cpuset: use rebuild_sched_domains() in cpuset_hotplug_workfn()
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
202f72d5
PJ
63/*
64 * Tracks how many cpusets are currently defined in system.
65 * When there is only one cpuset (the root cpuset) we can
66 * short circuit some hooks.
67 */
7edc5962 68int number_of_cpusets __read_mostly;
202f72d5 69
2df167a3 70/* Forward declare cgroup structures */
8793d854
PM
71struct cgroup_subsys cpuset_subsys;
72struct cpuset;
73
3e0d98b9
PJ
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
1da177e4 83struct cpuset {
8793d854
PM
84 struct cgroup_subsys_state css;
85
1da177e4 86 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
3e0d98b9 90 struct fmeter fmeter; /* memory_pressure filter */
029190c5 91
452477fa
TH
92 /*
93 * Tasks are being attached to this cpuset. Used to prevent
94 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
95 */
96 int attach_in_progress;
97
029190c5
PJ
98 /* partition number for rebuild_sched_domains() */
99 int pn;
956db3ca 100
1d3504fc
HS
101 /* for custom sched domain */
102 int relax_domain_level;
103
8d033948 104 struct work_struct hotplug_work;
1da177e4
LT
105};
106
8793d854
PM
107/* Retrieve the cpuset for a cgroup */
108static inline struct cpuset *cgroup_cs(struct cgroup *cont)
109{
110 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
111 struct cpuset, css);
112}
113
114/* Retrieve the cpuset for a task */
115static inline struct cpuset *task_cs(struct task_struct *task)
116{
117 return container_of(task_subsys_state(task, cpuset_subsys_id),
118 struct cpuset, css);
119}
8793d854 120
c431069f
TH
121static inline struct cpuset *parent_cs(const struct cpuset *cs)
122{
123 struct cgroup *pcgrp = cs->css.cgroup->parent;
124
125 if (pcgrp)
126 return cgroup_cs(pcgrp);
127 return NULL;
128}
129
b246272e
DR
130#ifdef CONFIG_NUMA
131static inline bool task_has_mempolicy(struct task_struct *task)
132{
133 return task->mempolicy;
134}
135#else
136static inline bool task_has_mempolicy(struct task_struct *task)
137{
138 return false;
139}
140#endif
141
142
1da177e4
LT
143/* bits in struct cpuset flags field */
144typedef enum {
efeb77b2 145 CS_ONLINE,
1da177e4
LT
146 CS_CPU_EXCLUSIVE,
147 CS_MEM_EXCLUSIVE,
78608366 148 CS_MEM_HARDWALL,
45b07ef3 149 CS_MEMORY_MIGRATE,
029190c5 150 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
151 CS_SPREAD_PAGE,
152 CS_SPREAD_SLAB,
1da177e4
LT
153} cpuset_flagbits_t;
154
155/* convenient tests for these bits */
efeb77b2
TH
156static inline bool is_cpuset_online(const struct cpuset *cs)
157{
158 return test_bit(CS_ONLINE, &cs->flags);
159}
160
1da177e4
LT
161static inline int is_cpu_exclusive(const struct cpuset *cs)
162{
7b5b9ef0 163 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
164}
165
166static inline int is_mem_exclusive(const struct cpuset *cs)
167{
7b5b9ef0 168 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
169}
170
78608366
PM
171static inline int is_mem_hardwall(const struct cpuset *cs)
172{
173 return test_bit(CS_MEM_HARDWALL, &cs->flags);
174}
175
029190c5
PJ
176static inline int is_sched_load_balance(const struct cpuset *cs)
177{
178 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
179}
180
45b07ef3
PJ
181static inline int is_memory_migrate(const struct cpuset *cs)
182{
7b5b9ef0 183 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
184}
185
825a46af
PJ
186static inline int is_spread_page(const struct cpuset *cs)
187{
188 return test_bit(CS_SPREAD_PAGE, &cs->flags);
189}
190
191static inline int is_spread_slab(const struct cpuset *cs)
192{
193 return test_bit(CS_SPREAD_SLAB, &cs->flags);
194}
195
1da177e4 196static struct cpuset top_cpuset = {
efeb77b2
TH
197 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
198 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
199};
200
ae8086ce
TH
201/**
202 * cpuset_for_each_child - traverse online children of a cpuset
203 * @child_cs: loop cursor pointing to the current child
204 * @pos_cgrp: used for iteration
205 * @parent_cs: target cpuset to walk children of
206 *
207 * Walk @child_cs through the online children of @parent_cs. Must be used
208 * with RCU read locked.
209 */
210#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
211 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
212 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
213
fc560a26
TH
214/**
215 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
216 * @des_cs: loop cursor pointing to the current descendant
217 * @pos_cgrp: used for iteration
218 * @root_cs: target cpuset to walk ancestor of
219 *
220 * Walk @des_cs through the online descendants of @root_cs. Must be used
221 * with RCU read locked. The caller may modify @pos_cgrp by calling
222 * cgroup_rightmost_descendant() to skip subtree.
223 */
224#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
225 cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
226 if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
227
1da177e4 228/*
5d21cc2d
TH
229 * There are two global mutexes guarding cpuset structures - cpuset_mutex
230 * and callback_mutex. The latter may nest inside the former. We also
231 * require taking task_lock() when dereferencing a task's cpuset pointer.
232 * See "The task_lock() exception", at the end of this comment.
233 *
234 * A task must hold both mutexes to modify cpusets. If a task holds
235 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
236 * is the only task able to also acquire callback_mutex and be able to
237 * modify cpusets. It can perform various checks on the cpuset structure
238 * first, knowing nothing will change. It can also allocate memory while
239 * just holding cpuset_mutex. While it is performing these checks, various
240 * callback routines can briefly acquire callback_mutex to query cpusets.
241 * Once it is ready to make the changes, it takes callback_mutex, blocking
242 * everyone else.
053199ed
PJ
243 *
244 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 245 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
246 * from one of the callbacks into the cpuset code from within
247 * __alloc_pages().
248 *
3d3f26a7 249 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
250 * access to cpusets.
251 *
58568d2a
MX
252 * Now, the task_struct fields mems_allowed and mempolicy may be changed
253 * by other task, we use alloc_lock in the task_struct fields to protect
254 * them.
053199ed 255 *
3d3f26a7 256 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
257 * small pieces of code, such as when reading out possibly multi-word
258 * cpumasks and nodemasks.
259 *
2df167a3
PM
260 * Accessing a task's cpuset should be done in accordance with the
261 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
262 */
263
5d21cc2d 264static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 265static DEFINE_MUTEX(callback_mutex);
4247bdc6 266
3a5a6d0c
TH
267/*
268 * CPU / memory hotplug is handled asynchronously.
269 */
8d033948
TH
270static struct workqueue_struct *cpuset_propagate_hotplug_wq;
271
3a5a6d0c 272static void cpuset_hotplug_workfn(struct work_struct *work);
8d033948 273static void cpuset_propagate_hotplug_workfn(struct work_struct *work);
02bb5863 274static void schedule_cpuset_propagate_hotplug(struct cpuset *cs);
3a5a6d0c
TH
275
276static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
277
cf417141
MK
278/*
279 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 280 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
281 * silently switch it to mount "cgroup" instead
282 */
f7e83571
AV
283static struct dentry *cpuset_mount(struct file_system_type *fs_type,
284 int flags, const char *unused_dev_name, void *data)
1da177e4 285{
8793d854 286 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 287 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
288 if (cgroup_fs) {
289 char mountopts[] =
290 "cpuset,noprefix,"
291 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
292 ret = cgroup_fs->mount(cgroup_fs, flags,
293 unused_dev_name, mountopts);
8793d854
PM
294 put_filesystem(cgroup_fs);
295 }
296 return ret;
1da177e4
LT
297}
298
299static struct file_system_type cpuset_fs_type = {
300 .name = "cpuset",
f7e83571 301 .mount = cpuset_mount,
1da177e4
LT
302};
303
1da177e4 304/*
300ed6cb 305 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4
LT
306 * are online. If none are online, walk up the cpuset hierarchy
307 * until we find one that does have some online cpus. If we get
308 * all the way to the top and still haven't found any online cpus,
5f054e31
RR
309 * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
310 * task, return cpu_online_mask.
1da177e4
LT
311 *
312 * One way or another, we guarantee to return some non-empty subset
5f054e31 313 * of cpu_online_mask.
1da177e4 314 *
3d3f26a7 315 * Call with callback_mutex held.
1da177e4
LT
316 */
317
6af866af
LZ
318static void guarantee_online_cpus(const struct cpuset *cs,
319 struct cpumask *pmask)
1da177e4 320{
300ed6cb 321 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 322 cs = parent_cs(cs);
1da177e4 323 if (cs)
300ed6cb 324 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4 325 else
300ed6cb
LZ
326 cpumask_copy(pmask, cpu_online_mask);
327 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
1da177e4
LT
328}
329
330/*
331 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
332 * are online, with memory. If none are online with memory, walk
333 * up the cpuset hierarchy until we find one that does have some
334 * online mems. If we get all the way to the top and still haven't
38d7bee9 335 * found any online mems, return node_states[N_MEMORY].
1da177e4
LT
336 *
337 * One way or another, we guarantee to return some non-empty subset
38d7bee9 338 * of node_states[N_MEMORY].
1da177e4 339 *
3d3f26a7 340 * Call with callback_mutex held.
1da177e4
LT
341 */
342
343static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
344{
0e1e7c7a 345 while (cs && !nodes_intersects(cs->mems_allowed,
38d7bee9 346 node_states[N_MEMORY]))
c431069f 347 cs = parent_cs(cs);
1da177e4 348 if (cs)
0e1e7c7a 349 nodes_and(*pmask, cs->mems_allowed,
38d7bee9 350 node_states[N_MEMORY]);
1da177e4 351 else
38d7bee9
LJ
352 *pmask = node_states[N_MEMORY];
353 BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
1da177e4
LT
354}
355
f3b39d47
MX
356/*
357 * update task's spread flag if cpuset's page/slab spread flag is set
358 *
5d21cc2d 359 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
360 */
361static void cpuset_update_task_spread_flag(struct cpuset *cs,
362 struct task_struct *tsk)
363{
364 if (is_spread_page(cs))
365 tsk->flags |= PF_SPREAD_PAGE;
366 else
367 tsk->flags &= ~PF_SPREAD_PAGE;
368 if (is_spread_slab(cs))
369 tsk->flags |= PF_SPREAD_SLAB;
370 else
371 tsk->flags &= ~PF_SPREAD_SLAB;
372}
373
1da177e4
LT
374/*
375 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
376 *
377 * One cpuset is a subset of another if all its allowed CPUs and
378 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 379 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
380 */
381
382static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
383{
300ed6cb 384 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
385 nodes_subset(p->mems_allowed, q->mems_allowed) &&
386 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
387 is_mem_exclusive(p) <= is_mem_exclusive(q);
388}
389
645fcc9d
LZ
390/**
391 * alloc_trial_cpuset - allocate a trial cpuset
392 * @cs: the cpuset that the trial cpuset duplicates
393 */
394static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
395{
300ed6cb
LZ
396 struct cpuset *trial;
397
398 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
399 if (!trial)
400 return NULL;
401
402 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
403 kfree(trial);
404 return NULL;
405 }
406 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
407
408 return trial;
645fcc9d
LZ
409}
410
411/**
412 * free_trial_cpuset - free the trial cpuset
413 * @trial: the trial cpuset to be freed
414 */
415static void free_trial_cpuset(struct cpuset *trial)
416{
300ed6cb 417 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
418 kfree(trial);
419}
420
1da177e4
LT
421/*
422 * validate_change() - Used to validate that any proposed cpuset change
423 * follows the structural rules for cpusets.
