perf/core: Split perf_event_read() and perf_event_count()
[linux-2.6-block.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
f8697762
JO
129#define EVENT_OWNER_KERNEL ((void *) -1)
130
131static bool is_kernel_event(struct perf_event *event)
132{
133 return event->owner == EVENT_OWNER_KERNEL;
134}
135
e5d1367f
SE
136#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
e5d1367f 140
bce38cd5
SE
141/*
142 * branch priv levels that need permission checks
143 */
144#define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
0b3fcf17
SE
148enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152};
153
e5d1367f
SE
154/*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
c5905afb 158struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 159static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 160static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 161
cdd6c482
IM
162static atomic_t nr_mmap_events __read_mostly;
163static atomic_t nr_comm_events __read_mostly;
164static atomic_t nr_task_events __read_mostly;
948b26b6 165static atomic_t nr_freq_events __read_mostly;
45ac1403 166static atomic_t nr_switch_events __read_mostly;
9ee318a7 167
108b02cf
PZ
168static LIST_HEAD(pmus);
169static DEFINE_MUTEX(pmus_lock);
170static struct srcu_struct pmus_srcu;
171
0764771d 172/*
cdd6c482 173 * perf event paranoia level:
0fbdea19
IM
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 176 * 1 - disallow cpu events for unpriv
0fbdea19 177 * 2 - disallow kernel profiling for unpriv
0764771d 178 */
cdd6c482 179int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 180
20443384
FW
181/* Minimum for 512 kiB + 1 user control page */
182int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
183
184/*
cdd6c482 185 * max perf event sample rate
df58ab24 186 */
14c63f17
DH
187#define DEFAULT_MAX_SAMPLE_RATE 100000
188#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189#define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
d9494cb4
PZ
196static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17
DH
198
199void update_perf_cpu_limits(void)
200{
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 204 do_div(tmp, 100);
d9494cb4 205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 206}
163ec435 207
9e630205
SE
208static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
163ec435
PZ
210int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
723478c8 214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224}
225
226int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231{
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
163ec435
PZ
238
239 return 0;
240}
1ccd1549 241
14c63f17
DH
242/*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 249static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 250
6a02ad66 251static void perf_duration_warn(struct irq_work *w)
14c63f17 252{
6a02ad66 253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 254 u64 avg_local_sample_len;
e5302920 255 u64 local_samples_len;
6a02ad66 256
4a32fea9 257 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 263 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
264 sysctl_perf_event_sample_rate);
265}
266
267static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269void perf_sample_event_took(u64 sample_len_ns)
270{
d9494cb4 271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
14c63f17 274
d9494cb4 275 if (allowed_ns == 0)
14c63f17
DH
276 return;
277
278 /* decay the counter by 1 average sample */
4a32fea9 279 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
4a32fea9 282 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
d9494cb4 291 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
14c63f17 301 update_perf_cpu_limits();
6a02ad66 302
cd578abb
PZ
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
14c63f17
DH
309}
310
cdd6c482 311static atomic64_t perf_event_id;
a96bbc16 312
0b3fcf17
SE
313static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320static void update_context_time(struct perf_event_context *ctx);
321static u64 perf_event_time(struct perf_event *event);
0b3fcf17 322
cdd6c482 323void __weak perf_event_print_debug(void) { }
0793a61d 324
84c79910 325extern __weak const char *perf_pmu_name(void)
0793a61d 326{
84c79910 327 return "pmu";
0793a61d
TG
328}
329
0b3fcf17
SE
330static inline u64 perf_clock(void)
331{
332 return local_clock();
333}
334
34f43927
PZ
335static inline u64 perf_event_clock(struct perf_event *event)
336{
337 return event->clock();
338}
339
e5d1367f
SE
340static inline struct perf_cpu_context *
341__get_cpu_context(struct perf_event_context *ctx)
342{
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344}
345
facc4307
PZ
346static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348{
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352}
353
354static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356{
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360}
361
e5d1367f
SE
362#ifdef CONFIG_CGROUP_PERF
363
e5d1367f
SE
364static inline bool
365perf_cgroup_match(struct perf_event *event)
366{
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
ef824fa1
TH
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
e5d1367f
SE
386}
387
e5d1367f
SE
388static inline void perf_detach_cgroup(struct perf_event *event)
389{
4e2ba650 390 css_put(&event->cgrp->css);
e5d1367f
SE
391 event->cgrp = NULL;
392}
393
394static inline int is_cgroup_event(struct perf_event *event)
395{
396 return event->cgrp != NULL;
397}
398
399static inline u64 perf_cgroup_event_time(struct perf_event *event)
400{
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405}
406
407static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408{
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418}
419
420static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421{
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425}
426
427static inline void update_cgrp_time_from_event(struct perf_event *event)
428{
3f7cce3c
SE
429 struct perf_cgroup *cgrp;
430
e5d1367f 431 /*
3f7cce3c
SE
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
e5d1367f 434 */
3f7cce3c 435 if (!is_cgroup_event(event))
e5d1367f
SE
436 return;
437
3f7cce3c
SE
438 cgrp = perf_cgroup_from_task(current);
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
e5d1367f
SE
444}
445
446static inline void
3f7cce3c
SE
447perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
e5d1367f
SE
449{
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
3f7cce3c
SE
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
459 return;
460
461 cgrp = perf_cgroup_from_task(task);
462 info = this_cpu_ptr(cgrp->info);
3f7cce3c 463 info->timestamp = ctx->timestamp;
e5d1367f
SE
464}
465
466#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469/*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
475void perf_cgroup_switch(struct task_struct *task, int mode)
476{
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
492 rcu_read_lock();
493
494 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 495 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
496 if (cpuctx->unique_pmu != pmu)
497 continue; /* ensure we process each cpuctx once */
e5d1367f 498
e5d1367f
SE
499 /*
500 * perf_cgroup_events says at least one
501 * context on this CPU has cgroup events.
502 *
503 * ctx->nr_cgroups reports the number of cgroup
504 * events for a context.
505 */
506 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
507 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
509
510 if (mode & PERF_CGROUP_SWOUT) {
511 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 /*
513 * must not be done before ctxswout due
514 * to event_filter_match() in event_sched_out()
515 */
516 cpuctx->cgrp = NULL;
517 }
518
519 if (mode & PERF_CGROUP_SWIN) {
e566b76e 520 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
521 /*
522 * set cgrp before ctxsw in to allow
523 * event_filter_match() to not have to pass
524 * task around
e5d1367f
SE
525 */
526 cpuctx->cgrp = perf_cgroup_from_task(task);
527 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 }
facc4307
PZ
529 perf_pmu_enable(cpuctx->ctx.pmu);
530 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 531 }
e5d1367f
SE
532 }
533
534 rcu_read_unlock();
535
536 local_irq_restore(flags);
537}
538
a8d757ef
SE
539static inline void perf_cgroup_sched_out(struct task_struct *task,
540 struct task_struct *next)
e5d1367f 541{
a8d757ef
SE
542 struct perf_cgroup *cgrp1;
543 struct perf_cgroup *cgrp2 = NULL;
544
545 /*
546 * we come here when we know perf_cgroup_events > 0
547 */
548 cgrp1 = perf_cgroup_from_task(task);
549
550 /*
551 * next is NULL when called from perf_event_enable_on_exec()
552 * that will systematically cause a cgroup_switch()
553 */
554 if (next)
555 cgrp2 = perf_cgroup_from_task(next);
556
557 /*
558 * only schedule out current cgroup events if we know
559 * that we are switching to a different cgroup. Otherwise,
560 * do no touch the cgroup events.
561 */
562 if (cgrp1 != cgrp2)
563 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
564}
565
a8d757ef
SE
566static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 struct task_struct *task)
e5d1367f 568{
a8d757ef
SE
569 struct perf_cgroup *cgrp1;
570 struct perf_cgroup *cgrp2 = NULL;
571
572 /*
573 * we come here when we know perf_cgroup_events > 0
574 */
575 cgrp1 = perf_cgroup_from_task(task);
576
577 /* prev can never be NULL */
578 cgrp2 = perf_cgroup_from_task(prev);
579
580 /*
581 * only need to schedule in cgroup events if we are changing
582 * cgroup during ctxsw. Cgroup events were not scheduled
583 * out of ctxsw out if that was not the case.
584 */
585 if (cgrp1 != cgrp2)
586 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
587}
588
589static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 struct perf_event_attr *attr,
591 struct perf_event *group_leader)
592{
593 struct perf_cgroup *cgrp;
594 struct cgroup_subsys_state *css;
2903ff01
AV
595 struct fd f = fdget(fd);
596 int ret = 0;
e5d1367f 597
2903ff01 598 if (!f.file)
e5d1367f
SE
599 return -EBADF;
600
b583043e 601 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 602 &perf_event_cgrp_subsys);
3db272c0
LZ
603 if (IS_ERR(css)) {
604 ret = PTR_ERR(css);
605 goto out;
606 }
e5d1367f
SE
607
608 cgrp = container_of(css, struct perf_cgroup, css);
609 event->cgrp = cgrp;
610
611 /*
612 * all events in a group must monitor
613 * the same cgroup because a task belongs
614 * to only one perf cgroup at a time
615 */
616 if (group_leader && group_leader->cgrp != cgrp) {
617 perf_detach_cgroup(event);
618 ret = -EINVAL;
e5d1367f 619 }
3db272c0 620out:
2903ff01 621 fdput(f);
e5d1367f
SE
622 return ret;
623}
624
625static inline void
626perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627{
628 struct perf_cgroup_info *t;
629 t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 event->shadow_ctx_time = now - t->timestamp;
631}
632
633static inline void
634perf_cgroup_defer_enabled(struct perf_event *event)
635{
636 /*
637 * when the current task's perf cgroup does not match
638 * the event's, we need to remember to call the
639 * perf_mark_enable() function the first time a task with
640 * a matching perf cgroup is scheduled in.
641 */
642 if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 event->cgrp_defer_enabled = 1;
644}
645
646static inline void
647perf_cgroup_mark_enabled(struct perf_event *event,
648 struct perf_event_context *ctx)
649{
650 struct perf_event *sub;
651 u64 tstamp = perf_event_time(event);
652
653 if (!event->cgrp_defer_enabled)
654 return;
655
656 event->cgrp_defer_enabled = 0;
657
658 event->tstamp_enabled = tstamp - event->total_time_enabled;
659 list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 sub->cgrp_defer_enabled = 0;
663 }
664 }
665}
666#else /* !CONFIG_CGROUP_PERF */
667
668static inline bool
669perf_cgroup_match(struct perf_event *event)
670{
671 return true;
672}
673
674static inline void perf_detach_cgroup(struct perf_event *event)
675{}
676
677static inline int is_cgroup_event(struct perf_event *event)
678{
679 return 0;
680}
681
682static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683{
684 return 0;
685}
686
687static inline void update_cgrp_time_from_event(struct perf_event *event)
688{
689}
690
691static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692{
693}
694
a8d757ef
SE
695static inline void perf_cgroup_sched_out(struct task_struct *task,
696 struct task_struct *next)
e5d1367f
SE
697{
698}
699
a8d757ef
SE
700static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 struct task_struct *task)
e5d1367f
SE
702{
703}
704
705static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 struct perf_event_attr *attr,
707 struct perf_event *group_leader)
708{
709 return -EINVAL;
710}
711
712static inline void
3f7cce3c
SE
713perf_cgroup_set_timestamp(struct task_struct *task,
714 struct perf_event_context *ctx)
e5d1367f
SE
715{
716}
717
718void
719perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720{
721}
722
723static inline void
724perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725{
726}
727
728static inline u64 perf_cgroup_event_time(struct perf_event *event)
729{
730 return 0;
731}
732
733static inline void
734perf_cgroup_defer_enabled(struct perf_event *event)
735{
736}
737
738static inline void
739perf_cgroup_mark_enabled(struct perf_event *event,
740 struct perf_event_context *ctx)
741{
742}
743#endif
744
9e630205
SE
745/*
746 * set default to be dependent on timer tick just
747 * like original code
748 */
749#define PERF_CPU_HRTIMER (1000 / HZ)
750/*
751 * function must be called with interrupts disbled
752 */
272325c4 753static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
754{
755 struct perf_cpu_context *cpuctx;
9e630205
SE
756 int rotations = 0;
757
758 WARN_ON(!irqs_disabled());
759
760 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
761 rotations = perf_rotate_context(cpuctx);
762
4cfafd30
PZ
763 raw_spin_lock(&cpuctx->hrtimer_lock);
764 if (rotations)
9e630205 765 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
766 else
767 cpuctx->hrtimer_active = 0;
768 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 769
4cfafd30 770 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
771}
772
272325c4 773static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 774{
272325c4 775 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 776 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 777 u64 interval;
9e630205
SE
778
779 /* no multiplexing needed for SW PMU */
780 if (pmu->task_ctx_nr == perf_sw_context)
781 return;
782
62b85639
SE
783 /*
784 * check default is sane, if not set then force to
785 * default interval (1/tick)
786 */
272325c4
PZ
787 interval = pmu->hrtimer_interval_ms;
788 if (interval < 1)
789 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 790
272325c4 791 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 792
4cfafd30
PZ
793 raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 795 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
796}
797
272325c4 798static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 799{
272325c4 800 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 801 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 802 unsigned long flags;
9e630205
SE
803
804 /* not for SW PMU */
805 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 806 return 0;
9e630205 807
4cfafd30
PZ
808 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 if (!cpuctx->hrtimer_active) {
810 cpuctx->hrtimer_active = 1;
811 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 }
814 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 815
272325c4 816 return 0;
9e630205
SE
817}
818
33696fc0 819void perf_pmu_disable(struct pmu *pmu)
9e35ad38 820{
33696fc0
PZ
821 int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 if (!(*count)++)
823 pmu->pmu_disable(pmu);
9e35ad38 824}
9e35ad38 825
33696fc0 826void perf_pmu_enable(struct pmu *pmu)
9e35ad38 827{
33696fc0
PZ
828 int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 if (!--(*count))
830 pmu->pmu_enable(pmu);
9e35ad38 831}
9e35ad38 832
2fde4f94 833static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
834
835/*
2fde4f94
MR
836 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837 * perf_event_task_tick() are fully serialized because they're strictly cpu
838 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 840 */
2fde4f94 841static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 842{
2fde4f94 843 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 844
e9d2b064 845 WARN_ON(!irqs_disabled());
b5ab4cd5 846
2fde4f94
MR
847 WARN_ON(!list_empty(&ctx->active_ctx_list));
848
849 list_add(&ctx->active_ctx_list, head);
850}
851
852static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853{
854 WARN_ON(!irqs_disabled());
855
856 WARN_ON(list_empty(&ctx->active_ctx_list));
857
858 list_del_init(&ctx->active_ctx_list);
9e35ad38 859}
9e35ad38 860
cdd6c482 861static void get_ctx(struct perf_event_context *ctx)
a63eaf34 862{
e5289d4a 863 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
864}
865
4af57ef2
YZ
866static void free_ctx(struct rcu_head *head)
867{
868 struct perf_event_context *ctx;
869
870 ctx = container_of(head, struct perf_event_context, rcu_head);
871 kfree(ctx->task_ctx_data);
872 kfree(ctx);
873}
874
cdd6c482 875static void put_ctx(struct perf_event_context *ctx)
a63eaf34 876{
564c2b21
PM
877 if (atomic_dec_and_test(&ctx->refcount)) {
878 if (ctx->parent_ctx)
879 put_ctx(ctx->parent_ctx);
c93f7669
PM
880 if (ctx->task)
881 put_task_struct(ctx->task);
4af57ef2 882 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 883 }
a63eaf34
PM
884}
885
f63a8daa
PZ
886/*
887 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888 * perf_pmu_migrate_context() we need some magic.
889 *
890 * Those places that change perf_event::ctx will hold both
891 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892 *
8b10c5e2
PZ
893 * Lock ordering is by mutex address. There are two other sites where
894 * perf_event_context::mutex nests and those are:
895 *
896 * - perf_event_exit_task_context() [ child , 0 ]
897 * __perf_event_exit_task()
898 * sync_child_event()
899 * put_event() [ parent, 1 ]
900 *
901 * - perf_event_init_context() [ parent, 0 ]
902 * inherit_task_group()
903 * inherit_group()
904 * inherit_event()
905 * perf_event_alloc()
906 * perf_init_event()
907 * perf_try_init_event() [ child , 1 ]
908 *
909 * While it appears there is an obvious deadlock here -- the parent and child
910 * nesting levels are inverted between the two. This is in fact safe because
911 * life-time rules separate them. That is an exiting task cannot fork, and a
912 * spawning task cannot (yet) exit.
913 *
914 * But remember that that these are parent<->child context relations, and
915 * migration does not affect children, therefore these two orderings should not
916 * interact.
f63a8daa
PZ
917 *
918 * The change in perf_event::ctx does not affect children (as claimed above)
919 * because the sys_perf_event_open() case will install a new event and break
920 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921 * concerned with cpuctx and that doesn't have children.
922 *
923 * The places that change perf_event::ctx will issue:
924 *
925 * perf_remove_from_context();
926 * synchronize_rcu();
927 * perf_install_in_context();
928 *
929 * to affect the change. The remove_from_context() + synchronize_rcu() should
930 * quiesce the event, after which we can install it in the new location. This
931 * means that only external vectors (perf_fops, prctl) can perturb the event
932 * while in transit. Therefore all such accessors should also acquire
933 * perf_event_context::mutex to serialize against this.
934 *
935 * However; because event->ctx can change while we're waiting to acquire
936 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937 * function.
938 *
939 * Lock order:
940 * task_struct::perf_event_mutex
941 * perf_event_context::mutex
942 * perf_event_context::lock
943 * perf_event::child_mutex;
944 * perf_event::mmap_mutex
945 * mmap_sem
946 */
a83fe28e
PZ
947static struct perf_event_context *
948perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
949{
950 struct perf_event_context *ctx;
951
952again:
953 rcu_read_lock();
954 ctx = ACCESS_ONCE(event->ctx);
955 if (!atomic_inc_not_zero(&ctx->refcount)) {
956 rcu_read_unlock();
957 goto again;
958 }
959 rcu_read_unlock();
960
a83fe28e 961 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
962 if (event->ctx != ctx) {
963 mutex_unlock(&ctx->mutex);
964 put_ctx(ctx);
965 goto again;
966 }
967
968 return ctx;
969}
970
a83fe28e
PZ
971static inline struct perf_event_context *
972perf_event_ctx_lock(struct perf_event *event)
973{
974 return perf_event_ctx_lock_nested(event, 0);
975}
976
f63a8daa
PZ
977static void perf_event_ctx_unlock(struct perf_event *event,
978 struct perf_event_context *ctx)
979{
980 mutex_unlock(&ctx->mutex);
981 put_ctx(ctx);
982}
983
211de6eb
PZ
984/*
985 * This must be done under the ctx->lock, such as to serialize against
986 * context_equiv(), therefore we cannot call put_ctx() since that might end up
987 * calling scheduler related locks and ctx->lock nests inside those.
988 */
989static __must_check struct perf_event_context *
990unclone_ctx(struct perf_event_context *ctx)
71a851b4 991{
211de6eb
PZ
992 struct perf_event_context *parent_ctx = ctx->parent_ctx;
993
994 lockdep_assert_held(&ctx->lock);
995
996 if (parent_ctx)
71a851b4 997 ctx->parent_ctx = NULL;
5a3126d4 998 ctx->generation++;
211de6eb
PZ
999
1000 return parent_ctx;
71a851b4
PZ
1001}
1002
6844c09d
ACM
1003static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004{
1005 /*
1006 * only top level events have the pid namespace they were created in
1007 */
1008 if (event->parent)
1009 event = event->parent;
1010
1011 return task_tgid_nr_ns(p, event->ns);
1012}
1013
1014static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015{
1016 /*
1017 * only top level events have the pid namespace they were created in
1018 */
1019 if (event->parent)
1020 event = event->parent;
1021
1022 return task_pid_nr_ns(p, event->ns);
1023}
1024
7f453c24 1025/*
cdd6c482 1026 * If we inherit events we want to return the parent event id
7f453c24
PZ
1027 * to userspace.
1028 */
cdd6c482 1029static u64 primary_event_id(struct perf_event *event)
7f453c24 1030{
cdd6c482 1031 u64 id = event->id;
7f453c24 1032
cdd6c482
IM
1033 if (event->parent)
1034 id = event->parent->id;
7f453c24
PZ
1035
1036 return id;
1037}
1038
25346b93 1039/*
cdd6c482 1040 * Get the perf_event_context for a task and lock it.
25346b93
PM
1041 * This has to cope with with the fact that until it is locked,
1042 * the context could get moved to another task.
1043 */
cdd6c482 1044static struct perf_event_context *
8dc85d54 1045perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1046{
cdd6c482 1047 struct perf_event_context *ctx;
25346b93 1048
9ed6060d 1049retry:
058ebd0e
PZ
1050 /*
1051 * One of the few rules of preemptible RCU is that one cannot do
1052 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 * part of the read side critical section was preemptible -- see
1054 * rcu_read_unlock_special().
1055 *
1056 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 * side critical section is non-preemptible.
1058 */
1059 preempt_disable();
1060 rcu_read_lock();
8dc85d54 1061 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1062 if (ctx) {
1063 /*
1064 * If this context is a clone of another, it might
1065 * get swapped for another underneath us by
cdd6c482 1066 * perf_event_task_sched_out, though the
25346b93
PM
1067 * rcu_read_lock() protects us from any context
1068 * getting freed. Lock the context and check if it
1069 * got swapped before we could get the lock, and retry
1070 * if so. If we locked the right context, then it
1071 * can't get swapped on us any more.
1072 */
e625cce1 1073 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 1074 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 1075 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
058ebd0e
PZ
1076 rcu_read_unlock();
1077 preempt_enable();
25346b93
PM
1078 goto retry;
1079 }
b49a9e7e
PZ
1080
1081 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 1082 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
1083 ctx = NULL;
1084 }
25346b93
PM
1085 }
1086 rcu_read_unlock();
058ebd0e 1087 preempt_enable();
25346b93
PM
1088 return ctx;
1089}
1090
1091/*
1092 * Get the context for a task and increment its pin_count so it
1093 * can't get swapped to another task. This also increments its
1094 * reference count so that the context can't get freed.
1095 */
8dc85d54
PZ
1096static struct perf_event_context *
1097perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1098{
cdd6c482 1099 struct perf_event_context *ctx;
25346b93
PM
1100 unsigned long flags;
1101
8dc85d54 1102 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1103 if (ctx) {
1104 ++ctx->pin_count;
e625cce1 1105 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1106 }
1107 return ctx;
1108}
1109
cdd6c482 1110static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1111{
1112 unsigned long flags;
1113
e625cce1 1114 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1115 --ctx->pin_count;
e625cce1 1116 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1117}
1118
f67218c3
PZ
1119/*
1120 * Update the record of the current time in a context.
1121 */
1122static void update_context_time(struct perf_event_context *ctx)
1123{
1124 u64 now = perf_clock();
1125
1126 ctx->time += now - ctx->timestamp;
1127 ctx->timestamp = now;
1128}
1129
4158755d
SE
1130static u64 perf_event_time(struct perf_event *event)
1131{
1132 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1133
1134 if (is_cgroup_event(event))
1135 return perf_cgroup_event_time(event);
1136
4158755d
SE
1137 return ctx ? ctx->time : 0;
1138}
1139
f67218c3
PZ
1140/*
1141 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1142 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1143 */
1144static void update_event_times(struct perf_event *event)
1145{
1146 struct perf_event_context *ctx = event->ctx;
1147 u64 run_end;
1148
1149 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1150 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1151 return;
e5d1367f
SE
1152 /*
1153 * in cgroup mode, time_enabled represents
1154 * the time the event was enabled AND active
1155 * tasks were in the monitored cgroup. This is
1156 * independent of the activity of the context as
1157 * there may be a mix of cgroup and non-cgroup events.
1158 *
1159 * That is why we treat cgroup events differently
1160 * here.
1161 */
1162 if (is_cgroup_event(event))
46cd6a7f 1163 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1164 else if (ctx->is_active)
1165 run_end = ctx->time;
acd1d7c1
PZ
1166 else
1167 run_end = event->tstamp_stopped;
1168
1169 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1170
1171 if (event->state == PERF_EVENT_STATE_INACTIVE)
1172 run_end = event->tstamp_stopped;
1173 else
4158755d 1174 run_end = perf_event_time(event);
f67218c3
PZ
1175
1176 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1177
f67218c3
PZ
1178}
1179
96c21a46
PZ
1180/*
1181 * Update total_time_enabled and total_time_running for all events in a group.
1182 */
1183static void update_group_times(struct perf_event *leader)
1184{
1185 struct perf_event *event;
1186
1187 update_event_times(leader);
1188 list_for_each_entry(event, &leader->sibling_list, group_entry)
1189 update_event_times(event);
1190}
1191
889ff015
FW
1192static struct list_head *
1193ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1194{
1195 if (event->attr.pinned)
1196 return &ctx->pinned_groups;
1197 else
1198 return &ctx->flexible_groups;
1199}
1200
fccc714b 1201/*
cdd6c482 1202 * Add a event from the lists for its context.
fccc714b
PZ
1203 * Must be called with ctx->mutex and ctx->lock held.
1204 */
04289bb9 1205static void
cdd6c482 1206list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1207{
8a49542c
PZ
1208 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1209 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1210
1211 /*
8a49542c
PZ
1212 * If we're a stand alone event or group leader, we go to the context
1213 * list, group events are kept attached to the group so that
1214 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1215 */
8a49542c 1216 if (event->group_leader == event) {
889ff015
FW
1217 struct list_head *list;
1218
d6f962b5
FW
1219 if (is_software_event(event))
1220 event->group_flags |= PERF_GROUP_SOFTWARE;
1221
889ff015
FW
1222 list = ctx_group_list(event, ctx);
1223 list_add_tail(&event->group_entry, list);
5c148194 1224 }
592903cd 1225
08309379 1226 if (is_cgroup_event(event))
e5d1367f 1227 ctx->nr_cgroups++;
e5d1367f 1228
cdd6c482
IM
1229 list_add_rcu(&event->event_entry, &ctx->event_list);
1230 ctx->nr_events++;
1231 if (event->attr.inherit_stat)
bfbd3381 1232 ctx->nr_stat++;
5a3126d4
PZ
1233
1234 ctx->generation++;
04289bb9
IM
1235}
1236
0231bb53
JO
1237/*
1238 * Initialize event state based on the perf_event_attr::disabled.
1239 */
1240static inline void perf_event__state_init(struct perf_event *event)
1241{
1242 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1243 PERF_EVENT_STATE_INACTIVE;
1244}
1245
c320c7b7
ACM
1246/*
1247 * Called at perf_event creation and when events are attached/detached from a
1248 * group.
1249 */
1250static void perf_event__read_size(struct perf_event *event)
1251{
1252 int entry = sizeof(u64); /* value */
1253 int size = 0;
1254 int nr = 1;
1255
1256 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1257 size += sizeof(u64);
1258
1259 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1260 size += sizeof(u64);
1261
1262 if (event->attr.read_format & PERF_FORMAT_ID)
1263 entry += sizeof(u64);
1264
1265 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1266 nr += event->group_leader->nr_siblings;
1267 size += sizeof(u64);
1268 }
1269
1270 size += entry * nr;
1271 event->read_size = size;
1272}
1273
1274static void perf_event__header_size(struct perf_event *event)
1275{
1276 struct perf_sample_data *data;
1277 u64 sample_type = event->attr.sample_type;
1278 u16 size = 0;
1279
1280 perf_event__read_size(event);
1281
1282 if (sample_type & PERF_SAMPLE_IP)
1283 size += sizeof(data->ip);
1284
6844c09d
ACM
1285 if (sample_type & PERF_SAMPLE_ADDR)
1286 size += sizeof(data->addr);
1287
1288 if (sample_type & PERF_SAMPLE_PERIOD)
1289 size += sizeof(data->period);
1290
c3feedf2
AK
1291 if (sample_type & PERF_SAMPLE_WEIGHT)
1292 size += sizeof(data->weight);
1293
6844c09d
ACM
1294 if (sample_type & PERF_SAMPLE_READ)
1295 size += event->read_size;
1296
d6be9ad6
SE
1297 if (sample_type & PERF_SAMPLE_DATA_SRC)
1298 size += sizeof(data->data_src.val);
1299
fdfbbd07
AK
1300 if (sample_type & PERF_SAMPLE_TRANSACTION)
1301 size += sizeof(data->txn);
1302
6844c09d
ACM
1303 event->header_size = size;
1304}
1305
1306static void perf_event__id_header_size(struct perf_event *event)
1307{
1308 struct perf_sample_data *data;
1309 u64 sample_type = event->attr.sample_type;
1310 u16 size = 0;
1311
c320c7b7
ACM
1312 if (sample_type & PERF_SAMPLE_TID)
1313 size += sizeof(data->tid_entry);
1314
1315 if (sample_type & PERF_SAMPLE_TIME)
1316 size += sizeof(data->time);
1317
ff3d527c
AH
1318 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1319 size += sizeof(data->id);
1320
c320c7b7
ACM
1321 if (sample_type & PERF_SAMPLE_ID)
1322 size += sizeof(data->id);
1323
1324 if (sample_type & PERF_SAMPLE_STREAM_ID)
1325 size += sizeof(data->stream_id);
1326
1327 if (sample_type & PERF_SAMPLE_CPU)
1328 size += sizeof(data->cpu_entry);
1329
6844c09d 1330 event->id_header_size = size;
c320c7b7
ACM
1331}
1332
8a49542c
PZ
1333static void perf_group_attach(struct perf_event *event)
1334{
c320c7b7 1335 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1336
74c3337c
PZ
1337 /*
1338 * We can have double attach due to group movement in perf_event_open.
1339 */
1340 if (event->attach_state & PERF_ATTACH_GROUP)
1341 return;
1342
8a49542c
PZ
1343 event->attach_state |= PERF_ATTACH_GROUP;
1344
1345 if (group_leader == event)
1346 return;
1347
652884fe
PZ
1348 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1349
8a49542c
PZ
1350 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1351 !is_software_event(event))
1352 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1353
1354 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1355 group_leader->nr_siblings++;
c320c7b7
ACM
1356
1357 perf_event__header_size(group_leader);
1358
1359 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1360 perf_event__header_size(pos);
8a49542c
PZ
1361}
1362
a63eaf34 1363/*
cdd6c482 1364 * Remove a event from the lists for its context.
fccc714b 1365 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1366 */
04289bb9 1367static void
cdd6c482 1368list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1369{
68cacd29 1370 struct perf_cpu_context *cpuctx;
652884fe
PZ
1371
1372 WARN_ON_ONCE(event->ctx != ctx);
1373 lockdep_assert_held(&ctx->lock);
1374
8a49542c
PZ
1375 /*
1376 * We can have double detach due to exit/hot-unplug + close.
1377 */
1378 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1379 return;
8a49542c
PZ
1380
1381 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1382
68cacd29 1383 if (is_cgroup_event(event)) {
e5d1367f 1384 ctx->nr_cgroups--;
68cacd29
SE
1385 cpuctx = __get_cpu_context(ctx);
1386 /*
1387 * if there are no more cgroup events
1388 * then cler cgrp to avoid stale pointer
1389 * in update_cgrp_time_from_cpuctx()
1390 */
1391 if (!ctx->nr_cgroups)
1392 cpuctx->cgrp = NULL;
1393 }
e5d1367f 1394
cdd6c482
IM
1395 ctx->nr_events--;
1396 if (event->attr.inherit_stat)
bfbd3381 1397 ctx->nr_stat--;
8bc20959 1398
cdd6c482 1399 list_del_rcu(&event->event_entry);
04289bb9 1400
8a49542c
PZ
1401 if (event->group_leader == event)
1402 list_del_init(&event->group_entry);
5c148194 1403
96c21a46 1404 update_group_times(event);
b2e74a26
SE
1405
1406 /*
1407 * If event was in error state, then keep it
1408 * that way, otherwise bogus counts will be
1409 * returned on read(). The only way to get out
1410 * of error state is by explicit re-enabling
1411 * of the event
1412 */
1413 if (event->state > PERF_EVENT_STATE_OFF)
1414 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1415
1416 ctx->generation++;
050735b0
PZ
1417}
1418
8a49542c 1419static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1420{
1421 struct perf_event *sibling, *tmp;
8a49542c
PZ
1422 struct list_head *list = NULL;
1423
1424 /*
1425 * We can have double detach due to exit/hot-unplug + close.
1426 */
1427 if (!(event->attach_state & PERF_ATTACH_GROUP))
1428 return;
1429
1430 event->attach_state &= ~PERF_ATTACH_GROUP;
1431
1432 /*
1433 * If this is a sibling, remove it from its group.
1434 */
1435 if (event->group_leader != event) {
1436 list_del_init(&event->group_entry);
1437 event->group_leader->nr_siblings--;
c320c7b7 1438 goto out;
8a49542c
PZ
1439 }
1440
1441 if (!list_empty(&event->group_entry))
1442 list = &event->group_entry;
2e2af50b 1443
04289bb9 1444 /*
cdd6c482
IM
1445 * If this was a group event with sibling events then
1446 * upgrade the siblings to singleton events by adding them
8a49542c 1447 * to whatever list we are on.
04289bb9 1448 */
cdd6c482 1449 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1450 if (list)
1451 list_move_tail(&sibling->group_entry, list);
04289bb9 1452 sibling->group_leader = sibling;
d6f962b5
FW
1453
1454 /* Inherit group flags from the previous leader */
1455 sibling->group_flags = event->group_flags;
652884fe
PZ
1456
1457 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1458 }
c320c7b7
ACM
1459
1460out:
1461 perf_event__header_size(event->group_leader);
1462
1463 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1464 perf_event__header_size(tmp);
04289bb9
IM
1465}
1466
fadfe7be
JO
1467/*
1468 * User event without the task.
1469 */
1470static bool is_orphaned_event(struct perf_event *event)
1471{
1472 return event && !is_kernel_event(event) && !event->owner;
1473}
1474
1475/*
1476 * Event has a parent but parent's task finished and it's
1477 * alive only because of children holding refference.
