kernel/cpuset.c: make 3 functions static
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
1da177e4
LT
17 *
18 * This file is subject to the terms and conditions of the GNU General Public
19 * License. See the file COPYING in the main directory of the Linux
20 * distribution for more details.
21 */
22
1da177e4
LT
23#include <linux/cpu.h>
24#include <linux/cpumask.h>
25#include <linux/cpuset.h>
26#include <linux/err.h>
27#include <linux/errno.h>
28#include <linux/file.h>
29#include <linux/fs.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/kernel.h>
33#include <linux/kmod.h>
34#include <linux/list.h>
68860ec1 35#include <linux/mempolicy.h>
1da177e4
LT
36#include <linux/mm.h>
37#include <linux/module.h>
38#include <linux/mount.h>
39#include <linux/namei.h>
40#include <linux/pagemap.h>
41#include <linux/proc_fs.h>
6b9c2603 42#include <linux/rcupdate.h>
1da177e4
LT
43#include <linux/sched.h>
44#include <linux/seq_file.h>
22fb52dd 45#include <linux/security.h>
1da177e4 46#include <linux/slab.h>
1da177e4
LT
47#include <linux/spinlock.h>
48#include <linux/stat.h>
49#include <linux/string.h>
50#include <linux/time.h>
51#include <linux/backing-dev.h>
52#include <linux/sort.h>
53
54#include <asm/uaccess.h>
55#include <asm/atomic.h>
3d3f26a7 56#include <linux/mutex.h>
029190c5 57#include <linux/kfifo.h>
956db3ca
CW
58#include <linux/workqueue.h>
59#include <linux/cgroup.h>
1da177e4 60
202f72d5
PJ
61/*
62 * Tracks how many cpusets are currently defined in system.
63 * When there is only one cpuset (the root cpuset) we can
64 * short circuit some hooks.
65 */
7edc5962 66int number_of_cpusets __read_mostly;
202f72d5 67
2df167a3 68/* Forward declare cgroup structures */
8793d854
PM
69struct cgroup_subsys cpuset_subsys;
70struct cpuset;
71
3e0d98b9
PJ
72/* See "Frequency meter" comments, below. */
73
74struct fmeter {
75 int cnt; /* unprocessed events count */
76 int val; /* most recent output value */
77 time_t time; /* clock (secs) when val computed */
78 spinlock_t lock; /* guards read or write of above */
79};
80
1da177e4 81struct cpuset {
8793d854
PM
82 struct cgroup_subsys_state css;
83
1da177e4
LT
84 unsigned long flags; /* "unsigned long" so bitops work */
85 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
86 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
87
1da177e4 88 struct cpuset *parent; /* my parent */
1da177e4
LT
89
90 /*
91 * Copy of global cpuset_mems_generation as of the most
92 * recent time this cpuset changed its mems_allowed.
93 */
3e0d98b9
PJ
94 int mems_generation;
95
96 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
97
98 /* partition number for rebuild_sched_domains() */
99 int pn;
956db3ca 100
1d3504fc
HS
101 /* for custom sched domain */
102 int relax_domain_level;
103
956db3ca
CW
104 /* used for walking a cpuset heirarchy */
105 struct list_head stack_list;
1da177e4
LT
106};
107
8793d854
PM
108/* Retrieve the cpuset for a cgroup */
109static inline struct cpuset *cgroup_cs(struct cgroup *cont)
110{
111 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
112 struct cpuset, css);
113}
114
115/* Retrieve the cpuset for a task */
116static inline struct cpuset *task_cs(struct task_struct *task)
117{
118 return container_of(task_subsys_state(task, cpuset_subsys_id),
119 struct cpuset, css);
120}
956db3ca
CW
121struct cpuset_hotplug_scanner {
122 struct cgroup_scanner scan;
123 struct cgroup *to;
124};
8793d854 125
1da177e4
LT
126/* bits in struct cpuset flags field */
127typedef enum {
128 CS_CPU_EXCLUSIVE,
129 CS_MEM_EXCLUSIVE,
45b07ef3 130 CS_MEMORY_MIGRATE,
029190c5 131 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
132 CS_SPREAD_PAGE,
133 CS_SPREAD_SLAB,
1da177e4
LT
134} cpuset_flagbits_t;
135
136/* convenient tests for these bits */
137static inline int is_cpu_exclusive(const struct cpuset *cs)
138{
7b5b9ef0 139 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
140}
141
142static inline int is_mem_exclusive(const struct cpuset *cs)
143{
7b5b9ef0 144 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
145}
146
029190c5
PJ
147static inline int is_sched_load_balance(const struct cpuset *cs)
148{
149 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
150}
151
45b07ef3
PJ
152static inline int is_memory_migrate(const struct cpuset *cs)
153{
7b5b9ef0 154 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
155}
156
825a46af
PJ
157static inline int is_spread_page(const struct cpuset *cs)
158{
159 return test_bit(CS_SPREAD_PAGE, &cs->flags);
160}
161
162static inline int is_spread_slab(const struct cpuset *cs)
163{
164 return test_bit(CS_SPREAD_SLAB, &cs->flags);
165}
166
1da177e4 167/*
151a4420 168 * Increment this integer everytime any cpuset changes its
1da177e4
LT
169 * mems_allowed value. Users of cpusets can track this generation
170 * number, and avoid having to lock and reload mems_allowed unless
171 * the cpuset they're using changes generation.
172 *
2df167a3 173 * A single, global generation is needed because cpuset_attach_task() could
1da177e4
LT
174 * reattach a task to a different cpuset, which must not have its
175 * generation numbers aliased with those of that tasks previous cpuset.
176 *
177 * Generations are needed for mems_allowed because one task cannot
2df167a3 178 * modify another's memory placement. So we must enable every task,
1da177e4
LT
179 * on every visit to __alloc_pages(), to efficiently check whether
180 * its current->cpuset->mems_allowed has changed, requiring an update
181 * of its current->mems_allowed.
151a4420 182 *
2df167a3 183 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
151a4420 184 * there is no need to mark it atomic.
1da177e4 185 */
151a4420 186static int cpuset_mems_generation;
1da177e4
LT
187
188static struct cpuset top_cpuset = {
189 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
190 .cpus_allowed = CPU_MASK_ALL,
191 .mems_allowed = NODE_MASK_ALL,
1da177e4
LT
192};
193
1da177e4 194/*
2df167a3
PM
195 * There are two global mutexes guarding cpuset structures. The first
196 * is the main control groups cgroup_mutex, accessed via
197 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
198 * callback_mutex, below. They can nest. It is ok to first take
199 * cgroup_mutex, then nest callback_mutex. We also require taking
200 * task_lock() when dereferencing a task's cpuset pointer. See "The
201 * task_lock() exception", at the end of this comment.
053199ed 202 *
3d3f26a7 203 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 204 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 205 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
206 * and be able to modify cpusets. It can perform various checks on
207 * the cpuset structure first, knowing nothing will change. It can
2df167a3 208 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 209 * performing these checks, various callback routines can briefly
3d3f26a7
IM
210 * acquire callback_mutex to query cpusets. Once it is ready to make
211 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
212 *
213 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 214 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
215 * from one of the callbacks into the cpuset code from within
216 * __alloc_pages().
217 *
3d3f26a7 218 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
219 * access to cpusets.
220 *
221 * The task_struct fields mems_allowed and mems_generation may only
222 * be accessed in the context of that task, so require no locks.
223 *
053199ed 224 * The cpuset_common_file_write handler for operations that modify
2df167a3 225 * the cpuset hierarchy holds cgroup_mutex across the entire operation,
053199ed
PJ
226 * single threading all such cpuset modifications across the system.
227 *
3d3f26a7 228 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
229 * small pieces of code, such as when reading out possibly multi-word
230 * cpumasks and nodemasks.
231 *
2df167a3
PM
232 * Accessing a task's cpuset should be done in accordance with the
233 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
234 */
235
3d3f26a7 236static DEFINE_MUTEX(callback_mutex);
4247bdc6 237
8793d854
PM
238/* This is ugly, but preserves the userspace API for existing cpuset
239 * users. If someone tries to mount the "cpuset" filesystem, we
240 * silently switch it to mount "cgroup" instead */
454e2398
DH
241static int cpuset_get_sb(struct file_system_type *fs_type,
242 int flags, const char *unused_dev_name,
243 void *data, struct vfsmount *mnt)
1da177e4 244{
8793d854
PM
245 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
246 int ret = -ENODEV;
247 if (cgroup_fs) {
248 char mountopts[] =
249 "cpuset,noprefix,"
250 "release_agent=/sbin/cpuset_release_agent";
251 ret = cgroup_fs->get_sb(cgroup_fs, flags,
252 unused_dev_name, mountopts, mnt);
253 put_filesystem(cgroup_fs);
254 }
255 return ret;
1da177e4
LT
256}
257
258static struct file_system_type cpuset_fs_type = {
259 .name = "cpuset",
260 .get_sb = cpuset_get_sb,
1da177e4
LT
261};
262
1da177e4
LT
263/*
264 * Return in *pmask the portion of a cpusets's cpus_allowed that
265 * are online. If none are online, walk up the cpuset hierarchy
266 * until we find one that does have some online cpus. If we get
267 * all the way to the top and still haven't found any online cpus,
268 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
269 * task, return cpu_online_map.
270 *
271 * One way or another, we guarantee to return some non-empty subset
272 * of cpu_online_map.
273 *
3d3f26a7 274 * Call with callback_mutex held.
1da177e4
LT
275 */
276
277static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
278{
279 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
280 cs = cs->parent;
281 if (cs)
282 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
283 else
284 *pmask = cpu_online_map;
285 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
286}
287
288/*
289 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
290 * are online, with memory. If none are online with memory, walk
291 * up the cpuset hierarchy until we find one that does have some
292 * online mems. If we get all the way to the top and still haven't
293 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
294 *
295 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 296 * of node_states[N_HIGH_MEMORY].
1da177e4 297 *
3d3f26a7 298 * Call with callback_mutex held.
1da177e4
LT
299 */
300
301static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
302{
0e1e7c7a
CL
303 while (cs && !nodes_intersects(cs->mems_allowed,
304 node_states[N_HIGH_MEMORY]))
1da177e4
LT
305 cs = cs->parent;
306 if (cs)
0e1e7c7a
CL
307 nodes_and(*pmask, cs->mems_allowed,
308 node_states[N_HIGH_MEMORY]);
1da177e4 309 else
0e1e7c7a
CL
310 *pmask = node_states[N_HIGH_MEMORY];
311 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
312}
313
cf2a473c
PJ
314/**
315 * cpuset_update_task_memory_state - update task memory placement
316 *
317 * If the current tasks cpusets mems_allowed changed behind our
318 * backs, update current->mems_allowed, mems_generation and task NUMA
319 * mempolicy to the new value.
