cpuset: apply cs->effective_{cpus,mems}
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
664eedde 64struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
202f72d5 65
3e0d98b9
PJ
66/* See "Frequency meter" comments, below. */
67
68struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73};
74
1da177e4 75struct cpuset {
8793d854
PM
76 struct cgroup_subsys_state css;
77
1da177e4 78 unsigned long flags; /* "unsigned long" so bitops work */
e2b9a3d7
LZ
79
80 /* user-configured CPUs and Memory Nodes allow to tasks */
81 cpumask_var_t cpus_allowed;
82 nodemask_t mems_allowed;
83
84 /* effective CPUs and Memory Nodes allow to tasks */
85 cpumask_var_t effective_cpus;
86 nodemask_t effective_mems;
1da177e4 87
33ad801d
LZ
88 /*
89 * This is old Memory Nodes tasks took on.
90 *
91 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
92 * - A new cpuset's old_mems_allowed is initialized when some
93 * task is moved into it.
94 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
95 * cpuset.mems_allowed and have tasks' nodemask updated, and
96 * then old_mems_allowed is updated to mems_allowed.
97 */
98 nodemask_t old_mems_allowed;
99
3e0d98b9 100 struct fmeter fmeter; /* memory_pressure filter */
029190c5 101
452477fa
TH
102 /*
103 * Tasks are being attached to this cpuset. Used to prevent
104 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
105 */
106 int attach_in_progress;
107
029190c5
PJ
108 /* partition number for rebuild_sched_domains() */
109 int pn;
956db3ca 110
1d3504fc
HS
111 /* for custom sched domain */
112 int relax_domain_level;
1da177e4
LT
113};
114
a7c6d554 115static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
8793d854 116{
a7c6d554 117 return css ? container_of(css, struct cpuset, css) : NULL;
8793d854
PM
118}
119
120/* Retrieve the cpuset for a task */
121static inline struct cpuset *task_cs(struct task_struct *task)
122{
073219e9 123 return css_cs(task_css(task, cpuset_cgrp_id));
8793d854 124}
8793d854 125
c9710d80 126static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 127{
5c9d535b 128 return css_cs(cs->css.parent);
c431069f
TH
129}
130
b246272e
DR
131#ifdef CONFIG_NUMA
132static inline bool task_has_mempolicy(struct task_struct *task)
133{
134 return task->mempolicy;
135}
136#else
137static inline bool task_has_mempolicy(struct task_struct *task)
138{
139 return false;
140}
141#endif
142
143
1da177e4
LT
144/* bits in struct cpuset flags field */
145typedef enum {
efeb77b2 146 CS_ONLINE,
1da177e4
LT
147 CS_CPU_EXCLUSIVE,
148 CS_MEM_EXCLUSIVE,
78608366 149 CS_MEM_HARDWALL,
45b07ef3 150 CS_MEMORY_MIGRATE,
029190c5 151 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
152 CS_SPREAD_PAGE,
153 CS_SPREAD_SLAB,
1da177e4
LT
154} cpuset_flagbits_t;
155
156/* convenient tests for these bits */
efeb77b2
TH
157static inline bool is_cpuset_online(const struct cpuset *cs)
158{
159 return test_bit(CS_ONLINE, &cs->flags);
160}
161
1da177e4
LT
162static inline int is_cpu_exclusive(const struct cpuset *cs)
163{
7b5b9ef0 164 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
165}
166
167static inline int is_mem_exclusive(const struct cpuset *cs)
168{
7b5b9ef0 169 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
170}
171
78608366
PM
172static inline int is_mem_hardwall(const struct cpuset *cs)
173{
174 return test_bit(CS_MEM_HARDWALL, &cs->flags);
175}
176
029190c5
PJ
177static inline int is_sched_load_balance(const struct cpuset *cs)
178{
179 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
180}
181
45b07ef3
PJ
182static inline int is_memory_migrate(const struct cpuset *cs)
183{
7b5b9ef0 184 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
185}
186
825a46af
PJ
187static inline int is_spread_page(const struct cpuset *cs)
188{
189 return test_bit(CS_SPREAD_PAGE, &cs->flags);
190}
191
192static inline int is_spread_slab(const struct cpuset *cs)
193{
194 return test_bit(CS_SPREAD_SLAB, &cs->flags);
195}
196
1da177e4 197static struct cpuset top_cpuset = {
efeb77b2
TH
198 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
199 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
200};
201
ae8086ce
TH
202/**
203 * cpuset_for_each_child - traverse online children of a cpuset
204 * @child_cs: loop cursor pointing to the current child
492eb21b 205 * @pos_css: used for iteration
ae8086ce
TH
206 * @parent_cs: target cpuset to walk children of
207 *
208 * Walk @child_cs through the online children of @parent_cs. Must be used
209 * with RCU read locked.
210 */
492eb21b
TH
211#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
212 css_for_each_child((pos_css), &(parent_cs)->css) \
213 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 214
fc560a26
TH
215/**
216 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
217 * @des_cs: loop cursor pointing to the current descendant
492eb21b 218 * @pos_css: used for iteration
fc560a26
TH
219 * @root_cs: target cpuset to walk ancestor of
220 *
221 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b 222 * with RCU read locked. The caller may modify @pos_css by calling
bd8815a6
TH
223 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
224 * iteration and the first node to be visited.
fc560a26 225 */
492eb21b
TH
226#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
227 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
228 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 229
1da177e4 230/*
5d21cc2d
TH
231 * There are two global mutexes guarding cpuset structures - cpuset_mutex
232 * and callback_mutex. The latter may nest inside the former. We also
233 * require taking task_lock() when dereferencing a task's cpuset pointer.
234 * See "The task_lock() exception", at the end of this comment.
235 *
236 * A task must hold both mutexes to modify cpusets. If a task holds
237 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
238 * is the only task able to also acquire callback_mutex and be able to
239 * modify cpusets. It can perform various checks on the cpuset structure
240 * first, knowing nothing will change. It can also allocate memory while
241 * just holding cpuset_mutex. While it is performing these checks, various
242 * callback routines can briefly acquire callback_mutex to query cpusets.
243 * Once it is ready to make the changes, it takes callback_mutex, blocking
244 * everyone else.
053199ed
PJ
245 *
246 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 247 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
248 * from one of the callbacks into the cpuset code from within
249 * __alloc_pages().
250 *
3d3f26a7 251 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
252 * access to cpusets.
253 *
58568d2a
MX
254 * Now, the task_struct fields mems_allowed and mempolicy may be changed
255 * by other task, we use alloc_lock in the task_struct fields to protect
256 * them.
053199ed 257 *
3d3f26a7 258 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
259 * small pieces of code, such as when reading out possibly multi-word
260 * cpumasks and nodemasks.
261 *
2df167a3
PM
262 * Accessing a task's cpuset should be done in accordance with the
263 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
264 */
265
5d21cc2d 266static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 267static DEFINE_MUTEX(callback_mutex);
4247bdc6 268
3a5a6d0c
TH
269/*
270 * CPU / memory hotplug is handled asynchronously.
271 */
272static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
273static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
274
e44193d3
LZ
275static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
276
cf417141
MK
277/*
278 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 279 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
280 * silently switch it to mount "cgroup" instead
281 */
f7e83571
AV
282static struct dentry *cpuset_mount(struct file_system_type *fs_type,
283 int flags, const char *unused_dev_name, void *data)
1da177e4 284{
8793d854 285 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 286 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
287 if (cgroup_fs) {
288 char mountopts[] =
289 "cpuset,noprefix,"
290 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
291 ret = cgroup_fs->mount(cgroup_fs, flags,
292 unused_dev_name, mountopts);
8793d854
PM
293 put_filesystem(cgroup_fs);
294 }
295 return ret;
1da177e4
LT
296}
297
298static struct file_system_type cpuset_fs_type = {
299 .name = "cpuset",
f7e83571 300 .mount = cpuset_mount,
1da177e4
LT
301};
302
1da177e4 303/*
300ed6cb 304 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 305 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
306 * until we find one that does have some online cpus. The top
307 * cpuset always has some cpus online.
1da177e4
LT
308 *
309 * One way or another, we guarantee to return some non-empty subset
5f054e31 310 * of cpu_online_mask.
1da177e4 311 *
3d3f26a7 312 * Call with callback_mutex held.
1da177e4 313 */
c9710d80 314static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 315{
ae1c8023 316 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
c431069f 317 cs = parent_cs(cs);
ae1c8023 318 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
1da177e4
LT
319}
320
321/*
322 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
323 * are online, with memory. If none are online with memory, walk
324 * up the cpuset hierarchy until we find one that does have some
40df2deb 325 * online mems. The top cpuset always has some mems online.
1da177e4
LT
326 *
327 * One way or another, we guarantee to return some non-empty subset
38d7bee9 328 * of node_states[N_MEMORY].
1da177e4 329 *
3d3f26a7 330 * Call with callback_mutex held.
1da177e4 331 */
c9710d80 332static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 333{
ae1c8023 334 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
c431069f 335 cs = parent_cs(cs);
ae1c8023 336 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
1da177e4
LT
337}
338
f3b39d47
MX
339/*
340 * update task's spread flag if cpuset's page/slab spread flag is set
341 *
5d21cc2d 342 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
343 */
344static void cpuset_update_task_spread_flag(struct cpuset *cs,
345 struct task_struct *tsk)
346{
347 if (is_spread_page(cs))
348 tsk->flags |= PF_SPREAD_PAGE;
349 else
350 tsk->flags &= ~PF_SPREAD_PAGE;
351 if (is_spread_slab(cs))
352 tsk->flags |= PF_SPREAD_SLAB;
353 else
354 tsk->flags &= ~PF_SPREAD_SLAB;
355}
356
1da177e4
LT
357/*
358 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
359 *
360 * One cpuset is a subset of another if all its allowed CPUs and
361 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 362 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
363 */
364
365static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
366{
300ed6cb 367 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
368 nodes_subset(p->mems_allowed, q->mems_allowed) &&
369 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
370 is_mem_exclusive(p) <= is_mem_exclusive(q);
371}
372
645fcc9d
LZ
373/**
374 * alloc_trial_cpuset - allocate a trial cpuset
375 * @cs: the cpuset that the trial cpuset duplicates
376 */
c9710d80 377static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 378{
300ed6cb
LZ
379 struct cpuset *trial;
380
381 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
382 if (!trial)
383 return NULL;
384
e2b9a3d7
LZ
385 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
386 goto free_cs;
387 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
388 goto free_cpus;
300ed6cb 389
e2b9a3d7
LZ
390 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
391 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
300ed6cb 392 return trial;
e2b9a3d7
LZ
393
394free_cpus:
395 free_cpumask_var(trial->cpus_allowed);
396free_cs:
397 kfree(trial);
398 return NULL;
645fcc9d
LZ
399}
400
401/**
402 * free_trial_cpuset - free the trial cpuset
403 * @trial: the trial cpuset to be freed
404 */
405static void free_trial_cpuset(struct cpuset *trial)
406{
e2b9a3d7 407 free_cpumask_var(trial->effective_cpus);
300ed6cb 408 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
409 kfree(trial);
410}
411
1da177e4
LT
412/*
413 * validate_change() - Used to validate that any proposed cpuset change
414 * follows the structural rules for cpusets.
415 *
416 * If we replaced the flag and mask values of the current cpuset
417 * (cur) with those values in the trial cpuset (trial), would
418 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 419 * cpuset_mutex held.
1da177e4
LT
420 *
421 * 'cur' is the address of an actual, in-use cpuset. Operations
422 * such as list traversal that depend on the actual address of the
423 * cpuset in the list must use cur below, not trial.
424 *
425 * 'trial' is the address of bulk structure copy of cur, with
426 * perhaps one or more of the fields cpus_allowed, mems_allowed,
427 * or flags changed to new, trial values.
