (event->rb == rb)
4489 ring_buffer_attach(event, NULL);
4490
cdd6c482 4491 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4492 put_event(event);
ac9721f3 4493
9bb5d40c
PZ
4494 /*
4495 * Restart the iteration; either we're on the wrong list or
4496 * destroyed its integrity by doing a deletion.
4497 */
4498 goto again;
7b732a75 4499 }
9bb5d40c
PZ
4500 rcu_read_unlock();
4501
4502 /*
4503 * It could be there's still a few 0-ref events on the list; they'll
4504 * get cleaned up by free_event() -- they'll also still have their
4505 * ref on the rb and will free it whenever they are done with it.
4506 *
4507 * Aside from that, this buffer is 'fully' detached and unmapped,
4508 * undo the VM accounting.
4509 */
4510
4511 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4512 vma->vm_mm->pinned_vm -= mmap_locked;
4513 free_uid(mmap_user);
4514
b69cf536 4515out_put:
9bb5d40c 4516 ring_buffer_put(rb); /* could be last */
37d81828
PM
4517}
4518
f0f37e2f 4519static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4520 .open = perf_mmap_open,
45bfb2e5 4521 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4522 .fault = perf_mmap_fault,
4523 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4524};
4525
4526static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4527{
cdd6c482 4528 struct perf_event *event = file->private_data;
22a4f650 4529 unsigned long user_locked, user_lock_limit;
789f90fc 4530 struct user_struct *user = current_user();
22a4f650 4531 unsigned long locked, lock_limit;
45bfb2e5 4532 struct ring_buffer *rb = NULL;
7b732a75
PZ
4533 unsigned long vma_size;
4534 unsigned long nr_pages;
45bfb2e5 4535 long user_extra = 0, extra = 0;
d57e34fd 4536 int ret = 0, flags = 0;
37d81828 4537
c7920614
PZ
4538 /*
4539 * Don't allow mmap() of inherited per-task counters. This would
4540 * create a performance issue due to all children writing to the
76369139 4541 * same rb.
c7920614
PZ
4542 */
4543 if (event->cpu == -1 && event->attr.inherit)
4544 return -EINVAL;
4545
43a21ea8 4546 if (!(vma->vm_flags & VM_SHARED))
37d81828 4547 return -EINVAL;
7b732a75
PZ
4548
4549 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4550
4551 if (vma->vm_pgoff == 0) {
4552 nr_pages = (vma_size / PAGE_SIZE) - 1;
4553 } else {
4554 /*
4555 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4556 * mapped, all subsequent mappings should have the same size
4557 * and offset. Must be above the normal perf buffer.
4558 */
4559 u64 aux_offset, aux_size;
4560
4561 if (!event->rb)
4562 return -EINVAL;
4563
4564 nr_pages = vma_size / PAGE_SIZE;
4565
4566 mutex_lock(&event->mmap_mutex);
4567 ret = -EINVAL;
4568
4569 rb = event->rb;
4570 if (!rb)
4571 goto aux_unlock;
4572
4573 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4574 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4575
4576 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4577 goto aux_unlock;
4578
4579 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4580 goto aux_unlock;
4581
4582 /* already mapped with a different offset */
4583 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4584 goto aux_unlock;
4585
4586 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4587 goto aux_unlock;
4588
4589 /* already mapped with a different size */
4590 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4591 goto aux_unlock;
4592
4593 if (!is_power_of_2(nr_pages))
4594 goto aux_unlock;
4595
4596 if (!atomic_inc_not_zero(&rb->mmap_count))
4597 goto aux_unlock;
4598
4599 if (rb_has_aux(rb)) {
4600 atomic_inc(&rb->aux_mmap_count);
4601 ret = 0;
4602 goto unlock;
4603 }
4604
4605 atomic_set(&rb->aux_mmap_count, 1);
4606 user_extra = nr_pages;
4607
4608 goto accounting;
4609 }
7b732a75 4610
7730d865 4611 /*
76369139 4612 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4613 * can do bitmasks instead of modulo.
4614 */
2ed11312 4615 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4616 return -EINVAL;
4617
7b732a75 4618 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4619 return -EINVAL;
4620
cdd6c482 4621 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4622again:
cdd6c482 4623 mutex_lock(&event->mmap_mutex);
76369139 4624 if (event->rb) {
9bb5d40c 4625 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4626 ret = -EINVAL;
9bb5d40c
PZ
4627 goto unlock;
4628 }
4629
4630 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4631 /*
4632 * Raced against perf_mmap_close() through
4633 * perf_event_set_output(). Try again, hope for better
4634 * luck.
4635 */
4636 mutex_unlock(&event->mmap_mutex);
4637 goto again;
4638 }
4639
ebb3c4c4
PZ
4640 goto unlock;
4641 }
4642
789f90fc 4643 user_extra = nr_pages + 1;
45bfb2e5
PZ
4644
4645accounting:
cdd6c482 4646 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4647
4648 /*
4649 * Increase the limit linearly with more CPUs:
4650 */
4651 user_lock_limit *= num_online_cpus();
4652
789f90fc 4653 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4654
789f90fc
PZ
4655 if (user_locked > user_lock_limit)
4656 extra = user_locked - user_lock_limit;
7b732a75 4657
78d7d407 4658 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4659 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4660 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4661
459ec28a
IM
4662 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4663 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4664 ret = -EPERM;
4665 goto unlock;
4666 }
7b732a75 4667
45bfb2e5 4668 WARN_ON(!rb && event->rb);
906010b2 4669
d57e34fd 4670 if (vma->vm_flags & VM_WRITE)
76369139 4671 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4672
76369139 4673 if (!rb) {
45bfb2e5
PZ
4674 rb = rb_alloc(nr_pages,
4675 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4676 event->cpu, flags);
26cb63ad 4677
45bfb2e5
PZ
4678 if (!rb) {
4679 ret = -ENOMEM;
4680 goto unlock;
4681 }
43a21ea8 4682
45bfb2e5
PZ
4683 atomic_set(&rb->mmap_count, 1);
4684 rb->mmap_user = get_current_user();
4685 rb->mmap_locked = extra;
26cb63ad 4686
45bfb2e5 4687 ring_buffer_attach(event, rb);
ac9721f3 4688
45bfb2e5
PZ
4689 perf_event_init_userpage(event);
4690 perf_event_update_userpage(event);
4691 } else {
1a594131
AS
4692 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4693 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4694 if (!ret)
4695 rb->aux_mmap_locked = extra;
4696 }
9a0f05cb 4697
ebb3c4c4 4698unlock:
45bfb2e5
PZ
4699 if (!ret) {
4700 atomic_long_add(user_extra, &user->locked_vm);
4701 vma->vm_mm->pinned_vm += extra;
4702
ac9721f3 4703 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4704 } else if (rb) {
4705 atomic_dec(&rb->mmap_count);
4706 }
4707aux_unlock:
cdd6c482 4708 mutex_unlock(&event->mmap_mutex);
37d81828 4709
9bb5d40c
PZ
4710 /*
4711 * Since pinned accounting is per vm we cannot allow fork() to copy our
4712 * vma.
4713 */
26cb63ad 4714 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4715 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4716
1e0fb9ec
AL
4717 if (event->pmu->event_mapped)
4718 event->pmu->event_mapped(event);
4719
7b732a75 4720 return ret;
37d81828
PM
4721}
4722
3c446b3d
PZ
4723static int perf_fasync(int fd, struct file *filp, int on)
4724{
496ad9aa 4725 struct inode *inode = file_inode(filp);
cdd6c482 4726 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4727 int retval;
4728
4729 mutex_lock(&inode->i_mutex);
cdd6c482 4730 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4731 mutex_unlock(&inode->i_mutex);
4732
4733 if (retval < 0)
4734 return retval;
4735
4736 return 0;
4737}
4738
0793a61d 4739static const struct file_operations perf_fops = {
3326c1ce 4740 .llseek = no_llseek,
0793a61d
TG
4741 .release = perf_release,
4742 .read = perf_read,
4743 .poll = perf_poll,
d859e29f 4744 .unlocked_ioctl = perf_ioctl,
b3f20785 4745 .compat_ioctl = perf_compat_ioctl,
37d81828 4746 .mmap = perf_mmap,
3c446b3d 4747 .fasync = perf_fasync,
0793a61d
TG
4748};
4749
925d519a 4750/*
cdd6c482 4751 * Perf event wakeup
925d519a
PZ
4752 *
4753 * If there's data, ensure we set the poll() state and publish everything
4754 * to user-space before waking everybody up.
4755 */
4756
cdd6c482 4757void perf_event_wakeup(struct perf_event *event)
925d519a 4758{
10c6db11 4759 ring_buffer_wakeup(event);
4c9e2542 4760
cdd6c482
IM
4761 if (event->pending_kill) {
4762 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4763 event->pending_kill = 0;
4c9e2542 4764 }
925d519a
PZ
4765}
4766
e360adbe 4767static void perf_pending_event(struct irq_work *entry)
79f14641 4768{
cdd6c482
IM
4769 struct perf_event *event = container_of(entry,
4770 struct perf_event, pending);
d525211f
PZ
4771 int rctx;
4772
4773 rctx = perf_swevent_get_recursion_context();
4774 /*
4775 * If we 'fail' here, that's OK, it means recursion is already disabled
4776 * and we won't recurse 'further'.
4777 */
79f14641 4778
cdd6c482
IM
4779 if (event->pending_disable) {
4780 event->pending_disable = 0;
4781 __perf_event_disable(event);
79f14641
PZ
4782 }
4783
cdd6c482
IM
4784 if (event->pending_wakeup) {
4785 event->pending_wakeup = 0;
4786 perf_event_wakeup(event);
79f14641 4787 }
d525211f
PZ
4788
4789 if (rctx >= 0)
4790 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4791}
4792
39447b38
ZY
4793/*
4794 * We assume there is only KVM supporting the callbacks.
4795 * Later on, we might change it to a list if there is
4796 * another virtualization implementation supporting the callbacks.
4797 */
4798struct perf_guest_info_callbacks *perf_guest_cbs;
4799
4800int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4801{
4802 perf_guest_cbs = cbs;
4803 return 0;
4804}
4805EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4806
4807int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4808{
4809 perf_guest_cbs = NULL;
4810 return 0;
4811}
4812EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4813
4018994f
JO
4814static void
4815perf_output_sample_regs(struct perf_output_handle *handle,
4816 struct pt_regs *regs, u64 mask)
4817{
4818 int bit;
4819
4820 for_each_set_bit(bit, (const unsigned long *) &mask,
4821 sizeof(mask) * BITS_PER_BYTE) {
4822 u64 val;
4823
4824 val = perf_reg_value(regs, bit);
4825 perf_output_put(handle, val);
4826 }
4827}
4828
60e2364e 4829static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4830 struct pt_regs *regs,
4831 struct pt_regs *regs_user_copy)
4018994f 4832{
88a7c26a
AL
4833 if (user_mode(regs)) {
4834 regs_user->abi = perf_reg_abi(current);
2565711f 4835 regs_user->regs = regs;
88a7c26a
AL
4836 } else if (current->mm) {
4837 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4838 } else {
4839 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4840 regs_user->regs = NULL;
4018994f
JO
4841 }
4842}
4843
60e2364e
SE
4844static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4845 struct pt_regs *regs)
4846{
4847 regs_intr->regs = regs;
4848 regs_intr->abi = perf_reg_abi(current);
4849}
4850
4851
c5ebcedb
JO
4852/*
4853 * Get remaining task size from user stack pointer.
4854 *
4855 * It'd be better to take stack vma map and limit this more
4856 * precisly, but there's no way to get it safely under interrupt,
4857 * so using TASK_SIZE as limit.
4858 */
4859static u64 perf_ustack_task_size(struct pt_regs *regs)
4860{
4861 unsigned long addr = perf_user_stack_pointer(regs);
4862
4863 if (!addr || addr >= TASK_SIZE)
4864 return 0;
4865
4866 return TASK_SIZE - addr;
4867}
4868
4869static u16
4870perf_sample_ustack_size(u16 stack_size, u16 header_size,
4871 struct pt_regs *regs)
4872{
4873 u64 task_size;
4874
4875 /* No regs, no stack pointer, no dump. */
4876 if (!regs)
4877 return 0;
4878
4879 /*
4880 * Check if we fit in with the requested stack size into the:
4881 * - TASK_SIZE
4882 * If we don't, we limit the size to the TASK_SIZE.
4883 *
4884 * - remaining sample size
4885 * If we don't, we customize the stack size to
4886 * fit in to the remaining sample size.
4887 */
4888
4889 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4890 stack_size = min(stack_size, (u16) task_size);
4891
4892 /* Current header size plus static size and dynamic size. */
4893 header_size += 2 * sizeof(u64);
4894
4895 /* Do we fit in with the current stack dump size? */
4896 if ((u16) (header_size + stack_size) < header_size) {
4897 /*
4898 * If we overflow the maximum size for the sample,
4899 * we customize the stack dump size to fit in.
4900 */
4901 stack_size = USHRT_MAX - header_size - sizeof(u64);
4902 stack_size = round_up(stack_size, sizeof(u64));
4903 }
4904
4905 return stack_size;
4906}
4907
4908static void
4909perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4910 struct pt_regs *regs)
4911{
4912 /* Case of a kernel thread, nothing to dump */
4913 if (!regs) {
4914 u64 size = 0;
4915 perf_output_put(handle, size);
4916 } else {
4917 unsigned long sp;
4918 unsigned int rem;
4919 u64 dyn_size;
4920
4921 /*
4922 * We dump:
4923 * static size
4924 * - the size requested by user or the best one we can fit
4925 * in to the sample max size
4926 * data
4927 * - user stack dump data
4928 * dynamic size
4929 * - the actual dumped size
4930 */
4931
4932 /* Static size. */
4933 perf_output_put(handle, dump_size);
4934
4935 /* Data. */
4936 sp = perf_user_stack_pointer(regs);
4937 rem = __output_copy_user(handle, (void *) sp, dump_size);
4938 dyn_size = dump_size - rem;
4939
4940 perf_output_skip(handle, rem);
4941
4942 /* Dynamic size. */
4943 perf_output_put(handle, dyn_size);
4944 }
4945}
4946
c980d109
ACM
4947static void __perf_event_header__init_id(struct perf_event_header *header,
4948 struct perf_sample_data *data,
4949 struct perf_event *event)
6844c09d
ACM
4950{
4951 u64 sample_type = event->attr.sample_type;
4952
4953 data->type = sample_type;
4954 header->size += event->id_header_size;
4955
4956 if (sample_type & PERF_SAMPLE_TID) {
4957 /* namespace issues */
4958 data->tid_entry.pid = perf_event_pid(event, current);
4959 data->tid_entry.tid = perf_event_tid(event, current);
4960 }
4961
4962 if (sample_type & PERF_SAMPLE_TIME)
34f43927 4963 data->time = perf_event_clock(event);
6844c09d 4964
ff3d527c 4965 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
4966 data->id = primary_event_id(event);
4967
4968 if (sample_type & PERF_SAMPLE_STREAM_ID)
4969 data->stream_id = event->id;
4970
4971 if (sample_type & PERF_SAMPLE_CPU) {
4972 data->cpu_entry.cpu = raw_smp_processor_id();
4973 data->cpu_entry.reserved = 0;
4974 }
4975}
4976
76369139
FW
4977void perf_event_header__init_id(struct perf_event_header *header,
4978 struct perf_sample_data *data,
4979 struct perf_event *event)
c980d109
ACM
4980{
4981 if (event->attr.sample_id_all)
4982 __perf_event_header__init_id(header, data, event);
4983}
4984
4985static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4986 struct perf_sample_data *data)
4987{
4988 u64 sample_type = data->type;
4989
4990 if (sample_type & PERF_SAMPLE_TID)
4991 perf_output_put(handle, data->tid_entry);
4992
4993 if (sample_type & PERF_SAMPLE_TIME)
4994 perf_output_put(handle, data->time);
4995
4996 if (sample_type & PERF_SAMPLE_ID)
4997 perf_output_put(handle, data->id);
4998
4999 if (sample_type & PERF_SAMPLE_STREAM_ID)
5000 perf_output_put(handle, data->stream_id);
5001
5002 if (sample_type & PERF_SAMPLE_CPU)
5003 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5004
5005 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5006 perf_output_put(handle, data->id);
c980d109
ACM
5007}
5008
76369139
FW
5009void perf_event__output_id_sample(struct perf_event *event,
5010 struct perf_output_handle *handle,
5011 struct perf_sample_data *sample)
c980d109
ACM
5012{
5013 if (event->attr.sample_id_all)
5014 __perf_event__output_id_sample(handle, sample);
5015}
5016
3dab77fb 5017static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5018 struct perf_event *event,
5019 u64 enabled, u64 running)
3dab77fb 5020{
cdd6c482 5021 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5022 u64 values[4];
5023 int n = 0;
5024
b5e58793 5025 values[n++] = perf_event_count(event);
3dab77fb 5026 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5027 values[n++] = enabled +
cdd6c482 5028 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5029 }
5030 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5031 values[n++] = running +
cdd6c482 5032 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5033 }
5034 if (read_format & PERF_FORMAT_ID)
cdd6c482 5035 values[n++] = primary_event_id(event);
3dab77fb 5036
76369139 5037 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5038}
5039
5040/*
cdd6c482 5041 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5042 */
5043static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5044 struct perf_event *event,
5045 u64 enabled, u64 running)
3dab77fb 5046{
cdd6c482
IM
5047 struct perf_event *leader = event->group_leader, *sub;
5048 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5049 u64 values[5];
5050 int n = 0;
5051
5052 values[n++] = 1 + leader->nr_siblings;
5053
5054 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5055 values[n++] = enabled;
3dab77fb
PZ
5056
5057 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5058 values[n++] = running;
3dab77fb 5059
cdd6c482 5060 if (leader != event)
3dab77fb
PZ
5061 leader->pmu->read(leader);
5062
b5e58793 5063 values[n++] = perf_event_count(leader);
3dab77fb 5064 if (read_format & PERF_FORMAT_ID)
cdd6c482 5065 values[n++] = primary_event_id(leader);
3dab77fb 5066
76369139 5067 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5068
65abc865 5069 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5070 n = 0;
5071
6f5ab001
JO
5072 if ((sub != event) &&
5073 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5074 sub->pmu->read(sub);
5075
b5e58793 5076 values[n++] = perf_event_count(sub);
3dab77fb 5077 if (read_format & PERF_FORMAT_ID)
cdd6c482 5078 values[n++] = primary_event_id(sub);
3dab77fb 5079
76369139 5080 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5081 }
5082}
5083
eed01528
SE
5084#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5085 PERF_FORMAT_TOTAL_TIME_RUNNING)
5086
3dab77fb 5087static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5088 struct perf_event *event)
3dab77fb 5089{
e3f3541c 5090 u64 enabled = 0, running = 0, now;
eed01528
SE
5091 u64 read_format = event->attr.read_format;
5092
5093 /*
5094 * compute total_time_enabled, total_time_running
5095 * based on snapshot values taken when the event
5096 * was last scheduled in.
