hotplug cpu: move tasks in empty cpusets to parent
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
1da177e4
LT
17 *
18 * This file is subject to the terms and conditions of the GNU General Public
19 * License. See the file COPYING in the main directory of the Linux
20 * distribution for more details.
21 */
22
1da177e4
LT
23#include <linux/cpu.h>
24#include <linux/cpumask.h>
25#include <linux/cpuset.h>
26#include <linux/err.h>
27#include <linux/errno.h>
28#include <linux/file.h>
29#include <linux/fs.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/kernel.h>
33#include <linux/kmod.h>
34#include <linux/list.h>
68860ec1 35#include <linux/mempolicy.h>
1da177e4
LT
36#include <linux/mm.h>
37#include <linux/module.h>
38#include <linux/mount.h>
39#include <linux/namei.h>
40#include <linux/pagemap.h>
8707d8b8 41#include <linux/prio_heap.h>
1da177e4 42#include <linux/proc_fs.h>
6b9c2603 43#include <linux/rcupdate.h>
1da177e4
LT
44#include <linux/sched.h>
45#include <linux/seq_file.h>
22fb52dd 46#include <linux/security.h>
1da177e4 47#include <linux/slab.h>
1da177e4
LT
48#include <linux/spinlock.h>
49#include <linux/stat.h>
50#include <linux/string.h>
51#include <linux/time.h>
52#include <linux/backing-dev.h>
53#include <linux/sort.h>
54
55#include <asm/uaccess.h>
56#include <asm/atomic.h>
3d3f26a7 57#include <linux/mutex.h>
029190c5 58#include <linux/kfifo.h>
956db3ca
CW
59#include <linux/workqueue.h>
60#include <linux/cgroup.h>
1da177e4 61
202f72d5
PJ
62/*
63 * Tracks how many cpusets are currently defined in system.
64 * When there is only one cpuset (the root cpuset) we can
65 * short circuit some hooks.
66 */
7edc5962 67int number_of_cpusets __read_mostly;
202f72d5 68
8793d854
PM
69/* Retrieve the cpuset from a cgroup */
70struct cgroup_subsys cpuset_subsys;
71struct cpuset;
72
3e0d98b9
PJ
73/* See "Frequency meter" comments, below. */
74
75struct fmeter {
76 int cnt; /* unprocessed events count */
77 int val; /* most recent output value */
78 time_t time; /* clock (secs) when val computed */
79 spinlock_t lock; /* guards read or write of above */
80};
81
1da177e4 82struct cpuset {
8793d854
PM
83 struct cgroup_subsys_state css;
84
1da177e4
LT
85 unsigned long flags; /* "unsigned long" so bitops work */
86 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
87 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
88
1da177e4 89 struct cpuset *parent; /* my parent */
1da177e4
LT
90
91 /*
92 * Copy of global cpuset_mems_generation as of the most
93 * recent time this cpuset changed its mems_allowed.
94 */
3e0d98b9
PJ
95 int mems_generation;
96
97 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
98
99 /* partition number for rebuild_sched_domains() */
100 int pn;
956db3ca
CW
101
102 /* used for walking a cpuset heirarchy */
103 struct list_head stack_list;
1da177e4
LT
104};
105
8793d854
PM
106/* Retrieve the cpuset for a cgroup */
107static inline struct cpuset *cgroup_cs(struct cgroup *cont)
108{
109 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
110 struct cpuset, css);
111}
112
113/* Retrieve the cpuset for a task */
114static inline struct cpuset *task_cs(struct task_struct *task)
115{
116 return container_of(task_subsys_state(task, cpuset_subsys_id),
117 struct cpuset, css);
118}
956db3ca
CW
119struct cpuset_hotplug_scanner {
120 struct cgroup_scanner scan;
121 struct cgroup *to;
122};
8793d854 123
1da177e4
LT
124/* bits in struct cpuset flags field */
125typedef enum {
126 CS_CPU_EXCLUSIVE,
127 CS_MEM_EXCLUSIVE,
45b07ef3 128 CS_MEMORY_MIGRATE,
029190c5 129 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
130 CS_SPREAD_PAGE,
131 CS_SPREAD_SLAB,
1da177e4
LT
132} cpuset_flagbits_t;
133
134/* convenient tests for these bits */
135static inline int is_cpu_exclusive(const struct cpuset *cs)
136{
7b5b9ef0 137 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
138}
139
140static inline int is_mem_exclusive(const struct cpuset *cs)
141{
7b5b9ef0 142 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
143}
144
029190c5
PJ
145static inline int is_sched_load_balance(const struct cpuset *cs)
146{
147 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
148}
149
45b07ef3
PJ
150static inline int is_memory_migrate(const struct cpuset *cs)
151{
7b5b9ef0 152 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
153}
154
825a46af
PJ
155static inline int is_spread_page(const struct cpuset *cs)
156{
157 return test_bit(CS_SPREAD_PAGE, &cs->flags);
158}
159
160static inline int is_spread_slab(const struct cpuset *cs)
161{
162 return test_bit(CS_SPREAD_SLAB, &cs->flags);
163}
164
1da177e4 165/*
151a4420 166 * Increment this integer everytime any cpuset changes its
1da177e4
LT
167 * mems_allowed value. Users of cpusets can track this generation
168 * number, and avoid having to lock and reload mems_allowed unless
169 * the cpuset they're using changes generation.
