cpuset: get rid of the useless forward declaration of cpuset
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
202f72d5
PJ
64/*
65 * Tracks how many cpusets are currently defined in system.
66 * When there is only one cpuset (the root cpuset) we can
67 * short circuit some hooks.
68 */
7edc5962 69int number_of_cpusets __read_mostly;
202f72d5 70
2df167a3 71/* Forward declare cgroup structures */
8793d854 72struct cgroup_subsys cpuset_subsys;
8793d854 73
3e0d98b9
PJ
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
1da177e4 83struct cpuset {
8793d854
PM
84 struct cgroup_subsys_state css;
85
1da177e4 86 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
33ad801d
LZ
90 /*
91 * This is old Memory Nodes tasks took on.
92 *
93 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
94 * - A new cpuset's old_mems_allowed is initialized when some
95 * task is moved into it.
96 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
97 * cpuset.mems_allowed and have tasks' nodemask updated, and
98 * then old_mems_allowed is updated to mems_allowed.
99 */
100 nodemask_t old_mems_allowed;
101
3e0d98b9 102 struct fmeter fmeter; /* memory_pressure filter */
029190c5 103
452477fa
TH
104 /*
105 * Tasks are being attached to this cpuset. Used to prevent
106 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
107 */
108 int attach_in_progress;
109
029190c5
PJ
110 /* partition number for rebuild_sched_domains() */
111 int pn;
956db3ca 112
1d3504fc
HS
113 /* for custom sched domain */
114 int relax_domain_level;
1da177e4
LT
115};
116
8793d854 117/* Retrieve the cpuset for a cgroup */
c9e5fe66 118static inline struct cpuset *cgroup_cs(struct cgroup *cgrp)
8793d854 119{
c9e5fe66 120 return container_of(cgroup_subsys_state(cgrp, cpuset_subsys_id),
8793d854
PM
121 struct cpuset, css);
122}
123
124/* Retrieve the cpuset for a task */
125static inline struct cpuset *task_cs(struct task_struct *task)
126{
127 return container_of(task_subsys_state(task, cpuset_subsys_id),
128 struct cpuset, css);
129}
8793d854 130
c431069f
TH
131static inline struct cpuset *parent_cs(const struct cpuset *cs)
132{
133 struct cgroup *pcgrp = cs->css.cgroup->parent;
134
135 if (pcgrp)
136 return cgroup_cs(pcgrp);
137 return NULL;
138}
139
b246272e
DR
140#ifdef CONFIG_NUMA
141static inline bool task_has_mempolicy(struct task_struct *task)
142{
143 return task->mempolicy;
144}
145#else
146static inline bool task_has_mempolicy(struct task_struct *task)
147{
148 return false;
149}
150#endif
151
152
1da177e4
LT
153/* bits in struct cpuset flags field */
154typedef enum {
efeb77b2 155 CS_ONLINE,
1da177e4
LT
156 CS_CPU_EXCLUSIVE,
157 CS_MEM_EXCLUSIVE,
78608366 158 CS_MEM_HARDWALL,
45b07ef3 159 CS_MEMORY_MIGRATE,
029190c5 160 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
161 CS_SPREAD_PAGE,
162 CS_SPREAD_SLAB,
1da177e4
LT
163} cpuset_flagbits_t;
164
165/* convenient tests for these bits */
efeb77b2
TH
166static inline bool is_cpuset_online(const struct cpuset *cs)
167{
168 return test_bit(CS_ONLINE, &cs->flags);
169}
170
1da177e4
LT
171static inline int is_cpu_exclusive(const struct cpuset *cs)
172{
7b5b9ef0 173 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
174}
175
176static inline int is_mem_exclusive(const struct cpuset *cs)
177{
7b5b9ef0 178 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
179}
180
78608366
PM
181static inline int is_mem_hardwall(const struct cpuset *cs)
182{
183 return test_bit(CS_MEM_HARDWALL, &cs->flags);
184}
185
029190c5
PJ
186static inline int is_sched_load_balance(const struct cpuset *cs)
187{
188 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
189}
190
45b07ef3
PJ
191static inline int is_memory_migrate(const struct cpuset *cs)
192{
7b5b9ef0 193 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
194}
195
825a46af
PJ
196static inline int is_spread_page(const struct cpuset *cs)
197{
198 return test_bit(CS_SPREAD_PAGE, &cs->flags);
199}
200
201static inline int is_spread_slab(const struct cpuset *cs)
202{
203 return test_bit(CS_SPREAD_SLAB, &cs->flags);
204}
205
1da177e4 206static struct cpuset top_cpuset = {
efeb77b2
TH
207 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
208 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
209};
210
ae8086ce
TH
211/**
212 * cpuset_for_each_child - traverse online children of a cpuset
213 * @child_cs: loop cursor pointing to the current child
214 * @pos_cgrp: used for iteration
215 * @parent_cs: target cpuset to walk children of
216 *
217 * Walk @child_cs through the online children of @parent_cs. Must be used
218 * with RCU read locked.
219 */
220#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
221 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
222 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
223
fc560a26
TH
224/**
225 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
226 * @des_cs: loop cursor pointing to the current descendant
227 * @pos_cgrp: used for iteration
228 * @root_cs: target cpuset to walk ancestor of
229 *
230 * Walk @des_cs through the online descendants of @root_cs. Must be used
231 * with RCU read locked. The caller may modify @pos_cgrp by calling
232 * cgroup_rightmost_descendant() to skip subtree.
233 */
234#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
235 cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
236 if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
237
1da177e4 238/*
5d21cc2d
TH
239 * There are two global mutexes guarding cpuset structures - cpuset_mutex
240 * and callback_mutex. The latter may nest inside the former. We also
241 * require taking task_lock() when dereferencing a task's cpuset pointer.
242 * See "The task_lock() exception", at the end of this comment.
243 *
244 * A task must hold both mutexes to modify cpusets. If a task holds
245 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
246 * is the only task able to also acquire callback_mutex and be able to
247 * modify cpusets. It can perform various checks on the cpuset structure
248 * first, knowing nothing will change. It can also allocate memory while
249 * just holding cpuset_mutex. While it is performing these checks, various
250 * callback routines can briefly acquire callback_mutex to query cpusets.
251 * Once it is ready to make the changes, it takes callback_mutex, blocking
252 * everyone else.
053199ed
PJ
253 *
254 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 255 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
256 * from one of the callbacks into the cpuset code from within
257 * __alloc_pages().
258 *
3d3f26a7 259 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
260 * access to cpusets.
261 *
58568d2a
MX
262 * Now, the task_struct fields mems_allowed and mempolicy may be changed
263 * by other task, we use alloc_lock in the task_struct fields to protect
264 * them.
053199ed 265 *
3d3f26a7 266 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
267 * small pieces of code, such as when reading out possibly multi-word
268 * cpumasks and nodemasks.
269 *
2df167a3
PM
270 * Accessing a task's cpuset should be done in accordance with the
271 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
272 */
273
5d21cc2d 274static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 275static DEFINE_MUTEX(callback_mutex);
4247bdc6 276
3a5a6d0c
TH
277/*
278 * CPU / memory hotplug is handled asynchronously.
279 */
280static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
281static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
282
e44193d3
LZ
283static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
284
cf417141
MK
285/*
286 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 287 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
288 * silently switch it to mount "cgroup" instead
289 */
f7e83571
AV
290static struct dentry *cpuset_mount(struct file_system_type *fs_type,
291 int flags, const char *unused_dev_name, void *data)
1da177e4 292{
8793d854 293 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 294 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
295 if (cgroup_fs) {
296 char mountopts[] =
297 "cpuset,noprefix,"
298 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
299 ret = cgroup_fs->mount(cgroup_fs, flags,
300 unused_dev_name, mountopts);
8793d854
PM
301 put_filesystem(cgroup_fs);
302 }
303 return ret;
1da177e4
LT
304}
305
306static struct file_system_type cpuset_fs_type = {
307 .name = "cpuset",
f7e83571 308 .mount = cpuset_mount,
1da177e4
LT
309};
310
1da177e4 311/*
300ed6cb 312 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 313 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
314 * until we find one that does have some online cpus. The top
315 * cpuset always has some cpus online.
1da177e4
LT
316 *
317 * One way or another, we guarantee to return some non-empty subset
5f054e31 318 * of cpu_online_mask.
1da177e4 319 *
3d3f26a7 320 * Call with callback_mutex held.
1da177e4 321 */
6af866af
LZ
322static void guarantee_online_cpus(const struct cpuset *cs,
323 struct cpumask *pmask)
1da177e4 324{
40df2deb 325 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 326 cs = parent_cs(cs);
40df2deb 327 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4
LT
328}
329
330/*
331 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
332 * are online, with memory. If none are online with memory, walk
333 * up the cpuset hierarchy until we find one that does have some
40df2deb 334 * online mems. The top cpuset always has some mems online.
1da177e4
LT
335 *
336 * One way or another, we guarantee to return some non-empty subset
38d7bee9 337 * of node_states[N_MEMORY].
1da177e4 338 *
3d3f26a7 339 * Call with callback_mutex held.
1da177e4 340 */
1da177e4
LT
341static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
342{
40df2deb 343 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
c431069f 344 cs = parent_cs(cs);
40df2deb 345 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
1da177e4
LT
346}
347
f3b39d47
MX
348/*
349 * update task's spread flag if cpuset's page/slab spread flag is set
350 *
5d21cc2d 351 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
352 */
353static void cpuset_update_task_spread_flag(struct cpuset *cs,
354 struct task_struct *tsk)
355{
356 if (is_spread_page(cs))
357 tsk->flags |= PF_SPREAD_PAGE;
358 else
359 tsk->flags &= ~PF_SPREAD_PAGE;
360 if (is_spread_slab(cs))
361 tsk->flags |= PF_SPREAD_SLAB;
362 else
363 tsk->flags &= ~PF_SPREAD_SLAB;
364}
365
1da177e4
LT
366/*
367 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
368 *
369 * One cpuset is a subset of another if all its allowed CPUs and
370 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 371 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
372 */
373
374static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
375{
300ed6cb 376 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
377 nodes_subset(p->mems_allowed, q->mems_allowed) &&
378 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
379 is_mem_exclusive(p) <= is_mem_exclusive(q);
380}
381
645fcc9d
LZ
382/**
383 * alloc_trial_cpuset - allocate a trial cpuset
384 * @cs: the cpuset that the trial cpuset duplicates
385 */
386static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
387{
300ed6cb
LZ
388 struct cpuset *trial;
389
390 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
391 if (!trial)
392 return NULL;
393
394 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
395 kfree(trial);
396 return NULL;
397 }
398 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
399
400 return trial;
645fcc9d
LZ
401}
402
403/**
404 * free_trial_cpuset - free the trial cpuset
405 * @trial: the trial cpuset to be freed
406 */
407static void free_trial_cpuset(struct cpuset *trial)
408{
300ed6cb 409 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
410 kfree(trial);
411}
412
1da177e4
LT
413/*
414 * validate_change() - Used to validate that any proposed cpuset change
415 * follows the structural rules for cpusets.
416 *
417 * If we replaced the flag and mask values of the current cpuset
418 * (cur) with those values in the trial cpuset (trial), would
419 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 420 * cpuset_mutex held.
1da177e4
LT
421 *
422 * 'cur' is the address of an actual, in-use cpuset. Operations
423 * such as list traversal that depend on the actual address of the
424 * cpuset in the list must use cur below, not trial.
