cpuset: avoid unnecessary sched domains rebuilding
[linux-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
1da177e4
LT
17 *
18 * This file is subject to the terms and conditions of the GNU General Public
19 * License. See the file COPYING in the main directory of the Linux
20 * distribution for more details.
21 */
22
1da177e4
LT
23#include <linux/cpu.h>
24#include <linux/cpumask.h>
25#include <linux/cpuset.h>
26#include <linux/err.h>
27#include <linux/errno.h>
28#include <linux/file.h>
29#include <linux/fs.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/kernel.h>
33#include <linux/kmod.h>
34#include <linux/list.h>
68860ec1 35#include <linux/mempolicy.h>
1da177e4
LT
36#include <linux/mm.h>
37#include <linux/module.h>
38#include <linux/mount.h>
39#include <linux/namei.h>
40#include <linux/pagemap.h>
41#include <linux/proc_fs.h>
6b9c2603 42#include <linux/rcupdate.h>
1da177e4
LT
43#include <linux/sched.h>
44#include <linux/seq_file.h>
22fb52dd 45#include <linux/security.h>
1da177e4 46#include <linux/slab.h>
1da177e4
LT
47#include <linux/spinlock.h>
48#include <linux/stat.h>
49#include <linux/string.h>
50#include <linux/time.h>
51#include <linux/backing-dev.h>
52#include <linux/sort.h>
53
54#include <asm/uaccess.h>
55#include <asm/atomic.h>
3d3f26a7 56#include <linux/mutex.h>
029190c5 57#include <linux/kfifo.h>
956db3ca
CW
58#include <linux/workqueue.h>
59#include <linux/cgroup.h>
1da177e4 60
202f72d5
PJ
61/*
62 * Tracks how many cpusets are currently defined in system.
63 * When there is only one cpuset (the root cpuset) we can
64 * short circuit some hooks.
65 */
7edc5962 66int number_of_cpusets __read_mostly;
202f72d5 67
2df167a3 68/* Forward declare cgroup structures */
8793d854
PM
69struct cgroup_subsys cpuset_subsys;
70struct cpuset;
71
3e0d98b9
PJ
72/* See "Frequency meter" comments, below. */
73
74struct fmeter {
75 int cnt; /* unprocessed events count */
76 int val; /* most recent output value */
77 time_t time; /* clock (secs) when val computed */
78 spinlock_t lock; /* guards read or write of above */
79};
80
1da177e4 81struct cpuset {
8793d854
PM
82 struct cgroup_subsys_state css;
83
1da177e4
LT
84 unsigned long flags; /* "unsigned long" so bitops work */
85 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
86 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
87
1da177e4 88 struct cpuset *parent; /* my parent */
1da177e4
LT
89
90 /*
91 * Copy of global cpuset_mems_generation as of the most
92 * recent time this cpuset changed its mems_allowed.
93 */
3e0d98b9
PJ
94 int mems_generation;
95
96 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
97
98 /* partition number for rebuild_sched_domains() */
99 int pn;
956db3ca 100
1d3504fc
HS
101 /* for custom sched domain */
102 int relax_domain_level;
103
956db3ca
CW
104 /* used for walking a cpuset heirarchy */
105 struct list_head stack_list;
1da177e4
LT
106};
107
8793d854
PM
108/* Retrieve the cpuset for a cgroup */
109static inline struct cpuset *cgroup_cs(struct cgroup *cont)
110{
111 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
112 struct cpuset, css);
113}
114
115/* Retrieve the cpuset for a task */
116static inline struct cpuset *task_cs(struct task_struct *task)
117{
118 return container_of(task_subsys_state(task, cpuset_subsys_id),
119 struct cpuset, css);
120}
956db3ca
CW
121struct cpuset_hotplug_scanner {
122 struct cgroup_scanner scan;
123 struct cgroup *to;
124};
8793d854 125
1da177e4
LT
126/* bits in struct cpuset flags field */
127typedef enum {
128 CS_CPU_EXCLUSIVE,
129 CS_MEM_EXCLUSIVE,
78608366 130 CS_MEM_HARDWALL,
45b07ef3 131 CS_MEMORY_MIGRATE,
029190c5 132 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
133 CS_SPREAD_PAGE,
134 CS_SPREAD_SLAB,
1da177e4
LT
135} cpuset_flagbits_t;
136
137/* convenient tests for these bits */
138static inline int is_cpu_exclusive(const struct cpuset *cs)
139{
7b5b9ef0 140 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
141}
142
143static inline int is_mem_exclusive(const struct cpuset *cs)
144{
7b5b9ef0 145 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
146}
147
78608366
PM
148static inline int is_mem_hardwall(const struct cpuset *cs)
149{
150 return test_bit(CS_MEM_HARDWALL, &cs->flags);
151}
152
029190c5
PJ
153static inline int is_sched_load_balance(const struct cpuset *cs)
154{
155 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
156}
157
45b07ef3
PJ
158static inline int is_memory_migrate(const struct cpuset *cs)
159{
7b5b9ef0 160 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
161}
162
825a46af
PJ
163static inline int is_spread_page(const struct cpuset *cs)
164{
165 return test_bit(CS_SPREAD_PAGE, &cs->flags);
166}
167
168static inline int is_spread_slab(const struct cpuset *cs)
169{
170 return test_bit(CS_SPREAD_SLAB, &cs->flags);
171}
172
1da177e4 173/*
151a4420 174 * Increment this integer everytime any cpuset changes its
1da177e4
LT
175 * mems_allowed value. Users of cpusets can track this generation
176 * number, and avoid having to lock and reload mems_allowed unless
177 * the cpuset they're using changes generation.
178 *
2df167a3 179 * A single, global generation is needed because cpuset_attach_task() could
1da177e4
LT
180 * reattach a task to a different cpuset, which must not have its
181 * generation numbers aliased with those of that tasks previous cpuset.
182 *
183 * Generations are needed for mems_allowed because one task cannot
2df167a3 184 * modify another's memory placement. So we must enable every task,
1da177e4
LT
185 * on every visit to __alloc_pages(), to efficiently check whether
186 * its current->cpuset->mems_allowed has changed, requiring an update
187 * of its current->mems_allowed.
151a4420 188 *
2df167a3 189 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
151a4420 190 * there is no need to mark it atomic.
1da177e4 191 */
151a4420 192static int cpuset_mems_generation;
1da177e4
LT
193
194static struct cpuset top_cpuset = {
195 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
196 .cpus_allowed = CPU_MASK_ALL,
197 .mems_allowed = NODE_MASK_ALL,
1da177e4
LT
198};
199
1da177e4 200/*
2df167a3
PM
201 * There are two global mutexes guarding cpuset structures. The first
202 * is the main control groups cgroup_mutex, accessed via
203 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
204 * callback_mutex, below. They can nest. It is ok to first take
205 * cgroup_mutex, then nest callback_mutex. We also require taking
206 * task_lock() when dereferencing a task's cpuset pointer. See "The
207 * task_lock() exception", at the end of this comment.
053199ed 208 *
3d3f26a7 209 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 210 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 211 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
212 * and be able to modify cpusets. It can perform various checks on
213 * the cpuset structure first, knowing nothing will change. It can
2df167a3 214 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 215 * performing these checks, various callback routines can briefly
3d3f26a7
IM
216 * acquire callback_mutex to query cpusets. Once it is ready to make
217 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
218 *
219 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 220 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
221 * from one of the callbacks into the cpuset code from within
222 * __alloc_pages().
223 *
3d3f26a7 224 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
225 * access to cpusets.
226 *
227 * The task_struct fields mems_allowed and mems_generation may only
228 * be accessed in the context of that task, so require no locks.
229 *
3d3f26a7 230 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
231 * small pieces of code, such as when reading out possibly multi-word
232 * cpumasks and nodemasks.
233 *
2df167a3
PM
234 * Accessing a task's cpuset should be done in accordance with the
235 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
236 */
237
3d3f26a7 238static DEFINE_MUTEX(callback_mutex);
4247bdc6 239
8793d854
PM
240/* This is ugly, but preserves the userspace API for existing cpuset
241 * users. If someone tries to mount the "cpuset" filesystem, we
242 * silently switch it to mount "cgroup" instead */
454e2398
DH
243static int cpuset_get_sb(struct file_system_type *fs_type,
244 int flags, const char *unused_dev_name,
245 void *data, struct vfsmount *mnt)
1da177e4 246{
8793d854
PM
247 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
248 int ret = -ENODEV;
249 if (cgroup_fs) {
250 char mountopts[] =
251 "cpuset,noprefix,"
252 "release_agent=/sbin/cpuset_release_agent";
253 ret = cgroup_fs->get_sb(cgroup_fs, flags,
254 unused_dev_name, mountopts, mnt);
255 put_filesystem(cgroup_fs);
256 }
257 return ret;
1da177e4
LT
258}
259
260static struct file_system_type cpuset_fs_type = {
261 .name = "cpuset",
262 .get_sb = cpuset_get_sb,
1da177e4
LT
263};
264
1da177e4
LT
265/*
266 * Return in *pmask the portion of a cpusets's cpus_allowed that
267 * are online. If none are online, walk up the cpuset hierarchy
268 * until we find one that does have some online cpus. If we get
269 * all the way to the top and still haven't found any online cpus,
270 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
271 * task, return cpu_online_map.
272 *
273 * One way or another, we guarantee to return some non-empty subset
274 * of cpu_online_map.
275 *
3d3f26a7 276 * Call with callback_mutex held.
1da177e4
LT
277 */
278
279static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
280{
281 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
282 cs = cs->parent;
283 if (cs)
284 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
285 else
286 *pmask = cpu_online_map;
287 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
288}
289
290/*
291 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
292 * are online, with memory. If none are online with memory, walk
293 * up the cpuset hierarchy until we find one that does have some
294 * online mems. If we get all the way to the top and still haven't
295 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
296 *
297 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 298 * of node_states[N_HIGH_MEMORY].
1da177e4 299 *
3d3f26a7 300 * Call with callback_mutex held.
1da177e4
LT
301 */
302
303static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
304{
0e1e7c7a
CL
305 while (cs && !nodes_intersects(cs->mems_allowed,
306 node_states[N_HIGH_MEMORY]))
1da177e4
LT
307 cs = cs->parent;
308 if (cs)
0e1e7c7a
CL
309 nodes_and(*pmask, cs->mems_allowed,
310 node_states[N_HIGH_MEMORY]);
1da177e4 311 else
0e1e7c7a
CL
312 *pmask = node_states[N_HIGH_MEMORY];
313 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
314}
315
cf2a473c
PJ
316/**
317 * cpuset_update_task_memory_state - update task memory placement
318 *
319 * If the current tasks cpusets mems_allowed changed behind our
320 * backs, update current->mems_allowed, mems_generation and task NUMA
321 * mempolicy to the new value.