424 *
425 * If we replaced the flag and mask values of the current cpuset
426 * (cur) with those values in the trial cpuset (trial), would
427 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 428 * cpuset_mutex held.
1da177e4
LT
429 *
430 * 'cur' is the address of an actual, in-use cpuset. Operations
431 * such as list traversal that depend on the actual address of the
432 * cpuset in the list must use cur below, not trial.
433 *
434 * 'trial' is the address of bulk structure copy of cur, with
435 * perhaps one or more of the fields cpus_allowed, mems_allowed,
436 * or flags changed to new, trial values.
437 *
438 * Return 0 if valid, -errno if not.
439 */
440
441static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
442{
8793d854 443 struct cgroup *cont;
1da177e4 444 struct cpuset *c, *par;
ae8086ce
TH
445 int ret;
446
447 rcu_read_lock();
1da177e4
LT
448
449 /* Each of our child cpusets must be a subset of us */
ae8086ce
TH
450 ret = -EBUSY;
451 cpuset_for_each_child(c, cont, cur)
452 if (!is_cpuset_subset(c, trial))
453 goto out;
1da177e4
LT
454
455 /* Remaining checks don't apply to root cpuset */
ae8086ce 456 ret = 0;
69604067 457 if (cur == &top_cpuset)
ae8086ce 458 goto out;
1da177e4 459
c431069f 460 par = parent_cs(cur);
69604067 461
1da177e4 462 /* We must be a subset of our parent cpuset */
ae8086ce 463 ret = -EACCES;
1da177e4 464 if (!is_cpuset_subset(trial, par))
ae8086ce 465 goto out;
1da177e4 466
2df167a3
PM
467 /*
468 * If either I or some sibling (!= me) is exclusive, we can't
469 * overlap
470 */
ae8086ce
TH
471 ret = -EINVAL;
472 cpuset_for_each_child(c, cont, par) {
1da177e4
LT
473 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
474 c != cur &&
300ed6cb 475 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 476 goto out;
1da177e4
LT
477 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
478 c != cur &&
479 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 480 goto out;
1da177e4
LT
481 }
482
452477fa
TH
483 /*
484 * Cpusets with tasks - existing or newly being attached - can't
485 * have empty cpus_allowed or mems_allowed.
486 */
ae8086ce 487 ret = -ENOSPC;
452477fa 488 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
ae8086ce
TH
489 (cpumask_empty(trial->cpus_allowed) ||
490 nodes_empty(trial->mems_allowed)))
491 goto out;
020958b6 492
ae8086ce
TH
493 ret = 0;
494out:
495 rcu_read_unlock();
496 return ret;
1da177e4
LT
497}
498
db7f47cf 499#ifdef CONFIG_SMP
029190c5 500/*
cf417141 501 * Helper routine for generate_sched_domains().
029190c5
PJ
502 * Do cpusets a, b have overlapping cpus_allowed masks?
503 */
029190c5
PJ
504static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
505{
300ed6cb 506 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
507}
508
1d3504fc
HS
509static void
510update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
511{
1d3504fc
HS
512 if (dattr->relax_domain_level < c->relax_domain_level)
513 dattr->relax_domain_level = c->relax_domain_level;
514 return;
515}
516
fc560a26
TH
517static void update_domain_attr_tree(struct sched_domain_attr *dattr,
518 struct cpuset *root_cs)
f5393693 519{
fc560a26
TH
520 struct cpuset *cp;
521 struct cgroup *pos_cgrp;
f5393693 522
fc560a26
TH
523 rcu_read_lock();
524 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
525 /* skip the whole subtree if @cp doesn't have any CPU */
526 if (cpumask_empty(cp->cpus_allowed)) {
527 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
f5393693 528 continue;
fc560a26 529 }
f5393693
LJ
530
531 if (is_sched_load_balance(cp))
532 update_domain_attr(dattr, cp);
f5393693 533 }
fc560a26 534 rcu_read_unlock();
f5393693
LJ
535}
536
029190c5 537/*
cf417141
MK
538 * generate_sched_domains()
539 *
540 * This function builds a partial partition of the systems CPUs
541 * A 'partial partition' is a set of non-overlapping subsets whose
542 * union is a subset of that set.
543 * The output of this function needs to be passed to kernel/sched.c
544 * partition_sched_domains() routine, which will rebuild the scheduler's
545 * load balancing domains (sched domains) as specified by that partial
546 * partition.
029190c5 547 *
45ce80fb 548 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
549 * for a background explanation of this.
550 *
551 * Does not return errors, on the theory that the callers of this
552 * routine would rather not worry about failures to rebuild sched
553 * domains when operating in the severe memory shortage situations
554 * that could cause allocation failures below.
555 *
5d21cc2d 556 * Must be called with cpuset_mutex held.
029190c5
PJ
557 *
558 * The three key local variables below are:
aeed6824 559 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
560 * top-down scan of all cpusets. This scan loads a pointer
561 * to each cpuset marked is_sched_load_balance into the
562 * array 'csa'. For our purposes, rebuilding the schedulers
563 * sched domains, we can ignore !is_sched_load_balance cpusets.
564 * csa - (for CpuSet Array) Array of pointers to all the cpusets
565 * that need to be load balanced, for convenient iterative
566 * access by the subsequent code that finds the best partition,
567 * i.e the set of domains (subsets) of CPUs such that the
568 * cpus_allowed of every cpuset marked is_sched_load_balance
569 * is a subset of one of these domains, while there are as
570 * many such domains as possible, each as small as possible.
571 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
572 * the kernel/sched.c routine partition_sched_domains() in a
573 * convenient format, that can be easily compared to the prior
574 * value to determine what partition elements (sched domains)
575 * were changed (added or removed.)
576 *
577 * Finding the best partition (set of domains):
578 * The triple nested loops below over i, j, k scan over the
579 * load balanced cpusets (using the array of cpuset pointers in
580 * csa[]) looking for pairs of cpusets that have overlapping
581 * cpus_allowed, but which don't have the same 'pn' partition
582 * number and gives them in the same partition number. It keeps
583 * looping on the 'restart' label until it can no longer find
584 * any such pairs.
585 *
586 * The union of the cpus_allowed masks from the set of
587 * all cpusets having the same 'pn' value then form the one
588 * element of the partition (one sched domain) to be passed to
589 * partition_sched_domains().
590 */
acc3f5d7 591static int generate_sched_domains(cpumask_var_t **domains,
cf417141 592 struct sched_domain_attr **attributes)
029190c5 593{
029190c5
PJ
594 struct cpuset *cp; /* scans q */
595 struct cpuset **csa; /* array of all cpuset ptrs */
596 int csn; /* how many cpuset ptrs in csa so far */
597 int i, j, k; /* indices for partition finding loops */
acc3f5d7 598 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 599 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 600 int ndoms = 0; /* number of sched domains in result */
6af866af 601 int nslot; /* next empty doms[] struct cpumask slot */
fc560a26 602 struct cgroup *pos_cgrp;
029190c5 603
029190c5 604 doms = NULL;
1d3504fc 605 dattr = NULL;
cf417141 606 csa = NULL;
029190c5
PJ
607
608 /* Special case for the 99% of systems with one, full, sched domain */
609 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
610 ndoms = 1;
611 doms = alloc_sched_domains(ndoms);
029190c5 612 if (!doms)
cf417141
MK
613 goto done;
614
1d3504fc
HS
615 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
616 if (dattr) {
617 *dattr = SD_ATTR_INIT;
93a65575 618 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 619 }
acc3f5d7 620 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 621
cf417141 622 goto done;
029190c5
PJ
623 }
624
029190c5
PJ
625 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
626 if (!csa)
627 goto done;
628 csn = 0;
629
fc560a26
TH
630 rcu_read_lock();
631 cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
f5393693 632 /*
fc560a26
TH
633 * Continue traversing beyond @cp iff @cp has some CPUs and
634 * isn't load balancing. The former is obvious. The
635 * latter: All child cpusets contain a subset of the
636 * parent's cpus, so just skip them, and then we call
637 * update_domain_attr_tree() to calc relax_domain_level of
638 * the corresponding sched domain.
f5393693 639 */
fc560a26
TH
640 if (!cpumask_empty(cp->cpus_allowed) &&
641 !is_sched_load_balance(cp))
f5393693 642 continue;
489a5393 643
fc560a26
TH
644 if (is_sched_load_balance(cp))
645 csa[csn++] = cp;
646
647 /* skip @cp's subtree */
648 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
649 }
650 rcu_read_unlock();
029190c5
PJ
651
652 for (i = 0; i < csn; i++)
653 csa[i]->pn = i;
654 ndoms = csn;
655
656restart:
657 /* Find the best partition (set of sched domains) */
658 for (i = 0; i < csn; i++) {
659 struct cpuset *a = csa[i];
660 int apn = a->pn;
661
662 for (j = 0; j < csn; j++) {
663 struct cpuset *b = csa[j];
664 int bpn = b->pn;
665
666 if (apn != bpn && cpusets_overlap(a, b)) {
667 for (k = 0; k < csn; k++) {
668 struct cpuset *c = csa[k];
669
670 if (c->pn == bpn)
671 c->pn = apn;
672 }
673 ndoms--; /* one less element */
674 goto restart;
675 }
676 }
677 }
678
cf417141
MK
679 /*
680 * Now we know how many domains to create.
681 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
682 */
acc3f5d7 683 doms = alloc_sched_domains(ndoms);
700018e0 684 if (!doms)
cf417141 685 goto done;
cf417141
MK
686
687 /*
688 * The rest of the code, including the scheduler, can deal with
689 * dattr==NULL case. No need to abort if alloc fails.
690 */
1d3504fc 691 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
692
693 for (nslot = 0, i = 0; i < csn; i++) {
694 struct cpuset *a = csa[i];
6af866af 695 struct cpumask *dp;
029190c5
PJ
696 int apn = a->pn;
697
cf417141
MK
698 if (apn < 0) {
699 /* Skip completed partitions */
700 continue;
701 }
702
acc3f5d7 703 dp = doms[nslot];
cf417141
MK
704
705 if (nslot == ndoms) {
706 static int warnings = 10;
707 if (warnings) {
708 printk(KERN_WARNING
709 "rebuild_sched_domains confused:"
710 " nslot %d, ndoms %d, csn %d, i %d,"
711 " apn %d\n",
712 nslot, ndoms, csn, i, apn);
713 warnings--;
029190c5 714 }
cf417141
MK
715 continue;
716 }
029190c5 717
6af866af 718 cpumask_clear(dp);
cf417141
MK
719 if (dattr)
720 *(dattr + nslot) = SD_ATTR_INIT;
721 for (j = i; j < csn; j++) {
722 struct cpuset *b = csa[j];
723
724 if (apn == b->pn) {
300ed6cb 725 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
726 if (dattr)
727 update_domain_attr_tree(dattr + nslot, b);
728
729 /* Done with this partition */
730 b->pn = -1;
029190c5 731 }
029190c5 732 }
cf417141 733 nslot++;
029190c5
PJ
734 }
735 BUG_ON(nslot != ndoms);
736
cf417141
MK
737done:
738 kfree(csa);
739
700018e0
LZ
740 /*
741 * Fallback to the default domain if kmalloc() failed.