1478 */
1479static bool is_orphaned_child(struct perf_event *event)
1480{
1481 return is_orphaned_event(event->parent);
1482}
1483
1484static void orphans_remove_work(struct work_struct *work);
1485
1486static void schedule_orphans_remove(struct perf_event_context *ctx)
1487{
1488 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1489 return;
1490
1491 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1492 get_ctx(ctx);
1493 ctx->orphans_remove_sched = true;
1494 }
1495}
1496
1497static int __init perf_workqueue_init(void)
1498{
1499 perf_wq = create_singlethread_workqueue("perf");
1500 WARN(!perf_wq, "failed to create perf workqueue\n");
1501 return perf_wq ? 0 : -1;
1502}
1503
1504core_initcall(perf_workqueue_init);
1505
66eb579e
MR
1506static inline int pmu_filter_match(struct perf_event *event)
1507{
1508 struct pmu *pmu = event->pmu;
1509 return pmu->filter_match ? pmu->filter_match(event) : 1;
1510}
1511
fa66f07a
SE
1512static inline int
1513event_filter_match(struct perf_event *event)
1514{
e5d1367f 1515 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1516 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1517}
1518
9ffcfa6f
SE
1519static void
1520event_sched_out(struct perf_event *event,
3b6f9e5c 1521 struct perf_cpu_context *cpuctx,
cdd6c482 1522 struct perf_event_context *ctx)
3b6f9e5c 1523{
4158755d 1524 u64 tstamp = perf_event_time(event);
fa66f07a 1525 u64 delta;
652884fe
PZ
1526
1527 WARN_ON_ONCE(event->ctx != ctx);
1528 lockdep_assert_held(&ctx->lock);
1529
fa66f07a
SE
1530 /*
1531 * An event which could not be activated because of
1532 * filter mismatch still needs to have its timings
1533 * maintained, otherwise bogus information is return
1534 * via read() for time_enabled, time_running:
1535 */
1536 if (event->state == PERF_EVENT_STATE_INACTIVE
1537 && !event_filter_match(event)) {
e5d1367f 1538 delta = tstamp - event->tstamp_stopped;
fa66f07a 1539 event->tstamp_running += delta;
4158755d 1540 event->tstamp_stopped = tstamp;
fa66f07a
SE
1541 }
1542
cdd6c482 1543 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1544 return;
3b6f9e5c 1545
44377277
AS
1546 perf_pmu_disable(event->pmu);
1547
cdd6c482
IM
1548 event->state = PERF_EVENT_STATE_INACTIVE;
1549 if (event->pending_disable) {
1550 event->pending_disable = 0;
1551 event->state = PERF_EVENT_STATE_OFF;
970892a9 1552 }
4158755d 1553 event->tstamp_stopped = tstamp;
a4eaf7f1 1554 event->pmu->del(event, 0);
cdd6c482 1555 event->oncpu = -1;
3b6f9e5c 1556
cdd6c482 1557 if (!is_software_event(event))
3b6f9e5c 1558 cpuctx->active_oncpu--;
2fde4f94
MR
1559 if (!--ctx->nr_active)
1560 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1561 if (event->attr.freq && event->attr.sample_freq)
1562 ctx->nr_freq--;
cdd6c482 1563 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1564 cpuctx->exclusive = 0;
44377277 1565
fadfe7be
JO
1566 if (is_orphaned_child(event))
1567 schedule_orphans_remove(ctx);
1568
44377277 1569 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1570}
1571
d859e29f 1572static void
cdd6c482 1573group_sched_out(struct perf_event *group_event,
d859e29f 1574 struct perf_cpu_context *cpuctx,
cdd6c482 1575 struct perf_event_context *ctx)
d859e29f 1576{
cdd6c482 1577 struct perf_event *event;
fa66f07a 1578 int state = group_event->state;
d859e29f 1579
cdd6c482 1580 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1581
1582 /*
1583 * Schedule out siblings (if any):
1584 */
cdd6c482
IM
1585 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1586 event_sched_out(event, cpuctx, ctx);
d859e29f 1587
fa66f07a 1588 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1589 cpuctx->exclusive = 0;
1590}
1591
46ce0fe9
PZ
1592struct remove_event {
1593 struct perf_event *event;
1594 bool detach_group;
1595};
1596
0793a61d 1597/*
cdd6c482 1598 * Cross CPU call to remove a performance event
0793a61d 1599 *
cdd6c482 1600 * We disable the event on the hardware level first. After that we
0793a61d
TG
1601 * remove it from the context list.
1602 */
fe4b04fa 1603static int __perf_remove_from_context(void *info)
0793a61d 1604{
46ce0fe9
PZ
1605 struct remove_event *re = info;
1606 struct perf_event *event = re->event;
cdd6c482 1607 struct perf_event_context *ctx = event->ctx;
108b02cf 1608 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1609
e625cce1 1610 raw_spin_lock(&ctx->lock);
cdd6c482 1611 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1612 if (re->detach_group)
1613 perf_group_detach(event);
cdd6c482 1614 list_del_event(event, ctx);
64ce3126
PZ
1615 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1616 ctx->is_active = 0;
1617 cpuctx->task_ctx = NULL;
1618 }
e625cce1 1619 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1620
1621 return 0;
0793a61d
TG
1622}
1623
1624
1625/*
cdd6c482 1626 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1627 *
cdd6c482 1628 * CPU events are removed with a smp call. For task events we only
0793a61d 1629 * call when the task is on a CPU.
c93f7669 1630 *
cdd6c482
IM
1631 * If event->ctx is a cloned context, callers must make sure that
1632 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1633 * remains valid. This is OK when called from perf_release since
1634 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1635 * When called from perf_event_exit_task, it's OK because the
c93f7669 1636 * context has been detached from its task.
0793a61d 1637 */
46ce0fe9 1638static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1639{
cdd6c482 1640 struct perf_event_context *ctx = event->ctx;
0793a61d 1641 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1642 struct remove_event re = {
1643 .event = event,
1644 .detach_group = detach_group,
1645 };
0793a61d 1646
fe4b04fa
PZ
1647 lockdep_assert_held(&ctx->mutex);
1648
0793a61d
TG
1649 if (!task) {
1650 /*
226424ee
MR
1651 * Per cpu events are removed via an smp call. The removal can
1652 * fail if the CPU is currently offline, but in that case we
1653 * already called __perf_remove_from_context from
1654 * perf_event_exit_cpu.
0793a61d 1655 */
46ce0fe9 1656 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1657 return;
1658 }
1659
1660retry:
46ce0fe9 1661 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1662 return;
0793a61d 1663
e625cce1 1664 raw_spin_lock_irq(&ctx->lock);
0793a61d 1665 /*
fe4b04fa
PZ
1666 * If we failed to find a running task, but find the context active now
1667 * that we've acquired the ctx->lock, retry.
0793a61d 1668 */
fe4b04fa 1669 if (ctx->is_active) {
e625cce1 1670 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1671 /*
1672 * Reload the task pointer, it might have been changed by
1673 * a concurrent perf_event_context_sched_out().
1674 */
1675 task = ctx->task;
0793a61d
TG
1676 goto retry;
1677 }
1678
1679 /*
fe4b04fa
PZ
1680 * Since the task isn't running, its safe to remove the event, us
1681 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1682 */
46ce0fe9
PZ
1683 if (detach_group)
1684 perf_group_detach(event);
fe4b04fa 1685 list_del_event(event, ctx);
e625cce1 1686 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1687}
1688
d859e29f 1689/*
cdd6c482 1690 * Cross CPU call to disable a performance event
d859e29f 1691 */
500ad2d8 1692int __perf_event_disable(void *info)
d859e29f 1693{
cdd6c482 1694 struct perf_event *event = info;
cdd6c482 1695 struct perf_event_context *ctx = event->ctx;
108b02cf 1696 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1697
1698 /*
cdd6c482
IM
1699 * If this is a per-task event, need to check whether this
1700 * event's task is the current task on this cpu.
fe4b04fa
PZ
1701 *
1702 * Can trigger due to concurrent perf_event_context_sched_out()
1703 * flipping contexts around.
d859e29f 1704 */
665c2142 1705 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1706 return -EINVAL;
d859e29f 1707
e625cce1 1708 raw_spin_lock(&ctx->lock);
d859e29f
PM
1709
1710 /*
cdd6c482 1711 * If the event is on, turn it off.
d859e29f
PM
1712 * If it is in error state, leave it in error state.
1713 */
cdd6c482 1714 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1715 update_context_time(ctx);
e5d1367f 1716 update_cgrp_time_from_event(event);
cdd6c482
IM
1717 update_group_times(event);
1718 if (event == event->group_leader)
1719 group_sched_out(event, cpuctx, ctx);
d859e29f 1720 else
cdd6c482
IM
1721 event_sched_out(event, cpuctx, ctx);
1722 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1723 }
1724
e625cce1 1725 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1726
1727 return 0;
d859e29f
PM
1728}
1729
1730/*
cdd6c482 1731 * Disable a event.
c93f7669 1732 *
cdd6c482
IM
1733 * If event->ctx is a cloned context, callers must make sure that
1734 * every task struct that event->ctx->task could possibly point to
c93f7669 1735 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1736 * perf_event_for_each_child or perf_event_for_each because they
1737 * hold the top-level event's child_mutex, so any descendant that
1738 * goes to exit will block in sync_child_event.
1739 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1740 * is the current context on this CPU and preemption is disabled,
cdd6c482 1741 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1742 */
f63a8daa 1743static void _perf_event_disable(struct perf_event *event)
d859e29f 1744{
cdd6c482 1745 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1746 struct task_struct *task = ctx->task;
1747
1748 if (!task) {
1749 /*
cdd6c482 1750 * Disable the event on the cpu that it's on
d859e29f 1751 */
fe4b04fa 1752 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1753 return;
1754 }
1755
9ed6060d 1756retry:
fe4b04fa
PZ
1757 if (!task_function_call(task, __perf_event_disable, event))
1758 return;
d859e29f 1759
e625cce1 1760 raw_spin_lock_irq(&ctx->lock);
d859e29f 1761 /*
cdd6c482 1762 * If the event is still active, we need to retry the cross-call.
d859e29f 1763 */
cdd6c482 1764 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1765 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1766 /*
1767 * Reload the task pointer, it might have been changed by
1768 * a concurrent perf_event_context_sched_out().
1769 */
1770 task = ctx->task;
d859e29f
PM
1771 goto retry;
1772 }
1773
1774 /*
1775 * Since we have the lock this context can't be scheduled
1776 * in, so we can change the state safely.
1777 */
cdd6c482
IM
1778 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1779 update_group_times(event);
1780 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1781 }
e625cce1 1782 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1783}
f63a8daa
PZ
1784
1785/*
1786 * Strictly speaking kernel users cannot create groups and therefore this
1787 * interface does not need the perf_event_ctx_lock() magic.
1788 */
1789void perf_event_disable(struct perf_event *event)
1790{
1791 struct perf_event_context *ctx;
1792
1793 ctx = perf_event_ctx_lock(event);
1794 _perf_event_disable(event);
1795 perf_event_ctx_unlock(event, ctx);
1796}
dcfce4a0 1797EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1798
e5d1367f
SE
1799static void perf_set_shadow_time(struct perf_event *event,
1800 struct perf_event_context *ctx,
1801 u64 tstamp)
1802{
1803 /*
1804 * use the correct time source for the time snapshot
1805 *
1806 * We could get by without this by leveraging the
1807 * fact that to get to this function, the caller
1808 * has most likely already called update_context_time()
1809 * and update_cgrp_time_xx() and thus both timestamp
1810 * are identical (or very close). Given that tstamp is,
1811 * already adjusted for cgroup, we could say that:
1812 * tstamp - ctx->timestamp
1813 * is equivalent to
1814 * tstamp - cgrp->timestamp.
1815 *
1816 * Then, in perf_output_read(), the calculation would
1817 * work with no changes because:
1818 * - event is guaranteed scheduled in
1819 * - no scheduled out in between
1820 * - thus the timestamp would be the same
1821 *
1822 * But this is a bit hairy.
1823 *
1824 * So instead, we have an explicit cgroup call to remain
1825 * within the time time source all along. We believe it
1826 * is cleaner and simpler to understand.
1827 */
1828 if (is_cgroup_event(event))
1829 perf_cgroup_set_shadow_time(event, tstamp);
1830 else
1831 event->shadow_ctx_time = tstamp - ctx->timestamp;
1832}
1833
4fe757dd
PZ
1834#define MAX_INTERRUPTS (~0ULL)
1835
1836static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1837static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1838
235c7fc7 1839static int
9ffcfa6f 1840event_sched_in(struct perf_event *event,
235c7fc7 1841 struct perf_cpu_context *cpuctx,
6e37738a 1842 struct perf_event_context *ctx)
235c7fc7 1843{
4158755d 1844 u64 tstamp = perf_event_time(event);
44377277 1845 int ret = 0;
4158755d 1846
63342411
PZ
1847 lockdep_assert_held(&ctx->lock);
1848
cdd6c482 1849 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1850 return 0;
1851
cdd6c482 1852 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1853 event->oncpu = smp_processor_id();
4fe757dd
PZ
1854
1855 /*
1856 * Unthrottle events, since we scheduled we might have missed several
1857 * ticks already, also for a heavily scheduling task there is little
1858 * guarantee it'll get a tick in a timely manner.
1859 */
1860 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1861 perf_log_throttle(event, 1);
1862 event->hw.interrupts = 0;
1863 }
1864
235c7fc7
IM
1865 /*
1866 * The new state must be visible before we turn it on in the hardware:
1867 */
1868 smp_wmb();
1869
44377277
AS
1870 perf_pmu_disable(event->pmu);
1871
72f669c0
SL
1872 perf_set_shadow_time(event, ctx, tstamp);
1873
ec0d7729
AS
1874 perf_log_itrace_start(event);
1875
a4eaf7f1 1876 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1877 event->state = PERF_EVENT_STATE_INACTIVE;
1878 event->oncpu = -1;
44377277
AS
1879 ret = -EAGAIN;
1880 goto out;
235c7fc7
IM
1881 }
1882
00a2916f
PZ
1883 event->tstamp_running += tstamp - event->tstamp_stopped;
1884
cdd6c482 1885 if (!is_software_event(event))
3b6f9e5c 1886 cpuctx->active_oncpu++;
2fde4f94
MR
1887 if (!ctx->nr_active++)
1888 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1889 if (event->attr.freq && event->attr.sample_freq)
1890 ctx->nr_freq++;
235c7fc7 1891
cdd6c482 1892 if (event->attr.exclusive)
3b6f9e5c
PM
1893 cpuctx->exclusive = 1;
1894
fadfe7be
JO
1895 if (is_orphaned_child(event))
1896 schedule_orphans_remove(ctx);
1897
44377277
AS
1898out:
1899 perf_pmu_enable(event->pmu);
1900
1901 return ret;
235c7fc7
IM
1902}
1903
6751b71e 1904static int
cdd6c482 1905group_sched_in(struct perf_event *group_event,
6751b71e 1906 struct perf_cpu_context *cpuctx,
6e37738a 1907 struct perf_event_context *ctx)
6751b71e 1908{
6bde9b6c 1909 struct perf_event *event, *partial_group = NULL;
4a234593 1910 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1911 u64 now = ctx->time;
1912 bool simulate = false;
6751b71e 1913
cdd6c482 1914 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1915 return 0;
1916
fbbe0701 1917 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1918
9ffcfa6f 1919 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1920 pmu->cancel_txn(pmu);
272325c4 1921 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1922 return -EAGAIN;
90151c35 1923 }
6751b71e
PM
1924
1925 /*
1926 * Schedule in siblings as one group (if any):
1927 */
cdd6c482 1928 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1929 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1930 partial_group = event;
6751b71e
PM
1931 goto group_error;
1932 }
1933 }
1934
9ffcfa6f 1935 if (!pmu->commit_txn(pmu))
6e85158c 1936 return 0;
9ffcfa6f 1937
6751b71e
PM
1938group_error:
1939 /*
1940 * Groups can be scheduled in as one unit only, so undo any
1941 * partial group before returning:
d7842da4
SE
1942 * The events up to the failed event are scheduled out normally,
1943 * tstamp_stopped will be updated.
1944 *
1945 * The failed events and the remaining siblings need to have
1946 * their timings updated as if they had gone thru event_sched_in()
1947 * and event_sched_out(). This is required to get consistent timings
1948 * across the group. This also takes care of the case where the group
1949 * could never be scheduled by ensuring tstamp_stopped is set to mark
1950 * the time the event was actually stopped, such that time delta
1951 * calculation in update_event_times() is correct.
6751b71e 1952 */
cdd6c482
IM
1953 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1954 if (event == partial_group)
d7842da4
SE
1955 simulate = true;
1956
1957 if (simulate) {
1958 event->tstamp_running += now - event->tstamp_stopped;
1959 event->tstamp_stopped = now;
1960 } else {
1961 event_sched_out(event, cpuctx, ctx);
1962 }
6751b71e 1963 }
9ffcfa6f 1964 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1965
ad5133b7 1966 pmu->cancel_txn(pmu);
90151c35 1967
272325c4 1968 perf_mux_hrtimer_restart(cpuctx);
9e630205 1969
6751b71e
PM
1970 return -EAGAIN;
1971}
1972
3b6f9e5c 1973/*
cdd6c482 1974 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1975 */
cdd6c482 1976static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1977 struct perf_cpu_context *cpuctx,
1978 int can_add_hw)
1979{
1980 /*
cdd6c482 1981 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1982 */
d6f962b5 1983 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1984 return 1;
1985 /*
1986 * If an exclusive group is already on, no other hardware
cdd6c482 1987 * events can go on.
3b6f9e5c
PM
1988 */
1989 if (cpuctx->exclusive)
1990 return 0;
1991 /*
1992 * If this group is exclusive and there are already
cdd6c482 1993 * events on the CPU, it can't go on.
3b6f9e5c 1994 */
cdd6c482 1995 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1996 return 0;
1997 /*
1998 * Otherwise, try to add it if all previous groups were able
1999 * to go on.
2000 */
2001 return can_add_hw;
2002}
2003
cdd6c482
IM
2004static void add_event_to_ctx(struct perf_event *event,
2005 struct perf_event_context *ctx)
53cfbf59 2006{
4158755d
SE
2007 u64 tstamp = perf_event_time(event);
2008
cdd6c482 2009 list_add_event(event, ctx);
8a49542c 2010 perf_group_attach(event);
4158755d
SE
2011 event->tstamp_enabled = tstamp;
2012 event->tstamp_running = tstamp;
2013 event->tstamp_stopped = tstamp;
53cfbf59
PM
2014}
2015
2c29ef0f
PZ
2016static void task_ctx_sched_out(struct perf_event_context *ctx);
2017static void
2018ctx_sched_in(struct perf_event_context *ctx,
2019 struct perf_cpu_context *cpuctx,
2020 enum event_type_t event_type,
2021 struct task_struct *task);
fe4b04fa 2022
dce5855b
PZ
2023static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2024 struct perf_event_context *ctx,
2025 struct task_struct *task)
2026{
2027 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2028 if (ctx)
2029 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2030 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2031 if (ctx)
2032 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2033}
2034
0793a61d 2035/*
cdd6c482 2036 * Cross CPU call to install and enable a performance event
682076ae
PZ
2037 *
2038 * Must be called with ctx->mutex held
0793a61d 2039 */
fe4b04fa 2040static int __perf_install_in_context(void *info)
0793a61d 2041{
cdd6c482
IM
2042 struct perf_event *event = info;
2043 struct perf_event_context *ctx = event->ctx;
108b02cf 2044 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2045 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2046 struct task_struct *task = current;
2047
b58f6b0d 2048 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2049 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2050
2051 /*
2c29ef0f 2052 * If there was an active task_ctx schedule it out.
0793a61d 2053 */
b58f6b0d 2054 if (task_ctx)
2c29ef0f 2055 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2056
2057 /*
2058 * If the context we're installing events in is not the
2059 * active task_ctx, flip them.
2060 */
2061 if (ctx->task && task_ctx != ctx) {
2062 if (task_ctx)
2063 raw_spin_unlock(&task_ctx->lock);
2064 raw_spin_lock(&ctx->lock);
2065 task_ctx = ctx;
2066 }
2067
2068 if (task_ctx) {
2069 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2070 task = task_ctx->task;
2071 }
b58f6b0d 2072
2c29ef0f 2073 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2074
4af4998b 2075 update_context_time(ctx);
e5d1367f
SE
2076 /*
2077 * update cgrp time only if current cgrp
2078 * matches event->cgrp. Must be done before
2079 * calling add_event_to_ctx()
2080 */
2081 update_cgrp_time_from_event(event);
0793a61d 2082
cdd6c482 2083 add_event_to_ctx(event, ctx);
0793a61d 2084
d859e29f 2085 /*
2c29ef0f 2086 * Schedule everything back in
d859e29f 2087 */
dce5855b 2088 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2089
2090 perf_pmu_enable(cpuctx->ctx.pmu);
2091 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2092
2093 return 0;
0793a61d
TG
2094}
2095
2096/*
cdd6c482 2097 * Attach a performance event to a context
0793a61d 2098 *
cdd6c482
IM
2099 * First we add the event to the list with the hardware enable bit
2100 * in event->hw_config cleared.
0793a61d 2101 *
cdd6c482 2102 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2103 * call to enable it in the task context. The task might have been
2104 * scheduled away, but we check this in the smp call again.
2105 */
2106static void
cdd6c482
IM
2107perf_install_in_context(struct perf_event_context *ctx,
2108 struct perf_event *event,
0793a61d
TG
2109 int cpu)
2110{
2111 struct task_struct *task = ctx->task;
2112
fe4b04fa
PZ
2113 lockdep_assert_held(&ctx->mutex);
2114
c3f00c70 2115 event->ctx = ctx;
0cda4c02
YZ
2116 if (event->cpu != -1)
2117 event->cpu = cpu;
c3f00c70 2118
0793a61d
TG
2119 if (!task) {
2120 /*
cdd6c482 2121 * Per cpu events are installed via an smp call and
af901ca1 2122 * the install is always successful.
0793a61d 2123 */
fe4b04fa 2124 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2125 return;
2126 }
2127
0793a61d 2128retry:
fe4b04fa
PZ
2129 if (!task_function_call(task, __perf_install_in_context, event))
2130 return;
0793a61d 2131
e625cce1 2132 raw_spin_lock_irq(&ctx->lock);
0793a61d 2133 /*
fe4b04fa
PZ
2134 * If we failed to find a running task, but find the context active now
2135 * that we've acquired the ctx->lock, retry.
0793a61d 2136 */
fe4b04fa 2137 if (ctx->is_active) {
e625cce1 2138 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2139 /*
2140 * Reload the task pointer, it might have been changed by
2141 * a concurrent perf_event_context_sched_out().
2142 */
2143 task = ctx->task;
0793a61d
TG
2144 goto retry;
2145 }
2146
2147 /*
fe4b04fa
PZ
2148 * Since the task isn't running, its safe to add the event, us holding
2149 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2150 */
fe4b04fa 2151 add_event_to_ctx(event, ctx);
e625cce1 2152 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2153}
2154
fa289bec 2155/*
cdd6c482 2156 * Put a event into inactive state and update time fields.
fa289bec
PM
2157 * Enabling the leader of a group effectively enables all
2158 * the group members that aren't explicitly disabled, so we
2159 * have to update their ->tstamp_enabled also.
2160 * Note: this works for group members as well as group leaders
2161 * since the non-leader members' sibling_lists will be empty.
2162 */
1d9b482e 2163static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2164{
cdd6c482 2165 struct perf_event *sub;
4158755d 2166 u64 tstamp = perf_event_time(event);
fa289bec 2167
cdd6c482 2168 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2169 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2170 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2171 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2172 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2173 }
fa289bec
PM
2174}
2175
d859e29f 2176/*
cdd6c482 2177 * Cross CPU call to enable a performance event
d859e29f 2178 */
fe4b04fa 2179static int __perf_event_enable(void *info)
04289bb9 2180{
cdd6c482 2181 struct perf_event *event = info;
cdd6c482
IM
2182 struct perf_event_context *ctx = event->ctx;
2183 struct perf_event *leader = event->group_leader;
108b02cf 2184 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2185 int err;
04289bb9 2186
06f41796
JO
2187 /*
2188 * There's a time window between 'ctx->is_active' check
2189 * in perf_event_enable function and this place having:
2190 * - IRQs on
2191 * - ctx->lock unlocked
2192 *
2193 * where the task could be killed and 'ctx' deactivated
2194 * by perf_event_exit_task.
2195 */
2196 if (!ctx->is_active)
fe4b04fa 2197 return -EINVAL;
3cbed429 2198
e625cce1 2199 raw_spin_lock(&ctx->lock);
4af4998b 2200 update_context_time(ctx);
d859e29f 2201
cdd6c482 2202 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2203 goto unlock;
e5d1367f
SE
2204
2205 /*
2206 * set current task's cgroup time reference point
2207 */
3f7cce3c 2208 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2209
1d9b482e 2210 __perf_event_mark_enabled(event);
04289bb9 2211
e5d1367f
SE
2212 if (!event_filter_match(event)) {
2213 if (is_cgroup_event(event))
2214 perf_cgroup_defer_enabled(event);
f4c4176f 2215 goto unlock;
e5d1367f 2216 }
f4c4176f 2217
04289bb9 2218 /*
cdd6c482 2219 * If the event is in a group and isn't the group leader,
d859e29f 2220 * then don't put it on unless the group is on.
04289bb9 2221 */
cdd6c482 2222 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2223 goto unlock;
3b6f9e5c 2224
cdd6c482 2225 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2226 err = -EEXIST;
e758a33d 2227 } else {
cdd6c482 2228 if (event == leader)
6e37738a 2229 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2230 else
6e37738a 2231 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2232 }
d859e29f
PM
2233
2234 if (err) {
2235 /*
cdd6c482 2236 * If this event can't go on and it's part of a
d859e29f
PM
2237 * group, then the whole group has to come off.
2238 */
9e630205 2239 if (leader != event) {
d859e29f 2240 group_sched_out(leader, cpuctx, ctx);
272325c4 2241 perf_mux_hrtimer_restart(cpuctx);
9e630205 2242 }
0d48696f 2243 if (leader->attr.pinned) {
53cfbf59 2244 update_group_times(leader);
cdd6c482 2245 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2246 }
d859e29f
PM
2247 }
2248
9ed6060d 2249unlock:
e625cce1 2250 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2251
2252 return 0;
d859e29f
PM
2253}
2254
2255/*
cdd6c482 2256 * Enable a event.
c93f7669 2257 *
cdd6c482
IM
2258 * If event->ctx is a cloned context, callers must make sure that
2259 * every task struct that event->ctx->task could possibly point to
c93f7669 2260 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2261 * perf_event_for_each_child or perf_event_for_each as described
2262 * for perf_event_disable.
d859e29f 2263 */
f63a8daa 2264static void _perf_event_enable(struct perf_event *event)
d859e29f 2265{
cdd6c482 2266 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2267 struct task_struct *task = ctx->task;
2268
2269 if (!task) {
2270 /*
cdd6c482 2271 * Enable the event on the cpu that it's on
d859e29f 2272 */
fe4b04fa 2273 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2274 return;
2275 }
2276
e625cce1 2277 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2278 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2279 goto out;
2280
2281 /*
cdd6c482
IM
2282 * If the event is in error state, clear that first.
2283 * That way, if we see the event in error state below, we
d859e29f
PM
2284 * know that it has gone back into error state, as distinct
2285 * from the task having been scheduled away before the
2286 * cross-call arrived.
2287 */
cdd6c482
IM
2288 if (event->state == PERF_EVENT_STATE_ERROR)
2289 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2290
9ed6060d 2291retry:
fe4b04fa 2292 if (!ctx->is_active) {
1d9b482e 2293 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2294 goto out;
2295 }
2296
e625cce1 2297 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2298
2299 if (!task_function_call(task, __perf_event_enable, event))
2300 return;
d859e29f 2301
e625cce1 2302 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2303
2304 /*
cdd6c482 2305 * If the context is active and the event is still off,
d859e29f
PM
2306 * we need to retry the cross-call.
2307 */
fe4b04fa
PZ
2308 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2309 /*
2310 * task could have been flipped by a concurrent
2311 * perf_event_context_sched_out()
2312 */
2313 task = ctx->task;
d859e29f 2314 goto retry;
fe4b04fa 2315 }
fa289bec 2316
9ed6060d 2317out:
e625cce1 2318 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2319}
f63a8daa
PZ
2320
2321/*
2322 * See perf_event_disable();
2323 */
2324void perf_event_enable(struct perf_event *event)
2325{
2326 struct perf_event_context *ctx;
2327
2328 ctx = perf_event_ctx_lock(event);
2329 _perf_event_enable(event);
2330 perf_event_ctx_unlock(event, ctx);
2331}
dcfce4a0 2332EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2333
f63a8daa 2334static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2335{
2023b359 2336 /*
cdd6c482 2337 * not supported on inherited events
2023b359 2338 */
2e939d1d 2339 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2340 return -EINVAL;
2341
cdd6c482 2342 atomic_add(refresh, &event->event_limit);
f63a8daa 2343 _perf_event_enable(event);
2023b359
PZ
2344
2345 return 0;
79f14641 2346}
f63a8daa
PZ
2347
2348/*
2349 * See perf_event_disable()
2350 */
2351int perf_event_refresh(struct perf_event *event, int refresh)
2352{
2353 struct perf_event_context *ctx;
2354 int ret;
2355
2356 ctx = perf_event_ctx_lock(event);
2357 ret = _perf_event_refresh(event, refresh);
2358 perf_event_ctx_unlock(event, ctx);
2359
2360 return ret;
2361}
26ca5c11 2362EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2363
5b0311e1
FW
2364static void ctx_sched_out(struct perf_event_context *ctx,
2365 struct perf_cpu_context *cpuctx,
2366 enum event_type_t event_type)
235c7fc7 2367{
cdd6c482 2368 struct perf_event *event;
db24d33e 2369 int is_active = ctx->is_active;
235c7fc7 2370
db24d33e 2371 ctx->is_active &= ~event_type;
cdd6c482 2372 if (likely(!ctx->nr_events))
facc4307
PZ
2373 return;
2374
4af4998b 2375 update_context_time(ctx);
e5d1367f 2376 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2377 if (!ctx->nr_active)
facc4307 2378 return;
5b0311e1 2379
075e0b00 2380 perf_pmu_disable(ctx->pmu);
db24d33e 2381 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2382 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2383 group_sched_out(event, cpuctx, ctx);
9ed6060d 2384 }
889ff015 2385
db24d33e 2386 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2387 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2388 group_sched_out(event, cpuctx, ctx);
9ed6060d 2389 }
1b9a644f 2390 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2391}
2392
564c2b21 2393/*
5a3126d4
PZ
2394 * Test whether two contexts are equivalent, i.e. whether they have both been
2395 * cloned from the same version of the same context.
2396 *
2397 * Equivalence is measured using a generation number in the context that is
2398 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2399 * and list_del_event().
564c2b21 2400 */
cdd6c482
IM
2401static int context_equiv(struct perf_event_context *ctx1,
2402 struct perf_event_context *ctx2)
564c2b21 2403{
211de6eb
PZ
2404 lockdep_assert_held(&ctx1->lock);
2405 lockdep_assert_held(&ctx2->lock);
2406
5a3126d4
PZ
2407 /* Pinning disables the swap optimization */
2408 if (ctx1->pin_count || ctx2->pin_count)
2409 return 0;
2410
2411 /* If ctx1 is the parent of ctx2 */
2412 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2413 return 1;
2414
2415 /* If ctx2 is the parent of ctx1 */
2416 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2417 return 1;
2418
2419 /*
2420 * If ctx1 and ctx2 have the same parent; we flatten the parent
2421 * hierarchy, see perf_event_init_context().
2422 */
2423 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2424 ctx1->parent_gen == ctx2->parent_gen)
2425 return 1;
2426
2427 /* Unmatched */
2428 return 0;
564c2b21
PM
2429}
2430
cdd6c482
IM
2431static void __perf_event_sync_stat(struct perf_event *event,
2432 struct perf_event *next_event)
bfbd3381
PZ
2433{
2434 u64 value;
2435
cdd6c482 2436 if (!event->attr.inherit_stat)
bfbd3381
PZ
2437 return;
2438
2439 /*
cdd6c482 2440 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2441 * because we're in the middle of a context switch and have IRQs
2442 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2443 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2444 * don't need to use it.
2445 */
cdd6c482
IM
2446 switch (event->state) {
2447 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2448 event->pmu->read(event);
2449 /* fall-through */
bfbd3381 2450
cdd6c482
IM
2451 case PERF_EVENT_STATE_INACTIVE:
2452 update_event_times(event);
bfbd3381
PZ
2453 break;
2454
2455 default:
2456 break;
2457 }
2458
2459 /*
cdd6c482 2460 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2461 * values when we flip the contexts.
2462 */
e7850595
PZ
2463 value = local64_read(&next_event->count);
2464 value = local64_xchg(&event->count, value);
2465 local64_set(&next_event->count, value);
bfbd3381 2466
cdd6c482
IM
2467 swap(event->total_time_enabled, next_event->total_time_enabled);
2468 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2469
bfbd3381 2470 /*
19d2e755 2471 * Since we swizzled the values, update the user visible data too.
bfbd3381 2472 */
cdd6c482
IM
2473 perf_event_update_userpage(event);
2474 perf_event_update_userpage(next_event);
bfbd3381
PZ
2475}
2476
cdd6c482
IM
2477static void perf_event_sync_stat(struct perf_event_context *ctx,
2478 struct perf_event_context *next_ctx)
bfbd3381 2479{
cdd6c482 2480 struct perf_event *event, *next_event;
bfbd3381
PZ
2481
2482 if (!ctx->nr_stat)
2483 return;
2484
02ffdbc8
PZ
2485 update_context_time(ctx);
2486
cdd6c482
IM
2487 event = list_first_entry(&ctx->event_list,
2488 struct perf_event, event_entry);
bfbd3381 2489
cdd6c482
IM
2490 next_event = list_first_entry(&next_ctx->event_list,
2491 struct perf_event, event_entry);
bfbd3381 2492
cdd6c482
IM
2493 while (&event->event_entry != &ctx->event_list &&
2494 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2495
cdd6c482 2496 __perf_event_sync_stat(event, next_event);
bfbd3381 2497
cdd6c482
IM
2498 event = list_next_entry(event, event_entry);
2499 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2500 }
2501}
2502
fe4b04fa
PZ
2503static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2504 struct task_struct *next)
0793a61d 2505{
8dc85d54 2506 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2507 struct perf_event_context *next_ctx;
5a3126d4 2508 struct perf_event_context *parent, *next_parent;
108b02cf 2509 struct perf_cpu_context *cpuctx;
c93f7669 2510 int do_switch = 1;
0793a61d 2511
108b02cf
PZ
2512 if (likely(!ctx))
2513 return;
10989fb2 2514
108b02cf
PZ
2515 cpuctx = __get_cpu_context(ctx);
2516 if (!cpuctx->task_ctx)
0793a61d
TG
2517 return;
2518
c93f7669 2519 rcu_read_lock();
8dc85d54 2520 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2521 if (!next_ctx)
2522 goto unlock;
2523
2524 parent = rcu_dereference(ctx->parent_ctx);
2525 next_parent = rcu_dereference(next_ctx->parent_ctx);
2526
2527 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2528 if (!parent && !next_parent)
5a3126d4
PZ
2529 goto unlock;
2530
2531 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2532 /*
2533 * Looks like the two contexts are clones, so we might be
2534 * able to optimize the context switch. We lock both
2535 * contexts and check that they are clones under the
2536 * lock (including re-checking that neither has been
2537 * uncloned in the meantime). It doesn't matter which
2538 * order we take the locks because no other cpu could
2539 * be trying to lock both of these tasks.
2540 */
e625cce1
TG
2541 raw_spin_lock(&ctx->lock);
2542 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2543 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2544 /*
2545 * XXX do we need a memory barrier of sorts
cdd6c482 2546 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2547 */
8dc85d54
PZ
2548 task->perf_event_ctxp[ctxn] = next_ctx;
2549 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2550 ctx->task = next;
2551 next_ctx->task = task;
5a158c3c
YZ
2552
2553 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2554
c93f7669 2555 do_switch = 0;
bfbd3381 2556
cdd6c482 2557 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2558 }
e625cce1
TG
2559 raw_spin_unlock(&next_ctx->lock);
2560 raw_spin_unlock(&ctx->lock);
564c2b21 2561 }
5a3126d4 2562unlock:
c93f7669 2563 rcu_read_unlock();
564c2b21 2564
c93f7669 2565 if (do_switch) {
facc4307 2566 raw_spin_lock(&ctx->lock);
5b0311e1 2567 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2568 cpuctx->task_ctx = NULL;
facc4307 2569 raw_spin_unlock(&ctx->lock);
c93f7669 2570 }
0793a61d
TG
2571}
2572
ba532500
YZ
2573void perf_sched_cb_dec(struct pmu *pmu)
2574{
2575 this_cpu_dec(perf_sched_cb_usages);
2576}
2577
2578void perf_sched_cb_inc(struct pmu *pmu)
2579{
2580 this_cpu_inc(perf_sched_cb_usages);
2581}
2582
2583/*
2584 * This function provides the context switch callback to the lower code
2585 * layer. It is invoked ONLY when the context switch callback is enabled.
