[PATCH] cpuset: remove test for null cpuset from alloc code path
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004 Silicon Graphics, Inc.
8 *
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
11 * Portions Copyright (c) 2004 Silicon Graphics, Inc.
12 *
13 * 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson <pj@sgi.com>
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file COPYING in the main directory of the Linux
19 * distribution for more details.
20 */
21
22#include <linux/config.h>
23#include <linux/cpu.h>
24#include <linux/cpumask.h>
25#include <linux/cpuset.h>
26#include <linux/err.h>
27#include <linux/errno.h>
28#include <linux/file.h>
29#include <linux/fs.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/kernel.h>
33#include <linux/kmod.h>
34#include <linux/list.h>
68860ec1 35#include <linux/mempolicy.h>
1da177e4
LT
36#include <linux/mm.h>
37#include <linux/module.h>
38#include <linux/mount.h>
39#include <linux/namei.h>
40#include <linux/pagemap.h>
41#include <linux/proc_fs.h>
42#include <linux/sched.h>
43#include <linux/seq_file.h>
44#include <linux/slab.h>
45#include <linux/smp_lock.h>
46#include <linux/spinlock.h>
47#include <linux/stat.h>
48#include <linux/string.h>
49#include <linux/time.h>
50#include <linux/backing-dev.h>
51#include <linux/sort.h>
52
53#include <asm/uaccess.h>
54#include <asm/atomic.h>
55#include <asm/semaphore.h>
56
c5b2aff8 57#define CPUSET_SUPER_MAGIC 0x27e0eb
1da177e4 58
202f72d5
PJ
59/*
60 * Tracks how many cpusets are currently defined in system.
61 * When there is only one cpuset (the root cpuset) we can
62 * short circuit some hooks.
63 */
64int number_of_cpusets;
65
3e0d98b9
PJ
66/* See "Frequency meter" comments, below. */
67
68struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73};
74
1da177e4
LT
75struct cpuset {
76 unsigned long flags; /* "unsigned long" so bitops work */
77 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
78 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
79
053199ed
PJ
80 /*
81 * Count is atomic so can incr (fork) or decr (exit) without a lock.
82 */
1da177e4
LT
83 atomic_t count; /* count tasks using this cpuset */
84
85 /*
86 * We link our 'sibling' struct into our parents 'children'.
87 * Our children link their 'sibling' into our 'children'.
88 */
89 struct list_head sibling; /* my parents children */
90 struct list_head children; /* my children */
91
92 struct cpuset *parent; /* my parent */
93 struct dentry *dentry; /* cpuset fs entry */
94
95 /*
96 * Copy of global cpuset_mems_generation as of the most
97 * recent time this cpuset changed its mems_allowed.
98 */
3e0d98b9
PJ
99 int mems_generation;
100
101 struct fmeter fmeter; /* memory_pressure filter */
1da177e4
LT
102};
103
104/* bits in struct cpuset flags field */
105typedef enum {
106 CS_CPU_EXCLUSIVE,
107 CS_MEM_EXCLUSIVE,
45b07ef3 108 CS_MEMORY_MIGRATE,
1da177e4
LT
109 CS_REMOVED,
110 CS_NOTIFY_ON_RELEASE
111} cpuset_flagbits_t;
112
113/* convenient tests for these bits */
114static inline int is_cpu_exclusive(const struct cpuset *cs)
115{
116 return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
117}
118
119static inline int is_mem_exclusive(const struct cpuset *cs)
120{
121 return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
122}
123
124static inline int is_removed(const struct cpuset *cs)
125{
126 return !!test_bit(CS_REMOVED, &cs->flags);
127}
128
129static inline int notify_on_release(const struct cpuset *cs)
130{
131 return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
132}
133
45b07ef3
PJ
134static inline int is_memory_migrate(const struct cpuset *cs)
135{
136 return !!test_bit(CS_MEMORY_MIGRATE, &cs->flags);
137}
138
1da177e4
LT
139/*
140 * Increment this atomic integer everytime any cpuset changes its
141 * mems_allowed value. Users of cpusets can track this generation
142 * number, and avoid having to lock and reload mems_allowed unless
143 * the cpuset they're using changes generation.
144 *
145 * A single, global generation is needed because attach_task() could
146 * reattach a task to a different cpuset, which must not have its
147 * generation numbers aliased with those of that tasks previous cpuset.
148 *
149 * Generations are needed for mems_allowed because one task cannot
150 * modify anothers memory placement. So we must enable every task,
151 * on every visit to __alloc_pages(), to efficiently check whether
152 * its current->cpuset->mems_allowed has changed, requiring an update
153 * of its current->mems_allowed.
154 */
155static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);
156
157static struct cpuset top_cpuset = {
158 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
159 .cpus_allowed = CPU_MASK_ALL,
160 .mems_allowed = NODE_MASK_ALL,
161 .count = ATOMIC_INIT(0),
162 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
163 .children = LIST_HEAD_INIT(top_cpuset.children),
1da177e4
LT
164};
165
166static struct vfsmount *cpuset_mount;
3e0d98b9 167static struct super_block *cpuset_sb;
1da177e4
LT
168
169/*
053199ed
PJ
170 * We have two global cpuset semaphores below. They can nest.
171 * It is ok to first take manage_sem, then nest callback_sem. We also
172 * require taking task_lock() when dereferencing a tasks cpuset pointer.
173 * See "The task_lock() exception", at the end of this comment.
174 *
175 * A task must hold both semaphores to modify cpusets. If a task
176 * holds manage_sem, then it blocks others wanting that semaphore,
177 * ensuring that it is the only task able to also acquire callback_sem
178 * and be able to modify cpusets. It can perform various checks on
179 * the cpuset structure first, knowing nothing will change. It can
180 * also allocate memory while just holding manage_sem. While it is
181 * performing these checks, various callback routines can briefly
182 * acquire callback_sem to query cpusets. Once it is ready to make
183 * the changes, it takes callback_sem, blocking everyone else.
184 *
185 * Calls to the kernel memory allocator can not be made while holding
186 * callback_sem, as that would risk double tripping on callback_sem
187 * from one of the callbacks into the cpuset code from within
188 * __alloc_pages().
189 *
190 * If a task is only holding callback_sem, then it has read-only
191 * access to cpusets.
192 *
193 * The task_struct fields mems_allowed and mems_generation may only
194 * be accessed in the context of that task, so require no locks.
195 *
196 * Any task can increment and decrement the count field without lock.
197 * So in general, code holding manage_sem or callback_sem can't rely
198 * on the count field not changing. However, if the count goes to
199 * zero, then only attach_task(), which holds both semaphores, can
200 * increment it again. Because a count of zero means that no tasks
201 * are currently attached, therefore there is no way a task attached
202 * to that cpuset can fork (the other way to increment the count).
203 * So code holding manage_sem or callback_sem can safely assume that
204 * if the count is zero, it will stay zero. Similarly, if a task
205 * holds manage_sem or callback_sem on a cpuset with zero count, it
206 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
207 * both of those semaphores.
208 *
209 * A possible optimization to improve parallelism would be to make
210 * callback_sem a R/W semaphore (rwsem), allowing the callback routines
211 * to proceed in parallel, with read access, until the holder of
212 * manage_sem needed to take this rwsem for exclusive write access
213 * and modify some cpusets.
214 *
215 * The cpuset_common_file_write handler for operations that modify
216 * the cpuset hierarchy holds manage_sem across the entire operation,
217 * single threading all such cpuset modifications across the system.
218 *
219 * The cpuset_common_file_read() handlers only hold callback_sem across
220 * small pieces of code, such as when reading out possibly multi-word
221 * cpumasks and nodemasks.
222 *
223 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
224 * (usually) take either semaphore. These are the two most performance
225 * critical pieces of code here. The exception occurs on cpuset_exit(),
226 * when a task in a notify_on_release cpuset exits. Then manage_sem
2efe86b8 227 * is taken, and if the cpuset count is zero, a usermode call made
1da177e4
LT
228 * to /sbin/cpuset_release_agent with the name of the cpuset (path
229 * relative to the root of cpuset file system) as the argument.
230 *
053199ed
PJ
231 * A cpuset can only be deleted if both its 'count' of using tasks
232 * is zero, and its list of 'children' cpusets is empty. Since all
233 * tasks in the system use _some_ cpuset, and since there is always at
234 * least one task in the system (init, pid == 1), therefore, top_cpuset
235 * always has either children cpusets and/or using tasks. So we don't
236 * need a special hack to ensure that top_cpuset cannot be deleted.
237 *
238 * The above "Tale of Two Semaphores" would be complete, but for:
239 *
240 * The task_lock() exception
241 *
242 * The need for this exception arises from the action of attach_task(),
243 * which overwrites one tasks cpuset pointer with another. It does
244 * so using both semaphores, however there are several performance
245 * critical places that need to reference task->cpuset without the
246 * expense of grabbing a system global semaphore. Therefore except as
247 * noted below, when dereferencing or, as in attach_task(), modifying
248 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
249 * (task->alloc_lock) already in the task_struct routinely used for
250 * such matters.
