perf: Remove WARN_ON_ONCE() check in __perf_event_enable() for valid scenario
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
0793a61d 42
76369139
FW
43#include "internal.h"
44
4e193bd4
TB
45#include <asm/irq_regs.h>
46
fe4b04fa 47struct remote_function_call {
e7e7ee2e
IM
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
fe4b04fa
PZ
52};
53
54static void remote_function(void *data)
55{
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66}
67
68/**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81static int
82task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83{
84 struct remote_function_call data = {
e7e7ee2e
IM
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95}
96
97/**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107{
108 struct remote_function_call data = {
e7e7ee2e
IM
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118}
119
e5d1367f
SE
120#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
bce38cd5
SE
124/*
125 * branch priv levels that need permission checks
126 */
127#define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
0b3fcf17
SE
131enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135};
136
e5d1367f
SE
137/*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
c5905afb 141struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 142static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 143static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 144
cdd6c482
IM
145static atomic_t nr_mmap_events __read_mostly;
146static atomic_t nr_comm_events __read_mostly;
147static atomic_t nr_task_events __read_mostly;
9ee318a7 148
108b02cf
PZ
149static LIST_HEAD(pmus);
150static DEFINE_MUTEX(pmus_lock);
151static struct srcu_struct pmus_srcu;
152
0764771d 153/*
cdd6c482 154 * perf event paranoia level:
0fbdea19
IM
155 * -1 - not paranoid at all
156 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 157 * 1 - disallow cpu events for unpriv
0fbdea19 158 * 2 - disallow kernel profiling for unpriv
0764771d 159 */
cdd6c482 160int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 161
20443384
FW
162/* Minimum for 512 kiB + 1 user control page */
163int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
164
165/*
cdd6c482 166 * max perf event sample rate
df58ab24 167 */
14c63f17
DH
168#define DEFAULT_MAX_SAMPLE_RATE 100000
169#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
170#define DEFAULT_CPU_TIME_MAX_PERCENT 25
171
172int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
173
174static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
175static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
176
177static atomic_t perf_sample_allowed_ns __read_mostly =
178 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
179
180void update_perf_cpu_limits(void)
181{
182 u64 tmp = perf_sample_period_ns;
183
184 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 185 do_div(tmp, 100);
14c63f17
DH
186 atomic_set(&perf_sample_allowed_ns, tmp);
187}
163ec435 188
9e630205
SE
189static int perf_rotate_context(struct perf_cpu_context *cpuctx);
190
163ec435
PZ
191int perf_proc_update_handler(struct ctl_table *table, int write,
192 void __user *buffer, size_t *lenp,
193 loff_t *ppos)
194{
195 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
196
197 if (ret || !write)
198 return ret;
199
200 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
201 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
202 update_perf_cpu_limits();
203
204 return 0;
205}
206
207int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
208
209int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
210 void __user *buffer, size_t *lenp,
211 loff_t *ppos)
212{
213 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
214
215 if (ret || !write)
216 return ret;
217
218 update_perf_cpu_limits();
163ec435
PZ
219
220 return 0;
221}
1ccd1549 222
14c63f17
DH
223/*
224 * perf samples are done in some very critical code paths (NMIs).
225 * If they take too much CPU time, the system can lock up and not
226 * get any real work done. This will drop the sample rate when
227 * we detect that events are taking too long.
228 */
229#define NR_ACCUMULATED_SAMPLES 128
230DEFINE_PER_CPU(u64, running_sample_length);
231
232void perf_sample_event_took(u64 sample_len_ns)
233{
234 u64 avg_local_sample_len;
e5302920 235 u64 local_samples_len;
14c63f17
DH
236
237 if (atomic_read(&perf_sample_allowed_ns) == 0)
238 return;
239
240 /* decay the counter by 1 average sample */
241 local_samples_len = __get_cpu_var(running_sample_length);
242 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
243 local_samples_len += sample_len_ns;
244 __get_cpu_var(running_sample_length) = local_samples_len;
245
246 /*
247 * note: this will be biased artifically low until we have
248 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
249 * from having to maintain a count.
250 */
251 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
252
253 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
254 return;
255
256 if (max_samples_per_tick <= 1)
257 return;
258
259 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
260 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
261 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
262
263 printk_ratelimited(KERN_WARNING
264 "perf samples too long (%lld > %d), lowering "
265 "kernel.perf_event_max_sample_rate to %d\n",
266 avg_local_sample_len,
267 atomic_read(&perf_sample_allowed_ns),
268 sysctl_perf_event_sample_rate);
269
270 update_perf_cpu_limits();
271}
272
cdd6c482 273static atomic64_t perf_event_id;
a96bbc16 274
0b3fcf17
SE
275static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
276 enum event_type_t event_type);
277
278static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
279 enum event_type_t event_type,
280 struct task_struct *task);
281
282static void update_context_time(struct perf_event_context *ctx);
283static u64 perf_event_time(struct perf_event *event);
0b3fcf17 284
cdd6c482 285void __weak perf_event_print_debug(void) { }
0793a61d 286
84c79910 287extern __weak const char *perf_pmu_name(void)
0793a61d 288{
84c79910 289 return "pmu";
0793a61d
TG
290}
291
0b3fcf17
SE
292static inline u64 perf_clock(void)
293{
294 return local_clock();
295}
296
e5d1367f
SE
297static inline struct perf_cpu_context *
298__get_cpu_context(struct perf_event_context *ctx)
299{
300 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
301}
302
facc4307
PZ
303static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
304 struct perf_event_context *ctx)
305{
306 raw_spin_lock(&cpuctx->ctx.lock);
307 if (ctx)
308 raw_spin_lock(&ctx->lock);
309}
310
311static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
312 struct perf_event_context *ctx)
313{
314 if (ctx)
315 raw_spin_unlock(&ctx->lock);
316 raw_spin_unlock(&cpuctx->ctx.lock);
317}
318
e5d1367f
SE
319#ifdef CONFIG_CGROUP_PERF
320
877c6856
LZ
321/*
322 * perf_cgroup_info keeps track of time_enabled for a cgroup.
323 * This is a per-cpu dynamically allocated data structure.
324 */
325struct perf_cgroup_info {
326 u64 time;
327 u64 timestamp;
328};
329
330struct perf_cgroup {
331 struct cgroup_subsys_state css;
86e213e1 332 struct perf_cgroup_info __percpu *info;
877c6856
LZ
333};
334
3f7cce3c
SE
335/*
336 * Must ensure cgroup is pinned (css_get) before calling
337 * this function. In other words, we cannot call this function
338 * if there is no cgroup event for the current CPU context.
339 */
e5d1367f
SE
340static inline struct perf_cgroup *
341perf_cgroup_from_task(struct task_struct *task)
342{
343 return container_of(task_subsys_state(task, perf_subsys_id),
344 struct perf_cgroup, css);
345}
346
347static inline bool
348perf_cgroup_match(struct perf_event *event)
349{
350 struct perf_event_context *ctx = event->ctx;
351 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
352
ef824fa1
TH
353 /* @event doesn't care about cgroup */
354 if (!event->cgrp)
355 return true;
356
357 /* wants specific cgroup scope but @cpuctx isn't associated with any */
358 if (!cpuctx->cgrp)
359 return false;
360
361 /*
362 * Cgroup scoping is recursive. An event enabled for a cgroup is
363 * also enabled for all its descendant cgroups. If @cpuctx's
364 * cgroup is a descendant of @event's (the test covers identity
365 * case), it's a match.
366 */
367 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
368 event->cgrp->css.cgroup);
e5d1367f
SE
369}
370
9c5da09d 371static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 372{
9c5da09d 373 return css_tryget(&event->cgrp->css);
e5d1367f
SE
374}
375
376static inline void perf_put_cgroup(struct perf_event *event)
377{
378 css_put(&event->cgrp->css);
379}
380
381static inline void perf_detach_cgroup(struct perf_event *event)
382{
383 perf_put_cgroup(event);
384 event->cgrp = NULL;
385}
386
387static inline int is_cgroup_event(struct perf_event *event)
388{
389 return event->cgrp != NULL;
390}
391
392static inline u64 perf_cgroup_event_time(struct perf_event *event)
393{
394 struct perf_cgroup_info *t;
395
396 t = per_cpu_ptr(event->cgrp->info, event->cpu);
397 return t->time;
398}
399
400static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
401{
402 struct perf_cgroup_info *info;
403 u64 now;
404
405 now = perf_clock();
406
407 info = this_cpu_ptr(cgrp->info);
408
409 info->time += now - info->timestamp;
410 info->timestamp = now;
411}
412
413static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
414{
415 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
416 if (cgrp_out)
417 __update_cgrp_time(cgrp_out);
418}
419
420static inline void update_cgrp_time_from_event(struct perf_event *event)
421{
3f7cce3c
SE
422 struct perf_cgroup *cgrp;
423
e5d1367f 424 /*
3f7cce3c
SE
425 * ensure we access cgroup data only when needed and
426 * when we know the cgroup is pinned (css_get)
e5d1367f 427 */
3f7cce3c 428 if (!is_cgroup_event(event))
e5d1367f
SE
429 return;
430
3f7cce3c
SE
431 cgrp = perf_cgroup_from_task(current);
432 /*
433 * Do not update time when cgroup is not active
434 */
435 if (cgrp == event->cgrp)
436 __update_cgrp_time(event->cgrp);
e5d1367f
SE
437}
438
439static inline void
3f7cce3c
SE
440perf_cgroup_set_timestamp(struct task_struct *task,
441 struct perf_event_context *ctx)
e5d1367f
SE
442{
443 struct perf_cgroup *cgrp;
444 struct perf_cgroup_info *info;
445
3f7cce3c
SE
446 /*
447 * ctx->lock held by caller
448 * ensure we do not access cgroup data
449 * unless we have the cgroup pinned (css_get)
450 */
451 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
452 return;
453
454 cgrp = perf_cgroup_from_task(task);
455 info = this_cpu_ptr(cgrp->info);
3f7cce3c 456 info->timestamp = ctx->timestamp;
e5d1367f
SE
457}
458
459#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
460#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
461
462/*
463 * reschedule events based on the cgroup constraint of task.
464 *
465 * mode SWOUT : schedule out everything
466 * mode SWIN : schedule in based on cgroup for next
467 */
468void perf_cgroup_switch(struct task_struct *task, int mode)
469{
470 struct perf_cpu_context *cpuctx;
471 struct pmu *pmu;
472 unsigned long flags;
473
474 /*
475 * disable interrupts to avoid geting nr_cgroup
476 * changes via __perf_event_disable(). Also
477 * avoids preemption.
478 */
479 local_irq_save(flags);
480
481 /*
482 * we reschedule only in the presence of cgroup
483 * constrained events.
484 */
485 rcu_read_lock();
486
487 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 488 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
489 if (cpuctx->unique_pmu != pmu)
490 continue; /* ensure we process each cpuctx once */
e5d1367f 491
e5d1367f
SE
492 /*
493 * perf_cgroup_events says at least one
494 * context on this CPU has cgroup events.
495 *
496 * ctx->nr_cgroups reports the number of cgroup
497 * events for a context.
498 */
499 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
500 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
501 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
502
503 if (mode & PERF_CGROUP_SWOUT) {
504 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
505 /*
506 * must not be done before ctxswout due
507 * to event_filter_match() in event_sched_out()
508 */
509 cpuctx->cgrp = NULL;
510 }
511
512 if (mode & PERF_CGROUP_SWIN) {
e566b76e 513 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
514 /*
515 * set cgrp before ctxsw in to allow
516 * event_filter_match() to not have to pass
517 * task around
e5d1367f
SE
518 */
519 cpuctx->cgrp = perf_cgroup_from_task(task);
520 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
521 }
facc4307
PZ
522 perf_pmu_enable(cpuctx->ctx.pmu);
523 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 524 }
e5d1367f
SE
525 }
526
527 rcu_read_unlock();
528
529 local_irq_restore(flags);
530}
531
a8d757ef
SE
532static inline void perf_cgroup_sched_out(struct task_struct *task,
533 struct task_struct *next)
e5d1367f 534{
a8d757ef
SE
535 struct perf_cgroup *cgrp1;
536 struct perf_cgroup *cgrp2 = NULL;
537
538 /*
539 * we come here when we know perf_cgroup_events > 0
540 */
541 cgrp1 = perf_cgroup_from_task(task);
542
543 /*
544 * next is NULL when called from perf_event_enable_on_exec()
545 * that will systematically cause a cgroup_switch()
546 */
547 if (next)
548 cgrp2 = perf_cgroup_from_task(next);
549
550 /*
551 * only schedule out current cgroup events if we know
552 * that we are switching to a different cgroup. Otherwise,
553 * do no touch the cgroup events.
554 */
555 if (cgrp1 != cgrp2)
556 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
557}
558
a8d757ef
SE
559static inline void perf_cgroup_sched_in(struct task_struct *prev,
560 struct task_struct *task)
e5d1367f 561{
a8d757ef
SE
562 struct perf_cgroup *cgrp1;
563 struct perf_cgroup *cgrp2 = NULL;
564
565 /*
566 * we come here when we know perf_cgroup_events > 0
567 */
568 cgrp1 = perf_cgroup_from_task(task);
569
570 /* prev can never be NULL */
571 cgrp2 = perf_cgroup_from_task(prev);
572
573 /*
574 * only need to schedule in cgroup events if we are changing
575 * cgroup during ctxsw. Cgroup events were not scheduled
576 * out of ctxsw out if that was not the case.
577 */
578 if (cgrp1 != cgrp2)
579 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
580}
581
582static inline int perf_cgroup_connect(int fd, struct perf_event *event,
583 struct perf_event_attr *attr,
584 struct perf_event *group_leader)
585{
586 struct perf_cgroup *cgrp;
587 struct cgroup_subsys_state *css;
2903ff01
AV
588 struct fd f = fdget(fd);
589 int ret = 0;
e5d1367f 590
2903ff01 591 if (!f.file)
e5d1367f
SE
592 return -EBADF;
593
2903ff01 594 css = cgroup_css_from_dir(f.file, perf_subsys_id);
3db272c0
LZ
595 if (IS_ERR(css)) {
596 ret = PTR_ERR(css);
597 goto out;
598 }
e5d1367f
SE
599
600 cgrp = container_of(css, struct perf_cgroup, css);
601 event->cgrp = cgrp;
602
f75e18cb 603 /* must be done before we fput() the file */
9c5da09d
SQ
604 if (!perf_tryget_cgroup(event)) {
605 event->cgrp = NULL;
606 ret = -ENOENT;
607 goto out;
608 }
f75e18cb 609
e5d1367f
SE
610 /*
611 * all events in a group must monitor
612 * the same cgroup because a task belongs
613 * to only one perf cgroup at a time
614 */
615 if (group_leader && group_leader->cgrp != cgrp) {
616 perf_detach_cgroup(event);
617 ret = -EINVAL;
e5d1367f 618 }
3db272c0 619out:
2903ff01 620 fdput(f);
e5d1367f
SE
621 return ret;
622}
623
624static inline void
625perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
626{
627 struct perf_cgroup_info *t;
628 t = per_cpu_ptr(event->cgrp->info, event->cpu);
629 event->shadow_ctx_time = now - t->timestamp;
630}
631
632static inline void
633perf_cgroup_defer_enabled(struct perf_event *event)
634{
635 /*
636 * when the current task's perf cgroup does not match
637 * the event's, we need to remember to call the
638 * perf_mark_enable() function the first time a task with
639 * a matching perf cgroup is scheduled in.
640 */
641 if (is_cgroup_event(event) && !perf_cgroup_match(event))
642 event->cgrp_defer_enabled = 1;
643}
644
645static inline void
646perf_cgroup_mark_enabled(struct perf_event *event,
647 struct perf_event_context *ctx)
648{
649 struct perf_event *sub;
650 u64 tstamp = perf_event_time(event);
651
652 if (!event->cgrp_defer_enabled)
653 return;
654
655 event->cgrp_defer_enabled = 0;
656
657 event->tstamp_enabled = tstamp - event->total_time_enabled;
658 list_for_each_entry(sub, &event->sibling_list, group_entry) {
659 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
660 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
661 sub->cgrp_defer_enabled = 0;
662 }
663 }
664}
665#else /* !CONFIG_CGROUP_PERF */
666
667static inline bool
668perf_cgroup_match(struct perf_event *event)
669{
670 return true;
671}
672
673static inline void perf_detach_cgroup(struct perf_event *event)
674{}
675
676static inline int is_cgroup_event(struct perf_event *event)
677{
678 return 0;
679}
680
681static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
682{
683 return 0;
684}
685
686static inline void update_cgrp_time_from_event(struct perf_event *event)
687{
688}
689
690static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
691{
692}
693
a8d757ef
SE
694static inline void perf_cgroup_sched_out(struct task_struct *task,
695 struct task_struct *next)
e5d1367f
SE
696{
697}
698
a8d757ef
SE
699static inline void perf_cgroup_sched_in(struct task_struct *prev,
700 struct task_struct *task)
e5d1367f
SE
701{
702}
703
704static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
705 struct perf_event_attr *attr,
706 struct perf_event *group_leader)
707{
708 return -EINVAL;
709}
710
711static inline void
3f7cce3c
SE
712perf_cgroup_set_timestamp(struct task_struct *task,
713 struct perf_event_context *ctx)
e5d1367f
SE
714{
715}
716
717void
718perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
719{
720}
721
722static inline void
723perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
724{
725}
726
727static inline u64 perf_cgroup_event_time(struct perf_event *event)
728{
729 return 0;
730}
731
732static inline void
733perf_cgroup_defer_enabled(struct perf_event *event)
734{
735}
736
737static inline void
738perf_cgroup_mark_enabled(struct perf_event *event,
739 struct perf_event_context *ctx)
740{
741}
742#endif
743
9e630205
SE
744/*
745 * set default to be dependent on timer tick just
746 * like original code
747 */
748#define PERF_CPU_HRTIMER (1000 / HZ)
749/*
750 * function must be called with interrupts disbled
751 */
752static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
753{
754 struct perf_cpu_context *cpuctx;
755 enum hrtimer_restart ret = HRTIMER_NORESTART;
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
761
762 rotations = perf_rotate_context(cpuctx);
763
764 /*
765 * arm timer if needed
766 */
767 if (rotations) {
768 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
769 ret = HRTIMER_RESTART;
770 }
771
772 return ret;
773}
774
775/* CPU is going down */
776void perf_cpu_hrtimer_cancel(int cpu)
777{
778 struct perf_cpu_context *cpuctx;
779 struct pmu *pmu;
780 unsigned long flags;
781
782 if (WARN_ON(cpu != smp_processor_id()))
783 return;
784
785 local_irq_save(flags);
786
787 rcu_read_lock();
788
789 list_for_each_entry_rcu(pmu, &pmus, entry) {
790 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
791
792 if (pmu->task_ctx_nr == perf_sw_context)
793 continue;
794
795 hrtimer_cancel(&cpuctx->hrtimer);
796 }
797
798 rcu_read_unlock();
799
800 local_irq_restore(flags);
801}
802
803static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
804{
805 struct hrtimer *hr = &cpuctx->hrtimer;
806 struct pmu *pmu = cpuctx->ctx.pmu;
62b85639 807 int timer;
9e630205
SE
808
809 /* no multiplexing needed for SW PMU */
810 if (pmu->task_ctx_nr == perf_sw_context)
811 return;
812
62b85639
SE
813 /*
814 * check default is sane, if not set then force to
815 * default interval (1/tick)
816 */
817 timer = pmu->hrtimer_interval_ms;
818 if (timer < 1)
819 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
820
821 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9e630205
SE
822
823 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
824 hr->function = perf_cpu_hrtimer_handler;
825}
826
827static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
828{
829 struct hrtimer *hr = &cpuctx->hrtimer;
830 struct pmu *pmu = cpuctx->ctx.pmu;
831
832 /* not for SW PMU */
833 if (pmu->task_ctx_nr == perf_sw_context)
834 return;
835
836 if (hrtimer_active(hr))
837 return;
838
839 if (!hrtimer_callback_running(hr))
840 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
841 0, HRTIMER_MODE_REL_PINNED, 0);
842}
843
33696fc0 844void perf_pmu_disable(struct pmu *pmu)
9e35ad38 845{
33696fc0
PZ
846 int *count = this_cpu_ptr(pmu->pmu_disable_count);
847 if (!(*count)++)
848 pmu->pmu_disable(pmu);
9e35ad38 849}
9e35ad38 850
33696fc0 851void perf_pmu_enable(struct pmu *pmu)
9e35ad38 852{
33696fc0
PZ
853 int *count = this_cpu_ptr(pmu->pmu_disable_count);
854 if (!--(*count))
855 pmu->pmu_enable(pmu);
9e35ad38 856}
9e35ad38 857
e9d2b064
PZ
858static DEFINE_PER_CPU(struct list_head, rotation_list);
859
860/*
861 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
862 * because they're strictly cpu affine and rotate_start is called with IRQs
863 * disabled, while rotate_context is called from IRQ context.
864 */
108b02cf 865static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 866{
108b02cf 867 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 868 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 869
e9d2b064 870 WARN_ON(!irqs_disabled());
b5ab4cd5 871
12351ef8
FW
872 if (list_empty(&cpuctx->rotation_list)) {
873 int was_empty = list_empty(head);
e9d2b064 874 list_add(&cpuctx->rotation_list, head);
12351ef8
FW
875 if (was_empty)
876 tick_nohz_full_kick();
877 }
9e35ad38 878}
9e35ad38 879
cdd6c482 880static void get_ctx(struct perf_event_context *ctx)
a63eaf34 881{
e5289d4a 882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
883}
884
cdd6c482 885static void put_ctx(struct perf_event_context *ctx)
a63eaf34 886{
564c2b21
PM
887 if (atomic_dec_and_test(&ctx->refcount)) {
888 if (ctx->parent_ctx)
889 put_ctx(ctx->parent_ctx);
c93f7669
PM
890 if (ctx->task)
891 put_task_struct(ctx->task);
cb796ff3 892 kfree_rcu(ctx, rcu_head);
564c2b21 893 }
a63eaf34
PM
894}
895
cdd6c482 896static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
897{
898 if (ctx->parent_ctx) {
899 put_ctx(ctx->parent_ctx);
900 ctx->parent_ctx = NULL;
901 }
902}
903
6844c09d
ACM
904static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
905{
906 /*
907 * only top level events have the pid namespace they were created in
908 */
909 if (event->parent)
910 event = event->parent;
911
912 return task_tgid_nr_ns(p, event->ns);
913}
914
915static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
916{
917 /*
918 * only top level events have the pid namespace they were created in
919 */
920 if (event->parent)
921 event = event->parent;
922
923 return task_pid_nr_ns(p, event->ns);
924}
925
7f453c24 926/*
cdd6c482 927 * If we inherit events we want to return the parent event id
7f453c24
PZ
928 * to userspace.
929 */
cdd6c482 930static u64 primary_event_id(struct perf_event *event)
7f453c24 931{
cdd6c482 932 u64 id = event->id;
7f453c24 933
cdd6c482
IM
934 if (event->parent)
935 id = event->parent->id;
7f453c24
PZ
936
937 return id;
938}
939
25346b93 940/*
cdd6c482 941 * Get the perf_event_context for a task and lock it.
25346b93
PM
942 * This has to cope with with the fact that until it is locked,
943 * the context could get moved to another task.
944 */
cdd6c482 945static struct perf_event_context *
8dc85d54 946perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 947{
cdd6c482 948 struct perf_event_context *ctx;
25346b93
PM
949
950 rcu_read_lock();
9ed6060d 951retry:
8dc85d54 952 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
953 if (ctx) {
954 /*
955 * If this context is a clone of another, it might
956 * get swapped for another underneath us by
cdd6c482 957 * perf_event_task_sched_out, though the
25346b93
PM
958 * rcu_read_lock() protects us from any context
959 * getting freed. Lock the context and check if it
960 * got swapped before we could get the lock, and retry
961 * if so. If we locked the right context, then it
962 * can't get swapped on us any more.
963 */
e625cce1 964 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 965 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 966 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
25346b93
PM
967 goto retry;
968 }
b49a9e7e
PZ
969
970 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 971 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
972 ctx = NULL;
973 }
25346b93
PM
974 }
975 rcu_read_unlock();
976 return ctx;
977}
978
979/*
980 * Get the context for a task and increment its pin_count so it
981 * can't get swapped to another task. This also increments its
982 * reference count so that the context can't get freed.
983 */
8dc85d54
PZ
984static struct perf_event_context *
985perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 986{
cdd6c482 987 struct perf_event_context *ctx;
25346b93
PM
988 unsigned long flags;
989
8dc85d54 990 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
991 if (ctx) {
992 ++ctx->pin_count;
e625cce1 993 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
994 }
995 return ctx;
996}
997
cdd6c482 998static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
999{
1000 unsigned long flags;
1001
e625cce1 1002 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1003 --ctx->pin_count;
e625cce1 1004 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1005}
1006
f67218c3
PZ
1007/*
1008 * Update the record of the current time in a context.
1009 */
1010static void update_context_time(struct perf_event_context *ctx)
1011{
1012 u64 now = perf_clock();
1013
1014 ctx->time += now - ctx->timestamp;
1015 ctx->timestamp = now;
1016}
1017
4158755d
SE
1018static u64 perf_event_time(struct perf_event *event)
1019{
1020 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1021
1022 if (is_cgroup_event(event))
1023 return perf_cgroup_event_time(event);
1024
4158755d
SE
1025 return ctx ? ctx->time : 0;
1026}
1027
f67218c3
PZ
1028/*
1029 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1030 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1031 */
1032static void update_event_times(struct perf_event *event)
1033{
1034 struct perf_event_context *ctx = event->ctx;
1035 u64 run_end;
1036
1037 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1038 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1039 return;
e5d1367f
SE
1040 /*
1041 * in cgroup mode, time_enabled represents
1042 * the time the event was enabled AND active
1043 * tasks were in the monitored cgroup. This is
1044 * independent of the activity of the context as
1045 * there may be a mix of cgroup and non-cgroup events.
1046 *
1047 * That is why we treat cgroup events differently
1048 * here.
1049 */
1050 if (is_cgroup_event(event))
46cd6a7f 1051 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1052 else if (ctx->is_active)
1053 run_end = ctx->time;
acd1d7c1
PZ
1054 else
1055 run_end = event->tstamp_stopped;
1056
1057 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1058
1059 if (event->state == PERF_EVENT_STATE_INACTIVE)
1060 run_end = event->tstamp_stopped;
1061 else
4158755d 1062 run_end = perf_event_time(event);
f67218c3
PZ
1063
1064 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1065
f67218c3
PZ
1066}
1067
96c21a46
PZ
1068/*
1069 * Update total_time_enabled and total_time_running for all events in a group.
1070 */
1071static void update_group_times(struct perf_event *leader)
1072{
1073 struct perf_event *event;
1074
1075 update_event_times(leader);
1076 list_for_each_entry(event, &leader->sibling_list, group_entry)
1077 update_event_times(event);
1078}
1079
889ff015
FW
1080static struct list_head *
1081ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1082{
1083 if (event->attr.pinned)
1084 return &ctx->pinned_groups;
1085 else
1086 return &ctx->flexible_groups;
1087}
1088
fccc714b 1089/*
cdd6c482 1090 * Add a event from the lists for its context.
fccc714b
PZ
1091 * Must be called with ctx->mutex and ctx->lock held.
1092 */
04289bb9 1093static void
cdd6c482 1094list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1095{
8a49542c
PZ
1096 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1097 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1098
1099 /*
8a49542c
PZ
1100 * If we're a stand alone event or group leader, we go to the context
1101 * list, group events are kept attached to the group so that
1102 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1103 */
8a49542c 1104 if (event->group_leader == event) {
889ff015
FW
1105 struct list_head *list;
1106
d6f962b5
FW
1107 if (is_software_event(event))
1108 event->group_flags |= PERF_GROUP_SOFTWARE;
1109
889ff015
FW
1110 list = ctx_group_list(event, ctx);
1111 list_add_tail(&event->group_entry, list);
5c148194 1112 }
592903cd 1113
08309379 1114 if (is_cgroup_event(event))
e5d1367f 1115 ctx->nr_cgroups++;
e5d1367f 1116
d010b332
SE
1117 if (has_branch_stack(event))
1118 ctx->nr_branch_stack++;
1119
cdd6c482 1120 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1121 if (!ctx->nr_events)
108b02cf 1122 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1123 ctx->nr_events++;
1124 if (event->attr.inherit_stat)
bfbd3381 1125 ctx->nr_stat++;
04289bb9
IM
1126}
1127
0231bb53
JO
1128/*
1129 * Initialize event state based on the perf_event_attr::disabled.
1130 */
1131static inline void perf_event__state_init(struct perf_event *event)
1132{
1133 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1134 PERF_EVENT_STATE_INACTIVE;
1135}
1136
c320c7b7
ACM
1137/*
1138 * Called at perf_event creation and when events are attached/detached from a
1139 * group.
1140 */
1141static void perf_event__read_size(struct perf_event *event)
1142{
1143 int entry = sizeof(u64); /* value */
1144 int size = 0;
1145 int nr = 1;
1146
1147 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1148 size += sizeof(u64);
1149
1150 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1151 size += sizeof(u64);
1152
1153 if (event->attr.read_format & PERF_FORMAT_ID)
1154 entry += sizeof(u64);
1155
1156 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1157 nr += event->group_leader->nr_siblings;
1158 size += sizeof(u64);
1159 }
1160
1161 size += entry * nr;
1162 event->read_size = size;
1163}
1164
1165static void perf_event__header_size(struct perf_event *event)
1166{
1167 struct perf_sample_data *data;
1168 u64 sample_type = event->attr.sample_type;
1169 u16 size = 0;
1170
1171 perf_event__read_size(event);
1172
1173 if (sample_type & PERF_SAMPLE_IP)
1174 size += sizeof(data->ip);
1175
6844c09d
ACM
1176 if (sample_type & PERF_SAMPLE_ADDR)
1177 size += sizeof(data->addr);
1178
1179 if (sample_type & PERF_SAMPLE_PERIOD)
1180 size += sizeof(data->period);
1181
c3feedf2
AK
1182 if (sample_type & PERF_SAMPLE_WEIGHT)
1183 size += sizeof(data->weight);
1184
6844c09d
ACM
1185 if (sample_type & PERF_SAMPLE_READ)
1186 size += event->read_size;
1187
d6be9ad6
SE
1188 if (sample_type & PERF_SAMPLE_DATA_SRC)
1189 size += sizeof(data->data_src.val);
1190
6844c09d
ACM
1191 event->header_size = size;
1192}
1193
1194static void perf_event__id_header_size(struct perf_event *event)
1195{
1196 struct perf_sample_data *data;
1197 u64 sample_type = event->attr.sample_type;
1198 u16 size = 0;
1199
c320c7b7
ACM
1200 if (sample_type & PERF_SAMPLE_TID)
1201 size += sizeof(data->tid_entry);
1202
1203 if (sample_type & PERF_SAMPLE_TIME)
1204 size += sizeof(data->time);
1205
c320c7b7
ACM
1206 if (sample_type & PERF_SAMPLE_ID)
1207 size += sizeof(data->id);
1208
1209 if (sample_type & PERF_SAMPLE_STREAM_ID)
1210 size += sizeof(data->stream_id);
1211
1212 if (sample_type & PERF_SAMPLE_CPU)
1213 size += sizeof(data->cpu_entry);
1214
6844c09d 1215 event->id_header_size = size;
c320c7b7
ACM
1216}
1217
8a49542c
PZ
1218static void perf_group_attach(struct perf_event *event)
1219{
c320c7b7 1220 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1221
74c3337c
PZ
1222 /*
1223 * We can have double attach due to group movement in perf_event_open.
