cpuset: fix to migrate mm correctly in a corner case
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
202f72d5
PJ
64/*
65 * Tracks how many cpusets are currently defined in system.
66 * When there is only one cpuset (the root cpuset) we can
67 * short circuit some hooks.
68 */
7edc5962 69int number_of_cpusets __read_mostly;
202f72d5 70
2df167a3 71/* Forward declare cgroup structures */
8793d854
PM
72struct cgroup_subsys cpuset_subsys;
73struct cpuset;
74
3e0d98b9
PJ
75/* See "Frequency meter" comments, below. */
76
77struct fmeter {
78 int cnt; /* unprocessed events count */
79 int val; /* most recent output value */
80 time_t time; /* clock (secs) when val computed */
81 spinlock_t lock; /* guards read or write of above */
82};
83
1da177e4 84struct cpuset {
8793d854
PM
85 struct cgroup_subsys_state css;
86
1da177e4 87 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 88 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
89 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
90
33ad801d
LZ
91 /*
92 * This is old Memory Nodes tasks took on.
93 *
94 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
95 * - A new cpuset's old_mems_allowed is initialized when some
96 * task is moved into it.
97 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
98 * cpuset.mems_allowed and have tasks' nodemask updated, and
99 * then old_mems_allowed is updated to mems_allowed.
100 */
101 nodemask_t old_mems_allowed;
102
3e0d98b9 103 struct fmeter fmeter; /* memory_pressure filter */
029190c5 104
452477fa
TH
105 /*
106 * Tasks are being attached to this cpuset. Used to prevent
107 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
108 */
109 int attach_in_progress;
110
029190c5
PJ
111 /* partition number for rebuild_sched_domains() */
112 int pn;
956db3ca 113
1d3504fc
HS
114 /* for custom sched domain */
115 int relax_domain_level;
1da177e4
LT
116};
117
8793d854
PM
118/* Retrieve the cpuset for a cgroup */
119static inline struct cpuset *cgroup_cs(struct cgroup *cont)
120{
121 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
122 struct cpuset, css);
123}
124
125/* Retrieve the cpuset for a task */
126static inline struct cpuset *task_cs(struct task_struct *task)
127{
128 return container_of(task_subsys_state(task, cpuset_subsys_id),
129 struct cpuset, css);
130}
8793d854 131
c431069f
TH
132static inline struct cpuset *parent_cs(const struct cpuset *cs)
133{
134 struct cgroup *pcgrp = cs->css.cgroup->parent;
135
136 if (pcgrp)
137 return cgroup_cs(pcgrp);
138 return NULL;
139}
140
b246272e
DR
141#ifdef CONFIG_NUMA
142static inline bool task_has_mempolicy(struct task_struct *task)
143{
144 return task->mempolicy;
145}
146#else
147static inline bool task_has_mempolicy(struct task_struct *task)
148{
149 return false;
150}
151#endif
152
153
1da177e4
LT
154/* bits in struct cpuset flags field */
155typedef enum {
efeb77b2 156 CS_ONLINE,
1da177e4
LT
157 CS_CPU_EXCLUSIVE,
158 CS_MEM_EXCLUSIVE,
78608366 159 CS_MEM_HARDWALL,
45b07ef3 160 CS_MEMORY_MIGRATE,
029190c5 161 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
162 CS_SPREAD_PAGE,
163 CS_SPREAD_SLAB,
1da177e4
LT
164} cpuset_flagbits_t;
165
166/* convenient tests for these bits */
efeb77b2
TH
167static inline bool is_cpuset_online(const struct cpuset *cs)
168{
169 return test_bit(CS_ONLINE, &cs->flags);
170}
171
1da177e4
LT
172static inline int is_cpu_exclusive(const struct cpuset *cs)
173{
7b5b9ef0 174 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
175}
176
177static inline int is_mem_exclusive(const struct cpuset *cs)
178{
7b5b9ef0 179 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
180}
181
78608366
PM
182static inline int is_mem_hardwall(const struct cpuset *cs)
183{
184 return test_bit(CS_MEM_HARDWALL, &cs->flags);
185}
186
029190c5
PJ
187static inline int is_sched_load_balance(const struct cpuset *cs)
188{
189 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
190}
191
45b07ef3
PJ
192static inline int is_memory_migrate(const struct cpuset *cs)
193{
7b5b9ef0 194 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
195}
196
825a46af
PJ
197static inline int is_spread_page(const struct cpuset *cs)
198{
199 return test_bit(CS_SPREAD_PAGE, &cs->flags);
200}
201
202static inline int is_spread_slab(const struct cpuset *cs)
203{
204 return test_bit(CS_SPREAD_SLAB, &cs->flags);
205}
206
1da177e4 207static struct cpuset top_cpuset = {
efeb77b2
TH
208 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
209 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
210};
211
ae8086ce
TH
212/**
213 * cpuset_for_each_child - traverse online children of a cpuset
214 * @child_cs: loop cursor pointing to the current child
215 * @pos_cgrp: used for iteration
216 * @parent_cs: target cpuset to walk children of
217 *
218 * Walk @child_cs through the online children of @parent_cs. Must be used
219 * with RCU read locked.
220 */
221#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
222 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
223 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
224
fc560a26
TH
225/**
226 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
227 * @des_cs: loop cursor pointing to the current descendant
228 * @pos_cgrp: used for iteration
229 * @root_cs: target cpuset to walk ancestor of
230 *
231 * Walk @des_cs through the online descendants of @root_cs. Must be used
232 * with RCU read locked. The caller may modify @pos_cgrp by calling
233 * cgroup_rightmost_descendant() to skip subtree.
234 */
235#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
236 cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
237 if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
238
1da177e4 239/*
5d21cc2d
TH
240 * There are two global mutexes guarding cpuset structures - cpuset_mutex
241 * and callback_mutex. The latter may nest inside the former. We also
242 * require taking task_lock() when dereferencing a task's cpuset pointer.
243 * See "The task_lock() exception", at the end of this comment.
244 *
245 * A task must hold both mutexes to modify cpusets. If a task holds
246 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
247 * is the only task able to also acquire callback_mutex and be able to
248 * modify cpusets. It can perform various checks on the cpuset structure
249 * first, knowing nothing will change. It can also allocate memory while
250 * just holding cpuset_mutex. While it is performing these checks, various
251 * callback routines can briefly acquire callback_mutex to query cpusets.
252 * Once it is ready to make the changes, it takes callback_mutex, blocking
253 * everyone else.
053199ed
PJ
254 *
255 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 256 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
257 * from one of the callbacks into the cpuset code from within
258 * __alloc_pages().
259 *
3d3f26a7 260 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
261 * access to cpusets.
262 *
58568d2a
MX
263 * Now, the task_struct fields mems_allowed and mempolicy may be changed
264 * by other task, we use alloc_lock in the task_struct fields to protect
265 * them.
053199ed 266 *
3d3f26a7 267 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
268 * small pieces of code, such as when reading out possibly multi-word
269 * cpumasks and nodemasks.
270 *
2df167a3
PM
271 * Accessing a task's cpuset should be done in accordance with the
272 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
273 */
274
5d21cc2d 275static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 276static DEFINE_MUTEX(callback_mutex);
4247bdc6 277
3a5a6d0c
TH
278/*
279 * CPU / memory hotplug is handled asynchronously.
280 */
281static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
282static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
283
e44193d3
LZ
284static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
285
cf417141
MK
286/*
287 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 288 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
289 * silently switch it to mount "cgroup" instead
290 */
f7e83571
AV
291static struct dentry *cpuset_mount(struct file_system_type *fs_type,
292 int flags, const char *unused_dev_name, void *data)
1da177e4 293{
8793d854 294 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 295 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
296 if (cgroup_fs) {
297 char mountopts[] =
298 "cpuset,noprefix,"
299 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
300 ret = cgroup_fs->mount(cgroup_fs, flags,
301 unused_dev_name, mountopts);
8793d854
PM
302 put_filesystem(cgroup_fs);
303 }
304 return ret;
1da177e4
LT
305}
306
307static struct file_system_type cpuset_fs_type = {
308 .name = "cpuset",
f7e83571 309 .mount = cpuset_mount,
1da177e4
LT
310};
311
1da177e4 312/*
300ed6cb 313 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 314 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
315 * until we find one that does have some online cpus. The top
316 * cpuset always has some cpus online.
1da177e4
LT
317 *
318 * One way or another, we guarantee to return some non-empty subset
5f054e31 319 * of cpu_online_mask.
1da177e4 320 *
3d3f26a7 321 * Call with callback_mutex held.
1da177e4 322 */
6af866af
LZ
323static void guarantee_online_cpus(const struct cpuset *cs,
324 struct cpumask *pmask)
1da177e4 325{
40df2deb 326 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 327 cs = parent_cs(cs);
40df2deb 328 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4
LT
329}
330
331/*
332 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
333 * are online, with memory. If none are online with memory, walk
334 * up the cpuset hierarchy until we find one that does have some
40df2deb 335 * online mems. The top cpuset always has some mems online.
1da177e4
LT
336 *
337 * One way or another, we guarantee to return some non-empty subset
38d7bee9 338 * of node_states[N_MEMORY].
1da177e4 339 *
3d3f26a7 340 * Call with callback_mutex held.
1da177e4 341 */
1da177e4
LT
342static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
343{
40df2deb 344 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
c431069f 345 cs = parent_cs(cs);
40df2deb 346 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
1da177e4
LT
347}
348
f3b39d47
MX
349/*
350 * update task's spread flag if cpuset's page/slab spread flag is set
351 *
5d21cc2d 352 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
353 */
354static void cpuset_update_task_spread_flag(struct cpuset *cs,
355 struct task_struct *tsk)
356{
357 if (is_spread_page(cs))
358 tsk->flags |= PF_SPREAD_PAGE;
359 else
360 tsk->flags &= ~PF_SPREAD_PAGE;
361 if (is_spread_slab(cs))
362 tsk->flags |= PF_SPREAD_SLAB;
363 else
364 tsk->flags &= ~PF_SPREAD_SLAB;
365}
366
1da177e4
LT
367/*
368 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
369 *
370 * One cpuset is a subset of another if all its allowed CPUs and
371 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 372 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
373 */
374
375static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
376{
300ed6cb 377 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
378 nodes_subset(p->mems_allowed, q->mems_allowed) &&
379 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
380 is_mem_exclusive(p) <= is_mem_exclusive(q);
381}
382
645fcc9d
LZ
383/**
384 * alloc_trial_cpuset - allocate a trial cpuset
385 * @cs: the cpuset that the trial cpuset duplicates
386 */
387static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
388{
300ed6cb
LZ
389 struct cpuset *trial;
390
391 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
392 if (!trial)
393 return NULL;
394
395 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
396 kfree(trial);
397 return NULL;
398 }
399 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
400
401 return trial;
645fcc9d
LZ
402}
403
404/**
405 * free_trial_cpuset - free the trial cpuset
406 * @trial: the trial cpuset to be freed
407 */
408static void free_trial_cpuset(struct cpuset *trial)
409{
300ed6cb 410 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
411 kfree(trial);
412}
413
1da177e4
LT
414/*
415 * validate_change() - Used to validate that any proposed cpuset change
416 * follows the structural rules for cpusets.
417 *
418 * If we replaced the flag and mask values of the current cpuset
419 * (cur) with those values in the trial cpuset (trial), would
420 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 421 * cpuset_mutex held.