053199ed 320 *
cf2a473c
PJ
321 * Task mempolicy is updated by rebinding it relative to the
322 * current->cpuset if a task has its memory placement changed.
323 * Do not call this routine if in_interrupt().
324 *
4a01c8d5 325 * Call without callback_mutex or task_lock() held. May be
2df167a3
PM
326 * called with or without cgroup_mutex held. Thanks in part to
327 * 'the_top_cpuset_hack', the task's cpuset pointer will never
41f7f60d
DR
328 * be NULL. This routine also might acquire callback_mutex during
329 * call.
053199ed 330 *
6b9c2603
PJ
331 * Reading current->cpuset->mems_generation doesn't need task_lock
332 * to guard the current->cpuset derefence, because it is guarded
2df167a3 333 * from concurrent freeing of current->cpuset using RCU.
6b9c2603
PJ
334 *
335 * The rcu_dereference() is technically probably not needed,
336 * as I don't actually mind if I see a new cpuset pointer but
337 * an old value of mems_generation. However this really only
338 * matters on alpha systems using cpusets heavily. If I dropped
339 * that rcu_dereference(), it would save them a memory barrier.
340 * For all other arch's, rcu_dereference is a no-op anyway, and for
341 * alpha systems not using cpusets, another planned optimization,
342 * avoiding the rcu critical section for tasks in the root cpuset
343 * which is statically allocated, so can't vanish, will make this
344 * irrelevant. Better to use RCU as intended, than to engage in
345 * some cute trick to save a memory barrier that is impossible to
346 * test, for alpha systems using cpusets heavily, which might not
347 * even exist.
053199ed
PJ
348 *
349 * This routine is needed to update the per-task mems_allowed data,
350 * within the tasks context, when it is trying to allocate memory
351 * (in various mm/mempolicy.c routines) and notices that some other
352 * task has been modifying its cpuset.
1da177e4
LT
353 */
354
fe85a998 355void cpuset_update_task_memory_state(void)
1da177e4 356{
053199ed 357 int my_cpusets_mem_gen;
cf2a473c 358 struct task_struct *tsk = current;
6b9c2603 359 struct cpuset *cs;
053199ed 360
8793d854 361 if (task_cs(tsk) == &top_cpuset) {
03a285f5
PJ
362 /* Don't need rcu for top_cpuset. It's never freed. */
363 my_cpusets_mem_gen = top_cpuset.mems_generation;
364 } else {
365 rcu_read_lock();
8793d854 366 my_cpusets_mem_gen = task_cs(current)->mems_generation;
03a285f5
PJ
367 rcu_read_unlock();
368 }
1da177e4 369
cf2a473c 370 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 371 mutex_lock(&callback_mutex);
cf2a473c 372 task_lock(tsk);
8793d854 373 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
374 guarantee_online_mems(cs, &tsk->mems_allowed);
375 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
376 if (is_spread_page(cs))
377 tsk->flags |= PF_SPREAD_PAGE;
378 else
379 tsk->flags &= ~PF_SPREAD_PAGE;
380 if (is_spread_slab(cs))
381 tsk->flags |= PF_SPREAD_SLAB;
382 else
383 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 384 task_unlock(tsk);
3d3f26a7 385 mutex_unlock(&callback_mutex);
74cb2155 386 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
387 }
388}
389
390/*
391 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
392 *
393 * One cpuset is a subset of another if all its allowed CPUs and
394 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 395 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
396 */
397
398static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
399{
400 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
401 nodes_subset(p->mems_allowed, q->mems_allowed) &&
402 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
403 is_mem_exclusive(p) <= is_mem_exclusive(q);
404}
405
406/*
407 * validate_change() - Used to validate that any proposed cpuset change
408 * follows the structural rules for cpusets.
409 *
410 * If we replaced the flag and mask values of the current cpuset
411 * (cur) with those values in the trial cpuset (trial), would
412 * our various subset and exclusive rules still be valid? Presumes
2df167a3 413 * cgroup_mutex held.
1da177e4
LT
414 *
415 * 'cur' is the address of an actual, in-use cpuset. Operations
416 * such as list traversal that depend on the actual address of the
417 * cpuset in the list must use cur below, not trial.
418 *
419 * 'trial' is the address of bulk structure copy of cur, with
420 * perhaps one or more of the fields cpus_allowed, mems_allowed,
421 * or flags changed to new, trial values.
422 *
423 * Return 0 if valid, -errno if not.
424 */
425
426static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
427{
8793d854 428 struct cgroup *cont;
1da177e4
LT
429 struct cpuset *c, *par;
430
431 /* Each of our child cpusets must be a subset of us */
8793d854
PM
432 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
433 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
434 return -EBUSY;
435 }
436
437 /* Remaining checks don't apply to root cpuset */
69604067 438 if (cur == &top_cpuset)
1da177e4
LT
439 return 0;
440
69604067
PJ
441 par = cur->parent;
442
1da177e4
LT
443 /* We must be a subset of our parent cpuset */
444 if (!is_cpuset_subset(trial, par))
445 return -EACCES;
446
2df167a3
PM
447 /*
448 * If either I or some sibling (!= me) is exclusive, we can't
449 * overlap
450 */
8793d854
PM
451 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
452 c = cgroup_cs(cont);
1da177e4
LT
453 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
454 c != cur &&
455 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
456 return -EINVAL;
457 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
458 c != cur &&
459 nodes_intersects(trial->mems_allowed, c->mems_allowed))
460 return -EINVAL;
461 }
462
020958b6
PJ
463 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
464 if (cgroup_task_count(cur->css.cgroup)) {
465 if (cpus_empty(trial->cpus_allowed) ||
466 nodes_empty(trial->mems_allowed)) {
467 return -ENOSPC;
468 }
469 }
470
1da177e4
LT
471 return 0;
472}
473
029190c5
PJ
474/*
475 * Helper routine for rebuild_sched_domains().
476 * Do cpusets a, b have overlapping cpus_allowed masks?
477 */
478
479static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
480{
481 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
482}
483
1d3504fc
HS
484static void
485update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
486{
487 if (!dattr)
488 return;
489 if (dattr->relax_domain_level < c->relax_domain_level)
490 dattr->relax_domain_level = c->relax_domain_level;
491 return;
492}
493
029190c5
PJ
494/*
495 * rebuild_sched_domains()
496 *
497 * If the flag 'sched_load_balance' of any cpuset with non-empty
498 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
499 * which has that flag enabled, or if any cpuset with a non-empty
500 * 'cpus' is removed, then call this routine to rebuild the
501 * scheduler's dynamic sched domains.
502 *
503 * This routine builds a partial partition of the systems CPUs
504 * (the set of non-overlappping cpumask_t's in the array 'part'
505 * below), and passes that partial partition to the kernel/sched.c
506 * partition_sched_domains() routine, which will rebuild the
507 * schedulers load balancing domains (sched domains) as specified
508 * by that partial partition. A 'partial partition' is a set of
509 * non-overlapping subsets whose union is a subset of that set.
510 *
511 * See "What is sched_load_balance" in Documentation/cpusets.txt
512 * for a background explanation of this.
513 *
514 * Does not return errors, on the theory that the callers of this
515 * routine would rather not worry about failures to rebuild sched
516 * domains when operating in the severe memory shortage situations
517 * that could cause allocation failures below.
518 *
519 * Call with cgroup_mutex held. May take callback_mutex during
520 * call due to the kfifo_alloc() and kmalloc() calls. May nest
86ef5c9a 521 * a call to the get_online_cpus()/put_online_cpus() pair.
029190c5 522 * Must not be called holding callback_mutex, because we must not
86ef5c9a
GS
523 * call get_online_cpus() while holding callback_mutex. Elsewhere
524 * the kernel nests callback_mutex inside get_online_cpus() calls.
029190c5
PJ
525 * So the reverse nesting would risk an ABBA deadlock.
526 *
527 * The three key local variables below are:
528 * q - a kfifo queue of cpuset pointers, used to implement a
529 * top-down scan of all cpusets. This scan loads a pointer
530 * to each cpuset marked is_sched_load_balance into the
531 * array 'csa'. For our purposes, rebuilding the schedulers
532 * sched domains, we can ignore !is_sched_load_balance cpusets.
533 * csa - (for CpuSet Array) Array of pointers to all the cpusets
534 * that need to be load balanced, for convenient iterative
535 * access by the subsequent code that finds the best partition,
536 * i.e the set of domains (subsets) of CPUs such that the
537 * cpus_allowed of every cpuset marked is_sched_load_balance
538 * is a subset of one of these domains, while there are as
539 * many such domains as possible, each as small as possible.
540 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
541 * the kernel/sched.c routine partition_sched_domains() in a
542 * convenient format, that can be easily compared to the prior
543 * value to determine what partition elements (sched domains)
544 * were changed (added or removed.)
545 *
546 * Finding the best partition (set of domains):
547 * The triple nested loops below over i, j, k scan over the
548 * load balanced cpusets (using the array of cpuset pointers in
549 * csa[]) looking for pairs of cpusets that have overlapping
550 * cpus_allowed, but which don't have the same 'pn' partition
551 * number and gives them in the same partition number. It keeps
552 * looping on the 'restart' label until it can no longer find
553 * any such pairs.
554 *
555 * The union of the cpus_allowed masks from the set of
556 * all cpusets having the same 'pn' value then form the one
557 * element of the partition (one sched domain) to be passed to
558 * partition_sched_domains().