1224 */
1225 if (event->attach_state & PERF_ATTACH_GROUP)
1226 return;
1227
8a49542c
PZ
1228 event->attach_state |= PERF_ATTACH_GROUP;
1229
1230 if (group_leader == event)
1231 return;
1232
1233 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1234 !is_software_event(event))
1235 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1236
1237 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1238 group_leader->nr_siblings++;
c320c7b7
ACM
1239
1240 perf_event__header_size(group_leader);
1241
1242 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1243 perf_event__header_size(pos);
8a49542c
PZ
1244}
1245
a63eaf34 1246/*
cdd6c482 1247 * Remove a event from the lists for its context.
fccc714b 1248 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1249 */
04289bb9 1250static void
cdd6c482 1251list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1252{
68cacd29 1253 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1254 /*
1255 * We can have double detach due to exit/hot-unplug + close.
1256 */
1257 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1258 return;
8a49542c
PZ
1259
1260 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1261
68cacd29 1262 if (is_cgroup_event(event)) {
e5d1367f 1263 ctx->nr_cgroups--;
68cacd29
SE
1264 cpuctx = __get_cpu_context(ctx);
1265 /*
1266 * if there are no more cgroup events
1267 * then cler cgrp to avoid stale pointer
1268 * in update_cgrp_time_from_cpuctx()
1269 */
1270 if (!ctx->nr_cgroups)
1271 cpuctx->cgrp = NULL;
1272 }
e5d1367f 1273
d010b332
SE
1274 if (has_branch_stack(event))
1275 ctx->nr_branch_stack--;
1276
cdd6c482
IM
1277 ctx->nr_events--;
1278 if (event->attr.inherit_stat)
bfbd3381 1279 ctx->nr_stat--;
8bc20959 1280
cdd6c482 1281 list_del_rcu(&event->event_entry);
04289bb9 1282
8a49542c
PZ
1283 if (event->group_leader == event)
1284 list_del_init(&event->group_entry);
5c148194 1285
96c21a46 1286 update_group_times(event);
b2e74a26
SE
1287
1288 /*
1289 * If event was in error state, then keep it
1290 * that way, otherwise bogus counts will be
1291 * returned on read(). The only way to get out
1292 * of error state is by explicit re-enabling
1293 * of the event
1294 */
1295 if (event->state > PERF_EVENT_STATE_OFF)
1296 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1297}
1298
8a49542c 1299static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1300{
1301 struct perf_event *sibling, *tmp;
8a49542c
PZ
1302 struct list_head *list = NULL;
1303
1304 /*
1305 * We can have double detach due to exit/hot-unplug + close.
1306 */
1307 if (!(event->attach_state & PERF_ATTACH_GROUP))
1308 return;
1309
1310 event->attach_state &= ~PERF_ATTACH_GROUP;
1311
1312 /*
1313 * If this is a sibling, remove it from its group.
1314 */
1315 if (event->group_leader != event) {
1316 list_del_init(&event->group_entry);
1317 event->group_leader->nr_siblings--;
c320c7b7 1318 goto out;
8a49542c
PZ
1319 }
1320
1321 if (!list_empty(&event->group_entry))
1322 list = &event->group_entry;
2e2af50b 1323
04289bb9 1324 /*
cdd6c482
IM
1325 * If this was a group event with sibling events then
1326 * upgrade the siblings to singleton events by adding them
8a49542c 1327 * to whatever list we are on.
04289bb9 1328 */
cdd6c482 1329 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1330 if (list)
1331 list_move_tail(&sibling->group_entry, list);
04289bb9 1332 sibling->group_leader = sibling;
d6f962b5
FW
1333
1334 /* Inherit group flags from the previous leader */
1335 sibling->group_flags = event->group_flags;
04289bb9 1336 }
c320c7b7
ACM
1337
1338out:
1339 perf_event__header_size(event->group_leader);
1340
1341 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1342 perf_event__header_size(tmp);
04289bb9
IM
1343}
1344
fa66f07a
SE
1345static inline int
1346event_filter_match(struct perf_event *event)
1347{
e5d1367f
SE
1348 return (event->cpu == -1 || event->cpu == smp_processor_id())
1349 && perf_cgroup_match(event);
fa66f07a
SE
1350}
1351
9ffcfa6f
SE
1352static void
1353event_sched_out(struct perf_event *event,
3b6f9e5c 1354 struct perf_cpu_context *cpuctx,
cdd6c482 1355 struct perf_event_context *ctx)
3b6f9e5c 1356{
4158755d 1357 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1358 u64 delta;
1359 /*
1360 * An event which could not be activated because of
1361 * filter mismatch still needs to have its timings
1362 * maintained, otherwise bogus information is return
1363 * via read() for time_enabled, time_running:
1364 */
1365 if (event->state == PERF_EVENT_STATE_INACTIVE
1366 && !event_filter_match(event)) {
e5d1367f 1367 delta = tstamp - event->tstamp_stopped;
fa66f07a 1368 event->tstamp_running += delta;
4158755d 1369 event->tstamp_stopped = tstamp;
fa66f07a
SE
1370 }
1371
cdd6c482 1372 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1373 return;
3b6f9e5c 1374
cdd6c482
IM
1375 event->state = PERF_EVENT_STATE_INACTIVE;
1376 if (event->pending_disable) {
1377 event->pending_disable = 0;
1378 event->state = PERF_EVENT_STATE_OFF;
970892a9 1379 }
4158755d 1380 event->tstamp_stopped = tstamp;
a4eaf7f1 1381 event->pmu->del(event, 0);
cdd6c482 1382 event->oncpu = -1;
3b6f9e5c 1383
cdd6c482 1384 if (!is_software_event(event))
3b6f9e5c
PM
1385 cpuctx->active_oncpu--;
1386 ctx->nr_active--;
0f5a2601
PZ
1387 if (event->attr.freq && event->attr.sample_freq)
1388 ctx->nr_freq--;
cdd6c482 1389 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1390 cpuctx->exclusive = 0;
1391}
1392
d859e29f 1393static void
cdd6c482 1394group_sched_out(struct perf_event *group_event,
d859e29f 1395 struct perf_cpu_context *cpuctx,
cdd6c482 1396 struct perf_event_context *ctx)
d859e29f 1397{
cdd6c482 1398 struct perf_event *event;
fa66f07a 1399 int state = group_event->state;
d859e29f 1400
cdd6c482 1401 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1402
1403 /*
1404 * Schedule out siblings (if any):
1405 */
cdd6c482
IM
1406 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1407 event_sched_out(event, cpuctx, ctx);
d859e29f 1408
fa66f07a 1409 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1410 cpuctx->exclusive = 0;
1411}
1412
0793a61d 1413/*
cdd6c482 1414 * Cross CPU call to remove a performance event
0793a61d 1415 *
cdd6c482 1416 * We disable the event on the hardware level first. After that we
0793a61d
TG
1417 * remove it from the context list.
1418 */
fe4b04fa 1419static int __perf_remove_from_context(void *info)
0793a61d 1420{
cdd6c482
IM
1421 struct perf_event *event = info;
1422 struct perf_event_context *ctx = event->ctx;
108b02cf 1423 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1424
e625cce1 1425 raw_spin_lock(&ctx->lock);
cdd6c482 1426 event_sched_out(event, cpuctx, ctx);
cdd6c482 1427 list_del_event(event, ctx);
64ce3126
PZ
1428 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1429 ctx->is_active = 0;
1430 cpuctx->task_ctx = NULL;
1431 }
e625cce1 1432 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1433
1434 return 0;
0793a61d
TG
1435}
1436
1437
1438/*
cdd6c482 1439 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1440 *
cdd6c482 1441 * CPU events are removed with a smp call. For task events we only
0793a61d 1442 * call when the task is on a CPU.
c93f7669 1443 *
cdd6c482
IM
1444 * If event->ctx is a cloned context, callers must make sure that
1445 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1446 * remains valid. This is OK when called from perf_release since
1447 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1448 * When called from perf_event_exit_task, it's OK because the
c93f7669 1449 * context has been detached from its task.
0793a61d 1450 */
fe4b04fa 1451static void perf_remove_from_context(struct perf_event *event)
0793a61d 1452{
cdd6c482 1453 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1454 struct task_struct *task = ctx->task;
1455
fe4b04fa
PZ
1456 lockdep_assert_held(&ctx->mutex);
1457
0793a61d
TG
1458 if (!task) {
1459 /*
cdd6c482 1460 * Per cpu events are removed via an smp call and
af901ca1 1461 * the removal is always successful.
0793a61d 1462 */
fe4b04fa 1463 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1464 return;
1465 }
1466
1467retry:
fe4b04fa
PZ
1468 if (!task_function_call(task, __perf_remove_from_context, event))
1469 return;
0793a61d 1470
e625cce1 1471 raw_spin_lock_irq(&ctx->lock);
0793a61d 1472 /*
fe4b04fa
PZ
1473 * If we failed to find a running task, but find the context active now
1474 * that we've acquired the ctx->lock, retry.
0793a61d 1475 */
fe4b04fa 1476 if (ctx->is_active) {
e625cce1 1477 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1478 goto retry;
1479 }
1480
1481 /*
fe4b04fa
PZ
1482 * Since the task isn't running, its safe to remove the event, us
1483 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1484 */
fe4b04fa 1485 list_del_event(event, ctx);
e625cce1 1486 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1487}
1488
d859e29f 1489/*
cdd6c482 1490 * Cross CPU call to disable a performance event
d859e29f 1491 */
500ad2d8 1492int __perf_event_disable(void *info)
d859e29f 1493{
cdd6c482 1494 struct perf_event *event = info;
cdd6c482 1495 struct perf_event_context *ctx = event->ctx;
108b02cf 1496 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1497
1498 /*
cdd6c482
IM
1499 * If this is a per-task event, need to check whether this
1500 * event's task is the current task on this cpu.
fe4b04fa
PZ
1501 *
1502 * Can trigger due to concurrent perf_event_context_sched_out()
1503 * flipping contexts around.
d859e29f 1504 */
665c2142 1505 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1506 return -EINVAL;
d859e29f 1507
e625cce1 1508 raw_spin_lock(&ctx->lock);
d859e29f
PM
1509
1510 /*
cdd6c482 1511 * If the event is on, turn it off.
d859e29f
PM
1512 * If it is in error state, leave it in error state.
1513 */
cdd6c482 1514 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1515 update_context_time(ctx);
e5d1367f 1516 update_cgrp_time_from_event(event);
cdd6c482
IM
1517 update_group_times(event);
1518 if (event == event->group_leader)
1519 group_sched_out(event, cpuctx, ctx);
d859e29f 1520 else
cdd6c482
IM
1521 event_sched_out(event, cpuctx, ctx);
1522 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1523 }
1524
e625cce1 1525 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1526
1527 return 0;
d859e29f
PM
1528}
1529
1530/*
cdd6c482 1531 * Disable a event.
c93f7669 1532 *
cdd6c482
IM
1533 * If event->ctx is a cloned context, callers must make sure that
1534 * every task struct that event->ctx->task could possibly point to
c93f7669 1535 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1536 * perf_event_for_each_child or perf_event_for_each because they
1537 * hold the top-level event's child_mutex, so any descendant that
1538 * goes to exit will block in sync_child_event.
1539 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1540 * is the current context on this CPU and preemption is disabled,
cdd6c482 1541 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1542 */
44234adc 1543void perf_event_disable(struct perf_event *event)
d859e29f 1544{
cdd6c482 1545 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1546 struct task_struct *task = ctx->task;
1547
1548 if (!task) {
1549 /*
cdd6c482 1550 * Disable the event on the cpu that it's on
d859e29f 1551 */
fe4b04fa 1552 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1553 return;
1554 }
1555
9ed6060d 1556retry:
fe4b04fa
PZ
1557 if (!task_function_call(task, __perf_event_disable, event))
1558 return;
d859e29f 1559
e625cce1 1560 raw_spin_lock_irq(&ctx->lock);
d859e29f 1561 /*
cdd6c482 1562 * If the event is still active, we need to retry the cross-call.
d859e29f 1563 */
cdd6c482 1564 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1565 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1566 /*
1567 * Reload the task pointer, it might have been changed by
1568 * a concurrent perf_event_context_sched_out().
1569 */
1570 task = ctx->task;
d859e29f
PM
1571 goto retry;
1572 }
1573
1574 /*
1575 * Since we have the lock this context can't be scheduled
1576 * in, so we can change the state safely.
1577 */
cdd6c482
IM
1578 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1579 update_group_times(event);
1580 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1581 }
e625cce1 1582 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1583}
dcfce4a0 1584EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1585
e5d1367f
SE
1586static void perf_set_shadow_time(struct perf_event *event,
1587 struct perf_event_context *ctx,
1588 u64 tstamp)
1589{
1590 /*
1591 * use the correct time source for the time snapshot
1592 *
1593 * We could get by without this by leveraging the
1594 * fact that to get to this function, the caller
1595 * has most likely already called update_context_time()
1596 * and update_cgrp_time_xx() and thus both timestamp
1597 * are identical (or very close). Given that tstamp is,
1598 * already adjusted for cgroup, we could say that:
1599 * tstamp - ctx->timestamp
1600 * is equivalent to
1601 * tstamp - cgrp->timestamp.
1602 *
1603 * Then, in perf_output_read(), the calculation would
1604 * work with no changes because:
1605 * - event is guaranteed scheduled in
1606 * - no scheduled out in between
1607 * - thus the timestamp would be the same
1608 *
1609 * But this is a bit hairy.
1610 *
1611 * So instead, we have an explicit cgroup call to remain
1612 * within the time time source all along. We believe it
1613 * is cleaner and simpler to understand.
1614 */
1615 if (is_cgroup_event(event))
1616 perf_cgroup_set_shadow_time(event, tstamp);
1617 else
1618 event->shadow_ctx_time = tstamp - ctx->timestamp;
1619}
1620
4fe757dd
PZ
1621#define MAX_INTERRUPTS (~0ULL)
1622
1623static void perf_log_throttle(struct perf_event *event, int enable);
1624
235c7fc7 1625static int
9ffcfa6f 1626event_sched_in(struct perf_event *event,
235c7fc7 1627 struct perf_cpu_context *cpuctx,
6e37738a 1628 struct perf_event_context *ctx)
235c7fc7 1629{
4158755d
SE
1630 u64 tstamp = perf_event_time(event);
1631
cdd6c482 1632 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1633 return 0;
1634
cdd6c482 1635 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1636 event->oncpu = smp_processor_id();
4fe757dd
PZ
1637
1638 /*
1639 * Unthrottle events, since we scheduled we might have missed several
1640 * ticks already, also for a heavily scheduling task there is little
1641 * guarantee it'll get a tick in a timely manner.
1642 */
1643 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1644 perf_log_throttle(event, 1);
1645 event->hw.interrupts = 0;
1646 }
1647
235c7fc7
IM
1648 /*
1649 * The new state must be visible before we turn it on in the hardware:
1650 */
1651 smp_wmb();
1652
a4eaf7f1 1653 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1654 event->state = PERF_EVENT_STATE_INACTIVE;
1655 event->oncpu = -1;
235c7fc7
IM
1656 return -EAGAIN;
1657 }
1658
4158755d 1659 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1660
e5d1367f 1661 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1662
cdd6c482 1663 if (!is_software_event(event))
3b6f9e5c 1664 cpuctx->active_oncpu++;
235c7fc7 1665 ctx->nr_active++;
0f5a2601
PZ
1666 if (event->attr.freq && event->attr.sample_freq)
1667 ctx->nr_freq++;
235c7fc7 1668
cdd6c482 1669 if (event->attr.exclusive)
3b6f9e5c
PM
1670 cpuctx->exclusive = 1;
1671
235c7fc7
IM
1672 return 0;
1673}
1674
6751b71e 1675static int
cdd6c482 1676group_sched_in(struct perf_event *group_event,
6751b71e 1677 struct perf_cpu_context *cpuctx,
6e37738a 1678 struct perf_event_context *ctx)
6751b71e 1679{
6bde9b6c 1680 struct perf_event *event, *partial_group = NULL;
51b0fe39 1681 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1682 u64 now = ctx->time;
1683 bool simulate = false;
6751b71e 1684
cdd6c482 1685 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1686 return 0;
1687
ad5133b7 1688 pmu->start_txn(pmu);
6bde9b6c 1689
9ffcfa6f 1690 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1691 pmu->cancel_txn(pmu);
9e630205 1692 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1693 return -EAGAIN;
90151c35 1694 }
6751b71e
PM
1695
1696 /*
1697 * Schedule in siblings as one group (if any):
1698 */
cdd6c482 1699 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1700 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1701 partial_group = event;
6751b71e
PM
1702 goto group_error;
1703 }
1704 }
1705
9ffcfa6f 1706 if (!pmu->commit_txn(pmu))
6e85158c 1707 return 0;
9ffcfa6f 1708
6751b71e
PM
1709group_error:
1710 /*
1711 * Groups can be scheduled in as one unit only, so undo any
1712 * partial group before returning:
d7842da4
SE
1713 * The events up to the failed event are scheduled out normally,
1714 * tstamp_stopped will be updated.
1715 *
1716 * The failed events and the remaining siblings need to have
1717 * their timings updated as if they had gone thru event_sched_in()
1718 * and event_sched_out(). This is required to get consistent timings
1719 * across the group. This also takes care of the case where the group
1720 * could never be scheduled by ensuring tstamp_stopped is set to mark
1721 * the time the event was actually stopped, such that time delta
1722 * calculation in update_event_times() is correct.
6751b71e 1723 */
cdd6c482
IM
1724 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1725 if (event == partial_group)
d7842da4
SE
1726 simulate = true;
1727
1728 if (simulate) {
1729 event->tstamp_running += now - event->tstamp_stopped;
1730 event->tstamp_stopped = now;
1731 } else {
1732 event_sched_out(event, cpuctx, ctx);
1733 }
6751b71e 1734 }
9ffcfa6f 1735 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1736
ad5133b7 1737 pmu->cancel_txn(pmu);
90151c35 1738
9e630205
SE
1739 perf_cpu_hrtimer_restart(cpuctx);
1740
6751b71e
PM
1741 return -EAGAIN;
1742}
1743
3b6f9e5c 1744/*
cdd6c482 1745 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1746 */
cdd6c482 1747static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1748 struct perf_cpu_context *cpuctx,
1749 int can_add_hw)
1750{
1751 /*
cdd6c482 1752 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1753 */
d6f962b5 1754 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1755 return 1;
1756 /*
1757 * If an exclusive group is already on, no other hardware
cdd6c482 1758 * events can go on.
3b6f9e5c
PM
1759 */
1760 if (cpuctx->exclusive)
1761 return 0;
1762 /*
1763 * If this group is exclusive and there are already
cdd6c482 1764 * events on the CPU, it can't go on.
3b6f9e5c 1765 */
cdd6c482 1766 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1767 return 0;
1768 /*
1769 * Otherwise, try to add it if all previous groups were able
1770 * to go on.
1771 */
1772 return can_add_hw;
1773}
1774
cdd6c482
IM
1775static void add_event_to_ctx(struct perf_event *event,
1776 struct perf_event_context *ctx)
53cfbf59 1777{
4158755d
SE
1778 u64 tstamp = perf_event_time(event);
1779
cdd6c482 1780 list_add_event(event, ctx);
8a49542c 1781 perf_group_attach(event);
4158755d
SE
1782 event->tstamp_enabled = tstamp;
1783 event->tstamp_running = tstamp;
1784 event->tstamp_stopped = tstamp;
53cfbf59
PM
1785}
1786
2c29ef0f
PZ
1787static void task_ctx_sched_out(struct perf_event_context *ctx);
1788static void
1789ctx_sched_in(struct perf_event_context *ctx,
1790 struct perf_cpu_context *cpuctx,
1791 enum event_type_t event_type,
1792 struct task_struct *task);
fe4b04fa 1793
dce5855b
PZ
1794static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1795 struct perf_event_context *ctx,
1796 struct task_struct *task)
1797{
1798 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1799 if (ctx)
1800 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1801 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1802 if (ctx)
1803 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1804}
1805
0793a61d 1806/*
cdd6c482 1807 * Cross CPU call to install and enable a performance event
682076ae
PZ
1808 *
1809 * Must be called with ctx->mutex held
0793a61d 1810 */
fe4b04fa 1811static int __perf_install_in_context(void *info)
0793a61d 1812{
cdd6c482
IM
1813 struct perf_event *event = info;
1814 struct perf_event_context *ctx = event->ctx;
108b02cf 1815 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1816 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1817 struct task_struct *task = current;
1818
b58f6b0d 1819 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1820 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1821
1822 /*
2c29ef0f 1823 * If there was an active task_ctx schedule it out.
0793a61d 1824 */
b58f6b0d 1825 if (task_ctx)
2c29ef0f 1826 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1827
1828 /*
1829 * If the context we're installing events in is not the
1830 * active task_ctx, flip them.
1831 */
1832 if (ctx->task && task_ctx != ctx) {
1833 if (task_ctx)
1834 raw_spin_unlock(&task_ctx->lock);
1835 raw_spin_lock(&ctx->lock);
1836 task_ctx = ctx;
1837 }
1838
1839 if (task_ctx) {
1840 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1841 task = task_ctx->task;
1842 }
b58f6b0d 1843
2c29ef0f 1844 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1845
4af4998b 1846 update_context_time(ctx);
e5d1367f
SE
1847 /*
1848 * update cgrp time only if current cgrp
1849 * matches event->cgrp. Must be done before
1850 * calling add_event_to_ctx()
1851 */
1852 update_cgrp_time_from_event(event);
0793a61d 1853
cdd6c482 1854 add_event_to_ctx(event, ctx);
0793a61d 1855
d859e29f 1856 /*
2c29ef0f 1857 * Schedule everything back in
d859e29f 1858 */
dce5855b 1859 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1860
1861 perf_pmu_enable(cpuctx->ctx.pmu);
1862 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1863
1864 return 0;
0793a61d
TG
1865}
1866
1867/*
cdd6c482 1868 * Attach a performance event to a context
0793a61d 1869 *
cdd6c482
IM
1870 * First we add the event to the list with the hardware enable bit
1871 * in event->hw_config cleared.
0793a61d 1872 *
cdd6c482 1873 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1874 * call to enable it in the task context. The task might have been
1875 * scheduled away, but we check this in the smp call again.
1876 */
1877static void
cdd6c482
IM
1878perf_install_in_context(struct perf_event_context *ctx,
1879 struct perf_event *event,
0793a61d
TG
1880 int cpu)
1881{
1882 struct task_struct *task = ctx->task;
1883
fe4b04fa
PZ
1884 lockdep_assert_held(&ctx->mutex);
1885
c3f00c70 1886 event->ctx = ctx;
0cda4c02
YZ
1887 if (event->cpu != -1)
1888 event->cpu = cpu;
c3f00c70 1889
0793a61d
TG
1890 if (!task) {
1891 /*
cdd6c482 1892 * Per cpu events are installed via an smp call and
af901ca1 1893 * the install is always successful.
0793a61d 1894 */
fe4b04fa 1895 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1896 return;
1897 }
1898
0793a61d 1899retry:
fe4b04fa
PZ
1900 if (!task_function_call(task, __perf_install_in_context, event))
1901 return;
0793a61d 1902
e625cce1 1903 raw_spin_lock_irq(&ctx->lock);
0793a61d 1904 /*
fe4b04fa
PZ
1905 * If we failed to find a running task, but find the context active now
1906 * that we've acquired the ctx->lock, retry.
0793a61d 1907 */
fe4b04fa 1908 if (ctx->is_active) {
e625cce1 1909 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1910 goto retry;
1911 }
1912
1913 /*
fe4b04fa
PZ
1914 * Since the task isn't running, its safe to add the event, us holding
1915 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1916 */
fe4b04fa 1917 add_event_to_ctx(event, ctx);
e625cce1 1918 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1919}
1920
fa289bec 1921/*
cdd6c482 1922 * Put a event into inactive state and update time fields.
fa289bec
PM
1923 * Enabling the leader of a group effectively enables all
1924 * the group members that aren't explicitly disabled, so we
1925 * have to update their ->tstamp_enabled also.
1926 * Note: this works for group members as well as group leaders
1927 * since the non-leader members' sibling_lists will be empty.
1928 */
1d9b482e 1929static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1930{
cdd6c482 1931 struct perf_event *sub;
4158755d 1932 u64 tstamp = perf_event_time(event);
fa289bec 1933
cdd6c482 1934 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1935 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1936 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1937 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1938 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1939 }
fa289bec
PM
1940}
1941
d859e29f 1942/*
cdd6c482 1943 * Cross CPU call to enable a performance event
d859e29f 1944 */
fe4b04fa 1945static int __perf_event_enable(void *info)
04289bb9 1946{
cdd6c482 1947 struct perf_event *event = info;
cdd6c482
IM
1948 struct perf_event_context *ctx = event->ctx;
1949 struct perf_event *leader = event->group_leader;
108b02cf 1950 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1951 int err;
04289bb9 1952
06f41796
JO
1953 /*
1954 * There's a time window between 'ctx->is_active' check
1955 * in perf_event_enable function and this place having:
1956 * - IRQs on
1957 * - ctx->lock unlocked
1958 *
1959 * where the task could be killed and 'ctx' deactivated
1960 * by perf_event_exit_task.
1961 */
1962 if (!ctx->is_active)
fe4b04fa 1963 return -EINVAL;
3cbed429 1964
e625cce1 1965 raw_spin_lock(&ctx->lock);
4af4998b 1966 update_context_time(ctx);
d859e29f 1967
cdd6c482 1968 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1969 goto unlock;
e5d1367f
SE
1970
1971 /*
1972 * set current task's cgroup time reference point
1973 */
3f7cce3c 1974 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1975
1d9b482e 1976 __perf_event_mark_enabled(event);
04289bb9 1977
e5d1367f
SE
1978 if (!event_filter_match(event)) {
1979 if (is_cgroup_event(event))
1980 perf_cgroup_defer_enabled(event);
f4c4176f 1981 goto unlock;
e5d1367f 1982 }
f4c4176f 1983
04289bb9 1984 /*
cdd6c482 1985 * If the event is in a group and isn't the group leader,
d859e29f 1986 * then don't put it on unless the group is on.
04289bb9 1987 */
cdd6c482 1988 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 1989 goto unlock;
3b6f9e5c 1990
cdd6c482 1991 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 1992 err = -EEXIST;
e758a33d 1993 } else {
cdd6c482 1994 if (event == leader)
6e37738a 1995 err = group_sched_in(event, cpuctx, ctx);
e758a33d 1996 else
6e37738a 1997 err = event_sched_in(event, cpuctx, ctx);
e758a33d 1998 }
d859e29f
PM
1999
2000 if (err) {
2001 /*
cdd6c482 2002 * If this event can't go on and it's part of a
d859e29f
PM
2003 * group, then the whole group has to come off.
2004 */
9e630205 2005 if (leader != event) {
d859e29f 2006 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
2007 perf_cpu_hrtimer_restart(cpuctx);
2008 }
0d48696f 2009 if (leader->attr.pinned) {
53cfbf59 2010 update_group_times(leader);
cdd6c482 2011 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2012 }
d859e29f
PM
2013 }
2014
9ed6060d 2015unlock:
e625cce1 2016 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2017
2018 return 0;
d859e29f
PM
2019}
2020
2021/*
cdd6c482 2022 * Enable a event.
c93f7669 2023 *
cdd6c482
IM
2024 * If event->ctx is a cloned context, callers must make sure that
2025 * every task struct that event->ctx->task could possibly point to
c93f7669 2026 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2027 * perf_event_for_each_child or perf_event_for_each as described
2028 * for perf_event_disable.
d859e29f 2029 */
44234adc 2030void perf_event_enable(struct perf_event *event)
d859e29f 2031{
cdd6c482 2032 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2033 struct task_struct *task = ctx->task;
2034
2035 if (!task) {
2036 /*
cdd6c482 2037 * Enable the event on the cpu that it's on
d859e29f 2038 */
fe4b04fa 2039 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2040 return;
2041 }
2042
e625cce1 2043 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2044 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2045 goto out;
2046
2047 /*
cdd6c482
IM
2048 * If the event is in error state, clear that first.
2049 * That way, if we see the event in error state below, we
d859e29f
PM
2050 * know that it has gone back into error state, as distinct
2051 * from the task having been scheduled away before the
2052 * cross-call arrived.
2053 */
cdd6c482
IM
2054 if (event->state == PERF_EVENT_STATE_ERROR)
2055 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2056
9ed6060d 2057retry:
fe4b04fa 2058 if (!ctx->is_active) {
1d9b482e 2059 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2060 goto out;
2061 }
2062
e625cce1 2063 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2064
2065 if (!task_function_call(task, __perf_event_enable, event))
2066 return;
d859e29f 2067
e625cce1 2068 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2069
2070 /*
cdd6c482 2071 * If the context is active and the event is still off,
d859e29f
PM
2072 * we need to retry the cross-call.
2073 */
fe4b04fa
PZ
2074 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2075 /*
2076 * task could have been flipped by a concurrent
2077 * perf_event_context_sched_out()
2078 */
2079 task = ctx->task;
d859e29f 2080 goto retry;
fe4b04fa 2081 }
fa289bec 2082
9ed6060d 2083out:
e625cce1 2084 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2085}
dcfce4a0 2086EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2087
26ca5c11 2088int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2089{
2023b359 2090 /*
cdd6c482 2091 * not supported on inherited events
2023b359 2092 */
2e939d1d 2093 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2094 return -EINVAL;
2095
cdd6c482
IM
2096 atomic_add(refresh, &event->event_limit);
2097 perf_event_enable(event);
2023b359
PZ
2098
2099 return 0;
79f14641 2100}
26ca5c11 2101EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2102
5b0311e1
FW
2103static void ctx_sched_out(struct perf_event_context *ctx,
2104 struct perf_cpu_context *cpuctx,
2105 enum event_type_t event_type)
235c7fc7 2106{
cdd6c482 2107 struct perf_event *event;
db24d33e 2108 int is_active = ctx->is_active;
235c7fc7 2109
db24d33e 2110 ctx->is_active &= ~event_type;
cdd6c482 2111 if (likely(!ctx->nr_events))
facc4307
PZ
2112 return;
2113
4af4998b 2114 update_context_time(ctx);
e5d1367f 2115 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2116 if (!ctx->nr_active)
facc4307 2117 return;
5b0311e1 2118
075e0b00 2119 perf_pmu_disable(ctx->pmu);
db24d33e 2120 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2121 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2122 group_sched_out(event, cpuctx, ctx);
9ed6060d 2123 }
889ff015 2124
db24d33e 2125 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2126 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2127 group_sched_out(event, cpuctx, ctx);
9ed6060d 2128 }
1b9a644f 2129 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2130}
2131
564c2b21
PM
2132/*
2133 * Test whether two contexts are equivalent, i.e. whether they
2134 * have both been cloned from the same version of the same context
cdd6c482
IM
2135 * and they both have the same number of enabled events.