1da177e4
LT
422 *
423 * 'cur' is the address of an actual, in-use cpuset. Operations
424 * such as list traversal that depend on the actual address of the
425 * cpuset in the list must use cur below, not trial.
426 *
427 * 'trial' is the address of bulk structure copy of cur, with
428 * perhaps one or more of the fields cpus_allowed, mems_allowed,
429 * or flags changed to new, trial values.
430 *
431 * Return 0 if valid, -errno if not.
432 */
433
434static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
435{
8793d854 436 struct cgroup *cont;
1da177e4 437 struct cpuset *c, *par;
ae8086ce
TH
438 int ret;
439
440 rcu_read_lock();
1da177e4
LT
441
442 /* Each of our child cpusets must be a subset of us */
ae8086ce
TH
443 ret = -EBUSY;
444 cpuset_for_each_child(c, cont, cur)
445 if (!is_cpuset_subset(c, trial))
446 goto out;
1da177e4
LT
447
448 /* Remaining checks don't apply to root cpuset */
ae8086ce 449 ret = 0;
69604067 450 if (cur == &top_cpuset)
ae8086ce 451 goto out;
1da177e4 452
c431069f 453 par = parent_cs(cur);
69604067 454
1da177e4 455 /* We must be a subset of our parent cpuset */
ae8086ce 456 ret = -EACCES;
1da177e4 457 if (!is_cpuset_subset(trial, par))
ae8086ce 458 goto out;
1da177e4 459
2df167a3
PM
460 /*
461 * If either I or some sibling (!= me) is exclusive, we can't
462 * overlap
463 */
ae8086ce
TH
464 ret = -EINVAL;
465 cpuset_for_each_child(c, cont, par) {
1da177e4
LT
466 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
467 c != cur &&
300ed6cb 468 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 469 goto out;
1da177e4
LT
470 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
471 c != cur &&
472 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 473 goto out;
1da177e4
LT
474 }
475
452477fa
TH
476 /*
477 * Cpusets with tasks - existing or newly being attached - can't
478 * have empty cpus_allowed or mems_allowed.
479 */
ae8086ce 480 ret = -ENOSPC;
452477fa 481 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
88fa523b 482 (cpumask_empty(trial->cpus_allowed) &&
ae8086ce
TH
483 nodes_empty(trial->mems_allowed)))
484 goto out;
020958b6 485
ae8086ce
TH
486 ret = 0;
487out:
488 rcu_read_unlock();
489 return ret;
1da177e4
LT
490}
491
db7f47cf 492#ifdef CONFIG_SMP
029190c5 493/*
cf417141 494 * Helper routine for generate_sched_domains().
029190c5
PJ
495 * Do cpusets a, b have overlapping cpus_allowed masks?
496 */
029190c5
PJ
497static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
498{
300ed6cb 499 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
500}
501
1d3504fc
HS
502static void
503update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
504{
1d3504fc
HS
505 if (dattr->relax_domain_level < c->relax_domain_level)
506 dattr->relax_domain_level = c->relax_domain_level;
507 return;
508}
509
fc560a26
TH
510static void update_domain_attr_tree(struct sched_domain_attr *dattr,
511 struct cpuset *root_cs)
f5393693 512{
fc560a26
TH
513 struct cpuset *cp;
514 struct cgroup *pos_cgrp;
f5393693 515
fc560a26
TH
516 rcu_read_lock();
517 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
518 /* skip the whole subtree if @cp doesn't have any CPU */
519 if (cpumask_empty(cp->cpus_allowed)) {
520 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
f5393693 521 continue;
fc560a26 522 }
f5393693
LJ
523
524 if (is_sched_load_balance(cp))
525 update_domain_attr(dattr, cp);
f5393693 526 }
fc560a26 527 rcu_read_unlock();
f5393693
LJ
528}
529
029190c5 530/*
cf417141
MK
531 * generate_sched_domains()
532 *
533 * This function builds a partial partition of the systems CPUs
534 * A 'partial partition' is a set of non-overlapping subsets whose
535 * union is a subset of that set.
536 * The output of this function needs to be passed to kernel/sched.c
537 * partition_sched_domains() routine, which will rebuild the scheduler's
538 * load balancing domains (sched domains) as specified by that partial
539 * partition.
029190c5 540 *
45ce80fb 541 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
542 * for a background explanation of this.
543 *
544 * Does not return errors, on the theory that the callers of this
545 * routine would rather not worry about failures to rebuild sched
546 * domains when operating in the severe memory shortage situations
547 * that could cause allocation failures below.
548 *
5d21cc2d 549 * Must be called with cpuset_mutex held.
029190c5
PJ
550 *
551 * The three key local variables below are:
aeed6824 552 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
553 * top-down scan of all cpusets. This scan loads a pointer
554 * to each cpuset marked is_sched_load_balance into the
555 * array 'csa'. For our purposes, rebuilding the schedulers
556 * sched domains, we can ignore !is_sched_load_balance cpusets.
557 * csa - (for CpuSet Array) Array of pointers to all the cpusets
558 * that need to be load balanced, for convenient iterative
559 * access by the subsequent code that finds the best partition,
560 * i.e the set of domains (subsets) of CPUs such that the
561 * cpus_allowed of every cpuset marked is_sched_load_balance
562 * is a subset of one of these domains, while there are as
563 * many such domains as possible, each as small as possible.
564 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
565 * the kernel/sched.c routine partition_sched_domains() in a
566 * convenient format, that can be easily compared to the prior
567 * value to determine what partition elements (sched domains)
568 * were changed (added or removed.)
569 *
570 * Finding the best partition (set of domains):
571 * The triple nested loops below over i, j, k scan over the
572 * load balanced cpusets (using the array of cpuset pointers in
573 * csa[]) looking for pairs of cpusets that have overlapping
574 * cpus_allowed, but which don't have the same 'pn' partition
575 * number and gives them in the same partition number. It keeps
576 * looping on the 'restart' label until it can no longer find
577 * any such pairs.
578 *
579 * The union of the cpus_allowed masks from the set of
580 * all cpusets having the same 'pn' value then form the one
581 * element of the partition (one sched domain) to be passed to
582 * partition_sched_domains().
583 */
acc3f5d7 584static int generate_sched_domains(cpumask_var_t **domains,
cf417141 585 struct sched_domain_attr **attributes)
029190c5 586{
029190c5
PJ
587 struct cpuset *cp; /* scans q */
588 struct cpuset **csa; /* array of all cpuset ptrs */
589 int csn; /* how many cpuset ptrs in csa so far */
590 int i, j, k; /* indices for partition finding loops */
acc3f5d7 591 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 592 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 593 int ndoms = 0; /* number of sched domains in result */
6af866af 594 int nslot; /* next empty doms[] struct cpumask slot */
fc560a26 595 struct cgroup *pos_cgrp;
029190c5 596
029190c5 597 doms = NULL;
1d3504fc 598 dattr = NULL;
cf417141 599 csa = NULL;
029190c5
PJ
600
601 /* Special case for the 99% of systems with one, full, sched domain */
602 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
603 ndoms = 1;
604 doms = alloc_sched_domains(ndoms);
029190c5 605 if (!doms)
cf417141
MK
606 goto done;
607
1d3504fc
HS
608 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
609 if (dattr) {
610 *dattr = SD_ATTR_INIT;
93a65575 611 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 612 }
acc3f5d7 613 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 614
cf417141 615 goto done;
029190c5
PJ
616 }
617
029190c5
PJ
618 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
619 if (!csa)
620 goto done;
621 csn = 0;
622
fc560a26
TH
623 rcu_read_lock();
624 cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
f5393693 625 /*
fc560a26
TH
626 * Continue traversing beyond @cp iff @cp has some CPUs and
627 * isn't load balancing. The former is obvious. The
628 * latter: All child cpusets contain a subset of the
629 * parent's cpus, so just skip them, and then we call
630 * update_domain_attr_tree() to calc relax_domain_level of
631 * the corresponding sched domain.
f5393693 632 */
fc560a26
TH
633 if (!cpumask_empty(cp->cpus_allowed) &&
634 !is_sched_load_balance(cp))
f5393693 635 continue;
489a5393 636
fc560a26
TH
637 if (is_sched_load_balance(cp))
638 csa[csn++] = cp;
639
640 /* skip @cp's subtree */
641 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
642 }
643 rcu_read_unlock();
029190c5
PJ
644
645 for (i = 0; i < csn; i++)
646 csa[i]->pn = i;
647 ndoms = csn;
648
649restart:
650 /* Find the best partition (set of sched domains) */
651 for (i = 0; i < csn; i++) {
652 struct cpuset *a = csa[i];
653 int apn = a->pn;
654
655 for (j = 0; j < csn; j++) {
656 struct cpuset *b = csa[j];
657 int bpn = b->pn;
658
659 if (apn != bpn && cpusets_overlap(a, b)) {
660 for (k = 0; k < csn; k++) {
661 struct cpuset *c = csa[k];
662
663 if (c->pn == bpn)
664 c->pn = apn;
665 }
666 ndoms--; /* one less element */
667 goto restart;
668 }
669 }
670 }
671
cf417141
MK
672 /*
673 * Now we know how many domains to create.
674 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
675 */
acc3f5d7 676 doms = alloc_sched_domains(ndoms);
700018e0 677 if (!doms)
cf417141 678 goto done;
cf417141
MK
679
680 /*
681 * The rest of the code, including the scheduler, can deal with
682 * dattr==NULL case. No need to abort if alloc fails.
683 */
1d3504fc 684 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
685
686 for (nslot = 0, i = 0; i < csn; i++) {
687 struct cpuset *a = csa[i];
6af866af 688 struct cpumask *dp;
029190c5
PJ
689 int apn = a->pn;
690
cf417141
MK
691 if (apn < 0) {
692 /* Skip completed partitions */
693 continue;
694 }
695
acc3f5d7 696 dp = doms[nslot];
cf417141
MK
697
698 if (nslot == ndoms) {
699 static int warnings = 10;
700 if (warnings) {
701 printk(KERN_WARNING
702 "rebuild_sched_domains confused:"
703 " nslot %d, ndoms %d, csn %d, i %d,"
704 " apn %d\n",
705 nslot, ndoms, csn, i, apn);
706 warnings--;
029190c5 707 }
cf417141
MK
708 continue;
709 }
029190c5 710
6af866af 711 cpumask_clear(dp);
cf417141
MK
712 if (dattr)
713 *(dattr + nslot) = SD_ATTR_INIT;
714 for (j = i; j < csn; j++) {
715 struct cpuset *b = csa[j];
716
717 if (apn == b->pn) {
300ed6cb 718 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
719 if (dattr)
720 update_domain_attr_tree(dattr + nslot, b);
721
722 /* Done with this partition */
723 b->pn = -1;
029190c5 724 }
029190c5 725 }
cf417141 726 nslot++;
029190c5
PJ
727 }
728 BUG_ON(nslot != ndoms);
729
cf417141
MK
730done:
731 kfree(csa);
732
700018e0
LZ
733 /*
734 * Fallback to the default domain if kmalloc() failed.
735 * See comments in partition_sched_domains().
736 */
737 if (doms == NULL)
738 ndoms = 1;
739
cf417141
MK
740 *domains = doms;
741 *attributes = dattr;
742 return ndoms;
743}
744
745/*
746 * Rebuild scheduler domains.