170 *
171 * A single, global generation is needed because attach_task() could
172 * reattach a task to a different cpuset, which must not have its
173 * generation numbers aliased with those of that tasks previous cpuset.
174 *
175 * Generations are needed for mems_allowed because one task cannot
176 * modify anothers memory placement. So we must enable every task,
177 * on every visit to __alloc_pages(), to efficiently check whether
178 * its current->cpuset->mems_allowed has changed, requiring an update
179 * of its current->mems_allowed.
151a4420
PJ
180 *
181 * Since cpuset_mems_generation is guarded by manage_mutex,
182 * there is no need to mark it atomic.
1da177e4 183 */
151a4420 184static int cpuset_mems_generation;
1da177e4
LT
185
186static struct cpuset top_cpuset = {
187 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
188 .cpus_allowed = CPU_MASK_ALL,
189 .mems_allowed = NODE_MASK_ALL,
1da177e4
LT
190};
191
1da177e4 192/*
3d3f26a7
IM
193 * We have two global cpuset mutexes below. They can nest.
194 * It is ok to first take manage_mutex, then nest callback_mutex. We also
053199ed
PJ
195 * require taking task_lock() when dereferencing a tasks cpuset pointer.
196 * See "The task_lock() exception", at the end of this comment.
197 *
3d3f26a7
IM
198 * A task must hold both mutexes to modify cpusets. If a task
199 * holds manage_mutex, then it blocks others wanting that mutex,
200 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
201 * and be able to modify cpusets. It can perform various checks on
202 * the cpuset structure first, knowing nothing will change. It can
3d3f26a7 203 * also allocate memory while just holding manage_mutex. While it is
053199ed 204 * performing these checks, various callback routines can briefly
3d3f26a7
IM
205 * acquire callback_mutex to query cpusets. Once it is ready to make
206 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
207 *
208 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 209 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
210 * from one of the callbacks into the cpuset code from within
211 * __alloc_pages().
212 *
3d3f26a7 213 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
214 * access to cpusets.
215 *
216 * The task_struct fields mems_allowed and mems_generation may only
217 * be accessed in the context of that task, so require no locks.
218 *
219 * Any task can increment and decrement the count field without lock.
3d3f26a7 220 * So in general, code holding manage_mutex or callback_mutex can't rely
053199ed 221 * on the count field not changing. However, if the count goes to
3d3f26a7 222 * zero, then only attach_task(), which holds both mutexes, can
053199ed
PJ
223 * increment it again. Because a count of zero means that no tasks
224 * are currently attached, therefore there is no way a task attached
225 * to that cpuset can fork (the other way to increment the count).
3d3f26a7 226 * So code holding manage_mutex or callback_mutex can safely assume that
053199ed 227 * if the count is zero, it will stay zero. Similarly, if a task
3d3f26a7 228 * holds manage_mutex or callback_mutex on a cpuset with zero count, it
053199ed 229 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
3d3f26a7 230 * both of those mutexes.
053199ed
PJ
231 *
232 * The cpuset_common_file_write handler for operations that modify
3d3f26a7 233 * the cpuset hierarchy holds manage_mutex across the entire operation,
053199ed
PJ
234 * single threading all such cpuset modifications across the system.
235 *
3d3f26a7 236 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
237 * small pieces of code, such as when reading out possibly multi-word
238 * cpumasks and nodemasks.