5097 *
5098 * we cannot simply called update_context_time()
5099 * because of locking issue as we are called in
5100 * NMI context
5101 */
c4794295 5102 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5103 calc_timer_values(event, &now, &enabled, &running);
eed01528 5104
cdd6c482 5105 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5106 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5107 else
eed01528 5108 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5109}
5110
5622f295
MM
5111void perf_output_sample(struct perf_output_handle *handle,
5112 struct perf_event_header *header,
5113 struct perf_sample_data *data,
cdd6c482 5114 struct perf_event *event)
5622f295
MM
5115{
5116 u64 sample_type = data->type;
5117
5118 perf_output_put(handle, *header);
5119
ff3d527c
AH
5120 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5121 perf_output_put(handle, data->id);
5122
5622f295
MM
5123 if (sample_type & PERF_SAMPLE_IP)
5124 perf_output_put(handle, data->ip);
5125
5126 if (sample_type & PERF_SAMPLE_TID)
5127 perf_output_put(handle, data->tid_entry);
5128
5129 if (sample_type & PERF_SAMPLE_TIME)
5130 perf_output_put(handle, data->time);
5131
5132 if (sample_type & PERF_SAMPLE_ADDR)
5133 perf_output_put(handle, data->addr);
5134
5135 if (sample_type & PERF_SAMPLE_ID)
5136 perf_output_put(handle, data->id);
5137
5138 if (sample_type & PERF_SAMPLE_STREAM_ID)
5139 perf_output_put(handle, data->stream_id);
5140
5141 if (sample_type & PERF_SAMPLE_CPU)
5142 perf_output_put(handle, data->cpu_entry);
5143
5144 if (sample_type & PERF_SAMPLE_PERIOD)
5145 perf_output_put(handle, data->period);
5146
5147 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5148 perf_output_read(handle, event);
5622f295
MM
5149
5150 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5151 if (data->callchain) {
5152 int size = 1;
5153
5154 if (data->callchain)
5155 size += data->callchain->nr;
5156
5157 size *= sizeof(u64);
5158
76369139 5159 __output_copy(handle, data->callchain, size);
5622f295
MM
5160 } else {
5161 u64 nr = 0;
5162 perf_output_put(handle, nr);
5163 }
5164 }
5165
5166 if (sample_type & PERF_SAMPLE_RAW) {
5167 if (data->raw) {
5168 perf_output_put(handle, data->raw->size);
76369139
FW
5169 __output_copy(handle, data->raw->data,
5170 data->raw->size);
5622f295
MM
5171 } else {
5172 struct {
5173 u32 size;
5174 u32 data;
5175 } raw = {
5176 .size = sizeof(u32),
5177 .data = 0,
5178 };
5179 perf_output_put(handle, raw);
5180 }
5181 }
a7ac67ea 5182
bce38cd5
SE
5183 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5184 if (data->br_stack) {
5185 size_t size;
5186
5187 size = data->br_stack->nr
5188 * sizeof(struct perf_branch_entry);
5189
5190 perf_output_put(handle, data->br_stack->nr);
5191 perf_output_copy(handle, data->br_stack->entries, size);
5192 } else {
5193 /*
5194 * we always store at least the value of nr
5195 */
5196 u64 nr = 0;
5197 perf_output_put(handle, nr);
5198 }
5199 }
4018994f
JO
5200
5201 if (sample_type & PERF_SAMPLE_REGS_USER) {
5202 u64 abi = data->regs_user.abi;
5203
5204 /*
5205 * If there are no regs to dump, notice it through
5206 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5207 */
5208 perf_output_put(handle, abi);
5209
5210 if (abi) {
5211 u64 mask = event->attr.sample_regs_user;
5212 perf_output_sample_regs(handle,
5213 data->regs_user.regs,
5214 mask);
5215 }
5216 }
c5ebcedb 5217
a5cdd40c 5218 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5219 perf_output_sample_ustack(handle,
5220 data->stack_user_size,
5221 data->regs_user.regs);
a5cdd40c 5222 }
c3feedf2
AK
5223
5224 if (sample_type & PERF_SAMPLE_WEIGHT)
5225 perf_output_put(handle, data->weight);
d6be9ad6
SE
5226
5227 if (sample_type & PERF_SAMPLE_DATA_SRC)
5228 perf_output_put(handle, data->data_src.val);
a5cdd40c 5229
fdfbbd07
AK
5230 if (sample_type & PERF_SAMPLE_TRANSACTION)
5231 perf_output_put(handle, data->txn);
5232
60e2364e
SE
5233 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5234 u64 abi = data->regs_intr.abi;
5235 /*
5236 * If there are no regs to dump, notice it through
5237 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5238 */
5239 perf_output_put(handle, abi);
5240
5241 if (abi) {
5242 u64 mask = event->attr.sample_regs_intr;
5243
5244 perf_output_sample_regs(handle,
5245 data->regs_intr.regs,
5246 mask);
5247 }
5248 }
5249
a5cdd40c
PZ
5250 if (!event->attr.watermark) {
5251 int wakeup_events = event->attr.wakeup_events;
5252
5253 if (wakeup_events) {
5254 struct ring_buffer *rb = handle->rb;
5255 int events = local_inc_return(&rb->events);
5256
5257 if (events >= wakeup_events) {
5258 local_sub(wakeup_events, &rb->events);
5259 local_inc(&rb->wakeup);
5260 }
5261 }
5262 }
5622f295
MM
5263}
5264
5265void perf_prepare_sample(struct perf_event_header *header,
5266 struct perf_sample_data *data,
cdd6c482 5267 struct perf_event *event,
5622f295 5268 struct pt_regs *regs)
7b732a75 5269{
cdd6c482 5270 u64 sample_type = event->attr.sample_type;
7b732a75 5271
cdd6c482 5272 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5273 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5274
5275 header->misc = 0;
5276 header->misc |= perf_misc_flags(regs);
6fab0192 5277
c980d109 5278 __perf_event_header__init_id(header, data, event);
6844c09d 5279
c320c7b7 5280 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5281 data->ip = perf_instruction_pointer(regs);
5282
b23f3325 5283 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5284 int size = 1;
394ee076 5285
e6dab5ff 5286 data->callchain = perf_callchain(event, regs);
5622f295
MM
5287
5288 if (data->callchain)
5289 size += data->callchain->nr;
5290
5291 header->size += size * sizeof(u64);
394ee076
PZ
5292 }
5293
3a43ce68 5294 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5295 int size = sizeof(u32);
5296
5297 if (data->raw)
5298 size += data->raw->size;
5299 else
5300 size += sizeof(u32);
5301
5302 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5303 header->size += size;
7f453c24 5304 }
bce38cd5
SE
5305
5306 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5307 int size = sizeof(u64); /* nr */
5308 if (data->br_stack) {
5309 size += data->br_stack->nr
5310 * sizeof(struct perf_branch_entry);
5311 }
5312 header->size += size;
5313 }
4018994f 5314
2565711f 5315 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5316 perf_sample_regs_user(&data->regs_user, regs,
5317 &data->regs_user_copy);
2565711f 5318
4018994f
JO
5319 if (sample_type & PERF_SAMPLE_REGS_USER) {
5320 /* regs dump ABI info */
5321 int size = sizeof(u64);
5322
4018994f
JO
5323 if (data->regs_user.regs) {
5324 u64 mask = event->attr.sample_regs_user;
5325 size += hweight64(mask) * sizeof(u64);
5326 }
5327
5328 header->size += size;
5329 }
c5ebcedb
JO
5330
5331 if (sample_type & PERF_SAMPLE_STACK_USER) {
5332 /*
5333 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5334 * processed as the last one or have additional check added
5335 * in case new sample type is added, because we could eat
5336 * up the rest of the sample size.
5337 */
c5ebcedb
JO
5338 u16 stack_size = event->attr.sample_stack_user;
5339 u16 size = sizeof(u64);
5340
c5ebcedb 5341 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5342 data->regs_user.regs);
c5ebcedb
JO
5343
5344 /*
5345 * If there is something to dump, add space for the dump
5346 * itself and for the field that tells the dynamic size,
5347 * which is how many have been actually dumped.
5348 */
5349 if (stack_size)
5350 size += sizeof(u64) + stack_size;
5351
5352 data->stack_user_size = stack_size;
5353 header->size += size;
5354 }
60e2364e
SE
5355
5356 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5357 /* regs dump ABI info */
5358 int size = sizeof(u64);
5359
5360 perf_sample_regs_intr(&data->regs_intr, regs);
5361
5362 if (data->regs_intr.regs) {
5363 u64 mask = event->attr.sample_regs_intr;
5364
5365 size += hweight64(mask) * sizeof(u64);
5366 }
5367
5368 header->size += size;
5369 }
5622f295 5370}
7f453c24 5371
21509084
YZ
5372void perf_event_output(struct perf_event *event,
5373 struct perf_sample_data *data,
5374 struct pt_regs *regs)
5622f295
MM
5375{
5376 struct perf_output_handle handle;
5377 struct perf_event_header header;
689802b2 5378
927c7a9e
FW
5379 /* protect the callchain buffers */
5380 rcu_read_lock();
5381
cdd6c482 5382 perf_prepare_sample(&header, data, event, regs);
5c148194 5383
a7ac67ea 5384 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5385 goto exit;
0322cd6e 5386
cdd6c482 5387 perf_output_sample(&handle, &header, data, event);
f413cdb8 5388
8a057d84 5389 perf_output_end(&handle);
927c7a9e
FW
5390
5391exit:
5392 rcu_read_unlock();
0322cd6e
PZ
5393}
5394
38b200d6 5395/*
cdd6c482 5396 * read event_id
38b200d6
PZ
5397 */
5398
5399struct perf_read_event {
5400 struct perf_event_header header;
5401
5402 u32 pid;
5403 u32 tid;
38b200d6
PZ
5404};
5405
5406static void
cdd6c482 5407perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5408 struct task_struct *task)
5409{
5410 struct perf_output_handle handle;
c980d109 5411 struct perf_sample_data sample;
dfc65094 5412 struct perf_read_event read_event = {
38b200d6 5413 .header = {
cdd6c482 5414 .type = PERF_RECORD_READ,
38b200d6 5415 .misc = 0,
c320c7b7 5416 .size = sizeof(read_event) + event->read_size,
38b200d6 5417 },
cdd6c482
IM
5418 .pid = perf_event_pid(event, task),
5419 .tid = perf_event_tid(event, task),
38b200d6 5420 };
3dab77fb 5421 int ret;
38b200d6 5422
c980d109 5423 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5424 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5425 if (ret)
5426 return;
5427
dfc65094 5428 perf_output_put(&handle, read_event);
cdd6c482 5429 perf_output_read(&handle, event);
c980d109 5430 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5431
38b200d6
PZ
5432 perf_output_end(&handle);
5433}
5434
52d857a8
JO
5435typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5436
5437static void
5438perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5439 perf_event_aux_output_cb output,
5440 void *data)
5441{
5442 struct perf_event *event;
5443
5444 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5445 if (event->state < PERF_EVENT_STATE_INACTIVE)
5446 continue;
5447 if (!event_filter_match(event))
5448 continue;
67516844 5449 output(event, data);
52d857a8
JO
5450 }
5451}
5452
5453static void
67516844 5454perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5455 struct perf_event_context *task_ctx)
5456{
5457 struct perf_cpu_context *cpuctx;
5458 struct perf_event_context *ctx;
5459 struct pmu *pmu;
5460 int ctxn;
5461
5462 rcu_read_lock();
5463 list_for_each_entry_rcu(pmu, &pmus, entry) {
5464 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5465 if (cpuctx->unique_pmu != pmu)
5466 goto next;
67516844 5467 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5468 if (task_ctx)
5469 goto next;
5470 ctxn = pmu->task_ctx_nr;
5471 if (ctxn < 0)
5472 goto next;
5473 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5474 if (ctx)
67516844 5475 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5476next:
5477 put_cpu_ptr(pmu->pmu_cpu_context);
5478 }
5479
5480 if (task_ctx) {
5481 preempt_disable();
67516844 5482 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5483 preempt_enable();
5484 }
5485 rcu_read_unlock();
5486}
5487
60313ebe 5488/*
9f498cc5
PZ
5489 * task tracking -- fork/exit
5490 *
13d7a241 5491 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5492 */
5493
9f498cc5 5494struct perf_task_event {
3a80b4a3 5495 struct task_struct *task;
cdd6c482 5496 struct perf_event_context *task_ctx;
60313ebe
PZ
5497
5498 struct {
5499 struct perf_event_header header;
5500
5501 u32 pid;
5502 u32 ppid;
9f498cc5
PZ
5503 u32 tid;
5504 u32 ptid;
393b2ad8 5505 u64 time;
cdd6c482 5506 } event_id;
60313ebe
PZ
5507};
5508
67516844
JO
5509static int perf_event_task_match(struct perf_event *event)
5510{
13d7a241
SE
5511 return event->attr.comm || event->attr.mmap ||
5512 event->attr.mmap2 || event->attr.mmap_data ||
5513 event->attr.task;
67516844
JO
5514}
5515
cdd6c482 5516static void perf_event_task_output(struct perf_event *event,
52d857a8 5517 void *data)
60313ebe 5518{
52d857a8 5519 struct perf_task_event *task_event = data;
60313ebe 5520 struct perf_output_handle handle;
c980d109 5521 struct perf_sample_data sample;
9f498cc5 5522 struct task_struct *task = task_event->task;
c980d109 5523 int ret, size = task_event->event_id.header.size;
8bb39f9a 5524
67516844
JO
5525 if (!perf_event_task_match(event))
5526 return;
5527
c980d109 5528 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5529
c980d109 5530 ret = perf_output_begin(&handle, event,
a7ac67ea 5531 task_event->event_id.header.size);
ef60777c 5532 if (ret)
c980d109 5533 goto out;
60313ebe 5534
cdd6c482
IM
5535 task_event->event_id.pid = perf_event_pid(event, task);
5536 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5537
cdd6c482
IM
5538 task_event->event_id.tid = perf_event_tid(event, task);
5539 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5540
34f43927
PZ
5541 task_event->event_id.time = perf_event_clock(event);
5542
cdd6c482 5543 perf_output_put(&handle, task_event->event_id);
393b2ad8 5544
c980d109
ACM
5545 perf_event__output_id_sample(event, &handle, &sample);
5546
60313ebe 5547 perf_output_end(&handle);
c980d109
ACM
5548out:
5549 task_event->event_id.header.size = size;
60313ebe
PZ
5550}
5551
cdd6c482
IM
5552static void perf_event_task(struct task_struct *task,
5553 struct perf_event_context *task_ctx,
3a80b4a3 5554 int new)
60313ebe 5555{
9f498cc5 5556 struct perf_task_event task_event;
60313ebe 5557
cdd6c482
IM
5558 if (!atomic_read(&nr_comm_events) &&
5559 !atomic_read(&nr_mmap_events) &&
5560 !atomic_read(&nr_task_events))
60313ebe
PZ
5561 return;
5562
9f498cc5 5563 task_event = (struct perf_task_event){
3a80b4a3
PZ
5564 .task = task,
5565 .task_ctx = task_ctx,
cdd6c482 5566 .event_id = {
60313ebe 5567 .header = {
cdd6c482 5568 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5569 .misc = 0,
cdd6c482 5570 .size = sizeof(task_event.event_id),
60313ebe 5571 },
573402db
PZ
5572 /* .pid */
5573 /* .ppid */
9f498cc5
PZ
5574 /* .tid */
5575 /* .ptid */
34f43927 5576 /* .time */
60313ebe
PZ
5577 },
5578 };
5579
67516844 5580 perf_event_aux(perf_event_task_output,
52d857a8
JO
5581 &task_event,
5582 task_ctx);
9f498cc5
PZ
5583}
5584
cdd6c482 5585void perf_event_fork(struct task_struct *task)
9f498cc5 5586{
cdd6c482 5587 perf_event_task(task, NULL, 1);
60313ebe
PZ
5588}
5589
8d1b2d93
PZ
5590/*
5591 * comm tracking
5592 */
5593
5594struct perf_comm_event {
22a4f650
IM
5595 struct task_struct *task;
5596 char *comm;
8d1b2d93
PZ
5597 int comm_size;
5598
5599 struct {
5600 struct perf_event_header header;
5601
5602 u32 pid;
5603 u32 tid;
cdd6c482 5604 } event_id;
8d1b2d93
PZ
5605};
5606
67516844
JO
5607static int perf_event_comm_match(struct perf_event *event)
5608{
5609 return event->attr.comm;
5610}
5611
cdd6c482 5612static void perf_event_comm_output(struct perf_event *event,
52d857a8 5613 void *data)
8d1b2d93 5614{
52d857a8 5615 struct perf_comm_event *comm_event = data;
8d1b2d93 5616 struct perf_output_handle handle;
c980d109 5617 struct perf_sample_data sample;
cdd6c482 5618 int size = comm_event->event_id.header.size;
c980d109
ACM
5619 int ret;
5620
67516844
JO
5621 if (!perf_event_comm_match(event))
5622 return;
5623
c980d109
ACM
5624 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5625 ret = perf_output_begin(&handle, event,
a7ac67ea 5626 comm_event->event_id.header.size);
8d1b2d93
PZ
5627
5628 if (ret)
c980d109 5629 goto out;
8d1b2d93 5630
cdd6c482
IM
5631 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5632 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5633
cdd6c482 5634 perf_output_put(&handle, comm_event->event_id);
76369139 5635 __output_copy(&handle, comm_event->comm,
8d1b2d93 5636 comm_event->comm_size);
c980d109
ACM
5637
5638 perf_event__output_id_sample(event, &handle, &sample);
5639
8d1b2d93 5640 perf_output_end(&handle);
c980d109
ACM
5641out:
5642 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5643}
5644
cdd6c482 5645static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5646{
413ee3b4 5647 char comm[TASK_COMM_LEN];
8d1b2d93 5648 unsigned int size;
8d1b2d93 5649
413ee3b4 5650 memset(comm, 0, sizeof(comm));
96b02d78 5651 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5652 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5653
5654 comm_event->comm = comm;
5655 comm_event->comm_size = size;
5656
cdd6c482 5657 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5658
67516844 5659 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5660 comm_event,
5661 NULL);
8d1b2d93
PZ
5662}
5663
82b89778 5664void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5665{
9ee318a7
PZ
5666 struct perf_comm_event comm_event;
5667
cdd6c482 5668 if (!atomic_read(&nr_comm_events))
9ee318a7 5669 return;
a63eaf34 5670
9ee318a7 5671 comm_event = (struct perf_comm_event){
8d1b2d93 5672 .task = task,
573402db
PZ
5673 /* .comm */
5674 /* .comm_size */
cdd6c482 5675 .event_id = {
573402db 5676 .header = {
cdd6c482 5677 .type = PERF_RECORD_COMM,
82b89778 5678 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5679 /* .size */
5680 },
5681 /* .pid */
5682 /* .tid */
8d1b2d93
PZ
5683 },
5684 };
5685
cdd6c482 5686 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5687}
5688
0a4a9391
PZ
5689/*
5690 * mmap tracking
5691 */
5692
5693struct perf_mmap_event {
089dd79d
PZ
5694 struct vm_area_struct *vma;
5695
5696 const char *file_name;
5697 int file_size;
13d7a241
SE
5698 int maj, min;
5699 u64 ino;
5700 u64 ino_generation;
f972eb63 5701 u32 prot, flags;
0a4a9391
PZ
5702
5703 struct {
5704 struct perf_event_header header;
5705
5706 u32 pid;
5707 u32 tid;
5708 u64 start;
5709 u64 len;
5710 u64 pgoff;
cdd6c482 5711 } event_id;
0a4a9391
PZ
5712};
5713
67516844
JO
5714static int perf_event_mmap_match(struct perf_event *event,
5715 void *data)
5716{
5717 struct perf_mmap_event *mmap_event = data;
5718 struct vm_area_struct *vma = mmap_event->vma;
5719 int executable = vma->vm_flags & VM_EXEC;
5720
5721 return (!executable && event->attr.mmap_data) ||
13d7a241 5722 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5723}
5724
cdd6c482 5725static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5726 void *data)
0a4a9391 5727{
52d857a8 5728 struct perf_mmap_event *mmap_event = data;
0a4a9391 5729 struct perf_output_handle handle;
c980d109 5730 struct perf_sample_data sample;
cdd6c482 5731 int size = mmap_event->event_id.header.size;
c980d109 5732 int ret;
0a4a9391 5733
67516844
JO
5734 if (!perf_event_mmap_match(event, data))
5735 return;
5736
13d7a241
SE
5737 if (event->attr.mmap2) {
5738 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5739 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5740 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5741 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5742 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5743 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5744 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5745 }
5746
c980d109
ACM
5747 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5748 ret = perf_output_begin(&handle, event,
a7ac67ea 5749 mmap_event->event_id.header.size);
0a4a9391 5750 if (ret)
c980d109 5751 goto out;
0a4a9391 5752
cdd6c482
IM
5753 mmap_event->event_id.pid = perf_event_pid(event, current);
5754 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5755
cdd6c482 5756 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5757
5758 if (event->attr.mmap2) {
5759 perf_output_put(&handle, mmap_event->maj);
5760 perf_output_put(&handle, mmap_event->min);
5761 perf_output_put(&handle, mmap_event->ino);
5762 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5763 perf_output_put(&handle, mmap_event->prot);
5764 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5765 }
5766
76369139 5767 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5768 mmap_event->file_size);
c980d109
ACM
5769
5770 perf_event__output_id_sample(event, &handle, &sample);
5771
78d613eb 5772 perf_output_end(&handle);
c980d109
ACM
5773out:
5774 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5775}
5776
cdd6c482 5777static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5778{
089dd79d
PZ
5779 struct vm_area_struct *vma = mmap_event->vma;
5780 struct file *file = vma->vm_file;
13d7a241
SE
5781 int maj = 0, min = 0;
5782 u64 ino = 0, gen = 0;
f972eb63 5783 u32 prot = 0, flags = 0;
0a4a9391
PZ
5784 unsigned int size;
5785 char tmp[16];
5786 char *buf = NULL;
2c42cfbf 5787 char *name;
413ee3b4 5788
0a4a9391 5789 if (file) {
13d7a241
SE
5790 struct inode *inode;
5791 dev_t dev;
3ea2f2b9 5792
2c42cfbf 5793 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5794 if (!buf) {
c7e548b4
ON
5795 name = "//enomem";
5796 goto cpy_name;
0a4a9391 5797 }
413ee3b4 5798 /*
3ea2f2b9 5799 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5800 * need to add enough zero bytes after the string to handle
5801 * the 64bit alignment we do later.