2586 */
2587static void perf_pmu_sched_task(struct task_struct *prev,
2588 struct task_struct *next,
2589 bool sched_in)
2590{
2591 struct perf_cpu_context *cpuctx;
2592 struct pmu *pmu;
2593 unsigned long flags;
2594
2595 if (prev == next)
2596 return;
2597
2598 local_irq_save(flags);
2599
2600 rcu_read_lock();
2601
2602 list_for_each_entry_rcu(pmu, &pmus, entry) {
2603 if (pmu->sched_task) {
2604 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2605
2606 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2607
2608 perf_pmu_disable(pmu);
2609
2610 pmu->sched_task(cpuctx->task_ctx, sched_in);
2611
2612 perf_pmu_enable(pmu);
2613
2614 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2615 }
2616 }
2617
2618 rcu_read_unlock();
2619
2620 local_irq_restore(flags);
2621}
2622
45ac1403
AH
2623static void perf_event_switch(struct task_struct *task,
2624 struct task_struct *next_prev, bool sched_in);
2625
8dc85d54
PZ
2626#define for_each_task_context_nr(ctxn) \
2627 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2628
2629/*
2630 * Called from scheduler to remove the events of the current task,
2631 * with interrupts disabled.
2632 *
2633 * We stop each event and update the event value in event->count.
2634 *
2635 * This does not protect us against NMI, but disable()
2636 * sets the disabled bit in the control field of event _before_
2637 * accessing the event control register. If a NMI hits, then it will
2638 * not restart the event.
2639 */
ab0cce56
JO
2640void __perf_event_task_sched_out(struct task_struct *task,
2641 struct task_struct *next)
8dc85d54
PZ
2642{
2643 int ctxn;
2644
ba532500
YZ
2645 if (__this_cpu_read(perf_sched_cb_usages))
2646 perf_pmu_sched_task(task, next, false);
2647
45ac1403
AH
2648 if (atomic_read(&nr_switch_events))
2649 perf_event_switch(task, next, false);
2650
8dc85d54
PZ
2651 for_each_task_context_nr(ctxn)
2652 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2653
2654 /*
2655 * if cgroup events exist on this CPU, then we need
2656 * to check if we have to switch out PMU state.
2657 * cgroup event are system-wide mode only
2658 */
4a32fea9 2659 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2660 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2661}
2662
04dc2dbb 2663static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2664{
108b02cf 2665 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2666
a63eaf34
PM
2667 if (!cpuctx->task_ctx)
2668 return;
012b84da
IM
2669
2670 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2671 return;
2672
04dc2dbb 2673 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2674 cpuctx->task_ctx = NULL;
2675}
2676
5b0311e1
FW
2677/*
2678 * Called with IRQs disabled
2679 */
2680static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2681 enum event_type_t event_type)
2682{
2683 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2684}
2685
235c7fc7 2686static void
5b0311e1 2687ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2688 struct perf_cpu_context *cpuctx)
0793a61d 2689{
cdd6c482 2690 struct perf_event *event;
0793a61d 2691
889ff015
FW
2692 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2693 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2694 continue;
5632ab12 2695 if (!event_filter_match(event))
3b6f9e5c
PM
2696 continue;
2697
e5d1367f
SE
2698 /* may need to reset tstamp_enabled */
2699 if (is_cgroup_event(event))
2700 perf_cgroup_mark_enabled(event, ctx);
2701
8c9ed8e1 2702 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2703 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2704
2705 /*
2706 * If this pinned group hasn't been scheduled,
2707 * put it in error state.
2708 */
cdd6c482
IM
2709 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2710 update_group_times(event);
2711 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2712 }
3b6f9e5c 2713 }
5b0311e1
FW
2714}
2715
2716static void
2717ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2718 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2719{
2720 struct perf_event *event;
2721 int can_add_hw = 1;
3b6f9e5c 2722
889ff015
FW
2723 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2724 /* Ignore events in OFF or ERROR state */
2725 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2726 continue;
04289bb9
IM
2727 /*
2728 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2729 * of events:
04289bb9 2730 */
5632ab12 2731 if (!event_filter_match(event))
0793a61d
TG
2732 continue;
2733
e5d1367f
SE
2734 /* may need to reset tstamp_enabled */
2735 if (is_cgroup_event(event))
2736 perf_cgroup_mark_enabled(event, ctx);
2737
9ed6060d 2738 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2739 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2740 can_add_hw = 0;
9ed6060d 2741 }
0793a61d 2742 }
5b0311e1
FW
2743}
2744
2745static void
2746ctx_sched_in(struct perf_event_context *ctx,
2747 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2748 enum event_type_t event_type,
2749 struct task_struct *task)
5b0311e1 2750{
e5d1367f 2751 u64 now;
db24d33e 2752 int is_active = ctx->is_active;
e5d1367f 2753
db24d33e 2754 ctx->is_active |= event_type;
5b0311e1 2755 if (likely(!ctx->nr_events))
facc4307 2756 return;
5b0311e1 2757
e5d1367f
SE
2758 now = perf_clock();
2759 ctx->timestamp = now;
3f7cce3c 2760 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2761 /*
2762 * First go through the list and put on any pinned groups
2763 * in order to give them the best chance of going on.
2764 */
db24d33e 2765 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2766 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2767
2768 /* Then walk through the lower prio flexible groups */
db24d33e 2769 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2770 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2771}
2772
329c0e01 2773static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2774 enum event_type_t event_type,
2775 struct task_struct *task)
329c0e01
FW
2776{
2777 struct perf_event_context *ctx = &cpuctx->ctx;
2778
e5d1367f 2779 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2780}
2781
e5d1367f
SE
2782static void perf_event_context_sched_in(struct perf_event_context *ctx,
2783 struct task_struct *task)
235c7fc7 2784{
108b02cf 2785 struct perf_cpu_context *cpuctx;
235c7fc7 2786
108b02cf 2787 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2788 if (cpuctx->task_ctx == ctx)
2789 return;
2790
facc4307 2791 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2792 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2793 /*
2794 * We want to keep the following priority order:
2795 * cpu pinned (that don't need to move), task pinned,
2796 * cpu flexible, task flexible.
2797 */
2798 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2799
1d5f003f
GN
2800 if (ctx->nr_events)
2801 cpuctx->task_ctx = ctx;
9b33fa6b 2802
86b47c25
GN
2803 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2804
facc4307
PZ
2805 perf_pmu_enable(ctx->pmu);
2806 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2807}
2808
8dc85d54
PZ
2809/*
2810 * Called from scheduler to add the events of the current task
2811 * with interrupts disabled.
2812 *
2813 * We restore the event value and then enable it.
2814 *
2815 * This does not protect us against NMI, but enable()
2816 * sets the enabled bit in the control field of event _before_
2817 * accessing the event control register. If a NMI hits, then it will
2818 * keep the event running.
2819 */
ab0cce56
JO
2820void __perf_event_task_sched_in(struct task_struct *prev,
2821 struct task_struct *task)
8dc85d54
PZ
2822{
2823 struct perf_event_context *ctx;
2824 int ctxn;
2825
2826 for_each_task_context_nr(ctxn) {
2827 ctx = task->perf_event_ctxp[ctxn];
2828 if (likely(!ctx))
2829 continue;
2830
e5d1367f 2831 perf_event_context_sched_in(ctx, task);
8dc85d54 2832 }
e5d1367f
SE
2833 /*
2834 * if cgroup events exist on this CPU, then we need
2835 * to check if we have to switch in PMU state.
2836 * cgroup event are system-wide mode only
2837 */
4a32fea9 2838 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2839 perf_cgroup_sched_in(prev, task);
d010b332 2840
45ac1403
AH
2841 if (atomic_read(&nr_switch_events))
2842 perf_event_switch(task, prev, true);
2843
ba532500
YZ
2844 if (__this_cpu_read(perf_sched_cb_usages))
2845 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2846}
2847
abd50713
PZ
2848static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2849{
2850 u64 frequency = event->attr.sample_freq;
2851 u64 sec = NSEC_PER_SEC;
2852 u64 divisor, dividend;
2853
2854 int count_fls, nsec_fls, frequency_fls, sec_fls;
2855
2856 count_fls = fls64(count);
2857 nsec_fls = fls64(nsec);
2858 frequency_fls = fls64(frequency);
2859 sec_fls = 30;
2860
2861 /*
2862 * We got @count in @nsec, with a target of sample_freq HZ
2863 * the target period becomes:
2864 *
2865 * @count * 10^9
2866 * period = -------------------
2867 * @nsec * sample_freq
2868 *
2869 */
2870
2871 /*
2872 * Reduce accuracy by one bit such that @a and @b converge
2873 * to a similar magnitude.
2874 */
fe4b04fa 2875#define REDUCE_FLS(a, b) \
abd50713
PZ
2876do { \
2877 if (a##_fls > b##_fls) { \
2878 a >>= 1; \
2879 a##_fls--; \
2880 } else { \
2881 b >>= 1; \
2882 b##_fls--; \
2883 } \
2884} while (0)
2885
2886 /*
2887 * Reduce accuracy until either term fits in a u64, then proceed with
2888 * the other, so that finally we can do a u64/u64 division.
2889 */
2890 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2891 REDUCE_FLS(nsec, frequency);
2892 REDUCE_FLS(sec, count);
2893 }
2894
2895 if (count_fls + sec_fls > 64) {
2896 divisor = nsec * frequency;
2897
2898 while (count_fls + sec_fls > 64) {
2899 REDUCE_FLS(count, sec);
2900 divisor >>= 1;
2901 }
2902
2903 dividend = count * sec;
2904 } else {
2905 dividend = count * sec;
2906
2907 while (nsec_fls + frequency_fls > 64) {
2908 REDUCE_FLS(nsec, frequency);
2909 dividend >>= 1;
2910 }
2911
2912 divisor = nsec * frequency;
2913 }
2914
f6ab91ad
PZ
2915 if (!divisor)
2916 return dividend;
2917
abd50713
PZ
2918 return div64_u64(dividend, divisor);
2919}
2920
e050e3f0
SE
2921static DEFINE_PER_CPU(int, perf_throttled_count);
2922static DEFINE_PER_CPU(u64, perf_throttled_seq);
2923
f39d47ff 2924static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2925{
cdd6c482 2926 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2927 s64 period, sample_period;
bd2b5b12
PZ
2928 s64 delta;
2929
abd50713 2930 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2931
2932 delta = (s64)(period - hwc->sample_period);
2933 delta = (delta + 7) / 8; /* low pass filter */
2934
2935 sample_period = hwc->sample_period + delta;
2936
2937 if (!sample_period)
2938 sample_period = 1;
2939
bd2b5b12 2940 hwc->sample_period = sample_period;
abd50713 2941
e7850595 2942 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2943 if (disable)
2944 event->pmu->stop(event, PERF_EF_UPDATE);
2945
e7850595 2946 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2947
2948 if (disable)
2949 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2950 }
bd2b5b12
PZ
2951}
2952
e050e3f0
SE
2953/*
2954 * combine freq adjustment with unthrottling to avoid two passes over the
2955 * events. At the same time, make sure, having freq events does not change
2956 * the rate of unthrottling as that would introduce bias.
2957 */
2958static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2959 int needs_unthr)
60db5e09 2960{
cdd6c482
IM
2961 struct perf_event *event;
2962 struct hw_perf_event *hwc;
e050e3f0 2963 u64 now, period = TICK_NSEC;
abd50713 2964 s64 delta;
60db5e09 2965
e050e3f0
SE
2966 /*
2967 * only need to iterate over all events iff:
2968 * - context have events in frequency mode (needs freq adjust)
2969 * - there are events to unthrottle on this cpu
2970 */
2971 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2972 return;
2973
e050e3f0 2974 raw_spin_lock(&ctx->lock);
f39d47ff 2975 perf_pmu_disable(ctx->pmu);
e050e3f0 2976
03541f8b 2977 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2978 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2979 continue;
2980
5632ab12 2981 if (!event_filter_match(event))
5d27c23d
PZ
2982 continue;
2983
44377277
AS
2984 perf_pmu_disable(event->pmu);
2985
cdd6c482 2986 hwc = &event->hw;
6a24ed6c 2987
ae23bff1 2988 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 2989 hwc->interrupts = 0;
cdd6c482 2990 perf_log_throttle(event, 1);
a4eaf7f1 2991 event->pmu->start(event, 0);
a78ac325
PZ
2992 }
2993
cdd6c482 2994 if (!event->attr.freq || !event->attr.sample_freq)
44377277 2995 goto next;
60db5e09 2996
e050e3f0
SE
2997 /*
2998 * stop the event and update event->count
2999 */
3000 event->pmu->stop(event, PERF_EF_UPDATE);
3001
e7850595 3002 now = local64_read(&event->count);
abd50713
PZ
3003 delta = now - hwc->freq_count_stamp;
3004 hwc->freq_count_stamp = now;
60db5e09 3005
e050e3f0
SE
3006 /*
3007 * restart the event
3008 * reload only if value has changed
f39d47ff
SE
3009 * we have stopped the event so tell that
3010 * to perf_adjust_period() to avoid stopping it
3011 * twice.
e050e3f0 3012 */
abd50713 3013 if (delta > 0)
f39d47ff 3014 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3015
3016 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3017 next:
3018 perf_pmu_enable(event->pmu);
60db5e09 3019 }
e050e3f0 3020
f39d47ff 3021 perf_pmu_enable(ctx->pmu);
e050e3f0 3022 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3023}
3024
235c7fc7 3025/*
cdd6c482 3026 * Round-robin a context's events:
235c7fc7 3027 */
cdd6c482 3028static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3029{
dddd3379
TG
3030 /*
3031 * Rotate the first entry last of non-pinned groups. Rotation might be
3032 * disabled by the inheritance code.
3033 */
3034 if (!ctx->rotate_disable)
3035 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3036}
3037
9e630205 3038static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3039{
8dc85d54 3040 struct perf_event_context *ctx = NULL;
2fde4f94 3041 int rotate = 0;
7fc23a53 3042
b5ab4cd5 3043 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3044 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3045 rotate = 1;
3046 }
235c7fc7 3047
8dc85d54 3048 ctx = cpuctx->task_ctx;
b5ab4cd5 3049 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3050 if (ctx->nr_events != ctx->nr_active)
3051 rotate = 1;
3052 }
9717e6cd 3053
e050e3f0 3054 if (!rotate)
0f5a2601
PZ
3055 goto done;
3056
facc4307 3057 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3058 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3059
e050e3f0
SE
3060 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3061 if (ctx)
3062 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3063
e050e3f0
SE
3064 rotate_ctx(&cpuctx->ctx);
3065 if (ctx)
3066 rotate_ctx(ctx);
235c7fc7 3067
e050e3f0 3068 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3069
0f5a2601
PZ
3070 perf_pmu_enable(cpuctx->ctx.pmu);
3071 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3072done:
9e630205
SE
3073
3074 return rotate;
e9d2b064
PZ
3075}
3076
026249ef
FW
3077#ifdef CONFIG_NO_HZ_FULL
3078bool perf_event_can_stop_tick(void)
3079{
948b26b6 3080 if (atomic_read(&nr_freq_events) ||
d84153d6 3081 __this_cpu_read(perf_throttled_count))
026249ef 3082 return false;
d84153d6
FW
3083 else
3084 return true;
026249ef
FW
3085}
3086#endif
3087
e9d2b064
PZ
3088void perf_event_task_tick(void)
3089{
2fde4f94
MR
3090 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3091 struct perf_event_context *ctx, *tmp;
e050e3f0 3092 int throttled;
b5ab4cd5 3093
e9d2b064
PZ
3094 WARN_ON(!irqs_disabled());
3095
e050e3f0
SE
3096 __this_cpu_inc(perf_throttled_seq);
3097 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3098
2fde4f94 3099 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3100 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3101}
3102
889ff015
FW
3103static int event_enable_on_exec(struct perf_event *event,
3104 struct perf_event_context *ctx)
3105{
3106 if (!event->attr.enable_on_exec)
3107 return 0;
3108
3109 event->attr.enable_on_exec = 0;
3110 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3111 return 0;
3112
1d9b482e 3113 __perf_event_mark_enabled(event);
889ff015
FW
3114
3115 return 1;
3116}
3117
57e7986e 3118/*
cdd6c482 3119 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3120 * This expects task == current.
3121 */
8dc85d54 3122static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 3123{
211de6eb 3124 struct perf_event_context *clone_ctx = NULL;
cdd6c482 3125 struct perf_event *event;
57e7986e
PM
3126 unsigned long flags;
3127 int enabled = 0;
889ff015 3128 int ret;
57e7986e
PM
3129
3130 local_irq_save(flags);
cdd6c482 3131 if (!ctx || !ctx->nr_events)
57e7986e
PM
3132 goto out;
3133
e566b76e
SE
3134 /*
3135 * We must ctxsw out cgroup events to avoid conflict
3136 * when invoking perf_task_event_sched_in() later on
3137 * in this function. Otherwise we end up trying to
3138 * ctxswin cgroup events which are already scheduled
3139 * in.
3140 */
a8d757ef 3141 perf_cgroup_sched_out(current, NULL);
57e7986e 3142
e625cce1 3143 raw_spin_lock(&ctx->lock);
04dc2dbb 3144 task_ctx_sched_out(ctx);
57e7986e 3145
b79387ef 3146 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3147 ret = event_enable_on_exec(event, ctx);
3148 if (ret)
3149 enabled = 1;
57e7986e
PM
3150 }
3151
3152 /*
cdd6c482 3153 * Unclone this context if we enabled any event.
57e7986e 3154 */
71a851b4 3155 if (enabled)
211de6eb 3156 clone_ctx = unclone_ctx(ctx);
57e7986e 3157
e625cce1 3158 raw_spin_unlock(&ctx->lock);
57e7986e 3159
e566b76e
SE
3160 /*
3161 * Also calls ctxswin for cgroup events, if any:
3162 */
e5d1367f 3163 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3164out:
57e7986e 3165 local_irq_restore(flags);
211de6eb
PZ
3166
3167 if (clone_ctx)
3168 put_ctx(clone_ctx);
57e7986e
PM
3169}
3170
e041e328
PZ
3171void perf_event_exec(void)
3172{
3173 struct perf_event_context *ctx;
3174 int ctxn;
3175
3176 rcu_read_lock();
3177 for_each_task_context_nr(ctxn) {
3178 ctx = current->perf_event_ctxp[ctxn];
3179 if (!ctx)
3180 continue;
3181
3182 perf_event_enable_on_exec(ctx);
3183 }
3184 rcu_read_unlock();
3185}
3186
0793a61d 3187/*
cdd6c482 3188 * Cross CPU call to read the hardware event
0793a61d 3189 */
cdd6c482 3190static void __perf_event_read(void *info)
0793a61d 3191{
cdd6c482
IM
3192 struct perf_event *event = info;
3193 struct perf_event_context *ctx = event->ctx;
108b02cf 3194 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 3195
e1ac3614
PM
3196 /*
3197 * If this is a task context, we need to check whether it is
3198 * the current task context of this cpu. If not it has been
3199 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3200 * event->count would have been updated to a recent sample
3201 * when the event was scheduled out.
e1ac3614
PM
3202 */
3203 if (ctx->task && cpuctx->task_ctx != ctx)
3204 return;
3205
e625cce1 3206 raw_spin_lock(&ctx->lock);
e5d1367f 3207 if (ctx->is_active) {
542e72fc 3208 update_context_time(ctx);
e5d1367f
SE
3209 update_cgrp_time_from_event(event);
3210 }
cdd6c482 3211 update_event_times(event);
542e72fc
PZ
3212 if (event->state == PERF_EVENT_STATE_ACTIVE)
3213 event->pmu->read(event);
e625cce1 3214 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3215}
3216
b5e58793
PZ
3217static inline u64 perf_event_count(struct perf_event *event)
3218{
eacd3ecc
MF
3219 if (event->pmu->count)
3220 return event->pmu->count(event);
3221
3222 return __perf_event_count(event);
b5e58793
PZ
3223}
3224
ffe8690c
KX
3225/*
3226 * NMI-safe method to read a local event, that is an event that
3227 * is:
3228 * - either for the current task, or for this CPU
3229 * - does not have inherit set, for inherited task events
3230 * will not be local and we cannot read them atomically
3231 * - must not have a pmu::count method
3232 */
3233u64 perf_event_read_local(struct perf_event *event)
3234{
3235 unsigned long flags;
3236 u64 val;
3237
3238 /*
3239 * Disabling interrupts avoids all counter scheduling (context
3240 * switches, timer based rotation and IPIs).
3241 */
3242 local_irq_save(flags);
3243
3244 /* If this is a per-task event, it must be for current */
3245 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3246 event->hw.target != current);
3247
3248 /* If this is a per-CPU event, it must be for this CPU */
3249 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3250 event->cpu != smp_processor_id());
3251
3252 /*
3253 * It must not be an event with inherit set, we cannot read
3254 * all child counters from atomic context.
3255 */
3256 WARN_ON_ONCE(event->attr.inherit);
3257
3258 /*
3259 * It must not have a pmu::count method, those are not
3260 * NMI safe.
3261 */
3262 WARN_ON_ONCE(event->pmu->count);
3263
3264 /*
3265 * If the event is currently on this CPU, its either a per-task event,
3266 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3267 * oncpu == -1).
3268 */
3269 if (event->oncpu == smp_processor_id())
3270 event->pmu->read(event);
3271
3272 val = local64_read(&event->count);
3273 local_irq_restore(flags);
3274
3275 return val;
3276}
3277
01add3ea 3278static void perf_event_read(struct perf_event *event)
0793a61d
TG
3279{
3280 /*
cdd6c482
IM
3281 * If event is enabled and currently active on a CPU, update the
3282 * value in the event structure:
0793a61d 3283 */
cdd6c482
IM
3284 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3285 smp_call_function_single(event->oncpu,
3286 __perf_event_read, event, 1);
3287 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3288 struct perf_event_context *ctx = event->ctx;
3289 unsigned long flags;
3290
e625cce1 3291 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3292 /*
3293 * may read while context is not active
3294 * (e.g., thread is blocked), in that case
3295 * we cannot update context time
3296 */
e5d1367f 3297 if (ctx->is_active) {
c530ccd9 3298 update_context_time(ctx);
e5d1367f
SE
3299 update_cgrp_time_from_event(event);
3300 }
cdd6c482 3301 update_event_times(event);
e625cce1 3302 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3303 }
0793a61d
TG
3304}
3305
a63eaf34 3306/*
cdd6c482 3307 * Initialize the perf_event context in a task_struct:
a63eaf34 3308 */
eb184479 3309static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3310{
e625cce1 3311 raw_spin_lock_init(&ctx->lock);
a63eaf34 3312 mutex_init(&ctx->mutex);
2fde4f94 3313 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3314 INIT_LIST_HEAD(&ctx->pinned_groups);
3315 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3316 INIT_LIST_HEAD(&ctx->event_list);
3317 atomic_set(&ctx->refcount, 1);
fadfe7be 3318 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3319}
3320
3321static struct perf_event_context *
3322alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3323{
3324 struct perf_event_context *ctx;
3325
3326 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3327 if (!ctx)
3328 return NULL;
3329
3330 __perf_event_init_context(ctx);
3331 if (task) {
3332 ctx->task = task;
3333 get_task_struct(task);
0793a61d 3334 }
eb184479
PZ
3335 ctx->pmu = pmu;
3336
3337 return ctx;
a63eaf34
PM
3338}
3339
2ebd4ffb
MH
3340static struct task_struct *
3341find_lively_task_by_vpid(pid_t vpid)
3342{
3343 struct task_struct *task;
3344 int err;
0793a61d
TG
3345
3346 rcu_read_lock();
2ebd4ffb 3347 if (!vpid)
0793a61d
TG
3348 task = current;
3349 else
2ebd4ffb 3350 task = find_task_by_vpid(vpid);
0793a61d
TG
3351 if (task)
3352 get_task_struct(task);
3353 rcu_read_unlock();
3354
3355 if (!task)
3356 return ERR_PTR(-ESRCH);
3357
0793a61d 3358 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3359 err = -EACCES;
3360 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3361 goto errout;
3362
2ebd4ffb
MH
3363 return task;
3364errout:
3365 put_task_struct(task);
3366 return ERR_PTR(err);
3367
3368}
3369
fe4b04fa
PZ
3370/*
3371 * Returns a matching context with refcount and pincount.
3372 */
108b02cf 3373static struct perf_event_context *
4af57ef2
YZ
3374find_get_context(struct pmu *pmu, struct task_struct *task,
3375 struct perf_event *event)
0793a61d 3376{
211de6eb 3377 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3378 struct perf_cpu_context *cpuctx;
4af57ef2 3379 void *task_ctx_data = NULL;
25346b93 3380 unsigned long flags;
8dc85d54 3381 int ctxn, err;
4af57ef2 3382 int cpu = event->cpu;
0793a61d 3383
22a4ec72 3384 if (!task) {
cdd6c482 3385 /* Must be root to operate on a CPU event: */
0764771d 3386 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3387 return ERR_PTR(-EACCES);
3388
0793a61d 3389 /*
cdd6c482 3390 * We could be clever and allow to attach a event to an
0793a61d
TG
3391 * offline CPU and activate it when the CPU comes up, but
3392 * that's for later.
3393 */
f6325e30 3394 if (!cpu_online(cpu))
0793a61d
TG
3395 return ERR_PTR(-ENODEV);
3396
108b02cf 3397 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3398 ctx = &cpuctx->ctx;
c93f7669 3399 get_ctx(ctx);
fe4b04fa 3400 ++ctx->pin_count;
0793a61d 3401
0793a61d
TG
3402 return ctx;
3403 }
3404
8dc85d54
PZ
3405 err = -EINVAL;
3406 ctxn = pmu->task_ctx_nr;
3407 if (ctxn < 0)
3408 goto errout;
3409
4af57ef2
YZ
3410 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3411 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3412 if (!task_ctx_data) {
3413 err = -ENOMEM;
3414 goto errout;
3415 }
3416 }
3417
9ed6060d 3418retry:
8dc85d54 3419 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3420 if (ctx) {
211de6eb 3421 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3422 ++ctx->pin_count;
4af57ef2
YZ
3423
3424 if (task_ctx_data && !ctx->task_ctx_data) {
3425 ctx->task_ctx_data = task_ctx_data;
3426 task_ctx_data = NULL;
3427 }
e625cce1 3428 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3429
3430 if (clone_ctx)
3431 put_ctx(clone_ctx);
9137fb28 3432 } else {
eb184479 3433 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3434 err = -ENOMEM;
3435 if (!ctx)
3436 goto errout;
eb184479 3437
4af57ef2
YZ
3438 if (task_ctx_data) {
3439 ctx->task_ctx_data = task_ctx_data;
3440 task_ctx_data = NULL;
3441 }
3442
dbe08d82
ON
3443 err = 0;
3444 mutex_lock(&task->perf_event_mutex);
3445 /*
3446 * If it has already passed perf_event_exit_task().
3447 * we must see PF_EXITING, it takes this mutex too.
3448 */
3449 if (task->flags & PF_EXITING)
3450 err = -ESRCH;
3451 else if (task->perf_event_ctxp[ctxn])
3452 err = -EAGAIN;
fe4b04fa 3453 else {
9137fb28 3454 get_ctx(ctx);
fe4b04fa 3455 ++ctx->pin_count;
dbe08d82 3456 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3457 }
dbe08d82
ON
3458 mutex_unlock(&task->perf_event_mutex);
3459
3460 if (unlikely(err)) {
9137fb28 3461 put_ctx(ctx);
dbe08d82
ON
3462
3463 if (err == -EAGAIN)
3464 goto retry;
3465 goto errout;
a63eaf34
PM
3466 }
3467 }
3468
4af57ef2 3469 kfree(task_ctx_data);
0793a61d 3470 return ctx;
c93f7669 3471
9ed6060d 3472errout:
4af57ef2 3473 kfree(task_ctx_data);
c93f7669 3474 return ERR_PTR(err);
0793a61d
TG
3475}
3476
6fb2915d 3477static void perf_event_free_filter(struct perf_event *event);
2541517c 3478static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3479
cdd6c482 3480static void free_event_rcu(struct rcu_head *head)
592903cd 3481{
cdd6c482 3482 struct perf_event *event;
592903cd 3483
cdd6c482
IM
3484 event = container_of(head, struct perf_event, rcu_head);
3485 if (event->ns)
3486 put_pid_ns(event->ns);
6fb2915d 3487 perf_event_free_filter(event);
cdd6c482 3488 kfree(event);
592903cd
PZ
3489}
3490
b69cf536
PZ
3491static void ring_buffer_attach(struct perf_event *event,
3492 struct ring_buffer *rb);
925d519a 3493
4beb31f3 3494static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3495{
4beb31f3
FW
3496 if (event->parent)
3497 return;
3498
4beb31f3
FW
3499 if (is_cgroup_event(event))
3500 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3501}
925d519a 3502
4beb31f3
FW
3503static void unaccount_event(struct perf_event *event)
3504{
3505 if (event->parent)
3506 return;
3507
3508 if (event->attach_state & PERF_ATTACH_TASK)
3509 static_key_slow_dec_deferred(&perf_sched_events);
3510 if (event->attr.mmap || event->attr.mmap_data)
3511 atomic_dec(&nr_mmap_events);
3512 if (event->attr.comm)
3513 atomic_dec(&nr_comm_events);
3514 if (event->attr.task)
3515 atomic_dec(&nr_task_events);
948b26b6
FW
3516 if (event->attr.freq)
3517 atomic_dec(&nr_freq_events);
45ac1403
AH
3518 if (event->attr.context_switch) {
3519 static_key_slow_dec_deferred(&perf_sched_events);
3520 atomic_dec(&nr_switch_events);
3521 }
4beb31f3
FW
3522 if (is_cgroup_event(event))
3523 static_key_slow_dec_deferred(&perf_sched_events);
3524 if (has_branch_stack(event))
3525 static_key_slow_dec_deferred(&perf_sched_events);
3526
3527 unaccount_event_cpu(event, event->cpu);
3528}
925d519a 3529
bed5b25a
AS
3530/*
3531 * The following implement mutual exclusion of events on "exclusive" pmus
3532 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3533 * at a time, so we disallow creating events that might conflict, namely:
3534 *
3535 * 1) cpu-wide events in the presence of per-task events,
3536 * 2) per-task events in the presence of cpu-wide events,
3537 * 3) two matching events on the same context.
3538 *
3539 * The former two cases are handled in the allocation path (perf_event_alloc(),
3540 * __free_event()), the latter -- before the first perf_install_in_context().
3541 */
3542static int exclusive_event_init(struct perf_event *event)
3543{
3544 struct pmu *pmu = event->pmu;
3545
3546 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3547 return 0;
3548
3549 /*
3550 * Prevent co-existence of per-task and cpu-wide events on the
3551 * same exclusive pmu.
3552 *
3553 * Negative pmu::exclusive_cnt means there are cpu-wide
3554 * events on this "exclusive" pmu, positive means there are
3555 * per-task events.
3556 *
3557 * Since this is called in perf_event_alloc() path, event::ctx
3558 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3559 * to mean "per-task event", because unlike other attach states it
3560 * never gets cleared.
3561 */
3562 if (event->attach_state & PERF_ATTACH_TASK) {
3563 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3564 return -EBUSY;
3565 } else {
3566 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3567 return -EBUSY;
3568 }
3569
3570 return 0;
3571}
3572
3573static void exclusive_event_destroy(struct perf_event *event)
3574{
3575 struct pmu *pmu = event->pmu;
3576
3577 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3578 return;
3579
3580 /* see comment in exclusive_event_init() */
3581 if (event->attach_state & PERF_ATTACH_TASK)
3582 atomic_dec(&pmu->exclusive_cnt);
3583 else
3584 atomic_inc(&pmu->exclusive_cnt);
3585}
3586
3587static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3588{
3589 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3590 (e1->cpu == e2->cpu ||
3591 e1->cpu == -1 ||
3592 e2->cpu == -1))
3593 return true;
3594 return false;
3595}
3596
3597/* Called under the same ctx::mutex as perf_install_in_context() */
3598static bool exclusive_event_installable(struct perf_event *event,
3599 struct perf_event_context *ctx)
3600{
3601 struct perf_event *iter_event;
3602 struct pmu *pmu = event->pmu;
3603
3604 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3605 return true;
3606
3607 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3608 if (exclusive_event_match(iter_event, event))
3609 return false;
3610 }
3611
3612 return true;
3613}
3614
766d6c07
FW
3615static void __free_event(struct perf_event *event)
3616{
cdd6c482 3617 if (!event->parent) {
927c7a9e
FW
3618 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3619 put_callchain_buffers();
f344011c 3620 }
9ee318a7 3621
dead9f29
AS
3622 perf_event_free_bpf_prog(event);
3623
766d6c07
FW
3624 if (event->destroy)
3625 event->destroy(event);
3626
3627 if (event->ctx)
3628 put_ctx(event->ctx);
3629
bed5b25a
AS
3630 if (event->pmu) {
3631 exclusive_event_destroy(event);
c464c76e 3632 module_put(event->pmu->module);
bed5b25a 3633 }
c464c76e 3634
766d6c07
FW
3635 call_rcu(&event->rcu_head, free_event_rcu);
3636}
683ede43
PZ
3637
3638static void _free_event(struct perf_event *event)
f1600952 3639{
e360adbe 3640 irq_work_sync(&event->pending);
925d519a 3641
4beb31f3 3642 unaccount_event(event);
9ee318a7 3643
76369139 3644 if (event->rb) {
9bb5d40c
PZ
3645 /*
3646 * Can happen when we close an event with re-directed output.
3647 *
3648 * Since we have a 0 refcount, perf_mmap_close() will skip
3649 * over us; possibly making our ring_buffer_put() the last.
3650 */
3651 mutex_lock(&event->mmap_mutex);
b69cf536 3652 ring_buffer_attach(event, NULL);
9bb5d40c 3653 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3654 }
3655
e5d1367f
SE
3656 if (is_cgroup_event(event))
3657 perf_detach_cgroup(event);
3658
766d6c07 3659 __free_event(event);
f1600952
PZ
3660}
3661
683ede43
PZ
3662/*
3663 * Used to free events which have a known refcount of 1, such as in error paths
3664 * where the event isn't exposed yet and inherited events.
3665 */
3666static void free_event(struct perf_event *event)
0793a61d 3667{
683ede43
PZ
3668 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3669 "unexpected event refcount: %ld; ptr=%p\n",
3670 atomic_long_read(&event->refcount), event)) {
3671 /* leak to avoid use-after-free */
3672 return;
3673 }
0793a61d 3674
683ede43 3675 _free_event(event);
0793a61d
TG
3676}
3677
a66a3052 3678/*
f8697762 3679 * Remove user event from the owner task.
a66a3052 3680 */
f8697762 3681static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3682{
8882135b 3683 struct task_struct *owner;
fb0459d7 3684
8882135b
PZ
3685 rcu_read_lock();
3686 owner = ACCESS_ONCE(event->owner);
3687 /*
3688 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3689 * !owner it means the list deletion is complete and we can indeed
3690 * free this event, otherwise we need to serialize on
3691 * owner->perf_event_mutex.
3692 */
3693 smp_read_barrier_depends();
3694 if (owner) {
3695 /*
3696 * Since delayed_put_task_struct() also drops the last
3697 * task reference we can safely take a new reference
3698 * while holding the rcu_read_lock().
