[PATCH] cpusets: bitmap and mask remap operators
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004 Silicon Graphics, Inc.
8 *
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
11 * Portions Copyright (c) 2004 Silicon Graphics, Inc.
12 *
13 * 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson <pj@sgi.com>
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file COPYING in the main directory of the Linux
19 * distribution for more details.
20 */
21
22#include <linux/config.h>
23#include <linux/cpu.h>
24#include <linux/cpumask.h>
25#include <linux/cpuset.h>
26#include <linux/err.h>
27#include <linux/errno.h>
28#include <linux/file.h>
29#include <linux/fs.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/kernel.h>
33#include <linux/kmod.h>
34#include <linux/list.h>
35#include <linux/mm.h>
36#include <linux/module.h>
37#include <linux/mount.h>
38#include <linux/namei.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/sched.h>
42#include <linux/seq_file.h>
43#include <linux/slab.h>
44#include <linux/smp_lock.h>
45#include <linux/spinlock.h>
46#include <linux/stat.h>
47#include <linux/string.h>
48#include <linux/time.h>
49#include <linux/backing-dev.h>
50#include <linux/sort.h>
51
52#include <asm/uaccess.h>
53#include <asm/atomic.h>
54#include <asm/semaphore.h>
55
56#define CPUSET_SUPER_MAGIC 0x27e0eb
57
58struct cpuset {
59 unsigned long flags; /* "unsigned long" so bitops work */
60 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
61 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
62
053199ed
PJ
63 /*
64 * Count is atomic so can incr (fork) or decr (exit) without a lock.
65 */
1da177e4
LT
66 atomic_t count; /* count tasks using this cpuset */
67
68 /*
69 * We link our 'sibling' struct into our parents 'children'.
70 * Our children link their 'sibling' into our 'children'.
71 */
72 struct list_head sibling; /* my parents children */
73 struct list_head children; /* my children */
74
75 struct cpuset *parent; /* my parent */
76 struct dentry *dentry; /* cpuset fs entry */
77
78 /*
79 * Copy of global cpuset_mems_generation as of the most
80 * recent time this cpuset changed its mems_allowed.
81 */
82 int mems_generation;
83};
84
85/* bits in struct cpuset flags field */
86typedef enum {
87 CS_CPU_EXCLUSIVE,
88 CS_MEM_EXCLUSIVE,
89 CS_REMOVED,
90 CS_NOTIFY_ON_RELEASE
91} cpuset_flagbits_t;
92
93/* convenient tests for these bits */
94static inline int is_cpu_exclusive(const struct cpuset *cs)
95{
96 return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
97}
98
99static inline int is_mem_exclusive(const struct cpuset *cs)
100{
101 return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
102}
103
104static inline int is_removed(const struct cpuset *cs)
105{
106 return !!test_bit(CS_REMOVED, &cs->flags);
107}
108
109static inline int notify_on_release(const struct cpuset *cs)
110{
111 return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
112}
113
114/*
115 * Increment this atomic integer everytime any cpuset changes its
116 * mems_allowed value. Users of cpusets can track this generation
117 * number, and avoid having to lock and reload mems_allowed unless
118 * the cpuset they're using changes generation.
119 *
120 * A single, global generation is needed because attach_task() could
121 * reattach a task to a different cpuset, which must not have its
122 * generation numbers aliased with those of that tasks previous cpuset.
123 *
124 * Generations are needed for mems_allowed because one task cannot
125 * modify anothers memory placement. So we must enable every task,
126 * on every visit to __alloc_pages(), to efficiently check whether
127 * its current->cpuset->mems_allowed has changed, requiring an update
128 * of its current->mems_allowed.
129 */
130static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);
131
132static struct cpuset top_cpuset = {
133 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
134 .cpus_allowed = CPU_MASK_ALL,
135 .mems_allowed = NODE_MASK_ALL,
136 .count = ATOMIC_INIT(0),
137 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
138 .children = LIST_HEAD_INIT(top_cpuset.children),
139 .parent = NULL,
140 .dentry = NULL,
141 .mems_generation = 0,
142};
143
144static struct vfsmount *cpuset_mount;
145static struct super_block *cpuset_sb = NULL;
146
147/*
053199ed
PJ
148 * We have two global cpuset semaphores below. They can nest.
149 * It is ok to first take manage_sem, then nest callback_sem. We also
150 * require taking task_lock() when dereferencing a tasks cpuset pointer.
151 * See "The task_lock() exception", at the end of this comment.
152 *
153 * A task must hold both semaphores to modify cpusets. If a task
154 * holds manage_sem, then it blocks others wanting that semaphore,
155 * ensuring that it is the only task able to also acquire callback_sem
156 * and be able to modify cpusets. It can perform various checks on
157 * the cpuset structure first, knowing nothing will change. It can
158 * also allocate memory while just holding manage_sem. While it is
159 * performing these checks, various callback routines can briefly
160 * acquire callback_sem to query cpusets. Once it is ready to make
161 * the changes, it takes callback_sem, blocking everyone else.
162 *
163 * Calls to the kernel memory allocator can not be made while holding
164 * callback_sem, as that would risk double tripping on callback_sem
165 * from one of the callbacks into the cpuset code from within
166 * __alloc_pages().
167 *
168 * If a task is only holding callback_sem, then it has read-only
169 * access to cpusets.
170 *
171 * The task_struct fields mems_allowed and mems_generation may only
172 * be accessed in the context of that task, so require no locks.
173 *
174 * Any task can increment and decrement the count field without lock.
175 * So in general, code holding manage_sem or callback_sem can't rely
176 * on the count field not changing. However, if the count goes to
177 * zero, then only attach_task(), which holds both semaphores, can
178 * increment it again. Because a count of zero means that no tasks
179 * are currently attached, therefore there is no way a task attached
180 * to that cpuset can fork (the other way to increment the count).
181 * So code holding manage_sem or callback_sem can safely assume that
182 * if the count is zero, it will stay zero. Similarly, if a task
183 * holds manage_sem or callback_sem on a cpuset with zero count, it
184 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
185 * both of those semaphores.
186 *
187 * A possible optimization to improve parallelism would be to make
188 * callback_sem a R/W semaphore (rwsem), allowing the callback routines
189 * to proceed in parallel, with read access, until the holder of
190 * manage_sem needed to take this rwsem for exclusive write access
191 * and modify some cpusets.
192 *
193 * The cpuset_common_file_write handler for operations that modify
194 * the cpuset hierarchy holds manage_sem across the entire operation,
195 * single threading all such cpuset modifications across the system.
196 *
197 * The cpuset_common_file_read() handlers only hold callback_sem across
198 * small pieces of code, such as when reading out possibly multi-word
199 * cpumasks and nodemasks.
200 *
201 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
202 * (usually) take either semaphore. These are the two most performance
203 * critical pieces of code here. The exception occurs on cpuset_exit(),
204 * when a task in a notify_on_release cpuset exits. Then manage_sem
2efe86b8 205 * is taken, and if the cpuset count is zero, a usermode call made
1da177e4
LT
206 * to /sbin/cpuset_release_agent with the name of the cpuset (path
207 * relative to the root of cpuset file system) as the argument.
208 *
053199ed
PJ
209 * A cpuset can only be deleted if both its 'count' of using tasks
210 * is zero, and its list of 'children' cpusets is empty. Since all
211 * tasks in the system use _some_ cpuset, and since there is always at
212 * least one task in the system (init, pid == 1), therefore, top_cpuset
213 * always has either children cpusets and/or using tasks. So we don't
214 * need a special hack to ensure that top_cpuset cannot be deleted.
215 *
216 * The above "Tale of Two Semaphores" would be complete, but for:
217 *
218 * The task_lock() exception
219 *
220 * The need for this exception arises from the action of attach_task(),
221 * which overwrites one tasks cpuset pointer with another. It does
222 * so using both semaphores, however there are several performance
223 * critical places that need to reference task->cpuset without the
224 * expense of grabbing a system global semaphore. Therefore except as
225 * noted below, when dereferencing or, as in attach_task(), modifying
226 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
227 * (task->alloc_lock) already in the task_struct routinely used for
228 * such matters.
