mm, memcg: pass charge order to oom killer
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
f90d4118
MX
63/*
64 * Workqueue for cpuset related tasks.
65 *
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
68 */
69static struct workqueue_struct *cpuset_wq;
70
202f72d5
PJ
71/*
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
75 */
7edc5962 76int number_of_cpusets __read_mostly;
202f72d5 77
2df167a3 78/* Forward declare cgroup structures */
8793d854
PM
79struct cgroup_subsys cpuset_subsys;
80struct cpuset;
81
3e0d98b9
PJ
82/* See "Frequency meter" comments, below. */
83
84struct fmeter {
85 int cnt; /* unprocessed events count */
86 int val; /* most recent output value */
87 time_t time; /* clock (secs) when val computed */
88 spinlock_t lock; /* guards read or write of above */
89};
90
1da177e4 91struct cpuset {
8793d854
PM
92 struct cgroup_subsys_state css;
93
1da177e4 94 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
97
1da177e4 98 struct cpuset *parent; /* my parent */
1da177e4 99
3e0d98b9 100 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
101
102 /* partition number for rebuild_sched_domains() */
103 int pn;
956db3ca 104
1d3504fc
HS
105 /* for custom sched domain */
106 int relax_domain_level;
107
732bee7a 108 /* used for walking a cpuset hierarchy */
956db3ca 109 struct list_head stack_list;
1da177e4
LT
110};
111
8793d854
PM
112/* Retrieve the cpuset for a cgroup */
113static inline struct cpuset *cgroup_cs(struct cgroup *cont)
114{
115 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
116 struct cpuset, css);
117}
118
119/* Retrieve the cpuset for a task */
120static inline struct cpuset *task_cs(struct task_struct *task)
121{
122 return container_of(task_subsys_state(task, cpuset_subsys_id),
123 struct cpuset, css);
124}
8793d854 125
b246272e
DR
126#ifdef CONFIG_NUMA
127static inline bool task_has_mempolicy(struct task_struct *task)
128{
129 return task->mempolicy;
130}
131#else
132static inline bool task_has_mempolicy(struct task_struct *task)
133{
134 return false;
135}
136#endif
137
138
1da177e4
LT
139/* bits in struct cpuset flags field */
140typedef enum {
141 CS_CPU_EXCLUSIVE,
142 CS_MEM_EXCLUSIVE,
78608366 143 CS_MEM_HARDWALL,
45b07ef3 144 CS_MEMORY_MIGRATE,
029190c5 145 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
146 CS_SPREAD_PAGE,
147 CS_SPREAD_SLAB,
1da177e4
LT
148} cpuset_flagbits_t;
149
150/* convenient tests for these bits */
151static inline int is_cpu_exclusive(const struct cpuset *cs)
152{
7b5b9ef0 153 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
154}
155
156static inline int is_mem_exclusive(const struct cpuset *cs)
157{
7b5b9ef0 158 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
159}
160
78608366
PM
161static inline int is_mem_hardwall(const struct cpuset *cs)
162{
163 return test_bit(CS_MEM_HARDWALL, &cs->flags);
164}
165
029190c5
PJ
166static inline int is_sched_load_balance(const struct cpuset *cs)
167{
168 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
169}
170
45b07ef3
PJ
171static inline int is_memory_migrate(const struct cpuset *cs)
172{
7b5b9ef0 173 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
174}
175
825a46af
PJ
176static inline int is_spread_page(const struct cpuset *cs)
177{
178 return test_bit(CS_SPREAD_PAGE, &cs->flags);
179}
180
181static inline int is_spread_slab(const struct cpuset *cs)
182{
183 return test_bit(CS_SPREAD_SLAB, &cs->flags);
184}
185
1da177e4
LT
186static struct cpuset top_cpuset = {
187 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
188};
189
1da177e4 190/*
2df167a3
PM
191 * There are two global mutexes guarding cpuset structures. The first
192 * is the main control groups cgroup_mutex, accessed via
193 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
194 * callback_mutex, below. They can nest. It is ok to first take
195 * cgroup_mutex, then nest callback_mutex. We also require taking
196 * task_lock() when dereferencing a task's cpuset pointer. See "The
197 * task_lock() exception", at the end of this comment.
053199ed 198 *
3d3f26a7 199 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 200 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 201 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
202 * and be able to modify cpusets. It can perform various checks on
203 * the cpuset structure first, knowing nothing will change. It can
2df167a3 204 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 205 * performing these checks, various callback routines can briefly
3d3f26a7
IM
206 * acquire callback_mutex to query cpusets. Once it is ready to make
207 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
208 *
209 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 210 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
211 * from one of the callbacks into the cpuset code from within
212 * __alloc_pages().
213 *
3d3f26a7 214 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
215 * access to cpusets.
216 *
58568d2a
MX
217 * Now, the task_struct fields mems_allowed and mempolicy may be changed
218 * by other task, we use alloc_lock in the task_struct fields to protect
219 * them.
053199ed 220 *
3d3f26a7 221 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
222 * small pieces of code, such as when reading out possibly multi-word
223 * cpumasks and nodemasks.
224 *
2df167a3
PM
225 * Accessing a task's cpuset should be done in accordance with the
226 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
227 */
228
3d3f26a7 229static DEFINE_MUTEX(callback_mutex);
4247bdc6 230
75aa1994
DR
231/*
232 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
233 * buffers. They are statically allocated to prevent using excess stack
234 * when calling cpuset_print_task_mems_allowed().
235 */
236#define CPUSET_NAME_LEN (128)
237#define CPUSET_NODELIST_LEN (256)
238static char cpuset_name[CPUSET_NAME_LEN];
239static char cpuset_nodelist[CPUSET_NODELIST_LEN];
240static DEFINE_SPINLOCK(cpuset_buffer_lock);
241
cf417141
MK
242/*
243 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 244 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
245 * silently switch it to mount "cgroup" instead
246 */
f7e83571
AV
247static struct dentry *cpuset_mount(struct file_system_type *fs_type,
248 int flags, const char *unused_dev_name, void *data)
1da177e4 249{
8793d854 250 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 251 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
252 if (cgroup_fs) {
253 char mountopts[] =
254 "cpuset,noprefix,"
255 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
256 ret = cgroup_fs->mount(cgroup_fs, flags,
257 unused_dev_name, mountopts);
8793d854
PM
258 put_filesystem(cgroup_fs);
259 }
260 return ret;
1da177e4
LT
261}
262
263static struct file_system_type cpuset_fs_type = {
264 .name = "cpuset",
f7e83571 265 .mount = cpuset_mount,
1da177e4
LT
266};
267
1da177e4 268/*
300ed6cb 269 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4
LT
270 * are online. If none are online, walk up the cpuset hierarchy
271 * until we find one that does have some online cpus. If we get
272 * all the way to the top and still haven't found any online cpus,
273 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
274 * task, return cpu_online_map.
275 *
276 * One way or another, we guarantee to return some non-empty subset
277 * of cpu_online_map.
278 *
3d3f26a7 279 * Call with callback_mutex held.
1da177e4
LT
280 */
281
6af866af
LZ
282static void guarantee_online_cpus(const struct cpuset *cs,
283 struct cpumask *pmask)
1da177e4 284{
300ed6cb 285 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
1da177e4
LT
286 cs = cs->parent;
287 if (cs)
300ed6cb 288 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4 289 else
300ed6cb
LZ
290 cpumask_copy(pmask, cpu_online_mask);
291 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
1da177e4
LT
292}
293
294/*
295 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
296 * are online, with memory. If none are online with memory, walk
297 * up the cpuset hierarchy until we find one that does have some
298 * online mems. If we get all the way to the top and still haven't
299 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
300 *
301 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 302 * of node_states[N_HIGH_MEMORY].
1da177e4 303 *
3d3f26a7 304 * Call with callback_mutex held.
1da177e4
LT
305 */
306
307static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
308{
0e1e7c7a
CL
309 while (cs && !nodes_intersects(cs->mems_allowed,
310 node_states[N_HIGH_MEMORY]))
1da177e4
LT
311 cs = cs->parent;
312 if (cs)
0e1e7c7a
CL
313 nodes_and(*pmask, cs->mems_allowed,
314 node_states[N_HIGH_MEMORY]);
1da177e4 315 else
0e1e7c7a
CL
316 *pmask = node_states[N_HIGH_MEMORY];
317 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
318}
319
f3b39d47
MX
320/*
321 * update task's spread flag if cpuset's page/slab spread flag is set
322 *
323 * Called with callback_mutex/cgroup_mutex held
324 */
325static void cpuset_update_task_spread_flag(struct cpuset *cs,
326 struct task_struct *tsk)
327{
328 if (is_spread_page(cs))
329 tsk->flags |= PF_SPREAD_PAGE;
330 else
331 tsk->flags &= ~PF_SPREAD_PAGE;
332 if (is_spread_slab(cs))
333 tsk->flags |= PF_SPREAD_SLAB;
334 else
335 tsk->flags &= ~PF_SPREAD_SLAB;
336}
337
1da177e4
LT
338/*
339 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
340 *
341 * One cpuset is a subset of another if all its allowed CPUs and
342 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 343 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
344 */
345
346static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
347{
300ed6cb 348 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
349 nodes_subset(p->mems_allowed, q->mems_allowed) &&
350 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
351 is_mem_exclusive(p) <= is_mem_exclusive(q);
352}
353
645fcc9d
LZ
354/**
355 * alloc_trial_cpuset - allocate a trial cpuset
356 * @cs: the cpuset that the trial cpuset duplicates
357 */
358static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
359{
300ed6cb
LZ
360 struct cpuset *trial;
361
362 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
363 if (!trial)
364 return NULL;
365
366 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
367 kfree(trial);
368 return NULL;
369 }
370 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
371
372 return trial;
645fcc9d
LZ
373}
374
375/**
376 * free_trial_cpuset - free the trial cpuset
377 * @trial: the trial cpuset to be freed
378 */
379static void free_trial_cpuset(struct cpuset *trial)
380{
300ed6cb 381 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
382 kfree(trial);
383}
384
1da177e4
LT
385/*
386 * validate_change() - Used to validate that any proposed cpuset change
387 * follows the structural rules for cpusets.
388 *
389 * If we replaced the flag and mask values of the current cpuset
390 * (cur) with those values in the trial cpuset (trial), would
391 * our various subset and exclusive rules still be valid? Presumes
2df167a3 392 * cgroup_mutex held.
1da177e4
LT
393 *
394 * 'cur' is the address of an actual, in-use cpuset. Operations
395 * such as list traversal that depend on the actual address of the
396 * cpuset in the list must use cur below, not trial.
397 *
398 * 'trial' is the address of bulk structure copy of cur, with
399 * perhaps one or more of the fields cpus_allowed, mems_allowed,
400 * or flags changed to new, trial values.
401 *
402 * Return 0 if valid, -errno if not.