428 *
429 * Return 0 if valid, -errno if not.
430 */
431
c9710d80 432static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 433{
492eb21b 434 struct cgroup_subsys_state *css;
1da177e4 435 struct cpuset *c, *par;
ae8086ce
TH
436 int ret;
437
438 rcu_read_lock();
1da177e4
LT
439
440 /* Each of our child cpusets must be a subset of us */
ae8086ce 441 ret = -EBUSY;
492eb21b 442 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
443 if (!is_cpuset_subset(c, trial))
444 goto out;
1da177e4
LT
445
446 /* Remaining checks don't apply to root cpuset */
ae8086ce 447 ret = 0;
69604067 448 if (cur == &top_cpuset)
ae8086ce 449 goto out;
1da177e4 450
c431069f 451 par = parent_cs(cur);
69604067 452
1da177e4 453 /* We must be a subset of our parent cpuset */
ae8086ce 454 ret = -EACCES;
1da177e4 455 if (!is_cpuset_subset(trial, par))
ae8086ce 456 goto out;
1da177e4 457
2df167a3
PM
458 /*
459 * If either I or some sibling (!= me) is exclusive, we can't
460 * overlap
461 */
ae8086ce 462 ret = -EINVAL;
492eb21b 463 cpuset_for_each_child(c, css, par) {
1da177e4
LT
464 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
465 c != cur &&
300ed6cb 466 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 467 goto out;
1da177e4
LT
468 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
469 c != cur &&
470 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 471 goto out;
1da177e4
LT
472 }
473
452477fa
TH
474 /*
475 * Cpusets with tasks - existing or newly being attached - can't
1c09b195 476 * be changed to have empty cpus_allowed or mems_allowed.
452477fa 477 */
ae8086ce 478 ret = -ENOSPC;
07bc356e 479 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
1c09b195
LZ
480 if (!cpumask_empty(cur->cpus_allowed) &&
481 cpumask_empty(trial->cpus_allowed))
482 goto out;
483 if (!nodes_empty(cur->mems_allowed) &&
484 nodes_empty(trial->mems_allowed))
485 goto out;
486 }
020958b6 487
ae8086ce
TH
488 ret = 0;
489out:
490 rcu_read_unlock();
491 return ret;
1da177e4
LT
492}
493
db7f47cf 494#ifdef CONFIG_SMP
029190c5 495/*
cf417141 496 * Helper routine for generate_sched_domains().
8b5f1c52 497 * Do cpusets a, b have overlapping effective cpus_allowed masks?
029190c5 498 */
029190c5
PJ
499static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
500{
8b5f1c52 501 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
029190c5
PJ
502}
503
1d3504fc
HS
504static void
505update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
506{
1d3504fc
HS
507 if (dattr->relax_domain_level < c->relax_domain_level)
508 dattr->relax_domain_level = c->relax_domain_level;
509 return;
510}
511
fc560a26
TH
512static void update_domain_attr_tree(struct sched_domain_attr *dattr,
513 struct cpuset *root_cs)
f5393693 514{
fc560a26 515 struct cpuset *cp;
492eb21b 516 struct cgroup_subsys_state *pos_css;
f5393693 517
fc560a26 518 rcu_read_lock();
492eb21b 519 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
bd8815a6
TH
520 if (cp == root_cs)
521 continue;
522
fc560a26
TH
523 /* skip the whole subtree if @cp doesn't have any CPU */
524 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 525 pos_css = css_rightmost_descendant(pos_css);
f5393693 526 continue;
fc560a26 527 }
f5393693
LJ
528
529 if (is_sched_load_balance(cp))
530 update_domain_attr(dattr, cp);
f5393693 531 }
fc560a26 532 rcu_read_unlock();
f5393693
LJ
533}
534
029190c5 535/*
cf417141
MK
536 * generate_sched_domains()
537 *
538 * This function builds a partial partition of the systems CPUs
539 * A 'partial partition' is a set of non-overlapping subsets whose
540 * union is a subset of that set.
0a0fca9d 541 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
542 * partition_sched_domains() routine, which will rebuild the scheduler's
543 * load balancing domains (sched domains) as specified by that partial
544 * partition.
029190c5 545 *
45ce80fb 546 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
547 * for a background explanation of this.
548 *
549 * Does not return errors, on the theory that the callers of this
550 * routine would rather not worry about failures to rebuild sched
551 * domains when operating in the severe memory shortage situations
552 * that could cause allocation failures below.
553 *
5d21cc2d 554 * Must be called with cpuset_mutex held.
029190c5
PJ
555 *
556 * The three key local variables below are:
aeed6824 557 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
558 * top-down scan of all cpusets. This scan loads a pointer
559 * to each cpuset marked is_sched_load_balance into the
560 * array 'csa'. For our purposes, rebuilding the schedulers
561 * sched domains, we can ignore !is_sched_load_balance cpusets.
562 * csa - (for CpuSet Array) Array of pointers to all the cpusets
563 * that need to be load balanced, for convenient iterative
564 * access by the subsequent code that finds the best partition,
565 * i.e the set of domains (subsets) of CPUs such that the
566 * cpus_allowed of every cpuset marked is_sched_load_balance
567 * is a subset of one of these domains, while there are as
568 * many such domains as possible, each as small as possible.
569 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 570 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
571 * convenient format, that can be easily compared to the prior
572 * value to determine what partition elements (sched domains)
573 * were changed (added or removed.)
574 *
575 * Finding the best partition (set of domains):
576 * The triple nested loops below over i, j, k scan over the
577 * load balanced cpusets (using the array of cpuset pointers in
578 * csa[]) looking for pairs of cpusets that have overlapping
579 * cpus_allowed, but which don't have the same 'pn' partition
580 * number and gives them in the same partition number. It keeps
581 * looping on the 'restart' label until it can no longer find
582 * any such pairs.
583 *
584 * The union of the cpus_allowed masks from the set of
585 * all cpusets having the same 'pn' value then form the one
586 * element of the partition (one sched domain) to be passed to
587 * partition_sched_domains().
588 */
acc3f5d7 589static int generate_sched_domains(cpumask_var_t **domains,
cf417141 590 struct sched_domain_attr **attributes)
029190c5 591{
029190c5
PJ
592 struct cpuset *cp; /* scans q */
593 struct cpuset **csa; /* array of all cpuset ptrs */
594 int csn; /* how many cpuset ptrs in csa so far */
595 int i, j, k; /* indices for partition finding loops */
acc3f5d7 596 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 597 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 598 int ndoms = 0; /* number of sched domains in result */
6af866af 599 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 600 struct cgroup_subsys_state *pos_css;
029190c5 601
029190c5 602 doms = NULL;
1d3504fc 603 dattr = NULL;
cf417141 604 csa = NULL;
029190c5
PJ
605
606 /* Special case for the 99% of systems with one, full, sched domain */
607 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
608 ndoms = 1;
609 doms = alloc_sched_domains(ndoms);
029190c5 610 if (!doms)
cf417141
MK
611 goto done;
612
1d3504fc
HS
613 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
614 if (dattr) {
615 *dattr = SD_ATTR_INIT;
93a65575 616 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 617 }
8b5f1c52 618 cpumask_copy(doms[0], top_cpuset.effective_cpus);
cf417141 619
cf417141 620 goto done;
029190c5
PJ
621 }
622
664eedde 623 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
029190c5
PJ
624 if (!csa)
625 goto done;
626 csn = 0;
627
fc560a26 628 rcu_read_lock();
492eb21b 629 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
bd8815a6
TH
630 if (cp == &top_cpuset)
631 continue;
f5393693 632 /*
fc560a26
TH
633 * Continue traversing beyond @cp iff @cp has some CPUs and
634 * isn't load balancing. The former is obvious. The
635 * latter: All child cpusets contain a subset of the
636 * parent's cpus, so just skip them, and then we call
637 * update_domain_attr_tree() to calc relax_domain_level of
638 * the corresponding sched domain.
f5393693 639 */
fc560a26
TH
640 if (!cpumask_empty(cp->cpus_allowed) &&
641 !is_sched_load_balance(cp))
f5393693 642 continue;
489a5393 643
fc560a26
TH
644 if (is_sched_load_balance(cp))
645 csa[csn++] = cp;
646
647 /* skip @cp's subtree */
492eb21b 648 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
649 }
650 rcu_read_unlock();
029190c5
PJ
651
652 for (i = 0; i < csn; i++)
653 csa[i]->pn = i;
654 ndoms = csn;
655
656restart:
657 /* Find the best partition (set of sched domains) */
658 for (i = 0; i < csn; i++) {
659 struct cpuset *a = csa[i];
660 int apn = a->pn;
661
662 for (j = 0; j < csn; j++) {
663 struct cpuset *b = csa[j];
664 int bpn = b->pn;
665
666 if (apn != bpn && cpusets_overlap(a, b)) {
667 for (k = 0; k < csn; k++) {
668 struct cpuset *c = csa[k];
669
670 if (c->pn == bpn)
671 c->pn = apn;
672 }
673 ndoms--; /* one less element */
674 goto restart;
675 }
676 }
677 }
678
cf417141
MK
679 /*
680 * Now we know how many domains to create.
681 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
682 */
acc3f5d7 683 doms = alloc_sched_domains(ndoms);
700018e0 684 if (!doms)
cf417141 685 goto done;
cf417141
MK
686
687 /*
688 * The rest of the code, including the scheduler, can deal with
689 * dattr==NULL case. No need to abort if alloc fails.
690 */
1d3504fc 691 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
692
693 for (nslot = 0, i = 0; i < csn; i++) {
694 struct cpuset *a = csa[i];
6af866af 695 struct cpumask *dp;
029190c5
PJ
696 int apn = a->pn;
697
cf417141
MK
698 if (apn < 0) {
699 /* Skip completed partitions */
700 continue;
701 }
702
acc3f5d7 703 dp = doms[nslot];
cf417141
MK
704
705 if (nslot == ndoms) {
706 static int warnings = 10;
707 if (warnings) {
12d3089c
FF
708 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
709 nslot, ndoms, csn, i, apn);
cf417141 710 warnings--;
029190c5 711 }
cf417141
MK
712 continue;
713 }
029190c5 714
6af866af 715 cpumask_clear(dp);
cf417141
MK
716 if (dattr)
717 *(dattr + nslot) = SD_ATTR_INIT;
718 for (j = i; j < csn; j++) {
719 struct cpuset *b = csa[j];
720
721 if (apn == b->pn) {
8b5f1c52 722 cpumask_or(dp, dp, b->effective_cpus);
cf417141
MK
723 if (dattr)
724 update_domain_attr_tree(dattr + nslot, b);
725
726 /* Done with this partition */
727 b->pn = -1;
029190c5 728 }
029190c5 729 }
cf417141 730 nslot++;
029190c5
PJ
731 }
732 BUG_ON(nslot != ndoms);
733
cf417141
MK
734done:
735 kfree(csa);
736
700018e0
LZ
737 /*
738 * Fallback to the default domain if kmalloc() failed.
739 * See comments in partition_sched_domains().
740 */
741 if (doms == NULL)
742 ndoms = 1;
743
cf417141
MK
744 *domains = doms;
745 *attributes = dattr;
746 return ndoms;
747}
748
749/*
750 * Rebuild scheduler domains.
751 *
699140ba
TH
752 * If the flag 'sched_load_balance' of any cpuset with non-empty
753 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
754 * which has that flag enabled, or if any cpuset with a non-empty
755 * 'cpus' is removed, then call this routine to rebuild the
756 * scheduler's dynamic sched domains.
cf417141 757 *
5d21cc2d 758 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 759 */
699140ba 760static void rebuild_sched_domains_locked(void)
cf417141
MK
761{
762 struct sched_domain_attr *attr;
acc3f5d7 763 cpumask_var_t *doms;
cf417141
MK
764 int ndoms;
765
5d21cc2d 766 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 767 get_online_cpus();
cf417141 768
5b16c2a4
LZ
769 /*
770 * We have raced with CPU hotplug. Don't do anything to avoid
771 * passing doms with offlined cpu to partition_sched_domains().