3699 */
3700 get_task_struct(owner);
3701 }
3702 rcu_read_unlock();
3703
3704 if (owner) {
f63a8daa
PZ
3705 /*
3706 * If we're here through perf_event_exit_task() we're already
3707 * holding ctx->mutex which would be an inversion wrt. the
3708 * normal lock order.
3709 *
3710 * However we can safely take this lock because its the child
3711 * ctx->mutex.
3712 */
3713 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3714
8882135b
PZ
3715 /*
3716 * We have to re-check the event->owner field, if it is cleared
3717 * we raced with perf_event_exit_task(), acquiring the mutex
3718 * ensured they're done, and we can proceed with freeing the
3719 * event.
3720 */
3721 if (event->owner)
3722 list_del_init(&event->owner_entry);
3723 mutex_unlock(&owner->perf_event_mutex);
3724 put_task_struct(owner);
3725 }
f8697762
JO
3726}
3727
f8697762
JO
3728static void put_event(struct perf_event *event)
3729{
a83fe28e 3730 struct perf_event_context *ctx;
f8697762
JO
3731
3732 if (!atomic_long_dec_and_test(&event->refcount))
3733 return;
3734
3735 if (!is_kernel_event(event))
3736 perf_remove_from_owner(event);
8882135b 3737
683ede43
PZ
3738 /*
3739 * There are two ways this annotation is useful:
3740 *
3741 * 1) there is a lock recursion from perf_event_exit_task
3742 * see the comment there.
3743 *
3744 * 2) there is a lock-inversion with mmap_sem through
3745 * perf_event_read_group(), which takes faults while
3746 * holding ctx->mutex, however this is called after
3747 * the last filedesc died, so there is no possibility
3748 * to trigger the AB-BA case.
3749 */
a83fe28e
PZ
3750 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3751 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3752 perf_remove_from_context(event, true);
d415a7f1 3753 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3754
3755 _free_event(event);
a6fa941d
AV
3756}
3757
683ede43
PZ
3758int perf_event_release_kernel(struct perf_event *event)
3759{
3760 put_event(event);
3761 return 0;
3762}
3763EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3764
8b10c5e2
PZ
3765/*
3766 * Called when the last reference to the file is gone.
3767 */
a6fa941d
AV
3768static int perf_release(struct inode *inode, struct file *file)
3769{
3770 put_event(file->private_data);
3771 return 0;
fb0459d7 3772}
fb0459d7 3773
fadfe7be
JO
3774/*
3775 * Remove all orphanes events from the context.
3776 */
3777static void orphans_remove_work(struct work_struct *work)
3778{
3779 struct perf_event_context *ctx;
3780 struct perf_event *event, *tmp;
3781
3782 ctx = container_of(work, struct perf_event_context,
3783 orphans_remove.work);
3784
3785 mutex_lock(&ctx->mutex);
3786 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3787 struct perf_event *parent_event = event->parent;
3788
3789 if (!is_orphaned_child(event))
3790 continue;
3791
3792 perf_remove_from_context(event, true);
3793
3794 mutex_lock(&parent_event->child_mutex);
3795 list_del_init(&event->child_list);
3796 mutex_unlock(&parent_event->child_mutex);
3797
3798 free_event(event);
3799 put_event(parent_event);
3800 }
3801
3802 raw_spin_lock_irq(&ctx->lock);
3803 ctx->orphans_remove_sched = false;
3804 raw_spin_unlock_irq(&ctx->lock);
3805 mutex_unlock(&ctx->mutex);
3806
3807 put_ctx(ctx);
3808}
3809
59ed446f 3810u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3811{
cdd6c482 3812 struct perf_event *child;
e53c0994
PZ
3813 u64 total = 0;
3814
59ed446f
PZ
3815 *enabled = 0;
3816 *running = 0;
3817
6f10581a 3818 mutex_lock(&event->child_mutex);
01add3ea
SB
3819
3820 perf_event_read(event);
3821 total += perf_event_count(event);
3822
59ed446f
PZ
3823 *enabled += event->total_time_enabled +
3824 atomic64_read(&event->child_total_time_enabled);
3825 *running += event->total_time_running +
3826 atomic64_read(&event->child_total_time_running);
3827
3828 list_for_each_entry(child, &event->child_list, child_list) {
01add3ea
SB
3829 perf_event_read(child);
3830 total += perf_event_count(child);
59ed446f
PZ
3831 *enabled += child->total_time_enabled;
3832 *running += child->total_time_running;
3833 }
6f10581a 3834 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3835
3836 return total;
3837}
fb0459d7 3838EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3839
cdd6c482 3840static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3841 u64 read_format, char __user *buf)
3842{
cdd6c482 3843 struct perf_event *leader = event->group_leader, *sub;
6f10581a 3844 struct perf_event_context *ctx = leader->ctx;
f63a8daa 3845 int n = 0, size = 0, ret;
59ed446f 3846 u64 count, enabled, running;
f63a8daa
PZ
3847 u64 values[5];
3848
3849 lockdep_assert_held(&ctx->mutex);
abf4868b 3850
59ed446f 3851 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3852
3853 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3854 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3855 values[n++] = enabled;
3856 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3857 values[n++] = running;
abf4868b
PZ
3858 values[n++] = count;
3859 if (read_format & PERF_FORMAT_ID)
3860 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3861
3862 size = n * sizeof(u64);
3863
3864 if (copy_to_user(buf, values, size))
f63a8daa 3865 return -EFAULT;
3dab77fb 3866
6f10581a 3867 ret = size;
3dab77fb 3868
65abc865 3869 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3870 n = 0;
3dab77fb 3871
59ed446f 3872 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3873 if (read_format & PERF_FORMAT_ID)
3874 values[n++] = primary_event_id(sub);
3875
3876 size = n * sizeof(u64);
3877
184d3da8 3878 if (copy_to_user(buf + ret, values, size)) {
f63a8daa 3879 return -EFAULT;
6f10581a 3880 }
abf4868b
PZ
3881
3882 ret += size;
3dab77fb
PZ
3883 }
3884
abf4868b 3885 return ret;
3dab77fb
PZ
3886}
3887
cdd6c482 3888static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3889 u64 read_format, char __user *buf)
3890{
59ed446f 3891 u64 enabled, running;
3dab77fb
PZ
3892 u64 values[4];
3893 int n = 0;
3894
59ed446f
PZ
3895 values[n++] = perf_event_read_value(event, &enabled, &running);
3896 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3897 values[n++] = enabled;
3898 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3899 values[n++] = running;
3dab77fb 3900 if (read_format & PERF_FORMAT_ID)
cdd6c482 3901 values[n++] = primary_event_id(event);
3dab77fb
PZ
3902
3903 if (copy_to_user(buf, values, n * sizeof(u64)))
3904 return -EFAULT;
3905
3906 return n * sizeof(u64);
3907}
3908
dc633982
JO
3909static bool is_event_hup(struct perf_event *event)
3910{
3911 bool no_children;
3912
3913 if (event->state != PERF_EVENT_STATE_EXIT)
3914 return false;
3915
3916 mutex_lock(&event->child_mutex);
3917 no_children = list_empty(&event->child_list);
3918 mutex_unlock(&event->child_mutex);
3919 return no_children;
3920}
3921
0793a61d 3922/*
cdd6c482 3923 * Read the performance event - simple non blocking version for now
0793a61d
TG
3924 */
3925static ssize_t
cdd6c482 3926perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3927{
cdd6c482 3928 u64 read_format = event->attr.read_format;
3dab77fb 3929 int ret;
0793a61d 3930
3b6f9e5c 3931 /*
cdd6c482 3932 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3933 * error state (i.e. because it was pinned but it couldn't be
3934 * scheduled on to the CPU at some point).
3935 */
cdd6c482 3936 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3937 return 0;
3938
c320c7b7 3939 if (count < event->read_size)
3dab77fb
PZ
3940 return -ENOSPC;
3941
cdd6c482 3942 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3943 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3944 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3945 else
cdd6c482 3946 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3947
3dab77fb 3948 return ret;
0793a61d
TG
3949}
3950
0793a61d
TG
3951static ssize_t
3952perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3953{
cdd6c482 3954 struct perf_event *event = file->private_data;
f63a8daa
PZ
3955 struct perf_event_context *ctx;
3956 int ret;
0793a61d 3957
f63a8daa
PZ
3958 ctx = perf_event_ctx_lock(event);
3959 ret = perf_read_hw(event, buf, count);
3960 perf_event_ctx_unlock(event, ctx);
3961
3962 return ret;
0793a61d
TG
3963}
3964
3965static unsigned int perf_poll(struct file *file, poll_table *wait)
3966{
cdd6c482 3967 struct perf_event *event = file->private_data;
76369139 3968 struct ring_buffer *rb;
61b67684 3969 unsigned int events = POLLHUP;
c7138f37 3970
e708d7ad 3971 poll_wait(file, &event->waitq, wait);
179033b3 3972
dc633982 3973 if (is_event_hup(event))
179033b3 3974 return events;
c7138f37 3975
10c6db11 3976 /*
9bb5d40c
PZ
3977 * Pin the event->rb by taking event->mmap_mutex; otherwise
3978 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
3979 */
3980 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
3981 rb = event->rb;
3982 if (rb)
76369139 3983 events = atomic_xchg(&rb->poll, 0);
10c6db11 3984 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
3985 return events;
3986}
3987
f63a8daa 3988static void _perf_event_reset(struct perf_event *event)
6de6a7b9 3989{
01add3ea 3990 perf_event_read(event);
e7850595 3991 local64_set(&event->count, 0);
cdd6c482 3992 perf_event_update_userpage(event);
3df5edad
PZ
3993}
3994
c93f7669 3995/*
cdd6c482
IM
3996 * Holding the top-level event's child_mutex means that any
3997 * descendant process that has inherited this event will block
3998 * in sync_child_event if it goes to exit, thus satisfying the
3999 * task existence requirements of perf_event_enable/disable.
c93f7669 4000 */
cdd6c482
IM
4001static void perf_event_for_each_child(struct perf_event *event,
4002 void (*func)(struct perf_event *))
3df5edad 4003{
cdd6c482 4004 struct perf_event *child;
3df5edad 4005
cdd6c482 4006 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4007
cdd6c482
IM
4008 mutex_lock(&event->child_mutex);
4009 func(event);
4010 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4011 func(child);
cdd6c482 4012 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4013}
4014
cdd6c482
IM
4015static void perf_event_for_each(struct perf_event *event,
4016 void (*func)(struct perf_event *))
3df5edad 4017{
cdd6c482
IM
4018 struct perf_event_context *ctx = event->ctx;
4019 struct perf_event *sibling;
3df5edad 4020
f63a8daa
PZ
4021 lockdep_assert_held(&ctx->mutex);
4022
cdd6c482 4023 event = event->group_leader;
75f937f2 4024
cdd6c482 4025 perf_event_for_each_child(event, func);
cdd6c482 4026 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4027 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4028}
4029
c7999c6f
PZ
4030struct period_event {
4031 struct perf_event *event;
08247e31 4032 u64 value;
c7999c6f 4033};
08247e31 4034
c7999c6f
PZ
4035static int __perf_event_period(void *info)
4036{
4037 struct period_event *pe = info;
4038 struct perf_event *event = pe->event;
4039 struct perf_event_context *ctx = event->ctx;
4040 u64 value = pe->value;
4041 bool active;
08247e31 4042
c7999c6f 4043 raw_spin_lock(&ctx->lock);
cdd6c482 4044 if (event->attr.freq) {
cdd6c482 4045 event->attr.sample_freq = value;
08247e31 4046 } else {
cdd6c482
IM
4047 event->attr.sample_period = value;
4048 event->hw.sample_period = value;
08247e31 4049 }
bad7192b
PZ
4050
4051 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4052 if (active) {
4053 perf_pmu_disable(ctx->pmu);
4054 event->pmu->stop(event, PERF_EF_UPDATE);
4055 }
4056
4057 local64_set(&event->hw.period_left, 0);
4058
4059 if (active) {
4060 event->pmu->start(event, PERF_EF_RELOAD);
4061 perf_pmu_enable(ctx->pmu);
4062 }
c7999c6f 4063 raw_spin_unlock(&ctx->lock);
bad7192b 4064
c7999c6f
PZ
4065 return 0;
4066}
4067
4068static int perf_event_period(struct perf_event *event, u64 __user *arg)
4069{
4070 struct period_event pe = { .event = event, };
4071 struct perf_event_context *ctx = event->ctx;
4072 struct task_struct *task;
4073 u64 value;
4074
4075 if (!is_sampling_event(event))
4076 return -EINVAL;
4077
4078 if (copy_from_user(&value, arg, sizeof(value)))
4079 return -EFAULT;
4080
4081 if (!value)
4082 return -EINVAL;
4083
4084 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4085 return -EINVAL;
4086
4087 task = ctx->task;
4088 pe.value = value;
4089
4090 if (!task) {
4091 cpu_function_call(event->cpu, __perf_event_period, &pe);
4092 return 0;
4093 }
4094
4095retry:
4096 if (!task_function_call(task, __perf_event_period, &pe))
4097 return 0;
4098
4099 raw_spin_lock_irq(&ctx->lock);
4100 if (ctx->is_active) {
4101 raw_spin_unlock_irq(&ctx->lock);
4102 task = ctx->task;
4103 goto retry;
4104 }
4105
4106 __perf_event_period(&pe);
e625cce1 4107 raw_spin_unlock_irq(&ctx->lock);
08247e31 4108
c7999c6f 4109 return 0;
08247e31
PZ
4110}
4111
ac9721f3
PZ
4112static const struct file_operations perf_fops;
4113
2903ff01 4114static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4115{
2903ff01
AV
4116 struct fd f = fdget(fd);
4117 if (!f.file)
4118 return -EBADF;
ac9721f3 4119
2903ff01
AV
4120 if (f.file->f_op != &perf_fops) {
4121 fdput(f);
4122 return -EBADF;
ac9721f3 4123 }
2903ff01
AV
4124 *p = f;
4125 return 0;
ac9721f3
PZ
4126}
4127
4128static int perf_event_set_output(struct perf_event *event,
4129 struct perf_event *output_event);
6fb2915d 4130static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4131static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4132
f63a8daa 4133static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4134{
cdd6c482 4135 void (*func)(struct perf_event *);
3df5edad 4136 u32 flags = arg;
d859e29f
PM
4137
4138 switch (cmd) {
cdd6c482 4139 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4140 func = _perf_event_enable;
d859e29f 4141 break;
cdd6c482 4142 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4143 func = _perf_event_disable;
79f14641 4144 break;
cdd6c482 4145 case PERF_EVENT_IOC_RESET:
f63a8daa 4146 func = _perf_event_reset;
6de6a7b9 4147 break;
3df5edad 4148
cdd6c482 4149 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4150 return _perf_event_refresh(event, arg);
08247e31 4151
cdd6c482
IM
4152 case PERF_EVENT_IOC_PERIOD:
4153 return perf_event_period(event, (u64 __user *)arg);
08247e31 4154
cf4957f1
JO
4155 case PERF_EVENT_IOC_ID:
4156 {
4157 u64 id = primary_event_id(event);
4158
4159 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4160 return -EFAULT;
4161 return 0;
4162 }
4163
cdd6c482 4164 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4165 {
ac9721f3 4166 int ret;
ac9721f3 4167 if (arg != -1) {
2903ff01
AV
4168 struct perf_event *output_event;
4169 struct fd output;
4170 ret = perf_fget_light(arg, &output);
4171 if (ret)
4172 return ret;
4173 output_event = output.file->private_data;
4174 ret = perf_event_set_output(event, output_event);
4175 fdput(output);
4176 } else {
4177 ret = perf_event_set_output(event, NULL);
ac9721f3 4178 }
ac9721f3
PZ
4179 return ret;
4180 }
a4be7c27 4181
6fb2915d
LZ
4182 case PERF_EVENT_IOC_SET_FILTER:
4183 return perf_event_set_filter(event, (void __user *)arg);
4184
2541517c
AS
4185 case PERF_EVENT_IOC_SET_BPF:
4186 return perf_event_set_bpf_prog(event, arg);
4187
d859e29f 4188 default:
3df5edad 4189 return -ENOTTY;
d859e29f 4190 }
3df5edad
PZ
4191
4192 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4193 perf_event_for_each(event, func);
3df5edad 4194 else
cdd6c482 4195 perf_event_for_each_child(event, func);
3df5edad
PZ
4196
4197 return 0;
d859e29f
PM
4198}
4199
f63a8daa
PZ
4200static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4201{
4202 struct perf_event *event = file->private_data;
4203 struct perf_event_context *ctx;
4204 long ret;
4205
4206 ctx = perf_event_ctx_lock(event);
4207 ret = _perf_ioctl(event, cmd, arg);
4208 perf_event_ctx_unlock(event, ctx);
4209
4210 return ret;
4211}
4212
b3f20785
PM
4213#ifdef CONFIG_COMPAT
4214static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4215 unsigned long arg)
4216{
4217 switch (_IOC_NR(cmd)) {
4218 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4219 case _IOC_NR(PERF_EVENT_IOC_ID):
4220 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4221 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4222 cmd &= ~IOCSIZE_MASK;
4223 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4224 }
4225 break;
4226 }
4227 return perf_ioctl(file, cmd, arg);
4228}
4229#else
4230# define perf_compat_ioctl NULL
4231#endif
4232
cdd6c482 4233int perf_event_task_enable(void)
771d7cde 4234{
f63a8daa 4235 struct perf_event_context *ctx;
cdd6c482 4236 struct perf_event *event;
771d7cde 4237
cdd6c482 4238 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4239 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4240 ctx = perf_event_ctx_lock(event);
4241 perf_event_for_each_child(event, _perf_event_enable);
4242 perf_event_ctx_unlock(event, ctx);
4243 }
cdd6c482 4244 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4245
4246 return 0;
4247}
4248
cdd6c482 4249int perf_event_task_disable(void)
771d7cde 4250{
f63a8daa 4251 struct perf_event_context *ctx;
cdd6c482 4252 struct perf_event *event;
771d7cde 4253
cdd6c482 4254 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4255 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4256 ctx = perf_event_ctx_lock(event);
4257 perf_event_for_each_child(event, _perf_event_disable);
4258 perf_event_ctx_unlock(event, ctx);
4259 }
cdd6c482 4260 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4261
4262 return 0;
4263}
4264
cdd6c482 4265static int perf_event_index(struct perf_event *event)
194002b2 4266{
a4eaf7f1
PZ
4267 if (event->hw.state & PERF_HES_STOPPED)
4268 return 0;
4269
cdd6c482 4270 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4271 return 0;
4272
35edc2a5 4273 return event->pmu->event_idx(event);
194002b2
PZ
4274}
4275
c4794295 4276static void calc_timer_values(struct perf_event *event,
e3f3541c 4277 u64 *now,
7f310a5d
EM
4278 u64 *enabled,
4279 u64 *running)
c4794295 4280{
e3f3541c 4281 u64 ctx_time;
c4794295 4282
e3f3541c
PZ
4283 *now = perf_clock();
4284 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4285 *enabled = ctx_time - event->tstamp_enabled;
4286 *running = ctx_time - event->tstamp_running;
4287}
4288
fa731587
PZ
4289static void perf_event_init_userpage(struct perf_event *event)
4290{
4291 struct perf_event_mmap_page *userpg;
4292 struct ring_buffer *rb;
4293
4294 rcu_read_lock();
4295 rb = rcu_dereference(event->rb);
4296 if (!rb)
4297 goto unlock;
4298
4299 userpg = rb->user_page;
4300
4301 /* Allow new userspace to detect that bit 0 is deprecated */
4302 userpg->cap_bit0_is_deprecated = 1;
4303 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4304 userpg->data_offset = PAGE_SIZE;
4305 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4306
4307unlock:
4308 rcu_read_unlock();
4309}
4310
c1317ec2
AL
4311void __weak arch_perf_update_userpage(
4312 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4313{
4314}
4315
38ff667b
PZ
4316/*
4317 * Callers need to ensure there can be no nesting of this function, otherwise
4318 * the seqlock logic goes bad. We can not serialize this because the arch
4319 * code calls this from NMI context.
4320 */
cdd6c482 4321void perf_event_update_userpage(struct perf_event *event)
37d81828 4322{
cdd6c482 4323 struct perf_event_mmap_page *userpg;
76369139 4324 struct ring_buffer *rb;
e3f3541c 4325 u64 enabled, running, now;
38ff667b
PZ
4326
4327 rcu_read_lock();
5ec4c599
PZ
4328 rb = rcu_dereference(event->rb);
4329 if (!rb)
4330 goto unlock;
4331
0d641208
EM
4332 /*
4333 * compute total_time_enabled, total_time_running
4334 * based on snapshot values taken when the event
4335 * was last scheduled in.
4336 *
4337 * we cannot simply called update_context_time()
4338 * because of locking issue as we can be called in
4339 * NMI context
4340 */
e3f3541c 4341 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4342
76369139 4343 userpg = rb->user_page;
7b732a75
PZ
4344 /*
4345 * Disable preemption so as to not let the corresponding user-space
4346 * spin too long if we get preempted.
4347 */
4348 preempt_disable();
37d81828 4349 ++userpg->lock;
92f22a38 4350 barrier();
cdd6c482 4351 userpg->index = perf_event_index(event);
b5e58793 4352 userpg->offset = perf_event_count(event);
365a4038 4353 if (userpg->index)
e7850595 4354 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4355
0d641208 4356 userpg->time_enabled = enabled +
cdd6c482 4357 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4358
0d641208 4359 userpg->time_running = running +
cdd6c482 4360 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4361
c1317ec2 4362 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4363
92f22a38 4364 barrier();
37d81828 4365 ++userpg->lock;
7b732a75 4366 preempt_enable();
38ff667b 4367unlock:
7b732a75 4368 rcu_read_unlock();
37d81828
PM
4369}
4370
906010b2
PZ
4371static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4372{
4373 struct perf_event *event = vma->vm_file->private_data;
76369139 4374 struct ring_buffer *rb;
906010b2
PZ
4375 int ret = VM_FAULT_SIGBUS;
4376
4377 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4378 if (vmf->pgoff == 0)
4379 ret = 0;
4380 return ret;
4381 }
4382
4383 rcu_read_lock();
76369139
FW
4384 rb = rcu_dereference(event->rb);
4385 if (!rb)
906010b2
PZ
4386 goto unlock;
4387
4388 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4389 goto unlock;
4390
76369139 4391 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4392 if (!vmf->page)
4393 goto unlock;
4394
4395 get_page(vmf->page);
4396 vmf->page->mapping = vma->vm_file->f_mapping;
4397 vmf->page->index = vmf->pgoff;
4398
4399 ret = 0;
4400unlock:
4401 rcu_read_unlock();
4402
4403 return ret;
4404}
4405
10c6db11
PZ
4406static void ring_buffer_attach(struct perf_event *event,
4407 struct ring_buffer *rb)
4408{
b69cf536 4409 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4410 unsigned long flags;
4411
b69cf536
PZ
4412 if (event->rb) {
4413 /*
4414 * Should be impossible, we set this when removing
4415 * event->rb_entry and wait/clear when adding event->rb_entry.
4416 */
4417 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4418
b69cf536 4419 old_rb = event->rb;
b69cf536
PZ
4420 spin_lock_irqsave(&old_rb->event_lock, flags);
4421 list_del_rcu(&event->rb_entry);
4422 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4423
2f993cf0
ON
4424 event->rcu_batches = get_state_synchronize_rcu();
4425 event->rcu_pending = 1;
b69cf536 4426 }
10c6db11 4427
b69cf536 4428 if (rb) {
2f993cf0
ON
4429 if (event->rcu_pending) {
4430 cond_synchronize_rcu(event->rcu_batches);
4431 event->rcu_pending = 0;
4432 }
4433
b69cf536
PZ
4434 spin_lock_irqsave(&rb->event_lock, flags);
4435 list_add_rcu(&event->rb_entry, &rb->event_list);
4436 spin_unlock_irqrestore(&rb->event_lock, flags);
4437 }
4438
4439 rcu_assign_pointer(event->rb, rb);
4440
4441 if (old_rb) {
4442 ring_buffer_put(old_rb);
4443 /*
4444 * Since we detached before setting the new rb, so that we
4445 * could attach the new rb, we could have missed a wakeup.
4446 * Provide it now.
4447 */
4448 wake_up_all(&event->waitq);
4449 }
10c6db11
PZ
4450}
4451
4452static void ring_buffer_wakeup(struct perf_event *event)
4453{
4454 struct ring_buffer *rb;
4455
4456 rcu_read_lock();
4457 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4458 if (rb) {
4459 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4460 wake_up_all(&event->waitq);
4461 }
10c6db11
PZ
4462 rcu_read_unlock();
4463}
4464
fdc26706 4465struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4466{
76369139 4467 struct ring_buffer *rb;
7b732a75 4468
ac9721f3 4469 rcu_read_lock();
76369139
FW
4470 rb = rcu_dereference(event->rb);
4471 if (rb) {
4472 if (!atomic_inc_not_zero(&rb->refcount))
4473 rb = NULL;
ac9721f3
PZ
4474 }
4475 rcu_read_unlock();
4476
76369139 4477 return rb;
ac9721f3
PZ
4478}
4479
fdc26706 4480void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4481{
76369139 4482 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4483 return;
7b732a75 4484
9bb5d40c 4485 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4486
76369139 4487 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4488}
4489
4490static void perf_mmap_open(struct vm_area_struct *vma)
4491{
cdd6c482 4492 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4493
cdd6c482 4494 atomic_inc(&event->mmap_count);
9bb5d40c 4495 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4496
45bfb2e5
PZ
4497 if (vma->vm_pgoff)
4498 atomic_inc(&event->rb->aux_mmap_count);
4499
1e0fb9ec
AL
4500 if (event->pmu->event_mapped)
4501 event->pmu->event_mapped(event);
7b732a75
PZ
4502}
4503
9bb5d40c
PZ
4504/*
4505 * A buffer can be mmap()ed multiple times; either directly through the same
4506 * event, or through other events by use of perf_event_set_output().
4507 *
4508 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4509 * the buffer here, where we still have a VM context. This means we need
4510 * to detach all events redirecting to us.
4511 */
7b732a75
PZ
4512static void perf_mmap_close(struct vm_area_struct *vma)
4513{
cdd6c482 4514 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4515
b69cf536 4516 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4517 struct user_struct *mmap_user = rb->mmap_user;
4518 int mmap_locked = rb->mmap_locked;
4519 unsigned long size = perf_data_size(rb);
789f90fc 4520
1e0fb9ec
AL
4521 if (event->pmu->event_unmapped)
4522 event->pmu->event_unmapped(event);
4523
45bfb2e5
PZ
4524 /*
4525 * rb->aux_mmap_count will always drop before rb->mmap_count and
4526 * event->mmap_count, so it is ok to use event->mmap_mutex to
4527 * serialize with perf_mmap here.
4528 */
4529 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4530 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4531 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4532 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4533
4534 rb_free_aux(rb);
4535 mutex_unlock(&event->mmap_mutex);
4536 }
4537
9bb5d40c
PZ
4538 atomic_dec(&rb->mmap_count);
4539
4540 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4541 goto out_put;
9bb5d40c 4542
b69cf536 4543 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4544 mutex_unlock(&event->mmap_mutex);
4545
4546 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4547 if (atomic_read(&rb->mmap_count))
4548 goto out_put;
ac9721f3 4549
9bb5d40c
PZ
4550 /*
4551 * No other mmap()s, detach from all other events that might redirect
4552 * into the now unreachable buffer. Somewhat complicated by the
4553 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4554 */
4555again:
4556 rcu_read_lock();
4557 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4558 if (!atomic_long_inc_not_zero(&event->refcount)) {
4559 /*
4560 * This event is en-route to free_event() which will
4561 * detach it and remove it from the list.
4562 */
4563 continue;
4564 }
4565 rcu_read_unlock();
789f90fc 4566
9bb5d40c
PZ
4567 mutex_lock(&event->mmap_mutex);
4568 /*
4569 * Check we didn't race with perf_event_set_output() which can
4570 * swizzle the rb from under us while we were waiting to
4571 * acquire mmap_mutex.
4572 *
4573 * If we find a different rb; ignore this event, a next
4574 * iteration will no longer find it on the list. We have to
4575 * still restart the iteration to make sure we're not now
4576 * iterating the wrong list.
4577 */
b69cf536
PZ
4578 if (event->rb == rb)
4579 ring_buffer_attach(event, NULL);
4580
cdd6c482 4581 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4582 put_event(event);
ac9721f3 4583
9bb5d40c
PZ
4584 /*
4585 * Restart the iteration; either we're on the wrong list or
4586 * destroyed its integrity by doing a deletion.
4587 */
4588 goto again;
7b732a75 4589 }
9bb5d40c
PZ
4590 rcu_read_unlock();
4591
4592 /*
4593 * It could be there's still a few 0-ref events on the list; they'll
4594 * get cleaned up by free_event() -- they'll also still have their
4595 * ref on the rb and will free it whenever they are done with it.
4596 *
4597 * Aside from that, this buffer is 'fully' detached and unmapped,
4598 * undo the VM accounting.
4599 */
4600
4601 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4602 vma->vm_mm->pinned_vm -= mmap_locked;
4603 free_uid(mmap_user);
4604
b69cf536 4605out_put:
9bb5d40c 4606 ring_buffer_put(rb); /* could be last */
37d81828
PM
4607}
4608
f0f37e2f 4609static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4610 .open = perf_mmap_open,
45bfb2e5 4611 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4612 .fault = perf_mmap_fault,
4613 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4614};
4615
4616static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4617{
cdd6c482 4618 struct perf_event *event = file->private_data;
22a4f650 4619 unsigned long user_locked, user_lock_limit;
789f90fc 4620 struct user_struct *user = current_user();
22a4f650 4621 unsigned long locked, lock_limit;
45bfb2e5 4622 struct ring_buffer *rb = NULL;
7b732a75
PZ
4623 unsigned long vma_size;
4624 unsigned long nr_pages;
45bfb2e5 4625 long user_extra = 0, extra = 0;
d57e34fd 4626 int ret = 0, flags = 0;
37d81828 4627
c7920614
PZ
4628 /*
4629 * Don't allow mmap() of inherited per-task counters. This would
4630 * create a performance issue due to all children writing to the
76369139 4631 * same rb.
c7920614
PZ
4632 */
4633 if (event->cpu == -1 && event->attr.inherit)
4634 return -EINVAL;
4635
43a21ea8 4636 if (!(vma->vm_flags & VM_SHARED))
37d81828 4637 return -EINVAL;
7b732a75
PZ
4638
4639 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4640
4641 if (vma->vm_pgoff == 0) {
4642 nr_pages = (vma_size / PAGE_SIZE) - 1;
4643 } else {
4644 /*
4645 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4646 * mapped, all subsequent mappings should have the same size
4647 * and offset. Must be above the normal perf buffer.
4648 */
4649 u64 aux_offset, aux_size;
4650
4651 if (!event->rb)
4652 return -EINVAL;
4653
4654 nr_pages = vma_size / PAGE_SIZE;
4655
4656 mutex_lock(&event->mmap_mutex);
4657 ret = -EINVAL;
4658
4659 rb = event->rb;
4660 if (!rb)
4661 goto aux_unlock;
4662
4663 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4664 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4665
4666 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4667 goto aux_unlock;
4668
4669 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4670 goto aux_unlock;
4671
4672 /* already mapped with a different offset */
4673 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4674 goto aux_unlock;
4675
4676 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4677 goto aux_unlock;
4678
4679 /* already mapped with a different size */
4680 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4681 goto aux_unlock;
4682
4683 if (!is_power_of_2(nr_pages))
4684 goto aux_unlock;
4685
4686 if (!atomic_inc_not_zero(&rb->mmap_count))
4687 goto aux_unlock;
4688
4689 if (rb_has_aux(rb)) {
4690 atomic_inc(&rb->aux_mmap_count);
4691 ret = 0;
4692 goto unlock;
4693 }
4694
4695 atomic_set(&rb->aux_mmap_count, 1);
4696 user_extra = nr_pages;
4697
4698 goto accounting;
4699 }
7b732a75 4700
7730d865 4701 /*
76369139 4702 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4703 * can do bitmasks instead of modulo.
4704 */
2ed11312 4705 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4706 return -EINVAL;
4707
7b732a75 4708 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4709 return -EINVAL;
4710
cdd6c482 4711 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4712again:
cdd6c482 4713 mutex_lock(&event->mmap_mutex);
76369139 4714 if (event->rb) {
9bb5d40c 4715 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4716 ret = -EINVAL;
9bb5d40c
PZ
4717 goto unlock;
4718 }
4719
4720 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4721 /*
4722 * Raced against perf_mmap_close() through
4723 * perf_event_set_output(). Try again, hope for better
4724 * luck.
4725 */
4726 mutex_unlock(&event->mmap_mutex);
4727 goto again;
4728 }
4729
ebb3c4c4
PZ
4730 goto unlock;
4731 }
4732
789f90fc 4733 user_extra = nr_pages + 1;
45bfb2e5
PZ
4734
4735accounting:
cdd6c482 4736 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4737
4738 /*
4739 * Increase the limit linearly with more CPUs:
4740 */
4741 user_lock_limit *= num_online_cpus();
4742
789f90fc 4743 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4744
789f90fc
PZ
4745 if (user_locked > user_lock_limit)
4746 extra = user_locked - user_lock_limit;
7b732a75 4747
78d7d407 4748 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4749 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4750 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4751
459ec28a
IM
4752 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4753 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4754 ret = -EPERM;
4755 goto unlock;
4756 }
7b732a75 4757
45bfb2e5 4758 WARN_ON(!rb && event->rb);
906010b2 4759
d57e34fd 4760 if (vma->vm_flags & VM_WRITE)
76369139 4761 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4762
76369139 4763 if (!rb) {
45bfb2e5
PZ
4764 rb = rb_alloc(nr_pages,
4765 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4766 event->cpu, flags);
26cb63ad 4767
45bfb2e5
PZ
4768 if (!rb) {
4769 ret = -ENOMEM;
4770 goto unlock;
4771 }
43a21ea8 4772
45bfb2e5
PZ
4773 atomic_set(&rb->mmap_count, 1);
4774 rb->mmap_user = get_current_user();
4775 rb->mmap_locked = extra;
26cb63ad 4776
45bfb2e5 4777 ring_buffer_attach(event, rb);
ac9721f3 4778
45bfb2e5
PZ
4779 perf_event_init_userpage(event);
4780 perf_event_update_userpage(event);
4781 } else {
1a594131
AS
4782 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4783 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4784 if (!ret)
4785 rb->aux_mmap_locked = extra;
4786 }
9a0f05cb 4787
ebb3c4c4 4788unlock:
45bfb2e5
PZ
4789 if (!ret) {
4790 atomic_long_add(user_extra, &user->locked_vm);
4791 vma->vm_mm->pinned_vm += extra;
4792
ac9721f3 4793 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4794 } else if (rb) {
4795 atomic_dec(&rb->mmap_count);
4796 }
4797aux_unlock:
cdd6c482 4798 mutex_unlock(&event->mmap_mutex);
37d81828 4799
9bb5d40c
PZ
4800 /*
4801 * Since pinned accounting is per vm we cannot allow fork() to copy our
4802 * vma.