425 *
426 * 'trial' is the address of bulk structure copy of cur, with
427 * perhaps one or more of the fields cpus_allowed, mems_allowed,
428 * or flags changed to new, trial values.
429 *
430 * Return 0 if valid, -errno if not.
431 */
432
433static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
434{
c9e5fe66 435 struct cgroup *cgrp;
1da177e4 436 struct cpuset *c, *par;
ae8086ce
TH
437 int ret;
438
439 rcu_read_lock();
1da177e4
LT
440
441 /* Each of our child cpusets must be a subset of us */
ae8086ce 442 ret = -EBUSY;
c9e5fe66 443 cpuset_for_each_child(c, cgrp, cur)
ae8086ce
TH
444 if (!is_cpuset_subset(c, trial))
445 goto out;
1da177e4
LT
446
447 /* Remaining checks don't apply to root cpuset */
ae8086ce 448 ret = 0;
69604067 449 if (cur == &top_cpuset)
ae8086ce 450 goto out;
1da177e4 451
c431069f 452 par = parent_cs(cur);
69604067 453
1da177e4 454 /* We must be a subset of our parent cpuset */
ae8086ce 455 ret = -EACCES;
1da177e4 456 if (!is_cpuset_subset(trial, par))
ae8086ce 457 goto out;
1da177e4 458
2df167a3
PM
459 /*
460 * If either I or some sibling (!= me) is exclusive, we can't
461 * overlap
462 */
ae8086ce 463 ret = -EINVAL;
c9e5fe66 464 cpuset_for_each_child(c, cgrp, par) {
1da177e4
LT
465 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
466 c != cur &&
300ed6cb 467 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 468 goto out;
1da177e4
LT
469 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
470 c != cur &&
471 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 472 goto out;
1da177e4
LT
473 }
474
452477fa
TH
475 /*
476 * Cpusets with tasks - existing or newly being attached - can't
477 * have empty cpus_allowed or mems_allowed.
478 */
ae8086ce 479 ret = -ENOSPC;
452477fa 480 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
88fa523b 481 (cpumask_empty(trial->cpus_allowed) &&
ae8086ce
TH
482 nodes_empty(trial->mems_allowed)))
483 goto out;
020958b6 484
ae8086ce
TH
485 ret = 0;
486out:
487 rcu_read_unlock();
488 return ret;
1da177e4
LT
489}
490
db7f47cf 491#ifdef CONFIG_SMP
029190c5 492/*
cf417141 493 * Helper routine for generate_sched_domains().
029190c5
PJ
494 * Do cpusets a, b have overlapping cpus_allowed masks?
495 */
029190c5
PJ
496static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
497{
300ed6cb 498 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
499}
500
1d3504fc
HS
501static void
502update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
503{
1d3504fc
HS
504 if (dattr->relax_domain_level < c->relax_domain_level)
505 dattr->relax_domain_level = c->relax_domain_level;
506 return;
507}
508
fc560a26
TH
509static void update_domain_attr_tree(struct sched_domain_attr *dattr,
510 struct cpuset *root_cs)
f5393693 511{
fc560a26
TH
512 struct cpuset *cp;
513 struct cgroup *pos_cgrp;
f5393693 514
fc560a26
TH
515 rcu_read_lock();
516 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
517 /* skip the whole subtree if @cp doesn't have any CPU */
518 if (cpumask_empty(cp->cpus_allowed)) {
519 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
f5393693 520 continue;
fc560a26 521 }
f5393693
LJ
522
523 if (is_sched_load_balance(cp))
524 update_domain_attr(dattr, cp);
f5393693 525 }
fc560a26 526 rcu_read_unlock();
f5393693
LJ
527}
528
029190c5 529/*
cf417141
MK
530 * generate_sched_domains()
531 *
532 * This function builds a partial partition of the systems CPUs
533 * A 'partial partition' is a set of non-overlapping subsets whose
534 * union is a subset of that set.
0a0fca9d 535 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
536 * partition_sched_domains() routine, which will rebuild the scheduler's
537 * load balancing domains (sched domains) as specified by that partial
538 * partition.
029190c5 539 *
45ce80fb 540 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
541 * for a background explanation of this.
542 *
543 * Does not return errors, on the theory that the callers of this
544 * routine would rather not worry about failures to rebuild sched
545 * domains when operating in the severe memory shortage situations
546 * that could cause allocation failures below.
547 *
5d21cc2d 548 * Must be called with cpuset_mutex held.
029190c5
PJ
549 *
550 * The three key local variables below are:
aeed6824 551 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
552 * top-down scan of all cpusets. This scan loads a pointer
553 * to each cpuset marked is_sched_load_balance into the
554 * array 'csa'. For our purposes, rebuilding the schedulers
555 * sched domains, we can ignore !is_sched_load_balance cpusets.
556 * csa - (for CpuSet Array) Array of pointers to all the cpusets
557 * that need to be load balanced, for convenient iterative
558 * access by the subsequent code that finds the best partition,
559 * i.e the set of domains (subsets) of CPUs such that the
560 * cpus_allowed of every cpuset marked is_sched_load_balance
561 * is a subset of one of these domains, while there are as
562 * many such domains as possible, each as small as possible.
563 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 564 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
565 * convenient format, that can be easily compared to the prior
566 * value to determine what partition elements (sched domains)
567 * were changed (added or removed.)
568 *
569 * Finding the best partition (set of domains):
570 * The triple nested loops below over i, j, k scan over the
571 * load balanced cpusets (using the array of cpuset pointers in
572 * csa[]) looking for pairs of cpusets that have overlapping
573 * cpus_allowed, but which don't have the same 'pn' partition
574 * number and gives them in the same partition number. It keeps
575 * looping on the 'restart' label until it can no longer find
576 * any such pairs.
577 *
578 * The union of the cpus_allowed masks from the set of
579 * all cpusets having the same 'pn' value then form the one
580 * element of the partition (one sched domain) to be passed to
581 * partition_sched_domains().
582 */
acc3f5d7 583static int generate_sched_domains(cpumask_var_t **domains,
cf417141 584 struct sched_domain_attr **attributes)
029190c5 585{
029190c5
PJ
586 struct cpuset *cp; /* scans q */
587 struct cpuset **csa; /* array of all cpuset ptrs */
588 int csn; /* how many cpuset ptrs in csa so far */
589 int i, j, k; /* indices for partition finding loops */
acc3f5d7 590 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 591 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 592 int ndoms = 0; /* number of sched domains in result */
6af866af 593 int nslot; /* next empty doms[] struct cpumask slot */
fc560a26 594 struct cgroup *pos_cgrp;
029190c5 595
029190c5 596 doms = NULL;
1d3504fc 597 dattr = NULL;
cf417141 598 csa = NULL;
029190c5
PJ
599
600 /* Special case for the 99% of systems with one, full, sched domain */
601 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
602 ndoms = 1;
603 doms = alloc_sched_domains(ndoms);
029190c5 604 if (!doms)
cf417141
MK
605 goto done;
606
1d3504fc
HS
607 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
608 if (dattr) {
609 *dattr = SD_ATTR_INIT;
93a65575 610 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 611 }
acc3f5d7 612 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 613
cf417141 614 goto done;
029190c5
PJ
615 }
616
029190c5
PJ
617 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
618 if (!csa)
619 goto done;
620 csn = 0;
621
fc560a26
TH
622 rcu_read_lock();
623 cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
f5393693 624 /*
fc560a26
TH
625 * Continue traversing beyond @cp iff @cp has some CPUs and
626 * isn't load balancing. The former is obvious. The
627 * latter: All child cpusets contain a subset of the
628 * parent's cpus, so just skip them, and then we call
629 * update_domain_attr_tree() to calc relax_domain_level of
630 * the corresponding sched domain.
f5393693 631 */
fc560a26
TH
632 if (!cpumask_empty(cp->cpus_allowed) &&
633 !is_sched_load_balance(cp))
f5393693 634 continue;
489a5393 635
fc560a26
TH
636 if (is_sched_load_balance(cp))
637 csa[csn++] = cp;
638
639 /* skip @cp's subtree */
640 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
641 }
642 rcu_read_unlock();
029190c5
PJ
643
644 for (i = 0; i < csn; i++)
645 csa[i]->pn = i;
646 ndoms = csn;
647
648restart:
649 /* Find the best partition (set of sched domains) */
650 for (i = 0; i < csn; i++) {
651 struct cpuset *a = csa[i];
652 int apn = a->pn;
653
654 for (j = 0; j < csn; j++) {
655 struct cpuset *b = csa[j];
656 int bpn = b->pn;
657
658 if (apn != bpn && cpusets_overlap(a, b)) {
659 for (k = 0; k < csn; k++) {
660 struct cpuset *c = csa[k];
661
662 if (c->pn == bpn)
663 c->pn = apn;
664 }
665 ndoms--; /* one less element */
666 goto restart;
667 }
668 }
669 }
670
cf417141
MK
671 /*
672 * Now we know how many domains to create.
673 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
674 */
acc3f5d7 675 doms = alloc_sched_domains(ndoms);
700018e0 676 if (!doms)
cf417141 677 goto done;
cf417141
MK
678
679 /*
680 * The rest of the code, including the scheduler, can deal with
681 * dattr==NULL case. No need to abort if alloc fails.
682 */
1d3504fc 683 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
684
685 for (nslot = 0, i = 0; i < csn; i++) {
686 struct cpuset *a = csa[i];
6af866af 687 struct cpumask *dp;
029190c5
PJ
688 int apn = a->pn;
689
cf417141
MK
690 if (apn < 0) {
691 /* Skip completed partitions */
692 continue;
693 }
694
acc3f5d7 695 dp = doms[nslot];
cf417141
MK
696
697 if (nslot == ndoms) {
698 static int warnings = 10;
699 if (warnings) {
700 printk(KERN_WARNING
701 "rebuild_sched_domains confused:"
702 " nslot %d, ndoms %d, csn %d, i %d,"
703 " apn %d\n",
704 nslot, ndoms, csn, i, apn);
705 warnings--;
029190c5 706 }
cf417141
MK
707 continue;
708 }
029190c5 709
6af866af 710 cpumask_clear(dp);
cf417141
MK
711 if (dattr)
712 *(dattr + nslot) = SD_ATTR_INIT;
713 for (j = i; j < csn; j++) {
714 struct cpuset *b = csa[j];
715
716 if (apn == b->pn) {
300ed6cb 717 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
718 if (dattr)
719 update_domain_attr_tree(dattr + nslot, b);
720
721 /* Done with this partition */
722 b->pn = -1;
029190c5 723 }
029190c5 724 }
cf417141 725 nslot++;
029190c5
PJ
726 }
727 BUG_ON(nslot != ndoms);
728
cf417141
MK
729done:
730 kfree(csa);
731
700018e0
LZ
732 /*
733 * Fallback to the default domain if kmalloc() failed.
734 * See comments in partition_sched_domains().
735 */
736 if (doms == NULL)
737 ndoms = 1;
738
cf417141
MK
739 *domains = doms;
740 *attributes = dattr;
741 return ndoms;
742}
743
744/*
745 * Rebuild scheduler domains.