747 *
699140ba
TH
748 * If the flag 'sched_load_balance' of any cpuset with non-empty
749 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
750 * which has that flag enabled, or if any cpuset with a non-empty
751 * 'cpus' is removed, then call this routine to rebuild the
752 * scheduler's dynamic sched domains.
cf417141 753 *
5d21cc2d 754 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 755 */
699140ba 756static void rebuild_sched_domains_locked(void)
cf417141
MK
757{
758 struct sched_domain_attr *attr;
acc3f5d7 759 cpumask_var_t *doms;
cf417141
MK
760 int ndoms;
761
5d21cc2d 762 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 763 get_online_cpus();
cf417141 764
5b16c2a4
LZ
765 /*
766 * We have raced with CPU hotplug. Don't do anything to avoid
767 * passing doms with offlined cpu to partition_sched_domains().
768 * Anyways, hotplug work item will rebuild sched domains.
769 */
770 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
771 goto out;
772
cf417141 773 /* Generate domain masks and attrs */
cf417141 774 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
775
776 /* Have scheduler rebuild the domains */
777 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 778out:
86ef5c9a 779 put_online_cpus();
cf417141 780}
db7f47cf 781#else /* !CONFIG_SMP */
699140ba 782static void rebuild_sched_domains_locked(void)
db7f47cf
PM
783{
784}
db7f47cf 785#endif /* CONFIG_SMP */
029190c5 786
cf417141
MK
787void rebuild_sched_domains(void)
788{
5d21cc2d 789 mutex_lock(&cpuset_mutex);
699140ba 790 rebuild_sched_domains_locked();
5d21cc2d 791 mutex_unlock(&cpuset_mutex);
029190c5
PJ
792}
793
070b57fc
LZ
794/*
795 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
796 * @cs: the cpuset in interest
797 *
798 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
799 * with non-empty cpus. We use effective cpumask whenever:
800 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
801 * if the cpuset they reside in has no cpus)
802 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
803 *
804 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
805 * exception. See comments there.
806 */
807static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
808{
809 while (cpumask_empty(cs->cpus_allowed))
810 cs = parent_cs(cs);
811 return cs;
812}
813
814/*
815 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
816 * @cs: the cpuset in interest
817 *
818 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
819 * with non-empty memss. We use effective nodemask whenever:
820 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
821 * if the cpuset they reside in has no mems)
822 * - we want to retrieve task_cs(tsk)'s mems_allowed.
823 *
824 * Called with cpuset_mutex held.
825 */
826static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
827{
828 while (nodes_empty(cs->mems_allowed))
829 cs = parent_cs(cs);
830 return cs;
831}
832
58f4790b
CW
833/**
834 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
835 * @tsk: task to test
836 * @scan: struct cgroup_scanner containing the cgroup of the task
837 *
838 * Called by cgroup_scan_tasks() for each task in a cgroup whose
839 * cpus_allowed mask needs to be changed.
840 *
841 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 842 * holding cpuset_mutex at this point.
58f4790b 843 */
9e0c914c
AB
844static void cpuset_change_cpumask(struct task_struct *tsk,
845 struct cgroup_scanner *scan)
58f4790b 846{
070b57fc
LZ
847 struct cpuset *cpus_cs;
848
849 cpus_cs = effective_cpumask_cpuset(cgroup_cs(scan->cg));
850 set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
58f4790b
CW
851}
852
0b2f630a
MX
853/**
854 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
855 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 856 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 857 *
5d21cc2d 858 * Called with cpuset_mutex held
0b2f630a
MX
859 *
860 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
861 * calling callback functions for each.
862 *
4e74339a
LZ
863 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
864 * if @heap != NULL.
0b2f630a 865 */
4e74339a 866static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
867{
868 struct cgroup_scanner scan;
0b2f630a
MX
869
870 scan.cg = cs->css.cgroup;
249cc86d 871 scan.test_task = NULL;
0b2f630a 872 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
873 scan.heap = heap;
874 cgroup_scan_tasks(&scan);
0b2f630a
MX
875}
876
5c5cc623
LZ
877/*
878 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
879 * @root_cs: the root cpuset of the hierarchy
880 * @update_root: update root cpuset or not?
881 * @heap: the heap used by cgroup_scan_tasks()
882 *
883 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
884 * which take on cpumask of @root_cs.
885 *
886 * Called with cpuset_mutex held
887 */
888static void update_tasks_cpumask_hier(struct cpuset *root_cs,
889 bool update_root, struct ptr_heap *heap)
890{
891 struct cpuset *cp;
892 struct cgroup *pos_cgrp;
893
894 if (update_root)
895 update_tasks_cpumask(root_cs, heap);
896
897 rcu_read_lock();
898 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
899 /* skip the whole subtree if @cp have some CPU */
900 if (!cpumask_empty(cp->cpus_allowed)) {
901 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
902 continue;
903 }
904 if (!css_tryget(&cp->css))
905 continue;
906 rcu_read_unlock();
907
908 update_tasks_cpumask(cp, heap);
909
910 rcu_read_lock();
911 css_put(&cp->css);
912 }
913 rcu_read_unlock();
914}
915
58f4790b
CW
916/**
917 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
918 * @cs: the cpuset to consider
919 * @buf: buffer of cpu numbers written to this cpuset
920 */
645fcc9d
LZ
921static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
922 const char *buf)
1da177e4 923{
4e74339a 924 struct ptr_heap heap;
58f4790b
CW
925 int retval;
926 int is_load_balanced;
1da177e4 927
5f054e31 928 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
929 if (cs == &top_cpuset)
930 return -EACCES;
931
6f7f02e7 932 /*
c8d9c90c 933 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
934 * Since cpulist_parse() fails on an empty mask, we special case
935 * that parsing. The validate_change() call ensures that cpusets
936 * with tasks have cpus.
6f7f02e7 937 */
020958b6 938 if (!*buf) {
300ed6cb 939 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 940 } else {
300ed6cb 941 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
942 if (retval < 0)
943 return retval;
37340746 944
6ad4c188 945 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 946 return -EINVAL;
6f7f02e7 947 }
029190c5 948
8707d8b8 949 /* Nothing to do if the cpus didn't change */
300ed6cb 950 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 951 return 0;
58f4790b 952
a73456f3
LZ
953 retval = validate_change(cs, trialcs);
954 if (retval < 0)
955 return retval;
956
4e74339a
LZ
957 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
958 if (retval)
959 return retval;
960
645fcc9d 961 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 962
3d3f26a7 963 mutex_lock(&callback_mutex);
300ed6cb 964 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 965 mutex_unlock(&callback_mutex);
029190c5 966
5c5cc623 967 update_tasks_cpumask_hier(cs, true, &heap);
4e74339a
LZ
968
969 heap_free(&heap);
58f4790b 970
8707d8b8 971 if (is_load_balanced)
699140ba 972 rebuild_sched_domains_locked();
85d7b949 973 return 0;
1da177e4
LT
974}
975
e4e364e8
PJ
976/*
977 * cpuset_migrate_mm
978 *
979 * Migrate memory region from one set of nodes to another.
980 *
981 * Temporarilly set tasks mems_allowed to target nodes of migration,
982 * so that the migration code can allocate pages on these nodes.
983 *
5d21cc2d 984 * Call holding cpuset_mutex, so current's cpuset won't change
c8d9c90c 985 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
986 * calls. Therefore we don't need to take task_lock around the
987 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 988 * our task's cpuset.
e4e364e8 989 *
e4e364e8
PJ
990 * While the mm_struct we are migrating is typically from some
991 * other task, the task_struct mems_allowed that we are hacking
992 * is for our current task, which must allocate new pages for that
993 * migrating memory region.
e4e364e8
PJ
994 */
995
996static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
997 const nodemask_t *to)
998{
999 struct task_struct *tsk = current;
070b57fc 1000 struct cpuset *mems_cs;
e4e364e8 1001
e4e364e8 1002 tsk->mems_allowed = *to;
e4e364e8
PJ
1003
1004 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
1005
070b57fc
LZ
1006 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
1007 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
e4e364e8
PJ
1008}
1009
3b6766fe 1010/*
58568d2a
MX
1011 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1012 * @tsk: the task to change
1013 * @newmems: new nodes that the task will be set
1014 *
1015 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1016 * we structure updates as setting all new allowed nodes, then clearing newly
1017 * disallowed ones.
58568d2a
MX
1018 */
1019static void cpuset_change_task_nodemask(struct task_struct *tsk,
1020 nodemask_t *newmems)
1021{
b246272e 1022 bool need_loop;
89e8a244 1023
c0ff7453
MX
1024 /*
1025 * Allow tasks that have access to memory reserves because they have
1026 * been OOM killed to get memory anywhere.
1027 */
1028 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1029 return;
1030 if (current->flags & PF_EXITING) /* Let dying task have memory */
1031 return;
1032
1033 task_lock(tsk);
b246272e
DR
1034 /*
1035 * Determine if a loop is necessary if another thread is doing
1036 * get_mems_allowed(). If at least one node remains unchanged and
1037 * tsk does not have a mempolicy, then an empty nodemask will not be
1038 * possible when mems_allowed is larger than a word.
1039 */
1040 need_loop = task_has_mempolicy(tsk) ||
1041 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1042
cc9a6c87
MG
1043 if (need_loop)
1044 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 1045
cc9a6c87
MG
1046 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1047 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1048
1049 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1050 tsk->mems_allowed = *newmems;
cc9a6c87
MG
1051
1052 if (need_loop)
1053 write_seqcount_end(&tsk->mems_allowed_seq);
1054
c0ff7453 1055 task_unlock(tsk);
58568d2a
MX
1056}
1057
1058/*
1059 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1060 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
5d21cc2d 1061 * memory_migrate flag is set. Called with cpuset_mutex held.
3b6766fe
LZ
1062 */
1063static void cpuset_change_nodemask(struct task_struct *p,
1064 struct cgroup_scanner *scan)
1065{
33ad801d 1066 struct cpuset *cs = cgroup_cs(scan->cg);
3b6766fe 1067 struct mm_struct *mm;
3b6766fe 1068 int migrate;
33ad801d 1069 nodemask_t *newmems = scan->data;
58568d2a 1070
33ad801d 1071 cpuset_change_task_nodemask(p, newmems);
53feb297 1072
3b6766fe
LZ
1073 mm = get_task_mm(p);
1074 if (!mm)
1075 return;
1076
3b6766fe
LZ
1077 migrate = is_memory_migrate(cs);
1078
1079 mpol_rebind_mm(mm, &cs->mems_allowed);
1080 if (migrate)
33ad801d 1081 cpuset_migrate_mm(mm, &cs->old_mems_allowed, newmems);
3b6766fe
LZ
1082 mmput(mm);
1083}
1084
8793d854
PM
1085static void *cpuset_being_rebound;
1086
0b2f630a
MX
1087/**
1088 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1089 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
010cfac4 1090 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 1091 *
5d21cc2d 1092 * Called with cpuset_mutex held
010cfac4
LZ
1093 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1094 * if @heap != NULL.
0b2f630a 1095 */
33ad801d 1096static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
1da177e4 1097{
33ad801d 1098 static nodemask_t newmems; /* protected by cpuset_mutex */
3b6766fe 1099 struct cgroup_scanner scan;
070b57fc 1100 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
59dac16f 1101
846a16bf 1102 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1103
070b57fc 1104 guarantee_online_mems(mems_cs, &newmems);
33ad801d 1105
3b6766fe
LZ
1106 scan.cg = cs->css.cgroup;
1107 scan.test_task = NULL;
1108 scan.process_task = cpuset_change_nodemask;
010cfac4 1109 scan.heap = heap;
33ad801d 1110 scan.data = &newmems;
4225399a
PJ
1111
1112 /*
3b6766fe
LZ
1113 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1114 * take while holding tasklist_lock. Forks can happen - the
1115 * mpol_dup() cpuset_being_rebound check will catch such forks,
1116 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1117 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1118 * will be contending for the global variable cpuset_being_rebound.