403 */
404
405static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
406{
8793d854 407 struct cgroup *cont;
1da177e4
LT
408 struct cpuset *c, *par;
409
410 /* Each of our child cpusets must be a subset of us */
8793d854
PM
411 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
412 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
413 return -EBUSY;
414 }
415
416 /* Remaining checks don't apply to root cpuset */
69604067 417 if (cur == &top_cpuset)
1da177e4
LT
418 return 0;
419
69604067
PJ
420 par = cur->parent;
421
1da177e4
LT
422 /* We must be a subset of our parent cpuset */
423 if (!is_cpuset_subset(trial, par))
424 return -EACCES;
425
2df167a3
PM
426 /*
427 * If either I or some sibling (!= me) is exclusive, we can't
428 * overlap
429 */
8793d854
PM
430 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
431 c = cgroup_cs(cont);
1da177e4
LT
432 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
433 c != cur &&
300ed6cb 434 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
1da177e4
LT
435 return -EINVAL;
436 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
437 c != cur &&
438 nodes_intersects(trial->mems_allowed, c->mems_allowed))
439 return -EINVAL;
440 }
441
020958b6
PJ
442 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
443 if (cgroup_task_count(cur->css.cgroup)) {
300ed6cb 444 if (cpumask_empty(trial->cpus_allowed) ||
020958b6
PJ
445 nodes_empty(trial->mems_allowed)) {
446 return -ENOSPC;
447 }
448 }
449
1da177e4
LT
450 return 0;
451}
452
db7f47cf 453#ifdef CONFIG_SMP
029190c5 454/*
cf417141 455 * Helper routine for generate_sched_domains().
029190c5
PJ
456 * Do cpusets a, b have overlapping cpus_allowed masks?
457 */
029190c5
PJ
458static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
459{
300ed6cb 460 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
461}
462
1d3504fc
HS
463static void
464update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
465{
1d3504fc
HS
466 if (dattr->relax_domain_level < c->relax_domain_level)
467 dattr->relax_domain_level = c->relax_domain_level;
468 return;
469}
470
f5393693
LJ
471static void
472update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
473{
474 LIST_HEAD(q);
475
476 list_add(&c->stack_list, &q);
477 while (!list_empty(&q)) {
478 struct cpuset *cp;
479 struct cgroup *cont;
480 struct cpuset *child;
481
482 cp = list_first_entry(&q, struct cpuset, stack_list);
483 list_del(q.next);
484
300ed6cb 485 if (cpumask_empty(cp->cpus_allowed))
f5393693
LJ
486 continue;
487
488 if (is_sched_load_balance(cp))
489 update_domain_attr(dattr, cp);
490
491 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
492 child = cgroup_cs(cont);
493 list_add_tail(&child->stack_list, &q);
494 }
495 }
496}
497
029190c5 498/*
cf417141
MK
499 * generate_sched_domains()
500 *
501 * This function builds a partial partition of the systems CPUs
502 * A 'partial partition' is a set of non-overlapping subsets whose
503 * union is a subset of that set.
504 * The output of this function needs to be passed to kernel/sched.c
505 * partition_sched_domains() routine, which will rebuild the scheduler's
506 * load balancing domains (sched domains) as specified by that partial
507 * partition.
029190c5 508 *
45ce80fb 509 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
510 * for a background explanation of this.
511 *
512 * Does not return errors, on the theory that the callers of this
513 * routine would rather not worry about failures to rebuild sched
514 * domains when operating in the severe memory shortage situations
515 * that could cause allocation failures below.
516 *
cf417141 517 * Must be called with cgroup_lock held.
029190c5
PJ
518 *
519 * The three key local variables below are:
aeed6824 520 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
521 * top-down scan of all cpusets. This scan loads a pointer
522 * to each cpuset marked is_sched_load_balance into the
523 * array 'csa'. For our purposes, rebuilding the schedulers
524 * sched domains, we can ignore !is_sched_load_balance cpusets.
525 * csa - (for CpuSet Array) Array of pointers to all the cpusets
526 * that need to be load balanced, for convenient iterative
527 * access by the subsequent code that finds the best partition,
528 * i.e the set of domains (subsets) of CPUs such that the
529 * cpus_allowed of every cpuset marked is_sched_load_balance
530 * is a subset of one of these domains, while there are as
531 * many such domains as possible, each as small as possible.
532 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
533 * the kernel/sched.c routine partition_sched_domains() in a
534 * convenient format, that can be easily compared to the prior
535 * value to determine what partition elements (sched domains)
536 * were changed (added or removed.)
537 *
538 * Finding the best partition (set of domains):
539 * The triple nested loops below over i, j, k scan over the
540 * load balanced cpusets (using the array of cpuset pointers in
541 * csa[]) looking for pairs of cpusets that have overlapping
542 * cpus_allowed, but which don't have the same 'pn' partition
543 * number and gives them in the same partition number. It keeps
544 * looping on the 'restart' label until it can no longer find
545 * any such pairs.
546 *
547 * The union of the cpus_allowed masks from the set of
548 * all cpusets having the same 'pn' value then form the one
549 * element of the partition (one sched domain) to be passed to
550 * partition_sched_domains().
551 */
acc3f5d7 552static int generate_sched_domains(cpumask_var_t **domains,
cf417141 553 struct sched_domain_attr **attributes)
029190c5 554{
cf417141 555 LIST_HEAD(q); /* queue of cpusets to be scanned */
029190c5
PJ
556 struct cpuset *cp; /* scans q */
557 struct cpuset **csa; /* array of all cpuset ptrs */
558 int csn; /* how many cpuset ptrs in csa so far */
559 int i, j, k; /* indices for partition finding loops */
acc3f5d7 560 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 561 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 562 int ndoms = 0; /* number of sched domains in result */
6af866af 563 int nslot; /* next empty doms[] struct cpumask slot */
029190c5 564
029190c5 565 doms = NULL;
1d3504fc 566 dattr = NULL;
cf417141 567 csa = NULL;
029190c5
PJ
568
569 /* Special case for the 99% of systems with one, full, sched domain */
570 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
571 ndoms = 1;
572 doms = alloc_sched_domains(ndoms);
029190c5 573 if (!doms)
cf417141
MK
574 goto done;
575
1d3504fc
HS
576 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
577 if (dattr) {
578 *dattr = SD_ATTR_INIT;
93a65575 579 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 580 }
acc3f5d7 581 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 582
cf417141 583 goto done;
029190c5
PJ
584 }
585
029190c5
PJ
586 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
587 if (!csa)
588 goto done;
589 csn = 0;
590
aeed6824
LZ
591 list_add(&top_cpuset.stack_list, &q);
592 while (!list_empty(&q)) {
029190c5
PJ
593 struct cgroup *cont;
594 struct cpuset *child; /* scans child cpusets of cp */
489a5393 595
aeed6824
LZ
596 cp = list_first_entry(&q, struct cpuset, stack_list);
597 list_del(q.next);
598
300ed6cb 599 if (cpumask_empty(cp->cpus_allowed))
489a5393
LJ
600 continue;
601
f5393693
LJ
602 /*
603 * All child cpusets contain a subset of the parent's cpus, so
604 * just skip them, and then we call update_domain_attr_tree()
605 * to calc relax_domain_level of the corresponding sched
606 * domain.
607 */
608 if (is_sched_load_balance(cp)) {
029190c5 609 csa[csn++] = cp;
f5393693
LJ
610 continue;
611 }
489a5393 612
029190c5
PJ
613 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
614 child = cgroup_cs(cont);
aeed6824 615 list_add_tail(&child->stack_list, &q);
029190c5
PJ
616 }
617 }
618
619 for (i = 0; i < csn; i++)
620 csa[i]->pn = i;
621 ndoms = csn;
622
623restart:
624 /* Find the best partition (set of sched domains) */
625 for (i = 0; i < csn; i++) {
626 struct cpuset *a = csa[i];
627 int apn = a->pn;
628
629 for (j = 0; j < csn; j++) {
630 struct cpuset *b = csa[j];
631 int bpn = b->pn;
632
633 if (apn != bpn && cpusets_overlap(a, b)) {
634 for (k = 0; k < csn; k++) {
635 struct cpuset *c = csa[k];
636
637 if (c->pn == bpn)
638 c->pn = apn;
639 }
640 ndoms--; /* one less element */
641 goto restart;
642 }
643 }
644 }
645
cf417141
MK
646 /*
647 * Now we know how many domains to create.
648 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
649 */
acc3f5d7 650 doms = alloc_sched_domains(ndoms);
700018e0 651 if (!doms)
cf417141 652 goto done;
cf417141
MK
653
654 /*
655 * The rest of the code, including the scheduler, can deal with
656 * dattr==NULL case. No need to abort if alloc fails.
657 */
1d3504fc 658 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
659
660 for (nslot = 0, i = 0; i < csn; i++) {
661 struct cpuset *a = csa[i];
6af866af 662 struct cpumask *dp;
029190c5
PJ
663 int apn = a->pn;
664
cf417141
MK
665 if (apn < 0) {
666 /* Skip completed partitions */
667 continue;
668 }
669
acc3f5d7 670 dp = doms[nslot];
cf417141
MK
671
672 if (nslot == ndoms) {
673 static int warnings = 10;
674 if (warnings) {
675 printk(KERN_WARNING
676 "rebuild_sched_domains confused:"
677 " nslot %d, ndoms %d, csn %d, i %d,"
678 " apn %d\n",
679 nslot, ndoms, csn, i, apn);
680 warnings--;
029190c5 681 }
cf417141
MK
682 continue;
683 }
029190c5 684
6af866af 685 cpumask_clear(dp);
cf417141
MK
686 if (dattr)
687 *(dattr + nslot) = SD_ATTR_INIT;
688 for (j = i; j < csn; j++) {
689 struct cpuset *b = csa[j];
690
691 if (apn == b->pn) {
300ed6cb 692 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
693 if (dattr)
694 update_domain_attr_tree(dattr + nslot, b);
695
696 /* Done with this partition */
697 b->pn = -1;
029190c5 698 }
029190c5 699 }
cf417141 700 nslot++;
029190c5
PJ
701 }
702 BUG_ON(nslot != ndoms);
703
cf417141
MK
704done:
705 kfree(csa);
706
700018e0
LZ
707 /*
708 * Fallback to the default domain if kmalloc() failed.
709 * See comments in partition_sched_domains().
710 */
711 if (doms == NULL)
712 ndoms = 1;
713
cf417141
MK
714 *domains = doms;
715 *attributes = dattr;
716 return ndoms;
717}
718
719/*
720 * Rebuild scheduler domains.
721 *
722 * Call with neither cgroup_mutex held nor within get_online_cpus().
723 * Takes both cgroup_mutex and get_online_cpus().
724 *
725 * Cannot be directly called from cpuset code handling changes
726 * to the cpuset pseudo-filesystem, because it cannot be called
727 * from code that already holds cgroup_mutex.