772 * Anyways, hotplug work item will rebuild sched domains.
773 */
8b5f1c52 774 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
5b16c2a4
LZ
775 goto out;
776
cf417141 777 /* Generate domain masks and attrs */
cf417141 778 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
779
780 /* Have scheduler rebuild the domains */
781 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 782out:
86ef5c9a 783 put_online_cpus();
cf417141 784}
db7f47cf 785#else /* !CONFIG_SMP */
699140ba 786static void rebuild_sched_domains_locked(void)
db7f47cf
PM
787{
788}
db7f47cf 789#endif /* CONFIG_SMP */
029190c5 790
cf417141
MK
791void rebuild_sched_domains(void)
792{
5d21cc2d 793 mutex_lock(&cpuset_mutex);
699140ba 794 rebuild_sched_domains_locked();
5d21cc2d 795 mutex_unlock(&cpuset_mutex);
029190c5
PJ
796}
797
0b2f630a
MX
798/**
799 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
800 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
0b2f630a 801 *
d66393e5
TH
802 * Iterate through each task of @cs updating its cpus_allowed to the
803 * effective cpuset's. As this function is called with cpuset_mutex held,
804 * cpuset membership stays stable.
0b2f630a 805 */
d66393e5 806static void update_tasks_cpumask(struct cpuset *cs)
0b2f630a 807{
d66393e5
TH
808 struct css_task_iter it;
809 struct task_struct *task;
810
811 css_task_iter_start(&cs->css, &it);
812 while ((task = css_task_iter_next(&it)))
ae1c8023 813 set_cpus_allowed_ptr(task, cs->effective_cpus);
d66393e5 814 css_task_iter_end(&it);
0b2f630a
MX
815}
816
5c5cc623 817/*
734d4513
LZ
818 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
819 * @cs: the cpuset to consider
820 * @new_cpus: temp variable for calculating new effective_cpus
821 *
822 * When congifured cpumask is changed, the effective cpumasks of this cpuset
823 * and all its descendants need to be updated.
5c5cc623 824 *
734d4513 825 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
5c5cc623
LZ
826 *
827 * Called with cpuset_mutex held
828 */
734d4513 829static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
5c5cc623
LZ
830{
831 struct cpuset *cp;
492eb21b 832 struct cgroup_subsys_state *pos_css;
8b5f1c52 833 bool need_rebuild_sched_domains = false;
5c5cc623
LZ
834
835 rcu_read_lock();
734d4513
LZ
836 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
837 struct cpuset *parent = parent_cs(cp);
838
839 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
840
554b0d1c
LZ
841 /*
842 * If it becomes empty, inherit the effective mask of the
843 * parent, which is guaranteed to have some CPUs.
844 */
845 if (cpumask_empty(new_cpus))
846 cpumask_copy(new_cpus, parent->effective_cpus);
847
734d4513
LZ
848 /* Skip the whole subtree if the cpumask remains the same. */
849 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
850 pos_css = css_rightmost_descendant(pos_css);
851 continue;
5c5cc623 852 }
734d4513 853
ec903c0c 854 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
855 continue;
856 rcu_read_unlock();
857
734d4513
LZ
858 mutex_lock(&callback_mutex);
859 cpumask_copy(cp->effective_cpus, new_cpus);
860 mutex_unlock(&callback_mutex);
861
862 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
863 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
864
d66393e5 865 update_tasks_cpumask(cp);
5c5cc623 866
8b5f1c52
LZ
867 /*
868 * If the effective cpumask of any non-empty cpuset is changed,
869 * we need to rebuild sched domains.
870 */
871 if (!cpumask_empty(cp->cpus_allowed) &&
872 is_sched_load_balance(cp))
873 need_rebuild_sched_domains = true;
874
5c5cc623
LZ
875 rcu_read_lock();
876 css_put(&cp->css);
877 }
878 rcu_read_unlock();
8b5f1c52
LZ
879
880 if (need_rebuild_sched_domains)
881 rebuild_sched_domains_locked();
5c5cc623
LZ
882}
883
58f4790b
CW
884/**
885 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
886 * @cs: the cpuset to consider
fc34ac1d 887 * @trialcs: trial cpuset
58f4790b
CW
888 * @buf: buffer of cpu numbers written to this cpuset
889 */
645fcc9d
LZ
890static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
891 const char *buf)
1da177e4 892{
58f4790b 893 int retval;
1da177e4 894
5f054e31 895 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
896 if (cs == &top_cpuset)
897 return -EACCES;
898
6f7f02e7 899 /*
c8d9c90c 900 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
901 * Since cpulist_parse() fails on an empty mask, we special case
902 * that parsing. The validate_change() call ensures that cpusets
903 * with tasks have cpus.
6f7f02e7 904 */
020958b6 905 if (!*buf) {
300ed6cb 906 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 907 } else {
300ed6cb 908 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
909 if (retval < 0)
910 return retval;
37340746 911
6ad4c188 912 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 913 return -EINVAL;
6f7f02e7 914 }
029190c5 915
8707d8b8 916 /* Nothing to do if the cpus didn't change */
300ed6cb 917 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 918 return 0;
58f4790b 919
a73456f3
LZ
920 retval = validate_change(cs, trialcs);
921 if (retval < 0)
922 return retval;
923
3d3f26a7 924 mutex_lock(&callback_mutex);
300ed6cb 925 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 926 mutex_unlock(&callback_mutex);
029190c5 927
734d4513
LZ
928 /* use trialcs->cpus_allowed as a temp variable */
929 update_cpumasks_hier(cs, trialcs->cpus_allowed);
85d7b949 930 return 0;
1da177e4
LT
931}
932
e4e364e8
PJ
933/*
934 * cpuset_migrate_mm
935 *
936 * Migrate memory region from one set of nodes to another.
937 *
938 * Temporarilly set tasks mems_allowed to target nodes of migration,
939 * so that the migration code can allocate pages on these nodes.
940 *
e4e364e8
PJ
941 * While the mm_struct we are migrating is typically from some
942 * other task, the task_struct mems_allowed that we are hacking
943 * is for our current task, which must allocate new pages for that
944 * migrating memory region.
e4e364e8
PJ
945 */
946
947static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
948 const nodemask_t *to)
949{
950 struct task_struct *tsk = current;
951
e4e364e8 952 tsk->mems_allowed = *to;
e4e364e8
PJ
953
954 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
955
47295830 956 rcu_read_lock();
ae1c8023 957 guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
47295830 958 rcu_read_unlock();
e4e364e8
PJ
959}
960
3b6766fe 961/*
58568d2a
MX
962 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
963 * @tsk: the task to change
964 * @newmems: new nodes that the task will be set
965 *
966 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
967 * we structure updates as setting all new allowed nodes, then clearing newly
968 * disallowed ones.
58568d2a
MX
969 */
970static void cpuset_change_task_nodemask(struct task_struct *tsk,
971 nodemask_t *newmems)
972{
b246272e 973 bool need_loop;
89e8a244 974
c0ff7453
MX
975 /*
976 * Allow tasks that have access to memory reserves because they have
977 * been OOM killed to get memory anywhere.
978 */
979 if (unlikely(test_thread_flag(TIF_MEMDIE)))
980 return;
981 if (current->flags & PF_EXITING) /* Let dying task have memory */
982 return;
983
984 task_lock(tsk);
b246272e
DR
985 /*
986 * Determine if a loop is necessary if another thread is doing
d26914d1 987 * read_mems_allowed_begin(). If at least one node remains unchanged and
b246272e
DR
988 * tsk does not have a mempolicy, then an empty nodemask will not be
989 * possible when mems_allowed is larger than a word.
990 */
991 need_loop = task_has_mempolicy(tsk) ||
992 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 993
0fc0287c
PZ
994 if (need_loop) {
995 local_irq_disable();
cc9a6c87 996 write_seqcount_begin(&tsk->mems_allowed_seq);
0fc0287c 997 }
c0ff7453 998
cc9a6c87
MG
999 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1000 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1001
1002 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1003 tsk->mems_allowed = *newmems;
cc9a6c87 1004
0fc0287c 1005 if (need_loop) {
cc9a6c87 1006 write_seqcount_end(&tsk->mems_allowed_seq);
0fc0287c
PZ
1007 local_irq_enable();
1008 }
cc9a6c87 1009
c0ff7453 1010 task_unlock(tsk);
58568d2a
MX
1011}
1012
8793d854
PM
1013static void *cpuset_being_rebound;
1014
0b2f630a
MX
1015/**
1016 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1017 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
0b2f630a 1018 *
d66393e5
TH
1019 * Iterate through each task of @cs updating its mems_allowed to the
1020 * effective cpuset's. As this function is called with cpuset_mutex held,
1021 * cpuset membership stays stable.
0b2f630a 1022 */
d66393e5 1023static void update_tasks_nodemask(struct cpuset *cs)
1da177e4 1024{
33ad801d 1025 static nodemask_t newmems; /* protected by cpuset_mutex */
d66393e5
TH
1026 struct css_task_iter it;
1027 struct task_struct *task;
59dac16f 1028
846a16bf 1029 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1030
ae1c8023 1031 guarantee_online_mems(cs, &newmems);
33ad801d 1032
4225399a 1033 /*
3b6766fe
LZ
1034 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1035 * take while holding tasklist_lock. Forks can happen - the
1036 * mpol_dup() cpuset_being_rebound check will catch such forks,
1037 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1038 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1039 * will be contending for the global variable cpuset_being_rebound.
4225399a 1040 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1041 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1042 */
d66393e5
TH
1043 css_task_iter_start(&cs->css, &it);
1044 while ((task = css_task_iter_next(&it))) {
1045 struct mm_struct *mm;
1046 bool migrate;
1047
1048 cpuset_change_task_nodemask(task, &newmems);
1049
1050 mm = get_task_mm(task);
1051 if (!mm)
1052 continue;
1053
1054 migrate = is_memory_migrate(cs);
1055
1056 mpol_rebind_mm(mm, &cs->mems_allowed);
1057 if (migrate)
1058 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1059 mmput(mm);
1060 }
1061 css_task_iter_end(&it);
4225399a 1062
33ad801d
LZ
1063 /*
1064 * All the tasks' nodemasks have been updated, update
1065 * cs->old_mems_allowed.
1066 */
1067 cs->old_mems_allowed = newmems;
1068
2df167a3 1069 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1070 cpuset_being_rebound = NULL;
1da177e4
LT
1071}
1072
5c5cc623 1073/*
734d4513
LZ
1074 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1075 * @cs: the cpuset to consider
1076 * @new_mems: a temp variable for calculating new effective_mems
1077 *
1078 * When configured nodemask is changed, the effective nodemasks of this cpuset
1079 * and all its descendants need to be updated.
5c5cc623 1080 *
734d4513 1081 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
5c5cc623
LZ
1082 *
1083 * Called with cpuset_mutex held
1084 */
734d4513 1085static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
5c5cc623
LZ
1086{
1087 struct cpuset *cp;
492eb21b 1088 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1089
1090 rcu_read_lock();
734d4513
LZ
1091 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1092 struct cpuset *parent = parent_cs(cp);
1093
1094 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1095
554b0d1c
LZ
1096 /*
1097 * If it becomes empty, inherit the effective mask of the
1098 * parent, which is guaranteed to have some MEMs.