4225399a 1119 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1120 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1121 */
010cfac4 1122 cgroup_scan_tasks(&scan);
4225399a 1123
33ad801d
LZ
1124 /*
1125 * All the tasks' nodemasks have been updated, update
1126 * cs->old_mems_allowed.
1127 */
1128 cs->old_mems_allowed = newmems;
1129
2df167a3 1130 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1131 cpuset_being_rebound = NULL;
1da177e4
LT
1132}
1133
5c5cc623
LZ
1134/*
1135 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1136 * @cs: the root cpuset of the hierarchy
1137 * @update_root: update the root cpuset or not?
1138 * @heap: the heap used by cgroup_scan_tasks()
1139 *
1140 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1141 * which take on nodemask of @root_cs.
1142 *
1143 * Called with cpuset_mutex held
1144 */
1145static void update_tasks_nodemask_hier(struct cpuset *root_cs,
1146 bool update_root, struct ptr_heap *heap)
1147{
1148 struct cpuset *cp;
1149 struct cgroup *pos_cgrp;
1150
1151 if (update_root)
1152 update_tasks_nodemask(root_cs, heap);
1153
1154 rcu_read_lock();
1155 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
1156 /* skip the whole subtree if @cp have some CPU */
1157 if (!nodes_empty(cp->mems_allowed)) {
1158 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
1159 continue;
1160 }
1161 if (!css_tryget(&cp->css))
1162 continue;
1163 rcu_read_unlock();
1164
1165 update_tasks_nodemask(cp, heap);
1166
1167 rcu_read_lock();
1168 css_put(&cp->css);
1169 }
1170 rcu_read_unlock();
1171}
1172
0b2f630a
MX
1173/*
1174 * Handle user request to change the 'mems' memory placement
1175 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1176 * cpusets mems_allowed, and for each task in the cpuset,
1177 * update mems_allowed and rebind task's mempolicy and any vma
1178 * mempolicies and if the cpuset is marked 'memory_migrate',
1179 * migrate the tasks pages to the new memory.
0b2f630a 1180 *
5d21cc2d 1181 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1182 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1183 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1184 * their mempolicies to the cpusets new mems_allowed.
1185 */
645fcc9d
LZ
1186static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1187 const char *buf)
0b2f630a 1188{
0b2f630a 1189 int retval;
010cfac4 1190 struct ptr_heap heap;
0b2f630a
MX
1191
1192 /*
38d7bee9 1193 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1194 * it's read-only
1195 */
53feb297
MX
1196 if (cs == &top_cpuset) {
1197 retval = -EACCES;
1198 goto done;
1199 }
0b2f630a 1200
0b2f630a
MX
1201 /*
1202 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1203 * Since nodelist_parse() fails on an empty mask, we special case
1204 * that parsing. The validate_change() call ensures that cpusets
1205 * with tasks have memory.
1206 */
1207 if (!*buf) {
645fcc9d 1208 nodes_clear(trialcs->mems_allowed);
0b2f630a 1209 } else {
645fcc9d 1210 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1211 if (retval < 0)
1212 goto done;
1213
645fcc9d 1214 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1215 node_states[N_MEMORY])) {
53feb297
MX
1216 retval = -EINVAL;
1217 goto done;
1218 }
0b2f630a 1219 }
33ad801d
LZ
1220
1221 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1222 retval = 0; /* Too easy - nothing to do */
1223 goto done;
1224 }
645fcc9d 1225 retval = validate_change(cs, trialcs);
0b2f630a
MX
1226 if (retval < 0)
1227 goto done;
1228
010cfac4
LZ
1229 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1230 if (retval < 0)
1231 goto done;
1232
0b2f630a 1233 mutex_lock(&callback_mutex);
645fcc9d 1234 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1235 mutex_unlock(&callback_mutex);
1236
5c5cc623 1237 update_tasks_nodemask_hier(cs, true, &heap);
010cfac4
LZ
1238
1239 heap_free(&heap);
0b2f630a
MX
1240done:
1241 return retval;
1242}
1243
8793d854
PM
1244int current_cpuset_is_being_rebound(void)
1245{
1246 return task_cs(current) == cpuset_being_rebound;
1247}
1248
5be7a479 1249static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1250{
db7f47cf 1251#ifdef CONFIG_SMP
60495e77 1252 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1253 return -EINVAL;
db7f47cf 1254#endif
1d3504fc
HS
1255
1256 if (val != cs->relax_domain_level) {
1257 cs->relax_domain_level = val;
300ed6cb
LZ
1258 if (!cpumask_empty(cs->cpus_allowed) &&
1259 is_sched_load_balance(cs))
699140ba 1260 rebuild_sched_domains_locked();
1d3504fc
HS
1261 }
1262
1263 return 0;
1264}
1265
950592f7
MX
1266/*
1267 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1268 * @tsk: task to be updated
1269 * @scan: struct cgroup_scanner containing the cgroup of the task
1270 *
1271 * Called by cgroup_scan_tasks() for each task in a cgroup.
1272 *
1273 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 1274 * holding cpuset_mutex at this point.
950592f7
MX
1275 */
1276static void cpuset_change_flag(struct task_struct *tsk,
1277 struct cgroup_scanner *scan)
1278{
1279 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1280}
1281
1282/*
1283 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1284 * @cs: the cpuset in which each task's spread flags needs to be changed
1285 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1286 *
5d21cc2d 1287 * Called with cpuset_mutex held
950592f7
MX
1288 *
1289 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1290 * calling callback functions for each.
1291 *
1292 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1293 * if @heap != NULL.
1294 */
1295static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1296{
1297 struct cgroup_scanner scan;
1298
1299 scan.cg = cs->css.cgroup;
1300 scan.test_task = NULL;
1301 scan.process_task = cpuset_change_flag;
1302 scan.heap = heap;
1303 cgroup_scan_tasks(&scan);
1304}
1305
1da177e4
LT
1306/*
1307 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1308 * bit: the bit to update (see cpuset_flagbits_t)
1309 * cs: the cpuset to update
1310 * turning_on: whether the flag is being set or cleared
053199ed 1311 *
5d21cc2d 1312 * Call with cpuset_mutex held.
1da177e4
LT
1313 */
1314
700fe1ab
PM
1315static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1316 int turning_on)
1da177e4 1317{
645fcc9d 1318 struct cpuset *trialcs;
40b6a762 1319 int balance_flag_changed;
950592f7
MX
1320 int spread_flag_changed;
1321 struct ptr_heap heap;
1322 int err;
1da177e4 1323
645fcc9d
LZ
1324 trialcs = alloc_trial_cpuset(cs);
1325 if (!trialcs)
1326 return -ENOMEM;
1327
1da177e4 1328 if (turning_on)
645fcc9d 1329 set_bit(bit, &trialcs->flags);
1da177e4 1330 else
645fcc9d 1331 clear_bit(bit, &trialcs->flags);
1da177e4 1332
645fcc9d 1333 err = validate_change(cs, trialcs);
85d7b949 1334 if (err < 0)
645fcc9d 1335 goto out;
029190c5 1336
950592f7
MX
1337 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1338 if (err < 0)
1339 goto out;
1340
029190c5 1341 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1342 is_sched_load_balance(trialcs));
029190c5 1343
950592f7
MX
1344 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1345 || (is_spread_page(cs) != is_spread_page(trialcs)));
1346
3d3f26a7 1347 mutex_lock(&callback_mutex);
645fcc9d 1348 cs->flags = trialcs->flags;
3d3f26a7 1349 mutex_unlock(&callback_mutex);
85d7b949 1350
300ed6cb 1351 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1352 rebuild_sched_domains_locked();
029190c5 1353
950592f7
MX
1354 if (spread_flag_changed)
1355 update_tasks_flags(cs, &heap);
1356 heap_free(&heap);
645fcc9d
LZ
1357out:
1358 free_trial_cpuset(trialcs);
1359 return err;
1da177e4
LT
1360}
1361
3e0d98b9 1362/*
80f7228b 1363 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1364 *
1365 * These routines manage a digitally filtered, constant time based,
1366 * event frequency meter. There are four routines:
1367 * fmeter_init() - initialize a frequency meter.
1368 * fmeter_markevent() - called each time the event happens.
1369 * fmeter_getrate() - returns the recent rate of such events.
1370 * fmeter_update() - internal routine used to update fmeter.
1371 *
1372 * A common data structure is passed to each of these routines,
1373 * which is used to keep track of the state required to manage the
1374 * frequency meter and its digital filter.
1375 *
1376 * The filter works on the number of events marked per unit time.
1377 * The filter is single-pole low-pass recursive (IIR). The time unit
1378 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1379 * simulate 3 decimal digits of precision (multiplied by 1000).
1380 *
1381 * With an FM_COEF of 933, and a time base of 1 second, the filter
1382 * has a half-life of 10 seconds, meaning that if the events quit
1383 * happening, then the rate returned from the fmeter_getrate()
1384 * will be cut in half each 10 seconds, until it converges to zero.
1385 *
1386 * It is not worth doing a real infinitely recursive filter. If more
1387 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1388 * just compute FM_MAXTICKS ticks worth, by which point the level
1389 * will be stable.
1390 *
1391 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1392 * arithmetic overflow in the fmeter_update() routine.
1393 *
1394 * Given the simple 32 bit integer arithmetic used, this meter works
1395 * best for reporting rates between one per millisecond (msec) and
1396 * one per 32 (approx) seconds. At constant rates faster than one
1397 * per msec it maxes out at values just under 1,000,000. At constant
1398 * rates between one per msec, and one per second it will stabilize
1399 * to a value N*1000, where N is the rate of events per second.
1400 * At constant rates between one per second and one per 32 seconds,
1401 * it will be choppy, moving up on the seconds that have an event,
1402 * and then decaying until the next event. At rates slower than
1403 * about one in 32 seconds, it decays all the way back to zero between
1404 * each event.
1405 */
1406
1407#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1408#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1409#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1410#define FM_SCALE 1000 /* faux fixed point scale */
1411
1412/* Initialize a frequency meter */
1413static void fmeter_init(struct fmeter *fmp)
1414{
1415 fmp->cnt = 0;
1416 fmp->val = 0;
1417 fmp->time = 0;
1418 spin_lock_init(&fmp->lock);
1419}
1420
1421/* Internal meter update - process cnt events and update value */
1422static void fmeter_update(struct fmeter *fmp)
1423{
1424 time_t now = get_seconds();
1425 time_t ticks = now - fmp->time;
1426
1427 if (ticks == 0)
1428 return;
1429
1430 ticks = min(FM_MAXTICKS, ticks);
1431 while (ticks-- > 0)
1432 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1433 fmp->time = now;
1434
1435 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1436 fmp->cnt = 0;
1437}
1438
1439/* Process any previous ticks, then bump cnt by one (times scale). */
1440static void fmeter_markevent(struct fmeter *fmp)
1441{
1442 spin_lock(&fmp->lock);
1443 fmeter_update(fmp);
1444 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1445 spin_unlock(&fmp->lock);
1446}
1447
1448/* Process any previous ticks, then return current value. */
1449static int fmeter_getrate(struct fmeter *fmp)
1450{
1451 int val;
1452
1453 spin_lock(&fmp->lock);
1454 fmeter_update(fmp);
1455 val = fmp->val;
1456 spin_unlock(&fmp->lock);
1457 return val;
1458}
1459
5d21cc2d 1460/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
761b3ef5 1461static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
f780bdb7 1462{
2f7ee569 1463 struct cpuset *cs = cgroup_cs(cgrp);
bb9d97b6
TH
1464 struct task_struct *task;
1465 int ret;
1da177e4 1466
5d21cc2d
TH
1467 mutex_lock(&cpuset_mutex);
1468
88fa523b
LZ
1469 /*
1470 * We allow to move tasks into an empty cpuset if sane_behavior
1471 * flag is set.