2136 * If the number of enabled events is the same, then the set
2137 * of enabled events should be the same, because these are both
2138 * inherited contexts, therefore we can't access individual events
564c2b21 2139 * in them directly with an fd; we can only enable/disable all
cdd6c482 2140 * events via prctl, or enable/disable all events in a family
564c2b21
PM
2141 * via ioctl, which will have the same effect on both contexts.
2142 */
cdd6c482
IM
2143static int context_equiv(struct perf_event_context *ctx1,
2144 struct perf_event_context *ctx2)
564c2b21
PM
2145{
2146 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 2147 && ctx1->parent_gen == ctx2->parent_gen
25346b93 2148 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
2149}
2150
cdd6c482
IM
2151static void __perf_event_sync_stat(struct perf_event *event,
2152 struct perf_event *next_event)
bfbd3381
PZ
2153{
2154 u64 value;
2155
cdd6c482 2156 if (!event->attr.inherit_stat)
bfbd3381
PZ
2157 return;
2158
2159 /*
cdd6c482 2160 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2161 * because we're in the middle of a context switch and have IRQs
2162 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2163 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2164 * don't need to use it.
2165 */
cdd6c482
IM
2166 switch (event->state) {
2167 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2168 event->pmu->read(event);
2169 /* fall-through */
bfbd3381 2170
cdd6c482
IM
2171 case PERF_EVENT_STATE_INACTIVE:
2172 update_event_times(event);
bfbd3381
PZ
2173 break;
2174
2175 default:
2176 break;
2177 }
2178
2179 /*
cdd6c482 2180 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2181 * values when we flip the contexts.
2182 */
e7850595
PZ
2183 value = local64_read(&next_event->count);
2184 value = local64_xchg(&event->count, value);
2185 local64_set(&next_event->count, value);
bfbd3381 2186
cdd6c482
IM
2187 swap(event->total_time_enabled, next_event->total_time_enabled);
2188 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2189
bfbd3381 2190 /*
19d2e755 2191 * Since we swizzled the values, update the user visible data too.
bfbd3381 2192 */
cdd6c482
IM
2193 perf_event_update_userpage(event);
2194 perf_event_update_userpage(next_event);
bfbd3381
PZ
2195}
2196
2197#define list_next_entry(pos, member) \
2198 list_entry(pos->member.next, typeof(*pos), member)
2199
cdd6c482
IM
2200static void perf_event_sync_stat(struct perf_event_context *ctx,
2201 struct perf_event_context *next_ctx)
bfbd3381 2202{
cdd6c482 2203 struct perf_event *event, *next_event;
bfbd3381
PZ
2204
2205 if (!ctx->nr_stat)
2206 return;
2207
02ffdbc8
PZ
2208 update_context_time(ctx);
2209
cdd6c482
IM
2210 event = list_first_entry(&ctx->event_list,
2211 struct perf_event, event_entry);
bfbd3381 2212
cdd6c482
IM
2213 next_event = list_first_entry(&next_ctx->event_list,
2214 struct perf_event, event_entry);
bfbd3381 2215
cdd6c482
IM
2216 while (&event->event_entry != &ctx->event_list &&
2217 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2218
cdd6c482 2219 __perf_event_sync_stat(event, next_event);
bfbd3381 2220
cdd6c482
IM
2221 event = list_next_entry(event, event_entry);
2222 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2223 }
2224}
2225
fe4b04fa
PZ
2226static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2227 struct task_struct *next)
0793a61d 2228{
8dc85d54 2229 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
2230 struct perf_event_context *next_ctx;
2231 struct perf_event_context *parent;
108b02cf 2232 struct perf_cpu_context *cpuctx;
c93f7669 2233 int do_switch = 1;
0793a61d 2234
108b02cf
PZ
2235 if (likely(!ctx))
2236 return;
10989fb2 2237
108b02cf
PZ
2238 cpuctx = __get_cpu_context(ctx);
2239 if (!cpuctx->task_ctx)
0793a61d
TG
2240 return;
2241
c93f7669
PM
2242 rcu_read_lock();
2243 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 2244 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
2245 if (parent && next_ctx &&
2246 rcu_dereference(next_ctx->parent_ctx) == parent) {
2247 /*
2248 * Looks like the two contexts are clones, so we might be
2249 * able to optimize the context switch. We lock both
2250 * contexts and check that they are clones under the
2251 * lock (including re-checking that neither has been
2252 * uncloned in the meantime). It doesn't matter which
2253 * order we take the locks because no other cpu could
2254 * be trying to lock both of these tasks.
2255 */
e625cce1
TG
2256 raw_spin_lock(&ctx->lock);
2257 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2258 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2259 /*
2260 * XXX do we need a memory barrier of sorts
cdd6c482 2261 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2262 */
8dc85d54
PZ
2263 task->perf_event_ctxp[ctxn] = next_ctx;
2264 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2265 ctx->task = next;
2266 next_ctx->task = task;
2267 do_switch = 0;
bfbd3381 2268
cdd6c482 2269 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2270 }
e625cce1
TG
2271 raw_spin_unlock(&next_ctx->lock);
2272 raw_spin_unlock(&ctx->lock);
564c2b21 2273 }
c93f7669 2274 rcu_read_unlock();
564c2b21 2275
c93f7669 2276 if (do_switch) {
facc4307 2277 raw_spin_lock(&ctx->lock);
5b0311e1 2278 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2279 cpuctx->task_ctx = NULL;
facc4307 2280 raw_spin_unlock(&ctx->lock);
c93f7669 2281 }
0793a61d
TG
2282}
2283
8dc85d54
PZ
2284#define for_each_task_context_nr(ctxn) \
2285 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2286
2287/*
2288 * Called from scheduler to remove the events of the current task,
2289 * with interrupts disabled.
2290 *
2291 * We stop each event and update the event value in event->count.
2292 *
2293 * This does not protect us against NMI, but disable()
2294 * sets the disabled bit in the control field of event _before_
2295 * accessing the event control register. If a NMI hits, then it will
2296 * not restart the event.
2297 */
ab0cce56
JO
2298void __perf_event_task_sched_out(struct task_struct *task,
2299 struct task_struct *next)
8dc85d54
PZ
2300{
2301 int ctxn;
2302
8dc85d54
PZ
2303 for_each_task_context_nr(ctxn)
2304 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2305
2306 /*
2307 * if cgroup events exist on this CPU, then we need
2308 * to check if we have to switch out PMU state.
2309 * cgroup event are system-wide mode only
2310 */
2311 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2312 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2313}
2314
04dc2dbb 2315static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2316{
108b02cf 2317 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2318
a63eaf34
PM
2319 if (!cpuctx->task_ctx)
2320 return;
012b84da
IM
2321
2322 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2323 return;
2324
04dc2dbb 2325 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2326 cpuctx->task_ctx = NULL;
2327}
2328
5b0311e1
FW
2329/*
2330 * Called with IRQs disabled
2331 */
2332static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2333 enum event_type_t event_type)
2334{
2335 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2336}
2337
235c7fc7 2338static void
5b0311e1 2339ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2340 struct perf_cpu_context *cpuctx)
0793a61d 2341{
cdd6c482 2342 struct perf_event *event;
0793a61d 2343
889ff015
FW
2344 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2345 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2346 continue;
5632ab12 2347 if (!event_filter_match(event))
3b6f9e5c
PM
2348 continue;
2349
e5d1367f
SE
2350 /* may need to reset tstamp_enabled */
2351 if (is_cgroup_event(event))
2352 perf_cgroup_mark_enabled(event, ctx);
2353
8c9ed8e1 2354 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2355 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2356
2357 /*
2358 * If this pinned group hasn't been scheduled,
2359 * put it in error state.
2360 */
cdd6c482
IM
2361 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2362 update_group_times(event);
2363 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2364 }
3b6f9e5c 2365 }
5b0311e1
FW
2366}
2367
2368static void
2369ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2370 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2371{
2372 struct perf_event *event;
2373 int can_add_hw = 1;
3b6f9e5c 2374
889ff015
FW
2375 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2376 /* Ignore events in OFF or ERROR state */
2377 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2378 continue;
04289bb9
IM
2379 /*
2380 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2381 * of events:
04289bb9 2382 */
5632ab12 2383 if (!event_filter_match(event))
0793a61d
TG
2384 continue;
2385
e5d1367f
SE
2386 /* may need to reset tstamp_enabled */
2387 if (is_cgroup_event(event))
2388 perf_cgroup_mark_enabled(event, ctx);
2389
9ed6060d 2390 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2391 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2392 can_add_hw = 0;
9ed6060d 2393 }
0793a61d 2394 }
5b0311e1
FW
2395}
2396
2397static void
2398ctx_sched_in(struct perf_event_context *ctx,
2399 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2400 enum event_type_t event_type,
2401 struct task_struct *task)
5b0311e1 2402{
e5d1367f 2403 u64 now;
db24d33e 2404 int is_active = ctx->is_active;
e5d1367f 2405
db24d33e 2406 ctx->is_active |= event_type;
5b0311e1 2407 if (likely(!ctx->nr_events))
facc4307 2408 return;
5b0311e1 2409
e5d1367f
SE
2410 now = perf_clock();
2411 ctx->timestamp = now;
3f7cce3c 2412 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2413 /*
2414 * First go through the list and put on any pinned groups
2415 * in order to give them the best chance of going on.
2416 */
db24d33e 2417 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2418 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2419
2420 /* Then walk through the lower prio flexible groups */
db24d33e 2421 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2422 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2423}
2424
329c0e01 2425static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2426 enum event_type_t event_type,
2427 struct task_struct *task)
329c0e01
FW
2428{
2429 struct perf_event_context *ctx = &cpuctx->ctx;
2430
e5d1367f 2431 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2432}
2433
e5d1367f
SE
2434static void perf_event_context_sched_in(struct perf_event_context *ctx,
2435 struct task_struct *task)
235c7fc7 2436{
108b02cf 2437 struct perf_cpu_context *cpuctx;
235c7fc7 2438
108b02cf 2439 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2440 if (cpuctx->task_ctx == ctx)
2441 return;
2442
facc4307 2443 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2444 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2445 /*
2446 * We want to keep the following priority order:
2447 * cpu pinned (that don't need to move), task pinned,
2448 * cpu flexible, task flexible.
2449 */
2450 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2451
1d5f003f
GN
2452 if (ctx->nr_events)
2453 cpuctx->task_ctx = ctx;
9b33fa6b 2454
86b47c25
GN
2455 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2456
facc4307
PZ
2457 perf_pmu_enable(ctx->pmu);
2458 perf_ctx_unlock(cpuctx, ctx);
2459
b5ab4cd5
PZ
2460 /*
2461 * Since these rotations are per-cpu, we need to ensure the
2462 * cpu-context we got scheduled on is actually rotating.
2463 */
108b02cf 2464 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2465}
2466
d010b332
SE
2467/*
2468 * When sampling the branck stack in system-wide, it may be necessary
2469 * to flush the stack on context switch. This happens when the branch
2470 * stack does not tag its entries with the pid of the current task.
2471 * Otherwise it becomes impossible to associate a branch entry with a
2472 * task. This ambiguity is more likely to appear when the branch stack
2473 * supports priv level filtering and the user sets it to monitor only
2474 * at the user level (which could be a useful measurement in system-wide
2475 * mode). In that case, the risk is high of having a branch stack with
2476 * branch from multiple tasks. Flushing may mean dropping the existing
2477 * entries or stashing them somewhere in the PMU specific code layer.
2478 *
2479 * This function provides the context switch callback to the lower code
2480 * layer. It is invoked ONLY when there is at least one system-wide context
2481 * with at least one active event using taken branch sampling.
2482 */
2483static void perf_branch_stack_sched_in(struct task_struct *prev,
2484 struct task_struct *task)
2485{
2486 struct perf_cpu_context *cpuctx;
2487 struct pmu *pmu;
2488 unsigned long flags;
2489
2490 /* no need to flush branch stack if not changing task */
2491 if (prev == task)
2492 return;
2493
2494 local_irq_save(flags);
2495
2496 rcu_read_lock();
2497
2498 list_for_each_entry_rcu(pmu, &pmus, entry) {
2499 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2500
2501 /*
2502 * check if the context has at least one
2503 * event using PERF_SAMPLE_BRANCH_STACK
2504 */
2505 if (cpuctx->ctx.nr_branch_stack > 0
2506 && pmu->flush_branch_stack) {
2507
2508 pmu = cpuctx->ctx.pmu;
2509
2510 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2511
2512 perf_pmu_disable(pmu);
2513
2514 pmu->flush_branch_stack();
2515
2516 perf_pmu_enable(pmu);
2517
2518 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2519 }
2520 }
2521
2522 rcu_read_unlock();
2523
2524 local_irq_restore(flags);
2525}
2526
8dc85d54
PZ
2527/*
2528 * Called from scheduler to add the events of the current task
2529 * with interrupts disabled.
2530 *
2531 * We restore the event value and then enable it.
2532 *
2533 * This does not protect us against NMI, but enable()
2534 * sets the enabled bit in the control field of event _before_
2535 * accessing the event control register. If a NMI hits, then it will
2536 * keep the event running.
2537 */
ab0cce56
JO
2538void __perf_event_task_sched_in(struct task_struct *prev,
2539 struct task_struct *task)
8dc85d54
PZ
2540{
2541 struct perf_event_context *ctx;
2542 int ctxn;
2543
2544 for_each_task_context_nr(ctxn) {
2545 ctx = task->perf_event_ctxp[ctxn];
2546 if (likely(!ctx))
2547 continue;
2548
e5d1367f 2549 perf_event_context_sched_in(ctx, task);
8dc85d54 2550 }
e5d1367f
SE
2551 /*
2552 * if cgroup events exist on this CPU, then we need
2553 * to check if we have to switch in PMU state.
2554 * cgroup event are system-wide mode only
2555 */
2556 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2557 perf_cgroup_sched_in(prev, task);
d010b332
SE
2558
2559 /* check for system-wide branch_stack events */
2560 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2561 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2562}
2563
abd50713
PZ
2564static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2565{
2566 u64 frequency = event->attr.sample_freq;
2567 u64 sec = NSEC_PER_SEC;
2568 u64 divisor, dividend;
2569
2570 int count_fls, nsec_fls, frequency_fls, sec_fls;
2571
2572 count_fls = fls64(count);
2573 nsec_fls = fls64(nsec);
2574 frequency_fls = fls64(frequency);
2575 sec_fls = 30;
2576
2577 /*
2578 * We got @count in @nsec, with a target of sample_freq HZ
2579 * the target period becomes:
2580 *
2581 * @count * 10^9
2582 * period = -------------------
2583 * @nsec * sample_freq
2584 *
2585 */
2586
2587 /*
2588 * Reduce accuracy by one bit such that @a and @b converge
2589 * to a similar magnitude.
2590 */
fe4b04fa 2591#define REDUCE_FLS(a, b) \
abd50713
PZ
2592do { \
2593 if (a##_fls > b##_fls) { \
2594 a >>= 1; \
2595 a##_fls--; \
2596 } else { \
2597 b >>= 1; \
2598 b##_fls--; \
2599 } \
2600} while (0)
2601
2602 /*
2603 * Reduce accuracy until either term fits in a u64, then proceed with
2604 * the other, so that finally we can do a u64/u64 division.
2605 */
2606 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2607 REDUCE_FLS(nsec, frequency);
2608 REDUCE_FLS(sec, count);
2609 }
2610
2611 if (count_fls + sec_fls > 64) {
2612 divisor = nsec * frequency;
2613
2614 while (count_fls + sec_fls > 64) {
2615 REDUCE_FLS(count, sec);
2616 divisor >>= 1;
2617 }
2618
2619 dividend = count * sec;
2620 } else {
2621 dividend = count * sec;
2622
2623 while (nsec_fls + frequency_fls > 64) {
2624 REDUCE_FLS(nsec, frequency);
2625 dividend >>= 1;
2626 }
2627
2628 divisor = nsec * frequency;
2629 }
2630
f6ab91ad
PZ
2631 if (!divisor)
2632 return dividend;
2633
abd50713
PZ
2634 return div64_u64(dividend, divisor);
2635}
2636
e050e3f0
SE
2637static DEFINE_PER_CPU(int, perf_throttled_count);
2638static DEFINE_PER_CPU(u64, perf_throttled_seq);
2639
f39d47ff 2640static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2641{
cdd6c482 2642 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2643 s64 period, sample_period;
bd2b5b12
PZ
2644 s64 delta;
2645
abd50713 2646 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2647
2648 delta = (s64)(period - hwc->sample_period);
2649 delta = (delta + 7) / 8; /* low pass filter */
2650
2651 sample_period = hwc->sample_period + delta;
2652
2653 if (!sample_period)
2654 sample_period = 1;
2655
bd2b5b12 2656 hwc->sample_period = sample_period;
abd50713 2657
e7850595 2658 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2659 if (disable)
2660 event->pmu->stop(event, PERF_EF_UPDATE);
2661
e7850595 2662 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2663
2664 if (disable)
2665 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2666 }
bd2b5b12
PZ
2667}
2668
e050e3f0
SE
2669/*
2670 * combine freq adjustment with unthrottling to avoid two passes over the
2671 * events. At the same time, make sure, having freq events does not change
2672 * the rate of unthrottling as that would introduce bias.
2673 */
2674static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2675 int needs_unthr)
60db5e09 2676{
cdd6c482
IM
2677 struct perf_event *event;
2678 struct hw_perf_event *hwc;
e050e3f0 2679 u64 now, period = TICK_NSEC;
abd50713 2680 s64 delta;
60db5e09 2681
e050e3f0
SE
2682 /*
2683 * only need to iterate over all events iff:
2684 * - context have events in frequency mode (needs freq adjust)
2685 * - there are events to unthrottle on this cpu
2686 */
2687 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2688 return;
2689
e050e3f0 2690 raw_spin_lock(&ctx->lock);
f39d47ff 2691 perf_pmu_disable(ctx->pmu);
e050e3f0 2692
03541f8b 2693 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2694 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2695 continue;
2696
5632ab12 2697 if (!event_filter_match(event))
5d27c23d
PZ
2698 continue;
2699
cdd6c482 2700 hwc = &event->hw;
6a24ed6c 2701
e050e3f0
SE
2702 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2703 hwc->interrupts = 0;
cdd6c482 2704 perf_log_throttle(event, 1);
a4eaf7f1 2705 event->pmu->start(event, 0);
a78ac325
PZ
2706 }
2707
cdd6c482 2708 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2709 continue;
2710
e050e3f0
SE
2711 /*
2712 * stop the event and update event->count
2713 */
2714 event->pmu->stop(event, PERF_EF_UPDATE);
2715
e7850595 2716 now = local64_read(&event->count);
abd50713
PZ
2717 delta = now - hwc->freq_count_stamp;
2718 hwc->freq_count_stamp = now;
60db5e09 2719
e050e3f0
SE
2720 /*
2721 * restart the event
2722 * reload only if value has changed
f39d47ff
SE
2723 * we have stopped the event so tell that
2724 * to perf_adjust_period() to avoid stopping it
2725 * twice.
e050e3f0 2726 */
abd50713 2727 if (delta > 0)
f39d47ff 2728 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2729
2730 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2731 }
e050e3f0 2732
f39d47ff 2733 perf_pmu_enable(ctx->pmu);
e050e3f0 2734 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2735}
2736
235c7fc7 2737/*
cdd6c482 2738 * Round-robin a context's events:
235c7fc7 2739 */
cdd6c482 2740static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2741{
dddd3379
TG
2742 /*
2743 * Rotate the first entry last of non-pinned groups. Rotation might be
2744 * disabled by the inheritance code.
2745 */
2746 if (!ctx->rotate_disable)
2747 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2748}
2749
b5ab4cd5 2750/*
e9d2b064
PZ
2751 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2752 * because they're strictly cpu affine and rotate_start is called with IRQs
2753 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2754 */
9e630205 2755static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2756{
8dc85d54 2757 struct perf_event_context *ctx = NULL;
e050e3f0 2758 int rotate = 0, remove = 1;
7fc23a53 2759
b5ab4cd5 2760 if (cpuctx->ctx.nr_events) {
e9d2b064 2761 remove = 0;
b5ab4cd5
PZ
2762 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2763 rotate = 1;
2764 }
235c7fc7 2765
8dc85d54 2766 ctx = cpuctx->task_ctx;
b5ab4cd5 2767 if (ctx && ctx->nr_events) {
e9d2b064 2768 remove = 0;
b5ab4cd5
PZ
2769 if (ctx->nr_events != ctx->nr_active)
2770 rotate = 1;
2771 }
9717e6cd 2772
e050e3f0 2773 if (!rotate)
0f5a2601
PZ
2774 goto done;
2775
facc4307 2776 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2777 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2778
e050e3f0
SE
2779 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2780 if (ctx)
2781 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2782
e050e3f0
SE
2783 rotate_ctx(&cpuctx->ctx);
2784 if (ctx)
2785 rotate_ctx(ctx);
235c7fc7 2786
e050e3f0 2787 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2788
0f5a2601
PZ
2789 perf_pmu_enable(cpuctx->ctx.pmu);
2790 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2791done:
e9d2b064
PZ
2792 if (remove)
2793 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2794
2795 return rotate;
e9d2b064
PZ
2796}
2797
026249ef
FW
2798#ifdef CONFIG_NO_HZ_FULL
2799bool perf_event_can_stop_tick(void)
2800{
2801 if (list_empty(&__get_cpu_var(rotation_list)))
2802 return true;
2803 else
2804 return false;
2805}
2806#endif
2807
e9d2b064
PZ
2808void perf_event_task_tick(void)
2809{
2810 struct list_head *head = &__get_cpu_var(rotation_list);
2811 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2812 struct perf_event_context *ctx;
2813 int throttled;
b5ab4cd5 2814
e9d2b064
PZ
2815 WARN_ON(!irqs_disabled());
2816
e050e3f0
SE
2817 __this_cpu_inc(perf_throttled_seq);
2818 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2819
e9d2b064 2820 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2821 ctx = &cpuctx->ctx;
2822 perf_adjust_freq_unthr_context(ctx, throttled);
2823
2824 ctx = cpuctx->task_ctx;
2825 if (ctx)
2826 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2827 }
0793a61d
TG
2828}
2829
889ff015
FW
2830static int event_enable_on_exec(struct perf_event *event,
2831 struct perf_event_context *ctx)
2832{
2833 if (!event->attr.enable_on_exec)
2834 return 0;
2835
2836 event->attr.enable_on_exec = 0;
2837 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2838 return 0;
2839
1d9b482e 2840 __perf_event_mark_enabled(event);
889ff015
FW
2841
2842 return 1;
2843}
2844
57e7986e 2845/*
cdd6c482 2846 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2847 * This expects task == current.
2848 */
8dc85d54 2849static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2850{
cdd6c482 2851 struct perf_event *event;
57e7986e
PM
2852 unsigned long flags;
2853 int enabled = 0;
889ff015 2854 int ret;
57e7986e
PM
2855
2856 local_irq_save(flags);
cdd6c482 2857 if (!ctx || !ctx->nr_events)
57e7986e
PM
2858 goto out;
2859
e566b76e
SE
2860 /*
2861 * We must ctxsw out cgroup events to avoid conflict
2862 * when invoking perf_task_event_sched_in() later on
2863 * in this function. Otherwise we end up trying to
2864 * ctxswin cgroup events which are already scheduled
2865 * in.
2866 */
a8d757ef 2867 perf_cgroup_sched_out(current, NULL);
57e7986e 2868
e625cce1 2869 raw_spin_lock(&ctx->lock);
04dc2dbb 2870 task_ctx_sched_out(ctx);
57e7986e 2871
b79387ef 2872 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2873 ret = event_enable_on_exec(event, ctx);
2874 if (ret)
2875 enabled = 1;
57e7986e
PM
2876 }
2877
2878 /*
cdd6c482 2879 * Unclone this context if we enabled any event.
57e7986e 2880 */
71a851b4
PZ
2881 if (enabled)
2882 unclone_ctx(ctx);
57e7986e 2883
e625cce1 2884 raw_spin_unlock(&ctx->lock);
57e7986e 2885
e566b76e
SE
2886 /*
2887 * Also calls ctxswin for cgroup events, if any:
2888 */
e5d1367f 2889 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2890out:
57e7986e
PM
2891 local_irq_restore(flags);
2892}
2893
0793a61d 2894/*
cdd6c482 2895 * Cross CPU call to read the hardware event
0793a61d 2896 */
cdd6c482 2897static void __perf_event_read(void *info)
0793a61d 2898{
cdd6c482
IM
2899 struct perf_event *event = info;
2900 struct perf_event_context *ctx = event->ctx;
108b02cf 2901 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2902
e1ac3614
PM
2903 /*
2904 * If this is a task context, we need to check whether it is
2905 * the current task context of this cpu. If not it has been
2906 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2907 * event->count would have been updated to a recent sample
2908 * when the event was scheduled out.
e1ac3614
PM
2909 */
2910 if (ctx->task && cpuctx->task_ctx != ctx)
2911 return;
2912
e625cce1 2913 raw_spin_lock(&ctx->lock);
e5d1367f 2914 if (ctx->is_active) {
542e72fc 2915 update_context_time(ctx);
e5d1367f
SE
2916 update_cgrp_time_from_event(event);
2917 }
cdd6c482 2918 update_event_times(event);
542e72fc
PZ
2919 if (event->state == PERF_EVENT_STATE_ACTIVE)
2920 event->pmu->read(event);
e625cce1 2921 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2922}
2923
b5e58793
PZ
2924static inline u64 perf_event_count(struct perf_event *event)
2925{
e7850595 2926 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2927}
2928
cdd6c482 2929static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2930{
2931 /*
cdd6c482
IM
2932 * If event is enabled and currently active on a CPU, update the
2933 * value in the event structure:
0793a61d 2934 */
cdd6c482
IM
2935 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2936 smp_call_function_single(event->oncpu,
2937 __perf_event_read, event, 1);
2938 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2939 struct perf_event_context *ctx = event->ctx;
2940 unsigned long flags;
2941
e625cce1 2942 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2943 /*
2944 * may read while context is not active
2945 * (e.g., thread is blocked), in that case
2946 * we cannot update context time
2947 */
e5d1367f 2948 if (ctx->is_active) {
c530ccd9 2949 update_context_time(ctx);
e5d1367f
SE
2950 update_cgrp_time_from_event(event);
2951 }
cdd6c482 2952 update_event_times(event);
e625cce1 2953 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2954 }
2955
b5e58793 2956 return perf_event_count(event);
0793a61d
TG
2957}
2958
a63eaf34 2959/*
cdd6c482 2960 * Initialize the perf_event context in a task_struct:
a63eaf34 2961 */
eb184479 2962static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2963{
e625cce1 2964 raw_spin_lock_init(&ctx->lock);
a63eaf34 2965 mutex_init(&ctx->mutex);
889ff015
FW
2966 INIT_LIST_HEAD(&ctx->pinned_groups);
2967 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2968 INIT_LIST_HEAD(&ctx->event_list);
2969 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2970}
2971
2972static struct perf_event_context *
2973alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2974{
2975 struct perf_event_context *ctx;
2976
2977 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2978 if (!ctx)
2979 return NULL;
2980
2981 __perf_event_init_context(ctx);
2982 if (task) {
2983 ctx->task = task;
2984 get_task_struct(task);
0793a61d 2985 }
eb184479
PZ
2986 ctx->pmu = pmu;
2987
2988 return ctx;
a63eaf34
PM
2989}
2990
2ebd4ffb
MH
2991static struct task_struct *
2992find_lively_task_by_vpid(pid_t vpid)
2993{
2994 struct task_struct *task;
2995 int err;
0793a61d
TG
2996
2997 rcu_read_lock();
2ebd4ffb 2998 if (!vpid)
0793a61d
TG
2999 task = current;
3000 else
2ebd4ffb 3001 task = find_task_by_vpid(vpid);
0793a61d
TG
3002 if (task)
3003 get_task_struct(task);
3004 rcu_read_unlock();
3005
3006 if (!task)
3007 return ERR_PTR(-ESRCH);
3008
0793a61d 3009 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3010 err = -EACCES;
3011 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3012 goto errout;
3013
2ebd4ffb
MH
3014 return task;
3015errout:
3016 put_task_struct(task);
3017 return ERR_PTR(err);
3018
3019}
3020
fe4b04fa
PZ
3021/*
3022 * Returns a matching context with refcount and pincount.
3023 */
108b02cf 3024static struct perf_event_context *
38a81da2 3025find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 3026{
cdd6c482 3027 struct perf_event_context *ctx;
22a4f650 3028 struct perf_cpu_context *cpuctx;
25346b93 3029 unsigned long flags;
8dc85d54 3030 int ctxn, err;
0793a61d 3031
22a4ec72 3032 if (!task) {
cdd6c482 3033 /* Must be root to operate on a CPU event: */
0764771d 3034 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3035 return ERR_PTR(-EACCES);
3036
0793a61d 3037 /*
cdd6c482 3038 * We could be clever and allow to attach a event to an
0793a61d
TG
3039 * offline CPU and activate it when the CPU comes up, but
3040 * that's for later.
3041 */
f6325e30 3042 if (!cpu_online(cpu))
0793a61d
TG
3043 return ERR_PTR(-ENODEV);
3044
108b02cf 3045 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3046 ctx = &cpuctx->ctx;
c93f7669 3047 get_ctx(ctx);
fe4b04fa 3048 ++ctx->pin_count;
0793a61d 3049
0793a61d
TG
3050 return ctx;
3051 }
3052
8dc85d54
PZ
3053 err = -EINVAL;
3054 ctxn = pmu->task_ctx_nr;
3055 if (ctxn < 0)
3056 goto errout;
3057
9ed6060d 3058retry:
8dc85d54 3059 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3060 if (ctx) {
71a851b4 3061 unclone_ctx(ctx);
fe4b04fa 3062 ++ctx->pin_count;
e625cce1 3063 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 3064 } else {
eb184479 3065 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3066 err = -ENOMEM;
3067 if (!ctx)
3068 goto errout;
eb184479 3069
dbe08d82
ON
3070 err = 0;
3071 mutex_lock(&task->perf_event_mutex);
3072 /*
3073 * If it has already passed perf_event_exit_task().
3074 * we must see PF_EXITING, it takes this mutex too.