1da177e4
LT
251 */
252
053199ed
PJ
253static DECLARE_MUTEX(manage_sem);
254static DECLARE_MUTEX(callback_sem);
4247bdc6 255
1da177e4
LT
256/*
257 * A couple of forward declarations required, due to cyclic reference loop:
258 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
259 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
260 */
261
262static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
263static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
264
265static struct backing_dev_info cpuset_backing_dev_info = {
266 .ra_pages = 0, /* No readahead */
267 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
268};
269
270static struct inode *cpuset_new_inode(mode_t mode)
271{
272 struct inode *inode = new_inode(cpuset_sb);
273
274 if (inode) {
275 inode->i_mode = mode;
276 inode->i_uid = current->fsuid;
277 inode->i_gid = current->fsgid;
278 inode->i_blksize = PAGE_CACHE_SIZE;
279 inode->i_blocks = 0;
280 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
281 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
282 }
283 return inode;
284}
285
286static void cpuset_diput(struct dentry *dentry, struct inode *inode)
287{
288 /* is dentry a directory ? if so, kfree() associated cpuset */
289 if (S_ISDIR(inode->i_mode)) {
290 struct cpuset *cs = dentry->d_fsdata;
291 BUG_ON(!(is_removed(cs)));
292 kfree(cs);
293 }
294 iput(inode);
295}
296
297static struct dentry_operations cpuset_dops = {
298 .d_iput = cpuset_diput,
299};
300
301static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
302{
5f45f1a7 303 struct dentry *d = lookup_one_len(name, parent, strlen(name));
1da177e4
LT
304 if (!IS_ERR(d))
305 d->d_op = &cpuset_dops;
306 return d;
307}
308
309static void remove_dir(struct dentry *d)
310{
311 struct dentry *parent = dget(d->d_parent);
312
313 d_delete(d);
314 simple_rmdir(parent->d_inode, d);
315 dput(parent);
316}
317
318/*
319 * NOTE : the dentry must have been dget()'ed
320 */
321static void cpuset_d_remove_dir(struct dentry *dentry)
322{
323 struct list_head *node;
324
325 spin_lock(&dcache_lock);
326 node = dentry->d_subdirs.next;
327 while (node != &dentry->d_subdirs) {
328 struct dentry *d = list_entry(node, struct dentry, d_child);
329 list_del_init(node);
330 if (d->d_inode) {
331 d = dget_locked(d);
332 spin_unlock(&dcache_lock);
333 d_delete(d);
334 simple_unlink(dentry->d_inode, d);
335 dput(d);
336 spin_lock(&dcache_lock);
337 }
338 node = dentry->d_subdirs.next;
339 }
340 list_del_init(&dentry->d_child);
341 spin_unlock(&dcache_lock);
342 remove_dir(dentry);
343}
344
345static struct super_operations cpuset_ops = {
346 .statfs = simple_statfs,
347 .drop_inode = generic_delete_inode,
348};
349
350static int cpuset_fill_super(struct super_block *sb, void *unused_data,
351 int unused_silent)
352{
353 struct inode *inode;
354 struct dentry *root;
355
356 sb->s_blocksize = PAGE_CACHE_SIZE;
357 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
358 sb->s_magic = CPUSET_SUPER_MAGIC;
359 sb->s_op = &cpuset_ops;
360 cpuset_sb = sb;
361
362 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
363 if (inode) {
364 inode->i_op = &simple_dir_inode_operations;
365 inode->i_fop = &simple_dir_operations;
366 /* directories start off with i_nlink == 2 (for "." entry) */
367 inode->i_nlink++;
368 } else {
369 return -ENOMEM;
370 }
371
372 root = d_alloc_root(inode);
373 if (!root) {
374 iput(inode);
375 return -ENOMEM;
376 }
377 sb->s_root = root;
378 return 0;
379}
380
381static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
382 int flags, const char *unused_dev_name,
383 void *data)
384{
385 return get_sb_single(fs_type, flags, data, cpuset_fill_super);
386}
387
388static struct file_system_type cpuset_fs_type = {
389 .name = "cpuset",
390 .get_sb = cpuset_get_sb,
391 .kill_sb = kill_litter_super,
392};
393
394/* struct cftype:
395 *
396 * The files in the cpuset filesystem mostly have a very simple read/write
397 * handling, some common function will take care of it. Nevertheless some cases
398 * (read tasks) are special and therefore I define this structure for every
399 * kind of file.
400 *
401 *
402 * When reading/writing to a file:
403 * - the cpuset to use in file->f_dentry->d_parent->d_fsdata
404 * - the 'cftype' of the file is file->f_dentry->d_fsdata
405 */
406
407struct cftype {
408 char *name;
409 int private;
410 int (*open) (struct inode *inode, struct file *file);
411 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
412 loff_t *ppos);
413 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
414 loff_t *ppos);
415 int (*release) (struct inode *inode, struct file *file);
416};
417
418static inline struct cpuset *__d_cs(struct dentry *dentry)
419{
420 return dentry->d_fsdata;
421}
422
423static inline struct cftype *__d_cft(struct dentry *dentry)
424{
425 return dentry->d_fsdata;
426}
427
428/*
053199ed 429 * Call with manage_sem held. Writes path of cpuset into buf.
1da177e4
LT
430 * Returns 0 on success, -errno on error.
431 */
432
433static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
434{
435 char *start;
436
437 start = buf + buflen;
438
439 *--start = '\0';
440 for (;;) {
441 int len = cs->dentry->d_name.len;
442 if ((start -= len) < buf)
443 return -ENAMETOOLONG;
444 memcpy(start, cs->dentry->d_name.name, len);
445 cs = cs->parent;
446 if (!cs)
447 break;
448 if (!cs->parent)
449 continue;
450 if (--start < buf)
451 return -ENAMETOOLONG;
452 *start = '/';
453 }
454 memmove(buf, start, buf + buflen - start);
455 return 0;
456}
457
458/*
459 * Notify userspace when a cpuset is released, by running
460 * /sbin/cpuset_release_agent with the name of the cpuset (path
461 * relative to the root of cpuset file system) as the argument.
462 *
463 * Most likely, this user command will try to rmdir this cpuset.
464 *
465 * This races with the possibility that some other task will be
466 * attached to this cpuset before it is removed, or that some other
467 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
468 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
469 * unused, and this cpuset will be reprieved from its death sentence,
470 * to continue to serve a useful existence. Next time it's released,
471 * we will get notified again, if it still has 'notify_on_release' set.
472 *
3077a260
PJ
473 * The final arg to call_usermodehelper() is 0, which means don't
474 * wait. The separate /sbin/cpuset_release_agent task is forked by
475 * call_usermodehelper(), then control in this thread returns here,
476 * without waiting for the release agent task. We don't bother to
477 * wait because the caller of this routine has no use for the exit
478 * status of the /sbin/cpuset_release_agent task, so no sense holding
479 * our caller up for that.
480 *
053199ed
PJ
481 * When we had only one cpuset semaphore, we had to call this
482 * without holding it, to avoid deadlock when call_usermodehelper()
483 * allocated memory. With two locks, we could now call this while
484 * holding manage_sem, but we still don't, so as to minimize
485 * the time manage_sem is held.
1da177e4
LT
486 */
487
3077a260 488static void cpuset_release_agent(const char *pathbuf)
1da177e4
LT
489{
490 char *argv[3], *envp[3];
491 int i;
492
3077a260
PJ
493 if (!pathbuf)
494 return;
495
1da177e4
LT
496 i = 0;
497 argv[i++] = "/sbin/cpuset_release_agent";
3077a260 498 argv[i++] = (char *)pathbuf;
1da177e4
LT
499 argv[i] = NULL;
500
501 i = 0;
502 /* minimal command environment */
503 envp[i++] = "HOME=/";
504 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
505 envp[i] = NULL;
506
3077a260
PJ
507 call_usermodehelper(argv[0], argv, envp, 0);
508 kfree(pathbuf);
1da177e4
LT
509}
510
511/*
512 * Either cs->count of using tasks transitioned to zero, or the
513 * cs->children list of child cpusets just became empty. If this
514 * cs is notify_on_release() and now both the user count is zero and
3077a260
PJ
515 * the list of children is empty, prepare cpuset path in a kmalloc'd
516 * buffer, to be returned via ppathbuf, so that the caller can invoke
053199ed
PJ
517 * cpuset_release_agent() with it later on, once manage_sem is dropped.
518 * Call here with manage_sem held.
3077a260
PJ
519 *
520 * This check_for_release() routine is responsible for kmalloc'ing
521 * pathbuf. The above cpuset_release_agent() is responsible for
522 * kfree'ing pathbuf. The caller of these routines is responsible
523 * for providing a pathbuf pointer, initialized to NULL, then
053199ed
PJ
524 * calling check_for_release() with manage_sem held and the address
525 * of the pathbuf pointer, then dropping manage_sem, then calling
3077a260 526 * cpuset_release_agent() with pathbuf, as set by check_for_release().
1da177e4
LT
527 */
528
3077a260 529static void check_for_release(struct cpuset *cs, char **ppathbuf)
1da177e4
LT
530{
531 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
532 list_empty(&cs->children)) {
533 char *buf;
534
535 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
536 if (!buf)
537 return;
538 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
3077a260
PJ
539 kfree(buf);
540 else
541 *ppathbuf = buf;
1da177e4
LT
542 }
543}
544
545/*
546 * Return in *pmask the portion of a cpusets's cpus_allowed that
547 * are online. If none are online, walk up the cpuset hierarchy
548 * until we find one that does have some online cpus. If we get
549 * all the way to the top and still haven't found any online cpus,
550 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
551 * task, return cpu_online_map.
552 *
553 * One way or another, we guarantee to return some non-empty subset
554 * of cpu_online_map.
555 *
053199ed 556 * Call with callback_sem held.
1da177e4
LT
557 */
558
559static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
560{
561 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
562 cs = cs->parent;
563 if (cs)
564 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
565 else
566 *pmask = cpu_online_map;
567 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
568}
569
570/*
571 * Return in *pmask the portion of a cpusets's mems_allowed that
572 * are online. If none are online, walk up the cpuset hierarchy
573 * until we find one that does have some online mems. If we get
574 * all the way to the top and still haven't found any online mems,
575 * return node_online_map.