1472 */
5d21cc2d 1473 ret = -ENOSPC;
88fa523b
LZ
1474 if (!cgroup_sane_behavior(cgrp) &&
1475 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1476 goto out_unlock;
9985b0ba 1477
bb9d97b6
TH
1478 cgroup_taskset_for_each(task, cgrp, tset) {
1479 /*
14a40ffc
TH
1480 * Kthreads which disallow setaffinity shouldn't be moved
1481 * to a new cpuset; we don't want to change their cpu
1482 * affinity and isolating such threads by their set of
1483 * allowed nodes is unnecessary. Thus, cpusets are not
1484 * applicable for such threads. This prevents checking for
1485 * success of set_cpus_allowed_ptr() on all attached tasks
1486 * before cpus_allowed may be changed.
bb9d97b6 1487 */
5d21cc2d 1488 ret = -EINVAL;
14a40ffc 1489 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1490 goto out_unlock;
1491 ret = security_task_setscheduler(task);
1492 if (ret)
1493 goto out_unlock;
bb9d97b6 1494 }
f780bdb7 1495
452477fa
TH
1496 /*
1497 * Mark attach is in progress. This makes validate_change() fail
1498 * changes which zero cpus/mems_allowed.
1499 */
1500 cs->attach_in_progress++;
5d21cc2d
TH
1501 ret = 0;
1502out_unlock:
1503 mutex_unlock(&cpuset_mutex);
1504 return ret;
8793d854 1505}
f780bdb7 1506
452477fa
TH
1507static void cpuset_cancel_attach(struct cgroup *cgrp,
1508 struct cgroup_taskset *tset)
1509{
5d21cc2d 1510 mutex_lock(&cpuset_mutex);
452477fa 1511 cgroup_cs(cgrp)->attach_in_progress--;
5d21cc2d 1512 mutex_unlock(&cpuset_mutex);
8793d854 1513}
1da177e4 1514
4e4c9a14 1515/*
5d21cc2d 1516 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1517 * but we can't allocate it dynamically there. Define it global and
1518 * allocate from cpuset_init().
1519 */
1520static cpumask_var_t cpus_attach;
1521
761b3ef5 1522static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
8793d854 1523{
67bd2c59 1524 /* static buf protected by cpuset_mutex */
4e4c9a14 1525 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1526 struct mm_struct *mm;
bb9d97b6
TH
1527 struct task_struct *task;
1528 struct task_struct *leader = cgroup_taskset_first(tset);
2f7ee569
TH
1529 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1530 struct cpuset *cs = cgroup_cs(cgrp);
1531 struct cpuset *oldcs = cgroup_cs(oldcgrp);
070b57fc
LZ
1532 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1533 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
22fb52dd 1534
5d21cc2d
TH
1535 mutex_lock(&cpuset_mutex);
1536
4e4c9a14
TH
1537 /* prepare for attach */
1538 if (cs == &top_cpuset)
1539 cpumask_copy(cpus_attach, cpu_possible_mask);
1540 else
070b57fc 1541 guarantee_online_cpus(cpus_cs, cpus_attach);
4e4c9a14 1542
070b57fc 1543 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
4e4c9a14 1544
bb9d97b6
TH
1545 cgroup_taskset_for_each(task, cgrp, tset) {
1546 /*
1547 * can_attach beforehand should guarantee that this doesn't
1548 * fail. TODO: have a better way to handle failure here
1549 */
1550 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1551
1552 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1553 cpuset_update_task_spread_flag(cs, task);
1554 }
22fb52dd 1555
f780bdb7
BB
1556 /*
1557 * Change mm, possibly for multiple threads in a threadgroup. This is
1558 * expensive and may sleep.
1559 */
f780bdb7 1560 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1561 mm = get_task_mm(leader);
4225399a 1562 if (mm) {
070b57fc
LZ
1563 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1564
f780bdb7 1565 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
f047cecf
LZ
1566
1567 /*
1568 * old_mems_allowed is the same with mems_allowed here, except
1569 * if this task is being moved automatically due to hotplug.
1570 * In that case @mems_allowed has been updated and is empty,
1571 * so @old_mems_allowed is the right nodesets that we migrate
1572 * mm from.
1573 */
1574 if (is_memory_migrate(cs)) {
1575 cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
f780bdb7 1576 &cpuset_attach_nodemask_to);
f047cecf 1577 }
4225399a
PJ
1578 mmput(mm);
1579 }
452477fa 1580
33ad801d
LZ
1581 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1582
452477fa 1583 cs->attach_in_progress--;
e44193d3
LZ
1584 if (!cs->attach_in_progress)
1585 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1586
1587 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1588}
1589
1590/* The various types of files and directories in a cpuset file system */
1591
1592typedef enum {
45b07ef3 1593 FILE_MEMORY_MIGRATE,
1da177e4
LT
1594 FILE_CPULIST,
1595 FILE_MEMLIST,
1596 FILE_CPU_EXCLUSIVE,
1597 FILE_MEM_EXCLUSIVE,
78608366 1598 FILE_MEM_HARDWALL,
029190c5 1599 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1600 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1601 FILE_MEMORY_PRESSURE_ENABLED,
1602 FILE_MEMORY_PRESSURE,
825a46af
PJ
1603 FILE_SPREAD_PAGE,
1604 FILE_SPREAD_SLAB,
1da177e4
LT
1605} cpuset_filetype_t;
1606
700fe1ab
PM
1607static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1608{
700fe1ab
PM
1609 struct cpuset *cs = cgroup_cs(cgrp);
1610 cpuset_filetype_t type = cft->private;
5d21cc2d 1611 int retval = -ENODEV;
700fe1ab 1612
5d21cc2d
TH
1613 mutex_lock(&cpuset_mutex);
1614 if (!is_cpuset_online(cs))
1615 goto out_unlock;
700fe1ab
PM
1616
1617 switch (type) {
1da177e4 1618 case FILE_CPU_EXCLUSIVE:
700fe1ab 1619 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1620 break;
1621 case FILE_MEM_EXCLUSIVE:
700fe1ab 1622 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1623 break;
78608366
PM
1624 case FILE_MEM_HARDWALL:
1625 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1626 break;
029190c5 1627 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1628 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1629 break;
45b07ef3 1630 case FILE_MEMORY_MIGRATE:
700fe1ab 1631 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1632 break;
3e0d98b9 1633 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1634 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1635 break;
1636 case FILE_MEMORY_PRESSURE:
1637 retval = -EACCES;
1638 break;
825a46af 1639 case FILE_SPREAD_PAGE:
700fe1ab 1640 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1641 break;
1642 case FILE_SPREAD_SLAB:
700fe1ab 1643 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1644 break;
1da177e4
LT
1645 default:
1646 retval = -EINVAL;
700fe1ab 1647 break;
1da177e4 1648 }
5d21cc2d
TH
1649out_unlock:
1650 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1651 return retval;
1652}
1653
5be7a479
PM
1654static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1655{
5be7a479
PM
1656 struct cpuset *cs = cgroup_cs(cgrp);
1657 cpuset_filetype_t type = cft->private;
5d21cc2d 1658 int retval = -ENODEV;
5be7a479 1659
5d21cc2d
TH
1660 mutex_lock(&cpuset_mutex);
1661 if (!is_cpuset_online(cs))
1662 goto out_unlock;
e3712395 1663
5be7a479
PM
1664 switch (type) {
1665 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1666 retval = update_relax_domain_level(cs, val);
1667 break;
1668 default:
1669 retval = -EINVAL;
1670 break;
1671 }
5d21cc2d
TH
1672out_unlock:
1673 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1674 return retval;
1675}
1676
e3712395
PM
1677/*
1678 * Common handling for a write to a "cpus" or "mems" file.
1679 */
1680static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1681 const char *buf)
1682{
645fcc9d
LZ
1683 struct cpuset *cs = cgroup_cs(cgrp);
1684 struct cpuset *trialcs;
5d21cc2d 1685 int retval = -ENODEV;
e3712395 1686
3a5a6d0c
TH
1687 /*
1688 * CPU or memory hotunplug may leave @cs w/o any execution
1689 * resources, in which case the hotplug code asynchronously updates
1690 * configuration and transfers all tasks to the nearest ancestor
1691 * which can execute.
1692 *
1693 * As writes to "cpus" or "mems" may restore @cs's execution
1694 * resources, wait for the previously scheduled operations before
1695 * proceeding, so that we don't end up keep removing tasks added
1696 * after execution capability is restored.
1697 */
1698 flush_work(&cpuset_hotplug_work);
1699
5d21cc2d
TH
1700 mutex_lock(&cpuset_mutex);
1701 if (!is_cpuset_online(cs))
1702 goto out_unlock;
e3712395 1703
645fcc9d 1704 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1705 if (!trialcs) {
1706 retval = -ENOMEM;
5d21cc2d 1707 goto out_unlock;
b75f38d6 1708 }
645fcc9d 1709
e3712395
PM
1710 switch (cft->private) {
1711 case FILE_CPULIST:
645fcc9d 1712 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1713 break;
1714 case FILE_MEMLIST:
645fcc9d 1715 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1716 break;
1717 default:
1718 retval = -EINVAL;
1719 break;
1720 }
645fcc9d
LZ
1721
1722 free_trial_cpuset(trialcs);
5d21cc2d
TH
1723out_unlock:
1724 mutex_unlock(&cpuset_mutex);
e3712395
PM
1725 return retval;
1726}
1727
1da177e4
LT
1728/*
1729 * These ascii lists should be read in a single call, by using a user
1730 * buffer large enough to hold the entire map. If read in smaller
1731 * chunks, there is no guarantee of atomicity. Since the display format
1732 * used, list of ranges of sequential numbers, is variable length,
1733 * and since these maps can change value dynamically, one could read
1734 * gibberish by doing partial reads while a list was changing.
1735 * A single large read to a buffer that crosses a page boundary is
1736 * ok, because the result being copied to user land is not recomputed
1737 * across a page fault.