728 */
729static void do_rebuild_sched_domains(struct work_struct *unused)
730{
731 struct sched_domain_attr *attr;
acc3f5d7 732 cpumask_var_t *doms;
cf417141
MK
733 int ndoms;
734
86ef5c9a 735 get_online_cpus();
cf417141
MK
736
737 /* Generate domain masks and attrs */
738 cgroup_lock();
739 ndoms = generate_sched_domains(&doms, &attr);
740 cgroup_unlock();
741
742 /* Have scheduler rebuild the domains */
743 partition_sched_domains(ndoms, doms, attr);
744
86ef5c9a 745 put_online_cpus();
cf417141 746}
db7f47cf
PM
747#else /* !CONFIG_SMP */
748static void do_rebuild_sched_domains(struct work_struct *unused)
749{
750}
751
e1b8090b 752static int generate_sched_domains(cpumask_var_t **domains,
db7f47cf
PM
753 struct sched_domain_attr **attributes)
754{
755 *domains = NULL;
756 return 1;
757}
758#endif /* CONFIG_SMP */
029190c5 759
cf417141
MK
760static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
761
762/*
763 * Rebuild scheduler domains, asynchronously via workqueue.
764 *
765 * If the flag 'sched_load_balance' of any cpuset with non-empty
766 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
767 * which has that flag enabled, or if any cpuset with a non-empty
768 * 'cpus' is removed, then call this routine to rebuild the
769 * scheduler's dynamic sched domains.
770 *
771 * The rebuild_sched_domains() and partition_sched_domains()
772 * routines must nest cgroup_lock() inside get_online_cpus(),
773 * but such cpuset changes as these must nest that locking the
774 * other way, holding cgroup_lock() for much of the code.
775 *
776 * So in order to avoid an ABBA deadlock, the cpuset code handling
777 * these user changes delegates the actual sched domain rebuilding
778 * to a separate workqueue thread, which ends up processing the
779 * above do_rebuild_sched_domains() function.
780 */
781static void async_rebuild_sched_domains(void)
782{
f90d4118 783 queue_work(cpuset_wq, &rebuild_sched_domains_work);
cf417141
MK
784}
785
786/*
787 * Accomplishes the same scheduler domain rebuild as the above
788 * async_rebuild_sched_domains(), however it directly calls the
789 * rebuild routine synchronously rather than calling it via an
790 * asynchronous work thread.
791 *
792 * This can only be called from code that is not holding
793 * cgroup_mutex (not nested in a cgroup_lock() call.)
794 */
795void rebuild_sched_domains(void)
796{
797 do_rebuild_sched_domains(NULL);
029190c5
PJ
798}
799
58f4790b
CW
800/**
801 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
802 * @tsk: task to test
803 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
804 *
2df167a3 805 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
806 * Called for each task in a cgroup by cgroup_scan_tasks().
807 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
808 * words, if its mask is not equal to its cpuset's mask).
053199ed 809 */
9e0c914c
AB
810static int cpuset_test_cpumask(struct task_struct *tsk,
811 struct cgroup_scanner *scan)
58f4790b 812{
300ed6cb 813 return !cpumask_equal(&tsk->cpus_allowed,
58f4790b
CW
814 (cgroup_cs(scan->cg))->cpus_allowed);
815}
053199ed 816
58f4790b
CW
817/**
818 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
819 * @tsk: task to test
820 * @scan: struct cgroup_scanner containing the cgroup of the task
821 *
822 * Called by cgroup_scan_tasks() for each task in a cgroup whose
823 * cpus_allowed mask needs to be changed.
824 *
825 * We don't need to re-check for the cgroup/cpuset membership, since we're
826 * holding cgroup_lock() at this point.
827 */
9e0c914c
AB
828static void cpuset_change_cpumask(struct task_struct *tsk,
829 struct cgroup_scanner *scan)
58f4790b 830{
300ed6cb 831 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
832}
833
0b2f630a
MX
834/**
835 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
836 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 837 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
838 *
839 * Called with cgroup_mutex held
840 *
841 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
842 * calling callback functions for each.
843 *
4e74339a
LZ
844 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
845 * if @heap != NULL.
0b2f630a 846 */
4e74339a 847static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
848{
849 struct cgroup_scanner scan;
0b2f630a
MX
850
851 scan.cg = cs->css.cgroup;
852 scan.test_task = cpuset_test_cpumask;
853 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
854 scan.heap = heap;
855 cgroup_scan_tasks(&scan);
0b2f630a
MX
856}
857
58f4790b
CW
858/**
859 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
860 * @cs: the cpuset to consider
861 * @buf: buffer of cpu numbers written to this cpuset
862 */
645fcc9d
LZ
863static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
864 const char *buf)
1da177e4 865{
4e74339a 866 struct ptr_heap heap;
58f4790b
CW
867 int retval;
868 int is_load_balanced;
1da177e4 869
4c4d50f7
PJ
870 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
871 if (cs == &top_cpuset)
872 return -EACCES;
873
6f7f02e7 874 /*
c8d9c90c 875 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
876 * Since cpulist_parse() fails on an empty mask, we special case
877 * that parsing. The validate_change() call ensures that cpusets
878 * with tasks have cpus.
6f7f02e7 879 */
020958b6 880 if (!*buf) {
300ed6cb 881 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 882 } else {
300ed6cb 883 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
884 if (retval < 0)
885 return retval;
37340746 886
6ad4c188 887 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 888 return -EINVAL;
6f7f02e7 889 }
645fcc9d 890 retval = validate_change(cs, trialcs);
85d7b949
DG
891 if (retval < 0)
892 return retval;
029190c5 893
8707d8b8 894 /* Nothing to do if the cpus didn't change */
300ed6cb 895 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 896 return 0;
58f4790b 897
4e74339a
LZ
898 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
899 if (retval)
900 return retval;
901
645fcc9d 902 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 903
3d3f26a7 904 mutex_lock(&callback_mutex);
300ed6cb 905 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 906 mutex_unlock(&callback_mutex);
029190c5 907
8707d8b8
PM
908 /*
909 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 910 * that need an update.
8707d8b8 911 */
4e74339a
LZ
912 update_tasks_cpumask(cs, &heap);
913
914 heap_free(&heap);
58f4790b 915
8707d8b8 916 if (is_load_balanced)
cf417141 917 async_rebuild_sched_domains();
85d7b949 918 return 0;
1da177e4
LT
919}
920
e4e364e8
PJ
921/*
922 * cpuset_migrate_mm
923 *
924 * Migrate memory region from one set of nodes to another.
925 *
926 * Temporarilly set tasks mems_allowed to target nodes of migration,
927 * so that the migration code can allocate pages on these nodes.
928 *
2df167a3 929 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 930 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
931 * calls. Therefore we don't need to take task_lock around the
932 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 933 * our task's cpuset.
e4e364e8 934 *
e4e364e8
PJ
935 * While the mm_struct we are migrating is typically from some
936 * other task, the task_struct mems_allowed that we are hacking
937 * is for our current task, which must allocate new pages for that
938 * migrating memory region.
e4e364e8
PJ
939 */
940
941static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
942 const nodemask_t *to)
943{
944 struct task_struct *tsk = current;
945
e4e364e8 946 tsk->mems_allowed = *to;
e4e364e8
PJ
947
948 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
949
8793d854 950 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
951}
952
3b6766fe 953/*
58568d2a
MX
954 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
955 * @tsk: the task to change
956 * @newmems: new nodes that the task will be set
957 *
958 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
959 * we structure updates as setting all new allowed nodes, then clearing newly
960 * disallowed ones.
58568d2a
MX
961 */
962static void cpuset_change_task_nodemask(struct task_struct *tsk,
963 nodemask_t *newmems)
964{
b246272e 965 bool need_loop;
89e8a244 966
c0ff7453
MX
967repeat:
968 /*
969 * Allow tasks that have access to memory reserves because they have
970 * been OOM killed to get memory anywhere.
971 */
972 if (unlikely(test_thread_flag(TIF_MEMDIE)))
973 return;
974 if (current->flags & PF_EXITING) /* Let dying task have memory */
975 return;
976
977 task_lock(tsk);
b246272e
DR
978 /*
979 * Determine if a loop is necessary if another thread is doing
980 * get_mems_allowed(). If at least one node remains unchanged and
981 * tsk does not have a mempolicy, then an empty nodemask will not be
982 * possible when mems_allowed is larger than a word.
983 */
984 need_loop = task_has_mempolicy(tsk) ||
985 !nodes_intersects(*newmems, tsk->mems_allowed);
58568d2a 986 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
c0ff7453
MX
987 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
988
c0ff7453
MX
989 /*
990 * ensure checking ->mems_allowed_change_disable after setting all new
991 * allowed nodes.
992 *
993 * the read-side task can see an nodemask with new allowed nodes and
994 * old allowed nodes. and if it allocates page when cpuset clears newly
995 * disallowed ones continuous, it can see the new allowed bits.
996 *
997 * And if setting all new allowed nodes is after the checking, setting
998 * all new allowed nodes and clearing newly disallowed ones will be done
999 * continuous, and the read-side task may find no node to alloc page.
1000 */
1001 smp_mb();
1002
1003 /*
1004 * Allocation of memory is very fast, we needn't sleep when waiting
b246272e 1005 * for the read-side.
c0ff7453 1006 */
b246272e 1007 while (need_loop && ACCESS_ONCE(tsk->mems_allowed_change_disable)) {
c0ff7453
MX
1008 task_unlock(tsk);
1009 if (!task_curr(tsk))
1010 yield();
1011 goto repeat;
1012 }
1013
1014 /*
1015 * ensure checking ->mems_allowed_change_disable before clearing all new
1016 * disallowed nodes.
1017 *
1018 * if clearing newly disallowed bits before the checking, the read-side
1019 * task may find no node to alloc page.
1020 */
1021 smp_mb();
1022
1023 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1024 tsk->mems_allowed = *newmems;
c0ff7453 1025 task_unlock(tsk);
58568d2a
MX
1026}
1027
1028/*
1029 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1030 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1031 * memory_migrate flag is set. Called with cgroup_mutex held.
3b6766fe
LZ
1032 */
1033static void cpuset_change_nodemask(struct task_struct *p,
1034 struct cgroup_scanner *scan)
1035{
1036 struct mm_struct *mm;
1037 struct cpuset *cs;
1038 int migrate;
1039 const nodemask_t *oldmem = scan->data;
ee24d379 1040 static nodemask_t newmems; /* protected by cgroup_mutex */
58568d2a
MX
1041
1042 cs = cgroup_cs(scan->cg);
ee24d379 1043 guarantee_online_mems(cs, &newmems);
58568d2a 1044
ee24d379 1045 cpuset_change_task_nodemask(p, &newmems);
53feb297 1046
3b6766fe
LZ
1047 mm = get_task_mm(p);
1048 if (!mm)
1049 return;
1050
3b6766fe
LZ
1051 migrate = is_memory_migrate(cs);
1052
1053 mpol_rebind_mm(mm, &cs->mems_allowed);
1054 if (migrate)
1055 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1056 mmput(mm);
1057}
1058
8793d854
PM
1059static void *cpuset_being_rebound;
1060
0b2f630a
MX
1061/**
1062 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1063 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1064 * @oldmem: old mems_allowed of cpuset cs
010cfac4 1065 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
1066 *
1067 * Called with cgroup_mutex held
010cfac4
LZ
1068 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1069 * if @heap != NULL.