239 *
240 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
3d3f26a7 241 * (usually) take either mutex. These are the two most performance
053199ed 242 * critical pieces of code here. The exception occurs on cpuset_exit(),
3d3f26a7 243 * when a task in a notify_on_release cpuset exits. Then manage_mutex
2efe86b8 244 * is taken, and if the cpuset count is zero, a usermode call made
1da177e4
LT
245 * to /sbin/cpuset_release_agent with the name of the cpuset (path
246 * relative to the root of cpuset file system) as the argument.
247 *
053199ed
PJ
248 * A cpuset can only be deleted if both its 'count' of using tasks
249 * is zero, and its list of 'children' cpusets is empty. Since all
250 * tasks in the system use _some_ cpuset, and since there is always at
f400e198 251 * least one task in the system (init), therefore, top_cpuset
053199ed
PJ
252 * always has either children cpusets and/or using tasks. So we don't
253 * need a special hack to ensure that top_cpuset cannot be deleted.
254 *
255 * The above "Tale of Two Semaphores" would be complete, but for:
256 *
257 * The task_lock() exception
258 *
259 * The need for this exception arises from the action of attach_task(),
260 * which overwrites one tasks cpuset pointer with another. It does
3d3f26a7 261 * so using both mutexes, however there are several performance
053199ed 262 * critical places that need to reference task->cpuset without the
3d3f26a7 263 * expense of grabbing a system global mutex. Therefore except as
053199ed
PJ
264 * noted below, when dereferencing or, as in attach_task(), modifying
265 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
266 * (task->alloc_lock) already in the task_struct routinely used for
267 * such matters.
6b9c2603
PJ
268 *
269 * P.S. One more locking exception. RCU is used to guard the
270 * update of a tasks cpuset pointer by attach_task() and the
271 * access of task->cpuset->mems_generation via that pointer in
272 * the routine cpuset_update_task_memory_state().
1da177e4
LT
273 */
274
3d3f26a7 275static DEFINE_MUTEX(callback_mutex);
4247bdc6 276
8793d854
PM
277/* This is ugly, but preserves the userspace API for existing cpuset
278 * users. If someone tries to mount the "cpuset" filesystem, we
279 * silently switch it to mount "cgroup" instead */
454e2398
DH
280static int cpuset_get_sb(struct file_system_type *fs_type,
281 int flags, const char *unused_dev_name,
282 void *data, struct vfsmount *mnt)
1da177e4 283{
8793d854
PM
284 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
285 int ret = -ENODEV;
286 if (cgroup_fs) {
287 char mountopts[] =
288 "cpuset,noprefix,"
289 "release_agent=/sbin/cpuset_release_agent";
290 ret = cgroup_fs->get_sb(cgroup_fs, flags,
291 unused_dev_name, mountopts, mnt);
292 put_filesystem(cgroup_fs);
293 }
294 return ret;
1da177e4
LT
295}
296
297static struct file_system_type cpuset_fs_type = {
298 .name = "cpuset",
299 .get_sb = cpuset_get_sb,
1da177e4
LT
300};
301
1da177e4
LT
302/*
303 * Return in *pmask the portion of a cpusets's cpus_allowed that
304 * are online. If none are online, walk up the cpuset hierarchy
305 * until we find one that does have some online cpus. If we get
306 * all the way to the top and still haven't found any online cpus,
307 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
308 * task, return cpu_online_map.
309 *
310 * One way or another, we guarantee to return some non-empty subset
311 * of cpu_online_map.
312 *
3d3f26a7 313 * Call with callback_mutex held.
1da177e4
LT
314 */
315
316static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
317{
318 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
319 cs = cs->parent;
320 if (cs)
321 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
322 else
323 *pmask = cpu_online_map;
324 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
325}
326
327/*
328 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
329 * are online, with memory. If none are online with memory, walk
330 * up the cpuset hierarchy until we find one that does have some
331 * online mems. If we get all the way to the top and still haven't
332 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
333 *
334 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 335 * of node_states[N_HIGH_MEMORY].
1da177e4 336 *
3d3f26a7 337 * Call with callback_mutex held.
1da177e4
LT
338 */
339
340static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
341{
0e1e7c7a
CL
342 while (cs && !nodes_intersects(cs->mems_allowed,
343 node_states[N_HIGH_MEMORY]))
1da177e4
LT
344 cs = cs->parent;
345 if (cs)
0e1e7c7a
CL
346 nodes_and(*pmask, cs->mems_allowed,
347 node_states[N_HIGH_MEMORY]);
1da177e4 348 else
0e1e7c7a
CL
349 *pmask = node_states[N_HIGH_MEMORY];
350 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
351}
352
cf2a473c
PJ
353/**
354 * cpuset_update_task_memory_state - update task memory placement
355 *
356 * If the current tasks cpusets mems_allowed changed behind our
357 * backs, update current->mems_allowed, mems_generation and task NUMA
358 * mempolicy to the new value.
