dma-direct: provide mmap and get_sgtable method overrides
[linux-2.6-block.git] / kernel / dma / direct.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
a8463d4b 2/*
bc3ec75d
CH
3 * Copyright (C) 2018 Christoph Hellwig.
4 *
5 * DMA operations that map physical memory directly without using an IOMMU.
a8463d4b 6 */
57c8a661 7#include <linux/memblock.h> /* for max_pfn */
a8463d4b
CB
8#include <linux/export.h>
9#include <linux/mm.h>
2e86a047 10#include <linux/dma-direct.h>
a8463d4b 11#include <linux/scatterlist.h>
080321d3 12#include <linux/dma-contiguous.h>
bc3ec75d 13#include <linux/dma-noncoherent.h>
25f1e188 14#include <linux/pfn.h>
c10f07aa 15#include <linux/set_memory.h>
55897af6 16#include <linux/swiotlb.h>
a8463d4b 17
c61e9637
CH
18/*
19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but
20 * some use it for entirely different regions:
21 */
22#ifndef ARCH_ZONE_DMA_BITS
23#define ARCH_ZONE_DMA_BITS 24
24#endif
25
58dfd4ac 26static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
27975969 27{
58dfd4ac
CH
28 if (!dev->dma_mask) {
29 dev_err_once(dev, "DMA map on device without dma_mask\n");
30 } else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
31 dev_err_once(dev,
32 "overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
33 &dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
27975969 34 }
58dfd4ac 35 WARN_ON_ONCE(1);
27975969
CH
36}
37
a20bb058
CH
38static inline dma_addr_t phys_to_dma_direct(struct device *dev,
39 phys_addr_t phys)
40{
9087c375 41 if (force_dma_unencrypted(dev))
a20bb058
CH
42 return __phys_to_dma(dev, phys);
43 return phys_to_dma(dev, phys);
44}
45
34dc0ea6
CH
46static inline struct page *dma_direct_to_page(struct device *dev,
47 dma_addr_t dma_addr)
48{
49 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
50}
51
a20bb058
CH
52u64 dma_direct_get_required_mask(struct device *dev)
53{
54 u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
55
56 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
57}
58
7d21ee4c
CH
59static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
60 u64 *phys_mask)
61{
b4ebe606
CH
62 if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
63 dma_mask = dev->bus_dma_mask;
64
9087c375 65 if (force_dma_unencrypted(dev))
7d21ee4c
CH
66 *phys_mask = __dma_to_phys(dev, dma_mask);
67 else
68 *phys_mask = dma_to_phys(dev, dma_mask);
69
79ac32a4
CH
70 /*
71 * Optimistically try the zone that the physical address mask falls
72 * into first. If that returns memory that isn't actually addressable
73 * we will fallback to the next lower zone and try again.
74 *
75 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
76 * zones.
77 */
7d21ee4c
CH
78 if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
79 return GFP_DMA;
80 if (*phys_mask <= DMA_BIT_MASK(32))
81 return GFP_DMA32;
82 return 0;
83}
84
95f18391
CH
85static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
86{
a20bb058 87 return phys_to_dma_direct(dev, phys) + size - 1 <=
b4ebe606 88 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
95f18391
CH
89}
90
b18814e7 91struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
4e1003aa 92 gfp_t gfp, unsigned long attrs)
a8463d4b 93{
90ae409f
CH
94 size_t alloc_size = PAGE_ALIGN(size);
95 int node = dev_to_node(dev);
080321d3 96 struct page *page = NULL;
7d21ee4c 97 u64 phys_mask;
a8463d4b 98
b9fd0426
CH
99 if (attrs & DMA_ATTR_NO_WARN)
100 gfp |= __GFP_NOWARN;
101
e89f5b37
CH
102 /* we always manually zero the memory once we are done: */
103 gfp &= ~__GFP_ZERO;
7d21ee4c
CH
104 gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
105 &phys_mask);
90ae409f
CH
106 page = dma_alloc_contiguous(dev, alloc_size, gfp);
107 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
108 dma_free_contiguous(dev, page, alloc_size);
109 page = NULL;
110 }
95f18391 111again:
90ae409f
CH
112 if (!page)
113 page = alloc_pages_node(node, gfp, get_order(alloc_size));
95f18391 114 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
b1d2dc00 115 dma_free_contiguous(dev, page, size);
95f18391
CH
116 page = NULL;
117
