cpuset: add cs->effective_cpus and cs->effective_mems
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
664eedde 64struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
202f72d5 65
3e0d98b9
PJ
66/* See "Frequency meter" comments, below. */
67
68struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73};
74
1da177e4 75struct cpuset {
8793d854
PM
76 struct cgroup_subsys_state css;
77
1da177e4 78 unsigned long flags; /* "unsigned long" so bitops work */
e2b9a3d7
LZ
79
80 /* user-configured CPUs and Memory Nodes allow to tasks */
81 cpumask_var_t cpus_allowed;
82 nodemask_t mems_allowed;
83
84 /* effective CPUs and Memory Nodes allow to tasks */
85 cpumask_var_t effective_cpus;
86 nodemask_t effective_mems;
1da177e4 87
33ad801d
LZ
88 /*
89 * This is old Memory Nodes tasks took on.
90 *
91 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
92 * - A new cpuset's old_mems_allowed is initialized when some
93 * task is moved into it.
94 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
95 * cpuset.mems_allowed and have tasks' nodemask updated, and
96 * then old_mems_allowed is updated to mems_allowed.
97 */
98 nodemask_t old_mems_allowed;
99
3e0d98b9 100 struct fmeter fmeter; /* memory_pressure filter */
029190c5 101
452477fa
TH
102 /*
103 * Tasks are being attached to this cpuset. Used to prevent
104 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
105 */
106 int attach_in_progress;
107
029190c5
PJ
108 /* partition number for rebuild_sched_domains() */
109 int pn;
956db3ca 110
1d3504fc
HS
111 /* for custom sched domain */
112 int relax_domain_level;
1da177e4
LT
113};
114
a7c6d554 115static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
8793d854 116{
a7c6d554 117 return css ? container_of(css, struct cpuset, css) : NULL;
8793d854
PM
118}
119
120/* Retrieve the cpuset for a task */
121static inline struct cpuset *task_cs(struct task_struct *task)
122{
073219e9 123 return css_cs(task_css(task, cpuset_cgrp_id));
8793d854 124}
8793d854 125
c9710d80 126static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 127{
5c9d535b 128 return css_cs(cs->css.parent);
c431069f
TH
129}
130
b246272e
DR
131#ifdef CONFIG_NUMA
132static inline bool task_has_mempolicy(struct task_struct *task)
133{
134 return task->mempolicy;
135}
136#else
137static inline bool task_has_mempolicy(struct task_struct *task)
138{
139 return false;
140}
141#endif
142
143
1da177e4
LT
144/* bits in struct cpuset flags field */
145typedef enum {
efeb77b2 146 CS_ONLINE,
1da177e4
LT
147 CS_CPU_EXCLUSIVE,
148 CS_MEM_EXCLUSIVE,
78608366 149 CS_MEM_HARDWALL,
45b07ef3 150 CS_MEMORY_MIGRATE,
029190c5 151 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
152 CS_SPREAD_PAGE,
153 CS_SPREAD_SLAB,
1da177e4
LT
154} cpuset_flagbits_t;
155
156/* convenient tests for these bits */
efeb77b2
TH
157static inline bool is_cpuset_online(const struct cpuset *cs)
158{
159 return test_bit(CS_ONLINE, &cs->flags);
160}
161
1da177e4
LT
162static inline int is_cpu_exclusive(const struct cpuset *cs)
163{
7b5b9ef0 164 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
165}
166
167static inline int is_mem_exclusive(const struct cpuset *cs)
168{
7b5b9ef0 169 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
170}
171
78608366
PM
172static inline int is_mem_hardwall(const struct cpuset *cs)
173{
174 return test_bit(CS_MEM_HARDWALL, &cs->flags);
175}
176
029190c5
PJ
177static inline int is_sched_load_balance(const struct cpuset *cs)
178{
179 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
180}
181
45b07ef3
PJ
182static inline int is_memory_migrate(const struct cpuset *cs)
183{
7b5b9ef0 184 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
185}
186
825a46af
PJ
187static inline int is_spread_page(const struct cpuset *cs)
188{
189 return test_bit(CS_SPREAD_PAGE, &cs->flags);
190}
191
192static inline int is_spread_slab(const struct cpuset *cs)
193{
194 return test_bit(CS_SPREAD_SLAB, &cs->flags);
195}
196
1da177e4 197static struct cpuset top_cpuset = {
efeb77b2
TH
198 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
199 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
200};
201
ae8086ce
TH
202/**
203 * cpuset_for_each_child - traverse online children of a cpuset
204 * @child_cs: loop cursor pointing to the current child
492eb21b 205 * @pos_css: used for iteration
ae8086ce
TH
206 * @parent_cs: target cpuset to walk children of
207 *
208 * Walk @child_cs through the online children of @parent_cs. Must be used
209 * with RCU read locked.
210 */
492eb21b
TH
211#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
212 css_for_each_child((pos_css), &(parent_cs)->css) \
213 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 214
fc560a26
TH
215/**
216 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
217 * @des_cs: loop cursor pointing to the current descendant
492eb21b 218 * @pos_css: used for iteration
fc560a26
TH
219 * @root_cs: target cpuset to walk ancestor of
220 *
221 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b 222 * with RCU read locked. The caller may modify @pos_css by calling
bd8815a6
TH
223 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
224 * iteration and the first node to be visited.
fc560a26 225 */
492eb21b
TH
226#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
227 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
228 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 229
1da177e4 230/*
5d21cc2d
TH
231 * There are two global mutexes guarding cpuset structures - cpuset_mutex
232 * and callback_mutex. The latter may nest inside the former. We also
233 * require taking task_lock() when dereferencing a task's cpuset pointer.
234 * See "The task_lock() exception", at the end of this comment.
235 *
236 * A task must hold both mutexes to modify cpusets. If a task holds
237 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
238 * is the only task able to also acquire callback_mutex and be able to
239 * modify cpusets. It can perform various checks on the cpuset structure
240 * first, knowing nothing will change. It can also allocate memory while
241 * just holding cpuset_mutex. While it is performing these checks, various
242 * callback routines can briefly acquire callback_mutex to query cpusets.
243 * Once it is ready to make the changes, it takes callback_mutex, blocking
244 * everyone else.
053199ed
PJ
245 *
246 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 247 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
248 * from one of the callbacks into the cpuset code from within
249 * __alloc_pages().
250 *
3d3f26a7 251 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
252 * access to cpusets.
253 *
58568d2a
MX
254 * Now, the task_struct fields mems_allowed and mempolicy may be changed
255 * by other task, we use alloc_lock in the task_struct fields to protect
256 * them.
053199ed 257 *
3d3f26a7 258 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
259 * small pieces of code, such as when reading out possibly multi-word
260 * cpumasks and nodemasks.
261 *
2df167a3
PM
262 * Accessing a task's cpuset should be done in accordance with the
263 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
264 */
265
5d21cc2d 266static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 267static DEFINE_MUTEX(callback_mutex);
4247bdc6 268
3a5a6d0c
TH
269/*
270 * CPU / memory hotplug is handled asynchronously.
271 */
272static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
273static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
274
e44193d3
LZ
275static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
276
cf417141
MK
277/*
278 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 279 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
280 * silently switch it to mount "cgroup" instead
281 */
f7e83571
AV
282static struct dentry *cpuset_mount(struct file_system_type *fs_type,
283 int flags, const char *unused_dev_name, void *data)
1da177e4 284{
8793d854 285 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 286 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
287 if (cgroup_fs) {
288 char mountopts[] =
289 "cpuset,noprefix,"
290 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
291 ret = cgroup_fs->mount(cgroup_fs, flags,
292 unused_dev_name, mountopts);
8793d854
PM
293 put_filesystem(cgroup_fs);
294 }
295 return ret;
1da177e4
LT
296}
297
298static struct file_system_type cpuset_fs_type = {
299 .name = "cpuset",
f7e83571 300 .mount = cpuset_mount,
1da177e4
LT
301};
302
1da177e4 303/*
300ed6cb 304 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 305 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
306 * until we find one that does have some online cpus. The top
307 * cpuset always has some cpus online.
1da177e4
LT
308 *
309 * One way or another, we guarantee to return some non-empty subset
5f054e31 310 * of cpu_online_mask.
1da177e4 311 *
3d3f26a7 312 * Call with callback_mutex held.
1da177e4 313 */
c9710d80 314static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 315{
40df2deb 316 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 317 cs = parent_cs(cs);
40df2deb 318 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4
LT
319}
320
321/*
322 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
323 * are online, with memory. If none are online with memory, walk
324 * up the cpuset hierarchy until we find one that does have some
40df2deb 325 * online mems. The top cpuset always has some mems online.
1da177e4
LT
326 *
327 * One way or another, we guarantee to return some non-empty subset
38d7bee9 328 * of node_states[N_MEMORY].
1da177e4 329 *
3d3f26a7 330 * Call with callback_mutex held.
1da177e4 331 */
c9710d80 332static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 333{
40df2deb 334 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
c431069f 335 cs = parent_cs(cs);
40df2deb 336 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
1da177e4
LT
337}
338
f3b39d47
MX
339/*
340 * update task's spread flag if cpuset's page/slab spread flag is set
341 *
5d21cc2d 342 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
343 */
344static void cpuset_update_task_spread_flag(struct cpuset *cs,
345 struct task_struct *tsk)
346{
347 if (is_spread_page(cs))
348 tsk->flags |= PF_SPREAD_PAGE;
349 else
350 tsk->flags &= ~PF_SPREAD_PAGE;
351 if (is_spread_slab(cs))
352 tsk->flags |= PF_SPREAD_SLAB;
353 else
354 tsk->flags &= ~PF_SPREAD_SLAB;
355}
356
1da177e4
LT
357/*
358 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
359 *
360 * One cpuset is a subset of another if all its allowed CPUs and
361 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 362 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
363 */
364
365static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
366{
300ed6cb 367 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
368 nodes_subset(p->mems_allowed, q->mems_allowed) &&
369 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
370 is_mem_exclusive(p) <= is_mem_exclusive(q);
371}
372
645fcc9d
LZ
373/**
374 * alloc_trial_cpuset - allocate a trial cpuset
375 * @cs: the cpuset that the trial cpuset duplicates
376 */
c9710d80 377static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 378{
300ed6cb
LZ
379 struct cpuset *trial;
380
381 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
382 if (!trial)
383 return NULL;
384
e2b9a3d7
LZ
385 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
386 goto free_cs;
387 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
388 goto free_cpus;
300ed6cb 389
e2b9a3d7
LZ
390 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
391 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
300ed6cb 392 return trial;
e2b9a3d7
LZ
393
394free_cpus:
395 free_cpumask_var(trial->cpus_allowed);
396free_cs:
397 kfree(trial);
398 return NULL;
645fcc9d
LZ
399}
400
401/**
402 * free_trial_cpuset - free the trial cpuset
403 * @trial: the trial cpuset to be freed
404 */
405static void free_trial_cpuset(struct cpuset *trial)
406{
e2b9a3d7 407 free_cpumask_var(trial->effective_cpus);
300ed6cb 408 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
409 kfree(trial);
410}
411
1da177e4
LT
412/*
413 * validate_change() - Used to validate that any proposed cpuset change
414 * follows the structural rules for cpusets.
415 *
416 * If we replaced the flag and mask values of the current cpuset
417 * (cur) with those values in the trial cpuset (trial), would
418 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 419 * cpuset_mutex held.