0b2f630a 1070 */
010cfac4
LZ
1071static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1072 struct ptr_heap *heap)
1da177e4 1073{
3b6766fe 1074 struct cgroup_scanner scan;
59dac16f 1075
846a16bf 1076 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1077
3b6766fe
LZ
1078 scan.cg = cs->css.cgroup;
1079 scan.test_task = NULL;
1080 scan.process_task = cpuset_change_nodemask;
010cfac4 1081 scan.heap = heap;
3b6766fe 1082 scan.data = (nodemask_t *)oldmem;
4225399a
PJ
1083
1084 /*
3b6766fe
LZ
1085 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1086 * take while holding tasklist_lock. Forks can happen - the
1087 * mpol_dup() cpuset_being_rebound check will catch such forks,
1088 * and rebind their vma mempolicies too. Because we still hold
1089 * the global cgroup_mutex, we know that no other rebind effort
1090 * will be contending for the global variable cpuset_being_rebound.
4225399a 1091 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1092 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1093 */
010cfac4 1094 cgroup_scan_tasks(&scan);
4225399a 1095
2df167a3 1096 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1097 cpuset_being_rebound = NULL;
1da177e4
LT
1098}
1099
0b2f630a
MX
1100/*
1101 * Handle user request to change the 'mems' memory placement
1102 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1103 * cpusets mems_allowed, and for each task in the cpuset,
1104 * update mems_allowed and rebind task's mempolicy and any vma
1105 * mempolicies and if the cpuset is marked 'memory_migrate',
1106 * migrate the tasks pages to the new memory.
0b2f630a
MX
1107 *
1108 * Call with cgroup_mutex held. May take callback_mutex during call.
1109 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1110 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1111 * their mempolicies to the cpusets new mems_allowed.
1112 */
645fcc9d
LZ
1113static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1114 const char *buf)
0b2f630a 1115{
53feb297 1116 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
0b2f630a 1117 int retval;
010cfac4 1118 struct ptr_heap heap;
0b2f630a 1119
53feb297
MX
1120 if (!oldmem)
1121 return -ENOMEM;
1122
0b2f630a
MX
1123 /*
1124 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1125 * it's read-only
1126 */
53feb297
MX
1127 if (cs == &top_cpuset) {
1128 retval = -EACCES;
1129 goto done;
1130 }
0b2f630a 1131
0b2f630a
MX
1132 /*
1133 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1134 * Since nodelist_parse() fails on an empty mask, we special case
1135 * that parsing. The validate_change() call ensures that cpusets
1136 * with tasks have memory.
1137 */
1138 if (!*buf) {
645fcc9d 1139 nodes_clear(trialcs->mems_allowed);
0b2f630a 1140 } else {
645fcc9d 1141 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1142 if (retval < 0)
1143 goto done;
1144
645fcc9d 1145 if (!nodes_subset(trialcs->mems_allowed,
53feb297
MX
1146 node_states[N_HIGH_MEMORY])) {
1147 retval = -EINVAL;
1148 goto done;
1149 }
0b2f630a 1150 }
53feb297
MX
1151 *oldmem = cs->mems_allowed;
1152 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1153 retval = 0; /* Too easy - nothing to do */
1154 goto done;
1155 }
645fcc9d 1156 retval = validate_change(cs, trialcs);
0b2f630a
MX
1157 if (retval < 0)
1158 goto done;
1159
010cfac4
LZ
1160 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1161 if (retval < 0)
1162 goto done;
1163
0b2f630a 1164 mutex_lock(&callback_mutex);
645fcc9d 1165 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1166 mutex_unlock(&callback_mutex);
1167
53feb297 1168 update_tasks_nodemask(cs, oldmem, &heap);
010cfac4
LZ
1169
1170 heap_free(&heap);
0b2f630a 1171done:
53feb297 1172 NODEMASK_FREE(oldmem);
0b2f630a
MX
1173 return retval;
1174}
1175
8793d854
PM
1176int current_cpuset_is_being_rebound(void)
1177{
1178 return task_cs(current) == cpuset_being_rebound;
1179}
1180
5be7a479 1181static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1182{
db7f47cf 1183#ifdef CONFIG_SMP
60495e77 1184 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1185 return -EINVAL;
db7f47cf 1186#endif
1d3504fc
HS
1187
1188 if (val != cs->relax_domain_level) {
1189 cs->relax_domain_level = val;
300ed6cb
LZ
1190 if (!cpumask_empty(cs->cpus_allowed) &&
1191 is_sched_load_balance(cs))
cf417141 1192 async_rebuild_sched_domains();
1d3504fc
HS
1193 }
1194
1195 return 0;
1196}
1197
950592f7
MX
1198/*
1199 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1200 * @tsk: task to be updated
1201 * @scan: struct cgroup_scanner containing the cgroup of the task
1202 *
1203 * Called by cgroup_scan_tasks() for each task in a cgroup.
1204 *
1205 * We don't need to re-check for the cgroup/cpuset membership, since we're
1206 * holding cgroup_lock() at this point.
1207 */
1208static void cpuset_change_flag(struct task_struct *tsk,
1209 struct cgroup_scanner *scan)
1210{
1211 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1212}
1213
1214/*
1215 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1216 * @cs: the cpuset in which each task's spread flags needs to be changed
1217 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1218 *
1219 * Called with cgroup_mutex held
1220 *
1221 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1222 * calling callback functions for each.
1223 *
1224 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1225 * if @heap != NULL.
1226 */
1227static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1228{
1229 struct cgroup_scanner scan;
1230
1231 scan.cg = cs->css.cgroup;
1232 scan.test_task = NULL;
1233 scan.process_task = cpuset_change_flag;
1234 scan.heap = heap;
1235 cgroup_scan_tasks(&scan);
1236}
1237
1da177e4
LT
1238/*
1239 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1240 * bit: the bit to update (see cpuset_flagbits_t)
1241 * cs: the cpuset to update
1242 * turning_on: whether the flag is being set or cleared
053199ed 1243 *
2df167a3 1244 * Call with cgroup_mutex held.
1da177e4
LT
1245 */
1246
700fe1ab
PM
1247static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1248 int turning_on)
1da177e4 1249{
645fcc9d 1250 struct cpuset *trialcs;
40b6a762 1251 int balance_flag_changed;
950592f7
MX
1252 int spread_flag_changed;
1253 struct ptr_heap heap;
1254 int err;
1da177e4 1255
645fcc9d
LZ
1256 trialcs = alloc_trial_cpuset(cs);
1257 if (!trialcs)
1258 return -ENOMEM;
1259
1da177e4 1260 if (turning_on)
645fcc9d 1261 set_bit(bit, &trialcs->flags);
1da177e4 1262 else
645fcc9d 1263 clear_bit(bit, &trialcs->flags);
1da177e4 1264
645fcc9d 1265 err = validate_change(cs, trialcs);
85d7b949 1266 if (err < 0)
645fcc9d 1267 goto out;
029190c5 1268
950592f7
MX
1269 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1270 if (err < 0)
1271 goto out;
1272
029190c5 1273 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1274 is_sched_load_balance(trialcs));
029190c5 1275
950592f7
MX
1276 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1277 || (is_spread_page(cs) != is_spread_page(trialcs)));
1278
3d3f26a7 1279 mutex_lock(&callback_mutex);
645fcc9d 1280 cs->flags = trialcs->flags;
3d3f26a7 1281 mutex_unlock(&callback_mutex);
85d7b949 1282
300ed6cb 1283 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
cf417141 1284 async_rebuild_sched_domains();
029190c5 1285
950592f7
MX
1286 if (spread_flag_changed)
1287 update_tasks_flags(cs, &heap);
1288 heap_free(&heap);
645fcc9d
LZ
1289out:
1290 free_trial_cpuset(trialcs);
1291 return err;
1da177e4
LT
1292}
1293
3e0d98b9 1294/*
80f7228b 1295 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1296 *
1297 * These routines manage a digitally filtered, constant time based,
1298 * event frequency meter. There are four routines:
1299 * fmeter_init() - initialize a frequency meter.
1300 * fmeter_markevent() - called each time the event happens.
1301 * fmeter_getrate() - returns the recent rate of such events.
1302 * fmeter_update() - internal routine used to update fmeter.
1303 *
1304 * A common data structure is passed to each of these routines,
1305 * which is used to keep track of the state required to manage the
1306 * frequency meter and its digital filter.
1307 *
1308 * The filter works on the number of events marked per unit time.
1309 * The filter is single-pole low-pass recursive (IIR). The time unit
1310 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1311 * simulate 3 decimal digits of precision (multiplied by 1000).
1312 *
1313 * With an FM_COEF of 933, and a time base of 1 second, the filter
1314 * has a half-life of 10 seconds, meaning that if the events quit
1315 * happening, then the rate returned from the fmeter_getrate()
1316 * will be cut in half each 10 seconds, until it converges to zero.
1317 *
1318 * It is not worth doing a real infinitely recursive filter. If more
1319 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1320 * just compute FM_MAXTICKS ticks worth, by which point the level
1321 * will be stable.
1322 *
1323 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1324 * arithmetic overflow in the fmeter_update() routine.
1325 *
1326 * Given the simple 32 bit integer arithmetic used, this meter works
1327 * best for reporting rates between one per millisecond (msec) and
1328 * one per 32 (approx) seconds. At constant rates faster than one
1329 * per msec it maxes out at values just under 1,000,000. At constant
1330 * rates between one per msec, and one per second it will stabilize
1331 * to a value N*1000, where N is the rate of events per second.
1332 * At constant rates between one per second and one per 32 seconds,
1333 * it will be choppy, moving up on the seconds that have an event,
1334 * and then decaying until the next event. At rates slower than
1335 * about one in 32 seconds, it decays all the way back to zero between
1336 * each event.