053199ed 322 *
cf2a473c
PJ
323 * Task mempolicy is updated by rebinding it relative to the
324 * current->cpuset if a task has its memory placement changed.
325 * Do not call this routine if in_interrupt().
326 *
4a01c8d5 327 * Call without callback_mutex or task_lock() held. May be
2df167a3
PM
328 * called with or without cgroup_mutex held. Thanks in part to
329 * 'the_top_cpuset_hack', the task's cpuset pointer will never
41f7f60d
DR
330 * be NULL. This routine also might acquire callback_mutex during
331 * call.
053199ed 332 *
6b9c2603
PJ
333 * Reading current->cpuset->mems_generation doesn't need task_lock
334 * to guard the current->cpuset derefence, because it is guarded
2df167a3 335 * from concurrent freeing of current->cpuset using RCU.
6b9c2603
PJ
336 *
337 * The rcu_dereference() is technically probably not needed,
338 * as I don't actually mind if I see a new cpuset pointer but
339 * an old value of mems_generation. However this really only
340 * matters on alpha systems using cpusets heavily. If I dropped
341 * that rcu_dereference(), it would save them a memory barrier.
342 * For all other arch's, rcu_dereference is a no-op anyway, and for
343 * alpha systems not using cpusets, another planned optimization,
344 * avoiding the rcu critical section for tasks in the root cpuset
345 * which is statically allocated, so can't vanish, will make this
346 * irrelevant. Better to use RCU as intended, than to engage in
347 * some cute trick to save a memory barrier that is impossible to
348 * test, for alpha systems using cpusets heavily, which might not
349 * even exist.
053199ed
PJ
350 *
351 * This routine is needed to update the per-task mems_allowed data,
352 * within the tasks context, when it is trying to allocate memory
353 * (in various mm/mempolicy.c routines) and notices that some other
354 * task has been modifying its cpuset.
1da177e4
LT
355 */
356
fe85a998 357void cpuset_update_task_memory_state(void)
1da177e4 358{
053199ed 359 int my_cpusets_mem_gen;
cf2a473c 360 struct task_struct *tsk = current;
6b9c2603 361 struct cpuset *cs;
053199ed 362
8793d854 363 if (task_cs(tsk) == &top_cpuset) {
03a285f5
PJ
364 /* Don't need rcu for top_cpuset. It's never freed. */
365 my_cpusets_mem_gen = top_cpuset.mems_generation;
366 } else {
367 rcu_read_lock();
8793d854 368 my_cpusets_mem_gen = task_cs(current)->mems_generation;
03a285f5
PJ
369 rcu_read_unlock();
370 }
1da177e4 371
cf2a473c 372 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 373 mutex_lock(&callback_mutex);
cf2a473c 374 task_lock(tsk);
8793d854 375 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
376 guarantee_online_mems(cs, &tsk->mems_allowed);
377 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
378 if (is_spread_page(cs))
379 tsk->flags |= PF_SPREAD_PAGE;
380 else
381 tsk->flags &= ~PF_SPREAD_PAGE;
382 if (is_spread_slab(cs))
383 tsk->flags |= PF_SPREAD_SLAB;
384 else
385 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 386 task_unlock(tsk);
3d3f26a7 387 mutex_unlock(&callback_mutex);
74cb2155 388 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
389 }
390}
391
392/*
393 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
394 *
395 * One cpuset is a subset of another if all its allowed CPUs and
396 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 397 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
398 */
399
400static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
401{
402 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
403 nodes_subset(p->mems_allowed, q->mems_allowed) &&
404 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
405 is_mem_exclusive(p) <= is_mem_exclusive(q);
406}
407
408/*
409 * validate_change() - Used to validate that any proposed cpuset change
410 * follows the structural rules for cpusets.
411 *
412 * If we replaced the flag and mask values of the current cpuset
413 * (cur) with those values in the trial cpuset (trial), would
414 * our various subset and exclusive rules still be valid? Presumes
2df167a3 415 * cgroup_mutex held.
1da177e4
LT
416 *
417 * 'cur' is the address of an actual, in-use cpuset. Operations
418 * such as list traversal that depend on the actual address of the
419 * cpuset in the list must use cur below, not trial.
420 *
421 * 'trial' is the address of bulk structure copy of cur, with
422 * perhaps one or more of the fields cpus_allowed, mems_allowed,
423 * or flags changed to new, trial values.
424 *
425 * Return 0 if valid, -errno if not.
426 */
427
428static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
429{
8793d854 430 struct cgroup *cont;
1da177e4
LT
431 struct cpuset *c, *par;
432
433 /* Each of our child cpusets must be a subset of us */
8793d854
PM
434 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
435 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
436 return -EBUSY;
437 }
438
439 /* Remaining checks don't apply to root cpuset */
69604067 440 if (cur == &top_cpuset)
1da177e4
LT
441 return 0;
442
69604067
PJ
443 par = cur->parent;
444
1da177e4
LT
445 /* We must be a subset of our parent cpuset */
446 if (!is_cpuset_subset(trial, par))
447 return -EACCES;
448
2df167a3
PM
449 /*
450 * If either I or some sibling (!= me) is exclusive, we can't
451 * overlap
452 */
8793d854
PM
453 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
454 c = cgroup_cs(cont);
1da177e4
LT
455 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
456 c != cur &&
457 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
458 return -EINVAL;
459 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
460 c != cur &&
461 nodes_intersects(trial->mems_allowed, c->mems_allowed))
462 return -EINVAL;
463 }
464
020958b6
PJ
465 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
466 if (cgroup_task_count(cur->css.cgroup)) {
467 if (cpus_empty(trial->cpus_allowed) ||
468 nodes_empty(trial->mems_allowed)) {
469 return -ENOSPC;
470 }
471 }
472
1da177e4
LT
473 return 0;
474}
475
029190c5
PJ
476/*
477 * Helper routine for rebuild_sched_domains().
478 * Do cpusets a, b have overlapping cpus_allowed masks?
479 */
480
481static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
482{
483 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
484}
485
1d3504fc
HS
486static void
487update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
488{
489 if (!dattr)
490 return;
491 if (dattr->relax_domain_level < c->relax_domain_level)
492 dattr->relax_domain_level = c->relax_domain_level;
493 return;
494}
495
029190c5
PJ
496/*
497 * rebuild_sched_domains()
498 *
c372e817
LZ
499 * This routine will be called to rebuild the scheduler's dynamic
500 * sched domains:
501 * - if the flag 'sched_load_balance' of any cpuset with non-empty
502 * 'cpus' changes,
503 * - or if the 'cpus' allowed changes in any cpuset which has that
504 * flag enabled,
505 * - or if the 'sched_relax_domain_level' of any cpuset which has
506 * that flag enabled and with non-empty 'cpus' changes,
507 * - or if any cpuset with non-empty 'cpus' is removed,
508 * - or if a cpu gets offlined.
029190c5
PJ
509 *
510 * This routine builds a partial partition of the systems CPUs
511 * (the set of non-overlappping cpumask_t's in the array 'part'
512 * below), and passes that partial partition to the kernel/sched.c
513 * partition_sched_domains() routine, which will rebuild the
514 * schedulers load balancing domains (sched domains) as specified
515 * by that partial partition. A 'partial partition' is a set of
516 * non-overlapping subsets whose union is a subset of that set.
517 *
518 * See "What is sched_load_balance" in Documentation/cpusets.txt
519 * for a background explanation of this.
520 *
521 * Does not return errors, on the theory that the callers of this
522 * routine would rather not worry about failures to rebuild sched
523 * domains when operating in the severe memory shortage situations
524 * that could cause allocation failures below.
525 *
526 * Call with cgroup_mutex held. May take callback_mutex during
527 * call due to the kfifo_alloc() and kmalloc() calls. May nest
86ef5c9a 528 * a call to the get_online_cpus()/put_online_cpus() pair.
029190c5 529 * Must not be called holding callback_mutex, because we must not
86ef5c9a
GS
530 * call get_online_cpus() while holding callback_mutex. Elsewhere
531 * the kernel nests callback_mutex inside get_online_cpus() calls.
029190c5
PJ
532 * So the reverse nesting would risk an ABBA deadlock.
533 *
534 * The three key local variables below are:
535 * q - a kfifo queue of cpuset pointers, used to implement a
536 * top-down scan of all cpusets. This scan loads a pointer
537 * to each cpuset marked is_sched_load_balance into the
538 * array 'csa'. For our purposes, rebuilding the schedulers
539 * sched domains, we can ignore !is_sched_load_balance cpusets.
540 * csa - (for CpuSet Array) Array of pointers to all the cpusets
541 * that need to be load balanced, for convenient iterative
542 * access by the subsequent code that finds the best partition,
543 * i.e the set of domains (subsets) of CPUs such that the
544 * cpus_allowed of every cpuset marked is_sched_load_balance
545 * is a subset of one of these domains, while there are as
546 * many such domains as possible, each as small as possible.
547 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
548 * the kernel/sched.c routine partition_sched_domains() in a
549 * convenient format, that can be easily compared to the prior
550 * value to determine what partition elements (sched domains)
551 * were changed (added or removed.)
552 *
553 * Finding the best partition (set of domains):
554 * The triple nested loops below over i, j, k scan over the
555 * load balanced cpusets (using the array of cpuset pointers in
556 * csa[]) looking for pairs of cpusets that have overlapping
557 * cpus_allowed, but which don't have the same 'pn' partition
558 * number and gives them in the same partition number. It keeps
559 * looping on the 'restart' label until it can no longer find
560 * any such pairs.
561 *
562 * The union of the cpus_allowed masks from the set of
563 * all cpusets having the same 'pn' value then form the one
564 * element of the partition (one sched domain) to be passed to
565 * partition_sched_domains().