1da177e4
LT
420 *
421 * 'cur' is the address of an actual, in-use cpuset. Operations
422 * such as list traversal that depend on the actual address of the
423 * cpuset in the list must use cur below, not trial.
424 *
425 * 'trial' is the address of bulk structure copy of cur, with
426 * perhaps one or more of the fields cpus_allowed, mems_allowed,
427 * or flags changed to new, trial values.
428 *
429 * Return 0 if valid, -errno if not.
430 */
431
c9710d80 432static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 433{
492eb21b 434 struct cgroup_subsys_state *css;
1da177e4 435 struct cpuset *c, *par;
ae8086ce
TH
436 int ret;
437
438 rcu_read_lock();
1da177e4
LT
439
440 /* Each of our child cpusets must be a subset of us */
ae8086ce 441 ret = -EBUSY;
492eb21b 442 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
443 if (!is_cpuset_subset(c, trial))
444 goto out;
1da177e4
LT
445
446 /* Remaining checks don't apply to root cpuset */
ae8086ce 447 ret = 0;
69604067 448 if (cur == &top_cpuset)
ae8086ce 449 goto out;
1da177e4 450
c431069f 451 par = parent_cs(cur);
69604067 452
1da177e4 453 /* We must be a subset of our parent cpuset */
ae8086ce 454 ret = -EACCES;
1da177e4 455 if (!is_cpuset_subset(trial, par))
ae8086ce 456 goto out;
1da177e4 457
2df167a3
PM
458 /*
459 * If either I or some sibling (!= me) is exclusive, we can't
460 * overlap
461 */
ae8086ce 462 ret = -EINVAL;
492eb21b 463 cpuset_for_each_child(c, css, par) {
1da177e4
LT
464 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
465 c != cur &&
300ed6cb 466 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 467 goto out;
1da177e4
LT
468 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
469 c != cur &&
470 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 471 goto out;
1da177e4
LT
472 }
473
452477fa
TH
474 /*
475 * Cpusets with tasks - existing or newly being attached - can't
1c09b195 476 * be changed to have empty cpus_allowed or mems_allowed.
452477fa 477 */
ae8086ce 478 ret = -ENOSPC;
07bc356e 479 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
1c09b195
LZ
480 if (!cpumask_empty(cur->cpus_allowed) &&
481 cpumask_empty(trial->cpus_allowed))
482 goto out;
483 if (!nodes_empty(cur->mems_allowed) &&
484 nodes_empty(trial->mems_allowed))
485 goto out;
486 }
020958b6 487
ae8086ce
TH
488 ret = 0;
489out:
490 rcu_read_unlock();
491 return ret;
1da177e4
LT
492}
493
db7f47cf 494#ifdef CONFIG_SMP
029190c5 495/*
cf417141 496 * Helper routine for generate_sched_domains().
029190c5
PJ
497 * Do cpusets a, b have overlapping cpus_allowed masks?
498 */
029190c5
PJ
499static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
500{
300ed6cb 501 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
502}
503
1d3504fc
HS
504static void
505update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
506{
1d3504fc
HS
507 if (dattr->relax_domain_level < c->relax_domain_level)
508 dattr->relax_domain_level = c->relax_domain_level;
509 return;
510}
511
fc560a26
TH
512static void update_domain_attr_tree(struct sched_domain_attr *dattr,
513 struct cpuset *root_cs)
f5393693 514{
fc560a26 515 struct cpuset *cp;
492eb21b 516 struct cgroup_subsys_state *pos_css;
f5393693 517
fc560a26 518 rcu_read_lock();
492eb21b 519 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
bd8815a6
TH
520 if (cp == root_cs)
521 continue;
522
fc560a26
TH
523 /* skip the whole subtree if @cp doesn't have any CPU */
524 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 525 pos_css = css_rightmost_descendant(pos_css);
f5393693 526 continue;
fc560a26 527 }
f5393693
LJ
528
529 if (is_sched_load_balance(cp))
530 update_domain_attr(dattr, cp);
f5393693 531 }
fc560a26 532 rcu_read_unlock();
f5393693
LJ
533}
534
029190c5 535/*
cf417141
MK
536 * generate_sched_domains()
537 *
538 * This function builds a partial partition of the systems CPUs
539 * A 'partial partition' is a set of non-overlapping subsets whose
540 * union is a subset of that set.
0a0fca9d 541 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
542 * partition_sched_domains() routine, which will rebuild the scheduler's
543 * load balancing domains (sched domains) as specified by that partial
544 * partition.
029190c5 545 *
45ce80fb 546 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
547 * for a background explanation of this.
548 *
549 * Does not return errors, on the theory that the callers of this
550 * routine would rather not worry about failures to rebuild sched
551 * domains when operating in the severe memory shortage situations
552 * that could cause allocation failures below.
553 *
5d21cc2d 554 * Must be called with cpuset_mutex held.
029190c5
PJ
555 *
556 * The three key local variables below are:
aeed6824 557 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
558 * top-down scan of all cpusets. This scan loads a pointer
559 * to each cpuset marked is_sched_load_balance into the
560 * array 'csa'. For our purposes, rebuilding the schedulers
561 * sched domains, we can ignore !is_sched_load_balance cpusets.
562 * csa - (for CpuSet Array) Array of pointers to all the cpusets
563 * that need to be load balanced, for convenient iterative
564 * access by the subsequent code that finds the best partition,
565 * i.e the set of domains (subsets) of CPUs such that the
566 * cpus_allowed of every cpuset marked is_sched_load_balance
567 * is a subset of one of these domains, while there are as
568 * many such domains as possible, each as small as possible.
569 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 570 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
571 * convenient format, that can be easily compared to the prior
572 * value to determine what partition elements (sched domains)
573 * were changed (added or removed.)
574 *
575 * Finding the best partition (set of domains):
576 * The triple nested loops below over i, j, k scan over the
577 * load balanced cpusets (using the array of cpuset pointers in
578 * csa[]) looking for pairs of cpusets that have overlapping
579 * cpus_allowed, but which don't have the same 'pn' partition
580 * number and gives them in the same partition number. It keeps
581 * looping on the 'restart' label until it can no longer find
582 * any such pairs.
583 *
584 * The union of the cpus_allowed masks from the set of
585 * all cpusets having the same 'pn' value then form the one
586 * element of the partition (one sched domain) to be passed to
587 * partition_sched_domains().
588 */
acc3f5d7 589static int generate_sched_domains(cpumask_var_t **domains,
cf417141 590 struct sched_domain_attr **attributes)
029190c5 591{
029190c5
PJ
592 struct cpuset *cp; /* scans q */
593 struct cpuset **csa; /* array of all cpuset ptrs */
594 int csn; /* how many cpuset ptrs in csa so far */
595 int i, j, k; /* indices for partition finding loops */
acc3f5d7 596 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 597 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 598 int ndoms = 0; /* number of sched domains in result */
6af866af 599 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 600 struct cgroup_subsys_state *pos_css;
029190c5 601
029190c5 602 doms = NULL;
1d3504fc 603 dattr = NULL;
cf417141 604 csa = NULL;
029190c5
PJ
605
606 /* Special case for the 99% of systems with one, full, sched domain */
607 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
608 ndoms = 1;
609 doms = alloc_sched_domains(ndoms);
029190c5 610 if (!doms)
cf417141
MK
611 goto done;
612
1d3504fc
HS
613 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
614 if (dattr) {
615 *dattr = SD_ATTR_INIT;
93a65575 616 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 617 }
acc3f5d7 618 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 619
cf417141 620 goto done;
029190c5
PJ
621 }
622
664eedde 623 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
029190c5
PJ
624 if (!csa)
625 goto done;
626 csn = 0;
627
fc560a26 628 rcu_read_lock();
492eb21b 629 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
bd8815a6
TH
630 if (cp == &top_cpuset)
631 continue;
f5393693 632 /*
fc560a26
TH
633 * Continue traversing beyond @cp iff @cp has some CPUs and
634 * isn't load balancing. The former is obvious. The
635 * latter: All child cpusets contain a subset of the
636 * parent's cpus, so just skip them, and then we call
637 * update_domain_attr_tree() to calc relax_domain_level of
638 * the corresponding sched domain.
f5393693 639 */
fc560a26
TH
640 if (!cpumask_empty(cp->cpus_allowed) &&
641 !is_sched_load_balance(cp))
f5393693 642 continue;
489a5393 643
fc560a26
TH
644 if (is_sched_load_balance(cp))
645 csa[csn++] = cp;
646
647 /* skip @cp's subtree */
492eb21b 648 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
649 }
650 rcu_read_unlock();
029190c5
PJ
651
652 for (i = 0; i < csn; i++)
653 csa[i]->pn = i;
654 ndoms = csn;
655
656restart:
657 /* Find the best partition (set of sched domains) */
658 for (i = 0; i < csn; i++) {
659 struct cpuset *a = csa[i];
660 int apn = a->pn;
661
662 for (j = 0; j < csn; j++) {
663 struct cpuset *b = csa[j];
664 int bpn = b->pn;
665
666 if (apn != bpn && cpusets_overlap(a, b)) {
667 for (k = 0; k < csn; k++) {
668 struct cpuset *c = csa[k];
669
670 if (c->pn == bpn)
671 c->pn = apn;
672 }
673 ndoms--; /* one less element */
674 goto restart;
675 }
676 }
677 }
678
cf417141
MK
679 /*
680 * Now we know how many domains to create.
681 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
682 */
acc3f5d7 683 doms = alloc_sched_domains(ndoms);
700018e0 684 if (!doms)
cf417141 685 goto done;
cf417141
MK
686
687 /*
688 * The rest of the code, including the scheduler, can deal with
689 * dattr==NULL case. No need to abort if alloc fails.
690 */
1d3504fc 691 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
692
693 for (nslot = 0, i = 0; i < csn; i++) {
694 struct cpuset *a = csa[i];
6af866af 695 struct cpumask *dp;
029190c5
PJ
696 int apn = a->pn;
697
cf417141
MK
698 if (apn < 0) {
699 /* Skip completed partitions */
700 continue;
701 }
702
acc3f5d7 703 dp = doms[nslot];
cf417141
MK
704
705 if (nslot == ndoms) {
706 static int warnings = 10;
707 if (warnings) {
12d3089c
FF
708 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
709 nslot, ndoms, csn, i, apn);
cf417141 710 warnings--;
029190c5 711 }
cf417141
MK
712 continue;
713 }
029190c5 714
6af866af 715 cpumask_clear(dp);
cf417141
MK
716 if (dattr)
717 *(dattr + nslot) = SD_ATTR_INIT;
718 for (j = i; j < csn; j++) {
719 struct cpuset *b = csa[j];
720
721 if (apn == b->pn) {
300ed6cb 722 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
723 if (dattr)
724 update_domain_attr_tree(dattr + nslot, b);
725
726 /* Done with this partition */
727 b->pn = -1;
029190c5 728 }
029190c5 729 }
cf417141 730 nslot++;
029190c5
PJ
731 }
732 BUG_ON(nslot != ndoms);
733
cf417141
MK
734done:
735 kfree(csa);
736
700018e0
LZ
737 /*
738 * Fallback to the default domain if kmalloc() failed.
739 * See comments in partition_sched_domains().
740 */
741 if (doms == NULL)
742 ndoms = 1;
743
cf417141
MK
744 *domains = doms;
745 *attributes = dattr;
746 return ndoms;
747}
748
749/*
750 * Rebuild scheduler domains.