1da177e4
LT
229 */
230
053199ed
PJ
231static DECLARE_MUTEX(manage_sem);
232static DECLARE_MUTEX(callback_sem);
4247bdc6 233
1da177e4
LT
234/*
235 * A couple of forward declarations required, due to cyclic reference loop:
236 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
237 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
238 */
239
240static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
241static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
242
243static struct backing_dev_info cpuset_backing_dev_info = {
244 .ra_pages = 0, /* No readahead */
245 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
246};
247
248static struct inode *cpuset_new_inode(mode_t mode)
249{
250 struct inode *inode = new_inode(cpuset_sb);
251
252 if (inode) {
253 inode->i_mode = mode;
254 inode->i_uid = current->fsuid;
255 inode->i_gid = current->fsgid;
256 inode->i_blksize = PAGE_CACHE_SIZE;
257 inode->i_blocks = 0;
258 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
259 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
260 }
261 return inode;
262}
263
264static void cpuset_diput(struct dentry *dentry, struct inode *inode)
265{
266 /* is dentry a directory ? if so, kfree() associated cpuset */
267 if (S_ISDIR(inode->i_mode)) {
268 struct cpuset *cs = dentry->d_fsdata;
269 BUG_ON(!(is_removed(cs)));
270 kfree(cs);
271 }
272 iput(inode);
273}
274
275static struct dentry_operations cpuset_dops = {
276 .d_iput = cpuset_diput,
277};
278
279static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
280{
5f45f1a7 281 struct dentry *d = lookup_one_len(name, parent, strlen(name));
1da177e4
LT
282 if (!IS_ERR(d))
283 d->d_op = &cpuset_dops;
284 return d;
285}
286
287static void remove_dir(struct dentry *d)
288{
289 struct dentry *parent = dget(d->d_parent);
290
291 d_delete(d);
292 simple_rmdir(parent->d_inode, d);
293 dput(parent);
294}
295
296/*
297 * NOTE : the dentry must have been dget()'ed
298 */
299static void cpuset_d_remove_dir(struct dentry *dentry)
300{
301 struct list_head *node;
302
303 spin_lock(&dcache_lock);
304 node = dentry->d_subdirs.next;
305 while (node != &dentry->d_subdirs) {
306 struct dentry *d = list_entry(node, struct dentry, d_child);
307 list_del_init(node);
308 if (d->d_inode) {
309 d = dget_locked(d);
310 spin_unlock(&dcache_lock);
311 d_delete(d);
312 simple_unlink(dentry->d_inode, d);
313 dput(d);
314 spin_lock(&dcache_lock);
315 }
316 node = dentry->d_subdirs.next;
317 }
318 list_del_init(&dentry->d_child);
319 spin_unlock(&dcache_lock);
320 remove_dir(dentry);
321}
322
323static struct super_operations cpuset_ops = {
324 .statfs = simple_statfs,
325 .drop_inode = generic_delete_inode,
326};
327
328static int cpuset_fill_super(struct super_block *sb, void *unused_data,
329 int unused_silent)
330{
331 struct inode *inode;
332 struct dentry *root;
333
334 sb->s_blocksize = PAGE_CACHE_SIZE;
335 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
336 sb->s_magic = CPUSET_SUPER_MAGIC;
337 sb->s_op = &cpuset_ops;
338 cpuset_sb = sb;
339
340 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
341 if (inode) {
342 inode->i_op = &simple_dir_inode_operations;
343 inode->i_fop = &simple_dir_operations;
344 /* directories start off with i_nlink == 2 (for "." entry) */
345 inode->i_nlink++;
346 } else {
347 return -ENOMEM;
348 }
349
350 root = d_alloc_root(inode);
351 if (!root) {
352 iput(inode);
353 return -ENOMEM;
354 }
355 sb->s_root = root;
356 return 0;
357}
358
359static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
360 int flags, const char *unused_dev_name,
361 void *data)
362{
363 return get_sb_single(fs_type, flags, data, cpuset_fill_super);
364}
365
366static struct file_system_type cpuset_fs_type = {
367 .name = "cpuset",
368 .get_sb = cpuset_get_sb,
369 .kill_sb = kill_litter_super,
370};
371
372/* struct cftype:
373 *
374 * The files in the cpuset filesystem mostly have a very simple read/write
375 * handling, some common function will take care of it. Nevertheless some cases
376 * (read tasks) are special and therefore I define this structure for every
377 * kind of file.
378 *
379 *
380 * When reading/writing to a file:
381 * - the cpuset to use in file->f_dentry->d_parent->d_fsdata
382 * - the 'cftype' of the file is file->f_dentry->d_fsdata
383 */
384
385struct cftype {
386 char *name;
387 int private;
388 int (*open) (struct inode *inode, struct file *file);
389 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
390 loff_t *ppos);
391 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
392 loff_t *ppos);
393 int (*release) (struct inode *inode, struct file *file);
394};
395
396static inline struct cpuset *__d_cs(struct dentry *dentry)
397{
398 return dentry->d_fsdata;
399}
400
401static inline struct cftype *__d_cft(struct dentry *dentry)
402{
403 return dentry->d_fsdata;
404}
405
406/*
053199ed 407 * Call with manage_sem held. Writes path of cpuset into buf.
1da177e4
LT
408 * Returns 0 on success, -errno on error.
409 */
410
411static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
412{
413 char *start;
414
415 start = buf + buflen;
416
417 *--start = '\0';
418 for (;;) {
419 int len = cs->dentry->d_name.len;
420 if ((start -= len) < buf)
421 return -ENAMETOOLONG;
422 memcpy(start, cs->dentry->d_name.name, len);
423 cs = cs->parent;
424 if (!cs)
425 break;
426 if (!cs->parent)
427 continue;
428 if (--start < buf)
429 return -ENAMETOOLONG;
430 *start = '/';
431 }
432 memmove(buf, start, buf + buflen - start);
433 return 0;
434}
435
436/*
437 * Notify userspace when a cpuset is released, by running
438 * /sbin/cpuset_release_agent with the name of the cpuset (path
439 * relative to the root of cpuset file system) as the argument.
440 *
441 * Most likely, this user command will try to rmdir this cpuset.
442 *
443 * This races with the possibility that some other task will be
444 * attached to this cpuset before it is removed, or that some other
445 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
446 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
447 * unused, and this cpuset will be reprieved from its death sentence,
448 * to continue to serve a useful existence. Next time it's released,
449 * we will get notified again, if it still has 'notify_on_release' set.
450 *
3077a260
PJ
451 * The final arg to call_usermodehelper() is 0, which means don't
452 * wait. The separate /sbin/cpuset_release_agent task is forked by
453 * call_usermodehelper(), then control in this thread returns here,
454 * without waiting for the release agent task. We don't bother to
455 * wait because the caller of this routine has no use for the exit
456 * status of the /sbin/cpuset_release_agent task, so no sense holding
457 * our caller up for that.
458 *
053199ed
PJ
459 * When we had only one cpuset semaphore, we had to call this
460 * without holding it, to avoid deadlock when call_usermodehelper()
461 * allocated memory. With two locks, we could now call this while
462 * holding manage_sem, but we still don't, so as to minimize
463 * the time manage_sem is held.
1da177e4
LT
464 */
465
3077a260 466static void cpuset_release_agent(const char *pathbuf)
1da177e4
LT
467{
468 char *argv[3], *envp[3];
469 int i;
470
3077a260
PJ
471 if (!pathbuf)
472 return;
473
1da177e4
LT
474 i = 0;
475 argv[i++] = "/sbin/cpuset_release_agent";
3077a260 476 argv[i++] = (char *)pathbuf;
1da177e4
LT
477 argv[i] = NULL;
478
479 i = 0;
480 /* minimal command environment */
481 envp[i++] = "HOME=/";
482 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
483 envp[i] = NULL;
484
3077a260
PJ
485 call_usermodehelper(argv[0], argv, envp, 0);
486 kfree(pathbuf);
1da177e4
LT
487}
488
489/*
490 * Either cs->count of using tasks transitioned to zero, or the
491 * cs->children list of child cpusets just became empty. If this
492 * cs is notify_on_release() and now both the user count is zero and
3077a260
PJ
493 * the list of children is empty, prepare cpuset path in a kmalloc'd
494 * buffer, to be returned via ppathbuf, so that the caller can invoke
053199ed
PJ
495 * cpuset_release_agent() with it later on, once manage_sem is dropped.