1337 */
1338
1339#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1340#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1341#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1342#define FM_SCALE 1000 /* faux fixed point scale */
1343
1344/* Initialize a frequency meter */
1345static void fmeter_init(struct fmeter *fmp)
1346{
1347 fmp->cnt = 0;
1348 fmp->val = 0;
1349 fmp->time = 0;
1350 spin_lock_init(&fmp->lock);
1351}
1352
1353/* Internal meter update - process cnt events and update value */
1354static void fmeter_update(struct fmeter *fmp)
1355{
1356 time_t now = get_seconds();
1357 time_t ticks = now - fmp->time;
1358
1359 if (ticks == 0)
1360 return;
1361
1362 ticks = min(FM_MAXTICKS, ticks);
1363 while (ticks-- > 0)
1364 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1365 fmp->time = now;
1366
1367 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1368 fmp->cnt = 0;
1369}
1370
1371/* Process any previous ticks, then bump cnt by one (times scale). */
1372static void fmeter_markevent(struct fmeter *fmp)
1373{
1374 spin_lock(&fmp->lock);
1375 fmeter_update(fmp);
1376 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1377 spin_unlock(&fmp->lock);
1378}
1379
1380/* Process any previous ticks, then return current value. */
1381static int fmeter_getrate(struct fmeter *fmp)
1382{
1383 int val;
1384
1385 spin_lock(&fmp->lock);
1386 fmeter_update(fmp);
1387 val = fmp->val;
1388 spin_unlock(&fmp->lock);
1389 return val;
1390}
1391
f780bdb7
BB
1392/*
1393 * Protected by cgroup_lock. The nodemasks must be stored globally because
94196f51
TH
1394 * dynamically allocating them is not allowed in can_attach, and they must
1395 * persist until attach.
f780bdb7
BB
1396 */
1397static cpumask_var_t cpus_attach;
1398static nodemask_t cpuset_attach_nodemask_from;
1399static nodemask_t cpuset_attach_nodemask_to;
1400
2df167a3 1401/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
761b3ef5 1402static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
f780bdb7 1403{
2f7ee569 1404 struct cpuset *cs = cgroup_cs(cgrp);
bb9d97b6
TH
1405 struct task_struct *task;
1406 int ret;
1da177e4 1407
300ed6cb 1408 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1da177e4 1409 return -ENOSPC;
9985b0ba 1410
bb9d97b6
TH
1411 cgroup_taskset_for_each(task, cgrp, tset) {
1412 /*
1413 * Kthreads bound to specific cpus cannot be moved to a new
1414 * cpuset; we cannot change their cpu affinity and
1415 * isolating such threads by their set of allowed nodes is
1416 * unnecessary. Thus, cpusets are not applicable for such
1417 * threads. This prevents checking for success of
1418 * set_cpus_allowed_ptr() on all attached tasks before
1419 * cpus_allowed may be changed.
1420 */
1421 if (task->flags & PF_THREAD_BOUND)
1422 return -EINVAL;
1423 if ((ret = security_task_setscheduler(task)))
1424 return ret;
1425 }
f780bdb7 1426
94196f51 1427 /* prepare for attach */
f780bdb7
BB
1428 if (cs == &top_cpuset)
1429 cpumask_copy(cpus_attach, cpu_possible_mask);
1430 else
1431 guarantee_online_cpus(cs, cpus_attach);
1432
1433 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
f780bdb7 1434
94196f51 1435 return 0;
8793d854 1436}
1da177e4 1437
761b3ef5 1438static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
8793d854 1439{
8793d854 1440 struct mm_struct *mm;
bb9d97b6
TH
1441 struct task_struct *task;
1442 struct task_struct *leader = cgroup_taskset_first(tset);
2f7ee569
TH
1443 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1444 struct cpuset *cs = cgroup_cs(cgrp);
1445 struct cpuset *oldcs = cgroup_cs(oldcgrp);
22fb52dd 1446
bb9d97b6
TH
1447 cgroup_taskset_for_each(task, cgrp, tset) {
1448 /*
1449 * can_attach beforehand should guarantee that this doesn't
1450 * fail. TODO: have a better way to handle failure here
1451 */
1452 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1453
1454 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1455 cpuset_update_task_spread_flag(cs, task);
1456 }
22fb52dd 1457
f780bdb7
BB
1458 /*
1459 * Change mm, possibly for multiple threads in a threadgroup. This is
1460 * expensive and may sleep.
1461 */
1462 cpuset_attach_nodemask_from = oldcs->mems_allowed;
1463 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1464 mm = get_task_mm(leader);
4225399a 1465 if (mm) {
f780bdb7 1466 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2741a559 1467 if (is_memory_migrate(cs))
f780bdb7
BB
1468 cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1469 &cpuset_attach_nodemask_to);
4225399a
PJ
1470 mmput(mm);
1471 }
1da177e4
LT
1472}
1473
1474/* The various types of files and directories in a cpuset file system */
1475
1476typedef enum {
45b07ef3 1477 FILE_MEMORY_MIGRATE,
1da177e4
LT
1478 FILE_CPULIST,
1479 FILE_MEMLIST,
1480 FILE_CPU_EXCLUSIVE,
1481 FILE_MEM_EXCLUSIVE,
78608366 1482 FILE_MEM_HARDWALL,
029190c5 1483 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1484 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1485 FILE_MEMORY_PRESSURE_ENABLED,
1486 FILE_MEMORY_PRESSURE,
825a46af
PJ
1487 FILE_SPREAD_PAGE,
1488 FILE_SPREAD_SLAB,
1da177e4
LT
1489} cpuset_filetype_t;
1490
700fe1ab
PM
1491static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1492{
1493 int retval = 0;
1494 struct cpuset *cs = cgroup_cs(cgrp);
1495 cpuset_filetype_t type = cft->private;
1496
e3712395 1497 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1498 return -ENODEV;
700fe1ab
PM
1499
1500 switch (type) {
1da177e4 1501 case FILE_CPU_EXCLUSIVE:
700fe1ab 1502 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1503 break;
1504 case FILE_MEM_EXCLUSIVE:
700fe1ab 1505 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1506 break;
78608366
PM
1507 case FILE_MEM_HARDWALL:
1508 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1509 break;
029190c5 1510 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1511 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1512 break;
45b07ef3 1513 case FILE_MEMORY_MIGRATE:
700fe1ab 1514 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1515 break;
3e0d98b9 1516 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1517 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1518 break;
1519 case FILE_MEMORY_PRESSURE:
1520 retval = -EACCES;
1521 break;
825a46af 1522 case FILE_SPREAD_PAGE:
700fe1ab 1523 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1524 break;
1525 case FILE_SPREAD_SLAB:
700fe1ab 1526 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1527 break;
1da177e4
LT
1528 default:
1529 retval = -EINVAL;
700fe1ab 1530 break;
1da177e4 1531 }
8793d854 1532 cgroup_unlock();
1da177e4
LT
1533 return retval;
1534}
1535
5be7a479
PM
1536static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1537{
1538 int retval = 0;
1539 struct cpuset *cs = cgroup_cs(cgrp);
1540 cpuset_filetype_t type = cft->private;
1541
e3712395 1542 if (!cgroup_lock_live_group(cgrp))
5be7a479 1543 return -ENODEV;
e3712395 1544
5be7a479
PM
1545 switch (type) {
1546 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1547 retval = update_relax_domain_level(cs, val);
1548 break;
1549 default:
1550 retval = -EINVAL;
1551 break;
1552 }
1553 cgroup_unlock();
1554 return retval;
1555}
1556
e3712395
PM
1557/*
1558 * Common handling for a write to a "cpus" or "mems" file.
1559 */
1560static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1561 const char *buf)
1562{
1563 int retval = 0;
645fcc9d
LZ
1564 struct cpuset *cs = cgroup_cs(cgrp);
1565 struct cpuset *trialcs;
e3712395
PM
1566
1567 if (!cgroup_lock_live_group(cgrp))
1568 return -ENODEV;
1569
645fcc9d 1570 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1571 if (!trialcs) {
1572 retval = -ENOMEM;
1573 goto out;
1574 }
645fcc9d 1575
e3712395
PM
1576 switch (cft->private) {
1577 case FILE_CPULIST:
645fcc9d 1578 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1579 break;
1580 case FILE_MEMLIST:
645fcc9d 1581 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1582 break;
1583 default:
1584 retval = -EINVAL;
1585 break;
1586 }
645fcc9d
LZ
1587
1588 free_trial_cpuset(trialcs);
b75f38d6 1589out:
e3712395
PM
1590 cgroup_unlock();
1591 return retval;
1592}
1593
1da177e4
LT
1594/*
1595 * These ascii lists should be read in a single call, by using a user
1596 * buffer large enough to hold the entire map. If read in smaller
1597 * chunks, there is no guarantee of atomicity. Since the display format
1598 * used, list of ranges of sequential numbers, is variable length,
1599 * and since these maps can change value dynamically, one could read
1600 * gibberish by doing partial reads while a list was changing.
1601 * A single large read to a buffer that crosses a page boundary is
1602 * ok, because the result being copied to user land is not recomputed
1603 * across a page fault.