559 */
560
561static void rebuild_sched_domains(void)
562{
563 struct kfifo *q; /* queue of cpusets to be scanned */
564 struct cpuset *cp; /* scans q */
565 struct cpuset **csa; /* array of all cpuset ptrs */
566 int csn; /* how many cpuset ptrs in csa so far */
567 int i, j, k; /* indices for partition finding loops */
568 cpumask_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 569 struct sched_domain_attr *dattr; /* attributes for custom domains */
029190c5
PJ
570 int ndoms; /* number of sched domains in result */
571 int nslot; /* next empty doms[] cpumask_t slot */
572
573 q = NULL;
574 csa = NULL;
575 doms = NULL;
1d3504fc 576 dattr = NULL;
029190c5
PJ
577
578 /* Special case for the 99% of systems with one, full, sched domain */
579 if (is_sched_load_balance(&top_cpuset)) {
580 ndoms = 1;
581 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
582 if (!doms)
583 goto rebuild;
1d3504fc
HS
584 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
585 if (dattr) {
586 *dattr = SD_ATTR_INIT;
587 update_domain_attr(dattr, &top_cpuset);
588 }
029190c5
PJ
589 *doms = top_cpuset.cpus_allowed;
590 goto rebuild;
591 }
592
593 q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
594 if (IS_ERR(q))
595 goto done;
596 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
597 if (!csa)
598 goto done;
599 csn = 0;
600
601 cp = &top_cpuset;
602 __kfifo_put(q, (void *)&cp, sizeof(cp));
603 while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
604 struct cgroup *cont;
605 struct cpuset *child; /* scans child cpusets of cp */
606 if (is_sched_load_balance(cp))
607 csa[csn++] = cp;
608 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
609 child = cgroup_cs(cont);
610 __kfifo_put(q, (void *)&child, sizeof(cp));
611 }
612 }
613
614 for (i = 0; i < csn; i++)
615 csa[i]->pn = i;
616 ndoms = csn;
617
618restart:
619 /* Find the best partition (set of sched domains) */
620 for (i = 0; i < csn; i++) {
621 struct cpuset *a = csa[i];
622 int apn = a->pn;
623
624 for (j = 0; j < csn; j++) {
625 struct cpuset *b = csa[j];
626 int bpn = b->pn;
627
628 if (apn != bpn && cpusets_overlap(a, b)) {
629 for (k = 0; k < csn; k++) {
630 struct cpuset *c = csa[k];
631
632 if (c->pn == bpn)
633 c->pn = apn;
634 }
635 ndoms--; /* one less element */
636 goto restart;
637 }
638 }
639 }
640
641 /* Convert <csn, csa> to <ndoms, doms> */
642 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
643 if (!doms)
644 goto rebuild;
1d3504fc 645 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
646
647 for (nslot = 0, i = 0; i < csn; i++) {
648 struct cpuset *a = csa[i];
649 int apn = a->pn;
650
651 if (apn >= 0) {
652 cpumask_t *dp = doms + nslot;
653
654 if (nslot == ndoms) {
655 static int warnings = 10;
656 if (warnings) {
657 printk(KERN_WARNING
658 "rebuild_sched_domains confused:"
659 " nslot %d, ndoms %d, csn %d, i %d,"
660 " apn %d\n",
661 nslot, ndoms, csn, i, apn);
662 warnings--;
663 }
664 continue;
665 }
666
667 cpus_clear(*dp);
1d3504fc
HS
668 if (dattr)
669 *(dattr + nslot) = SD_ATTR_INIT;
029190c5
PJ
670 for (j = i; j < csn; j++) {
671 struct cpuset *b = csa[j];
672
673 if (apn == b->pn) {
674 cpus_or(*dp, *dp, b->cpus_allowed);
675 b->pn = -1;
1d3504fc 676 update_domain_attr(dattr, b);
029190c5
PJ
677 }
678 }
679 nslot++;
680 }
681 }
682 BUG_ON(nslot != ndoms);
683
684rebuild:
685 /* Have scheduler rebuild sched domains */
86ef5c9a 686 get_online_cpus();
1d3504fc 687 partition_sched_domains(ndoms, doms, dattr);
86ef5c9a 688 put_online_cpus();
029190c5
PJ
689
690done:
691 if (q && !IS_ERR(q))
692 kfifo_free(q);
693 kfree(csa);
694 /* Don't kfree(doms) -- partition_sched_domains() does that. */
1d3504fc 695 /* Don't kfree(dattr) -- partition_sched_domains() does that. */
029190c5
PJ
696}
697
8707d8b8
PM
698static inline int started_after_time(struct task_struct *t1,
699 struct timespec *time,
700 struct task_struct *t2)
701{
702 int start_diff = timespec_compare(&t1->start_time, time);
703 if (start_diff > 0) {
704 return 1;
705 } else if (start_diff < 0) {
706 return 0;
707 } else {
708 /*
709 * Arbitrarily, if two processes started at the same
710 * time, we'll say that the lower pointer value
711 * started first. Note that t2 may have exited by now
712 * so this may not be a valid pointer any longer, but
713 * that's fine - it still serves to distinguish
714 * between two tasks started (effectively)
715 * simultaneously.
716 */
717 return t1 > t2;
718 }
719}
720
721static inline int started_after(void *p1, void *p2)
722{
723 struct task_struct *t1 = p1;
724 struct task_struct *t2 = p2;
725 return started_after_time(t1, &t2->start_time, t2);
726}
727
58f4790b
CW
728/**
729 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
730 * @tsk: task to test
731 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
732 *
2df167a3 733 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
734 * Called for each task in a cgroup by cgroup_scan_tasks().
735 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
736 * words, if its mask is not equal to its cpuset's mask).
053199ed 737 */
9e0c914c
AB
738static int cpuset_test_cpumask(struct task_struct *tsk,
739 struct cgroup_scanner *scan)
58f4790b
CW
740{
741 return !cpus_equal(tsk->cpus_allowed,
742 (cgroup_cs(scan->cg))->cpus_allowed);
743}
053199ed 744
58f4790b
CW
745/**
746 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
747 * @tsk: task to test
748 * @scan: struct cgroup_scanner containing the cgroup of the task
749 *
750 * Called by cgroup_scan_tasks() for each task in a cgroup whose
751 * cpus_allowed mask needs to be changed.
752 *
753 * We don't need to re-check for the cgroup/cpuset membership, since we're
754 * holding cgroup_lock() at this point.
755 */
9e0c914c
AB
756static void cpuset_change_cpumask(struct task_struct *tsk,
757 struct cgroup_scanner *scan)
58f4790b 758{
f9a86fcb 759 set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
760}
761
762/**
763 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
764 * @cs: the cpuset to consider
765 * @buf: buffer of cpu numbers written to this cpuset
766 */
1da177e4
LT
767static int update_cpumask(struct cpuset *cs, char *buf)
768{
769 struct cpuset trialcs;
58f4790b 770 struct cgroup_scanner scan;
8707d8b8 771 struct ptr_heap heap;
58f4790b
CW
772 int retval;
773 int is_load_balanced;
1da177e4 774
4c4d50f7
PJ
775 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
776 if (cs == &top_cpuset)
777 return -EACCES;
778
1da177e4 779 trialcs = *cs;
6f7f02e7
DR
780
781 /*
c8d9c90c 782 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
783 * Since cpulist_parse() fails on an empty mask, we special case
784 * that parsing. The validate_change() call ensures that cpusets
785 * with tasks have cpus.
6f7f02e7 786 */
020958b6
PJ
787 buf = strstrip(buf);
788 if (!*buf) {
6f7f02e7
DR
789 cpus_clear(trialcs.cpus_allowed);
790 } else {
791 retval = cpulist_parse(buf, trialcs.cpus_allowed);
792 if (retval < 0)
793 return retval;
794 }
1da177e4 795 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
1da177e4 796 retval = validate_change(cs, &trialcs);
85d7b949
DG
797 if (retval < 0)
798 return retval;
029190c5 799
8707d8b8
PM
800 /* Nothing to do if the cpus didn't change */
801 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
802 return 0;
58f4790b 803
8707d8b8
PM
804 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
805 if (retval)
806 return retval;
807
029190c5
PJ
808 is_load_balanced = is_sched_load_balance(&trialcs);
809
3d3f26a7 810 mutex_lock(&callback_mutex);
85d7b949 811 cs->cpus_allowed = trialcs.cpus_allowed;
3d3f26a7 812 mutex_unlock(&callback_mutex);
029190c5 813
8707d8b8
PM
814 /*
815 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 816 * that need an update.
8707d8b8 817 */
58f4790b
CW
818 scan.cg = cs->css.cgroup;
819 scan.test_task = cpuset_test_cpumask;
820 scan.process_task = cpuset_change_cpumask;
821 scan.heap = &heap;
822 cgroup_scan_tasks(&scan);
8707d8b8 823 heap_free(&heap);
58f4790b 824
8707d8b8 825 if (is_load_balanced)
029190c5 826 rebuild_sched_domains();
85d7b949 827 return 0;
1da177e4
LT
828}
829
e4e364e8
PJ
830/*
831 * cpuset_migrate_mm
832 *
833 * Migrate memory region from one set of nodes to another.
834 *
835 * Temporarilly set tasks mems_allowed to target nodes of migration,
836 * so that the migration code can allocate pages on these nodes.
837 *
2df167a3 838 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 839 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
840 * calls. Therefore we don't need to take task_lock around the
841 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 842 * our task's cpuset.
e4e364e8
PJ
843 *
844 * Hold callback_mutex around the two modifications of our tasks
845 * mems_allowed to synchronize with cpuset_mems_allowed().
846 *
847 * While the mm_struct we are migrating is typically from some
848 * other task, the task_struct mems_allowed that we are hacking
849 * is for our current task, which must allocate new pages for that
850 * migrating memory region.
851 *
852 * We call cpuset_update_task_memory_state() before hacking
853 * our tasks mems_allowed, so that we are assured of being in
854 * sync with our tasks cpuset, and in particular, callbacks to
855 * cpuset_update_task_memory_state() from nested page allocations
856 * won't see any mismatch of our cpuset and task mems_generation
857 * values, so won't overwrite our hacked tasks mems_allowed
858 * nodemask.
859 */
860
861static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
862 const nodemask_t *to)
863{
864 struct task_struct *tsk = current;
865
866 cpuset_update_task_memory_state();
867
868 mutex_lock(&callback_mutex);
869 tsk->mems_allowed = *to;
870 mutex_unlock(&callback_mutex);
871
872 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
873
874 mutex_lock(&callback_mutex);
8793d854 875 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
876 mutex_unlock(&callback_mutex);
877}
878
053199ed 879/*
4225399a
PJ
880 * Handle user request to change the 'mems' memory placement
881 * of a cpuset. Needs to validate the request, update the
882 * cpusets mems_allowed and mems_generation, and for each
04c19fa6
PJ
883 * task in the cpuset, rebind any vma mempolicies and if
884 * the cpuset is marked 'memory_migrate', migrate the tasks
885 * pages to the new memory.
4225399a 886 *
2df167a3 887 * Call with cgroup_mutex held. May take callback_mutex during call.
4225399a
PJ
888 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
889 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
890 * their mempolicies to the cpusets new mems_allowed.