751 *
699140ba
TH
752 * If the flag 'sched_load_balance' of any cpuset with non-empty
753 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
754 * which has that flag enabled, or if any cpuset with a non-empty
755 * 'cpus' is removed, then call this routine to rebuild the
756 * scheduler's dynamic sched domains.
cf417141 757 *
5d21cc2d 758 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 759 */
699140ba 760static void rebuild_sched_domains_locked(void)
cf417141
MK
761{
762 struct sched_domain_attr *attr;
acc3f5d7 763 cpumask_var_t *doms;
cf417141
MK
764 int ndoms;
765
5d21cc2d 766 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 767 get_online_cpus();
cf417141 768
5b16c2a4
LZ
769 /*
770 * We have raced with CPU hotplug. Don't do anything to avoid
771 * passing doms with offlined cpu to partition_sched_domains().
772 * Anyways, hotplug work item will rebuild sched domains.
773 */
774 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
775 goto out;
776
cf417141 777 /* Generate domain masks and attrs */
cf417141 778 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
779
780 /* Have scheduler rebuild the domains */
781 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 782out:
86ef5c9a 783 put_online_cpus();
cf417141 784}
db7f47cf 785#else /* !CONFIG_SMP */
699140ba 786static void rebuild_sched_domains_locked(void)
db7f47cf
PM
787{
788}
db7f47cf 789#endif /* CONFIG_SMP */
029190c5 790
cf417141
MK
791void rebuild_sched_domains(void)
792{
5d21cc2d 793 mutex_lock(&cpuset_mutex);
699140ba 794 rebuild_sched_domains_locked();
5d21cc2d 795 mutex_unlock(&cpuset_mutex);
029190c5
PJ
796}
797
070b57fc
LZ
798/*
799 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
800 * @cs: the cpuset in interest
58f4790b 801 *
070b57fc
LZ
802 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
803 * with non-empty cpus. We use effective cpumask whenever:
804 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
805 * if the cpuset they reside in has no cpus)
806 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
807 *
808 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
809 * exception. See comments there.
810 */
811static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
812{
813 while (cpumask_empty(cs->cpus_allowed))
814 cs = parent_cs(cs);
815 return cs;
816}
817
818/*
819 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
820 * @cs: the cpuset in interest
821 *
822 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
823 * with non-empty memss. We use effective nodemask whenever:
824 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
825 * if the cpuset they reside in has no mems)
826 * - we want to retrieve task_cs(tsk)'s mems_allowed.
827 *
828 * Called with cpuset_mutex held.
053199ed 829 */
070b57fc 830static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
58f4790b 831{
070b57fc
LZ
832 while (nodes_empty(cs->mems_allowed))
833 cs = parent_cs(cs);
834 return cs;
58f4790b 835}
053199ed 836
0b2f630a
MX
837/**
838 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
839 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
0b2f630a 840 *
d66393e5
TH
841 * Iterate through each task of @cs updating its cpus_allowed to the
842 * effective cpuset's. As this function is called with cpuset_mutex held,
843 * cpuset membership stays stable.
0b2f630a 844 */
d66393e5 845static void update_tasks_cpumask(struct cpuset *cs)
0b2f630a 846{
d66393e5
TH
847 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
848 struct css_task_iter it;
849 struct task_struct *task;
850
851 css_task_iter_start(&cs->css, &it);
852 while ((task = css_task_iter_next(&it)))
853 set_cpus_allowed_ptr(task, cpus_cs->cpus_allowed);
854 css_task_iter_end(&it);
0b2f630a
MX
855}
856
5c5cc623
LZ
857/*
858 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
859 * @root_cs: the root cpuset of the hierarchy
860 * @update_root: update root cpuset or not?
5c5cc623
LZ
861 *
862 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
863 * which take on cpumask of @root_cs.
864 *
865 * Called with cpuset_mutex held
866 */
d66393e5 867static void update_tasks_cpumask_hier(struct cpuset *root_cs, bool update_root)
5c5cc623
LZ
868{
869 struct cpuset *cp;
492eb21b 870 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
871
872 rcu_read_lock();
492eb21b 873 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
bd8815a6
TH
874 if (cp == root_cs) {
875 if (!update_root)
876 continue;
877 } else {
878 /* skip the whole subtree if @cp have some CPU */
879 if (!cpumask_empty(cp->cpus_allowed)) {
880 pos_css = css_rightmost_descendant(pos_css);
881 continue;
882 }
5c5cc623 883 }
ec903c0c 884 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
885 continue;
886 rcu_read_unlock();
887
d66393e5 888 update_tasks_cpumask(cp);
5c5cc623
LZ
889
890 rcu_read_lock();
891 css_put(&cp->css);
892 }
893 rcu_read_unlock();
894}
895
58f4790b
CW
896/**
897 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
898 * @cs: the cpuset to consider
fc34ac1d 899 * @trialcs: trial cpuset
58f4790b
CW
900 * @buf: buffer of cpu numbers written to this cpuset
901 */
645fcc9d
LZ
902static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
903 const char *buf)
1da177e4 904{
58f4790b
CW
905 int retval;
906 int is_load_balanced;
1da177e4 907
5f054e31 908 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
909 if (cs == &top_cpuset)
910 return -EACCES;
911
6f7f02e7 912 /*
c8d9c90c 913 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
914 * Since cpulist_parse() fails on an empty mask, we special case
915 * that parsing. The validate_change() call ensures that cpusets
916 * with tasks have cpus.
6f7f02e7 917 */
020958b6 918 if (!*buf) {
300ed6cb 919 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 920 } else {
300ed6cb 921 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
922 if (retval < 0)
923 return retval;
37340746 924
6ad4c188 925 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 926 return -EINVAL;
6f7f02e7 927 }
029190c5 928
8707d8b8 929 /* Nothing to do if the cpus didn't change */
300ed6cb 930 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 931 return 0;
58f4790b 932
a73456f3
LZ
933 retval = validate_change(cs, trialcs);
934 if (retval < 0)
935 return retval;
936
645fcc9d 937 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 938
3d3f26a7 939 mutex_lock(&callback_mutex);
300ed6cb 940 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 941 mutex_unlock(&callback_mutex);
029190c5 942
d66393e5 943 update_tasks_cpumask_hier(cs, true);
58f4790b 944
8707d8b8 945 if (is_load_balanced)
699140ba 946 rebuild_sched_domains_locked();
85d7b949 947 return 0;
1da177e4
LT
948}
949
e4e364e8
PJ
950/*
951 * cpuset_migrate_mm
952 *
953 * Migrate memory region from one set of nodes to another.
954 *
955 * Temporarilly set tasks mems_allowed to target nodes of migration,
956 * so that the migration code can allocate pages on these nodes.
957 *
e4e364e8
PJ
958 * While the mm_struct we are migrating is typically from some
959 * other task, the task_struct mems_allowed that we are hacking
960 * is for our current task, which must allocate new pages for that
961 * migrating memory region.
e4e364e8
PJ
962 */
963
964static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
965 const nodemask_t *to)
966{
967 struct task_struct *tsk = current;
070b57fc 968 struct cpuset *mems_cs;
e4e364e8 969
e4e364e8 970 tsk->mems_allowed = *to;
e4e364e8
PJ
971
972 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
973
47295830 974 rcu_read_lock();
070b57fc
LZ
975 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
976 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
47295830 977 rcu_read_unlock();
e4e364e8
PJ
978}
979
3b6766fe 980/*
58568d2a
MX
981 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
982 * @tsk: the task to change
983 * @newmems: new nodes that the task will be set
984 *
985 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
986 * we structure updates as setting all new allowed nodes, then clearing newly
987 * disallowed ones.
58568d2a
MX
988 */
989static void cpuset_change_task_nodemask(struct task_struct *tsk,
990 nodemask_t *newmems)
991{
b246272e 992 bool need_loop;
89e8a244 993
c0ff7453
MX
994 /*
995 * Allow tasks that have access to memory reserves because they have
996 * been OOM killed to get memory anywhere.
997 */
998 if (unlikely(test_thread_flag(TIF_MEMDIE)))
999 return;
1000 if (current->flags & PF_EXITING) /* Let dying task have memory */
1001 return;
1002
1003 task_lock(tsk);
b246272e
DR
1004 /*
1005 * Determine if a loop is necessary if another thread is doing
d26914d1 1006 * read_mems_allowed_begin(). If at least one node remains unchanged and
b246272e
DR
1007 * tsk does not have a mempolicy, then an empty nodemask will not be
1008 * possible when mems_allowed is larger than a word.
1009 */
1010 need_loop = task_has_mempolicy(tsk) ||
1011 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1012
0fc0287c
PZ
1013 if (need_loop) {
1014 local_irq_disable();
cc9a6c87 1015 write_seqcount_begin(&tsk->mems_allowed_seq);
0fc0287c 1016 }
c0ff7453 1017
cc9a6c87
MG
1018 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1019 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1020
1021 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1022 tsk->mems_allowed = *newmems;
cc9a6c87 1023
0fc0287c 1024 if (need_loop) {
cc9a6c87 1025 write_seqcount_end(&tsk->mems_allowed_seq);
0fc0287c
PZ
1026 local_irq_enable();
1027 }
cc9a6c87 1028
c0ff7453 1029 task_unlock(tsk);
58568d2a
MX
1030}
1031
8793d854
PM
1032static void *cpuset_being_rebound;
1033
0b2f630a
MX
1034/**
1035 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1036 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
0b2f630a 1037 *
d66393e5
TH
1038 * Iterate through each task of @cs updating its mems_allowed to the
1039 * effective cpuset's. As this function is called with cpuset_mutex held,
1040 * cpuset membership stays stable.
0b2f630a 1041 */
d66393e5 1042static void update_tasks_nodemask(struct cpuset *cs)
1da177e4 1043{
33ad801d 1044 static nodemask_t newmems; /* protected by cpuset_mutex */
070b57fc 1045 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
d66393e5
TH
1046 struct css_task_iter it;
1047 struct task_struct *task;
59dac16f 1048
846a16bf 1049 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1050
070b57fc 1051 guarantee_online_mems(mems_cs, &newmems);
33ad801d 1052
4225399a 1053 /*
3b6766fe
LZ
1054 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1055 * take while holding tasklist_lock. Forks can happen - the
1056 * mpol_dup() cpuset_being_rebound check will catch such forks,
1057 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1058 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1059 * will be contending for the global variable cpuset_being_rebound.
4225399a 1060 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1061 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1062 */
d66393e5
TH
1063 css_task_iter_start(&cs->css, &it);
1064 while ((task = css_task_iter_next(&it))) {
1065 struct mm_struct *mm;
1066 bool migrate;
1067
1068 cpuset_change_task_nodemask(task, &newmems);
1069
1070 mm = get_task_mm(task);
1071 if (!mm)
1072 continue;
1073
1074 migrate = is_memory_migrate(cs);
1075
1076 mpol_rebind_mm(mm, &cs->mems_allowed);
1077 if (migrate)
1078 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1079 mmput(mm);
1080 }
1081 css_task_iter_end(&it);
4225399a 1082
33ad801d
LZ
1083 /*
1084 * All the tasks' nodemasks have been updated, update
1085 * cs->old_mems_allowed.
1086 */
1087 cs->old_mems_allowed = newmems;
1088
2df167a3 1089 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1090 cpuset_being_rebound = NULL;
1da177e4
LT
1091}
1092
5c5cc623
LZ
1093/*
1094 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1095 * @cs: the root cpuset of the hierarchy
1096 * @update_root: update the root cpuset or not?
5c5cc623
LZ
1097 *
1098 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1099 * which take on nodemask of @root_cs.