496 * Call here with manage_sem held.
3077a260
PJ
497 *
498 * This check_for_release() routine is responsible for kmalloc'ing
499 * pathbuf. The above cpuset_release_agent() is responsible for
500 * kfree'ing pathbuf. The caller of these routines is responsible
501 * for providing a pathbuf pointer, initialized to NULL, then
053199ed
PJ
502 * calling check_for_release() with manage_sem held and the address
503 * of the pathbuf pointer, then dropping manage_sem, then calling
3077a260 504 * cpuset_release_agent() with pathbuf, as set by check_for_release().
1da177e4
LT
505 */
506
3077a260 507static void check_for_release(struct cpuset *cs, char **ppathbuf)
1da177e4
LT
508{
509 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
510 list_empty(&cs->children)) {
511 char *buf;
512
513 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
514 if (!buf)
515 return;
516 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
3077a260
PJ
517 kfree(buf);
518 else
519 *ppathbuf = buf;
1da177e4
LT
520 }
521}
522
523/*
524 * Return in *pmask the portion of a cpusets's cpus_allowed that
525 * are online. If none are online, walk up the cpuset hierarchy
526 * until we find one that does have some online cpus. If we get
527 * all the way to the top and still haven't found any online cpus,
528 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
529 * task, return cpu_online_map.
530 *
531 * One way or another, we guarantee to return some non-empty subset
532 * of cpu_online_map.
533 *
053199ed 534 * Call with callback_sem held.
1da177e4
LT
535 */
536
537static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
538{
539 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
540 cs = cs->parent;
541 if (cs)
542 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
543 else
544 *pmask = cpu_online_map;
545 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
546}
547
548/*
549 * Return in *pmask the portion of a cpusets's mems_allowed that
550 * are online. If none are online, walk up the cpuset hierarchy
551 * until we find one that does have some online mems. If we get
552 * all the way to the top and still haven't found any online mems,
553 * return node_online_map.
554 *
555 * One way or another, we guarantee to return some non-empty subset
556 * of node_online_map.
557 *
053199ed 558 * Call with callback_sem held.
1da177e4
LT
559 */
560
561static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
562{
563 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
564 cs = cs->parent;
565 if (cs)
566 nodes_and(*pmask, cs->mems_allowed, node_online_map);
567 else
568 *pmask = node_online_map;
569 BUG_ON(!nodes_intersects(*pmask, node_online_map));
570}
571
572/*
053199ed
PJ
573 * Refresh current tasks mems_allowed and mems_generation from current
574 * tasks cpuset.
575 *
576 * Call without callback_sem or task_lock() held. May be called with
577 * or without manage_sem held. Will acquire task_lock() and might
578 * acquire callback_sem during call.
579 *
580 * The task_lock() is required to dereference current->cpuset safely.
581 * Without it, we could pick up the pointer value of current->cpuset
582 * in one instruction, and then attach_task could give us a different
583 * cpuset, and then the cpuset we had could be removed and freed,
584 * and then on our next instruction, we could dereference a no longer
585 * valid cpuset pointer to get its mems_generation field.
586 *
587 * This routine is needed to update the per-task mems_allowed data,
588 * within the tasks context, when it is trying to allocate memory
589 * (in various mm/mempolicy.c routines) and notices that some other
590 * task has been modifying its cpuset.
1da177e4
LT
591 */
592
593static void refresh_mems(void)
594{
053199ed
PJ
595 int my_cpusets_mem_gen;
596
597 task_lock(current);
598 my_cpusets_mem_gen = current->cpuset->mems_generation;
599 task_unlock(current);
1da177e4 600
053199ed
PJ
601 if (current->cpuset_mems_generation != my_cpusets_mem_gen) {
602 struct cpuset *cs;
603
604 down(&callback_sem);
605 task_lock(current);
606 cs = current->cpuset;
1da177e4
LT
607 guarantee_online_mems(cs, &current->mems_allowed);
608 current->cpuset_mems_generation = cs->mems_generation;
053199ed
PJ
609 task_unlock(current);
610 up(&callback_sem);
1da177e4
LT
611 }
612}
613
614/*
615 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
616 *
617 * One cpuset is a subset of another if all its allowed CPUs and
618 * Memory Nodes are a subset of the other, and its exclusive flags
053199ed 619 * are only set if the other's are set. Call holding manage_sem.
1da177e4
LT
620 */
621
622static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
623{
624 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
625 nodes_subset(p->mems_allowed, q->mems_allowed) &&
626 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
627 is_mem_exclusive(p) <= is_mem_exclusive(q);
628}
629
630/*
631 * validate_change() - Used to validate that any proposed cpuset change
632 * follows the structural rules for cpusets.
633 *
634 * If we replaced the flag and mask values of the current cpuset
635 * (cur) with those values in the trial cpuset (trial), would
636 * our various subset and exclusive rules still be valid? Presumes
053199ed 637 * manage_sem held.
1da177e4
LT
638 *
639 * 'cur' is the address of an actual, in-use cpuset. Operations
640 * such as list traversal that depend on the actual address of the
641 * cpuset in the list must use cur below, not trial.
642 *
643 * 'trial' is the address of bulk structure copy of cur, with
644 * perhaps one or more of the fields cpus_allowed, mems_allowed,
645 * or flags changed to new, trial values.
646 *
647 * Return 0 if valid, -errno if not.
648 */
649
650static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
651{
652 struct cpuset *c, *par;
653
654 /* Each of our child cpusets must be a subset of us */
655 list_for_each_entry(c, &cur->children, sibling) {
656 if (!is_cpuset_subset(c, trial))
657 return -EBUSY;
658 }
659
660 /* Remaining checks don't apply to root cpuset */
661 if ((par = cur->parent) == NULL)
662 return 0;
663
664 /* We must be a subset of our parent cpuset */
665 if (!is_cpuset_subset(trial, par))
666 return -EACCES;
667
668 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
669 list_for_each_entry(c, &par->children, sibling) {
670 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
671 c != cur &&
672 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
673 return -EINVAL;
674 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
675 c != cur &&
676 nodes_intersects(trial->mems_allowed, c->mems_allowed))
677 return -EINVAL;
678 }
679
680 return 0;
681}
682
85d7b949
DG
683/*
684 * For a given cpuset cur, partition the system as follows
685 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
686 * exclusive child cpusets
687 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
688 * exclusive child cpusets
689 * Build these two partitions by calling partition_sched_domains
690 *
053199ed 691 * Call with manage_sem held. May nest a call to the
85d7b949
DG
692 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
693 */
212d6d22 694
85d7b949
DG
695static void update_cpu_domains(struct cpuset *cur)
696{
697 struct cpuset *c, *par = cur->parent;
698 cpumask_t pspan, cspan;
699
700 if (par == NULL || cpus_empty(cur->cpus_allowed))
701 return;
702
703 /*
704 * Get all cpus from parent's cpus_allowed not part of exclusive
705 * children
706 */
707 pspan = par->cpus_allowed;
708 list_for_each_entry(c, &par->children, sibling) {
709 if (is_cpu_exclusive(c))
710 cpus_andnot(pspan, pspan, c->cpus_allowed);
711 }
712 if (is_removed(cur) || !is_cpu_exclusive(cur)) {
713 cpus_or(pspan, pspan, cur->cpus_allowed);
714 if (cpus_equal(pspan, cur->cpus_allowed))
715 return;
716 cspan = CPU_MASK_NONE;
717 } else {
718 if (cpus_empty(pspan))
719 return;
720 cspan = cur->cpus_allowed;
721 /*
722 * Get all cpus from current cpuset's cpus_allowed not part
723 * of exclusive children
724 */
725 list_for_each_entry(c, &cur->children, sibling) {
726 if (is_cpu_exclusive(c))
727 cpus_andnot(cspan, cspan, c->cpus_allowed);
728 }
729 }
730
731 lock_cpu_hotplug();
732 partition_sched_domains(&pspan, &cspan);
733 unlock_cpu_hotplug();
734}
735
053199ed
PJ
736/*
737 * Call with manage_sem held. May take callback_sem during call.