053199ed
PJ
891 */
892
8793d854
PM
893static void *cpuset_being_rebound;
894
1da177e4
LT
895static int update_nodemask(struct cpuset *cs, char *buf)
896{
897 struct cpuset trialcs;
04c19fa6 898 nodemask_t oldmem;
8793d854 899 struct task_struct *p;
4225399a
PJ
900 struct mm_struct **mmarray;
901 int i, n, ntasks;
04c19fa6 902 int migrate;
4225399a 903 int fudge;
1da177e4 904 int retval;
8793d854 905 struct cgroup_iter it;
1da177e4 906
0e1e7c7a
CL
907 /*
908 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
909 * it's read-only
910 */
38837fc7
PJ
911 if (cs == &top_cpuset)
912 return -EACCES;
913
1da177e4 914 trialcs = *cs;
6f7f02e7
DR
915
916 /*
020958b6
PJ
917 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
918 * Since nodelist_parse() fails on an empty mask, we special case
919 * that parsing. The validate_change() call ensures that cpusets
920 * with tasks have memory.
6f7f02e7 921 */
020958b6
PJ
922 buf = strstrip(buf);
923 if (!*buf) {
6f7f02e7
DR
924 nodes_clear(trialcs.mems_allowed);
925 } else {
926 retval = nodelist_parse(buf, trialcs.mems_allowed);
927 if (retval < 0)
928 goto done;
929 }
0e1e7c7a
CL
930 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed,
931 node_states[N_HIGH_MEMORY]);
04c19fa6
PJ
932 oldmem = cs->mems_allowed;
933 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
934 retval = 0; /* Too easy - nothing to do */
935 goto done;
936 }
59dac16f
PJ
937 retval = validate_change(cs, &trialcs);
938 if (retval < 0)
939 goto done;
940
3d3f26a7 941 mutex_lock(&callback_mutex);
59dac16f 942 cs->mems_allowed = trialcs.mems_allowed;
151a4420 943 cs->mems_generation = cpuset_mems_generation++;
3d3f26a7 944 mutex_unlock(&callback_mutex);
59dac16f 945
846a16bf 946 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a
PJ
947
948 fudge = 10; /* spare mmarray[] slots */
949 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
950 retval = -ENOMEM;
951
952 /*
953 * Allocate mmarray[] to hold mm reference for each task
954 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
955 * tasklist_lock. We could use GFP_ATOMIC, but with a
956 * few more lines of code, we can retry until we get a big
957 * enough mmarray[] w/o using GFP_ATOMIC.
958 */
959 while (1) {
8793d854 960 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
4225399a
PJ
961 ntasks += fudge;
962 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
963 if (!mmarray)
964 goto done;
c2aef333 965 read_lock(&tasklist_lock); /* block fork */
8793d854 966 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
4225399a 967 break; /* got enough */
c2aef333 968 read_unlock(&tasklist_lock); /* try again */
4225399a
PJ
969 kfree(mmarray);
970 }
971
972 n = 0;
973
974 /* Load up mmarray[] with mm reference for each task in cpuset. */
8793d854
PM
975 cgroup_iter_start(cs->css.cgroup, &it);
976 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
4225399a
PJ
977 struct mm_struct *mm;
978
979 if (n >= ntasks) {
980 printk(KERN_WARNING
981 "Cpuset mempolicy rebind incomplete.\n");
8793d854 982 break;
4225399a 983 }
4225399a
PJ
984 mm = get_task_mm(p);
985 if (!mm)
986 continue;
987 mmarray[n++] = mm;
8793d854
PM
988 }
989 cgroup_iter_end(cs->css.cgroup, &it);
c2aef333 990 read_unlock(&tasklist_lock);
4225399a
PJ
991
992 /*
993 * Now that we've dropped the tasklist spinlock, we can
994 * rebind the vma mempolicies of each mm in mmarray[] to their
995 * new cpuset, and release that mm. The mpol_rebind_mm()
996 * call takes mmap_sem, which we couldn't take while holding
846a16bf 997 * tasklist_lock. Forks can happen again now - the mpol_dup()
4225399a
PJ
998 * cpuset_being_rebound check will catch such forks, and rebind
999 * their vma mempolicies too. Because we still hold the global
2df167a3 1000 * cgroup_mutex, we know that no other rebind effort will
4225399a
PJ
1001 * be contending for the global variable cpuset_being_rebound.
1002 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1003 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1004 */
04c19fa6 1005 migrate = is_memory_migrate(cs);
4225399a
PJ
1006 for (i = 0; i < n; i++) {
1007 struct mm_struct *mm = mmarray[i];
1008
1009 mpol_rebind_mm(mm, &cs->mems_allowed);
e4e364e8
PJ
1010 if (migrate)
1011 cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
4225399a
PJ
1012 mmput(mm);
1013 }
1014
2df167a3 1015 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
4225399a 1016 kfree(mmarray);
8793d854 1017 cpuset_being_rebound = NULL;
4225399a 1018 retval = 0;
59dac16f 1019done:
1da177e4
LT
1020 return retval;
1021}
1022
8793d854
PM
1023int current_cpuset_is_being_rebound(void)
1024{
1025 return task_cs(current) == cpuset_being_rebound;
1026}
1027
1d3504fc
HS
1028static int update_relax_domain_level(struct cpuset *cs, char *buf)
1029{
1030 int val = simple_strtol(buf, NULL, 10);
1031
1032 if (val < 0)
1033 val = -1;
1034
1035 if (val != cs->relax_domain_level) {
1036 cs->relax_domain_level = val;
1037 rebuild_sched_domains();
1038 }
1039
1040 return 0;
1041}
1042
1da177e4
LT
1043/*
1044 * update_flag - read a 0 or a 1 in a file and update associated flag
1045 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
029190c5 1046 * CS_SCHED_LOAD_BALANCE,
825a46af
PJ
1047 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
1048 * CS_SPREAD_PAGE, CS_SPREAD_SLAB)
1da177e4
LT
1049 * cs: the cpuset to update
1050 * buf: the buffer where we read the 0 or 1
053199ed 1051 *
2df167a3 1052 * Call with cgroup_mutex held.
1da177e4
LT
1053 */
1054
700fe1ab
PM
1055static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1056 int turning_on)
1da177e4 1057{
1da177e4 1058 struct cpuset trialcs;
607717a6 1059 int err;
029190c5 1060 int cpus_nonempty, balance_flag_changed;
1da177e4 1061
1da177e4
LT
1062 trialcs = *cs;
1063 if (turning_on)
1064 set_bit(bit, &trialcs.flags);
1065 else
1066 clear_bit(bit, &trialcs.flags);
1067
1068 err = validate_change(cs, &trialcs);
85d7b949
DG
1069 if (err < 0)
1070 return err;
029190c5
PJ
1071
1072 cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
1073 balance_flag_changed = (is_sched_load_balance(cs) !=
1074 is_sched_load_balance(&trialcs));
1075
3d3f26a7 1076 mutex_lock(&callback_mutex);
69604067 1077 cs->flags = trialcs.flags;
3d3f26a7 1078 mutex_unlock(&callback_mutex);
85d7b949 1079
029190c5
PJ
1080 if (cpus_nonempty && balance_flag_changed)
1081 rebuild_sched_domains();
1082
85d7b949 1083 return 0;
1da177e4
LT
1084}
1085
3e0d98b9 1086/*
80f7228b 1087 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1088 *
1089 * These routines manage a digitally filtered, constant time based,
1090 * event frequency meter. There are four routines:
1091 * fmeter_init() - initialize a frequency meter.
1092 * fmeter_markevent() - called each time the event happens.
1093 * fmeter_getrate() - returns the recent rate of such events.
1094 * fmeter_update() - internal routine used to update fmeter.
1095 *
1096 * A common data structure is passed to each of these routines,
1097 * which is used to keep track of the state required to manage the
1098 * frequency meter and its digital filter.
1099 *
1100 * The filter works on the number of events marked per unit time.
1101 * The filter is single-pole low-pass recursive (IIR). The time unit
1102 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1103 * simulate 3 decimal digits of precision (multiplied by 1000).
1104 *
1105 * With an FM_COEF of 933, and a time base of 1 second, the filter
1106 * has a half-life of 10 seconds, meaning that if the events quit
1107 * happening, then the rate returned from the fmeter_getrate()
1108 * will be cut in half each 10 seconds, until it converges to zero.
1109 *
1110 * It is not worth doing a real infinitely recursive filter. If more
1111 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1112 * just compute FM_MAXTICKS ticks worth, by which point the level
1113 * will be stable.
1114 *
1115 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1116 * arithmetic overflow in the fmeter_update() routine.
1117 *
1118 * Given the simple 32 bit integer arithmetic used, this meter works
1119 * best for reporting rates between one per millisecond (msec) and
1120 * one per 32 (approx) seconds. At constant rates faster than one
1121 * per msec it maxes out at values just under 1,000,000. At constant
1122 * rates between one per msec, and one per second it will stabilize
1123 * to a value N*1000, where N is the rate of events per second.
1124 * At constant rates between one per second and one per 32 seconds,
1125 * it will be choppy, moving up on the seconds that have an event,
1126 * and then decaying until the next event. At rates slower than
1127 * about one in 32 seconds, it decays all the way back to zero between
1128 * each event.