1100 *
1101 * Called with cpuset_mutex held
1102 */
d66393e5 1103static void update_tasks_nodemask_hier(struct cpuset *root_cs, bool update_root)
5c5cc623
LZ
1104{
1105 struct cpuset *cp;
492eb21b 1106 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1107
1108 rcu_read_lock();
492eb21b 1109 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
bd8815a6
TH
1110 if (cp == root_cs) {
1111 if (!update_root)
1112 continue;
1113 } else {
1114 /* skip the whole subtree if @cp have some CPU */
1115 if (!nodes_empty(cp->mems_allowed)) {
1116 pos_css = css_rightmost_descendant(pos_css);
1117 continue;
1118 }
5c5cc623 1119 }
ec903c0c 1120 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
1121 continue;
1122 rcu_read_unlock();
1123
d66393e5 1124 update_tasks_nodemask(cp);
5c5cc623
LZ
1125
1126 rcu_read_lock();
1127 css_put(&cp->css);
1128 }
1129 rcu_read_unlock();
1130}
1131
0b2f630a
MX
1132/*
1133 * Handle user request to change the 'mems' memory placement
1134 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1135 * cpusets mems_allowed, and for each task in the cpuset,
1136 * update mems_allowed and rebind task's mempolicy and any vma
1137 * mempolicies and if the cpuset is marked 'memory_migrate',
1138 * migrate the tasks pages to the new memory.
0b2f630a 1139 *
5d21cc2d 1140 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1141 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1142 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1143 * their mempolicies to the cpusets new mems_allowed.
1144 */
645fcc9d
LZ
1145static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1146 const char *buf)
0b2f630a 1147{
0b2f630a
MX
1148 int retval;
1149
1150 /*
38d7bee9 1151 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1152 * it's read-only
1153 */
53feb297
MX
1154 if (cs == &top_cpuset) {
1155 retval = -EACCES;
1156 goto done;
1157 }
0b2f630a 1158
0b2f630a
MX
1159 /*
1160 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1161 * Since nodelist_parse() fails on an empty mask, we special case
1162 * that parsing. The validate_change() call ensures that cpusets
1163 * with tasks have memory.
1164 */
1165 if (!*buf) {
645fcc9d 1166 nodes_clear(trialcs->mems_allowed);
0b2f630a 1167 } else {
645fcc9d 1168 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1169 if (retval < 0)
1170 goto done;
1171
645fcc9d 1172 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1173 node_states[N_MEMORY])) {
53feb297
MX
1174 retval = -EINVAL;
1175 goto done;
1176 }
0b2f630a 1177 }
33ad801d
LZ
1178
1179 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1180 retval = 0; /* Too easy - nothing to do */
1181 goto done;
1182 }
645fcc9d 1183 retval = validate_change(cs, trialcs);
0b2f630a
MX
1184 if (retval < 0)
1185 goto done;
1186
1187 mutex_lock(&callback_mutex);
645fcc9d 1188 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1189 mutex_unlock(&callback_mutex);
1190
d66393e5 1191 update_tasks_nodemask_hier(cs, true);
0b2f630a
MX
1192done:
1193 return retval;
1194}
1195
8793d854
PM
1196int current_cpuset_is_being_rebound(void)
1197{
1198 return task_cs(current) == cpuset_being_rebound;
1199}
1200
5be7a479 1201static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1202{
db7f47cf 1203#ifdef CONFIG_SMP
60495e77 1204 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1205 return -EINVAL;
db7f47cf 1206#endif
1d3504fc
HS
1207
1208 if (val != cs->relax_domain_level) {
1209 cs->relax_domain_level = val;
300ed6cb
LZ
1210 if (!cpumask_empty(cs->cpus_allowed) &&
1211 is_sched_load_balance(cs))
699140ba 1212 rebuild_sched_domains_locked();
1d3504fc
HS
1213 }
1214
1215 return 0;
1216}
1217
72ec7029 1218/**
950592f7
MX
1219 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1220 * @cs: the cpuset in which each task's spread flags needs to be changed
950592f7 1221 *
d66393e5
TH
1222 * Iterate through each task of @cs updating its spread flags. As this
1223 * function is called with cpuset_mutex held, cpuset membership stays
1224 * stable.
950592f7 1225 */
d66393e5 1226static void update_tasks_flags(struct cpuset *cs)
950592f7 1227{
d66393e5
TH
1228 struct css_task_iter it;
1229 struct task_struct *task;
1230
1231 css_task_iter_start(&cs->css, &it);
1232 while ((task = css_task_iter_next(&it)))
1233 cpuset_update_task_spread_flag(cs, task);
1234 css_task_iter_end(&it);
950592f7
MX
1235}
1236
1da177e4
LT
1237/*
1238 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1239 * bit: the bit to update (see cpuset_flagbits_t)
1240 * cs: the cpuset to update
1241 * turning_on: whether the flag is being set or cleared
053199ed 1242 *
5d21cc2d 1243 * Call with cpuset_mutex held.
1da177e4
LT
1244 */
1245
700fe1ab
PM
1246static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1247 int turning_on)
1da177e4 1248{
645fcc9d 1249 struct cpuset *trialcs;
40b6a762 1250 int balance_flag_changed;
950592f7 1251 int spread_flag_changed;
950592f7 1252 int err;
1da177e4 1253
645fcc9d
LZ
1254 trialcs = alloc_trial_cpuset(cs);
1255 if (!trialcs)
1256 return -ENOMEM;
1257
1da177e4 1258 if (turning_on)
645fcc9d 1259 set_bit(bit, &trialcs->flags);
1da177e4 1260 else
645fcc9d 1261 clear_bit(bit, &trialcs->flags);
1da177e4 1262
645fcc9d 1263 err = validate_change(cs, trialcs);
85d7b949 1264 if (err < 0)
645fcc9d 1265 goto out;
029190c5 1266
029190c5 1267 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1268 is_sched_load_balance(trialcs));
029190c5 1269
950592f7
MX
1270 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1271 || (is_spread_page(cs) != is_spread_page(trialcs)));
1272
3d3f26a7 1273 mutex_lock(&callback_mutex);
645fcc9d 1274 cs->flags = trialcs->flags;
3d3f26a7 1275 mutex_unlock(&callback_mutex);
85d7b949 1276
300ed6cb 1277 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1278 rebuild_sched_domains_locked();
029190c5 1279
950592f7 1280 if (spread_flag_changed)
d66393e5 1281 update_tasks_flags(cs);
645fcc9d
LZ
1282out:
1283 free_trial_cpuset(trialcs);
1284 return err;
1da177e4
LT
1285}
1286
3e0d98b9 1287/*
80f7228b 1288 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1289 *
1290 * These routines manage a digitally filtered, constant time based,
1291 * event frequency meter. There are four routines:
1292 * fmeter_init() - initialize a frequency meter.
1293 * fmeter_markevent() - called each time the event happens.
1294 * fmeter_getrate() - returns the recent rate of such events.
1295 * fmeter_update() - internal routine used to update fmeter.
1296 *
1297 * A common data structure is passed to each of these routines,
1298 * which is used to keep track of the state required to manage the
1299 * frequency meter and its digital filter.
1300 *
1301 * The filter works on the number of events marked per unit time.
1302 * The filter is single-pole low-pass recursive (IIR). The time unit
1303 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1304 * simulate 3 decimal digits of precision (multiplied by 1000).
1305 *
1306 * With an FM_COEF of 933, and a time base of 1 second, the filter
1307 * has a half-life of 10 seconds, meaning that if the events quit
1308 * happening, then the rate returned from the fmeter_getrate()
1309 * will be cut in half each 10 seconds, until it converges to zero.
1310 *
1311 * It is not worth doing a real infinitely recursive filter. If more
1312 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1313 * just compute FM_MAXTICKS ticks worth, by which point the level
1314 * will be stable.
1315 *
1316 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1317 * arithmetic overflow in the fmeter_update() routine.
1318 *
1319 * Given the simple 32 bit integer arithmetic used, this meter works
1320 * best for reporting rates between one per millisecond (msec) and
1321 * one per 32 (approx) seconds. At constant rates faster than one
1322 * per msec it maxes out at values just under 1,000,000. At constant
1323 * rates between one per msec, and one per second it will stabilize
1324 * to a value N*1000, where N is the rate of events per second.
1325 * At constant rates between one per second and one per 32 seconds,
1326 * it will be choppy, moving up on the seconds that have an event,
1327 * and then decaying until the next event. At rates slower than
1328 * about one in 32 seconds, it decays all the way back to zero between
1329 * each event.
1330 */
1331
1332#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1333#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1334#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1335#define FM_SCALE 1000 /* faux fixed point scale */
1336
1337/* Initialize a frequency meter */
1338static void fmeter_init(struct fmeter *fmp)
1339{
1340 fmp->cnt = 0;
1341 fmp->val = 0;
1342 fmp->time = 0;
1343 spin_lock_init(&fmp->lock);
1344}
1345
1346/* Internal meter update - process cnt events and update value */
1347static void fmeter_update(struct fmeter *fmp)
1348{
1349 time_t now = get_seconds();
1350 time_t ticks = now - fmp->time;
1351
1352 if (ticks == 0)
1353 return;
1354
1355 ticks = min(FM_MAXTICKS, ticks);
1356 while (ticks-- > 0)
1357 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1358 fmp->time = now;
1359
1360 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1361 fmp->cnt = 0;
1362}
1363
1364/* Process any previous ticks, then bump cnt by one (times scale). */
1365static void fmeter_markevent(struct fmeter *fmp)
1366{
1367 spin_lock(&fmp->lock);
1368 fmeter_update(fmp);
1369 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1370 spin_unlock(&fmp->lock);
1371}
1372
1373/* Process any previous ticks, then return current value. */
1374static int fmeter_getrate(struct fmeter *fmp)
1375{
1376 int val;
1377
1378 spin_lock(&fmp->lock);
1379 fmeter_update(fmp);
1380 val = fmp->val;
1381 spin_unlock(&fmp->lock);
1382 return val;
1383}
1384
57fce0a6
TH
1385static struct cpuset *cpuset_attach_old_cs;
1386
5d21cc2d 1387/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
eb95419b
TH
1388static int cpuset_can_attach(struct cgroup_subsys_state *css,
1389 struct cgroup_taskset *tset)
f780bdb7 1390{
eb95419b 1391 struct cpuset *cs = css_cs(css);
bb9d97b6
TH
1392 struct task_struct *task;
1393 int ret;
1da177e4 1394
57fce0a6
TH
1395 /* used later by cpuset_attach() */
1396 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1397
5d21cc2d
TH
1398 mutex_lock(&cpuset_mutex);
1399
aa6ec29b 1400 /* allow moving tasks into an empty cpuset if on default hierarchy */
5d21cc2d 1401 ret = -ENOSPC;
aa6ec29b 1402 if (!cgroup_on_dfl(css->cgroup) &&
88fa523b 1403 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1404 goto out_unlock;
9985b0ba 1405
924f0d9a 1406 cgroup_taskset_for_each(task, tset) {
bb9d97b6 1407 /*
14a40ffc
TH
1408 * Kthreads which disallow setaffinity shouldn't be moved
1409 * to a new cpuset; we don't want to change their cpu
1410 * affinity and isolating such threads by their set of
1411 * allowed nodes is unnecessary. Thus, cpusets are not
1412 * applicable for such threads. This prevents checking for
1413 * success of set_cpus_allowed_ptr() on all attached tasks
1414 * before cpus_allowed may be changed.
bb9d97b6 1415 */
5d21cc2d 1416 ret = -EINVAL;
14a40ffc 1417 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1418 goto out_unlock;
1419 ret = security_task_setscheduler(task);
1420 if (ret)
1421 goto out_unlock;
bb9d97b6 1422 }
f780bdb7 1423
452477fa
TH
1424 /*
1425 * Mark attach is in progress. This makes validate_change() fail
1426 * changes which zero cpus/mems_allowed.