742 * See comments in partition_sched_domains().
743 */
744 if (doms == NULL)
745 ndoms = 1;
746
cf417141
MK
747 *domains = doms;
748 *attributes = dattr;
749 return ndoms;
750}
751
752/*
753 * Rebuild scheduler domains.
754 *
699140ba
TH
755 * If the flag 'sched_load_balance' of any cpuset with non-empty
756 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
757 * which has that flag enabled, or if any cpuset with a non-empty
758 * 'cpus' is removed, then call this routine to rebuild the
759 * scheduler's dynamic sched domains.
cf417141 760 *
5d21cc2d 761 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 762 */
699140ba 763static void rebuild_sched_domains_locked(void)
cf417141
MK
764{
765 struct sched_domain_attr *attr;
acc3f5d7 766 cpumask_var_t *doms;
cf417141
MK
767 int ndoms;
768
5d21cc2d 769 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 770 get_online_cpus();
cf417141
MK
771
772 /* Generate domain masks and attrs */
cf417141 773 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
774
775 /* Have scheduler rebuild the domains */
776 partition_sched_domains(ndoms, doms, attr);
777
86ef5c9a 778 put_online_cpus();
cf417141 779}
db7f47cf 780#else /* !CONFIG_SMP */
699140ba 781static void rebuild_sched_domains_locked(void)
db7f47cf
PM
782{
783}
784
e1b8090b 785static int generate_sched_domains(cpumask_var_t **domains,
db7f47cf
PM
786 struct sched_domain_attr **attributes)
787{
788 *domains = NULL;
789 return 1;
790}
791#endif /* CONFIG_SMP */
029190c5 792
cf417141
MK
793void rebuild_sched_domains(void)
794{
5d21cc2d 795 mutex_lock(&cpuset_mutex);
699140ba 796 rebuild_sched_domains_locked();
5d21cc2d 797 mutex_unlock(&cpuset_mutex);
029190c5
PJ
798}
799
58f4790b
CW
800/**
801 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
802 * @tsk: task to test
803 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
804 *
5d21cc2d 805 * Call with cpuset_mutex held. May take callback_mutex during call.
58f4790b
CW
806 * Called for each task in a cgroup by cgroup_scan_tasks().
807 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
808 * words, if its mask is not equal to its cpuset's mask).
053199ed 809 */
9e0c914c
AB
810static int cpuset_test_cpumask(struct task_struct *tsk,
811 struct cgroup_scanner *scan)
58f4790b 812{
300ed6cb 813 return !cpumask_equal(&tsk->cpus_allowed,
58f4790b
CW
814 (cgroup_cs(scan->cg))->cpus_allowed);
815}
053199ed 816
58f4790b
CW
817/**
818 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
819 * @tsk: task to test
820 * @scan: struct cgroup_scanner containing the cgroup of the task
821 *
822 * Called by cgroup_scan_tasks() for each task in a cgroup whose
823 * cpus_allowed mask needs to be changed.
824 *
825 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 826 * holding cpuset_mutex at this point.
58f4790b 827 */
9e0c914c
AB
828static void cpuset_change_cpumask(struct task_struct *tsk,
829 struct cgroup_scanner *scan)
58f4790b 830{
300ed6cb 831 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
832}
833
0b2f630a
MX
834/**
835 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
836 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 837 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 838 *
5d21cc2d 839 * Called with cpuset_mutex held
0b2f630a
MX
840 *
841 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
842 * calling callback functions for each.
843 *
4e74339a
LZ
844 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
845 * if @heap != NULL.
0b2f630a 846 */
4e74339a 847static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
848{
849 struct cgroup_scanner scan;
0b2f630a
MX
850
851 scan.cg = cs->css.cgroup;
852 scan.test_task = cpuset_test_cpumask;
853 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
854 scan.heap = heap;
855 cgroup_scan_tasks(&scan);
0b2f630a
MX
856}
857
58f4790b
CW
858/**
859 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
860 * @cs: the cpuset to consider
861 * @buf: buffer of cpu numbers written to this cpuset
862 */
645fcc9d
LZ
863static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
864 const char *buf)
1da177e4 865{
4e74339a 866 struct ptr_heap heap;
58f4790b
CW
867 int retval;
868 int is_load_balanced;
1da177e4 869
5f054e31 870 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
871 if (cs == &top_cpuset)
872 return -EACCES;
873
6f7f02e7 874 /*
c8d9c90c 875 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
876 * Since cpulist_parse() fails on an empty mask, we special case
877 * that parsing. The validate_change() call ensures that cpusets
878 * with tasks have cpus.
6f7f02e7 879 */
020958b6 880 if (!*buf) {
300ed6cb 881 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 882 } else {
300ed6cb 883 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
884 if (retval < 0)
885 return retval;
37340746 886
6ad4c188 887 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 888 return -EINVAL;
6f7f02e7 889 }
645fcc9d 890 retval = validate_change(cs, trialcs);
85d7b949
DG
891 if (retval < 0)
892 return retval;
029190c5 893
8707d8b8 894 /* Nothing to do if the cpus didn't change */
300ed6cb 895 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 896 return 0;
58f4790b 897
4e74339a
LZ
898 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
899 if (retval)
900 return retval;
901
645fcc9d 902 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 903
3d3f26a7 904 mutex_lock(&callback_mutex);
300ed6cb 905 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 906 mutex_unlock(&callback_mutex);
029190c5 907
8707d8b8
PM
908 /*
909 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 910 * that need an update.
8707d8b8 911 */
4e74339a
LZ
912 update_tasks_cpumask(cs, &heap);
913
914 heap_free(&heap);
58f4790b 915
8707d8b8 916 if (is_load_balanced)
699140ba 917 rebuild_sched_domains_locked();
85d7b949 918 return 0;
1da177e4
LT
919}
920
e4e364e8
PJ
921/*
922 * cpuset_migrate_mm
923 *
924 * Migrate memory region from one set of nodes to another.
925 *
926 * Temporarilly set tasks mems_allowed to target nodes of migration,
927 * so that the migration code can allocate pages on these nodes.
928 *
5d21cc2d 929 * Call holding cpuset_mutex, so current's cpuset won't change
c8d9c90c 930 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
931 * calls. Therefore we don't need to take task_lock around the
932 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 933 * our task's cpuset.
e4e364e8 934 *
e4e364e8
PJ
935 * While the mm_struct we are migrating is typically from some
936 * other task, the task_struct mems_allowed that we are hacking
937 * is for our current task, which must allocate new pages for that
938 * migrating memory region.
e4e364e8
PJ
939 */
940
941static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
942 const nodemask_t *to)
943{
944 struct task_struct *tsk = current;
945
e4e364e8 946 tsk->mems_allowed = *to;
e4e364e8
PJ
947
948 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
949
8793d854 950 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
951}
952
3b6766fe 953/*
58568d2a
MX
954 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
955 * @tsk: the task to change
956 * @newmems: new nodes that the task will be set
957 *
958 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
959 * we structure updates as setting all new allowed nodes, then clearing newly
960 * disallowed ones.
58568d2a
MX
961 */
962static void cpuset_change_task_nodemask(struct task_struct *tsk,
963 nodemask_t *newmems)
964{
b246272e 965 bool need_loop;
89e8a244 966
c0ff7453
MX
967 /*
968 * Allow tasks that have access to memory reserves because they have
969 * been OOM killed to get memory anywhere.
970 */
971 if (unlikely(test_thread_flag(TIF_MEMDIE)))
972 return;
973 if (current->flags & PF_EXITING) /* Let dying task have memory */
974 return;
975
976 task_lock(tsk);
b246272e
DR
977 /*
978 * Determine if a loop is necessary if another thread is doing
979 * get_mems_allowed(). If at least one node remains unchanged and
980 * tsk does not have a mempolicy, then an empty nodemask will not be
981 * possible when mems_allowed is larger than a word.
982 */
983 need_loop = task_has_mempolicy(tsk) ||
984 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 985
cc9a6c87
MG
986 if (need_loop)
987 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 988
cc9a6c87
MG
989 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
990 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
991
992 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 993 tsk->mems_allowed = *newmems;
cc9a6c87
MG
994
995 if (need_loop)
996 write_seqcount_end(&tsk->mems_allowed_seq);
997
c0ff7453 998 task_unlock(tsk);
58568d2a
MX
999}
1000
1001/*
1002 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1003 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
5d21cc2d 1004 * memory_migrate flag is set. Called with cpuset_mutex held.
3b6766fe
LZ
1005 */
1006static void cpuset_change_nodemask(struct task_struct *p,
1007 struct cgroup_scanner *scan)
1008{
1009 struct mm_struct *mm;
1010 struct cpuset *cs;
1011 int migrate;
1012 const nodemask_t *oldmem = scan->data;
5d21cc2d 1013 static nodemask_t newmems; /* protected by cpuset_mutex */
58568d2a
MX
1014
1015 cs = cgroup_cs(scan->cg);
ee24d379 1016 guarantee_online_mems(cs, &newmems);
58568d2a 1017
ee24d379 1018 cpuset_change_task_nodemask(p, &newmems);
53feb297 1019
3b6766fe
LZ
1020 mm = get_task_mm(p);
1021 if (!mm)
1022 return;
1023
3b6766fe
LZ
1024 migrate = is_memory_migrate(cs);
1025
1026 mpol_rebind_mm(mm, &cs->mems_allowed);
1027 if (migrate)
1028 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1029 mmput(mm);
1030}
1031
8793d854
PM
1032static void *cpuset_being_rebound;
1033
0b2f630a
MX
1034/**
1035 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1036 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1037 * @oldmem: old mems_allowed of cpuset cs
010cfac4 1038 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 1039 *
5d21cc2d 1040 * Called with cpuset_mutex held
010cfac4
LZ
1041 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1042 * if @heap != NULL.
0b2f630a 1043 */
010cfac4
LZ
1044static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1045 struct ptr_heap *heap)
1da177e4 1046{
3b6766fe 1047 struct cgroup_scanner scan;
59dac16f 1048
846a16bf 1049 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1050
3b6766fe
LZ
1051 scan.cg = cs->css.cgroup;
1052 scan.test_task = NULL;
1053 scan.process_task = cpuset_change_nodemask;
010cfac4 1054 scan.heap = heap;
3b6766fe 1055 scan.data = (nodemask_t *)oldmem;
4225399a
PJ
1056
1057 /*
3b6766fe
LZ
1058 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1059 * take while holding tasklist_lock. Forks can happen - the
1060 * mpol_dup() cpuset_being_rebound check will catch such forks,
1061 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1062 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1063 * will be contending for the global variable cpuset_being_rebound.