1129 */
1130
1131#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1132#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1133#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1134#define FM_SCALE 1000 /* faux fixed point scale */
1135
1136/* Initialize a frequency meter */
1137static void fmeter_init(struct fmeter *fmp)
1138{
1139 fmp->cnt = 0;
1140 fmp->val = 0;
1141 fmp->time = 0;
1142 spin_lock_init(&fmp->lock);
1143}
1144
1145/* Internal meter update - process cnt events and update value */
1146static void fmeter_update(struct fmeter *fmp)
1147{
1148 time_t now = get_seconds();
1149 time_t ticks = now - fmp->time;
1150
1151 if (ticks == 0)
1152 return;
1153
1154 ticks = min(FM_MAXTICKS, ticks);
1155 while (ticks-- > 0)
1156 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1157 fmp->time = now;
1158
1159 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1160 fmp->cnt = 0;
1161}
1162
1163/* Process any previous ticks, then bump cnt by one (times scale). */
1164static void fmeter_markevent(struct fmeter *fmp)
1165{
1166 spin_lock(&fmp->lock);
1167 fmeter_update(fmp);
1168 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1169 spin_unlock(&fmp->lock);
1170}
1171
1172/* Process any previous ticks, then return current value. */
1173static int fmeter_getrate(struct fmeter *fmp)
1174{
1175 int val;
1176
1177 spin_lock(&fmp->lock);
1178 fmeter_update(fmp);
1179 val = fmp->val;
1180 spin_unlock(&fmp->lock);
1181 return val;
1182}
1183
2df167a3 1184/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
8793d854
PM
1185static int cpuset_can_attach(struct cgroup_subsys *ss,
1186 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1187{
8793d854 1188 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1189
1da177e4
LT
1190 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1191 return -ENOSPC;
1192
8793d854
PM
1193 return security_task_setscheduler(tsk, 0, NULL);
1194}
1da177e4 1195
8793d854
PM
1196static void cpuset_attach(struct cgroup_subsys *ss,
1197 struct cgroup *cont, struct cgroup *oldcont,
1198 struct task_struct *tsk)
1199{
1200 cpumask_t cpus;
1201 nodemask_t from, to;
1202 struct mm_struct *mm;
1203 struct cpuset *cs = cgroup_cs(cont);
1204 struct cpuset *oldcs = cgroup_cs(oldcont);
22fb52dd 1205
3d3f26a7 1206 mutex_lock(&callback_mutex);
1da177e4 1207 guarantee_online_cpus(cs, &cpus);
f9a86fcb 1208 set_cpus_allowed_ptr(tsk, &cpus);
8793d854 1209 mutex_unlock(&callback_mutex);
1da177e4 1210
45b07ef3
PJ
1211 from = oldcs->mems_allowed;
1212 to = cs->mems_allowed;
4225399a
PJ
1213 mm = get_task_mm(tsk);
1214 if (mm) {
1215 mpol_rebind_mm(mm, &to);
2741a559 1216 if (is_memory_migrate(cs))
e4e364e8 1217 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1218 mmput(mm);
1219 }
1220
1da177e4
LT
1221}
1222
1223/* The various types of files and directories in a cpuset file system */
1224
1225typedef enum {
45b07ef3 1226 FILE_MEMORY_MIGRATE,
1da177e4
LT
1227 FILE_CPULIST,
1228 FILE_MEMLIST,
1229 FILE_CPU_EXCLUSIVE,
1230 FILE_MEM_EXCLUSIVE,
029190c5 1231 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1232 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1233 FILE_MEMORY_PRESSURE_ENABLED,
1234 FILE_MEMORY_PRESSURE,
825a46af
PJ
1235 FILE_SPREAD_PAGE,
1236 FILE_SPREAD_SLAB,
1da177e4
LT
1237} cpuset_filetype_t;
1238
8793d854
PM
1239static ssize_t cpuset_common_file_write(struct cgroup *cont,
1240 struct cftype *cft,
1241 struct file *file,
d3ed11c3 1242 const char __user *userbuf,
1da177e4
LT
1243 size_t nbytes, loff_t *unused_ppos)
1244{
8793d854 1245 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1246 cpuset_filetype_t type = cft->private;
1247 char *buffer;
1248 int retval = 0;
1249
1250 /* Crude upper limit on largest legitimate cpulist user might write. */
029190c5 1251 if (nbytes > 100U + 6 * max(NR_CPUS, MAX_NUMNODES))
1da177e4
LT
1252 return -E2BIG;
1253
1254 /* +1 for nul-terminator */
b331d259
HH
1255 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1256 if (!buffer)
1da177e4
LT
1257 return -ENOMEM;
1258
1259 if (copy_from_user(buffer, userbuf, nbytes)) {
1260 retval = -EFAULT;
1261 goto out1;
1262 }
1263 buffer[nbytes] = 0; /* nul-terminate */
1264
8793d854 1265 cgroup_lock();
1da177e4 1266
8793d854 1267 if (cgroup_is_removed(cont)) {
1da177e4
LT
1268 retval = -ENODEV;
1269 goto out2;
1270 }
1271
1272 switch (type) {
1273 case FILE_CPULIST:
1274 retval = update_cpumask(cs, buffer);
1275 break;
1276 case FILE_MEMLIST:
1277 retval = update_nodemask(cs, buffer);
1278 break;
700fe1ab
PM
1279 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1280 retval = update_relax_domain_level(cs, buffer);
1281 break;
1282 default:
1283 retval = -EINVAL;
1284 goto out2;
1285 }
1286
1287 if (retval == 0)
1288 retval = nbytes;
1289out2:
1290 cgroup_unlock();
1291out1:
1292 kfree(buffer);
1293 return retval;
1294}
1295
1296static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1297{
1298 int retval = 0;
1299 struct cpuset *cs = cgroup_cs(cgrp);
1300 cpuset_filetype_t type = cft->private;
1301
1302 cgroup_lock();
1303
1304 if (cgroup_is_removed(cgrp)) {
1305 cgroup_unlock();
1306 return -ENODEV;
1307 }
1308
1309 switch (type) {
1da177e4 1310 case FILE_CPU_EXCLUSIVE:
700fe1ab 1311 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1312 break;
1313 case FILE_MEM_EXCLUSIVE:
700fe1ab 1314 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1315 break;
029190c5 1316 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1317 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1318 break;
45b07ef3 1319 case FILE_MEMORY_MIGRATE:
700fe1ab 1320 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1321 break;
3e0d98b9 1322 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1323 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1324 break;
1325 case FILE_MEMORY_PRESSURE:
1326 retval = -EACCES;
1327 break;
825a46af 1328 case FILE_SPREAD_PAGE:
700fe1ab 1329 retval = update_flag(CS_SPREAD_PAGE, cs, val);
151a4420 1330 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1331 break;
1332 case FILE_SPREAD_SLAB:
700fe1ab 1333 retval = update_flag(CS_SPREAD_SLAB, cs, val);
151a4420 1334 cs->mems_generation = cpuset_mems_generation++;
825a46af 1335 break;
1da177e4
LT
1336 default:
1337 retval = -EINVAL;
700fe1ab 1338 break;
1da177e4 1339 }
8793d854 1340 cgroup_unlock();
1da177e4
LT
1341 return retval;
1342}
1343
1da177e4
LT
1344/*
1345 * These ascii lists should be read in a single call, by using a user
1346 * buffer large enough to hold the entire map. If read in smaller
1347 * chunks, there is no guarantee of atomicity. Since the display format
1348 * used, list of ranges of sequential numbers, is variable length,
1349 * and since these maps can change value dynamically, one could read
1350 * gibberish by doing partial reads while a list was changing.
1351 * A single large read to a buffer that crosses a page boundary is
1352 * ok, because the result being copied to user land is not recomputed
1353 * across a page fault.
1354 */
1355
1356static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1357{
1358 cpumask_t mask;
1359
3d3f26a7 1360 mutex_lock(&callback_mutex);
1da177e4 1361 mask = cs->cpus_allowed;
3d3f26a7 1362 mutex_unlock(&callback_mutex);
1da177e4
LT
1363
1364 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1365}
1366
1367static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1368{
1369 nodemask_t mask;
1370
3d3f26a7 1371 mutex_lock(&callback_mutex);
1da177e4 1372 mask = cs->mems_allowed;
3d3f26a7 1373 mutex_unlock(&callback_mutex);
1da177e4
LT
1374
1375 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1376}
1377
8793d854
PM
1378static ssize_t cpuset_common_file_read(struct cgroup *cont,
1379 struct cftype *cft,
1380 struct file *file,
1381 char __user *buf,
1382 size_t nbytes, loff_t *ppos)
1da177e4 1383{
8793d854 1384 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1385 cpuset_filetype_t type = cft->private;
1386 char *page;
1387 ssize_t retval = 0;
1388 char *s;
1da177e4 1389
e12ba74d 1390 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1391 return -ENOMEM;
1392
1393 s = page;
1394
1395 switch (type) {
1396 case FILE_CPULIST:
1397 s += cpuset_sprintf_cpulist(s, cs);
1398 break;
1399 case FILE_MEMLIST:
1400 s += cpuset_sprintf_memlist(s, cs);
1401 break;
1d3504fc
HS
1402 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1403 s += sprintf(s, "%d", cs->relax_domain_level);
1404 break;
1da177e4
LT
1405 default:
1406 retval = -EINVAL;
1407 goto out;
1408 }
1409 *s++ = '\n';
1da177e4 1410
eacaa1f5 1411 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1412out:
1413 free_page((unsigned long)page);
1414 return retval;
1415}
1416
700fe1ab
PM
1417static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1418{
1419 struct cpuset *cs = cgroup_cs(cont);
1420 cpuset_filetype_t type = cft->private;
1421 switch (type) {
1422 case FILE_CPU_EXCLUSIVE:
1423 return is_cpu_exclusive(cs);
1424 case FILE_MEM_EXCLUSIVE:
1425 return is_mem_exclusive(cs);
1426 case FILE_SCHED_LOAD_BALANCE:
1427 return is_sched_load_balance(cs);
1428 case FILE_MEMORY_MIGRATE:
1429 return is_memory_migrate(cs);
1430 case FILE_MEMORY_PRESSURE_ENABLED:
1431 return cpuset_memory_pressure_enabled;
1432 case FILE_MEMORY_PRESSURE:
1433 return fmeter_getrate(&cs->fmeter);
1434 case FILE_SPREAD_PAGE:
1435 return is_spread_page(cs);
1436 case FILE_SPREAD_SLAB:
1437 return is_spread_slab(cs);
1438 default:
1439 BUG();
1440 }
1441}
1da177e4 1442
1da177e4
LT
1443
1444/*
1445 * for the common functions, 'private' gives the type of file
1446 */
1447
1da177e4
LT
1448static struct cftype cft_cpus = {
1449 .name = "cpus",
8793d854
PM
1450 .read = cpuset_common_file_read,
1451 .write = cpuset_common_file_write,
1da177e4
LT
1452 .private = FILE_CPULIST,
1453};
1454
1455static struct cftype cft_mems = {
1456 .name = "mems",
8793d854
PM