1427 */
1428 cs->attach_in_progress++;
5d21cc2d
TH
1429 ret = 0;
1430out_unlock:
1431 mutex_unlock(&cpuset_mutex);
1432 return ret;
8793d854 1433}
f780bdb7 1434
eb95419b 1435static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
452477fa
TH
1436 struct cgroup_taskset *tset)
1437{
5d21cc2d 1438 mutex_lock(&cpuset_mutex);
eb95419b 1439 css_cs(css)->attach_in_progress--;
5d21cc2d 1440 mutex_unlock(&cpuset_mutex);
8793d854 1441}
1da177e4 1442
4e4c9a14 1443/*
5d21cc2d 1444 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1445 * but we can't allocate it dynamically there. Define it global and
1446 * allocate from cpuset_init().
1447 */
1448static cpumask_var_t cpus_attach;
1449
eb95419b
TH
1450static void cpuset_attach(struct cgroup_subsys_state *css,
1451 struct cgroup_taskset *tset)
8793d854 1452{
67bd2c59 1453 /* static buf protected by cpuset_mutex */
4e4c9a14 1454 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1455 struct mm_struct *mm;
bb9d97b6
TH
1456 struct task_struct *task;
1457 struct task_struct *leader = cgroup_taskset_first(tset);
eb95419b 1458 struct cpuset *cs = css_cs(css);
57fce0a6 1459 struct cpuset *oldcs = cpuset_attach_old_cs;
070b57fc
LZ
1460 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1461 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
22fb52dd 1462
5d21cc2d
TH
1463 mutex_lock(&cpuset_mutex);
1464
4e4c9a14
TH
1465 /* prepare for attach */
1466 if (cs == &top_cpuset)
1467 cpumask_copy(cpus_attach, cpu_possible_mask);
1468 else
070b57fc 1469 guarantee_online_cpus(cpus_cs, cpus_attach);
4e4c9a14 1470
070b57fc 1471 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
4e4c9a14 1472
924f0d9a 1473 cgroup_taskset_for_each(task, tset) {
bb9d97b6
TH
1474 /*
1475 * can_attach beforehand should guarantee that this doesn't
1476 * fail. TODO: have a better way to handle failure here
1477 */
1478 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1479
1480 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1481 cpuset_update_task_spread_flag(cs, task);
1482 }
22fb52dd 1483
f780bdb7
BB
1484 /*
1485 * Change mm, possibly for multiple threads in a threadgroup. This is
1486 * expensive and may sleep.
1487 */
f780bdb7 1488 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1489 mm = get_task_mm(leader);
4225399a 1490 if (mm) {
070b57fc
LZ
1491 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1492
f780bdb7 1493 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
f047cecf
LZ
1494
1495 /*
1496 * old_mems_allowed is the same with mems_allowed here, except
1497 * if this task is being moved automatically due to hotplug.
1498 * In that case @mems_allowed has been updated and is empty,
1499 * so @old_mems_allowed is the right nodesets that we migrate
1500 * mm from.
1501 */
1502 if (is_memory_migrate(cs)) {
1503 cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
f780bdb7 1504 &cpuset_attach_nodemask_to);
f047cecf 1505 }
4225399a
PJ
1506 mmput(mm);
1507 }
452477fa 1508
33ad801d 1509 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1510
452477fa 1511 cs->attach_in_progress--;
e44193d3
LZ
1512 if (!cs->attach_in_progress)
1513 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1514
1515 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1516}
1517
1518/* The various types of files and directories in a cpuset file system */
1519
1520typedef enum {
45b07ef3 1521 FILE_MEMORY_MIGRATE,
1da177e4
LT
1522 FILE_CPULIST,
1523 FILE_MEMLIST,
1524 FILE_CPU_EXCLUSIVE,
1525 FILE_MEM_EXCLUSIVE,
78608366 1526 FILE_MEM_HARDWALL,
029190c5 1527 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1528 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1529 FILE_MEMORY_PRESSURE_ENABLED,
1530 FILE_MEMORY_PRESSURE,
825a46af
PJ
1531 FILE_SPREAD_PAGE,
1532 FILE_SPREAD_SLAB,
1da177e4
LT
1533} cpuset_filetype_t;
1534
182446d0
TH
1535static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1536 u64 val)
700fe1ab 1537{
182446d0 1538 struct cpuset *cs = css_cs(css);
700fe1ab 1539 cpuset_filetype_t type = cft->private;
a903f086 1540 int retval = 0;
700fe1ab 1541
5d21cc2d 1542 mutex_lock(&cpuset_mutex);
a903f086
LZ
1543 if (!is_cpuset_online(cs)) {
1544 retval = -ENODEV;
5d21cc2d 1545 goto out_unlock;
a903f086 1546 }
700fe1ab
PM
1547
1548 switch (type) {
1da177e4 1549 case FILE_CPU_EXCLUSIVE:
700fe1ab 1550 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1551 break;
1552 case FILE_MEM_EXCLUSIVE:
700fe1ab 1553 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1554 break;
78608366
PM
1555 case FILE_MEM_HARDWALL:
1556 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1557 break;
029190c5 1558 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1559 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1560 break;
45b07ef3 1561 case FILE_MEMORY_MIGRATE:
700fe1ab 1562 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1563 break;
3e0d98b9 1564 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1565 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1566 break;
1567 case FILE_MEMORY_PRESSURE:
1568 retval = -EACCES;
1569 break;
825a46af 1570 case FILE_SPREAD_PAGE:
700fe1ab 1571 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1572 break;
1573 case FILE_SPREAD_SLAB:
700fe1ab 1574 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1575 break;
1da177e4
LT
1576 default:
1577 retval = -EINVAL;
700fe1ab 1578 break;
1da177e4 1579 }
5d21cc2d
TH
1580out_unlock:
1581 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1582 return retval;
1583}
1584
182446d0
TH
1585static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1586 s64 val)
5be7a479 1587{
182446d0 1588 struct cpuset *cs = css_cs(css);
5be7a479 1589 cpuset_filetype_t type = cft->private;
5d21cc2d 1590 int retval = -ENODEV;
5be7a479 1591
5d21cc2d
TH
1592 mutex_lock(&cpuset_mutex);
1593 if (!is_cpuset_online(cs))
1594 goto out_unlock;
e3712395 1595
5be7a479
PM
1596 switch (type) {
1597 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1598 retval = update_relax_domain_level(cs, val);
1599 break;
1600 default:
1601 retval = -EINVAL;
1602 break;
1603 }
5d21cc2d
TH
1604out_unlock:
1605 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1606 return retval;
1607}
1608
e3712395
PM
1609/*
1610 * Common handling for a write to a "cpus" or "mems" file.
1611 */
451af504
TH
1612static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1613 char *buf, size_t nbytes, loff_t off)
e3712395 1614{
451af504 1615 struct cpuset *cs = css_cs(of_css(of));
645fcc9d 1616 struct cpuset *trialcs;
5d21cc2d 1617 int retval = -ENODEV;
e3712395 1618
451af504
TH
1619 buf = strstrip(buf);
1620
3a5a6d0c
TH
1621 /*
1622 * CPU or memory hotunplug may leave @cs w/o any execution
1623 * resources, in which case the hotplug code asynchronously updates
1624 * configuration and transfers all tasks to the nearest ancestor
1625 * which can execute.
1626 *
1627 * As writes to "cpus" or "mems" may restore @cs's execution
1628 * resources, wait for the previously scheduled operations before
1629 * proceeding, so that we don't end up keep removing tasks added
1630 * after execution capability is restored.
1631 */
1632 flush_work(&cpuset_hotplug_work);
1633
5d21cc2d
TH
1634 mutex_lock(&cpuset_mutex);
1635 if (!is_cpuset_online(cs))
1636 goto out_unlock;
e3712395 1637
645fcc9d 1638 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1639 if (!trialcs) {
1640 retval = -ENOMEM;
5d21cc2d 1641 goto out_unlock;
b75f38d6 1642 }
645fcc9d 1643
451af504 1644 switch (of_cft(of)->private) {
e3712395 1645 case FILE_CPULIST:
645fcc9d 1646 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1647 break;
1648 case FILE_MEMLIST:
645fcc9d 1649 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1650 break;
1651 default:
1652 retval = -EINVAL;
1653 break;
1654 }
645fcc9d
LZ
1655
1656 free_trial_cpuset(trialcs);
5d21cc2d
TH
1657out_unlock:
1658 mutex_unlock(&cpuset_mutex);
451af504 1659 return retval ?: nbytes;
e3712395
PM
1660}
1661
1da177e4
LT
1662/*
1663 * These ascii lists should be read in a single call, by using a user
1664 * buffer large enough to hold the entire map. If read in smaller
1665 * chunks, there is no guarantee of atomicity. Since the display format
1666 * used, list of ranges of sequential numbers, is variable length,
1667 * and since these maps can change value dynamically, one could read
1668 * gibberish by doing partial reads while a list was changing.