576 *
577 * One way or another, we guarantee to return some non-empty subset
578 * of node_online_map.
579 *
053199ed 580 * Call with callback_sem held.
1da177e4
LT
581 */
582
583static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
584{
585 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
586 cs = cs->parent;
587 if (cs)
588 nodes_and(*pmask, cs->mems_allowed, node_online_map);
589 else
590 *pmask = node_online_map;
591 BUG_ON(!nodes_intersects(*pmask, node_online_map));
592}
593
cf2a473c
PJ
594/**
595 * cpuset_update_task_memory_state - update task memory placement
596 *
597 * If the current tasks cpusets mems_allowed changed behind our
598 * backs, update current->mems_allowed, mems_generation and task NUMA
599 * mempolicy to the new value.
053199ed 600 *
cf2a473c
PJ
601 * Task mempolicy is updated by rebinding it relative to the
602 * current->cpuset if a task has its memory placement changed.
603 * Do not call this routine if in_interrupt().
604 *
605 * Call without callback_sem or task_lock() held. May be called
c417f024 606 * with or without manage_sem held. Doesn't need task_lock to guard
cf2a473c
PJ
607 * against another task changing a non-NULL cpuset pointer to NULL,
608 * as that is only done by a task on itself, and if the current task
609 * is here, it is not simultaneously in the exit code NULL'ing its
610 * cpuset pointer. This routine also might acquire callback_sem and
611 * current->mm->mmap_sem during call.
053199ed
PJ
612 *
613 * The task_lock() is required to dereference current->cpuset safely.
614 * Without it, we could pick up the pointer value of current->cpuset
615 * in one instruction, and then attach_task could give us a different
616 * cpuset, and then the cpuset we had could be removed and freed,
617 * and then on our next instruction, we could dereference a no longer
618 * valid cpuset pointer to get its mems_generation field.
619 *
620 * This routine is needed to update the per-task mems_allowed data,
621 * within the tasks context, when it is trying to allocate memory
622 * (in various mm/mempolicy.c routines) and notices that some other
623 * task has been modifying its cpuset.
1da177e4
LT
624 */
625
cf2a473c 626void cpuset_update_task_memory_state()
1da177e4 627{
053199ed 628 int my_cpusets_mem_gen;
cf2a473c
PJ
629 struct task_struct *tsk = current;
630 struct cpuset *cs = tsk->cpuset;
053199ed 631
cf2a473c
PJ
632 task_lock(tsk);
633 my_cpusets_mem_gen = cs->mems_generation;
634 task_unlock(tsk);
1da177e4 635
cf2a473c 636 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
053199ed 637 down(&callback_sem);
cf2a473c
PJ
638 task_lock(tsk);
639 cs = tsk->cpuset; /* Maybe changed when task not locked */
cf2a473c
PJ
640 guarantee_online_mems(cs, &tsk->mems_allowed);
641 tsk->cpuset_mems_generation = cs->mems_generation;
642 task_unlock(tsk);
053199ed 643 up(&callback_sem);
74cb2155 644 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
645 }
646}
647
648/*
649 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
650 *
651 * One cpuset is a subset of another if all its allowed CPUs and
652 * Memory Nodes are a subset of the other, and its exclusive flags
053199ed 653 * are only set if the other's are set. Call holding manage_sem.
1da177e4
LT
654 */
655
656static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
657{
658 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
659 nodes_subset(p->mems_allowed, q->mems_allowed) &&
660 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
661 is_mem_exclusive(p) <= is_mem_exclusive(q);
662}
663
664/*
665 * validate_change() - Used to validate that any proposed cpuset change
666 * follows the structural rules for cpusets.
667 *
668 * If we replaced the flag and mask values of the current cpuset
669 * (cur) with those values in the trial cpuset (trial), would
670 * our various subset and exclusive rules still be valid? Presumes
053199ed 671 * manage_sem held.
1da177e4
LT
672 *
673 * 'cur' is the address of an actual, in-use cpuset. Operations
674 * such as list traversal that depend on the actual address of the
675 * cpuset in the list must use cur below, not trial.
676 *
677 * 'trial' is the address of bulk structure copy of cur, with
678 * perhaps one or more of the fields cpus_allowed, mems_allowed,
679 * or flags changed to new, trial values.
680 *
681 * Return 0 if valid, -errno if not.
682 */
683
684static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
685{
686 struct cpuset *c, *par;
687
688 /* Each of our child cpusets must be a subset of us */
689 list_for_each_entry(c, &cur->children, sibling) {
690 if (!is_cpuset_subset(c, trial))
691 return -EBUSY;
692 }
693
694 /* Remaining checks don't apply to root cpuset */
695 if ((par = cur->parent) == NULL)
696 return 0;
697
698 /* We must be a subset of our parent cpuset */
699 if (!is_cpuset_subset(trial, par))
700 return -EACCES;
701
702 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
703 list_for_each_entry(c, &par->children, sibling) {
704 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
705 c != cur &&
706 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
707 return -EINVAL;
708 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
709 c != cur &&
710 nodes_intersects(trial->mems_allowed, c->mems_allowed))
711 return -EINVAL;
712 }
713
714 return 0;
715}
716
85d7b949
DG
717/*
718 * For a given cpuset cur, partition the system as follows
719 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
720 * exclusive child cpusets
721 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
722 * exclusive child cpusets
723 * Build these two partitions by calling partition_sched_domains
724 *
053199ed 725 * Call with manage_sem held. May nest a call to the
85d7b949
DG
726 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
727 */
212d6d22 728
85d7b949
DG
729static void update_cpu_domains(struct cpuset *cur)
730{
731 struct cpuset *c, *par = cur->parent;
732 cpumask_t pspan, cspan;
733
734 if (par == NULL || cpus_empty(cur->cpus_allowed))
735 return;
736
737 /*
738 * Get all cpus from parent's cpus_allowed not part of exclusive
739 * children
740 */
741 pspan = par->cpus_allowed;
742 list_for_each_entry(c, &par->children, sibling) {
743 if (is_cpu_exclusive(c))
744 cpus_andnot(pspan, pspan, c->cpus_allowed);
745 }
746 if (is_removed(cur) || !is_cpu_exclusive(cur)) {
747 cpus_or(pspan, pspan, cur->cpus_allowed);
748 if (cpus_equal(pspan, cur->cpus_allowed))
749 return;
750 cspan = CPU_MASK_NONE;
751 } else {
752 if (cpus_empty(pspan))
753 return;
754 cspan = cur->cpus_allowed;
755 /*
756 * Get all cpus from current cpuset's cpus_allowed not part
757 * of exclusive children
758 */
759 list_for_each_entry(c, &cur->children, sibling) {
760 if (is_cpu_exclusive(c))
761 cpus_andnot(cspan, cspan, c->cpus_allowed);
762 }
763 }
764
765 lock_cpu_hotplug();
766 partition_sched_domains(&pspan, &cspan);
767 unlock_cpu_hotplug();
768}
769
053199ed
PJ
770/*
771 * Call with manage_sem held. May take callback_sem during call.
772 */
773
1da177e4
LT
774static int update_cpumask(struct cpuset *cs, char *buf)
775{
776 struct cpuset trialcs;
85d7b949 777 int retval, cpus_unchanged;
1da177e4
LT
778
779 trialcs = *cs;
780 retval = cpulist_parse(buf, trialcs.cpus_allowed);
781 if (retval < 0)
782 return retval;
783 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
784 if (cpus_empty(trialcs.cpus_allowed))
785 return -ENOSPC;
786 retval = validate_change(cs, &trialcs);
85d7b949
DG
787 if (retval < 0)
788 return retval;
789 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
053199ed 790 down(&callback_sem);
85d7b949 791 cs->cpus_allowed = trialcs.cpus_allowed;
053199ed 792 up(&callback_sem);
85d7b949
DG
793 if (is_cpu_exclusive(cs) && !cpus_unchanged)
794 update_cpu_domains(cs);
795 return 0;
1da177e4
LT
796}
797
053199ed 798/*
4225399a
PJ
799 * Handle user request to change the 'mems' memory placement
800 * of a cpuset. Needs to validate the request, update the
801 * cpusets mems_allowed and mems_generation, and for each
04c19fa6
PJ
802 * task in the cpuset, rebind any vma mempolicies and if
803 * the cpuset is marked 'memory_migrate', migrate the tasks
804 * pages to the new memory.
4225399a 805 *
053199ed 806 * Call with manage_sem held. May take callback_sem during call.
4225399a
PJ
807 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
808 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
809 * their mempolicies to the cpusets new mems_allowed.
053199ed
PJ
810 */
811
1da177e4
LT
812static int update_nodemask(struct cpuset *cs, char *buf)
813{
814 struct cpuset trialcs;
04c19fa6 815 nodemask_t oldmem;
4225399a
PJ
816 struct task_struct *g, *p;
817 struct mm_struct **mmarray;
818 int i, n, ntasks;
04c19fa6 819 int migrate;
4225399a 820 int fudge;
1da177e4
LT
821 int retval;
822
823 trialcs = *cs;
824 retval = nodelist_parse(buf, trialcs.mems_allowed);
825 if (retval < 0)
59dac16f 826 goto done;
1da177e4 827 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
04c19fa6
PJ
828 oldmem = cs->mems_allowed;
829 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
830 retval = 0; /* Too easy - nothing to do */
831 goto done;
832 }
59dac16f
PJ
833 if (nodes_empty(trialcs.mems_allowed)) {
834 retval = -ENOSPC;
835 goto done;
1da177e4 836 }
59dac16f
PJ
837 retval = validate_change(cs, &trialcs);
838 if (retval < 0)
839 goto done;
840
841 down(&callback_sem);
842 cs->mems_allowed = trialcs.mems_allowed;
843 atomic_inc(&cpuset_mems_generation);
844 cs->mems_generation = atomic_read(&cpuset_mems_generation);
845 up(&callback_sem);
846
4225399a
PJ
847 set_cpuset_being_rebound(cs); /* causes mpol_copy() rebind */
848
849 fudge = 10; /* spare mmarray[] slots */
850 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
851 retval = -ENOMEM;
852
853 /*
854 * Allocate mmarray[] to hold mm reference for each task
855 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
856 * tasklist_lock. We could use GFP_ATOMIC, but with a
857 * few more lines of code, we can retry until we get a big
858 * enough mmarray[] w/o using GFP_ATOMIC.