746 *
699140ba
TH
747 * If the flag 'sched_load_balance' of any cpuset with non-empty
748 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
749 * which has that flag enabled, or if any cpuset with a non-empty
750 * 'cpus' is removed, then call this routine to rebuild the
751 * scheduler's dynamic sched domains.
cf417141 752 *
5d21cc2d 753 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 754 */
699140ba 755static void rebuild_sched_domains_locked(void)
cf417141
MK
756{
757 struct sched_domain_attr *attr;
acc3f5d7 758 cpumask_var_t *doms;
cf417141
MK
759 int ndoms;
760
5d21cc2d 761 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 762 get_online_cpus();
cf417141 763
5b16c2a4
LZ
764 /*
765 * We have raced with CPU hotplug. Don't do anything to avoid
766 * passing doms with offlined cpu to partition_sched_domains().
767 * Anyways, hotplug work item will rebuild sched domains.
768 */
769 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
770 goto out;
771
cf417141 772 /* Generate domain masks and attrs */
cf417141 773 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
774
775 /* Have scheduler rebuild the domains */
776 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 777out:
86ef5c9a 778 put_online_cpus();
cf417141 779}
db7f47cf 780#else /* !CONFIG_SMP */
699140ba 781static void rebuild_sched_domains_locked(void)
db7f47cf
PM
782{
783}
db7f47cf 784#endif /* CONFIG_SMP */
029190c5 785
cf417141
MK
786void rebuild_sched_domains(void)
787{
5d21cc2d 788 mutex_lock(&cpuset_mutex);
699140ba 789 rebuild_sched_domains_locked();
5d21cc2d 790 mutex_unlock(&cpuset_mutex);
029190c5
PJ
791}
792
070b57fc
LZ
793/*
794 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
795 * @cs: the cpuset in interest
58f4790b 796 *
070b57fc
LZ
797 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
798 * with non-empty cpus. We use effective cpumask whenever:
799 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
800 * if the cpuset they reside in has no cpus)
801 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
802 *
803 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
804 * exception. See comments there.
805 */
806static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
807{
808 while (cpumask_empty(cs->cpus_allowed))
809 cs = parent_cs(cs);
810 return cs;
811}
812
813/*
814 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
815 * @cs: the cpuset in interest
816 *
817 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
818 * with non-empty memss. We use effective nodemask whenever:
819 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
820 * if the cpuset they reside in has no mems)
821 * - we want to retrieve task_cs(tsk)'s mems_allowed.
822 *
823 * Called with cpuset_mutex held.
053199ed 824 */
070b57fc 825static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
58f4790b 826{
070b57fc
LZ
827 while (nodes_empty(cs->mems_allowed))
828 cs = parent_cs(cs);
829 return cs;
58f4790b 830}
053199ed 831
58f4790b
CW
832/**
833 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
834 * @tsk: task to test
835 * @scan: struct cgroup_scanner containing the cgroup of the task
836 *
837 * Called by cgroup_scan_tasks() for each task in a cgroup whose
838 * cpus_allowed mask needs to be changed.
839 *
840 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 841 * holding cpuset_mutex at this point.
58f4790b 842 */
9e0c914c
AB
843static void cpuset_change_cpumask(struct task_struct *tsk,
844 struct cgroup_scanner *scan)
58f4790b 845{
070b57fc
LZ
846 struct cpuset *cpus_cs;
847
848 cpus_cs = effective_cpumask_cpuset(cgroup_cs(scan->cg));
849 set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
58f4790b
CW
850}
851
0b2f630a
MX
852/**
853 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
854 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 855 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 856 *
5d21cc2d 857 * Called with cpuset_mutex held
0b2f630a
MX
858 *
859 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
860 * calling callback functions for each.
861 *
4e74339a
LZ
862 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
863 * if @heap != NULL.
0b2f630a 864 */
4e74339a 865static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
866{
867 struct cgroup_scanner scan;
0b2f630a
MX
868
869 scan.cg = cs->css.cgroup;
249cc86d 870 scan.test_task = NULL;
0b2f630a 871 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
872 scan.heap = heap;
873 cgroup_scan_tasks(&scan);
0b2f630a
MX
874}
875
5c5cc623
LZ
876/*
877 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
878 * @root_cs: the root cpuset of the hierarchy
879 * @update_root: update root cpuset or not?
880 * @heap: the heap used by cgroup_scan_tasks()
881 *
882 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
883 * which take on cpumask of @root_cs.
884 *
885 * Called with cpuset_mutex held
886 */
887static void update_tasks_cpumask_hier(struct cpuset *root_cs,
888 bool update_root, struct ptr_heap *heap)
889{
890 struct cpuset *cp;
891 struct cgroup *pos_cgrp;
892
893 if (update_root)
894 update_tasks_cpumask(root_cs, heap);
895
896 rcu_read_lock();
897 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
898 /* skip the whole subtree if @cp have some CPU */
899 if (!cpumask_empty(cp->cpus_allowed)) {
900 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
901 continue;
902 }
903 if (!css_tryget(&cp->css))
904 continue;
905 rcu_read_unlock();
906
907 update_tasks_cpumask(cp, heap);
908
909 rcu_read_lock();
910 css_put(&cp->css);
911 }
912 rcu_read_unlock();
913}
914
58f4790b
CW
915/**
916 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
917 * @cs: the cpuset to consider
918 * @buf: buffer of cpu numbers written to this cpuset
919 */
645fcc9d
LZ
920static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
921 const char *buf)
1da177e4 922{
4e74339a 923 struct ptr_heap heap;
58f4790b
CW
924 int retval;
925 int is_load_balanced;
1da177e4 926
5f054e31 927 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
928 if (cs == &top_cpuset)
929 return -EACCES;
930
6f7f02e7 931 /*
c8d9c90c 932 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
933 * Since cpulist_parse() fails on an empty mask, we special case
934 * that parsing. The validate_change() call ensures that cpusets
935 * with tasks have cpus.
6f7f02e7 936 */
020958b6 937 if (!*buf) {
300ed6cb 938 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 939 } else {
300ed6cb 940 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
941 if (retval < 0)
942 return retval;
37340746 943
6ad4c188 944 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 945 return -EINVAL;
6f7f02e7 946 }
029190c5 947
8707d8b8 948 /* Nothing to do if the cpus didn't change */
300ed6cb 949 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 950 return 0;
58f4790b 951
a73456f3
LZ
952 retval = validate_change(cs, trialcs);
953 if (retval < 0)
954 return retval;
955
4e74339a
LZ
956 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
957 if (retval)
958 return retval;
959
645fcc9d 960 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 961
3d3f26a7 962 mutex_lock(&callback_mutex);
300ed6cb 963 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 964 mutex_unlock(&callback_mutex);
029190c5 965
5c5cc623 966 update_tasks_cpumask_hier(cs, true, &heap);
4e74339a
LZ
967
968 heap_free(&heap);
58f4790b 969
8707d8b8 970 if (is_load_balanced)
699140ba 971 rebuild_sched_domains_locked();
85d7b949 972 return 0;
1da177e4
LT
973}
974
e4e364e8
PJ
975/*
976 * cpuset_migrate_mm
977 *
978 * Migrate memory region from one set of nodes to another.
979 *
980 * Temporarilly set tasks mems_allowed to target nodes of migration,
981 * so that the migration code can allocate pages on these nodes.
982 *
5d21cc2d 983 * Call holding cpuset_mutex, so current's cpuset won't change
c8d9c90c 984 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
985 * calls. Therefore we don't need to take task_lock around the
986 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 987 * our task's cpuset.
e4e364e8 988 *
e4e364e8
PJ
989 * While the mm_struct we are migrating is typically from some
990 * other task, the task_struct mems_allowed that we are hacking
991 * is for our current task, which must allocate new pages for that
992 * migrating memory region.
e4e364e8
PJ
993 */
994
995static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
996 const nodemask_t *to)
997{
998 struct task_struct *tsk = current;
070b57fc 999 struct cpuset *mems_cs;
e4e364e8 1000
e4e364e8 1001 tsk->mems_allowed = *to;
e4e364e8
PJ
1002
1003 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
1004
070b57fc
LZ
1005 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
1006 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
e4e364e8
PJ
1007}
1008
3b6766fe 1009/*
58568d2a
MX
1010 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1011 * @tsk: the task to change
1012 * @newmems: new nodes that the task will be set
1013 *
1014 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1015 * we structure updates as setting all new allowed nodes, then clearing newly
1016 * disallowed ones.
58568d2a
MX
1017 */
1018static void cpuset_change_task_nodemask(struct task_struct *tsk,
1019 nodemask_t *newmems)
1020{
b246272e 1021 bool need_loop;
89e8a244 1022
c0ff7453
MX
1023 /*
1024 * Allow tasks that have access to memory reserves because they have
1025 * been OOM killed to get memory anywhere.
1026 */
1027 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1028 return;
1029 if (current->flags & PF_EXITING) /* Let dying task have memory */
1030 return;
1031
1032 task_lock(tsk);
b246272e
DR
1033 /*
1034 * Determine if a loop is necessary if another thread is doing
1035 * get_mems_allowed(). If at least one node remains unchanged and
1036 * tsk does not have a mempolicy, then an empty nodemask will not be
1037 * possible when mems_allowed is larger than a word.
1038 */
1039 need_loop = task_has_mempolicy(tsk) ||
1040 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1041
cc9a6c87
MG
1042 if (need_loop)
1043 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 1044
cc9a6c87
MG
1045 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1046 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1047
1048 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1049 tsk->mems_allowed = *newmems;
cc9a6c87
MG
1050
1051 if (need_loop)
1052 write_seqcount_end(&tsk->mems_allowed_seq);
1053
c0ff7453 1054 task_unlock(tsk);
58568d2a
MX
1055}
1056
1057/*
1058 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1059 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
5d21cc2d 1060 * memory_migrate flag is set. Called with cpuset_mutex held.
3b6766fe
LZ
1061 */
1062static void cpuset_change_nodemask(struct task_struct *p,
1063 struct cgroup_scanner *scan)
1064{
33ad801d 1065 struct cpuset *cs = cgroup_cs(scan->cg);
3b6766fe 1066 struct mm_struct *mm;
3b6766fe 1067 int migrate;
33ad801d 1068 nodemask_t *newmems = scan->data;
58568d2a 1069
33ad801d 1070 cpuset_change_task_nodemask(p, newmems);
53feb297 1071
3b6766fe
LZ
1072 mm = get_task_mm(p);
1073 if (!mm)
1074 return;
1075
3b6766fe
LZ
1076 migrate = is_memory_migrate(cs);
1077
1078 mpol_rebind_mm(mm, &cs->mems_allowed);
1079 if (migrate)
33ad801d 1080 cpuset_migrate_mm(mm, &cs->old_mems_allowed, newmems);
3b6766fe
LZ
1081 mmput(mm);
1082}
1083
8793d854
PM
1084static void *cpuset_being_rebound;
1085
0b2f630a
MX
1086/**
1087 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1088 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
010cfac4 1089 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 1090 *
5d21cc2d 1091 * Called with cpuset_mutex held
010cfac4
LZ
1092 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1093 * if @heap != NULL.
0b2f630a 1094 */
33ad801d 1095static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
1da177e4 1096{
33ad801d 1097 static nodemask_t newmems; /* protected by cpuset_mutex */
3b6766fe 1098 struct cgroup_scanner scan;
070b57fc 1099 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
59dac16f 1100
846a16bf 1101 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1102
070b57fc 1103 guarantee_online_mems(mems_cs, &newmems);
33ad801d 1104
3b6766fe
LZ
1105 scan.cg = cs->css.cgroup;
1106 scan.test_task = NULL;
1107 scan.process_task = cpuset_change_nodemask;
010cfac4 1108 scan.heap = heap;
33ad801d 1109 scan.data = &newmems;
4225399a
PJ
1110
1111 /*
3b6766fe
LZ
1112 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1113 * take while holding tasklist_lock. Forks can happen - the
1114 * mpol_dup() cpuset_being_rebound check will catch such forks,
1115 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1116 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1117 * will be contending for the global variable cpuset_being_rebound.