738 */
739
1da177e4
LT
740static int update_cpumask(struct cpuset *cs, char *buf)
741{
742 struct cpuset trialcs;
85d7b949 743 int retval, cpus_unchanged;
1da177e4
LT
744
745 trialcs = *cs;
746 retval = cpulist_parse(buf, trialcs.cpus_allowed);
747 if (retval < 0)
748 return retval;
749 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
750 if (cpus_empty(trialcs.cpus_allowed))
751 return -ENOSPC;
752 retval = validate_change(cs, &trialcs);
85d7b949
DG
753 if (retval < 0)
754 return retval;
755 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
053199ed 756 down(&callback_sem);
85d7b949 757 cs->cpus_allowed = trialcs.cpus_allowed;
053199ed 758 up(&callback_sem);
85d7b949
DG
759 if (is_cpu_exclusive(cs) && !cpus_unchanged)
760 update_cpu_domains(cs);
761 return 0;
1da177e4
LT
762}
763
053199ed
PJ
764/*
765 * Call with manage_sem held. May take callback_sem during call.
766 */
767
1da177e4
LT
768static int update_nodemask(struct cpuset *cs, char *buf)
769{
770 struct cpuset trialcs;
771 int retval;
772
773 trialcs = *cs;
774 retval = nodelist_parse(buf, trialcs.mems_allowed);
775 if (retval < 0)
776 return retval;
777 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
778 if (nodes_empty(trialcs.mems_allowed))
779 return -ENOSPC;
780 retval = validate_change(cs, &trialcs);
781 if (retval == 0) {
053199ed 782 down(&callback_sem);
1da177e4
LT
783 cs->mems_allowed = trialcs.mems_allowed;
784 atomic_inc(&cpuset_mems_generation);
785 cs->mems_generation = atomic_read(&cpuset_mems_generation);
053199ed 786 up(&callback_sem);
1da177e4
LT
787 }
788 return retval;
789}
790
791/*
792 * update_flag - read a 0 or a 1 in a file and update associated flag
793 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
794 * CS_NOTIFY_ON_RELEASE)
795 * cs: the cpuset to update
796 * buf: the buffer where we read the 0 or 1
053199ed
PJ
797 *
798 * Call with manage_sem held.
1da177e4
LT
799 */
800
801static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
802{
803 int turning_on;
804 struct cpuset trialcs;
85d7b949 805 int err, cpu_exclusive_changed;
1da177e4
LT
806
807 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
808
809 trialcs = *cs;
810 if (turning_on)
811 set_bit(bit, &trialcs.flags);
812 else
813 clear_bit(bit, &trialcs.flags);
814
815 err = validate_change(cs, &trialcs);
85d7b949
DG
816 if (err < 0)
817 return err;
818 cpu_exclusive_changed =
819 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
053199ed 820 down(&callback_sem);
85d7b949
DG
821 if (turning_on)
822 set_bit(bit, &cs->flags);
823 else
824 clear_bit(bit, &cs->flags);
053199ed 825 up(&callback_sem);
85d7b949
DG
826
827 if (cpu_exclusive_changed)
828 update_cpu_domains(cs);
829 return 0;
1da177e4
LT
830}
831
053199ed
PJ
832/*
833 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
834 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
835 * notified on release.
836 *
837 * Call holding manage_sem. May take callback_sem and task_lock of
838 * the task 'pid' during call.
839 */
840
3077a260 841static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
1da177e4
LT
842{
843 pid_t pid;
844 struct task_struct *tsk;
845 struct cpuset *oldcs;
846 cpumask_t cpus;
847
3077a260 848 if (sscanf(pidbuf, "%d", &pid) != 1)
1da177e4
LT
849 return -EIO;
850 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
851 return -ENOSPC;
852
853 if (pid) {
854 read_lock(&tasklist_lock);
855
856 tsk = find_task_by_pid(pid);
053199ed 857 if (!tsk || tsk->flags & PF_EXITING) {
1da177e4
LT
858 read_unlock(&tasklist_lock);
859 return -ESRCH;
860 }
861
862 get_task_struct(tsk);
863 read_unlock(&tasklist_lock);
864
865 if ((current->euid) && (current->euid != tsk->uid)
866 && (current->euid != tsk->suid)) {
867 put_task_struct(tsk);
868 return -EACCES;
869 }
870 } else {
871 tsk = current;
872 get_task_struct(tsk);
873 }
874
053199ed
PJ
875 down(&callback_sem);
876
1da177e4
LT
877 task_lock(tsk);
878 oldcs = tsk->cpuset;
879 if (!oldcs) {
880 task_unlock(tsk);
053199ed 881 up(&callback_sem);
1da177e4
LT
882 put_task_struct(tsk);
883 return -ESRCH;
884 }
885 atomic_inc(&cs->count);
886 tsk->cpuset = cs;
887 task_unlock(tsk);
888
889 guarantee_online_cpus(cs, &cpus);
890 set_cpus_allowed(tsk, cpus);
891
053199ed 892 up(&callback_sem);
1da177e4
LT
893 put_task_struct(tsk);
894 if (atomic_dec_and_test(&oldcs->count))
3077a260 895 check_for_release(oldcs, ppathbuf);
1da177e4
LT
896 return 0;
897}
898
899/* The various types of files and directories in a cpuset file system */
900
901typedef enum {
902 FILE_ROOT,
903 FILE_DIR,
904 FILE_CPULIST,
905 FILE_MEMLIST,
906 FILE_CPU_EXCLUSIVE,
907 FILE_MEM_EXCLUSIVE,
908 FILE_NOTIFY_ON_RELEASE,
909 FILE_TASKLIST,
910} cpuset_filetype_t;
911
912static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
913 size_t nbytes, loff_t *unused_ppos)
914{
915 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
916 struct cftype *cft = __d_cft(file->f_dentry);
917 cpuset_filetype_t type = cft->private;
918 char *buffer;
3077a260 919 char *pathbuf = NULL;
1da177e4
LT
920 int retval = 0;
921
922 /* Crude upper limit on largest legitimate cpulist user might write. */
923 if (nbytes > 100 + 6 * NR_CPUS)
924 return -E2BIG;
925
926 /* +1 for nul-terminator */
927 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
928 return -ENOMEM;
929
930 if (copy_from_user(buffer, userbuf, nbytes)) {
931 retval = -EFAULT;
932 goto out1;
933 }
934 buffer[nbytes] = 0; /* nul-terminate */
935
053199ed 936 down(&manage_sem);
1da177e4
LT
937
938 if (is_removed(cs)) {
939 retval = -ENODEV;
940 goto out2;
941 }
942
943 switch (type) {
944 case FILE_CPULIST:
945 retval = update_cpumask(cs, buffer);
946 break;
947 case FILE_MEMLIST:
948 retval = update_nodemask(cs, buffer);
949 break;
950 case FILE_CPU_EXCLUSIVE:
951 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
952 break;
953 case FILE_MEM_EXCLUSIVE:
954 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
955 break;
956 case FILE_NOTIFY_ON_RELEASE:
957 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
958 break;
959 case FILE_TASKLIST:
3077a260 960 retval = attach_task(cs, buffer, &pathbuf);
1da177e4
LT
961 break;
962 default:
963 retval = -EINVAL;
964 goto out2;
965 }
966
967 if (retval == 0)
968 retval = nbytes;
969out2:
053199ed 970 up(&manage_sem);
3077a260 971 cpuset_release_agent(pathbuf);
1da177e4
LT
972out1:
973 kfree(buffer);
974 return retval;
975}
976
977static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
978 size_t nbytes, loff_t *ppos)
979{
980 ssize_t retval = 0;
981 struct cftype *cft = __d_cft(file->f_dentry);
982 if (!cft)
983 return -ENODEV;
984
985 /* special function ? */
986 if (cft->write)
987 retval = cft->write(file, buf, nbytes, ppos);
988 else
989 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
990
991 return retval;
992}
993
994/*
995 * These ascii lists should be read in a single call, by using a user
996 * buffer large enough to hold the entire map. If read in smaller
997 * chunks, there is no guarantee of atomicity. Since the display format
998 * used, list of ranges of sequential numbers, is variable length,
999 * and since these maps can change value dynamically, one could read
1000 * gibberish by doing partial reads while a list was changing.