4803 */
26cb63ad 4804 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4805 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4806
1e0fb9ec
AL
4807 if (event->pmu->event_mapped)
4808 event->pmu->event_mapped(event);
4809
7b732a75 4810 return ret;
37d81828
PM
4811}
4812
3c446b3d
PZ
4813static int perf_fasync(int fd, struct file *filp, int on)
4814{
496ad9aa 4815 struct inode *inode = file_inode(filp);
cdd6c482 4816 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4817 int retval;
4818
4819 mutex_lock(&inode->i_mutex);
cdd6c482 4820 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4821 mutex_unlock(&inode->i_mutex);
4822
4823 if (retval < 0)
4824 return retval;
4825
4826 return 0;
4827}
4828
0793a61d 4829static const struct file_operations perf_fops = {
3326c1ce 4830 .llseek = no_llseek,
0793a61d
TG
4831 .release = perf_release,
4832 .read = perf_read,
4833 .poll = perf_poll,
d859e29f 4834 .unlocked_ioctl = perf_ioctl,
b3f20785 4835 .compat_ioctl = perf_compat_ioctl,
37d81828 4836 .mmap = perf_mmap,
3c446b3d 4837 .fasync = perf_fasync,
0793a61d
TG
4838};
4839
925d519a 4840/*
cdd6c482 4841 * Perf event wakeup
925d519a
PZ
4842 *
4843 * If there's data, ensure we set the poll() state and publish everything
4844 * to user-space before waking everybody up.
4845 */
4846
fed66e2c
PZ
4847static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4848{
4849 /* only the parent has fasync state */
4850 if (event->parent)
4851 event = event->parent;
4852 return &event->fasync;
4853}
4854
cdd6c482 4855void perf_event_wakeup(struct perf_event *event)
925d519a 4856{
10c6db11 4857 ring_buffer_wakeup(event);
4c9e2542 4858
cdd6c482 4859 if (event->pending_kill) {
fed66e2c 4860 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4861 event->pending_kill = 0;
4c9e2542 4862 }
925d519a
PZ
4863}
4864
e360adbe 4865static void perf_pending_event(struct irq_work *entry)
79f14641 4866{
cdd6c482
IM
4867 struct perf_event *event = container_of(entry,
4868 struct perf_event, pending);
d525211f
PZ
4869 int rctx;
4870
4871 rctx = perf_swevent_get_recursion_context();
4872 /*
4873 * If we 'fail' here, that's OK, it means recursion is already disabled
4874 * and we won't recurse 'further'.
4875 */
79f14641 4876
cdd6c482
IM
4877 if (event->pending_disable) {
4878 event->pending_disable = 0;
4879 __perf_event_disable(event);
79f14641
PZ
4880 }
4881
cdd6c482
IM
4882 if (event->pending_wakeup) {
4883 event->pending_wakeup = 0;
4884 perf_event_wakeup(event);
79f14641 4885 }
d525211f
PZ
4886
4887 if (rctx >= 0)
4888 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4889}
4890
39447b38
ZY
4891/*
4892 * We assume there is only KVM supporting the callbacks.
4893 * Later on, we might change it to a list if there is
4894 * another virtualization implementation supporting the callbacks.
4895 */
4896struct perf_guest_info_callbacks *perf_guest_cbs;
4897
4898int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4899{
4900 perf_guest_cbs = cbs;
4901 return 0;
4902}
4903EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4904
4905int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4906{
4907 perf_guest_cbs = NULL;
4908 return 0;
4909}
4910EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4911
4018994f
JO
4912static void
4913perf_output_sample_regs(struct perf_output_handle *handle,
4914 struct pt_regs *regs, u64 mask)
4915{
4916 int bit;
4917
4918 for_each_set_bit(bit, (const unsigned long *) &mask,
4919 sizeof(mask) * BITS_PER_BYTE) {
4920 u64 val;
4921
4922 val = perf_reg_value(regs, bit);
4923 perf_output_put(handle, val);
4924 }
4925}
4926
60e2364e 4927static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4928 struct pt_regs *regs,
4929 struct pt_regs *regs_user_copy)
4018994f 4930{
88a7c26a
AL
4931 if (user_mode(regs)) {
4932 regs_user->abi = perf_reg_abi(current);
2565711f 4933 regs_user->regs = regs;
88a7c26a
AL
4934 } else if (current->mm) {
4935 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4936 } else {
4937 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4938 regs_user->regs = NULL;
4018994f
JO
4939 }
4940}
4941
60e2364e
SE
4942static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4943 struct pt_regs *regs)
4944{
4945 regs_intr->regs = regs;
4946 regs_intr->abi = perf_reg_abi(current);
4947}
4948
4949
c5ebcedb
JO
4950/*
4951 * Get remaining task size from user stack pointer.
4952 *
4953 * It'd be better to take stack vma map and limit this more
4954 * precisly, but there's no way to get it safely under interrupt,
4955 * so using TASK_SIZE as limit.
4956 */
4957static u64 perf_ustack_task_size(struct pt_regs *regs)
4958{
4959 unsigned long addr = perf_user_stack_pointer(regs);
4960
4961 if (!addr || addr >= TASK_SIZE)
4962 return 0;
4963
4964 return TASK_SIZE - addr;
4965}
4966
4967static u16
4968perf_sample_ustack_size(u16 stack_size, u16 header_size,
4969 struct pt_regs *regs)
4970{
4971 u64 task_size;
4972
4973 /* No regs, no stack pointer, no dump. */
4974 if (!regs)
4975 return 0;
4976
4977 /*
4978 * Check if we fit in with the requested stack size into the:
4979 * - TASK_SIZE
4980 * If we don't, we limit the size to the TASK_SIZE.
4981 *
4982 * - remaining sample size
4983 * If we don't, we customize the stack size to
4984 * fit in to the remaining sample size.
4985 */
4986
4987 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4988 stack_size = min(stack_size, (u16) task_size);
4989
4990 /* Current header size plus static size and dynamic size. */
4991 header_size += 2 * sizeof(u64);
4992
4993 /* Do we fit in with the current stack dump size? */
4994 if ((u16) (header_size + stack_size) < header_size) {
4995 /*
4996 * If we overflow the maximum size for the sample,
4997 * we customize the stack dump size to fit in.
4998 */
4999 stack_size = USHRT_MAX - header_size - sizeof(u64);
5000 stack_size = round_up(stack_size, sizeof(u64));
5001 }
5002
5003 return stack_size;
5004}
5005
5006static void
5007perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5008 struct pt_regs *regs)
5009{
5010 /* Case of a kernel thread, nothing to dump */
5011 if (!regs) {
5012 u64 size = 0;
5013 perf_output_put(handle, size);
5014 } else {
5015 unsigned long sp;
5016 unsigned int rem;
5017 u64 dyn_size;
5018
5019 /*
5020 * We dump:
5021 * static size
5022 * - the size requested by user or the best one we can fit
5023 * in to the sample max size
5024 * data
5025 * - user stack dump data
5026 * dynamic size
5027 * - the actual dumped size
5028 */
5029
5030 /* Static size. */
5031 perf_output_put(handle, dump_size);
5032
5033 /* Data. */
5034 sp = perf_user_stack_pointer(regs);
5035 rem = __output_copy_user(handle, (void *) sp, dump_size);
5036 dyn_size = dump_size - rem;
5037
5038 perf_output_skip(handle, rem);
5039
5040 /* Dynamic size. */
5041 perf_output_put(handle, dyn_size);
5042 }
5043}
5044
c980d109
ACM
5045static void __perf_event_header__init_id(struct perf_event_header *header,
5046 struct perf_sample_data *data,
5047 struct perf_event *event)
6844c09d
ACM
5048{
5049 u64 sample_type = event->attr.sample_type;
5050
5051 data->type = sample_type;
5052 header->size += event->id_header_size;
5053
5054 if (sample_type & PERF_SAMPLE_TID) {
5055 /* namespace issues */
5056 data->tid_entry.pid = perf_event_pid(event, current);
5057 data->tid_entry.tid = perf_event_tid(event, current);
5058 }
5059
5060 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5061 data->time = perf_event_clock(event);
6844c09d 5062
ff3d527c 5063 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5064 data->id = primary_event_id(event);
5065
5066 if (sample_type & PERF_SAMPLE_STREAM_ID)
5067 data->stream_id = event->id;
5068
5069 if (sample_type & PERF_SAMPLE_CPU) {
5070 data->cpu_entry.cpu = raw_smp_processor_id();
5071 data->cpu_entry.reserved = 0;
5072 }
5073}
5074
76369139
FW
5075void perf_event_header__init_id(struct perf_event_header *header,
5076 struct perf_sample_data *data,
5077 struct perf_event *event)
c980d109
ACM
5078{
5079 if (event->attr.sample_id_all)
5080 __perf_event_header__init_id(header, data, event);
5081}
5082
5083static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5084 struct perf_sample_data *data)
5085{
5086 u64 sample_type = data->type;
5087
5088 if (sample_type & PERF_SAMPLE_TID)
5089 perf_output_put(handle, data->tid_entry);
5090
5091 if (sample_type & PERF_SAMPLE_TIME)
5092 perf_output_put(handle, data->time);
5093
5094 if (sample_type & PERF_SAMPLE_ID)
5095 perf_output_put(handle, data->id);
5096
5097 if (sample_type & PERF_SAMPLE_STREAM_ID)
5098 perf_output_put(handle, data->stream_id);
5099
5100 if (sample_type & PERF_SAMPLE_CPU)
5101 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5102
5103 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5104 perf_output_put(handle, data->id);
c980d109
ACM
5105}
5106
76369139
FW
5107void perf_event__output_id_sample(struct perf_event *event,
5108 struct perf_output_handle *handle,
5109 struct perf_sample_data *sample)
c980d109
ACM
5110{
5111 if (event->attr.sample_id_all)
5112 __perf_event__output_id_sample(handle, sample);
5113}
5114
3dab77fb 5115static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5116 struct perf_event *event,
5117 u64 enabled, u64 running)
3dab77fb 5118{
cdd6c482 5119 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5120 u64 values[4];
5121 int n = 0;
5122
b5e58793 5123 values[n++] = perf_event_count(event);
3dab77fb 5124 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5125 values[n++] = enabled +
cdd6c482 5126 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5127 }
5128 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5129 values[n++] = running +
cdd6c482 5130 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5131 }
5132 if (read_format & PERF_FORMAT_ID)
cdd6c482 5133 values[n++] = primary_event_id(event);
3dab77fb 5134
76369139 5135 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5136}
5137
5138/*
cdd6c482 5139 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5140 */
5141static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5142 struct perf_event *event,
5143 u64 enabled, u64 running)
3dab77fb 5144{
cdd6c482
IM
5145 struct perf_event *leader = event->group_leader, *sub;
5146 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5147 u64 values[5];
5148 int n = 0;
5149
5150 values[n++] = 1 + leader->nr_siblings;
5151
5152 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5153 values[n++] = enabled;
3dab77fb
PZ
5154
5155 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5156 values[n++] = running;
3dab77fb 5157
cdd6c482 5158 if (leader != event)
3dab77fb
PZ
5159 leader->pmu->read(leader);
5160
b5e58793 5161 values[n++] = perf_event_count(leader);
3dab77fb 5162 if (read_format & PERF_FORMAT_ID)
cdd6c482 5163 values[n++] = primary_event_id(leader);
3dab77fb 5164
76369139 5165 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5166
65abc865 5167 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5168 n = 0;
5169
6f5ab001
JO
5170 if ((sub != event) &&
5171 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5172 sub->pmu->read(sub);
5173
b5e58793 5174 values[n++] = perf_event_count(sub);
3dab77fb 5175 if (read_format & PERF_FORMAT_ID)
cdd6c482 5176 values[n++] = primary_event_id(sub);
3dab77fb 5177
76369139 5178 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5179 }
5180}
5181
eed01528
SE
5182#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5183 PERF_FORMAT_TOTAL_TIME_RUNNING)
5184
3dab77fb 5185static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5186 struct perf_event *event)
3dab77fb 5187{
e3f3541c 5188 u64 enabled = 0, running = 0, now;
eed01528
SE
5189 u64 read_format = event->attr.read_format;
5190
5191 /*
5192 * compute total_time_enabled, total_time_running
5193 * based on snapshot values taken when the event
5194 * was last scheduled in.
5195 *
5196 * we cannot simply called update_context_time()
5197 * because of locking issue as we are called in
5198 * NMI context
5199 */
c4794295 5200 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5201 calc_timer_values(event, &now, &enabled, &running);
eed01528 5202
cdd6c482 5203 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5204 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5205 else
eed01528 5206 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5207}
5208
5622f295
MM
5209void perf_output_sample(struct perf_output_handle *handle,
5210 struct perf_event_header *header,
5211 struct perf_sample_data *data,
cdd6c482 5212 struct perf_event *event)
5622f295
MM
5213{
5214 u64 sample_type = data->type;
5215
5216 perf_output_put(handle, *header);
5217
ff3d527c
AH
5218 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5219 perf_output_put(handle, data->id);
5220
5622f295
MM
5221 if (sample_type & PERF_SAMPLE_IP)
5222 perf_output_put(handle, data->ip);
5223
5224 if (sample_type & PERF_SAMPLE_TID)
5225 perf_output_put(handle, data->tid_entry);
5226
5227 if (sample_type & PERF_SAMPLE_TIME)
5228 perf_output_put(handle, data->time);
5229
5230 if (sample_type & PERF_SAMPLE_ADDR)
5231 perf_output_put(handle, data->addr);
5232
5233 if (sample_type & PERF_SAMPLE_ID)
5234 perf_output_put(handle, data->id);
5235
5236 if (sample_type & PERF_SAMPLE_STREAM_ID)
5237 perf_output_put(handle, data->stream_id);
5238
5239 if (sample_type & PERF_SAMPLE_CPU)
5240 perf_output_put(handle, data->cpu_entry);
5241
5242 if (sample_type & PERF_SAMPLE_PERIOD)
5243 perf_output_put(handle, data->period);
5244
5245 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5246 perf_output_read(handle, event);
5622f295
MM
5247
5248 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5249 if (data->callchain) {
5250 int size = 1;
5251
5252 if (data->callchain)
5253 size += data->callchain->nr;
5254
5255 size *= sizeof(u64);
5256
76369139 5257 __output_copy(handle, data->callchain, size);
5622f295
MM
5258 } else {
5259 u64 nr = 0;
5260 perf_output_put(handle, nr);
5261 }
5262 }
5263
5264 if (sample_type & PERF_SAMPLE_RAW) {
5265 if (data->raw) {
5266 perf_output_put(handle, data->raw->size);
76369139
FW
5267 __output_copy(handle, data->raw->data,
5268 data->raw->size);
5622f295
MM
5269 } else {
5270 struct {
5271 u32 size;
5272 u32 data;
5273 } raw = {
5274 .size = sizeof(u32),
5275 .data = 0,
5276 };
5277 perf_output_put(handle, raw);
5278 }
5279 }
a7ac67ea 5280
bce38cd5
SE
5281 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5282 if (data->br_stack) {
5283 size_t size;
5284
5285 size = data->br_stack->nr
5286 * sizeof(struct perf_branch_entry);
5287
5288 perf_output_put(handle, data->br_stack->nr);
5289 perf_output_copy(handle, data->br_stack->entries, size);
5290 } else {
5291 /*
5292 * we always store at least the value of nr
5293 */
5294 u64 nr = 0;
5295 perf_output_put(handle, nr);
5296 }
5297 }
4018994f
JO
5298
5299 if (sample_type & PERF_SAMPLE_REGS_USER) {
5300 u64 abi = data->regs_user.abi;
5301
5302 /*
5303 * If there are no regs to dump, notice it through
5304 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5305 */
5306 perf_output_put(handle, abi);
5307
5308 if (abi) {
5309 u64 mask = event->attr.sample_regs_user;
5310 perf_output_sample_regs(handle,
5311 data->regs_user.regs,
5312 mask);
5313 }
5314 }
c5ebcedb 5315
a5cdd40c 5316 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5317 perf_output_sample_ustack(handle,
5318 data->stack_user_size,
5319 data->regs_user.regs);
a5cdd40c 5320 }
c3feedf2
AK
5321
5322 if (sample_type & PERF_SAMPLE_WEIGHT)
5323 perf_output_put(handle, data->weight);
d6be9ad6
SE
5324
5325 if (sample_type & PERF_SAMPLE_DATA_SRC)
5326 perf_output_put(handle, data->data_src.val);
a5cdd40c 5327
fdfbbd07
AK
5328 if (sample_type & PERF_SAMPLE_TRANSACTION)
5329 perf_output_put(handle, data->txn);
5330
60e2364e
SE
5331 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5332 u64 abi = data->regs_intr.abi;
5333 /*
5334 * If there are no regs to dump, notice it through
5335 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5336 */
5337 perf_output_put(handle, abi);
5338
5339 if (abi) {
5340 u64 mask = event->attr.sample_regs_intr;
5341
5342 perf_output_sample_regs(handle,
5343 data->regs_intr.regs,
5344 mask);
5345 }
5346 }
5347
a5cdd40c
PZ
5348 if (!event->attr.watermark) {
5349 int wakeup_events = event->attr.wakeup_events;
5350
5351 if (wakeup_events) {
5352 struct ring_buffer *rb = handle->rb;
5353 int events = local_inc_return(&rb->events);
5354
5355 if (events >= wakeup_events) {
5356 local_sub(wakeup_events, &rb->events);
5357 local_inc(&rb->wakeup);
5358 }
5359 }
5360 }
5622f295
MM
5361}
5362
5363void perf_prepare_sample(struct perf_event_header *header,
5364 struct perf_sample_data *data,
cdd6c482 5365 struct perf_event *event,
5622f295 5366 struct pt_regs *regs)
7b732a75 5367{
cdd6c482 5368 u64 sample_type = event->attr.sample_type;
7b732a75 5369
cdd6c482 5370 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5371 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5372
5373 header->misc = 0;
5374 header->misc |= perf_misc_flags(regs);
6fab0192 5375
c980d109 5376 __perf_event_header__init_id(header, data, event);
6844c09d 5377
c320c7b7 5378 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5379 data->ip = perf_instruction_pointer(regs);
5380
b23f3325 5381 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5382 int size = 1;
394ee076 5383
e6dab5ff 5384 data->callchain = perf_callchain(event, regs);
5622f295
MM
5385
5386 if (data->callchain)
5387 size += data->callchain->nr;
5388
5389 header->size += size * sizeof(u64);
394ee076
PZ
5390 }
5391
3a43ce68 5392 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5393 int size = sizeof(u32);
5394
5395 if (data->raw)
5396 size += data->raw->size;
5397 else
5398 size += sizeof(u32);
5399
5400 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 5401 header->size += size;
7f453c24 5402 }
bce38cd5
SE
5403
5404 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5405 int size = sizeof(u64); /* nr */
5406 if (data->br_stack) {
5407 size += data->br_stack->nr
5408 * sizeof(struct perf_branch_entry);
5409 }
5410 header->size += size;
5411 }
4018994f 5412
2565711f 5413 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5414 perf_sample_regs_user(&data->regs_user, regs,
5415 &data->regs_user_copy);
2565711f 5416
4018994f
JO
5417 if (sample_type & PERF_SAMPLE_REGS_USER) {
5418 /* regs dump ABI info */
5419 int size = sizeof(u64);
5420
4018994f
JO
5421 if (data->regs_user.regs) {
5422 u64 mask = event->attr.sample_regs_user;
5423 size += hweight64(mask) * sizeof(u64);
5424 }
5425
5426 header->size += size;
5427 }
c5ebcedb
JO
5428
5429 if (sample_type & PERF_SAMPLE_STACK_USER) {
5430 /*
5431 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5432 * processed as the last one or have additional check added
5433 * in case new sample type is added, because we could eat
5434 * up the rest of the sample size.
5435 */
c5ebcedb
JO
5436 u16 stack_size = event->attr.sample_stack_user;
5437 u16 size = sizeof(u64);
5438
c5ebcedb 5439 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5440 data->regs_user.regs);
c5ebcedb
JO
5441
5442 /*
5443 * If there is something to dump, add space for the dump
5444 * itself and for the field that tells the dynamic size,
5445 * which is how many have been actually dumped.
5446 */
5447 if (stack_size)
5448 size += sizeof(u64) + stack_size;
5449
5450 data->stack_user_size = stack_size;
5451 header->size += size;
5452 }
60e2364e
SE
5453
5454 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5455 /* regs dump ABI info */
5456 int size = sizeof(u64);
5457
5458 perf_sample_regs_intr(&data->regs_intr, regs);
5459
5460 if (data->regs_intr.regs) {
5461 u64 mask = event->attr.sample_regs_intr;
5462
5463 size += hweight64(mask) * sizeof(u64);
5464 }
5465
5466 header->size += size;
5467 }
5622f295 5468}
7f453c24 5469
21509084
YZ
5470void perf_event_output(struct perf_event *event,
5471 struct perf_sample_data *data,
5472 struct pt_regs *regs)
5622f295
MM
5473{
5474 struct perf_output_handle handle;
5475 struct perf_event_header header;
689802b2 5476
927c7a9e
FW
5477 /* protect the callchain buffers */
5478 rcu_read_lock();
5479
cdd6c482 5480 perf_prepare_sample(&header, data, event, regs);
5c148194 5481
a7ac67ea 5482 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5483 goto exit;
0322cd6e 5484
cdd6c482 5485 perf_output_sample(&handle, &header, data, event);
f413cdb8 5486
8a057d84 5487 perf_output_end(&handle);
927c7a9e
FW
5488
5489exit:
5490 rcu_read_unlock();
0322cd6e
PZ
5491}
5492
38b200d6 5493/*
cdd6c482 5494 * read event_id
38b200d6
PZ
5495 */
5496
5497struct perf_read_event {
5498 struct perf_event_header header;
5499
5500 u32 pid;
5501 u32 tid;
38b200d6
PZ
5502};
5503
5504static void
cdd6c482 5505perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5506 struct task_struct *task)
5507{
5508 struct perf_output_handle handle;
c980d109 5509 struct perf_sample_data sample;
dfc65094 5510 struct perf_read_event read_event = {
38b200d6 5511 .header = {
cdd6c482 5512 .type = PERF_RECORD_READ,
38b200d6 5513 .misc = 0,
c320c7b7 5514 .size = sizeof(read_event) + event->read_size,
38b200d6 5515 },
cdd6c482
IM
5516 .pid = perf_event_pid(event, task),
5517 .tid = perf_event_tid(event, task),
38b200d6 5518 };
3dab77fb 5519 int ret;
38b200d6 5520
c980d109 5521 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5522 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5523 if (ret)
5524 return;
5525
dfc65094 5526 perf_output_put(&handle, read_event);
cdd6c482 5527 perf_output_read(&handle, event);
c980d109 5528 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5529
38b200d6
PZ
5530 perf_output_end(&handle);
5531}
5532
52d857a8
JO
5533typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5534
5535static void
5536perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5537 perf_event_aux_output_cb output,
5538 void *data)
5539{
5540 struct perf_event *event;
5541
5542 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5543 if (event->state < PERF_EVENT_STATE_INACTIVE)
5544 continue;
5545 if (!event_filter_match(event))
5546 continue;
67516844 5547 output(event, data);
52d857a8
JO
5548 }
5549}
5550
5551static void
67516844 5552perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5553 struct perf_event_context *task_ctx)
5554{
5555 struct perf_cpu_context *cpuctx;
5556 struct perf_event_context *ctx;
5557 struct pmu *pmu;
5558 int ctxn;
5559
5560 rcu_read_lock();
5561 list_for_each_entry_rcu(pmu, &pmus, entry) {
5562 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5563 if (cpuctx->unique_pmu != pmu)
5564 goto next;
67516844 5565 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5566 if (task_ctx)
5567 goto next;
5568 ctxn = pmu->task_ctx_nr;
5569 if (ctxn < 0)
5570 goto next;
5571 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5572 if (ctx)
67516844 5573 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5574next:
5575 put_cpu_ptr(pmu->pmu_cpu_context);
5576 }
5577
5578 if (task_ctx) {
5579 preempt_disable();
67516844 5580 perf_event_aux_ctx(task_ctx, output, data);
52d857a8
JO
5581 preempt_enable();
5582 }
5583 rcu_read_unlock();
5584}
5585
60313ebe 5586/*
9f498cc5
PZ
5587 * task tracking -- fork/exit
5588 *
13d7a241 5589 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5590 */
5591
9f498cc5 5592struct perf_task_event {
3a80b4a3 5593 struct task_struct *task;
cdd6c482 5594 struct perf_event_context *task_ctx;
60313ebe
PZ
5595
5596 struct {
5597 struct perf_event_header header;
5598
5599 u32 pid;
5600 u32 ppid;
9f498cc5
PZ
5601 u32 tid;
5602 u32 ptid;
393b2ad8 5603 u64 time;
cdd6c482 5604 } event_id;
60313ebe
PZ
5605};
5606
67516844
JO
5607static int perf_event_task_match(struct perf_event *event)
5608{
13d7a241
SE
5609 return event->attr.comm || event->attr.mmap ||
5610 event->attr.mmap2 || event->attr.mmap_data ||
5611 event->attr.task;
67516844
JO
5612}
5613
cdd6c482 5614static void perf_event_task_output(struct perf_event *event,
52d857a8 5615 void *data)
60313ebe 5616{
52d857a8 5617 struct perf_task_event *task_event = data;
60313ebe 5618 struct perf_output_handle handle;
c980d109 5619 struct perf_sample_data sample;
9f498cc5 5620 struct task_struct *task = task_event->task;
c980d109 5621 int ret, size = task_event->event_id.header.size;
8bb39f9a 5622
67516844
JO
5623 if (!perf_event_task_match(event))
5624 return;
5625
c980d109 5626 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5627
c980d109 5628 ret = perf_output_begin(&handle, event,
a7ac67ea 5629 task_event->event_id.header.size);
ef60777c 5630 if (ret)
c980d109 5631 goto out;
60313ebe 5632
cdd6c482
IM
5633 task_event->event_id.pid = perf_event_pid(event, task);
5634 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5635
cdd6c482
IM
5636 task_event->event_id.tid = perf_event_tid(event, task);
5637 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5638
34f43927
PZ
5639 task_event->event_id.time = perf_event_clock(event);
5640
cdd6c482 5641 perf_output_put(&handle, task_event->event_id);
393b2ad8 5642
c980d109
ACM
5643 perf_event__output_id_sample(event, &handle, &sample);
5644
60313ebe 5645 perf_output_end(&handle);
c980d109
ACM
5646out:
5647 task_event->event_id.header.size = size;
60313ebe
PZ
5648}
5649
cdd6c482
IM
5650static void perf_event_task(struct task_struct *task,
5651 struct perf_event_context *task_ctx,
3a80b4a3 5652 int new)
60313ebe 5653{
9f498cc5 5654 struct perf_task_event task_event;
60313ebe 5655
cdd6c482
IM
5656 if (!atomic_read(&nr_comm_events) &&
5657 !atomic_read(&nr_mmap_events) &&
5658 !atomic_read(&nr_task_events))
60313ebe
PZ
5659 return;
5660
9f498cc5 5661 task_event = (struct perf_task_event){
3a80b4a3
PZ
5662 .task = task,
5663 .task_ctx = task_ctx,
cdd6c482 5664 .event_id = {
60313ebe 5665 .header = {
cdd6c482 5666 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5667 .misc = 0,
cdd6c482 5668 .size = sizeof(task_event.event_id),
60313ebe 5669 },
573402db
PZ
5670 /* .pid */
5671 /* .ppid */
9f498cc5
PZ
5672 /* .tid */
5673 /* .ptid */
34f43927 5674 /* .time */
60313ebe
PZ
5675 },
5676 };
5677
67516844 5678 perf_event_aux(perf_event_task_output,
52d857a8
JO
5679 &task_event,
5680 task_ctx);
9f498cc5
PZ
5681}
5682
cdd6c482 5683void perf_event_fork(struct task_struct *task)
9f498cc5 5684{
cdd6c482 5685 perf_event_task(task, NULL, 1);
60313ebe
PZ
5686}
5687
8d1b2d93
PZ
5688/*
5689 * comm tracking
5690 */
5691
5692struct perf_comm_event {
22a4f650
IM
5693 struct task_struct *task;
5694 char *comm;
8d1b2d93
PZ
5695 int comm_size;
5696
5697 struct {
5698 struct perf_event_header header;
5699
5700 u32 pid;
5701 u32 tid;
cdd6c482 5702 } event_id;
8d1b2d93
PZ
5703};
5704
67516844
JO
5705static int perf_event_comm_match(struct perf_event *event)
5706{
5707 return event->attr.comm;
5708}
5709
cdd6c482 5710static void perf_event_comm_output(struct perf_event *event,
52d857a8 5711 void *data)
8d1b2d93 5712{
52d857a8 5713 struct perf_comm_event *comm_event = data;
8d1b2d93 5714 struct perf_output_handle handle;
c980d109 5715 struct perf_sample_data sample;
cdd6c482 5716 int size = comm_event->event_id.header.size;
c980d109
ACM
5717 int ret;
5718
67516844
JO
5719 if (!perf_event_comm_match(event))
5720 return;
5721
c980d109
ACM
5722 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5723 ret = perf_output_begin(&handle, event,
a7ac67ea 5724 comm_event->event_id.header.size);
8d1b2d93
PZ
5725
5726 if (ret)
c980d109 5727 goto out;
8d1b2d93 5728
cdd6c482
IM
5729 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5730 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5731
cdd6c482 5732 perf_output_put(&handle, comm_event->event_id);
76369139 5733 __output_copy(&handle, comm_event->comm,
8d1b2d93 5734 comm_event->comm_size);
c980d109
ACM
5735
5736 perf_event__output_id_sample(event, &handle, &sample);
5737
8d1b2d93 5738 perf_output_end(&handle);
c980d109
ACM
5739out:
5740 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5741}
5742
cdd6c482 5743static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5744{
413ee3b4 5745 char comm[TASK_COMM_LEN];
8d1b2d93 5746 unsigned int size;
8d1b2d93 5747
413ee3b4 5748 memset(comm, 0, sizeof(comm));
96b02d78 5749 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5750 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5751
5752 comm_event->comm = comm;
5753 comm_event->comm_size = size;
5754
cdd6c482 5755 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5756
67516844 5757 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5758 comm_event,
5759 NULL);
8d1b2d93
PZ
5760}
5761
82b89778 5762void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5763{
9ee318a7
PZ
5764 struct perf_comm_event comm_event;
5765
cdd6c482 5766 if (!atomic_read(&nr_comm_events))
9ee318a7 5767 return;
a63eaf34 5768
9ee318a7 5769 comm_event = (struct perf_comm_event){
8d1b2d93 5770 .task = task,
573402db
PZ
5771 /* .comm */
5772 /* .comm_size */
cdd6c482 5773 .event_id = {
573402db 5774 .header = {
cdd6c482 5775 .type = PERF_RECORD_COMM,
82b89778 5776 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5777 /* .size */
5778 },
5779 /* .pid */
5780 /* .tid */
8d1b2d93
PZ
5781 },
5782 };
5783
cdd6c482 5784 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5785}
5786
0a4a9391
PZ
5787/*
5788 * mmap tracking
5789 */
5790
5791struct perf_mmap_event {
089dd79d
PZ
5792 struct vm_area_struct *vma;
5793
5794 const char *file_name;
5795 int file_size;
13d7a241
SE
5796 int maj, min;
5797 u64 ino;
5798 u64 ino_generation;
f972eb63 5799 u32 prot, flags;
0a4a9391
PZ
5800
5801 struct {
5802 struct perf_event_header header;
5803
5804 u32 pid;
5805 u32 tid;
5806 u64 start;
5807 u64 len;
5808 u64 pgoff;
cdd6c482 5809 } event_id;
0a4a9391
PZ
5810};
5811
67516844
JO
5812static int perf_event_mmap_match(struct perf_event *event,
5813 void *data)
5814{
5815 struct perf_mmap_event *mmap_event = data;
5816 struct vm_area_struct *vma = mmap_event->vma;
5817 int executable = vma->vm_flags & VM_EXEC;
5818
5819 return (!executable && event->attr.mmap_data) ||
13d7a241 5820 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5821}
5822
cdd6c482 5823static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5824 void *data)
0a4a9391 5825{
52d857a8 5826 struct perf_mmap_event *mmap_event = data;
0a4a9391 5827 struct perf_output_handle handle;
c980d109 5828 struct perf_sample_data sample;
cdd6c482 5829 int size = mmap_event->event_id.header.size;
c980d109 5830 int ret;
0a4a9391 5831
67516844
JO
5832 if (!perf_event_mmap_match(event, data))
5833 return;
5834
13d7a241
SE
5835 if (event->attr.mmap2) {
5836 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5837 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5838 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5839 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5840 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5841 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5842 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5843 }
5844
c980d109
ACM
5845 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5846 ret = perf_output_begin(&handle, event,
a7ac67ea 5847 mmap_event->event_id.header.size);
0a4a9391 5848 if (ret)
c980d109 5849 goto out;
0a4a9391 5850
cdd6c482
IM
5851 mmap_event->event_id.pid = perf_event_pid(event, current);
5852 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5853
cdd6c482 5854 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5855
5856 if (event->attr.mmap2) {
5857 perf_output_put(&handle, mmap_event->maj);
5858 perf_output_put(&handle, mmap_event->min);
5859 perf_output_put(&handle, mmap_event->ino);
5860 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5861 perf_output_put(&handle, mmap_event->prot);
5862 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5863 }
5864
76369139 5865 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5866 mmap_event->file_size);
c980d109
ACM
5867
5868 perf_event__output_id_sample(event, &handle, &sample);
5869
78d613eb 5870 perf_output_end(&handle);
c980d109
ACM
5871out:
5872 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5873}
5874
cdd6c482 5875static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5876{
089dd79d
PZ
5877 struct vm_area_struct *vma = mmap_event->vma;
5878 struct file *file = vma->vm_file;
13d7a241
SE
5879 int maj = 0, min = 0;
5880 u64 ino = 0, gen = 0;
f972eb63 5881 u32 prot = 0, flags = 0;
0a4a9391
PZ
5882 unsigned int size;
5883 char tmp[16];
5884 char *buf = NULL;
2c42cfbf 5885 char *name;
413ee3b4 5886
0a4a9391 5887 if (file) {
13d7a241
SE
5888 struct inode *inode;
5889 dev_t dev;
3ea2f2b9 5890
2c42cfbf 5891 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5892 if (!buf) {
c7e548b4
ON
5893 name = "//enomem";
5894 goto cpy_name;
0a4a9391 5895 }
413ee3b4 5896 /*
3ea2f2b9 5897 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5898 * need to add enough zero bytes after the string to handle
5899 * the 64bit alignment we do later.