4225399a 1064 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1065 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1066 */
010cfac4 1067 cgroup_scan_tasks(&scan);
4225399a 1068
2df167a3 1069 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1070 cpuset_being_rebound = NULL;
1da177e4
LT
1071}
1072
0b2f630a
MX
1073/*
1074 * Handle user request to change the 'mems' memory placement
1075 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1076 * cpusets mems_allowed, and for each task in the cpuset,
1077 * update mems_allowed and rebind task's mempolicy and any vma
1078 * mempolicies and if the cpuset is marked 'memory_migrate',
1079 * migrate the tasks pages to the new memory.
0b2f630a 1080 *
5d21cc2d 1081 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1082 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1083 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1084 * their mempolicies to the cpusets new mems_allowed.
1085 */
645fcc9d
LZ
1086static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1087 const char *buf)
0b2f630a 1088{
53feb297 1089 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
0b2f630a 1090 int retval;
010cfac4 1091 struct ptr_heap heap;
0b2f630a 1092
53feb297
MX
1093 if (!oldmem)
1094 return -ENOMEM;
1095
0b2f630a 1096 /*
38d7bee9 1097 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1098 * it's read-only
1099 */
53feb297
MX
1100 if (cs == &top_cpuset) {
1101 retval = -EACCES;
1102 goto done;
1103 }
0b2f630a 1104
0b2f630a
MX
1105 /*
1106 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1107 * Since nodelist_parse() fails on an empty mask, we special case
1108 * that parsing. The validate_change() call ensures that cpusets
1109 * with tasks have memory.
1110 */
1111 if (!*buf) {
645fcc9d 1112 nodes_clear(trialcs->mems_allowed);
0b2f630a 1113 } else {
645fcc9d 1114 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1115 if (retval < 0)
1116 goto done;
1117
645fcc9d 1118 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1119 node_states[N_MEMORY])) {
53feb297
MX
1120 retval = -EINVAL;
1121 goto done;
1122 }
0b2f630a 1123 }
53feb297
MX
1124 *oldmem = cs->mems_allowed;
1125 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1126 retval = 0; /* Too easy - nothing to do */
1127 goto done;
1128 }
645fcc9d 1129 retval = validate_change(cs, trialcs);
0b2f630a
MX
1130 if (retval < 0)
1131 goto done;
1132
010cfac4
LZ
1133 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1134 if (retval < 0)
1135 goto done;
1136
0b2f630a 1137 mutex_lock(&callback_mutex);
645fcc9d 1138 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1139 mutex_unlock(&callback_mutex);
1140
53feb297 1141 update_tasks_nodemask(cs, oldmem, &heap);
010cfac4
LZ
1142
1143 heap_free(&heap);
0b2f630a 1144done:
53feb297 1145 NODEMASK_FREE(oldmem);
0b2f630a
MX
1146 return retval;
1147}
1148
8793d854
PM
1149int current_cpuset_is_being_rebound(void)
1150{
1151 return task_cs(current) == cpuset_being_rebound;
1152}
1153
5be7a479 1154static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1155{
db7f47cf 1156#ifdef CONFIG_SMP
60495e77 1157 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1158 return -EINVAL;
db7f47cf 1159#endif
1d3504fc
HS
1160
1161 if (val != cs->relax_domain_level) {
1162 cs->relax_domain_level = val;
300ed6cb
LZ
1163 if (!cpumask_empty(cs->cpus_allowed) &&
1164 is_sched_load_balance(cs))
699140ba 1165 rebuild_sched_domains_locked();
1d3504fc
HS
1166 }
1167
1168 return 0;
1169}
1170
950592f7
MX
1171/*
1172 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1173 * @tsk: task to be updated
1174 * @scan: struct cgroup_scanner containing the cgroup of the task
1175 *
1176 * Called by cgroup_scan_tasks() for each task in a cgroup.
1177 *
1178 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 1179 * holding cpuset_mutex at this point.
950592f7
MX
1180 */
1181static void cpuset_change_flag(struct task_struct *tsk,
1182 struct cgroup_scanner *scan)
1183{
1184 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1185}
1186
1187/*
1188 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1189 * @cs: the cpuset in which each task's spread flags needs to be changed
1190 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1191 *
5d21cc2d 1192 * Called with cpuset_mutex held
950592f7
MX
1193 *
1194 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1195 * calling callback functions for each.
1196 *
1197 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1198 * if @heap != NULL.
1199 */
1200static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1201{
1202 struct cgroup_scanner scan;
1203
1204 scan.cg = cs->css.cgroup;
1205 scan.test_task = NULL;
1206 scan.process_task = cpuset_change_flag;
1207 scan.heap = heap;
1208 cgroup_scan_tasks(&scan);
1209}
1210
1da177e4
LT
1211/*
1212 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1213 * bit: the bit to update (see cpuset_flagbits_t)
1214 * cs: the cpuset to update
1215 * turning_on: whether the flag is being set or cleared
053199ed 1216 *
5d21cc2d 1217 * Call with cpuset_mutex held.
1da177e4
LT
1218 */
1219
700fe1ab
PM
1220static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1221 int turning_on)
1da177e4 1222{
645fcc9d 1223 struct cpuset *trialcs;
40b6a762 1224 int balance_flag_changed;
950592f7
MX
1225 int spread_flag_changed;
1226 struct ptr_heap heap;
1227 int err;
1da177e4 1228
645fcc9d
LZ
1229 trialcs = alloc_trial_cpuset(cs);
1230 if (!trialcs)
1231 return -ENOMEM;
1232
1da177e4 1233 if (turning_on)
645fcc9d 1234 set_bit(bit, &trialcs->flags);
1da177e4 1235 else
645fcc9d 1236 clear_bit(bit, &trialcs->flags);
1da177e4 1237
645fcc9d 1238 err = validate_change(cs, trialcs);
85d7b949 1239 if (err < 0)
645fcc9d 1240 goto out;
029190c5 1241
950592f7
MX
1242 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1243 if (err < 0)
1244 goto out;
1245
029190c5 1246 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1247 is_sched_load_balance(trialcs));
029190c5 1248
950592f7
MX
1249 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1250 || (is_spread_page(cs) != is_spread_page(trialcs)));
1251
3d3f26a7 1252 mutex_lock(&callback_mutex);
645fcc9d 1253 cs->flags = trialcs->flags;
3d3f26a7 1254 mutex_unlock(&callback_mutex);
85d7b949 1255
300ed6cb 1256 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1257 rebuild_sched_domains_locked();
029190c5 1258
950592f7
MX
1259 if (spread_flag_changed)
1260 update_tasks_flags(cs, &heap);
1261 heap_free(&heap);
645fcc9d
LZ
1262out:
1263 free_trial_cpuset(trialcs);
1264 return err;
1da177e4
LT
1265}
1266
3e0d98b9 1267/*
80f7228b 1268 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1269 *
1270 * These routines manage a digitally filtered, constant time based,
1271 * event frequency meter. There are four routines:
1272 * fmeter_init() - initialize a frequency meter.
1273 * fmeter_markevent() - called each time the event happens.
1274 * fmeter_getrate() - returns the recent rate of such events.
1275 * fmeter_update() - internal routine used to update fmeter.
1276 *
1277 * A common data structure is passed to each of these routines,
1278 * which is used to keep track of the state required to manage the
1279 * frequency meter and its digital filter.
1280 *
1281 * The filter works on the number of events marked per unit time.
1282 * The filter is single-pole low-pass recursive (IIR). The time unit
1283 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1284 * simulate 3 decimal digits of precision (multiplied by 1000).
1285 *
1286 * With an FM_COEF of 933, and a time base of 1 second, the filter
1287 * has a half-life of 10 seconds, meaning that if the events quit
1288 * happening, then the rate returned from the fmeter_getrate()
1289 * will be cut in half each 10 seconds, until it converges to zero.
1290 *
1291 * It is not worth doing a real infinitely recursive filter. If more
1292 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1293 * just compute FM_MAXTICKS ticks worth, by which point the level
1294 * will be stable.
1295 *
1296 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1297 * arithmetic overflow in the fmeter_update() routine.
1298 *
1299 * Given the simple 32 bit integer arithmetic used, this meter works
1300 * best for reporting rates between one per millisecond (msec) and
1301 * one per 32 (approx) seconds. At constant rates faster than one
1302 * per msec it maxes out at values just under 1,000,000. At constant
1303 * rates between one per msec, and one per second it will stabilize
1304 * to a value N*1000, where N is the rate of events per second.
1305 * At constant rates between one per second and one per 32 seconds,
1306 * it will be choppy, moving up on the seconds that have an event,
1307 * and then decaying until the next event. At rates slower than
1308 * about one in 32 seconds, it decays all the way back to zero between
1309 * each event.
1310 */
1311
1312#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1313#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1314#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1315#define FM_SCALE 1000 /* faux fixed point scale */
1316
1317/* Initialize a frequency meter */
1318static void fmeter_init(struct fmeter *fmp)
1319{
1320 fmp->cnt = 0;
1321 fmp->val = 0;
1322 fmp->time = 0;
1323 spin_lock_init(&fmp->lock);
1324}
1325
1326/* Internal meter update - process cnt events and update value */
1327static void fmeter_update(struct fmeter *fmp)
1328{
1329 time_t now = get_seconds();
1330 time_t ticks = now - fmp->time;
1331
1332 if (ticks == 0)
1333 return;
1334
1335 ticks = min(FM_MAXTICKS, ticks);
1336 while (ticks-- > 0)
1337 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1338 fmp->time = now;
1339
1340 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1341 fmp->cnt = 0;
1342}
1343
1344/* Process any previous ticks, then bump cnt by one (times scale). */
1345static void fmeter_markevent(struct fmeter *fmp)
1346{
1347 spin_lock(&fmp->lock);
1348 fmeter_update(fmp);
1349 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1350 spin_unlock(&fmp->lock);
1351}
1352
1353/* Process any previous ticks, then return current value. */
1354static int fmeter_getrate(struct fmeter *fmp)
1355{
1356 int val;
1357
1358 spin_lock(&fmp->lock);
1359 fmeter_update(fmp);
1360 val = fmp->val;
1361 spin_unlock(&fmp->lock);
1362 return val;
1363}
1364
5d21cc2d 1365/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
761b3ef5 1366static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
f780bdb7 1367{
2f7ee569 1368 struct cpuset *cs = cgroup_cs(cgrp);
bb9d97b6
TH
1369 struct task_struct *task;
1370 int ret;
1da177e4 1371
5d21cc2d
TH
1372 mutex_lock(&cpuset_mutex);
1373
1374 ret = -ENOSPC;
300ed6cb 1375 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
5d21cc2d 1376 goto out_unlock;
9985b0ba 1377
bb9d97b6
TH
1378 cgroup_taskset_for_each(task, cgrp, tset) {
1379 /*
1380 * Kthreads bound to specific cpus cannot be moved to a new
1381 * cpuset; we cannot change their cpu affinity and
1382 * isolating such threads by their set of allowed nodes is
1383 * unnecessary. Thus, cpusets are not applicable for such
1384 * threads. This prevents checking for success of
1385 * set_cpus_allowed_ptr() on all attached tasks before
1386 * cpus_allowed may be changed.