1001 * A single large read to a buffer that crosses a page boundary is
1002 * ok, because the result being copied to user land is not recomputed
1003 * across a page fault.
1004 */
1005
1006static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1007{
1008 cpumask_t mask;
1009
053199ed 1010 down(&callback_sem);
1da177e4 1011 mask = cs->cpus_allowed;
053199ed 1012 up(&callback_sem);
1da177e4
LT
1013
1014 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1015}
1016
1017static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1018{
1019 nodemask_t mask;
1020
053199ed 1021 down(&callback_sem);
1da177e4 1022 mask = cs->mems_allowed;
053199ed 1023 up(&callback_sem);
1da177e4
LT
1024
1025 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1026}
1027
1028static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
1029 size_t nbytes, loff_t *ppos)
1030{
1031 struct cftype *cft = __d_cft(file->f_dentry);
1032 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1033 cpuset_filetype_t type = cft->private;
1034 char *page;
1035 ssize_t retval = 0;
1036 char *s;
1da177e4
LT
1037
1038 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1039 return -ENOMEM;
1040
1041 s = page;
1042
1043 switch (type) {
1044 case FILE_CPULIST:
1045 s += cpuset_sprintf_cpulist(s, cs);
1046 break;
1047 case FILE_MEMLIST:
1048 s += cpuset_sprintf_memlist(s, cs);
1049 break;
1050 case FILE_CPU_EXCLUSIVE:
1051 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
1052 break;
1053 case FILE_MEM_EXCLUSIVE:
1054 *s++ = is_mem_exclusive(cs) ? '1' : '0';
1055 break;
1056 case FILE_NOTIFY_ON_RELEASE:
1057 *s++ = notify_on_release(cs) ? '1' : '0';
1058 break;
1059 default:
1060 retval = -EINVAL;
1061 goto out;
1062 }
1063 *s++ = '\n';
1da177e4 1064
eacaa1f5 1065 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1066out:
1067 free_page((unsigned long)page);
1068 return retval;
1069}
1070
1071static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
1072 loff_t *ppos)
1073{
1074 ssize_t retval = 0;
1075 struct cftype *cft = __d_cft(file->f_dentry);
1076 if (!cft)
1077 return -ENODEV;
1078
1079 /* special function ? */
1080 if (cft->read)
1081 retval = cft->read(file, buf, nbytes, ppos);
1082 else
1083 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
1084
1085 return retval;
1086}
1087
1088static int cpuset_file_open(struct inode *inode, struct file *file)
1089{
1090 int err;
1091 struct cftype *cft;
1092
1093 err = generic_file_open(inode, file);
1094 if (err)
1095 return err;
1096
1097 cft = __d_cft(file->f_dentry);
1098 if (!cft)
1099 return -ENODEV;
1100 if (cft->open)
1101 err = cft->open(inode, file);
1102 else
1103 err = 0;
1104
1105 return err;
1106}
1107
1108static int cpuset_file_release(struct inode *inode, struct file *file)
1109{
1110 struct cftype *cft = __d_cft(file->f_dentry);
1111 if (cft->release)
1112 return cft->release(inode, file);
1113 return 0;
1114}
1115
18a19cb3
PJ
1116/*
1117 * cpuset_rename - Only allow simple rename of directories in place.
1118 */
1119static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
1120 struct inode *new_dir, struct dentry *new_dentry)
1121{
1122 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1123 return -ENOTDIR;
1124 if (new_dentry->d_inode)
1125 return -EEXIST;
1126 if (old_dir != new_dir)
1127 return -EIO;
1128 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1129}
1130
1da177e4
LT
1131static struct file_operations cpuset_file_operations = {
1132 .read = cpuset_file_read,
1133 .write = cpuset_file_write,
1134 .llseek = generic_file_llseek,
1135 .open = cpuset_file_open,
1136 .release = cpuset_file_release,
1137};
1138
1139static struct inode_operations cpuset_dir_inode_operations = {
1140 .lookup = simple_lookup,
1141 .mkdir = cpuset_mkdir,
1142 .rmdir = cpuset_rmdir,
18a19cb3 1143 .rename = cpuset_rename,
1da177e4
LT
1144};
1145
1146static int cpuset_create_file(struct dentry *dentry, int mode)
1147{
1148 struct inode *inode;
1149
1150 if (!dentry)
1151 return -ENOENT;
1152 if (dentry->d_inode)
1153 return -EEXIST;
1154
1155 inode = cpuset_new_inode(mode);
1156 if (!inode)
1157 return -ENOMEM;
1158
1159 if (S_ISDIR(mode)) {
1160 inode->i_op = &cpuset_dir_inode_operations;
1161 inode->i_fop = &simple_dir_operations;
1162
1163 /* start off with i_nlink == 2 (for "." entry) */
1164 inode->i_nlink++;
1165 } else if (S_ISREG(mode)) {
1166 inode->i_size = 0;
1167 inode->i_fop = &cpuset_file_operations;
1168 }
1169
1170 d_instantiate(dentry, inode);
1171 dget(dentry); /* Extra count - pin the dentry in core */
1172 return 0;
1173}
1174
1175/*
1176 * cpuset_create_dir - create a directory for an object.
1177 * cs: the cpuset we create the directory for.
1178 * It must have a valid ->parent field
1179 * And we are going to fill its ->dentry field.
1180 * name: The name to give to the cpuset directory. Will be copied.
1181 * mode: mode to set on new directory.
1182 */
1183
1184static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1185{
1186 struct dentry *dentry = NULL;
1187 struct dentry *parent;
1188 int error = 0;
1189
1190 parent = cs->parent->dentry;
1191 dentry = cpuset_get_dentry(parent, name);
1192 if (IS_ERR(dentry))
1193 return PTR_ERR(dentry);
1194 error = cpuset_create_file(dentry, S_IFDIR | mode);
1195 if (!error) {
1196 dentry->d_fsdata = cs;
1197 parent->d_inode->i_nlink++;
1198 cs->dentry = dentry;
1199 }
1200 dput(dentry);
1201
1202 return error;
1203}
1204
1205static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1206{
1207 struct dentry *dentry;
1208 int error;
1209
1210 down(&dir->d_inode->i_sem);
1211 dentry = cpuset_get_dentry(dir, cft->name);
1212 if (!IS_ERR(dentry)) {
1213 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1214 if (!error)
1215 dentry->d_fsdata = (void *)cft;
1216 dput(dentry);
1217 } else
1218 error = PTR_ERR(dentry);
1219 up(&dir->d_inode->i_sem);
1220 return error;
1221}
1222
1223/*
1224 * Stuff for reading the 'tasks' file.
1225 *
1226 * Reading this file can return large amounts of data if a cpuset has
1227 * *lots* of attached tasks. So it may need several calls to read(),
1228 * but we cannot guarantee that the information we produce is correct
1229 * unless we produce it entirely atomically.
1230 *
1231 * Upon tasks file open(), a struct ctr_struct is allocated, that
1232 * will have a pointer to an array (also allocated here). The struct
1233 * ctr_struct * is stored in file->private_data. Its resources will
1234 * be freed by release() when the file is closed. The array is used
1235 * to sprintf the PIDs and then used by read().