de7eab30 118 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
7d21ee4c 119 phys_mask < DMA_BIT_MASK(64) &&
de7eab30
TI
120 !(gfp & (GFP_DMA32 | GFP_DMA))) {
121 gfp |= GFP_DMA32;
122 goto again;
123 }
124
fbce251b 125 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
95f18391
CH
126 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
127 goto again;
128 }
129 }
130
b18814e7
CH
131 return page;
132}
133
134void *dma_direct_alloc_pages(struct device *dev, size_t size,
135 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
136{
137 struct page *page;
138 void *ret;
139
4e1003aa 140 page = __dma_direct_alloc_pages(dev, size, gfp, attrs);
080321d3
CH
141 if (!page)
142 return NULL;
b18814e7 143
cf14be0b
CH
144 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
145 !force_dma_unencrypted(dev)) {
d98849af
CH
146 /* remove any dirty cache lines on the kernel alias */
147 if (!PageHighMem(page))
148 arch_dma_prep_coherent(page, size);
cf14be0b 149 *dma_handle = phys_to_dma(dev, page_to_phys(page));
d98849af
CH
150 /* return the page pointer as the opaque cookie */
151 return page;
152 }
153
704f2c20
CH
154 if (PageHighMem(page)) {
155 /*
156 * Depending on the cma= arguments and per-arch setup
b1d2dc00 157 * dma_alloc_contiguous could return highmem pages.
704f2c20
CH
158 * Without remapping there is no way to return them here,
159 * so log an error and fail.
160 */
161 dev_info(dev, "Rejecting highmem page from CMA.\n");
acaade1a 162 dma_free_contiguous(dev, page, size);
704f2c20
CH
163 return NULL;
164 }
165
c10f07aa 166 ret = page_address(page);
9087c375 167 if (force_dma_unencrypted(dev)) {
b18814e7 168 set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
c10f07aa
CH
169 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
170 } else {
171 *dma_handle = phys_to_dma(dev, page_to_phys(page));
172 }
173 memset(ret, 0, size);
c30700db
CH
174
175 if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
4b85faed 176 dma_alloc_need_uncached(dev, attrs)) {
c30700db
CH
177 arch_dma_prep_coherent(page, size);
178 ret = uncached_kernel_address(ret);
179 }
180
c10f07aa 181 return ret;
a8463d4b
CB
182}
183
bc3ec75d 184void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
002e6745 185 dma_addr_t dma_addr, unsigned long attrs)
a8463d4b 186{
c10f07aa 187 unsigned int page_order = get_order(size);
080321d3 188
cf14be0b
CH
189 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
190 !force_dma_unencrypted(dev)) {
d98849af 191 /* cpu_addr is a struct page cookie, not a kernel address */
acaade1a 192 dma_free_contiguous(dev, cpu_addr, size);
d98849af
CH
193 return;
194 }
195
9087c375 196 if (force_dma_unencrypted(dev))
c10f07aa 197 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
c30700db
CH
198
199 if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
4b85faed 200 dma_alloc_need_uncached(dev, attrs))
c30700db 201 cpu_addr = cached_kernel_address(cpu_addr);
acaade1a 202 dma_free_contiguous(dev, virt_to_page(cpu_addr), size);
a8463d4b
CB
203}
204
bc3ec75d
CH
205void *dma_direct_alloc(struct device *dev, size_t size,
206 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
207{
c30700db 208 if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
c2f2124e 209 dma_alloc_need_uncached(dev, attrs))
bc3ec75d
CH
210 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
211 return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
212}
213
214void dma_direct_free(struct device *dev, size_t size,
215 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
216{
c30700db 217 if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
c2f2124e 218 dma_alloc_need_uncached(dev, attrs))
bc3ec75d
CH
219 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
220 else
221 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
222}
223
55897af6
CH
224#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
225 defined(CONFIG_SWIOTLB)
226void dma_direct_sync_single_for_device(struct device *dev,
bc3ec75d
CH
227 dma_addr_t addr, size_t size, enum dma_data_direction dir)
228{
55897af6
CH
229 phys_addr_t paddr = dma_to_phys(dev, addr);
230