859 */
860 while (1) {
861 ntasks = atomic_read(&cs->count); /* guess */
862 ntasks += fudge;
863 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
864 if (!mmarray)
865 goto done;
866 write_lock_irq(&tasklist_lock); /* block fork */
867 if (atomic_read(&cs->count) <= ntasks)
868 break; /* got enough */
869 write_unlock_irq(&tasklist_lock); /* try again */
870 kfree(mmarray);
871 }
872
873 n = 0;
874
875 /* Load up mmarray[] with mm reference for each task in cpuset. */
876 do_each_thread(g, p) {
877 struct mm_struct *mm;
878
879 if (n >= ntasks) {
880 printk(KERN_WARNING
881 "Cpuset mempolicy rebind incomplete.\n");
882 continue;
883 }
884 if (p->cpuset != cs)
885 continue;
886 mm = get_task_mm(p);
887 if (!mm)
888 continue;
889 mmarray[n++] = mm;
890 } while_each_thread(g, p);
891 write_unlock_irq(&tasklist_lock);
892
893 /*
894 * Now that we've dropped the tasklist spinlock, we can
895 * rebind the vma mempolicies of each mm in mmarray[] to their
896 * new cpuset, and release that mm. The mpol_rebind_mm()
897 * call takes mmap_sem, which we couldn't take while holding
898 * tasklist_lock. Forks can happen again now - the mpol_copy()
899 * cpuset_being_rebound check will catch such forks, and rebind
900 * their vma mempolicies too. Because we still hold the global
901 * cpuset manage_sem, we know that no other rebind effort will
902 * be contending for the global variable cpuset_being_rebound.
903 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 904 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 905 */
04c19fa6 906 migrate = is_memory_migrate(cs);
4225399a
PJ
907 for (i = 0; i < n; i++) {
908 struct mm_struct *mm = mmarray[i];
909
910 mpol_rebind_mm(mm, &cs->mems_allowed);
04c19fa6
PJ
911 if (migrate) {
912 do_migrate_pages(mm, &oldmem, &cs->mems_allowed,
913 MPOL_MF_MOVE_ALL);
914 }
4225399a
PJ
915 mmput(mm);
916 }
917
918 /* We're done rebinding vma's to this cpusets new mems_allowed. */
919 kfree(mmarray);
920 set_cpuset_being_rebound(NULL);
921 retval = 0;
59dac16f 922done:
1da177e4
LT
923 return retval;
924}
925
3e0d98b9
PJ
926/*
927 * Call with manage_sem held.
928 */
929
930static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
931{
932 if (simple_strtoul(buf, NULL, 10) != 0)
933 cpuset_memory_pressure_enabled = 1;
934 else
935 cpuset_memory_pressure_enabled = 0;
936 return 0;
937}
938
1da177e4
LT
939/*
940 * update_flag - read a 0 or a 1 in a file and update associated flag
941 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
45b07ef3 942 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE)
1da177e4
LT
943 * cs: the cpuset to update
944 * buf: the buffer where we read the 0 or 1
053199ed
PJ
945 *
946 * Call with manage_sem held.
1da177e4
LT
947 */
948
949static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
950{
951 int turning_on;
952 struct cpuset trialcs;
85d7b949 953 int err, cpu_exclusive_changed;
1da177e4
LT
954
955 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
956
957 trialcs = *cs;
958 if (turning_on)
959 set_bit(bit, &trialcs.flags);
960 else
961 clear_bit(bit, &trialcs.flags);
962
963 err = validate_change(cs, &trialcs);
85d7b949
DG
964 if (err < 0)
965 return err;
966 cpu_exclusive_changed =
967 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
053199ed 968 down(&callback_sem);
85d7b949
DG
969 if (turning_on)
970 set_bit(bit, &cs->flags);
971 else
972 clear_bit(bit, &cs->flags);
053199ed 973 up(&callback_sem);
85d7b949
DG
974
975 if (cpu_exclusive_changed)
976 update_cpu_domains(cs);
977 return 0;
1da177e4
LT
978}
979
3e0d98b9
PJ
980/*
981 * Frequency meter - How fast is some event occuring?
982 *
983 * These routines manage a digitally filtered, constant time based,
984 * event frequency meter. There are four routines:
985 * fmeter_init() - initialize a frequency meter.
986 * fmeter_markevent() - called each time the event happens.
987 * fmeter_getrate() - returns the recent rate of such events.
988 * fmeter_update() - internal routine used to update fmeter.
989 *
990 * A common data structure is passed to each of these routines,
991 * which is used to keep track of the state required to manage the
992 * frequency meter and its digital filter.
993 *
994 * The filter works on the number of events marked per unit time.
995 * The filter is single-pole low-pass recursive (IIR). The time unit
996 * is 1 second. Arithmetic is done using 32-bit integers scaled to
997 * simulate 3 decimal digits of precision (multiplied by 1000).
998 *
999 * With an FM_COEF of 933, and a time base of 1 second, the filter
1000 * has a half-life of 10 seconds, meaning that if the events quit
1001 * happening, then the rate returned from the fmeter_getrate()
1002 * will be cut in half each 10 seconds, until it converges to zero.
1003 *
1004 * It is not worth doing a real infinitely recursive filter. If more
1005 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1006 * just compute FM_MAXTICKS ticks worth, by which point the level
1007 * will be stable.
1008 *
1009 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1010 * arithmetic overflow in the fmeter_update() routine.
1011 *
1012 * Given the simple 32 bit integer arithmetic used, this meter works
1013 * best for reporting rates between one per millisecond (msec) and
1014 * one per 32 (approx) seconds. At constant rates faster than one
1015 * per msec it maxes out at values just under 1,000,000. At constant
1016 * rates between one per msec, and one per second it will stabilize
1017 * to a value N*1000, where N is the rate of events per second.
1018 * At constant rates between one per second and one per 32 seconds,
1019 * it will be choppy, moving up on the seconds that have an event,
1020 * and then decaying until the next event. At rates slower than
1021 * about one in 32 seconds, it decays all the way back to zero between
1022 * each event.
1023 */
1024
1025#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1026#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1027#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1028#define FM_SCALE 1000 /* faux fixed point scale */
1029
1030/* Initialize a frequency meter */
1031static void fmeter_init(struct fmeter *fmp)
1032{
1033 fmp->cnt = 0;
1034 fmp->val = 0;
1035 fmp->time = 0;
1036 spin_lock_init(&fmp->lock);
1037}
1038
1039/* Internal meter update - process cnt events and update value */
1040static void fmeter_update(struct fmeter *fmp)
1041{
1042 time_t now = get_seconds();
1043 time_t ticks = now - fmp->time;
1044
1045 if (ticks == 0)
1046 return;
1047
1048 ticks = min(FM_MAXTICKS, ticks);
1049 while (ticks-- > 0)
1050 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1051 fmp->time = now;
1052
1053 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1054 fmp->cnt = 0;
1055}
1056
1057/* Process any previous ticks, then bump cnt by one (times scale). */
1058static void fmeter_markevent(struct fmeter *fmp)
1059{
1060 spin_lock(&fmp->lock);
1061 fmeter_update(fmp);
1062 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1063 spin_unlock(&fmp->lock);
1064}
1065
1066/* Process any previous ticks, then return current value. */
1067static int fmeter_getrate(struct fmeter *fmp)
1068{
1069 int val;
1070
1071 spin_lock(&fmp->lock);
1072 fmeter_update(fmp);
1073 val = fmp->val;
1074 spin_unlock(&fmp->lock);
1075 return val;
1076}
1077
053199ed
PJ
1078/*
1079 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
1080 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
1081 * notified on release.
1082 *
1083 * Call holding manage_sem. May take callback_sem and task_lock of
1084 * the task 'pid' during call.