5900 */
9bf39ab2 5901 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 5902 if (IS_ERR(name)) {
c7e548b4
ON
5903 name = "//toolong";
5904 goto cpy_name;
0a4a9391 5905 }
13d7a241
SE
5906 inode = file_inode(vma->vm_file);
5907 dev = inode->i_sb->s_dev;
5908 ino = inode->i_ino;
5909 gen = inode->i_generation;
5910 maj = MAJOR(dev);
5911 min = MINOR(dev);
f972eb63
PZ
5912
5913 if (vma->vm_flags & VM_READ)
5914 prot |= PROT_READ;
5915 if (vma->vm_flags & VM_WRITE)
5916 prot |= PROT_WRITE;
5917 if (vma->vm_flags & VM_EXEC)
5918 prot |= PROT_EXEC;
5919
5920 if (vma->vm_flags & VM_MAYSHARE)
5921 flags = MAP_SHARED;
5922 else
5923 flags = MAP_PRIVATE;
5924
5925 if (vma->vm_flags & VM_DENYWRITE)
5926 flags |= MAP_DENYWRITE;
5927 if (vma->vm_flags & VM_MAYEXEC)
5928 flags |= MAP_EXECUTABLE;
5929 if (vma->vm_flags & VM_LOCKED)
5930 flags |= MAP_LOCKED;
5931 if (vma->vm_flags & VM_HUGETLB)
5932 flags |= MAP_HUGETLB;
5933
c7e548b4 5934 goto got_name;
0a4a9391 5935 } else {
fbe26abe
JO
5936 if (vma->vm_ops && vma->vm_ops->name) {
5937 name = (char *) vma->vm_ops->name(vma);
5938 if (name)
5939 goto cpy_name;
5940 }
5941
2c42cfbf 5942 name = (char *)arch_vma_name(vma);
c7e548b4
ON
5943 if (name)
5944 goto cpy_name;
089dd79d 5945
32c5fb7e 5946 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 5947 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
5948 name = "[heap]";
5949 goto cpy_name;
32c5fb7e
ON
5950 }
5951 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 5952 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
5953 name = "[stack]";
5954 goto cpy_name;
089dd79d
PZ
5955 }
5956
c7e548b4
ON
5957 name = "//anon";
5958 goto cpy_name;
0a4a9391
PZ
5959 }
5960
c7e548b4
ON
5961cpy_name:
5962 strlcpy(tmp, name, sizeof(tmp));
5963 name = tmp;
0a4a9391 5964got_name:
2c42cfbf
PZ
5965 /*
5966 * Since our buffer works in 8 byte units we need to align our string
5967 * size to a multiple of 8. However, we must guarantee the tail end is
5968 * zero'd out to avoid leaking random bits to userspace.
5969 */
5970 size = strlen(name)+1;
5971 while (!IS_ALIGNED(size, sizeof(u64)))
5972 name[size++] = '\0';
0a4a9391
PZ
5973
5974 mmap_event->file_name = name;
5975 mmap_event->file_size = size;
13d7a241
SE
5976 mmap_event->maj = maj;
5977 mmap_event->min = min;
5978 mmap_event->ino = ino;
5979 mmap_event->ino_generation = gen;
f972eb63
PZ
5980 mmap_event->prot = prot;
5981 mmap_event->flags = flags;
0a4a9391 5982
2fe85427
SE
5983 if (!(vma->vm_flags & VM_EXEC))
5984 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5985
cdd6c482 5986 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 5987
67516844 5988 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
5989 mmap_event,
5990 NULL);
665c2142 5991
0a4a9391
PZ
5992 kfree(buf);
5993}
5994
3af9e859 5995void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 5996{
9ee318a7
PZ
5997 struct perf_mmap_event mmap_event;
5998
cdd6c482 5999 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6000 return;
6001
6002 mmap_event = (struct perf_mmap_event){
089dd79d 6003 .vma = vma,
573402db
PZ
6004 /* .file_name */
6005 /* .file_size */
cdd6c482 6006 .event_id = {
573402db 6007 .header = {
cdd6c482 6008 .type = PERF_RECORD_MMAP,
39447b38 6009 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6010 /* .size */
6011 },
6012 /* .pid */
6013 /* .tid */
089dd79d
PZ
6014 .start = vma->vm_start,
6015 .len = vma->vm_end - vma->vm_start,
3a0304e9 6016 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6017 },
13d7a241
SE
6018 /* .maj (attr_mmap2 only) */
6019 /* .min (attr_mmap2 only) */
6020 /* .ino (attr_mmap2 only) */
6021 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6022 /* .prot (attr_mmap2 only) */
6023 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6024 };
6025
cdd6c482 6026 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6027}
6028
68db7e98
AS
6029void perf_event_aux_event(struct perf_event *event, unsigned long head,
6030 unsigned long size, u64 flags)
6031{
6032 struct perf_output_handle handle;
6033 struct perf_sample_data sample;
6034 struct perf_aux_event {
6035 struct perf_event_header header;
6036 u64 offset;
6037 u64 size;
6038 u64 flags;
6039 } rec = {
6040 .header = {
6041 .type = PERF_RECORD_AUX,
6042 .misc = 0,
6043 .size = sizeof(rec),
6044 },
6045 .offset = head,
6046 .size = size,
6047 .flags = flags,
6048 };
6049 int ret;
6050
6051 perf_event_header__init_id(&rec.header, &sample, event);
6052 ret = perf_output_begin(&handle, event, rec.header.size);
6053
6054 if (ret)
6055 return;
6056
6057 perf_output_put(&handle, rec);
6058 perf_event__output_id_sample(event, &handle, &sample);
6059
6060 perf_output_end(&handle);
6061}
6062
f38b0dbb
KL
6063/*
6064 * Lost/dropped samples logging
6065 */
6066void perf_log_lost_samples(struct perf_event *event, u64 lost)
6067{
6068 struct perf_output_handle handle;
6069 struct perf_sample_data sample;
6070 int ret;
6071
6072 struct {
6073 struct perf_event_header header;
6074 u64 lost;
6075 } lost_samples_event = {
6076 .header = {
6077 .type = PERF_RECORD_LOST_SAMPLES,
6078 .misc = 0,
6079 .size = sizeof(lost_samples_event),
6080 },
6081 .lost = lost,
6082 };
6083
6084 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6085
6086 ret = perf_output_begin(&handle, event,
6087 lost_samples_event.header.size);
6088 if (ret)
6089 return;
6090
6091 perf_output_put(&handle, lost_samples_event);
6092 perf_event__output_id_sample(event, &handle, &sample);
6093 perf_output_end(&handle);
6094}
6095
45ac1403
AH
6096/*
6097 * context_switch tracking
6098 */
6099
6100struct perf_switch_event {
6101 struct task_struct *task;
6102 struct task_struct *next_prev;
6103
6104 struct {
6105 struct perf_event_header header;
6106 u32 next_prev_pid;
6107 u32 next_prev_tid;
6108 } event_id;
6109};
6110
6111static int perf_event_switch_match(struct perf_event *event)
6112{
6113 return event->attr.context_switch;
6114}
6115
6116static void perf_event_switch_output(struct perf_event *event, void *data)
6117{
6118 struct perf_switch_event *se = data;
6119 struct perf_output_handle handle;
6120 struct perf_sample_data sample;
6121 int ret;
6122
6123 if (!perf_event_switch_match(event))
6124 return;
6125
6126 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6127 if (event->ctx->task) {
6128 se->event_id.header.type = PERF_RECORD_SWITCH;
6129 se->event_id.header.size = sizeof(se->event_id.header);
6130 } else {
6131 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6132 se->event_id.header.size = sizeof(se->event_id);
6133 se->event_id.next_prev_pid =
6134 perf_event_pid(event, se->next_prev);
6135 se->event_id.next_prev_tid =
6136 perf_event_tid(event, se->next_prev);
6137 }
6138
6139 perf_event_header__init_id(&se->event_id.header, &sample, event);
6140
6141 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6142 if (ret)
6143 return;
6144
6145 if (event->ctx->task)
6146 perf_output_put(&handle, se->event_id.header);
6147 else
6148 perf_output_put(&handle, se->event_id);
6149
6150 perf_event__output_id_sample(event, &handle, &sample);
6151
6152 perf_output_end(&handle);
6153}
6154
6155static void perf_event_switch(struct task_struct *task,
6156 struct task_struct *next_prev, bool sched_in)
6157{
6158 struct perf_switch_event switch_event;
6159
6160 /* N.B. caller checks nr_switch_events != 0 */
6161
6162 switch_event = (struct perf_switch_event){
6163 .task = task,
6164 .next_prev = next_prev,
6165 .event_id = {
6166 .header = {
6167 /* .type */
6168 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6169 /* .size */
6170 },
6171 /* .next_prev_pid */
6172 /* .next_prev_tid */
6173 },
6174 };
6175
6176 perf_event_aux(perf_event_switch_output,
6177 &switch_event,
6178 NULL);
6179}
6180
a78ac325
PZ
6181/*
6182 * IRQ throttle logging
6183 */
6184
cdd6c482 6185static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6186{
6187 struct perf_output_handle handle;
c980d109 6188 struct perf_sample_data sample;
a78ac325
PZ
6189 int ret;
6190
6191 struct {
6192 struct perf_event_header header;
6193 u64 time;
cca3f454 6194 u64 id;
7f453c24 6195 u64 stream_id;
a78ac325
PZ
6196 } throttle_event = {
6197 .header = {
cdd6c482 6198 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6199 .misc = 0,
6200 .size = sizeof(throttle_event),
6201 },
34f43927 6202 .time = perf_event_clock(event),
cdd6c482
IM
6203 .id = primary_event_id(event),
6204 .stream_id = event->id,
a78ac325
PZ
6205 };
6206
966ee4d6 6207 if (enable)
cdd6c482 6208 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6209
c980d109
ACM
6210 perf_event_header__init_id(&throttle_event.header, &sample, event);
6211
6212 ret = perf_output_begin(&handle, event,
a7ac67ea 6213 throttle_event.header.size);
a78ac325
PZ
6214 if (ret)
6215 return;
6216
6217 perf_output_put(&handle, throttle_event);
c980d109 6218 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6219 perf_output_end(&handle);
6220}
6221
ec0d7729
AS
6222static void perf_log_itrace_start(struct perf_event *event)
6223{
6224 struct perf_output_handle handle;
6225 struct perf_sample_data sample;
6226 struct perf_aux_event {
6227 struct perf_event_header header;
6228 u32 pid;
6229 u32 tid;
6230 } rec;
6231 int ret;
6232
6233 if (event->parent)
6234 event = event->parent;
6235
6236 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6237 event->hw.itrace_started)
6238 return;
6239
ec0d7729
AS
6240 rec.header.type = PERF_RECORD_ITRACE_START;
6241 rec.header.misc = 0;
6242 rec.header.size = sizeof(rec);
6243 rec.pid = perf_event_pid(event, current);
6244 rec.tid = perf_event_tid(event, current);
6245
6246 perf_event_header__init_id(&rec.header, &sample, event);
6247 ret = perf_output_begin(&handle, event, rec.header.size);
6248
6249 if (ret)
6250 return;
6251
6252 perf_output_put(&handle, rec);
6253 perf_event__output_id_sample(event, &handle, &sample);
6254
6255 perf_output_end(&handle);
6256}
6257
f6c7d5fe 6258/*
cdd6c482 6259 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6260 */
6261
a8b0ca17 6262static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6263 int throttle, struct perf_sample_data *data,
6264 struct pt_regs *regs)
f6c7d5fe 6265{
cdd6c482
IM
6266 int events = atomic_read(&event->event_limit);
6267 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6268 u64 seq;
79f14641
PZ
6269 int ret = 0;
6270
96398826
PZ
6271 /*
6272 * Non-sampling counters might still use the PMI to fold short
6273 * hardware counters, ignore those.
6274 */
6275 if (unlikely(!is_sampling_event(event)))
6276 return 0;
6277
e050e3f0
SE
6278 seq = __this_cpu_read(perf_throttled_seq);
6279 if (seq != hwc->interrupts_seq) {
6280 hwc->interrupts_seq = seq;
6281 hwc->interrupts = 1;
6282 } else {
6283 hwc->interrupts++;
6284 if (unlikely(throttle
6285 && hwc->interrupts >= max_samples_per_tick)) {
6286 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6287 hwc->interrupts = MAX_INTERRUPTS;
6288 perf_log_throttle(event, 0);
d84153d6 6289 tick_nohz_full_kick();
a78ac325
PZ
6290 ret = 1;
6291 }
e050e3f0 6292 }
60db5e09 6293
cdd6c482 6294 if (event->attr.freq) {
def0a9b2 6295 u64 now = perf_clock();
abd50713 6296 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6297
abd50713 6298 hwc->freq_time_stamp = now;
bd2b5b12 6299
abd50713 6300 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6301 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6302 }
6303
2023b359
PZ
6304 /*
6305 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6306 * events
2023b359
PZ
6307 */
6308
cdd6c482
IM
6309 event->pending_kill = POLL_IN;
6310 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6311 ret = 1;
cdd6c482 6312 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6313 event->pending_disable = 1;
6314 irq_work_queue(&event->pending);
79f14641
PZ
6315 }
6316
453f19ee 6317 if (event->overflow_handler)
a8b0ca17 6318 event->overflow_handler(event, data, regs);
453f19ee 6319 else
a8b0ca17 6320 perf_event_output(event, data, regs);
453f19ee 6321
fed66e2c 6322 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6323 event->pending_wakeup = 1;
6324 irq_work_queue(&event->pending);
f506b3dc
PZ
6325 }
6326
79f14641 6327 return ret;
f6c7d5fe
PZ
6328}
6329
a8b0ca17 6330int perf_event_overflow(struct perf_event *event,
5622f295
MM
6331 struct perf_sample_data *data,
6332 struct pt_regs *regs)
850bc73f 6333{
a8b0ca17 6334 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6335}
6336
15dbf27c 6337/*
cdd6c482 6338 * Generic software event infrastructure
15dbf27c
PZ
6339 */
6340
b28ab83c
PZ
6341struct swevent_htable {
6342 struct swevent_hlist *swevent_hlist;
6343 struct mutex hlist_mutex;
6344 int hlist_refcount;
6345
6346 /* Recursion avoidance in each contexts */
6347 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
6348
6349 /* Keeps track of cpu being initialized/exited */
6350 bool online;
b28ab83c
PZ
6351};
6352
6353static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6354
7b4b6658 6355/*
cdd6c482
IM
6356 * We directly increment event->count and keep a second value in
6357 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6358 * is kept in the range [-sample_period, 0] so that we can use the
6359 * sign as trigger.
6360 */
6361
ab573844 6362u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6363{
cdd6c482 6364 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6365 u64 period = hwc->last_period;
6366 u64 nr, offset;
6367 s64 old, val;
6368
6369 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6370
6371again:
e7850595 6372 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6373 if (val < 0)
6374 return 0;
15dbf27c 6375
7b4b6658
PZ
6376 nr = div64_u64(period + val, period);
6377 offset = nr * period;
6378 val -= offset;
e7850595 6379 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6380 goto again;
15dbf27c 6381
7b4b6658 6382 return nr;
15dbf27c
PZ
6383}
6384
0cff784a 6385static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6386 struct perf_sample_data *data,
5622f295 6387 struct pt_regs *regs)
15dbf27c 6388{
cdd6c482 6389 struct hw_perf_event *hwc = &event->hw;
850bc73f 6390 int throttle = 0;
15dbf27c 6391
0cff784a
PZ
6392 if (!overflow)
6393 overflow = perf_swevent_set_period(event);
15dbf27c 6394
7b4b6658
PZ
6395 if (hwc->interrupts == MAX_INTERRUPTS)
6396 return;
15dbf27c 6397
7b4b6658 6398 for (; overflow; overflow--) {
a8b0ca17 6399 if (__perf_event_overflow(event, throttle,
5622f295 6400 data, regs)) {
7b4b6658
PZ
6401 /*
6402 * We inhibit the overflow from happening when
6403 * hwc->interrupts == MAX_INTERRUPTS.
6404 */
6405 break;
6406 }
cf450a73 6407 throttle = 1;
7b4b6658 6408 }
15dbf27c
PZ
6409}
6410
a4eaf7f1 6411static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6412 struct perf_sample_data *data,
5622f295 6413 struct pt_regs *regs)
7b4b6658 6414{
cdd6c482 6415 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6416
e7850595 6417 local64_add(nr, &event->count);
d6d020e9 6418
0cff784a
PZ
6419 if (!regs)
6420 return;
6421
6c7e550f 6422 if (!is_sampling_event(event))
7b4b6658 6423 return;
d6d020e9 6424
5d81e5cf
AV
6425 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6426 data->period = nr;
6427 return perf_swevent_overflow(event, 1, data, regs);
6428 } else
6429 data->period = event->hw.last_period;
6430
0cff784a 6431 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6432 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6433
e7850595 6434 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6435 return;
df1a132b 6436
a8b0ca17 6437 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6438}
6439
f5ffe02e
FW
6440static int perf_exclude_event(struct perf_event *event,
6441 struct pt_regs *regs)
6442{
a4eaf7f1 6443 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6444 return 1;
a4eaf7f1 6445
f5ffe02e
FW
6446 if (regs) {
6447 if (event->attr.exclude_user && user_mode(regs))
6448 return 1;
6449
6450 if (event->attr.exclude_kernel && !user_mode(regs))
6451 return 1;
6452 }
6453
6454 return 0;
6455}
6456
cdd6c482 6457static int perf_swevent_match(struct perf_event *event,
1c432d89 6458 enum perf_type_id type,
6fb2915d
LZ
6459 u32 event_id,
6460 struct perf_sample_data *data,
6461 struct pt_regs *regs)
15dbf27c 6462{
cdd6c482 6463 if (event->attr.type != type)
a21ca2ca 6464 return 0;
f5ffe02e 6465
cdd6c482 6466 if (event->attr.config != event_id)
15dbf27c
PZ
6467 return 0;
6468
f5ffe02e
FW
6469 if (perf_exclude_event(event, regs))
6470 return 0;
15dbf27c
PZ
6471
6472 return 1;
6473}
6474
76e1d904
FW
6475static inline u64 swevent_hash(u64 type, u32 event_id)
6476{
6477 u64 val = event_id | (type << 32);
6478
6479 return hash_64(val, SWEVENT_HLIST_BITS);
6480}
6481
49f135ed
FW
6482static inline struct hlist_head *
6483__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6484{
49f135ed
FW
6485 u64 hash = swevent_hash(type, event_id);
6486
6487 return &hlist->heads[hash];
6488}
76e1d904 6489
49f135ed
FW
6490/* For the read side: events when they trigger */
6491static inline struct hlist_head *
b28ab83c 6492find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6493{
6494 struct swevent_hlist *hlist;
76e1d904 6495
b28ab83c 6496 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6497 if (!hlist)
6498 return NULL;
6499
49f135ed
FW
6500 return __find_swevent_head(hlist, type, event_id);
6501}
6502
6503/* For the event head insertion and removal in the hlist */
6504static inline struct hlist_head *
b28ab83c 6505find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6506{
6507 struct swevent_hlist *hlist;
6508 u32 event_id = event->attr.config;
6509 u64 type = event->attr.type;
6510
6511 /*
6512 * Event scheduling is always serialized against hlist allocation
6513 * and release. Which makes the protected version suitable here.
6514 * The context lock guarantees that.
6515 */
b28ab83c 6516 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6517 lockdep_is_held(&event->ctx->lock));
6518 if (!hlist)
6519 return NULL;
6520
6521 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6522}
6523
6524static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6525 u64 nr,
76e1d904
FW
6526 struct perf_sample_data *data,
6527 struct pt_regs *regs)
15dbf27c 6528{
4a32fea9 6529 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6530 struct perf_event *event;
76e1d904 6531 struct hlist_head *head;
15dbf27c 6532
76e1d904 6533 rcu_read_lock();
b28ab83c 6534 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6535 if (!head)
6536 goto end;
6537
b67bfe0d 6538 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6539 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6540 perf_swevent_event(event, nr, data, regs);
15dbf27c 6541 }
76e1d904
FW
6542end:
6543 rcu_read_unlock();
15dbf27c
PZ
6544}
6545
86038c5e
PZI
6546DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6547
4ed7c92d 6548int perf_swevent_get_recursion_context(void)
96f6d444 6549{
4a32fea9 6550 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6551
b28ab83c 6552 return get_recursion_context(swhash->recursion);
96f6d444 6553}
645e8cc0 6554EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6555
fa9f90be 6556inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6557{
4a32fea9 6558 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6559
b28ab83c 6560 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6561}
15dbf27c 6562
86038c5e 6563void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6564{
a4234bfc 6565 struct perf_sample_data data;
4ed7c92d 6566
86038c5e 6567 if (WARN_ON_ONCE(!regs))
4ed7c92d 6568 return;
a4234bfc 6569
fd0d000b 6570 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6571 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6572}
6573
6574void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6575{
6576 int rctx;
6577
6578 preempt_disable_notrace();
6579 rctx = perf_swevent_get_recursion_context();
6580 if (unlikely(rctx < 0))
6581 goto fail;
6582
6583 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6584
6585 perf_swevent_put_recursion_context(rctx);
86038c5e 6586fail:
1c024eca 6587 preempt_enable_notrace();
b8e83514
PZ
6588}
6589
cdd6c482 6590static void perf_swevent_read(struct perf_event *event)
15dbf27c 6591{
15dbf27c
PZ
6592}
6593
a4eaf7f1 6594static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6595{
4a32fea9 6596 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6597 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6598 struct hlist_head *head;
6599
6c7e550f 6600 if (is_sampling_event(event)) {
7b4b6658 6601 hwc->last_period = hwc->sample_period;
cdd6c482 6602 perf_swevent_set_period(event);
7b4b6658 6603 }
76e1d904 6604
a4eaf7f1
PZ
6605 hwc->state = !(flags & PERF_EF_START);
6606
b28ab83c 6607 head = find_swevent_head(swhash, event);
39af6b16
JO
6608 if (!head) {
6609 /*
6610 * We can race with cpu hotplug code. Do not
6611 * WARN if the cpu just got unplugged.
6612 */
6613 WARN_ON_ONCE(swhash->online);
76e1d904 6614 return -EINVAL;
39af6b16 6615 }
76e1d904
FW
6616
6617 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6618 perf_event_update_userpage(event);
76e1d904 6619
15dbf27c
PZ
6620 return 0;
6621}
6622
a4eaf7f1 6623static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6624{
76e1d904 6625 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6626}
6627
a4eaf7f1 6628static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6629{
a4eaf7f1 6630 event->hw.state = 0;
d6d020e9 6631}
aa9c4c0f 6632
a4eaf7f1 6633static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6634{
a4eaf7f1 6635 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6636}
6637
49f135ed
FW
6638/* Deref the hlist from the update side */
6639static inline struct swevent_hlist *
b28ab83c 6640swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6641{
b28ab83c
PZ
6642 return rcu_dereference_protected(swhash->swevent_hlist,
6643 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6644}
6645
b28ab83c 6646static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6647{
b28ab83c 6648 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6649
49f135ed 6650 if (!hlist)
76e1d904
FW
6651 return;
6652
70691d4a 6653 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6654 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6655}
6656
6657static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6658{
b28ab83c 6659 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6660
b28ab83c 6661 mutex_lock(&swhash->hlist_mutex);
76e1d904 6662
b28ab83c
PZ
6663 if (!--swhash->hlist_refcount)
6664 swevent_hlist_release(swhash);
76e1d904 6665
b28ab83c 6666 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6667}
6668
6669static void swevent_hlist_put(struct perf_event *event)
6670{
6671 int cpu;
6672
76e1d904
FW
6673 for_each_possible_cpu(cpu)
6674 swevent_hlist_put_cpu(event, cpu);
6675}
6676
6677static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6678{
b28ab83c 6679 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6680 int err = 0;
6681
b28ab83c 6682 mutex_lock(&swhash->hlist_mutex);
76e1d904 6683
b28ab83c 6684 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6685 struct swevent_hlist *hlist;
6686
6687 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6688 if (!hlist) {
6689 err = -ENOMEM;
6690 goto exit;
6691 }
b28ab83c 6692 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6693 }
b28ab83c 6694 swhash->hlist_refcount++;
9ed6060d 6695exit:
b28ab83c 6696 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6697
6698 return err;
6699}
6700
6701static int swevent_hlist_get(struct perf_event *event)
6702{
6703 int err;
6704 int cpu, failed_cpu;
6705
76e1d904
FW
6706 get_online_cpus();
6707 for_each_possible_cpu(cpu) {
6708 err = swevent_hlist_get_cpu(event, cpu);
6709 if (err) {
6710 failed_cpu = cpu;
6711 goto fail;
6712 }
6713 }
6714 put_online_cpus();
6715
6716 return 0;
9ed6060d 6717fail:
76e1d904
FW
6718 for_each_possible_cpu(cpu) {
6719 if (cpu == failed_cpu)
6720 break;
6721 swevent_hlist_put_cpu(event, cpu);
6722 }
6723
6724 put_online_cpus();
6725 return err;
6726}
6727
c5905afb 6728struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6729
b0a873eb
PZ
6730static void sw_perf_event_destroy(struct perf_event *event)
6731{
6732 u64 event_id = event->attr.config;
95476b64 6733
b0a873eb
PZ
6734 WARN_ON(event->parent);
6735
c5905afb 6736 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6737 swevent_hlist_put(event);
6738}
6739
6740static int perf_swevent_init(struct perf_event *event)
6741{
8176cced 6742 u64 event_id = event->attr.config;
b0a873eb
PZ
6743
6744 if (event->attr.type != PERF_TYPE_SOFTWARE)
6745 return -ENOENT;
6746
2481c5fa
SE
6747 /*
6748 * no branch sampling for software events
6749 */
6750 if (has_branch_stack(event))
6751 return -EOPNOTSUPP;
6752
b0a873eb
PZ
6753 switch (event_id) {
6754 case PERF_COUNT_SW_CPU_CLOCK:
6755 case PERF_COUNT_SW_TASK_CLOCK:
6756 return -ENOENT;
6757
6758 default:
6759 break;
6760 }
6761
ce677831 6762 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6763 return -ENOENT;
6764
6765 if (!event->parent) {
6766 int err;
6767
6768 err = swevent_hlist_get(event);
6769 if (err)
6770 return err;
6771
c5905afb 6772 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6773 event->destroy = sw_perf_event_destroy;
6774 }
6775
6776 return 0;
6777}
6778
6779static struct pmu perf_swevent = {
89a1e187 6780 .task_ctx_nr = perf_sw_context,
95476b64 6781
34f43927
PZ
6782 .capabilities = PERF_PMU_CAP_NO_NMI,
6783
b0a873eb 6784 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6785 .add = perf_swevent_add,
6786 .del = perf_swevent_del,
6787 .start = perf_swevent_start,
6788 .stop = perf_swevent_stop,
1c024eca 6789 .read = perf_swevent_read,
1c024eca
PZ
6790};
6791
b0a873eb
PZ
6792#ifdef CONFIG_EVENT_TRACING
6793
1c024eca
PZ
6794static int perf_tp_filter_match(struct perf_event *event,
6795 struct perf_sample_data *data)
6796{
6797 void *record = data->raw->data;
6798
6799 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6800 return 1;
6801 return 0;
6802}
6803
6804static int perf_tp_event_match(struct perf_event *event,
6805 struct perf_sample_data *data,
6806 struct pt_regs *regs)
6807{
a0f7d0f7
FW
6808 if (event->hw.state & PERF_HES_STOPPED)
6809 return 0;
580d607c
PZ
6810 /*
6811 * All tracepoints are from kernel-space.
6812 */
6813 if (event->attr.exclude_kernel)
1c024eca
PZ
6814 return 0;
6815
6816 if (!perf_tp_filter_match(event, data))
6817 return 0;
6818
6819 return 1;
6820}
6821
6822void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6823 struct pt_regs *regs, struct hlist_head *head, int rctx,
6824 struct task_struct *task)
95476b64
FW
6825{
6826 struct perf_sample_data data;
1c024eca 6827 struct perf_event *event;
1c024eca 6828
95476b64
FW
6829 struct perf_raw_record raw = {
6830 .size = entry_size,
6831 .data = record,
6832 };
6833
fd0d000b 6834 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6835 data.raw = &raw;
6836
b67bfe0d 6837 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6838 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6839 perf_swevent_event(event, count, &data, regs);
4f41c013 6840 }
ecc55f84 6841
e6dab5ff
AV
6842 /*
6843 * If we got specified a target task, also iterate its context and
6844 * deliver this event there too.
6845 */
6846 if (task && task != current) {
6847 struct perf_event_context *ctx;
6848 struct trace_entry *entry = record;
6849
6850 rcu_read_lock();
6851 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6852 if (!ctx)
6853 goto unlock;
6854
6855 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6856 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6857 continue;
6858 if (event->attr.config != entry->type)
6859 continue;
6860 if (perf_tp_event_match(event, &data, regs))
6861 perf_swevent_event(event, count, &data, regs);
6862 }
6863unlock:
6864 rcu_read_unlock();
6865 }
6866
ecc55f84 6867 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6868}
6869EXPORT_SYMBOL_GPL(perf_tp_event);
6870
cdd6c482 6871static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6872{
1c024eca 6873 perf_trace_destroy(event);
e077df4f
PZ
6874}
6875
b0a873eb 6876static int perf_tp_event_init(struct perf_event *event)
e077df4f 6877{
76e1d904
FW
6878 int err;
6879
b0a873eb
PZ
6880 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6881 return -ENOENT;
6882
2481c5fa
SE
6883 /*
6884 * no branch sampling for tracepoint events
6885 */
6886 if (has_branch_stack(event))
6887 return -EOPNOTSUPP;
6888
1c024eca
PZ
6889 err = perf_trace_init(event);
6890 if (err)
b0a873eb 6891 return err;
e077df4f 6892
cdd6c482 6893 event->destroy = tp_perf_event_destroy;
e077df4f 6894
b0a873eb
PZ
6895 return 0;
6896}
6897
6898static struct pmu perf_tracepoint = {
89a1e187
PZ
6899 .task_ctx_nr = perf_sw_context,
6900
b0a873eb 6901 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6902 .add = perf_trace_add,
6903 .del = perf_trace_del,
6904 .start = perf_swevent_start,
6905 .stop = perf_swevent_stop,
b0a873eb 6906 .read = perf_swevent_read,
b0a873eb
PZ
6907};
6908
6909static inline void perf_tp_register(void)
6910{
2e80a82a 6911 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6912}
6fb2915d
LZ
6913
6914static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6915{
6916 char *filter_str;
6917 int ret;
6918
6919 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6920 return -EINVAL;
6921
6922 filter_str = strndup_user(arg, PAGE_SIZE);
6923 if (IS_ERR(filter_str))
6924 return PTR_ERR(filter_str);
6925
6926 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6927
6928 kfree(filter_str);
6929 return ret;
6930}
6931
6932static void perf_event_free_filter(struct perf_event *event)
6933{
6934 ftrace_profile_free_filter(event);
6935}
6936
2541517c
AS
6937static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6938{
6939 struct bpf_prog *prog;
6940
6941 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6942 return -EINVAL;
6943
6944 if (event->tp_event->prog)
6945 return -EEXIST;
6946
04a22fae
WN
6947 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
6948 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
6949 return -EINVAL;
6950
6951 prog = bpf_prog_get(prog_fd);
6952 if (IS_ERR(prog))
6953 return PTR_ERR(prog);
6954
6c373ca8 6955 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
6956 /* valid fd, but invalid bpf program type */
6957 bpf_prog_put(prog);
6958 return -EINVAL;
6959 }
6960
6961 event->tp_event->prog = prog;
6962
6963 return 0;
6964}
6965
6966static void perf_event_free_bpf_prog(struct perf_event *event)
6967{
6968 struct bpf_prog *prog;
6969
6970 if (!event->tp_event)
6971 return;
6972
6973 prog = event->tp_event->prog;
6974 if (prog) {
6975 event->tp_event->prog = NULL;
6976 bpf_prog_put(prog);
6977 }
6978}
6979
e077df4f 6980#else
6fb2915d 6981
b0a873eb 6982static inline void perf_tp_register(void)
e077df4f 6983{
e077df4f 6984}
6fb2915d
LZ
6985
6986static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6987{
6988 return -ENOENT;
6989}
6990
6991static void perf_event_free_filter(struct perf_event *event)
6992{
6993}
6994
2541517c
AS
6995static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6996{
6997 return -ENOENT;
6998}
6999
7000static void perf_event_free_bpf_prog(struct perf_event *event)
7001{
7002}
07b139c8 7003#endif /* CONFIG_EVENT_TRACING */
e077df4f 7004
24f1e32c 7005#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7006void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7007{
f5ffe02e
FW
7008 struct perf_sample_data sample;
7009 struct pt_regs *regs = data;
7010
fd0d000b 7011 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7012
a4eaf7f1 7013 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7014 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7015}
7016#endif
7017
b0a873eb
PZ
7018/*
7019 * hrtimer based swevent callback
7020 */
f29ac756 7021
b0a873eb 7022static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7023{
b0a873eb
PZ
7024 enum hrtimer_restart ret = HRTIMER_RESTART;
7025 struct perf_sample_data data;
7026 struct pt_regs *regs;
7027 struct perf_event *event;
7028 u64 period;
f29ac756 7029
b0a873eb 7030 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7031
7032 if (event->state != PERF_EVENT_STATE_ACTIVE)
7033 return HRTIMER_NORESTART;
7034
b0a873eb 7035 event->pmu->read(event);
f344011c 7036
fd0d000b 7037 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7038 regs = get_irq_regs();
7039
7040 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7041 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7042 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7043 ret = HRTIMER_NORESTART;
7044 }
24f1e32c 7045
b0a873eb
PZ
7046 period = max_t(u64, 10000, event->hw.sample_period);
7047 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7048
b0a873eb 7049 return ret;
f29ac756
PZ
7050}
7051
b0a873eb 7052static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7053{
b0a873eb 7054 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7055 s64 period;
7056
7057 if (!is_sampling_event(event))
7058 return;
f5ffe02e 7059
5d508e82
FBH
7060 period = local64_read(&hwc->period_left);
7061 if (period) {
7062 if (period < 0)
7063 period = 10000;
fa407f35 7064
5d508e82
FBH
7065 local64_set(&hwc->period_left, 0);
7066 } else {
7067 period = max_t(u64, 10000, hwc->sample_period);
7068 }
3497d206
TG
7069 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7070 HRTIMER_MODE_REL_PINNED);
24f1e32c 7071}
b0a873eb
PZ
7072
7073static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7074{
b0a873eb
PZ
7075 struct hw_perf_event *hwc = &event->hw;
7076
6c7e550f 7077 if (is_sampling_event(event)) {
b0a873eb 7078 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7079 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7080
7081 hrtimer_cancel(&hwc->hrtimer);
7082 }
24f1e32c
FW
7083}
7084
ba3dd36c
PZ
7085static void perf_swevent_init_hrtimer(struct perf_event *event)
7086{
7087 struct hw_perf_event *hwc = &event->hw;
7088
7089 if (!is_sampling_event(event))
7090 return;
7091
7092 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7093 hwc->hrtimer.function = perf_swevent_hrtimer;
7094
7095 /*
7096 * Since hrtimers have a fixed rate, we can do a static freq->period
7097 * mapping and avoid the whole period adjust feedback stuff.