231 if (unlikely(is_swiotlb_buffer(paddr)))
232 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
233
234 if (!dev_is_dma_coherent(dev))
235 arch_sync_dma_for_device(dev, paddr, size, dir);
bc3ec75d 236}
356da6d0 237EXPORT_SYMBOL(dma_direct_sync_single_for_device);
bc3ec75d 238
55897af6 239void dma_direct_sync_sg_for_device(struct device *dev,
bc3ec75d
CH
240 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
241{
242 struct scatterlist *sg;
243 int i;
244
55897af6 245 for_each_sg(sgl, sg, nents, i) {
449fa54d
FD
246 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
247
248 if (unlikely(is_swiotlb_buffer(paddr)))
249 swiotlb_tbl_sync_single(dev, paddr, sg->length,
55897af6 250 dir, SYNC_FOR_DEVICE);
bc3ec75d 251
55897af6 252 if (!dev_is_dma_coherent(dev))
449fa54d 253 arch_sync_dma_for_device(dev, paddr, sg->length,
55897af6
CH
254 dir);
255 }
bc3ec75d 256}
356da6d0 257EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
17ac5247 258#endif
bc3ec75d
CH
259
260#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
55897af6
CH
261 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
262 defined(CONFIG_SWIOTLB)
263void dma_direct_sync_single_for_cpu(struct device *dev,
bc3ec75d
CH
264 dma_addr_t addr, size_t size, enum dma_data_direction dir)
265{
55897af6
CH
266 phys_addr_t paddr = dma_to_phys(dev, addr);
267
268 if (!dev_is_dma_coherent(dev)) {
269 arch_sync_dma_for_cpu(dev, paddr, size, dir);
270 arch_sync_dma_for_cpu_all(dev);
271 }
272
273 if (unlikely(is_swiotlb_buffer(paddr)))
274 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
bc3ec75d 275}
356da6d0 276EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
bc3ec75d 277
55897af6 278void dma_direct_sync_sg_for_cpu(struct device *dev,
bc3ec75d
CH
279 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
280{
281 struct scatterlist *sg;
282 int i;
283
55897af6 284 for_each_sg(sgl, sg, nents, i) {
449fa54d
FD
285 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
286
55897af6 287 if (!dev_is_dma_coherent(dev))
449fa54d
FD
288 arch_sync_dma_for_cpu(dev, paddr, sg->length, dir);
289
290 if (unlikely(is_swiotlb_buffer(paddr)))
291 swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
55897af6
CH
292 SYNC_FOR_CPU);
293 }
bc3ec75d 294
55897af6
CH
295 if (!dev_is_dma_coherent(dev))
296 arch_sync_dma_for_cpu_all(dev);
bc3ec75d 297}
356da6d0 298EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
bc3ec75d 299
55897af6 300void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
bc3ec75d
CH
301 size_t size, enum dma_data_direction dir, unsigned long attrs)
302{
55897af6
CH
303 phys_addr_t phys = dma_to_phys(dev, addr);
304
bc3ec75d
CH
305 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
306 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
55897af6
CH
307
308 if (unlikely(is_swiotlb_buffer(phys)))
3fc1ca00 309 swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
bc3ec75d 310}
356da6d0 311EXPORT_SYMBOL(dma_direct_unmap_page);
bc3ec75d 312
55897af6 313void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
bc3ec75d
CH
314 int nents, enum dma_data_direction dir, unsigned long attrs)
315{
55897af6
CH
316 struct scatterlist *sg;
317 int i;
318
319 for_each_sg(sgl, sg, nents, i)
320 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
321 attrs);
bc3ec75d 322}
356da6d0 323EXPORT_SYMBOL(dma_direct_unmap_sg);
bc3ec75d
CH
324#endif
325
55897af6
CH
326static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
327 size_t size)
328{
329 return swiotlb_force != SWIOTLB_FORCE &&
d7e02a93 330 dma_capable(dev, dma_addr, size);
55897af6
CH
331}
332
782e6769 333dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
002e6745
CH
334 unsigned long offset, size_t size, enum dma_data_direction dir,
335 unsigned long attrs)
a8463d4b 336{
bc3ec75d
CH
337 phys_addr_t phys = page_to_phys(page) + offset;
338 dma_addr_t dma_addr = phys_to_dma(dev, phys);
27975969 339
55897af6
CH
340 if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
341 !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
58dfd4ac 342 report_addr(dev, dma_addr, size);