1085 */
1086
3077a260 1087static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
1da177e4
LT
1088{
1089 pid_t pid;
1090 struct task_struct *tsk;
1091 struct cpuset *oldcs;
1092 cpumask_t cpus;
45b07ef3 1093 nodemask_t from, to;
4225399a 1094 struct mm_struct *mm;
1da177e4 1095
3077a260 1096 if (sscanf(pidbuf, "%d", &pid) != 1)
1da177e4
LT
1097 return -EIO;
1098 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1099 return -ENOSPC;
1100
1101 if (pid) {
1102 read_lock(&tasklist_lock);
1103
1104 tsk = find_task_by_pid(pid);
053199ed 1105 if (!tsk || tsk->flags & PF_EXITING) {
1da177e4
LT
1106 read_unlock(&tasklist_lock);
1107 return -ESRCH;
1108 }
1109
1110 get_task_struct(tsk);
1111 read_unlock(&tasklist_lock);
1112
1113 if ((current->euid) && (current->euid != tsk->uid)
1114 && (current->euid != tsk->suid)) {
1115 put_task_struct(tsk);
1116 return -EACCES;
1117 }
1118 } else {
1119 tsk = current;
1120 get_task_struct(tsk);
1121 }
1122
053199ed
PJ
1123 down(&callback_sem);
1124
1da177e4
LT
1125 task_lock(tsk);
1126 oldcs = tsk->cpuset;
1127 if (!oldcs) {
1128 task_unlock(tsk);
053199ed 1129 up(&callback_sem);
1da177e4
LT
1130 put_task_struct(tsk);
1131 return -ESRCH;
1132 }
1133 atomic_inc(&cs->count);
1134 tsk->cpuset = cs;
1135 task_unlock(tsk);
1136
1137 guarantee_online_cpus(cs, &cpus);
1138 set_cpus_allowed(tsk, cpus);
1139
45b07ef3
PJ
1140 from = oldcs->mems_allowed;
1141 to = cs->mems_allowed;
1142
053199ed 1143 up(&callback_sem);
4225399a
PJ
1144
1145 mm = get_task_mm(tsk);
1146 if (mm) {
1147 mpol_rebind_mm(mm, &to);
1148 mmput(mm);
1149 }
1150
45b07ef3
PJ
1151 if (is_memory_migrate(cs))
1152 do_migrate_pages(tsk->mm, &from, &to, MPOL_MF_MOVE_ALL);
1da177e4
LT
1153 put_task_struct(tsk);
1154 if (atomic_dec_and_test(&oldcs->count))
3077a260 1155 check_for_release(oldcs, ppathbuf);
1da177e4
LT
1156 return 0;
1157}
1158
1159/* The various types of files and directories in a cpuset file system */
1160
1161typedef enum {
1162 FILE_ROOT,
1163 FILE_DIR,
45b07ef3 1164 FILE_MEMORY_MIGRATE,
1da177e4
LT
1165 FILE_CPULIST,
1166 FILE_MEMLIST,
1167 FILE_CPU_EXCLUSIVE,
1168 FILE_MEM_EXCLUSIVE,
1169 FILE_NOTIFY_ON_RELEASE,
3e0d98b9
PJ
1170 FILE_MEMORY_PRESSURE_ENABLED,
1171 FILE_MEMORY_PRESSURE,
1da177e4
LT
1172 FILE_TASKLIST,
1173} cpuset_filetype_t;
1174
1175static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
1176 size_t nbytes, loff_t *unused_ppos)
1177{
1178 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1179 struct cftype *cft = __d_cft(file->f_dentry);
1180 cpuset_filetype_t type = cft->private;
1181 char *buffer;
3077a260 1182 char *pathbuf = NULL;
1da177e4
LT
1183 int retval = 0;
1184
1185 /* Crude upper limit on largest legitimate cpulist user might write. */
1186 if (nbytes > 100 + 6 * NR_CPUS)
1187 return -E2BIG;
1188
1189 /* +1 for nul-terminator */
1190 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
1191 return -ENOMEM;
1192
1193 if (copy_from_user(buffer, userbuf, nbytes)) {
1194 retval = -EFAULT;
1195 goto out1;
1196 }
1197 buffer[nbytes] = 0; /* nul-terminate */
1198
053199ed 1199 down(&manage_sem);
1da177e4
LT
1200
1201 if (is_removed(cs)) {
1202 retval = -ENODEV;
1203 goto out2;
1204 }
1205
1206 switch (type) {
1207 case FILE_CPULIST:
1208 retval = update_cpumask(cs, buffer);
1209 break;
1210 case FILE_MEMLIST:
1211 retval = update_nodemask(cs, buffer);
1212 break;
1213 case FILE_CPU_EXCLUSIVE:
1214 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
1215 break;
1216 case FILE_MEM_EXCLUSIVE:
1217 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
1218 break;
1219 case FILE_NOTIFY_ON_RELEASE:
1220 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
1221 break;
45b07ef3
PJ
1222 case FILE_MEMORY_MIGRATE:
1223 retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
1224 break;
3e0d98b9
PJ
1225 case FILE_MEMORY_PRESSURE_ENABLED:
1226 retval = update_memory_pressure_enabled(cs, buffer);
1227 break;
1228 case FILE_MEMORY_PRESSURE:
1229 retval = -EACCES;
1230 break;
1da177e4 1231 case FILE_TASKLIST:
3077a260 1232 retval = attach_task(cs, buffer, &pathbuf);
1da177e4
LT
1233 break;
1234 default:
1235 retval = -EINVAL;
1236 goto out2;
1237 }
1238
1239 if (retval == 0)
1240 retval = nbytes;
1241out2:
053199ed 1242 up(&manage_sem);
3077a260 1243 cpuset_release_agent(pathbuf);
1da177e4
LT
1244out1:
1245 kfree(buffer);
1246 return retval;
1247}
1248
1249static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
1250 size_t nbytes, loff_t *ppos)
1251{
1252 ssize_t retval = 0;
1253 struct cftype *cft = __d_cft(file->f_dentry);
1254 if (!cft)
1255 return -ENODEV;
1256
1257 /* special function ? */
1258 if (cft->write)
1259 retval = cft->write(file, buf, nbytes, ppos);
1260 else
1261 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
1262
1263 return retval;
1264}
1265
1266/*
1267 * These ascii lists should be read in a single call, by using a user
1268 * buffer large enough to hold the entire map. If read in smaller
1269 * chunks, there is no guarantee of atomicity. Since the display format
1270 * used, list of ranges of sequential numbers, is variable length,
1271 * and since these maps can change value dynamically, one could read
1272 * gibberish by doing partial reads while a list was changing.
1273 * A single large read to a buffer that crosses a page boundary is
1274 * ok, because the result being copied to user land is not recomputed
1275 * across a page fault.
1276 */
1277
1278static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1279{
1280 cpumask_t mask;
1281
053199ed 1282 down(&callback_sem);
1da177e4 1283 mask = cs->cpus_allowed;
053199ed 1284 up(&callback_sem);
1da177e4
LT
1285
1286 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1287}
1288
1289static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1290{
1291 nodemask_t mask;
1292
053199ed 1293 down(&callback_sem);
1da177e4 1294 mask = cs->mems_allowed;
053199ed 1295 up(&callback_sem);
1da177e4
LT
1296
1297 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1298}
1299
1300static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
1301 size_t nbytes, loff_t *ppos)
1302{
1303 struct cftype *cft = __d_cft(file->f_dentry);
1304 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1305 cpuset_filetype_t type = cft->private;
1306 char *page;
1307 ssize_t retval = 0;
1308 char *s;
1da177e4
LT
1309
1310 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1311 return -ENOMEM;
1312
1313 s = page;
1314
1315 switch (type) {
1316 case FILE_CPULIST:
1317 s += cpuset_sprintf_cpulist(s, cs);
1318 break;
1319 case FILE_MEMLIST:
1320 s += cpuset_sprintf_memlist(s, cs);
1321 break;
1322 case FILE_CPU_EXCLUSIVE:
1323 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
1324 break;
1325 case FILE_MEM_EXCLUSIVE:
1326 *s++ = is_mem_exclusive(cs) ? '1' : '0';
1327 break;
1328 case FILE_NOTIFY_ON_RELEASE:
1329 *s++ = notify_on_release(cs) ? '1' : '0';
1330 break;
45b07ef3
PJ
1331 case FILE_MEMORY_MIGRATE:
1332 *s++ = is_memory_migrate(cs) ? '1' : '0';
1333 break;
3e0d98b9
PJ
1334 case FILE_MEMORY_PRESSURE_ENABLED:
1335 *s++ = cpuset_memory_pressure_enabled ? '1' : '0';
1336 break;
1337 case FILE_MEMORY_PRESSURE:
1338 s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
1339 break;
1da177e4
LT
1340 default:
1341 retval = -EINVAL;
1342 goto out;
1343 }
1344 *s++ = '\n';
1da177e4 1345
eacaa1f5 1346 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1347out:
1348 free_page((unsigned long)page);
1349 return retval;
1350}
1351
1352static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
1353 loff_t *ppos)
1354{
1355 ssize_t retval = 0;
1356 struct cftype *cft = __d_cft(file->f_dentry);
1357 if (!cft)
1358 return -ENODEV;
1359
1360 /* special function ? */
1361 if (cft->read)
1362 retval = cft->read(file, buf, nbytes, ppos);
1363 else
1364 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
1365
1366 return retval;
1367}
1368
1369static int cpuset_file_open(struct inode *inode, struct file *file)
1370{
1371 int err;
1372 struct cftype *cft;
1373
1374 err = generic_file_open(inode, file);
1375 if (err)
1376 return err;
1377
1378 cft = __d_cft(file->f_dentry);
1379 if (!cft)
1380 return -ENODEV;
1381 if (cft->open)
1382 err = cft->open(inode, file);
1383 else
1384 err = 0;
1385
1386 return err;
1387}
1388
1389static int cpuset_file_release(struct inode *inode, struct file *file)
1390{
1391 struct cftype *cft = __d_cft(file->f_dentry);
1392 if (cft->release)
1393 return cft->release(inode, file);
1394 return 0;
1395}
1396
18a19cb3
PJ
1397/*
1398 * cpuset_rename - Only allow simple rename of directories in place.