5802 */
9bf39ab2 5803 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 5804 if (IS_ERR(name)) {
c7e548b4
ON
5805 name = "//toolong";
5806 goto cpy_name;
0a4a9391 5807 }
13d7a241
SE
5808 inode = file_inode(vma->vm_file);
5809 dev = inode->i_sb->s_dev;
5810 ino = inode->i_ino;
5811 gen = inode->i_generation;
5812 maj = MAJOR(dev);
5813 min = MINOR(dev);
f972eb63
PZ
5814
5815 if (vma->vm_flags & VM_READ)
5816 prot |= PROT_READ;
5817 if (vma->vm_flags & VM_WRITE)
5818 prot |= PROT_WRITE;
5819 if (vma->vm_flags & VM_EXEC)
5820 prot |= PROT_EXEC;
5821
5822 if (vma->vm_flags & VM_MAYSHARE)
5823 flags = MAP_SHARED;
5824 else
5825 flags = MAP_PRIVATE;
5826
5827 if (vma->vm_flags & VM_DENYWRITE)
5828 flags |= MAP_DENYWRITE;
5829 if (vma->vm_flags & VM_MAYEXEC)
5830 flags |= MAP_EXECUTABLE;
5831 if (vma->vm_flags & VM_LOCKED)
5832 flags |= MAP_LOCKED;
5833 if (vma->vm_flags & VM_HUGETLB)
5834 flags |= MAP_HUGETLB;
5835
c7e548b4 5836 goto got_name;
0a4a9391 5837 } else {
fbe26abe
JO
5838 if (vma->vm_ops && vma->vm_ops->name) {
5839 name = (char *) vma->vm_ops->name(vma);
5840 if (name)
5841 goto cpy_name;
5842 }
5843
2c42cfbf 5844 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5845 if (name)
5846 goto cpy_name;
089dd79d 5847
32c5fb7e 5848 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5849 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5850 name = "[heap]";
5851 goto cpy_name;
32c5fb7e
ON
5852 }
5853 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5854 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5855 name = "[stack]";
5856 goto cpy_name;
089dd79d
PZ
5857 }
5858
c7e548b4
ON
5859 name = "//anon";
5860 goto cpy_name;
0a4a9391
PZ
5861 }
5862
c7e548b4
ON
5863cpy_name:
5864 strlcpy(tmp, name, sizeof(tmp));
5865 name = tmp;
0a4a9391 5866got_name:
2c42cfbf
PZ
5867 /*
5868 * Since our buffer works in 8 byte units we need to align our string
5869 * size to a multiple of 8. However, we must guarantee the tail end is
5870 * zero'd out to avoid leaking random bits to userspace.
5871 */
5872 size = strlen(name)+1;
5873 while (!IS_ALIGNED(size, sizeof(u64)))
5874 name[size++] = '\0';
0a4a9391
PZ
5875
5876 mmap_event->file_name = name;
5877 mmap_event->file_size = size;
13d7a241
SE
5878 mmap_event->maj = maj;
5879 mmap_event->min = min;
5880 mmap_event->ino = ino;
5881 mmap_event->ino_generation = gen;
f972eb63
PZ
5882 mmap_event->prot = prot;
5883 mmap_event->flags = flags;
0a4a9391 5884
2fe85427
SE
5885 if (!(vma->vm_flags & VM_EXEC))
5886 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5887
cdd6c482 5888 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5889
67516844 5890 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5891 mmap_event,
5892 NULL);
665c2142 5893
0a4a9391
PZ
5894 kfree(buf);
5895}
5896
3af9e859 5897void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5898{
9ee318a7
PZ
5899 struct perf_mmap_event mmap_event;
5900
cdd6c482 5901 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5902 return;
5903
5904 mmap_event = (struct perf_mmap_event){
089dd79d 5905 .vma = vma,
573402db
PZ
5906 /* .file_name */
5907 /* .file_size */
cdd6c482 5908 .event_id = {
573402db 5909 .header = {
cdd6c482 5910 .type = PERF_RECORD_MMAP,
39447b38 5911 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5912 /* .size */
5913 },
5914 /* .pid */
5915 /* .tid */
089dd79d
PZ
5916 .start = vma->vm_start,
5917 .len = vma->vm_end - vma->vm_start,
3a0304e9 5918 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 5919 },
13d7a241
SE
5920 /* .maj (attr_mmap2 only) */
5921 /* .min (attr_mmap2 only) */
5922 /* .ino (attr_mmap2 only) */
5923 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
5924 /* .prot (attr_mmap2 only) */
5925 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
5926 };
5927
cdd6c482 5928 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5929}
5930
68db7e98
AS
5931void perf_event_aux_event(struct perf_event *event, unsigned long head,
5932 unsigned long size, u64 flags)
5933{
5934 struct perf_output_handle handle;
5935 struct perf_sample_data sample;
5936 struct perf_aux_event {
5937 struct perf_event_header header;
5938 u64 offset;
5939 u64 size;
5940 u64 flags;
5941 } rec = {
5942 .header = {
5943 .type = PERF_RECORD_AUX,
5944 .misc = 0,
5945 .size = sizeof(rec),
5946 },
5947 .offset = head,
5948 .size = size,
5949 .flags = flags,
5950 };
5951 int ret;
5952
5953 perf_event_header__init_id(&rec.header, &sample, event);
5954 ret = perf_output_begin(&handle, event, rec.header.size);
5955
5956 if (ret)
5957 return;
5958
5959 perf_output_put(&handle, rec);
5960 perf_event__output_id_sample(event, &handle, &sample);
5961
5962 perf_output_end(&handle);
5963}
5964
f38b0dbb
KL
5965/*
5966 * Lost/dropped samples logging
5967 */
5968void perf_log_lost_samples(struct perf_event *event, u64 lost)
5969{
5970 struct perf_output_handle handle;
5971 struct perf_sample_data sample;
5972 int ret;
5973
5974 struct {
5975 struct perf_event_header header;
5976 u64 lost;
5977 } lost_samples_event = {
5978 .header = {
5979 .type = PERF_RECORD_LOST_SAMPLES,
5980 .misc = 0,
5981 .size = sizeof(lost_samples_event),
5982 },
5983 .lost = lost,
5984 };
5985
5986 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
5987
5988 ret = perf_output_begin(&handle, event,
5989 lost_samples_event.header.size);
5990 if (ret)
5991 return;
5992
5993 perf_output_put(&handle, lost_samples_event);
5994 perf_event__output_id_sample(event, &handle, &sample);
5995 perf_output_end(&handle);
5996}
5997
45ac1403
AH
5998/*
5999 * context_switch tracking
6000 */
6001
6002struct perf_switch_event {
6003 struct task_struct *task;
6004 struct task_struct *next_prev;
6005
6006 struct {
6007 struct perf_event_header header;
6008 u32 next_prev_pid;
6009 u32 next_prev_tid;
6010 } event_id;
6011};
6012
6013static int perf_event_switch_match(struct perf_event *event)
6014{
6015 return event->attr.context_switch;
6016}
6017
6018static void perf_event_switch_output(struct perf_event *event, void *data)
6019{
6020 struct perf_switch_event *se = data;
6021 struct perf_output_handle handle;
6022 struct perf_sample_data sample;
6023 int ret;
6024
6025 if (!perf_event_switch_match(event))
6026 return;
6027
6028 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6029 if (event->ctx->task) {
6030 se->event_id.header.type = PERF_RECORD_SWITCH;
6031 se->event_id.header.size = sizeof(se->event_id.header);
6032 } else {
6033 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6034 se->event_id.header.size = sizeof(se->event_id);
6035 se->event_id.next_prev_pid =
6036 perf_event_pid(event, se->next_prev);
6037 se->event_id.next_prev_tid =
6038 perf_event_tid(event, se->next_prev);
6039 }
6040
6041 perf_event_header__init_id(&se->event_id.header, &sample, event);
6042
6043 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6044 if (ret)
6045 return;
6046
6047 if (event->ctx->task)
6048 perf_output_put(&handle, se->event_id.header);
6049 else
6050 perf_output_put(&handle, se->event_id);
6051
6052 perf_event__output_id_sample(event, &handle, &sample);
6053
6054 perf_output_end(&handle);
6055}
6056
6057static void perf_event_switch(struct task_struct *task,
6058 struct task_struct *next_prev, bool sched_in)
6059{
6060 struct perf_switch_event switch_event;
6061
6062 /* N.B. caller checks nr_switch_events != 0 */
6063
6064 switch_event = (struct perf_switch_event){
6065 .task = task,
6066 .next_prev = next_prev,
6067 .event_id = {
6068 .header = {
6069 /* .type */
6070 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6071 /* .size */
6072 },
6073 /* .next_prev_pid */
6074 /* .next_prev_tid */
6075 },
6076 };
6077
6078 perf_event_aux(perf_event_switch_output,
6079 &switch_event,
6080 NULL);
6081}
6082
a78ac325
PZ
6083/*
6084 * IRQ throttle logging
6085 */
6086
cdd6c482 6087static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6088{
6089 struct perf_output_handle handle;
c980d109 6090 struct perf_sample_data sample;
a78ac325
PZ
6091 int ret;
6092
6093 struct {
6094 struct perf_event_header header;
6095 u64 time;
cca3f454 6096 u64 id;
7f453c24 6097 u64 stream_id;
a78ac325
PZ
6098 } throttle_event = {
6099 .header = {
cdd6c482 6100 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6101 .misc = 0,
6102 .size = sizeof(throttle_event),
6103 },
34f43927 6104 .time = perf_event_clock(event),
cdd6c482
IM
6105 .id = primary_event_id(event),
6106 .stream_id = event->id,
a78ac325
PZ
6107 };
6108
966ee4d6 6109 if (enable)
cdd6c482 6110 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6111
c980d109
ACM
6112 perf_event_header__init_id(&throttle_event.header, &sample, event);
6113
6114 ret = perf_output_begin(&handle, event,
a7ac67ea 6115 throttle_event.header.size);
a78ac325
PZ
6116 if (ret)
6117 return;
6118
6119 perf_output_put(&handle, throttle_event);
c980d109 6120 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6121 perf_output_end(&handle);
6122}
6123
ec0d7729
AS
6124static void perf_log_itrace_start(struct perf_event *event)
6125{
6126 struct perf_output_handle handle;
6127 struct perf_sample_data sample;
6128 struct perf_aux_event {
6129 struct perf_event_header header;
6130 u32 pid;
6131 u32 tid;
6132 } rec;
6133 int ret;
6134
6135 if (event->parent)
6136 event = event->parent;
6137
6138 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6139 event->hw.itrace_started)
6140 return;
6141
ec0d7729
AS
6142 rec.header.type = PERF_RECORD_ITRACE_START;
6143 rec.header.misc = 0;
6144 rec.header.size = sizeof(rec);
6145 rec.pid = perf_event_pid(event, current);
6146 rec.tid = perf_event_tid(event, current);
6147
6148 perf_event_header__init_id(&rec.header, &sample, event);
6149 ret = perf_output_begin(&handle, event, rec.header.size);
6150
6151 if (ret)
6152 return;
6153
6154 perf_output_put(&handle, rec);
6155 perf_event__output_id_sample(event, &handle, &sample);
6156
6157 perf_output_end(&handle);
6158}
6159
f6c7d5fe 6160/*
cdd6c482 6161 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6162 */
6163
a8b0ca17 6164static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6165 int throttle, struct perf_sample_data *data,
6166 struct pt_regs *regs)
f6c7d5fe 6167{
cdd6c482
IM
6168 int events = atomic_read(&event->event_limit);
6169 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6170 u64 seq;
79f14641
PZ
6171 int ret = 0;
6172
96398826
PZ
6173 /*
6174 * Non-sampling counters might still use the PMI to fold short
6175 * hardware counters, ignore those.
6176 */
6177 if (unlikely(!is_sampling_event(event)))
6178 return 0;
6179
e050e3f0
SE
6180 seq = __this_cpu_read(perf_throttled_seq);
6181 if (seq != hwc->interrupts_seq) {
6182 hwc->interrupts_seq = seq;
6183 hwc->interrupts = 1;
6184 } else {
6185 hwc->interrupts++;
6186 if (unlikely(throttle
6187 && hwc->interrupts >= max_samples_per_tick)) {
6188 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6189 hwc->interrupts = MAX_INTERRUPTS;
6190 perf_log_throttle(event, 0);
d84153d6 6191 tick_nohz_full_kick();
a78ac325
PZ
6192 ret = 1;
6193 }
e050e3f0 6194 }
60db5e09 6195
cdd6c482 6196 if (event->attr.freq) {
def0a9b2 6197 u64 now = perf_clock();
abd50713 6198 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6199
abd50713 6200 hwc->freq_time_stamp = now;
bd2b5b12 6201
abd50713 6202 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6203 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6204 }
6205
2023b359
PZ
6206 /*
6207 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6208 * events
2023b359
PZ
6209 */
6210
cdd6c482
IM
6211 event->pending_kill = POLL_IN;
6212 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6213 ret = 1;
cdd6c482 6214 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6215 event->pending_disable = 1;
6216 irq_work_queue(&event->pending);
79f14641
PZ
6217 }
6218
453f19ee 6219 if (event->overflow_handler)
a8b0ca17 6220 event->overflow_handler(event, data, regs);
453f19ee 6221 else
a8b0ca17 6222 perf_event_output(event, data, regs);
453f19ee 6223
f506b3dc 6224 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
6225 event->pending_wakeup = 1;
6226 irq_work_queue(&event->pending);
f506b3dc
PZ
6227 }
6228
79f14641 6229 return ret;
f6c7d5fe
PZ
6230}
6231
a8b0ca17 6232int perf_event_overflow(struct perf_event *event,
5622f295
MM
6233 struct perf_sample_data *data,
6234 struct pt_regs *regs)
850bc73f 6235{
a8b0ca17 6236 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6237}
6238
15dbf27c 6239/*
cdd6c482 6240 * Generic software event infrastructure
15dbf27c
PZ
6241 */
6242
b28ab83c
PZ
6243struct swevent_htable {
6244 struct swevent_hlist *swevent_hlist;
6245 struct mutex hlist_mutex;
6246 int hlist_refcount;
6247
6248 /* Recursion avoidance in each contexts */
6249 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
6250
6251 /* Keeps track of cpu being initialized/exited */
6252 bool online;
b28ab83c
PZ
6253};
6254
6255static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6256
7b4b6658 6257/*
cdd6c482
IM
6258 * We directly increment event->count and keep a second value in
6259 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6260 * is kept in the range [-sample_period, 0] so that we can use the
6261 * sign as trigger.