566 */
567
e761b772 568void rebuild_sched_domains(void)
029190c5
PJ
569{
570 struct kfifo *q; /* queue of cpusets to be scanned */
571 struct cpuset *cp; /* scans q */
572 struct cpuset **csa; /* array of all cpuset ptrs */
573 int csn; /* how many cpuset ptrs in csa so far */
574 int i, j, k; /* indices for partition finding loops */
575 cpumask_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 576 struct sched_domain_attr *dattr; /* attributes for custom domains */
029190c5
PJ
577 int ndoms; /* number of sched domains in result */
578 int nslot; /* next empty doms[] cpumask_t slot */
579
580 q = NULL;
581 csa = NULL;
582 doms = NULL;
1d3504fc 583 dattr = NULL;
029190c5
PJ
584
585 /* Special case for the 99% of systems with one, full, sched domain */
586 if (is_sched_load_balance(&top_cpuset)) {
587 ndoms = 1;
588 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
589 if (!doms)
590 goto rebuild;
1d3504fc
HS
591 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
592 if (dattr) {
593 *dattr = SD_ATTR_INIT;
594 update_domain_attr(dattr, &top_cpuset);
595 }
029190c5
PJ
596 *doms = top_cpuset.cpus_allowed;
597 goto rebuild;
598 }
599
600 q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
601 if (IS_ERR(q))
602 goto done;
603 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
604 if (!csa)
605 goto done;
606 csn = 0;
607
608 cp = &top_cpuset;
609 __kfifo_put(q, (void *)&cp, sizeof(cp));
610 while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
611 struct cgroup *cont;
612 struct cpuset *child; /* scans child cpusets of cp */
613 if (is_sched_load_balance(cp))
614 csa[csn++] = cp;
615 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
616 child = cgroup_cs(cont);
617 __kfifo_put(q, (void *)&child, sizeof(cp));
618 }
619 }
620
621 for (i = 0; i < csn; i++)
622 csa[i]->pn = i;
623 ndoms = csn;
624
625restart:
626 /* Find the best partition (set of sched domains) */
627 for (i = 0; i < csn; i++) {
628 struct cpuset *a = csa[i];
629 int apn = a->pn;
630
631 for (j = 0; j < csn; j++) {
632 struct cpuset *b = csa[j];
633 int bpn = b->pn;
634
635 if (apn != bpn && cpusets_overlap(a, b)) {
636 for (k = 0; k < csn; k++) {
637 struct cpuset *c = csa[k];
638
639 if (c->pn == bpn)
640 c->pn = apn;
641 }
642 ndoms--; /* one less element */
643 goto restart;
644 }
645 }
646 }
647
648 /* Convert <csn, csa> to <ndoms, doms> */
649 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
650 if (!doms)
651 goto rebuild;
1d3504fc 652 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
653
654 for (nslot = 0, i = 0; i < csn; i++) {
655 struct cpuset *a = csa[i];
656 int apn = a->pn;
657
658 if (apn >= 0) {
659 cpumask_t *dp = doms + nslot;
660
661 if (nslot == ndoms) {
662 static int warnings = 10;
663 if (warnings) {
664 printk(KERN_WARNING
665 "rebuild_sched_domains confused:"
666 " nslot %d, ndoms %d, csn %d, i %d,"
667 " apn %d\n",
668 nslot, ndoms, csn, i, apn);
669 warnings--;
670 }
671 continue;
672 }
673
674 cpus_clear(*dp);
1d3504fc
HS
675 if (dattr)
676 *(dattr + nslot) = SD_ATTR_INIT;
029190c5
PJ
677 for (j = i; j < csn; j++) {
678 struct cpuset *b = csa[j];
679
680 if (apn == b->pn) {
681 cpus_or(*dp, *dp, b->cpus_allowed);
682 b->pn = -1;
91cd4d6e
MX
683 if (dattr)
684 update_domain_attr(dattr
685 + nslot, b);
029190c5
PJ
686 }
687 }
688 nslot++;
689 }
690 }
691 BUG_ON(nslot != ndoms);
692
693rebuild:
694 /* Have scheduler rebuild sched domains */
86ef5c9a 695 get_online_cpus();
1d3504fc 696 partition_sched_domains(ndoms, doms, dattr);
86ef5c9a 697 put_online_cpus();
029190c5
PJ
698
699done:
700 if (q && !IS_ERR(q))
701 kfifo_free(q);
702 kfree(csa);
703 /* Don't kfree(doms) -- partition_sched_domains() does that. */
1d3504fc 704 /* Don't kfree(dattr) -- partition_sched_domains() does that. */
029190c5
PJ
705}
706
8707d8b8
PM
707static inline int started_after_time(struct task_struct *t1,
708 struct timespec *time,
709 struct task_struct *t2)
710{
711 int start_diff = timespec_compare(&t1->start_time, time);
712 if (start_diff > 0) {
713 return 1;
714 } else if (start_diff < 0) {
715 return 0;
716 } else {
717 /*
718 * Arbitrarily, if two processes started at the same
719 * time, we'll say that the lower pointer value
720 * started first. Note that t2 may have exited by now
721 * so this may not be a valid pointer any longer, but
722 * that's fine - it still serves to distinguish
723 * between two tasks started (effectively)
724 * simultaneously.
725 */
726 return t1 > t2;
727 }
728}
729
730static inline int started_after(void *p1, void *p2)
731{
732 struct task_struct *t1 = p1;
733 struct task_struct *t2 = p2;
734 return started_after_time(t1, &t2->start_time, t2);
735}
736
58f4790b
CW
737/**
738 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
739 * @tsk: task to test
740 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
741 *
2df167a3 742 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
743 * Called for each task in a cgroup by cgroup_scan_tasks().
744 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
745 * words, if its mask is not equal to its cpuset's mask).
053199ed 746 */
9e0c914c
AB
747static int cpuset_test_cpumask(struct task_struct *tsk,
748 struct cgroup_scanner *scan)
58f4790b
CW
749{
750 return !cpus_equal(tsk->cpus_allowed,
751 (cgroup_cs(scan->cg))->cpus_allowed);
752}
053199ed 753
58f4790b
CW
754/**
755 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
756 * @tsk: task to test
757 * @scan: struct cgroup_scanner containing the cgroup of the task
758 *
759 * Called by cgroup_scan_tasks() for each task in a cgroup whose
760 * cpus_allowed mask needs to be changed.
761 *
762 * We don't need to re-check for the cgroup/cpuset membership, since we're
763 * holding cgroup_lock() at this point.
764 */
9e0c914c
AB
765static void cpuset_change_cpumask(struct task_struct *tsk,
766 struct cgroup_scanner *scan)
58f4790b 767{
f9a86fcb 768 set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
769}
770
0b2f630a
MX
771/**
772 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
773 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
774 *
775 * Called with cgroup_mutex held
776 *
777 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
778 * calling callback functions for each.
779 *
780 * Return 0 if successful, -errno if not.
781 */
782static int update_tasks_cpumask(struct cpuset *cs)
783{
784 struct cgroup_scanner scan;
785 struct ptr_heap heap;
786 int retval;
787
788 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
789 if (retval)
790 return retval;
791
792 scan.cg = cs->css.cgroup;
793 scan.test_task = cpuset_test_cpumask;
794 scan.process_task = cpuset_change_cpumask;
795 scan.heap = &heap;
796 retval = cgroup_scan_tasks(&scan);
797
798 heap_free(&heap);
799 return retval;
800}
801
58f4790b
CW
802/**
803 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
804 * @cs: the cpuset to consider
805 * @buf: buffer of cpu numbers written to this cpuset
806 */
e3712395 807static int update_cpumask(struct cpuset *cs, const char *buf)
1da177e4
LT
808{
809 struct cpuset trialcs;
58f4790b
CW
810 int retval;
811 int is_load_balanced;
1da177e4 812
4c4d50f7
PJ
813 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
814 if (cs == &top_cpuset)
815 return -EACCES;
816
1da177e4 817 trialcs = *cs;
6f7f02e7
DR
818
819 /*
c8d9c90c 820 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
821 * Since cpulist_parse() fails on an empty mask, we special case
822 * that parsing. The validate_change() call ensures that cpusets
823 * with tasks have cpus.
6f7f02e7 824 */
020958b6 825 if (!*buf) {
6f7f02e7
DR
826 cpus_clear(trialcs.cpus_allowed);
827 } else {
828 retval = cpulist_parse(buf, trialcs.cpus_allowed);
829 if (retval < 0)
830 return retval;
37340746
LJ
831
832 if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
833 return -EINVAL;
6f7f02e7 834 }
1da177e4 835 retval = validate_change(cs, &trialcs);
85d7b949
DG
836 if (retval < 0)
837 return retval;
029190c5 838
8707d8b8
PM
839 /* Nothing to do if the cpus didn't change */
840 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
841 return 0;
58f4790b 842
029190c5
PJ
843 is_load_balanced = is_sched_load_balance(&trialcs);
844
3d3f26a7 845 mutex_lock(&callback_mutex);
85d7b949 846 cs->cpus_allowed = trialcs.cpus_allowed;
3d3f26a7 847 mutex_unlock(&callback_mutex);
029190c5 848
8707d8b8
PM
849 /*
850 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 851 * that need an update.
8707d8b8 852 */
0b2f630a
MX
853 retval = update_tasks_cpumask(cs);
854 if (retval < 0)
855 return retval;
58f4790b 856
8707d8b8 857 if (is_load_balanced)
029190c5 858 rebuild_sched_domains();
85d7b949 859 return 0;
1da177e4
LT
860}
861
e4e364e8
PJ
862/*
863 * cpuset_migrate_mm
864 *
865 * Migrate memory region from one set of nodes to another.
866 *
867 * Temporarilly set tasks mems_allowed to target nodes of migration,
868 * so that the migration code can allocate pages on these nodes.
869 *
2df167a3 870 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 871 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
872 * calls. Therefore we don't need to take task_lock around the
873 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 874 * our task's cpuset.
e4e364e8
PJ
875 *
876 * Hold callback_mutex around the two modifications of our tasks
877 * mems_allowed to synchronize with cpuset_mems_allowed().
878 *
879 * While the mm_struct we are migrating is typically from some
880 * other task, the task_struct mems_allowed that we are hacking
881 * is for our current task, which must allocate new pages for that
882 * migrating memory region.
883 *
884 * We call cpuset_update_task_memory_state() before hacking
885 * our tasks mems_allowed, so that we are assured of being in
886 * sync with our tasks cpuset, and in particular, callbacks to
887 * cpuset_update_task_memory_state() from nested page allocations
888 * won't see any mismatch of our cpuset and task mems_generation
889 * values, so won't overwrite our hacked tasks mems_allowed
890 * nodemask.