1604 */
1605
9303e0c4 1606static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1607{
9303e0c4 1608 size_t count;
1da177e4 1609
3d3f26a7 1610 mutex_lock(&callback_mutex);
9303e0c4 1611 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1612 mutex_unlock(&callback_mutex);
1da177e4 1613
9303e0c4 1614 return count;
1da177e4
LT
1615}
1616
9303e0c4 1617static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1618{
9303e0c4 1619 size_t count;
1da177e4 1620
3d3f26a7 1621 mutex_lock(&callback_mutex);
9303e0c4 1622 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1623 mutex_unlock(&callback_mutex);
1da177e4 1624
9303e0c4 1625 return count;
1da177e4
LT
1626}
1627
8793d854
PM
1628static ssize_t cpuset_common_file_read(struct cgroup *cont,
1629 struct cftype *cft,
1630 struct file *file,
1631 char __user *buf,
1632 size_t nbytes, loff_t *ppos)
1da177e4 1633{
8793d854 1634 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1635 cpuset_filetype_t type = cft->private;
1636 char *page;
1637 ssize_t retval = 0;
1638 char *s;
1da177e4 1639
e12ba74d 1640 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1641 return -ENOMEM;
1642
1643 s = page;
1644
1645 switch (type) {
1646 case FILE_CPULIST:
1647 s += cpuset_sprintf_cpulist(s, cs);
1648 break;
1649 case FILE_MEMLIST:
1650 s += cpuset_sprintf_memlist(s, cs);
1651 break;
1da177e4
LT
1652 default:
1653 retval = -EINVAL;
1654 goto out;
1655 }
1656 *s++ = '\n';
1da177e4 1657
eacaa1f5 1658 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1659out:
1660 free_page((unsigned long)page);
1661 return retval;
1662}
1663
700fe1ab
PM
1664static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1665{
1666 struct cpuset *cs = cgroup_cs(cont);
1667 cpuset_filetype_t type = cft->private;
1668 switch (type) {
1669 case FILE_CPU_EXCLUSIVE:
1670 return is_cpu_exclusive(cs);
1671 case FILE_MEM_EXCLUSIVE:
1672 return is_mem_exclusive(cs);
78608366
PM
1673 case FILE_MEM_HARDWALL:
1674 return is_mem_hardwall(cs);
700fe1ab
PM
1675 case FILE_SCHED_LOAD_BALANCE:
1676 return is_sched_load_balance(cs);
1677 case FILE_MEMORY_MIGRATE:
1678 return is_memory_migrate(cs);
1679 case FILE_MEMORY_PRESSURE_ENABLED:
1680 return cpuset_memory_pressure_enabled;
1681 case FILE_MEMORY_PRESSURE:
1682 return fmeter_getrate(&cs->fmeter);
1683 case FILE_SPREAD_PAGE:
1684 return is_spread_page(cs);
1685 case FILE_SPREAD_SLAB:
1686 return is_spread_slab(cs);
1687 default:
1688 BUG();
1689 }
cf417141
MK
1690
1691 /* Unreachable but makes gcc happy */
1692 return 0;
700fe1ab 1693}
1da177e4 1694
5be7a479
PM
1695static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1696{
1697 struct cpuset *cs = cgroup_cs(cont);
1698 cpuset_filetype_t type = cft->private;
1699 switch (type) {
1700 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1701 return cs->relax_domain_level;
1702 default:
1703 BUG();
1704 }
cf417141
MK
1705
1706 /* Unrechable but makes gcc happy */
1707 return 0;
5be7a479
PM
1708}
1709
1da177e4
LT
1710
1711/*
1712 * for the common functions, 'private' gives the type of file
1713 */
1714
addf2c73
PM
1715static struct cftype files[] = {
1716 {
1717 .name = "cpus",
1718 .read = cpuset_common_file_read,
e3712395
PM
1719 .write_string = cpuset_write_resmask,
1720 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1721 .private = FILE_CPULIST,
1722 },
1723
1724 {
1725 .name = "mems",
1726 .read = cpuset_common_file_read,
e3712395
PM
1727 .write_string = cpuset_write_resmask,
1728 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1729 .private = FILE_MEMLIST,
1730 },
1731
1732 {
1733 .name = "cpu_exclusive",
1734 .read_u64 = cpuset_read_u64,
1735 .write_u64 = cpuset_write_u64,
1736 .private = FILE_CPU_EXCLUSIVE,
1737 },
1738
1739 {
1740 .name = "mem_exclusive",
1741 .read_u64 = cpuset_read_u64,
1742 .write_u64 = cpuset_write_u64,
1743 .private = FILE_MEM_EXCLUSIVE,
1744 },
1745
78608366
PM
1746 {
1747 .name = "mem_hardwall",
1748 .read_u64 = cpuset_read_u64,
1749 .write_u64 = cpuset_write_u64,
1750 .private = FILE_MEM_HARDWALL,
1751 },
1752
addf2c73
PM
1753 {
1754 .name = "sched_load_balance",
1755 .read_u64 = cpuset_read_u64,
1756 .write_u64 = cpuset_write_u64,
1757 .private = FILE_SCHED_LOAD_BALANCE,
1758 },
1759
1760 {
1761 .name = "sched_relax_domain_level",
5be7a479
PM
1762 .read_s64 = cpuset_read_s64,
1763 .write_s64 = cpuset_write_s64,
addf2c73
PM
1764 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1765 },
1766
1767 {
1768 .name = "memory_migrate",
1769 .read_u64 = cpuset_read_u64,
1770 .write_u64 = cpuset_write_u64,
1771 .private = FILE_MEMORY_MIGRATE,
1772 },
1773
1774 {
1775 .name = "memory_pressure",
1776 .read_u64 = cpuset_read_u64,
1777 .write_u64 = cpuset_write_u64,
1778 .private = FILE_MEMORY_PRESSURE,
099fca32 1779 .mode = S_IRUGO,
addf2c73
PM
1780 },
1781
1782 {
1783 .name = "memory_spread_page",
1784 .read_u64 = cpuset_read_u64,
1785 .write_u64 = cpuset_write_u64,
1786 .private = FILE_SPREAD_PAGE,
1787 },
1788
1789 {
1790 .name = "memory_spread_slab",
1791 .read_u64 = cpuset_read_u64,
1792 .write_u64 = cpuset_write_u64,
1793 .private = FILE_SPREAD_SLAB,
1794 },
45b07ef3
PJ
1795};
1796
3e0d98b9
PJ
1797static struct cftype cft_memory_pressure_enabled = {
1798 .name = "memory_pressure_enabled",
700fe1ab
PM
1799 .read_u64 = cpuset_read_u64,
1800 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1801 .private = FILE_MEMORY_PRESSURE_ENABLED,
1802};
1803
8793d854 1804static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1805{
1806 int err;
1807
addf2c73
PM
1808 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1809 if (err)
1da177e4 1810 return err;
8793d854 1811 /* memory_pressure_enabled is in root cpuset only */
addf2c73 1812 if (!cont->parent)
8793d854 1813 err = cgroup_add_file(cont, ss,
addf2c73
PM
1814 &cft_memory_pressure_enabled);
1815 return err;
1da177e4
LT
1816}
1817
8793d854 1818/*
a77aea92
DL
1819 * post_clone() is called during cgroup_create() when the
1820 * clone_children mount argument was specified. The cgroup
1821 * can not yet have any tasks.
8793d854
PM
1822 *
1823 * Currently we refuse to set up the cgroup - thereby
1824 * refusing the task to be entered, and as a result refusing
1825 * the sys_unshare() or clone() which initiated it - if any
1826 * sibling cpusets have exclusive cpus or mem.
1827 *
1828 * If this becomes a problem for some users who wish to
1829 * allow that scenario, then cpuset_post_clone() could be
1830 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2df167a3
PM
1831 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1832 * held.
8793d854 1833 */
761b3ef5 1834static void cpuset_post_clone(struct cgroup *cgroup)
8793d854
PM
1835{
1836 struct cgroup *parent, *child;
1837 struct cpuset *cs, *parent_cs;
1838
1839 parent = cgroup->parent;
1840 list_for_each_entry(child, &parent->children, sibling) {
1841 cs = cgroup_cs(child);
1842 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1843 return;
1844 }
1845 cs = cgroup_cs(cgroup);
1846 parent_cs = cgroup_cs(parent);
1847
523fb486 1848 mutex_lock(&callback_mutex);
8793d854 1849 cs->mems_allowed = parent_cs->mems_allowed;
300ed6cb 1850 cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
523fb486 1851 mutex_unlock(&callback_mutex);
8793d854
PM
1852 return;
1853}
1854
1da177e4
LT
1855/*
1856 * cpuset_create - create a cpuset
2df167a3 1857 * cont: control group that the new cpuset will be part of
1da177e4
LT
1858 */
1859
761b3ef5 1860static struct cgroup_subsys_state *cpuset_create(struct cgroup *cont)
1da177e4
LT
1861{
1862 struct cpuset *cs;
8793d854 1863 struct cpuset *parent;
1da177e4 1864
8793d854 1865 if (!cont->parent) {
8793d854
PM
1866 return &top_cpuset.css;
1867 }
1868 parent = cgroup_cs(cont->parent);
1da177e4
LT
1869 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1870 if (!cs)
8793d854 1871 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1872 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1873 kfree(cs);
1874 return ERR_PTR(-ENOMEM);
1875 }
1da177e4 1876
1da177e4 1877 cs->flags = 0;
825a46af
PJ
1878 if (is_spread_page(parent))
1879 set_bit(CS_SPREAD_PAGE, &cs->flags);
1880 if (is_spread_slab(parent))
1881 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1882 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1883 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1884 nodes_clear(cs->mems_allowed);
3e0d98b9 1885 fmeter_init(&cs->fmeter);
1d3504fc 1886 cs->relax_domain_level = -1;
1da177e4
LT
1887
1888 cs->parent = parent;
202f72d5 1889 number_of_cpusets++;
8793d854 1890 return &cs->css ;
1da177e4
LT
1891}
1892
029190c5 1893/*
029190c5
PJ
1894 * If the cpuset being removed has its flag 'sched_load_balance'
1895 * enabled, then simulate turning sched_load_balance off, which
cf417141 1896 * will call async_rebuild_sched_domains().
029190c5
PJ
1897 */
1898
761b3ef5 1899static void cpuset_destroy(struct cgroup *cont)
1da177e4 1900{
8793d854 1901 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1902
029190c5 1903 if (is_sched_load_balance(cs))
700fe1ab 1904 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
029190c5 1905
202f72d5 1906 number_of_cpusets--;
300ed6cb 1907 free_cpumask_var(cs->cpus_allowed);
8793d854 1908 kfree(cs);
1da177e4
LT
1909}
1910
8793d854
PM
1911struct cgroup_subsys cpuset_subsys = {
1912 .name = "cpuset",
1913 .create = cpuset_create,
cf417141 1914 .destroy = cpuset_destroy,
8793d854
PM
1915 .can_attach = cpuset_can_attach,
1916 .attach = cpuset_attach,
1917 .populate = cpuset_populate,
1918 .post_clone = cpuset_post_clone,
1919 .subsys_id = cpuset_subsys_id,
1920 .early_init = 1,
1921};
1922
1da177e4
LT
1923/**
1924 * cpuset_init - initialize cpusets at system boot
1925 *
1926 * Description: Initialize top_cpuset and the cpuset internal file system,
1927 **/
1928
1929int __init cpuset_init(void)
1930{
8793d854 1931 int err = 0;
1da177e4 1932
58568d2a
MX
1933 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1934 BUG();
1935
300ed6cb 1936 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1937 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1938
3e0d98b9 1939 fmeter_init(&top_cpuset.fmeter);
029190c5 1940 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1941 top_cpuset.relax_domain_level = -1;
1da177e4 1942
1da177e4
LT
1943 err = register_filesystem(&cpuset_fs_type);
1944 if (err < 0)
8793d854
PM
1945 return err;
1946
2341d1b6
LZ
1947 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1948 BUG();
1949
202f72d5 1950 number_of_cpusets = 1;
8793d854 1951 return 0;
1da177e4
LT
1952}
1953
956db3ca
CW
1954/**
1955 * cpuset_do_move_task - move a given task to another cpuset
1956 * @tsk: pointer to task_struct the task to move
1957 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1958 *
1959 * Called by cgroup_scan_tasks() for each task in a cgroup.
1960 * Return nonzero to stop the walk through the tasks.
1961 */
9e0c914c
AB
1962static void cpuset_do_move_task(struct task_struct *tsk,
1963 struct cgroup_scanner *scan)
956db3ca 1964{
7f81b1ae 1965 struct cgroup *new_cgroup = scan->data;
956db3ca 1966
7f81b1ae 1967 cgroup_attach_task(new_cgroup, tsk);
956db3ca
CW
1968}
1969
1970/**
1971 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1972 * @from: cpuset in which the tasks currently reside
1973 * @to: cpuset to which the tasks will be moved
1974 *
c8d9c90c
PJ
1975 * Called with cgroup_mutex held
1976 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1977 *
1978 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1979 * calling callback functions for each.
1980 */
1981static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1982{
7f81b1ae 1983 struct cgroup_scanner scan;
956db3ca 1984
7f81b1ae
LZ
1985 scan.cg = from->css.cgroup;
1986 scan.test_task = NULL; /* select all tasks in cgroup */
1987 scan.process_task = cpuset_do_move_task;
1988 scan.heap = NULL;
1989 scan.data = to->css.cgroup;
956db3ca 1990
7f81b1ae 1991 if (cgroup_scan_tasks(&scan))
956db3ca
CW
1992 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1993 "cgroup_scan_tasks failed\n");
1994}
1995
b1aac8bb 1996/*
cf417141 1997 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1998 * or memory nodes, we need to walk over the cpuset hierarchy,
1999 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2000 * last CPU or node from a cpuset, then move the tasks in the empty
2001 * cpuset to its next-highest non-empty parent.
b1aac8bb 2002 *
c8d9c90c
PJ
2003 * Called with cgroup_mutex held
2004 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 2005 */
956db3ca
CW
2006static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2007{
2008 struct cpuset *parent;
2009
c8d9c90c
PJ
2010 /*
2011 * The cgroup's css_sets list is in use if there are tasks
2012 * in the cpuset; the list is empty if there are none;
2013 * the cs->css.refcnt seems always 0.