1738 */
1739
9303e0c4 1740static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1741{
9303e0c4 1742 size_t count;
1da177e4 1743
3d3f26a7 1744 mutex_lock(&callback_mutex);
9303e0c4 1745 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1746 mutex_unlock(&callback_mutex);
1da177e4 1747
9303e0c4 1748 return count;
1da177e4
LT
1749}
1750
9303e0c4 1751static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1752{
9303e0c4 1753 size_t count;
1da177e4 1754
3d3f26a7 1755 mutex_lock(&callback_mutex);
9303e0c4 1756 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1757 mutex_unlock(&callback_mutex);
1da177e4 1758
9303e0c4 1759 return count;
1da177e4
LT
1760}
1761
8793d854
PM
1762static ssize_t cpuset_common_file_read(struct cgroup *cont,
1763 struct cftype *cft,
1764 struct file *file,
1765 char __user *buf,
1766 size_t nbytes, loff_t *ppos)
1da177e4 1767{
8793d854 1768 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1769 cpuset_filetype_t type = cft->private;
1770 char *page;
1771 ssize_t retval = 0;
1772 char *s;
1da177e4 1773
e12ba74d 1774 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1775 return -ENOMEM;
1776
1777 s = page;
1778
1779 switch (type) {
1780 case FILE_CPULIST:
1781 s += cpuset_sprintf_cpulist(s, cs);
1782 break;
1783 case FILE_MEMLIST:
1784 s += cpuset_sprintf_memlist(s, cs);
1785 break;
1da177e4
LT
1786 default:
1787 retval = -EINVAL;
1788 goto out;
1789 }
1790 *s++ = '\n';
1da177e4 1791
eacaa1f5 1792 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1793out:
1794 free_page((unsigned long)page);
1795 return retval;
1796}
1797
700fe1ab
PM
1798static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1799{
1800 struct cpuset *cs = cgroup_cs(cont);
1801 cpuset_filetype_t type = cft->private;
1802 switch (type) {
1803 case FILE_CPU_EXCLUSIVE:
1804 return is_cpu_exclusive(cs);
1805 case FILE_MEM_EXCLUSIVE:
1806 return is_mem_exclusive(cs);
78608366
PM
1807 case FILE_MEM_HARDWALL:
1808 return is_mem_hardwall(cs);
700fe1ab
PM
1809 case FILE_SCHED_LOAD_BALANCE:
1810 return is_sched_load_balance(cs);
1811 case FILE_MEMORY_MIGRATE:
1812 return is_memory_migrate(cs);
1813 case FILE_MEMORY_PRESSURE_ENABLED:
1814 return cpuset_memory_pressure_enabled;
1815 case FILE_MEMORY_PRESSURE:
1816 return fmeter_getrate(&cs->fmeter);
1817 case FILE_SPREAD_PAGE:
1818 return is_spread_page(cs);
1819 case FILE_SPREAD_SLAB:
1820 return is_spread_slab(cs);
1821 default:
1822 BUG();
1823 }
cf417141
MK
1824
1825 /* Unreachable but makes gcc happy */
1826 return 0;
700fe1ab 1827}
1da177e4 1828
5be7a479
PM
1829static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1830{
1831 struct cpuset *cs = cgroup_cs(cont);
1832 cpuset_filetype_t type = cft->private;
1833 switch (type) {
1834 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1835 return cs->relax_domain_level;
1836 default:
1837 BUG();
1838 }
cf417141
MK
1839
1840 /* Unrechable but makes gcc happy */
1841 return 0;
5be7a479
PM
1842}
1843
1da177e4
LT
1844
1845/*
1846 * for the common functions, 'private' gives the type of file
1847 */
1848
addf2c73
PM
1849static struct cftype files[] = {
1850 {
1851 .name = "cpus",
1852 .read = cpuset_common_file_read,
e3712395
PM
1853 .write_string = cpuset_write_resmask,
1854 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1855 .private = FILE_CPULIST,
1856 },
1857
1858 {
1859 .name = "mems",
1860 .read = cpuset_common_file_read,
e3712395
PM
1861 .write_string = cpuset_write_resmask,
1862 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1863 .private = FILE_MEMLIST,
1864 },
1865
1866 {
1867 .name = "cpu_exclusive",
1868 .read_u64 = cpuset_read_u64,
1869 .write_u64 = cpuset_write_u64,
1870 .private = FILE_CPU_EXCLUSIVE,
1871 },
1872
1873 {
1874 .name = "mem_exclusive",
1875 .read_u64 = cpuset_read_u64,
1876 .write_u64 = cpuset_write_u64,
1877 .private = FILE_MEM_EXCLUSIVE,
1878 },
1879
78608366
PM
1880 {
1881 .name = "mem_hardwall",
1882 .read_u64 = cpuset_read_u64,
1883 .write_u64 = cpuset_write_u64,
1884 .private = FILE_MEM_HARDWALL,
1885 },
1886
addf2c73
PM
1887 {
1888 .name = "sched_load_balance",
1889 .read_u64 = cpuset_read_u64,
1890 .write_u64 = cpuset_write_u64,
1891 .private = FILE_SCHED_LOAD_BALANCE,
1892 },
1893
1894 {
1895 .name = "sched_relax_domain_level",
5be7a479
PM
1896 .read_s64 = cpuset_read_s64,
1897 .write_s64 = cpuset_write_s64,
addf2c73
PM
1898 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1899 },
1900
1901 {
1902 .name = "memory_migrate",
1903 .read_u64 = cpuset_read_u64,
1904 .write_u64 = cpuset_write_u64,
1905 .private = FILE_MEMORY_MIGRATE,
1906 },
1907
1908 {
1909 .name = "memory_pressure",
1910 .read_u64 = cpuset_read_u64,
1911 .write_u64 = cpuset_write_u64,
1912 .private = FILE_MEMORY_PRESSURE,
099fca32 1913 .mode = S_IRUGO,
addf2c73
PM
1914 },
1915
1916 {
1917 .name = "memory_spread_page",
1918 .read_u64 = cpuset_read_u64,
1919 .write_u64 = cpuset_write_u64,
1920 .private = FILE_SPREAD_PAGE,
1921 },
1922
1923 {
1924 .name = "memory_spread_slab",
1925 .read_u64 = cpuset_read_u64,
1926 .write_u64 = cpuset_write_u64,
1927 .private = FILE_SPREAD_SLAB,
1928 },
3e0d98b9 1929
4baf6e33
TH
1930 {
1931 .name = "memory_pressure_enabled",
1932 .flags = CFTYPE_ONLY_ON_ROOT,
1933 .read_u64 = cpuset_read_u64,
1934 .write_u64 = cpuset_write_u64,
1935 .private = FILE_MEMORY_PRESSURE_ENABLED,
1936 },
1da177e4 1937
4baf6e33
TH
1938 { } /* terminate */
1939};
1da177e4
LT
1940
1941/*
92fb9748 1942 * cpuset_css_alloc - allocate a cpuset css
2df167a3 1943 * cont: control group that the new cpuset will be part of
1da177e4
LT
1944 */
1945
92fb9748 1946static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1da177e4 1947{
c8f699bb 1948 struct cpuset *cs;
1da177e4 1949
c8f699bb 1950 if (!cont->parent)
8793d854 1951 return &top_cpuset.css;
033fa1c5 1952
c8f699bb 1953 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1954 if (!cs)
8793d854 1955 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1956 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1957 kfree(cs);
1958 return ERR_PTR(-ENOMEM);
1959 }
1da177e4 1960
029190c5 1961 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1962 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1963 nodes_clear(cs->mems_allowed);
3e0d98b9 1964 fmeter_init(&cs->fmeter);
1d3504fc 1965 cs->relax_domain_level = -1;
1da177e4 1966
c8f699bb
TH
1967 return &cs->css;
1968}
1969
1970static int cpuset_css_online(struct cgroup *cgrp)
1971{
1972 struct cpuset *cs = cgroup_cs(cgrp);
c431069f 1973 struct cpuset *parent = parent_cs(cs);
ae8086ce
TH
1974 struct cpuset *tmp_cs;
1975 struct cgroup *pos_cg;
c8f699bb
TH
1976
1977 if (!parent)
1978 return 0;
1979
5d21cc2d
TH
1980 mutex_lock(&cpuset_mutex);
1981
efeb77b2 1982 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1983 if (is_spread_page(parent))
1984 set_bit(CS_SPREAD_PAGE, &cs->flags);
1985 if (is_spread_slab(parent))
1986 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1987
202f72d5 1988 number_of_cpusets++;
033fa1c5 1989
c8f699bb 1990 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
5d21cc2d 1991 goto out_unlock;
033fa1c5
TH
1992
1993 /*
1994 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1995 * set. This flag handling is implemented in cgroup core for
1996 * histrical reasons - the flag may be specified during mount.
1997 *
1998 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1999 * refuse to clone the configuration - thereby refusing the task to
2000 * be entered, and as a result refusing the sys_unshare() or
2001 * clone() which initiated it. If this becomes a problem for some
2002 * users who wish to allow that scenario, then this could be
2003 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2004 * (and likewise for mems) to the new cgroup.
2005 */
ae8086ce
TH
2006 rcu_read_lock();
2007 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
2008 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2009 rcu_read_unlock();
5d21cc2d 2010 goto out_unlock;
ae8086ce 2011 }
033fa1c5 2012 }
ae8086ce 2013 rcu_read_unlock();
033fa1c5
TH
2014
2015 mutex_lock(&callback_mutex);
2016 cs->mems_allowed = parent->mems_allowed;
2017 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2018 mutex_unlock(&callback_mutex);
5d21cc2d
TH
2019out_unlock:
2020 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
2021 return 0;
2022}
2023
2024static void cpuset_css_offline(struct cgroup *cgrp)
2025{
2026 struct cpuset *cs = cgroup_cs(cgrp);
2027
5d21cc2d 2028 mutex_lock(&cpuset_mutex);
c8f699bb
TH
2029
2030 if (is_sched_load_balance(cs))
2031 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2032
2033 number_of_cpusets--;
efeb77b2 2034 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 2035
5d21cc2d 2036 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2037}
2038
029190c5 2039/*
029190c5
PJ
2040 * If the cpuset being removed has its flag 'sched_load_balance'
2041 * enabled, then simulate turning sched_load_balance off, which
699140ba 2042 * will call rebuild_sched_domains_locked().
029190c5
PJ
2043 */
2044
92fb9748 2045static void cpuset_css_free(struct cgroup *cont)
1da177e4 2046{
8793d854 2047 struct cpuset *cs = cgroup_cs(cont);
1da177e4 2048
300ed6cb 2049 free_cpumask_var(cs->cpus_allowed);
8793d854 2050 kfree(cs);
1da177e4
LT
2051}
2052
8793d854
PM
2053struct cgroup_subsys cpuset_subsys = {
2054 .name = "cpuset",
92fb9748 2055 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
2056 .css_online = cpuset_css_online,
2057 .css_offline = cpuset_css_offline,
92fb9748 2058 .css_free = cpuset_css_free,
8793d854 2059 .can_attach = cpuset_can_attach,
452477fa 2060 .cancel_attach = cpuset_cancel_attach,
8793d854 2061 .attach = cpuset_attach,
8793d854 2062 .subsys_id = cpuset_subsys_id,
4baf6e33 2063 .base_cftypes = files,
8793d854
PM
2064 .early_init = 1,
2065};
2066
1da177e4
LT
2067/**
2068 * cpuset_init - initialize cpusets at system boot
2069 *
2070 * Description: Initialize top_cpuset and the cpuset internal file system,
2071 **/
2072
2073int __init cpuset_init(void)
2074{
8793d854 2075 int err = 0;
1da177e4 2076
58568d2a
MX
2077 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2078 BUG();
2079
300ed6cb 2080 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2081 nodes_setall(top_cpuset.mems_allowed);
1da177e4 2082
3e0d98b9 2083 fmeter_init(&top_cpuset.fmeter);
029190c5 2084 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2085 top_cpuset.relax_domain_level = -1;
1da177e4 2086
1da177e4
LT
2087 err = register_filesystem(&cpuset_fs_type);
2088 if (err < 0)
8793d854
PM
2089 return err;
2090
2341d1b6
LZ
2091 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2092 BUG();
2093
202f72d5 2094 number_of_cpusets = 1;
8793d854 2095 return 0;
1da177e4
LT
2096}
2097
b1aac8bb 2098/*
cf417141 2099 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2100 * or memory nodes, we need to walk over the cpuset hierarchy,
2101 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2102 * last CPU or node from a cpuset, then move the tasks in the empty
2103 * cpuset to its next-highest non-empty parent.
b1aac8bb 2104 */
956db3ca
CW
2105static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2106{
2107 struct cpuset *parent;
2108
956db3ca
CW
2109 /*
2110 * Find its next-highest non-empty parent, (top cpuset
2111 * has online cpus, so can't be empty).