1457 .read = cpuset_common_file_read,
1458 .write = cpuset_common_file_write,
1da177e4
LT
1459 .private = FILE_MEMLIST,
1460};
1461
1462static struct cftype cft_cpu_exclusive = {
1463 .name = "cpu_exclusive",
700fe1ab
PM
1464 .read_u64 = cpuset_read_u64,
1465 .write_u64 = cpuset_write_u64,
1da177e4
LT
1466 .private = FILE_CPU_EXCLUSIVE,
1467};
1468
1469static struct cftype cft_mem_exclusive = {
1470 .name = "mem_exclusive",
700fe1ab
PM
1471 .read_u64 = cpuset_read_u64,
1472 .write_u64 = cpuset_write_u64,
1da177e4
LT
1473 .private = FILE_MEM_EXCLUSIVE,
1474};
1475
029190c5
PJ
1476static struct cftype cft_sched_load_balance = {
1477 .name = "sched_load_balance",
700fe1ab
PM
1478 .read_u64 = cpuset_read_u64,
1479 .write_u64 = cpuset_write_u64,
029190c5
PJ
1480 .private = FILE_SCHED_LOAD_BALANCE,
1481};
1482
1d3504fc
HS
1483static struct cftype cft_sched_relax_domain_level = {
1484 .name = "sched_relax_domain_level",
1485 .read = cpuset_common_file_read,
1486 .write = cpuset_common_file_write,
1487 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1488};
1489
45b07ef3
PJ
1490static struct cftype cft_memory_migrate = {
1491 .name = "memory_migrate",
700fe1ab
PM
1492 .read_u64 = cpuset_read_u64,
1493 .write_u64 = cpuset_write_u64,
45b07ef3
PJ
1494 .private = FILE_MEMORY_MIGRATE,
1495};
1496
3e0d98b9
PJ
1497static struct cftype cft_memory_pressure_enabled = {
1498 .name = "memory_pressure_enabled",
700fe1ab
PM
1499 .read_u64 = cpuset_read_u64,
1500 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1501 .private = FILE_MEMORY_PRESSURE_ENABLED,
1502};
1503
1504static struct cftype cft_memory_pressure = {
1505 .name = "memory_pressure",
700fe1ab
PM
1506 .read_u64 = cpuset_read_u64,
1507 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1508 .private = FILE_MEMORY_PRESSURE,
1509};
1510
825a46af
PJ
1511static struct cftype cft_spread_page = {
1512 .name = "memory_spread_page",
700fe1ab
PM
1513 .read_u64 = cpuset_read_u64,
1514 .write_u64 = cpuset_write_u64,
825a46af
PJ
1515 .private = FILE_SPREAD_PAGE,
1516};
1517
1518static struct cftype cft_spread_slab = {
1519 .name = "memory_spread_slab",
700fe1ab
PM
1520 .read_u64 = cpuset_read_u64,
1521 .write_u64 = cpuset_write_u64,
825a46af
PJ
1522 .private = FILE_SPREAD_SLAB,
1523};
1524
8793d854 1525static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1526{
1527 int err;
1528
8793d854 1529 if ((err = cgroup_add_file(cont, ss, &cft_cpus)) < 0)
1da177e4 1530 return err;
8793d854 1531 if ((err = cgroup_add_file(cont, ss, &cft_mems)) < 0)
1da177e4 1532 return err;
8793d854 1533 if ((err = cgroup_add_file(cont, ss, &cft_cpu_exclusive)) < 0)
1da177e4 1534 return err;
8793d854 1535 if ((err = cgroup_add_file(cont, ss, &cft_mem_exclusive)) < 0)
1da177e4 1536 return err;
8793d854 1537 if ((err = cgroup_add_file(cont, ss, &cft_memory_migrate)) < 0)
1da177e4 1538 return err;
029190c5
PJ
1539 if ((err = cgroup_add_file(cont, ss, &cft_sched_load_balance)) < 0)
1540 return err;
1d3504fc
HS
1541 if ((err = cgroup_add_file(cont, ss,
1542 &cft_sched_relax_domain_level)) < 0)
1543 return err;
8793d854 1544 if ((err = cgroup_add_file(cont, ss, &cft_memory_pressure)) < 0)
45b07ef3 1545 return err;
8793d854 1546 if ((err = cgroup_add_file(cont, ss, &cft_spread_page)) < 0)
3e0d98b9 1547 return err;
8793d854 1548 if ((err = cgroup_add_file(cont, ss, &cft_spread_slab)) < 0)
1da177e4 1549 return err;
8793d854
PM
1550 /* memory_pressure_enabled is in root cpuset only */
1551 if (err == 0 && !cont->parent)
1552 err = cgroup_add_file(cont, ss,
1553 &cft_memory_pressure_enabled);
1da177e4
LT
1554 return 0;
1555}
1556
8793d854
PM
1557/*
1558 * post_clone() is called at the end of cgroup_clone().
1559 * 'cgroup' was just created automatically as a result of
1560 * a cgroup_clone(), and the current task is about to
1561 * be moved into 'cgroup'.
1562 *
1563 * Currently we refuse to set up the cgroup - thereby
1564 * refusing the task to be entered, and as a result refusing
1565 * the sys_unshare() or clone() which initiated it - if any
1566 * sibling cpusets have exclusive cpus or mem.
1567 *
1568 * If this becomes a problem for some users who wish to
1569 * allow that scenario, then cpuset_post_clone() could be
1570 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2df167a3
PM
1571 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1572 * held.
8793d854
PM
1573 */
1574static void cpuset_post_clone(struct cgroup_subsys *ss,
1575 struct cgroup *cgroup)
1576{
1577 struct cgroup *parent, *child;
1578 struct cpuset *cs, *parent_cs;
1579
1580 parent = cgroup->parent;
1581 list_for_each_entry(child, &parent->children, sibling) {
1582 cs = cgroup_cs(child);
1583 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1584 return;
1585 }
1586 cs = cgroup_cs(cgroup);
1587 parent_cs = cgroup_cs(parent);
1588
1589 cs->mems_allowed = parent_cs->mems_allowed;
1590 cs->cpus_allowed = parent_cs->cpus_allowed;
1591 return;
1592}
1593
1da177e4
LT
1594/*
1595 * cpuset_create - create a cpuset
2df167a3
PM
1596 * ss: cpuset cgroup subsystem
1597 * cont: control group that the new cpuset will be part of
1da177e4
LT
1598 */
1599
8793d854
PM
1600static struct cgroup_subsys_state *cpuset_create(
1601 struct cgroup_subsys *ss,
1602 struct cgroup *cont)
1da177e4
LT
1603{
1604 struct cpuset *cs;
8793d854 1605 struct cpuset *parent;
1da177e4 1606
8793d854
PM
1607 if (!cont->parent) {
1608 /* This is early initialization for the top cgroup */
1609 top_cpuset.mems_generation = cpuset_mems_generation++;
1610 return &top_cpuset.css;
1611 }
1612 parent = cgroup_cs(cont->parent);
1da177e4
LT
1613 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1614 if (!cs)
8793d854 1615 return ERR_PTR(-ENOMEM);
1da177e4 1616
cf2a473c 1617 cpuset_update_task_memory_state();
1da177e4 1618 cs->flags = 0;
825a46af
PJ
1619 if (is_spread_page(parent))
1620 set_bit(CS_SPREAD_PAGE, &cs->flags);
1621 if (is_spread_slab(parent))
1622 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1623 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
f9a86fcb
MT
1624 cpus_clear(cs->cpus_allowed);
1625 nodes_clear(cs->mems_allowed);
151a4420 1626 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1627 fmeter_init(&cs->fmeter);
1d3504fc 1628 cs->relax_domain_level = -1;
1da177e4
LT
1629
1630 cs->parent = parent;
202f72d5 1631 number_of_cpusets++;
8793d854 1632 return &cs->css ;
1da177e4
LT
1633}
1634
029190c5
PJ
1635/*
1636 * Locking note on the strange update_flag() call below:
1637 *
1638 * If the cpuset being removed has its flag 'sched_load_balance'
1639 * enabled, then simulate turning sched_load_balance off, which
86ef5c9a 1640 * will call rebuild_sched_domains(). The get_online_cpus()
029190c5
PJ
1641 * call in rebuild_sched_domains() must not be made while holding
1642 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
86ef5c9a 1643 * get_online_cpus() calls. So the reverse nesting would risk an
029190c5
PJ
1644 * ABBA deadlock.
1645 */
1646
8793d854 1647static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1648{
8793d854 1649 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1650
cf2a473c 1651 cpuset_update_task_memory_state();
029190c5
PJ
1652
1653 if (is_sched_load_balance(cs))
700fe1ab 1654 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
029190c5 1655
202f72d5 1656 number_of_cpusets--;
8793d854 1657 kfree(cs);
1da177e4
LT
1658}
1659
8793d854
PM
1660struct cgroup_subsys cpuset_subsys = {
1661 .name = "cpuset",
1662 .create = cpuset_create,
1663 .destroy = cpuset_destroy,
1664 .can_attach = cpuset_can_attach,
1665 .attach = cpuset_attach,
1666 .populate = cpuset_populate,
1667 .post_clone = cpuset_post_clone,
1668 .subsys_id = cpuset_subsys_id,
1669 .early_init = 1,
1670};
1671
c417f024
PJ
1672/*
1673 * cpuset_init_early - just enough so that the calls to
1674 * cpuset_update_task_memory_state() in early init code
1675 * are harmless.
1676 */
1677
1678int __init cpuset_init_early(void)
1679{
8793d854 1680 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1681 return 0;
1682}
1683
8793d854 1684
1da177e4
LT
1685/**
1686 * cpuset_init - initialize cpusets at system boot
1687 *
1688 * Description: Initialize top_cpuset and the cpuset internal file system,
1689 **/
1690
1691int __init cpuset_init(void)
1692{
8793d854 1693 int err = 0;
1da177e4 1694
f9a86fcb
MT
1695 cpus_setall(top_cpuset.cpus_allowed);
1696 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1697
3e0d98b9 1698 fmeter_init(&top_cpuset.fmeter);
151a4420 1699 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1700 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1701 top_cpuset.relax_domain_level = -1;
1da177e4 1702
1da177e4
LT
1703 err = register_filesystem(&cpuset_fs_type);
1704 if (err < 0)
8793d854
PM
1705 return err;
1706
202f72d5 1707 number_of_cpusets = 1;
8793d854 1708 return 0;
1da177e4
LT
1709}
1710
956db3ca
CW
1711/**
1712 * cpuset_do_move_task - move a given task to another cpuset
1713 * @tsk: pointer to task_struct the task to move
1714 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1715 *
1716 * Called by cgroup_scan_tasks() for each task in a cgroup.
1717 * Return nonzero to stop the walk through the tasks.
1718 */
9e0c914c
AB
1719static void cpuset_do_move_task(struct task_struct *tsk,
1720 struct cgroup_scanner *scan)
956db3ca
CW
1721{
1722 struct cpuset_hotplug_scanner *chsp;
1723
1724 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1725 cgroup_attach_task(chsp->to, tsk);
1726}
1727
1728/**
1729 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1730 * @from: cpuset in which the tasks currently reside
1731 * @to: cpuset to which the tasks will be moved
1732 *
c8d9c90c
PJ
1733 * Called with cgroup_mutex held
1734 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1735 *
1736 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1737 * calling callback functions for each.