891 */
892
893static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
894 const nodemask_t *to)
895{
896 struct task_struct *tsk = current;
897
898 cpuset_update_task_memory_state();
899
900 mutex_lock(&callback_mutex);
901 tsk->mems_allowed = *to;
902 mutex_unlock(&callback_mutex);
903
904 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
905
906 mutex_lock(&callback_mutex);
8793d854 907 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
908 mutex_unlock(&callback_mutex);
909}
910
8793d854
PM
911static void *cpuset_being_rebound;
912
0b2f630a
MX
913/**
914 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
915 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
916 * @oldmem: old mems_allowed of cpuset cs
917 *
918 * Called with cgroup_mutex held
919 * Return 0 if successful, -errno if not.
920 */
921static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
1da177e4 922{
8793d854 923 struct task_struct *p;
4225399a
PJ
924 struct mm_struct **mmarray;
925 int i, n, ntasks;
04c19fa6 926 int migrate;
4225399a 927 int fudge;
8793d854 928 struct cgroup_iter it;
0b2f630a 929 int retval;
59dac16f 930
846a16bf 931 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a
PJ
932
933 fudge = 10; /* spare mmarray[] slots */
934 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
935 retval = -ENOMEM;
936
937 /*
938 * Allocate mmarray[] to hold mm reference for each task
939 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
940 * tasklist_lock. We could use GFP_ATOMIC, but with a
941 * few more lines of code, we can retry until we get a big
942 * enough mmarray[] w/o using GFP_ATOMIC.
943 */
944 while (1) {
8793d854 945 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
4225399a
PJ
946 ntasks += fudge;
947 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
948 if (!mmarray)
949 goto done;
c2aef333 950 read_lock(&tasklist_lock); /* block fork */
8793d854 951 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
4225399a 952 break; /* got enough */
c2aef333 953 read_unlock(&tasklist_lock); /* try again */
4225399a
PJ
954 kfree(mmarray);
955 }
956
957 n = 0;
958
959 /* Load up mmarray[] with mm reference for each task in cpuset. */
8793d854
PM
960 cgroup_iter_start(cs->css.cgroup, &it);
961 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
4225399a
PJ
962 struct mm_struct *mm;
963
964 if (n >= ntasks) {
965 printk(KERN_WARNING
966 "Cpuset mempolicy rebind incomplete.\n");
8793d854 967 break;
4225399a 968 }
4225399a
PJ
969 mm = get_task_mm(p);
970 if (!mm)
971 continue;
972 mmarray[n++] = mm;
8793d854
PM
973 }
974 cgroup_iter_end(cs->css.cgroup, &it);
c2aef333 975 read_unlock(&tasklist_lock);
4225399a
PJ
976
977 /*
978 * Now that we've dropped the tasklist spinlock, we can
979 * rebind the vma mempolicies of each mm in mmarray[] to their
980 * new cpuset, and release that mm. The mpol_rebind_mm()
981 * call takes mmap_sem, which we couldn't take while holding
846a16bf 982 * tasklist_lock. Forks can happen again now - the mpol_dup()
4225399a
PJ
983 * cpuset_being_rebound check will catch such forks, and rebind
984 * their vma mempolicies too. Because we still hold the global
2df167a3 985 * cgroup_mutex, we know that no other rebind effort will
4225399a
PJ
986 * be contending for the global variable cpuset_being_rebound.
987 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 988 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 989 */
04c19fa6 990 migrate = is_memory_migrate(cs);
4225399a
PJ
991 for (i = 0; i < n; i++) {
992 struct mm_struct *mm = mmarray[i];
993
994 mpol_rebind_mm(mm, &cs->mems_allowed);
e4e364e8 995 if (migrate)
0b2f630a 996 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
4225399a
PJ
997 mmput(mm);
998 }
999
2df167a3 1000 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
4225399a 1001 kfree(mmarray);
8793d854 1002 cpuset_being_rebound = NULL;
4225399a 1003 retval = 0;
59dac16f 1004done:
1da177e4
LT
1005 return retval;
1006}
1007
0b2f630a
MX
1008/*
1009 * Handle user request to change the 'mems' memory placement
1010 * of a cpuset. Needs to validate the request, update the
1011 * cpusets mems_allowed and mems_generation, and for each
1012 * task in the cpuset, rebind any vma mempolicies and if
1013 * the cpuset is marked 'memory_migrate', migrate the tasks
1014 * pages to the new memory.
1015 *
1016 * Call with cgroup_mutex held. May take callback_mutex during call.
1017 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1018 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1019 * their mempolicies to the cpusets new mems_allowed.
1020 */
1021static int update_nodemask(struct cpuset *cs, const char *buf)
1022{
1023 struct cpuset trialcs;
1024 nodemask_t oldmem;
1025 int retval;
1026
1027 /*
1028 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1029 * it's read-only
1030 */
1031 if (cs == &top_cpuset)
1032 return -EACCES;
1033
1034 trialcs = *cs;
1035
1036 /*
1037 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1038 * Since nodelist_parse() fails on an empty mask, we special case
1039 * that parsing. The validate_change() call ensures that cpusets
1040 * with tasks have memory.
1041 */
1042 if (!*buf) {
1043 nodes_clear(trialcs.mems_allowed);
1044 } else {
1045 retval = nodelist_parse(buf, trialcs.mems_allowed);
1046 if (retval < 0)
1047 goto done;
1048
1049 if (!nodes_subset(trialcs.mems_allowed,
1050 node_states[N_HIGH_MEMORY]))
1051 return -EINVAL;
1052 }
1053 oldmem = cs->mems_allowed;
1054 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
1055 retval = 0; /* Too easy - nothing to do */
1056 goto done;
1057 }
1058 retval = validate_change(cs, &trialcs);
1059 if (retval < 0)
1060 goto done;
1061
1062 mutex_lock(&callback_mutex);
1063 cs->mems_allowed = trialcs.mems_allowed;
1064 cs->mems_generation = cpuset_mems_generation++;
1065 mutex_unlock(&callback_mutex);
1066
1067 retval = update_tasks_nodemask(cs, &oldmem);
1068done:
1069 return retval;
1070}
1071
8793d854
PM
1072int current_cpuset_is_being_rebound(void)
1073{
1074 return task_cs(current) == cpuset_being_rebound;
1075}
1076
5be7a479 1077static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1078{
30e0e178
LZ
1079 if (val < -1 || val >= SD_LV_MAX)
1080 return -EINVAL;
1d3504fc
HS
1081
1082 if (val != cs->relax_domain_level) {
1083 cs->relax_domain_level = val;
c372e817
LZ
1084 if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
1085 rebuild_sched_domains();
1d3504fc
HS
1086 }
1087
1088 return 0;
1089}
1090
1da177e4
LT
1091/*
1092 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1093 * bit: the bit to update (see cpuset_flagbits_t)
1094 * cs: the cpuset to update
1095 * turning_on: whether the flag is being set or cleared
053199ed 1096 *
2df167a3 1097 * Call with cgroup_mutex held.
1da177e4
LT
1098 */
1099
700fe1ab
PM
1100static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1101 int turning_on)
1da177e4 1102{
1da177e4 1103 struct cpuset trialcs;
607717a6 1104 int err;
029190c5 1105 int cpus_nonempty, balance_flag_changed;
1da177e4 1106
1da177e4
LT
1107 trialcs = *cs;
1108 if (turning_on)
1109 set_bit(bit, &trialcs.flags);
1110 else
1111 clear_bit(bit, &trialcs.flags);
1112
1113 err = validate_change(cs, &trialcs);
85d7b949
DG
1114 if (err < 0)
1115 return err;
029190c5
PJ
1116
1117 cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
1118 balance_flag_changed = (is_sched_load_balance(cs) !=
1119 is_sched_load_balance(&trialcs));
1120
3d3f26a7 1121 mutex_lock(&callback_mutex);
69604067 1122 cs->flags = trialcs.flags;
3d3f26a7 1123 mutex_unlock(&callback_mutex);
85d7b949 1124
029190c5
PJ
1125 if (cpus_nonempty && balance_flag_changed)
1126 rebuild_sched_domains();
1127
85d7b949 1128 return 0;
1da177e4
LT
1129}
1130
3e0d98b9 1131/*
80f7228b 1132 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1133 *
1134 * These routines manage a digitally filtered, constant time based,
1135 * event frequency meter. There are four routines:
1136 * fmeter_init() - initialize a frequency meter.
1137 * fmeter_markevent() - called each time the event happens.
1138 * fmeter_getrate() - returns the recent rate of such events.
1139 * fmeter_update() - internal routine used to update fmeter.
1140 *
1141 * A common data structure is passed to each of these routines,
1142 * which is used to keep track of the state required to manage the
1143 * frequency meter and its digital filter.
1144 *
1145 * The filter works on the number of events marked per unit time.
1146 * The filter is single-pole low-pass recursive (IIR). The time unit
1147 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1148 * simulate 3 decimal digits of precision (multiplied by 1000).
1149 *
1150 * With an FM_COEF of 933, and a time base of 1 second, the filter
1151 * has a half-life of 10 seconds, meaning that if the events quit
1152 * happening, then the rate returned from the fmeter_getrate()
1153 * will be cut in half each 10 seconds, until it converges to zero.
1154 *
1155 * It is not worth doing a real infinitely recursive filter. If more
1156 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1157 * just compute FM_MAXTICKS ticks worth, by which point the level
1158 * will be stable.
1159 *
1160 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1161 * arithmetic overflow in the fmeter_update() routine.
1162 *
1163 * Given the simple 32 bit integer arithmetic used, this meter works
1164 * best for reporting rates between one per millisecond (msec) and
1165 * one per 32 (approx) seconds. At constant rates faster than one
1166 * per msec it maxes out at values just under 1,000,000. At constant
1167 * rates between one per msec, and one per second it will stabilize
1168 * to a value N*1000, where N is the rate of events per second.
1169 * At constant rates between one per second and one per 32 seconds,
1170 * it will be choppy, moving up on the seconds that have an event,
1171 * and then decaying until the next event. At rates slower than
1172 * about one in 32 seconds, it decays all the way back to zero between
1173 * each event.