4225399a 1118 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1119 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1120 */
010cfac4 1121 cgroup_scan_tasks(&scan);
4225399a 1122
33ad801d
LZ
1123 /*
1124 * All the tasks' nodemasks have been updated, update
1125 * cs->old_mems_allowed.
1126 */
1127 cs->old_mems_allowed = newmems;
1128
2df167a3 1129 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1130 cpuset_being_rebound = NULL;
1da177e4
LT
1131}
1132
5c5cc623
LZ
1133/*
1134 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1135 * @cs: the root cpuset of the hierarchy
1136 * @update_root: update the root cpuset or not?
1137 * @heap: the heap used by cgroup_scan_tasks()
1138 *
1139 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1140 * which take on nodemask of @root_cs.
1141 *
1142 * Called with cpuset_mutex held
1143 */
1144static void update_tasks_nodemask_hier(struct cpuset *root_cs,
1145 bool update_root, struct ptr_heap *heap)
1146{
1147 struct cpuset *cp;
1148 struct cgroup *pos_cgrp;
1149
1150 if (update_root)
1151 update_tasks_nodemask(root_cs, heap);
1152
1153 rcu_read_lock();
1154 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
1155 /* skip the whole subtree if @cp have some CPU */
1156 if (!nodes_empty(cp->mems_allowed)) {
1157 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
1158 continue;
1159 }
1160 if (!css_tryget(&cp->css))
1161 continue;
1162 rcu_read_unlock();
1163
1164 update_tasks_nodemask(cp, heap);
1165
1166 rcu_read_lock();
1167 css_put(&cp->css);
1168 }
1169 rcu_read_unlock();
1170}
1171
0b2f630a
MX
1172/*
1173 * Handle user request to change the 'mems' memory placement
1174 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1175 * cpusets mems_allowed, and for each task in the cpuset,
1176 * update mems_allowed and rebind task's mempolicy and any vma
1177 * mempolicies and if the cpuset is marked 'memory_migrate',
1178 * migrate the tasks pages to the new memory.
0b2f630a 1179 *
5d21cc2d 1180 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1181 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1182 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1183 * their mempolicies to the cpusets new mems_allowed.
1184 */
645fcc9d
LZ
1185static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1186 const char *buf)
0b2f630a 1187{
0b2f630a 1188 int retval;
010cfac4 1189 struct ptr_heap heap;
0b2f630a
MX
1190
1191 /*
38d7bee9 1192 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1193 * it's read-only
1194 */
53feb297
MX
1195 if (cs == &top_cpuset) {
1196 retval = -EACCES;
1197 goto done;
1198 }
0b2f630a 1199
0b2f630a
MX
1200 /*
1201 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1202 * Since nodelist_parse() fails on an empty mask, we special case
1203 * that parsing. The validate_change() call ensures that cpusets
1204 * with tasks have memory.
1205 */
1206 if (!*buf) {
645fcc9d 1207 nodes_clear(trialcs->mems_allowed);
0b2f630a 1208 } else {
645fcc9d 1209 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1210 if (retval < 0)
1211 goto done;
1212
645fcc9d 1213 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1214 node_states[N_MEMORY])) {
53feb297
MX
1215 retval = -EINVAL;
1216 goto done;
1217 }
0b2f630a 1218 }
33ad801d
LZ
1219
1220 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1221 retval = 0; /* Too easy - nothing to do */
1222 goto done;
1223 }
645fcc9d 1224 retval = validate_change(cs, trialcs);
0b2f630a
MX
1225 if (retval < 0)
1226 goto done;
1227
010cfac4
LZ
1228 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1229 if (retval < 0)
1230 goto done;
1231
0b2f630a 1232 mutex_lock(&callback_mutex);
645fcc9d 1233 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1234 mutex_unlock(&callback_mutex);
1235
5c5cc623 1236 update_tasks_nodemask_hier(cs, true, &heap);
010cfac4
LZ
1237
1238 heap_free(&heap);
0b2f630a
MX
1239done:
1240 return retval;
1241}
1242
8793d854
PM
1243int current_cpuset_is_being_rebound(void)
1244{
1245 return task_cs(current) == cpuset_being_rebound;
1246}
1247
5be7a479 1248static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1249{
db7f47cf 1250#ifdef CONFIG_SMP
60495e77 1251 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1252 return -EINVAL;
db7f47cf 1253#endif
1d3504fc
HS
1254
1255 if (val != cs->relax_domain_level) {
1256 cs->relax_domain_level = val;
300ed6cb
LZ
1257 if (!cpumask_empty(cs->cpus_allowed) &&
1258 is_sched_load_balance(cs))
699140ba 1259 rebuild_sched_domains_locked();
1d3504fc
HS
1260 }
1261
1262 return 0;
1263}
1264
950592f7
MX
1265/*
1266 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1267 * @tsk: task to be updated
1268 * @scan: struct cgroup_scanner containing the cgroup of the task
1269 *
1270 * Called by cgroup_scan_tasks() for each task in a cgroup.
1271 *
1272 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 1273 * holding cpuset_mutex at this point.
950592f7
MX
1274 */
1275static void cpuset_change_flag(struct task_struct *tsk,
1276 struct cgroup_scanner *scan)
1277{
1278 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1279}
1280
1281/*
1282 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1283 * @cs: the cpuset in which each task's spread flags needs to be changed
1284 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1285 *
5d21cc2d 1286 * Called with cpuset_mutex held
950592f7
MX
1287 *
1288 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1289 * calling callback functions for each.
1290 *
1291 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1292 * if @heap != NULL.
1293 */
1294static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1295{
1296 struct cgroup_scanner scan;
1297
1298 scan.cg = cs->css.cgroup;
1299 scan.test_task = NULL;
1300 scan.process_task = cpuset_change_flag;
1301 scan.heap = heap;
1302 cgroup_scan_tasks(&scan);
1303}
1304
1da177e4
LT
1305/*
1306 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1307 * bit: the bit to update (see cpuset_flagbits_t)
1308 * cs: the cpuset to update
1309 * turning_on: whether the flag is being set or cleared
053199ed 1310 *
5d21cc2d 1311 * Call with cpuset_mutex held.
1da177e4
LT
1312 */
1313
700fe1ab
PM
1314static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1315 int turning_on)
1da177e4 1316{
645fcc9d 1317 struct cpuset *trialcs;
40b6a762 1318 int balance_flag_changed;
950592f7
MX
1319 int spread_flag_changed;
1320 struct ptr_heap heap;
1321 int err;
1da177e4 1322
645fcc9d
LZ
1323 trialcs = alloc_trial_cpuset(cs);
1324 if (!trialcs)
1325 return -ENOMEM;
1326
1da177e4 1327 if (turning_on)
645fcc9d 1328 set_bit(bit, &trialcs->flags);
1da177e4 1329 else
645fcc9d 1330 clear_bit(bit, &trialcs->flags);
1da177e4 1331
645fcc9d 1332 err = validate_change(cs, trialcs);
85d7b949 1333 if (err < 0)
645fcc9d 1334 goto out;
029190c5 1335
950592f7
MX
1336 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1337 if (err < 0)
1338 goto out;
1339
029190c5 1340 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1341 is_sched_load_balance(trialcs));
029190c5 1342
950592f7
MX
1343 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1344 || (is_spread_page(cs) != is_spread_page(trialcs)));
1345
3d3f26a7 1346 mutex_lock(&callback_mutex);
645fcc9d 1347 cs->flags = trialcs->flags;
3d3f26a7 1348 mutex_unlock(&callback_mutex);
85d7b949 1349
300ed6cb 1350 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1351 rebuild_sched_domains_locked();
029190c5 1352
950592f7
MX
1353 if (spread_flag_changed)
1354 update_tasks_flags(cs, &heap);
1355 heap_free(&heap);
645fcc9d
LZ
1356out:
1357 free_trial_cpuset(trialcs);
1358 return err;
1da177e4
LT
1359}
1360
3e0d98b9 1361/*
80f7228b 1362 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1363 *
1364 * These routines manage a digitally filtered, constant time based,
1365 * event frequency meter. There are four routines:
1366 * fmeter_init() - initialize a frequency meter.
1367 * fmeter_markevent() - called each time the event happens.
1368 * fmeter_getrate() - returns the recent rate of such events.
1369 * fmeter_update() - internal routine used to update fmeter.
1370 *
1371 * A common data structure is passed to each of these routines,
1372 * which is used to keep track of the state required to manage the
1373 * frequency meter and its digital filter.
1374 *
1375 * The filter works on the number of events marked per unit time.
1376 * The filter is single-pole low-pass recursive (IIR). The time unit
1377 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1378 * simulate 3 decimal digits of precision (multiplied by 1000).
1379 *
1380 * With an FM_COEF of 933, and a time base of 1 second, the filter
1381 * has a half-life of 10 seconds, meaning that if the events quit
1382 * happening, then the rate returned from the fmeter_getrate()
1383 * will be cut in half each 10 seconds, until it converges to zero.
1384 *
1385 * It is not worth doing a real infinitely recursive filter. If more
1386 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1387 * just compute FM_MAXTICKS ticks worth, by which point the level
1388 * will be stable.
1389 *
1390 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1391 * arithmetic overflow in the fmeter_update() routine.
1392 *
1393 * Given the simple 32 bit integer arithmetic used, this meter works
1394 * best for reporting rates between one per millisecond (msec) and
1395 * one per 32 (approx) seconds. At constant rates faster than one
1396 * per msec it maxes out at values just under 1,000,000. At constant
1397 * rates between one per msec, and one per second it will stabilize
1398 * to a value N*1000, where N is the rate of events per second.
1399 * At constant rates between one per second and one per 32 seconds,
1400 * it will be choppy, moving up on the seconds that have an event,
1401 * and then decaying until the next event. At rates slower than
1402 * about one in 32 seconds, it decays all the way back to zero between
1403 * each event.
1404 */
1405
1406#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1407#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1408#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1409#define FM_SCALE 1000 /* faux fixed point scale */
1410
1411/* Initialize a frequency meter */
1412static void fmeter_init(struct fmeter *fmp)
1413{
1414 fmp->cnt = 0;
1415 fmp->val = 0;
1416 fmp->time = 0;
1417 spin_lock_init(&fmp->lock);
1418}
1419
1420/* Internal meter update - process cnt events and update value */
1421static void fmeter_update(struct fmeter *fmp)
1422{
1423 time_t now = get_seconds();
1424 time_t ticks = now - fmp->time;
1425
1426 if (ticks == 0)
1427 return;
1428
1429 ticks = min(FM_MAXTICKS, ticks);
1430 while (ticks-- > 0)
1431 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1432 fmp->time = now;
1433
1434 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1435 fmp->cnt = 0;
1436}
1437
1438/* Process any previous ticks, then bump cnt by one (times scale). */
1439static void fmeter_markevent(struct fmeter *fmp)
1440{
1441 spin_lock(&fmp->lock);
1442 fmeter_update(fmp);
1443 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1444 spin_unlock(&fmp->lock);
1445}
1446
1447/* Process any previous ticks, then return current value. */
1448static int fmeter_getrate(struct fmeter *fmp)
1449{
1450 int val;
1451
1452 spin_lock(&fmp->lock);
1453 fmeter_update(fmp);
1454 val = fmp->val;
1455 spin_unlock(&fmp->lock);
1456 return val;
1457}
1458
5d21cc2d 1459/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
761b3ef5 1460static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
f780bdb7 1461{
2f7ee569 1462 struct cpuset *cs = cgroup_cs(cgrp);
bb9d97b6
TH
1463 struct task_struct *task;
1464 int ret;
1da177e4 1465
5d21cc2d
TH
1466 mutex_lock(&cpuset_mutex);
1467
88fa523b
LZ
1468 /*
1469 * We allow to move tasks into an empty cpuset if sane_behavior
1470 * flag is set.