1387 */
5d21cc2d 1388 ret = -EINVAL;
bb9d97b6 1389 if (task->flags & PF_THREAD_BOUND)
5d21cc2d
TH
1390 goto out_unlock;
1391 ret = security_task_setscheduler(task);
1392 if (ret)
1393 goto out_unlock;
bb9d97b6 1394 }
f780bdb7 1395
452477fa
TH
1396 /*
1397 * Mark attach is in progress. This makes validate_change() fail
1398 * changes which zero cpus/mems_allowed.
1399 */
1400 cs->attach_in_progress++;
5d21cc2d
TH
1401 ret = 0;
1402out_unlock:
1403 mutex_unlock(&cpuset_mutex);
1404 return ret;
8793d854 1405}
f780bdb7 1406
452477fa
TH
1407static void cpuset_cancel_attach(struct cgroup *cgrp,
1408 struct cgroup_taskset *tset)
1409{
5d21cc2d 1410 mutex_lock(&cpuset_mutex);
452477fa 1411 cgroup_cs(cgrp)->attach_in_progress--;
5d21cc2d 1412 mutex_unlock(&cpuset_mutex);
8793d854 1413}
1da177e4 1414
4e4c9a14 1415/*
5d21cc2d 1416 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1417 * but we can't allocate it dynamically there. Define it global and
1418 * allocate from cpuset_init().
1419 */
1420static cpumask_var_t cpus_attach;
1421
761b3ef5 1422static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
8793d854 1423{
5d21cc2d 1424 /* static bufs protected by cpuset_mutex */
4e4c9a14
TH
1425 static nodemask_t cpuset_attach_nodemask_from;
1426 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1427 struct mm_struct *mm;
bb9d97b6
TH
1428 struct task_struct *task;
1429 struct task_struct *leader = cgroup_taskset_first(tset);
2f7ee569
TH
1430 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1431 struct cpuset *cs = cgroup_cs(cgrp);
1432 struct cpuset *oldcs = cgroup_cs(oldcgrp);
22fb52dd 1433
5d21cc2d
TH
1434 mutex_lock(&cpuset_mutex);
1435
4e4c9a14
TH
1436 /* prepare for attach */
1437 if (cs == &top_cpuset)
1438 cpumask_copy(cpus_attach, cpu_possible_mask);
1439 else
1440 guarantee_online_cpus(cs, cpus_attach);
1441
1442 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1443
bb9d97b6
TH
1444 cgroup_taskset_for_each(task, cgrp, tset) {
1445 /*
1446 * can_attach beforehand should guarantee that this doesn't
1447 * fail. TODO: have a better way to handle failure here
1448 */
1449 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1450
1451 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1452 cpuset_update_task_spread_flag(cs, task);
1453 }
22fb52dd 1454
f780bdb7
BB
1455 /*
1456 * Change mm, possibly for multiple threads in a threadgroup. This is
1457 * expensive and may sleep.
1458 */
1459 cpuset_attach_nodemask_from = oldcs->mems_allowed;
1460 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1461 mm = get_task_mm(leader);
4225399a 1462 if (mm) {
f780bdb7 1463 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2741a559 1464 if (is_memory_migrate(cs))
f780bdb7
BB
1465 cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1466 &cpuset_attach_nodemask_to);
4225399a
PJ
1467 mmput(mm);
1468 }
452477fa
TH
1469
1470 cs->attach_in_progress--;
02bb5863
TH
1471
1472 /*
1473 * We may have raced with CPU/memory hotunplug. Trigger hotplug
1474 * propagation if @cs doesn't have any CPU or memory. It will move
1475 * the newly added tasks to the nearest parent which can execute.
1476 */
1477 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1478 schedule_cpuset_propagate_hotplug(cs);
5d21cc2d
TH
1479
1480 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1481}
1482
1483/* The various types of files and directories in a cpuset file system */
1484
1485typedef enum {
45b07ef3 1486 FILE_MEMORY_MIGRATE,
1da177e4
LT
1487 FILE_CPULIST,
1488 FILE_MEMLIST,
1489 FILE_CPU_EXCLUSIVE,
1490 FILE_MEM_EXCLUSIVE,
78608366 1491 FILE_MEM_HARDWALL,
029190c5 1492 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1493 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1494 FILE_MEMORY_PRESSURE_ENABLED,
1495 FILE_MEMORY_PRESSURE,
825a46af
PJ
1496 FILE_SPREAD_PAGE,
1497 FILE_SPREAD_SLAB,
1da177e4
LT
1498} cpuset_filetype_t;
1499
700fe1ab
PM
1500static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1501{
700fe1ab
PM
1502 struct cpuset *cs = cgroup_cs(cgrp);
1503 cpuset_filetype_t type = cft->private;
5d21cc2d 1504 int retval = -ENODEV;
700fe1ab 1505
5d21cc2d
TH
1506 mutex_lock(&cpuset_mutex);
1507 if (!is_cpuset_online(cs))
1508 goto out_unlock;
700fe1ab
PM
1509
1510 switch (type) {
1da177e4 1511 case FILE_CPU_EXCLUSIVE:
700fe1ab 1512 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1513 break;
1514 case FILE_MEM_EXCLUSIVE:
700fe1ab 1515 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1516 break;
78608366
PM
1517 case FILE_MEM_HARDWALL:
1518 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1519 break;
029190c5 1520 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1521 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1522 break;
45b07ef3 1523 case FILE_MEMORY_MIGRATE:
700fe1ab 1524 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1525 break;
3e0d98b9 1526 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1527 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1528 break;
1529 case FILE_MEMORY_PRESSURE:
1530 retval = -EACCES;
1531 break;
825a46af 1532 case FILE_SPREAD_PAGE:
700fe1ab 1533 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1534 break;
1535 case FILE_SPREAD_SLAB:
700fe1ab 1536 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1537 break;
1da177e4
LT
1538 default:
1539 retval = -EINVAL;
700fe1ab 1540 break;
1da177e4 1541 }
5d21cc2d
TH
1542out_unlock:
1543 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1544 return retval;
1545}
1546
5be7a479
PM
1547static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1548{
5be7a479
PM
1549 struct cpuset *cs = cgroup_cs(cgrp);
1550 cpuset_filetype_t type = cft->private;
5d21cc2d 1551 int retval = -ENODEV;
5be7a479 1552
5d21cc2d
TH
1553 mutex_lock(&cpuset_mutex);
1554 if (!is_cpuset_online(cs))
1555 goto out_unlock;
e3712395 1556
5be7a479
PM
1557 switch (type) {
1558 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1559 retval = update_relax_domain_level(cs, val);
1560 break;
1561 default:
1562 retval = -EINVAL;
1563 break;
1564 }
5d21cc2d
TH
1565out_unlock:
1566 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1567 return retval;
1568}
1569
e3712395
PM
1570/*
1571 * Common handling for a write to a "cpus" or "mems" file.
1572 */
1573static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1574 const char *buf)
1575{
645fcc9d
LZ
1576 struct cpuset *cs = cgroup_cs(cgrp);
1577 struct cpuset *trialcs;
5d21cc2d 1578 int retval = -ENODEV;
e3712395 1579
3a5a6d0c
TH
1580 /*
1581 * CPU or memory hotunplug may leave @cs w/o any execution
1582 * resources, in which case the hotplug code asynchronously updates
1583 * configuration and transfers all tasks to the nearest ancestor
1584 * which can execute.
1585 *
1586 * As writes to "cpus" or "mems" may restore @cs's execution
1587 * resources, wait for the previously scheduled operations before
1588 * proceeding, so that we don't end up keep removing tasks added
1589 * after execution capability is restored.
02bb5863
TH
1590 *
1591 * Flushing cpuset_hotplug_work is enough to synchronize against
1592 * hotplug hanlding; however, cpuset_attach() may schedule
1593 * propagation work directly. Flush the workqueue too.
3a5a6d0c
TH
1594 */
1595 flush_work(&cpuset_hotplug_work);
02bb5863 1596 flush_workqueue(cpuset_propagate_hotplug_wq);
3a5a6d0c 1597
5d21cc2d
TH
1598 mutex_lock(&cpuset_mutex);
1599 if (!is_cpuset_online(cs))
1600 goto out_unlock;
e3712395 1601
645fcc9d 1602 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1603 if (!trialcs) {
1604 retval = -ENOMEM;
5d21cc2d 1605 goto out_unlock;
b75f38d6 1606 }
645fcc9d 1607
e3712395
PM
1608 switch (cft->private) {
1609 case FILE_CPULIST:
645fcc9d 1610 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1611 break;
1612 case FILE_MEMLIST:
645fcc9d 1613 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1614 break;
1615 default:
1616 retval = -EINVAL;
1617 break;
1618 }
645fcc9d
LZ
1619
1620 free_trial_cpuset(trialcs);
5d21cc2d
TH
1621out_unlock:
1622 mutex_unlock(&cpuset_mutex);
e3712395
PM
1623 return retval;
1624}
1625
1da177e4
LT
1626/*
1627 * These ascii lists should be read in a single call, by using a user
1628 * buffer large enough to hold the entire map. If read in smaller
1629 * chunks, there is no guarantee of atomicity. Since the display format
1630 * used, list of ranges of sequential numbers, is variable length,
1631 * and since these maps can change value dynamically, one could read
1632 * gibberish by doing partial reads while a list was changing.
1633 * A single large read to a buffer that crosses a page boundary is
1634 * ok, because the result being copied to user land is not recomputed
1635 * across a page fault.