6262 */
6263
ab573844 6264u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6265{
cdd6c482 6266 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6267 u64 period = hwc->last_period;
6268 u64 nr, offset;
6269 s64 old, val;
6270
6271 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6272
6273again:
e7850595 6274 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6275 if (val < 0)
6276 return 0;
15dbf27c 6277
7b4b6658
PZ
6278 nr = div64_u64(period + val, period);
6279 offset = nr * period;
6280 val -= offset;
e7850595 6281 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6282 goto again;
15dbf27c 6283
7b4b6658 6284 return nr;
15dbf27c
PZ
6285}
6286
0cff784a 6287static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6288 struct perf_sample_data *data,
5622f295 6289 struct pt_regs *regs)
15dbf27c 6290{
cdd6c482 6291 struct hw_perf_event *hwc = &event->hw;
850bc73f 6292 int throttle = 0;
15dbf27c 6293
0cff784a
PZ
6294 if (!overflow)
6295 overflow = perf_swevent_set_period(event);
15dbf27c 6296
7b4b6658
PZ
6297 if (hwc->interrupts == MAX_INTERRUPTS)
6298 return;
15dbf27c 6299
7b4b6658 6300 for (; overflow; overflow--) {
a8b0ca17 6301 if (__perf_event_overflow(event, throttle,
5622f295 6302 data, regs)) {
7b4b6658
PZ
6303 /*
6304 * We inhibit the overflow from happening when
6305 * hwc->interrupts == MAX_INTERRUPTS.
6306 */
6307 break;
6308 }
cf450a73 6309 throttle = 1;
7b4b6658 6310 }
15dbf27c
PZ
6311}
6312
a4eaf7f1 6313static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6314 struct perf_sample_data *data,
5622f295 6315 struct pt_regs *regs)
7b4b6658 6316{
cdd6c482 6317 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6318
e7850595 6319 local64_add(nr, &event->count);
d6d020e9 6320
0cff784a
PZ
6321 if (!regs)
6322 return;
6323
6c7e550f 6324 if (!is_sampling_event(event))
7b4b6658 6325 return;
d6d020e9 6326
5d81e5cf
AV
6327 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6328 data->period = nr;
6329 return perf_swevent_overflow(event, 1, data, regs);
6330 } else
6331 data->period = event->hw.last_period;
6332
0cff784a 6333 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6334 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6335
e7850595 6336 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6337 return;
df1a132b 6338
a8b0ca17 6339 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6340}
6341
f5ffe02e
FW
6342static int perf_exclude_event(struct perf_event *event,
6343 struct pt_regs *regs)
6344{
a4eaf7f1 6345 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6346 return 1;
a4eaf7f1 6347
f5ffe02e
FW
6348 if (regs) {
6349 if (event->attr.exclude_user && user_mode(regs))
6350 return 1;
6351
6352 if (event->attr.exclude_kernel && !user_mode(regs))
6353 return 1;
6354 }
6355
6356 return 0;
6357}
6358
cdd6c482 6359static int perf_swevent_match(struct perf_event *event,
1c432d89 6360 enum perf_type_id type,
6fb2915d
LZ
6361 u32 event_id,
6362 struct perf_sample_data *data,
6363 struct pt_regs *regs)
15dbf27c 6364{
cdd6c482 6365 if (event->attr.type != type)
a21ca2ca 6366 return 0;
f5ffe02e 6367
cdd6c482 6368 if (event->attr.config != event_id)
15dbf27c
PZ
6369 return 0;
6370
f5ffe02e
FW
6371 if (perf_exclude_event(event, regs))
6372 return 0;
15dbf27c
PZ
6373
6374 return 1;
6375}
6376
76e1d904
FW
6377static inline u64 swevent_hash(u64 type, u32 event_id)
6378{
6379 u64 val = event_id | (type << 32);
6380
6381 return hash_64(val, SWEVENT_HLIST_BITS);
6382}
6383
49f135ed
FW
6384static inline struct hlist_head *
6385__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6386{
49f135ed
FW
6387 u64 hash = swevent_hash(type, event_id);
6388
6389 return &hlist->heads[hash];
6390}
76e1d904 6391
49f135ed
FW
6392/* For the read side: events when they trigger */
6393static inline struct hlist_head *
b28ab83c 6394find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6395{
6396 struct swevent_hlist *hlist;
76e1d904 6397
b28ab83c 6398 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6399 if (!hlist)
6400 return NULL;
6401
49f135ed
FW
6402 return __find_swevent_head(hlist, type, event_id);
6403}
6404
6405/* For the event head insertion and removal in the hlist */
6406static inline struct hlist_head *
b28ab83c 6407find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6408{
6409 struct swevent_hlist *hlist;
6410 u32 event_id = event->attr.config;
6411 u64 type = event->attr.type;
6412
6413 /*
6414 * Event scheduling is always serialized against hlist allocation
6415 * and release. Which makes the protected version suitable here.
6416 * The context lock guarantees that.
6417 */
b28ab83c 6418 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6419 lockdep_is_held(&event->ctx->lock));
6420 if (!hlist)
6421 return NULL;
6422
6423 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6424}
6425
6426static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6427 u64 nr,
76e1d904
FW
6428 struct perf_sample_data *data,
6429 struct pt_regs *regs)
15dbf27c 6430{
4a32fea9 6431 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6432 struct perf_event *event;
76e1d904 6433 struct hlist_head *head;
15dbf27c 6434
76e1d904 6435 rcu_read_lock();
b28ab83c 6436 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6437 if (!head)
6438 goto end;
6439
b67bfe0d 6440 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6441 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6442 perf_swevent_event(event, nr, data, regs);
15dbf27c 6443 }
76e1d904
FW
6444end:
6445 rcu_read_unlock();
15dbf27c
PZ
6446}
6447
86038c5e
PZI
6448DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6449
4ed7c92d 6450int perf_swevent_get_recursion_context(void)
96f6d444 6451{
4a32fea9 6452 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6453
b28ab83c 6454 return get_recursion_context(swhash->recursion);
96f6d444 6455}
645e8cc0 6456EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6457
fa9f90be 6458inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6459{
4a32fea9 6460 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6461
b28ab83c 6462 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6463}
15dbf27c 6464
86038c5e 6465void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6466{
a4234bfc 6467 struct perf_sample_data data;
4ed7c92d 6468
86038c5e 6469 if (WARN_ON_ONCE(!regs))
4ed7c92d 6470 return;
a4234bfc 6471
fd0d000b 6472 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6473 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6474}
6475
6476void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6477{
6478 int rctx;
6479
6480 preempt_disable_notrace();
6481 rctx = perf_swevent_get_recursion_context();
6482 if (unlikely(rctx < 0))
6483 goto fail;
6484
6485 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6486
6487 perf_swevent_put_recursion_context(rctx);
86038c5e 6488fail:
1c024eca 6489 preempt_enable_notrace();
b8e83514
PZ
6490}
6491
cdd6c482 6492static void perf_swevent_read(struct perf_event *event)
15dbf27c 6493{
15dbf27c
PZ
6494}
6495
a4eaf7f1 6496static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6497{
4a32fea9 6498 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6499 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6500 struct hlist_head *head;
6501
6c7e550f 6502 if (is_sampling_event(event)) {
7b4b6658 6503 hwc->last_period = hwc->sample_period;
cdd6c482 6504 perf_swevent_set_period(event);
7b4b6658 6505 }
76e1d904 6506
a4eaf7f1
PZ
6507 hwc->state = !(flags & PERF_EF_START);
6508
b28ab83c 6509 head = find_swevent_head(swhash, event);
39af6b16
JO
6510 if (!head) {
6511 /*
6512 * We can race with cpu hotplug code. Do not
6513 * WARN if the cpu just got unplugged.
6514 */
6515 WARN_ON_ONCE(swhash->online);
76e1d904 6516 return -EINVAL;
39af6b16 6517 }
76e1d904
FW
6518
6519 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6520 perf_event_update_userpage(event);
76e1d904 6521
15dbf27c
PZ
6522 return 0;
6523}
6524
a4eaf7f1 6525static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6526{
76e1d904 6527 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6528}
6529
a4eaf7f1 6530static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6531{
a4eaf7f1 6532 event->hw.state = 0;
d6d020e9 6533}
aa9c4c0f 6534
a4eaf7f1 6535static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6536{
a4eaf7f1 6537 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6538}
6539
49f135ed
FW
6540/* Deref the hlist from the update side */
6541static inline struct swevent_hlist *
b28ab83c 6542swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6543{
b28ab83c
PZ
6544 return rcu_dereference_protected(swhash->swevent_hlist,
6545 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6546}
6547
b28ab83c 6548static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6549{
b28ab83c 6550 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6551
49f135ed 6552 if (!hlist)
76e1d904
FW
6553 return;
6554
70691d4a 6555 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6556 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6557}
6558
6559static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6560{
b28ab83c 6561 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6562
b28ab83c 6563 mutex_lock(&swhash->hlist_mutex);
76e1d904 6564
b28ab83c
PZ
6565 if (!--swhash->hlist_refcount)
6566 swevent_hlist_release(swhash);
76e1d904 6567
b28ab83c 6568 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6569}
6570
6571static void swevent_hlist_put(struct perf_event *event)
6572{
6573 int cpu;
6574
76e1d904
FW
6575 for_each_possible_cpu(cpu)
6576 swevent_hlist_put_cpu(event, cpu);
6577}
6578
6579static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6580{
b28ab83c 6581 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6582 int err = 0;
6583
b28ab83c 6584 mutex_lock(&swhash->hlist_mutex);
76e1d904 6585
b28ab83c 6586 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6587 struct swevent_hlist *hlist;
6588
6589 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6590 if (!hlist) {
6591 err = -ENOMEM;
6592 goto exit;
6593 }
b28ab83c 6594 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6595 }
b28ab83c 6596 swhash->hlist_refcount++;
9ed6060d 6597exit:
b28ab83c 6598 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6599
6600 return err;
6601}
6602
6603static int swevent_hlist_get(struct perf_event *event)
6604{
6605 int err;
6606 int cpu, failed_cpu;
6607
76e1d904
FW
6608 get_online_cpus();
6609 for_each_possible_cpu(cpu) {
6610 err = swevent_hlist_get_cpu(event, cpu);
6611 if (err) {
6612 failed_cpu = cpu;
6613 goto fail;
6614 }
6615 }
6616 put_online_cpus();
6617
6618 return 0;
9ed6060d 6619fail:
76e1d904
FW
6620 for_each_possible_cpu(cpu) {
6621 if (cpu == failed_cpu)
6622 break;
6623 swevent_hlist_put_cpu(event, cpu);
6624 }
6625
6626 put_online_cpus();
6627 return err;
6628}
6629
c5905afb 6630struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6631
b0a873eb
PZ
6632static void sw_perf_event_destroy(struct perf_event *event)
6633{
6634 u64 event_id = event->attr.config;
95476b64 6635
b0a873eb
PZ
6636 WARN_ON(event->parent);
6637
c5905afb 6638 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6639 swevent_hlist_put(event);
6640}
6641
6642static int perf_swevent_init(struct perf_event *event)
6643{
8176cced 6644 u64 event_id = event->attr.config;
b0a873eb
PZ
6645
6646 if (event->attr.type != PERF_TYPE_SOFTWARE)
6647 return -ENOENT;
6648
2481c5fa
SE
6649 /*
6650 * no branch sampling for software events
6651 */
6652 if (has_branch_stack(event))
6653 return -EOPNOTSUPP;
6654
b0a873eb
PZ
6655 switch (event_id) {
6656 case PERF_COUNT_SW_CPU_CLOCK:
6657 case PERF_COUNT_SW_TASK_CLOCK:
6658 return -ENOENT;
6659
6660 default:
6661 break;
6662 }
6663
ce677831 6664 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6665 return -ENOENT;
6666
6667 if (!event->parent) {
6668 int err;
6669
6670 err = swevent_hlist_get(event);
6671 if (err)
6672 return err;
6673
c5905afb 6674 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6675 event->destroy = sw_perf_event_destroy;
6676 }
6677
6678 return 0;
6679}
6680
6681static struct pmu perf_swevent = {
89a1e187 6682 .task_ctx_nr = perf_sw_context,
95476b64 6683
34f43927
PZ
6684 .capabilities = PERF_PMU_CAP_NO_NMI,
6685
b0a873eb 6686 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6687 .add = perf_swevent_add,
6688 .del = perf_swevent_del,
6689 .start = perf_swevent_start,
6690 .stop = perf_swevent_stop,
1c024eca 6691 .read = perf_swevent_read,
1c024eca
PZ
6692};
6693
b0a873eb
PZ
6694#ifdef CONFIG_EVENT_TRACING
6695
1c024eca
PZ
6696static int perf_tp_filter_match(struct perf_event *event,
6697 struct perf_sample_data *data)
6698{
6699 void *record = data->raw->data;
6700
6701 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6702 return 1;
6703 return 0;
6704}
6705
6706static int perf_tp_event_match(struct perf_event *event,
6707 struct perf_sample_data *data,
6708 struct pt_regs *regs)
6709{
a0f7d0f7
FW
6710 if (event->hw.state & PERF_HES_STOPPED)
6711 return 0;
580d607c
PZ
6712 /*
6713 * All tracepoints are from kernel-space.
6714 */
6715 if (event->attr.exclude_kernel)
1c024eca
PZ
6716 return 0;
6717
6718 if (!perf_tp_filter_match(event, data))
6719 return 0;
6720
6721 return 1;
6722}
6723
6724void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6725 struct pt_regs *regs, struct hlist_head *head, int rctx,
6726 struct task_struct *task)
95476b64
FW
6727{
6728 struct perf_sample_data data;
1c024eca 6729 struct perf_event *event;
1c024eca 6730
95476b64
FW
6731 struct perf_raw_record raw = {
6732 .size = entry_size,
6733 .data = record,
6734 };
6735
fd0d000b 6736 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6737 data.raw = &raw;
6738
b67bfe0d 6739 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6740 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6741 perf_swevent_event(event, count, &data, regs);
4f41c013 6742 }
ecc55f84 6743
e6dab5ff
AV
6744 /*
6745 * If we got specified a target task, also iterate its context and
6746 * deliver this event there too.
6747 */
6748 if (task && task != current) {
6749 struct perf_event_context *ctx;
6750 struct trace_entry *entry = record;
6751
6752 rcu_read_lock();
6753 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6754 if (!ctx)
6755 goto unlock;
6756
6757 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6758 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6759 continue;
6760 if (event->attr.config != entry->type)
6761 continue;
6762 if (perf_tp_event_match(event, &data, regs))
6763 perf_swevent_event(event, count, &data, regs);
6764 }
6765unlock:
6766 rcu_read_unlock();
6767 }
6768
ecc55f84 6769 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6770}
6771EXPORT_SYMBOL_GPL(perf_tp_event);
6772
cdd6c482 6773static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6774{
1c024eca 6775 perf_trace_destroy(event);
e077df4f
PZ
6776}
6777
b0a873eb 6778static int perf_tp_event_init(struct perf_event *event)
e077df4f 6779{
76e1d904
FW
6780 int err;
6781
b0a873eb
PZ
6782 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6783 return -ENOENT;
6784
2481c5fa
SE
6785 /*
6786 * no branch sampling for tracepoint events
6787 */
6788 if (has_branch_stack(event))
6789 return -EOPNOTSUPP;
6790
1c024eca
PZ
6791 err = perf_trace_init(event);
6792 if (err)
b0a873eb 6793 return err;
e077df4f 6794
cdd6c482 6795 event->destroy = tp_perf_event_destroy;
e077df4f 6796
b0a873eb
PZ
6797 return 0;
6798}
6799
6800static struct pmu perf_tracepoint = {
89a1e187
PZ
6801 .task_ctx_nr = perf_sw_context,
6802
b0a873eb 6803 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6804 .add = perf_trace_add,
6805 .del = perf_trace_del,
6806 .start = perf_swevent_start,
6807 .stop = perf_swevent_stop,
b0a873eb 6808 .read = perf_swevent_read,
b0a873eb
PZ
6809};
6810
6811static inline void perf_tp_register(void)
6812{
2e80a82a 6813 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6814}
6fb2915d
LZ
6815
6816static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6817{
6818 char *filter_str;
6819 int ret;
6820
6821 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6822 return -EINVAL;
6823
6824 filter_str = strndup_user(arg, PAGE_SIZE);
6825 if (IS_ERR(filter_str))
6826 return PTR_ERR(filter_str);
6827
6828 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6829
6830 kfree(filter_str);
6831 return ret;
6832}
6833
6834static void perf_event_free_filter(struct perf_event *event)
6835{
6836 ftrace_profile_free_filter(event);
6837}
6838
2541517c
AS
6839static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6840{
6841 struct bpf_prog *prog;
6842
6843 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6844 return -EINVAL;
6845
6846 if (event->tp_event->prog)
6847 return -EEXIST;
6848
6849 if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
6850 /* bpf programs can only be attached to kprobes */
6851 return -EINVAL;
6852
6853 prog = bpf_prog_get(prog_fd);
6854 if (IS_ERR(prog))
6855 return PTR_ERR(prog);
6856
6c373ca8 6857 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
6858 /* valid fd, but invalid bpf program type */
6859 bpf_prog_put(prog);
6860 return -EINVAL;
6861 }
6862
6863 event->tp_event->prog = prog;
6864
6865 return 0;
6866}
6867
6868static void perf_event_free_bpf_prog(struct perf_event *event)
6869{
6870 struct bpf_prog *prog;
6871
6872 if (!event->tp_event)
6873 return;
6874
6875 prog = event->tp_event->prog;
6876 if (prog) {
6877 event->tp_event->prog = NULL;
6878 bpf_prog_put(prog);
6879 }
6880}
6881
e077df4f 6882#else
6fb2915d 6883
b0a873eb 6884static inline void perf_tp_register(void)
e077df4f 6885{
e077df4f 6886}
6fb2915d
LZ
6887
6888static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6889{
6890 return -ENOENT;
6891}
6892
6893static void perf_event_free_filter(struct perf_event *event)
6894{
6895}
6896
2541517c
AS
6897static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6898{
6899 return -ENOENT;
6900}
6901
6902static void perf_event_free_bpf_prog(struct perf_event *event)
6903{
6904}
07b139c8 6905#endif /* CONFIG_EVENT_TRACING */
e077df4f 6906
24f1e32c 6907#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 6908void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 6909{
f5ffe02e
FW
6910 struct perf_sample_data sample;
6911 struct pt_regs *regs = data;
6912
fd0d000b 6913 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 6914
a4eaf7f1 6915 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 6916 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
6917}
6918#endif
6919
b0a873eb
PZ
6920/*
6921 * hrtimer based swevent callback
6922 */
f29ac756 6923
b0a873eb 6924static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 6925{
b0a873eb
PZ
6926 enum hrtimer_restart ret = HRTIMER_RESTART;
6927 struct perf_sample_data data;
6928 struct pt_regs *regs;
6929 struct perf_event *event;
6930 u64 period;
f29ac756 6931
b0a873eb 6932 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
6933
6934 if (event->state != PERF_EVENT_STATE_ACTIVE)
6935 return HRTIMER_NORESTART;
6936
b0a873eb 6937 event->pmu->read(event);
f344011c 6938
fd0d000b 6939 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
6940 regs = get_irq_regs();
6941
6942 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 6943 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 6944 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
6945 ret = HRTIMER_NORESTART;
6946 }
24f1e32c 6947
b0a873eb
PZ
6948 period = max_t(u64, 10000, event->hw.sample_period);
6949 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 6950
b0a873eb 6951 return ret;
f29ac756
PZ
6952}
6953
b0a873eb 6954static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 6955{
b0a873eb 6956 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
6957 s64 period;
6958
6959 if (!is_sampling_event(event))
6960 return;
f5ffe02e 6961
5d508e82
FBH
6962 period = local64_read(&hwc->period_left);
6963 if (period) {
6964 if (period < 0)
6965 period = 10000;
fa407f35 6966
5d508e82
FBH
6967 local64_set(&hwc->period_left, 0);
6968 } else {
6969 period = max_t(u64, 10000, hwc->sample_period);
6970 }
3497d206
TG
6971 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
6972 HRTIMER_MODE_REL_PINNED);
24f1e32c 6973}
b0a873eb
PZ
6974
6975static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 6976{
b0a873eb
PZ
6977 struct hw_perf_event *hwc = &event->hw;
6978
6c7e550f 6979 if (is_sampling_event(event)) {
b0a873eb 6980 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 6981 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
6982
6983 hrtimer_cancel(&hwc->hrtimer);
6984 }
24f1e32c
FW
6985}
6986
ba3dd36c
PZ
6987static void perf_swevent_init_hrtimer(struct perf_event *event)
6988{
6989 struct hw_perf_event *hwc = &event->hw;
6990
6991 if (!is_sampling_event(event))
6992 return;
6993
6994 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6995 hwc->hrtimer.function = perf_swevent_hrtimer;
6996
6997 /*
6998 * Since hrtimers have a fixed rate, we can do a static freq->period
6999 * mapping and avoid the whole period adjust feedback stuff.