7098 */
7099 if (event->attr.freq) {
7100 long freq = event->attr.sample_freq;
7101
7102 event->attr.sample_period = NSEC_PER_SEC / freq;
7103 hwc->sample_period = event->attr.sample_period;
7104 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7105 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7106 event->attr.freq = 0;
7107 }
7108}
7109
b0a873eb
PZ
7110/*
7111 * Software event: cpu wall time clock
7112 */
7113
7114static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7115{
b0a873eb
PZ
7116 s64 prev;
7117 u64 now;
7118
a4eaf7f1 7119 now = local_clock();
b0a873eb
PZ
7120 prev = local64_xchg(&event->hw.prev_count, now);
7121 local64_add(now - prev, &event->count);
24f1e32c 7122}
24f1e32c 7123
a4eaf7f1 7124static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7125{
a4eaf7f1 7126 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7127 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7128}
7129
a4eaf7f1 7130static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7131{
b0a873eb
PZ
7132 perf_swevent_cancel_hrtimer(event);
7133 cpu_clock_event_update(event);
7134}
f29ac756 7135
a4eaf7f1
PZ
7136static int cpu_clock_event_add(struct perf_event *event, int flags)
7137{
7138 if (flags & PERF_EF_START)
7139 cpu_clock_event_start(event, flags);
6a694a60 7140 perf_event_update_userpage(event);
a4eaf7f1
PZ
7141
7142 return 0;
7143}
7144
7145static void cpu_clock_event_del(struct perf_event *event, int flags)
7146{
7147 cpu_clock_event_stop(event, flags);
7148}
7149
b0a873eb
PZ
7150static void cpu_clock_event_read(struct perf_event *event)
7151{
7152 cpu_clock_event_update(event);
7153}
f344011c 7154
b0a873eb
PZ
7155static int cpu_clock_event_init(struct perf_event *event)
7156{
7157 if (event->attr.type != PERF_TYPE_SOFTWARE)
7158 return -ENOENT;
7159
7160 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7161 return -ENOENT;
7162
2481c5fa
SE
7163 /*
7164 * no branch sampling for software events
7165 */
7166 if (has_branch_stack(event))
7167 return -EOPNOTSUPP;
7168
ba3dd36c
PZ
7169 perf_swevent_init_hrtimer(event);
7170
b0a873eb 7171 return 0;
f29ac756
PZ
7172}
7173
b0a873eb 7174static struct pmu perf_cpu_clock = {
89a1e187
PZ
7175 .task_ctx_nr = perf_sw_context,
7176
34f43927
PZ
7177 .capabilities = PERF_PMU_CAP_NO_NMI,
7178
b0a873eb 7179 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7180 .add = cpu_clock_event_add,
7181 .del = cpu_clock_event_del,
7182 .start = cpu_clock_event_start,
7183 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7184 .read = cpu_clock_event_read,
7185};
7186
7187/*
7188 * Software event: task time clock
7189 */
7190
7191static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7192{
b0a873eb
PZ
7193 u64 prev;
7194 s64 delta;
5c92d124 7195
b0a873eb
PZ
7196 prev = local64_xchg(&event->hw.prev_count, now);
7197 delta = now - prev;
7198 local64_add(delta, &event->count);
7199}
5c92d124 7200
a4eaf7f1 7201static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7202{
a4eaf7f1 7203 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7204 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7205}
7206
a4eaf7f1 7207static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7208{
7209 perf_swevent_cancel_hrtimer(event);
7210 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7211}
7212
7213static int task_clock_event_add(struct perf_event *event, int flags)
7214{
7215 if (flags & PERF_EF_START)
7216 task_clock_event_start(event, flags);
6a694a60 7217 perf_event_update_userpage(event);
b0a873eb 7218
a4eaf7f1
PZ
7219 return 0;
7220}
7221
7222static void task_clock_event_del(struct perf_event *event, int flags)
7223{
7224 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7225}
7226
7227static void task_clock_event_read(struct perf_event *event)
7228{
768a06e2
PZ
7229 u64 now = perf_clock();
7230 u64 delta = now - event->ctx->timestamp;
7231 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7232
7233 task_clock_event_update(event, time);
7234}
7235
7236static int task_clock_event_init(struct perf_event *event)
6fb2915d 7237{
b0a873eb
PZ
7238 if (event->attr.type != PERF_TYPE_SOFTWARE)
7239 return -ENOENT;
7240
7241 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7242 return -ENOENT;
7243
2481c5fa
SE
7244 /*
7245 * no branch sampling for software events
7246 */
7247 if (has_branch_stack(event))
7248 return -EOPNOTSUPP;
7249
ba3dd36c
PZ
7250 perf_swevent_init_hrtimer(event);
7251
b0a873eb 7252 return 0;
6fb2915d
LZ
7253}
7254
b0a873eb 7255static struct pmu perf_task_clock = {
89a1e187
PZ
7256 .task_ctx_nr = perf_sw_context,
7257
34f43927
PZ
7258 .capabilities = PERF_PMU_CAP_NO_NMI,
7259
b0a873eb 7260 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7261 .add = task_clock_event_add,
7262 .del = task_clock_event_del,
7263 .start = task_clock_event_start,
7264 .stop = task_clock_event_stop,
b0a873eb
PZ
7265 .read = task_clock_event_read,
7266};
6fb2915d 7267
ad5133b7 7268static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7269{
e077df4f 7270}
6fb2915d 7271
fbbe0701
SB
7272static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7273{
7274}
7275
ad5133b7 7276static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7277{
ad5133b7 7278 return 0;
6fb2915d
LZ
7279}
7280
fbbe0701
SB
7281DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7282
7283static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7284{
fbbe0701
SB
7285 __this_cpu_write(nop_txn_flags, flags);
7286
7287 if (flags & ~PERF_PMU_TXN_ADD)
7288 return;
7289
ad5133b7 7290 perf_pmu_disable(pmu);
6fb2915d
LZ
7291}
7292
ad5133b7
PZ
7293static int perf_pmu_commit_txn(struct pmu *pmu)
7294{
fbbe0701
SB
7295 unsigned int flags = __this_cpu_read(nop_txn_flags);
7296
7297 __this_cpu_write(nop_txn_flags, 0);
7298
7299 if (flags & ~PERF_PMU_TXN_ADD)
7300 return 0;
7301
ad5133b7
PZ
7302 perf_pmu_enable(pmu);
7303 return 0;
7304}
e077df4f 7305
ad5133b7 7306static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7307{
fbbe0701
SB
7308 unsigned int flags = __this_cpu_read(nop_txn_flags);
7309
7310 __this_cpu_write(nop_txn_flags, 0);
7311
7312 if (flags & ~PERF_PMU_TXN_ADD)
7313 return;
7314
ad5133b7 7315 perf_pmu_enable(pmu);
24f1e32c
FW
7316}
7317
35edc2a5
PZ
7318static int perf_event_idx_default(struct perf_event *event)
7319{
c719f560 7320 return 0;
35edc2a5
PZ
7321}
7322
8dc85d54
PZ
7323/*
7324 * Ensures all contexts with the same task_ctx_nr have the same
7325 * pmu_cpu_context too.
7326 */
9e317041 7327static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7328{
8dc85d54 7329 struct pmu *pmu;
b326e956 7330
8dc85d54
PZ
7331 if (ctxn < 0)
7332 return NULL;
24f1e32c 7333
8dc85d54
PZ
7334 list_for_each_entry(pmu, &pmus, entry) {
7335 if (pmu->task_ctx_nr == ctxn)
7336 return pmu->pmu_cpu_context;
7337 }
24f1e32c 7338
8dc85d54 7339 return NULL;
24f1e32c
FW
7340}
7341
51676957 7342static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7343{
51676957
PZ
7344 int cpu;
7345
7346 for_each_possible_cpu(cpu) {
7347 struct perf_cpu_context *cpuctx;
7348
7349 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7350
3f1f3320
PZ
7351 if (cpuctx->unique_pmu == old_pmu)
7352 cpuctx->unique_pmu = pmu;
51676957
PZ
7353 }
7354}
7355
7356static void free_pmu_context(struct pmu *pmu)
7357{
7358 struct pmu *i;
f5ffe02e 7359
8dc85d54 7360 mutex_lock(&pmus_lock);
0475f9ea 7361 /*
8dc85d54 7362 * Like a real lame refcount.
0475f9ea 7363 */
51676957
PZ
7364 list_for_each_entry(i, &pmus, entry) {
7365 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7366 update_pmu_context(i, pmu);
8dc85d54 7367 goto out;
51676957 7368 }
8dc85d54 7369 }
d6d020e9 7370
51676957 7371 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7372out:
7373 mutex_unlock(&pmus_lock);
24f1e32c 7374}
2e80a82a 7375static struct idr pmu_idr;
d6d020e9 7376
abe43400
PZ
7377static ssize_t
7378type_show(struct device *dev, struct device_attribute *attr, char *page)
7379{
7380 struct pmu *pmu = dev_get_drvdata(dev);
7381
7382 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7383}
90826ca7 7384static DEVICE_ATTR_RO(type);
abe43400 7385
62b85639
SE
7386static ssize_t
7387perf_event_mux_interval_ms_show(struct device *dev,
7388 struct device_attribute *attr,
7389 char *page)
7390{
7391 struct pmu *pmu = dev_get_drvdata(dev);
7392
7393 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7394}
7395
272325c4
PZ
7396static DEFINE_MUTEX(mux_interval_mutex);
7397
62b85639
SE
7398static ssize_t
7399perf_event_mux_interval_ms_store(struct device *dev,
7400 struct device_attribute *attr,
7401 const char *buf, size_t count)
7402{
7403 struct pmu *pmu = dev_get_drvdata(dev);
7404 int timer, cpu, ret;
7405
7406 ret = kstrtoint(buf, 0, &timer);
7407 if (ret)
7408 return ret;
7409
7410 if (timer < 1)
7411 return -EINVAL;
7412
7413 /* same value, noting to do */
7414 if (timer == pmu->hrtimer_interval_ms)
7415 return count;
7416
272325c4 7417 mutex_lock(&mux_interval_mutex);
62b85639
SE
7418 pmu->hrtimer_interval_ms = timer;
7419
7420 /* update all cpuctx for this PMU */
272325c4
PZ
7421 get_online_cpus();
7422 for_each_online_cpu(cpu) {
62b85639
SE
7423 struct perf_cpu_context *cpuctx;
7424 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7425 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7426
272325c4
PZ
7427 cpu_function_call(cpu,
7428 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7429 }
272325c4
PZ
7430 put_online_cpus();
7431 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7432
7433 return count;
7434}
90826ca7 7435static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7436
90826ca7
GKH
7437static struct attribute *pmu_dev_attrs[] = {
7438 &dev_attr_type.attr,
7439 &dev_attr_perf_event_mux_interval_ms.attr,
7440 NULL,
abe43400 7441};
90826ca7 7442ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7443
7444static int pmu_bus_running;
7445static struct bus_type pmu_bus = {
7446 .name = "event_source",
90826ca7 7447 .dev_groups = pmu_dev_groups,
abe43400
PZ
7448};
7449
7450static void pmu_dev_release(struct device *dev)
7451{
7452 kfree(dev);
7453}
7454
7455static int pmu_dev_alloc(struct pmu *pmu)
7456{
7457 int ret = -ENOMEM;
7458
7459 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7460 if (!pmu->dev)
7461 goto out;
7462
0c9d42ed 7463 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7464 device_initialize(pmu->dev);
7465 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7466 if (ret)
7467 goto free_dev;
7468
7469 dev_set_drvdata(pmu->dev, pmu);
7470 pmu->dev->bus = &pmu_bus;
7471 pmu->dev->release = pmu_dev_release;
7472 ret = device_add(pmu->dev);
7473 if (ret)
7474 goto free_dev;
7475
7476out:
7477 return ret;
7478
7479free_dev:
7480 put_device(pmu->dev);
7481 goto out;
7482}
7483
547e9fd7 7484static struct lock_class_key cpuctx_mutex;
facc4307 7485static struct lock_class_key cpuctx_lock;
547e9fd7 7486
03d8e80b 7487int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7488{
108b02cf 7489 int cpu, ret;
24f1e32c 7490
b0a873eb 7491 mutex_lock(&pmus_lock);
33696fc0
PZ
7492 ret = -ENOMEM;
7493 pmu->pmu_disable_count = alloc_percpu(int);
7494 if (!pmu->pmu_disable_count)
7495 goto unlock;
f29ac756 7496
2e80a82a
PZ
7497 pmu->type = -1;
7498 if (!name)
7499 goto skip_type;
7500 pmu->name = name;
7501
7502 if (type < 0) {
0e9c3be2
TH
7503 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7504 if (type < 0) {
7505 ret = type;
2e80a82a
PZ
7506 goto free_pdc;
7507 }
7508 }
7509 pmu->type = type;
7510
abe43400
PZ
7511 if (pmu_bus_running) {
7512 ret = pmu_dev_alloc(pmu);
7513 if (ret)
7514 goto free_idr;
7515 }
7516
2e80a82a 7517skip_type:
8dc85d54
PZ
7518 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7519 if (pmu->pmu_cpu_context)
7520 goto got_cpu_context;
f29ac756 7521
c4814202 7522 ret = -ENOMEM;
108b02cf
PZ
7523 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7524 if (!pmu->pmu_cpu_context)
abe43400 7525 goto free_dev;
f344011c 7526
108b02cf
PZ
7527 for_each_possible_cpu(cpu) {
7528 struct perf_cpu_context *cpuctx;
7529
7530 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7531 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7532 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7533 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7534 cpuctx->ctx.pmu = pmu;
9e630205 7535
272325c4 7536 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7537
3f1f3320 7538 cpuctx->unique_pmu = pmu;
108b02cf 7539 }
76e1d904 7540
8dc85d54 7541got_cpu_context:
ad5133b7
PZ
7542 if (!pmu->start_txn) {
7543 if (pmu->pmu_enable) {
7544 /*
7545 * If we have pmu_enable/pmu_disable calls, install
7546 * transaction stubs that use that to try and batch
7547 * hardware accesses.
7548 */
7549 pmu->start_txn = perf_pmu_start_txn;
7550 pmu->commit_txn = perf_pmu_commit_txn;
7551 pmu->cancel_txn = perf_pmu_cancel_txn;
7552 } else {
fbbe0701 7553 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7554 pmu->commit_txn = perf_pmu_nop_int;
7555 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7556 }
5c92d124 7557 }
15dbf27c 7558
ad5133b7
PZ
7559 if (!pmu->pmu_enable) {
7560 pmu->pmu_enable = perf_pmu_nop_void;
7561 pmu->pmu_disable = perf_pmu_nop_void;
7562 }
7563
35edc2a5
PZ
7564 if (!pmu->event_idx)
7565 pmu->event_idx = perf_event_idx_default;
7566
b0a873eb 7567 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7568 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7569 ret = 0;
7570unlock:
b0a873eb
PZ
7571 mutex_unlock(&pmus_lock);
7572
33696fc0 7573 return ret;
108b02cf 7574
abe43400
PZ
7575free_dev:
7576 device_del(pmu->dev);
7577 put_device(pmu->dev);
7578
2e80a82a
PZ
7579free_idr:
7580 if (pmu->type >= PERF_TYPE_MAX)
7581 idr_remove(&pmu_idr, pmu->type);
7582
108b02cf
PZ
7583free_pdc:
7584 free_percpu(pmu->pmu_disable_count);
7585 goto unlock;
f29ac756 7586}
c464c76e 7587EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7588
b0a873eb 7589void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7590{
b0a873eb
PZ
7591 mutex_lock(&pmus_lock);
7592 list_del_rcu(&pmu->entry);
7593 mutex_unlock(&pmus_lock);
5c92d124 7594
0475f9ea 7595 /*
cde8e884
PZ
7596 * We dereference the pmu list under both SRCU and regular RCU, so
7597 * synchronize against both of those.
0475f9ea 7598 */
b0a873eb 7599 synchronize_srcu(&pmus_srcu);
cde8e884 7600 synchronize_rcu();
d6d020e9 7601
33696fc0 7602 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7603 if (pmu->type >= PERF_TYPE_MAX)
7604 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7605 device_del(pmu->dev);
7606 put_device(pmu->dev);
51676957 7607 free_pmu_context(pmu);
b0a873eb 7608}
c464c76e 7609EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7610
cc34b98b
MR
7611static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7612{
ccd41c86 7613 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7614 int ret;
7615
7616 if (!try_module_get(pmu->module))
7617 return -ENODEV;
ccd41c86
PZ
7618
7619 if (event->group_leader != event) {
8b10c5e2
PZ
7620 /*
7621 * This ctx->mutex can nest when we're called through
7622 * inheritance. See the perf_event_ctx_lock_nested() comment.
7623 */
7624 ctx = perf_event_ctx_lock_nested(event->group_leader,
7625 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7626 BUG_ON(!ctx);
7627 }
7628
cc34b98b
MR
7629 event->pmu = pmu;
7630 ret = pmu->event_init(event);
ccd41c86
PZ
7631
7632 if (ctx)
7633 perf_event_ctx_unlock(event->group_leader, ctx);
7634
cc34b98b
MR
7635 if (ret)
7636 module_put(pmu->module);
7637
7638 return ret;
7639}
7640
b0a873eb
PZ
7641struct pmu *perf_init_event(struct perf_event *event)
7642{
7643 struct pmu *pmu = NULL;
7644 int idx;
940c5b29 7645 int ret;
b0a873eb
PZ
7646
7647 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7648
7649 rcu_read_lock();
7650 pmu = idr_find(&pmu_idr, event->attr.type);
7651 rcu_read_unlock();
940c5b29 7652 if (pmu) {
cc34b98b 7653 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7654 if (ret)
7655 pmu = ERR_PTR(ret);
2e80a82a 7656 goto unlock;
940c5b29 7657 }
2e80a82a 7658
b0a873eb 7659 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7660 ret = perf_try_init_event(pmu, event);
b0a873eb 7661 if (!ret)
e5f4d339 7662 goto unlock;
76e1d904 7663
b0a873eb
PZ
7664 if (ret != -ENOENT) {
7665 pmu = ERR_PTR(ret);
e5f4d339 7666 goto unlock;
f344011c 7667 }
5c92d124 7668 }
e5f4d339
PZ
7669 pmu = ERR_PTR(-ENOENT);
7670unlock:
b0a873eb 7671 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7672
4aeb0b42 7673 return pmu;
5c92d124
IM
7674}
7675
4beb31f3
FW
7676static void account_event_cpu(struct perf_event *event, int cpu)
7677{
7678 if (event->parent)
7679 return;
7680
4beb31f3
FW
7681 if (is_cgroup_event(event))
7682 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7683}
7684
766d6c07
FW
7685static void account_event(struct perf_event *event)
7686{
4beb31f3
FW
7687 if (event->parent)
7688 return;
7689
766d6c07
FW
7690 if (event->attach_state & PERF_ATTACH_TASK)
7691 static_key_slow_inc(&perf_sched_events.key);
7692 if (event->attr.mmap || event->attr.mmap_data)
7693 atomic_inc(&nr_mmap_events);
7694 if (event->attr.comm)
7695 atomic_inc(&nr_comm_events);
7696 if (event->attr.task)
7697 atomic_inc(&nr_task_events);
948b26b6
FW
7698 if (event->attr.freq) {
7699 if (atomic_inc_return(&nr_freq_events) == 1)
7700 tick_nohz_full_kick_all();
7701 }
45ac1403
AH
7702 if (event->attr.context_switch) {
7703 atomic_inc(&nr_switch_events);
7704 static_key_slow_inc(&perf_sched_events.key);
7705 }
4beb31f3 7706 if (has_branch_stack(event))
766d6c07 7707 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7708 if (is_cgroup_event(event))
766d6c07 7709 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7710
7711 account_event_cpu(event, event->cpu);
766d6c07
FW
7712}
7713
0793a61d 7714/*
cdd6c482 7715 * Allocate and initialize a event structure
0793a61d 7716 */
cdd6c482 7717static struct perf_event *
c3f00c70 7718perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7719 struct task_struct *task,
7720 struct perf_event *group_leader,
7721 struct perf_event *parent_event,
4dc0da86 7722 perf_overflow_handler_t overflow_handler,
79dff51e 7723 void *context, int cgroup_fd)
0793a61d 7724{
51b0fe39 7725 struct pmu *pmu;
cdd6c482
IM
7726 struct perf_event *event;
7727 struct hw_perf_event *hwc;
90983b16 7728 long err = -EINVAL;
0793a61d 7729
66832eb4
ON
7730 if ((unsigned)cpu >= nr_cpu_ids) {
7731 if (!task || cpu != -1)
7732 return ERR_PTR(-EINVAL);
7733 }
7734
c3f00c70 7735 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7736 if (!event)
d5d2bc0d 7737 return ERR_PTR(-ENOMEM);
0793a61d 7738
04289bb9 7739 /*
cdd6c482 7740 * Single events are their own group leaders, with an
04289bb9
IM
7741 * empty sibling list:
7742 */
7743 if (!group_leader)
cdd6c482 7744 group_leader = event;
04289bb9 7745
cdd6c482
IM
7746 mutex_init(&event->child_mutex);
7747 INIT_LIST_HEAD(&event->child_list);
fccc714b 7748
cdd6c482
IM
7749 INIT_LIST_HEAD(&event->group_entry);
7750 INIT_LIST_HEAD(&event->event_entry);
7751 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7752 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7753 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7754 INIT_HLIST_NODE(&event->hlist_entry);
7755
10c6db11 7756
cdd6c482 7757 init_waitqueue_head(&event->waitq);
e360adbe 7758 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7759
cdd6c482 7760 mutex_init(&event->mmap_mutex);
7b732a75 7761
a6fa941d 7762 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7763 event->cpu = cpu;
7764 event->attr = *attr;
7765 event->group_leader = group_leader;
7766 event->pmu = NULL;
cdd6c482 7767 event->oncpu = -1;
a96bbc16 7768
cdd6c482 7769 event->parent = parent_event;
b84fbc9f 7770
17cf22c3 7771 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7772 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7773
cdd6c482 7774 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7775
d580ff86
PZ
7776 if (task) {
7777 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7778 /*
50f16a8b
PZ
7779 * XXX pmu::event_init needs to know what task to account to
7780 * and we cannot use the ctx information because we need the
7781 * pmu before we get a ctx.
d580ff86 7782 */
50f16a8b 7783 event->hw.target = task;
d580ff86
PZ
7784 }
7785
34f43927
PZ
7786 event->clock = &local_clock;
7787 if (parent_event)
7788 event->clock = parent_event->clock;
7789
4dc0da86 7790 if (!overflow_handler && parent_event) {
b326e956 7791 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7792 context = parent_event->overflow_handler_context;
7793 }
66832eb4 7794
b326e956 7795 event->overflow_handler = overflow_handler;
4dc0da86 7796 event->overflow_handler_context = context;
97eaf530 7797
0231bb53 7798 perf_event__state_init(event);
a86ed508 7799
4aeb0b42 7800 pmu = NULL;
b8e83514 7801
cdd6c482 7802 hwc = &event->hw;
bd2b5b12 7803 hwc->sample_period = attr->sample_period;
0d48696f 7804 if (attr->freq && attr->sample_freq)
bd2b5b12 7805 hwc->sample_period = 1;
eced1dfc 7806 hwc->last_period = hwc->sample_period;
bd2b5b12 7807
e7850595 7808 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7809
2023b359 7810 /*
cdd6c482 7811 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7812 */
3dab77fb 7813 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7814 goto err_ns;
a46a2300
YZ
7815
7816 if (!has_branch_stack(event))
7817 event->attr.branch_sample_type = 0;
2023b359 7818
79dff51e
MF
7819 if (cgroup_fd != -1) {
7820 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7821 if (err)
7822 goto err_ns;
7823 }
7824
b0a873eb 7825 pmu = perf_init_event(event);
4aeb0b42 7826 if (!pmu)
90983b16
FW
7827 goto err_ns;
7828 else if (IS_ERR(pmu)) {
4aeb0b42 7829 err = PTR_ERR(pmu);
90983b16 7830 goto err_ns;
621a01ea 7831 }
d5d2bc0d 7832
bed5b25a
AS
7833 err = exclusive_event_init(event);
7834 if (err)
7835 goto err_pmu;
7836
cdd6c482 7837 if (!event->parent) {
927c7a9e
FW
7838 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7839 err = get_callchain_buffers();
90983b16 7840 if (err)
bed5b25a 7841 goto err_per_task;
d010b332 7842 }
f344011c 7843 }
9ee318a7 7844
cdd6c482 7845 return event;
90983b16 7846
bed5b25a
AS
7847err_per_task:
7848 exclusive_event_destroy(event);
7849
90983b16
FW
7850err_pmu:
7851 if (event->destroy)
7852 event->destroy(event);
c464c76e 7853 module_put(pmu->module);
90983b16 7854err_ns:
79dff51e
MF
7855 if (is_cgroup_event(event))
7856 perf_detach_cgroup(event);
90983b16
FW
7857 if (event->ns)
7858 put_pid_ns(event->ns);
7859 kfree(event);
7860
7861 return ERR_PTR(err);
0793a61d
TG
7862}
7863
cdd6c482
IM
7864static int perf_copy_attr(struct perf_event_attr __user *uattr,
7865 struct perf_event_attr *attr)
974802ea 7866{
974802ea 7867 u32 size;
cdf8073d 7868 int ret;
974802ea
PZ
7869
7870 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7871 return -EFAULT;
7872
7873 /*
7874 * zero the full structure, so that a short copy will be nice.
7875 */
7876 memset(attr, 0, sizeof(*attr));
7877
7878 ret = get_user(size, &uattr->size);
7879 if (ret)
7880 return ret;
7881
7882 if (size > PAGE_SIZE) /* silly large */
7883 goto err_size;
7884
7885 if (!size) /* abi compat */
7886 size = PERF_ATTR_SIZE_VER0;
7887
7888 if (size < PERF_ATTR_SIZE_VER0)
7889 goto err_size;
7890
7891 /*
7892 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7893 * ensure all the unknown bits are 0 - i.e. new
7894 * user-space does not rely on any kernel feature
7895 * extensions we dont know about yet.
974802ea
PZ
7896 */
7897 if (size > sizeof(*attr)) {
cdf8073d
IS
7898 unsigned char __user *addr;
7899 unsigned char __user *end;
7900 unsigned char val;
974802ea 7901
cdf8073d
IS
7902 addr = (void __user *)uattr + sizeof(*attr);
7903 end = (void __user *)uattr + size;
974802ea 7904
cdf8073d 7905 for (; addr < end; addr++) {
974802ea
PZ
7906 ret = get_user(val, addr);
7907 if (ret)
7908 return ret;
7909 if (val)
7910 goto err_size;
7911 }
b3e62e35 7912 size = sizeof(*attr);
974802ea
PZ
7913 }
7914
7915 ret = copy_from_user(attr, uattr, size);
7916 if (ret)
7917 return -EFAULT;
7918
cd757645 7919 if (attr->__reserved_1)
974802ea
PZ
7920 return -EINVAL;
7921
7922 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7923 return -EINVAL;
7924
7925 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7926 return -EINVAL;
7927
bce38cd5
SE
7928 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7929 u64 mask = attr->branch_sample_type;
7930
7931 /* only using defined bits */
7932 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7933 return -EINVAL;
7934
7935 /* at least one branch bit must be set */
7936 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7937 return -EINVAL;
7938
bce38cd5
SE
7939 /* propagate priv level, when not set for branch */
7940 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7941
7942 /* exclude_kernel checked on syscall entry */
7943 if (!attr->exclude_kernel)
7944 mask |= PERF_SAMPLE_BRANCH_KERNEL;
7945
7946 if (!attr->exclude_user)
7947 mask |= PERF_SAMPLE_BRANCH_USER;
7948
7949 if (!attr->exclude_hv)
7950 mask |= PERF_SAMPLE_BRANCH_HV;
7951 /*
7952 * adjust user setting (for HW filter setup)
7953 */
7954 attr->branch_sample_type = mask;
7955 }
e712209a
SE
7956 /* privileged levels capture (kernel, hv): check permissions */
7957 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
7958 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7959 return -EACCES;
bce38cd5 7960 }
4018994f 7961
c5ebcedb 7962 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 7963 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
7964 if (ret)
7965 return ret;
7966 }
7967
7968 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7969 if (!arch_perf_have_user_stack_dump())
7970 return -ENOSYS;
7971
7972 /*
7973 * We have __u32 type for the size, but so far
7974 * we can only use __u16 as maximum due to the
7975 * __u16 sample size limit.
7976 */
7977 if (attr->sample_stack_user >= USHRT_MAX)
7978 ret = -EINVAL;
7979 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7980 ret = -EINVAL;
7981 }
4018994f 7982
60e2364e
SE
7983 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7984 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
7985out:
7986 return ret;
7987
7988err_size:
7989 put_user(sizeof(*attr), &uattr->size);
7990 ret = -E2BIG;
7991 goto out;
7992}
7993
ac9721f3
PZ
7994static int
7995perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 7996{
b69cf536 7997 struct ring_buffer *rb = NULL;
a4be7c27
PZ
7998 int ret = -EINVAL;
7999
ac9721f3 8000 if (!output_event)
a4be7c27
PZ
8001 goto set;
8002
ac9721f3
PZ
8003 /* don't allow circular references */
8004 if (event == output_event)
a4be7c27
PZ
8005 goto out;
8006
0f139300
PZ
8007 /*
8008 * Don't allow cross-cpu buffers
8009 */
8010 if (output_event->cpu != event->cpu)
8011 goto out;
8012
8013 /*
76369139 8014 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8015 */
8016 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8017 goto out;
8018
34f43927
PZ
8019 /*
8020 * Mixing clocks in the same buffer is trouble you don't need.
8021 */
8022 if (output_event->clock != event->clock)
8023 goto out;
8024
45bfb2e5
PZ
8025 /*
8026 * If both events generate aux data, they must be on the same PMU
8027 */
8028 if (has_aux(event) && has_aux(output_event) &&
8029 event->pmu != output_event->pmu)
8030 goto out;
8031
a4be7c27 8032set:
cdd6c482 8033 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8034 /* Can't redirect output if we've got an active mmap() */
8035 if (atomic_read(&event->mmap_count))
8036 goto unlock;
a4be7c27 8037
ac9721f3 8038 if (output_event) {
76369139
FW
8039 /* get the rb we want to redirect to */
8040 rb = ring_buffer_get(output_event);
8041 if (!rb)
ac9721f3 8042 goto unlock;
a4be7c27
PZ
8043 }
8044
b69cf536 8045 ring_buffer_attach(event, rb);
9bb5d40c 8046
a4be7c27 8047 ret = 0;
ac9721f3
PZ
8048unlock:
8049 mutex_unlock(&event->mmap_mutex);
8050
a4be7c27 8051out:
a4be7c27
PZ
8052 return ret;
8053}
8054
f63a8daa
PZ
8055static void mutex_lock_double(struct mutex *a, struct mutex *b)
8056{
8057 if (b < a)
8058 swap(a, b);
8059
8060 mutex_lock(a);
8061 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8062}
8063
34f43927
PZ
8064static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8065{
8066 bool nmi_safe = false;
8067
8068 switch (clk_id) {
8069 case CLOCK_MONOTONIC:
8070 event->clock = &ktime_get_mono_fast_ns;
8071 nmi_safe = true;
8072 break;
8073
8074 case CLOCK_MONOTONIC_RAW:
8075 event->clock = &ktime_get_raw_fast_ns;
8076 nmi_safe = true;
8077 break;
8078
8079 case CLOCK_REALTIME:
8080 event->clock = &ktime_get_real_ns;
8081 break;
8082
8083 case CLOCK_BOOTTIME:
8084 event->clock = &ktime_get_boot_ns;
8085 break;
8086
8087 case CLOCK_TAI:
8088 event->clock = &ktime_get_tai_ns;
8089 break;
8090
8091 default:
8092 return -EINVAL;
8093 }
8094
8095 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8096 return -EINVAL;
8097
8098 return 0;
8099}
8100
0793a61d 8101/**
cdd6c482 8102 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8103 *
cdd6c482 8104 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8105 * @pid: target pid
9f66a381 8106 * @cpu: target cpu
cdd6c482 8107 * @group_fd: group leader event fd
0793a61d 8108 */
cdd6c482
IM
8109SYSCALL_DEFINE5(perf_event_open,
8110 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8111 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8112{
b04243ef
PZ
8113 struct perf_event *group_leader = NULL, *output_event = NULL;
8114 struct perf_event *event, *sibling;
cdd6c482 8115 struct perf_event_attr attr;
f63a8daa 8116 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8117 struct file *event_file = NULL;
2903ff01 8118 struct fd group = {NULL, 0};
38a81da2 8119 struct task_struct *task = NULL;
89a1e187 8120 struct pmu *pmu;
ea635c64 8121 int event_fd;
b04243ef 8122 int move_group = 0;
dc86cabe 8123 int err;
a21b0b35 8124 int f_flags = O_RDWR;
79dff51e 8125 int cgroup_fd = -1;
0793a61d 8126
2743a5b0 8127 /* for future expandability... */
e5d1367f 8128 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8129 return -EINVAL;
8130
dc86cabe
IM
8131 err = perf_copy_attr(attr_uptr, &attr);
8132 if (err)
8133 return err;
eab656ae 8134
0764771d
PZ
8135 if (!attr.exclude_kernel) {
8136 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8137 return -EACCES;
8138 }
8139
df58ab24 8140 if (attr.freq) {
cdd6c482 8141 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8142 return -EINVAL;
0819b2e3
PZ
8143 } else {
8144 if (attr.sample_period & (1ULL << 63))
8145 return -EINVAL;
df58ab24
PZ
8146 }
8147
e5d1367f
SE
8148 /*
8149 * In cgroup mode, the pid argument is used to pass the fd
8150 * opened to the cgroup directory in cgroupfs. The cpu argument
8151 * designates the cpu on which to monitor threads from that
8152 * cgroup.
8153 */
8154 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8155 return -EINVAL;
8156
a21b0b35
YD
8157 if (flags & PERF_FLAG_FD_CLOEXEC)
8158 f_flags |= O_CLOEXEC;
8159
8160 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8161 if (event_fd < 0)
8162 return event_fd;
8163
ac9721f3 8164 if (group_fd != -1) {
2903ff01
AV
8165 err = perf_fget_light(group_fd, &group);
8166 if (err)
d14b12d7 8167 goto err_fd;
2903ff01 8168 group_leader = group.file->private_data;
ac9721f3
PZ
8169 if (flags & PERF_FLAG_FD_OUTPUT)
8170 output_event = group_leader;
8171 if (flags & PERF_FLAG_FD_NO_GROUP)
8172 group_leader = NULL;
8173 }
8174
e5d1367f 8175 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8176 task = find_lively_task_by_vpid(pid);
8177 if (IS_ERR(task)) {
8178 err = PTR_ERR(task);
8179 goto err_group_fd;
8180 }
8181 }
8182
1f4ee503
PZ
8183 if (task && group_leader &&
8184 group_leader->attr.inherit != attr.inherit) {
8185 err = -EINVAL;
8186 goto err_task;
8187 }
8188
fbfc623f
YZ
8189 get_online_cpus();
8190
79dff51e
MF
8191 if (flags & PERF_FLAG_PID_CGROUP)
8192 cgroup_fd = pid;
8193
4dc0da86 8194 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8195 NULL, NULL, cgroup_fd);
d14b12d7
SE
8196 if (IS_ERR(event)) {
8197 err = PTR_ERR(event);
1f4ee503 8198 goto err_cpus;
d14b12d7
SE
8199 }
8200
53b25335
VW
8201 if (is_sampling_event(event)) {
8202 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8203 err = -ENOTSUPP;
8204 goto err_alloc;
8205 }
8206 }
8207
766d6c07
FW
8208 account_event(event);
8209
89a1e187
PZ
8210 /*
8211 * Special case software events and allow them to be part of
8212 * any hardware group.
8213 */
8214 pmu = event->pmu;
b04243ef 8215
34f43927
PZ
8216 if (attr.use_clockid) {
8217 err = perf_event_set_clock(event, attr.clockid);
8218 if (err)
8219 goto err_alloc;
8220 }
8221
b04243ef
PZ
8222 if (group_leader &&
8223 (is_software_event(event) != is_software_event(group_leader))) {
8224 if (is_software_event(event)) {
8225 /*
8226 * If event and group_leader are not both a software
8227 * event, and event is, then group leader is not.
8228 *
8229 * Allow the addition of software events to !software
8230 * groups, this is safe because software events never
8231 * fail to schedule.
8232 */
8233 pmu = group_leader->pmu;
8234 } else if (is_software_event(group_leader) &&
8235 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8236 /*
8237 * In case the group is a pure software group, and we
8238 * try to add a hardware event, move the whole group to
8239 * the hardware context.