2112 */
c431069f 2113 parent = parent_cs(cs);
300ed6cb 2114 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2115 nodes_empty(parent->mems_allowed))
c431069f 2116 parent = parent_cs(parent);
956db3ca 2117
8cc99345
TH
2118 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2119 rcu_read_lock();
2120 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
2121 cgroup_name(cs->css.cgroup));
2122 rcu_read_unlock();
2123 }
956db3ca
CW
2124}
2125
deb7aa30 2126/**
388afd85 2127 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2128 * @cs: cpuset in interest
956db3ca 2129 *
deb7aa30
TH
2130 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2131 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2132 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2133 */
388afd85 2134static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2135{
deb7aa30 2136 static cpumask_t off_cpus;
33ad801d 2137 static nodemask_t off_mems;
5d21cc2d 2138 bool is_empty;
5c5cc623 2139 bool sane = cgroup_sane_behavior(cs->css.cgroup);
80d1fa64 2140
e44193d3
LZ
2141retry:
2142 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2143
5d21cc2d 2144 mutex_lock(&cpuset_mutex);
7ddf96b0 2145
e44193d3
LZ
2146 /*
2147 * We have raced with task attaching. We wait until attaching
2148 * is finished, so we won't attach a task to an empty cpuset.
2149 */
2150 if (cs->attach_in_progress) {
2151 mutex_unlock(&cpuset_mutex);
2152 goto retry;
2153 }
2154
deb7aa30
TH
2155 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2156 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2157
5c5cc623
LZ
2158 mutex_lock(&callback_mutex);
2159 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2160 mutex_unlock(&callback_mutex);
2161
2162 /*
2163 * If sane_behavior flag is set, we need to update tasks' cpumask
f047cecf
LZ
2164 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
2165 * call update_tasks_cpumask() if the cpuset becomes empty, as
2166 * the tasks in it will be migrated to an ancestor.
5c5cc623
LZ
2167 */
2168 if ((sane && cpumask_empty(cs->cpus_allowed)) ||
f047cecf 2169 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
deb7aa30 2170 update_tasks_cpumask(cs, NULL);
80d1fa64 2171
5c5cc623
LZ
2172 mutex_lock(&callback_mutex);
2173 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2174 mutex_unlock(&callback_mutex);
2175
2176 /*
2177 * If sane_behavior flag is set, we need to update tasks' nodemask
f047cecf
LZ
2178 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
2179 * call update_tasks_nodemask() if the cpuset becomes empty, as
2180 * the tasks in it will be migratd to an ancestor.
5c5cc623
LZ
2181 */
2182 if ((sane && nodes_empty(cs->mems_allowed)) ||
f047cecf 2183 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
33ad801d 2184 update_tasks_nodemask(cs, NULL);
deb7aa30 2185
5d21cc2d
TH
2186 is_empty = cpumask_empty(cs->cpus_allowed) ||
2187 nodes_empty(cs->mems_allowed);
8d033948 2188
5d21cc2d
TH
2189 mutex_unlock(&cpuset_mutex);
2190
2191 /*
5c5cc623
LZ
2192 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
2193 *
2194 * Otherwise move tasks to the nearest ancestor with execution
2195 * resources. This is full cgroup operation which will
5d21cc2d
TH
2196 * also call back into cpuset. Should be done outside any lock.
2197 */
5c5cc623 2198 if (!sane && is_empty)
5d21cc2d 2199 remove_tasks_in_empty_cpuset(cs);
b1aac8bb
PJ
2200}
2201
deb7aa30 2202/**
3a5a6d0c 2203 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2204 *
deb7aa30
TH
2205 * This function is called after either CPU or memory configuration has
2206 * changed and updates cpuset accordingly. The top_cpuset is always
2207 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2208 * order to make cpusets transparent (of no affect) on systems that are
2209 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2210 *
deb7aa30 2211 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2212 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2213 * all descendants.
956db3ca 2214 *
deb7aa30
TH
2215 * Note that CPU offlining during suspend is ignored. We don't modify
2216 * cpusets across suspend/resume cycles at all.
956db3ca 2217 */
3a5a6d0c 2218static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2219{
5c5cc623
LZ
2220 static cpumask_t new_cpus;
2221 static nodemask_t new_mems;
deb7aa30 2222 bool cpus_updated, mems_updated;
b1aac8bb 2223
5d21cc2d 2224 mutex_lock(&cpuset_mutex);
956db3ca 2225
deb7aa30
TH
2226 /* fetch the available cpus/mems and find out which changed how */
2227 cpumask_copy(&new_cpus, cpu_active_mask);
2228 new_mems = node_states[N_MEMORY];
7ddf96b0 2229
deb7aa30 2230 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
deb7aa30 2231 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
7ddf96b0 2232
deb7aa30
TH
2233 /* synchronize cpus_allowed to cpu_active_mask */
2234 if (cpus_updated) {
2235 mutex_lock(&callback_mutex);
2236 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2237 mutex_unlock(&callback_mutex);
2238 /* we don't mess with cpumasks of tasks in top_cpuset */
2239 }
b4501295 2240
deb7aa30
TH
2241 /* synchronize mems_allowed to N_MEMORY */
2242 if (mems_updated) {
deb7aa30
TH
2243 mutex_lock(&callback_mutex);
2244 top_cpuset.mems_allowed = new_mems;
2245 mutex_unlock(&callback_mutex);
33ad801d 2246 update_tasks_nodemask(&top_cpuset, NULL);
deb7aa30 2247 }
b4501295 2248
388afd85
LZ
2249 mutex_unlock(&cpuset_mutex);
2250
5c5cc623
LZ
2251 /* if cpus or mems changed, we need to propagate to descendants */
2252 if (cpus_updated || mems_updated) {
deb7aa30 2253 struct cpuset *cs;
fc560a26 2254 struct cgroup *pos_cgrp;
f9b4fb8d 2255
fc560a26 2256 rcu_read_lock();
388afd85
LZ
2257 cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset) {
2258 if (!css_tryget(&cs->css))
2259 continue;
2260 rcu_read_unlock();
7ddf96b0 2261
388afd85 2262 cpuset_hotplug_update_tasks(cs);
b4501295 2263
388afd85
LZ
2264 rcu_read_lock();
2265 css_put(&cs->css);
2266 }
2267 rcu_read_unlock();
2268 }
8d033948 2269
deb7aa30 2270 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2271 if (cpus_updated)
2272 rebuild_sched_domains();
b1aac8bb
PJ
2273}
2274
7ddf96b0 2275void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2276{
3a5a6d0c
TH
2277 /*
2278 * We're inside cpu hotplug critical region which usually nests
2279 * inside cgroup synchronization. Bounce actual hotplug processing
2280 * to a work item to avoid reverse locking order.
2281 *
2282 * We still need to do partition_sched_domains() synchronously;
2283 * otherwise, the scheduler will get confused and put tasks to the
2284 * dead CPU. Fall back to the default single domain.
2285 * cpuset_hotplug_workfn() will rebuild it as necessary.
2286 */
2287 partition_sched_domains(1, NULL, NULL);
2288 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2289}
4c4d50f7 2290
38837fc7 2291/*
38d7bee9
LJ
2292 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2293 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2294 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2295 */
f481891f
MX
2296static int cpuset_track_online_nodes(struct notifier_block *self,
2297 unsigned long action, void *arg)
38837fc7 2298{
3a5a6d0c 2299 schedule_work(&cpuset_hotplug_work);
f481891f 2300 return NOTIFY_OK;
38837fc7 2301}
d8f10cb3
AM
2302
2303static struct notifier_block cpuset_track_online_nodes_nb = {
2304 .notifier_call = cpuset_track_online_nodes,
2305 .priority = 10, /* ??! */
2306};
38837fc7 2307
1da177e4
LT
2308/**
2309 * cpuset_init_smp - initialize cpus_allowed
2310 *
2311 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2312 */
1da177e4
LT
2313void __init cpuset_init_smp(void)
2314{
6ad4c188 2315 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2316 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2317 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2318
d8f10cb3 2319 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2320}
2321
2322/**
1da177e4
LT
2323 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2324 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2325 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2326 *
300ed6cb 2327 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2328 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2329 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2330 * tasks cpuset.
2331 **/
2332
6af866af 2333void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2334{
070b57fc
LZ
2335 struct cpuset *cpus_cs;
2336
3d3f26a7 2337 mutex_lock(&callback_mutex);
909d75a3 2338 task_lock(tsk);
070b57fc
LZ
2339 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2340 guarantee_online_cpus(cpus_cs, pmask);
909d75a3 2341 task_unlock(tsk);
897f0b3c 2342 mutex_unlock(&callback_mutex);
1da177e4
LT
2343}
2344
2baab4e9 2345void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2346{
070b57fc 2347 const struct cpuset *cpus_cs;
9084bb82
ON
2348
2349 rcu_read_lock();
070b57fc
LZ
2350 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2351 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
9084bb82
ON
2352 rcu_read_unlock();
2353
2354 /*
2355 * We own tsk->cpus_allowed, nobody can change it under us.
2356 *
2357 * But we used cs && cs->cpus_allowed lockless and thus can
2358 * race with cgroup_attach_task() or update_cpumask() and get
2359 * the wrong tsk->cpus_allowed. However, both cases imply the
2360 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2361 * which takes task_rq_lock().
2362 *
2363 * If we are called after it dropped the lock we must see all
2364 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2365 * set any mask even if it is not right from task_cs() pov,
2366 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2367 *
2368 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2369 * if required.
9084bb82 2370 */
9084bb82
ON
2371}
2372
1da177e4
LT
2373void cpuset_init_current_mems_allowed(void)
2374{
f9a86fcb 2375 nodes_setall(current->mems_allowed);
1da177e4
LT
2376}
2377
909d75a3
PJ
2378/**
2379 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2380 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2381 *
2382 * Description: Returns the nodemask_t mems_allowed of the cpuset
2383 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2384 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2385 * tasks cpuset.
2386 **/
2387
2388nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2389{
070b57fc 2390 struct cpuset *mems_cs;
909d75a3
PJ
2391 nodemask_t mask;
2392
3d3f26a7 2393 mutex_lock(&callback_mutex);
909d75a3 2394 task_lock(tsk);
070b57fc
LZ
2395 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2396 guarantee_online_mems(mems_cs, &mask);
909d75a3 2397 task_unlock(tsk);
3d3f26a7 2398 mutex_unlock(&callback_mutex);
909d75a3
PJ
2399
2400 return mask;
2401}
2402
d9fd8a6d 2403/**
19770b32
MG
2404 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2405 * @nodemask: the nodemask to be checked
d9fd8a6d 2406 *
19770b32 2407 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2408 */
19770b32 2409int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2410{
19770b32 2411 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2412}
2413
9bf2229f 2414/*
78608366
PM
2415 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2416 * mem_hardwall ancestor to the specified cpuset. Call holding
2417 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2418 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2419 */
78608366 2420static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2421{
c431069f
TH
2422 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2423 cs = parent_cs(cs);
9bf2229f
PJ
2424 return cs;
2425}
2426
d9fd8a6d 2427/**
a1bc5a4e
DR
2428 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2429 * @node: is this an allowed node?