3075 */
3076 if (task->flags & PF_EXITING)
3077 err = -ESRCH;
3078 else if (task->perf_event_ctxp[ctxn])
3079 err = -EAGAIN;
fe4b04fa 3080 else {
9137fb28 3081 get_ctx(ctx);
fe4b04fa 3082 ++ctx->pin_count;
dbe08d82 3083 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3084 }
dbe08d82
ON
3085 mutex_unlock(&task->perf_event_mutex);
3086
3087 if (unlikely(err)) {
9137fb28 3088 put_ctx(ctx);
dbe08d82
ON
3089
3090 if (err == -EAGAIN)
3091 goto retry;
3092 goto errout;
a63eaf34
PM
3093 }
3094 }
3095
0793a61d 3096 return ctx;
c93f7669 3097
9ed6060d 3098errout:
c93f7669 3099 return ERR_PTR(err);
0793a61d
TG
3100}
3101
6fb2915d
LZ
3102static void perf_event_free_filter(struct perf_event *event);
3103
cdd6c482 3104static void free_event_rcu(struct rcu_head *head)
592903cd 3105{
cdd6c482 3106 struct perf_event *event;
592903cd 3107
cdd6c482
IM
3108 event = container_of(head, struct perf_event, rcu_head);
3109 if (event->ns)
3110 put_pid_ns(event->ns);
6fb2915d 3111 perf_event_free_filter(event);
cdd6c482 3112 kfree(event);
592903cd
PZ
3113}
3114
76369139 3115static void ring_buffer_put(struct ring_buffer *rb);
9bb5d40c 3116static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
925d519a 3117
cdd6c482 3118static void free_event(struct perf_event *event)
f1600952 3119{
e360adbe 3120 irq_work_sync(&event->pending);
925d519a 3121
cdd6c482 3122 if (!event->parent) {
82cd6def 3123 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 3124 static_key_slow_dec_deferred(&perf_sched_events);
3af9e859 3125 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
3126 atomic_dec(&nr_mmap_events);
3127 if (event->attr.comm)
3128 atomic_dec(&nr_comm_events);
3129 if (event->attr.task)
3130 atomic_dec(&nr_task_events);
927c7a9e
FW
3131 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3132 put_callchain_buffers();
08309379
PZ
3133 if (is_cgroup_event(event)) {
3134 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 3135 static_key_slow_dec_deferred(&perf_sched_events);
08309379 3136 }
d010b332
SE
3137
3138 if (has_branch_stack(event)) {
3139 static_key_slow_dec_deferred(&perf_sched_events);
3140 /* is system-wide event */
9bb5d40c 3141 if (!(event->attach_state & PERF_ATTACH_TASK)) {
d010b332
SE
3142 atomic_dec(&per_cpu(perf_branch_stack_events,
3143 event->cpu));
9bb5d40c 3144 }
d010b332 3145 }
f344011c 3146 }
9ee318a7 3147
76369139 3148 if (event->rb) {
9bb5d40c
PZ
3149 struct ring_buffer *rb;
3150
3151 /*
3152 * Can happen when we close an event with re-directed output.
3153 *
3154 * Since we have a 0 refcount, perf_mmap_close() will skip
3155 * over us; possibly making our ring_buffer_put() the last.
3156 */
3157 mutex_lock(&event->mmap_mutex);
3158 rb = event->rb;
3159 if (rb) {
3160 rcu_assign_pointer(event->rb, NULL);
3161 ring_buffer_detach(event, rb);
3162 ring_buffer_put(rb); /* could be last */
3163 }
3164 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3165 }
3166
e5d1367f
SE
3167 if (is_cgroup_event(event))
3168 perf_detach_cgroup(event);
3169
cdd6c482
IM
3170 if (event->destroy)
3171 event->destroy(event);
e077df4f 3172
0c67b408
PZ
3173 if (event->ctx)
3174 put_ctx(event->ctx);
3175
cdd6c482 3176 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3177}
3178
a66a3052 3179int perf_event_release_kernel(struct perf_event *event)
0793a61d 3180{
cdd6c482 3181 struct perf_event_context *ctx = event->ctx;
0793a61d 3182
ad3a37de 3183 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
3184 /*
3185 * There are two ways this annotation is useful:
3186 *
3187 * 1) there is a lock recursion from perf_event_exit_task
3188 * see the comment there.
3189 *
3190 * 2) there is a lock-inversion with mmap_sem through
3191 * perf_event_read_group(), which takes faults while
3192 * holding ctx->mutex, however this is called after
3193 * the last filedesc died, so there is no possibility
3194 * to trigger the AB-BA case.
3195 */
3196 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 3197 raw_spin_lock_irq(&ctx->lock);
8a49542c 3198 perf_group_detach(event);
050735b0 3199 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 3200 perf_remove_from_context(event);
d859e29f 3201 mutex_unlock(&ctx->mutex);
0793a61d 3202
cdd6c482 3203 free_event(event);
0793a61d
TG
3204
3205 return 0;
3206}
a66a3052 3207EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 3208
a66a3052
PZ
3209/*
3210 * Called when the last reference to the file is gone.
3211 */
a6fa941d 3212static void put_event(struct perf_event *event)
fb0459d7 3213{
8882135b 3214 struct task_struct *owner;
fb0459d7 3215
a6fa941d
AV
3216 if (!atomic_long_dec_and_test(&event->refcount))
3217 return;
fb0459d7 3218
8882135b
PZ
3219 rcu_read_lock();
3220 owner = ACCESS_ONCE(event->owner);
3221 /*
3222 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3223 * !owner it means the list deletion is complete and we can indeed
3224 * free this event, otherwise we need to serialize on
3225 * owner->perf_event_mutex.
3226 */
3227 smp_read_barrier_depends();
3228 if (owner) {
3229 /*
3230 * Since delayed_put_task_struct() also drops the last
3231 * task reference we can safely take a new reference
3232 * while holding the rcu_read_lock().
3233 */
3234 get_task_struct(owner);
3235 }
3236 rcu_read_unlock();
3237
3238 if (owner) {
3239 mutex_lock(&owner->perf_event_mutex);
3240 /*
3241 * We have to re-check the event->owner field, if it is cleared
3242 * we raced with perf_event_exit_task(), acquiring the mutex
3243 * ensured they're done, and we can proceed with freeing the
3244 * event.
3245 */
3246 if (event->owner)
3247 list_del_init(&event->owner_entry);
3248 mutex_unlock(&owner->perf_event_mutex);
3249 put_task_struct(owner);
3250 }
3251
a6fa941d
AV
3252 perf_event_release_kernel(event);
3253}
3254
3255static int perf_release(struct inode *inode, struct file *file)
3256{
3257 put_event(file->private_data);
3258 return 0;
fb0459d7 3259}
fb0459d7 3260
59ed446f 3261u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3262{
cdd6c482 3263 struct perf_event *child;
e53c0994
PZ
3264 u64 total = 0;
3265
59ed446f
PZ
3266 *enabled = 0;
3267 *running = 0;
3268
6f10581a 3269 mutex_lock(&event->child_mutex);
cdd6c482 3270 total += perf_event_read(event);
59ed446f
PZ
3271 *enabled += event->total_time_enabled +
3272 atomic64_read(&event->child_total_time_enabled);
3273 *running += event->total_time_running +
3274 atomic64_read(&event->child_total_time_running);
3275
3276 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3277 total += perf_event_read(child);
59ed446f
PZ
3278 *enabled += child->total_time_enabled;
3279 *running += child->total_time_running;
3280 }
6f10581a 3281 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3282
3283 return total;
3284}
fb0459d7 3285EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3286
cdd6c482 3287static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3288 u64 read_format, char __user *buf)
3289{
cdd6c482 3290 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3291 int n = 0, size = 0, ret = -EFAULT;
3292 struct perf_event_context *ctx = leader->ctx;
abf4868b 3293 u64 values[5];
59ed446f 3294 u64 count, enabled, running;
abf4868b 3295
6f10581a 3296 mutex_lock(&ctx->mutex);
59ed446f 3297 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3298
3299 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3300 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3301 values[n++] = enabled;
3302 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3303 values[n++] = running;
abf4868b
PZ
3304 values[n++] = count;
3305 if (read_format & PERF_FORMAT_ID)
3306 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3307
3308 size = n * sizeof(u64);
3309
3310 if (copy_to_user(buf, values, size))
6f10581a 3311 goto unlock;
3dab77fb 3312
6f10581a 3313 ret = size;
3dab77fb 3314
65abc865 3315 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3316 n = 0;
3dab77fb 3317
59ed446f 3318 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3319 if (read_format & PERF_FORMAT_ID)
3320 values[n++] = primary_event_id(sub);
3321
3322 size = n * sizeof(u64);
3323
184d3da8 3324 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3325 ret = -EFAULT;
3326 goto unlock;
3327 }
abf4868b
PZ
3328
3329 ret += size;
3dab77fb 3330 }
6f10581a
PZ
3331unlock:
3332 mutex_unlock(&ctx->mutex);
3dab77fb 3333
abf4868b 3334 return ret;
3dab77fb
PZ
3335}
3336
cdd6c482 3337static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3338 u64 read_format, char __user *buf)
3339{
59ed446f 3340 u64 enabled, running;
3dab77fb
PZ
3341 u64 values[4];
3342 int n = 0;
3343
59ed446f
PZ
3344 values[n++] = perf_event_read_value(event, &enabled, &running);
3345 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3346 values[n++] = enabled;
3347 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3348 values[n++] = running;
3dab77fb 3349 if (read_format & PERF_FORMAT_ID)
cdd6c482 3350 values[n++] = primary_event_id(event);
3dab77fb
PZ
3351
3352 if (copy_to_user(buf, values, n * sizeof(u64)))
3353 return -EFAULT;
3354
3355 return n * sizeof(u64);
3356}
3357
0793a61d 3358/*
cdd6c482 3359 * Read the performance event - simple non blocking version for now
0793a61d
TG
3360 */
3361static ssize_t
cdd6c482 3362perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3363{
cdd6c482 3364 u64 read_format = event->attr.read_format;
3dab77fb 3365 int ret;
0793a61d 3366
3b6f9e5c 3367 /*
cdd6c482 3368 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3369 * error state (i.e. because it was pinned but it couldn't be
3370 * scheduled on to the CPU at some point).
3371 */
cdd6c482 3372 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3373 return 0;
3374
c320c7b7 3375 if (count < event->read_size)
3dab77fb
PZ
3376 return -ENOSPC;
3377
cdd6c482 3378 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3379 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3380 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3381 else
cdd6c482 3382 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3383
3dab77fb 3384 return ret;
0793a61d
TG
3385}
3386
0793a61d
TG
3387static ssize_t
3388perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3389{
cdd6c482 3390 struct perf_event *event = file->private_data;
0793a61d 3391
cdd6c482 3392 return perf_read_hw(event, buf, count);
0793a61d
TG
3393}
3394
3395static unsigned int perf_poll(struct file *file, poll_table *wait)
3396{
cdd6c482 3397 struct perf_event *event = file->private_data;
76369139 3398 struct ring_buffer *rb;
c33a0bc4 3399 unsigned int events = POLL_HUP;
c7138f37 3400
10c6db11 3401 /*
9bb5d40c
PZ
3402 * Pin the event->rb by taking event->mmap_mutex; otherwise
3403 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3404 */
3405 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3406 rb = event->rb;
3407 if (rb)
76369139 3408 events = atomic_xchg(&rb->poll, 0);
10c6db11
PZ
3409 mutex_unlock(&event->mmap_mutex);
3410
cdd6c482 3411 poll_wait(file, &event->waitq, wait);
0793a61d 3412
0793a61d
TG
3413 return events;
3414}
3415
cdd6c482 3416static void perf_event_reset(struct perf_event *event)
6de6a7b9 3417{
cdd6c482 3418 (void)perf_event_read(event);
e7850595 3419 local64_set(&event->count, 0);
cdd6c482 3420 perf_event_update_userpage(event);
3df5edad
PZ
3421}
3422
c93f7669 3423/*
cdd6c482
IM
3424 * Holding the top-level event's child_mutex means that any
3425 * descendant process that has inherited this event will block
3426 * in sync_child_event if it goes to exit, thus satisfying the
3427 * task existence requirements of perf_event_enable/disable.
c93f7669 3428 */
cdd6c482
IM
3429static void perf_event_for_each_child(struct perf_event *event,
3430 void (*func)(struct perf_event *))
3df5edad 3431{
cdd6c482 3432 struct perf_event *child;
3df5edad 3433
cdd6c482
IM
3434 WARN_ON_ONCE(event->ctx->parent_ctx);
3435 mutex_lock(&event->child_mutex);
3436 func(event);
3437 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3438 func(child);
cdd6c482 3439 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3440}
3441
cdd6c482
IM
3442static void perf_event_for_each(struct perf_event *event,
3443 void (*func)(struct perf_event *))
3df5edad 3444{
cdd6c482
IM
3445 struct perf_event_context *ctx = event->ctx;
3446 struct perf_event *sibling;
3df5edad 3447
75f937f2
PZ
3448 WARN_ON_ONCE(ctx->parent_ctx);
3449 mutex_lock(&ctx->mutex);
cdd6c482 3450 event = event->group_leader;
75f937f2 3451
cdd6c482 3452 perf_event_for_each_child(event, func);
cdd6c482 3453 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3454 perf_event_for_each_child(sibling, func);
75f937f2 3455 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3456}
3457
cdd6c482 3458static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3459{
cdd6c482 3460 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3461 int ret = 0;
3462 u64 value;
3463
6c7e550f 3464 if (!is_sampling_event(event))
08247e31
PZ
3465 return -EINVAL;
3466
ad0cf347 3467 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3468 return -EFAULT;
3469
3470 if (!value)
3471 return -EINVAL;
3472
e625cce1 3473 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3474 if (event->attr.freq) {
3475 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3476 ret = -EINVAL;
3477 goto unlock;
3478 }
3479
cdd6c482 3480 event->attr.sample_freq = value;
08247e31 3481 } else {
cdd6c482
IM
3482 event->attr.sample_period = value;
3483 event->hw.sample_period = value;
08247e31
PZ
3484 }
3485unlock:
e625cce1 3486 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3487
3488 return ret;
3489}
3490
ac9721f3
PZ
3491static const struct file_operations perf_fops;
3492
2903ff01 3493static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3494{
2903ff01
AV
3495 struct fd f = fdget(fd);
3496 if (!f.file)
3497 return -EBADF;
ac9721f3 3498
2903ff01
AV
3499 if (f.file->f_op != &perf_fops) {
3500 fdput(f);
3501 return -EBADF;
ac9721f3 3502 }
2903ff01
AV
3503 *p = f;
3504 return 0;
ac9721f3
PZ
3505}
3506
3507static int perf_event_set_output(struct perf_event *event,
3508 struct perf_event *output_event);
6fb2915d 3509static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3510
d859e29f
PM
3511static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3512{
cdd6c482
IM
3513 struct perf_event *event = file->private_data;
3514 void (*func)(struct perf_event *);
3df5edad 3515 u32 flags = arg;
d859e29f
PM
3516
3517 switch (cmd) {
cdd6c482
IM
3518 case PERF_EVENT_IOC_ENABLE:
3519 func = perf_event_enable;
d859e29f 3520 break;
cdd6c482
IM
3521 case PERF_EVENT_IOC_DISABLE:
3522 func = perf_event_disable;
79f14641 3523 break;
cdd6c482
IM
3524 case PERF_EVENT_IOC_RESET:
3525 func = perf_event_reset;
6de6a7b9 3526 break;
3df5edad 3527
cdd6c482
IM
3528 case PERF_EVENT_IOC_REFRESH:
3529 return perf_event_refresh(event, arg);
08247e31 3530
cdd6c482
IM
3531 case PERF_EVENT_IOC_PERIOD:
3532 return perf_event_period(event, (u64 __user *)arg);
08247e31 3533
cdd6c482 3534 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3535 {
ac9721f3 3536 int ret;
ac9721f3 3537 if (arg != -1) {
2903ff01
AV
3538 struct perf_event *output_event;
3539 struct fd output;
3540 ret = perf_fget_light(arg, &output);
3541 if (ret)
3542 return ret;
3543 output_event = output.file->private_data;
3544 ret = perf_event_set_output(event, output_event);
3545 fdput(output);
3546 } else {
3547 ret = perf_event_set_output(event, NULL);
ac9721f3 3548 }
ac9721f3
PZ
3549 return ret;
3550 }
a4be7c27 3551
6fb2915d
LZ
3552 case PERF_EVENT_IOC_SET_FILTER:
3553 return perf_event_set_filter(event, (void __user *)arg);
3554
d859e29f 3555 default:
3df5edad 3556 return -ENOTTY;
d859e29f 3557 }
3df5edad
PZ
3558
3559 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3560 perf_event_for_each(event, func);
3df5edad 3561 else
cdd6c482 3562 perf_event_for_each_child(event, func);
3df5edad
PZ
3563
3564 return 0;
d859e29f
PM
3565}
3566
cdd6c482 3567int perf_event_task_enable(void)
771d7cde 3568{
cdd6c482 3569 struct perf_event *event;
771d7cde 3570
cdd6c482
IM
3571 mutex_lock(&current->perf_event_mutex);
3572 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3573 perf_event_for_each_child(event, perf_event_enable);
3574 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3575
3576 return 0;
3577}
3578
cdd6c482 3579int perf_event_task_disable(void)
771d7cde 3580{
cdd6c482 3581 struct perf_event *event;
771d7cde 3582
cdd6c482
IM
3583 mutex_lock(&current->perf_event_mutex);
3584 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3585 perf_event_for_each_child(event, perf_event_disable);
3586 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3587
3588 return 0;
3589}
3590
cdd6c482 3591static int perf_event_index(struct perf_event *event)
194002b2 3592{
a4eaf7f1
PZ
3593 if (event->hw.state & PERF_HES_STOPPED)
3594 return 0;
3595
cdd6c482 3596 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3597 return 0;
3598
35edc2a5 3599 return event->pmu->event_idx(event);
194002b2
PZ
3600}
3601
c4794295 3602static void calc_timer_values(struct perf_event *event,
e3f3541c 3603 u64 *now,
7f310a5d
EM
3604 u64 *enabled,
3605 u64 *running)
c4794295 3606{
e3f3541c 3607 u64 ctx_time;
c4794295 3608
e3f3541c
PZ
3609 *now = perf_clock();
3610 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3611 *enabled = ctx_time - event->tstamp_enabled;
3612 *running = ctx_time - event->tstamp_running;
3613}
3614
c7206205 3615void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3616{
3617}
3618
38ff667b
PZ
3619/*
3620 * Callers need to ensure there can be no nesting of this function, otherwise
3621 * the seqlock logic goes bad. We can not serialize this because the arch
3622 * code calls this from NMI context.
3623 */
cdd6c482 3624void perf_event_update_userpage(struct perf_event *event)
37d81828 3625{
cdd6c482 3626 struct perf_event_mmap_page *userpg;
76369139 3627 struct ring_buffer *rb;
e3f3541c 3628 u64 enabled, running, now;
38ff667b
PZ
3629
3630 rcu_read_lock();
0d641208
EM
3631 /*
3632 * compute total_time_enabled, total_time_running
3633 * based on snapshot values taken when the event
3634 * was last scheduled in.
3635 *
3636 * we cannot simply called update_context_time()
3637 * because of locking issue as we can be called in
3638 * NMI context
3639 */
e3f3541c 3640 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3641 rb = rcu_dereference(event->rb);
3642 if (!rb)
38ff667b
PZ
3643 goto unlock;
3644
76369139 3645 userpg = rb->user_page;
37d81828 3646
7b732a75
PZ
3647 /*
3648 * Disable preemption so as to not let the corresponding user-space
3649 * spin too long if we get preempted.
3650 */
3651 preempt_disable();
37d81828 3652 ++userpg->lock;
92f22a38 3653 barrier();
cdd6c482 3654 userpg->index = perf_event_index(event);
b5e58793 3655 userpg->offset = perf_event_count(event);
365a4038 3656 if (userpg->index)
e7850595 3657 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3658
0d641208 3659 userpg->time_enabled = enabled +
cdd6c482 3660 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3661
0d641208 3662 userpg->time_running = running +
cdd6c482 3663 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3664
c7206205 3665 arch_perf_update_userpage(userpg, now);
e3f3541c 3666
92f22a38 3667 barrier();
37d81828 3668 ++userpg->lock;
7b732a75 3669 preempt_enable();
38ff667b 3670unlock:
7b732a75 3671 rcu_read_unlock();
37d81828
PM
3672}
3673
906010b2
PZ
3674static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3675{
3676 struct perf_event *event = vma->vm_file->private_data;
76369139 3677 struct ring_buffer *rb;
906010b2
PZ
3678 int ret = VM_FAULT_SIGBUS;
3679
3680 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3681 if (vmf->pgoff == 0)
3682 ret = 0;
3683 return ret;
3684 }
3685
3686 rcu_read_lock();
76369139
FW
3687 rb = rcu_dereference(event->rb);
3688 if (!rb)
906010b2
PZ
3689 goto unlock;
3690
3691 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3692 goto unlock;
3693
76369139 3694 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3695 if (!vmf->page)
3696 goto unlock;
3697
3698 get_page(vmf->page);
3699 vmf->page->mapping = vma->vm_file->f_mapping;
3700 vmf->page->index = vmf->pgoff;
3701
3702 ret = 0;
3703unlock:
3704 rcu_read_unlock();
3705
3706 return ret;
3707}
3708
10c6db11
PZ
3709static void ring_buffer_attach(struct perf_event *event,
3710 struct ring_buffer *rb)
3711{
3712 unsigned long flags;
3713
3714 if (!list_empty(&event->rb_entry))
3715 return;
3716
3717 spin_lock_irqsave(&rb->event_lock, flags);
9bb5d40c
PZ
3718 if (list_empty(&event->rb_entry))
3719 list_add(&event->rb_entry, &rb->event_list);
10c6db11
PZ
3720 spin_unlock_irqrestore(&rb->event_lock, flags);
3721}
3722
9bb5d40c 3723static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
10c6db11
PZ
3724{
3725 unsigned long flags;
3726
3727 if (list_empty(&event->rb_entry))
3728 return;
3729
3730 spin_lock_irqsave(&rb->event_lock, flags);
3731 list_del_init(&event->rb_entry);
3732 wake_up_all(&event->waitq);
3733 spin_unlock_irqrestore(&rb->event_lock, flags);
3734}
3735
3736static void ring_buffer_wakeup(struct perf_event *event)
3737{
3738 struct ring_buffer *rb;
3739
3740 rcu_read_lock();
3741 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
3742 if (rb) {
3743 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3744 wake_up_all(&event->waitq);
3745 }
10c6db11
PZ
3746 rcu_read_unlock();
3747}
3748
76369139 3749static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3750{
76369139 3751 struct ring_buffer *rb;
906010b2 3752
76369139
FW
3753 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3754 rb_free(rb);
7b732a75
PZ
3755}
3756
76369139 3757static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3758{
76369139 3759 struct ring_buffer *rb;
7b732a75 3760
ac9721f3 3761 rcu_read_lock();
76369139
FW
3762 rb = rcu_dereference(event->rb);
3763 if (rb) {
3764 if (!atomic_inc_not_zero(&rb->refcount))
3765 rb = NULL;
ac9721f3
PZ
3766 }
3767 rcu_read_unlock();
3768
76369139 3769 return rb;
ac9721f3
PZ
3770}
3771
76369139 3772static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3773{
76369139 3774 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3775 return;
7b732a75 3776
9bb5d40c 3777 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 3778
76369139 3779 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3780}
3781
3782static void perf_mmap_open(struct vm_area_struct *vma)
3783{
cdd6c482 3784 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3785
cdd6c482 3786 atomic_inc(&event->mmap_count);
9bb5d40c 3787 atomic_inc(&event->rb->mmap_count);
7b732a75
PZ
3788}
3789
9bb5d40c
PZ
3790/*
3791 * A buffer can be mmap()ed multiple times; either directly through the same
3792 * event, or through other events by use of perf_event_set_output().
3793 *
3794 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3795 * the buffer here, where we still have a VM context. This means we need
3796 * to detach all events redirecting to us.
3797 */
7b732a75
PZ
3798static void perf_mmap_close(struct vm_area_struct *vma)
3799{
cdd6c482 3800 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3801
9bb5d40c
PZ
3802 struct ring_buffer *rb = event->rb;
3803 struct user_struct *mmap_user = rb->mmap_user;
3804 int mmap_locked = rb->mmap_locked;
3805 unsigned long size = perf_data_size(rb);
789f90fc 3806
9bb5d40c
PZ
3807 atomic_dec(&rb->mmap_count);
3808
3809 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3810 return;
3811
3812 /* Detach current event from the buffer. */
3813 rcu_assign_pointer(event->rb, NULL);
3814 ring_buffer_detach(event, rb);
3815 mutex_unlock(&event->mmap_mutex);
3816
3817 /* If there's still other mmap()s of this buffer, we're done. */
3818 if (atomic_read(&rb->mmap_count)) {
3819 ring_buffer_put(rb); /* can't be last */
3820 return;
3821 }
ac9721f3 3822
9bb5d40c
PZ
3823 /*
3824 * No other mmap()s, detach from all other events that might redirect
3825 * into the now unreachable buffer. Somewhat complicated by the
3826 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3827 */
3828again:
3829 rcu_read_lock();
3830 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3831 if (!atomic_long_inc_not_zero(&event->refcount)) {
3832 /*
3833 * This event is en-route to free_event() which will
3834 * detach it and remove it from the list.
3835 */
3836 continue;
3837 }
3838 rcu_read_unlock();
789f90fc 3839
9bb5d40c
PZ
3840 mutex_lock(&event->mmap_mutex);
3841 /*
3842 * Check we didn't race with perf_event_set_output() which can
3843 * swizzle the rb from under us while we were waiting to
3844 * acquire mmap_mutex.
3845 *
3846 * If we find a different rb; ignore this event, a next
3847 * iteration will no longer find it on the list. We have to
3848 * still restart the iteration to make sure we're not now
3849 * iterating the wrong list.
3850 */
3851 if (event->rb == rb) {
3852 rcu_assign_pointer(event->rb, NULL);
3853 ring_buffer_detach(event, rb);
3854 ring_buffer_put(rb); /* can't be last, we still have one */
26cb63ad 3855 }
cdd6c482 3856 mutex_unlock(&event->mmap_mutex);
9bb5d40c 3857 put_event(event);
ac9721f3 3858
9bb5d40c
PZ
3859 /*
3860 * Restart the iteration; either we're on the wrong list or
3861 * destroyed its integrity by doing a deletion.
3862 */
3863 goto again;
7b732a75 3864 }
9bb5d40c
PZ
3865 rcu_read_unlock();
3866
3867 /*
3868 * It could be there's still a few 0-ref events on the list; they'll
3869 * get cleaned up by free_event() -- they'll also still have their
3870 * ref on the rb and will free it whenever they are done with it.
3871 *
3872 * Aside from that, this buffer is 'fully' detached and unmapped,
3873 * undo the VM accounting.
3874 */
3875
3876 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3877 vma->vm_mm->pinned_vm -= mmap_locked;
3878 free_uid(mmap_user);
3879
3880 ring_buffer_put(rb); /* could be last */
37d81828
PM
3881}
3882
f0f37e2f 3883static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3884 .open = perf_mmap_open,
3885 .close = perf_mmap_close,
3886 .fault = perf_mmap_fault,
3887 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3888};
3889
3890static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3891{
cdd6c482 3892 struct perf_event *event = file->private_data;
22a4f650 3893 unsigned long user_locked, user_lock_limit;
789f90fc 3894 struct user_struct *user = current_user();
22a4f650 3895 unsigned long locked, lock_limit;
76369139 3896 struct ring_buffer *rb;
7b732a75
PZ
3897 unsigned long vma_size;
3898 unsigned long nr_pages;
789f90fc 3899 long user_extra, extra;
d57e34fd 3900 int ret = 0, flags = 0;
37d81828 3901
c7920614
PZ
3902 /*
3903 * Don't allow mmap() of inherited per-task counters. This would
3904 * create a performance issue due to all children writing to the
76369139 3905 * same rb.
c7920614
PZ
3906 */
3907 if (event->cpu == -1 && event->attr.inherit)
3908 return -EINVAL;
3909
43a21ea8 3910 if (!(vma->vm_flags & VM_SHARED))
37d81828 3911 return -EINVAL;
7b732a75
PZ
3912
3913 vma_size = vma->vm_end - vma->vm_start;
3914 nr_pages = (vma_size / PAGE_SIZE) - 1;
3915
7730d865 3916 /*
76369139 3917 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3918 * can do bitmasks instead of modulo.
3919 */
3920 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3921 return -EINVAL;
3922
7b732a75 3923 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3924 return -EINVAL;
3925
7b732a75
PZ
3926 if (vma->vm_pgoff != 0)
3927 return -EINVAL;
37d81828 3928
cdd6c482 3929 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 3930again:
cdd6c482 3931 mutex_lock(&event->mmap_mutex);
76369139 3932 if (event->rb) {
9bb5d40c 3933 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 3934 ret = -EINVAL;
9bb5d40c
PZ
3935 goto unlock;
3936 }
3937
3938 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3939 /*
3940 * Raced against perf_mmap_close() through
3941 * perf_event_set_output(). Try again, hope for better
3942 * luck.
3943 */
3944 mutex_unlock(&event->mmap_mutex);
3945 goto again;
3946 }
3947
ebb3c4c4
PZ
3948 goto unlock;
3949 }
3950
789f90fc 3951 user_extra = nr_pages + 1;
cdd6c482 3952 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3953
3954 /*
3955 * Increase the limit linearly with more CPUs:
3956 */
3957 user_lock_limit *= num_online_cpus();
3958
789f90fc 3959 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3960
789f90fc
PZ
3961 extra = 0;
3962 if (user_locked > user_lock_limit)
3963 extra = user_locked - user_lock_limit;
7b732a75 3964
78d7d407 3965 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 3966 lock_limit >>= PAGE_SHIFT;
bc3e53f6 3967 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 3968
459ec28a
IM
3969 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3970 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
3971 ret = -EPERM;
3972 goto unlock;
3973 }
7b732a75 3974
76369139 3975 WARN_ON(event->rb);
906010b2 3976
d57e34fd 3977 if (vma->vm_flags & VM_WRITE)
76369139 3978 flags |= RING_BUFFER_WRITABLE;
d57e34fd 3979
4ec8363d
VW
3980 rb = rb_alloc(nr_pages,
3981 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3982 event->cpu, flags);
3983
76369139 3984 if (!rb) {
ac9721f3 3985 ret = -ENOMEM;
ebb3c4c4 3986 goto unlock;
ac9721f3 3987 }
26cb63ad 3988
9bb5d40c 3989 atomic_set(&rb->mmap_count, 1);
26cb63ad
PZ
3990 rb->mmap_locked = extra;
3991 rb->mmap_user = get_current_user();
43a21ea8 3992
ac9721f3 3993 atomic_long_add(user_extra, &user->locked_vm);
26cb63ad
PZ
3994 vma->vm_mm->pinned_vm += extra;
3995
9bb5d40c 3996 ring_buffer_attach(event, rb);
26cb63ad 3997 rcu_assign_pointer(event->rb, rb);
ac9721f3 3998
9a0f05cb
PZ
3999 perf_event_update_userpage(event);
4000
ebb3c4c4 4001unlock:
ac9721f3
PZ
4002 if (!ret)
4003 atomic_inc(&event->mmap_count);
cdd6c482 4004 mutex_unlock(&event->mmap_mutex);
37d81828 4005
9bb5d40c
PZ
4006 /*
4007 * Since pinned accounting is per vm we cannot allow fork() to copy our
4008 * vma.