1099 */
1100 if (nodes_empty(*new_mems))
1101 *new_mems = parent->effective_mems;
1102
734d4513
LZ
1103 /* Skip the whole subtree if the nodemask remains the same. */
1104 if (nodes_equal(*new_mems, cp->effective_mems)) {
1105 pos_css = css_rightmost_descendant(pos_css);
1106 continue;
5c5cc623 1107 }
734d4513 1108
ec903c0c 1109 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
1110 continue;
1111 rcu_read_unlock();
1112
734d4513
LZ
1113 mutex_lock(&callback_mutex);
1114 cp->effective_mems = *new_mems;
1115 mutex_unlock(&callback_mutex);
1116
1117 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
1118 nodes_equal(cp->mems_allowed, cp->effective_mems));
1119
d66393e5 1120 update_tasks_nodemask(cp);
5c5cc623
LZ
1121
1122 rcu_read_lock();
1123 css_put(&cp->css);
1124 }
1125 rcu_read_unlock();
1126}
1127
0b2f630a
MX
1128/*
1129 * Handle user request to change the 'mems' memory placement
1130 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1131 * cpusets mems_allowed, and for each task in the cpuset,
1132 * update mems_allowed and rebind task's mempolicy and any vma
1133 * mempolicies and if the cpuset is marked 'memory_migrate',
1134 * migrate the tasks pages to the new memory.
0b2f630a 1135 *
5d21cc2d 1136 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1137 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1138 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1139 * their mempolicies to the cpusets new mems_allowed.
1140 */
645fcc9d
LZ
1141static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1142 const char *buf)
0b2f630a 1143{
0b2f630a
MX
1144 int retval;
1145
1146 /*
38d7bee9 1147 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1148 * it's read-only
1149 */
53feb297
MX
1150 if (cs == &top_cpuset) {
1151 retval = -EACCES;
1152 goto done;
1153 }
0b2f630a 1154
0b2f630a
MX
1155 /*
1156 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1157 * Since nodelist_parse() fails on an empty mask, we special case
1158 * that parsing. The validate_change() call ensures that cpusets
1159 * with tasks have memory.
1160 */
1161 if (!*buf) {
645fcc9d 1162 nodes_clear(trialcs->mems_allowed);
0b2f630a 1163 } else {
645fcc9d 1164 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1165 if (retval < 0)
1166 goto done;
1167
645fcc9d 1168 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1169 node_states[N_MEMORY])) {
53feb297
MX
1170 retval = -EINVAL;
1171 goto done;
1172 }
0b2f630a 1173 }
33ad801d
LZ
1174
1175 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1176 retval = 0; /* Too easy - nothing to do */
1177 goto done;
1178 }
645fcc9d 1179 retval = validate_change(cs, trialcs);
0b2f630a
MX
1180 if (retval < 0)
1181 goto done;
1182
1183 mutex_lock(&callback_mutex);
645fcc9d 1184 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1185 mutex_unlock(&callback_mutex);
1186
734d4513
LZ
1187 /* use trialcs->mems_allowed as a temp variable */
1188 update_nodemasks_hier(cs, &cs->mems_allowed);
0b2f630a
MX
1189done:
1190 return retval;
1191}
1192
8793d854
PM
1193int current_cpuset_is_being_rebound(void)
1194{
1195 return task_cs(current) == cpuset_being_rebound;
1196}
1197
5be7a479 1198static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1199{
db7f47cf 1200#ifdef CONFIG_SMP
60495e77 1201 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1202 return -EINVAL;
db7f47cf 1203#endif
1d3504fc
HS
1204
1205 if (val != cs->relax_domain_level) {
1206 cs->relax_domain_level = val;
300ed6cb
LZ
1207 if (!cpumask_empty(cs->cpus_allowed) &&
1208 is_sched_load_balance(cs))
699140ba 1209 rebuild_sched_domains_locked();
1d3504fc
HS
1210 }
1211
1212 return 0;
1213}
1214
72ec7029 1215/**
950592f7
MX
1216 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1217 * @cs: the cpuset in which each task's spread flags needs to be changed
950592f7 1218 *
d66393e5
TH
1219 * Iterate through each task of @cs updating its spread flags. As this
1220 * function is called with cpuset_mutex held, cpuset membership stays
1221 * stable.
950592f7 1222 */
d66393e5 1223static void update_tasks_flags(struct cpuset *cs)
950592f7 1224{
d66393e5
TH
1225 struct css_task_iter it;
1226 struct task_struct *task;
1227
1228 css_task_iter_start(&cs->css, &it);
1229 while ((task = css_task_iter_next(&it)))
1230 cpuset_update_task_spread_flag(cs, task);
1231 css_task_iter_end(&it);
950592f7
MX
1232}
1233
1da177e4
LT
1234/*
1235 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1236 * bit: the bit to update (see cpuset_flagbits_t)
1237 * cs: the cpuset to update
1238 * turning_on: whether the flag is being set or cleared
053199ed 1239 *
5d21cc2d 1240 * Call with cpuset_mutex held.
1da177e4
LT
1241 */
1242
700fe1ab
PM
1243static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1244 int turning_on)
1da177e4 1245{
645fcc9d 1246 struct cpuset *trialcs;
40b6a762 1247 int balance_flag_changed;
950592f7 1248 int spread_flag_changed;
950592f7 1249 int err;
1da177e4 1250
645fcc9d
LZ
1251 trialcs = alloc_trial_cpuset(cs);
1252 if (!trialcs)
1253 return -ENOMEM;
1254
1da177e4 1255 if (turning_on)
645fcc9d 1256 set_bit(bit, &trialcs->flags);
1da177e4 1257 else
645fcc9d 1258 clear_bit(bit, &trialcs->flags);
1da177e4 1259
645fcc9d 1260 err = validate_change(cs, trialcs);
85d7b949 1261 if (err < 0)
645fcc9d 1262 goto out;
029190c5 1263
029190c5 1264 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1265 is_sched_load_balance(trialcs));
029190c5 1266
950592f7
MX
1267 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1268 || (is_spread_page(cs) != is_spread_page(trialcs)));
1269
3d3f26a7 1270 mutex_lock(&callback_mutex);
645fcc9d 1271 cs->flags = trialcs->flags;
3d3f26a7 1272 mutex_unlock(&callback_mutex);
85d7b949 1273
300ed6cb 1274 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1275 rebuild_sched_domains_locked();
029190c5 1276
950592f7 1277 if (spread_flag_changed)
d66393e5 1278 update_tasks_flags(cs);
645fcc9d
LZ
1279out:
1280 free_trial_cpuset(trialcs);
1281 return err;
1da177e4
LT
1282}
1283
3e0d98b9 1284/*
80f7228b 1285 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1286 *
1287 * These routines manage a digitally filtered, constant time based,
1288 * event frequency meter. There are four routines:
1289 * fmeter_init() - initialize a frequency meter.
1290 * fmeter_markevent() - called each time the event happens.
1291 * fmeter_getrate() - returns the recent rate of such events.
1292 * fmeter_update() - internal routine used to update fmeter.
1293 *
1294 * A common data structure is passed to each of these routines,
1295 * which is used to keep track of the state required to manage the
1296 * frequency meter and its digital filter.
1297 *
1298 * The filter works on the number of events marked per unit time.
1299 * The filter is single-pole low-pass recursive (IIR). The time unit
1300 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1301 * simulate 3 decimal digits of precision (multiplied by 1000).
1302 *
1303 * With an FM_COEF of 933, and a time base of 1 second, the filter
1304 * has a half-life of 10 seconds, meaning that if the events quit
1305 * happening, then the rate returned from the fmeter_getrate()
1306 * will be cut in half each 10 seconds, until it converges to zero.
1307 *
1308 * It is not worth doing a real infinitely recursive filter. If more
1309 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1310 * just compute FM_MAXTICKS ticks worth, by which point the level
1311 * will be stable.
1312 *
1313 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1314 * arithmetic overflow in the fmeter_update() routine.
1315 *
1316 * Given the simple 32 bit integer arithmetic used, this meter works
1317 * best for reporting rates between one per millisecond (msec) and
1318 * one per 32 (approx) seconds. At constant rates faster than one
1319 * per msec it maxes out at values just under 1,000,000. At constant
1320 * rates between one per msec, and one per second it will stabilize
1321 * to a value N*1000, where N is the rate of events per second.
1322 * At constant rates between one per second and one per 32 seconds,
1323 * it will be choppy, moving up on the seconds that have an event,
1324 * and then decaying until the next event. At rates slower than
1325 * about one in 32 seconds, it decays all the way back to zero between
1326 * each event.
1327 */
1328
1329#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1330#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1331#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1332#define FM_SCALE 1000 /* faux fixed point scale */
1333
1334/* Initialize a frequency meter */
1335static void fmeter_init(struct fmeter *fmp)
1336{
1337 fmp->cnt = 0;
1338 fmp->val = 0;
1339 fmp->time = 0;
1340 spin_lock_init(&fmp->lock);
1341}
1342
1343/* Internal meter update - process cnt events and update value */
1344static void fmeter_update(struct fmeter *fmp)
1345{
1346 time_t now = get_seconds();
1347 time_t ticks = now - fmp->time;
1348
1349 if (ticks == 0)
1350 return;
1351
1352 ticks = min(FM_MAXTICKS, ticks);
1353 while (ticks-- > 0)
1354 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1355 fmp->time = now;
1356
1357 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1358 fmp->cnt = 0;
1359}
1360
1361/* Process any previous ticks, then bump cnt by one (times scale). */
1362static void fmeter_markevent(struct fmeter *fmp)
1363{
1364 spin_lock(&fmp->lock);
1365 fmeter_update(fmp);
1366 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1367 spin_unlock(&fmp->lock);
1368}
1369
1370/* Process any previous ticks, then return current value. */
1371static int fmeter_getrate(struct fmeter *fmp)
1372{
1373 int val;
1374
1375 spin_lock(&fmp->lock);
1376 fmeter_update(fmp);
1377 val = fmp->val;
1378 spin_unlock(&fmp->lock);
1379 return val;
1380}
1381
57fce0a6
TH
1382static struct cpuset *cpuset_attach_old_cs;
1383
5d21cc2d 1384/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
eb95419b
TH
1385static int cpuset_can_attach(struct cgroup_subsys_state *css,
1386 struct cgroup_taskset *tset)
f780bdb7 1387{
eb95419b 1388 struct cpuset *cs = css_cs(css);
bb9d97b6
TH
1389 struct task_struct *task;
1390 int ret;
1da177e4 1391
57fce0a6
TH
1392 /* used later by cpuset_attach() */
1393 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1394
5d21cc2d
TH
1395 mutex_lock(&cpuset_mutex);
1396
aa6ec29b 1397 /* allow moving tasks into an empty cpuset if on default hierarchy */
5d21cc2d 1398 ret = -ENOSPC;
aa6ec29b 1399 if (!cgroup_on_dfl(css->cgroup) &&
88fa523b 1400 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1401 goto out_unlock;
9985b0ba 1402
924f0d9a 1403 cgroup_taskset_for_each(task, tset) {
bb9d97b6 1404 /*
14a40ffc
TH
1405 * Kthreads which disallow setaffinity shouldn't be moved
1406 * to a new cpuset; we don't want to change their cpu
1407 * affinity and isolating such threads by their set of
1408 * allowed nodes is unnecessary. Thus, cpusets are not
1409 * applicable for such threads. This prevents checking for
1410 * success of set_cpus_allowed_ptr() on all attached tasks
1411 * before cpus_allowed may be changed.
bb9d97b6 1412 */
5d21cc2d 1413 ret = -EINVAL;
14a40ffc 1414 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1415 goto out_unlock;
1416 ret = security_task_setscheduler(task);
1417 if (ret)
1418 goto out_unlock;
bb9d97b6 1419 }
f780bdb7 1420
452477fa
TH
1421 /*
1422 * Mark attach is in progress. This makes validate_change() fail
1423 * changes which zero cpus/mems_allowed.