1236 */
1237
1238/* cpusets_tasks_read array */
1239
1240struct ctr_struct {
1241 char *buf;
1242 int bufsz;
1243};
1244
1245/*
1246 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
053199ed
PJ
1247 * Return actual number of pids loaded. No need to task_lock(p)
1248 * when reading out p->cpuset, as we don't really care if it changes
1249 * on the next cycle, and we are not going to try to dereference it.
1da177e4
LT
1250 */
1251static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1252{
1253 int n = 0;
1254 struct task_struct *g, *p;
1255
1256 read_lock(&tasklist_lock);
1257
1258 do_each_thread(g, p) {
1259 if (p->cpuset == cs) {
1260 pidarray[n++] = p->pid;
1261 if (unlikely(n == npids))
1262 goto array_full;
1263 }
1264 } while_each_thread(g, p);
1265
1266array_full:
1267 read_unlock(&tasklist_lock);
1268 return n;
1269}
1270
1271static int cmppid(const void *a, const void *b)
1272{
1273 return *(pid_t *)a - *(pid_t *)b;
1274}
1275
1276/*
1277 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1278 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1279 * count 'cnt' of how many chars would be written if buf were large enough.
1280 */
1281static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1282{
1283 int cnt = 0;
1284 int i;
1285
1286 for (i = 0; i < npids; i++)
1287 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1288 return cnt;
1289}
1290
053199ed
PJ
1291/*
1292 * Handle an open on 'tasks' file. Prepare a buffer listing the
1293 * process id's of tasks currently attached to the cpuset being opened.
1294 *
1295 * Does not require any specific cpuset semaphores, and does not take any.
1296 */
1da177e4
LT
1297static int cpuset_tasks_open(struct inode *unused, struct file *file)
1298{
1299 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1300 struct ctr_struct *ctr;
1301 pid_t *pidarray;
1302 int npids;
1303 char c;
1304
1305 if (!(file->f_mode & FMODE_READ))
1306 return 0;
1307
1308 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1309 if (!ctr)
1310 goto err0;
1311
1312 /*
1313 * If cpuset gets more users after we read count, we won't have
1314 * enough space - tough. This race is indistinguishable to the
1315 * caller from the case that the additional cpuset users didn't
1316 * show up until sometime later on.
1317 */
1318 npids = atomic_read(&cs->count);
1319 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1320 if (!pidarray)
1321 goto err1;
1322
1323 npids = pid_array_load(pidarray, npids, cs);
1324 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1325
1326 /* Call pid_array_to_buf() twice, first just to get bufsz */
1327 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1328 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1329 if (!ctr->buf)
1330 goto err2;
1331 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1332
1333 kfree(pidarray);
1334 file->private_data = ctr;
1335 return 0;
1336
1337err2:
1338 kfree(pidarray);
1339err1:
1340 kfree(ctr);
1341err0:
1342 return -ENOMEM;
1343}
1344
1345static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1346 size_t nbytes, loff_t *ppos)
1347{
1348 struct ctr_struct *ctr = file->private_data;
1349
1350 if (*ppos + nbytes > ctr->bufsz)
1351 nbytes = ctr->bufsz - *ppos;
1352 if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
1353 return -EFAULT;
1354 *ppos += nbytes;
1355 return nbytes;
1356}
1357
1358static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1359{
1360 struct ctr_struct *ctr;
1361
1362 if (file->f_mode & FMODE_READ) {
1363 ctr = file->private_data;
1364 kfree(ctr->buf);
1365 kfree(ctr);
1366 }
1367 return 0;
1368}
1369
1370/*
1371 * for the common functions, 'private' gives the type of file
1372 */
1373
1374static struct cftype cft_tasks = {
1375 .name = "tasks",
1376 .open = cpuset_tasks_open,
1377 .read = cpuset_tasks_read,
1378 .release = cpuset_tasks_release,
1379 .private = FILE_TASKLIST,
1380};
1381
1382static struct cftype cft_cpus = {
1383 .name = "cpus",
1384 .private = FILE_CPULIST,
1385};
1386
1387static struct cftype cft_mems = {
1388 .name = "mems",
1389 .private = FILE_MEMLIST,
1390};
1391
1392static struct cftype cft_cpu_exclusive = {
1393 .name = "cpu_exclusive",
1394 .private = FILE_CPU_EXCLUSIVE,
1395};
1396
1397static struct cftype cft_mem_exclusive = {
1398 .name = "mem_exclusive",
1399 .private = FILE_MEM_EXCLUSIVE,
1400};
1401
1402static struct cftype cft_notify_on_release = {
1403 .name = "notify_on_release",
1404 .private = FILE_NOTIFY_ON_RELEASE,
1405};
1406
1407static int cpuset_populate_dir(struct dentry *cs_dentry)
1408{
1409 int err;
1410
1411 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1412 return err;
1413 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1414 return err;
1415 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1416 return err;
1417 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1418 return err;
1419 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1420 return err;
1421 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1422 return err;
1423 return 0;
1424}
1425
1426/*
1427 * cpuset_create - create a cpuset
1428 * parent: cpuset that will be parent of the new cpuset.
1429 * name: name of the new cpuset. Will be strcpy'ed.
1430 * mode: mode to set on new inode
1431 *
1432 * Must be called with the semaphore on the parent inode held
1433 */
1434
1435static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1436{
1437 struct cpuset *cs;
1438 int err;
1439
1440 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1441 if (!cs)
1442 return -ENOMEM;
1443
053199ed 1444 down(&manage_sem);
5aa15b5f 1445 refresh_mems();
1da177e4
LT
1446 cs->flags = 0;
1447 if (notify_on_release(parent))
1448 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1449 cs->cpus_allowed = CPU_MASK_NONE;
1450 cs->mems_allowed = NODE_MASK_NONE;
1451 atomic_set(&cs->count, 0);
1452 INIT_LIST_HEAD(&cs->sibling);
1453 INIT_LIST_HEAD(&cs->children);
1454 atomic_inc(&cpuset_mems_generation);
1455 cs->mems_generation = atomic_read(&cpuset_mems_generation);
1456
1457 cs->parent = parent;
1458
053199ed 1459 down(&callback_sem);
1da177e4 1460 list_add(&cs->sibling, &cs->parent->children);
053199ed 1461 up(&callback_sem);
1da177e4
LT
1462
1463 err = cpuset_create_dir(cs, name, mode);
1464 if (err < 0)
1465 goto err;
1466
1467 /*
053199ed 1468 * Release manage_sem before cpuset_populate_dir() because it
1da177e4
LT
1469 * will down() this new directory's i_sem and if we race with
1470 * another mkdir, we might deadlock.