1738 */
1739static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1740{
1741 struct cpuset_hotplug_scanner scan;
1742
1743 scan.scan.cg = from->css.cgroup;
1744 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1745 scan.scan.process_task = cpuset_do_move_task;
1746 scan.scan.heap = NULL;
1747 scan.to = to->css.cgroup;
1748
1749 if (cgroup_scan_tasks((struct cgroup_scanner *)&scan))
1750 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1751 "cgroup_scan_tasks failed\n");
1752}
1753
b1aac8bb
PJ
1754/*
1755 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
1756 * or memory nodes, we need to walk over the cpuset hierarchy,
1757 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1758 * last CPU or node from a cpuset, then move the tasks in the empty
1759 * cpuset to its next-highest non-empty parent.
b1aac8bb 1760 *
c8d9c90c
PJ
1761 * Called with cgroup_mutex held
1762 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1763 */
956db3ca
CW
1764static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1765{
1766 struct cpuset *parent;
1767
c8d9c90c
PJ
1768 /*
1769 * The cgroup's css_sets list is in use if there are tasks
1770 * in the cpuset; the list is empty if there are none;
1771 * the cs->css.refcnt seems always 0.
1772 */
956db3ca
CW
1773 if (list_empty(&cs->css.cgroup->css_sets))
1774 return;
b1aac8bb 1775
956db3ca
CW
1776 /*
1777 * Find its next-highest non-empty parent, (top cpuset
1778 * has online cpus, so can't be empty).
1779 */
1780 parent = cs->parent;
b4501295
PJ
1781 while (cpus_empty(parent->cpus_allowed) ||
1782 nodes_empty(parent->mems_allowed))
956db3ca 1783 parent = parent->parent;
956db3ca
CW
1784
1785 move_member_tasks_to_cpuset(cs, parent);
1786}
1787
1788/*
1789 * Walk the specified cpuset subtree and look for empty cpusets.
1790 * The tasks of such cpuset must be moved to a parent cpuset.
1791 *
2df167a3 1792 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
1793 * cpus_allowed and mems_allowed.
1794 *
1795 * This walk processes the tree from top to bottom, completing one layer
1796 * before dropping down to the next. It always processes a node before
1797 * any of its children.
1798 *
1799 * For now, since we lack memory hot unplug, we'll never see a cpuset
1800 * that has tasks along with an empty 'mems'. But if we did see such
1801 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1802 */
1803static void scan_for_empty_cpusets(const struct cpuset *root)
b1aac8bb 1804{
956db3ca
CW
1805 struct cpuset *cp; /* scans cpusets being updated */
1806 struct cpuset *child; /* scans child cpusets of cp */
1807 struct list_head queue;
8793d854 1808 struct cgroup *cont;
b1aac8bb 1809
956db3ca
CW
1810 INIT_LIST_HEAD(&queue);
1811
1812 list_add_tail((struct list_head *)&root->stack_list, &queue);
1813
956db3ca
CW
1814 while (!list_empty(&queue)) {
1815 cp = container_of(queue.next, struct cpuset, stack_list);
1816 list_del(queue.next);
1817 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1818 child = cgroup_cs(cont);
1819 list_add_tail(&child->stack_list, &queue);
1820 }
1821 cont = cp->css.cgroup;
b4501295
PJ
1822
1823 /* Continue past cpusets with all cpus, mems online */
1824 if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
1825 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1826 continue;
1827
956db3ca 1828 /* Remove offline cpus and mems from this cpuset. */
b4501295 1829 mutex_lock(&callback_mutex);
956db3ca
CW
1830 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1831 nodes_and(cp->mems_allowed, cp->mems_allowed,
1832 node_states[N_HIGH_MEMORY]);
b4501295
PJ
1833 mutex_unlock(&callback_mutex);
1834
1835 /* Move tasks from the empty cpuset to a parent */
c8d9c90c 1836 if (cpus_empty(cp->cpus_allowed) ||
b4501295 1837 nodes_empty(cp->mems_allowed))
956db3ca 1838 remove_tasks_in_empty_cpuset(cp);
b1aac8bb
PJ
1839 }
1840}
1841
1842/*
1843 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
0e1e7c7a 1844 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
956db3ca 1845 * track what's online after any CPU or memory node hotplug or unplug event.
b1aac8bb
PJ
1846 *
1847 * Since there are two callers of this routine, one for CPU hotplug
1848 * events and one for memory node hotplug events, we could have coded
1849 * two separate routines here. We code it as a single common routine
1850 * in order to minimize text size.
1851 */
1852
1853static void common_cpu_mem_hotplug_unplug(void)
1854{
8793d854 1855 cgroup_lock();
b1aac8bb 1856
b1aac8bb 1857 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 1858 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
956db3ca 1859 scan_for_empty_cpusets(&top_cpuset);
b1aac8bb 1860
8793d854 1861 cgroup_unlock();
b1aac8bb 1862}
b1aac8bb 1863
4c4d50f7
PJ
1864/*
1865 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1866 * period. This is necessary in order to make cpusets transparent
1867 * (of no affect) on systems that are actively using CPU hotplug
1868 * but making no active use of cpusets.
1869 *
38837fc7
PJ
1870 * This routine ensures that top_cpuset.cpus_allowed tracks
1871 * cpu_online_map on each CPU hotplug (cpuhp) event.
4c4d50f7
PJ
1872 */
1873
029190c5
PJ
1874static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
1875 unsigned long phase, void *unused_cpu)
4c4d50f7 1876{
ac076758
AK
1877 if (phase == CPU_DYING || phase == CPU_DYING_FROZEN)
1878 return NOTIFY_DONE;
1879
b1aac8bb 1880 common_cpu_mem_hotplug_unplug();
4c4d50f7
PJ
1881 return 0;
1882}
4c4d50f7 1883
b1aac8bb 1884#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 1885/*
0e1e7c7a
CL
1886 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
1887 * Call this routine anytime after you change
1888 * node_states[N_HIGH_MEMORY].
38837fc7
PJ
1889 * See also the previous routine cpuset_handle_cpuhp().
1890 */
1891
1af98928 1892void cpuset_track_online_nodes(void)
38837fc7 1893{
b1aac8bb 1894 common_cpu_mem_hotplug_unplug();
38837fc7
PJ
1895}
1896#endif
1897
1da177e4
LT
1898/**
1899 * cpuset_init_smp - initialize cpus_allowed
1900 *
1901 * Description: Finish top cpuset after cpu, node maps are initialized
1902 **/
1903
1904void __init cpuset_init_smp(void)
1905{
1906 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 1907 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7
PJ
1908
1909 hotcpu_notifier(cpuset_handle_cpuhp, 0);
1da177e4
LT
1910}
1911
1912/**
3077a260 1913
1da177e4
LT
1914 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1915 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
f9a86fcb 1916 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
1da177e4
LT
1917 *
1918 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1919 * attached to the specified @tsk. Guaranteed to return some non-empty
1920 * subset of cpu_online_map, even if this means going outside the
1921 * tasks cpuset.
1922 **/
1923
f9a86fcb 1924void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
1da177e4 1925{
3d3f26a7 1926 mutex_lock(&callback_mutex);
f9a86fcb 1927 cpuset_cpus_allowed_locked(tsk, pmask);
470fd646 1928 mutex_unlock(&callback_mutex);
470fd646
CW
1929}
1930
1931/**
1932 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2df167a3 1933 * Must be called with callback_mutex held.
470fd646 1934 **/
f9a86fcb 1935void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
470fd646 1936{
909d75a3 1937 task_lock(tsk);
f9a86fcb 1938 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 1939 task_unlock(tsk);
1da177e4
LT
1940}
1941
1942void cpuset_init_current_mems_allowed(void)
1943{
f9a86fcb 1944 nodes_setall(current->mems_allowed);
1da177e4
LT
1945}
1946
909d75a3
PJ
1947/**
1948 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
1949 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
1950 *
1951 * Description: Returns the nodemask_t mems_allowed of the cpuset
1952 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 1953 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
1954 * tasks cpuset.
1955 **/
1956
1957nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
1958{
1959 nodemask_t mask;
1960
3d3f26a7 1961 mutex_lock(&callback_mutex);
909d75a3 1962 task_lock(tsk);
8793d854 1963 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 1964 task_unlock(tsk);
3d3f26a7 1965 mutex_unlock(&callback_mutex);
909d75a3
PJ
1966
1967 return mask;
1968}
1969
d9fd8a6d 1970/**
19770b32
MG
1971 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
1972 * @nodemask: the nodemask to be checked
d9fd8a6d 1973 *
19770b32 1974 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 1975 */
19770b32 1976int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 1977{
19770b32 1978 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
1979}
1980
9bf2229f
PJ
1981/*
1982 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
3d3f26a7 1983 * ancestor to the specified cpuset. Call holding callback_mutex.
9bf2229f
PJ
1984 * If no ancestor is mem_exclusive (an unusual configuration), then
1985 * returns the root cpuset.
1986 */
1987static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
1988{
1989 while (!is_mem_exclusive(cs) && cs->parent)
1990 cs = cs->parent;
1991 return cs;
1992}
1993
d9fd8a6d 1994/**
02a0e53d 1995 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
9bf2229f 1996 * @z: is this zone on an allowed node?
02a0e53d 1997 * @gfp_mask: memory allocation flags
d9fd8a6d 1998 *
02a0e53d
PJ
1999 * If we're in interrupt, yes, we can always allocate. If
2000 * __GFP_THISNODE is set, yes, we can always allocate. If zone
9bf2229f
PJ
2001 * z's node is in our tasks mems_allowed, yes. If it's not a
2002 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2003 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
c596d9f3
DR
2004 * If the task has been OOM killed and has access to memory reserves
2005 * as specified by the TIF_MEMDIE flag, yes.
9bf2229f
PJ
2006 * Otherwise, no.
2007 *
02a0e53d
PJ
2008 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2009 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2010 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2011 * from an enclosing cpuset.
2012 *
2013 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2014 * hardwall cpusets, and never sleeps.
2015 *
2016 * The __GFP_THISNODE placement logic is really handled elsewhere,
2017 * by forcibly using a zonelist starting at a specified node, and by
2018 * (in get_page_from_freelist()) refusing to consider the zones for
2019 * any node on the zonelist except the first. By the time any such
2020 * calls get to this routine, we should just shut up and say 'yes'.