8240 */
8241 move_group = 1;
8242 }
8243 }
89a1e187
PZ
8244
8245 /*
8246 * Get the target context (task or percpu):
8247 */
4af57ef2 8248 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8249 if (IS_ERR(ctx)) {
8250 err = PTR_ERR(ctx);
c6be5a5c 8251 goto err_alloc;
89a1e187
PZ
8252 }
8253
bed5b25a
AS
8254 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8255 err = -EBUSY;
8256 goto err_context;
8257 }
8258
fd1edb3a
PZ
8259 if (task) {
8260 put_task_struct(task);
8261 task = NULL;
8262 }
8263
ccff286d 8264 /*
cdd6c482 8265 * Look up the group leader (we will attach this event to it):
04289bb9 8266 */
ac9721f3 8267 if (group_leader) {
dc86cabe 8268 err = -EINVAL;
04289bb9 8269
04289bb9 8270 /*
ccff286d
IM
8271 * Do not allow a recursive hierarchy (this new sibling
8272 * becoming part of another group-sibling):
8273 */
8274 if (group_leader->group_leader != group_leader)
c3f00c70 8275 goto err_context;
34f43927
PZ
8276
8277 /* All events in a group should have the same clock */
8278 if (group_leader->clock != event->clock)
8279 goto err_context;
8280
ccff286d
IM
8281 /*
8282 * Do not allow to attach to a group in a different
8283 * task or CPU context:
04289bb9 8284 */
b04243ef 8285 if (move_group) {
c3c87e77
PZ
8286 /*
8287 * Make sure we're both on the same task, or both
8288 * per-cpu events.
8289 */
8290 if (group_leader->ctx->task != ctx->task)
8291 goto err_context;
8292
8293 /*
8294 * Make sure we're both events for the same CPU;
8295 * grouping events for different CPUs is broken; since
8296 * you can never concurrently schedule them anyhow.
8297 */
8298 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8299 goto err_context;
8300 } else {
8301 if (group_leader->ctx != ctx)
8302 goto err_context;
8303 }
8304
3b6f9e5c
PM
8305 /*
8306 * Only a group leader can be exclusive or pinned
8307 */
0d48696f 8308 if (attr.exclusive || attr.pinned)
c3f00c70 8309 goto err_context;
ac9721f3
PZ
8310 }
8311
8312 if (output_event) {
8313 err = perf_event_set_output(event, output_event);
8314 if (err)
c3f00c70 8315 goto err_context;
ac9721f3 8316 }
0793a61d 8317
a21b0b35
YD
8318 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8319 f_flags);
ea635c64
AV
8320 if (IS_ERR(event_file)) {
8321 err = PTR_ERR(event_file);
c3f00c70 8322 goto err_context;
ea635c64 8323 }
9b51f66d 8324
b04243ef 8325 if (move_group) {
f63a8daa
PZ
8326 gctx = group_leader->ctx;
8327
8328 /*
8329 * See perf_event_ctx_lock() for comments on the details
8330 * of swizzling perf_event::ctx.
8331 */
8332 mutex_lock_double(&gctx->mutex, &ctx->mutex);
b04243ef 8333
46ce0fe9 8334 perf_remove_from_context(group_leader, false);
0231bb53 8335
b04243ef
PZ
8336 list_for_each_entry(sibling, &group_leader->sibling_list,
8337 group_entry) {
46ce0fe9 8338 perf_remove_from_context(sibling, false);
b04243ef
PZ
8339 put_ctx(gctx);
8340 }
f63a8daa
PZ
8341 } else {
8342 mutex_lock(&ctx->mutex);
ea635c64 8343 }
9b51f66d 8344
ad3a37de 8345 WARN_ON_ONCE(ctx->parent_ctx);
b04243ef
PZ
8346
8347 if (move_group) {
f63a8daa
PZ
8348 /*
8349 * Wait for everybody to stop referencing the events through
8350 * the old lists, before installing it on new lists.
8351 */
0cda4c02 8352 synchronize_rcu();
f63a8daa 8353
8f95b435
PZI
8354 /*
8355 * Install the group siblings before the group leader.
8356 *
8357 * Because a group leader will try and install the entire group
8358 * (through the sibling list, which is still in-tact), we can
8359 * end up with siblings installed in the wrong context.
8360 *
8361 * By installing siblings first we NO-OP because they're not
8362 * reachable through the group lists.
8363 */
b04243ef
PZ
8364 list_for_each_entry(sibling, &group_leader->sibling_list,
8365 group_entry) {
8f95b435 8366 perf_event__state_init(sibling);
9fc81d87 8367 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8368 get_ctx(ctx);
8369 }
8f95b435
PZI
8370
8371 /*
8372 * Removing from the context ends up with disabled
8373 * event. What we want here is event in the initial
8374 * startup state, ready to be add into new context.
8375 */
8376 perf_event__state_init(group_leader);
8377 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8378 get_ctx(ctx);
b04243ef
PZ
8379 }
8380
bed5b25a
AS
8381 if (!exclusive_event_installable(event, ctx)) {
8382 err = -EBUSY;
8383 mutex_unlock(&ctx->mutex);
8384 fput(event_file);
8385 goto err_context;
8386 }
8387
e2d37cd2 8388 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8389 perf_unpin_context(ctx);
f63a8daa
PZ
8390
8391 if (move_group) {
8392 mutex_unlock(&gctx->mutex);
8393 put_ctx(gctx);
8394 }
d859e29f 8395 mutex_unlock(&ctx->mutex);
9b51f66d 8396
fbfc623f
YZ
8397 put_online_cpus();
8398
cdd6c482 8399 event->owner = current;
8882135b 8400
cdd6c482
IM
8401 mutex_lock(&current->perf_event_mutex);
8402 list_add_tail(&event->owner_entry, &current->perf_event_list);
8403 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8404
c320c7b7
ACM
8405 /*
8406 * Precalculate sample_data sizes
8407 */
8408 perf_event__header_size(event);
6844c09d 8409 perf_event__id_header_size(event);
c320c7b7 8410
8a49542c
PZ
8411 /*
8412 * Drop the reference on the group_event after placing the
8413 * new event on the sibling_list. This ensures destruction
8414 * of the group leader will find the pointer to itself in
8415 * perf_group_detach().
8416 */
2903ff01 8417 fdput(group);
ea635c64
AV
8418 fd_install(event_fd, event_file);
8419 return event_fd;
0793a61d 8420
c3f00c70 8421err_context:
fe4b04fa 8422 perf_unpin_context(ctx);
ea635c64 8423 put_ctx(ctx);
c6be5a5c 8424err_alloc:
ea635c64 8425 free_event(event);
1f4ee503 8426err_cpus:
fbfc623f 8427 put_online_cpus();
1f4ee503 8428err_task:
e7d0bc04
PZ
8429 if (task)
8430 put_task_struct(task);
89a1e187 8431err_group_fd:
2903ff01 8432 fdput(group);
ea635c64
AV
8433err_fd:
8434 put_unused_fd(event_fd);
dc86cabe 8435 return err;
0793a61d
TG
8436}
8437
fb0459d7
AV
8438/**
8439 * perf_event_create_kernel_counter
8440 *
8441 * @attr: attributes of the counter to create
8442 * @cpu: cpu in which the counter is bound
38a81da2 8443 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8444 */
8445struct perf_event *
8446perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8447 struct task_struct *task,
4dc0da86
AK
8448 perf_overflow_handler_t overflow_handler,
8449 void *context)
fb0459d7 8450{
fb0459d7 8451 struct perf_event_context *ctx;
c3f00c70 8452 struct perf_event *event;
fb0459d7 8453 int err;
d859e29f 8454
fb0459d7
AV
8455 /*
8456 * Get the target context (task or percpu):
8457 */
d859e29f 8458
4dc0da86 8459 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8460 overflow_handler, context, -1);
c3f00c70
PZ
8461 if (IS_ERR(event)) {
8462 err = PTR_ERR(event);
8463 goto err;
8464 }
d859e29f 8465
f8697762
JO
8466 /* Mark owner so we could distinguish it from user events. */
8467 event->owner = EVENT_OWNER_KERNEL;
8468
766d6c07
FW
8469 account_event(event);
8470
4af57ef2 8471 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8472 if (IS_ERR(ctx)) {
8473 err = PTR_ERR(ctx);
c3f00c70 8474 goto err_free;
d859e29f 8475 }
fb0459d7 8476
fb0459d7
AV
8477 WARN_ON_ONCE(ctx->parent_ctx);
8478 mutex_lock(&ctx->mutex);
bed5b25a
AS
8479 if (!exclusive_event_installable(event, ctx)) {
8480 mutex_unlock(&ctx->mutex);
8481 perf_unpin_context(ctx);
8482 put_ctx(ctx);
8483 err = -EBUSY;
8484 goto err_free;
8485 }
8486
fb0459d7 8487 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8488 perf_unpin_context(ctx);
fb0459d7
AV
8489 mutex_unlock(&ctx->mutex);
8490
fb0459d7
AV
8491 return event;
8492
c3f00c70
PZ
8493err_free:
8494 free_event(event);
8495err:
c6567f64 8496 return ERR_PTR(err);
9b51f66d 8497}
fb0459d7 8498EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8499
0cda4c02
YZ
8500void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8501{
8502 struct perf_event_context *src_ctx;
8503 struct perf_event_context *dst_ctx;
8504 struct perf_event *event, *tmp;
8505 LIST_HEAD(events);
8506
8507 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8508 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8509
f63a8daa
PZ
8510 /*
8511 * See perf_event_ctx_lock() for comments on the details
8512 * of swizzling perf_event::ctx.
8513 */
8514 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8515 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8516 event_entry) {
46ce0fe9 8517 perf_remove_from_context(event, false);
9a545de0 8518 unaccount_event_cpu(event, src_cpu);
0cda4c02 8519 put_ctx(src_ctx);
9886167d 8520 list_add(&event->migrate_entry, &events);
0cda4c02 8521 }
0cda4c02 8522
8f95b435
PZI
8523 /*
8524 * Wait for the events to quiesce before re-instating them.
8525 */
0cda4c02
YZ
8526 synchronize_rcu();
8527
8f95b435
PZI
8528 /*
8529 * Re-instate events in 2 passes.
8530 *
8531 * Skip over group leaders and only install siblings on this first
8532 * pass, siblings will not get enabled without a leader, however a
8533 * leader will enable its siblings, even if those are still on the old
8534 * context.
8535 */
8536 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8537 if (event->group_leader == event)
8538 continue;
8539
8540 list_del(&event->migrate_entry);
8541 if (event->state >= PERF_EVENT_STATE_OFF)
8542 event->state = PERF_EVENT_STATE_INACTIVE;
8543 account_event_cpu(event, dst_cpu);
8544 perf_install_in_context(dst_ctx, event, dst_cpu);
8545 get_ctx(dst_ctx);
8546 }
8547
8548 /*
8549 * Once all the siblings are setup properly, install the group leaders
8550 * to make it go.
8551 */
9886167d
PZ
8552 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8553 list_del(&event->migrate_entry);
0cda4c02
YZ
8554 if (event->state >= PERF_EVENT_STATE_OFF)
8555 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8556 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8557 perf_install_in_context(dst_ctx, event, dst_cpu);
8558 get_ctx(dst_ctx);
8559 }
8560 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8561 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8562}
8563EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8564
cdd6c482 8565static void sync_child_event(struct perf_event *child_event,
38b200d6 8566 struct task_struct *child)
d859e29f 8567{
cdd6c482 8568 struct perf_event *parent_event = child_event->parent;
8bc20959 8569 u64 child_val;
d859e29f 8570
cdd6c482
IM
8571 if (child_event->attr.inherit_stat)
8572 perf_event_read_event(child_event, child);
38b200d6 8573
b5e58793 8574 child_val = perf_event_count(child_event);
d859e29f
PM
8575
8576 /*
8577 * Add back the child's count to the parent's count:
8578 */
a6e6dea6 8579 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8580 atomic64_add(child_event->total_time_enabled,
8581 &parent_event->child_total_time_enabled);
8582 atomic64_add(child_event->total_time_running,
8583 &parent_event->child_total_time_running);
d859e29f
PM
8584
8585 /*
cdd6c482 8586 * Remove this event from the parent's list
d859e29f 8587 */
cdd6c482
IM
8588 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8589 mutex_lock(&parent_event->child_mutex);
8590 list_del_init(&child_event->child_list);
8591 mutex_unlock(&parent_event->child_mutex);
d859e29f 8592
dc633982
JO
8593 /*
8594 * Make sure user/parent get notified, that we just
8595 * lost one event.
8596 */
8597 perf_event_wakeup(parent_event);
8598
d859e29f 8599 /*
cdd6c482 8600 * Release the parent event, if this was the last
d859e29f
PM
8601 * reference to it.
8602 */
a6fa941d 8603 put_event(parent_event);
d859e29f
PM
8604}
8605
9b51f66d 8606static void
cdd6c482
IM
8607__perf_event_exit_task(struct perf_event *child_event,
8608 struct perf_event_context *child_ctx,
38b200d6 8609 struct task_struct *child)
9b51f66d 8610{
1903d50c
PZ
8611 /*
8612 * Do not destroy the 'original' grouping; because of the context
8613 * switch optimization the original events could've ended up in a
8614 * random child task.
8615 *
8616 * If we were to destroy the original group, all group related
8617 * operations would cease to function properly after this random
8618 * child dies.
8619 *
8620 * Do destroy all inherited groups, we don't care about those
8621 * and being thorough is better.
8622 */
8623 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8624
9b51f66d 8625 /*
38b435b1 8626 * It can happen that the parent exits first, and has events
9b51f66d 8627 * that are still around due to the child reference. These
38b435b1 8628 * events need to be zapped.
9b51f66d 8629 */
38b435b1 8630 if (child_event->parent) {
cdd6c482
IM
8631 sync_child_event(child_event, child);
8632 free_event(child_event);
179033b3
JO
8633 } else {
8634 child_event->state = PERF_EVENT_STATE_EXIT;
8635 perf_event_wakeup(child_event);
4bcf349a 8636 }
9b51f66d
IM
8637}
8638
8dc85d54 8639static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8640{
ebf905fc 8641 struct perf_event *child_event, *next;
211de6eb 8642 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8643 unsigned long flags;
9b51f66d 8644
8dc85d54 8645 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 8646 perf_event_task(child, NULL, 0);
9b51f66d 8647 return;
9f498cc5 8648 }
9b51f66d 8649
a63eaf34 8650 local_irq_save(flags);
ad3a37de
PM
8651 /*
8652 * We can't reschedule here because interrupts are disabled,
8653 * and either child is current or it is a task that can't be
8654 * scheduled, so we are now safe from rescheduling changing
8655 * our context.
8656 */
806839b2 8657 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8658
8659 /*
8660 * Take the context lock here so that if find_get_context is
cdd6c482 8661 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8662 * incremented the context's refcount before we do put_ctx below.
8663 */
e625cce1 8664 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8665 task_ctx_sched_out(child_ctx);
8dc85d54 8666 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8667
71a851b4
PZ
8668 /*
8669 * If this context is a clone; unclone it so it can't get
8670 * swapped to another process while we're removing all
cdd6c482 8671 * the events from it.
71a851b4 8672 */
211de6eb 8673 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8674 update_context_time(child_ctx);
e625cce1 8675 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8676
211de6eb
PZ
8677 if (clone_ctx)
8678 put_ctx(clone_ctx);
4a1c0f26 8679
9f498cc5 8680 /*
cdd6c482
IM
8681 * Report the task dead after unscheduling the events so that we
8682 * won't get any samples after PERF_RECORD_EXIT. We can however still
8683 * get a few PERF_RECORD_READ events.
9f498cc5 8684 */
cdd6c482 8685 perf_event_task(child, child_ctx, 0);
a63eaf34 8686
66fff224
PZ
8687 /*
8688 * We can recurse on the same lock type through:
8689 *
cdd6c482
IM
8690 * __perf_event_exit_task()
8691 * sync_child_event()
a6fa941d
AV
8692 * put_event()
8693 * mutex_lock(&ctx->mutex)
66fff224
PZ
8694 *
8695 * But since its the parent context it won't be the same instance.
8696 */
a0507c84 8697 mutex_lock(&child_ctx->mutex);
a63eaf34 8698
ebf905fc 8699 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8700 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8701
a63eaf34
PM
8702 mutex_unlock(&child_ctx->mutex);
8703
8704 put_ctx(child_ctx);
9b51f66d
IM
8705}
8706
8dc85d54
PZ
8707/*
8708 * When a child task exits, feed back event values to parent events.
8709 */
8710void perf_event_exit_task(struct task_struct *child)
8711{
8882135b 8712 struct perf_event *event, *tmp;
8dc85d54
PZ
8713 int ctxn;
8714
8882135b
PZ
8715 mutex_lock(&child->perf_event_mutex);
8716 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8717 owner_entry) {
8718 list_del_init(&event->owner_entry);
8719
8720 /*
8721 * Ensure the list deletion is visible before we clear
8722 * the owner, closes a race against perf_release() where
8723 * we need to serialize on the owner->perf_event_mutex.
8724 */
8725 smp_wmb();
8726 event->owner = NULL;
8727 }
8728 mutex_unlock(&child->perf_event_mutex);
8729
8dc85d54
PZ
8730 for_each_task_context_nr(ctxn)
8731 perf_event_exit_task_context(child, ctxn);
8732}
8733
889ff015
FW
8734static void perf_free_event(struct perf_event *event,
8735 struct perf_event_context *ctx)
8736{
8737 struct perf_event *parent = event->parent;
8738
8739 if (WARN_ON_ONCE(!parent))
8740 return;
8741
8742 mutex_lock(&parent->child_mutex);
8743 list_del_init(&event->child_list);
8744 mutex_unlock(&parent->child_mutex);
8745
a6fa941d 8746 put_event(parent);
889ff015 8747
652884fe 8748 raw_spin_lock_irq(&ctx->lock);
8a49542c 8749 perf_group_detach(event);
889ff015 8750 list_del_event(event, ctx);
652884fe 8751 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8752 free_event(event);
8753}
8754
bbbee908 8755/*
652884fe 8756 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8757 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8758 *
8759 * Not all locks are strictly required, but take them anyway to be nice and
8760 * help out with the lockdep assertions.
bbbee908 8761 */
cdd6c482 8762void perf_event_free_task(struct task_struct *task)
bbbee908 8763{
8dc85d54 8764 struct perf_event_context *ctx;
cdd6c482 8765 struct perf_event *event, *tmp;
8dc85d54 8766 int ctxn;
bbbee908 8767
8dc85d54
PZ
8768 for_each_task_context_nr(ctxn) {
8769 ctx = task->perf_event_ctxp[ctxn];
8770 if (!ctx)
8771 continue;
bbbee908 8772
8dc85d54 8773 mutex_lock(&ctx->mutex);
bbbee908 8774again:
8dc85d54
PZ
8775 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8776 group_entry)
8777 perf_free_event(event, ctx);
bbbee908 8778
8dc85d54
PZ
8779 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8780 group_entry)
8781 perf_free_event(event, ctx);
bbbee908 8782
8dc85d54
PZ
8783 if (!list_empty(&ctx->pinned_groups) ||
8784 !list_empty(&ctx->flexible_groups))
8785 goto again;
bbbee908 8786
8dc85d54 8787 mutex_unlock(&ctx->mutex);
bbbee908 8788
8dc85d54
PZ
8789 put_ctx(ctx);
8790 }
889ff015
FW
8791}
8792
4e231c79
PZ
8793void perf_event_delayed_put(struct task_struct *task)
8794{
8795 int ctxn;
8796
8797 for_each_task_context_nr(ctxn)
8798 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8799}
8800
ffe8690c
KX
8801struct perf_event *perf_event_get(unsigned int fd)
8802{
8803 int err;
8804 struct fd f;
8805 struct perf_event *event;
8806
8807 err = perf_fget_light(fd, &f);
8808 if (err)
8809 return ERR_PTR(err);
8810
8811 event = f.file->private_data;
8812 atomic_long_inc(&event->refcount);
8813 fdput(f);
8814
8815 return event;
8816}
8817
8818const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8819{
8820 if (!event)
8821 return ERR_PTR(-EINVAL);
8822
8823 return &event->attr;
8824}
8825
97dee4f3
PZ
8826/*
8827 * inherit a event from parent task to child task:
8828 */
8829static struct perf_event *
8830inherit_event(struct perf_event *parent_event,
8831 struct task_struct *parent,
8832 struct perf_event_context *parent_ctx,
8833 struct task_struct *child,
8834 struct perf_event *group_leader,
8835 struct perf_event_context *child_ctx)
8836{
1929def9 8837 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8838 struct perf_event *child_event;
cee010ec 8839 unsigned long flags;
97dee4f3
PZ
8840
8841 /*
8842 * Instead of creating recursive hierarchies of events,
8843 * we link inherited events back to the original parent,
8844 * which has a filp for sure, which we use as the reference
8845 * count:
8846 */
8847 if (parent_event->parent)
8848 parent_event = parent_event->parent;
8849
8850 child_event = perf_event_alloc(&parent_event->attr,
8851 parent_event->cpu,
d580ff86 8852 child,
97dee4f3 8853 group_leader, parent_event,
79dff51e 8854 NULL, NULL, -1);
97dee4f3
PZ
8855 if (IS_ERR(child_event))
8856 return child_event;
a6fa941d 8857
fadfe7be
JO
8858 if (is_orphaned_event(parent_event) ||
8859 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8860 free_event(child_event);
8861 return NULL;
8862 }
8863
97dee4f3
PZ
8864 get_ctx(child_ctx);
8865
8866 /*
8867 * Make the child state follow the state of the parent event,
8868 * not its attr.disabled bit. We hold the parent's mutex,
8869 * so we won't race with perf_event_{en, dis}able_family.
8870 */
1929def9 8871 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8872 child_event->state = PERF_EVENT_STATE_INACTIVE;
8873 else
8874 child_event->state = PERF_EVENT_STATE_OFF;
8875
8876 if (parent_event->attr.freq) {
8877 u64 sample_period = parent_event->hw.sample_period;
8878 struct hw_perf_event *hwc = &child_event->hw;
8879
8880 hwc->sample_period = sample_period;
8881 hwc->last_period = sample_period;
8882
8883 local64_set(&hwc->period_left, sample_period);
8884 }
8885
8886 child_event->ctx = child_ctx;
8887 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8888 child_event->overflow_handler_context
8889 = parent_event->overflow_handler_context;
97dee4f3 8890
614b6780
TG
8891 /*
8892 * Precalculate sample_data sizes
8893 */
8894 perf_event__header_size(child_event);
6844c09d 8895 perf_event__id_header_size(child_event);
614b6780 8896
97dee4f3
PZ
8897 /*
8898 * Link it up in the child's context:
8899 */
cee010ec 8900 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 8901 add_event_to_ctx(child_event, child_ctx);
cee010ec 8902 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 8903
97dee4f3
PZ
8904 /*
8905 * Link this into the parent event's child list
8906 */
8907 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8908 mutex_lock(&parent_event->child_mutex);
8909 list_add_tail(&child_event->child_list, &parent_event->child_list);
8910 mutex_unlock(&parent_event->child_mutex);
8911
8912 return child_event;
8913}
8914
8915static int inherit_group(struct perf_event *parent_event,
8916 struct task_struct *parent,
8917 struct perf_event_context *parent_ctx,
8918 struct task_struct *child,
8919 struct perf_event_context *child_ctx)
8920{
8921 struct perf_event *leader;
8922 struct perf_event *sub;
8923 struct perf_event *child_ctr;
8924
8925 leader = inherit_event(parent_event, parent, parent_ctx,
8926 child, NULL, child_ctx);
8927 if (IS_ERR(leader))
8928 return PTR_ERR(leader);
8929 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8930 child_ctr = inherit_event(sub, parent, parent_ctx,
8931 child, leader, child_ctx);
8932 if (IS_ERR(child_ctr))
8933 return PTR_ERR(child_ctr);
8934 }
8935 return 0;
889ff015
FW
8936}
8937
8938static int
8939inherit_task_group(struct perf_event *event, struct task_struct *parent,
8940 struct perf_event_context *parent_ctx,
8dc85d54 8941 struct task_struct *child, int ctxn,
889ff015
FW
8942 int *inherited_all)
8943{
8944 int ret;
8dc85d54 8945 struct perf_event_context *child_ctx;
889ff015
FW
8946
8947 if (!event->attr.inherit) {
8948 *inherited_all = 0;
8949 return 0;
bbbee908
PZ
8950 }
8951
fe4b04fa 8952 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
8953 if (!child_ctx) {
8954 /*
8955 * This is executed from the parent task context, so
8956 * inherit events that have been marked for cloning.
8957 * First allocate and initialize a context for the
8958 * child.
8959 */
bbbee908 8960
734df5ab 8961 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
8962 if (!child_ctx)
8963 return -ENOMEM;
bbbee908 8964
8dc85d54 8965 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
8966 }
8967
8968 ret = inherit_group(event, parent, parent_ctx,
8969 child, child_ctx);
8970
8971 if (ret)
8972 *inherited_all = 0;
8973
8974 return ret;
bbbee908
PZ
8975}
8976
9b51f66d 8977/*
cdd6c482 8978 * Initialize the perf_event context in task_struct
9b51f66d 8979 */
985c8dcb 8980static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 8981{
889ff015 8982 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
8983 struct perf_event_context *cloned_ctx;
8984 struct perf_event *event;
9b51f66d 8985 struct task_struct *parent = current;
564c2b21 8986 int inherited_all = 1;
dddd3379 8987 unsigned long flags;
6ab423e0 8988 int ret = 0;
9b51f66d 8989
8dc85d54 8990 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
8991 return 0;
8992
ad3a37de 8993 /*
25346b93
PM
8994 * If the parent's context is a clone, pin it so it won't get
8995 * swapped under us.
ad3a37de 8996 */
8dc85d54 8997 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
8998 if (!parent_ctx)
8999 return 0;
25346b93 9000
ad3a37de
PM
9001 /*
9002 * No need to check if parent_ctx != NULL here; since we saw
9003 * it non-NULL earlier, the only reason for it to become NULL
9004 * is if we exit, and since we're currently in the middle of
9005 * a fork we can't be exiting at the same time.
9006 */
ad3a37de 9007
9b51f66d
IM
9008 /*
9009 * Lock the parent list. No need to lock the child - not PID
9010 * hashed yet and not running, so nobody can access it.
9011 */
d859e29f 9012 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9013
9014 /*
9015 * We dont have to disable NMIs - we are only looking at
9016 * the list, not manipulating it:
9017 */
889ff015 9018 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9019 ret = inherit_task_group(event, parent, parent_ctx,
9020 child, ctxn, &inherited_all);
889ff015
FW
9021 if (ret)
9022 break;
9023 }
b93f7978 9024
dddd3379
TG
9025 /*
9026 * We can't hold ctx->lock when iterating the ->flexible_group list due
9027 * to allocations, but we need to prevent rotation because
9028 * rotate_ctx() will change the list from interrupt context.
9029 */
9030 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9031 parent_ctx->rotate_disable = 1;
9032 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9033
889ff015 9034 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9035 ret = inherit_task_group(event, parent, parent_ctx,
9036 child, ctxn, &inherited_all);
889ff015 9037 if (ret)
9b51f66d 9038 break;
564c2b21
PM
9039 }
9040
dddd3379
TG
9041 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9042 parent_ctx->rotate_disable = 0;
dddd3379 9043
8dc85d54 9044 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9045
05cbaa28 9046 if (child_ctx && inherited_all) {
564c2b21
PM
9047 /*
9048 * Mark the child context as a clone of the parent
9049 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9050 *
9051 * Note that if the parent is a clone, the holding of
9052 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9053 */
c5ed5145 9054 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9055 if (cloned_ctx) {
9056 child_ctx->parent_ctx = cloned_ctx;
25346b93 9057 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9058 } else {
9059 child_ctx->parent_ctx = parent_ctx;
9060 child_ctx->parent_gen = parent_ctx->generation;
9061 }
9062 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9063 }
9064
c5ed5145 9065 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9066 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9067
25346b93 9068 perf_unpin_context(parent_ctx);
fe4b04fa 9069 put_ctx(parent_ctx);
ad3a37de 9070
6ab423e0 9071 return ret;
9b51f66d
IM
9072}
9073
8dc85d54
PZ
9074/*
9075 * Initialize the perf_event context in task_struct
9076 */
9077int perf_event_init_task(struct task_struct *child)
9078{
9079 int ctxn, ret;
9080
8550d7cb
ON
9081 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9082 mutex_init(&child->perf_event_mutex);
9083 INIT_LIST_HEAD(&child->perf_event_list);
9084
8dc85d54
PZ
9085 for_each_task_context_nr(ctxn) {
9086 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9087 if (ret) {
9088 perf_event_free_task(child);
8dc85d54 9089 return ret;
6c72e350 9090 }
8dc85d54
PZ
9091 }
9092
9093 return 0;
9094}
9095
220b140b
PM
9096static void __init perf_event_init_all_cpus(void)
9097{
b28ab83c 9098 struct swevent_htable *swhash;
220b140b 9099 int cpu;
220b140b
PM
9100
9101 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9102 swhash = &per_cpu(swevent_htable, cpu);
9103 mutex_init(&swhash->hlist_mutex);
2fde4f94 9104 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9105 }
9106}
9107
0db0628d 9108static void perf_event_init_cpu(int cpu)
0793a61d 9109{
108b02cf 9110 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9111
b28ab83c 9112 mutex_lock(&swhash->hlist_mutex);
39af6b16 9113 swhash->online = true;
4536e4d1 9114 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9115 struct swevent_hlist *hlist;
9116
b28ab83c
PZ
9117 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9118 WARN_ON(!hlist);
9119 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9120 }
b28ab83c 9121 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9122}
9123
2965faa5 9124#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9125static void __perf_event_exit_context(void *__info)
0793a61d 9126{
226424ee 9127 struct remove_event re = { .detach_group = true };
108b02cf 9128 struct perf_event_context *ctx = __info;
0793a61d 9129
e3703f8c 9130 rcu_read_lock();
46ce0fe9
PZ
9131 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9132 __perf_remove_from_context(&re);
e3703f8c 9133 rcu_read_unlock();
0793a61d 9134}
108b02cf
PZ
9135
9136static void perf_event_exit_cpu_context(int cpu)
9137{
9138 struct perf_event_context *ctx;
9139 struct pmu *pmu;
9140 int idx;
9141
9142 idx = srcu_read_lock(&pmus_srcu);
9143 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9144 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9145
9146 mutex_lock(&ctx->mutex);
9147 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9148 mutex_unlock(&ctx->mutex);
9149 }
9150 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9151}
9152
cdd6c482 9153static void perf_event_exit_cpu(int cpu)
0793a61d 9154{
b28ab83c 9155 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 9156
e3703f8c
PZ
9157 perf_event_exit_cpu_context(cpu);
9158
b28ab83c 9159 mutex_lock(&swhash->hlist_mutex);
39af6b16 9160 swhash->online = false;
b28ab83c
PZ
9161 swevent_hlist_release(swhash);
9162 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9163}
9164#else
cdd6c482 9165static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9166#endif
9167
c277443c
PZ
9168static int
9169perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9170{
9171 int cpu;
9172
9173 for_each_online_cpu(cpu)
9174 perf_event_exit_cpu(cpu);
9175
9176 return NOTIFY_OK;
9177}
9178
9179/*
9180 * Run the perf reboot notifier at the very last possible moment so that
9181 * the generic watchdog code runs as long as possible.
9182 */
9183static struct notifier_block perf_reboot_notifier = {
9184 .notifier_call = perf_reboot,
9185 .priority = INT_MIN,
9186};
9187
0db0628d 9188static int
0793a61d
TG
9189perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9190{
9191 unsigned int cpu = (long)hcpu;
9192
4536e4d1 9193 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9194
9195 case CPU_UP_PREPARE:
5e11637e 9196 case CPU_DOWN_FAILED:
cdd6c482 9197 perf_event_init_cpu(cpu);
0793a61d
TG
9198 break;
9199
5e11637e 9200 case CPU_UP_CANCELED:
0793a61d 9201 case CPU_DOWN_PREPARE:
cdd6c482 9202 perf_event_exit_cpu(cpu);
0793a61d 9203 break;
0793a61d
TG
9204 default:
9205 break;
9206 }
9207
9208 return NOTIFY_OK;
9209}
9210
cdd6c482 9211void __init perf_event_init(void)
0793a61d 9212{
3c502e7a
JW
9213 int ret;
9214
2e80a82a
PZ
9215 idr_init(&pmu_idr);
9216
220b140b 9217 perf_event_init_all_cpus();
b0a873eb 9218 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9219 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9220 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9221 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9222 perf_tp_register();
9223 perf_cpu_notifier(perf_cpu_notify);
c277443c 9224 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9225
9226 ret = init_hw_breakpoint();
9227 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9228
9229 /* do not patch jump label more than once per second */
9230 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9231
9232 /*
9233 * Build time assertion that we keep the data_head at the intended
9234 * location. IOW, validation we got the __reserved[] size right.
9235 */
9236 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9237 != 1024);
0793a61d 9238}
abe43400 9239
fd979c01
CS
9240ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9241 char *page)
9242{
9243 struct perf_pmu_events_attr *pmu_attr =
9244 container_of(attr, struct perf_pmu_events_attr, attr);
9245
9246 if (pmu_attr->event_str)
9247 return sprintf(page, "%s\n", pmu_attr->event_str);
9248
9249 return 0;
9250}
9251
abe43400
PZ
9252static int __init perf_event_sysfs_init(void)
9253{
9254 struct pmu *pmu;
9255 int ret;
9256
9257 mutex_lock(&pmus_lock);
9258
9259 ret = bus_register(&pmu_bus);
9260 if (ret)
9261 goto unlock;
9262
9263 list_for_each_entry(pmu, &pmus, entry) {
9264 if (!pmu->name || pmu->type < 0)
9265 continue;
9266
9267 ret = pmu_dev_alloc(pmu);
9268 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9269 }
9270 pmu_bus_running = 1;
9271 ret = 0;
9272
9273unlock:
9274 mutex_unlock(&pmus_lock);
9275
9276 return ret;
9277}
9278device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9279
9280#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9281static struct cgroup_subsys_state *
9282perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9283{
9284 struct perf_cgroup *jc;
e5d1367f 9285
1b15d055 9286 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9287 if (!jc)
9288 return ERR_PTR(-ENOMEM);
9289
e5d1367f
SE
9290 jc->info = alloc_percpu(struct perf_cgroup_info);
9291 if (!jc->info) {
9292 kfree(jc);
9293 return ERR_PTR(-ENOMEM);
9294 }
9295
e5d1367f
SE
9296 return &jc->css;
9297}
9298
eb95419b 9299static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9300{
eb95419b
TH
9301 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9302
e5d1367f
SE
9303 free_percpu(jc->info);
9304 kfree(jc);
9305}
9306
9307static int __perf_cgroup_move(void *info)
9308{
9309 struct task_struct *task = info;
9310 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9311 return 0;
9312}
9313
eb95419b
TH
9314static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9315 struct cgroup_taskset *tset)
e5d1367f 9316{
bb9d97b6
TH
9317 struct task_struct *task;
9318
924f0d9a 9319 cgroup_taskset_for_each(task, tset)
bb9d97b6 9320 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9321}
9322
eb95419b
TH
9323static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9324 struct cgroup_subsys_state *old_css,
761b3ef5 9325 struct task_struct *task)
e5d1367f 9326{
bb9d97b6 9327 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9328}
9329
073219e9 9330struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9331 .css_alloc = perf_cgroup_css_alloc,
9332 .css_free = perf_cgroup_css_free,
e7e7ee2e 9333 .exit = perf_cgroup_exit,
bb9d97b6 9334 .attach = perf_cgroup_attach,
e5d1367f
SE
9335};
9336#endif /* CONFIG_CGROUP_PERF */