4009 */
26cb63ad 4010 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4011 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
4012
4013 return ret;
37d81828
PM
4014}
4015
3c446b3d
PZ
4016static int perf_fasync(int fd, struct file *filp, int on)
4017{
496ad9aa 4018 struct inode *inode = file_inode(filp);
cdd6c482 4019 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4020 int retval;
4021
4022 mutex_lock(&inode->i_mutex);
cdd6c482 4023 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4024 mutex_unlock(&inode->i_mutex);
4025
4026 if (retval < 0)
4027 return retval;
4028
4029 return 0;
4030}
4031
0793a61d 4032static const struct file_operations perf_fops = {
3326c1ce 4033 .llseek = no_llseek,
0793a61d
TG
4034 .release = perf_release,
4035 .read = perf_read,
4036 .poll = perf_poll,
d859e29f
PM
4037 .unlocked_ioctl = perf_ioctl,
4038 .compat_ioctl = perf_ioctl,
37d81828 4039 .mmap = perf_mmap,
3c446b3d 4040 .fasync = perf_fasync,
0793a61d
TG
4041};
4042
925d519a 4043/*
cdd6c482 4044 * Perf event wakeup
925d519a
PZ
4045 *
4046 * If there's data, ensure we set the poll() state and publish everything
4047 * to user-space before waking everybody up.
4048 */
4049
cdd6c482 4050void perf_event_wakeup(struct perf_event *event)
925d519a 4051{
10c6db11 4052 ring_buffer_wakeup(event);
4c9e2542 4053
cdd6c482
IM
4054 if (event->pending_kill) {
4055 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4056 event->pending_kill = 0;
4c9e2542 4057 }
925d519a
PZ
4058}
4059
e360adbe 4060static void perf_pending_event(struct irq_work *entry)
79f14641 4061{
cdd6c482
IM
4062 struct perf_event *event = container_of(entry,
4063 struct perf_event, pending);
79f14641 4064
cdd6c482
IM
4065 if (event->pending_disable) {
4066 event->pending_disable = 0;
4067 __perf_event_disable(event);
79f14641
PZ
4068 }
4069
cdd6c482
IM
4070 if (event->pending_wakeup) {
4071 event->pending_wakeup = 0;
4072 perf_event_wakeup(event);
79f14641
PZ
4073 }
4074}
4075
39447b38
ZY
4076/*
4077 * We assume there is only KVM supporting the callbacks.
4078 * Later on, we might change it to a list if there is
4079 * another virtualization implementation supporting the callbacks.
4080 */
4081struct perf_guest_info_callbacks *perf_guest_cbs;
4082
4083int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4084{
4085 perf_guest_cbs = cbs;
4086 return 0;
4087}
4088EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4089
4090int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4091{
4092 perf_guest_cbs = NULL;
4093 return 0;
4094}
4095EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4096
4018994f
JO
4097static void
4098perf_output_sample_regs(struct perf_output_handle *handle,
4099 struct pt_regs *regs, u64 mask)
4100{
4101 int bit;
4102
4103 for_each_set_bit(bit, (const unsigned long *) &mask,
4104 sizeof(mask) * BITS_PER_BYTE) {
4105 u64 val;
4106
4107 val = perf_reg_value(regs, bit);
4108 perf_output_put(handle, val);
4109 }
4110}
4111
4112static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4113 struct pt_regs *regs)
4114{
4115 if (!user_mode(regs)) {
4116 if (current->mm)
4117 regs = task_pt_regs(current);
4118 else
4119 regs = NULL;
4120 }
4121
4122 if (regs) {
4123 regs_user->regs = regs;
4124 regs_user->abi = perf_reg_abi(current);
4125 }
4126}
4127
c5ebcedb
JO
4128/*
4129 * Get remaining task size from user stack pointer.
4130 *
4131 * It'd be better to take stack vma map and limit this more
4132 * precisly, but there's no way to get it safely under interrupt,
4133 * so using TASK_SIZE as limit.
4134 */
4135static u64 perf_ustack_task_size(struct pt_regs *regs)
4136{
4137 unsigned long addr = perf_user_stack_pointer(regs);
4138
4139 if (!addr || addr >= TASK_SIZE)
4140 return 0;
4141
4142 return TASK_SIZE - addr;
4143}
4144
4145static u16
4146perf_sample_ustack_size(u16 stack_size, u16 header_size,
4147 struct pt_regs *regs)
4148{
4149 u64 task_size;
4150
4151 /* No regs, no stack pointer, no dump. */
4152 if (!regs)
4153 return 0;
4154
4155 /*
4156 * Check if we fit in with the requested stack size into the:
4157 * - TASK_SIZE
4158 * If we don't, we limit the size to the TASK_SIZE.
4159 *
4160 * - remaining sample size
4161 * If we don't, we customize the stack size to
4162 * fit in to the remaining sample size.
4163 */
4164
4165 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4166 stack_size = min(stack_size, (u16) task_size);
4167
4168 /* Current header size plus static size and dynamic size. */
4169 header_size += 2 * sizeof(u64);
4170
4171 /* Do we fit in with the current stack dump size? */
4172 if ((u16) (header_size + stack_size) < header_size) {
4173 /*
4174 * If we overflow the maximum size for the sample,
4175 * we customize the stack dump size to fit in.
4176 */
4177 stack_size = USHRT_MAX - header_size - sizeof(u64);
4178 stack_size = round_up(stack_size, sizeof(u64));
4179 }
4180
4181 return stack_size;
4182}
4183
4184static void
4185perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4186 struct pt_regs *regs)
4187{
4188 /* Case of a kernel thread, nothing to dump */
4189 if (!regs) {
4190 u64 size = 0;
4191 perf_output_put(handle, size);
4192 } else {
4193 unsigned long sp;
4194 unsigned int rem;
4195 u64 dyn_size;
4196
4197 /*
4198 * We dump:
4199 * static size
4200 * - the size requested by user or the best one we can fit
4201 * in to the sample max size
4202 * data
4203 * - user stack dump data
4204 * dynamic size
4205 * - the actual dumped size
4206 */
4207
4208 /* Static size. */
4209 perf_output_put(handle, dump_size);
4210
4211 /* Data. */
4212 sp = perf_user_stack_pointer(regs);
4213 rem = __output_copy_user(handle, (void *) sp, dump_size);
4214 dyn_size = dump_size - rem;
4215
4216 perf_output_skip(handle, rem);
4217
4218 /* Dynamic size. */
4219 perf_output_put(handle, dyn_size);
4220 }
4221}
4222
c980d109
ACM
4223static void __perf_event_header__init_id(struct perf_event_header *header,
4224 struct perf_sample_data *data,
4225 struct perf_event *event)
6844c09d
ACM
4226{
4227 u64 sample_type = event->attr.sample_type;
4228
4229 data->type = sample_type;
4230 header->size += event->id_header_size;
4231
4232 if (sample_type & PERF_SAMPLE_TID) {
4233 /* namespace issues */
4234 data->tid_entry.pid = perf_event_pid(event, current);
4235 data->tid_entry.tid = perf_event_tid(event, current);
4236 }
4237
4238 if (sample_type & PERF_SAMPLE_TIME)
4239 data->time = perf_clock();
4240
4241 if (sample_type & PERF_SAMPLE_ID)
4242 data->id = primary_event_id(event);
4243
4244 if (sample_type & PERF_SAMPLE_STREAM_ID)
4245 data->stream_id = event->id;
4246
4247 if (sample_type & PERF_SAMPLE_CPU) {
4248 data->cpu_entry.cpu = raw_smp_processor_id();
4249 data->cpu_entry.reserved = 0;
4250 }
4251}
4252
76369139
FW
4253void perf_event_header__init_id(struct perf_event_header *header,
4254 struct perf_sample_data *data,
4255 struct perf_event *event)
c980d109
ACM
4256{
4257 if (event->attr.sample_id_all)
4258 __perf_event_header__init_id(header, data, event);
4259}
4260
4261static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4262 struct perf_sample_data *data)
4263{
4264 u64 sample_type = data->type;
4265
4266 if (sample_type & PERF_SAMPLE_TID)
4267 perf_output_put(handle, data->tid_entry);
4268
4269 if (sample_type & PERF_SAMPLE_TIME)
4270 perf_output_put(handle, data->time);
4271
4272 if (sample_type & PERF_SAMPLE_ID)
4273 perf_output_put(handle, data->id);
4274
4275 if (sample_type & PERF_SAMPLE_STREAM_ID)
4276 perf_output_put(handle, data->stream_id);
4277
4278 if (sample_type & PERF_SAMPLE_CPU)
4279 perf_output_put(handle, data->cpu_entry);
4280}
4281
76369139
FW
4282void perf_event__output_id_sample(struct perf_event *event,
4283 struct perf_output_handle *handle,
4284 struct perf_sample_data *sample)
c980d109
ACM
4285{
4286 if (event->attr.sample_id_all)
4287 __perf_event__output_id_sample(handle, sample);
4288}
4289
3dab77fb 4290static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4291 struct perf_event *event,
4292 u64 enabled, u64 running)
3dab77fb 4293{
cdd6c482 4294 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4295 u64 values[4];
4296 int n = 0;
4297
b5e58793 4298 values[n++] = perf_event_count(event);
3dab77fb 4299 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4300 values[n++] = enabled +
cdd6c482 4301 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4302 }
4303 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4304 values[n++] = running +
cdd6c482 4305 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4306 }
4307 if (read_format & PERF_FORMAT_ID)
cdd6c482 4308 values[n++] = primary_event_id(event);
3dab77fb 4309
76369139 4310 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4311}
4312
4313/*
cdd6c482 4314 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4315 */
4316static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4317 struct perf_event *event,
4318 u64 enabled, u64 running)
3dab77fb 4319{
cdd6c482
IM
4320 struct perf_event *leader = event->group_leader, *sub;
4321 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4322 u64 values[5];
4323 int n = 0;
4324
4325 values[n++] = 1 + leader->nr_siblings;
4326
4327 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4328 values[n++] = enabled;
3dab77fb
PZ
4329
4330 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4331 values[n++] = running;
3dab77fb 4332
cdd6c482 4333 if (leader != event)
3dab77fb
PZ
4334 leader->pmu->read(leader);
4335
b5e58793 4336 values[n++] = perf_event_count(leader);
3dab77fb 4337 if (read_format & PERF_FORMAT_ID)
cdd6c482 4338 values[n++] = primary_event_id(leader);
3dab77fb 4339
76369139 4340 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4341
65abc865 4342 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4343 n = 0;
4344
cdd6c482 4345 if (sub != event)
3dab77fb
PZ
4346 sub->pmu->read(sub);
4347
b5e58793 4348 values[n++] = perf_event_count(sub);
3dab77fb 4349 if (read_format & PERF_FORMAT_ID)
cdd6c482 4350 values[n++] = primary_event_id(sub);
3dab77fb 4351
76369139 4352 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4353 }
4354}
4355
eed01528
SE
4356#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4357 PERF_FORMAT_TOTAL_TIME_RUNNING)
4358
3dab77fb 4359static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4360 struct perf_event *event)
3dab77fb 4361{
e3f3541c 4362 u64 enabled = 0, running = 0, now;
eed01528
SE
4363 u64 read_format = event->attr.read_format;
4364
4365 /*
4366 * compute total_time_enabled, total_time_running
4367 * based on snapshot values taken when the event
4368 * was last scheduled in.
4369 *
4370 * we cannot simply called update_context_time()
4371 * because of locking issue as we are called in
4372 * NMI context
4373 */
c4794295 4374 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4375 calc_timer_values(event, &now, &enabled, &running);
eed01528 4376
cdd6c482 4377 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4378 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4379 else
eed01528 4380 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4381}
4382
5622f295
MM
4383void perf_output_sample(struct perf_output_handle *handle,
4384 struct perf_event_header *header,
4385 struct perf_sample_data *data,
cdd6c482 4386 struct perf_event *event)
5622f295
MM
4387{
4388 u64 sample_type = data->type;
4389
4390 perf_output_put(handle, *header);
4391
4392 if (sample_type & PERF_SAMPLE_IP)
4393 perf_output_put(handle, data->ip);
4394
4395 if (sample_type & PERF_SAMPLE_TID)
4396 perf_output_put(handle, data->tid_entry);
4397
4398 if (sample_type & PERF_SAMPLE_TIME)
4399 perf_output_put(handle, data->time);
4400
4401 if (sample_type & PERF_SAMPLE_ADDR)
4402 perf_output_put(handle, data->addr);
4403
4404 if (sample_type & PERF_SAMPLE_ID)
4405 perf_output_put(handle, data->id);
4406
4407 if (sample_type & PERF_SAMPLE_STREAM_ID)
4408 perf_output_put(handle, data->stream_id);
4409
4410 if (sample_type & PERF_SAMPLE_CPU)
4411 perf_output_put(handle, data->cpu_entry);
4412
4413 if (sample_type & PERF_SAMPLE_PERIOD)
4414 perf_output_put(handle, data->period);
4415
4416 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4417 perf_output_read(handle, event);
5622f295
MM
4418
4419 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4420 if (data->callchain) {
4421 int size = 1;
4422
4423 if (data->callchain)
4424 size += data->callchain->nr;
4425
4426 size *= sizeof(u64);
4427
76369139 4428 __output_copy(handle, data->callchain, size);
5622f295
MM
4429 } else {
4430 u64 nr = 0;
4431 perf_output_put(handle, nr);
4432 }
4433 }
4434
4435 if (sample_type & PERF_SAMPLE_RAW) {
4436 if (data->raw) {
4437 perf_output_put(handle, data->raw->size);
76369139
FW
4438 __output_copy(handle, data->raw->data,
4439 data->raw->size);
5622f295
MM
4440 } else {
4441 struct {
4442 u32 size;
4443 u32 data;
4444 } raw = {
4445 .size = sizeof(u32),
4446 .data = 0,
4447 };
4448 perf_output_put(handle, raw);
4449 }
4450 }
a7ac67ea
PZ
4451
4452 if (!event->attr.watermark) {
4453 int wakeup_events = event->attr.wakeup_events;
4454
4455 if (wakeup_events) {
4456 struct ring_buffer *rb = handle->rb;
4457 int events = local_inc_return(&rb->events);
4458
4459 if (events >= wakeup_events) {
4460 local_sub(wakeup_events, &rb->events);
4461 local_inc(&rb->wakeup);
4462 }
4463 }
4464 }
bce38cd5
SE
4465
4466 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4467 if (data->br_stack) {
4468 size_t size;
4469
4470 size = data->br_stack->nr
4471 * sizeof(struct perf_branch_entry);
4472
4473 perf_output_put(handle, data->br_stack->nr);
4474 perf_output_copy(handle, data->br_stack->entries, size);
4475 } else {
4476 /*
4477 * we always store at least the value of nr
4478 */
4479 u64 nr = 0;
4480 perf_output_put(handle, nr);
4481 }
4482 }
4018994f
JO
4483
4484 if (sample_type & PERF_SAMPLE_REGS_USER) {
4485 u64 abi = data->regs_user.abi;
4486
4487 /*
4488 * If there are no regs to dump, notice it through
4489 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4490 */
4491 perf_output_put(handle, abi);
4492
4493 if (abi) {
4494 u64 mask = event->attr.sample_regs_user;
4495 perf_output_sample_regs(handle,
4496 data->regs_user.regs,
4497 mask);
4498 }
4499 }
c5ebcedb
JO
4500
4501 if (sample_type & PERF_SAMPLE_STACK_USER)
4502 perf_output_sample_ustack(handle,
4503 data->stack_user_size,
4504 data->regs_user.regs);
c3feedf2
AK
4505
4506 if (sample_type & PERF_SAMPLE_WEIGHT)
4507 perf_output_put(handle, data->weight);
d6be9ad6
SE
4508
4509 if (sample_type & PERF_SAMPLE_DATA_SRC)
4510 perf_output_put(handle, data->data_src.val);
5622f295
MM
4511}
4512
4513void perf_prepare_sample(struct perf_event_header *header,
4514 struct perf_sample_data *data,
cdd6c482 4515 struct perf_event *event,
5622f295 4516 struct pt_regs *regs)
7b732a75 4517{
cdd6c482 4518 u64 sample_type = event->attr.sample_type;
7b732a75 4519
cdd6c482 4520 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4521 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4522
4523 header->misc = 0;
4524 header->misc |= perf_misc_flags(regs);
6fab0192 4525
c980d109 4526 __perf_event_header__init_id(header, data, event);
6844c09d 4527
c320c7b7 4528 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4529 data->ip = perf_instruction_pointer(regs);
4530
b23f3325 4531 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4532 int size = 1;
394ee076 4533
e6dab5ff 4534 data->callchain = perf_callchain(event, regs);
5622f295
MM
4535
4536 if (data->callchain)
4537 size += data->callchain->nr;
4538
4539 header->size += size * sizeof(u64);
394ee076
PZ
4540 }
4541
3a43ce68 4542 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4543 int size = sizeof(u32);
4544
4545 if (data->raw)
4546 size += data->raw->size;
4547 else
4548 size += sizeof(u32);
4549
4550 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4551 header->size += size;
7f453c24 4552 }
bce38cd5
SE
4553
4554 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4555 int size = sizeof(u64); /* nr */
4556 if (data->br_stack) {
4557 size += data->br_stack->nr
4558 * sizeof(struct perf_branch_entry);
4559 }
4560 header->size += size;
4561 }
4018994f
JO
4562
4563 if (sample_type & PERF_SAMPLE_REGS_USER) {
4564 /* regs dump ABI info */
4565 int size = sizeof(u64);
4566
4567 perf_sample_regs_user(&data->regs_user, regs);
4568
4569 if (data->regs_user.regs) {
4570 u64 mask = event->attr.sample_regs_user;
4571 size += hweight64(mask) * sizeof(u64);
4572 }
4573
4574 header->size += size;
4575 }
c5ebcedb
JO
4576
4577 if (sample_type & PERF_SAMPLE_STACK_USER) {
4578 /*
4579 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4580 * processed as the last one or have additional check added
4581 * in case new sample type is added, because we could eat
4582 * up the rest of the sample size.
4583 */
4584 struct perf_regs_user *uregs = &data->regs_user;
4585 u16 stack_size = event->attr.sample_stack_user;
4586 u16 size = sizeof(u64);
4587
4588 if (!uregs->abi)
4589 perf_sample_regs_user(uregs, regs);
4590
4591 stack_size = perf_sample_ustack_size(stack_size, header->size,
4592 uregs->regs);
4593
4594 /*
4595 * If there is something to dump, add space for the dump
4596 * itself and for the field that tells the dynamic size,
4597 * which is how many have been actually dumped.
4598 */
4599 if (stack_size)
4600 size += sizeof(u64) + stack_size;
4601
4602 data->stack_user_size = stack_size;
4603 header->size += size;
4604 }
5622f295 4605}
7f453c24 4606
a8b0ca17 4607static void perf_event_output(struct perf_event *event,
5622f295
MM
4608 struct perf_sample_data *data,
4609 struct pt_regs *regs)
4610{
4611 struct perf_output_handle handle;
4612 struct perf_event_header header;
689802b2 4613
927c7a9e
FW
4614 /* protect the callchain buffers */
4615 rcu_read_lock();
4616
cdd6c482 4617 perf_prepare_sample(&header, data, event, regs);
5c148194 4618
a7ac67ea 4619 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4620 goto exit;
0322cd6e 4621
cdd6c482 4622 perf_output_sample(&handle, &header, data, event);
f413cdb8 4623
8a057d84 4624 perf_output_end(&handle);
927c7a9e
FW
4625
4626exit:
4627 rcu_read_unlock();
0322cd6e
PZ
4628}
4629
38b200d6 4630/*
cdd6c482 4631 * read event_id
38b200d6
PZ
4632 */
4633
4634struct perf_read_event {
4635 struct perf_event_header header;
4636
4637 u32 pid;
4638 u32 tid;
38b200d6
PZ
4639};
4640
4641static void
cdd6c482 4642perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4643 struct task_struct *task)
4644{
4645 struct perf_output_handle handle;
c980d109 4646 struct perf_sample_data sample;
dfc65094 4647 struct perf_read_event read_event = {
38b200d6 4648 .header = {
cdd6c482 4649 .type = PERF_RECORD_READ,
38b200d6 4650 .misc = 0,
c320c7b7 4651 .size = sizeof(read_event) + event->read_size,
38b200d6 4652 },
cdd6c482
IM
4653 .pid = perf_event_pid(event, task),
4654 .tid = perf_event_tid(event, task),
38b200d6 4655 };
3dab77fb 4656 int ret;
38b200d6 4657
c980d109 4658 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4659 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4660 if (ret)
4661 return;
4662
dfc65094 4663 perf_output_put(&handle, read_event);
cdd6c482 4664 perf_output_read(&handle, event);
c980d109 4665 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4666
38b200d6
PZ
4667 perf_output_end(&handle);
4668}
4669
52d857a8
JO
4670typedef int (perf_event_aux_match_cb)(struct perf_event *event, void *data);
4671typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4672
4673static void
4674perf_event_aux_ctx(struct perf_event_context *ctx,
4675 perf_event_aux_match_cb match,
4676 perf_event_aux_output_cb output,
4677 void *data)
4678{
4679 struct perf_event *event;
4680
4681 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4682 if (event->state < PERF_EVENT_STATE_INACTIVE)
4683 continue;
4684 if (!event_filter_match(event))
4685 continue;
4686 if (match(event, data))
4687 output(event, data);
4688 }
4689}
4690
4691static void
4692perf_event_aux(perf_event_aux_match_cb match,
4693 perf_event_aux_output_cb output,
4694 void *data,
4695 struct perf_event_context *task_ctx)
4696{
4697 struct perf_cpu_context *cpuctx;
4698 struct perf_event_context *ctx;
4699 struct pmu *pmu;
4700 int ctxn;
4701
4702 rcu_read_lock();
4703 list_for_each_entry_rcu(pmu, &pmus, entry) {
4704 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4705 if (cpuctx->unique_pmu != pmu)
4706 goto next;
4707 perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
4708 if (task_ctx)
4709 goto next;
4710 ctxn = pmu->task_ctx_nr;
4711 if (ctxn < 0)
4712 goto next;
4713 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4714 if (ctx)
4715 perf_event_aux_ctx(ctx, match, output, data);
4716next:
4717 put_cpu_ptr(pmu->pmu_cpu_context);
4718 }
4719
4720 if (task_ctx) {
4721 preempt_disable();
4722 perf_event_aux_ctx(task_ctx, match, output, data);
4723 preempt_enable();
4724 }
4725 rcu_read_unlock();
4726}
4727
60313ebe 4728/*
9f498cc5
PZ
4729 * task tracking -- fork/exit
4730 *
3af9e859 4731 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4732 */
4733
9f498cc5 4734struct perf_task_event {
3a80b4a3 4735 struct task_struct *task;
cdd6c482 4736 struct perf_event_context *task_ctx;
60313ebe
PZ
4737
4738 struct {
4739 struct perf_event_header header;
4740
4741 u32 pid;
4742 u32 ppid;
9f498cc5
PZ
4743 u32 tid;
4744 u32 ptid;
393b2ad8 4745 u64 time;
cdd6c482 4746 } event_id;
60313ebe
PZ
4747};
4748
cdd6c482 4749static void perf_event_task_output(struct perf_event *event,
52d857a8 4750 void *data)
60313ebe 4751{
52d857a8 4752 struct perf_task_event *task_event = data;
60313ebe 4753 struct perf_output_handle handle;
c980d109 4754 struct perf_sample_data sample;
9f498cc5 4755 struct task_struct *task = task_event->task;
c980d109 4756 int ret, size = task_event->event_id.header.size;
8bb39f9a 4757
c980d109 4758 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4759
c980d109 4760 ret = perf_output_begin(&handle, event,
a7ac67ea 4761 task_event->event_id.header.size);
ef60777c 4762 if (ret)
c980d109 4763 goto out;
60313ebe 4764
cdd6c482
IM
4765 task_event->event_id.pid = perf_event_pid(event, task);
4766 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4767
cdd6c482
IM
4768 task_event->event_id.tid = perf_event_tid(event, task);
4769 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4770
cdd6c482 4771 perf_output_put(&handle, task_event->event_id);
393b2ad8 4772
c980d109
ACM
4773 perf_event__output_id_sample(event, &handle, &sample);
4774
60313ebe 4775 perf_output_end(&handle);
c980d109
ACM
4776out:
4777 task_event->event_id.header.size = size;
60313ebe
PZ
4778}
4779
52d857a8
JO
4780static int perf_event_task_match(struct perf_event *event,
4781 void *data __maybe_unused)
60313ebe 4782{
52d857a8
JO
4783 return event->attr.comm || event->attr.mmap ||
4784 event->attr.mmap_data || event->attr.task;
60313ebe
PZ
4785}
4786
cdd6c482
IM
4787static void perf_event_task(struct task_struct *task,
4788 struct perf_event_context *task_ctx,
3a80b4a3 4789 int new)
60313ebe 4790{
9f498cc5 4791 struct perf_task_event task_event;
60313ebe 4792
cdd6c482
IM
4793 if (!atomic_read(&nr_comm_events) &&
4794 !atomic_read(&nr_mmap_events) &&
4795 !atomic_read(&nr_task_events))
60313ebe
PZ
4796 return;
4797
9f498cc5 4798 task_event = (struct perf_task_event){
3a80b4a3
PZ
4799 .task = task,
4800 .task_ctx = task_ctx,
cdd6c482 4801 .event_id = {
60313ebe 4802 .header = {
cdd6c482 4803 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4804 .misc = 0,
cdd6c482 4805 .size = sizeof(task_event.event_id),
60313ebe 4806 },
573402db
PZ
4807 /* .pid */
4808 /* .ppid */
9f498cc5
PZ
4809 /* .tid */
4810 /* .ptid */
6f93d0a7 4811 .time = perf_clock(),
60313ebe
PZ
4812 },
4813 };
4814
52d857a8
JO
4815 perf_event_aux(perf_event_task_match,
4816 perf_event_task_output,
4817 &task_event,
4818 task_ctx);
9f498cc5
PZ
4819}
4820
cdd6c482 4821void perf_event_fork(struct task_struct *task)
9f498cc5 4822{
cdd6c482 4823 perf_event_task(task, NULL, 1);
60313ebe
PZ
4824}
4825
8d1b2d93
PZ
4826/*
4827 * comm tracking
4828 */
4829
4830struct perf_comm_event {
22a4f650
IM
4831 struct task_struct *task;
4832 char *comm;
8d1b2d93
PZ
4833 int comm_size;
4834
4835 struct {
4836 struct perf_event_header header;
4837
4838 u32 pid;
4839 u32 tid;
cdd6c482 4840 } event_id;
8d1b2d93
PZ
4841};
4842
cdd6c482 4843static void perf_event_comm_output(struct perf_event *event,
52d857a8 4844 void *data)
8d1b2d93 4845{
52d857a8 4846 struct perf_comm_event *comm_event = data;
8d1b2d93 4847 struct perf_output_handle handle;
c980d109 4848 struct perf_sample_data sample;
cdd6c482 4849 int size = comm_event->event_id.header.size;
c980d109
ACM
4850 int ret;
4851
4852 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4853 ret = perf_output_begin(&handle, event,
a7ac67ea 4854 comm_event->event_id.header.size);
8d1b2d93
PZ
4855
4856 if (ret)
c980d109 4857 goto out;
8d1b2d93 4858
cdd6c482
IM
4859 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4860 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4861
cdd6c482 4862 perf_output_put(&handle, comm_event->event_id);
76369139 4863 __output_copy(&handle, comm_event->comm,
8d1b2d93 4864 comm_event->comm_size);
c980d109
ACM
4865
4866 perf_event__output_id_sample(event, &handle, &sample);
4867
8d1b2d93 4868 perf_output_end(&handle);
c980d109
ACM
4869out:
4870 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4871}
4872
52d857a8
JO
4873static int perf_event_comm_match(struct perf_event *event,
4874 void *data __maybe_unused)
8d1b2d93 4875{
52d857a8 4876 return event->attr.comm;
8d1b2d93
PZ
4877}
4878
cdd6c482 4879static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 4880{
413ee3b4 4881 char comm[TASK_COMM_LEN];
8d1b2d93 4882 unsigned int size;
8d1b2d93 4883
413ee3b4 4884 memset(comm, 0, sizeof(comm));
96b02d78 4885 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4886 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4887
4888 comm_event->comm = comm;
4889 comm_event->comm_size = size;
4890
cdd6c482 4891 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 4892
52d857a8
JO
4893 perf_event_aux(perf_event_comm_match,
4894 perf_event_comm_output,
4895 comm_event,
4896 NULL);
8d1b2d93
PZ
4897}
4898
cdd6c482 4899void perf_event_comm(struct task_struct *task)
8d1b2d93 4900{
9ee318a7 4901 struct perf_comm_event comm_event;
8dc85d54
PZ
4902 struct perf_event_context *ctx;
4903 int ctxn;
9ee318a7 4904
c79aa0d9 4905 rcu_read_lock();
8dc85d54
PZ
4906 for_each_task_context_nr(ctxn) {
4907 ctx = task->perf_event_ctxp[ctxn];
4908 if (!ctx)
4909 continue;
9ee318a7 4910
8dc85d54
PZ
4911 perf_event_enable_on_exec(ctx);
4912 }
c79aa0d9 4913 rcu_read_unlock();
9ee318a7 4914
cdd6c482 4915 if (!atomic_read(&nr_comm_events))
9ee318a7 4916 return;
a63eaf34 4917
9ee318a7 4918 comm_event = (struct perf_comm_event){
8d1b2d93 4919 .task = task,
573402db
PZ
4920 /* .comm */
4921 /* .comm_size */
cdd6c482 4922 .event_id = {
573402db 4923 .header = {
cdd6c482 4924 .type = PERF_RECORD_COMM,
573402db
PZ
4925 .misc = 0,
4926 /* .size */
4927 },
4928 /* .pid */
4929 /* .tid */
8d1b2d93
PZ
4930 },
4931 };
4932
cdd6c482 4933 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4934}
4935
0a4a9391
PZ
4936/*
4937 * mmap tracking
4938 */
4939
4940struct perf_mmap_event {
089dd79d
PZ
4941 struct vm_area_struct *vma;
4942
4943 const char *file_name;
4944 int file_size;
0a4a9391
PZ
4945
4946 struct {
4947 struct perf_event_header header;
4948
4949 u32 pid;
4950 u32 tid;
4951 u64 start;
4952 u64 len;
4953 u64 pgoff;
cdd6c482 4954 } event_id;
0a4a9391
PZ
4955};
4956
cdd6c482 4957static void perf_event_mmap_output(struct perf_event *event,
52d857a8 4958 void *data)
0a4a9391 4959{
52d857a8 4960 struct perf_mmap_event *mmap_event = data;
0a4a9391 4961 struct perf_output_handle handle;
c980d109 4962 struct perf_sample_data sample;
cdd6c482 4963 int size = mmap_event->event_id.header.size;
c980d109 4964 int ret;
0a4a9391 4965
c980d109
ACM
4966 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4967 ret = perf_output_begin(&handle, event,
a7ac67ea 4968 mmap_event->event_id.header.size);
0a4a9391 4969 if (ret)
c980d109 4970 goto out;
0a4a9391 4971
cdd6c482
IM
4972 mmap_event->event_id.pid = perf_event_pid(event, current);
4973 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 4974
cdd6c482 4975 perf_output_put(&handle, mmap_event->event_id);
76369139 4976 __output_copy(&handle, mmap_event->file_name,
0a4a9391 4977 mmap_event->file_size);
c980d109
ACM
4978
4979 perf_event__output_id_sample(event, &handle, &sample);
4980
78d613eb 4981 perf_output_end(&handle);
c980d109
ACM
4982out:
4983 mmap_event->event_id.header.size = size;
0a4a9391
PZ
4984}
4985
cdd6c482 4986static int perf_event_mmap_match(struct perf_event *event,
52d857a8 4987 void *data)
0a4a9391 4988{
52d857a8
JO
4989 struct perf_mmap_event *mmap_event = data;
4990 struct vm_area_struct *vma = mmap_event->vma;
4991 int executable = vma->vm_flags & VM_EXEC;
0a4a9391 4992
52d857a8
JO
4993 return (!executable && event->attr.mmap_data) ||
4994 (executable && event->attr.mmap);
0a4a9391
PZ
4995}
4996
cdd6c482 4997static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 4998{
089dd79d
PZ
4999 struct vm_area_struct *vma = mmap_event->vma;
5000 struct file *file = vma->vm_file;
0a4a9391
PZ
5001 unsigned int size;
5002 char tmp[16];
5003 char *buf = NULL;
089dd79d 5004 const char *name;
0a4a9391 5005
413ee3b4
AB
5006 memset(tmp, 0, sizeof(tmp));
5007
0a4a9391 5008 if (file) {
413ee3b4 5009 /*
76369139 5010 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
5011 * need to add enough zero bytes after the string to handle
5012 * the 64bit alignment we do later.