1471 */
053199ed 1472 up(&manage_sem);
1da177e4
LT
1473
1474 err = cpuset_populate_dir(cs->dentry);
1475 /* If err < 0, we have a half-filled directory - oh well ;) */
1476 return 0;
1477err:
1478 list_del(&cs->sibling);
053199ed 1479 up(&manage_sem);
1da177e4
LT
1480 kfree(cs);
1481 return err;
1482}
1483
1484static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1485{
1486 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1487
1488 /* the vfs holds inode->i_sem already */
1489 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1490}
1491
1492static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1493{
1494 struct cpuset *cs = dentry->d_fsdata;
1495 struct dentry *d;
1496 struct cpuset *parent;
3077a260 1497 char *pathbuf = NULL;
1da177e4
LT
1498
1499 /* the vfs holds both inode->i_sem already */
1500
053199ed 1501 down(&manage_sem);
5aa15b5f 1502 refresh_mems();
1da177e4 1503 if (atomic_read(&cs->count) > 0) {
053199ed 1504 up(&manage_sem);
1da177e4
LT
1505 return -EBUSY;
1506 }
1507 if (!list_empty(&cs->children)) {
053199ed 1508 up(&manage_sem);
1da177e4
LT
1509 return -EBUSY;
1510 }
1da177e4 1511 parent = cs->parent;
053199ed 1512 down(&callback_sem);
1da177e4 1513 set_bit(CS_REMOVED, &cs->flags);
85d7b949
DG
1514 if (is_cpu_exclusive(cs))
1515 update_cpu_domains(cs);
1da177e4 1516 list_del(&cs->sibling); /* delete my sibling from parent->children */
85d7b949 1517 spin_lock(&cs->dentry->d_lock);
1da177e4
LT
1518 d = dget(cs->dentry);
1519 cs->dentry = NULL;
1520 spin_unlock(&d->d_lock);
1521 cpuset_d_remove_dir(d);
1522 dput(d);
053199ed
PJ
1523 up(&callback_sem);
1524 if (list_empty(&parent->children))
1525 check_for_release(parent, &pathbuf);
1526 up(&manage_sem);
3077a260 1527 cpuset_release_agent(pathbuf);
1da177e4
LT
1528 return 0;
1529}
1530
1531/**
1532 * cpuset_init - initialize cpusets at system boot
1533 *
1534 * Description: Initialize top_cpuset and the cpuset internal file system,
1535 **/
1536
1537int __init cpuset_init(void)
1538{
1539 struct dentry *root;
1540 int err;
1541
1542 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1543 top_cpuset.mems_allowed = NODE_MASK_ALL;
1544
1545 atomic_inc(&cpuset_mems_generation);
1546 top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);
1547
1548 init_task.cpuset = &top_cpuset;
1549
1550 err = register_filesystem(&cpuset_fs_type);
1551 if (err < 0)
1552 goto out;
1553 cpuset_mount = kern_mount(&cpuset_fs_type);
1554 if (IS_ERR(cpuset_mount)) {
1555 printk(KERN_ERR "cpuset: could not mount!\n");
1556 err = PTR_ERR(cpuset_mount);
1557 cpuset_mount = NULL;
1558 goto out;
1559 }
1560 root = cpuset_mount->mnt_sb->s_root;
1561 root->d_fsdata = &top_cpuset;
1562 root->d_inode->i_nlink++;
1563 top_cpuset.dentry = root;
1564 root->d_inode->i_op = &cpuset_dir_inode_operations;
1565 err = cpuset_populate_dir(root);
1566out:
1567 return err;
1568}
1569
1570/**
1571 * cpuset_init_smp - initialize cpus_allowed
1572 *
1573 * Description: Finish top cpuset after cpu, node maps are initialized
1574 **/
1575
1576void __init cpuset_init_smp(void)
1577{
1578 top_cpuset.cpus_allowed = cpu_online_map;
1579 top_cpuset.mems_allowed = node_online_map;
1580}
1581
1582/**
1583 * cpuset_fork - attach newly forked task to its parents cpuset.
d9fd8a6d 1584 * @tsk: pointer to task_struct of forking parent process.
1da177e4 1585 *
053199ed
PJ
1586 * Description: A task inherits its parent's cpuset at fork().
1587 *
1588 * A pointer to the shared cpuset was automatically copied in fork.c
1589 * by dup_task_struct(). However, we ignore that copy, since it was
1590 * not made under the protection of task_lock(), so might no longer be
1591 * a valid cpuset pointer. attach_task() might have already changed
1592 * current->cpuset, allowing the previously referenced cpuset to
1593 * be removed and freed. Instead, we task_lock(current) and copy
1594 * its present value of current->cpuset for our freshly forked child.
1595 *
1596 * At the point that cpuset_fork() is called, 'current' is the parent
1597 * task, and the passed argument 'child' points to the child task.
1da177e4
LT
1598 **/
1599
053199ed 1600void cpuset_fork(struct task_struct *child)
1da177e4 1601{
053199ed
PJ
1602 task_lock(current);
1603 child->cpuset = current->cpuset;
1604 atomic_inc(&child->cpuset->count);
1605 task_unlock(current);
1da177e4
LT
1606}
1607
1608/**
1609 * cpuset_exit - detach cpuset from exiting task
1610 * @tsk: pointer to task_struct of exiting process
1611 *
1612 * Description: Detach cpuset from @tsk and release it.
1613 *
053199ed
PJ
1614 * Note that cpusets marked notify_on_release force every task in
1615 * them to take the global manage_sem semaphore when exiting.
1616 * This could impact scaling on very large systems. Be reluctant to
1617 * use notify_on_release cpusets where very high task exit scaling
1618 * is required on large systems.
1619 *
1620 * Don't even think about derefencing 'cs' after the cpuset use count
1621 * goes to zero, except inside a critical section guarded by manage_sem
1622 * or callback_sem. Otherwise a zero cpuset use count is a license to
1623 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
1624 *
1625 * This routine has to take manage_sem, not callback_sem, because
1626 * it is holding that semaphore while calling check_for_release(),
1627 * which calls kmalloc(), so can't be called holding callback__sem().
1628 *
1629 * We don't need to task_lock() this reference to tsk->cpuset,
1630 * because tsk is already marked PF_EXITING, so attach_task() won't
1631 * mess with it.
1da177e4
LT
1632 **/
1633
1634void cpuset_exit(struct task_struct *tsk)
1635{
1636 struct cpuset *cs;
1637
053199ed
PJ
1638 BUG_ON(!(tsk->flags & PF_EXITING));
1639
1da177e4
LT
1640 cs = tsk->cpuset;
1641 tsk->cpuset = NULL;
1da177e4 1642
2efe86b8 1643 if (notify_on_release(cs)) {
3077a260
PJ
1644 char *pathbuf = NULL;
1645
053199ed 1646 down(&manage_sem);
2efe86b8 1647 if (atomic_dec_and_test(&cs->count))
3077a260 1648 check_for_release(cs, &pathbuf);
053199ed 1649 up(&manage_sem);
3077a260 1650 cpuset_release_agent(pathbuf);
2efe86b8
PJ
1651 } else {
1652 atomic_dec(&cs->count);
1da177e4
LT
1653 }
1654}
1655
1656/**
1657 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1658 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1659 *
1660 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1661 * attached to the specified @tsk. Guaranteed to return some non-empty
1662 * subset of cpu_online_map, even if this means going outside the
1663 * tasks cpuset.
1664 **/
1665
9a848896 1666cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk)
1da177e4
LT
1667{
1668 cpumask_t mask;
1669
053199ed 1670 down(&callback_sem);
1da177e4
LT
1671 task_lock((struct task_struct *)tsk);
1672 guarantee_online_cpus(tsk->cpuset, &mask);
1673 task_unlock((struct task_struct *)tsk);
053199ed 1674 up(&callback_sem);
1da177e4
LT
1675
1676 return mask;
1677}
1678
1679void cpuset_init_current_mems_allowed(void)
1680{
1681 current->mems_allowed = NODE_MASK_ALL;
1682}
1683
d9fd8a6d
RD
1684/**
1685 * cpuset_update_current_mems_allowed - update mems parameters to new values
1686 *
1da177e4
LT
1687 * If the current tasks cpusets mems_allowed changed behind our backs,
1688 * update current->mems_allowed and mems_generation to the new value.
1689 * Do not call this routine if in_interrupt().
053199ed
PJ
1690 *
1691 * Call without callback_sem or task_lock() held. May be called
1692 * with or without manage_sem held. Unless exiting, it will acquire
1693 * task_lock(). Also might acquire callback_sem during call to
1694 * refresh_mems().