1471 */
5d21cc2d 1472 ret = -ENOSPC;
88fa523b
LZ
1473 if (!cgroup_sane_behavior(cgrp) &&
1474 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1475 goto out_unlock;
9985b0ba 1476
bb9d97b6
TH
1477 cgroup_taskset_for_each(task, cgrp, tset) {
1478 /*
14a40ffc
TH
1479 * Kthreads which disallow setaffinity shouldn't be moved
1480 * to a new cpuset; we don't want to change their cpu
1481 * affinity and isolating such threads by their set of
1482 * allowed nodes is unnecessary. Thus, cpusets are not
1483 * applicable for such threads. This prevents checking for
1484 * success of set_cpus_allowed_ptr() on all attached tasks
1485 * before cpus_allowed may be changed.
bb9d97b6 1486 */
5d21cc2d 1487 ret = -EINVAL;
14a40ffc 1488 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1489 goto out_unlock;
1490 ret = security_task_setscheduler(task);
1491 if (ret)
1492 goto out_unlock;
bb9d97b6 1493 }
f780bdb7 1494
452477fa
TH
1495 /*
1496 * Mark attach is in progress. This makes validate_change() fail
1497 * changes which zero cpus/mems_allowed.
1498 */
1499 cs->attach_in_progress++;
5d21cc2d
TH
1500 ret = 0;
1501out_unlock:
1502 mutex_unlock(&cpuset_mutex);
1503 return ret;
8793d854 1504}
f780bdb7 1505
452477fa
TH
1506static void cpuset_cancel_attach(struct cgroup *cgrp,
1507 struct cgroup_taskset *tset)
1508{
5d21cc2d 1509 mutex_lock(&cpuset_mutex);
452477fa 1510 cgroup_cs(cgrp)->attach_in_progress--;
5d21cc2d 1511 mutex_unlock(&cpuset_mutex);
8793d854 1512}
1da177e4 1513
4e4c9a14 1514/*
5d21cc2d 1515 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1516 * but we can't allocate it dynamically there. Define it global and
1517 * allocate from cpuset_init().
1518 */
1519static cpumask_var_t cpus_attach;
1520
761b3ef5 1521static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
8793d854 1522{
67bd2c59 1523 /* static buf protected by cpuset_mutex */
4e4c9a14 1524 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1525 struct mm_struct *mm;
bb9d97b6
TH
1526 struct task_struct *task;
1527 struct task_struct *leader = cgroup_taskset_first(tset);
2f7ee569
TH
1528 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1529 struct cpuset *cs = cgroup_cs(cgrp);
1530 struct cpuset *oldcs = cgroup_cs(oldcgrp);
070b57fc
LZ
1531 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1532 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
22fb52dd 1533
5d21cc2d
TH
1534 mutex_lock(&cpuset_mutex);
1535
4e4c9a14
TH
1536 /* prepare for attach */
1537 if (cs == &top_cpuset)
1538 cpumask_copy(cpus_attach, cpu_possible_mask);
1539 else
070b57fc 1540 guarantee_online_cpus(cpus_cs, cpus_attach);
4e4c9a14 1541
070b57fc 1542 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
4e4c9a14 1543
bb9d97b6
TH
1544 cgroup_taskset_for_each(task, cgrp, tset) {
1545 /*
1546 * can_attach beforehand should guarantee that this doesn't
1547 * fail. TODO: have a better way to handle failure here
1548 */
1549 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1550
1551 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1552 cpuset_update_task_spread_flag(cs, task);
1553 }
22fb52dd 1554
f780bdb7
BB
1555 /*
1556 * Change mm, possibly for multiple threads in a threadgroup. This is
1557 * expensive and may sleep.
1558 */
f780bdb7 1559 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1560 mm = get_task_mm(leader);
4225399a 1561 if (mm) {
070b57fc
LZ
1562 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1563
f780bdb7 1564 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
f047cecf
LZ
1565
1566 /*
1567 * old_mems_allowed is the same with mems_allowed here, except
1568 * if this task is being moved automatically due to hotplug.
1569 * In that case @mems_allowed has been updated and is empty,
1570 * so @old_mems_allowed is the right nodesets that we migrate
1571 * mm from.
1572 */
1573 if (is_memory_migrate(cs)) {
1574 cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
f780bdb7 1575 &cpuset_attach_nodemask_to);
f047cecf 1576 }
4225399a
PJ
1577 mmput(mm);
1578 }
452477fa 1579
33ad801d 1580 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1581
452477fa 1582 cs->attach_in_progress--;
e44193d3
LZ
1583 if (!cs->attach_in_progress)
1584 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1585
1586 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1587}
1588
1589/* The various types of files and directories in a cpuset file system */
1590
1591typedef enum {
45b07ef3 1592 FILE_MEMORY_MIGRATE,
1da177e4
LT
1593 FILE_CPULIST,
1594 FILE_MEMLIST,
1595 FILE_CPU_EXCLUSIVE,
1596 FILE_MEM_EXCLUSIVE,
78608366 1597 FILE_MEM_HARDWALL,
029190c5 1598 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1599 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1600 FILE_MEMORY_PRESSURE_ENABLED,
1601 FILE_MEMORY_PRESSURE,
825a46af
PJ
1602 FILE_SPREAD_PAGE,
1603 FILE_SPREAD_SLAB,
1da177e4
LT
1604} cpuset_filetype_t;
1605
700fe1ab
PM
1606static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1607{
700fe1ab
PM
1608 struct cpuset *cs = cgroup_cs(cgrp);
1609 cpuset_filetype_t type = cft->private;
5d21cc2d 1610 int retval = -ENODEV;
700fe1ab 1611
5d21cc2d
TH
1612 mutex_lock(&cpuset_mutex);
1613 if (!is_cpuset_online(cs))
1614 goto out_unlock;
700fe1ab
PM
1615
1616 switch (type) {
1da177e4 1617 case FILE_CPU_EXCLUSIVE:
700fe1ab 1618 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1619 break;
1620 case FILE_MEM_EXCLUSIVE:
700fe1ab 1621 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1622 break;
78608366
PM
1623 case FILE_MEM_HARDWALL:
1624 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1625 break;
029190c5 1626 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1627 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1628 break;
45b07ef3 1629 case FILE_MEMORY_MIGRATE:
700fe1ab 1630 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1631 break;
3e0d98b9 1632 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1633 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1634 break;
1635 case FILE_MEMORY_PRESSURE:
1636 retval = -EACCES;
1637 break;
825a46af 1638 case FILE_SPREAD_PAGE:
700fe1ab 1639 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1640 break;
1641 case FILE_SPREAD_SLAB:
700fe1ab 1642 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1643 break;
1da177e4
LT
1644 default:
1645 retval = -EINVAL;
700fe1ab 1646 break;
1da177e4 1647 }
5d21cc2d
TH
1648out_unlock:
1649 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1650 return retval;
1651}
1652
5be7a479
PM
1653static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1654{
5be7a479
PM
1655 struct cpuset *cs = cgroup_cs(cgrp);
1656 cpuset_filetype_t type = cft->private;
5d21cc2d 1657 int retval = -ENODEV;
5be7a479 1658
5d21cc2d
TH
1659 mutex_lock(&cpuset_mutex);
1660 if (!is_cpuset_online(cs))
1661 goto out_unlock;
e3712395 1662
5be7a479
PM
1663 switch (type) {
1664 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1665 retval = update_relax_domain_level(cs, val);
1666 break;
1667 default:
1668 retval = -EINVAL;
1669 break;
1670 }
5d21cc2d
TH
1671out_unlock:
1672 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1673 return retval;
1674}
1675
e3712395
PM
1676/*
1677 * Common handling for a write to a "cpus" or "mems" file.
1678 */
1679static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1680 const char *buf)
1681{
645fcc9d
LZ
1682 struct cpuset *cs = cgroup_cs(cgrp);
1683 struct cpuset *trialcs;
5d21cc2d 1684 int retval = -ENODEV;
e3712395 1685
3a5a6d0c
TH
1686 /*
1687 * CPU or memory hotunplug may leave @cs w/o any execution
1688 * resources, in which case the hotplug code asynchronously updates
1689 * configuration and transfers all tasks to the nearest ancestor
1690 * which can execute.
1691 *
1692 * As writes to "cpus" or "mems" may restore @cs's execution
1693 * resources, wait for the previously scheduled operations before
1694 * proceeding, so that we don't end up keep removing tasks added
1695 * after execution capability is restored.
1696 */
1697 flush_work(&cpuset_hotplug_work);
1698
5d21cc2d
TH
1699 mutex_lock(&cpuset_mutex);
1700 if (!is_cpuset_online(cs))
1701 goto out_unlock;
e3712395 1702
645fcc9d 1703 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1704 if (!trialcs) {
1705 retval = -ENOMEM;
5d21cc2d 1706 goto out_unlock;
b75f38d6 1707 }
645fcc9d 1708
e3712395
PM
1709 switch (cft->private) {
1710 case FILE_CPULIST:
645fcc9d 1711 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1712 break;
1713 case FILE_MEMLIST:
645fcc9d 1714 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1715 break;
1716 default:
1717 retval = -EINVAL;
1718 break;
1719 }
645fcc9d
LZ
1720
1721 free_trial_cpuset(trialcs);
5d21cc2d
TH
1722out_unlock:
1723 mutex_unlock(&cpuset_mutex);
e3712395
PM
1724 return retval;
1725}
1726
1da177e4
LT
1727/*
1728 * These ascii lists should be read in a single call, by using a user
1729 * buffer large enough to hold the entire map. If read in smaller
1730 * chunks, there is no guarantee of atomicity. Since the display format
1731 * used, list of ranges of sequential numbers, is variable length,
1732 * and since these maps can change value dynamically, one could read
1733 * gibberish by doing partial reads while a list was changing.
1734 * A single large read to a buffer that crosses a page boundary is
1735 * ok, because the result being copied to user land is not recomputed
1736 * across a page fault.