1424 */
1425 cs->attach_in_progress++;
5d21cc2d
TH
1426 ret = 0;
1427out_unlock:
1428 mutex_unlock(&cpuset_mutex);
1429 return ret;
8793d854 1430}
f780bdb7 1431
eb95419b 1432static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
452477fa
TH
1433 struct cgroup_taskset *tset)
1434{
5d21cc2d 1435 mutex_lock(&cpuset_mutex);
eb95419b 1436 css_cs(css)->attach_in_progress--;
5d21cc2d 1437 mutex_unlock(&cpuset_mutex);
8793d854 1438}
1da177e4 1439
4e4c9a14 1440/*
5d21cc2d 1441 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1442 * but we can't allocate it dynamically there. Define it global and
1443 * allocate from cpuset_init().
1444 */
1445static cpumask_var_t cpus_attach;
1446
eb95419b
TH
1447static void cpuset_attach(struct cgroup_subsys_state *css,
1448 struct cgroup_taskset *tset)
8793d854 1449{
67bd2c59 1450 /* static buf protected by cpuset_mutex */
4e4c9a14 1451 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1452 struct mm_struct *mm;
bb9d97b6
TH
1453 struct task_struct *task;
1454 struct task_struct *leader = cgroup_taskset_first(tset);
eb95419b 1455 struct cpuset *cs = css_cs(css);
57fce0a6 1456 struct cpuset *oldcs = cpuset_attach_old_cs;
22fb52dd 1457
5d21cc2d
TH
1458 mutex_lock(&cpuset_mutex);
1459
4e4c9a14
TH
1460 /* prepare for attach */
1461 if (cs == &top_cpuset)
1462 cpumask_copy(cpus_attach, cpu_possible_mask);
1463 else
ae1c8023 1464 guarantee_online_cpus(cs, cpus_attach);
4e4c9a14 1465
ae1c8023 1466 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
4e4c9a14 1467
924f0d9a 1468 cgroup_taskset_for_each(task, tset) {
bb9d97b6
TH
1469 /*
1470 * can_attach beforehand should guarantee that this doesn't
1471 * fail. TODO: have a better way to handle failure here
1472 */
1473 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1474
1475 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1476 cpuset_update_task_spread_flag(cs, task);
1477 }
22fb52dd 1478
f780bdb7
BB
1479 /*
1480 * Change mm, possibly for multiple threads in a threadgroup. This is
1481 * expensive and may sleep.
1482 */
ae1c8023 1483 cpuset_attach_nodemask_to = cs->effective_mems;
bb9d97b6 1484 mm = get_task_mm(leader);
4225399a 1485 if (mm) {
f780bdb7 1486 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
f047cecf
LZ
1487
1488 /*
1489 * old_mems_allowed is the same with mems_allowed here, except
1490 * if this task is being moved automatically due to hotplug.
1491 * In that case @mems_allowed has been updated and is empty,
1492 * so @old_mems_allowed is the right nodesets that we migrate
1493 * mm from.
1494 */
1495 if (is_memory_migrate(cs)) {
ae1c8023 1496 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
f780bdb7 1497 &cpuset_attach_nodemask_to);
f047cecf 1498 }
4225399a
PJ
1499 mmput(mm);
1500 }
452477fa 1501
33ad801d 1502 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1503
452477fa 1504 cs->attach_in_progress--;
e44193d3
LZ
1505 if (!cs->attach_in_progress)
1506 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1507
1508 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1509}
1510
1511/* The various types of files and directories in a cpuset file system */
1512
1513typedef enum {
45b07ef3 1514 FILE_MEMORY_MIGRATE,
1da177e4
LT
1515 FILE_CPULIST,
1516 FILE_MEMLIST,
1517 FILE_CPU_EXCLUSIVE,
1518 FILE_MEM_EXCLUSIVE,
78608366 1519 FILE_MEM_HARDWALL,
029190c5 1520 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1521 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1522 FILE_MEMORY_PRESSURE_ENABLED,
1523 FILE_MEMORY_PRESSURE,
825a46af
PJ
1524 FILE_SPREAD_PAGE,
1525 FILE_SPREAD_SLAB,
1da177e4
LT
1526} cpuset_filetype_t;
1527
182446d0
TH
1528static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1529 u64 val)
700fe1ab 1530{
182446d0 1531 struct cpuset *cs = css_cs(css);
700fe1ab 1532 cpuset_filetype_t type = cft->private;
a903f086 1533 int retval = 0;
700fe1ab 1534
5d21cc2d 1535 mutex_lock(&cpuset_mutex);
a903f086
LZ
1536 if (!is_cpuset_online(cs)) {
1537 retval = -ENODEV;
5d21cc2d 1538 goto out_unlock;
a903f086 1539 }
700fe1ab
PM
1540
1541 switch (type) {
1da177e4 1542 case FILE_CPU_EXCLUSIVE:
700fe1ab 1543 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1544 break;
1545 case FILE_MEM_EXCLUSIVE:
700fe1ab 1546 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1547 break;
78608366
PM
1548 case FILE_MEM_HARDWALL:
1549 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1550 break;
029190c5 1551 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1552 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1553 break;
45b07ef3 1554 case FILE_MEMORY_MIGRATE:
700fe1ab 1555 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1556 break;
3e0d98b9 1557 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1558 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1559 break;
1560 case FILE_MEMORY_PRESSURE:
1561 retval = -EACCES;
1562 break;
825a46af 1563 case FILE_SPREAD_PAGE:
700fe1ab 1564 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1565 break;
1566 case FILE_SPREAD_SLAB:
700fe1ab 1567 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1568 break;
1da177e4
LT
1569 default:
1570 retval = -EINVAL;
700fe1ab 1571 break;
1da177e4 1572 }
5d21cc2d
TH
1573out_unlock:
1574 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1575 return retval;
1576}
1577
182446d0
TH
1578static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1579 s64 val)
5be7a479 1580{
182446d0 1581 struct cpuset *cs = css_cs(css);
5be7a479 1582 cpuset_filetype_t type = cft->private;
5d21cc2d 1583 int retval = -ENODEV;
5be7a479 1584
5d21cc2d
TH
1585 mutex_lock(&cpuset_mutex);
1586 if (!is_cpuset_online(cs))
1587 goto out_unlock;
e3712395 1588
5be7a479
PM
1589 switch (type) {
1590 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1591 retval = update_relax_domain_level(cs, val);
1592 break;
1593 default:
1594 retval = -EINVAL;
1595 break;
1596 }
5d21cc2d
TH
1597out_unlock:
1598 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1599 return retval;
1600}
1601
e3712395
PM
1602/*
1603 * Common handling for a write to a "cpus" or "mems" file.
1604 */
451af504
TH
1605static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1606 char *buf, size_t nbytes, loff_t off)
e3712395 1607{
451af504 1608 struct cpuset *cs = css_cs(of_css(of));
645fcc9d 1609 struct cpuset *trialcs;
5d21cc2d 1610 int retval = -ENODEV;
e3712395 1611
451af504
TH
1612 buf = strstrip(buf);
1613
3a5a6d0c
TH
1614 /*
1615 * CPU or memory hotunplug may leave @cs w/o any execution
1616 * resources, in which case the hotplug code asynchronously updates
1617 * configuration and transfers all tasks to the nearest ancestor
1618 * which can execute.
1619 *
1620 * As writes to "cpus" or "mems" may restore @cs's execution
1621 * resources, wait for the previously scheduled operations before
1622 * proceeding, so that we don't end up keep removing tasks added
1623 * after execution capability is restored.
1624 */
1625 flush_work(&cpuset_hotplug_work);
1626
5d21cc2d
TH
1627 mutex_lock(&cpuset_mutex);
1628 if (!is_cpuset_online(cs))
1629 goto out_unlock;
e3712395 1630
645fcc9d 1631 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1632 if (!trialcs) {
1633 retval = -ENOMEM;
5d21cc2d 1634 goto out_unlock;
b75f38d6 1635 }
645fcc9d 1636
451af504 1637 switch (of_cft(of)->private) {
e3712395 1638 case FILE_CPULIST:
645fcc9d 1639 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1640 break;
1641 case FILE_MEMLIST:
645fcc9d 1642 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1643 break;
1644 default:
1645 retval = -EINVAL;
1646 break;
1647 }
645fcc9d
LZ
1648
1649 free_trial_cpuset(trialcs);
5d21cc2d
TH
1650out_unlock:
1651 mutex_unlock(&cpuset_mutex);
451af504 1652 return retval ?: nbytes;
e3712395
PM
1653}
1654
1da177e4
LT
1655/*
1656 * These ascii lists should be read in a single call, by using a user
1657 * buffer large enough to hold the entire map. If read in smaller
1658 * chunks, there is no guarantee of atomicity. Since the display format
1659 * used, list of ranges of sequential numbers, is variable length,
1660 * and since these maps can change value dynamically, one could read
1661 * gibberish by doing partial reads while a list was changing.