7000 */
7001 if (event->attr.freq) {
7002 long freq = event->attr.sample_freq;
7003
7004 event->attr.sample_period = NSEC_PER_SEC / freq;
7005 hwc->sample_period = event->attr.sample_period;
7006 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7007 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7008 event->attr.freq = 0;
7009 }
7010}
7011
b0a873eb
PZ
7012/*
7013 * Software event: cpu wall time clock
7014 */
7015
7016static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7017{
b0a873eb
PZ
7018 s64 prev;
7019 u64 now;
7020
a4eaf7f1 7021 now = local_clock();
b0a873eb
PZ
7022 prev = local64_xchg(&event->hw.prev_count, now);
7023 local64_add(now - prev, &event->count);
24f1e32c 7024}
24f1e32c 7025
a4eaf7f1 7026static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7027{
a4eaf7f1 7028 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7029 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7030}
7031
a4eaf7f1 7032static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7033{
b0a873eb
PZ
7034 perf_swevent_cancel_hrtimer(event);
7035 cpu_clock_event_update(event);
7036}
f29ac756 7037
a4eaf7f1
PZ
7038static int cpu_clock_event_add(struct perf_event *event, int flags)
7039{
7040 if (flags & PERF_EF_START)
7041 cpu_clock_event_start(event, flags);
6a694a60 7042 perf_event_update_userpage(event);
a4eaf7f1
PZ
7043
7044 return 0;
7045}
7046
7047static void cpu_clock_event_del(struct perf_event *event, int flags)
7048{
7049 cpu_clock_event_stop(event, flags);
7050}
7051
b0a873eb
PZ
7052static void cpu_clock_event_read(struct perf_event *event)
7053{
7054 cpu_clock_event_update(event);
7055}
f344011c 7056
b0a873eb
PZ
7057static int cpu_clock_event_init(struct perf_event *event)
7058{
7059 if (event->attr.type != PERF_TYPE_SOFTWARE)
7060 return -ENOENT;
7061
7062 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7063 return -ENOENT;
7064
2481c5fa
SE
7065 /*
7066 * no branch sampling for software events
7067 */
7068 if (has_branch_stack(event))
7069 return -EOPNOTSUPP;
7070
ba3dd36c
PZ
7071 perf_swevent_init_hrtimer(event);
7072
b0a873eb 7073 return 0;
f29ac756
PZ
7074}
7075
b0a873eb 7076static struct pmu perf_cpu_clock = {
89a1e187
PZ
7077 .task_ctx_nr = perf_sw_context,
7078
34f43927
PZ
7079 .capabilities = PERF_PMU_CAP_NO_NMI,
7080
b0a873eb 7081 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7082 .add = cpu_clock_event_add,
7083 .del = cpu_clock_event_del,
7084 .start = cpu_clock_event_start,
7085 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7086 .read = cpu_clock_event_read,
7087};
7088
7089/*
7090 * Software event: task time clock
7091 */
7092
7093static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7094{
b0a873eb
PZ
7095 u64 prev;
7096 s64 delta;
5c92d124 7097
b0a873eb
PZ
7098 prev = local64_xchg(&event->hw.prev_count, now);
7099 delta = now - prev;
7100 local64_add(delta, &event->count);
7101}
5c92d124 7102
a4eaf7f1 7103static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7104{
a4eaf7f1 7105 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7106 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7107}
7108
a4eaf7f1 7109static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7110{
7111 perf_swevent_cancel_hrtimer(event);
7112 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7113}
7114
7115static int task_clock_event_add(struct perf_event *event, int flags)
7116{
7117 if (flags & PERF_EF_START)
7118 task_clock_event_start(event, flags);
6a694a60 7119 perf_event_update_userpage(event);
b0a873eb 7120
a4eaf7f1
PZ
7121 return 0;
7122}
7123
7124static void task_clock_event_del(struct perf_event *event, int flags)
7125{
7126 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7127}
7128
7129static void task_clock_event_read(struct perf_event *event)
7130{
768a06e2
PZ
7131 u64 now = perf_clock();
7132 u64 delta = now - event->ctx->timestamp;
7133 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7134
7135 task_clock_event_update(event, time);
7136}
7137
7138static int task_clock_event_init(struct perf_event *event)
6fb2915d 7139{
b0a873eb
PZ
7140 if (event->attr.type != PERF_TYPE_SOFTWARE)
7141 return -ENOENT;
7142
7143 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7144 return -ENOENT;
7145
2481c5fa
SE
7146 /*
7147 * no branch sampling for software events
7148 */
7149 if (has_branch_stack(event))
7150 return -EOPNOTSUPP;
7151
ba3dd36c
PZ
7152 perf_swevent_init_hrtimer(event);
7153
b0a873eb 7154 return 0;
6fb2915d
LZ
7155}
7156
b0a873eb 7157static struct pmu perf_task_clock = {
89a1e187
PZ
7158 .task_ctx_nr = perf_sw_context,
7159
34f43927
PZ
7160 .capabilities = PERF_PMU_CAP_NO_NMI,
7161
b0a873eb 7162 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7163 .add = task_clock_event_add,
7164 .del = task_clock_event_del,
7165 .start = task_clock_event_start,
7166 .stop = task_clock_event_stop,
b0a873eb
PZ
7167 .read = task_clock_event_read,
7168};
6fb2915d 7169
ad5133b7 7170static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7171{
e077df4f 7172}
6fb2915d 7173
ad5133b7 7174static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7175{
ad5133b7 7176 return 0;
6fb2915d
LZ
7177}
7178
ad5133b7 7179static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 7180{
ad5133b7 7181 perf_pmu_disable(pmu);
6fb2915d
LZ
7182}
7183
ad5133b7
PZ
7184static int perf_pmu_commit_txn(struct pmu *pmu)
7185{
7186 perf_pmu_enable(pmu);
7187 return 0;
7188}
e077df4f 7189
ad5133b7 7190static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7191{
ad5133b7 7192 perf_pmu_enable(pmu);
24f1e32c
FW
7193}
7194
35edc2a5
PZ
7195static int perf_event_idx_default(struct perf_event *event)
7196{
c719f560 7197 return 0;
35edc2a5
PZ
7198}
7199
8dc85d54
PZ
7200/*
7201 * Ensures all contexts with the same task_ctx_nr have the same
7202 * pmu_cpu_context too.
7203 */
9e317041 7204static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7205{
8dc85d54 7206 struct pmu *pmu;
b326e956 7207
8dc85d54
PZ
7208 if (ctxn < 0)
7209 return NULL;
24f1e32c 7210
8dc85d54
PZ
7211 list_for_each_entry(pmu, &pmus, entry) {
7212 if (pmu->task_ctx_nr == ctxn)
7213 return pmu->pmu_cpu_context;
7214 }
24f1e32c 7215
8dc85d54 7216 return NULL;
24f1e32c
FW
7217}
7218
51676957 7219static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7220{
51676957
PZ
7221 int cpu;
7222
7223 for_each_possible_cpu(cpu) {
7224 struct perf_cpu_context *cpuctx;
7225
7226 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7227
3f1f3320
PZ
7228 if (cpuctx->unique_pmu == old_pmu)
7229 cpuctx->unique_pmu = pmu;
51676957
PZ
7230 }
7231}
7232
7233static void free_pmu_context(struct pmu *pmu)
7234{
7235 struct pmu *i;
f5ffe02e 7236
8dc85d54 7237 mutex_lock(&pmus_lock);
0475f9ea 7238 /*
8dc85d54 7239 * Like a real lame refcount.
0475f9ea 7240 */
51676957
PZ
7241 list_for_each_entry(i, &pmus, entry) {
7242 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7243 update_pmu_context(i, pmu);
8dc85d54 7244 goto out;
51676957 7245 }
8dc85d54 7246 }
d6d020e9 7247
51676957 7248 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7249out:
7250 mutex_unlock(&pmus_lock);
24f1e32c 7251}
2e80a82a 7252static struct idr pmu_idr;
d6d020e9 7253
abe43400
PZ
7254static ssize_t
7255type_show(struct device *dev, struct device_attribute *attr, char *page)
7256{
7257 struct pmu *pmu = dev_get_drvdata(dev);
7258
7259 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7260}
90826ca7 7261static DEVICE_ATTR_RO(type);
abe43400 7262
62b85639
SE
7263static ssize_t
7264perf_event_mux_interval_ms_show(struct device *dev,
7265 struct device_attribute *attr,
7266 char *page)
7267{
7268 struct pmu *pmu = dev_get_drvdata(dev);
7269
7270 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7271}
7272
272325c4
PZ
7273static DEFINE_MUTEX(mux_interval_mutex);
7274
62b85639
SE
7275static ssize_t
7276perf_event_mux_interval_ms_store(struct device *dev,
7277 struct device_attribute *attr,
7278 const char *buf, size_t count)
7279{
7280 struct pmu *pmu = dev_get_drvdata(dev);
7281 int timer, cpu, ret;
7282
7283 ret = kstrtoint(buf, 0, &timer);
7284 if (ret)
7285 return ret;
7286
7287 if (timer < 1)
7288 return -EINVAL;
7289
7290 /* same value, noting to do */
7291 if (timer == pmu->hrtimer_interval_ms)
7292 return count;
7293
272325c4 7294 mutex_lock(&mux_interval_mutex);
62b85639
SE
7295 pmu->hrtimer_interval_ms = timer;
7296
7297 /* update all cpuctx for this PMU */
272325c4
PZ
7298 get_online_cpus();
7299 for_each_online_cpu(cpu) {
62b85639
SE
7300 struct perf_cpu_context *cpuctx;
7301 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7302 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7303
272325c4
PZ
7304 cpu_function_call(cpu,
7305 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7306 }
272325c4
PZ
7307 put_online_cpus();
7308 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7309
7310 return count;
7311}
90826ca7 7312static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7313
90826ca7
GKH
7314static struct attribute *pmu_dev_attrs[] = {
7315 &dev_attr_type.attr,
7316 &dev_attr_perf_event_mux_interval_ms.attr,
7317 NULL,
abe43400 7318};
90826ca7 7319ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7320
7321static int pmu_bus_running;
7322static struct bus_type pmu_bus = {
7323 .name = "event_source",
90826ca7 7324 .dev_groups = pmu_dev_groups,
abe43400
PZ
7325};
7326
7327static void pmu_dev_release(struct device *dev)
7328{
7329 kfree(dev);
7330}
7331
7332static int pmu_dev_alloc(struct pmu *pmu)
7333{
7334 int ret = -ENOMEM;
7335
7336 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7337 if (!pmu->dev)
7338 goto out;
7339
0c9d42ed 7340 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7341 device_initialize(pmu->dev);
7342 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7343 if (ret)
7344 goto free_dev;
7345
7346 dev_set_drvdata(pmu->dev, pmu);
7347 pmu->dev->bus = &pmu_bus;
7348 pmu->dev->release = pmu_dev_release;
7349 ret = device_add(pmu->dev);
7350 if (ret)
7351 goto free_dev;
7352
7353out:
7354 return ret;
7355
7356free_dev:
7357 put_device(pmu->dev);
7358 goto out;
7359}
7360
547e9fd7 7361static struct lock_class_key cpuctx_mutex;
facc4307 7362static struct lock_class_key cpuctx_lock;
547e9fd7 7363
03d8e80b 7364int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7365{
108b02cf 7366 int cpu, ret;
24f1e32c 7367
b0a873eb 7368 mutex_lock(&pmus_lock);
33696fc0
PZ
7369 ret = -ENOMEM;
7370 pmu->pmu_disable_count = alloc_percpu(int);
7371 if (!pmu->pmu_disable_count)
7372 goto unlock;
f29ac756 7373
2e80a82a
PZ
7374 pmu->type = -1;
7375 if (!name)
7376 goto skip_type;
7377 pmu->name = name;
7378
7379 if (type < 0) {
0e9c3be2
TH
7380 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7381 if (type < 0) {
7382 ret = type;
2e80a82a
PZ
7383 goto free_pdc;
7384 }
7385 }
7386 pmu->type = type;
7387
abe43400
PZ
7388 if (pmu_bus_running) {
7389 ret = pmu_dev_alloc(pmu);
7390 if (ret)
7391 goto free_idr;
7392 }
7393
2e80a82a 7394skip_type:
8dc85d54
PZ
7395 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7396 if (pmu->pmu_cpu_context)
7397 goto got_cpu_context;
f29ac756 7398
c4814202 7399 ret = -ENOMEM;
108b02cf
PZ
7400 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7401 if (!pmu->pmu_cpu_context)
abe43400 7402 goto free_dev;
f344011c 7403
108b02cf
PZ
7404 for_each_possible_cpu(cpu) {
7405 struct perf_cpu_context *cpuctx;
7406
7407 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7408 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7409 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7410 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7411 cpuctx->ctx.pmu = pmu;
9e630205 7412
272325c4 7413 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7414
3f1f3320 7415 cpuctx->unique_pmu = pmu;
108b02cf 7416 }
76e1d904 7417
8dc85d54 7418got_cpu_context:
ad5133b7
PZ
7419 if (!pmu->start_txn) {
7420 if (pmu->pmu_enable) {
7421 /*
7422 * If we have pmu_enable/pmu_disable calls, install
7423 * transaction stubs that use that to try and batch
7424 * hardware accesses.
7425 */
7426 pmu->start_txn = perf_pmu_start_txn;
7427 pmu->commit_txn = perf_pmu_commit_txn;
7428 pmu->cancel_txn = perf_pmu_cancel_txn;
7429 } else {
7430 pmu->start_txn = perf_pmu_nop_void;
7431 pmu->commit_txn = perf_pmu_nop_int;
7432 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7433 }
5c92d124 7434 }
15dbf27c 7435
ad5133b7
PZ
7436 if (!pmu->pmu_enable) {
7437 pmu->pmu_enable = perf_pmu_nop_void;
7438 pmu->pmu_disable = perf_pmu_nop_void;
7439 }
7440
35edc2a5
PZ
7441 if (!pmu->event_idx)
7442 pmu->event_idx = perf_event_idx_default;
7443
b0a873eb 7444 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7445 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7446 ret = 0;
7447unlock:
b0a873eb
PZ
7448 mutex_unlock(&pmus_lock);
7449
33696fc0 7450 return ret;
108b02cf 7451
abe43400
PZ
7452free_dev:
7453 device_del(pmu->dev);
7454 put_device(pmu->dev);
7455
2e80a82a
PZ
7456free_idr:
7457 if (pmu->type >= PERF_TYPE_MAX)
7458 idr_remove(&pmu_idr, pmu->type);
7459
108b02cf
PZ
7460free_pdc:
7461 free_percpu(pmu->pmu_disable_count);
7462 goto unlock;
f29ac756 7463}
c464c76e 7464EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7465
b0a873eb 7466void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7467{
b0a873eb
PZ
7468 mutex_lock(&pmus_lock);
7469 list_del_rcu(&pmu->entry);
7470 mutex_unlock(&pmus_lock);
5c92d124 7471
0475f9ea 7472 /*
cde8e884
PZ
7473 * We dereference the pmu list under both SRCU and regular RCU, so
7474 * synchronize against both of those.
0475f9ea 7475 */
b0a873eb 7476 synchronize_srcu(&pmus_srcu);
cde8e884 7477 synchronize_rcu();
d6d020e9 7478
33696fc0 7479 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7480 if (pmu->type >= PERF_TYPE_MAX)
7481 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7482 device_del(pmu->dev);
7483 put_device(pmu->dev);
51676957 7484 free_pmu_context(pmu);
b0a873eb 7485}
c464c76e 7486EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7487
cc34b98b
MR
7488static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7489{
ccd41c86 7490 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7491 int ret;
7492
7493 if (!try_module_get(pmu->module))
7494 return -ENODEV;
ccd41c86
PZ
7495
7496 if (event->group_leader != event) {
8b10c5e2
PZ
7497 /*
7498 * This ctx->mutex can nest when we're called through
7499 * inheritance. See the perf_event_ctx_lock_nested() comment.