1174 */
1175
1176#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1177#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1178#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1179#define FM_SCALE 1000 /* faux fixed point scale */
1180
1181/* Initialize a frequency meter */
1182static void fmeter_init(struct fmeter *fmp)
1183{
1184 fmp->cnt = 0;
1185 fmp->val = 0;
1186 fmp->time = 0;
1187 spin_lock_init(&fmp->lock);
1188}
1189
1190/* Internal meter update - process cnt events and update value */
1191static void fmeter_update(struct fmeter *fmp)
1192{
1193 time_t now = get_seconds();
1194 time_t ticks = now - fmp->time;
1195
1196 if (ticks == 0)
1197 return;
1198
1199 ticks = min(FM_MAXTICKS, ticks);
1200 while (ticks-- > 0)
1201 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1202 fmp->time = now;
1203
1204 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1205 fmp->cnt = 0;
1206}
1207
1208/* Process any previous ticks, then bump cnt by one (times scale). */
1209static void fmeter_markevent(struct fmeter *fmp)
1210{
1211 spin_lock(&fmp->lock);
1212 fmeter_update(fmp);
1213 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1214 spin_unlock(&fmp->lock);
1215}
1216
1217/* Process any previous ticks, then return current value. */
1218static int fmeter_getrate(struct fmeter *fmp)
1219{
1220 int val;
1221
1222 spin_lock(&fmp->lock);
1223 fmeter_update(fmp);
1224 val = fmp->val;
1225 spin_unlock(&fmp->lock);
1226 return val;
1227}
1228
2df167a3 1229/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
8793d854
PM
1230static int cpuset_can_attach(struct cgroup_subsys *ss,
1231 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1232{
8793d854 1233 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1234
1da177e4
LT
1235 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1236 return -ENOSPC;
9985b0ba
DR
1237 if (tsk->flags & PF_THREAD_BOUND) {
1238 cpumask_t mask;
1239
1240 mutex_lock(&callback_mutex);
1241 mask = cs->cpus_allowed;
1242 mutex_unlock(&callback_mutex);
1243 if (!cpus_equal(tsk->cpus_allowed, mask))
1244 return -EINVAL;
1245 }
1da177e4 1246
8793d854
PM
1247 return security_task_setscheduler(tsk, 0, NULL);
1248}
1da177e4 1249
8793d854
PM
1250static void cpuset_attach(struct cgroup_subsys *ss,
1251 struct cgroup *cont, struct cgroup *oldcont,
1252 struct task_struct *tsk)
1253{
1254 cpumask_t cpus;
1255 nodemask_t from, to;
1256 struct mm_struct *mm;
1257 struct cpuset *cs = cgroup_cs(cont);
1258 struct cpuset *oldcs = cgroup_cs(oldcont);
9985b0ba 1259 int err;
22fb52dd 1260
3d3f26a7 1261 mutex_lock(&callback_mutex);
1da177e4 1262 guarantee_online_cpus(cs, &cpus);
9985b0ba 1263 err = set_cpus_allowed_ptr(tsk, &cpus);
8793d854 1264 mutex_unlock(&callback_mutex);
9985b0ba
DR
1265 if (err)
1266 return;
1da177e4 1267
45b07ef3
PJ
1268 from = oldcs->mems_allowed;
1269 to = cs->mems_allowed;
4225399a
PJ
1270 mm = get_task_mm(tsk);
1271 if (mm) {
1272 mpol_rebind_mm(mm, &to);
2741a559 1273 if (is_memory_migrate(cs))
e4e364e8 1274 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1275 mmput(mm);
1276 }
1277
1da177e4
LT
1278}
1279
1280/* The various types of files and directories in a cpuset file system */
1281
1282typedef enum {
45b07ef3 1283 FILE_MEMORY_MIGRATE,
1da177e4
LT
1284 FILE_CPULIST,
1285 FILE_MEMLIST,
1286 FILE_CPU_EXCLUSIVE,
1287 FILE_MEM_EXCLUSIVE,
78608366 1288 FILE_MEM_HARDWALL,
029190c5 1289 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1290 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1291 FILE_MEMORY_PRESSURE_ENABLED,
1292 FILE_MEMORY_PRESSURE,
825a46af
PJ
1293 FILE_SPREAD_PAGE,
1294 FILE_SPREAD_SLAB,
1da177e4
LT
1295} cpuset_filetype_t;
1296
700fe1ab
PM
1297static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1298{
1299 int retval = 0;
1300 struct cpuset *cs = cgroup_cs(cgrp);
1301 cpuset_filetype_t type = cft->private;
1302
e3712395 1303 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1304 return -ENODEV;
700fe1ab
PM
1305
1306 switch (type) {
1da177e4 1307 case FILE_CPU_EXCLUSIVE:
700fe1ab 1308 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1309 break;
1310 case FILE_MEM_EXCLUSIVE:
700fe1ab 1311 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1312 break;
78608366
PM
1313 case FILE_MEM_HARDWALL:
1314 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1315 break;
029190c5 1316 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1317 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1318 break;
45b07ef3 1319 case FILE_MEMORY_MIGRATE:
700fe1ab 1320 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1321 break;
3e0d98b9 1322 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1323 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1324 break;
1325 case FILE_MEMORY_PRESSURE:
1326 retval = -EACCES;
1327 break;
825a46af 1328 case FILE_SPREAD_PAGE:
700fe1ab 1329 retval = update_flag(CS_SPREAD_PAGE, cs, val);
151a4420 1330 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1331 break;
1332 case FILE_SPREAD_SLAB:
700fe1ab 1333 retval = update_flag(CS_SPREAD_SLAB, cs, val);
151a4420 1334 cs->mems_generation = cpuset_mems_generation++;
825a46af 1335 break;
1da177e4
LT
1336 default:
1337 retval = -EINVAL;
700fe1ab 1338 break;
1da177e4 1339 }
8793d854 1340 cgroup_unlock();
1da177e4
LT
1341 return retval;
1342}
1343
5be7a479
PM
1344static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1345{
1346 int retval = 0;
1347 struct cpuset *cs = cgroup_cs(cgrp);
1348 cpuset_filetype_t type = cft->private;
1349
e3712395 1350 if (!cgroup_lock_live_group(cgrp))
5be7a479 1351 return -ENODEV;
e3712395 1352
5be7a479
PM
1353 switch (type) {
1354 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1355 retval = update_relax_domain_level(cs, val);
1356 break;
1357 default:
1358 retval = -EINVAL;
1359 break;
1360 }
1361 cgroup_unlock();
1362 return retval;
1363}
1364
e3712395
PM
1365/*
1366 * Common handling for a write to a "cpus" or "mems" file.
1367 */
1368static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1369 const char *buf)
1370{
1371 int retval = 0;
1372
1373 if (!cgroup_lock_live_group(cgrp))
1374 return -ENODEV;
1375
1376 switch (cft->private) {
1377 case FILE_CPULIST:
1378 retval = update_cpumask(cgroup_cs(cgrp), buf);
1379 break;
1380 case FILE_MEMLIST:
1381 retval = update_nodemask(cgroup_cs(cgrp), buf);
1382 break;
1383 default:
1384 retval = -EINVAL;
1385 break;
1386 }
1387 cgroup_unlock();
1388 return retval;
1389}
1390
1da177e4
LT
1391/*
1392 * These ascii lists should be read in a single call, by using a user
1393 * buffer large enough to hold the entire map. If read in smaller
1394 * chunks, there is no guarantee of atomicity. Since the display format
1395 * used, list of ranges of sequential numbers, is variable length,
1396 * and since these maps can change value dynamically, one could read
1397 * gibberish by doing partial reads while a list was changing.
1398 * A single large read to a buffer that crosses a page boundary is
1399 * ok, because the result being copied to user land is not recomputed
1400 * across a page fault.
1401 */
1402
1403static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1404{
1405 cpumask_t mask;
1406
3d3f26a7 1407 mutex_lock(&callback_mutex);
1da177e4 1408 mask = cs->cpus_allowed;
3d3f26a7 1409 mutex_unlock(&callback_mutex);
1da177e4
LT
1410
1411 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1412}
1413
1414static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1415{
1416 nodemask_t mask;
1417
3d3f26a7 1418 mutex_lock(&callback_mutex);
1da177e4 1419 mask = cs->mems_allowed;
3d3f26a7 1420 mutex_unlock(&callback_mutex);
1da177e4
LT
1421
1422 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1423}
1424
8793d854
PM
1425static ssize_t cpuset_common_file_read(struct cgroup *cont,
1426 struct cftype *cft,
1427 struct file *file,
1428 char __user *buf,
1429 size_t nbytes, loff_t *ppos)
1da177e4 1430{
8793d854 1431 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1432 cpuset_filetype_t type = cft->private;
1433 char *page;
1434 ssize_t retval = 0;
1435 char *s;
1da177e4 1436
e12ba74d 1437 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1438 return -ENOMEM;
1439
1440 s = page;
1441
1442 switch (type) {
1443 case FILE_CPULIST:
1444 s += cpuset_sprintf_cpulist(s, cs);
1445 break;
1446 case FILE_MEMLIST:
1447 s += cpuset_sprintf_memlist(s, cs);
1448 break;
1da177e4
LT
1449 default:
1450 retval = -EINVAL;
1451 goto out;
1452 }
1453 *s++ = '\n';
1da177e4 1454
eacaa1f5 1455 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1456out:
1457 free_page((unsigned long)page);
1458 return retval;
1459}
1460
700fe1ab
PM
1461static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1462{
1463 struct cpuset *cs = cgroup_cs(cont);
1464 cpuset_filetype_t type = cft->private;
1465 switch (type) {
1466 case FILE_CPU_EXCLUSIVE:
1467 return is_cpu_exclusive(cs);
1468 case FILE_MEM_EXCLUSIVE:
1469 return is_mem_exclusive(cs);
78608366
PM
1470 case FILE_MEM_HARDWALL:
1471 return is_mem_hardwall(cs);
700fe1ab
PM
1472 case FILE_SCHED_LOAD_BALANCE:
1473 return is_sched_load_balance(cs);
1474 case FILE_MEMORY_MIGRATE:
1475 return is_memory_migrate(cs);
1476 case FILE_MEMORY_PRESSURE_ENABLED:
1477 return cpuset_memory_pressure_enabled;
1478 case FILE_MEMORY_PRESSURE:
1479 return fmeter_getrate(&cs->fmeter);
1480 case FILE_SPREAD_PAGE:
1481 return is_spread_page(cs);
1482 case FILE_SPREAD_SLAB:
1483 return is_spread_slab(cs);
1484 default:
1485 BUG();
1486 }
1487}
1da177e4 1488
5be7a479
PM
1489static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1490{
1491 struct cpuset *cs = cgroup_cs(cont);
1492 cpuset_filetype_t type = cft->private;
1493 switch (type) {
1494 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1495 return cs->relax_domain_level;
1496 default:
1497 BUG();
1498 }
1499}
1500
1da177e4
LT
1501
1502/*
1503 * for the common functions, 'private' gives the type of file
1504 */
1505
addf2c73
PM
1506static struct cftype files[] = {
1507 {
1508 .name = "cpus",
1509 .read = cpuset_common_file_read,
e3712395
PM
1510 .write_string = cpuset_write_resmask,
1511 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1512 .private = FILE_CPULIST,
1513 },
1514
1515 {
1516 .name = "mems",
1517 .read = cpuset_common_file_read,
e3712395
PM
1518 .write_string = cpuset_write_resmask,
1519 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1520 .private = FILE_MEMLIST,
1521 },
1522
1523 {
1524 .name = "cpu_exclusive",
1525 .read_u64 = cpuset_read_u64,
1526 .write_u64 = cpuset_write_u64,
1527 .private = FILE_CPU_EXCLUSIVE,
1528 },
1529
1530 {
1531 .name = "mem_exclusive",
1532 .read_u64 = cpuset_read_u64,
1533 .write_u64 = cpuset_write_u64,
1534 .private = FILE_MEM_EXCLUSIVE,
1535 },
1536
78608366
PM
1537 {
1538 .name = "mem_hardwall",
1539 .read_u64 = cpuset_read_u64,
1540 .write_u64 = cpuset_write_u64,
1541 .private = FILE_MEM_HARDWALL,
1542 },
1543
addf2c73
PM
1544 {
1545 .name = "sched_load_balance",
1546 .read_u64 = cpuset_read_u64,
1547 .write_u64 = cpuset_write_u64,
1548 .private = FILE_SCHED_LOAD_BALANCE,
1549 },
1550
1551 {
1552 .name = "sched_relax_domain_level",
5be7a479
PM
1553 .read_s64 = cpuset_read_s64,
1554 .write_s64 = cpuset_write_s64,
addf2c73
PM
1555 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1556 },
1557
1558 {
1559 .name = "memory_migrate",
1560 .read_u64 = cpuset_read_u64,
1561 .write_u64 = cpuset_write_u64,
1562 .private = FILE_MEMORY_MIGRATE,
1563 },
1564
1565 {
1566 .name = "memory_pressure",
1567 .read_u64 = cpuset_read_u64,
1568 .write_u64 = cpuset_write_u64,
1569 .private = FILE_MEMORY_PRESSURE,
1570 },
1571
1572 {
1573 .name = "memory_spread_page",
1574 .read_u64 = cpuset_read_u64,
1575 .write_u64 = cpuset_write_u64,
1576 .private = FILE_SPREAD_PAGE,
1577 },
1578
1579 {
1580 .name = "memory_spread_slab",
1581 .read_u64 = cpuset_read_u64,
1582 .write_u64 = cpuset_write_u64,
1583 .private = FILE_SPREAD_SLAB,
1584 },
45b07ef3
PJ
1585};
1586
3e0d98b9
PJ
1587static struct cftype cft_memory_pressure_enabled = {
1588 .name = "memory_pressure_enabled",
700fe1ab
PM
1589 .read_u64 = cpuset_read_u64,
1590 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1591 .private = FILE_MEMORY_PRESSURE_ENABLED,
1592};
1593
8793d854 1594static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1595{
1596 int err;
1597
addf2c73
PM
1598 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1599 if (err)
1da177e4 1600 return err;
8793d854 1601 /* memory_pressure_enabled is in root cpuset only */
addf2c73 1602 if (!cont->parent)
8793d854 1603 err = cgroup_add_file(cont, ss,
addf2c73
PM
1604 &cft_memory_pressure_enabled);
1605 return err;
1da177e4
LT
1606}
1607
8793d854
PM
1608/*
1609 * post_clone() is called at the end of cgroup_clone().
1610 * 'cgroup' was just created automatically as a result of
1611 * a cgroup_clone(), and the current task is about to
1612 * be moved into 'cgroup'.
1613 *
1614 * Currently we refuse to set up the cgroup - thereby
1615 * refusing the task to be entered, and as a result refusing
1616 * the sys_unshare() or clone() which initiated it - if any
1617 * sibling cpusets have exclusive cpus or mem.
1618 *
1619 * If this becomes a problem for some users who wish to
1620 * allow that scenario, then cpuset_post_clone() could be
1621 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2df167a3
PM
1622 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1623 * held.
8793d854
PM
1624 */
1625static void cpuset_post_clone(struct cgroup_subsys *ss,
1626 struct cgroup *cgroup)
1627{
1628 struct cgroup *parent, *child;
1629 struct cpuset *cs, *parent_cs;
1630
1631 parent = cgroup->parent;
1632 list_for_each_entry(child, &parent->children, sibling) {
1633 cs = cgroup_cs(child);
1634 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1635 return;
1636 }
1637 cs = cgroup_cs(cgroup);
1638 parent_cs = cgroup_cs(parent);
1639
1640 cs->mems_allowed = parent_cs->mems_allowed;
1641 cs->cpus_allowed = parent_cs->cpus_allowed;
1642 return;
1643}
1644
1da177e4
LT
1645/*
1646 * cpuset_create - create a cpuset
2df167a3
PM
1647 * ss: cpuset cgroup subsystem
1648 * cont: control group that the new cpuset will be part of
1da177e4
LT
1649 */
1650
8793d854
PM
1651static struct cgroup_subsys_state *cpuset_create(
1652 struct cgroup_subsys *ss,
1653 struct cgroup *cont)
1da177e4
LT
1654{
1655 struct cpuset *cs;
8793d854 1656 struct cpuset *parent;
1da177e4 1657
8793d854
PM
1658 if (!cont->parent) {
1659 /* This is early initialization for the top cgroup */
1660 top_cpuset.mems_generation = cpuset_mems_generation++;
1661 return &top_cpuset.css;
1662 }
1663 parent = cgroup_cs(cont->parent);
1da177e4
LT
1664 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1665 if (!cs)
8793d854 1666 return ERR_PTR(-ENOMEM);
1da177e4 1667
cf2a473c 1668 cpuset_update_task_memory_state();
1da177e4 1669 cs->flags = 0;
825a46af
PJ
1670 if (is_spread_page(parent))
1671 set_bit(CS_SPREAD_PAGE, &cs->flags);
1672 if (is_spread_slab(parent))
1673 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1674 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
f9a86fcb
MT
1675 cpus_clear(cs->cpus_allowed);
1676 nodes_clear(cs->mems_allowed);
151a4420 1677 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1678 fmeter_init(&cs->fmeter);
1d3504fc 1679 cs->relax_domain_level = -1;
1da177e4
LT
1680
1681 cs->parent = parent;
202f72d5 1682 number_of_cpusets++;
8793d854 1683 return &cs->css ;
1da177e4
LT
1684}
1685
029190c5
PJ
1686/*
1687 * Locking note on the strange update_flag() call below:
1688 *
1689 * If the cpuset being removed has its flag 'sched_load_balance'
1690 * enabled, then simulate turning sched_load_balance off, which
86ef5c9a 1691 * will call rebuild_sched_domains(). The get_online_cpus()
029190c5
PJ
1692 * call in rebuild_sched_domains() must not be made while holding
1693 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
86ef5c9a 1694 * get_online_cpus() calls. So the reverse nesting would risk an
029190c5
PJ
1695 * ABBA deadlock.
1696 */
1697
8793d854 1698static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1699{
8793d854 1700 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1701
cf2a473c 1702 cpuset_update_task_memory_state();
029190c5
PJ
1703
1704 if (is_sched_load_balance(cs))
700fe1ab 1705 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
029190c5 1706
202f72d5 1707 number_of_cpusets--;
8793d854 1708 kfree(cs);
1da177e4
LT
1709}
1710
8793d854
PM
1711struct cgroup_subsys cpuset_subsys = {
1712 .name = "cpuset",
1713 .create = cpuset_create,
1714 .destroy = cpuset_destroy,
1715 .can_attach = cpuset_can_attach,
1716 .attach = cpuset_attach,
1717 .populate = cpuset_populate,
1718 .post_clone = cpuset_post_clone,
1719 .subsys_id = cpuset_subsys_id,
1720 .early_init = 1,
1721};
1722
c417f024
PJ
1723/*
1724 * cpuset_init_early - just enough so that the calls to
1725 * cpuset_update_task_memory_state() in early init code
1726 * are harmless.
1727 */
1728
1729int __init cpuset_init_early(void)
1730{
8793d854 1731 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1732 return 0;
1733}
1734
8793d854 1735
1da177e4
LT
1736/**
1737 * cpuset_init - initialize cpusets at system boot
1738 *
1739 * Description: Initialize top_cpuset and the cpuset internal file system,
1740 **/
1741
1742int __init cpuset_init(void)
1743{
8793d854 1744 int err = 0;
1da177e4 1745
f9a86fcb
MT
1746 cpus_setall(top_cpuset.cpus_allowed);
1747 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1748
3e0d98b9 1749 fmeter_init(&top_cpuset.fmeter);
151a4420 1750 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1751 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1752 top_cpuset.relax_domain_level = -1;
1da177e4 1753
1da177e4
LT
1754 err = register_filesystem(&cpuset_fs_type);
1755 if (err < 0)
8793d854
PM
1756 return err;
1757
202f72d5 1758 number_of_cpusets = 1;
8793d854 1759 return 0;
1da177e4
LT
1760}
1761
956db3ca
CW
1762/**
1763 * cpuset_do_move_task - move a given task to another cpuset
1764 * @tsk: pointer to task_struct the task to move
1765 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1766 *
1767 * Called by cgroup_scan_tasks() for each task in a cgroup.
1768 * Return nonzero to stop the walk through the tasks.
1769 */
9e0c914c
AB
1770static void cpuset_do_move_task(struct task_struct *tsk,
1771 struct cgroup_scanner *scan)
956db3ca
CW
1772{
1773 struct cpuset_hotplug_scanner *chsp;
1774
1775 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1776 cgroup_attach_task(chsp->to, tsk);
1777}
1778
1779/**
1780 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1781 * @from: cpuset in which the tasks currently reside
1782 * @to: cpuset to which the tasks will be moved
1783 *
c8d9c90c
PJ
1784 * Called with cgroup_mutex held
1785 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1786 *
1787 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1788 * calling callback functions for each.