1da177e4 1662 */
2da8ca82 1663static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1da177e4 1664{
2da8ca82
TH
1665 struct cpuset *cs = css_cs(seq_css(sf));
1666 cpuset_filetype_t type = seq_cft(sf)->private;
51ffe411
TH
1667 ssize_t count;
1668 char *buf, *s;
1669 int ret = 0;
1da177e4 1670
51ffe411
TH
1671 count = seq_get_buf(sf, &buf);
1672 s = buf;
1da177e4 1673
51ffe411 1674 mutex_lock(&callback_mutex);
1da177e4
LT
1675
1676 switch (type) {
1677 case FILE_CPULIST:
51ffe411 1678 s += cpulist_scnprintf(s, count, cs->cpus_allowed);
1da177e4
LT
1679 break;
1680 case FILE_MEMLIST:
51ffe411 1681 s += nodelist_scnprintf(s, count, cs->mems_allowed);
1da177e4 1682 break;
1da177e4 1683 default:
51ffe411
TH
1684 ret = -EINVAL;
1685 goto out_unlock;
1da177e4 1686 }
1da177e4 1687
51ffe411
TH
1688 if (s < buf + count - 1) {
1689 *s++ = '\n';
1690 seq_commit(sf, s - buf);
1691 } else {
1692 seq_commit(sf, -1);
1693 }
1694out_unlock:
1695 mutex_unlock(&callback_mutex);
1696 return ret;
1da177e4
LT
1697}
1698
182446d0 1699static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 1700{
182446d0 1701 struct cpuset *cs = css_cs(css);
700fe1ab
PM
1702 cpuset_filetype_t type = cft->private;
1703 switch (type) {
1704 case FILE_CPU_EXCLUSIVE:
1705 return is_cpu_exclusive(cs);
1706 case FILE_MEM_EXCLUSIVE:
1707 return is_mem_exclusive(cs);
78608366
PM
1708 case FILE_MEM_HARDWALL:
1709 return is_mem_hardwall(cs);
700fe1ab
PM
1710 case FILE_SCHED_LOAD_BALANCE:
1711 return is_sched_load_balance(cs);
1712 case FILE_MEMORY_MIGRATE:
1713 return is_memory_migrate(cs);
1714 case FILE_MEMORY_PRESSURE_ENABLED:
1715 return cpuset_memory_pressure_enabled;
1716 case FILE_MEMORY_PRESSURE:
1717 return fmeter_getrate(&cs->fmeter);
1718 case FILE_SPREAD_PAGE:
1719 return is_spread_page(cs);
1720 case FILE_SPREAD_SLAB:
1721 return is_spread_slab(cs);
1722 default:
1723 BUG();
1724 }
cf417141
MK
1725
1726 /* Unreachable but makes gcc happy */
1727 return 0;
700fe1ab 1728}
1da177e4 1729
182446d0 1730static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 1731{
182446d0 1732 struct cpuset *cs = css_cs(css);
5be7a479
PM
1733 cpuset_filetype_t type = cft->private;
1734 switch (type) {
1735 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1736 return cs->relax_domain_level;
1737 default:
1738 BUG();
1739 }
cf417141
MK
1740
1741 /* Unrechable but makes gcc happy */
1742 return 0;
5be7a479
PM
1743}
1744
1da177e4
LT
1745
1746/*
1747 * for the common functions, 'private' gives the type of file
1748 */
1749
addf2c73
PM
1750static struct cftype files[] = {
1751 {
1752 .name = "cpus",
2da8ca82 1753 .seq_show = cpuset_common_seq_show,
451af504 1754 .write = cpuset_write_resmask,
e3712395 1755 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1756 .private = FILE_CPULIST,
1757 },
1758
1759 {
1760 .name = "mems",
2da8ca82 1761 .seq_show = cpuset_common_seq_show,
451af504 1762 .write = cpuset_write_resmask,
e3712395 1763 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1764 .private = FILE_MEMLIST,
1765 },
1766
1767 {
1768 .name = "cpu_exclusive",
1769 .read_u64 = cpuset_read_u64,
1770 .write_u64 = cpuset_write_u64,
1771 .private = FILE_CPU_EXCLUSIVE,
1772 },
1773
1774 {
1775 .name = "mem_exclusive",
1776 .read_u64 = cpuset_read_u64,
1777 .write_u64 = cpuset_write_u64,
1778 .private = FILE_MEM_EXCLUSIVE,
1779 },
1780
78608366
PM
1781 {
1782 .name = "mem_hardwall",
1783 .read_u64 = cpuset_read_u64,
1784 .write_u64 = cpuset_write_u64,
1785 .private = FILE_MEM_HARDWALL,
1786 },
1787
addf2c73
PM
1788 {
1789 .name = "sched_load_balance",
1790 .read_u64 = cpuset_read_u64,
1791 .write_u64 = cpuset_write_u64,
1792 .private = FILE_SCHED_LOAD_BALANCE,
1793 },
1794
1795 {
1796 .name = "sched_relax_domain_level",
5be7a479
PM
1797 .read_s64 = cpuset_read_s64,
1798 .write_s64 = cpuset_write_s64,
addf2c73
PM
1799 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1800 },
1801
1802 {
1803 .name = "memory_migrate",
1804 .read_u64 = cpuset_read_u64,
1805 .write_u64 = cpuset_write_u64,
1806 .private = FILE_MEMORY_MIGRATE,
1807 },
1808
1809 {
1810 .name = "memory_pressure",
1811 .read_u64 = cpuset_read_u64,
1812 .write_u64 = cpuset_write_u64,
1813 .private = FILE_MEMORY_PRESSURE,
099fca32 1814 .mode = S_IRUGO,
addf2c73
PM
1815 },
1816
1817 {
1818 .name = "memory_spread_page",
1819 .read_u64 = cpuset_read_u64,
1820 .write_u64 = cpuset_write_u64,
1821 .private = FILE_SPREAD_PAGE,
1822 },
1823
1824 {
1825 .name = "memory_spread_slab",
1826 .read_u64 = cpuset_read_u64,
1827 .write_u64 = cpuset_write_u64,
1828 .private = FILE_SPREAD_SLAB,
1829 },
3e0d98b9 1830
4baf6e33
TH
1831 {
1832 .name = "memory_pressure_enabled",
1833 .flags = CFTYPE_ONLY_ON_ROOT,
1834 .read_u64 = cpuset_read_u64,
1835 .write_u64 = cpuset_write_u64,
1836 .private = FILE_MEMORY_PRESSURE_ENABLED,
1837 },
1da177e4 1838
4baf6e33
TH
1839 { } /* terminate */
1840};
1da177e4
LT
1841
1842/*
92fb9748 1843 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1844 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1845 */
1846
eb95419b
TH
1847static struct cgroup_subsys_state *
1848cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1849{
c8f699bb 1850 struct cpuset *cs;
1da177e4 1851
eb95419b 1852 if (!parent_css)
8793d854 1853 return &top_cpuset.css;
033fa1c5 1854
c8f699bb 1855 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1856 if (!cs)
8793d854 1857 return ERR_PTR(-ENOMEM);
e2b9a3d7
LZ
1858 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1859 goto free_cs;
1860 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1861 goto free_cpus;
1da177e4 1862
029190c5 1863 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1864 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1865 nodes_clear(cs->mems_allowed);
e2b9a3d7
LZ
1866 cpumask_clear(cs->effective_cpus);
1867 nodes_clear(cs->effective_mems);
3e0d98b9 1868 fmeter_init(&cs->fmeter);
1d3504fc 1869 cs->relax_domain_level = -1;
1da177e4 1870
c8f699bb 1871 return &cs->css;
e2b9a3d7
LZ
1872
1873free_cpus:
1874 free_cpumask_var(cs->cpus_allowed);
1875free_cs:
1876 kfree(cs);
1877 return ERR_PTR(-ENOMEM);
c8f699bb
TH
1878}
1879
eb95419b 1880static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 1881{
eb95419b 1882 struct cpuset *cs = css_cs(css);
c431069f 1883 struct cpuset *parent = parent_cs(cs);
ae8086ce 1884 struct cpuset *tmp_cs;
492eb21b 1885 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
1886
1887 if (!parent)
1888 return 0;
1889
5d21cc2d
TH
1890 mutex_lock(&cpuset_mutex);
1891
efeb77b2 1892 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1893 if (is_spread_page(parent))
1894 set_bit(CS_SPREAD_PAGE, &cs->flags);
1895 if (is_spread_slab(parent))
1896 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1897
664eedde 1898 cpuset_inc();
033fa1c5 1899
e2b9a3d7
LZ
1900 mutex_lock(&callback_mutex);
1901 if (cgroup_on_dfl(cs->css.cgroup)) {
1902 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1903 cs->effective_mems = parent->effective_mems;
1904 }
1905 mutex_unlock(&callback_mutex);
1906
eb95419b 1907 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 1908 goto out_unlock;
033fa1c5
TH
1909
1910 /*
1911 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1912 * set. This flag handling is implemented in cgroup core for
1913 * histrical reasons - the flag may be specified during mount.
1914 *
1915 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1916 * refuse to clone the configuration - thereby refusing the task to
1917 * be entered, and as a result refusing the sys_unshare() or
1918 * clone() which initiated it. If this becomes a problem for some
1919 * users who wish to allow that scenario, then this could be
1920 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1921 * (and likewise for mems) to the new cgroup.
1922 */
ae8086ce 1923 rcu_read_lock();
492eb21b 1924 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
1925 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1926 rcu_read_unlock();
5d21cc2d 1927 goto out_unlock;
ae8086ce 1928 }
033fa1c5 1929 }
ae8086ce 1930 rcu_read_unlock();
033fa1c5
TH
1931
1932 mutex_lock(&callback_mutex);
1933 cs->mems_allowed = parent->mems_allowed;
1934 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1935 mutex_unlock(&callback_mutex);
5d21cc2d
TH
1936out_unlock:
1937 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
1938 return 0;
1939}
1940
0b9e6965
ZH
1941/*
1942 * If the cpuset being removed has its flag 'sched_load_balance'
1943 * enabled, then simulate turning sched_load_balance off, which
1944 * will call rebuild_sched_domains_locked().
1945 */
1946
eb95419b 1947static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 1948{
eb95419b 1949 struct cpuset *cs = css_cs(css);
c8f699bb 1950
5d21cc2d 1951 mutex_lock(&cpuset_mutex);
c8f699bb
TH
1952
1953 if (is_sched_load_balance(cs))
1954 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1955
664eedde 1956 cpuset_dec();
efeb77b2 1957 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 1958
5d21cc2d 1959 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1960}
1961
eb95419b 1962static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 1963{
eb95419b 1964 struct cpuset *cs = css_cs(css);
1da177e4 1965
e2b9a3d7 1966 free_cpumask_var(cs->effective_cpus);
300ed6cb 1967 free_cpumask_var(cs->cpus_allowed);
8793d854 1968 kfree(cs);
1da177e4
LT
1969}
1970
39bd0d15
LZ
1971static void cpuset_bind(struct cgroup_subsys_state *root_css)
1972{
1973 mutex_lock(&cpuset_mutex);
1974 mutex_lock(&callback_mutex);
1975
1976 if (cgroup_on_dfl(root_css->cgroup)) {
1977 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
1978 top_cpuset.mems_allowed = node_possible_map;
1979 } else {
1980 cpumask_copy(top_cpuset.cpus_allowed,
1981 top_cpuset.effective_cpus);
1982 top_cpuset.mems_allowed = top_cpuset.effective_mems;
1983 }
1984
1985 mutex_unlock(&callback_mutex);
1986 mutex_unlock(&cpuset_mutex);
1987}
1988
073219e9 1989struct cgroup_subsys cpuset_cgrp_subsys = {
39bd0d15
LZ
1990 .css_alloc = cpuset_css_alloc,
1991 .css_online = cpuset_css_online,
1992 .css_offline = cpuset_css_offline,
1993 .css_free = cpuset_css_free,
1994 .can_attach = cpuset_can_attach,
1995 .cancel_attach = cpuset_cancel_attach,
1996 .attach = cpuset_attach,
1997 .bind = cpuset_bind,
1998 .base_cftypes = files,
1999 .early_init = 1,
8793d854
PM
2000};
2001
1da177e4
LT
2002/**
2003 * cpuset_init - initialize cpusets at system boot
2004 *
2005 * Description: Initialize top_cpuset and the cpuset internal file system,
2006 **/
2007
2008int __init cpuset_init(void)
2009{
8793d854 2010 int err = 0;
1da177e4 2011
58568d2a
MX
2012 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2013 BUG();
e2b9a3d7
LZ
2014 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2015 BUG();
58568d2a 2016
300ed6cb 2017 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2018 nodes_setall(top_cpuset.mems_allowed);
e2b9a3d7
LZ
2019 cpumask_setall(top_cpuset.effective_cpus);
2020 nodes_setall(top_cpuset.effective_mems);
1da177e4 2021
3e0d98b9 2022 fmeter_init(&top_cpuset.fmeter);
029190c5 2023 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2024 top_cpuset.relax_domain_level = -1;
1da177e4 2025
1da177e4
LT
2026 err = register_filesystem(&cpuset_fs_type);
2027 if (err < 0)
8793d854
PM
2028 return err;
2029
2341d1b6
LZ
2030 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2031 BUG();
2032
8793d854 2033 return 0;
1da177e4
LT
2034}
2035
b1aac8bb 2036/*
cf417141 2037 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2038 * or memory nodes, we need to walk over the cpuset hierarchy,
2039 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2040 * last CPU or node from a cpuset, then move the tasks in the empty
2041 * cpuset to its next-highest non-empty parent.
b1aac8bb 2042 */
956db3ca
CW
2043static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2044{
2045 struct cpuset *parent;
2046
956db3ca
CW
2047 /*
2048 * Find its next-highest non-empty parent, (top cpuset
2049 * has online cpus, so can't be empty).