7500 */
7501 ctx = perf_event_ctx_lock_nested(event->group_leader,
7502 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7503 BUG_ON(!ctx);
7504 }
7505
cc34b98b
MR
7506 event->pmu = pmu;
7507 ret = pmu->event_init(event);
ccd41c86
PZ
7508
7509 if (ctx)
7510 perf_event_ctx_unlock(event->group_leader, ctx);
7511
cc34b98b
MR
7512 if (ret)
7513 module_put(pmu->module);
7514
7515 return ret;
7516}
7517
b0a873eb
PZ
7518struct pmu *perf_init_event(struct perf_event *event)
7519{
7520 struct pmu *pmu = NULL;
7521 int idx;
940c5b29 7522 int ret;
b0a873eb
PZ
7523
7524 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7525
7526 rcu_read_lock();
7527 pmu = idr_find(&pmu_idr, event->attr.type);
7528 rcu_read_unlock();
940c5b29 7529 if (pmu) {
cc34b98b 7530 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7531 if (ret)
7532 pmu = ERR_PTR(ret);
2e80a82a 7533 goto unlock;
940c5b29 7534 }
2e80a82a 7535
b0a873eb 7536 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7537 ret = perf_try_init_event(pmu, event);
b0a873eb 7538 if (!ret)
e5f4d339 7539 goto unlock;
76e1d904 7540
b0a873eb
PZ
7541 if (ret != -ENOENT) {
7542 pmu = ERR_PTR(ret);
e5f4d339 7543 goto unlock;
f344011c 7544 }
5c92d124 7545 }
e5f4d339
PZ
7546 pmu = ERR_PTR(-ENOENT);
7547unlock:
b0a873eb 7548 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7549
4aeb0b42 7550 return pmu;
5c92d124
IM
7551}
7552
4beb31f3
FW
7553static void account_event_cpu(struct perf_event *event, int cpu)
7554{
7555 if (event->parent)
7556 return;
7557
4beb31f3
FW
7558 if (is_cgroup_event(event))
7559 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7560}
7561
766d6c07
FW
7562static void account_event(struct perf_event *event)
7563{
4beb31f3
FW
7564 if (event->parent)
7565 return;
7566
766d6c07
FW
7567 if (event->attach_state & PERF_ATTACH_TASK)
7568 static_key_slow_inc(&perf_sched_events.key);
7569 if (event->attr.mmap || event->attr.mmap_data)
7570 atomic_inc(&nr_mmap_events);
7571 if (event->attr.comm)
7572 atomic_inc(&nr_comm_events);
7573 if (event->attr.task)
7574 atomic_inc(&nr_task_events);
948b26b6
FW
7575 if (event->attr.freq) {
7576 if (atomic_inc_return(&nr_freq_events) == 1)
7577 tick_nohz_full_kick_all();
7578 }
45ac1403
AH
7579 if (event->attr.context_switch) {
7580 atomic_inc(&nr_switch_events);
7581 static_key_slow_inc(&perf_sched_events.key);
7582 }
4beb31f3 7583 if (has_branch_stack(event))
766d6c07 7584 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7585 if (is_cgroup_event(event))
766d6c07 7586 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7587
7588 account_event_cpu(event, event->cpu);
766d6c07
FW
7589}
7590
0793a61d 7591/*
cdd6c482 7592 * Allocate and initialize a event structure
0793a61d 7593 */
cdd6c482 7594static struct perf_event *
c3f00c70 7595perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7596 struct task_struct *task,
7597 struct perf_event *group_leader,
7598 struct perf_event *parent_event,
4dc0da86 7599 perf_overflow_handler_t overflow_handler,
79dff51e 7600 void *context, int cgroup_fd)
0793a61d 7601{
51b0fe39 7602 struct pmu *pmu;
cdd6c482
IM
7603 struct perf_event *event;
7604 struct hw_perf_event *hwc;
90983b16 7605 long err = -EINVAL;
0793a61d 7606
66832eb4
ON
7607 if ((unsigned)cpu >= nr_cpu_ids) {
7608 if (!task || cpu != -1)
7609 return ERR_PTR(-EINVAL);
7610 }
7611
c3f00c70 7612 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7613 if (!event)
d5d2bc0d 7614 return ERR_PTR(-ENOMEM);
0793a61d 7615
04289bb9 7616 /*
cdd6c482 7617 * Single events are their own group leaders, with an
04289bb9
IM
7618 * empty sibling list:
7619 */
7620 if (!group_leader)
cdd6c482 7621 group_leader = event;
04289bb9 7622
cdd6c482
IM
7623 mutex_init(&event->child_mutex);
7624 INIT_LIST_HEAD(&event->child_list);
fccc714b 7625
cdd6c482
IM
7626 INIT_LIST_HEAD(&event->group_entry);
7627 INIT_LIST_HEAD(&event->event_entry);
7628 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7629 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7630 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7631 INIT_HLIST_NODE(&event->hlist_entry);
7632
10c6db11 7633
cdd6c482 7634 init_waitqueue_head(&event->waitq);
e360adbe 7635 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7636
cdd6c482 7637 mutex_init(&event->mmap_mutex);
7b732a75 7638
a6fa941d 7639 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7640 event->cpu = cpu;
7641 event->attr = *attr;
7642 event->group_leader = group_leader;
7643 event->pmu = NULL;
cdd6c482 7644 event->oncpu = -1;
a96bbc16 7645
cdd6c482 7646 event->parent = parent_event;
b84fbc9f 7647
17cf22c3 7648 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7649 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7650
cdd6c482 7651 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7652
d580ff86
PZ
7653 if (task) {
7654 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7655 /*
50f16a8b
PZ
7656 * XXX pmu::event_init needs to know what task to account to
7657 * and we cannot use the ctx information because we need the
7658 * pmu before we get a ctx.
d580ff86 7659 */
50f16a8b 7660 event->hw.target = task;
d580ff86
PZ
7661 }
7662
34f43927
PZ
7663 event->clock = &local_clock;
7664 if (parent_event)
7665 event->clock = parent_event->clock;
7666
4dc0da86 7667 if (!overflow_handler && parent_event) {
b326e956 7668 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7669 context = parent_event->overflow_handler_context;
7670 }
66832eb4 7671
b326e956 7672 event->overflow_handler = overflow_handler;
4dc0da86 7673 event->overflow_handler_context = context;
97eaf530 7674
0231bb53 7675 perf_event__state_init(event);
a86ed508 7676
4aeb0b42 7677 pmu = NULL;
b8e83514 7678
cdd6c482 7679 hwc = &event->hw;
bd2b5b12 7680 hwc->sample_period = attr->sample_period;
0d48696f 7681 if (attr->freq && attr->sample_freq)
bd2b5b12 7682 hwc->sample_period = 1;
eced1dfc 7683 hwc->last_period = hwc->sample_period;
bd2b5b12 7684
e7850595 7685 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7686
2023b359 7687 /*
cdd6c482 7688 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7689 */
3dab77fb 7690 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7691 goto err_ns;
a46a2300
YZ
7692
7693 if (!has_branch_stack(event))
7694 event->attr.branch_sample_type = 0;
2023b359 7695
79dff51e
MF
7696 if (cgroup_fd != -1) {
7697 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7698 if (err)
7699 goto err_ns;
7700 }
7701
b0a873eb 7702 pmu = perf_init_event(event);
4aeb0b42 7703 if (!pmu)
90983b16
FW
7704 goto err_ns;
7705 else if (IS_ERR(pmu)) {
4aeb0b42 7706 err = PTR_ERR(pmu);
90983b16 7707 goto err_ns;
621a01ea 7708 }
d5d2bc0d 7709
bed5b25a
AS
7710 err = exclusive_event_init(event);
7711 if (err)
7712 goto err_pmu;
7713
cdd6c482 7714 if (!event->parent) {
927c7a9e
FW
7715 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7716 err = get_callchain_buffers();
90983b16 7717 if (err)
bed5b25a 7718 goto err_per_task;
d010b332 7719 }
f344011c 7720 }
9ee318a7 7721
cdd6c482 7722 return event;
90983b16 7723
bed5b25a
AS
7724err_per_task:
7725 exclusive_event_destroy(event);
7726
90983b16
FW
7727err_pmu:
7728 if (event->destroy)
7729 event->destroy(event);
c464c76e 7730 module_put(pmu->module);
90983b16 7731err_ns:
79dff51e
MF
7732 if (is_cgroup_event(event))
7733 perf_detach_cgroup(event);
90983b16
FW
7734 if (event->ns)
7735 put_pid_ns(event->ns);
7736 kfree(event);
7737
7738 return ERR_PTR(err);
0793a61d
TG
7739}
7740
cdd6c482
IM
7741static int perf_copy_attr(struct perf_event_attr __user *uattr,
7742 struct perf_event_attr *attr)
974802ea 7743{
974802ea 7744 u32 size;
cdf8073d 7745 int ret;
974802ea
PZ
7746
7747 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7748 return -EFAULT;
7749
7750 /*
7751 * zero the full structure, so that a short copy will be nice.
7752 */
7753 memset(attr, 0, sizeof(*attr));
7754
7755 ret = get_user(size, &uattr->size);
7756 if (ret)
7757 return ret;
7758
7759 if (size > PAGE_SIZE) /* silly large */
7760 goto err_size;
7761
7762 if (!size) /* abi compat */
7763 size = PERF_ATTR_SIZE_VER0;
7764
7765 if (size < PERF_ATTR_SIZE_VER0)
7766 goto err_size;
7767
7768 /*
7769 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7770 * ensure all the unknown bits are 0 - i.e. new
7771 * user-space does not rely on any kernel feature
7772 * extensions we dont know about yet.
974802ea
PZ
7773 */
7774 if (size > sizeof(*attr)) {
cdf8073d
IS
7775 unsigned char __user *addr;
7776 unsigned char __user *end;
7777 unsigned char val;
974802ea 7778
cdf8073d
IS
7779 addr = (void __user *)uattr + sizeof(*attr);
7780 end = (void __user *)uattr + size;
974802ea 7781
cdf8073d 7782 for (; addr < end; addr++) {
974802ea
PZ
7783 ret = get_user(val, addr);
7784 if (ret)
7785 return ret;
7786 if (val)
7787 goto err_size;
7788 }
b3e62e35 7789 size = sizeof(*attr);
974802ea
PZ
7790 }
7791
7792 ret = copy_from_user(attr, uattr, size);
7793 if (ret)
7794 return -EFAULT;
7795
cd757645 7796 if (attr->__reserved_1)
974802ea
PZ
7797 return -EINVAL;
7798
7799 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7800 return -EINVAL;
7801
7802 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7803 return -EINVAL;
7804
bce38cd5
SE
7805 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7806 u64 mask = attr->branch_sample_type;
7807
7808 /* only using defined bits */
7809 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7810 return -EINVAL;
7811
7812 /* at least one branch bit must be set */
7813 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7814 return -EINVAL;
7815
bce38cd5
SE
7816 /* propagate priv level, when not set for branch */
7817 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7818
7819 /* exclude_kernel checked on syscall entry */
7820 if (!attr->exclude_kernel)
7821 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7822
7823 if (!attr->exclude_user)
7824 mask |= PERF_SAMPLE_BRANCH_USER;
7825
7826 if (!attr->exclude_hv)
7827 mask |= PERF_SAMPLE_BRANCH_HV;
7828 /*
7829 * adjust user setting (for HW filter setup)
7830 */
7831 attr->branch_sample_type = mask;
7832 }
e712209a
SE
7833 /* privileged levels capture (kernel, hv): check permissions */
7834 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7835 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7836 return -EACCES;
bce38cd5 7837 }
4018994f 7838
c5ebcedb 7839 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7840 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7841 if (ret)
7842 return ret;
7843 }
7844
7845 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7846 if (!arch_perf_have_user_stack_dump())
7847 return -ENOSYS;
7848
7849 /*
7850 * We have __u32 type for the size, but so far
7851 * we can only use __u16 as maximum due to the
7852 * __u16 sample size limit.
7853 */
7854 if (attr->sample_stack_user >= USHRT_MAX)
7855 ret = -EINVAL;
7856 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7857 ret = -EINVAL;
7858 }
4018994f 7859
60e2364e
SE
7860 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7861 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
7862out:
7863 return ret;
7864
7865err_size:
7866 put_user(sizeof(*attr), &uattr->size);
7867 ret = -E2BIG;
7868 goto out;
7869}
7870
ac9721f3
PZ
7871static int
7872perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7873{
b69cf536 7874 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7875 int ret = -EINVAL;
7876
ac9721f3 7877 if (!output_event)
a4be7c27
PZ
7878 goto set;
7879
ac9721f3
PZ
7880 /* don't allow circular references */
7881 if (event == output_event)
a4be7c27
PZ
7882 goto out;
7883
0f139300
PZ
7884 /*
7885 * Don't allow cross-cpu buffers
7886 */
7887 if (output_event->cpu != event->cpu)
7888 goto out;
7889
7890 /*
76369139 7891 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
7892 */
7893 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7894 goto out;
7895
34f43927
PZ
7896 /*
7897 * Mixing clocks in the same buffer is trouble you don't need.
7898 */
7899 if (output_event->clock != event->clock)
7900 goto out;
7901
45bfb2e5
PZ
7902 /*
7903 * If both events generate aux data, they must be on the same PMU
7904 */
7905 if (has_aux(event) && has_aux(output_event) &&
7906 event->pmu != output_event->pmu)
7907 goto out;
7908
a4be7c27 7909set:
cdd6c482 7910 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
7911 /* Can't redirect output if we've got an active mmap() */
7912 if (atomic_read(&event->mmap_count))
7913 goto unlock;
a4be7c27 7914
ac9721f3 7915 if (output_event) {
76369139
FW
7916 /* get the rb we want to redirect to */
7917 rb = ring_buffer_get(output_event);
7918 if (!rb)
ac9721f3 7919 goto unlock;
a4be7c27
PZ
7920 }
7921
b69cf536 7922 ring_buffer_attach(event, rb);
9bb5d40c 7923
a4be7c27 7924 ret = 0;
ac9721f3
PZ
7925unlock:
7926 mutex_unlock(&event->mmap_mutex);
7927
a4be7c27 7928out:
a4be7c27
PZ
7929 return ret;
7930}
7931
f63a8daa
PZ
7932static void mutex_lock_double(struct mutex *a, struct mutex *b)
7933{
7934 if (b < a)
7935 swap(a, b);
7936
7937 mutex_lock(a);
7938 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7939}
7940
34f43927
PZ
7941static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7942{
7943 bool nmi_safe = false;
7944
7945 switch (clk_id) {
7946 case CLOCK_MONOTONIC:
7947 event->clock = &ktime_get_mono_fast_ns;
7948 nmi_safe = true;
7949 break;
7950
7951 case CLOCK_MONOTONIC_RAW:
7952 event->clock = &ktime_get_raw_fast_ns;
7953 nmi_safe = true;
7954 break;
7955
7956 case CLOCK_REALTIME:
7957 event->clock = &ktime_get_real_ns;
7958 break;
7959
7960 case CLOCK_BOOTTIME:
7961 event->clock = &ktime_get_boot_ns;
7962 break;
7963
7964 case CLOCK_TAI:
7965 event->clock = &ktime_get_tai_ns;
7966 break;
7967
7968 default:
7969 return -EINVAL;
7970 }
7971
7972 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
7973 return -EINVAL;
7974
7975 return 0;
7976}
7977
0793a61d 7978/**
cdd6c482 7979 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 7980 *
cdd6c482 7981 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 7982 * @pid: target pid
9f66a381 7983 * @cpu: target cpu
cdd6c482 7984 * @group_fd: group leader event fd
0793a61d 7985 */
cdd6c482
IM
7986SYSCALL_DEFINE5(perf_event_open,
7987 struct perf_event_attr __user *, attr_uptr,
2743a5b0 7988 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 7989{
b04243ef
PZ
7990 struct perf_event *group_leader = NULL, *output_event = NULL;
7991 struct perf_event *event, *sibling;
cdd6c482 7992 struct perf_event_attr attr;
f63a8daa 7993 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 7994 struct file *event_file = NULL;
2903ff01 7995 struct fd group = {NULL, 0};
38a81da2 7996 struct task_struct *task = NULL;
89a1e187 7997 struct pmu *pmu;
ea635c64 7998 int event_fd;
b04243ef 7999 int move_group = 0;
dc86cabe 8000 int err;
a21b0b35 8001 int f_flags = O_RDWR;
79dff51e 8002 int cgroup_fd = -1;
0793a61d 8003
2743a5b0 8004 /* for future expandability... */
e5d1367f 8005 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8006 return -EINVAL;
8007
dc86cabe
IM
8008 err = perf_copy_attr(attr_uptr, &attr);
8009 if (err)
8010 return err;
eab656ae 8011
0764771d
PZ
8012 if (!attr.exclude_kernel) {
8013 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8014 return -EACCES;
8015 }
8016
df58ab24 8017 if (attr.freq) {
cdd6c482 8018 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8019 return -EINVAL;
0819b2e3
PZ
8020 } else {
8021 if (attr.sample_period & (1ULL << 63))
8022 return -EINVAL;
df58ab24
PZ
8023 }
8024
e5d1367f
SE
8025 /*
8026 * In cgroup mode, the pid argument is used to pass the fd
8027 * opened to the cgroup directory in cgroupfs. The cpu argument
8028 * designates the cpu on which to monitor threads from that
8029 * cgroup.
8030 */
8031 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8032 return -EINVAL;
8033
a21b0b35
YD
8034 if (flags & PERF_FLAG_FD_CLOEXEC)
8035 f_flags |= O_CLOEXEC;
8036
8037 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8038 if (event_fd < 0)
8039 return event_fd;
8040
ac9721f3 8041 if (group_fd != -1) {
2903ff01
AV
8042 err = perf_fget_light(group_fd, &group);
8043 if (err)
d14b12d7 8044 goto err_fd;
2903ff01 8045 group_leader = group.file->private_data;
ac9721f3
PZ
8046 if (flags & PERF_FLAG_FD_OUTPUT)
8047 output_event = group_leader;
8048 if (flags & PERF_FLAG_FD_NO_GROUP)
8049 group_leader = NULL;
8050 }
8051
e5d1367f 8052 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8053 task = find_lively_task_by_vpid(pid);
8054 if (IS_ERR(task)) {
8055 err = PTR_ERR(task);
8056 goto err_group_fd;
8057 }
8058 }
8059
1f4ee503
PZ
8060 if (task && group_leader &&
8061 group_leader->attr.inherit != attr.inherit) {
8062 err = -EINVAL;
8063 goto err_task;
8064 }
8065
fbfc623f
YZ
8066 get_online_cpus();
8067
79dff51e
MF
8068 if (flags & PERF_FLAG_PID_CGROUP)
8069 cgroup_fd = pid;
8070
4dc0da86 8071 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8072 NULL, NULL, cgroup_fd);
d14b12d7
SE
8073 if (IS_ERR(event)) {
8074 err = PTR_ERR(event);
1f4ee503 8075 goto err_cpus;
d14b12d7
SE
8076 }
8077
53b25335
VW
8078 if (is_sampling_event(event)) {
8079 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8080 err = -ENOTSUPP;
8081 goto err_alloc;
8082 }
8083 }
8084
766d6c07
FW
8085 account_event(event);
8086
89a1e187
PZ
8087 /*
8088 * Special case software events and allow them to be part of
8089 * any hardware group.