053199ed 359 *
cf2a473c
PJ
360 * Task mempolicy is updated by rebinding it relative to the
361 * current->cpuset if a task has its memory placement changed.
362 * Do not call this routine if in_interrupt().
363 *
4a01c8d5
PJ
364 * Call without callback_mutex or task_lock() held. May be
365 * called with or without manage_mutex held. Thanks in part to
366 * 'the_top_cpuset_hack', the tasks cpuset pointer will never
367 * be NULL. This routine also might acquire callback_mutex and
cf2a473c 368 * current->mm->mmap_sem during call.
053199ed 369 *
6b9c2603
PJ
370 * Reading current->cpuset->mems_generation doesn't need task_lock
371 * to guard the current->cpuset derefence, because it is guarded
372 * from concurrent freeing of current->cpuset by attach_task(),
373 * using RCU.
374 *
375 * The rcu_dereference() is technically probably not needed,
376 * as I don't actually mind if I see a new cpuset pointer but
377 * an old value of mems_generation. However this really only
378 * matters on alpha systems using cpusets heavily. If I dropped
379 * that rcu_dereference(), it would save them a memory barrier.
380 * For all other arch's, rcu_dereference is a no-op anyway, and for
381 * alpha systems not using cpusets, another planned optimization,
382 * avoiding the rcu critical section for tasks in the root cpuset
383 * which is statically allocated, so can't vanish, will make this
384 * irrelevant. Better to use RCU as intended, than to engage in
385 * some cute trick to save a memory barrier that is impossible to
386 * test, for alpha systems using cpusets heavily, which might not
387 * even exist.
053199ed
PJ
388 *
389 * This routine is needed to update the per-task mems_allowed data,
390 * within the tasks context, when it is trying to allocate memory
391 * (in various mm/mempolicy.c routines) and notices that some other
392 * task has been modifying its cpuset.
1da177e4
LT
393 */
394
fe85a998 395void cpuset_update_task_memory_state(void)
1da177e4 396{
053199ed 397 int my_cpusets_mem_gen;
cf2a473c 398 struct task_struct *tsk = current;
6b9c2603 399 struct cpuset *cs;
053199ed 400
8793d854 401 if (task_cs(tsk) == &top_cpuset) {
03a285f5
PJ
402 /* Don't need rcu for top_cpuset. It's never freed. */
403 my_cpusets_mem_gen = top_cpuset.mems_generation;
404 } else {
405 rcu_read_lock();
8793d854 406 my_cpusets_mem_gen = task_cs(current)->mems_generation;
03a285f5
PJ
407 rcu_read_unlock();
408 }
1da177e4 409
cf2a473c 410 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 411 mutex_lock(&callback_mutex);
cf2a473c 412 task_lock(tsk);
8793d854 413 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
414 guarantee_online_mems(cs, &tsk->mems_allowed);
415 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
416 if (is_spread_page(cs))
417 tsk->flags |= PF_SPREAD_PAGE;
418 else
419 tsk->flags &= ~PF_SPREAD_PAGE;
420 if (is_spread_slab(cs))
421 tsk->flags |= PF_SPREAD_SLAB;
422 else
423 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 424 task_unlock(tsk);
3d3f26a7 425 mutex_unlock(&callback_mutex);
74cb2155 426 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
427 }
428}
429
430/*
431 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
432 *
433 * One cpuset is a subset of another if all its allowed CPUs and
434 * Memory Nodes are a subset of the other, and its exclusive flags
3d3f26a7 435 * are only set if the other's are set. Call holding manage_mutex.
1da177e4
LT
436 */
437
438static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
439{
440 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
441 nodes_subset(p->mems_allowed, q->mems_allowed) &&
442 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
443 is_mem_exclusive(p) <= is_mem_exclusive(q);
444}
445
446/*
447 * validate_change() - Used to validate that any proposed cpuset change
448 * follows the structural rules for cpusets.
449 *
450 * If we replaced the flag and mask values of the current cpuset
451 * (cur) with those values in the trial cpuset (trial), would
452 * our various subset and exclusive rules still be valid? Presumes
3d3f26a7 453 * manage_mutex held.