2050 */
c431069f 2051 parent = parent_cs(cs);
300ed6cb 2052 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2053 nodes_empty(parent->mems_allowed))
c431069f 2054 parent = parent_cs(parent);
956db3ca 2055
8cc99345 2056 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
12d3089c 2057 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
e61734c5
TH
2058 pr_cont_cgroup_name(cs->css.cgroup);
2059 pr_cont("\n");
8cc99345 2060 }
956db3ca
CW
2061}
2062
deb7aa30 2063/**
388afd85 2064 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2065 * @cs: cpuset in interest
956db3ca 2066 *
deb7aa30
TH
2067 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2068 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2069 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2070 */
388afd85 2071static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2072{
deb7aa30 2073 static cpumask_t off_cpus;
33ad801d 2074 static nodemask_t off_mems;
5d21cc2d 2075 bool is_empty;
aa6ec29b 2076 bool on_dfl = cgroup_on_dfl(cs->css.cgroup);
80d1fa64 2077
e44193d3
LZ
2078retry:
2079 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2080
5d21cc2d 2081 mutex_lock(&cpuset_mutex);
7ddf96b0 2082
e44193d3
LZ
2083 /*
2084 * We have raced with task attaching. We wait until attaching
2085 * is finished, so we won't attach a task to an empty cpuset.
2086 */
2087 if (cs->attach_in_progress) {
2088 mutex_unlock(&cpuset_mutex);
2089 goto retry;
2090 }
2091
deb7aa30
TH
2092 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2093 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2094
5c5cc623
LZ
2095 mutex_lock(&callback_mutex);
2096 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
554b0d1c
LZ
2097
2098 /* Inherit the effective mask of the parent, if it becomes empty. */
1344ab9c 2099 cpumask_andnot(cs->effective_cpus, cs->effective_cpus, &off_cpus);
554b0d1c
LZ
2100 if (on_dfl && cpumask_empty(cs->effective_cpus))
2101 cpumask_copy(cs->effective_cpus, parent_cs(cs)->effective_cpus);
5c5cc623
LZ
2102 mutex_unlock(&callback_mutex);
2103
2104 /*
aa6ec29b
TH
2105 * If on_dfl, we need to update tasks' cpumask for empty cpuset to
2106 * take on ancestor's cpumask. Otherwise, don't call
2107 * update_tasks_cpumask() if the cpuset becomes empty, as the tasks
2108 * in it will be migrated to an ancestor.
5c5cc623 2109 */
aa6ec29b 2110 if ((on_dfl && cpumask_empty(cs->cpus_allowed)) ||
f047cecf 2111 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
d66393e5 2112 update_tasks_cpumask(cs);
80d1fa64 2113
5c5cc623
LZ
2114 mutex_lock(&callback_mutex);
2115 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
554b0d1c
LZ
2116
2117 /* Inherit the effective mask of the parent, if it becomes empty */
1344ab9c 2118 nodes_andnot(cs->effective_mems, cs->effective_mems, off_mems);
554b0d1c
LZ
2119 if (on_dfl && nodes_empty(cs->effective_mems))
2120 cs->effective_mems = parent_cs(cs)->effective_mems;
5c5cc623
LZ
2121 mutex_unlock(&callback_mutex);
2122
2123 /*
aa6ec29b
TH
2124 * If on_dfl, we need to update tasks' nodemask for empty cpuset to
2125 * take on ancestor's nodemask. Otherwise, don't call
2126 * update_tasks_nodemask() if the cpuset becomes empty, as the
2127 * tasks in it will be migratd to an ancestor.
5c5cc623 2128 */
aa6ec29b 2129 if ((on_dfl && nodes_empty(cs->mems_allowed)) ||
f047cecf 2130 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
d66393e5 2131 update_tasks_nodemask(cs);
deb7aa30 2132
5d21cc2d
TH
2133 is_empty = cpumask_empty(cs->cpus_allowed) ||
2134 nodes_empty(cs->mems_allowed);
8d033948 2135
5d21cc2d
TH
2136 mutex_unlock(&cpuset_mutex);
2137
2138 /*
aa6ec29b 2139 * If on_dfl, we'll keep tasks in empty cpusets.
5c5cc623
LZ
2140 *
2141 * Otherwise move tasks to the nearest ancestor with execution
2142 * resources. This is full cgroup operation which will
5d21cc2d
TH
2143 * also call back into cpuset. Should be done outside any lock.
2144 */
aa6ec29b 2145 if (!on_dfl && is_empty)
5d21cc2d 2146 remove_tasks_in_empty_cpuset(cs);
b1aac8bb
PJ
2147}
2148
deb7aa30 2149/**
3a5a6d0c 2150 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2151 *
deb7aa30
TH
2152 * This function is called after either CPU or memory configuration has
2153 * changed and updates cpuset accordingly. The top_cpuset is always
2154 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2155 * order to make cpusets transparent (of no affect) on systems that are
2156 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2157 *
deb7aa30 2158 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2159 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2160 * all descendants.
956db3ca 2161 *
deb7aa30
TH
2162 * Note that CPU offlining during suspend is ignored. We don't modify
2163 * cpusets across suspend/resume cycles at all.
956db3ca 2164 */
3a5a6d0c 2165static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2166{
5c5cc623
LZ
2167 static cpumask_t new_cpus;
2168 static nodemask_t new_mems;
deb7aa30 2169 bool cpus_updated, mems_updated;
b1aac8bb 2170
5d21cc2d 2171 mutex_lock(&cpuset_mutex);
956db3ca 2172
deb7aa30
TH
2173 /* fetch the available cpus/mems and find out which changed how */
2174 cpumask_copy(&new_cpus, cpu_active_mask);
2175 new_mems = node_states[N_MEMORY];
7ddf96b0 2176
deb7aa30 2177 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
deb7aa30 2178 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
7ddf96b0 2179
deb7aa30
TH
2180 /* synchronize cpus_allowed to cpu_active_mask */
2181 if (cpus_updated) {
2182 mutex_lock(&callback_mutex);
2183 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
1344ab9c 2184 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
deb7aa30
TH
2185 mutex_unlock(&callback_mutex);
2186 /* we don't mess with cpumasks of tasks in top_cpuset */
2187 }
b4501295 2188
deb7aa30
TH
2189 /* synchronize mems_allowed to N_MEMORY */
2190 if (mems_updated) {
deb7aa30
TH
2191 mutex_lock(&callback_mutex);
2192 top_cpuset.mems_allowed = new_mems;
1344ab9c 2193 top_cpuset.effective_mems = new_mems;
deb7aa30 2194 mutex_unlock(&callback_mutex);
d66393e5 2195 update_tasks_nodemask(&top_cpuset);
deb7aa30 2196 }
b4501295 2197
388afd85
LZ
2198 mutex_unlock(&cpuset_mutex);
2199
5c5cc623
LZ
2200 /* if cpus or mems changed, we need to propagate to descendants */
2201 if (cpus_updated || mems_updated) {
deb7aa30 2202 struct cpuset *cs;
492eb21b 2203 struct cgroup_subsys_state *pos_css;
f9b4fb8d 2204
fc560a26 2205 rcu_read_lock();
492eb21b 2206 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
ec903c0c 2207 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
388afd85
LZ
2208 continue;
2209 rcu_read_unlock();
7ddf96b0 2210
388afd85 2211 cpuset_hotplug_update_tasks(cs);
b4501295 2212
388afd85
LZ
2213 rcu_read_lock();
2214 css_put(&cs->css);
2215 }
2216 rcu_read_unlock();
2217 }
8d033948 2218
deb7aa30 2219 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2220 if (cpus_updated)
2221 rebuild_sched_domains();
b1aac8bb
PJ
2222}
2223
7ddf96b0 2224void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2225{
3a5a6d0c
TH
2226 /*
2227 * We're inside cpu hotplug critical region which usually nests
2228 * inside cgroup synchronization. Bounce actual hotplug processing
2229 * to a work item to avoid reverse locking order.
2230 *
2231 * We still need to do partition_sched_domains() synchronously;
2232 * otherwise, the scheduler will get confused and put tasks to the
2233 * dead CPU. Fall back to the default single domain.
2234 * cpuset_hotplug_workfn() will rebuild it as necessary.
2235 */
2236 partition_sched_domains(1, NULL, NULL);
2237 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2238}
4c4d50f7 2239
38837fc7 2240/*
38d7bee9
LJ
2241 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2242 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2243 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2244 */
f481891f
MX
2245static int cpuset_track_online_nodes(struct notifier_block *self,
2246 unsigned long action, void *arg)
38837fc7 2247{
3a5a6d0c 2248 schedule_work(&cpuset_hotplug_work);
f481891f 2249 return NOTIFY_OK;
38837fc7 2250}
d8f10cb3
AM
2251
2252static struct notifier_block cpuset_track_online_nodes_nb = {
2253 .notifier_call = cpuset_track_online_nodes,
2254 .priority = 10, /* ??! */
2255};
38837fc7 2256
1da177e4
LT
2257/**
2258 * cpuset_init_smp - initialize cpus_allowed
2259 *
2260 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2261 */
1da177e4
LT
2262void __init cpuset_init_smp(void)
2263{
6ad4c188 2264 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2265 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2266 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2267
e2b9a3d7
LZ
2268 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2269 top_cpuset.effective_mems = node_states[N_MEMORY];
2270
d8f10cb3 2271 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2272}
2273
2274/**
1da177e4
LT
2275 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2276 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2277 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2278 *
300ed6cb 2279 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2280 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2281 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2282 * tasks cpuset.
2283 **/
2284
6af866af 2285void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2286{
3d3f26a7 2287 mutex_lock(&callback_mutex);
b8dadcb5 2288 rcu_read_lock();
ae1c8023 2289 guarantee_online_cpus(task_cs(tsk), pmask);
b8dadcb5 2290 rcu_read_unlock();
897f0b3c 2291 mutex_unlock(&callback_mutex);
1da177e4
LT
2292}
2293
2baab4e9 2294void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2295{
9084bb82 2296 rcu_read_lock();
ae1c8023 2297 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
9084bb82
ON
2298 rcu_read_unlock();
2299
2300 /*
2301 * We own tsk->cpus_allowed, nobody can change it under us.
2302 *
2303 * But we used cs && cs->cpus_allowed lockless and thus can
2304 * race with cgroup_attach_task() or update_cpumask() and get
2305 * the wrong tsk->cpus_allowed. However, both cases imply the
2306 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2307 * which takes task_rq_lock().
2308 *
2309 * If we are called after it dropped the lock we must see all
2310 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2311 * set any mask even if it is not right from task_cs() pov,
2312 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2313 *
2314 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2315 * if required.
9084bb82 2316 */
9084bb82
ON
2317}
2318
1da177e4
LT
2319void cpuset_init_current_mems_allowed(void)
2320{
f9a86fcb 2321 nodes_setall(current->mems_allowed);
1da177e4
LT
2322}
2323
909d75a3
PJ
2324/**
2325 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2326 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2327 *
2328 * Description: Returns the nodemask_t mems_allowed of the cpuset
2329 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2330 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2331 * tasks cpuset.
2332 **/
2333
2334nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2335{
2336 nodemask_t mask;
2337
3d3f26a7 2338 mutex_lock(&callback_mutex);
b8dadcb5 2339 rcu_read_lock();
ae1c8023 2340 guarantee_online_mems(task_cs(tsk), &mask);
b8dadcb5 2341 rcu_read_unlock();
3d3f26a7 2342 mutex_unlock(&callback_mutex);
909d75a3
PJ
2343
2344 return mask;
2345}
2346
d9fd8a6d 2347/**
19770b32
MG
2348 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2349 * @nodemask: the nodemask to be checked
d9fd8a6d 2350 *
19770b32 2351 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2352 */
19770b32 2353int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2354{
19770b32 2355 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2356}
2357
9bf2229f 2358/*
78608366
PM
2359 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2360 * mem_hardwall ancestor to the specified cpuset. Call holding
2361 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2362 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2363 */
c9710d80 2364static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2365{
c431069f
TH
2366 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2367 cs = parent_cs(cs);
9bf2229f
PJ
2368 return cs;
2369}
2370
d9fd8a6d 2371/**
a1bc5a4e
DR
2372 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2373 * @node: is this an allowed node?