8090 */
8091 pmu = event->pmu;
b04243ef 8092
34f43927
PZ
8093 if (attr.use_clockid) {
8094 err = perf_event_set_clock(event, attr.clockid);
8095 if (err)
8096 goto err_alloc;
8097 }
8098
b04243ef
PZ
8099 if (group_leader &&
8100 (is_software_event(event) != is_software_event(group_leader))) {
8101 if (is_software_event(event)) {
8102 /*
8103 * If event and group_leader are not both a software
8104 * event, and event is, then group leader is not.
8105 *
8106 * Allow the addition of software events to !software
8107 * groups, this is safe because software events never
8108 * fail to schedule.
8109 */
8110 pmu = group_leader->pmu;
8111 } else if (is_software_event(group_leader) &&
8112 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8113 /*
8114 * In case the group is a pure software group, and we
8115 * try to add a hardware event, move the whole group to
8116 * the hardware context.
8117 */
8118 move_group = 1;
8119 }
8120 }
89a1e187
PZ
8121
8122 /*
8123 * Get the target context (task or percpu):
8124 */
4af57ef2 8125 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8126 if (IS_ERR(ctx)) {
8127 err = PTR_ERR(ctx);
c6be5a5c 8128 goto err_alloc;
89a1e187
PZ
8129 }
8130
bed5b25a
AS
8131 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8132 err = -EBUSY;
8133 goto err_context;
8134 }
8135
fd1edb3a
PZ
8136 if (task) {
8137 put_task_struct(task);
8138 task = NULL;
8139 }
8140
ccff286d 8141 /*
cdd6c482 8142 * Look up the group leader (we will attach this event to it):
04289bb9 8143 */
ac9721f3 8144 if (group_leader) {
dc86cabe 8145 err = -EINVAL;
04289bb9 8146
04289bb9 8147 /*
ccff286d
IM
8148 * Do not allow a recursive hierarchy (this new sibling
8149 * becoming part of another group-sibling):
8150 */
8151 if (group_leader->group_leader != group_leader)
c3f00c70 8152 goto err_context;
34f43927
PZ
8153
8154 /* All events in a group should have the same clock */
8155 if (group_leader->clock != event->clock)
8156 goto err_context;
8157
ccff286d
IM
8158 /*
8159 * Do not allow to attach to a group in a different
8160 * task or CPU context:
04289bb9 8161 */
b04243ef 8162 if (move_group) {
c3c87e77
PZ
8163 /*
8164 * Make sure we're both on the same task, or both
8165 * per-cpu events.
8166 */
8167 if (group_leader->ctx->task != ctx->task)
8168 goto err_context;
8169
8170 /*
8171 * Make sure we're both events for the same CPU;
8172 * grouping events for different CPUs is broken; since
8173 * you can never concurrently schedule them anyhow.
8174 */
8175 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8176 goto err_context;
8177 } else {
8178 if (group_leader->ctx != ctx)
8179 goto err_context;
8180 }
8181
3b6f9e5c
PM
8182 /*
8183 * Only a group leader can be exclusive or pinned
8184 */
0d48696f 8185 if (attr.exclusive || attr.pinned)
c3f00c70 8186 goto err_context;
ac9721f3
PZ
8187 }
8188
8189 if (output_event) {
8190 err = perf_event_set_output(event, output_event);
8191 if (err)
c3f00c70 8192 goto err_context;
ac9721f3 8193 }
0793a61d 8194
a21b0b35
YD
8195 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8196 f_flags);
ea635c64
AV
8197 if (IS_ERR(event_file)) {
8198 err = PTR_ERR(event_file);
c3f00c70 8199 goto err_context;
ea635c64 8200 }
9b51f66d 8201
b04243ef 8202 if (move_group) {
f63a8daa
PZ
8203 gctx = group_leader->ctx;
8204
8205 /*
8206 * See perf_event_ctx_lock() for comments on the details
8207 * of swizzling perf_event::ctx.
8208 */
8209 mutex_lock_double(&gctx->mutex, &ctx->mutex);
b04243ef 8210
46ce0fe9 8211 perf_remove_from_context(group_leader, false);
0231bb53 8212
b04243ef
PZ
8213 list_for_each_entry(sibling, &group_leader->sibling_list,
8214 group_entry) {
46ce0fe9 8215 perf_remove_from_context(sibling, false);
b04243ef
PZ
8216 put_ctx(gctx);
8217 }
f63a8daa
PZ
8218 } else {
8219 mutex_lock(&ctx->mutex);
ea635c64 8220 }
9b51f66d 8221
ad3a37de 8222 WARN_ON_ONCE(ctx->parent_ctx);
b04243ef
PZ
8223
8224 if (move_group) {
f63a8daa
PZ
8225 /*
8226 * Wait for everybody to stop referencing the events through
8227 * the old lists, before installing it on new lists.
8228 */
0cda4c02 8229 synchronize_rcu();
f63a8daa 8230
8f95b435
PZI
8231 /*
8232 * Install the group siblings before the group leader.
8233 *
8234 * Because a group leader will try and install the entire group
8235 * (through the sibling list, which is still in-tact), we can
8236 * end up with siblings installed in the wrong context.
8237 *
8238 * By installing siblings first we NO-OP because they're not
8239 * reachable through the group lists.
8240 */
b04243ef
PZ
8241 list_for_each_entry(sibling, &group_leader->sibling_list,
8242 group_entry) {
8f95b435 8243 perf_event__state_init(sibling);
9fc81d87 8244 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8245 get_ctx(ctx);
8246 }
8f95b435
PZI
8247
8248 /*
8249 * Removing from the context ends up with disabled
8250 * event. What we want here is event in the initial
8251 * startup state, ready to be add into new context.
8252 */
8253 perf_event__state_init(group_leader);
8254 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8255 get_ctx(ctx);
b04243ef
PZ
8256 }
8257
bed5b25a
AS
8258 if (!exclusive_event_installable(event, ctx)) {
8259 err = -EBUSY;
8260 mutex_unlock(&ctx->mutex);
8261 fput(event_file);
8262 goto err_context;
8263 }
8264
e2d37cd2 8265 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8266 perf_unpin_context(ctx);
f63a8daa
PZ
8267
8268 if (move_group) {
8269 mutex_unlock(&gctx->mutex);
8270 put_ctx(gctx);
8271 }
d859e29f 8272 mutex_unlock(&ctx->mutex);
9b51f66d 8273
fbfc623f
YZ
8274 put_online_cpus();
8275
cdd6c482 8276 event->owner = current;
8882135b 8277
cdd6c482
IM
8278 mutex_lock(&current->perf_event_mutex);
8279 list_add_tail(&event->owner_entry, &current->perf_event_list);
8280 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8281
c320c7b7
ACM
8282 /*
8283 * Precalculate sample_data sizes
8284 */
8285 perf_event__header_size(event);
6844c09d 8286 perf_event__id_header_size(event);
c320c7b7 8287
8a49542c
PZ
8288 /*
8289 * Drop the reference on the group_event after placing the
8290 * new event on the sibling_list. This ensures destruction
8291 * of the group leader will find the pointer to itself in
8292 * perf_group_detach().
8293 */
2903ff01 8294 fdput(group);
ea635c64
AV
8295 fd_install(event_fd, event_file);
8296 return event_fd;
0793a61d 8297
c3f00c70 8298err_context:
fe4b04fa 8299 perf_unpin_context(ctx);
ea635c64 8300 put_ctx(ctx);
c6be5a5c 8301err_alloc:
ea635c64 8302 free_event(event);
1f4ee503 8303err_cpus:
fbfc623f 8304 put_online_cpus();
1f4ee503 8305err_task:
e7d0bc04
PZ
8306 if (task)
8307 put_task_struct(task);
89a1e187 8308err_group_fd:
2903ff01 8309 fdput(group);
ea635c64
AV
8310err_fd:
8311 put_unused_fd(event_fd);
dc86cabe 8312 return err;
0793a61d
TG
8313}
8314
fb0459d7
AV
8315/**
8316 * perf_event_create_kernel_counter
8317 *
8318 * @attr: attributes of the counter to create
8319 * @cpu: cpu in which the counter is bound
38a81da2 8320 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8321 */
8322struct perf_event *
8323perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8324 struct task_struct *task,
4dc0da86
AK
8325 perf_overflow_handler_t overflow_handler,
8326 void *context)
fb0459d7 8327{
fb0459d7 8328 struct perf_event_context *ctx;
c3f00c70 8329 struct perf_event *event;
fb0459d7 8330 int err;
d859e29f 8331
fb0459d7
AV
8332 /*
8333 * Get the target context (task or percpu):
8334 */
d859e29f 8335
4dc0da86 8336 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8337 overflow_handler, context, -1);
c3f00c70
PZ
8338 if (IS_ERR(event)) {
8339 err = PTR_ERR(event);
8340 goto err;
8341 }
d859e29f 8342
f8697762
JO
8343 /* Mark owner so we could distinguish it from user events. */
8344 event->owner = EVENT_OWNER_KERNEL;
8345
766d6c07
FW
8346 account_event(event);
8347
4af57ef2 8348 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8349 if (IS_ERR(ctx)) {
8350 err = PTR_ERR(ctx);
c3f00c70 8351 goto err_free;
d859e29f 8352 }
fb0459d7 8353
fb0459d7
AV
8354 WARN_ON_ONCE(ctx->parent_ctx);
8355 mutex_lock(&ctx->mutex);
bed5b25a
AS
8356 if (!exclusive_event_installable(event, ctx)) {
8357 mutex_unlock(&ctx->mutex);
8358 perf_unpin_context(ctx);
8359 put_ctx(ctx);
8360 err = -EBUSY;
8361 goto err_free;
8362 }
8363
fb0459d7 8364 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8365 perf_unpin_context(ctx);
fb0459d7
AV
8366 mutex_unlock(&ctx->mutex);
8367
fb0459d7
AV
8368 return event;
8369
c3f00c70
PZ
8370err_free:
8371 free_event(event);
8372err:
c6567f64 8373 return ERR_PTR(err);
9b51f66d 8374}
fb0459d7 8375EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8376
0cda4c02
YZ
8377void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8378{
8379 struct perf_event_context *src_ctx;
8380 struct perf_event_context *dst_ctx;
8381 struct perf_event *event, *tmp;
8382 LIST_HEAD(events);
8383
8384 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8385 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8386
f63a8daa
PZ
8387 /*
8388 * See perf_event_ctx_lock() for comments on the details
8389 * of swizzling perf_event::ctx.
8390 */
8391 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8392 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8393 event_entry) {
46ce0fe9 8394 perf_remove_from_context(event, false);
9a545de0 8395 unaccount_event_cpu(event, src_cpu);
0cda4c02 8396 put_ctx(src_ctx);
9886167d 8397 list_add(&event->migrate_entry, &events);
0cda4c02 8398 }
0cda4c02 8399
8f95b435
PZI
8400 /*
8401 * Wait for the events to quiesce before re-instating them.
8402 */
0cda4c02
YZ
8403 synchronize_rcu();
8404
8f95b435
PZI
8405 /*
8406 * Re-instate events in 2 passes.
8407 *
8408 * Skip over group leaders and only install siblings on this first
8409 * pass, siblings will not get enabled without a leader, however a
8410 * leader will enable its siblings, even if those are still on the old
8411 * context.
8412 */
8413 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8414 if (event->group_leader == event)
8415 continue;
8416
8417 list_del(&event->migrate_entry);
8418 if (event->state >= PERF_EVENT_STATE_OFF)
8419 event->state = PERF_EVENT_STATE_INACTIVE;
8420 account_event_cpu(event, dst_cpu);
8421 perf_install_in_context(dst_ctx, event, dst_cpu);
8422 get_ctx(dst_ctx);
8423 }
8424
8425 /*
8426 * Once all the siblings are setup properly, install the group leaders
8427 * to make it go.
8428 */
9886167d
PZ
8429 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8430 list_del(&event->migrate_entry);
0cda4c02
YZ
8431 if (event->state >= PERF_EVENT_STATE_OFF)
8432 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8433 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8434 perf_install_in_context(dst_ctx, event, dst_cpu);
8435 get_ctx(dst_ctx);
8436 }
8437 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8438 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8439}
8440EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8441
cdd6c482 8442static void sync_child_event(struct perf_event *child_event,
38b200d6 8443 struct task_struct *child)
d859e29f 8444{
cdd6c482 8445 struct perf_event *parent_event = child_event->parent;
8bc20959 8446 u64 child_val;
d859e29f 8447
cdd6c482
IM
8448 if (child_event->attr.inherit_stat)
8449 perf_event_read_event(child_event, child);
38b200d6 8450
b5e58793 8451 child_val = perf_event_count(child_event);
d859e29f
PM
8452
8453 /*
8454 * Add back the child's count to the parent's count:
8455 */
a6e6dea6 8456 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8457 atomic64_add(child_event->total_time_enabled,
8458 &parent_event->child_total_time_enabled);
8459 atomic64_add(child_event->total_time_running,
8460 &parent_event->child_total_time_running);
d859e29f
PM
8461
8462 /*
cdd6c482 8463 * Remove this event from the parent's list
d859e29f 8464 */
cdd6c482
IM
8465 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8466 mutex_lock(&parent_event->child_mutex);
8467 list_del_init(&child_event->child_list);
8468 mutex_unlock(&parent_event->child_mutex);
d859e29f 8469
dc633982
JO
8470 /*
8471 * Make sure user/parent get notified, that we just
8472 * lost one event.
8473 */
8474 perf_event_wakeup(parent_event);
8475
d859e29f 8476 /*
cdd6c482 8477 * Release the parent event, if this was the last
d859e29f
PM
8478 * reference to it.
8479 */
a6fa941d 8480 put_event(parent_event);
d859e29f
PM
8481}
8482
9b51f66d 8483static void
cdd6c482
IM
8484__perf_event_exit_task(struct perf_event *child_event,
8485 struct perf_event_context *child_ctx,
38b200d6 8486 struct task_struct *child)
9b51f66d 8487{
1903d50c
PZ
8488 /*
8489 * Do not destroy the 'original' grouping; because of the context
8490 * switch optimization the original events could've ended up in a
8491 * random child task.
8492 *
8493 * If we were to destroy the original group, all group related
8494 * operations would cease to function properly after this random
8495 * child dies.
8496 *
8497 * Do destroy all inherited groups, we don't care about those
8498 * and being thorough is better.
8499 */
8500 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8501
9b51f66d 8502 /*
38b435b1 8503 * It can happen that the parent exits first, and has events
9b51f66d 8504 * that are still around due to the child reference. These
38b435b1 8505 * events need to be zapped.
9b51f66d 8506 */
38b435b1 8507 if (child_event->parent) {
cdd6c482
IM
8508 sync_child_event(child_event, child);
8509 free_event(child_event);
179033b3
JO
8510 } else {
8511 child_event->state = PERF_EVENT_STATE_EXIT;
8512 perf_event_wakeup(child_event);
4bcf349a 8513 }
9b51f66d
IM
8514}
8515
8dc85d54 8516static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8517{
ebf905fc 8518 struct perf_event *child_event, *next;
211de6eb 8519 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8520 unsigned long flags;
9b51f66d 8521
8dc85d54 8522 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 8523 perf_event_task(child, NULL, 0);
9b51f66d 8524 return;
9f498cc5 8525 }
9b51f66d 8526
a63eaf34 8527 local_irq_save(flags);
ad3a37de
PM
8528 /*
8529 * We can't reschedule here because interrupts are disabled,
8530 * and either child is current or it is a task that can't be
8531 * scheduled, so we are now safe from rescheduling changing
8532 * our context.
8533 */
806839b2 8534 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8535
8536 /*
8537 * Take the context lock here so that if find_get_context is
cdd6c482 8538 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8539 * incremented the context's refcount before we do put_ctx below.
8540 */
e625cce1 8541 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8542 task_ctx_sched_out(child_ctx);
8dc85d54 8543 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8544
71a851b4
PZ
8545 /*
8546 * If this context is a clone; unclone it so it can't get
8547 * swapped to another process while we're removing all
cdd6c482 8548 * the events from it.
71a851b4 8549 */
211de6eb 8550 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8551 update_context_time(child_ctx);
e625cce1 8552 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8553
211de6eb
PZ
8554 if (clone_ctx)
8555 put_ctx(clone_ctx);
4a1c0f26 8556
9f498cc5 8557 /*
cdd6c482
IM
8558 * Report the task dead after unscheduling the events so that we
8559 * won't get any samples after PERF_RECORD_EXIT. We can however still
8560 * get a few PERF_RECORD_READ events.
9f498cc5 8561 */
cdd6c482 8562 perf_event_task(child, child_ctx, 0);
a63eaf34 8563
66fff224
PZ
8564 /*
8565 * We can recurse on the same lock type through:
8566 *
cdd6c482
IM
8567 * __perf_event_exit_task()
8568 * sync_child_event()
a6fa941d
AV
8569 * put_event()
8570 * mutex_lock(&ctx->mutex)
66fff224
PZ
8571 *
8572 * But since its the parent context it won't be the same instance.
8573 */
a0507c84 8574 mutex_lock(&child_ctx->mutex);
a63eaf34 8575
ebf905fc 8576 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8577 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8578
a63eaf34
PM
8579 mutex_unlock(&child_ctx->mutex);
8580
8581 put_ctx(child_ctx);
9b51f66d
IM
8582}
8583
8dc85d54
PZ
8584/*
8585 * When a child task exits, feed back event values to parent events.
8586 */
8587void perf_event_exit_task(struct task_struct *child)
8588{
8882135b 8589 struct perf_event *event, *tmp;
8dc85d54
PZ
8590 int ctxn;
8591
8882135b
PZ
8592 mutex_lock(&child->perf_event_mutex);
8593 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8594 owner_entry) {
8595 list_del_init(&event->owner_entry);
8596
8597 /*
8598 * Ensure the list deletion is visible before we clear
8599 * the owner, closes a race against perf_release() where
8600 * we need to serialize on the owner->perf_event_mutex.