1da177e4 1669 */
2da8ca82 1670static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1da177e4 1671{
2da8ca82
TH
1672 struct cpuset *cs = css_cs(seq_css(sf));
1673 cpuset_filetype_t type = seq_cft(sf)->private;
51ffe411
TH
1674 ssize_t count;
1675 char *buf, *s;
1676 int ret = 0;
1da177e4 1677
51ffe411
TH
1678 count = seq_get_buf(sf, &buf);
1679 s = buf;
1da177e4 1680
51ffe411 1681 mutex_lock(&callback_mutex);
1da177e4
LT
1682
1683 switch (type) {
1684 case FILE_CPULIST:
51ffe411 1685 s += cpulist_scnprintf(s, count, cs->cpus_allowed);
1da177e4
LT
1686 break;
1687 case FILE_MEMLIST:
51ffe411 1688 s += nodelist_scnprintf(s, count, cs->mems_allowed);
1da177e4 1689 break;
1da177e4 1690 default:
51ffe411
TH
1691 ret = -EINVAL;
1692 goto out_unlock;
1da177e4 1693 }
1da177e4 1694
51ffe411
TH
1695 if (s < buf + count - 1) {
1696 *s++ = '\n';
1697 seq_commit(sf, s - buf);
1698 } else {
1699 seq_commit(sf, -1);
1700 }
1701out_unlock:
1702 mutex_unlock(&callback_mutex);
1703 return ret;
1da177e4
LT
1704}
1705
182446d0 1706static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 1707{
182446d0 1708 struct cpuset *cs = css_cs(css);
700fe1ab
PM
1709 cpuset_filetype_t type = cft->private;
1710 switch (type) {
1711 case FILE_CPU_EXCLUSIVE:
1712 return is_cpu_exclusive(cs);
1713 case FILE_MEM_EXCLUSIVE:
1714 return is_mem_exclusive(cs);
78608366
PM
1715 case FILE_MEM_HARDWALL:
1716 return is_mem_hardwall(cs);
700fe1ab
PM
1717 case FILE_SCHED_LOAD_BALANCE:
1718 return is_sched_load_balance(cs);
1719 case FILE_MEMORY_MIGRATE:
1720 return is_memory_migrate(cs);
1721 case FILE_MEMORY_PRESSURE_ENABLED:
1722 return cpuset_memory_pressure_enabled;
1723 case FILE_MEMORY_PRESSURE:
1724 return fmeter_getrate(&cs->fmeter);
1725 case FILE_SPREAD_PAGE:
1726 return is_spread_page(cs);
1727 case FILE_SPREAD_SLAB:
1728 return is_spread_slab(cs);
1729 default:
1730 BUG();
1731 }
cf417141
MK
1732
1733 /* Unreachable but makes gcc happy */
1734 return 0;
700fe1ab 1735}
1da177e4 1736
182446d0 1737static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 1738{
182446d0 1739 struct cpuset *cs = css_cs(css);
5be7a479
PM
1740 cpuset_filetype_t type = cft->private;
1741 switch (type) {
1742 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1743 return cs->relax_domain_level;
1744 default:
1745 BUG();
1746 }
cf417141
MK
1747
1748 /* Unrechable but makes gcc happy */
1749 return 0;
5be7a479
PM
1750}
1751
1da177e4
LT
1752
1753/*
1754 * for the common functions, 'private' gives the type of file
1755 */
1756
addf2c73
PM
1757static struct cftype files[] = {
1758 {
1759 .name = "cpus",
2da8ca82 1760 .seq_show = cpuset_common_seq_show,
451af504 1761 .write = cpuset_write_resmask,
e3712395 1762 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1763 .private = FILE_CPULIST,
1764 },
1765
1766 {
1767 .name = "mems",
2da8ca82 1768 .seq_show = cpuset_common_seq_show,
451af504 1769 .write = cpuset_write_resmask,
e3712395 1770 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1771 .private = FILE_MEMLIST,
1772 },
1773
1774 {
1775 .name = "cpu_exclusive",
1776 .read_u64 = cpuset_read_u64,
1777 .write_u64 = cpuset_write_u64,
1778 .private = FILE_CPU_EXCLUSIVE,
1779 },
1780
1781 {
1782 .name = "mem_exclusive",
1783 .read_u64 = cpuset_read_u64,
1784 .write_u64 = cpuset_write_u64,
1785 .private = FILE_MEM_EXCLUSIVE,
1786 },
1787
78608366
PM
1788 {
1789 .name = "mem_hardwall",
1790 .read_u64 = cpuset_read_u64,
1791 .write_u64 = cpuset_write_u64,
1792 .private = FILE_MEM_HARDWALL,
1793 },
1794
addf2c73
PM
1795 {
1796 .name = "sched_load_balance",
1797 .read_u64 = cpuset_read_u64,
1798 .write_u64 = cpuset_write_u64,
1799 .private = FILE_SCHED_LOAD_BALANCE,
1800 },
1801
1802 {
1803 .name = "sched_relax_domain_level",
5be7a479
PM
1804 .read_s64 = cpuset_read_s64,
1805 .write_s64 = cpuset_write_s64,
addf2c73
PM
1806 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1807 },
1808
1809 {
1810 .name = "memory_migrate",
1811 .read_u64 = cpuset_read_u64,
1812 .write_u64 = cpuset_write_u64,
1813 .private = FILE_MEMORY_MIGRATE,
1814 },
1815
1816 {
1817 .name = "memory_pressure",
1818 .read_u64 = cpuset_read_u64,
1819 .write_u64 = cpuset_write_u64,
1820 .private = FILE_MEMORY_PRESSURE,
099fca32 1821 .mode = S_IRUGO,
addf2c73
PM
1822 },
1823
1824 {
1825 .name = "memory_spread_page",
1826 .read_u64 = cpuset_read_u64,
1827 .write_u64 = cpuset_write_u64,
1828 .private = FILE_SPREAD_PAGE,
1829 },
1830
1831 {
1832 .name = "memory_spread_slab",
1833 .read_u64 = cpuset_read_u64,
1834 .write_u64 = cpuset_write_u64,
1835 .private = FILE_SPREAD_SLAB,
1836 },
3e0d98b9 1837
4baf6e33
TH
1838 {
1839 .name = "memory_pressure_enabled",
1840 .flags = CFTYPE_ONLY_ON_ROOT,
1841 .read_u64 = cpuset_read_u64,
1842 .write_u64 = cpuset_write_u64,
1843 .private = FILE_MEMORY_PRESSURE_ENABLED,
1844 },
1da177e4 1845
4baf6e33
TH
1846 { } /* terminate */
1847};
1da177e4
LT
1848
1849/*
92fb9748 1850 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1851 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1852 */
1853
eb95419b
TH
1854static struct cgroup_subsys_state *
1855cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1856{
c8f699bb 1857 struct cpuset *cs;
1da177e4 1858
eb95419b 1859 if (!parent_css)
8793d854 1860 return &top_cpuset.css;
033fa1c5 1861
c8f699bb 1862 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1863 if (!cs)
8793d854 1864 return ERR_PTR(-ENOMEM);
e2b9a3d7
LZ
1865 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1866 goto free_cs;
1867 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1868 goto free_cpus;
1da177e4 1869
029190c5 1870 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1871 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1872 nodes_clear(cs->mems_allowed);
e2b9a3d7
LZ
1873 cpumask_clear(cs->effective_cpus);
1874 nodes_clear(cs->effective_mems);
3e0d98b9 1875 fmeter_init(&cs->fmeter);
1d3504fc 1876 cs->relax_domain_level = -1;
1da177e4 1877
c8f699bb 1878 return &cs->css;
e2b9a3d7
LZ
1879
1880free_cpus:
1881 free_cpumask_var(cs->cpus_allowed);
1882free_cs:
1883 kfree(cs);
1884 return ERR_PTR(-ENOMEM);
c8f699bb
TH
1885}
1886
eb95419b 1887static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 1888{
eb95419b 1889 struct cpuset *cs = css_cs(css);
c431069f 1890 struct cpuset *parent = parent_cs(cs);
ae8086ce 1891 struct cpuset *tmp_cs;
492eb21b 1892 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
1893
1894 if (!parent)
1895 return 0;
1896
5d21cc2d
TH
1897 mutex_lock(&cpuset_mutex);
1898
efeb77b2 1899 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1900 if (is_spread_page(parent))
1901 set_bit(CS_SPREAD_PAGE, &cs->flags);
1902 if (is_spread_slab(parent))
1903 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1904
664eedde 1905 cpuset_inc();
033fa1c5 1906
e2b9a3d7
LZ
1907 mutex_lock(&callback_mutex);
1908 if (cgroup_on_dfl(cs->css.cgroup)) {
1909 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1910 cs->effective_mems = parent->effective_mems;
1911 }
1912 mutex_unlock(&callback_mutex);
1913
eb95419b 1914 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 1915 goto out_unlock;
033fa1c5
TH
1916
1917 /*
1918 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1919 * set. This flag handling is implemented in cgroup core for
1920 * histrical reasons - the flag may be specified during mount.
1921 *
1922 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1923 * refuse to clone the configuration - thereby refusing the task to
1924 * be entered, and as a result refusing the sys_unshare() or
1925 * clone() which initiated it. If this becomes a problem for some
1926 * users who wish to allow that scenario, then this could be
1927 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1928 * (and likewise for mems) to the new cgroup.
1929 */
ae8086ce 1930 rcu_read_lock();
492eb21b 1931 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
1932 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1933 rcu_read_unlock();
5d21cc2d 1934 goto out_unlock;
ae8086ce 1935 }
033fa1c5 1936 }
ae8086ce 1937 rcu_read_unlock();
033fa1c5
TH
1938
1939 mutex_lock(&callback_mutex);
1940 cs->mems_allowed = parent->mems_allowed;
1941 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1942 mutex_unlock(&callback_mutex);
5d21cc2d
TH
1943out_unlock:
1944 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
1945 return 0;
1946}
1947
0b9e6965
ZH
1948/*
1949 * If the cpuset being removed has its flag 'sched_load_balance'
1950 * enabled, then simulate turning sched_load_balance off, which
1951 * will call rebuild_sched_domains_locked().
1952 */
1953
eb95419b 1954static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 1955{
eb95419b 1956 struct cpuset *cs = css_cs(css);
c8f699bb 1957
5d21cc2d 1958 mutex_lock(&cpuset_mutex);
c8f699bb
TH
1959
1960 if (is_sched_load_balance(cs))
1961 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1962
664eedde 1963 cpuset_dec();
efeb77b2 1964 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 1965
5d21cc2d 1966 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1967}
1968
eb95419b 1969static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 1970{
eb95419b 1971 struct cpuset *cs = css_cs(css);
1da177e4 1972
e2b9a3d7 1973 free_cpumask_var(cs->effective_cpus);
300ed6cb 1974 free_cpumask_var(cs->cpus_allowed);
8793d854 1975 kfree(cs);
1da177e4
LT
1976}
1977
073219e9 1978struct cgroup_subsys cpuset_cgrp_subsys = {
92fb9748 1979 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
1980 .css_online = cpuset_css_online,
1981 .css_offline = cpuset_css_offline,
92fb9748 1982 .css_free = cpuset_css_free,
8793d854 1983 .can_attach = cpuset_can_attach,
452477fa 1984 .cancel_attach = cpuset_cancel_attach,
8793d854 1985 .attach = cpuset_attach,
4baf6e33 1986 .base_cftypes = files,
8793d854
PM
1987 .early_init = 1,
1988};
1989
1da177e4
LT
1990/**
1991 * cpuset_init - initialize cpusets at system boot
1992 *
1993 * Description: Initialize top_cpuset and the cpuset internal file system,
1994 **/
1995
1996int __init cpuset_init(void)
1997{
8793d854 1998 int err = 0;
1da177e4 1999
58568d2a
MX
2000 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2001 BUG();
e2b9a3d7
LZ
2002 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2003 BUG();
58568d2a 2004
300ed6cb 2005 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2006 nodes_setall(top_cpuset.mems_allowed);
e2b9a3d7
LZ
2007 cpumask_setall(top_cpuset.effective_cpus);
2008 nodes_setall(top_cpuset.effective_mems);
1da177e4 2009
3e0d98b9 2010 fmeter_init(&top_cpuset.fmeter);
029190c5 2011 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2012 top_cpuset.relax_domain_level = -1;
1da177e4 2013
1da177e4
LT
2014 err = register_filesystem(&cpuset_fs_type);
2015 if (err < 0)
8793d854
PM
2016 return err;
2017
2341d1b6
LZ
2018 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2019 BUG();
2020
8793d854 2021 return 0;
1da177e4
LT
2022}
2023
b1aac8bb 2024/*
cf417141 2025 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2026 * or memory nodes, we need to walk over the cpuset hierarchy,
2027 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2028 * last CPU or node from a cpuset, then move the tasks in the empty
2029 * cpuset to its next-highest non-empty parent.
b1aac8bb 2030 */
956db3ca
CW
2031static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2032{
2033 struct cpuset *parent;
2034
956db3ca
CW
2035 /*
2036 * Find its next-highest non-empty parent, (top cpuset
2037 * has online cpus, so can't be empty).