02a0e53d 2374 * @gfp_mask: memory allocation flags
d9fd8a6d 2375 *
a1bc5a4e
DR
2376 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2377 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2378 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2379 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2380 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2381 * flag, yes.
9bf2229f
PJ
2382 * Otherwise, no.
2383 *
a1bc5a4e
DR
2384 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2385 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2386 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2387 *
a1bc5a4e
DR
2388 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2389 * cpusets, and never sleeps.
02a0e53d
PJ
2390 *
2391 * The __GFP_THISNODE placement logic is really handled elsewhere,
2392 * by forcibly using a zonelist starting at a specified node, and by
2393 * (in get_page_from_freelist()) refusing to consider the zones for
2394 * any node on the zonelist except the first. By the time any such
2395 * calls get to this routine, we should just shut up and say 'yes'.
2396 *
9bf2229f 2397 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2398 * and do not allow allocations outside the current tasks cpuset
2399 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2400 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2401 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2402 *
02a0e53d
PJ
2403 * Scanning up parent cpusets requires callback_mutex. The
2404 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2405 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2406 * current tasks mems_allowed came up empty on the first pass over
2407 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2408 * cpuset are short of memory, might require taking the callback_mutex
2409 * mutex.
9bf2229f 2410 *
36be57ff 2411 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2412 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2413 * so no allocation on a node outside the cpuset is allowed (unless
2414 * in interrupt, of course).
36be57ff
PJ
2415 *
2416 * The second pass through get_page_from_freelist() doesn't even call
2417 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2418 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2419 * in alloc_flags. That logic and the checks below have the combined
2420 * affect that:
9bf2229f
PJ
2421 * in_interrupt - any node ok (current task context irrelevant)
2422 * GFP_ATOMIC - any node ok
c596d9f3 2423 * TIF_MEMDIE - any node ok
78608366 2424 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2425 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2426 *
2427 * Rule:
a1bc5a4e 2428 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2429 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2430 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2431 */
a1bc5a4e 2432int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2433{
c9710d80 2434 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2435 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2436
9b819d20 2437 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2438 return 1;
92d1dbd2 2439 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2440 if (node_isset(node, current->mems_allowed))
2441 return 1;
c596d9f3
DR
2442 /*
2443 * Allow tasks that have access to memory reserves because they have
2444 * been OOM killed to get memory anywhere.
2445 */
2446 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2447 return 1;
9bf2229f
PJ
2448 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2449 return 0;
2450
5563e770
BP
2451 if (current->flags & PF_EXITING) /* Let dying task have memory */
2452 return 1;
2453
9bf2229f 2454 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2455 mutex_lock(&callback_mutex);
053199ed 2456
b8dadcb5 2457 rcu_read_lock();
78608366 2458 cs = nearest_hardwall_ancestor(task_cs(current));
99afb0fd 2459 allowed = node_isset(node, cs->mems_allowed);
b8dadcb5 2460 rcu_read_unlock();
053199ed 2461
3d3f26a7 2462 mutex_unlock(&callback_mutex);
9bf2229f 2463 return allowed;
1da177e4
LT
2464}
2465
02a0e53d 2466/*
a1bc5a4e
DR
2467 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2468 * @node: is this an allowed node?
02a0e53d
PJ
2469 * @gfp_mask: memory allocation flags
2470 *
a1bc5a4e
DR
2471 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2472 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2473 * yes. If the task has been OOM killed and has access to memory reserves as
2474 * specified by the TIF_MEMDIE flag, yes.
2475 * Otherwise, no.
02a0e53d
PJ
2476 *
2477 * The __GFP_THISNODE placement logic is really handled elsewhere,
2478 * by forcibly using a zonelist starting at a specified node, and by
2479 * (in get_page_from_freelist()) refusing to consider the zones for
2480 * any node on the zonelist except the first. By the time any such
2481 * calls get to this routine, we should just shut up and say 'yes'.
2482 *
a1bc5a4e
DR
2483 * Unlike the cpuset_node_allowed_softwall() variant, above,
2484 * this variant requires that the node be in the current task's
02a0e53d
PJ
2485 * mems_allowed or that we're in interrupt. It does not scan up the
2486 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2487 * It never sleeps.
2488 */
a1bc5a4e 2489int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2490{
02a0e53d
PJ
2491 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2492 return 1;
02a0e53d
PJ
2493 if (node_isset(node, current->mems_allowed))
2494 return 1;
dedf8b79
DW
2495 /*
2496 * Allow tasks that have access to memory reserves because they have
2497 * been OOM killed to get memory anywhere.
2498 */
2499 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2500 return 1;
02a0e53d
PJ
2501 return 0;
2502}
2503
825a46af 2504/**
6adef3eb
JS
2505 * cpuset_mem_spread_node() - On which node to begin search for a file page
2506 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2507 *
2508 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2509 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2510 * and if the memory allocation used cpuset_mem_spread_node()
2511 * to determine on which node to start looking, as it will for
2512 * certain page cache or slab cache pages such as used for file
2513 * system buffers and inode caches, then instead of starting on the
2514 * local node to look for a free page, rather spread the starting
2515 * node around the tasks mems_allowed nodes.
2516 *
2517 * We don't have to worry about the returned node being offline
2518 * because "it can't happen", and even if it did, it would be ok.
2519 *
2520 * The routines calling guarantee_online_mems() are careful to
2521 * only set nodes in task->mems_allowed that are online. So it
2522 * should not be possible for the following code to return an
2523 * offline node. But if it did, that would be ok, as this routine
2524 * is not returning the node where the allocation must be, only
2525 * the node where the search should start. The zonelist passed to
2526 * __alloc_pages() will include all nodes. If the slab allocator
2527 * is passed an offline node, it will fall back to the local node.
2528 * See kmem_cache_alloc_node().
2529 */
2530
6adef3eb 2531static int cpuset_spread_node(int *rotor)
825a46af
PJ
2532{
2533 int node;
2534
6adef3eb 2535 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2536 if (node == MAX_NUMNODES)
2537 node = first_node(current->mems_allowed);
6adef3eb 2538 *rotor = node;
825a46af
PJ
2539 return node;
2540}
6adef3eb
JS
2541
2542int cpuset_mem_spread_node(void)
2543{
778d3b0f
MH
2544 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2545 current->cpuset_mem_spread_rotor =
2546 node_random(&current->mems_allowed);
2547
6adef3eb
JS
2548 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2549}
2550
2551int cpuset_slab_spread_node(void)
2552{
778d3b0f
MH
2553 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2554 current->cpuset_slab_spread_rotor =
2555 node_random(&current->mems_allowed);
2556
6adef3eb
JS
2557 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2558}
2559
825a46af
PJ
2560EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2561
ef08e3b4 2562/**
bbe373f2
DR
2563 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2564 * @tsk1: pointer to task_struct of some task.
2565 * @tsk2: pointer to task_struct of some other task.
2566 *
2567 * Description: Return true if @tsk1's mems_allowed intersects the
2568 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2569 * one of the task's memory usage might impact the memory available
2570 * to the other.
ef08e3b4
PJ
2571 **/
2572
bbe373f2
DR
2573int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2574 const struct task_struct *tsk2)
ef08e3b4 2575{
bbe373f2 2576 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2577}
2578
f440d98f
LZ
2579#define CPUSET_NODELIST_LEN (256)
2580
75aa1994
DR
2581/**
2582 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
fc34ac1d 2583 * @tsk: pointer to task_struct of some task.
75aa1994
DR
2584 *
2585 * Description: Prints @task's name, cpuset name, and cached copy of its
b8dadcb5 2586 * mems_allowed to the kernel log.
75aa1994
DR
2587 */
2588void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2589{
f440d98f
LZ
2590 /* Statically allocated to prevent using excess stack. */
2591 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2592 static DEFINE_SPINLOCK(cpuset_buffer_lock);
b8dadcb5 2593 struct cgroup *cgrp;
75aa1994 2594
f440d98f 2595 spin_lock(&cpuset_buffer_lock);
b8dadcb5 2596 rcu_read_lock();
63f43f55 2597
b8dadcb5 2598 cgrp = task_cs(tsk)->css.cgroup;
75aa1994
DR
2599 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2600 tsk->mems_allowed);
12d3089c 2601 pr_info("%s cpuset=", tsk->comm);
e61734c5
TH
2602 pr_cont_cgroup_name(cgrp);
2603 pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
f440d98f 2604
cfb5966b 2605 rcu_read_unlock();
75aa1994
DR
2606 spin_unlock(&cpuset_buffer_lock);
2607}
2608
3e0d98b9
PJ
2609/*
2610 * Collection of memory_pressure is suppressed unless
2611 * this flag is enabled by writing "1" to the special
2612 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2613 */
2614
c5b2aff8 2615int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2616
2617/**
2618 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2619 *
2620 * Keep a running average of the rate of synchronous (direct)
2621 * page reclaim efforts initiated by tasks in each cpuset.
2622 *
2623 * This represents the rate at which some task in the cpuset
2624 * ran low on memory on all nodes it was allowed to use, and
2625 * had to enter the kernels page reclaim code in an effort to
2626 * create more free memory by tossing clean pages or swapping
2627 * or writing dirty pages.
2628 *
2629 * Display to user space in the per-cpuset read-only file
2630 * "memory_pressure". Value displayed is an integer
2631 * representing the recent rate of entry into the synchronous
2632 * (direct) page reclaim by any task attached to the cpuset.
2633 **/
2634
2635void __cpuset_memory_pressure_bump(void)
2636{
b8dadcb5 2637 rcu_read_lock();
8793d854 2638 fmeter_markevent(&task_cs(current)->fmeter);
b8dadcb5 2639 rcu_read_unlock();
3e0d98b9
PJ
2640}
2641
8793d854 2642#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2643/*
2644 * proc_cpuset_show()
2645 * - Print tasks cpuset path into seq_file.
2646 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2647 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2648 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2649 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2650 * anyway.
1da177e4 2651 */
8d8b97ba 2652int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2653{
13b41b09 2654 struct pid *pid;
1da177e4 2655 struct task_struct *tsk;
e61734c5 2656 char *buf, *p;
8793d854 2657 struct cgroup_subsys_state *css;
99f89551 2658 int retval;
1da177e4 2659
99f89551 2660 retval = -ENOMEM;
e61734c5 2661 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1da177e4 2662 if (!buf)
99f89551
EB
2663 goto out;
2664
2665 retval = -ESRCH;
13b41b09
EB
2666 pid = m->private;
2667 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2668 if (!tsk)
2669 goto out_free;
1da177e4 2670
e61734c5 2671 retval = -ENAMETOOLONG;
27e89ae5 2672 rcu_read_lock();
073219e9 2673 css = task_css(tsk, cpuset_cgrp_id);
e61734c5 2674 p = cgroup_path(css->cgroup, buf, PATH_MAX);
27e89ae5 2675 rcu_read_unlock();
e61734c5 2676 if (!p)
27e89ae5 2677 goto out_put_task;
e61734c5 2678 seq_puts(m, p);
1da177e4 2679 seq_putc(m, '\n');
e61734c5 2680 retval = 0;
27e89ae5 2681out_put_task:
99f89551
EB
2682 put_task_struct(tsk);
2683out_free:
1da177e4 2684 kfree(buf);
99f89551 2685out:
1da177e4
LT
2686 return retval;
2687}
8793d854 2688#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2689
d01d4827 2690/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2691void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2692{
fc34ac1d 2693 seq_puts(m, "Mems_allowed:\t");
30e8e136 2694 seq_nodemask(m, &task->mems_allowed);
fc34ac1d
FF
2695 seq_puts(m, "\n");
2696 seq_puts(m, "Mems_allowed_list:\t");
30e8e136 2697 seq_nodemask_list(m, &task->mems_allowed);
fc34ac1d 2698 seq_puts(m, "\n");
1da177e4 2699}