8601 */
8602 smp_wmb();
8603 event->owner = NULL;
8604 }
8605 mutex_unlock(&child->perf_event_mutex);
8606
8dc85d54
PZ
8607 for_each_task_context_nr(ctxn)
8608 perf_event_exit_task_context(child, ctxn);
8609}
8610
889ff015
FW
8611static void perf_free_event(struct perf_event *event,
8612 struct perf_event_context *ctx)
8613{
8614 struct perf_event *parent = event->parent;
8615
8616 if (WARN_ON_ONCE(!parent))
8617 return;
8618
8619 mutex_lock(&parent->child_mutex);
8620 list_del_init(&event->child_list);
8621 mutex_unlock(&parent->child_mutex);
8622
a6fa941d 8623 put_event(parent);
889ff015 8624
652884fe 8625 raw_spin_lock_irq(&ctx->lock);
8a49542c 8626 perf_group_detach(event);
889ff015 8627 list_del_event(event, ctx);
652884fe 8628 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8629 free_event(event);
8630}
8631
bbbee908 8632/*
652884fe 8633 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8634 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8635 *
8636 * Not all locks are strictly required, but take them anyway to be nice and
8637 * help out with the lockdep assertions.
bbbee908 8638 */
cdd6c482 8639void perf_event_free_task(struct task_struct *task)
bbbee908 8640{
8dc85d54 8641 struct perf_event_context *ctx;
cdd6c482 8642 struct perf_event *event, *tmp;
8dc85d54 8643 int ctxn;
bbbee908 8644
8dc85d54
PZ
8645 for_each_task_context_nr(ctxn) {
8646 ctx = task->perf_event_ctxp[ctxn];
8647 if (!ctx)
8648 continue;
bbbee908 8649
8dc85d54 8650 mutex_lock(&ctx->mutex);
bbbee908 8651again:
8dc85d54
PZ
8652 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8653 group_entry)
8654 perf_free_event(event, ctx);
bbbee908 8655
8dc85d54
PZ
8656 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8657 group_entry)
8658 perf_free_event(event, ctx);
bbbee908 8659
8dc85d54
PZ
8660 if (!list_empty(&ctx->pinned_groups) ||
8661 !list_empty(&ctx->flexible_groups))
8662 goto again;
bbbee908 8663
8dc85d54 8664 mutex_unlock(&ctx->mutex);
bbbee908 8665
8dc85d54
PZ
8666 put_ctx(ctx);
8667 }
889ff015
FW
8668}
8669
4e231c79
PZ
8670void perf_event_delayed_put(struct task_struct *task)
8671{
8672 int ctxn;
8673
8674 for_each_task_context_nr(ctxn)
8675 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8676}
8677
97dee4f3
PZ
8678/*
8679 * inherit a event from parent task to child task:
8680 */
8681static struct perf_event *
8682inherit_event(struct perf_event *parent_event,
8683 struct task_struct *parent,
8684 struct perf_event_context *parent_ctx,
8685 struct task_struct *child,
8686 struct perf_event *group_leader,
8687 struct perf_event_context *child_ctx)
8688{
1929def9 8689 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8690 struct perf_event *child_event;
cee010ec 8691 unsigned long flags;
97dee4f3
PZ
8692
8693 /*
8694 * Instead of creating recursive hierarchies of events,
8695 * we link inherited events back to the original parent,
8696 * which has a filp for sure, which we use as the reference
8697 * count:
8698 */
8699 if (parent_event->parent)
8700 parent_event = parent_event->parent;
8701
8702 child_event = perf_event_alloc(&parent_event->attr,
8703 parent_event->cpu,
d580ff86 8704 child,
97dee4f3 8705 group_leader, parent_event,
79dff51e 8706 NULL, NULL, -1);
97dee4f3
PZ
8707 if (IS_ERR(child_event))
8708 return child_event;
a6fa941d 8709
fadfe7be
JO
8710 if (is_orphaned_event(parent_event) ||
8711 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8712 free_event(child_event);
8713 return NULL;
8714 }
8715
97dee4f3
PZ
8716 get_ctx(child_ctx);
8717
8718 /*
8719 * Make the child state follow the state of the parent event,
8720 * not its attr.disabled bit. We hold the parent's mutex,
8721 * so we won't race with perf_event_{en, dis}able_family.
8722 */
1929def9 8723 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8724 child_event->state = PERF_EVENT_STATE_INACTIVE;
8725 else
8726 child_event->state = PERF_EVENT_STATE_OFF;
8727
8728 if (parent_event->attr.freq) {
8729 u64 sample_period = parent_event->hw.sample_period;
8730 struct hw_perf_event *hwc = &child_event->hw;
8731
8732 hwc->sample_period = sample_period;
8733 hwc->last_period = sample_period;
8734
8735 local64_set(&hwc->period_left, sample_period);
8736 }
8737
8738 child_event->ctx = child_ctx;
8739 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8740 child_event->overflow_handler_context
8741 = parent_event->overflow_handler_context;
97dee4f3 8742
614b6780
TG
8743 /*
8744 * Precalculate sample_data sizes
8745 */
8746 perf_event__header_size(child_event);
6844c09d 8747 perf_event__id_header_size(child_event);
614b6780 8748
97dee4f3
PZ
8749 /*
8750 * Link it up in the child's context:
8751 */
cee010ec 8752 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8753 add_event_to_ctx(child_event, child_ctx);
cee010ec 8754 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8755
97dee4f3
PZ
8756 /*
8757 * Link this into the parent event's child list
8758 */
8759 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8760 mutex_lock(&parent_event->child_mutex);
8761 list_add_tail(&child_event->child_list, &parent_event->child_list);
8762 mutex_unlock(&parent_event->child_mutex);
8763
8764 return child_event;
8765}
8766
8767static int inherit_group(struct perf_event *parent_event,
8768 struct task_struct *parent,
8769 struct perf_event_context *parent_ctx,
8770 struct task_struct *child,
8771 struct perf_event_context *child_ctx)
8772{
8773 struct perf_event *leader;
8774 struct perf_event *sub;
8775 struct perf_event *child_ctr;
8776
8777 leader = inherit_event(parent_event, parent, parent_ctx,
8778 child, NULL, child_ctx);
8779 if (IS_ERR(leader))
8780 return PTR_ERR(leader);
8781 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8782 child_ctr = inherit_event(sub, parent, parent_ctx,
8783 child, leader, child_ctx);
8784 if (IS_ERR(child_ctr))
8785 return PTR_ERR(child_ctr);
8786 }
8787 return 0;
889ff015
FW
8788}
8789
8790static int
8791inherit_task_group(struct perf_event *event, struct task_struct *parent,
8792 struct perf_event_context *parent_ctx,
8dc85d54 8793 struct task_struct *child, int ctxn,
889ff015
FW
8794 int *inherited_all)
8795{
8796 int ret;
8dc85d54 8797 struct perf_event_context *child_ctx;
889ff015
FW
8798
8799 if (!event->attr.inherit) {
8800 *inherited_all = 0;
8801 return 0;
bbbee908
PZ
8802 }
8803
fe4b04fa 8804 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
8805 if (!child_ctx) {
8806 /*
8807 * This is executed from the parent task context, so
8808 * inherit events that have been marked for cloning.
8809 * First allocate and initialize a context for the
8810 * child.
8811 */
bbbee908 8812
734df5ab 8813 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
8814 if (!child_ctx)
8815 return -ENOMEM;
bbbee908 8816
8dc85d54 8817 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
8818 }
8819
8820 ret = inherit_group(event, parent, parent_ctx,
8821 child, child_ctx);
8822
8823 if (ret)
8824 *inherited_all = 0;
8825
8826 return ret;
bbbee908
PZ
8827}
8828
9b51f66d 8829/*
cdd6c482 8830 * Initialize the perf_event context in task_struct
9b51f66d 8831 */
985c8dcb 8832static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 8833{
889ff015 8834 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
8835 struct perf_event_context *cloned_ctx;
8836 struct perf_event *event;
9b51f66d 8837 struct task_struct *parent = current;
564c2b21 8838 int inherited_all = 1;
dddd3379 8839 unsigned long flags;
6ab423e0 8840 int ret = 0;
9b51f66d 8841
8dc85d54 8842 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
8843 return 0;
8844
ad3a37de 8845 /*
25346b93
PM
8846 * If the parent's context is a clone, pin it so it won't get
8847 * swapped under us.
ad3a37de 8848 */
8dc85d54 8849 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
8850 if (!parent_ctx)
8851 return 0;
25346b93 8852
ad3a37de
PM
8853 /*
8854 * No need to check if parent_ctx != NULL here; since we saw
8855 * it non-NULL earlier, the only reason for it to become NULL
8856 * is if we exit, and since we're currently in the middle of
8857 * a fork we can't be exiting at the same time.
8858 */
ad3a37de 8859
9b51f66d
IM
8860 /*
8861 * Lock the parent list. No need to lock the child - not PID
8862 * hashed yet and not running, so nobody can access it.
8863 */
d859e29f 8864 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
8865
8866 /*
8867 * We dont have to disable NMIs - we are only looking at
8868 * the list, not manipulating it:
8869 */
889ff015 8870 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
8871 ret = inherit_task_group(event, parent, parent_ctx,
8872 child, ctxn, &inherited_all);
889ff015
FW
8873 if (ret)
8874 break;
8875 }
b93f7978 8876
dddd3379
TG
8877 /*
8878 * We can't hold ctx->lock when iterating the ->flexible_group list due
8879 * to allocations, but we need to prevent rotation because
8880 * rotate_ctx() will change the list from interrupt context.
8881 */
8882 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8883 parent_ctx->rotate_disable = 1;
8884 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8885
889ff015 8886 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
8887 ret = inherit_task_group(event, parent, parent_ctx,
8888 child, ctxn, &inherited_all);
889ff015 8889 if (ret)
9b51f66d 8890 break;
564c2b21
PM
8891 }
8892
dddd3379
TG
8893 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8894 parent_ctx->rotate_disable = 0;
dddd3379 8895
8dc85d54 8896 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 8897
05cbaa28 8898 if (child_ctx && inherited_all) {
564c2b21
PM
8899 /*
8900 * Mark the child context as a clone of the parent
8901 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
8902 *
8903 * Note that if the parent is a clone, the holding of
8904 * parent_ctx->lock avoids it from being uncloned.
564c2b21 8905 */
c5ed5145 8906 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
8907 if (cloned_ctx) {
8908 child_ctx->parent_ctx = cloned_ctx;
25346b93 8909 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
8910 } else {
8911 child_ctx->parent_ctx = parent_ctx;
8912 child_ctx->parent_gen = parent_ctx->generation;
8913 }
8914 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
8915 }
8916
c5ed5145 8917 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 8918 mutex_unlock(&parent_ctx->mutex);
6ab423e0 8919
25346b93 8920 perf_unpin_context(parent_ctx);
fe4b04fa 8921 put_ctx(parent_ctx);
ad3a37de 8922
6ab423e0 8923 return ret;
9b51f66d
IM
8924}
8925
8dc85d54
PZ
8926/*
8927 * Initialize the perf_event context in task_struct
8928 */
8929int perf_event_init_task(struct task_struct *child)
8930{
8931 int ctxn, ret;
8932
8550d7cb
ON
8933 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8934 mutex_init(&child->perf_event_mutex);
8935 INIT_LIST_HEAD(&child->perf_event_list);
8936
8dc85d54
PZ
8937 for_each_task_context_nr(ctxn) {
8938 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
8939 if (ret) {
8940 perf_event_free_task(child);
8dc85d54 8941 return ret;
6c72e350 8942 }
8dc85d54
PZ
8943 }
8944
8945 return 0;
8946}
8947
220b140b
PM
8948static void __init perf_event_init_all_cpus(void)
8949{
b28ab83c 8950 struct swevent_htable *swhash;
220b140b 8951 int cpu;
220b140b
PM
8952
8953 for_each_possible_cpu(cpu) {
b28ab83c
PZ
8954 swhash = &per_cpu(swevent_htable, cpu);
8955 mutex_init(&swhash->hlist_mutex);
2fde4f94 8956 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
8957 }
8958}
8959
0db0628d 8960static void perf_event_init_cpu(int cpu)
0793a61d 8961{
108b02cf 8962 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 8963
b28ab83c 8964 mutex_lock(&swhash->hlist_mutex);
39af6b16 8965 swhash->online = true;
4536e4d1 8966 if (swhash->hlist_refcount > 0) {
76e1d904
FW
8967 struct swevent_hlist *hlist;
8968
b28ab83c
PZ
8969 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8970 WARN_ON(!hlist);
8971 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8972 }
b28ab83c 8973 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
8974}
8975
c277443c 8976#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
108b02cf 8977static void __perf_event_exit_context(void *__info)
0793a61d 8978{
226424ee 8979 struct remove_event re = { .detach_group = true };
108b02cf 8980 struct perf_event_context *ctx = __info;
0793a61d 8981
e3703f8c 8982 rcu_read_lock();
46ce0fe9
PZ
8983 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8984 __perf_remove_from_context(&re);
e3703f8c 8985 rcu_read_unlock();
0793a61d 8986}
108b02cf
PZ
8987
8988static void perf_event_exit_cpu_context(int cpu)
8989{
8990 struct perf_event_context *ctx;
8991 struct pmu *pmu;
8992 int idx;
8993
8994 idx = srcu_read_lock(&pmus_srcu);
8995 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 8996 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
8997
8998 mutex_lock(&ctx->mutex);
8999 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9000 mutex_unlock(&ctx->mutex);
9001 }
9002 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9003}
9004
cdd6c482 9005static void perf_event_exit_cpu(int cpu)
0793a61d 9006{
b28ab83c 9007 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 9008
e3703f8c
PZ
9009 perf_event_exit_cpu_context(cpu);
9010
b28ab83c 9011 mutex_lock(&swhash->hlist_mutex);
39af6b16 9012 swhash->online = false;
b28ab83c
PZ
9013 swevent_hlist_release(swhash);
9014 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9015}
9016#else
cdd6c482 9017static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9018#endif
9019
c277443c
PZ
9020static int
9021perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9022{
9023 int cpu;
9024
9025 for_each_online_cpu(cpu)
9026 perf_event_exit_cpu(cpu);
9027
9028 return NOTIFY_OK;
9029}
9030
9031/*
9032 * Run the perf reboot notifier at the very last possible moment so that
9033 * the generic watchdog code runs as long as possible.
9034 */
9035static struct notifier_block perf_reboot_notifier = {
9036 .notifier_call = perf_reboot,
9037 .priority = INT_MIN,
9038};
9039
0db0628d 9040static int
0793a61d
TG
9041perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9042{
9043 unsigned int cpu = (long)hcpu;
9044
4536e4d1 9045 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9046
9047 case CPU_UP_PREPARE:
5e11637e 9048 case CPU_DOWN_FAILED:
cdd6c482 9049 perf_event_init_cpu(cpu);
0793a61d
TG
9050 break;
9051
5e11637e 9052 case CPU_UP_CANCELED:
0793a61d 9053 case CPU_DOWN_PREPARE:
cdd6c482 9054 perf_event_exit_cpu(cpu);
0793a61d 9055 break;
0793a61d
TG
9056 default:
9057 break;
9058 }
9059
9060 return NOTIFY_OK;
9061}
9062
cdd6c482 9063void __init perf_event_init(void)
0793a61d 9064{
3c502e7a
JW
9065 int ret;
9066
2e80a82a
PZ
9067 idr_init(&pmu_idr);
9068
220b140b 9069 perf_event_init_all_cpus();
b0a873eb 9070 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9071 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9072 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9073 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9074 perf_tp_register();
9075 perf_cpu_notifier(perf_cpu_notify);
c277443c 9076 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9077
9078 ret = init_hw_breakpoint();
9079 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9080
9081 /* do not patch jump label more than once per second */
9082 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9083
9084 /*
9085 * Build time assertion that we keep the data_head at the intended
9086 * location. IOW, validation we got the __reserved[] size right.
9087 */
9088 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9089 != 1024);
0793a61d 9090}
abe43400 9091
fd979c01
CS
9092ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9093 char *page)
9094{
9095 struct perf_pmu_events_attr *pmu_attr =
9096 container_of(attr, struct perf_pmu_events_attr, attr);
9097
9098 if (pmu_attr->event_str)
9099 return sprintf(page, "%s\n", pmu_attr->event_str);
9100
9101 return 0;
9102}
9103
abe43400
PZ
9104static int __init perf_event_sysfs_init(void)
9105{
9106 struct pmu *pmu;
9107 int ret;
9108
9109 mutex_lock(&pmus_lock);
9110
9111 ret = bus_register(&pmu_bus);
9112 if (ret)
9113 goto unlock;
9114
9115 list_for_each_entry(pmu, &pmus, entry) {
9116 if (!pmu->name || pmu->type < 0)
9117 continue;
9118
9119 ret = pmu_dev_alloc(pmu);
9120 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9121 }
9122 pmu_bus_running = 1;
9123 ret = 0;
9124
9125unlock:
9126 mutex_unlock(&pmus_lock);
9127
9128 return ret;
9129}
9130device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9131
9132#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9133static struct cgroup_subsys_state *
9134perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9135{
9136 struct perf_cgroup *jc;
e5d1367f 9137
1b15d055 9138 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9139 if (!jc)
9140 return ERR_PTR(-ENOMEM);
9141
e5d1367f
SE
9142 jc->info = alloc_percpu(struct perf_cgroup_info);
9143 if (!jc->info) {
9144 kfree(jc);
9145 return ERR_PTR(-ENOMEM);
9146 }
9147
e5d1367f
SE
9148 return &jc->css;
9149}
9150
eb95419b 9151static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9152{
eb95419b
TH
9153 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9154
e5d1367f
SE
9155 free_percpu(jc->info);
9156 kfree(jc);
9157}
9158
9159static int __perf_cgroup_move(void *info)
9160{
9161 struct task_struct *task = info;
9162 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9163 return 0;
9164}
9165
eb95419b
TH
9166static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9167 struct cgroup_taskset *tset)
e5d1367f 9168{
bb9d97b6
TH
9169 struct task_struct *task;
9170
924f0d9a 9171 cgroup_taskset_for_each(task, tset)
bb9d97b6 9172 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9173}
9174
eb95419b
TH
9175static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9176 struct cgroup_subsys_state *old_css,
761b3ef5 9177 struct task_struct *task)
e5d1367f
SE
9178{
9179 /*
9180 * cgroup_exit() is called in the copy_process() failure path.
9181 * Ignore this case since the task hasn't ran yet, this avoids
9182 * trying to poke a half freed task state from generic code.
9183 */
9184 if (!(task->flags & PF_EXITING))
9185 return;
9186
bb9d97b6 9187 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9188}
9189
073219e9 9190struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9191 .css_alloc = perf_cgroup_css_alloc,
9192 .css_free = perf_cgroup_css_free,
e7e7ee2e 9193 .exit = perf_cgroup_exit,
bb9d97b6 9194 .attach = perf_cgroup_attach,
e5d1367f
SE
9195};
9196#endif /* CONFIG_CGROUP_PERF */