5013 */
5014 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
5015 if (!buf) {
5016 name = strncpy(tmp, "//enomem", sizeof(tmp));
5017 goto got_name;
5018 }
d3d21c41 5019 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
5020 if (IS_ERR(name)) {
5021 name = strncpy(tmp, "//toolong", sizeof(tmp));
5022 goto got_name;
5023 }
5024 } else {
413ee3b4
AB
5025 if (arch_vma_name(mmap_event->vma)) {
5026 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
c97847d2
CG
5027 sizeof(tmp) - 1);
5028 tmp[sizeof(tmp) - 1] = '\0';
089dd79d 5029 goto got_name;
413ee3b4 5030 }
089dd79d
PZ
5031
5032 if (!vma->vm_mm) {
5033 name = strncpy(tmp, "[vdso]", sizeof(tmp));
5034 goto got_name;
3af9e859
EM
5035 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5036 vma->vm_end >= vma->vm_mm->brk) {
5037 name = strncpy(tmp, "[heap]", sizeof(tmp));
5038 goto got_name;
5039 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5040 vma->vm_end >= vma->vm_mm->start_stack) {
5041 name = strncpy(tmp, "[stack]", sizeof(tmp));
5042 goto got_name;
089dd79d
PZ
5043 }
5044
0a4a9391
PZ
5045 name = strncpy(tmp, "//anon", sizeof(tmp));
5046 goto got_name;
5047 }
5048
5049got_name:
888fcee0 5050 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
5051
5052 mmap_event->file_name = name;
5053 mmap_event->file_size = size;
5054
2fe85427
SE
5055 if (!(vma->vm_flags & VM_EXEC))
5056 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5057
cdd6c482 5058 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5059
52d857a8
JO
5060 perf_event_aux(perf_event_mmap_match,
5061 perf_event_mmap_output,
5062 mmap_event,
5063 NULL);
665c2142 5064
0a4a9391
PZ
5065 kfree(buf);
5066}
5067
3af9e859 5068void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5069{
9ee318a7
PZ
5070 struct perf_mmap_event mmap_event;
5071
cdd6c482 5072 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
5073 return;
5074
5075 mmap_event = (struct perf_mmap_event){
089dd79d 5076 .vma = vma,
573402db
PZ
5077 /* .file_name */
5078 /* .file_size */
cdd6c482 5079 .event_id = {
573402db 5080 .header = {
cdd6c482 5081 .type = PERF_RECORD_MMAP,
39447b38 5082 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
5083 /* .size */
5084 },
5085 /* .pid */
5086 /* .tid */
089dd79d
PZ
5087 .start = vma->vm_start,
5088 .len = vma->vm_end - vma->vm_start,
3a0304e9 5089 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
5090 },
5091 };
5092
cdd6c482 5093 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
5094}
5095
a78ac325
PZ
5096/*
5097 * IRQ throttle logging
5098 */
5099
cdd6c482 5100static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
5101{
5102 struct perf_output_handle handle;
c980d109 5103 struct perf_sample_data sample;
a78ac325
PZ
5104 int ret;
5105
5106 struct {
5107 struct perf_event_header header;
5108 u64 time;
cca3f454 5109 u64 id;
7f453c24 5110 u64 stream_id;
a78ac325
PZ
5111 } throttle_event = {
5112 .header = {
cdd6c482 5113 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
5114 .misc = 0,
5115 .size = sizeof(throttle_event),
5116 },
def0a9b2 5117 .time = perf_clock(),
cdd6c482
IM
5118 .id = primary_event_id(event),
5119 .stream_id = event->id,
a78ac325
PZ
5120 };
5121
966ee4d6 5122 if (enable)
cdd6c482 5123 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 5124
c980d109
ACM
5125 perf_event_header__init_id(&throttle_event.header, &sample, event);
5126
5127 ret = perf_output_begin(&handle, event,
a7ac67ea 5128 throttle_event.header.size);
a78ac325
PZ
5129 if (ret)
5130 return;
5131
5132 perf_output_put(&handle, throttle_event);
c980d109 5133 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
5134 perf_output_end(&handle);
5135}
5136
f6c7d5fe 5137/*
cdd6c482 5138 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
5139 */
5140
a8b0ca17 5141static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
5142 int throttle, struct perf_sample_data *data,
5143 struct pt_regs *regs)
f6c7d5fe 5144{
cdd6c482
IM
5145 int events = atomic_read(&event->event_limit);
5146 struct hw_perf_event *hwc = &event->hw;
e050e3f0 5147 u64 seq;
79f14641
PZ
5148 int ret = 0;
5149
96398826
PZ
5150 /*
5151 * Non-sampling counters might still use the PMI to fold short
5152 * hardware counters, ignore those.
5153 */
5154 if (unlikely(!is_sampling_event(event)))
5155 return 0;
5156
e050e3f0
SE
5157 seq = __this_cpu_read(perf_throttled_seq);
5158 if (seq != hwc->interrupts_seq) {
5159 hwc->interrupts_seq = seq;
5160 hwc->interrupts = 1;
5161 } else {
5162 hwc->interrupts++;
5163 if (unlikely(throttle
5164 && hwc->interrupts >= max_samples_per_tick)) {
5165 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
5166 hwc->interrupts = MAX_INTERRUPTS;
5167 perf_log_throttle(event, 0);
a78ac325
PZ
5168 ret = 1;
5169 }
e050e3f0 5170 }
60db5e09 5171
cdd6c482 5172 if (event->attr.freq) {
def0a9b2 5173 u64 now = perf_clock();
abd50713 5174 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 5175
abd50713 5176 hwc->freq_time_stamp = now;
bd2b5b12 5177
abd50713 5178 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5179 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5180 }
5181
2023b359
PZ
5182 /*
5183 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5184 * events
2023b359
PZ
5185 */
5186
cdd6c482
IM
5187 event->pending_kill = POLL_IN;
5188 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5189 ret = 1;
cdd6c482 5190 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5191 event->pending_disable = 1;
5192 irq_work_queue(&event->pending);
79f14641
PZ
5193 }
5194
453f19ee 5195 if (event->overflow_handler)
a8b0ca17 5196 event->overflow_handler(event, data, regs);
453f19ee 5197 else
a8b0ca17 5198 perf_event_output(event, data, regs);
453f19ee 5199
f506b3dc 5200 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5201 event->pending_wakeup = 1;
5202 irq_work_queue(&event->pending);
f506b3dc
PZ
5203 }
5204
79f14641 5205 return ret;
f6c7d5fe
PZ
5206}
5207
a8b0ca17 5208int perf_event_overflow(struct perf_event *event,
5622f295
MM
5209 struct perf_sample_data *data,
5210 struct pt_regs *regs)
850bc73f 5211{
a8b0ca17 5212 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5213}
5214
15dbf27c 5215/*
cdd6c482 5216 * Generic software event infrastructure
15dbf27c
PZ
5217 */
5218
b28ab83c
PZ
5219struct swevent_htable {
5220 struct swevent_hlist *swevent_hlist;
5221 struct mutex hlist_mutex;
5222 int hlist_refcount;
5223
5224 /* Recursion avoidance in each contexts */
5225 int recursion[PERF_NR_CONTEXTS];
5226};
5227
5228static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5229
7b4b6658 5230/*
cdd6c482
IM
5231 * We directly increment event->count and keep a second value in
5232 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5233 * is kept in the range [-sample_period, 0] so that we can use the
5234 * sign as trigger.
5235 */
5236
ab573844 5237u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5238{
cdd6c482 5239 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5240 u64 period = hwc->last_period;
5241 u64 nr, offset;
5242 s64 old, val;
5243
5244 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5245
5246again:
e7850595 5247 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5248 if (val < 0)
5249 return 0;
15dbf27c 5250
7b4b6658
PZ
5251 nr = div64_u64(period + val, period);
5252 offset = nr * period;
5253 val -= offset;
e7850595 5254 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5255 goto again;
15dbf27c 5256
7b4b6658 5257 return nr;
15dbf27c
PZ
5258}
5259
0cff784a 5260static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5261 struct perf_sample_data *data,
5622f295 5262 struct pt_regs *regs)
15dbf27c 5263{
cdd6c482 5264 struct hw_perf_event *hwc = &event->hw;
850bc73f 5265 int throttle = 0;
15dbf27c 5266
0cff784a
PZ
5267 if (!overflow)
5268 overflow = perf_swevent_set_period(event);
15dbf27c 5269
7b4b6658
PZ
5270 if (hwc->interrupts == MAX_INTERRUPTS)
5271 return;
15dbf27c 5272
7b4b6658 5273 for (; overflow; overflow--) {
a8b0ca17 5274 if (__perf_event_overflow(event, throttle,
5622f295 5275 data, regs)) {
7b4b6658
PZ
5276 /*
5277 * We inhibit the overflow from happening when
5278 * hwc->interrupts == MAX_INTERRUPTS.
5279 */
5280 break;
5281 }
cf450a73 5282 throttle = 1;
7b4b6658 5283 }
15dbf27c
PZ
5284}
5285
a4eaf7f1 5286static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5287 struct perf_sample_data *data,
5622f295 5288 struct pt_regs *regs)
7b4b6658 5289{
cdd6c482 5290 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5291
e7850595 5292 local64_add(nr, &event->count);
d6d020e9 5293
0cff784a
PZ
5294 if (!regs)
5295 return;
5296
6c7e550f 5297 if (!is_sampling_event(event))
7b4b6658 5298 return;
d6d020e9 5299
5d81e5cf
AV
5300 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5301 data->period = nr;
5302 return perf_swevent_overflow(event, 1, data, regs);
5303 } else
5304 data->period = event->hw.last_period;
5305
0cff784a 5306 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5307 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5308
e7850595 5309 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5310 return;
df1a132b 5311
a8b0ca17 5312 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5313}
5314
f5ffe02e
FW
5315static int perf_exclude_event(struct perf_event *event,
5316 struct pt_regs *regs)
5317{
a4eaf7f1 5318 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5319 return 1;
a4eaf7f1 5320
f5ffe02e
FW
5321 if (regs) {
5322 if (event->attr.exclude_user && user_mode(regs))
5323 return 1;
5324
5325 if (event->attr.exclude_kernel && !user_mode(regs))
5326 return 1;
5327 }
5328
5329 return 0;
5330}
5331
cdd6c482 5332static int perf_swevent_match(struct perf_event *event,
1c432d89 5333 enum perf_type_id type,
6fb2915d
LZ
5334 u32 event_id,
5335 struct perf_sample_data *data,
5336 struct pt_regs *regs)
15dbf27c 5337{
cdd6c482 5338 if (event->attr.type != type)
a21ca2ca 5339 return 0;
f5ffe02e 5340
cdd6c482 5341 if (event->attr.config != event_id)
15dbf27c
PZ
5342 return 0;
5343
f5ffe02e
FW
5344 if (perf_exclude_event(event, regs))
5345 return 0;
15dbf27c
PZ
5346
5347 return 1;
5348}
5349
76e1d904
FW
5350static inline u64 swevent_hash(u64 type, u32 event_id)
5351{
5352 u64 val = event_id | (type << 32);
5353
5354 return hash_64(val, SWEVENT_HLIST_BITS);
5355}
5356
49f135ed
FW
5357static inline struct hlist_head *
5358__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5359{
49f135ed
FW
5360 u64 hash = swevent_hash(type, event_id);
5361
5362 return &hlist->heads[hash];
5363}
76e1d904 5364
49f135ed
FW
5365/* For the read side: events when they trigger */
5366static inline struct hlist_head *
b28ab83c 5367find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5368{
5369 struct swevent_hlist *hlist;
76e1d904 5370
b28ab83c 5371 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5372 if (!hlist)
5373 return NULL;
5374
49f135ed
FW
5375 return __find_swevent_head(hlist, type, event_id);
5376}
5377
5378/* For the event head insertion and removal in the hlist */
5379static inline struct hlist_head *
b28ab83c 5380find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5381{
5382 struct swevent_hlist *hlist;
5383 u32 event_id = event->attr.config;
5384 u64 type = event->attr.type;
5385
5386 /*
5387 * Event scheduling is always serialized against hlist allocation
5388 * and release. Which makes the protected version suitable here.
5389 * The context lock guarantees that.
5390 */
b28ab83c 5391 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5392 lockdep_is_held(&event->ctx->lock));
5393 if (!hlist)
5394 return NULL;
5395
5396 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5397}
5398
5399static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5400 u64 nr,
76e1d904
FW
5401 struct perf_sample_data *data,
5402 struct pt_regs *regs)
15dbf27c 5403{
b28ab83c 5404 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5405 struct perf_event *event;
76e1d904 5406 struct hlist_head *head;
15dbf27c 5407
76e1d904 5408 rcu_read_lock();
b28ab83c 5409 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5410 if (!head)
5411 goto end;
5412
b67bfe0d 5413 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5414 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5415 perf_swevent_event(event, nr, data, regs);
15dbf27c 5416 }
76e1d904
FW
5417end:
5418 rcu_read_unlock();
15dbf27c
PZ
5419}
5420
4ed7c92d 5421int perf_swevent_get_recursion_context(void)
96f6d444 5422{
b28ab83c 5423 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5424
b28ab83c 5425 return get_recursion_context(swhash->recursion);
96f6d444 5426}
645e8cc0 5427EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5428
fa9f90be 5429inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5430{
b28ab83c 5431 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5432
b28ab83c 5433 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5434}
15dbf27c 5435
a8b0ca17 5436void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5437{
a4234bfc 5438 struct perf_sample_data data;
4ed7c92d
PZ
5439 int rctx;
5440
1c024eca 5441 preempt_disable_notrace();
4ed7c92d
PZ
5442 rctx = perf_swevent_get_recursion_context();
5443 if (rctx < 0)
5444 return;
a4234bfc 5445
fd0d000b 5446 perf_sample_data_init(&data, addr, 0);
92bf309a 5447
a8b0ca17 5448 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5449
5450 perf_swevent_put_recursion_context(rctx);
1c024eca 5451 preempt_enable_notrace();
b8e83514
PZ
5452}
5453
cdd6c482 5454static void perf_swevent_read(struct perf_event *event)
15dbf27c 5455{
15dbf27c
PZ
5456}
5457
a4eaf7f1 5458static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5459{
b28ab83c 5460 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5461 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5462 struct hlist_head *head;
5463
6c7e550f 5464 if (is_sampling_event(event)) {
7b4b6658 5465 hwc->last_period = hwc->sample_period;
cdd6c482 5466 perf_swevent_set_period(event);
7b4b6658 5467 }
76e1d904 5468
a4eaf7f1
PZ
5469 hwc->state = !(flags & PERF_EF_START);
5470
b28ab83c 5471 head = find_swevent_head(swhash, event);
76e1d904
FW
5472 if (WARN_ON_ONCE(!head))
5473 return -EINVAL;
5474
5475 hlist_add_head_rcu(&event->hlist_entry, head);
5476
15dbf27c
PZ
5477 return 0;
5478}
5479
a4eaf7f1 5480static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5481{
76e1d904 5482 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5483}
5484
a4eaf7f1 5485static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5486{
a4eaf7f1 5487 event->hw.state = 0;
d6d020e9 5488}
aa9c4c0f 5489
a4eaf7f1 5490static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5491{
a4eaf7f1 5492 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5493}
5494
49f135ed
FW
5495/* Deref the hlist from the update side */
5496static inline struct swevent_hlist *
b28ab83c 5497swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5498{
b28ab83c
PZ
5499 return rcu_dereference_protected(swhash->swevent_hlist,
5500 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5501}
5502
b28ab83c 5503static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5504{
b28ab83c 5505 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5506
49f135ed 5507 if (!hlist)
76e1d904
FW
5508 return;
5509
b28ab83c 5510 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5511 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5512}
5513
5514static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5515{
b28ab83c 5516 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5517
b28ab83c 5518 mutex_lock(&swhash->hlist_mutex);
76e1d904 5519
b28ab83c
PZ
5520 if (!--swhash->hlist_refcount)
5521 swevent_hlist_release(swhash);
76e1d904 5522
b28ab83c 5523 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5524}
5525
5526static void swevent_hlist_put(struct perf_event *event)
5527{
5528 int cpu;
5529
5530 if (event->cpu != -1) {
5531 swevent_hlist_put_cpu(event, event->cpu);
5532 return;
5533 }
5534
5535 for_each_possible_cpu(cpu)
5536 swevent_hlist_put_cpu(event, cpu);
5537}
5538
5539static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5540{
b28ab83c 5541 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5542 int err = 0;
5543
b28ab83c 5544 mutex_lock(&swhash->hlist_mutex);
76e1d904 5545
b28ab83c 5546 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5547 struct swevent_hlist *hlist;
5548
5549 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5550 if (!hlist) {
5551 err = -ENOMEM;
5552 goto exit;
5553 }
b28ab83c 5554 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5555 }
b28ab83c 5556 swhash->hlist_refcount++;
9ed6060d 5557exit:
b28ab83c 5558 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5559
5560 return err;
5561}
5562
5563static int swevent_hlist_get(struct perf_event *event)
5564{
5565 int err;
5566 int cpu, failed_cpu;
5567
5568 if (event->cpu != -1)
5569 return swevent_hlist_get_cpu(event, event->cpu);
5570
5571 get_online_cpus();
5572 for_each_possible_cpu(cpu) {
5573 err = swevent_hlist_get_cpu(event, cpu);
5574 if (err) {
5575 failed_cpu = cpu;
5576 goto fail;
5577 }
5578 }
5579 put_online_cpus();
5580
5581 return 0;
9ed6060d 5582fail:
76e1d904
FW
5583 for_each_possible_cpu(cpu) {
5584 if (cpu == failed_cpu)
5585 break;
5586 swevent_hlist_put_cpu(event, cpu);
5587 }
5588
5589 put_online_cpus();
5590 return err;
5591}
5592
c5905afb 5593struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5594
b0a873eb
PZ
5595static void sw_perf_event_destroy(struct perf_event *event)
5596{
5597 u64 event_id = event->attr.config;
95476b64 5598
b0a873eb
PZ
5599 WARN_ON(event->parent);
5600
c5905afb 5601 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5602 swevent_hlist_put(event);
5603}
5604
5605static int perf_swevent_init(struct perf_event *event)
5606{
8176cced 5607 u64 event_id = event->attr.config;
b0a873eb
PZ
5608
5609 if (event->attr.type != PERF_TYPE_SOFTWARE)
5610 return -ENOENT;
5611
2481c5fa
SE
5612 /*
5613 * no branch sampling for software events
5614 */
5615 if (has_branch_stack(event))
5616 return -EOPNOTSUPP;
5617
b0a873eb
PZ
5618 switch (event_id) {
5619 case PERF_COUNT_SW_CPU_CLOCK:
5620 case PERF_COUNT_SW_TASK_CLOCK:
5621 return -ENOENT;
5622
5623 default:
5624 break;
5625 }
5626
ce677831 5627 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5628 return -ENOENT;
5629
5630 if (!event->parent) {
5631 int err;
5632
5633 err = swevent_hlist_get(event);
5634 if (err)
5635 return err;
5636
c5905afb 5637 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5638 event->destroy = sw_perf_event_destroy;
5639 }
5640
5641 return 0;
5642}
5643
35edc2a5
PZ
5644static int perf_swevent_event_idx(struct perf_event *event)
5645{
5646 return 0;
5647}
5648
b0a873eb 5649static struct pmu perf_swevent = {
89a1e187 5650 .task_ctx_nr = perf_sw_context,
95476b64 5651
b0a873eb 5652 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5653 .add = perf_swevent_add,
5654 .del = perf_swevent_del,
5655 .start = perf_swevent_start,
5656 .stop = perf_swevent_stop,
1c024eca 5657 .read = perf_swevent_read,
35edc2a5
PZ
5658
5659 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5660};
5661
b0a873eb
PZ
5662#ifdef CONFIG_EVENT_TRACING
5663
1c024eca
PZ
5664static int perf_tp_filter_match(struct perf_event *event,
5665 struct perf_sample_data *data)
5666{
5667 void *record = data->raw->data;
5668
5669 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5670 return 1;
5671 return 0;
5672}
5673
5674static int perf_tp_event_match(struct perf_event *event,
5675 struct perf_sample_data *data,
5676 struct pt_regs *regs)
5677{
a0f7d0f7
FW
5678 if (event->hw.state & PERF_HES_STOPPED)
5679 return 0;
580d607c
PZ
5680 /*
5681 * All tracepoints are from kernel-space.
5682 */
5683 if (event->attr.exclude_kernel)
1c024eca
PZ
5684 return 0;
5685
5686 if (!perf_tp_filter_match(event, data))
5687 return 0;
5688
5689 return 1;
5690}
5691
5692void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5693 struct pt_regs *regs, struct hlist_head *head, int rctx,
5694 struct task_struct *task)
95476b64
FW
5695{
5696 struct perf_sample_data data;
1c024eca 5697 struct perf_event *event;
1c024eca 5698
95476b64
FW
5699 struct perf_raw_record raw = {
5700 .size = entry_size,
5701 .data = record,
5702 };
5703
fd0d000b 5704 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5705 data.raw = &raw;
5706
b67bfe0d 5707 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5708 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5709 perf_swevent_event(event, count, &data, regs);
4f41c013 5710 }
ecc55f84 5711
e6dab5ff
AV
5712 /*
5713 * If we got specified a target task, also iterate its context and
5714 * deliver this event there too.
5715 */
5716 if (task && task != current) {
5717 struct perf_event_context *ctx;
5718 struct trace_entry *entry = record;
5719
5720 rcu_read_lock();
5721 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5722 if (!ctx)
5723 goto unlock;
5724
5725 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5726 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5727 continue;
5728 if (event->attr.config != entry->type)
5729 continue;
5730 if (perf_tp_event_match(event, &data, regs))
5731 perf_swevent_event(event, count, &data, regs);
5732 }
5733unlock:
5734 rcu_read_unlock();
5735 }
5736
ecc55f84 5737 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5738}
5739EXPORT_SYMBOL_GPL(perf_tp_event);
5740
cdd6c482 5741static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5742{
1c024eca 5743 perf_trace_destroy(event);
e077df4f
PZ
5744}
5745
b0a873eb 5746static int perf_tp_event_init(struct perf_event *event)
e077df4f 5747{
76e1d904
FW
5748 int err;
5749
b0a873eb
PZ
5750 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5751 return -ENOENT;
5752
2481c5fa
SE
5753 /*
5754 * no branch sampling for tracepoint events
5755 */
5756 if (has_branch_stack(event))
5757 return -EOPNOTSUPP;
5758
1c024eca
PZ
5759 err = perf_trace_init(event);
5760 if (err)
b0a873eb 5761 return err;
e077df4f 5762
cdd6c482 5763 event->destroy = tp_perf_event_destroy;
e077df4f 5764
b0a873eb
PZ
5765 return 0;
5766}
5767
5768static struct pmu perf_tracepoint = {
89a1e187
PZ
5769 .task_ctx_nr = perf_sw_context,
5770
b0a873eb 5771 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5772 .add = perf_trace_add,
5773 .del = perf_trace_del,
5774 .start = perf_swevent_start,
5775 .stop = perf_swevent_stop,
b0a873eb 5776 .read = perf_swevent_read,
35edc2a5
PZ
5777
5778 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5779};
5780
5781static inline void perf_tp_register(void)
5782{
2e80a82a 5783 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5784}
6fb2915d
LZ
5785
5786static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5787{
5788 char *filter_str;
5789 int ret;
5790
5791 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5792 return -EINVAL;
5793
5794 filter_str = strndup_user(arg, PAGE_SIZE);
5795 if (IS_ERR(filter_str))
5796 return PTR_ERR(filter_str);
5797
5798 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5799
5800 kfree(filter_str);
5801 return ret;
5802}
5803
5804static void perf_event_free_filter(struct perf_event *event)
5805{
5806 ftrace_profile_free_filter(event);
5807}
5808
e077df4f 5809#else
6fb2915d 5810
b0a873eb 5811static inline void perf_tp_register(void)
e077df4f 5812{
e077df4f 5813}
6fb2915d
LZ
5814
5815static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5816{
5817 return -ENOENT;
5818}
5819
5820static void perf_event_free_filter(struct perf_event *event)
5821{
5822}
5823
07b139c8 5824#endif /* CONFIG_EVENT_TRACING */
e077df4f 5825
24f1e32c 5826#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5827void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5828{
f5ffe02e
FW
5829 struct perf_sample_data sample;
5830 struct pt_regs *regs = data;
5831
fd0d000b 5832 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5833
a4eaf7f1 5834 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5835 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5836}
5837#endif
5838
b0a873eb
PZ
5839/*
5840 * hrtimer based swevent callback
5841 */
f29ac756 5842
b0a873eb 5843static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5844{
b0a873eb
PZ
5845 enum hrtimer_restart ret = HRTIMER_RESTART;
5846 struct perf_sample_data data;
5847 struct pt_regs *regs;
5848 struct perf_event *event;
5849 u64 period;
f29ac756 5850
b0a873eb 5851 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5852
5853 if (event->state != PERF_EVENT_STATE_ACTIVE)
5854 return HRTIMER_NORESTART;
5855
b0a873eb 5856 event->pmu->read(event);
f344011c 5857
fd0d000b 5858 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5859 regs = get_irq_regs();
5860
5861 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5862 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5863 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5864 ret = HRTIMER_NORESTART;
5865 }
24f1e32c 5866
b0a873eb
PZ
5867 period = max_t(u64, 10000, event->hw.sample_period);
5868 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5869
b0a873eb 5870 return ret;
f29ac756
PZ
5871}
5872
b0a873eb 5873static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5874{
b0a873eb 5875 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5876 s64 period;
5877
5878 if (!is_sampling_event(event))
5879 return;
f5ffe02e 5880
5d508e82
FBH
5881 period = local64_read(&hwc->period_left);
5882 if (period) {
5883 if (period < 0)
5884 period = 10000;
fa407f35 5885
5d508e82
FBH
5886 local64_set(&hwc->period_left, 0);
5887 } else {
5888 period = max_t(u64, 10000, hwc->sample_period);
5889 }
5890 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5891 ns_to_ktime(period), 0,
b5ab4cd5 5892 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5893}
b0a873eb
PZ
5894
5895static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5896{
b0a873eb
PZ
5897 struct hw_perf_event *hwc = &event->hw;
5898
6c7e550f 5899 if (is_sampling_event(event)) {
b0a873eb 5900 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5901 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5902
5903 hrtimer_cancel(&hwc->hrtimer);
5904 }
24f1e32c
FW
5905}
5906
ba3dd36c
PZ
5907static void perf_swevent_init_hrtimer(struct perf_event *event)
5908{
5909 struct hw_perf_event *hwc = &event->hw;
5910
5911 if (!is_sampling_event(event))
5912 return;
5913
5914 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5915 hwc->hrtimer.function = perf_swevent_hrtimer;
5916
5917 /*
5918 * Since hrtimers have a fixed rate, we can do a static freq->period
5919 * mapping and avoid the whole period adjust feedback stuff.