1399 */
1400static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
1401 struct inode *new_dir, struct dentry *new_dentry)
1402{
1403 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1404 return -ENOTDIR;
1405 if (new_dentry->d_inode)
1406 return -EEXIST;
1407 if (old_dir != new_dir)
1408 return -EIO;
1409 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1410}
1411
1da177e4
LT
1412static struct file_operations cpuset_file_operations = {
1413 .read = cpuset_file_read,
1414 .write = cpuset_file_write,
1415 .llseek = generic_file_llseek,
1416 .open = cpuset_file_open,
1417 .release = cpuset_file_release,
1418};
1419
1420static struct inode_operations cpuset_dir_inode_operations = {
1421 .lookup = simple_lookup,
1422 .mkdir = cpuset_mkdir,
1423 .rmdir = cpuset_rmdir,
18a19cb3 1424 .rename = cpuset_rename,
1da177e4
LT
1425};
1426
1427static int cpuset_create_file(struct dentry *dentry, int mode)
1428{
1429 struct inode *inode;
1430
1431 if (!dentry)
1432 return -ENOENT;
1433 if (dentry->d_inode)
1434 return -EEXIST;
1435
1436 inode = cpuset_new_inode(mode);
1437 if (!inode)
1438 return -ENOMEM;
1439
1440 if (S_ISDIR(mode)) {
1441 inode->i_op = &cpuset_dir_inode_operations;
1442 inode->i_fop = &simple_dir_operations;
1443
1444 /* start off with i_nlink == 2 (for "." entry) */
1445 inode->i_nlink++;
1446 } else if (S_ISREG(mode)) {
1447 inode->i_size = 0;
1448 inode->i_fop = &cpuset_file_operations;
1449 }
1450
1451 d_instantiate(dentry, inode);
1452 dget(dentry); /* Extra count - pin the dentry in core */
1453 return 0;
1454}
1455
1456/*
1457 * cpuset_create_dir - create a directory for an object.
c5b2aff8 1458 * cs: the cpuset we create the directory for.
1da177e4
LT
1459 * It must have a valid ->parent field
1460 * And we are going to fill its ->dentry field.
1461 * name: The name to give to the cpuset directory. Will be copied.
1462 * mode: mode to set on new directory.
1463 */
1464
1465static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1466{
1467 struct dentry *dentry = NULL;
1468 struct dentry *parent;
1469 int error = 0;
1470
1471 parent = cs->parent->dentry;
1472 dentry = cpuset_get_dentry(parent, name);
1473 if (IS_ERR(dentry))
1474 return PTR_ERR(dentry);
1475 error = cpuset_create_file(dentry, S_IFDIR | mode);
1476 if (!error) {
1477 dentry->d_fsdata = cs;
1478 parent->d_inode->i_nlink++;
1479 cs->dentry = dentry;
1480 }
1481 dput(dentry);
1482
1483 return error;
1484}
1485
1486static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1487{
1488 struct dentry *dentry;
1489 int error;
1490
1491 down(&dir->d_inode->i_sem);
1492 dentry = cpuset_get_dentry(dir, cft->name);
1493 if (!IS_ERR(dentry)) {
1494 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1495 if (!error)
1496 dentry->d_fsdata = (void *)cft;
1497 dput(dentry);
1498 } else
1499 error = PTR_ERR(dentry);
1500 up(&dir->d_inode->i_sem);
1501 return error;
1502}
1503
1504/*
1505 * Stuff for reading the 'tasks' file.
1506 *
1507 * Reading this file can return large amounts of data if a cpuset has
1508 * *lots* of attached tasks. So it may need several calls to read(),
1509 * but we cannot guarantee that the information we produce is correct
1510 * unless we produce it entirely atomically.
1511 *
1512 * Upon tasks file open(), a struct ctr_struct is allocated, that
1513 * will have a pointer to an array (also allocated here). The struct
1514 * ctr_struct * is stored in file->private_data. Its resources will
1515 * be freed by release() when the file is closed. The array is used
1516 * to sprintf the PIDs and then used by read().
1517 */
1518
1519/* cpusets_tasks_read array */
1520
1521struct ctr_struct {
1522 char *buf;
1523 int bufsz;
1524};
1525
1526/*
1527 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
053199ed
PJ
1528 * Return actual number of pids loaded. No need to task_lock(p)
1529 * when reading out p->cpuset, as we don't really care if it changes
1530 * on the next cycle, and we are not going to try to dereference it.
1da177e4
LT
1531 */
1532static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1533{
1534 int n = 0;
1535 struct task_struct *g, *p;
1536
1537 read_lock(&tasklist_lock);
1538
1539 do_each_thread(g, p) {
1540 if (p->cpuset == cs) {
1541 pidarray[n++] = p->pid;
1542 if (unlikely(n == npids))
1543 goto array_full;
1544 }
1545 } while_each_thread(g, p);
1546
1547array_full:
1548 read_unlock(&tasklist_lock);
1549 return n;
1550}
1551
1552static int cmppid(const void *a, const void *b)
1553{
1554 return *(pid_t *)a - *(pid_t *)b;
1555}
1556
1557/*
1558 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1559 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1560 * count 'cnt' of how many chars would be written if buf were large enough.
1561 */
1562static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1563{
1564 int cnt = 0;
1565 int i;
1566
1567 for (i = 0; i < npids; i++)
1568 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1569 return cnt;
1570}
1571
053199ed
PJ
1572/*
1573 * Handle an open on 'tasks' file. Prepare a buffer listing the
1574 * process id's of tasks currently attached to the cpuset being opened.
1575 *
1576 * Does not require any specific cpuset semaphores, and does not take any.
1577 */
1da177e4
LT
1578static int cpuset_tasks_open(struct inode *unused, struct file *file)
1579{
1580 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1581 struct ctr_struct *ctr;
1582 pid_t *pidarray;
1583 int npids;
1584 char c;
1585
1586 if (!(file->f_mode & FMODE_READ))
1587 return 0;
1588
1589 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1590 if (!ctr)
1591 goto err0;
1592
1593 /*
1594 * If cpuset gets more users after we read count, we won't have
1595 * enough space - tough. This race is indistinguishable to the
1596 * caller from the case that the additional cpuset users didn't
1597 * show up until sometime later on.
1598 */
1599 npids = atomic_read(&cs->count);
1600 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1601 if (!pidarray)
1602 goto err1;
1603
1604 npids = pid_array_load(pidarray, npids, cs);
1605 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1606
1607 /* Call pid_array_to_buf() twice, first just to get bufsz */
1608 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1609 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1610 if (!ctr->buf)
1611 goto err2;
1612 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1613
1614 kfree(pidarray);
1615 file->private_data = ctr;
1616 return 0;
1617
1618err2:
1619 kfree(pidarray);
1620err1:
1621 kfree(ctr);
1622err0:
1623 return -ENOMEM;
1624}
1625
1626static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1627 size_t nbytes, loff_t *ppos)
1628{
1629 struct ctr_struct *ctr = file->private_data;
1630
1631 if (*ppos + nbytes > ctr->bufsz)
1632 nbytes = ctr->bufsz - *ppos;
1633 if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
1634 return -EFAULT;
1635 *ppos += nbytes;
1636 return nbytes;
1637}
1638
1639static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1640{
1641 struct ctr_struct *ctr;
1642
1643 if (file->f_mode & FMODE_READ) {
1644 ctr = file->private_data;
1645 kfree(ctr->buf);
1646 kfree(ctr);
1647 }
1648 return 0;
1649}
1650
1651/*
1652 * for the common functions, 'private' gives the type of file
1653 */
1654
1655static struct cftype cft_tasks = {
1656 .name = "tasks",
1657 .open = cpuset_tasks_open,
1658 .read = cpuset_tasks_read,
1659 .release = cpuset_tasks_release,
1660 .private = FILE_TASKLIST,
1661};
1662
1663static struct cftype cft_cpus = {
1664 .name = "cpus",
1665 .private = FILE_CPULIST,
1666};
1667
1668static struct cftype cft_mems = {
1669 .name = "mems",
1670 .private = FILE_MEMLIST,
1671};
1672
1673static struct cftype cft_cpu_exclusive = {
1674 .name = "cpu_exclusive",
1675 .private = FILE_CPU_EXCLUSIVE,
1676};
1677
1678static struct cftype cft_mem_exclusive = {
1679 .name = "mem_exclusive",
1680 .private = FILE_MEM_EXCLUSIVE,
1681};
1682
1683static struct cftype cft_notify_on_release = {
1684 .name = "notify_on_release",
1685 .private = FILE_NOTIFY_ON_RELEASE,
1686};
1687
45b07ef3
PJ
1688static struct cftype cft_memory_migrate = {
1689 .name = "memory_migrate",
1690 .private = FILE_MEMORY_MIGRATE,
1691};
1692
3e0d98b9
PJ
1693static struct cftype cft_memory_pressure_enabled = {
1694 .name = "memory_pressure_enabled",
1695 .private = FILE_MEMORY_PRESSURE_ENABLED,
1696};
1697
1698static struct cftype cft_memory_pressure = {
1699 .name = "memory_pressure",
1700 .private = FILE_MEMORY_PRESSURE,
1701};
1702
1da177e4
LT
1703static int cpuset_populate_dir(struct dentry *cs_dentry)
1704{
1705 int err;
1706
1707 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1708 return err;
1709 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1710 return err;
1711 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1712 return err;
1713 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1714 return err;
1715 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1716 return err;
45b07ef3
PJ
1717 if ((err = cpuset_add_file(cs_dentry, &cft_memory_migrate)) < 0)
1718 return err;
3e0d98b9
PJ
1719 if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0)
1720 return err;
1da177e4
LT
1721 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1722 return err;
1723 return 0;
1724}
1725
1726/*
1727 * cpuset_create - create a cpuset
1728 * parent: cpuset that will be parent of the new cpuset.
1729 * name: name of the new cpuset. Will be strcpy'ed.