1636 */
1637
9303e0c4 1638static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1639{
9303e0c4 1640 size_t count;
1da177e4 1641
3d3f26a7 1642 mutex_lock(&callback_mutex);
9303e0c4 1643 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1644 mutex_unlock(&callback_mutex);
1da177e4 1645
9303e0c4 1646 return count;
1da177e4
LT
1647}
1648
9303e0c4 1649static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1650{
9303e0c4 1651 size_t count;
1da177e4 1652
3d3f26a7 1653 mutex_lock(&callback_mutex);
9303e0c4 1654 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1655 mutex_unlock(&callback_mutex);
1da177e4 1656
9303e0c4 1657 return count;
1da177e4
LT
1658}
1659
8793d854
PM
1660static ssize_t cpuset_common_file_read(struct cgroup *cont,
1661 struct cftype *cft,
1662 struct file *file,
1663 char __user *buf,
1664 size_t nbytes, loff_t *ppos)
1da177e4 1665{
8793d854 1666 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1667 cpuset_filetype_t type = cft->private;
1668 char *page;
1669 ssize_t retval = 0;
1670 char *s;
1da177e4 1671
e12ba74d 1672 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1673 return -ENOMEM;
1674
1675 s = page;
1676
1677 switch (type) {
1678 case FILE_CPULIST:
1679 s += cpuset_sprintf_cpulist(s, cs);
1680 break;
1681 case FILE_MEMLIST:
1682 s += cpuset_sprintf_memlist(s, cs);
1683 break;
1da177e4
LT
1684 default:
1685 retval = -EINVAL;
1686 goto out;
1687 }
1688 *s++ = '\n';
1da177e4 1689
eacaa1f5 1690 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1691out:
1692 free_page((unsigned long)page);
1693 return retval;
1694}
1695
700fe1ab
PM
1696static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1697{
1698 struct cpuset *cs = cgroup_cs(cont);
1699 cpuset_filetype_t type = cft->private;
1700 switch (type) {
1701 case FILE_CPU_EXCLUSIVE:
1702 return is_cpu_exclusive(cs);
1703 case FILE_MEM_EXCLUSIVE:
1704 return is_mem_exclusive(cs);
78608366
PM
1705 case FILE_MEM_HARDWALL:
1706 return is_mem_hardwall(cs);
700fe1ab
PM
1707 case FILE_SCHED_LOAD_BALANCE:
1708 return is_sched_load_balance(cs);
1709 case FILE_MEMORY_MIGRATE:
1710 return is_memory_migrate(cs);
1711 case FILE_MEMORY_PRESSURE_ENABLED:
1712 return cpuset_memory_pressure_enabled;
1713 case FILE_MEMORY_PRESSURE:
1714 return fmeter_getrate(&cs->fmeter);
1715 case FILE_SPREAD_PAGE:
1716 return is_spread_page(cs);
1717 case FILE_SPREAD_SLAB:
1718 return is_spread_slab(cs);
1719 default:
1720 BUG();
1721 }
cf417141
MK
1722
1723 /* Unreachable but makes gcc happy */
1724 return 0;
700fe1ab 1725}
1da177e4 1726
5be7a479
PM
1727static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1728{
1729 struct cpuset *cs = cgroup_cs(cont);
1730 cpuset_filetype_t type = cft->private;
1731 switch (type) {
1732 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1733 return cs->relax_domain_level;
1734 default:
1735 BUG();
1736 }
cf417141
MK
1737
1738 /* Unrechable but makes gcc happy */
1739 return 0;
5be7a479
PM
1740}
1741
1da177e4
LT
1742
1743/*
1744 * for the common functions, 'private' gives the type of file
1745 */
1746
addf2c73
PM
1747static struct cftype files[] = {
1748 {
1749 .name = "cpus",
1750 .read = cpuset_common_file_read,
e3712395
PM
1751 .write_string = cpuset_write_resmask,
1752 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1753 .private = FILE_CPULIST,
1754 },
1755
1756 {
1757 .name = "mems",
1758 .read = cpuset_common_file_read,
e3712395
PM
1759 .write_string = cpuset_write_resmask,
1760 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1761 .private = FILE_MEMLIST,
1762 },
1763
1764 {
1765 .name = "cpu_exclusive",
1766 .read_u64 = cpuset_read_u64,
1767 .write_u64 = cpuset_write_u64,
1768 .private = FILE_CPU_EXCLUSIVE,
1769 },
1770
1771 {
1772 .name = "mem_exclusive",
1773 .read_u64 = cpuset_read_u64,
1774 .write_u64 = cpuset_write_u64,
1775 .private = FILE_MEM_EXCLUSIVE,
1776 },
1777
78608366
PM
1778 {
1779 .name = "mem_hardwall",
1780 .read_u64 = cpuset_read_u64,
1781 .write_u64 = cpuset_write_u64,
1782 .private = FILE_MEM_HARDWALL,
1783 },
1784
addf2c73
PM
1785 {
1786 .name = "sched_load_balance",
1787 .read_u64 = cpuset_read_u64,
1788 .write_u64 = cpuset_write_u64,
1789 .private = FILE_SCHED_LOAD_BALANCE,
1790 },
1791
1792 {
1793 .name = "sched_relax_domain_level",
5be7a479
PM
1794 .read_s64 = cpuset_read_s64,
1795 .write_s64 = cpuset_write_s64,
addf2c73
PM
1796 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1797 },
1798
1799 {
1800 .name = "memory_migrate",
1801 .read_u64 = cpuset_read_u64,
1802 .write_u64 = cpuset_write_u64,
1803 .private = FILE_MEMORY_MIGRATE,
1804 },
1805
1806 {
1807 .name = "memory_pressure",
1808 .read_u64 = cpuset_read_u64,
1809 .write_u64 = cpuset_write_u64,
1810 .private = FILE_MEMORY_PRESSURE,
099fca32 1811 .mode = S_IRUGO,
addf2c73
PM
1812 },
1813
1814 {
1815 .name = "memory_spread_page",
1816 .read_u64 = cpuset_read_u64,
1817 .write_u64 = cpuset_write_u64,
1818 .private = FILE_SPREAD_PAGE,
1819 },
1820
1821 {
1822 .name = "memory_spread_slab",
1823 .read_u64 = cpuset_read_u64,
1824 .write_u64 = cpuset_write_u64,
1825 .private = FILE_SPREAD_SLAB,
1826 },
3e0d98b9 1827
4baf6e33
TH
1828 {
1829 .name = "memory_pressure_enabled",
1830 .flags = CFTYPE_ONLY_ON_ROOT,
1831 .read_u64 = cpuset_read_u64,
1832 .write_u64 = cpuset_write_u64,
1833 .private = FILE_MEMORY_PRESSURE_ENABLED,
1834 },
1da177e4 1835
4baf6e33
TH
1836 { } /* terminate */
1837};
1da177e4
LT
1838
1839/*
92fb9748 1840 * cpuset_css_alloc - allocate a cpuset css
2df167a3 1841 * cont: control group that the new cpuset will be part of
1da177e4
LT
1842 */
1843
92fb9748 1844static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1da177e4 1845{
c8f699bb 1846 struct cpuset *cs;
1da177e4 1847
c8f699bb 1848 if (!cont->parent)
8793d854 1849 return &top_cpuset.css;
033fa1c5 1850
c8f699bb 1851 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1852 if (!cs)
8793d854 1853 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1854 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1855 kfree(cs);
1856 return ERR_PTR(-ENOMEM);
1857 }
1da177e4 1858
029190c5 1859 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1860 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1861 nodes_clear(cs->mems_allowed);
3e0d98b9 1862 fmeter_init(&cs->fmeter);
8d033948 1863 INIT_WORK(&cs->hotplug_work, cpuset_propagate_hotplug_workfn);
1d3504fc 1864 cs->relax_domain_level = -1;
1da177e4 1865
c8f699bb
TH
1866 return &cs->css;
1867}
1868
1869static int cpuset_css_online(struct cgroup *cgrp)
1870{
1871 struct cpuset *cs = cgroup_cs(cgrp);
c431069f 1872 struct cpuset *parent = parent_cs(cs);
ae8086ce
TH
1873 struct cpuset *tmp_cs;
1874 struct cgroup *pos_cg;
c8f699bb
TH
1875
1876 if (!parent)
1877 return 0;
1878
5d21cc2d
TH
1879 mutex_lock(&cpuset_mutex);
1880
efeb77b2 1881 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1882 if (is_spread_page(parent))
1883 set_bit(CS_SPREAD_PAGE, &cs->flags);
1884 if (is_spread_slab(parent))
1885 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1886
202f72d5 1887 number_of_cpusets++;
033fa1c5 1888
c8f699bb 1889 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
5d21cc2d 1890 goto out_unlock;
033fa1c5
TH
1891
1892 /*
1893 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1894 * set. This flag handling is implemented in cgroup core for
1895 * histrical reasons - the flag may be specified during mount.
1896 *
1897 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1898 * refuse to clone the configuration - thereby refusing the task to
1899 * be entered, and as a result refusing the sys_unshare() or
1900 * clone() which initiated it. If this becomes a problem for some
1901 * users who wish to allow that scenario, then this could be
1902 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1903 * (and likewise for mems) to the new cgroup.
1904 */
ae8086ce
TH
1905 rcu_read_lock();
1906 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
1907 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1908 rcu_read_unlock();
5d21cc2d 1909 goto out_unlock;
ae8086ce 1910 }
033fa1c5 1911 }
ae8086ce 1912 rcu_read_unlock();
033fa1c5
TH
1913
1914 mutex_lock(&callback_mutex);
1915 cs->mems_allowed = parent->mems_allowed;
1916 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1917 mutex_unlock(&callback_mutex);
5d21cc2d
TH
1918out_unlock:
1919 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
1920 return 0;
1921}
1922
1923static void cpuset_css_offline(struct cgroup *cgrp)
1924{
1925 struct cpuset *cs = cgroup_cs(cgrp);
1926
5d21cc2d 1927 mutex_lock(&cpuset_mutex);
c8f699bb
TH
1928
1929 if (is_sched_load_balance(cs))
1930 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1931
1932 number_of_cpusets--;
efeb77b2 1933 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 1934
5d21cc2d 1935 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1936}
1937
029190c5 1938/*
029190c5
PJ
1939 * If the cpuset being removed has its flag 'sched_load_balance'
1940 * enabled, then simulate turning sched_load_balance off, which
699140ba 1941 * will call rebuild_sched_domains_locked().
029190c5
PJ
1942 */
1943
92fb9748 1944static void cpuset_css_free(struct cgroup *cont)
1da177e4 1945{
8793d854 1946 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1947
300ed6cb 1948 free_cpumask_var(cs->cpus_allowed);
8793d854 1949 kfree(cs);
1da177e4
LT
1950}
1951
8793d854
PM
1952struct cgroup_subsys cpuset_subsys = {
1953 .name = "cpuset",
92fb9748 1954 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
1955 .css_online = cpuset_css_online,
1956 .css_offline = cpuset_css_offline,
92fb9748 1957 .css_free = cpuset_css_free,
8793d854 1958 .can_attach = cpuset_can_attach,
452477fa 1959 .cancel_attach = cpuset_cancel_attach,
8793d854 1960 .attach = cpuset_attach,
8793d854 1961 .subsys_id = cpuset_subsys_id,
4baf6e33 1962 .base_cftypes = files,
8793d854
PM
1963 .early_init = 1,
1964};
1965
1da177e4
LT
1966/**
1967 * cpuset_init - initialize cpusets at system boot
1968 *
1969 * Description: Initialize top_cpuset and the cpuset internal file system,
1970 **/
1971
1972int __init cpuset_init(void)
1973{
8793d854 1974 int err = 0;
1da177e4 1975
58568d2a
MX
1976 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1977 BUG();
1978
300ed6cb 1979 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1980 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1981
3e0d98b9 1982 fmeter_init(&top_cpuset.fmeter);
029190c5 1983 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1984 top_cpuset.relax_domain_level = -1;
1da177e4 1985
1da177e4
LT
1986 err = register_filesystem(&cpuset_fs_type);
1987 if (err < 0)
8793d854
PM
1988 return err;
1989
2341d1b6
LZ
1990 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1991 BUG();
1992
202f72d5 1993 number_of_cpusets = 1;
8793d854 1994 return 0;
1da177e4
LT
1995}
1996
b1aac8bb 1997/*
cf417141 1998 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1999 * or memory nodes, we need to walk over the cpuset hierarchy,
2000 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2001 * last CPU or node from a cpuset, then move the tasks in the empty
2002 * cpuset to its next-highest non-empty parent.
b1aac8bb 2003 */
956db3ca
CW
2004static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2005{
2006 struct cpuset *parent;
2007
956db3ca
CW
2008 /*
2009 * Find its next-highest non-empty parent, (top cpuset
2010 * has online cpus, so can't be empty).