2021 *
9bf2229f 2022 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2023 * and do not allow allocations outside the current tasks cpuset
2024 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2025 * GFP_KERNEL allocations are not so marked, so can escape to the
02a0e53d 2026 * nearest enclosing mem_exclusive ancestor cpuset.
9bf2229f 2027 *
02a0e53d
PJ
2028 * Scanning up parent cpusets requires callback_mutex. The
2029 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2030 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2031 * current tasks mems_allowed came up empty on the first pass over
2032 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2033 * cpuset are short of memory, might require taking the callback_mutex
2034 * mutex.
9bf2229f 2035 *
36be57ff 2036 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2037 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2038 * so no allocation on a node outside the cpuset is allowed (unless
2039 * in interrupt, of course).
36be57ff
PJ
2040 *
2041 * The second pass through get_page_from_freelist() doesn't even call
2042 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2043 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2044 * in alloc_flags. That logic and the checks below have the combined
2045 * affect that:
9bf2229f
PJ
2046 * in_interrupt - any node ok (current task context irrelevant)
2047 * GFP_ATOMIC - any node ok
c596d9f3 2048 * TIF_MEMDIE - any node ok
9bf2229f
PJ
2049 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
2050 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2051 *
2052 * Rule:
02a0e53d 2053 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2054 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2055 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2056 */
9bf2229f 2057
02a0e53d 2058int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
1da177e4 2059{
9bf2229f
PJ
2060 int node; /* node that zone z is on */
2061 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2062 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2063
9b819d20 2064 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2065 return 1;
89fa3024 2066 node = zone_to_nid(z);
92d1dbd2 2067 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2068 if (node_isset(node, current->mems_allowed))
2069 return 1;
c596d9f3
DR
2070 /*
2071 * Allow tasks that have access to memory reserves because they have
2072 * been OOM killed to get memory anywhere.
2073 */
2074 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2075 return 1;
9bf2229f
PJ
2076 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2077 return 0;
2078
5563e770
BP
2079 if (current->flags & PF_EXITING) /* Let dying task have memory */
2080 return 1;
2081
9bf2229f 2082 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2083 mutex_lock(&callback_mutex);
053199ed 2084
053199ed 2085 task_lock(current);
8793d854 2086 cs = nearest_exclusive_ancestor(task_cs(current));
053199ed
PJ
2087 task_unlock(current);
2088
9bf2229f 2089 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2090 mutex_unlock(&callback_mutex);
9bf2229f 2091 return allowed;
1da177e4
LT
2092}
2093
02a0e53d
PJ
2094/*
2095 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2096 * @z: is this zone on an allowed node?
2097 * @gfp_mask: memory allocation flags
2098 *
2099 * If we're in interrupt, yes, we can always allocate.
2100 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
c596d9f3
DR
2101 * z's node is in our tasks mems_allowed, yes. If the task has been
2102 * OOM killed and has access to memory reserves as specified by the
2103 * TIF_MEMDIE flag, yes. Otherwise, no.
02a0e53d
PJ
2104 *
2105 * The __GFP_THISNODE placement logic is really handled elsewhere,
2106 * by forcibly using a zonelist starting at a specified node, and by
2107 * (in get_page_from_freelist()) refusing to consider the zones for
2108 * any node on the zonelist except the first. By the time any such
2109 * calls get to this routine, we should just shut up and say 'yes'.
2110 *
2111 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2112 * this variant requires that the zone be in the current tasks
2113 * mems_allowed or that we're in interrupt. It does not scan up the
2114 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2115 * It never sleeps.
2116 */
2117
2118int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2119{
2120 int node; /* node that zone z is on */
2121
2122 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2123 return 1;
2124 node = zone_to_nid(z);
2125 if (node_isset(node, current->mems_allowed))
2126 return 1;
dedf8b79
DW
2127 /*
2128 * Allow tasks that have access to memory reserves because they have
2129 * been OOM killed to get memory anywhere.
2130 */
2131 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2132 return 1;
02a0e53d
PJ
2133 return 0;
2134}
2135
505970b9
PJ
2136/**
2137 * cpuset_lock - lock out any changes to cpuset structures
2138 *
3d3f26a7 2139 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2140 * from being changed while it scans the tasklist looking for a
3d3f26a7 2141 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2142 * cpuset_lock() routine, so the oom code can lock it, before
2143 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2144 * must be taken inside callback_mutex.
505970b9
PJ
2145 */
2146
2147void cpuset_lock(void)
2148{
3d3f26a7 2149 mutex_lock(&callback_mutex);
505970b9
PJ
2150}
2151
2152/**
2153 * cpuset_unlock - release lock on cpuset changes
2154 *
2155 * Undo the lock taken in a previous cpuset_lock() call.
2156 */
2157
2158void cpuset_unlock(void)
2159{
3d3f26a7 2160 mutex_unlock(&callback_mutex);
505970b9
PJ
2161}
2162
825a46af
PJ
2163/**
2164 * cpuset_mem_spread_node() - On which node to begin search for a page
2165 *
2166 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2167 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2168 * and if the memory allocation used cpuset_mem_spread_node()
2169 * to determine on which node to start looking, as it will for
2170 * certain page cache or slab cache pages such as used for file
2171 * system buffers and inode caches, then instead of starting on the
2172 * local node to look for a free page, rather spread the starting
2173 * node around the tasks mems_allowed nodes.
2174 *
2175 * We don't have to worry about the returned node being offline
2176 * because "it can't happen", and even if it did, it would be ok.
2177 *
2178 * The routines calling guarantee_online_mems() are careful to
2179 * only set nodes in task->mems_allowed that are online. So it
2180 * should not be possible for the following code to return an
2181 * offline node. But if it did, that would be ok, as this routine
2182 * is not returning the node where the allocation must be, only
2183 * the node where the search should start. The zonelist passed to
2184 * __alloc_pages() will include all nodes. If the slab allocator
2185 * is passed an offline node, it will fall back to the local node.
2186 * See kmem_cache_alloc_node().
2187 */
2188
2189int cpuset_mem_spread_node(void)
2190{
2191 int node;
2192
2193 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2194 if (node == MAX_NUMNODES)
2195 node = first_node(current->mems_allowed);
2196 current->cpuset_mem_spread_rotor = node;
2197 return node;
2198}
2199EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2200
ef08e3b4 2201/**
bbe373f2
DR
2202 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2203 * @tsk1: pointer to task_struct of some task.
2204 * @tsk2: pointer to task_struct of some other task.
2205 *
2206 * Description: Return true if @tsk1's mems_allowed intersects the
2207 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2208 * one of the task's memory usage might impact the memory available
2209 * to the other.
ef08e3b4
PJ
2210 **/
2211
bbe373f2
DR
2212int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2213 const struct task_struct *tsk2)
ef08e3b4 2214{
bbe373f2 2215 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2216}
2217
3e0d98b9
PJ
2218/*
2219 * Collection of memory_pressure is suppressed unless
2220 * this flag is enabled by writing "1" to the special
2221 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2222 */
2223
c5b2aff8 2224int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2225
2226/**
2227 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2228 *
2229 * Keep a running average of the rate of synchronous (direct)
2230 * page reclaim efforts initiated by tasks in each cpuset.
2231 *
2232 * This represents the rate at which some task in the cpuset
2233 * ran low on memory on all nodes it was allowed to use, and
2234 * had to enter the kernels page reclaim code in an effort to
2235 * create more free memory by tossing clean pages or swapping
2236 * or writing dirty pages.
2237 *
2238 * Display to user space in the per-cpuset read-only file
2239 * "memory_pressure". Value displayed is an integer
2240 * representing the recent rate of entry into the synchronous
2241 * (direct) page reclaim by any task attached to the cpuset.
2242 **/
2243
2244void __cpuset_memory_pressure_bump(void)
2245{
3e0d98b9 2246 task_lock(current);
8793d854 2247 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2248 task_unlock(current);
2249}
2250
8793d854 2251#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2252/*
2253 * proc_cpuset_show()
2254 * - Print tasks cpuset path into seq_file.
2255 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2256 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2257 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2258 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2259 * anyway.
1da177e4 2260 */
029190c5 2261static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2262{
13b41b09 2263 struct pid *pid;
1da177e4
LT
2264 struct task_struct *tsk;
2265 char *buf;
8793d854 2266 struct cgroup_subsys_state *css;
99f89551 2267 int retval;
1da177e4 2268
99f89551 2269 retval = -ENOMEM;
1da177e4
LT
2270 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2271 if (!buf)
99f89551
EB
2272 goto out;
2273
2274 retval = -ESRCH;
13b41b09
EB
2275 pid = m->private;
2276 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2277 if (!tsk)
2278 goto out_free;
1da177e4 2279
99f89551 2280 retval = -EINVAL;
8793d854
PM
2281 cgroup_lock();
2282 css = task_subsys_state(tsk, cpuset_subsys_id);
2283 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2284 if (retval < 0)
99f89551 2285 goto out_unlock;
1da177e4
LT
2286 seq_puts(m, buf);
2287 seq_putc(m, '\n');
99f89551 2288out_unlock:
8793d854 2289 cgroup_unlock();
99f89551
EB
2290 put_task_struct(tsk);
2291out_free:
1da177e4 2292 kfree(buf);
99f89551 2293out:
1da177e4
LT
2294 return retval;
2295}
2296
2297static int cpuset_open(struct inode *inode, struct file *file)
2298{
13b41b09
EB
2299 struct pid *pid = PROC_I(inode)->pid;
2300 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2301}
2302
9a32144e 2303const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2304 .open = cpuset_open,
2305 .read = seq_read,
2306 .llseek = seq_lseek,
2307 .release = single_release,
2308};
8793d854 2309#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2310
2311/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2312void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2313{
2314 seq_printf(m, "Cpus_allowed:\t");
2315 m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count,
2316 task->cpus_allowed);
2317 seq_printf(m, "\n");
39106dcf
MT
2318 seq_printf(m, "Cpus_allowed_list:\t");
2319 m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count,
2320 task->cpus_allowed);
2321 seq_printf(m, "\n");
df5f8314
EB
2322 seq_printf(m, "Mems_allowed:\t");
2323 m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count,
2324 task->mems_allowed);
2325 seq_printf(m, "\n");
39106dcf
MT
2326 seq_printf(m, "Mems_allowed_list:\t");
2327 m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count,
2328 task->mems_allowed);
2329 seq_printf(m, "\n");
1da177e4 2330}