5920 */
5921 if (event->attr.freq) {
5922 long freq = event->attr.sample_freq;
5923
5924 event->attr.sample_period = NSEC_PER_SEC / freq;
5925 hwc->sample_period = event->attr.sample_period;
5926 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 5927 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
5928 event->attr.freq = 0;
5929 }
5930}
5931
b0a873eb
PZ
5932/*
5933 * Software event: cpu wall time clock
5934 */
5935
5936static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5937{
b0a873eb
PZ
5938 s64 prev;
5939 u64 now;
5940
a4eaf7f1 5941 now = local_clock();
b0a873eb
PZ
5942 prev = local64_xchg(&event->hw.prev_count, now);
5943 local64_add(now - prev, &event->count);
24f1e32c 5944}
24f1e32c 5945
a4eaf7f1 5946static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5947{
a4eaf7f1 5948 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5949 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5950}
5951
a4eaf7f1 5952static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5953{
b0a873eb
PZ
5954 perf_swevent_cancel_hrtimer(event);
5955 cpu_clock_event_update(event);
5956}
f29ac756 5957
a4eaf7f1
PZ
5958static int cpu_clock_event_add(struct perf_event *event, int flags)
5959{
5960 if (flags & PERF_EF_START)
5961 cpu_clock_event_start(event, flags);
5962
5963 return 0;
5964}
5965
5966static void cpu_clock_event_del(struct perf_event *event, int flags)
5967{
5968 cpu_clock_event_stop(event, flags);
5969}
5970
b0a873eb
PZ
5971static void cpu_clock_event_read(struct perf_event *event)
5972{
5973 cpu_clock_event_update(event);
5974}
f344011c 5975
b0a873eb
PZ
5976static int cpu_clock_event_init(struct perf_event *event)
5977{
5978 if (event->attr.type != PERF_TYPE_SOFTWARE)
5979 return -ENOENT;
5980
5981 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5982 return -ENOENT;
5983
2481c5fa
SE
5984 /*
5985 * no branch sampling for software events
5986 */
5987 if (has_branch_stack(event))
5988 return -EOPNOTSUPP;
5989
ba3dd36c
PZ
5990 perf_swevent_init_hrtimer(event);
5991
b0a873eb 5992 return 0;
f29ac756
PZ
5993}
5994
b0a873eb 5995static struct pmu perf_cpu_clock = {
89a1e187
PZ
5996 .task_ctx_nr = perf_sw_context,
5997
b0a873eb 5998 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
5999 .add = cpu_clock_event_add,
6000 .del = cpu_clock_event_del,
6001 .start = cpu_clock_event_start,
6002 .stop = cpu_clock_event_stop,
b0a873eb 6003 .read = cpu_clock_event_read,
35edc2a5
PZ
6004
6005 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
6006};
6007
6008/*
6009 * Software event: task time clock
6010 */
6011
6012static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 6013{
b0a873eb
PZ
6014 u64 prev;
6015 s64 delta;
5c92d124 6016
b0a873eb
PZ
6017 prev = local64_xchg(&event->hw.prev_count, now);
6018 delta = now - prev;
6019 local64_add(delta, &event->count);
6020}
5c92d124 6021
a4eaf7f1 6022static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 6023{
a4eaf7f1 6024 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 6025 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
6026}
6027
a4eaf7f1 6028static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
6029{
6030 perf_swevent_cancel_hrtimer(event);
6031 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
6032}
6033
6034static int task_clock_event_add(struct perf_event *event, int flags)
6035{
6036 if (flags & PERF_EF_START)
6037 task_clock_event_start(event, flags);
b0a873eb 6038
a4eaf7f1
PZ
6039 return 0;
6040}
6041
6042static void task_clock_event_del(struct perf_event *event, int flags)
6043{
6044 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
6045}
6046
6047static void task_clock_event_read(struct perf_event *event)
6048{
768a06e2
PZ
6049 u64 now = perf_clock();
6050 u64 delta = now - event->ctx->timestamp;
6051 u64 time = event->ctx->time + delta;
b0a873eb
PZ
6052
6053 task_clock_event_update(event, time);
6054}
6055
6056static int task_clock_event_init(struct perf_event *event)
6fb2915d 6057{
b0a873eb
PZ
6058 if (event->attr.type != PERF_TYPE_SOFTWARE)
6059 return -ENOENT;
6060
6061 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6062 return -ENOENT;
6063
2481c5fa
SE
6064 /*
6065 * no branch sampling for software events
6066 */
6067 if (has_branch_stack(event))
6068 return -EOPNOTSUPP;
6069
ba3dd36c
PZ
6070 perf_swevent_init_hrtimer(event);
6071
b0a873eb 6072 return 0;
6fb2915d
LZ
6073}
6074
b0a873eb 6075static struct pmu perf_task_clock = {
89a1e187
PZ
6076 .task_ctx_nr = perf_sw_context,
6077
b0a873eb 6078 .event_init = task_clock_event_init,
a4eaf7f1
PZ
6079 .add = task_clock_event_add,
6080 .del = task_clock_event_del,
6081 .start = task_clock_event_start,
6082 .stop = task_clock_event_stop,
b0a873eb 6083 .read = task_clock_event_read,
35edc2a5
PZ
6084
6085 .event_idx = perf_swevent_event_idx,
b0a873eb 6086};
6fb2915d 6087
ad5133b7 6088static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 6089{
e077df4f 6090}
6fb2915d 6091
ad5133b7 6092static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 6093{
ad5133b7 6094 return 0;
6fb2915d
LZ
6095}
6096
ad5133b7 6097static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 6098{
ad5133b7 6099 perf_pmu_disable(pmu);
6fb2915d
LZ
6100}
6101
ad5133b7
PZ
6102static int perf_pmu_commit_txn(struct pmu *pmu)
6103{
6104 perf_pmu_enable(pmu);
6105 return 0;
6106}
e077df4f 6107
ad5133b7 6108static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 6109{
ad5133b7 6110 perf_pmu_enable(pmu);
24f1e32c
FW
6111}
6112
35edc2a5
PZ
6113static int perf_event_idx_default(struct perf_event *event)
6114{
6115 return event->hw.idx + 1;
6116}
6117
8dc85d54
PZ
6118/*
6119 * Ensures all contexts with the same task_ctx_nr have the same
6120 * pmu_cpu_context too.
6121 */
6122static void *find_pmu_context(int ctxn)
24f1e32c 6123{
8dc85d54 6124 struct pmu *pmu;
b326e956 6125
8dc85d54
PZ
6126 if (ctxn < 0)
6127 return NULL;
24f1e32c 6128
8dc85d54
PZ
6129 list_for_each_entry(pmu, &pmus, entry) {
6130 if (pmu->task_ctx_nr == ctxn)
6131 return pmu->pmu_cpu_context;
6132 }
24f1e32c 6133
8dc85d54 6134 return NULL;
24f1e32c
FW
6135}
6136
51676957 6137static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 6138{
51676957
PZ
6139 int cpu;
6140
6141 for_each_possible_cpu(cpu) {
6142 struct perf_cpu_context *cpuctx;
6143
6144 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6145
3f1f3320
PZ
6146 if (cpuctx->unique_pmu == old_pmu)
6147 cpuctx->unique_pmu = pmu;
51676957
PZ
6148 }
6149}
6150
6151static void free_pmu_context(struct pmu *pmu)
6152{
6153 struct pmu *i;
f5ffe02e 6154
8dc85d54 6155 mutex_lock(&pmus_lock);
0475f9ea 6156 /*
8dc85d54 6157 * Like a real lame refcount.
0475f9ea 6158 */
51676957
PZ
6159 list_for_each_entry(i, &pmus, entry) {
6160 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6161 update_pmu_context(i, pmu);
8dc85d54 6162 goto out;
51676957 6163 }
8dc85d54 6164 }
d6d020e9 6165
51676957 6166 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
6167out:
6168 mutex_unlock(&pmus_lock);
24f1e32c 6169}
2e80a82a 6170static struct idr pmu_idr;
d6d020e9 6171
abe43400
PZ
6172static ssize_t
6173type_show(struct device *dev, struct device_attribute *attr, char *page)
6174{
6175 struct pmu *pmu = dev_get_drvdata(dev);
6176
6177 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6178}
6179
62b85639
SE
6180static ssize_t
6181perf_event_mux_interval_ms_show(struct device *dev,
6182 struct device_attribute *attr,
6183 char *page)
6184{
6185 struct pmu *pmu = dev_get_drvdata(dev);
6186
6187 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6188}
6189
6190static ssize_t
6191perf_event_mux_interval_ms_store(struct device *dev,
6192 struct device_attribute *attr,
6193 const char *buf, size_t count)
6194{
6195 struct pmu *pmu = dev_get_drvdata(dev);
6196 int timer, cpu, ret;
6197
6198 ret = kstrtoint(buf, 0, &timer);
6199 if (ret)
6200 return ret;
6201
6202 if (timer < 1)
6203 return -EINVAL;
6204
6205 /* same value, noting to do */
6206 if (timer == pmu->hrtimer_interval_ms)
6207 return count;
6208
6209 pmu->hrtimer_interval_ms = timer;
6210
6211 /* update all cpuctx for this PMU */
6212 for_each_possible_cpu(cpu) {
6213 struct perf_cpu_context *cpuctx;
6214 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6215 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6216
6217 if (hrtimer_active(&cpuctx->hrtimer))
6218 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6219 }
6220
6221 return count;
6222}
6223
6224#define __ATTR_RW(attr) __ATTR(attr, 0644, attr##_show, attr##_store)
6225
abe43400 6226static struct device_attribute pmu_dev_attrs[] = {
62b85639
SE
6227 __ATTR_RO(type),
6228 __ATTR_RW(perf_event_mux_interval_ms),
6229 __ATTR_NULL,
abe43400
PZ
6230};
6231
6232static int pmu_bus_running;
6233static struct bus_type pmu_bus = {
6234 .name = "event_source",
6235 .dev_attrs = pmu_dev_attrs,
6236};
6237
6238static void pmu_dev_release(struct device *dev)
6239{
6240 kfree(dev);
6241}
6242
6243static int pmu_dev_alloc(struct pmu *pmu)
6244{
6245 int ret = -ENOMEM;
6246
6247 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6248 if (!pmu->dev)
6249 goto out;
6250
0c9d42ed 6251 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6252 device_initialize(pmu->dev);
6253 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6254 if (ret)
6255 goto free_dev;
6256
6257 dev_set_drvdata(pmu->dev, pmu);
6258 pmu->dev->bus = &pmu_bus;
6259 pmu->dev->release = pmu_dev_release;
6260 ret = device_add(pmu->dev);
6261 if (ret)
6262 goto free_dev;
6263
6264out:
6265 return ret;
6266
6267free_dev:
6268 put_device(pmu->dev);
6269 goto out;
6270}
6271
547e9fd7 6272static struct lock_class_key cpuctx_mutex;
facc4307 6273static struct lock_class_key cpuctx_lock;
547e9fd7 6274
03d8e80b 6275int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 6276{
108b02cf 6277 int cpu, ret;
24f1e32c 6278
b0a873eb 6279 mutex_lock(&pmus_lock);
33696fc0
PZ
6280 ret = -ENOMEM;
6281 pmu->pmu_disable_count = alloc_percpu(int);
6282 if (!pmu->pmu_disable_count)
6283 goto unlock;
f29ac756 6284
2e80a82a
PZ
6285 pmu->type = -1;
6286 if (!name)
6287 goto skip_type;
6288 pmu->name = name;
6289
6290 if (type < 0) {
0e9c3be2
TH
6291 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6292 if (type < 0) {
6293 ret = type;
2e80a82a
PZ
6294 goto free_pdc;
6295 }
6296 }
6297 pmu->type = type;
6298
abe43400
PZ
6299 if (pmu_bus_running) {
6300 ret = pmu_dev_alloc(pmu);
6301 if (ret)
6302 goto free_idr;
6303 }
6304
2e80a82a 6305skip_type:
8dc85d54
PZ
6306 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6307 if (pmu->pmu_cpu_context)
6308 goto got_cpu_context;
f29ac756 6309
c4814202 6310 ret = -ENOMEM;
108b02cf
PZ
6311 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6312 if (!pmu->pmu_cpu_context)
abe43400 6313 goto free_dev;
f344011c 6314
108b02cf
PZ
6315 for_each_possible_cpu(cpu) {
6316 struct perf_cpu_context *cpuctx;
6317
6318 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6319 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6320 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6321 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6322 cpuctx->ctx.type = cpu_context;
108b02cf 6323 cpuctx->ctx.pmu = pmu;
9e630205
SE
6324
6325 __perf_cpu_hrtimer_init(cpuctx, cpu);
6326
e9d2b064 6327 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6328 cpuctx->unique_pmu = pmu;
108b02cf 6329 }
76e1d904 6330
8dc85d54 6331got_cpu_context:
ad5133b7
PZ
6332 if (!pmu->start_txn) {
6333 if (pmu->pmu_enable) {
6334 /*
6335 * If we have pmu_enable/pmu_disable calls, install
6336 * transaction stubs that use that to try and batch
6337 * hardware accesses.
6338 */
6339 pmu->start_txn = perf_pmu_start_txn;
6340 pmu->commit_txn = perf_pmu_commit_txn;
6341 pmu->cancel_txn = perf_pmu_cancel_txn;
6342 } else {
6343 pmu->start_txn = perf_pmu_nop_void;
6344 pmu->commit_txn = perf_pmu_nop_int;
6345 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6346 }
5c92d124 6347 }
15dbf27c 6348
ad5133b7
PZ
6349 if (!pmu->pmu_enable) {
6350 pmu->pmu_enable = perf_pmu_nop_void;
6351 pmu->pmu_disable = perf_pmu_nop_void;
6352 }
6353
35edc2a5
PZ
6354 if (!pmu->event_idx)
6355 pmu->event_idx = perf_event_idx_default;
6356
b0a873eb 6357 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6358 ret = 0;
6359unlock:
b0a873eb
PZ
6360 mutex_unlock(&pmus_lock);
6361
33696fc0 6362 return ret;
108b02cf 6363
abe43400
PZ
6364free_dev:
6365 device_del(pmu->dev);
6366 put_device(pmu->dev);
6367
2e80a82a
PZ
6368free_idr:
6369 if (pmu->type >= PERF_TYPE_MAX)
6370 idr_remove(&pmu_idr, pmu->type);
6371
108b02cf
PZ
6372free_pdc:
6373 free_percpu(pmu->pmu_disable_count);
6374 goto unlock;
f29ac756
PZ
6375}
6376
b0a873eb 6377void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6378{
b0a873eb
PZ
6379 mutex_lock(&pmus_lock);
6380 list_del_rcu(&pmu->entry);
6381 mutex_unlock(&pmus_lock);
5c92d124 6382
0475f9ea 6383 /*
cde8e884
PZ
6384 * We dereference the pmu list under both SRCU and regular RCU, so
6385 * synchronize against both of those.
0475f9ea 6386 */
b0a873eb 6387 synchronize_srcu(&pmus_srcu);
cde8e884 6388 synchronize_rcu();
d6d020e9 6389
33696fc0 6390 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6391 if (pmu->type >= PERF_TYPE_MAX)
6392 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6393 device_del(pmu->dev);
6394 put_device(pmu->dev);
51676957 6395 free_pmu_context(pmu);
b0a873eb 6396}
d6d020e9 6397
b0a873eb
PZ
6398struct pmu *perf_init_event(struct perf_event *event)
6399{
6400 struct pmu *pmu = NULL;
6401 int idx;
940c5b29 6402 int ret;
b0a873eb
PZ
6403
6404 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6405
6406 rcu_read_lock();
6407 pmu = idr_find(&pmu_idr, event->attr.type);
6408 rcu_read_unlock();
940c5b29 6409 if (pmu) {
7e5b2a01 6410 event->pmu = pmu;
940c5b29
LM
6411 ret = pmu->event_init(event);
6412 if (ret)
6413 pmu = ERR_PTR(ret);
2e80a82a 6414 goto unlock;
940c5b29 6415 }
2e80a82a 6416
b0a873eb 6417 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 6418 event->pmu = pmu;
940c5b29 6419 ret = pmu->event_init(event);
b0a873eb 6420 if (!ret)
e5f4d339 6421 goto unlock;
76e1d904 6422
b0a873eb
PZ
6423 if (ret != -ENOENT) {
6424 pmu = ERR_PTR(ret);
e5f4d339 6425 goto unlock;
f344011c 6426 }
5c92d124 6427 }
e5f4d339
PZ
6428 pmu = ERR_PTR(-ENOENT);
6429unlock:
b0a873eb 6430 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6431
4aeb0b42 6432 return pmu;
5c92d124
IM
6433}
6434
0793a61d 6435/*
cdd6c482 6436 * Allocate and initialize a event structure
0793a61d 6437 */
cdd6c482 6438static struct perf_event *
c3f00c70 6439perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6440 struct task_struct *task,
6441 struct perf_event *group_leader,
6442 struct perf_event *parent_event,
4dc0da86
AK
6443 perf_overflow_handler_t overflow_handler,
6444 void *context)
0793a61d 6445{
51b0fe39 6446 struct pmu *pmu;
cdd6c482
IM
6447 struct perf_event *event;
6448 struct hw_perf_event *hwc;
d5d2bc0d 6449 long err;
0793a61d 6450
66832eb4
ON
6451 if ((unsigned)cpu >= nr_cpu_ids) {
6452 if (!task || cpu != -1)
6453 return ERR_PTR(-EINVAL);
6454 }
6455
c3f00c70 6456 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6457 if (!event)
d5d2bc0d 6458 return ERR_PTR(-ENOMEM);
0793a61d 6459
04289bb9 6460 /*
cdd6c482 6461 * Single events are their own group leaders, with an
04289bb9
IM
6462 * empty sibling list:
6463 */
6464 if (!group_leader)
cdd6c482 6465 group_leader = event;
04289bb9 6466
cdd6c482
IM
6467 mutex_init(&event->child_mutex);
6468 INIT_LIST_HEAD(&event->child_list);
fccc714b 6469
cdd6c482
IM
6470 INIT_LIST_HEAD(&event->group_entry);
6471 INIT_LIST_HEAD(&event->event_entry);
6472 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
6473 INIT_LIST_HEAD(&event->rb_entry);
6474
cdd6c482 6475 init_waitqueue_head(&event->waitq);
e360adbe 6476 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6477
cdd6c482 6478 mutex_init(&event->mmap_mutex);
7b732a75 6479
a6fa941d 6480 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6481 event->cpu = cpu;
6482 event->attr = *attr;
6483 event->group_leader = group_leader;
6484 event->pmu = NULL;
cdd6c482 6485 event->oncpu = -1;
a96bbc16 6486
cdd6c482 6487 event->parent = parent_event;
b84fbc9f 6488
17cf22c3 6489 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6490 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6491
cdd6c482 6492 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6493
d580ff86
PZ
6494 if (task) {
6495 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6496
6497 if (attr->type == PERF_TYPE_TRACEPOINT)
6498 event->hw.tp_target = task;
d580ff86
PZ
6499#ifdef CONFIG_HAVE_HW_BREAKPOINT
6500 /*
6501 * hw_breakpoint is a bit difficult here..
6502 */
f22c1bb6 6503 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6504 event->hw.bp_target = task;
6505#endif
6506 }
6507
4dc0da86 6508 if (!overflow_handler && parent_event) {
b326e956 6509 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6510 context = parent_event->overflow_handler_context;
6511 }
66832eb4 6512
b326e956 6513 event->overflow_handler = overflow_handler;
4dc0da86 6514 event->overflow_handler_context = context;
97eaf530 6515
0231bb53 6516 perf_event__state_init(event);
a86ed508 6517
4aeb0b42 6518 pmu = NULL;
b8e83514 6519
cdd6c482 6520 hwc = &event->hw;
bd2b5b12 6521 hwc->sample_period = attr->sample_period;
0d48696f 6522 if (attr->freq && attr->sample_freq)
bd2b5b12 6523 hwc->sample_period = 1;
eced1dfc 6524 hwc->last_period = hwc->sample_period;
bd2b5b12 6525
e7850595 6526 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6527
2023b359 6528 /*
cdd6c482 6529 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6530 */
3dab77fb 6531 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
2023b359
PZ
6532 goto done;
6533
b0a873eb 6534 pmu = perf_init_event(event);
974802ea 6535
d5d2bc0d
PM
6536done:
6537 err = 0;
4aeb0b42 6538 if (!pmu)
d5d2bc0d 6539 err = -EINVAL;
4aeb0b42
RR
6540 else if (IS_ERR(pmu))
6541 err = PTR_ERR(pmu);
5c92d124 6542
d5d2bc0d 6543 if (err) {
cdd6c482
IM
6544 if (event->ns)
6545 put_pid_ns(event->ns);
6546 kfree(event);
d5d2bc0d 6547 return ERR_PTR(err);
621a01ea 6548 }
d5d2bc0d 6549
cdd6c482 6550 if (!event->parent) {
82cd6def 6551 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 6552 static_key_slow_inc(&perf_sched_events.key);
3af9e859 6553 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
6554 atomic_inc(&nr_mmap_events);
6555 if (event->attr.comm)
6556 atomic_inc(&nr_comm_events);
6557 if (event->attr.task)
6558 atomic_inc(&nr_task_events);
927c7a9e
FW
6559 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6560 err = get_callchain_buffers();
6561 if (err) {
6562 free_event(event);
6563 return ERR_PTR(err);
6564 }
6565 }
d010b332
SE
6566 if (has_branch_stack(event)) {
6567 static_key_slow_inc(&perf_sched_events.key);
6568 if (!(event->attach_state & PERF_ATTACH_TASK))
6569 atomic_inc(&per_cpu(perf_branch_stack_events,
6570 event->cpu));
6571 }
f344011c 6572 }
9ee318a7 6573
cdd6c482 6574 return event;
0793a61d
TG
6575}
6576
cdd6c482
IM
6577static int perf_copy_attr(struct perf_event_attr __user *uattr,
6578 struct perf_event_attr *attr)
974802ea 6579{
974802ea 6580 u32 size;
cdf8073d 6581 int ret;
974802ea
PZ
6582
6583 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6584 return -EFAULT;
6585
6586 /*
6587 * zero the full structure, so that a short copy will be nice.
6588 */
6589 memset(attr, 0, sizeof(*attr));
6590
6591 ret = get_user(size, &uattr->size);
6592 if (ret)
6593 return ret;
6594
6595 if (size > PAGE_SIZE) /* silly large */
6596 goto err_size;
6597
6598 if (!size) /* abi compat */
6599 size = PERF_ATTR_SIZE_VER0;
6600
6601 if (size < PERF_ATTR_SIZE_VER0)
6602 goto err_size;
6603
6604 /*
6605 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6606 * ensure all the unknown bits are 0 - i.e. new
6607 * user-space does not rely on any kernel feature
6608 * extensions we dont know about yet.
974802ea
PZ
6609 */
6610 if (size > sizeof(*attr)) {
cdf8073d
IS
6611 unsigned char __user *addr;
6612 unsigned char __user *end;
6613 unsigned char val;
974802ea 6614
cdf8073d
IS
6615 addr = (void __user *)uattr + sizeof(*attr);
6616 end = (void __user *)uattr + size;
974802ea 6617
cdf8073d 6618 for (; addr < end; addr++) {
974802ea
PZ
6619 ret = get_user(val, addr);
6620 if (ret)
6621 return ret;
6622 if (val)
6623 goto err_size;
6624 }
b3e62e35 6625 size = sizeof(*attr);
974802ea
PZ
6626 }
6627
6628 ret = copy_from_user(attr, uattr, size);
6629 if (ret)
6630 return -EFAULT;
6631
cd757645 6632 if (attr->__reserved_1)
974802ea
PZ
6633 return -EINVAL;
6634
6635 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6636 return -EINVAL;
6637
6638 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6639 return -EINVAL;
6640
bce38cd5
SE
6641 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6642 u64 mask = attr->branch_sample_type;
6643
6644 /* only using defined bits */
6645 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6646 return -EINVAL;
6647
6648 /* at least one branch bit must be set */
6649 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6650 return -EINVAL;
6651
bce38cd5
SE
6652 /* propagate priv level, when not set for branch */
6653 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6654
6655 /* exclude_kernel checked on syscall entry */
6656 if (!attr->exclude_kernel)
6657 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6658
6659 if (!attr->exclude_user)
6660 mask |= PERF_SAMPLE_BRANCH_USER;
6661
6662 if (!attr->exclude_hv)
6663 mask |= PERF_SAMPLE_BRANCH_HV;
6664 /*
6665 * adjust user setting (for HW filter setup)
6666 */
6667 attr->branch_sample_type = mask;
6668 }
e712209a
SE
6669 /* privileged levels capture (kernel, hv): check permissions */
6670 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
6671 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6672 return -EACCES;
bce38cd5 6673 }
4018994f 6674
c5ebcedb 6675 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6676 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6677 if (ret)
6678 return ret;
6679 }
6680
6681 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6682 if (!arch_perf_have_user_stack_dump())
6683 return -ENOSYS;
6684
6685 /*
6686 * We have __u32 type for the size, but so far
6687 * we can only use __u16 as maximum due to the
6688 * __u16 sample size limit.
6689 */
6690 if (attr->sample_stack_user >= USHRT_MAX)
6691 ret = -EINVAL;
6692 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6693 ret = -EINVAL;
6694 }
4018994f 6695
974802ea
PZ
6696out:
6697 return ret;
6698
6699err_size:
6700 put_user(sizeof(*attr), &uattr->size);
6701 ret = -E2BIG;
6702 goto out;
6703}
6704
ac9721f3
PZ
6705static int
6706perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6707{
76369139 6708 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6709 int ret = -EINVAL;
6710
ac9721f3 6711 if (!output_event)
a4be7c27
PZ
6712 goto set;
6713
ac9721f3
PZ
6714 /* don't allow circular references */
6715 if (event == output_event)
a4be7c27
PZ
6716 goto out;
6717
0f139300
PZ
6718 /*
6719 * Don't allow cross-cpu buffers
6720 */
6721 if (output_event->cpu != event->cpu)
6722 goto out;
6723
6724 /*
76369139 6725 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6726 */
6727 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6728 goto out;
6729
a4be7c27 6730set:
cdd6c482 6731 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6732 /* Can't redirect output if we've got an active mmap() */
6733 if (atomic_read(&event->mmap_count))
6734 goto unlock;
a4be7c27 6735
9bb5d40c
PZ
6736 old_rb = event->rb;
6737
ac9721f3 6738 if (output_event) {
76369139
FW
6739 /* get the rb we want to redirect to */
6740 rb = ring_buffer_get(output_event);
6741 if (!rb)
ac9721f3 6742 goto unlock;
a4be7c27
PZ
6743 }
6744
10c6db11
PZ
6745 if (old_rb)
6746 ring_buffer_detach(event, old_rb);
9bb5d40c
PZ
6747
6748 if (rb)
6749 ring_buffer_attach(event, rb);
6750
6751 rcu_assign_pointer(event->rb, rb);
6752
6753 if (old_rb) {
6754 ring_buffer_put(old_rb);
6755 /*
6756 * Since we detached before setting the new rb, so that we
6757 * could attach the new rb, we could have missed a wakeup.
6758 * Provide it now.
6759 */
6760 wake_up_all(&event->waitq);
6761 }
6762
a4be7c27 6763 ret = 0;
ac9721f3
PZ
6764unlock:
6765 mutex_unlock(&event->mmap_mutex);
6766
a4be7c27 6767out:
a4be7c27
PZ
6768 return ret;
6769}
6770
0793a61d 6771/**
cdd6c482 6772 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6773 *
cdd6c482 6774 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6775 * @pid: target pid
9f66a381 6776 * @cpu: target cpu
cdd6c482 6777 * @group_fd: group leader event fd
0793a61d 6778 */
cdd6c482
IM
6779SYSCALL_DEFINE5(perf_event_open,
6780 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6781 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6782{
b04243ef
PZ
6783 struct perf_event *group_leader = NULL, *output_event = NULL;
6784 struct perf_event *event, *sibling;
cdd6c482
IM
6785 struct perf_event_attr attr;
6786 struct perf_event_context *ctx;
6787 struct file *event_file = NULL;
2903ff01 6788 struct fd group = {NULL, 0};
38a81da2 6789 struct task_struct *task = NULL;
89a1e187 6790 struct pmu *pmu;
ea635c64 6791 int event_fd;
b04243ef 6792 int move_group = 0;
dc86cabe 6793 int err;
0793a61d 6794
2743a5b0 6795 /* for future expandability... */
e5d1367f 6796 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6797 return -EINVAL;
6798
dc86cabe
IM
6799 err = perf_copy_attr(attr_uptr, &attr);
6800 if (err)
6801 return err;
eab656ae 6802
0764771d
PZ
6803 if (!attr.exclude_kernel) {
6804 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6805 return -EACCES;
6806 }
6807
df58ab24 6808 if (attr.freq) {
cdd6c482 6809 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6810 return -EINVAL;
6811 }
6812
e5d1367f
SE
6813 /*
6814 * In cgroup mode, the pid argument is used to pass the fd
6815 * opened to the cgroup directory in cgroupfs. The cpu argument
6816 * designates the cpu on which to monitor threads from that
6817 * cgroup.
6818 */
6819 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6820 return -EINVAL;
6821
ab72a702 6822 event_fd = get_unused_fd();
ea635c64
AV
6823 if (event_fd < 0)
6824 return event_fd;
6825
ac9721f3 6826 if (group_fd != -1) {
2903ff01
AV
6827 err = perf_fget_light(group_fd, &group);
6828 if (err)
d14b12d7 6829 goto err_fd;
2903ff01 6830 group_leader = group.file->private_data;
ac9721f3
PZ
6831 if (flags & PERF_FLAG_FD_OUTPUT)
6832 output_event = group_leader;
6833 if (flags & PERF_FLAG_FD_NO_GROUP)
6834 group_leader = NULL;
6835 }
6836
e5d1367f 6837 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6838 task = find_lively_task_by_vpid(pid);
6839 if (IS_ERR(task)) {
6840 err = PTR_ERR(task);
6841 goto err_group_fd;
6842 }
6843 }
6844
fbfc623f
YZ
6845 get_online_cpus();
6846
4dc0da86
AK
6847 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6848 NULL, NULL);
d14b12d7
SE
6849 if (IS_ERR(event)) {
6850 err = PTR_ERR(event);
c6be5a5c 6851 goto err_task;
d14b12d7
SE
6852 }
6853
e5d1367f
SE
6854 if (flags & PERF_FLAG_PID_CGROUP) {
6855 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6856 if (err)
6857 goto err_alloc;
08309379
PZ
6858 /*
6859 * one more event:
6860 * - that has cgroup constraint on event->cpu
6861 * - that may need work on context switch
6862 */
6863 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 6864 static_key_slow_inc(&perf_sched_events.key);
e5d1367f
SE
6865 }
6866
89a1e187
PZ
6867 /*
6868 * Special case software events and allow them to be part of
6869 * any hardware group.
6870 */
6871 pmu = event->pmu;
b04243ef
PZ
6872
6873 if (group_leader &&
6874 (is_software_event(event) != is_software_event(group_leader))) {
6875 if (is_software_event(event)) {
6876 /*
6877 * If event and group_leader are not both a software
6878 * event, and event is, then group leader is not.
6879 *
6880 * Allow the addition of software events to !software
6881 * groups, this is safe because software events never
6882 * fail to schedule.
6883 */
6884 pmu = group_leader->pmu;
6885 } else if (is_software_event(group_leader) &&
6886 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6887 /*
6888 * In case the group is a pure software group, and we
6889 * try to add a hardware event, move the whole group to
6890 * the hardware context.