1789 */
1790static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1791{
1792 struct cpuset_hotplug_scanner scan;
1793
1794 scan.scan.cg = from->css.cgroup;
1795 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1796 scan.scan.process_task = cpuset_do_move_task;
1797 scan.scan.heap = NULL;
1798 scan.to = to->css.cgroup;
1799
1800 if (cgroup_scan_tasks((struct cgroup_scanner *)&scan))
1801 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1802 "cgroup_scan_tasks failed\n");
1803}
1804
b1aac8bb
PJ
1805/*
1806 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
1807 * or memory nodes, we need to walk over the cpuset hierarchy,
1808 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1809 * last CPU or node from a cpuset, then move the tasks in the empty
1810 * cpuset to its next-highest non-empty parent.
b1aac8bb 1811 *
c8d9c90c
PJ
1812 * Called with cgroup_mutex held
1813 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1814 */
956db3ca
CW
1815static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1816{
1817 struct cpuset *parent;
1818
c8d9c90c
PJ
1819 /*
1820 * The cgroup's css_sets list is in use if there are tasks
1821 * in the cpuset; the list is empty if there are none;
1822 * the cs->css.refcnt seems always 0.
1823 */
956db3ca
CW
1824 if (list_empty(&cs->css.cgroup->css_sets))
1825 return;
b1aac8bb 1826
956db3ca
CW
1827 /*
1828 * Find its next-highest non-empty parent, (top cpuset
1829 * has online cpus, so can't be empty).
1830 */
1831 parent = cs->parent;
b4501295
PJ
1832 while (cpus_empty(parent->cpus_allowed) ||
1833 nodes_empty(parent->mems_allowed))
956db3ca 1834 parent = parent->parent;
956db3ca
CW
1835
1836 move_member_tasks_to_cpuset(cs, parent);
1837}
1838
1839/*
1840 * Walk the specified cpuset subtree and look for empty cpusets.
1841 * The tasks of such cpuset must be moved to a parent cpuset.
1842 *
2df167a3 1843 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
1844 * cpus_allowed and mems_allowed.
1845 *
1846 * This walk processes the tree from top to bottom, completing one layer
1847 * before dropping down to the next. It always processes a node before
1848 * any of its children.
1849 *
1850 * For now, since we lack memory hot unplug, we'll never see a cpuset
1851 * that has tasks along with an empty 'mems'. But if we did see such
1852 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1853 */
1854static void scan_for_empty_cpusets(const struct cpuset *root)
b1aac8bb 1855{
956db3ca
CW
1856 struct cpuset *cp; /* scans cpusets being updated */
1857 struct cpuset *child; /* scans child cpusets of cp */
1858 struct list_head queue;
8793d854 1859 struct cgroup *cont;
f9b4fb8d 1860 nodemask_t oldmems;
b1aac8bb 1861
956db3ca
CW
1862 INIT_LIST_HEAD(&queue);
1863
1864 list_add_tail((struct list_head *)&root->stack_list, &queue);
1865
956db3ca
CW
1866 while (!list_empty(&queue)) {
1867 cp = container_of(queue.next, struct cpuset, stack_list);
1868 list_del(queue.next);
1869 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1870 child = cgroup_cs(cont);
1871 list_add_tail(&child->stack_list, &queue);
1872 }
1873 cont = cp->css.cgroup;
b4501295
PJ
1874
1875 /* Continue past cpusets with all cpus, mems online */
1876 if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
1877 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1878 continue;
1879
f9b4fb8d
MX
1880 oldmems = cp->mems_allowed;
1881
956db3ca 1882 /* Remove offline cpus and mems from this cpuset. */
b4501295 1883 mutex_lock(&callback_mutex);
956db3ca
CW
1884 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1885 nodes_and(cp->mems_allowed, cp->mems_allowed,
1886 node_states[N_HIGH_MEMORY]);
b4501295
PJ
1887 mutex_unlock(&callback_mutex);
1888
1889 /* Move tasks from the empty cpuset to a parent */
c8d9c90c 1890 if (cpus_empty(cp->cpus_allowed) ||
b4501295 1891 nodes_empty(cp->mems_allowed))
956db3ca 1892 remove_tasks_in_empty_cpuset(cp);
f9b4fb8d
MX
1893 else {
1894 update_tasks_cpumask(cp);
1895 update_tasks_nodemask(cp, &oldmems);
1896 }
b1aac8bb
PJ
1897 }
1898}
1899
1900/*
1901 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
0e1e7c7a 1902 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
956db3ca 1903 * track what's online after any CPU or memory node hotplug or unplug event.
b1aac8bb
PJ
1904 *
1905 * Since there are two callers of this routine, one for CPU hotplug
1906 * events and one for memory node hotplug events, we could have coded
1907 * two separate routines here. We code it as a single common routine
1908 * in order to minimize text size.
1909 */
1910
3e84050c 1911static void common_cpu_mem_hotplug_unplug(int rebuild_sd)
b1aac8bb 1912{
8793d854 1913 cgroup_lock();
b1aac8bb 1914
b1aac8bb 1915 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 1916 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
956db3ca 1917 scan_for_empty_cpusets(&top_cpuset);
b1aac8bb 1918
5c8e1ed1
MK
1919 /*
1920 * Scheduler destroys domains on hotplug events.
1921 * Rebuild them based on the current settings.
1922 */
3e84050c
DA
1923 if (rebuild_sd)
1924 rebuild_sched_domains();
5c8e1ed1 1925
8793d854 1926 cgroup_unlock();
b1aac8bb 1927}
b1aac8bb 1928
4c4d50f7
PJ
1929/*
1930 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1931 * period. This is necessary in order to make cpusets transparent
1932 * (of no affect) on systems that are actively using CPU hotplug
1933 * but making no active use of cpusets.
1934 *
38837fc7
PJ
1935 * This routine ensures that top_cpuset.cpus_allowed tracks
1936 * cpu_online_map on each CPU hotplug (cpuhp) event.
4c4d50f7
PJ
1937 */
1938
029190c5
PJ
1939static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
1940 unsigned long phase, void *unused_cpu)
4c4d50f7 1941{
3e84050c
DA
1942 switch (phase) {
1943 case CPU_UP_CANCELED:
1944 case CPU_UP_CANCELED_FROZEN:
1945 case CPU_DOWN_FAILED:
1946 case CPU_DOWN_FAILED_FROZEN:
1947 case CPU_ONLINE:
1948 case CPU_ONLINE_FROZEN:
1949 case CPU_DEAD:
1950 case CPU_DEAD_FROZEN:
1951 common_cpu_mem_hotplug_unplug(1);
1952 break;
1953 default:
ac076758 1954 return NOTIFY_DONE;
3e84050c 1955 }
ac076758 1956
3e84050c 1957 return NOTIFY_OK;
4c4d50f7 1958}
4c4d50f7 1959
b1aac8bb 1960#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 1961/*
0e1e7c7a
CL
1962 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
1963 * Call this routine anytime after you change
1964 * node_states[N_HIGH_MEMORY].
38837fc7
PJ
1965 * See also the previous routine cpuset_handle_cpuhp().
1966 */
1967
1af98928 1968void cpuset_track_online_nodes(void)
38837fc7 1969{
3e84050c 1970 common_cpu_mem_hotplug_unplug(0);
38837fc7
PJ
1971}
1972#endif
1973
1da177e4
LT
1974/**
1975 * cpuset_init_smp - initialize cpus_allowed
1976 *
1977 * Description: Finish top cpuset after cpu, node maps are initialized
1978 **/
1979
1980void __init cpuset_init_smp(void)
1981{
1982 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 1983 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7
PJ
1984
1985 hotcpu_notifier(cpuset_handle_cpuhp, 0);
1da177e4
LT
1986}
1987
1988/**
1da177e4
LT
1989 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1990 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
f9a86fcb 1991 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
1da177e4
LT
1992 *
1993 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1994 * attached to the specified @tsk. Guaranteed to return some non-empty
1995 * subset of cpu_online_map, even if this means going outside the
1996 * tasks cpuset.
1997 **/
1998
f9a86fcb 1999void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
1da177e4 2000{
3d3f26a7 2001 mutex_lock(&callback_mutex);
f9a86fcb 2002 cpuset_cpus_allowed_locked(tsk, pmask);
470fd646 2003 mutex_unlock(&callback_mutex);
470fd646
CW
2004}
2005
2006/**
2007 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2df167a3 2008 * Must be called with callback_mutex held.
470fd646 2009 **/
f9a86fcb 2010void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
470fd646 2011{
909d75a3 2012 task_lock(tsk);
f9a86fcb 2013 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2014 task_unlock(tsk);
1da177e4
LT
2015}
2016
2017void cpuset_init_current_mems_allowed(void)
2018{
f9a86fcb 2019 nodes_setall(current->mems_allowed);
1da177e4
LT
2020}
2021
909d75a3
PJ
2022/**
2023 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2024 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2025 *
2026 * Description: Returns the nodemask_t mems_allowed of the cpuset
2027 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 2028 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
2029 * tasks cpuset.
2030 **/
2031
2032nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2033{
2034 nodemask_t mask;
2035
3d3f26a7 2036 mutex_lock(&callback_mutex);
909d75a3 2037 task_lock(tsk);
8793d854 2038 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2039 task_unlock(tsk);
3d3f26a7 2040 mutex_unlock(&callback_mutex);
909d75a3
PJ
2041
2042 return mask;
2043}
2044
d9fd8a6d 2045/**
19770b32
MG
2046 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2047 * @nodemask: the nodemask to be checked
d9fd8a6d 2048 *
19770b32 2049 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2050 */
19770b32 2051int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2052{
19770b32 2053 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2054}
2055
9bf2229f 2056/*
78608366
PM
2057 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2058 * mem_hardwall ancestor to the specified cpuset. Call holding
2059 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2060 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2061 */
78608366 2062static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2063{
78608366 2064 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2065 cs = cs->parent;
2066 return cs;
2067}
2068
d9fd8a6d 2069/**
02a0e53d 2070 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
9bf2229f 2071 * @z: is this zone on an allowed node?
02a0e53d 2072 * @gfp_mask: memory allocation flags
d9fd8a6d 2073 *
02a0e53d
PJ
2074 * If we're in interrupt, yes, we can always allocate. If
2075 * __GFP_THISNODE is set, yes, we can always allocate. If zone
9bf2229f
PJ
2076 * z's node is in our tasks mems_allowed, yes. If it's not a
2077 * __GFP_HARDWALL request and this zone's nodes is in the nearest
78608366 2078 * hardwalled cpuset ancestor to this tasks cpuset, yes.
c596d9f3
DR
2079 * If the task has been OOM killed and has access to memory reserves
2080 * as specified by the TIF_MEMDIE flag, yes.
9bf2229f
PJ
2081 * Otherwise, no.
2082 *
02a0e53d
PJ
2083 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2084 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2085 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2086 * from an enclosing cpuset.
2087 *
2088 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2089 * hardwall cpusets, and never sleeps.