02a0e53d 2430 * @gfp_mask: memory allocation flags
d9fd8a6d 2431 *
a1bc5a4e
DR
2432 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2433 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2434 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2435 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2436 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2437 * flag, yes.
9bf2229f
PJ
2438 * Otherwise, no.
2439 *
a1bc5a4e
DR
2440 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2441 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2442 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2443 *
a1bc5a4e
DR
2444 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2445 * cpusets, and never sleeps.
02a0e53d
PJ
2446 *
2447 * The __GFP_THISNODE placement logic is really handled elsewhere,
2448 * by forcibly using a zonelist starting at a specified node, and by
2449 * (in get_page_from_freelist()) refusing to consider the zones for
2450 * any node on the zonelist except the first. By the time any such
2451 * calls get to this routine, we should just shut up and say 'yes'.
2452 *
9bf2229f 2453 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2454 * and do not allow allocations outside the current tasks cpuset
2455 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2456 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2457 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2458 *
02a0e53d
PJ
2459 * Scanning up parent cpusets requires callback_mutex. The
2460 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2461 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2462 * current tasks mems_allowed came up empty on the first pass over
2463 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2464 * cpuset are short of memory, might require taking the callback_mutex
2465 * mutex.
9bf2229f 2466 *
36be57ff 2467 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2468 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2469 * so no allocation on a node outside the cpuset is allowed (unless
2470 * in interrupt, of course).
36be57ff
PJ
2471 *
2472 * The second pass through get_page_from_freelist() doesn't even call
2473 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2474 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2475 * in alloc_flags. That logic and the checks below have the combined
2476 * affect that:
9bf2229f
PJ
2477 * in_interrupt - any node ok (current task context irrelevant)
2478 * GFP_ATOMIC - any node ok
c596d9f3 2479 * TIF_MEMDIE - any node ok
78608366 2480 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2481 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2482 *
2483 * Rule:
a1bc5a4e 2484 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2485 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2486 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2487 */
a1bc5a4e 2488int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2489{
9bf2229f 2490 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2491 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2492
9b819d20 2493 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2494 return 1;
92d1dbd2 2495 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2496 if (node_isset(node, current->mems_allowed))
2497 return 1;
c596d9f3
DR
2498 /*
2499 * Allow tasks that have access to memory reserves because they have
2500 * been OOM killed to get memory anywhere.
2501 */
2502 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2503 return 1;
9bf2229f
PJ
2504 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2505 return 0;
2506
5563e770
BP
2507 if (current->flags & PF_EXITING) /* Let dying task have memory */
2508 return 1;
2509
9bf2229f 2510 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2511 mutex_lock(&callback_mutex);
053199ed 2512
053199ed 2513 task_lock(current);
78608366 2514 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2515 task_unlock(current);
2516
9bf2229f 2517 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2518 mutex_unlock(&callback_mutex);
9bf2229f 2519 return allowed;
1da177e4
LT
2520}
2521
02a0e53d 2522/*
a1bc5a4e
DR
2523 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2524 * @node: is this an allowed node?
02a0e53d
PJ
2525 * @gfp_mask: memory allocation flags
2526 *
a1bc5a4e
DR
2527 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2528 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2529 * yes. If the task has been OOM killed and has access to memory reserves as
2530 * specified by the TIF_MEMDIE flag, yes.
2531 * Otherwise, no.
02a0e53d
PJ
2532 *
2533 * The __GFP_THISNODE placement logic is really handled elsewhere,
2534 * by forcibly using a zonelist starting at a specified node, and by
2535 * (in get_page_from_freelist()) refusing to consider the zones for
2536 * any node on the zonelist except the first. By the time any such
2537 * calls get to this routine, we should just shut up and say 'yes'.
2538 *
a1bc5a4e
DR
2539 * Unlike the cpuset_node_allowed_softwall() variant, above,
2540 * this variant requires that the node be in the current task's
02a0e53d
PJ
2541 * mems_allowed or that we're in interrupt. It does not scan up the
2542 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2543 * It never sleeps.
2544 */
a1bc5a4e 2545int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2546{
02a0e53d
PJ
2547 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2548 return 1;
02a0e53d
PJ
2549 if (node_isset(node, current->mems_allowed))
2550 return 1;
dedf8b79
DW
2551 /*
2552 * Allow tasks that have access to memory reserves because they have
2553 * been OOM killed to get memory anywhere.
2554 */
2555 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2556 return 1;
02a0e53d
PJ
2557 return 0;
2558}
2559
825a46af 2560/**
6adef3eb
JS
2561 * cpuset_mem_spread_node() - On which node to begin search for a file page
2562 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2563 *
2564 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2565 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2566 * and if the memory allocation used cpuset_mem_spread_node()
2567 * to determine on which node to start looking, as it will for
2568 * certain page cache or slab cache pages such as used for file
2569 * system buffers and inode caches, then instead of starting on the
2570 * local node to look for a free page, rather spread the starting
2571 * node around the tasks mems_allowed nodes.
2572 *
2573 * We don't have to worry about the returned node being offline
2574 * because "it can't happen", and even if it did, it would be ok.
2575 *
2576 * The routines calling guarantee_online_mems() are careful to
2577 * only set nodes in task->mems_allowed that are online. So it
2578 * should not be possible for the following code to return an
2579 * offline node. But if it did, that would be ok, as this routine
2580 * is not returning the node where the allocation must be, only
2581 * the node where the search should start. The zonelist passed to
2582 * __alloc_pages() will include all nodes. If the slab allocator
2583 * is passed an offline node, it will fall back to the local node.
2584 * See kmem_cache_alloc_node().
2585 */
2586
6adef3eb 2587static int cpuset_spread_node(int *rotor)
825a46af
PJ
2588{
2589 int node;
2590
6adef3eb 2591 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2592 if (node == MAX_NUMNODES)
2593 node = first_node(current->mems_allowed);
6adef3eb 2594 *rotor = node;
825a46af
PJ
2595 return node;
2596}
6adef3eb
JS
2597
2598int cpuset_mem_spread_node(void)
2599{
778d3b0f
MH
2600 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2601 current->cpuset_mem_spread_rotor =
2602 node_random(&current->mems_allowed);
2603
6adef3eb
JS
2604 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2605}
2606
2607int cpuset_slab_spread_node(void)
2608{
778d3b0f
MH
2609 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2610 current->cpuset_slab_spread_rotor =
2611 node_random(&current->mems_allowed);
2612
6adef3eb
JS
2613 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2614}
2615
825a46af
PJ
2616EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2617
ef08e3b4 2618/**
bbe373f2
DR
2619 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2620 * @tsk1: pointer to task_struct of some task.
2621 * @tsk2: pointer to task_struct of some other task.
2622 *
2623 * Description: Return true if @tsk1's mems_allowed intersects the
2624 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2625 * one of the task's memory usage might impact the memory available
2626 * to the other.
ef08e3b4
PJ
2627 **/
2628
bbe373f2
DR
2629int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2630 const struct task_struct *tsk2)
ef08e3b4 2631{
bbe373f2 2632 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2633}
2634
f440d98f
LZ
2635#define CPUSET_NODELIST_LEN (256)
2636
75aa1994
DR
2637/**
2638 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2639 * @task: pointer to task_struct of some task.
2640 *
2641 * Description: Prints @task's name, cpuset name, and cached copy of its
2642 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2643 * dereferencing task_cs(task).
2644 */
2645void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2646{
f440d98f
LZ
2647 /* Statically allocated to prevent using excess stack. */
2648 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2649 static DEFINE_SPINLOCK(cpuset_buffer_lock);
75aa1994 2650
f440d98f 2651 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
63f43f55 2652
cfb5966b 2653 rcu_read_lock();
f440d98f 2654 spin_lock(&cpuset_buffer_lock);
63f43f55 2655
75aa1994
DR
2656 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2657 tsk->mems_allowed);
2658 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
f440d98f
LZ
2659 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2660
75aa1994 2661 spin_unlock(&cpuset_buffer_lock);
cfb5966b 2662 rcu_read_unlock();
75aa1994
DR
2663}
2664
3e0d98b9
PJ
2665/*
2666 * Collection of memory_pressure is suppressed unless
2667 * this flag is enabled by writing "1" to the special
2668 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2669 */
2670
c5b2aff8 2671int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2672
2673/**
2674 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2675 *
2676 * Keep a running average of the rate of synchronous (direct)
2677 * page reclaim efforts initiated by tasks in each cpuset.
2678 *
2679 * This represents the rate at which some task in the cpuset
2680 * ran low on memory on all nodes it was allowed to use, and
2681 * had to enter the kernels page reclaim code in an effort to
2682 * create more free memory by tossing clean pages or swapping
2683 * or writing dirty pages.
2684 *
2685 * Display to user space in the per-cpuset read-only file
2686 * "memory_pressure". Value displayed is an integer
2687 * representing the recent rate of entry into the synchronous
2688 * (direct) page reclaim by any task attached to the cpuset.
2689 **/
2690
2691void __cpuset_memory_pressure_bump(void)
2692{
3e0d98b9 2693 task_lock(current);
8793d854 2694 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2695 task_unlock(current);
2696}
2697
8793d854 2698#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2699/*
2700 * proc_cpuset_show()
2701 * - Print tasks cpuset path into seq_file.
2702 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2703 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2704 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2705 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2706 * anyway.
1da177e4 2707 */
8d8b97ba 2708int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2709{
13b41b09 2710 struct pid *pid;
1da177e4
LT
2711 struct task_struct *tsk;
2712 char *buf;
8793d854 2713 struct cgroup_subsys_state *css;
99f89551 2714 int retval;
1da177e4 2715
99f89551 2716 retval = -ENOMEM;
1da177e4
LT
2717 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2718 if (!buf)
99f89551
EB
2719 goto out;
2720
2721 retval = -ESRCH;
13b41b09
EB
2722 pid = m->private;
2723 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2724 if (!tsk)
2725 goto out_free;
1da177e4 2726
27e89ae5 2727 rcu_read_lock();
8793d854
PM
2728 css = task_subsys_state(tsk, cpuset_subsys_id);
2729 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
27e89ae5 2730 rcu_read_unlock();
1da177e4 2731 if (retval < 0)
27e89ae5 2732 goto out_put_task;
1da177e4
LT
2733 seq_puts(m, buf);
2734 seq_putc(m, '\n');
27e89ae5 2735out_put_task:
99f89551
EB
2736 put_task_struct(tsk);
2737out_free:
1da177e4 2738 kfree(buf);
99f89551 2739out:
1da177e4
LT
2740 return retval;
2741}
8793d854 2742#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2743
d01d4827 2744/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2745void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2746{
df5f8314 2747 seq_printf(m, "Mems_allowed:\t");
30e8e136 2748 seq_nodemask(m, &task->mems_allowed);
df5f8314 2749 seq_printf(m, "\n");
39106dcf 2750 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2751 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2752 seq_printf(m, "\n");
1da177e4 2753}