1737 */
1738
9303e0c4 1739static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1740{
9303e0c4 1741 size_t count;
1da177e4 1742
3d3f26a7 1743 mutex_lock(&callback_mutex);
9303e0c4 1744 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1745 mutex_unlock(&callback_mutex);
1da177e4 1746
9303e0c4 1747 return count;
1da177e4
LT
1748}
1749
9303e0c4 1750static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1751{
9303e0c4 1752 size_t count;
1da177e4 1753
3d3f26a7 1754 mutex_lock(&callback_mutex);
9303e0c4 1755 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1756 mutex_unlock(&callback_mutex);
1da177e4 1757
9303e0c4 1758 return count;
1da177e4
LT
1759}
1760
c9e5fe66 1761static ssize_t cpuset_common_file_read(struct cgroup *cgrp,
8793d854
PM
1762 struct cftype *cft,
1763 struct file *file,
1764 char __user *buf,
1765 size_t nbytes, loff_t *ppos)
1da177e4 1766{
c9e5fe66 1767 struct cpuset *cs = cgroup_cs(cgrp);
1da177e4
LT
1768 cpuset_filetype_t type = cft->private;
1769 char *page;
1770 ssize_t retval = 0;
1771 char *s;
1da177e4 1772
e12ba74d 1773 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1774 return -ENOMEM;
1775
1776 s = page;
1777
1778 switch (type) {
1779 case FILE_CPULIST:
1780 s += cpuset_sprintf_cpulist(s, cs);
1781 break;
1782 case FILE_MEMLIST:
1783 s += cpuset_sprintf_memlist(s, cs);
1784 break;
1da177e4
LT
1785 default:
1786 retval = -EINVAL;
1787 goto out;
1788 }
1789 *s++ = '\n';
1da177e4 1790
eacaa1f5 1791 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1792out:
1793 free_page((unsigned long)page);
1794 return retval;
1795}
1796
c9e5fe66 1797static u64 cpuset_read_u64(struct cgroup *cgrp, struct cftype *cft)
700fe1ab 1798{
c9e5fe66 1799 struct cpuset *cs = cgroup_cs(cgrp);
700fe1ab
PM
1800 cpuset_filetype_t type = cft->private;
1801 switch (type) {
1802 case FILE_CPU_EXCLUSIVE:
1803 return is_cpu_exclusive(cs);
1804 case FILE_MEM_EXCLUSIVE:
1805 return is_mem_exclusive(cs);
78608366
PM
1806 case FILE_MEM_HARDWALL:
1807 return is_mem_hardwall(cs);
700fe1ab
PM
1808 case FILE_SCHED_LOAD_BALANCE:
1809 return is_sched_load_balance(cs);
1810 case FILE_MEMORY_MIGRATE:
1811 return is_memory_migrate(cs);
1812 case FILE_MEMORY_PRESSURE_ENABLED:
1813 return cpuset_memory_pressure_enabled;
1814 case FILE_MEMORY_PRESSURE:
1815 return fmeter_getrate(&cs->fmeter);
1816 case FILE_SPREAD_PAGE:
1817 return is_spread_page(cs);
1818 case FILE_SPREAD_SLAB:
1819 return is_spread_slab(cs);
1820 default:
1821 BUG();
1822 }
cf417141
MK
1823
1824 /* Unreachable but makes gcc happy */
1825 return 0;
700fe1ab 1826}
1da177e4 1827
c9e5fe66 1828static s64 cpuset_read_s64(struct cgroup *cgrp, struct cftype *cft)
5be7a479 1829{
c9e5fe66 1830 struct cpuset *cs = cgroup_cs(cgrp);
5be7a479
PM
1831 cpuset_filetype_t type = cft->private;
1832 switch (type) {
1833 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1834 return cs->relax_domain_level;
1835 default:
1836 BUG();
1837 }
cf417141
MK
1838
1839 /* Unrechable but makes gcc happy */
1840 return 0;
5be7a479
PM
1841}
1842
1da177e4
LT
1843
1844/*
1845 * for the common functions, 'private' gives the type of file
1846 */
1847
addf2c73
PM
1848static struct cftype files[] = {
1849 {
1850 .name = "cpus",
1851 .read = cpuset_common_file_read,
e3712395
PM
1852 .write_string = cpuset_write_resmask,
1853 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1854 .private = FILE_CPULIST,
1855 },
1856
1857 {
1858 .name = "mems",
1859 .read = cpuset_common_file_read,
e3712395
PM
1860 .write_string = cpuset_write_resmask,
1861 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1862 .private = FILE_MEMLIST,
1863 },
1864
1865 {
1866 .name = "cpu_exclusive",
1867 .read_u64 = cpuset_read_u64,
1868 .write_u64 = cpuset_write_u64,
1869 .private = FILE_CPU_EXCLUSIVE,
1870 },
1871
1872 {
1873 .name = "mem_exclusive",
1874 .read_u64 = cpuset_read_u64,
1875 .write_u64 = cpuset_write_u64,
1876 .private = FILE_MEM_EXCLUSIVE,
1877 },
1878
78608366
PM
1879 {
1880 .name = "mem_hardwall",
1881 .read_u64 = cpuset_read_u64,
1882 .write_u64 = cpuset_write_u64,
1883 .private = FILE_MEM_HARDWALL,
1884 },
1885
addf2c73
PM
1886 {
1887 .name = "sched_load_balance",
1888 .read_u64 = cpuset_read_u64,
1889 .write_u64 = cpuset_write_u64,
1890 .private = FILE_SCHED_LOAD_BALANCE,
1891 },
1892
1893 {
1894 .name = "sched_relax_domain_level",
5be7a479
PM
1895 .read_s64 = cpuset_read_s64,
1896 .write_s64 = cpuset_write_s64,
addf2c73
PM
1897 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1898 },
1899
1900 {
1901 .name = "memory_migrate",
1902 .read_u64 = cpuset_read_u64,
1903 .write_u64 = cpuset_write_u64,
1904 .private = FILE_MEMORY_MIGRATE,
1905 },
1906
1907 {
1908 .name = "memory_pressure",
1909 .read_u64 = cpuset_read_u64,
1910 .write_u64 = cpuset_write_u64,
1911 .private = FILE_MEMORY_PRESSURE,
099fca32 1912 .mode = S_IRUGO,
addf2c73
PM
1913 },
1914
1915 {
1916 .name = "memory_spread_page",
1917 .read_u64 = cpuset_read_u64,
1918 .write_u64 = cpuset_write_u64,
1919 .private = FILE_SPREAD_PAGE,
1920 },
1921
1922 {
1923 .name = "memory_spread_slab",
1924 .read_u64 = cpuset_read_u64,
1925 .write_u64 = cpuset_write_u64,
1926 .private = FILE_SPREAD_SLAB,
1927 },
3e0d98b9 1928
4baf6e33
TH
1929 {
1930 .name = "memory_pressure_enabled",
1931 .flags = CFTYPE_ONLY_ON_ROOT,
1932 .read_u64 = cpuset_read_u64,
1933 .write_u64 = cpuset_write_u64,
1934 .private = FILE_MEMORY_PRESSURE_ENABLED,
1935 },
1da177e4 1936
4baf6e33
TH
1937 { } /* terminate */
1938};
1da177e4
LT
1939
1940/*
92fb9748 1941 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1942 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1943 */
1944
c9e5fe66 1945static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cgrp)
1da177e4 1946{
c8f699bb 1947 struct cpuset *cs;
1da177e4 1948
c9e5fe66 1949 if (!cgrp->parent)
8793d854 1950 return &top_cpuset.css;
033fa1c5 1951
c8f699bb 1952 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1953 if (!cs)
8793d854 1954 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1955 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1956 kfree(cs);
1957 return ERR_PTR(-ENOMEM);
1958 }
1da177e4 1959
029190c5 1960 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1961 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1962 nodes_clear(cs->mems_allowed);
3e0d98b9 1963 fmeter_init(&cs->fmeter);
1d3504fc 1964 cs->relax_domain_level = -1;
1da177e4 1965
c8f699bb
TH
1966 return &cs->css;
1967}
1968
1969static int cpuset_css_online(struct cgroup *cgrp)
1970{
1971 struct cpuset *cs = cgroup_cs(cgrp);
c431069f 1972 struct cpuset *parent = parent_cs(cs);
ae8086ce
TH
1973 struct cpuset *tmp_cs;
1974 struct cgroup *pos_cg;
c8f699bb
TH
1975
1976 if (!parent)
1977 return 0;
1978
5d21cc2d
TH
1979 mutex_lock(&cpuset_mutex);
1980
efeb77b2 1981 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1982 if (is_spread_page(parent))
1983 set_bit(CS_SPREAD_PAGE, &cs->flags);
1984 if (is_spread_slab(parent))
1985 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1986
202f72d5 1987 number_of_cpusets++;
033fa1c5 1988
c8f699bb 1989 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
5d21cc2d 1990 goto out_unlock;
033fa1c5
TH
1991
1992 /*
1993 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1994 * set. This flag handling is implemented in cgroup core for
1995 * histrical reasons - the flag may be specified during mount.
1996 *
1997 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1998 * refuse to clone the configuration - thereby refusing the task to
1999 * be entered, and as a result refusing the sys_unshare() or
2000 * clone() which initiated it. If this becomes a problem for some
2001 * users who wish to allow that scenario, then this could be
2002 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2003 * (and likewise for mems) to the new cgroup.
2004 */
ae8086ce
TH
2005 rcu_read_lock();
2006 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
2007 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2008 rcu_read_unlock();
5d21cc2d 2009 goto out_unlock;
ae8086ce 2010 }
033fa1c5 2011 }
ae8086ce 2012 rcu_read_unlock();
033fa1c5
TH
2013
2014 mutex_lock(&callback_mutex);
2015 cs->mems_allowed = parent->mems_allowed;
2016 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2017 mutex_unlock(&callback_mutex);
5d21cc2d
TH
2018out_unlock:
2019 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
2020 return 0;
2021}
2022
2023static void cpuset_css_offline(struct cgroup *cgrp)
2024{
2025 struct cpuset *cs = cgroup_cs(cgrp);
2026
5d21cc2d 2027 mutex_lock(&cpuset_mutex);
c8f699bb
TH
2028
2029 if (is_sched_load_balance(cs))
2030 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2031
2032 number_of_cpusets--;
efeb77b2 2033 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 2034
5d21cc2d 2035 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2036}
2037
029190c5 2038/*
029190c5
PJ
2039 * If the cpuset being removed has its flag 'sched_load_balance'
2040 * enabled, then simulate turning sched_load_balance off, which
699140ba 2041 * will call rebuild_sched_domains_locked().
029190c5
PJ
2042 */
2043
c9e5fe66 2044static void cpuset_css_free(struct cgroup *cgrp)
1da177e4 2045{
c9e5fe66 2046 struct cpuset *cs = cgroup_cs(cgrp);
1da177e4 2047
300ed6cb 2048 free_cpumask_var(cs->cpus_allowed);
8793d854 2049 kfree(cs);
1da177e4
LT
2050}
2051
8793d854
PM
2052struct cgroup_subsys cpuset_subsys = {
2053 .name = "cpuset",
92fb9748 2054 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
2055 .css_online = cpuset_css_online,
2056 .css_offline = cpuset_css_offline,
92fb9748 2057 .css_free = cpuset_css_free,
8793d854 2058 .can_attach = cpuset_can_attach,
452477fa 2059 .cancel_attach = cpuset_cancel_attach,
8793d854 2060 .attach = cpuset_attach,
8793d854 2061 .subsys_id = cpuset_subsys_id,
4baf6e33 2062 .base_cftypes = files,
8793d854
PM
2063 .early_init = 1,
2064};
2065
1da177e4
LT
2066/**
2067 * cpuset_init - initialize cpusets at system boot
2068 *
2069 * Description: Initialize top_cpuset and the cpuset internal file system,
2070 **/
2071
2072int __init cpuset_init(void)
2073{
8793d854 2074 int err = 0;
1da177e4 2075
58568d2a
MX
2076 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2077 BUG();
2078
300ed6cb 2079 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2080 nodes_setall(top_cpuset.mems_allowed);
1da177e4 2081
3e0d98b9 2082 fmeter_init(&top_cpuset.fmeter);
029190c5 2083 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2084 top_cpuset.relax_domain_level = -1;
1da177e4 2085
1da177e4
LT
2086 err = register_filesystem(&cpuset_fs_type);
2087 if (err < 0)
8793d854
PM
2088 return err;
2089
2341d1b6
LZ
2090 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2091 BUG();
2092
202f72d5 2093 number_of_cpusets = 1;
8793d854 2094 return 0;
1da177e4
LT
2095}
2096
b1aac8bb 2097/*
cf417141 2098 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2099 * or memory nodes, we need to walk over the cpuset hierarchy,
2100 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2101 * last CPU or node from a cpuset, then move the tasks in the empty
2102 * cpuset to its next-highest non-empty parent.
b1aac8bb 2103 */
956db3ca
CW
2104static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2105{
2106 struct cpuset *parent;
2107
956db3ca
CW
2108 /*
2109 * Find its next-highest non-empty parent, (top cpuset
2110 * has online cpus, so can't be empty).