2090 *
2091 * The __GFP_THISNODE placement logic is really handled elsewhere,
2092 * by forcibly using a zonelist starting at a specified node, and by
2093 * (in get_page_from_freelist()) refusing to consider the zones for
2094 * any node on the zonelist except the first. By the time any such
2095 * calls get to this routine, we should just shut up and say 'yes'.
2096 *
9bf2229f 2097 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2098 * and do not allow allocations outside the current tasks cpuset
2099 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2100 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2101 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2102 *
02a0e53d
PJ
2103 * Scanning up parent cpusets requires callback_mutex. The
2104 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2105 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2106 * current tasks mems_allowed came up empty on the first pass over
2107 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2108 * cpuset are short of memory, might require taking the callback_mutex
2109 * mutex.
9bf2229f 2110 *
36be57ff 2111 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2112 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2113 * so no allocation on a node outside the cpuset is allowed (unless
2114 * in interrupt, of course).
36be57ff
PJ
2115 *
2116 * The second pass through get_page_from_freelist() doesn't even call
2117 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2118 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2119 * in alloc_flags. That logic and the checks below have the combined
2120 * affect that:
9bf2229f
PJ
2121 * in_interrupt - any node ok (current task context irrelevant)
2122 * GFP_ATOMIC - any node ok
c596d9f3 2123 * TIF_MEMDIE - any node ok
78608366 2124 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2125 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2126 *
2127 * Rule:
02a0e53d 2128 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2129 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2130 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2131 */
9bf2229f 2132
02a0e53d 2133int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
1da177e4 2134{
9bf2229f
PJ
2135 int node; /* node that zone z is on */
2136 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2137 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2138
9b819d20 2139 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2140 return 1;
89fa3024 2141 node = zone_to_nid(z);
92d1dbd2 2142 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2143 if (node_isset(node, current->mems_allowed))
2144 return 1;
c596d9f3
DR
2145 /*
2146 * Allow tasks that have access to memory reserves because they have
2147 * been OOM killed to get memory anywhere.
2148 */
2149 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2150 return 1;
9bf2229f
PJ
2151 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2152 return 0;
2153
5563e770
BP
2154 if (current->flags & PF_EXITING) /* Let dying task have memory */
2155 return 1;
2156
9bf2229f 2157 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2158 mutex_lock(&callback_mutex);
053199ed 2159
053199ed 2160 task_lock(current);
78608366 2161 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2162 task_unlock(current);
2163
9bf2229f 2164 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2165 mutex_unlock(&callback_mutex);
9bf2229f 2166 return allowed;
1da177e4
LT
2167}
2168
02a0e53d
PJ
2169/*
2170 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2171 * @z: is this zone on an allowed node?
2172 * @gfp_mask: memory allocation flags
2173 *
2174 * If we're in interrupt, yes, we can always allocate.
2175 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
c596d9f3
DR
2176 * z's node is in our tasks mems_allowed, yes. If the task has been
2177 * OOM killed and has access to memory reserves as specified by the
2178 * TIF_MEMDIE flag, yes. Otherwise, no.
02a0e53d
PJ
2179 *
2180 * The __GFP_THISNODE placement logic is really handled elsewhere,
2181 * by forcibly using a zonelist starting at a specified node, and by
2182 * (in get_page_from_freelist()) refusing to consider the zones for
2183 * any node on the zonelist except the first. By the time any such
2184 * calls get to this routine, we should just shut up and say 'yes'.
2185 *
2186 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2187 * this variant requires that the zone be in the current tasks
2188 * mems_allowed or that we're in interrupt. It does not scan up the
2189 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2190 * It never sleeps.
2191 */
2192
2193int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2194{
2195 int node; /* node that zone z is on */
2196
2197 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2198 return 1;
2199 node = zone_to_nid(z);
2200 if (node_isset(node, current->mems_allowed))
2201 return 1;
dedf8b79
DW
2202 /*
2203 * Allow tasks that have access to memory reserves because they have
2204 * been OOM killed to get memory anywhere.
2205 */
2206 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2207 return 1;
02a0e53d
PJ
2208 return 0;
2209}
2210
505970b9
PJ
2211/**
2212 * cpuset_lock - lock out any changes to cpuset structures
2213 *
3d3f26a7 2214 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2215 * from being changed while it scans the tasklist looking for a
3d3f26a7 2216 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2217 * cpuset_lock() routine, so the oom code can lock it, before
2218 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2219 * must be taken inside callback_mutex.
505970b9
PJ
2220 */
2221
2222void cpuset_lock(void)
2223{
3d3f26a7 2224 mutex_lock(&callback_mutex);
505970b9
PJ
2225}
2226
2227/**
2228 * cpuset_unlock - release lock on cpuset changes
2229 *
2230 * Undo the lock taken in a previous cpuset_lock() call.
2231 */
2232
2233void cpuset_unlock(void)
2234{
3d3f26a7 2235 mutex_unlock(&callback_mutex);
505970b9
PJ
2236}
2237
825a46af
PJ
2238/**
2239 * cpuset_mem_spread_node() - On which node to begin search for a page
2240 *
2241 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2242 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2243 * and if the memory allocation used cpuset_mem_spread_node()
2244 * to determine on which node to start looking, as it will for
2245 * certain page cache or slab cache pages such as used for file
2246 * system buffers and inode caches, then instead of starting on the
2247 * local node to look for a free page, rather spread the starting
2248 * node around the tasks mems_allowed nodes.
2249 *
2250 * We don't have to worry about the returned node being offline
2251 * because "it can't happen", and even if it did, it would be ok.
2252 *
2253 * The routines calling guarantee_online_mems() are careful to
2254 * only set nodes in task->mems_allowed that are online. So it
2255 * should not be possible for the following code to return an
2256 * offline node. But if it did, that would be ok, as this routine
2257 * is not returning the node where the allocation must be, only
2258 * the node where the search should start. The zonelist passed to
2259 * __alloc_pages() will include all nodes. If the slab allocator
2260 * is passed an offline node, it will fall back to the local node.
2261 * See kmem_cache_alloc_node().
2262 */
2263
2264int cpuset_mem_spread_node(void)
2265{
2266 int node;
2267
2268 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2269 if (node == MAX_NUMNODES)
2270 node = first_node(current->mems_allowed);
2271 current->cpuset_mem_spread_rotor = node;
2272 return node;
2273}
2274EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2275
ef08e3b4 2276/**
bbe373f2
DR
2277 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2278 * @tsk1: pointer to task_struct of some task.
2279 * @tsk2: pointer to task_struct of some other task.
2280 *
2281 * Description: Return true if @tsk1's mems_allowed intersects the
2282 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2283 * one of the task's memory usage might impact the memory available
2284 * to the other.
ef08e3b4
PJ
2285 **/
2286
bbe373f2
DR
2287int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2288 const struct task_struct *tsk2)
ef08e3b4 2289{
bbe373f2 2290 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2291}
2292
3e0d98b9
PJ
2293/*
2294 * Collection of memory_pressure is suppressed unless
2295 * this flag is enabled by writing "1" to the special
2296 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2297 */
2298
c5b2aff8 2299int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2300
2301/**
2302 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2303 *
2304 * Keep a running average of the rate of synchronous (direct)
2305 * page reclaim efforts initiated by tasks in each cpuset.
2306 *
2307 * This represents the rate at which some task in the cpuset
2308 * ran low on memory on all nodes it was allowed to use, and
2309 * had to enter the kernels page reclaim code in an effort to
2310 * create more free memory by tossing clean pages or swapping
2311 * or writing dirty pages.
2312 *
2313 * Display to user space in the per-cpuset read-only file
2314 * "memory_pressure". Value displayed is an integer
2315 * representing the recent rate of entry into the synchronous
2316 * (direct) page reclaim by any task attached to the cpuset.
2317 **/
2318
2319void __cpuset_memory_pressure_bump(void)
2320{
3e0d98b9 2321 task_lock(current);
8793d854 2322 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2323 task_unlock(current);
2324}
2325
8793d854 2326#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2327/*
2328 * proc_cpuset_show()
2329 * - Print tasks cpuset path into seq_file.
2330 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2331 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2332 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2333 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2334 * anyway.
1da177e4 2335 */
029190c5 2336static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2337{
13b41b09 2338 struct pid *pid;
1da177e4
LT
2339 struct task_struct *tsk;
2340 char *buf;
8793d854 2341 struct cgroup_subsys_state *css;
99f89551 2342 int retval;
1da177e4 2343
99f89551 2344 retval = -ENOMEM;
1da177e4
LT
2345 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2346 if (!buf)
99f89551
EB
2347 goto out;
2348
2349 retval = -ESRCH;
13b41b09
EB
2350 pid = m->private;
2351 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2352 if (!tsk)
2353 goto out_free;
1da177e4 2354
99f89551 2355 retval = -EINVAL;
8793d854
PM
2356 cgroup_lock();
2357 css = task_subsys_state(tsk, cpuset_subsys_id);
2358 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2359 if (retval < 0)
99f89551 2360 goto out_unlock;
1da177e4
LT
2361 seq_puts(m, buf);
2362 seq_putc(m, '\n');
99f89551 2363out_unlock:
8793d854 2364 cgroup_unlock();
99f89551
EB
2365 put_task_struct(tsk);
2366out_free:
1da177e4 2367 kfree(buf);
99f89551 2368out:
1da177e4
LT
2369 return retval;
2370}
2371
2372static int cpuset_open(struct inode *inode, struct file *file)
2373{
13b41b09
EB
2374 struct pid *pid = PROC_I(inode)->pid;
2375 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2376}
2377
9a32144e 2378const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2379 .open = cpuset_open,
2380 .read = seq_read,
2381 .llseek = seq_lseek,
2382 .release = single_release,
2383};
8793d854 2384#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2385
2386/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2387void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2388{
2389 seq_printf(m, "Cpus_allowed:\t");
2390 m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count,
2391 task->cpus_allowed);
2392 seq_printf(m, "\n");
39106dcf
MT
2393 seq_printf(m, "Cpus_allowed_list:\t");
2394 m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count,
2395 task->cpus_allowed);
2396 seq_printf(m, "\n");
df5f8314
EB
2397 seq_printf(m, "Mems_allowed:\t");
2398 m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count,
2399 task->mems_allowed);
2400 seq_printf(m, "\n");
39106dcf
MT
2401 seq_printf(m, "Mems_allowed_list:\t");
2402 m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count,
2403 task->mems_allowed);
2404 seq_printf(m, "\n");
1da177e4 2405}