1730 * mode: mode to set on new inode
1731 *
1732 * Must be called with the semaphore on the parent inode held
1733 */
1734
1735static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1736{
1737 struct cpuset *cs;
1738 int err;
1739
1740 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1741 if (!cs)
1742 return -ENOMEM;
1743
053199ed 1744 down(&manage_sem);
cf2a473c 1745 cpuset_update_task_memory_state();
1da177e4
LT
1746 cs->flags = 0;
1747 if (notify_on_release(parent))
1748 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1749 cs->cpus_allowed = CPU_MASK_NONE;
1750 cs->mems_allowed = NODE_MASK_NONE;
1751 atomic_set(&cs->count, 0);
1752 INIT_LIST_HEAD(&cs->sibling);
1753 INIT_LIST_HEAD(&cs->children);
1754 atomic_inc(&cpuset_mems_generation);
1755 cs->mems_generation = atomic_read(&cpuset_mems_generation);
3e0d98b9 1756 fmeter_init(&cs->fmeter);
1da177e4
LT
1757
1758 cs->parent = parent;
1759
053199ed 1760 down(&callback_sem);
1da177e4 1761 list_add(&cs->sibling, &cs->parent->children);
202f72d5 1762 number_of_cpusets++;
053199ed 1763 up(&callback_sem);
1da177e4
LT
1764
1765 err = cpuset_create_dir(cs, name, mode);
1766 if (err < 0)
1767 goto err;
1768
1769 /*
053199ed 1770 * Release manage_sem before cpuset_populate_dir() because it
1da177e4
LT
1771 * will down() this new directory's i_sem and if we race with
1772 * another mkdir, we might deadlock.
1773 */
053199ed 1774 up(&manage_sem);
1da177e4
LT
1775
1776 err = cpuset_populate_dir(cs->dentry);
1777 /* If err < 0, we have a half-filled directory - oh well ;) */
1778 return 0;
1779err:
1780 list_del(&cs->sibling);
053199ed 1781 up(&manage_sem);
1da177e4
LT
1782 kfree(cs);
1783 return err;
1784}
1785
1786static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1787{
1788 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1789
1790 /* the vfs holds inode->i_sem already */
1791 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1792}
1793
1794static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1795{
1796 struct cpuset *cs = dentry->d_fsdata;
1797 struct dentry *d;
1798 struct cpuset *parent;
3077a260 1799 char *pathbuf = NULL;
1da177e4
LT
1800
1801 /* the vfs holds both inode->i_sem already */
1802
053199ed 1803 down(&manage_sem);
cf2a473c 1804 cpuset_update_task_memory_state();
1da177e4 1805 if (atomic_read(&cs->count) > 0) {
053199ed 1806 up(&manage_sem);
1da177e4
LT
1807 return -EBUSY;
1808 }
1809 if (!list_empty(&cs->children)) {
053199ed 1810 up(&manage_sem);
1da177e4
LT
1811 return -EBUSY;
1812 }
1da177e4 1813 parent = cs->parent;
053199ed 1814 down(&callback_sem);
1da177e4 1815 set_bit(CS_REMOVED, &cs->flags);
85d7b949
DG
1816 if (is_cpu_exclusive(cs))
1817 update_cpu_domains(cs);
1da177e4 1818 list_del(&cs->sibling); /* delete my sibling from parent->children */
85d7b949 1819 spin_lock(&cs->dentry->d_lock);
1da177e4
LT
1820 d = dget(cs->dentry);
1821 cs->dentry = NULL;
1822 spin_unlock(&d->d_lock);
1823 cpuset_d_remove_dir(d);
1824 dput(d);
202f72d5 1825 number_of_cpusets--;
053199ed
PJ
1826 up(&callback_sem);
1827 if (list_empty(&parent->children))
1828 check_for_release(parent, &pathbuf);
1829 up(&manage_sem);
3077a260 1830 cpuset_release_agent(pathbuf);
1da177e4
LT
1831 return 0;
1832}
1833
c417f024
PJ
1834/*
1835 * cpuset_init_early - just enough so that the calls to
1836 * cpuset_update_task_memory_state() in early init code
1837 * are harmless.
1838 */
1839
1840int __init cpuset_init_early(void)
1841{
1842 struct task_struct *tsk = current;
1843
1844 tsk->cpuset = &top_cpuset;
1845 tsk->cpuset->mems_generation = atomic_read(&cpuset_mems_generation);
1846 return 0;
1847}
1848
1da177e4
LT
1849/**
1850 * cpuset_init - initialize cpusets at system boot
1851 *
1852 * Description: Initialize top_cpuset and the cpuset internal file system,
1853 **/
1854
1855int __init cpuset_init(void)
1856{
1857 struct dentry *root;
1858 int err;
1859
1860 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1861 top_cpuset.mems_allowed = NODE_MASK_ALL;
1862
3e0d98b9 1863 fmeter_init(&top_cpuset.fmeter);
1da177e4
LT
1864 atomic_inc(&cpuset_mems_generation);
1865 top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);
1866
1867 init_task.cpuset = &top_cpuset;
1868
1869 err = register_filesystem(&cpuset_fs_type);
1870 if (err < 0)
1871 goto out;
1872 cpuset_mount = kern_mount(&cpuset_fs_type);
1873 if (IS_ERR(cpuset_mount)) {
1874 printk(KERN_ERR "cpuset: could not mount!\n");
1875 err = PTR_ERR(cpuset_mount);
1876 cpuset_mount = NULL;
1877 goto out;
1878 }
1879 root = cpuset_mount->mnt_sb->s_root;
1880 root->d_fsdata = &top_cpuset;
1881 root->d_inode->i_nlink++;
1882 top_cpuset.dentry = root;
1883 root->d_inode->i_op = &cpuset_dir_inode_operations;
202f72d5 1884 number_of_cpusets = 1;
1da177e4 1885 err = cpuset_populate_dir(root);
3e0d98b9
PJ
1886 /* memory_pressure_enabled is in root cpuset only */
1887 if (err == 0)
1888 err = cpuset_add_file(root, &cft_memory_pressure_enabled);
1da177e4
LT
1889out:
1890 return err;
1891}
1892
1893/**
1894 * cpuset_init_smp - initialize cpus_allowed
1895 *
1896 * Description: Finish top cpuset after cpu, node maps are initialized
1897 **/
1898
1899void __init cpuset_init_smp(void)
1900{
1901 top_cpuset.cpus_allowed = cpu_online_map;
1902 top_cpuset.mems_allowed = node_online_map;
1903}
1904
1905/**
1906 * cpuset_fork - attach newly forked task to its parents cpuset.
d9fd8a6d 1907 * @tsk: pointer to task_struct of forking parent process.
1da177e4 1908 *
053199ed
PJ
1909 * Description: A task inherits its parent's cpuset at fork().
1910 *
1911 * A pointer to the shared cpuset was automatically copied in fork.c
1912 * by dup_task_struct(). However, we ignore that copy, since it was
1913 * not made under the protection of task_lock(), so might no longer be
1914 * a valid cpuset pointer. attach_task() might have already changed
1915 * current->cpuset, allowing the previously referenced cpuset to
1916 * be removed and freed. Instead, we task_lock(current) and copy
1917 * its present value of current->cpuset for our freshly forked child.
1918 *
1919 * At the point that cpuset_fork() is called, 'current' is the parent
1920 * task, and the passed argument 'child' points to the child task.
1da177e4
LT
1921 **/
1922
053199ed 1923void cpuset_fork(struct task_struct *child)
1da177e4 1924{
053199ed
PJ
1925 task_lock(current);
1926 child->cpuset = current->cpuset;
1927 atomic_inc(&child->cpuset->count);
1928 task_unlock(current);
1da177e4
LT
1929}
1930
1931/**
1932 * cpuset_exit - detach cpuset from exiting task
1933 * @tsk: pointer to task_struct of exiting process
1934 *
1935 * Description: Detach cpuset from @tsk and release it.
1936 *
053199ed
PJ
1937 * Note that cpusets marked notify_on_release force every task in
1938 * them to take the global manage_sem semaphore when exiting.
1939 * This could impact scaling on very large systems. Be reluctant to
1940 * use notify_on_release cpusets where very high task exit scaling
1941 * is required on large systems.
1942 *
1943 * Don't even think about derefencing 'cs' after the cpuset use count
1944 * goes to zero, except inside a critical section guarded by manage_sem
1945 * or callback_sem. Otherwise a zero cpuset use count is a license to
1946 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
1947 *
1948 * This routine has to take manage_sem, not callback_sem, because
1949 * it is holding that semaphore while calling check_for_release(),
1950 * which calls kmalloc(), so can't be called holding callback__sem().
1951 *
1952 * We don't need to task_lock() this reference to tsk->cpuset,
1953 * because tsk is already marked PF_EXITING, so attach_task() won't
b4b26418 1954 * mess with it, or task is a failed fork, never visible to attach_task.
1da177e4
LT
1955 **/
1956
1957void cpuset_exit(struct task_struct *tsk)
1958{
1959 struct cpuset *cs;
1960
1da177e4
LT
1961 cs = tsk->cpuset;
1962 tsk->cpuset = NULL;
1da177e4 1963
2efe86b8 1964 if (notify_on_release(cs)) {
3077a260
PJ
1965 char *pathbuf = NULL;
1966
053199ed 1967 down(&manage_sem);
2efe86b8 1968 if (atomic_dec_and_test(&cs->count))
3077a260 1969 check_for_release(cs, &pathbuf);
053199ed 1970 up(&manage_sem);
3077a260 1971 cpuset_release_agent(pathbuf);
2efe86b8
PJ
1972 } else {
1973 atomic_dec(&cs->count);
1da177e4
LT
1974 }
1975}
1976
1977/**
1978 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1979 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1980 *
1981 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1982 * attached to the specified @tsk. Guaranteed to return some non-empty
1983 * subset of cpu_online_map, even if this means going outside the
1984 * tasks cpuset.