2111 */
c431069f 2112 parent = parent_cs(cs);
300ed6cb 2113 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2114 nodes_empty(parent->mems_allowed))
c431069f 2115 parent = parent_cs(parent);
956db3ca 2116
8cc99345
TH
2117 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2118 rcu_read_lock();
2119 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
2120 cgroup_name(cs->css.cgroup));
2121 rcu_read_unlock();
2122 }
956db3ca
CW
2123}
2124
deb7aa30 2125/**
388afd85 2126 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2127 * @cs: cpuset in interest
956db3ca 2128 *
deb7aa30
TH
2129 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2130 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2131 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2132 */
388afd85 2133static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2134{
deb7aa30 2135 static cpumask_t off_cpus;
33ad801d 2136 static nodemask_t off_mems;
5d21cc2d 2137 bool is_empty;
5c5cc623 2138 bool sane = cgroup_sane_behavior(cs->css.cgroup);
80d1fa64 2139
e44193d3
LZ
2140retry:
2141 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2142
5d21cc2d 2143 mutex_lock(&cpuset_mutex);
7ddf96b0 2144
e44193d3
LZ
2145 /*
2146 * We have raced with task attaching. We wait until attaching
2147 * is finished, so we won't attach a task to an empty cpuset.
2148 */
2149 if (cs->attach_in_progress) {
2150 mutex_unlock(&cpuset_mutex);
2151 goto retry;
2152 }
2153
deb7aa30
TH
2154 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2155 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2156
5c5cc623
LZ
2157 mutex_lock(&callback_mutex);
2158 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2159 mutex_unlock(&callback_mutex);
2160
2161 /*
2162 * If sane_behavior flag is set, we need to update tasks' cpumask
f047cecf
LZ
2163 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
2164 * call update_tasks_cpumask() if the cpuset becomes empty, as
2165 * the tasks in it will be migrated to an ancestor.
5c5cc623
LZ
2166 */
2167 if ((sane && cpumask_empty(cs->cpus_allowed)) ||
f047cecf 2168 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
deb7aa30 2169 update_tasks_cpumask(cs, NULL);
80d1fa64 2170
5c5cc623
LZ
2171 mutex_lock(&callback_mutex);
2172 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2173 mutex_unlock(&callback_mutex);
2174
2175 /*
2176 * If sane_behavior flag is set, we need to update tasks' nodemask
f047cecf
LZ
2177 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
2178 * call update_tasks_nodemask() if the cpuset becomes empty, as
2179 * the tasks in it will be migratd to an ancestor.
5c5cc623
LZ
2180 */
2181 if ((sane && nodes_empty(cs->mems_allowed)) ||
f047cecf 2182 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
33ad801d 2183 update_tasks_nodemask(cs, NULL);
deb7aa30 2184
5d21cc2d
TH
2185 is_empty = cpumask_empty(cs->cpus_allowed) ||
2186 nodes_empty(cs->mems_allowed);
8d033948 2187
5d21cc2d
TH
2188 mutex_unlock(&cpuset_mutex);
2189
2190 /*
5c5cc623
LZ
2191 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
2192 *
2193 * Otherwise move tasks to the nearest ancestor with execution
2194 * resources. This is full cgroup operation which will
5d21cc2d
TH
2195 * also call back into cpuset. Should be done outside any lock.
2196 */
5c5cc623 2197 if (!sane && is_empty)
5d21cc2d 2198 remove_tasks_in_empty_cpuset(cs);
b1aac8bb
PJ
2199}
2200
deb7aa30 2201/**
3a5a6d0c 2202 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2203 *
deb7aa30
TH
2204 * This function is called after either CPU or memory configuration has
2205 * changed and updates cpuset accordingly. The top_cpuset is always
2206 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2207 * order to make cpusets transparent (of no affect) on systems that are
2208 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2209 *
deb7aa30 2210 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2211 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2212 * all descendants.
956db3ca 2213 *
deb7aa30
TH
2214 * Note that CPU offlining during suspend is ignored. We don't modify
2215 * cpusets across suspend/resume cycles at all.
956db3ca 2216 */
3a5a6d0c 2217static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2218{
5c5cc623
LZ
2219 static cpumask_t new_cpus;
2220 static nodemask_t new_mems;
deb7aa30 2221 bool cpus_updated, mems_updated;
b1aac8bb 2222
5d21cc2d 2223 mutex_lock(&cpuset_mutex);
956db3ca 2224
deb7aa30
TH
2225 /* fetch the available cpus/mems and find out which changed how */
2226 cpumask_copy(&new_cpus, cpu_active_mask);
2227 new_mems = node_states[N_MEMORY];
7ddf96b0 2228
deb7aa30 2229 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
deb7aa30 2230 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
7ddf96b0 2231
deb7aa30
TH
2232 /* synchronize cpus_allowed to cpu_active_mask */
2233 if (cpus_updated) {
2234 mutex_lock(&callback_mutex);
2235 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2236 mutex_unlock(&callback_mutex);
2237 /* we don't mess with cpumasks of tasks in top_cpuset */
2238 }
b4501295 2239
deb7aa30
TH
2240 /* synchronize mems_allowed to N_MEMORY */
2241 if (mems_updated) {
deb7aa30
TH
2242 mutex_lock(&callback_mutex);
2243 top_cpuset.mems_allowed = new_mems;
2244 mutex_unlock(&callback_mutex);
33ad801d 2245 update_tasks_nodemask(&top_cpuset, NULL);
deb7aa30 2246 }
b4501295 2247
388afd85
LZ
2248 mutex_unlock(&cpuset_mutex);
2249
5c5cc623
LZ
2250 /* if cpus or mems changed, we need to propagate to descendants */
2251 if (cpus_updated || mems_updated) {
deb7aa30 2252 struct cpuset *cs;
fc560a26 2253 struct cgroup *pos_cgrp;
f9b4fb8d 2254
fc560a26 2255 rcu_read_lock();
388afd85
LZ
2256 cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset) {
2257 if (!css_tryget(&cs->css))
2258 continue;
2259 rcu_read_unlock();
7ddf96b0 2260
388afd85 2261 cpuset_hotplug_update_tasks(cs);
b4501295 2262
388afd85
LZ
2263 rcu_read_lock();
2264 css_put(&cs->css);
2265 }
2266 rcu_read_unlock();
2267 }
8d033948 2268
deb7aa30 2269 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2270 if (cpus_updated)
2271 rebuild_sched_domains();
b1aac8bb
PJ
2272}
2273
7ddf96b0 2274void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2275{
3a5a6d0c
TH
2276 /*
2277 * We're inside cpu hotplug critical region which usually nests
2278 * inside cgroup synchronization. Bounce actual hotplug processing
2279 * to a work item to avoid reverse locking order.
2280 *
2281 * We still need to do partition_sched_domains() synchronously;
2282 * otherwise, the scheduler will get confused and put tasks to the
2283 * dead CPU. Fall back to the default single domain.
2284 * cpuset_hotplug_workfn() will rebuild it as necessary.
2285 */
2286 partition_sched_domains(1, NULL, NULL);
2287 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2288}
4c4d50f7 2289
38837fc7 2290/*
38d7bee9
LJ
2291 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2292 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2293 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2294 */
f481891f
MX
2295static int cpuset_track_online_nodes(struct notifier_block *self,
2296 unsigned long action, void *arg)
38837fc7 2297{
3a5a6d0c 2298 schedule_work(&cpuset_hotplug_work);
f481891f 2299 return NOTIFY_OK;
38837fc7 2300}
d8f10cb3
AM
2301
2302static struct notifier_block cpuset_track_online_nodes_nb = {
2303 .notifier_call = cpuset_track_online_nodes,
2304 .priority = 10, /* ??! */
2305};
38837fc7 2306
1da177e4
LT
2307/**
2308 * cpuset_init_smp - initialize cpus_allowed
2309 *
2310 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2311 */
1da177e4
LT
2312void __init cpuset_init_smp(void)
2313{
6ad4c188 2314 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2315 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2316 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2317
d8f10cb3 2318 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2319}
2320
2321/**
1da177e4
LT
2322 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2323 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2324 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2325 *
300ed6cb 2326 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2327 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2328 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2329 * tasks cpuset.
2330 **/
2331
6af866af 2332void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2333{
070b57fc
LZ
2334 struct cpuset *cpus_cs;
2335
3d3f26a7 2336 mutex_lock(&callback_mutex);
909d75a3 2337 task_lock(tsk);
070b57fc
LZ
2338 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2339 guarantee_online_cpus(cpus_cs, pmask);
909d75a3 2340 task_unlock(tsk);
897f0b3c 2341 mutex_unlock(&callback_mutex);
1da177e4
LT
2342}
2343
2baab4e9 2344void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2345{
070b57fc 2346 const struct cpuset *cpus_cs;
9084bb82
ON
2347
2348 rcu_read_lock();
070b57fc
LZ
2349 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2350 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
9084bb82
ON
2351 rcu_read_unlock();
2352
2353 /*
2354 * We own tsk->cpus_allowed, nobody can change it under us.
2355 *
2356 * But we used cs && cs->cpus_allowed lockless and thus can
2357 * race with cgroup_attach_task() or update_cpumask() and get
2358 * the wrong tsk->cpus_allowed. However, both cases imply the
2359 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2360 * which takes task_rq_lock().
2361 *
2362 * If we are called after it dropped the lock we must see all
2363 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2364 * set any mask even if it is not right from task_cs() pov,
2365 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2366 *
2367 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2368 * if required.
9084bb82 2369 */
9084bb82
ON
2370}
2371
1da177e4
LT
2372void cpuset_init_current_mems_allowed(void)
2373{
f9a86fcb 2374 nodes_setall(current->mems_allowed);
1da177e4
LT
2375}
2376
909d75a3
PJ
2377/**
2378 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2379 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2380 *
2381 * Description: Returns the nodemask_t mems_allowed of the cpuset
2382 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2383 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2384 * tasks cpuset.
2385 **/
2386
2387nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2388{
070b57fc 2389 struct cpuset *mems_cs;
909d75a3
PJ
2390 nodemask_t mask;
2391
3d3f26a7 2392 mutex_lock(&callback_mutex);
909d75a3 2393 task_lock(tsk);
070b57fc
LZ
2394 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2395 guarantee_online_mems(mems_cs, &mask);
909d75a3 2396 task_unlock(tsk);
3d3f26a7 2397 mutex_unlock(&callback_mutex);
909d75a3
PJ
2398
2399 return mask;
2400}
2401
d9fd8a6d 2402/**
19770b32
MG
2403 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2404 * @nodemask: the nodemask to be checked
d9fd8a6d 2405 *
19770b32 2406 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2407 */
19770b32 2408int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2409{
19770b32 2410 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2411}
2412
9bf2229f 2413/*
78608366
PM
2414 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2415 * mem_hardwall ancestor to the specified cpuset. Call holding
2416 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2417 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2418 */
78608366 2419static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2420{
c431069f
TH
2421 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2422 cs = parent_cs(cs);
9bf2229f
PJ
2423 return cs;
2424}
2425
d9fd8a6d 2426/**
a1bc5a4e
DR
2427 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2428 * @node: is this an allowed node?