b0cbeae4 343 return DMA_MAPPING_ERROR;
58dfd4ac 344 }
bc3ec75d 345
55897af6
CH
346 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
347 arch_sync_dma_for_device(dev, phys, size, dir);
27975969 348 return dma_addr;
a8463d4b 349}
356da6d0 350EXPORT_SYMBOL(dma_direct_map_page);
a8463d4b 351
782e6769
CH
352int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
353 enum dma_data_direction dir, unsigned long attrs)
a8463d4b
CB
354{
355 int i;
356 struct scatterlist *sg;
357
358 for_each_sg(sgl, sg, nents, i) {
17ac5247
CH
359 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
360 sg->offset, sg->length, dir, attrs);
361 if (sg->dma_address == DMA_MAPPING_ERROR)
55897af6 362 goto out_unmap;
a8463d4b
CB
363 sg_dma_len(sg) = sg->length;
364 }
365
366 return nents;
55897af6
CH
367
368out_unmap:
369 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
370 return 0;
a8463d4b 371}
356da6d0 372EXPORT_SYMBOL(dma_direct_map_sg);
a8463d4b 373
cfced786
CH
374dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
375 size_t size, enum dma_data_direction dir, unsigned long attrs)
376{
377 dma_addr_t dma_addr = paddr;
378
379 if (unlikely(!dma_direct_possible(dev, dma_addr, size))) {
380 report_addr(dev, dma_addr, size);
381 return DMA_MAPPING_ERROR;
382 }
383
384 return dma_addr;
385}
386EXPORT_SYMBOL(dma_direct_map_resource);
387
34dc0ea6
CH
388int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
389 void *cpu_addr, dma_addr_t dma_addr, size_t size,
390 unsigned long attrs)
391{
392 struct page *page = dma_direct_to_page(dev, dma_addr);
393 int ret;
394
395 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
396 if (!ret)
397 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
398 return ret;
399}
400
401#ifdef CONFIG_MMU
402bool dma_direct_can_mmap(struct device *dev)
403{
404 return dev_is_dma_coherent(dev) ||
405 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
406}
407
408int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
409 void *cpu_addr, dma_addr_t dma_addr, size_t size,
410 unsigned long attrs)
411{
412 unsigned long user_count = vma_pages(vma);
413 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
414 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
415 int ret = -ENXIO;
416
417 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
418
419 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
420 return ret;
421
422 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
423 return -ENXIO;
424 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
425 user_count << PAGE_SHIFT, vma->vm_page_prot);
426}
427#else /* CONFIG_MMU */
428bool dma_direct_can_mmap(struct device *dev)
429{
430 return false;
431}
432
433int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
434 void *cpu_addr, dma_addr_t dma_addr, size_t size,
435 unsigned long attrs)
436{
437 return -ENXIO;
438}
439#endif /* CONFIG_MMU */
440
9d7a224b
CH
441/*
442 * Because 32-bit DMA masks are so common we expect every architecture to be
443 * able to satisfy them - either by not supporting more physical memory, or by
444 * providing a ZONE_DMA32. If neither is the case, the architecture needs to
445 * use an IOMMU instead of the direct mapping.
446 */
1a9777a8
CH
447int dma_direct_supported(struct device *dev, u64 mask)
448{
9d7a224b
CH
449 u64 min_mask;
450
451 if (IS_ENABLED(CONFIG_ZONE_DMA))
452 min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
453 else
454 min_mask = DMA_BIT_MASK(32);
455
456 min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
457
c92a54cf
LT
458 /*
459 * This check needs to be against the actual bit mask value, so
460 * use __phys_to_dma() here so that the SME encryption mask isn't
461 * part of the check.
462 */
463 return mask >= __phys_to_dma(dev, min_mask);
1a9777a8 464}
133d624b
JR
465
466size_t dma_direct_max_mapping_size(struct device *dev)
467{
133d624b 468 /* If SWIOTLB is active, use its maximum mapping size */
a5008b59
CH
469 if (is_swiotlb_active() &&
470 (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
471 return swiotlb_max_mapping_size(dev);
472 return SIZE_MAX;
133d624b 473}