2038 */
c431069f 2039 parent = parent_cs(cs);
300ed6cb 2040 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2041 nodes_empty(parent->mems_allowed))
c431069f 2042 parent = parent_cs(parent);
956db3ca 2043
8cc99345 2044 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
12d3089c 2045 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
e61734c5
TH
2046 pr_cont_cgroup_name(cs->css.cgroup);
2047 pr_cont("\n");
8cc99345 2048 }
956db3ca
CW
2049}
2050
deb7aa30 2051/**
388afd85 2052 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2053 * @cs: cpuset in interest
956db3ca 2054 *
deb7aa30
TH
2055 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2056 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2057 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2058 */
388afd85 2059static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2060{
deb7aa30 2061 static cpumask_t off_cpus;
33ad801d 2062 static nodemask_t off_mems;
5d21cc2d 2063 bool is_empty;
aa6ec29b 2064 bool on_dfl = cgroup_on_dfl(cs->css.cgroup);
80d1fa64 2065
e44193d3
LZ
2066retry:
2067 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2068
5d21cc2d 2069 mutex_lock(&cpuset_mutex);
7ddf96b0 2070
e44193d3
LZ
2071 /*
2072 * We have raced with task attaching. We wait until attaching
2073 * is finished, so we won't attach a task to an empty cpuset.
2074 */
2075 if (cs->attach_in_progress) {
2076 mutex_unlock(&cpuset_mutex);
2077 goto retry;
2078 }
2079
deb7aa30
TH
2080 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2081 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2082
5c5cc623
LZ
2083 mutex_lock(&callback_mutex);
2084 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2085 mutex_unlock(&callback_mutex);
2086
2087 /*
aa6ec29b
TH
2088 * If on_dfl, we need to update tasks' cpumask for empty cpuset to
2089 * take on ancestor's cpumask. Otherwise, don't call
2090 * update_tasks_cpumask() if the cpuset becomes empty, as the tasks
2091 * in it will be migrated to an ancestor.
5c5cc623 2092 */
aa6ec29b 2093 if ((on_dfl && cpumask_empty(cs->cpus_allowed)) ||
f047cecf 2094 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
d66393e5 2095 update_tasks_cpumask(cs);
80d1fa64 2096
5c5cc623
LZ
2097 mutex_lock(&callback_mutex);
2098 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2099 mutex_unlock(&callback_mutex);
2100
2101 /*
aa6ec29b
TH
2102 * If on_dfl, we need to update tasks' nodemask for empty cpuset to
2103 * take on ancestor's nodemask. Otherwise, don't call
2104 * update_tasks_nodemask() if the cpuset becomes empty, as the
2105 * tasks in it will be migratd to an ancestor.
5c5cc623 2106 */
aa6ec29b 2107 if ((on_dfl && nodes_empty(cs->mems_allowed)) ||
f047cecf 2108 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
d66393e5 2109 update_tasks_nodemask(cs);
deb7aa30 2110
5d21cc2d
TH
2111 is_empty = cpumask_empty(cs->cpus_allowed) ||
2112 nodes_empty(cs->mems_allowed);
8d033948 2113
5d21cc2d
TH
2114 mutex_unlock(&cpuset_mutex);
2115
2116 /*
aa6ec29b 2117 * If on_dfl, we'll keep tasks in empty cpusets.
5c5cc623
LZ
2118 *
2119 * Otherwise move tasks to the nearest ancestor with execution
2120 * resources. This is full cgroup operation which will
5d21cc2d
TH
2121 * also call back into cpuset. Should be done outside any lock.
2122 */
aa6ec29b 2123 if (!on_dfl && is_empty)
5d21cc2d 2124 remove_tasks_in_empty_cpuset(cs);
b1aac8bb
PJ
2125}
2126
deb7aa30 2127/**
3a5a6d0c 2128 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2129 *
deb7aa30
TH
2130 * This function is called after either CPU or memory configuration has
2131 * changed and updates cpuset accordingly. The top_cpuset is always
2132 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2133 * order to make cpusets transparent (of no affect) on systems that are
2134 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2135 *
deb7aa30 2136 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2137 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2138 * all descendants.
956db3ca 2139 *
deb7aa30
TH
2140 * Note that CPU offlining during suspend is ignored. We don't modify
2141 * cpusets across suspend/resume cycles at all.
956db3ca 2142 */
3a5a6d0c 2143static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2144{
5c5cc623
LZ
2145 static cpumask_t new_cpus;
2146 static nodemask_t new_mems;
deb7aa30 2147 bool cpus_updated, mems_updated;
b1aac8bb 2148
5d21cc2d 2149 mutex_lock(&cpuset_mutex);
956db3ca 2150
deb7aa30
TH
2151 /* fetch the available cpus/mems and find out which changed how */
2152 cpumask_copy(&new_cpus, cpu_active_mask);
2153 new_mems = node_states[N_MEMORY];
7ddf96b0 2154
deb7aa30 2155 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
deb7aa30 2156 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
7ddf96b0 2157
deb7aa30
TH
2158 /* synchronize cpus_allowed to cpu_active_mask */
2159 if (cpus_updated) {
2160 mutex_lock(&callback_mutex);
2161 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2162 mutex_unlock(&callback_mutex);
2163 /* we don't mess with cpumasks of tasks in top_cpuset */
2164 }
b4501295 2165
deb7aa30
TH
2166 /* synchronize mems_allowed to N_MEMORY */
2167 if (mems_updated) {
deb7aa30
TH
2168 mutex_lock(&callback_mutex);
2169 top_cpuset.mems_allowed = new_mems;
2170 mutex_unlock(&callback_mutex);
d66393e5 2171 update_tasks_nodemask(&top_cpuset);
deb7aa30 2172 }
b4501295 2173
388afd85
LZ
2174 mutex_unlock(&cpuset_mutex);
2175
5c5cc623
LZ
2176 /* if cpus or mems changed, we need to propagate to descendants */
2177 if (cpus_updated || mems_updated) {
deb7aa30 2178 struct cpuset *cs;
492eb21b 2179 struct cgroup_subsys_state *pos_css;
f9b4fb8d 2180
fc560a26 2181 rcu_read_lock();
492eb21b 2182 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
ec903c0c 2183 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
388afd85
LZ
2184 continue;
2185 rcu_read_unlock();
7ddf96b0 2186
388afd85 2187 cpuset_hotplug_update_tasks(cs);
b4501295 2188
388afd85
LZ
2189 rcu_read_lock();
2190 css_put(&cs->css);
2191 }
2192 rcu_read_unlock();
2193 }
8d033948 2194
deb7aa30 2195 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2196 if (cpus_updated)
2197 rebuild_sched_domains();
b1aac8bb
PJ
2198}
2199
7ddf96b0 2200void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2201{
3a5a6d0c
TH
2202 /*
2203 * We're inside cpu hotplug critical region which usually nests
2204 * inside cgroup synchronization. Bounce actual hotplug processing
2205 * to a work item to avoid reverse locking order.
2206 *
2207 * We still need to do partition_sched_domains() synchronously;
2208 * otherwise, the scheduler will get confused and put tasks to the
2209 * dead CPU. Fall back to the default single domain.
2210 * cpuset_hotplug_workfn() will rebuild it as necessary.
2211 */
2212 partition_sched_domains(1, NULL, NULL);
2213 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2214}
4c4d50f7 2215
38837fc7 2216/*
38d7bee9
LJ
2217 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2218 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2219 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2220 */
f481891f
MX
2221static int cpuset_track_online_nodes(struct notifier_block *self,
2222 unsigned long action, void *arg)
38837fc7 2223{
3a5a6d0c 2224 schedule_work(&cpuset_hotplug_work);
f481891f 2225 return NOTIFY_OK;
38837fc7 2226}
d8f10cb3
AM
2227
2228static struct notifier_block cpuset_track_online_nodes_nb = {
2229 .notifier_call = cpuset_track_online_nodes,
2230 .priority = 10, /* ??! */
2231};
38837fc7 2232
1da177e4
LT
2233/**
2234 * cpuset_init_smp - initialize cpus_allowed
2235 *
2236 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2237 */
1da177e4
LT
2238void __init cpuset_init_smp(void)
2239{
6ad4c188 2240 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2241 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2242 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2243
e2b9a3d7
LZ
2244 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2245 top_cpuset.effective_mems = node_states[N_MEMORY];
2246
d8f10cb3 2247 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2248}
2249
2250/**
1da177e4
LT
2251 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2252 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2253 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2254 *
300ed6cb 2255 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2256 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2257 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2258 * tasks cpuset.
2259 **/
2260
6af866af 2261void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2262{
070b57fc
LZ
2263 struct cpuset *cpus_cs;
2264
3d3f26a7 2265 mutex_lock(&callback_mutex);
b8dadcb5 2266 rcu_read_lock();
070b57fc
LZ
2267 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2268 guarantee_online_cpus(cpus_cs, pmask);
b8dadcb5 2269 rcu_read_unlock();
897f0b3c 2270 mutex_unlock(&callback_mutex);
1da177e4
LT
2271}
2272
2baab4e9 2273void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2274{
c9710d80 2275 struct cpuset *cpus_cs;
9084bb82
ON
2276
2277 rcu_read_lock();
070b57fc
LZ
2278 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2279 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
9084bb82
ON
2280 rcu_read_unlock();
2281
2282 /*
2283 * We own tsk->cpus_allowed, nobody can change it under us.
2284 *
2285 * But we used cs && cs->cpus_allowed lockless and thus can
2286 * race with cgroup_attach_task() or update_cpumask() and get
2287 * the wrong tsk->cpus_allowed. However, both cases imply the
2288 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2289 * which takes task_rq_lock().
2290 *
2291 * If we are called after it dropped the lock we must see all
2292 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2293 * set any mask even if it is not right from task_cs() pov,
2294 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2295 *
2296 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2297 * if required.
9084bb82 2298 */
9084bb82
ON
2299}
2300
1da177e4
LT
2301void cpuset_init_current_mems_allowed(void)
2302{
f9a86fcb 2303 nodes_setall(current->mems_allowed);
1da177e4
LT
2304}
2305
909d75a3
PJ
2306/**
2307 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2308 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2309 *
2310 * Description: Returns the nodemask_t mems_allowed of the cpuset
2311 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2312 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2313 * tasks cpuset.
2314 **/
2315
2316nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2317{
070b57fc 2318 struct cpuset *mems_cs;
909d75a3
PJ
2319 nodemask_t mask;
2320
3d3f26a7 2321 mutex_lock(&callback_mutex);
b8dadcb5 2322 rcu_read_lock();
070b57fc
LZ
2323 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2324 guarantee_online_mems(mems_cs, &mask);
b8dadcb5 2325 rcu_read_unlock();
3d3f26a7 2326 mutex_unlock(&callback_mutex);
909d75a3
PJ
2327
2328 return mask;
2329}
2330
d9fd8a6d 2331/**
19770b32
MG
2332 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2333 * @nodemask: the nodemask to be checked
d9fd8a6d 2334 *
19770b32 2335 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2336 */
19770b32 2337int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2338{
19770b32 2339 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2340}
2341
9bf2229f 2342/*
78608366
PM
2343 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2344 * mem_hardwall ancestor to the specified cpuset. Call holding
2345 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2346 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2347 */
c9710d80 2348static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2349{
c431069f
TH
2350 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2351 cs = parent_cs(cs);
9bf2229f
PJ
2352 return cs;
2353}
2354
d9fd8a6d 2355/**
a1bc5a4e
DR
2356 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2357 * @node: is this an allowed node?
02a0e53d 2358 * @gfp_mask: memory allocation flags
d9fd8a6d 2359 *
a1bc5a4e
DR
2360 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2361 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2362 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2363 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2364 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2365 * flag, yes.
9bf2229f
PJ
2366 * Otherwise, no.
2367 *
a1bc5a4e
DR
2368 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2369 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2370 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2371 *
a1bc5a4e
DR
2372 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2373 * cpusets, and never sleeps.