6891 */
6892 move_group = 1;
6893 }
6894 }
89a1e187
PZ
6895
6896 /*
6897 * Get the target context (task or percpu):
6898 */
e2d37cd2 6899 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
6900 if (IS_ERR(ctx)) {
6901 err = PTR_ERR(ctx);
c6be5a5c 6902 goto err_alloc;
89a1e187
PZ
6903 }
6904
fd1edb3a
PZ
6905 if (task) {
6906 put_task_struct(task);
6907 task = NULL;
6908 }
6909
ccff286d 6910 /*
cdd6c482 6911 * Look up the group leader (we will attach this event to it):
04289bb9 6912 */
ac9721f3 6913 if (group_leader) {
dc86cabe 6914 err = -EINVAL;
04289bb9 6915
04289bb9 6916 /*
ccff286d
IM
6917 * Do not allow a recursive hierarchy (this new sibling
6918 * becoming part of another group-sibling):
6919 */
6920 if (group_leader->group_leader != group_leader)
c3f00c70 6921 goto err_context;
ccff286d
IM
6922 /*
6923 * Do not allow to attach to a group in a different
6924 * task or CPU context:
04289bb9 6925 */
b04243ef
PZ
6926 if (move_group) {
6927 if (group_leader->ctx->type != ctx->type)
6928 goto err_context;
6929 } else {
6930 if (group_leader->ctx != ctx)
6931 goto err_context;
6932 }
6933
3b6f9e5c
PM
6934 /*
6935 * Only a group leader can be exclusive or pinned
6936 */
0d48696f 6937 if (attr.exclusive || attr.pinned)
c3f00c70 6938 goto err_context;
ac9721f3
PZ
6939 }
6940
6941 if (output_event) {
6942 err = perf_event_set_output(event, output_event);
6943 if (err)
c3f00c70 6944 goto err_context;
ac9721f3 6945 }
0793a61d 6946
ea635c64
AV
6947 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6948 if (IS_ERR(event_file)) {
6949 err = PTR_ERR(event_file);
c3f00c70 6950 goto err_context;
ea635c64 6951 }
9b51f66d 6952
b04243ef
PZ
6953 if (move_group) {
6954 struct perf_event_context *gctx = group_leader->ctx;
6955
6956 mutex_lock(&gctx->mutex);
fe4b04fa 6957 perf_remove_from_context(group_leader);
0231bb53
JO
6958
6959 /*
6960 * Removing from the context ends up with disabled
6961 * event. What we want here is event in the initial
6962 * startup state, ready to be add into new context.
6963 */
6964 perf_event__state_init(group_leader);
b04243ef
PZ
6965 list_for_each_entry(sibling, &group_leader->sibling_list,
6966 group_entry) {
fe4b04fa 6967 perf_remove_from_context(sibling);
0231bb53 6968 perf_event__state_init(sibling);
b04243ef
PZ
6969 put_ctx(gctx);
6970 }
6971 mutex_unlock(&gctx->mutex);
6972 put_ctx(gctx);
ea635c64 6973 }
9b51f66d 6974
ad3a37de 6975 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 6976 mutex_lock(&ctx->mutex);
b04243ef
PZ
6977
6978 if (move_group) {
0cda4c02 6979 synchronize_rcu();
e2d37cd2 6980 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
6981 get_ctx(ctx);
6982 list_for_each_entry(sibling, &group_leader->sibling_list,
6983 group_entry) {
e2d37cd2 6984 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
6985 get_ctx(ctx);
6986 }
6987 }
6988
e2d37cd2 6989 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 6990 ++ctx->generation;
fe4b04fa 6991 perf_unpin_context(ctx);
d859e29f 6992 mutex_unlock(&ctx->mutex);
9b51f66d 6993
fbfc623f
YZ
6994 put_online_cpus();
6995
cdd6c482 6996 event->owner = current;
8882135b 6997
cdd6c482
IM
6998 mutex_lock(&current->perf_event_mutex);
6999 list_add_tail(&event->owner_entry, &current->perf_event_list);
7000 mutex_unlock(&current->perf_event_mutex);
082ff5a2 7001
c320c7b7
ACM
7002 /*
7003 * Precalculate sample_data sizes
7004 */
7005 perf_event__header_size(event);
6844c09d 7006 perf_event__id_header_size(event);
c320c7b7 7007
8a49542c
PZ
7008 /*
7009 * Drop the reference on the group_event after placing the
7010 * new event on the sibling_list. This ensures destruction
7011 * of the group leader will find the pointer to itself in
7012 * perf_group_detach().
7013 */
2903ff01 7014 fdput(group);
ea635c64
AV
7015 fd_install(event_fd, event_file);
7016 return event_fd;
0793a61d 7017
c3f00c70 7018err_context:
fe4b04fa 7019 perf_unpin_context(ctx);
ea635c64 7020 put_ctx(ctx);
c6be5a5c 7021err_alloc:
ea635c64 7022 free_event(event);
e7d0bc04 7023err_task:
fbfc623f 7024 put_online_cpus();
e7d0bc04
PZ
7025 if (task)
7026 put_task_struct(task);
89a1e187 7027err_group_fd:
2903ff01 7028 fdput(group);
ea635c64
AV
7029err_fd:
7030 put_unused_fd(event_fd);
dc86cabe 7031 return err;
0793a61d
TG
7032}
7033
fb0459d7
AV
7034/**
7035 * perf_event_create_kernel_counter
7036 *
7037 * @attr: attributes of the counter to create
7038 * @cpu: cpu in which the counter is bound
38a81da2 7039 * @task: task to profile (NULL for percpu)
fb0459d7
AV
7040 */
7041struct perf_event *
7042perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 7043 struct task_struct *task,
4dc0da86
AK
7044 perf_overflow_handler_t overflow_handler,
7045 void *context)
fb0459d7 7046{
fb0459d7 7047 struct perf_event_context *ctx;
c3f00c70 7048 struct perf_event *event;
fb0459d7 7049 int err;
d859e29f 7050
fb0459d7
AV
7051 /*
7052 * Get the target context (task or percpu):
7053 */
d859e29f 7054
4dc0da86
AK
7055 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7056 overflow_handler, context);
c3f00c70
PZ
7057 if (IS_ERR(event)) {
7058 err = PTR_ERR(event);
7059 goto err;
7060 }
d859e29f 7061
38a81da2 7062 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
7063 if (IS_ERR(ctx)) {
7064 err = PTR_ERR(ctx);
c3f00c70 7065 goto err_free;
d859e29f 7066 }
fb0459d7 7067
fb0459d7
AV
7068 WARN_ON_ONCE(ctx->parent_ctx);
7069 mutex_lock(&ctx->mutex);
7070 perf_install_in_context(ctx, event, cpu);
7071 ++ctx->generation;
fe4b04fa 7072 perf_unpin_context(ctx);
fb0459d7
AV
7073 mutex_unlock(&ctx->mutex);
7074
fb0459d7
AV
7075 return event;
7076
c3f00c70
PZ
7077err_free:
7078 free_event(event);
7079err:
c6567f64 7080 return ERR_PTR(err);
9b51f66d 7081}
fb0459d7 7082EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 7083
0cda4c02
YZ
7084void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7085{
7086 struct perf_event_context *src_ctx;
7087 struct perf_event_context *dst_ctx;
7088 struct perf_event *event, *tmp;
7089 LIST_HEAD(events);
7090
7091 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7092 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7093
7094 mutex_lock(&src_ctx->mutex);
7095 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7096 event_entry) {
7097 perf_remove_from_context(event);
7098 put_ctx(src_ctx);
7099 list_add(&event->event_entry, &events);
7100 }
7101 mutex_unlock(&src_ctx->mutex);
7102
7103 synchronize_rcu();
7104
7105 mutex_lock(&dst_ctx->mutex);
7106 list_for_each_entry_safe(event, tmp, &events, event_entry) {
7107 list_del(&event->event_entry);
7108 if (event->state >= PERF_EVENT_STATE_OFF)
7109 event->state = PERF_EVENT_STATE_INACTIVE;
7110 perf_install_in_context(dst_ctx, event, dst_cpu);
7111 get_ctx(dst_ctx);
7112 }
7113 mutex_unlock(&dst_ctx->mutex);
7114}
7115EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7116
cdd6c482 7117static void sync_child_event(struct perf_event *child_event,
38b200d6 7118 struct task_struct *child)
d859e29f 7119{
cdd6c482 7120 struct perf_event *parent_event = child_event->parent;
8bc20959 7121 u64 child_val;
d859e29f 7122
cdd6c482
IM
7123 if (child_event->attr.inherit_stat)
7124 perf_event_read_event(child_event, child);
38b200d6 7125
b5e58793 7126 child_val = perf_event_count(child_event);
d859e29f
PM
7127
7128 /*
7129 * Add back the child's count to the parent's count:
7130 */
a6e6dea6 7131 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
7132 atomic64_add(child_event->total_time_enabled,
7133 &parent_event->child_total_time_enabled);
7134 atomic64_add(child_event->total_time_running,
7135 &parent_event->child_total_time_running);
d859e29f
PM
7136
7137 /*
cdd6c482 7138 * Remove this event from the parent's list
d859e29f 7139 */
cdd6c482
IM
7140 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7141 mutex_lock(&parent_event->child_mutex);
7142 list_del_init(&child_event->child_list);
7143 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
7144
7145 /*
cdd6c482 7146 * Release the parent event, if this was the last
d859e29f
PM
7147 * reference to it.
7148 */
a6fa941d 7149 put_event(parent_event);
d859e29f
PM
7150}
7151
9b51f66d 7152static void
cdd6c482
IM
7153__perf_event_exit_task(struct perf_event *child_event,
7154 struct perf_event_context *child_ctx,
38b200d6 7155 struct task_struct *child)
9b51f66d 7156{
38b435b1
PZ
7157 if (child_event->parent) {
7158 raw_spin_lock_irq(&child_ctx->lock);
7159 perf_group_detach(child_event);
7160 raw_spin_unlock_irq(&child_ctx->lock);
7161 }
9b51f66d 7162
fe4b04fa 7163 perf_remove_from_context(child_event);
0cc0c027 7164
9b51f66d 7165 /*
38b435b1 7166 * It can happen that the parent exits first, and has events
9b51f66d 7167 * that are still around due to the child reference. These
38b435b1 7168 * events need to be zapped.
9b51f66d 7169 */
38b435b1 7170 if (child_event->parent) {
cdd6c482
IM
7171 sync_child_event(child_event, child);
7172 free_event(child_event);
4bcf349a 7173 }
9b51f66d
IM
7174}
7175
8dc85d54 7176static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 7177{
cdd6c482
IM
7178 struct perf_event *child_event, *tmp;
7179 struct perf_event_context *child_ctx;
a63eaf34 7180 unsigned long flags;
9b51f66d 7181
8dc85d54 7182 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 7183 perf_event_task(child, NULL, 0);
9b51f66d 7184 return;
9f498cc5 7185 }
9b51f66d 7186
a63eaf34 7187 local_irq_save(flags);
ad3a37de
PM
7188 /*
7189 * We can't reschedule here because interrupts are disabled,
7190 * and either child is current or it is a task that can't be
7191 * scheduled, so we are now safe from rescheduling changing
7192 * our context.
7193 */
806839b2 7194 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
7195
7196 /*
7197 * Take the context lock here so that if find_get_context is
cdd6c482 7198 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
7199 * incremented the context's refcount before we do put_ctx below.
7200 */
e625cce1 7201 raw_spin_lock(&child_ctx->lock);
04dc2dbb 7202 task_ctx_sched_out(child_ctx);
8dc85d54 7203 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
7204 /*
7205 * If this context is a clone; unclone it so it can't get
7206 * swapped to another process while we're removing all
cdd6c482 7207 * the events from it.
71a851b4
PZ
7208 */
7209 unclone_ctx(child_ctx);
5e942bb3 7210 update_context_time(child_ctx);
e625cce1 7211 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
7212
7213 /*
cdd6c482
IM
7214 * Report the task dead after unscheduling the events so that we
7215 * won't get any samples after PERF_RECORD_EXIT. We can however still
7216 * get a few PERF_RECORD_READ events.
9f498cc5 7217 */
cdd6c482 7218 perf_event_task(child, child_ctx, 0);
a63eaf34 7219
66fff224
PZ
7220 /*
7221 * We can recurse on the same lock type through:
7222 *
cdd6c482
IM
7223 * __perf_event_exit_task()
7224 * sync_child_event()
a6fa941d
AV
7225 * put_event()
7226 * mutex_lock(&ctx->mutex)
66fff224
PZ
7227 *
7228 * But since its the parent context it won't be the same instance.
7229 */
a0507c84 7230 mutex_lock(&child_ctx->mutex);
a63eaf34 7231
8bc20959 7232again:
889ff015
FW
7233 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7234 group_entry)
7235 __perf_event_exit_task(child_event, child_ctx, child);
7236
7237 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 7238 group_entry)
cdd6c482 7239 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
7240
7241 /*
cdd6c482 7242 * If the last event was a group event, it will have appended all
8bc20959
PZ
7243 * its siblings to the list, but we obtained 'tmp' before that which
7244 * will still point to the list head terminating the iteration.
7245 */
889ff015
FW
7246 if (!list_empty(&child_ctx->pinned_groups) ||
7247 !list_empty(&child_ctx->flexible_groups))
8bc20959 7248 goto again;
a63eaf34
PM
7249
7250 mutex_unlock(&child_ctx->mutex);
7251
7252 put_ctx(child_ctx);
9b51f66d
IM
7253}
7254
8dc85d54
PZ
7255/*
7256 * When a child task exits, feed back event values to parent events.
7257 */
7258void perf_event_exit_task(struct task_struct *child)
7259{
8882135b 7260 struct perf_event *event, *tmp;
8dc85d54
PZ
7261 int ctxn;
7262
8882135b
PZ
7263 mutex_lock(&child->perf_event_mutex);
7264 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7265 owner_entry) {
7266 list_del_init(&event->owner_entry);
7267
7268 /*
7269 * Ensure the list deletion is visible before we clear
7270 * the owner, closes a race against perf_release() where
7271 * we need to serialize on the owner->perf_event_mutex.
7272 */
7273 smp_wmb();
7274 event->owner = NULL;
7275 }
7276 mutex_unlock(&child->perf_event_mutex);
7277
8dc85d54
PZ
7278 for_each_task_context_nr(ctxn)
7279 perf_event_exit_task_context(child, ctxn);
7280}
7281
889ff015
FW
7282static void perf_free_event(struct perf_event *event,
7283 struct perf_event_context *ctx)
7284{
7285 struct perf_event *parent = event->parent;
7286
7287 if (WARN_ON_ONCE(!parent))
7288 return;
7289
7290 mutex_lock(&parent->child_mutex);
7291 list_del_init(&event->child_list);
7292 mutex_unlock(&parent->child_mutex);
7293
a6fa941d 7294 put_event(parent);
889ff015 7295
8a49542c 7296 perf_group_detach(event);
889ff015
FW
7297 list_del_event(event, ctx);
7298 free_event(event);
7299}
7300
bbbee908
PZ
7301/*
7302 * free an unexposed, unused context as created by inheritance by
8dc85d54 7303 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7304 */
cdd6c482 7305void perf_event_free_task(struct task_struct *task)
bbbee908 7306{
8dc85d54 7307 struct perf_event_context *ctx;
cdd6c482 7308 struct perf_event *event, *tmp;
8dc85d54 7309 int ctxn;
bbbee908 7310
8dc85d54
PZ
7311 for_each_task_context_nr(ctxn) {
7312 ctx = task->perf_event_ctxp[ctxn];
7313 if (!ctx)
7314 continue;
bbbee908 7315
8dc85d54 7316 mutex_lock(&ctx->mutex);
bbbee908 7317again:
8dc85d54
PZ
7318 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7319 group_entry)
7320 perf_free_event(event, ctx);
bbbee908 7321
8dc85d54
PZ
7322 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7323 group_entry)
7324 perf_free_event(event, ctx);
bbbee908 7325
8dc85d54
PZ
7326 if (!list_empty(&ctx->pinned_groups) ||
7327 !list_empty(&ctx->flexible_groups))
7328 goto again;
bbbee908 7329
8dc85d54 7330 mutex_unlock(&ctx->mutex);
bbbee908 7331
8dc85d54
PZ
7332 put_ctx(ctx);
7333 }
889ff015
FW
7334}
7335
4e231c79
PZ
7336void perf_event_delayed_put(struct task_struct *task)
7337{
7338 int ctxn;
7339
7340 for_each_task_context_nr(ctxn)
7341 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7342}
7343
97dee4f3
PZ
7344/*
7345 * inherit a event from parent task to child task:
7346 */
7347static struct perf_event *
7348inherit_event(struct perf_event *parent_event,
7349 struct task_struct *parent,
7350 struct perf_event_context *parent_ctx,
7351 struct task_struct *child,
7352 struct perf_event *group_leader,
7353 struct perf_event_context *child_ctx)
7354{
7355 struct perf_event *child_event;
cee010ec 7356 unsigned long flags;
97dee4f3
PZ
7357
7358 /*
7359 * Instead of creating recursive hierarchies of events,
7360 * we link inherited events back to the original parent,
7361 * which has a filp for sure, which we use as the reference
7362 * count:
7363 */
7364 if (parent_event->parent)
7365 parent_event = parent_event->parent;
7366
7367 child_event = perf_event_alloc(&parent_event->attr,
7368 parent_event->cpu,
d580ff86 7369 child,
97dee4f3 7370 group_leader, parent_event,
4dc0da86 7371 NULL, NULL);
97dee4f3
PZ
7372 if (IS_ERR(child_event))
7373 return child_event;
a6fa941d
AV
7374
7375 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7376 free_event(child_event);
7377 return NULL;
7378 }
7379
97dee4f3
PZ
7380 get_ctx(child_ctx);
7381
7382 /*
7383 * Make the child state follow the state of the parent event,
7384 * not its attr.disabled bit. We hold the parent's mutex,
7385 * so we won't race with perf_event_{en, dis}able_family.
7386 */
7387 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7388 child_event->state = PERF_EVENT_STATE_INACTIVE;
7389 else
7390 child_event->state = PERF_EVENT_STATE_OFF;
7391
7392 if (parent_event->attr.freq) {
7393 u64 sample_period = parent_event->hw.sample_period;
7394 struct hw_perf_event *hwc = &child_event->hw;
7395
7396 hwc->sample_period = sample_period;
7397 hwc->last_period = sample_period;
7398
7399 local64_set(&hwc->period_left, sample_period);
7400 }
7401
7402 child_event->ctx = child_ctx;
7403 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7404 child_event->overflow_handler_context
7405 = parent_event->overflow_handler_context;
97dee4f3 7406
614b6780
TG
7407 /*
7408 * Precalculate sample_data sizes
7409 */
7410 perf_event__header_size(child_event);
6844c09d 7411 perf_event__id_header_size(child_event);
614b6780 7412
97dee4f3
PZ
7413 /*
7414 * Link it up in the child's context:
7415 */
cee010ec 7416 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7417 add_event_to_ctx(child_event, child_ctx);
cee010ec 7418 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7419
97dee4f3
PZ
7420 /*
7421 * Link this into the parent event's child list
7422 */
7423 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7424 mutex_lock(&parent_event->child_mutex);
7425 list_add_tail(&child_event->child_list, &parent_event->child_list);
7426 mutex_unlock(&parent_event->child_mutex);
7427
7428 return child_event;
7429}
7430
7431static int inherit_group(struct perf_event *parent_event,
7432 struct task_struct *parent,
7433 struct perf_event_context *parent_ctx,
7434 struct task_struct *child,
7435 struct perf_event_context *child_ctx)
7436{
7437 struct perf_event *leader;
7438 struct perf_event *sub;
7439 struct perf_event *child_ctr;
7440
7441 leader = inherit_event(parent_event, parent, parent_ctx,
7442 child, NULL, child_ctx);
7443 if (IS_ERR(leader))
7444 return PTR_ERR(leader);
7445 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7446 child_ctr = inherit_event(sub, parent, parent_ctx,
7447 child, leader, child_ctx);
7448 if (IS_ERR(child_ctr))
7449 return PTR_ERR(child_ctr);
7450 }
7451 return 0;
889ff015
FW
7452}
7453
7454static int
7455inherit_task_group(struct perf_event *event, struct task_struct *parent,
7456 struct perf_event_context *parent_ctx,
8dc85d54 7457 struct task_struct *child, int ctxn,
889ff015
FW
7458 int *inherited_all)
7459{
7460 int ret;
8dc85d54 7461 struct perf_event_context *child_ctx;
889ff015
FW
7462
7463 if (!event->attr.inherit) {
7464 *inherited_all = 0;
7465 return 0;
bbbee908
PZ
7466 }
7467
fe4b04fa 7468 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7469 if (!child_ctx) {
7470 /*
7471 * This is executed from the parent task context, so
7472 * inherit events that have been marked for cloning.
7473 * First allocate and initialize a context for the
7474 * child.
7475 */
bbbee908 7476
734df5ab 7477 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
7478 if (!child_ctx)
7479 return -ENOMEM;
bbbee908 7480
8dc85d54 7481 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7482 }
7483
7484 ret = inherit_group(event, parent, parent_ctx,
7485 child, child_ctx);
7486
7487 if (ret)
7488 *inherited_all = 0;
7489
7490 return ret;
bbbee908
PZ
7491}
7492
9b51f66d 7493/*
cdd6c482 7494 * Initialize the perf_event context in task_struct
9b51f66d 7495 */
8dc85d54 7496int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7497{
889ff015 7498 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7499 struct perf_event_context *cloned_ctx;
7500 struct perf_event *event;
9b51f66d 7501 struct task_struct *parent = current;
564c2b21 7502 int inherited_all = 1;
dddd3379 7503 unsigned long flags;
6ab423e0 7504 int ret = 0;
9b51f66d 7505
8dc85d54 7506 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7507 return 0;
7508
ad3a37de 7509 /*
25346b93
PM
7510 * If the parent's context is a clone, pin it so it won't get
7511 * swapped under us.
ad3a37de 7512 */
8dc85d54 7513 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 7514
ad3a37de
PM
7515 /*
7516 * No need to check if parent_ctx != NULL here; since we saw
7517 * it non-NULL earlier, the only reason for it to become NULL
7518 * is if we exit, and since we're currently in the middle of
7519 * a fork we can't be exiting at the same time.
7520 */
ad3a37de 7521
9b51f66d
IM
7522 /*
7523 * Lock the parent list. No need to lock the child - not PID
7524 * hashed yet and not running, so nobody can access it.
7525 */
d859e29f 7526 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7527
7528 /*
7529 * We dont have to disable NMIs - we are only looking at
7530 * the list, not manipulating it:
7531 */
889ff015 7532 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7533 ret = inherit_task_group(event, parent, parent_ctx,
7534 child, ctxn, &inherited_all);
889ff015
FW
7535 if (ret)
7536 break;
7537 }
b93f7978 7538
dddd3379
TG
7539 /*
7540 * We can't hold ctx->lock when iterating the ->flexible_group list due
7541 * to allocations, but we need to prevent rotation because
7542 * rotate_ctx() will change the list from interrupt context.
7543 */
7544 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7545 parent_ctx->rotate_disable = 1;
7546 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7547
889ff015 7548 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7549 ret = inherit_task_group(event, parent, parent_ctx,
7550 child, ctxn, &inherited_all);
889ff015 7551 if (ret)
9b51f66d 7552 break;
564c2b21
PM
7553 }
7554
dddd3379
TG
7555 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7556 parent_ctx->rotate_disable = 0;
dddd3379 7557
8dc85d54 7558 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7559
05cbaa28 7560 if (child_ctx && inherited_all) {
564c2b21
PM
7561 /*
7562 * Mark the child context as a clone of the parent
7563 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7564 *
7565 * Note that if the parent is a clone, the holding of
7566 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7567 */
c5ed5145 7568 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7569 if (cloned_ctx) {
7570 child_ctx->parent_ctx = cloned_ctx;
25346b93 7571 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7572 } else {
7573 child_ctx->parent_ctx = parent_ctx;
7574 child_ctx->parent_gen = parent_ctx->generation;
7575 }
7576 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7577 }
7578
c5ed5145 7579 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7580 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7581
25346b93 7582 perf_unpin_context(parent_ctx);
fe4b04fa 7583 put_ctx(parent_ctx);
ad3a37de 7584
6ab423e0 7585 return ret;
9b51f66d
IM
7586}
7587
8dc85d54
PZ
7588/*
7589 * Initialize the perf_event context in task_struct
7590 */
7591int perf_event_init_task(struct task_struct *child)
7592{
7593 int ctxn, ret;
7594
8550d7cb
ON
7595 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7596 mutex_init(&child->perf_event_mutex);
7597 INIT_LIST_HEAD(&child->perf_event_list);
7598
8dc85d54
PZ
7599 for_each_task_context_nr(ctxn) {
7600 ret = perf_event_init_context(child, ctxn);
7601 if (ret)
7602 return ret;
7603 }
7604
7605 return 0;
7606}
7607
220b140b
PM
7608static void __init perf_event_init_all_cpus(void)
7609{
b28ab83c 7610 struct swevent_htable *swhash;
220b140b 7611 int cpu;
220b140b
PM
7612
7613 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7614 swhash = &per_cpu(swevent_htable, cpu);
7615 mutex_init(&swhash->hlist_mutex);
e9d2b064 7616 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7617 }
7618}
7619
cdd6c482 7620static void __cpuinit perf_event_init_cpu(int cpu)
0793a61d 7621{
108b02cf 7622 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7623
b28ab83c 7624 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7625 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7626 struct swevent_hlist *hlist;
7627
b28ab83c
PZ
7628 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7629 WARN_ON(!hlist);
7630 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7631 }
b28ab83c 7632 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7633}
7634
c277443c 7635#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7636static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7637{
e9d2b064
PZ
7638 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7639
7640 WARN_ON(!irqs_disabled());
7641
7642 list_del_init(&cpuctx->rotation_list);
7643}
7644
108b02cf 7645static void __perf_event_exit_context(void *__info)
0793a61d 7646{
108b02cf 7647 struct perf_event_context *ctx = __info;
cdd6c482 7648 struct perf_event *event, *tmp;
0793a61d 7649
108b02cf 7650 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7651
889ff015 7652 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7653 __perf_remove_from_context(event);
889ff015 7654 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7655 __perf_remove_from_context(event);
0793a61d 7656}
108b02cf
PZ
7657
7658static void perf_event_exit_cpu_context(int cpu)
7659{
7660 struct perf_event_context *ctx;
7661 struct pmu *pmu;
7662 int idx;
7663
7664 idx = srcu_read_lock(&pmus_srcu);
7665 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7666 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7667
7668 mutex_lock(&ctx->mutex);
7669 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7670 mutex_unlock(&ctx->mutex);
7671 }
7672 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7673}
7674
cdd6c482 7675static void perf_event_exit_cpu(int cpu)
0793a61d 7676{
b28ab83c 7677 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7678
b28ab83c
PZ
7679 mutex_lock(&swhash->hlist_mutex);
7680 swevent_hlist_release(swhash);
7681 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7682
108b02cf 7683 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7684}
7685#else
cdd6c482 7686static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7687#endif
7688
c277443c
PZ
7689static int
7690perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7691{
7692 int cpu;
7693
7694 for_each_online_cpu(cpu)
7695 perf_event_exit_cpu(cpu);
7696
7697 return NOTIFY_OK;
7698}
7699
7700/*
7701 * Run the perf reboot notifier at the very last possible moment so that
7702 * the generic watchdog code runs as long as possible.
7703 */
7704static struct notifier_block perf_reboot_notifier = {
7705 .notifier_call = perf_reboot,
7706 .priority = INT_MIN,
7707};
7708
0793a61d
TG
7709static int __cpuinit
7710perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7711{
7712 unsigned int cpu = (long)hcpu;
7713
4536e4d1 7714 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7715
7716 case CPU_UP_PREPARE:
5e11637e 7717 case CPU_DOWN_FAILED:
cdd6c482 7718 perf_event_init_cpu(cpu);
0793a61d
TG
7719 break;
7720
5e11637e 7721 case CPU_UP_CANCELED:
0793a61d 7722 case CPU_DOWN_PREPARE:
cdd6c482 7723 perf_event_exit_cpu(cpu);
0793a61d 7724 break;
0793a61d
TG
7725 default:
7726 break;
7727 }
7728
7729 return NOTIFY_OK;
7730}
7731
cdd6c482 7732void __init perf_event_init(void)
0793a61d 7733{
3c502e7a
JW
7734 int ret;
7735
2e80a82a
PZ
7736 idr_init(&pmu_idr);
7737
220b140b 7738 perf_event_init_all_cpus();
b0a873eb 7739 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7740 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7741 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7742 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7743 perf_tp_register();
7744 perf_cpu_notifier(perf_cpu_notify);
c277443c 7745 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7746
7747 ret = init_hw_breakpoint();
7748 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7749
7750 /* do not patch jump label more than once per second */
7751 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7752
7753 /*
7754 * Build time assertion that we keep the data_head at the intended
7755 * location. IOW, validation we got the __reserved[] size right.
7756 */
7757 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7758 != 1024);
0793a61d 7759}
abe43400
PZ
7760
7761static int __init perf_event_sysfs_init(void)
7762{
7763 struct pmu *pmu;
7764 int ret;
7765
7766 mutex_lock(&pmus_lock);
7767
7768 ret = bus_register(&pmu_bus);
7769 if (ret)
7770 goto unlock;
7771
7772 list_for_each_entry(pmu, &pmus, entry) {
7773 if (!pmu->name || pmu->type < 0)
7774 continue;
7775
7776 ret = pmu_dev_alloc(pmu);
7777 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7778 }
7779 pmu_bus_running = 1;
7780 ret = 0;
7781
7782unlock:
7783 mutex_unlock(&pmus_lock);
7784
7785 return ret;
7786}
7787device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7788
7789#ifdef CONFIG_CGROUP_PERF
92fb9748 7790static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
e5d1367f
SE
7791{
7792 struct perf_cgroup *jc;
e5d1367f 7793
1b15d055 7794 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7795 if (!jc)
7796 return ERR_PTR(-ENOMEM);
7797
e5d1367f
SE
7798 jc->info = alloc_percpu(struct perf_cgroup_info);
7799 if (!jc->info) {
7800 kfree(jc);
7801 return ERR_PTR(-ENOMEM);
7802 }
7803
e5d1367f
SE
7804 return &jc->css;
7805}
7806
92fb9748 7807static void perf_cgroup_css_free(struct cgroup *cont)
e5d1367f
SE
7808{
7809 struct perf_cgroup *jc;
7810 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7811 struct perf_cgroup, css);
7812 free_percpu(jc->info);
7813 kfree(jc);
7814}
7815
7816static int __perf_cgroup_move(void *info)
7817{
7818 struct task_struct *task = info;
7819 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7820 return 0;
7821}
7822
761b3ef5 7823static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7824{
bb9d97b6
TH
7825 struct task_struct *task;
7826
7827 cgroup_taskset_for_each(task, cgrp, tset)
7828 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7829}
7830
761b3ef5
LZ
7831static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7832 struct task_struct *task)
e5d1367f
SE
7833{
7834 /*
7835 * cgroup_exit() is called in the copy_process() failure path.
7836 * Ignore this case since the task hasn't ran yet, this avoids
7837 * trying to poke a half freed task state from generic code.
7838 */
7839 if (!(task->flags & PF_EXITING))
7840 return;
7841
bb9d97b6 7842 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7843}
7844
7845struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7846 .name = "perf_event",
7847 .subsys_id = perf_subsys_id,
92fb9748
TH
7848 .css_alloc = perf_cgroup_css_alloc,
7849 .css_free = perf_cgroup_css_free,
e7e7ee2e 7850 .exit = perf_cgroup_exit,
bb9d97b6 7851 .attach = perf_cgroup_attach,
e5d1367f
SE
7852};
7853#endif /* CONFIG_CGROUP_PERF */