2014 */
956db3ca
CW
2015 if (list_empty(&cs->css.cgroup->css_sets))
2016 return;
b1aac8bb 2017
956db3ca
CW
2018 /*
2019 * Find its next-highest non-empty parent, (top cpuset
2020 * has online cpus, so can't be empty).
2021 */
2022 parent = cs->parent;
300ed6cb 2023 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2024 nodes_empty(parent->mems_allowed))
956db3ca 2025 parent = parent->parent;
956db3ca
CW
2026
2027 move_member_tasks_to_cpuset(cs, parent);
2028}
2029
2030/*
2031 * Walk the specified cpuset subtree and look for empty cpusets.
2032 * The tasks of such cpuset must be moved to a parent cpuset.
2033 *
2df167a3 2034 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
2035 * cpus_allowed and mems_allowed.
2036 *
2037 * This walk processes the tree from top to bottom, completing one layer
2038 * before dropping down to the next. It always processes a node before
2039 * any of its children.
2040 *
2041 * For now, since we lack memory hot unplug, we'll never see a cpuset
2042 * that has tasks along with an empty 'mems'. But if we did see such
2043 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
2044 */
d294eb83 2045static void scan_for_empty_cpusets(struct cpuset *root)
b1aac8bb 2046{
8d1e6266 2047 LIST_HEAD(queue);
956db3ca
CW
2048 struct cpuset *cp; /* scans cpusets being updated */
2049 struct cpuset *child; /* scans child cpusets of cp */
8793d854 2050 struct cgroup *cont;
ee24d379 2051 static nodemask_t oldmems; /* protected by cgroup_mutex */
b1aac8bb 2052
956db3ca
CW
2053 list_add_tail((struct list_head *)&root->stack_list, &queue);
2054
956db3ca 2055 while (!list_empty(&queue)) {
8d1e6266 2056 cp = list_first_entry(&queue, struct cpuset, stack_list);
956db3ca
CW
2057 list_del(queue.next);
2058 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2059 child = cgroup_cs(cont);
2060 list_add_tail(&child->stack_list, &queue);
2061 }
b4501295
PJ
2062
2063 /* Continue past cpusets with all cpus, mems online */
6ad4c188 2064 if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
b4501295
PJ
2065 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2066 continue;
2067
ee24d379 2068 oldmems = cp->mems_allowed;
f9b4fb8d 2069
956db3ca 2070 /* Remove offline cpus and mems from this cpuset. */
b4501295 2071 mutex_lock(&callback_mutex);
300ed6cb 2072 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
6ad4c188 2073 cpu_active_mask);
956db3ca
CW
2074 nodes_and(cp->mems_allowed, cp->mems_allowed,
2075 node_states[N_HIGH_MEMORY]);
b4501295
PJ
2076 mutex_unlock(&callback_mutex);
2077
2078 /* Move tasks from the empty cpuset to a parent */
300ed6cb 2079 if (cpumask_empty(cp->cpus_allowed) ||
b4501295 2080 nodes_empty(cp->mems_allowed))
956db3ca 2081 remove_tasks_in_empty_cpuset(cp);
f9b4fb8d 2082 else {
4e74339a 2083 update_tasks_cpumask(cp, NULL);
ee24d379 2084 update_tasks_nodemask(cp, &oldmems, NULL);
f9b4fb8d 2085 }
b1aac8bb
PJ
2086 }
2087}
2088
4c4d50f7
PJ
2089/*
2090 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2091 * period. This is necessary in order to make cpusets transparent
2092 * (of no affect) on systems that are actively using CPU hotplug
2093 * but making no active use of cpusets.
2094 *
38837fc7 2095 * This routine ensures that top_cpuset.cpus_allowed tracks
3a101d05 2096 * cpu_active_mask on each CPU hotplug (cpuhp) event.
cf417141
MK
2097 *
2098 * Called within get_online_cpus(). Needs to call cgroup_lock()
2099 * before calling generate_sched_domains().
4c4d50f7 2100 */
0b2e918a 2101void cpuset_update_active_cpus(void)
4c4d50f7 2102{
cf417141 2103 struct sched_domain_attr *attr;
acc3f5d7 2104 cpumask_var_t *doms;
cf417141
MK
2105 int ndoms;
2106
cf417141 2107 cgroup_lock();
0b4217b3 2108 mutex_lock(&callback_mutex);
6ad4c188 2109 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
0b4217b3 2110 mutex_unlock(&callback_mutex);
cf417141
MK
2111 scan_for_empty_cpusets(&top_cpuset);
2112 ndoms = generate_sched_domains(&doms, &attr);
2113 cgroup_unlock();
2114
2115 /* Have scheduler rebuild the domains */
2116 partition_sched_domains(ndoms, doms, attr);
4c4d50f7 2117}
4c4d50f7 2118
b1aac8bb 2119#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2120/*
0e1e7c7a 2121 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
cf417141
MK
2122 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2123 * See also the previous routine cpuset_track_online_cpus().
38837fc7 2124 */
f481891f
MX
2125static int cpuset_track_online_nodes(struct notifier_block *self,
2126 unsigned long action, void *arg)
38837fc7 2127{
ee24d379 2128 static nodemask_t oldmems; /* protected by cgroup_mutex */
5ab116c9 2129
cf417141 2130 cgroup_lock();
f481891f
MX
2131 switch (action) {
2132 case MEM_ONLINE:
ee24d379 2133 oldmems = top_cpuset.mems_allowed;
0b4217b3 2134 mutex_lock(&callback_mutex);
f481891f 2135 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
0b4217b3 2136 mutex_unlock(&callback_mutex);
ee24d379 2137 update_tasks_nodemask(&top_cpuset, &oldmems, NULL);
5ab116c9
MX
2138 break;
2139 case MEM_OFFLINE:
2140 /*
2141 * needn't update top_cpuset.mems_allowed explicitly because
2142 * scan_for_empty_cpusets() will update it.
2143 */
2144 scan_for_empty_cpusets(&top_cpuset);
f481891f
MX
2145 break;
2146 default:
2147 break;
2148 }
cf417141 2149 cgroup_unlock();
53feb297 2150
f481891f 2151 return NOTIFY_OK;
38837fc7
PJ
2152}
2153#endif
2154
1da177e4
LT
2155/**
2156 * cpuset_init_smp - initialize cpus_allowed
2157 *
2158 * Description: Finish top cpuset after cpu, node maps are initialized
2159 **/
2160
2161void __init cpuset_init_smp(void)
2162{
6ad4c188 2163 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
0e1e7c7a 2164 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7 2165
f481891f 2166 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
f90d4118
MX
2167
2168 cpuset_wq = create_singlethread_workqueue("cpuset");
2169 BUG_ON(!cpuset_wq);
1da177e4
LT
2170}
2171
2172/**
1da177e4
LT
2173 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2174 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2175 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2176 *
300ed6cb 2177 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4
LT
2178 * attached to the specified @tsk. Guaranteed to return some non-empty
2179 * subset of cpu_online_map, even if this means going outside the
2180 * tasks cpuset.
2181 **/
2182
6af866af 2183void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2184{
3d3f26a7 2185 mutex_lock(&callback_mutex);
909d75a3 2186 task_lock(tsk);
f9a86fcb 2187 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2188 task_unlock(tsk);
897f0b3c 2189 mutex_unlock(&callback_mutex);
1da177e4
LT
2190}
2191
9084bb82
ON
2192int cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2193{
2194 const struct cpuset *cs;
2195 int cpu;
2196
2197 rcu_read_lock();
2198 cs = task_cs(tsk);
2199 if (cs)
1e1b6c51 2200 do_set_cpus_allowed(tsk, cs->cpus_allowed);
9084bb82
ON
2201 rcu_read_unlock();
2202
2203 /*
2204 * We own tsk->cpus_allowed, nobody can change it under us.
2205 *
2206 * But we used cs && cs->cpus_allowed lockless and thus can
2207 * race with cgroup_attach_task() or update_cpumask() and get
2208 * the wrong tsk->cpus_allowed. However, both cases imply the
2209 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2210 * which takes task_rq_lock().
2211 *
2212 * If we are called after it dropped the lock we must see all
2213 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2214 * set any mask even if it is not right from task_cs() pov,
2215 * the pending set_cpus_allowed_ptr() will fix things.
2216 */
2217
2218 cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask);
2219 if (cpu >= nr_cpu_ids) {
2220 /*
2221 * Either tsk->cpus_allowed is wrong (see above) or it
2222 * is actually empty. The latter case is only possible
2223 * if we are racing with remove_tasks_in_empty_cpuset().
2224 * Like above we can temporary set any mask and rely on
2225 * set_cpus_allowed_ptr() as synchronization point.
2226 */
1e1b6c51 2227 do_set_cpus_allowed(tsk, cpu_possible_mask);
9084bb82
ON
2228 cpu = cpumask_any(cpu_active_mask);
2229 }
2230
2231 return cpu;
2232}
2233
1da177e4
LT
2234void cpuset_init_current_mems_allowed(void)
2235{
f9a86fcb 2236 nodes_setall(current->mems_allowed);
1da177e4
LT
2237}
2238
909d75a3
PJ
2239/**
2240 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2241 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2242 *
2243 * Description: Returns the nodemask_t mems_allowed of the cpuset
2244 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 2245 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
2246 * tasks cpuset.
2247 **/
2248
2249nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2250{
2251 nodemask_t mask;
2252
3d3f26a7 2253 mutex_lock(&callback_mutex);
909d75a3 2254 task_lock(tsk);
8793d854 2255 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2256 task_unlock(tsk);
3d3f26a7 2257 mutex_unlock(&callback_mutex);
909d75a3
PJ
2258
2259 return mask;
2260}
2261
d9fd8a6d 2262/**
19770b32
MG
2263 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2264 * @nodemask: the nodemask to be checked
d9fd8a6d 2265 *
19770b32 2266 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2267 */
19770b32 2268int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2269{
19770b32 2270 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2271}
2272
9bf2229f 2273/*
78608366
PM
2274 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2275 * mem_hardwall ancestor to the specified cpuset. Call holding
2276 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2277 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2278 */
78608366 2279static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2280{
78608366 2281 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2282 cs = cs->parent;
2283 return cs;
2284}
2285
d9fd8a6d 2286/**
a1bc5a4e
DR
2287 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2288 * @node: is this an allowed node?
02a0e53d 2289 * @gfp_mask: memory allocation flags
d9fd8a6d 2290 *
a1bc5a4e
DR
2291 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2292 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2293 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2294 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2295 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2296 * flag, yes.
9bf2229f
PJ
2297 * Otherwise, no.
2298 *
a1bc5a4e
DR
2299 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2300 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2301 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2302 *
a1bc5a4e
DR
2303 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2304 * cpusets, and never sleeps.