1da177e4
LT
1695 */
1696
1697void cpuset_update_current_mems_allowed(void)
1698{
053199ed
PJ
1699 struct cpuset *cs;
1700 int need_to_refresh = 0;
1da177e4 1701
053199ed
PJ
1702 task_lock(current);
1703 cs = current->cpuset;
1da177e4 1704 if (!cs)
053199ed
PJ
1705 goto done;
1706 if (current->cpuset_mems_generation != cs->mems_generation)
1707 need_to_refresh = 1;
1708done:
1709 task_unlock(current);
1710 if (need_to_refresh)
1da177e4 1711 refresh_mems();
1da177e4
LT
1712}
1713
d9fd8a6d
RD
1714/**
1715 * cpuset_restrict_to_mems_allowed - limit nodes to current mems_allowed
1716 * @nodes: pointer to a node bitmap that is and-ed with mems_allowed
1717 */
1da177e4
LT
1718void cpuset_restrict_to_mems_allowed(unsigned long *nodes)
1719{
1720 bitmap_and(nodes, nodes, nodes_addr(current->mems_allowed),
1721 MAX_NUMNODES);
1722}
1723
d9fd8a6d
RD
1724/**
1725 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
1726 * @zl: the zonelist to be checked
1727 *
1da177e4
LT
1728 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1729 */
1730int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
1731{
1732 int i;
1733
1734 for (i = 0; zl->zones[i]; i++) {
1735 int nid = zl->zones[i]->zone_pgdat->node_id;
1736
1737 if (node_isset(nid, current->mems_allowed))
1738 return 1;
1739 }
1740 return 0;
1741}
1742
9bf2229f
PJ
1743/*
1744 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
053199ed 1745 * ancestor to the specified cpuset. Call holding callback_sem.
9bf2229f
PJ
1746 * If no ancestor is mem_exclusive (an unusual configuration), then
1747 * returns the root cpuset.
1748 */
1749static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
1750{
1751 while (!is_mem_exclusive(cs) && cs->parent)
1752 cs = cs->parent;
1753 return cs;
1754}
1755
d9fd8a6d 1756/**
9bf2229f
PJ
1757 * cpuset_zone_allowed - Can we allocate memory on zone z's memory node?
1758 * @z: is this zone on an allowed node?
1759 * @gfp_mask: memory allocation flags (we use __GFP_HARDWALL)
d9fd8a6d 1760 *
9bf2229f
PJ
1761 * If we're in interrupt, yes, we can always allocate. If zone
1762 * z's node is in our tasks mems_allowed, yes. If it's not a
1763 * __GFP_HARDWALL request and this zone's nodes is in the nearest
1764 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
1765 * Otherwise, no.
1766 *
1767 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
1768 * and do not allow allocations outside the current tasks cpuset.
1769 * GFP_KERNEL allocations are not so marked, so can escape to the
1770 * nearest mem_exclusive ancestor cpuset.
1771 *
053199ed 1772 * Scanning up parent cpusets requires callback_sem. The __alloc_pages()
9bf2229f
PJ
1773 * routine only calls here with __GFP_HARDWALL bit _not_ set if
1774 * it's a GFP_KERNEL allocation, and all nodes in the current tasks
1775 * mems_allowed came up empty on the first pass over the zonelist.
1776 * So only GFP_KERNEL allocations, if all nodes in the cpuset are
053199ed 1777 * short of memory, might require taking the callback_sem semaphore.
9bf2229f
PJ
1778 *
1779 * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages()
1780 * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing
1781 * hardwall cpusets - no allocation on a node outside the cpuset is
1782 * allowed (unless in interrupt, of course).
1783 *
1784 * The second loop doesn't even call here for GFP_ATOMIC requests
1785 * (if the __alloc_pages() local variable 'wait' is set). That check
1786 * and the checks below have the combined affect in the second loop of
1787 * the __alloc_pages() routine that:
1788 * in_interrupt - any node ok (current task context irrelevant)
1789 * GFP_ATOMIC - any node ok
1790 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
1791 * GFP_USER - only nodes in current tasks mems allowed ok.
1792 **/
1793
dd0fc66f 1794int cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
1da177e4 1795{
9bf2229f
PJ
1796 int node; /* node that zone z is on */
1797 const struct cpuset *cs; /* current cpuset ancestors */
1798 int allowed = 1; /* is allocation in zone z allowed? */
1799
1800 if (in_interrupt())
1801 return 1;
1802 node = z->zone_pgdat->node_id;
1803 if (node_isset(node, current->mems_allowed))
1804 return 1;
1805 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
1806 return 0;
1807
1808 /* Not hardwall and node outside mems_allowed: scan up cpusets */
053199ed
PJ
1809 down(&callback_sem);
1810
1811 if (current->flags & PF_EXITING) /* Let dying task have memory */
1812 return 1;
1813 task_lock(current);
1814 cs = nearest_exclusive_ancestor(current->cpuset);
1815 task_unlock(current);
1816
9bf2229f 1817 allowed = node_isset(node, cs->mems_allowed);
053199ed 1818 up(&callback_sem);
9bf2229f 1819 return allowed;
1da177e4
LT
1820}
1821
ef08e3b4
PJ
1822/**
1823 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
1824 * @p: pointer to task_struct of some other task.
1825 *
1826 * Description: Return true if the nearest mem_exclusive ancestor
1827 * cpusets of tasks @p and current overlap. Used by oom killer to
1828 * determine if task @p's memory usage might impact the memory
1829 * available to the current task.
1830 *
053199ed 1831 * Acquires callback_sem - not suitable for calling from a fast path.
ef08e3b4
PJ
1832 **/
1833
1834int cpuset_excl_nodes_overlap(const struct task_struct *p)
1835{
1836 const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */
1837 int overlap = 0; /* do cpusets overlap? */
1838
053199ed
PJ
1839 down(&callback_sem);
1840
1841 task_lock(current);
1842 if (current->flags & PF_EXITING) {
1843 task_unlock(current);
1844 goto done;
1845 }
1846 cs1 = nearest_exclusive_ancestor(current->cpuset);
1847 task_unlock(current);
1848
1849 task_lock((struct task_struct *)p);
1850 if (p->flags & PF_EXITING) {
1851 task_unlock((struct task_struct *)p);
1852 goto done;
1853 }
1854 cs2 = nearest_exclusive_ancestor(p->cpuset);
1855 task_unlock((struct task_struct *)p);
1856
ef08e3b4
PJ
1857 overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
1858done:
053199ed 1859 up(&callback_sem);
ef08e3b4
PJ
1860
1861 return overlap;
1862}
1863
1da177e4
LT
1864/*
1865 * proc_cpuset_show()
1866 * - Print tasks cpuset path into seq_file.
1867 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
1868 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
1869 * doesn't really matter if tsk->cpuset changes after we read it,
1870 * and we take manage_sem, keeping attach_task() from changing it
1871 * anyway.
1da177e4
LT
1872 */
1873
1874static int proc_cpuset_show(struct seq_file *m, void *v)
1875{
1876 struct cpuset *cs;
1877 struct task_struct *tsk;
1878 char *buf;
1879 int retval = 0;
1880
1881 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1882 if (!buf)
1883 return -ENOMEM;
1884
1885 tsk = m->private;
053199ed 1886 down(&manage_sem);
1da177e4 1887 cs = tsk->cpuset;
1da177e4
LT
1888 if (!cs) {
1889 retval = -EINVAL;
1890 goto out;
1891 }
1892
1893 retval = cpuset_path(cs, buf, PAGE_SIZE);
1894 if (retval < 0)
1895 goto out;
1896 seq_puts(m, buf);
1897 seq_putc(m, '\n');
1898out:
053199ed 1899 up(&manage_sem);
1da177e4
LT
1900 kfree(buf);
1901 return retval;
1902}
1903
1904static int cpuset_open(struct inode *inode, struct file *file)
1905{
1906 struct task_struct *tsk = PROC_I(inode)->task;
1907 return single_open(file, proc_cpuset_show, tsk);
1908}
1909
1910struct file_operations proc_cpuset_operations = {
1911 .open = cpuset_open,
1912 .read = seq_read,
1913 .llseek = seq_lseek,
1914 .release = single_release,
1915};
1916
1917/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
1918char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
1919{
1920 buffer += sprintf(buffer, "Cpus_allowed:\t");
1921 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
1922 buffer += sprintf(buffer, "\n");
1923 buffer += sprintf(buffer, "Mems_allowed:\t");
1924 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
1925 buffer += sprintf(buffer, "\n");
1926 return buffer;
1927}