02a0e53d 2429 * @gfp_mask: memory allocation flags
d9fd8a6d 2430 *
a1bc5a4e
DR
2431 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2432 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2433 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2434 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2435 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2436 * flag, yes.
9bf2229f
PJ
2437 * Otherwise, no.
2438 *
a1bc5a4e
DR
2439 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2440 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2441 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2442 *
a1bc5a4e
DR
2443 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2444 * cpusets, and never sleeps.
02a0e53d
PJ
2445 *
2446 * The __GFP_THISNODE placement logic is really handled elsewhere,
2447 * by forcibly using a zonelist starting at a specified node, and by
2448 * (in get_page_from_freelist()) refusing to consider the zones for
2449 * any node on the zonelist except the first. By the time any such
2450 * calls get to this routine, we should just shut up and say 'yes'.
2451 *
9bf2229f 2452 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2453 * and do not allow allocations outside the current tasks cpuset
2454 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2455 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2456 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2457 *
02a0e53d
PJ
2458 * Scanning up parent cpusets requires callback_mutex. The
2459 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2460 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2461 * current tasks mems_allowed came up empty on the first pass over
2462 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2463 * cpuset are short of memory, might require taking the callback_mutex
2464 * mutex.
9bf2229f 2465 *
36be57ff 2466 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2467 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2468 * so no allocation on a node outside the cpuset is allowed (unless
2469 * in interrupt, of course).
36be57ff
PJ
2470 *
2471 * The second pass through get_page_from_freelist() doesn't even call
2472 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2473 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2474 * in alloc_flags. That logic and the checks below have the combined
2475 * affect that:
9bf2229f
PJ
2476 * in_interrupt - any node ok (current task context irrelevant)
2477 * GFP_ATOMIC - any node ok
c596d9f3 2478 * TIF_MEMDIE - any node ok
78608366 2479 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2480 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2481 *
2482 * Rule:
a1bc5a4e 2483 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2484 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2485 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2486 */
a1bc5a4e 2487int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2488{
9bf2229f 2489 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2490 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2491
9b819d20 2492 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2493 return 1;
92d1dbd2 2494 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2495 if (node_isset(node, current->mems_allowed))
2496 return 1;
c596d9f3
DR
2497 /*
2498 * Allow tasks that have access to memory reserves because they have
2499 * been OOM killed to get memory anywhere.
2500 */
2501 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2502 return 1;
9bf2229f
PJ
2503 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2504 return 0;
2505
5563e770
BP
2506 if (current->flags & PF_EXITING) /* Let dying task have memory */
2507 return 1;
2508
9bf2229f 2509 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2510 mutex_lock(&callback_mutex);
053199ed 2511
053199ed 2512 task_lock(current);
78608366 2513 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2514 task_unlock(current);
2515
9bf2229f 2516 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2517 mutex_unlock(&callback_mutex);
9bf2229f 2518 return allowed;
1da177e4
LT
2519}
2520
02a0e53d 2521/*
a1bc5a4e
DR
2522 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2523 * @node: is this an allowed node?
02a0e53d
PJ
2524 * @gfp_mask: memory allocation flags
2525 *
a1bc5a4e
DR
2526 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2527 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2528 * yes. If the task has been OOM killed and has access to memory reserves as
2529 * specified by the TIF_MEMDIE flag, yes.
2530 * Otherwise, no.
02a0e53d
PJ
2531 *
2532 * The __GFP_THISNODE placement logic is really handled elsewhere,
2533 * by forcibly using a zonelist starting at a specified node, and by
2534 * (in get_page_from_freelist()) refusing to consider the zones for
2535 * any node on the zonelist except the first. By the time any such
2536 * calls get to this routine, we should just shut up and say 'yes'.
2537 *
a1bc5a4e
DR
2538 * Unlike the cpuset_node_allowed_softwall() variant, above,
2539 * this variant requires that the node be in the current task's
02a0e53d
PJ
2540 * mems_allowed or that we're in interrupt. It does not scan up the
2541 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2542 * It never sleeps.
2543 */
a1bc5a4e 2544int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2545{
02a0e53d
PJ
2546 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2547 return 1;
02a0e53d
PJ
2548 if (node_isset(node, current->mems_allowed))
2549 return 1;
dedf8b79
DW
2550 /*
2551 * Allow tasks that have access to memory reserves because they have
2552 * been OOM killed to get memory anywhere.
2553 */
2554 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2555 return 1;
02a0e53d
PJ
2556 return 0;
2557}
2558
825a46af 2559/**
6adef3eb
JS
2560 * cpuset_mem_spread_node() - On which node to begin search for a file page
2561 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2562 *
2563 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2564 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2565 * and if the memory allocation used cpuset_mem_spread_node()
2566 * to determine on which node to start looking, as it will for
2567 * certain page cache or slab cache pages such as used for file
2568 * system buffers and inode caches, then instead of starting on the
2569 * local node to look for a free page, rather spread the starting
2570 * node around the tasks mems_allowed nodes.
2571 *
2572 * We don't have to worry about the returned node being offline
2573 * because "it can't happen", and even if it did, it would be ok.
2574 *
2575 * The routines calling guarantee_online_mems() are careful to
2576 * only set nodes in task->mems_allowed that are online. So it
2577 * should not be possible for the following code to return an
2578 * offline node. But if it did, that would be ok, as this routine
2579 * is not returning the node where the allocation must be, only
2580 * the node where the search should start. The zonelist passed to
2581 * __alloc_pages() will include all nodes. If the slab allocator
2582 * is passed an offline node, it will fall back to the local node.
2583 * See kmem_cache_alloc_node().
2584 */
2585
6adef3eb 2586static int cpuset_spread_node(int *rotor)
825a46af
PJ
2587{
2588 int node;
2589
6adef3eb 2590 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2591 if (node == MAX_NUMNODES)
2592 node = first_node(current->mems_allowed);
6adef3eb 2593 *rotor = node;
825a46af
PJ
2594 return node;
2595}
6adef3eb
JS
2596
2597int cpuset_mem_spread_node(void)
2598{
778d3b0f
MH
2599 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2600 current->cpuset_mem_spread_rotor =
2601 node_random(&current->mems_allowed);
2602
6adef3eb
JS
2603 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2604}
2605
2606int cpuset_slab_spread_node(void)
2607{
778d3b0f
MH
2608 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2609 current->cpuset_slab_spread_rotor =
2610 node_random(&current->mems_allowed);
2611
6adef3eb
JS
2612 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2613}
2614
825a46af
PJ
2615EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2616
ef08e3b4 2617/**
bbe373f2
DR
2618 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2619 * @tsk1: pointer to task_struct of some task.
2620 * @tsk2: pointer to task_struct of some other task.
2621 *
2622 * Description: Return true if @tsk1's mems_allowed intersects the
2623 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2624 * one of the task's memory usage might impact the memory available
2625 * to the other.
ef08e3b4
PJ
2626 **/
2627
bbe373f2
DR
2628int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2629 const struct task_struct *tsk2)
ef08e3b4 2630{
bbe373f2 2631 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2632}
2633
f440d98f
LZ
2634#define CPUSET_NODELIST_LEN (256)
2635
75aa1994
DR
2636/**
2637 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2638 * @task: pointer to task_struct of some task.
2639 *
2640 * Description: Prints @task's name, cpuset name, and cached copy of its
2641 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2642 * dereferencing task_cs(task).
2643 */
2644void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2645{
f440d98f
LZ
2646 /* Statically allocated to prevent using excess stack. */
2647 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2648 static DEFINE_SPINLOCK(cpuset_buffer_lock);
75aa1994 2649
f440d98f 2650 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
63f43f55 2651
cfb5966b 2652 rcu_read_lock();
f440d98f 2653 spin_lock(&cpuset_buffer_lock);
63f43f55 2654
75aa1994
DR
2655 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2656 tsk->mems_allowed);
2657 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
f440d98f
LZ
2658 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2659
75aa1994 2660 spin_unlock(&cpuset_buffer_lock);
cfb5966b 2661 rcu_read_unlock();
75aa1994
DR
2662}
2663
3e0d98b9
PJ
2664/*
2665 * Collection of memory_pressure is suppressed unless
2666 * this flag is enabled by writing "1" to the special
2667 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2668 */
2669
c5b2aff8 2670int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2671
2672/**
2673 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2674 *
2675 * Keep a running average of the rate of synchronous (direct)
2676 * page reclaim efforts initiated by tasks in each cpuset.
2677 *
2678 * This represents the rate at which some task in the cpuset
2679 * ran low on memory on all nodes it was allowed to use, and
2680 * had to enter the kernels page reclaim code in an effort to
2681 * create more free memory by tossing clean pages or swapping
2682 * or writing dirty pages.
2683 *
2684 * Display to user space in the per-cpuset read-only file
2685 * "memory_pressure". Value displayed is an integer
2686 * representing the recent rate of entry into the synchronous
2687 * (direct) page reclaim by any task attached to the cpuset.
2688 **/
2689
2690void __cpuset_memory_pressure_bump(void)
2691{
3e0d98b9 2692 task_lock(current);
8793d854 2693 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2694 task_unlock(current);
2695}
2696
8793d854 2697#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2698/*
2699 * proc_cpuset_show()
2700 * - Print tasks cpuset path into seq_file.
2701 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2702 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2703 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2704 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2705 * anyway.
1da177e4 2706 */
8d8b97ba 2707int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2708{
13b41b09 2709 struct pid *pid;
1da177e4
LT
2710 struct task_struct *tsk;
2711 char *buf;
8793d854 2712 struct cgroup_subsys_state *css;
99f89551 2713 int retval;
1da177e4 2714
99f89551 2715 retval = -ENOMEM;
1da177e4
LT
2716 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2717 if (!buf)
99f89551
EB
2718 goto out;
2719
2720 retval = -ESRCH;
13b41b09
EB
2721 pid = m->private;
2722 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2723 if (!tsk)
2724 goto out_free;
1da177e4 2725
27e89ae5 2726 rcu_read_lock();
8793d854
PM
2727 css = task_subsys_state(tsk, cpuset_subsys_id);
2728 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
27e89ae5 2729 rcu_read_unlock();
1da177e4 2730 if (retval < 0)
27e89ae5 2731 goto out_put_task;
1da177e4
LT
2732 seq_puts(m, buf);
2733 seq_putc(m, '\n');
27e89ae5 2734out_put_task:
99f89551
EB
2735 put_task_struct(tsk);
2736out_free:
1da177e4 2737 kfree(buf);
99f89551 2738out:
1da177e4
LT
2739 return retval;
2740}
8793d854 2741#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2742
d01d4827 2743/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2744void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2745{
df5f8314 2746 seq_printf(m, "Mems_allowed:\t");
30e8e136 2747 seq_nodemask(m, &task->mems_allowed);
df5f8314 2748 seq_printf(m, "\n");
39106dcf 2749 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2750 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2751 seq_printf(m, "\n");
1da177e4 2752}