02a0e53d
PJ
2305 *
2306 * The __GFP_THISNODE placement logic is really handled elsewhere,
2307 * by forcibly using a zonelist starting at a specified node, and by
2308 * (in get_page_from_freelist()) refusing to consider the zones for
2309 * any node on the zonelist except the first. By the time any such
2310 * calls get to this routine, we should just shut up and say 'yes'.
2311 *
9bf2229f 2312 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2313 * and do not allow allocations outside the current tasks cpuset
2314 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2315 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2316 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2317 *
02a0e53d
PJ
2318 * Scanning up parent cpusets requires callback_mutex. The
2319 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2320 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2321 * current tasks mems_allowed came up empty on the first pass over
2322 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2323 * cpuset are short of memory, might require taking the callback_mutex
2324 * mutex.
9bf2229f 2325 *
36be57ff 2326 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2327 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2328 * so no allocation on a node outside the cpuset is allowed (unless
2329 * in interrupt, of course).
36be57ff
PJ
2330 *
2331 * The second pass through get_page_from_freelist() doesn't even call
2332 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2333 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2334 * in alloc_flags. That logic and the checks below have the combined
2335 * affect that:
9bf2229f
PJ
2336 * in_interrupt - any node ok (current task context irrelevant)
2337 * GFP_ATOMIC - any node ok
c596d9f3 2338 * TIF_MEMDIE - any node ok
78608366 2339 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2340 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2341 *
2342 * Rule:
a1bc5a4e 2343 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2344 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2345 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2346 */
a1bc5a4e 2347int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2348{
9bf2229f 2349 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2350 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2351
9b819d20 2352 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2353 return 1;
92d1dbd2 2354 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2355 if (node_isset(node, current->mems_allowed))
2356 return 1;
c596d9f3
DR
2357 /*
2358 * Allow tasks that have access to memory reserves because they have
2359 * been OOM killed to get memory anywhere.
2360 */
2361 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2362 return 1;
9bf2229f
PJ
2363 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2364 return 0;
2365
5563e770
BP
2366 if (current->flags & PF_EXITING) /* Let dying task have memory */
2367 return 1;
2368
9bf2229f 2369 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2370 mutex_lock(&callback_mutex);
053199ed 2371
053199ed 2372 task_lock(current);
78608366 2373 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2374 task_unlock(current);
2375
9bf2229f 2376 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2377 mutex_unlock(&callback_mutex);
9bf2229f 2378 return allowed;
1da177e4
LT
2379}
2380
02a0e53d 2381/*
a1bc5a4e
DR
2382 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2383 * @node: is this an allowed node?
02a0e53d
PJ
2384 * @gfp_mask: memory allocation flags
2385 *
a1bc5a4e
DR
2386 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2387 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2388 * yes. If the task has been OOM killed and has access to memory reserves as
2389 * specified by the TIF_MEMDIE flag, yes.
2390 * Otherwise, no.
02a0e53d
PJ
2391 *
2392 * The __GFP_THISNODE placement logic is really handled elsewhere,
2393 * by forcibly using a zonelist starting at a specified node, and by
2394 * (in get_page_from_freelist()) refusing to consider the zones for
2395 * any node on the zonelist except the first. By the time any such
2396 * calls get to this routine, we should just shut up and say 'yes'.
2397 *
a1bc5a4e
DR
2398 * Unlike the cpuset_node_allowed_softwall() variant, above,
2399 * this variant requires that the node be in the current task's
02a0e53d
PJ
2400 * mems_allowed or that we're in interrupt. It does not scan up the
2401 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2402 * It never sleeps.
2403 */
a1bc5a4e 2404int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2405{
02a0e53d
PJ
2406 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2407 return 1;
02a0e53d
PJ
2408 if (node_isset(node, current->mems_allowed))
2409 return 1;
dedf8b79
DW
2410 /*
2411 * Allow tasks that have access to memory reserves because they have
2412 * been OOM killed to get memory anywhere.
2413 */
2414 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2415 return 1;
02a0e53d
PJ
2416 return 0;
2417}
2418
505970b9
PJ
2419/**
2420 * cpuset_unlock - release lock on cpuset changes
2421 *
2422 * Undo the lock taken in a previous cpuset_lock() call.
2423 */
2424
2425void cpuset_unlock(void)
2426{
3d3f26a7 2427 mutex_unlock(&callback_mutex);
505970b9
PJ
2428}
2429
825a46af 2430/**
6adef3eb
JS
2431 * cpuset_mem_spread_node() - On which node to begin search for a file page
2432 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2433 *
2434 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2435 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2436 * and if the memory allocation used cpuset_mem_spread_node()
2437 * to determine on which node to start looking, as it will for
2438 * certain page cache or slab cache pages such as used for file
2439 * system buffers and inode caches, then instead of starting on the
2440 * local node to look for a free page, rather spread the starting
2441 * node around the tasks mems_allowed nodes.
2442 *
2443 * We don't have to worry about the returned node being offline
2444 * because "it can't happen", and even if it did, it would be ok.
2445 *
2446 * The routines calling guarantee_online_mems() are careful to
2447 * only set nodes in task->mems_allowed that are online. So it
2448 * should not be possible for the following code to return an
2449 * offline node. But if it did, that would be ok, as this routine
2450 * is not returning the node where the allocation must be, only
2451 * the node where the search should start. The zonelist passed to
2452 * __alloc_pages() will include all nodes. If the slab allocator
2453 * is passed an offline node, it will fall back to the local node.
2454 * See kmem_cache_alloc_node().
2455 */
2456
6adef3eb 2457static int cpuset_spread_node(int *rotor)
825a46af
PJ
2458{
2459 int node;
2460
6adef3eb 2461 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2462 if (node == MAX_NUMNODES)
2463 node = first_node(current->mems_allowed);
6adef3eb 2464 *rotor = node;
825a46af
PJ
2465 return node;
2466}
6adef3eb
JS
2467
2468int cpuset_mem_spread_node(void)
2469{
778d3b0f
MH
2470 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2471 current->cpuset_mem_spread_rotor =
2472 node_random(&current->mems_allowed);
2473
6adef3eb
JS
2474 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2475}
2476
2477int cpuset_slab_spread_node(void)
2478{
778d3b0f
MH
2479 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2480 current->cpuset_slab_spread_rotor =
2481 node_random(&current->mems_allowed);
2482
6adef3eb
JS
2483 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2484}
2485
825a46af
PJ
2486EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2487
ef08e3b4 2488/**
bbe373f2
DR
2489 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2490 * @tsk1: pointer to task_struct of some task.
2491 * @tsk2: pointer to task_struct of some other task.
2492 *
2493 * Description: Return true if @tsk1's mems_allowed intersects the
2494 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2495 * one of the task's memory usage might impact the memory available
2496 * to the other.
ef08e3b4
PJ
2497 **/
2498
bbe373f2
DR
2499int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2500 const struct task_struct *tsk2)
ef08e3b4 2501{
bbe373f2 2502 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2503}
2504
75aa1994
DR
2505/**
2506 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2507 * @task: pointer to task_struct of some task.
2508 *
2509 * Description: Prints @task's name, cpuset name, and cached copy of its
2510 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2511 * dereferencing task_cs(task).
2512 */
2513void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2514{
2515 struct dentry *dentry;
2516
2517 dentry = task_cs(tsk)->css.cgroup->dentry;
2518 spin_lock(&cpuset_buffer_lock);
2519 snprintf(cpuset_name, CPUSET_NAME_LEN,
2520 dentry ? (const char *)dentry->d_name.name : "/");
2521 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2522 tsk->mems_allowed);
2523 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2524 tsk->comm, cpuset_name, cpuset_nodelist);
2525 spin_unlock(&cpuset_buffer_lock);
2526}
2527
3e0d98b9
PJ
2528/*
2529 * Collection of memory_pressure is suppressed unless
2530 * this flag is enabled by writing "1" to the special
2531 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2532 */
2533
c5b2aff8 2534int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2535
2536/**
2537 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2538 *
2539 * Keep a running average of the rate of synchronous (direct)
2540 * page reclaim efforts initiated by tasks in each cpuset.
2541 *
2542 * This represents the rate at which some task in the cpuset
2543 * ran low on memory on all nodes it was allowed to use, and
2544 * had to enter the kernels page reclaim code in an effort to
2545 * create more free memory by tossing clean pages or swapping
2546 * or writing dirty pages.
2547 *
2548 * Display to user space in the per-cpuset read-only file
2549 * "memory_pressure". Value displayed is an integer
2550 * representing the recent rate of entry into the synchronous
2551 * (direct) page reclaim by any task attached to the cpuset.
2552 **/
2553
2554void __cpuset_memory_pressure_bump(void)
2555{
3e0d98b9 2556 task_lock(current);
8793d854 2557 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2558 task_unlock(current);
2559}
2560
8793d854 2561#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2562/*
2563 * proc_cpuset_show()
2564 * - Print tasks cpuset path into seq_file.
2565 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2566 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2567 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2568 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2569 * anyway.
1da177e4 2570 */
029190c5 2571static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2572{
13b41b09 2573 struct pid *pid;
1da177e4
LT
2574 struct task_struct *tsk;
2575 char *buf;
8793d854 2576 struct cgroup_subsys_state *css;
99f89551 2577 int retval;
1da177e4 2578
99f89551 2579 retval = -ENOMEM;
1da177e4
LT
2580 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2581 if (!buf)
99f89551
EB
2582 goto out;
2583
2584 retval = -ESRCH;
13b41b09
EB
2585 pid = m->private;
2586 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2587 if (!tsk)
2588 goto out_free;
1da177e4 2589
99f89551 2590 retval = -EINVAL;
8793d854
PM
2591 cgroup_lock();
2592 css = task_subsys_state(tsk, cpuset_subsys_id);
2593 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2594 if (retval < 0)
99f89551 2595 goto out_unlock;
1da177e4
LT
2596 seq_puts(m, buf);
2597 seq_putc(m, '\n');
99f89551 2598out_unlock:
8793d854 2599 cgroup_unlock();
99f89551
EB
2600 put_task_struct(tsk);
2601out_free:
1da177e4 2602 kfree(buf);
99f89551 2603out:
1da177e4
LT
2604 return retval;
2605}
2606
2607static int cpuset_open(struct inode *inode, struct file *file)
2608{
13b41b09
EB
2609 struct pid *pid = PROC_I(inode)->pid;
2610 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2611}
2612
9a32144e 2613const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2614 .open = cpuset_open,
2615 .read = seq_read,
2616 .llseek = seq_lseek,
2617 .release = single_release,
2618};
8793d854 2619#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2620
d01d4827 2621/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2622void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2623{
df5f8314 2624 seq_printf(m, "Mems_allowed:\t");
30e8e136 2625 seq_nodemask(m, &task->mems_allowed);
df5f8314 2626 seq_printf(m, "\n");
39106dcf 2627 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2628 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2629 seq_printf(m, "\n");
1da177e4 2630}