1985 **/
1986
909d75a3 1987cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
1da177e4
LT
1988{
1989 cpumask_t mask;
1990
053199ed 1991 down(&callback_sem);
909d75a3 1992 task_lock(tsk);
1da177e4 1993 guarantee_online_cpus(tsk->cpuset, &mask);
909d75a3 1994 task_unlock(tsk);
053199ed 1995 up(&callback_sem);
1da177e4
LT
1996
1997 return mask;
1998}
1999
2000void cpuset_init_current_mems_allowed(void)
2001{
2002 current->mems_allowed = NODE_MASK_ALL;
2003}
2004
909d75a3
PJ
2005/**
2006 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2007 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2008 *
2009 * Description: Returns the nodemask_t mems_allowed of the cpuset
2010 * attached to the specified @tsk. Guaranteed to return some non-empty
2011 * subset of node_online_map, even if this means going outside the
2012 * tasks cpuset.
2013 **/
2014
2015nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2016{
2017 nodemask_t mask;
2018
2019 down(&callback_sem);
2020 task_lock(tsk);
2021 guarantee_online_mems(tsk->cpuset, &mask);
2022 task_unlock(tsk);
2023 up(&callback_sem);
2024
2025 return mask;
2026}
2027
d9fd8a6d
RD
2028/**
2029 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
2030 * @zl: the zonelist to be checked
2031 *
1da177e4
LT
2032 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
2033 */
2034int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
2035{
2036 int i;
2037
2038 for (i = 0; zl->zones[i]; i++) {
2039 int nid = zl->zones[i]->zone_pgdat->node_id;
2040
2041 if (node_isset(nid, current->mems_allowed))
2042 return 1;
2043 }
2044 return 0;
2045}
2046
9bf2229f
PJ
2047/*
2048 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
053199ed 2049 * ancestor to the specified cpuset. Call holding callback_sem.
9bf2229f
PJ
2050 * If no ancestor is mem_exclusive (an unusual configuration), then
2051 * returns the root cpuset.
2052 */
2053static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
2054{
2055 while (!is_mem_exclusive(cs) && cs->parent)
2056 cs = cs->parent;
2057 return cs;
2058}
2059
d9fd8a6d 2060/**
9bf2229f
PJ
2061 * cpuset_zone_allowed - Can we allocate memory on zone z's memory node?
2062 * @z: is this zone on an allowed node?
2063 * @gfp_mask: memory allocation flags (we use __GFP_HARDWALL)
d9fd8a6d 2064 *
9bf2229f
PJ
2065 * If we're in interrupt, yes, we can always allocate. If zone
2066 * z's node is in our tasks mems_allowed, yes. If it's not a
2067 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2068 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
2069 * Otherwise, no.
2070 *
2071 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2072 * and do not allow allocations outside the current tasks cpuset.
2073 * GFP_KERNEL allocations are not so marked, so can escape to the
2074 * nearest mem_exclusive ancestor cpuset.
2075 *
053199ed 2076 * Scanning up parent cpusets requires callback_sem. The __alloc_pages()
9bf2229f
PJ
2077 * routine only calls here with __GFP_HARDWALL bit _not_ set if
2078 * it's a GFP_KERNEL allocation, and all nodes in the current tasks
2079 * mems_allowed came up empty on the first pass over the zonelist.
2080 * So only GFP_KERNEL allocations, if all nodes in the cpuset are
053199ed 2081 * short of memory, might require taking the callback_sem semaphore.
9bf2229f
PJ
2082 *
2083 * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages()
2084 * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing
2085 * hardwall cpusets - no allocation on a node outside the cpuset is
2086 * allowed (unless in interrupt, of course).
2087 *
2088 * The second loop doesn't even call here for GFP_ATOMIC requests
2089 * (if the __alloc_pages() local variable 'wait' is set). That check
2090 * and the checks below have the combined affect in the second loop of
2091 * the __alloc_pages() routine that:
2092 * in_interrupt - any node ok (current task context irrelevant)
2093 * GFP_ATOMIC - any node ok
2094 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
2095 * GFP_USER - only nodes in current tasks mems allowed ok.
2096 **/
2097
202f72d5 2098int __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
1da177e4 2099{
9bf2229f
PJ
2100 int node; /* node that zone z is on */
2101 const struct cpuset *cs; /* current cpuset ancestors */
2102 int allowed = 1; /* is allocation in zone z allowed? */
2103
2104 if (in_interrupt())
2105 return 1;
2106 node = z->zone_pgdat->node_id;
2107 if (node_isset(node, current->mems_allowed))
2108 return 1;
2109 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2110 return 0;
2111
5563e770
BP
2112 if (current->flags & PF_EXITING) /* Let dying task have memory */
2113 return 1;
2114
9bf2229f 2115 /* Not hardwall and node outside mems_allowed: scan up cpusets */
053199ed
PJ
2116 down(&callback_sem);
2117
053199ed
PJ
2118 task_lock(current);
2119 cs = nearest_exclusive_ancestor(current->cpuset);
2120 task_unlock(current);
2121
9bf2229f 2122 allowed = node_isset(node, cs->mems_allowed);
053199ed 2123 up(&callback_sem);
9bf2229f 2124 return allowed;
1da177e4
LT
2125}
2126
ef08e3b4
PJ
2127/**
2128 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
2129 * @p: pointer to task_struct of some other task.
2130 *
2131 * Description: Return true if the nearest mem_exclusive ancestor
2132 * cpusets of tasks @p and current overlap. Used by oom killer to
2133 * determine if task @p's memory usage might impact the memory
2134 * available to the current task.
2135 *
053199ed 2136 * Acquires callback_sem - not suitable for calling from a fast path.
ef08e3b4
PJ
2137 **/
2138
2139int cpuset_excl_nodes_overlap(const struct task_struct *p)
2140{
2141 const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */
2142 int overlap = 0; /* do cpusets overlap? */
2143
053199ed
PJ
2144 down(&callback_sem);
2145
2146 task_lock(current);
2147 if (current->flags & PF_EXITING) {
2148 task_unlock(current);
2149 goto done;
2150 }
2151 cs1 = nearest_exclusive_ancestor(current->cpuset);
2152 task_unlock(current);
2153
2154 task_lock((struct task_struct *)p);
2155 if (p->flags & PF_EXITING) {
2156 task_unlock((struct task_struct *)p);
2157 goto done;
2158 }
2159 cs2 = nearest_exclusive_ancestor(p->cpuset);
2160 task_unlock((struct task_struct *)p);
2161
ef08e3b4
PJ
2162 overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
2163done:
053199ed 2164 up(&callback_sem);
ef08e3b4
PJ
2165
2166 return overlap;
2167}
2168
3e0d98b9
PJ
2169/*
2170 * Collection of memory_pressure is suppressed unless
2171 * this flag is enabled by writing "1" to the special
2172 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2173 */
2174
c5b2aff8 2175int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2176
2177/**
2178 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2179 *
2180 * Keep a running average of the rate of synchronous (direct)
2181 * page reclaim efforts initiated by tasks in each cpuset.
2182 *
2183 * This represents the rate at which some task in the cpuset
2184 * ran low on memory on all nodes it was allowed to use, and
2185 * had to enter the kernels page reclaim code in an effort to
2186 * create more free memory by tossing clean pages or swapping
2187 * or writing dirty pages.
2188 *
2189 * Display to user space in the per-cpuset read-only file
2190 * "memory_pressure". Value displayed is an integer
2191 * representing the recent rate of entry into the synchronous
2192 * (direct) page reclaim by any task attached to the cpuset.
2193 **/
2194
2195void __cpuset_memory_pressure_bump(void)
2196{
2197 struct cpuset *cs;
2198
2199 task_lock(current);
2200 cs = current->cpuset;
2201 fmeter_markevent(&cs->fmeter);
2202 task_unlock(current);
2203}
2204
1da177e4
LT
2205/*
2206 * proc_cpuset_show()
2207 * - Print tasks cpuset path into seq_file.
2208 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2209 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2210 * doesn't really matter if tsk->cpuset changes after we read it,
2211 * and we take manage_sem, keeping attach_task() from changing it
2212 * anyway.
1da177e4
LT
2213 */
2214
2215static int proc_cpuset_show(struct seq_file *m, void *v)
2216{
2217 struct cpuset *cs;
2218 struct task_struct *tsk;
2219 char *buf;
2220 int retval = 0;
2221
2222 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2223 if (!buf)
2224 return -ENOMEM;
2225
2226 tsk = m->private;
053199ed 2227 down(&manage_sem);
1da177e4 2228 cs = tsk->cpuset;
1da177e4
LT
2229 if (!cs) {
2230 retval = -EINVAL;
2231 goto out;
2232 }
2233
2234 retval = cpuset_path(cs, buf, PAGE_SIZE);
2235 if (retval < 0)
2236 goto out;
2237 seq_puts(m, buf);
2238 seq_putc(m, '\n');
2239out:
053199ed 2240 up(&manage_sem);
1da177e4
LT
2241 kfree(buf);
2242 return retval;
2243}
2244
2245static int cpuset_open(struct inode *inode, struct file *file)
2246{
2247 struct task_struct *tsk = PROC_I(inode)->task;
2248 return single_open(file, proc_cpuset_show, tsk);
2249}
2250
2251struct file_operations proc_cpuset_operations = {
2252 .open = cpuset_open,
2253 .read = seq_read,
2254 .llseek = seq_lseek,
2255 .release = single_release,
2256};
2257
2258/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2259char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
2260{
2261 buffer += sprintf(buffer, "Cpus_allowed:\t");
2262 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
2263 buffer += sprintf(buffer, "\n");
2264 buffer += sprintf(buffer, "Mems_allowed:\t");
2265 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
2266 buffer += sprintf(buffer, "\n");
2267 return buffer;
2268}