02a0e53d
PJ
2374 *
2375 * The __GFP_THISNODE placement logic is really handled elsewhere,
2376 * by forcibly using a zonelist starting at a specified node, and by
2377 * (in get_page_from_freelist()) refusing to consider the zones for
2378 * any node on the zonelist except the first. By the time any such
2379 * calls get to this routine, we should just shut up and say 'yes'.
2380 *
9bf2229f 2381 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2382 * and do not allow allocations outside the current tasks cpuset
2383 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2384 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2385 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2386 *
02a0e53d
PJ
2387 * Scanning up parent cpusets requires callback_mutex. The
2388 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2389 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2390 * current tasks mems_allowed came up empty on the first pass over
2391 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2392 * cpuset are short of memory, might require taking the callback_mutex
2393 * mutex.
9bf2229f 2394 *
36be57ff 2395 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2396 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2397 * so no allocation on a node outside the cpuset is allowed (unless
2398 * in interrupt, of course).
36be57ff
PJ
2399 *
2400 * The second pass through get_page_from_freelist() doesn't even call
2401 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2402 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2403 * in alloc_flags. That logic and the checks below have the combined
2404 * affect that:
9bf2229f
PJ
2405 * in_interrupt - any node ok (current task context irrelevant)
2406 * GFP_ATOMIC - any node ok
c596d9f3 2407 * TIF_MEMDIE - any node ok
78608366 2408 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2409 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2410 *
2411 * Rule:
a1bc5a4e 2412 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2413 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2414 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2415 */
a1bc5a4e 2416int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2417{
c9710d80 2418 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2419 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2420
9b819d20 2421 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2422 return 1;
92d1dbd2 2423 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2424 if (node_isset(node, current->mems_allowed))
2425 return 1;
c596d9f3
DR
2426 /*
2427 * Allow tasks that have access to memory reserves because they have
2428 * been OOM killed to get memory anywhere.
2429 */
2430 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2431 return 1;
9bf2229f
PJ
2432 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2433 return 0;
2434
5563e770
BP
2435 if (current->flags & PF_EXITING) /* Let dying task have memory */
2436 return 1;
2437
9bf2229f 2438 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2439 mutex_lock(&callback_mutex);
053199ed 2440
b8dadcb5 2441 rcu_read_lock();
78608366 2442 cs = nearest_hardwall_ancestor(task_cs(current));
99afb0fd 2443 allowed = node_isset(node, cs->mems_allowed);
b8dadcb5 2444 rcu_read_unlock();
053199ed 2445
3d3f26a7 2446 mutex_unlock(&callback_mutex);
9bf2229f 2447 return allowed;
1da177e4
LT
2448}
2449
02a0e53d 2450/*
a1bc5a4e
DR
2451 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2452 * @node: is this an allowed node?
02a0e53d
PJ
2453 * @gfp_mask: memory allocation flags
2454 *
a1bc5a4e
DR
2455 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2456 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2457 * yes. If the task has been OOM killed and has access to memory reserves as
2458 * specified by the TIF_MEMDIE flag, yes.
2459 * Otherwise, no.
02a0e53d
PJ
2460 *
2461 * The __GFP_THISNODE placement logic is really handled elsewhere,
2462 * by forcibly using a zonelist starting at a specified node, and by
2463 * (in get_page_from_freelist()) refusing to consider the zones for
2464 * any node on the zonelist except the first. By the time any such
2465 * calls get to this routine, we should just shut up and say 'yes'.
2466 *
a1bc5a4e
DR
2467 * Unlike the cpuset_node_allowed_softwall() variant, above,
2468 * this variant requires that the node be in the current task's
02a0e53d
PJ
2469 * mems_allowed or that we're in interrupt. It does not scan up the
2470 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2471 * It never sleeps.
2472 */
a1bc5a4e 2473int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2474{
02a0e53d
PJ
2475 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2476 return 1;
02a0e53d
PJ
2477 if (node_isset(node, current->mems_allowed))
2478 return 1;
dedf8b79
DW
2479 /*
2480 * Allow tasks that have access to memory reserves because they have
2481 * been OOM killed to get memory anywhere.
2482 */
2483 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2484 return 1;
02a0e53d
PJ
2485 return 0;
2486}
2487
825a46af 2488/**
6adef3eb
JS
2489 * cpuset_mem_spread_node() - On which node to begin search for a file page
2490 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2491 *
2492 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2493 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2494 * and if the memory allocation used cpuset_mem_spread_node()
2495 * to determine on which node to start looking, as it will for
2496 * certain page cache or slab cache pages such as used for file
2497 * system buffers and inode caches, then instead of starting on the
2498 * local node to look for a free page, rather spread the starting
2499 * node around the tasks mems_allowed nodes.
2500 *
2501 * We don't have to worry about the returned node being offline
2502 * because "it can't happen", and even if it did, it would be ok.
2503 *
2504 * The routines calling guarantee_online_mems() are careful to
2505 * only set nodes in task->mems_allowed that are online. So it
2506 * should not be possible for the following code to return an
2507 * offline node. But if it did, that would be ok, as this routine
2508 * is not returning the node where the allocation must be, only
2509 * the node where the search should start. The zonelist passed to
2510 * __alloc_pages() will include all nodes. If the slab allocator
2511 * is passed an offline node, it will fall back to the local node.
2512 * See kmem_cache_alloc_node().
2513 */
2514
6adef3eb 2515static int cpuset_spread_node(int *rotor)
825a46af
PJ
2516{
2517 int node;
2518
6adef3eb 2519 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2520 if (node == MAX_NUMNODES)
2521 node = first_node(current->mems_allowed);
6adef3eb 2522 *rotor = node;
825a46af
PJ
2523 return node;
2524}
6adef3eb
JS
2525
2526int cpuset_mem_spread_node(void)
2527{
778d3b0f
MH
2528 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2529 current->cpuset_mem_spread_rotor =
2530 node_random(&current->mems_allowed);
2531
6adef3eb
JS
2532 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2533}
2534
2535int cpuset_slab_spread_node(void)
2536{
778d3b0f
MH
2537 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2538 current->cpuset_slab_spread_rotor =
2539 node_random(&current->mems_allowed);
2540
6adef3eb
JS
2541 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2542}
2543
825a46af
PJ
2544EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2545
ef08e3b4 2546/**
bbe373f2
DR
2547 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2548 * @tsk1: pointer to task_struct of some task.
2549 * @tsk2: pointer to task_struct of some other task.
2550 *
2551 * Description: Return true if @tsk1's mems_allowed intersects the
2552 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2553 * one of the task's memory usage might impact the memory available
2554 * to the other.
ef08e3b4
PJ
2555 **/
2556
bbe373f2
DR
2557int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2558 const struct task_struct *tsk2)
ef08e3b4 2559{
bbe373f2 2560 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2561}
2562
f440d98f
LZ
2563#define CPUSET_NODELIST_LEN (256)
2564
75aa1994
DR
2565/**
2566 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
fc34ac1d 2567 * @tsk: pointer to task_struct of some task.
75aa1994
DR
2568 *
2569 * Description: Prints @task's name, cpuset name, and cached copy of its
b8dadcb5 2570 * mems_allowed to the kernel log.
75aa1994
DR
2571 */
2572void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2573{
f440d98f
LZ
2574 /* Statically allocated to prevent using excess stack. */
2575 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2576 static DEFINE_SPINLOCK(cpuset_buffer_lock);
b8dadcb5 2577 struct cgroup *cgrp;
75aa1994 2578
f440d98f 2579 spin_lock(&cpuset_buffer_lock);
b8dadcb5 2580 rcu_read_lock();
63f43f55 2581
b8dadcb5 2582 cgrp = task_cs(tsk)->css.cgroup;
75aa1994
DR
2583 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2584 tsk->mems_allowed);
12d3089c 2585 pr_info("%s cpuset=", tsk->comm);
e61734c5
TH
2586 pr_cont_cgroup_name(cgrp);
2587 pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
f440d98f 2588
cfb5966b 2589 rcu_read_unlock();
75aa1994
DR
2590 spin_unlock(&cpuset_buffer_lock);
2591}
2592
3e0d98b9
PJ
2593/*
2594 * Collection of memory_pressure is suppressed unless
2595 * this flag is enabled by writing "1" to the special
2596 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2597 */
2598
c5b2aff8 2599int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2600
2601/**
2602 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2603 *
2604 * Keep a running average of the rate of synchronous (direct)
2605 * page reclaim efforts initiated by tasks in each cpuset.
2606 *
2607 * This represents the rate at which some task in the cpuset
2608 * ran low on memory on all nodes it was allowed to use, and
2609 * had to enter the kernels page reclaim code in an effort to
2610 * create more free memory by tossing clean pages or swapping
2611 * or writing dirty pages.
2612 *
2613 * Display to user space in the per-cpuset read-only file
2614 * "memory_pressure". Value displayed is an integer
2615 * representing the recent rate of entry into the synchronous
2616 * (direct) page reclaim by any task attached to the cpuset.
2617 **/
2618
2619void __cpuset_memory_pressure_bump(void)
2620{
b8dadcb5 2621 rcu_read_lock();
8793d854 2622 fmeter_markevent(&task_cs(current)->fmeter);
b8dadcb5 2623 rcu_read_unlock();
3e0d98b9
PJ
2624}
2625
8793d854 2626#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2627/*
2628 * proc_cpuset_show()
2629 * - Print tasks cpuset path into seq_file.
2630 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2631 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2632 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2633 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2634 * anyway.
1da177e4 2635 */
8d8b97ba 2636int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2637{
13b41b09 2638 struct pid *pid;
1da177e4 2639 struct task_struct *tsk;
e61734c5 2640 char *buf, *p;
8793d854 2641 struct cgroup_subsys_state *css;
99f89551 2642 int retval;
1da177e4 2643
99f89551 2644 retval = -ENOMEM;
e61734c5 2645 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1da177e4 2646 if (!buf)
99f89551
EB
2647 goto out;
2648
2649 retval = -ESRCH;
13b41b09
EB
2650 pid = m->private;
2651 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2652 if (!tsk)
2653 goto out_free;
1da177e4 2654
e61734c5 2655 retval = -ENAMETOOLONG;
27e89ae5 2656 rcu_read_lock();
073219e9 2657 css = task_css(tsk, cpuset_cgrp_id);
e61734c5 2658 p = cgroup_path(css->cgroup, buf, PATH_MAX);
27e89ae5 2659 rcu_read_unlock();
e61734c5 2660 if (!p)
27e89ae5 2661 goto out_put_task;
e61734c5 2662 seq_puts(m, p);
1da177e4 2663 seq_putc(m, '\n');
e61734c5 2664 retval = 0;
27e89ae5 2665out_put_task:
99f89551
EB
2666 put_task_struct(tsk);
2667out_free:
1da177e4 2668 kfree(buf);
99f89551 2669out:
1da177e4
LT
2670 return retval;
2671}
8793d854 2672#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2673
d01d4827 2674/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2675void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2676{
fc34ac1d 2677 seq_puts(m, "Mems_allowed:\t");
30e8e136 2678 seq_nodemask(m, &task->mems_allowed);
fc34ac1d
FF
2679 seq_puts(m, "\n");
2680 seq_puts(m, "Mems_allowed_list:\t");
30e8e136 2681 seq_nodemask_list(m, &task->mems_allowed);
fc34ac1d 2682 seq_puts(m, "\n");
1da177e4 2683}