2011 */
c431069f 2012 parent = parent_cs(cs);
300ed6cb 2013 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2014 nodes_empty(parent->mems_allowed))
c431069f 2015 parent = parent_cs(parent);
956db3ca 2016
8cc99345
TH
2017 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2018 rcu_read_lock();
2019 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
2020 cgroup_name(cs->css.cgroup));
2021 rcu_read_unlock();
2022 }
956db3ca
CW
2023}
2024
deb7aa30 2025/**
8d033948 2026 * cpuset_propagate_hotplug_workfn - propagate CPU/memory hotplug to a cpuset
deb7aa30 2027 * @cs: cpuset in interest
956db3ca 2028 *
deb7aa30
TH
2029 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2030 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2031 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2032 */
8d033948 2033static void cpuset_propagate_hotplug_workfn(struct work_struct *work)
80d1fa64 2034{
deb7aa30
TH
2035 static cpumask_t off_cpus;
2036 static nodemask_t off_mems, tmp_mems;
8d033948 2037 struct cpuset *cs = container_of(work, struct cpuset, hotplug_work);
5d21cc2d 2038 bool is_empty;
80d1fa64 2039
5d21cc2d 2040 mutex_lock(&cpuset_mutex);
7ddf96b0 2041
deb7aa30
TH
2042 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2043 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2044
deb7aa30
TH
2045 /* remove offline cpus from @cs */
2046 if (!cpumask_empty(&off_cpus)) {
2047 mutex_lock(&callback_mutex);
2048 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2049 mutex_unlock(&callback_mutex);
2050 update_tasks_cpumask(cs, NULL);
80d1fa64
SB
2051 }
2052
deb7aa30
TH
2053 /* remove offline mems from @cs */
2054 if (!nodes_empty(off_mems)) {
2055 tmp_mems = cs->mems_allowed;
2056 mutex_lock(&callback_mutex);
2057 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2058 mutex_unlock(&callback_mutex);
2059 update_tasks_nodemask(cs, &tmp_mems, NULL);
b1aac8bb 2060 }
deb7aa30 2061
5d21cc2d
TH
2062 is_empty = cpumask_empty(cs->cpus_allowed) ||
2063 nodes_empty(cs->mems_allowed);
8d033948 2064
5d21cc2d
TH
2065 mutex_unlock(&cpuset_mutex);
2066
2067 /*
2068 * If @cs became empty, move tasks to the nearest ancestor with
2069 * execution resources. This is full cgroup operation which will
2070 * also call back into cpuset. Should be done outside any lock.
2071 */
2072 if (is_empty)
2073 remove_tasks_in_empty_cpuset(cs);
8d033948
TH
2074
2075 /* the following may free @cs, should be the last operation */
2076 css_put(&cs->css);
80d1fa64
SB
2077}
2078
8d033948
TH
2079/**
2080 * schedule_cpuset_propagate_hotplug - schedule hotplug propagation to a cpuset
2081 * @cs: cpuset of interest
2082 *
2083 * Schedule cpuset_propagate_hotplug_workfn() which will update CPU and
2084 * memory masks according to top_cpuset.
2085 */
2086static void schedule_cpuset_propagate_hotplug(struct cpuset *cs)
2087{
2088 /*
2089 * Pin @cs. The refcnt will be released when the work item
2090 * finishes executing.
2091 */
2092 if (!css_tryget(&cs->css))
2093 return;
80d1fa64 2094
8d033948
TH
2095 /*
2096 * Queue @cs->hotplug_work. If already pending, lose the css ref.
2097 * cpuset_propagate_hotplug_wq is ordered and propagation will
2098 * happen in the order this function is called.
2099 */
2100 if (!queue_work(cpuset_propagate_hotplug_wq, &cs->hotplug_work))
2101 css_put(&cs->css);
b1aac8bb
PJ
2102}
2103
deb7aa30 2104/**
3a5a6d0c 2105 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2106 *
deb7aa30
TH
2107 * This function is called after either CPU or memory configuration has
2108 * changed and updates cpuset accordingly. The top_cpuset is always
2109 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2110 * order to make cpusets transparent (of no affect) on systems that are
2111 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2112 *
deb7aa30
TH
2113 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2114 * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
2115 * descendants.
956db3ca 2116 *
deb7aa30
TH
2117 * Note that CPU offlining during suspend is ignored. We don't modify
2118 * cpusets across suspend/resume cycles at all.
956db3ca 2119 */
3a5a6d0c 2120static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2121{
deb7aa30
TH
2122 static cpumask_t new_cpus, tmp_cpus;
2123 static nodemask_t new_mems, tmp_mems;
2124 bool cpus_updated, mems_updated;
2125 bool cpus_offlined, mems_offlined;
b1aac8bb 2126
5d21cc2d 2127 mutex_lock(&cpuset_mutex);
956db3ca 2128
deb7aa30
TH
2129 /* fetch the available cpus/mems and find out which changed how */
2130 cpumask_copy(&new_cpus, cpu_active_mask);
2131 new_mems = node_states[N_MEMORY];
7ddf96b0 2132
deb7aa30
TH
2133 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2134 cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
2135 &new_cpus);
7ddf96b0 2136
deb7aa30
TH
2137 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2138 nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
2139 mems_offlined = !nodes_empty(tmp_mems);
7ddf96b0 2140
deb7aa30
TH
2141 /* synchronize cpus_allowed to cpu_active_mask */
2142 if (cpus_updated) {
2143 mutex_lock(&callback_mutex);
2144 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2145 mutex_unlock(&callback_mutex);
2146 /* we don't mess with cpumasks of tasks in top_cpuset */
2147 }
b4501295 2148
deb7aa30
TH
2149 /* synchronize mems_allowed to N_MEMORY */
2150 if (mems_updated) {
2151 tmp_mems = top_cpuset.mems_allowed;
2152 mutex_lock(&callback_mutex);
2153 top_cpuset.mems_allowed = new_mems;
2154 mutex_unlock(&callback_mutex);
2155 update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
2156 }
b4501295 2157
deb7aa30
TH
2158 /* if cpus or mems went down, we need to propagate to descendants */
2159 if (cpus_offlined || mems_offlined) {
2160 struct cpuset *cs;
fc560a26 2161 struct cgroup *pos_cgrp;
f9b4fb8d 2162
fc560a26
TH
2163 rcu_read_lock();
2164 cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset)
2165 schedule_cpuset_propagate_hotplug(cs);
2166 rcu_read_unlock();
deb7aa30 2167 }
7ddf96b0 2168
5d21cc2d 2169 mutex_unlock(&cpuset_mutex);
b4501295 2170
8d033948
TH
2171 /* wait for propagations to finish */
2172 flush_workqueue(cpuset_propagate_hotplug_wq);
2173
deb7aa30 2174 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2175 if (cpus_updated)
2176 rebuild_sched_domains();
b1aac8bb
PJ
2177}
2178
7ddf96b0 2179void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2180{
3a5a6d0c
TH
2181 /*
2182 * We're inside cpu hotplug critical region which usually nests
2183 * inside cgroup synchronization. Bounce actual hotplug processing
2184 * to a work item to avoid reverse locking order.
2185 *
2186 * We still need to do partition_sched_domains() synchronously;
2187 * otherwise, the scheduler will get confused and put tasks to the
2188 * dead CPU. Fall back to the default single domain.
2189 * cpuset_hotplug_workfn() will rebuild it as necessary.
2190 */
2191 partition_sched_domains(1, NULL, NULL);
2192 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2193}
4c4d50f7 2194
b1aac8bb 2195#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2196/*
38d7bee9
LJ
2197 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2198 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2199 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2200 */
f481891f
MX
2201static int cpuset_track_online_nodes(struct notifier_block *self,
2202 unsigned long action, void *arg)
38837fc7 2203{
3a5a6d0c 2204 schedule_work(&cpuset_hotplug_work);
f481891f 2205 return NOTIFY_OK;
38837fc7
PJ
2206}
2207#endif
2208
1da177e4
LT
2209/**
2210 * cpuset_init_smp - initialize cpus_allowed
2211 *
2212 * Description: Finish top cpuset after cpu, node maps are initialized
2213 **/
2214
2215void __init cpuset_init_smp(void)
2216{
6ad4c188 2217 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2218 top_cpuset.mems_allowed = node_states[N_MEMORY];
4c4d50f7 2219
f481891f 2220 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
f90d4118 2221
8d033948
TH
2222 cpuset_propagate_hotplug_wq =
2223 alloc_ordered_workqueue("cpuset_hotplug", 0);
2224 BUG_ON(!cpuset_propagate_hotplug_wq);
1da177e4
LT
2225}
2226
2227/**
1da177e4
LT
2228 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2229 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2230 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2231 *
300ed6cb 2232 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2233 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2234 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2235 * tasks cpuset.
2236 **/
2237
6af866af 2238void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2239{
3d3f26a7 2240 mutex_lock(&callback_mutex);
909d75a3 2241 task_lock(tsk);
f9a86fcb 2242 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2243 task_unlock(tsk);
897f0b3c 2244 mutex_unlock(&callback_mutex);
1da177e4
LT
2245}
2246
2baab4e9 2247void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82
ON
2248{
2249 const struct cpuset *cs;
9084bb82
ON
2250
2251 rcu_read_lock();
2252 cs = task_cs(tsk);
2253 if (cs)
1e1b6c51 2254 do_set_cpus_allowed(tsk, cs->cpus_allowed);
9084bb82
ON
2255 rcu_read_unlock();
2256
2257 /*
2258 * We own tsk->cpus_allowed, nobody can change it under us.
2259 *
2260 * But we used cs && cs->cpus_allowed lockless and thus can
2261 * race with cgroup_attach_task() or update_cpumask() and get
2262 * the wrong tsk->cpus_allowed. However, both cases imply the
2263 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2264 * which takes task_rq_lock().
2265 *
2266 * If we are called after it dropped the lock we must see all
2267 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2268 * set any mask even if it is not right from task_cs() pov,
2269 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2270 *
2271 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2272 * if required.
9084bb82 2273 */
9084bb82
ON
2274}
2275
1da177e4
LT
2276void cpuset_init_current_mems_allowed(void)
2277{
f9a86fcb 2278 nodes_setall(current->mems_allowed);
1da177e4
LT
2279}
2280
909d75a3
PJ
2281/**
2282 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2283 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2284 *
2285 * Description: Returns the nodemask_t mems_allowed of the cpuset
2286 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2287 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2288 * tasks cpuset.
2289 **/
2290
2291nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2292{
2293 nodemask_t mask;
2294
3d3f26a7 2295 mutex_lock(&callback_mutex);
909d75a3 2296 task_lock(tsk);
8793d854 2297 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2298 task_unlock(tsk);
3d3f26a7 2299 mutex_unlock(&callback_mutex);
909d75a3
PJ
2300
2301 return mask;
2302}
2303
d9fd8a6d 2304/**
19770b32
MG
2305 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2306 * @nodemask: the nodemask to be checked
d9fd8a6d 2307 *
19770b32 2308 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2309 */
19770b32 2310int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2311{
19770b32 2312 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2313}
2314
9bf2229f 2315/*
78608366
PM
2316 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2317 * mem_hardwall ancestor to the specified cpuset. Call holding
2318 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2319 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2320 */
78608366 2321static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2322{
c431069f
TH
2323 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2324 cs = parent_cs(cs);
9bf2229f
PJ
2325 return cs;
2326}
2327
d9fd8a6d 2328/**
a1bc5a4e
DR
2329 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2330 * @node: is this an allowed node?
02a0e53d 2331 * @gfp_mask: memory allocation flags
d9fd8a6d 2332 *
a1bc5a4e
DR
2333 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2334 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2335 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2336 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2337 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2338 * flag, yes.
9bf2229f
PJ
2339 * Otherwise, no.
2340 *
a1bc5a4e
DR
2341 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2342 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2343 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2344 *
a1bc5a4e
DR
2345 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2346 * cpusets, and never sleeps.
02a0e53d
PJ
2347 *
2348 * The __GFP_THISNODE placement logic is really handled elsewhere,
2349 * by forcibly using a zonelist starting at a specified node, and by
2350 * (in get_page_from_freelist()) refusing to consider the zones for
2351 * any node on the zonelist except the first. By the time any such
2352 * calls get to this routine, we should just shut up and say 'yes'.
2353 *
9bf2229f 2354 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2355 * and do not allow allocations outside the current tasks cpuset
2356 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2357 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2358 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2359 *
02a0e53d
PJ
2360 * Scanning up parent cpusets requires callback_mutex. The
2361 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2362 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2363 * current tasks mems_allowed came up empty on the first pass over
2364 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2365 * cpuset are short of memory, might require taking the callback_mutex
2366 * mutex.
9bf2229f 2367 *
36be57ff 2368 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2369 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2370 * so no allocation on a node outside the cpuset is allowed (unless
2371 * in interrupt, of course).
36be57ff
PJ
2372 *
2373 * The second pass through get_page_from_freelist() doesn't even call
2374 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2375 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2376 * in alloc_flags. That logic and the checks below have the combined
2377 * affect that:
9bf2229f
PJ
2378 * in_interrupt - any node ok (current task context irrelevant)
2379 * GFP_ATOMIC - any node ok
c596d9f3 2380 * TIF_MEMDIE - any node ok
78608366 2381 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2382 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2383 *
2384 * Rule:
a1bc5a4e 2385 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2386 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2387 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2388 */
a1bc5a4e 2389int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2390{
9bf2229f 2391 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2392 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2393
9b819d20 2394 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2395 return 1;
92d1dbd2 2396 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2397 if (node_isset(node, current->mems_allowed))
2398 return 1;
c596d9f3
DR
2399 /*
2400 * Allow tasks that have access to memory reserves because they have
2401 * been OOM killed to get memory anywhere.
2402 */
2403 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2404 return 1;
9bf2229f
PJ
2405 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2406 return 0;
2407
5563e770
BP
2408 if (current->flags & PF_EXITING) /* Let dying task have memory */
2409 return 1;
2410
9bf2229f 2411 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2412 mutex_lock(&callback_mutex);
053199ed 2413
053199ed 2414 task_lock(current);
78608366 2415 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2416 task_unlock(current);
2417
9bf2229f 2418 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2419 mutex_unlock(&callback_mutex);
9bf2229f 2420 return allowed;
1da177e4
LT
2421}
2422
02a0e53d 2423/*
a1bc5a4e
DR
2424 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2425 * @node: is this an allowed node?
02a0e53d
PJ
2426 * @gfp_mask: memory allocation flags
2427 *
a1bc5a4e
DR
2428 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2429 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2430 * yes. If the task has been OOM killed and has access to memory reserves as
2431 * specified by the TIF_MEMDIE flag, yes.
2432 * Otherwise, no.
02a0e53d
PJ
2433 *
2434 * The __GFP_THISNODE placement logic is really handled elsewhere,
2435 * by forcibly using a zonelist starting at a specified node, and by
2436 * (in get_page_from_freelist()) refusing to consider the zones for
2437 * any node on the zonelist except the first. By the time any such
2438 * calls get to this routine, we should just shut up and say 'yes'.
2439 *
a1bc5a4e
DR
2440 * Unlike the cpuset_node_allowed_softwall() variant, above,
2441 * this variant requires that the node be in the current task's
02a0e53d
PJ
2442 * mems_allowed or that we're in interrupt. It does not scan up the
2443 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2444 * It never sleeps.
2445 */
a1bc5a4e 2446int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2447{
02a0e53d
PJ
2448 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2449 return 1;
02a0e53d
PJ
2450 if (node_isset(node, current->mems_allowed))
2451 return 1;
dedf8b79
DW
2452 /*
2453 * Allow tasks that have access to memory reserves because they have
2454 * been OOM killed to get memory anywhere.
2455 */
2456 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2457 return 1;
02a0e53d
PJ
2458 return 0;
2459}
2460
825a46af 2461/**
6adef3eb
JS
2462 * cpuset_mem_spread_node() - On which node to begin search for a file page
2463 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2464 *
2465 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2466 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2467 * and if the memory allocation used cpuset_mem_spread_node()
2468 * to determine on which node to start looking, as it will for
2469 * certain page cache or slab cache pages such as used for file
2470 * system buffers and inode caches, then instead of starting on the
2471 * local node to look for a free page, rather spread the starting
2472 * node around the tasks mems_allowed nodes.
2473 *
2474 * We don't have to worry about the returned node being offline
2475 * because "it can't happen", and even if it did, it would be ok.
2476 *
2477 * The routines calling guarantee_online_mems() are careful to
2478 * only set nodes in task->mems_allowed that are online. So it
2479 * should not be possible for the following code to return an
2480 * offline node. But if it did, that would be ok, as this routine
2481 * is not returning the node where the allocation must be, only
2482 * the node where the search should start. The zonelist passed to
2483 * __alloc_pages() will include all nodes. If the slab allocator
2484 * is passed an offline node, it will fall back to the local node.
2485 * See kmem_cache_alloc_node().
2486 */
2487
6adef3eb 2488static int cpuset_spread_node(int *rotor)
825a46af
PJ
2489{
2490 int node;
2491
6adef3eb 2492 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2493 if (node == MAX_NUMNODES)
2494 node = first_node(current->mems_allowed);
6adef3eb 2495 *rotor = node;
825a46af
PJ
2496 return node;
2497}
6adef3eb
JS
2498
2499int cpuset_mem_spread_node(void)
2500{
778d3b0f
MH
2501 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2502 current->cpuset_mem_spread_rotor =
2503 node_random(&current->mems_allowed);
2504
6adef3eb
JS
2505 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2506}
2507
2508int cpuset_slab_spread_node(void)
2509{
778d3b0f
MH
2510 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2511 current->cpuset_slab_spread_rotor =
2512 node_random(&current->mems_allowed);
2513
6adef3eb
JS
2514 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2515}
2516
825a46af
PJ
2517EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2518
ef08e3b4 2519/**
bbe373f2
DR
2520 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2521 * @tsk1: pointer to task_struct of some task.
2522 * @tsk2: pointer to task_struct of some other task.
2523 *
2524 * Description: Return true if @tsk1's mems_allowed intersects the
2525 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2526 * one of the task's memory usage might impact the memory available
2527 * to the other.
ef08e3b4
PJ
2528 **/
2529
bbe373f2
DR
2530int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2531 const struct task_struct *tsk2)
ef08e3b4 2532{
bbe373f2 2533 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2534}
2535
f440d98f
LZ
2536#define CPUSET_NODELIST_LEN (256)
2537
75aa1994
DR
2538/**
2539 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2540 * @task: pointer to task_struct of some task.
2541 *
2542 * Description: Prints @task's name, cpuset name, and cached copy of its
2543 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2544 * dereferencing task_cs(task).
2545 */
2546void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2547{
f440d98f
LZ
2548 /* Statically allocated to prevent using excess stack. */
2549 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2550 static DEFINE_SPINLOCK(cpuset_buffer_lock);
75aa1994 2551
f440d98f 2552 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
63f43f55 2553
cfb5966b 2554 rcu_read_lock();
f440d98f 2555 spin_lock(&cpuset_buffer_lock);
63f43f55 2556
75aa1994
DR
2557 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2558 tsk->mems_allowed);
2559 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
f440d98f
LZ
2560 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2561
75aa1994 2562 spin_unlock(&cpuset_buffer_lock);
cfb5966b 2563 rcu_read_unlock();
75aa1994
DR
2564}
2565
3e0d98b9
PJ
2566/*
2567 * Collection of memory_pressure is suppressed unless
2568 * this flag is enabled by writing "1" to the special
2569 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2570 */
2571
c5b2aff8 2572int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2573
2574/**
2575 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2576 *
2577 * Keep a running average of the rate of synchronous (direct)
2578 * page reclaim efforts initiated by tasks in each cpuset.
2579 *
2580 * This represents the rate at which some task in the cpuset
2581 * ran low on memory on all nodes it was allowed to use, and
2582 * had to enter the kernels page reclaim code in an effort to
2583 * create more free memory by tossing clean pages or swapping
2584 * or writing dirty pages.
2585 *
2586 * Display to user space in the per-cpuset read-only file
2587 * "memory_pressure". Value displayed is an integer
2588 * representing the recent rate of entry into the synchronous
2589 * (direct) page reclaim by any task attached to the cpuset.
2590 **/
2591
2592void __cpuset_memory_pressure_bump(void)
2593{
3e0d98b9 2594 task_lock(current);
8793d854 2595 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2596 task_unlock(current);
2597}
2598
8793d854 2599#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2600/*
2601 * proc_cpuset_show()
2602 * - Print tasks cpuset path into seq_file.
2603 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2604 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2605 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2606 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2607 * anyway.
1da177e4 2608 */
029190c5 2609static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2610{
13b41b09 2611 struct pid *pid;
1da177e4
LT
2612 struct task_struct *tsk;
2613 char *buf;
8793d854 2614 struct cgroup_subsys_state *css;
99f89551 2615 int retval;
1da177e4 2616
99f89551 2617 retval = -ENOMEM;
1da177e4
LT
2618 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2619 if (!buf)
99f89551
EB
2620 goto out;
2621
2622 retval = -ESRCH;
13b41b09
EB
2623 pid = m->private;
2624 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2625 if (!tsk)
2626 goto out_free;
1da177e4 2627
27e89ae5 2628 rcu_read_lock();
8793d854
PM
2629 css = task_subsys_state(tsk, cpuset_subsys_id);
2630 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
27e89ae5 2631 rcu_read_unlock();
1da177e4 2632 if (retval < 0)
27e89ae5 2633 goto out_put_task;
1da177e4
LT
2634 seq_puts(m, buf);
2635 seq_putc(m, '\n');
27e89ae5 2636out_put_task:
99f89551
EB
2637 put_task_struct(tsk);
2638out_free:
1da177e4 2639 kfree(buf);
99f89551 2640out:
1da177e4
LT
2641 return retval;
2642}
2643
2644static int cpuset_open(struct inode *inode, struct file *file)
2645{
13b41b09
EB
2646 struct pid *pid = PROC_I(inode)->pid;
2647 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2648}
2649
9a32144e 2650const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2651 .open = cpuset_open,
2652 .read = seq_read,
2653 .llseek = seq_lseek,
2654 .release = single_release,
2655};
8793d854 2656#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2657
d01d4827 2658/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2659void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2660{
df5f8314 2661 seq_printf(m, "Mems_allowed:\t");
30e8e136 2662 seq_nodemask(m, &task->mems_allowed);
df5f8314 2663 seq_printf(m, "\n");
39106dcf 2664 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2665 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2666 seq_printf(m, "\n");
1da177e4 2667}