1da177e4
LT
454 *
455 * 'cur' is the address of an actual, in-use cpuset. Operations
456 * such as list traversal that depend on the actual address of the
457 * cpuset in the list must use cur below, not trial.
458 *
459 * 'trial' is the address of bulk structure copy of cur, with
460 * perhaps one or more of the fields cpus_allowed, mems_allowed,
461 * or flags changed to new, trial values.
462 *
463 * Return 0 if valid, -errno if not.
464 */
465
466static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
467{
8793d854 468 struct cgroup *cont;
1da177e4
LT
469 struct cpuset *c, *par;
470
471 /* Each of our child cpusets must be a subset of us */
8793d854
PM
472 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
473 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
474 return -EBUSY;
475 }
476
477 /* Remaining checks don't apply to root cpuset */
69604067 478 if (cur == &top_cpuset)
1da177e4
LT
479 return 0;
480
69604067
PJ
481 par = cur->parent;
482
1da177e4
LT
483 /* We must be a subset of our parent cpuset */
484 if (!is_cpuset_subset(trial, par))
485 return -EACCES;
486
487 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
8793d854
PM
488 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
489 c = cgroup_cs(cont);
1da177e4
LT
490 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
491 c != cur &&
492 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
493 return -EINVAL;
494 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
495 c != cur &&
496 nodes_intersects(trial->mems_allowed, c->mems_allowed))
497 return -EINVAL;
498 }
499
020958b6
PJ
500 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
501 if (cgroup_task_count(cur->css.cgroup)) {
502 if (cpus_empty(trial->cpus_allowed) ||
503 nodes_empty(trial->mems_allowed)) {
504 return -ENOSPC;
505 }
506 }
507
1da177e4
LT
508 return 0;
509}
510
029190c5
PJ
511/*
512 * Helper routine for rebuild_sched_domains().
513 * Do cpusets a, b have overlapping cpus_allowed masks?
514 */
515
516static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
517{
518 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
519}
520
521/*
522 * rebuild_sched_domains()
523 *
524 * If the flag 'sched_load_balance' of any cpuset with non-empty
525 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
526 * which has that flag enabled, or if any cpuset with a non-empty
527 * 'cpus' is removed, then call this routine to rebuild the
528 * scheduler's dynamic sched domains.
529 *
530 * This routine builds a partial partition of the systems CPUs
531 * (the set of non-overlappping cpumask_t's in the array 'part'
532 * below), and passes that partial partition to the kernel/sched.c
533 * partition_sched_domains() routine, which will rebuild the
534 * schedulers load balancing domains (sched domains) as specified
535 * by that partial partition. A 'partial partition' is a set of
536 * non-overlapping subsets whose union is a subset of that set.
537 *
538 * See "What is sched_load_balance" in Documentation/cpusets.txt
539 * for a background explanation of this.
540 *
541 * Does not return errors, on the theory that the callers of this
542 * routine would rather not worry about failures to rebuild sched
543 * domains when operating in the severe memory shortage situations
544 * that could cause allocation failures below.
545 *
546 * Call with cgroup_mutex held. May take callback_mutex during
547 * call due to the kfifo_alloc() and kmalloc() calls. May nest
86ef5c9a 548 * a call to the get_online_cpus()/put_online_cpus() pair.
029190c5 549 * Must not be called holding callback_mutex, because we must not
86ef5c9a
GS
550 * call get_online_cpus() while holding callback_mutex. Elsewhere
551 * the kernel nests callback_mutex inside get_online_cpus() calls.
029190c5
PJ
552 * So the reverse nesting would risk an ABBA deadlock.
553 *
554 * The three key local variables below are:
555 * q - a kfifo queue of cpuset pointers, used to implement a
556 * top-down scan of all cpusets. This scan loads a pointer
557 * to each cpuset marked is_sched_load_balance into the
558 * array 'csa'. For our purposes, rebuilding the schedulers
559 * sched domains, we can ignore !is_sched_load_balance cpusets.
560 * csa - (for CpuSet Array) Array of pointers to all the cpusets
561 * that need to be load balanced, for convenient iterative
562 * access by the subsequent code that finds the best partition,
563 * i.e the set of domains (subsets) of CPUs such that the
564 * cpus_allowed of every cpuset marked is_sched_load_balance
565 * is a subset of one of these domains, while there are as
566 * many such domains as possible, each as small as possible.
567 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
568 * the kernel/sched.c routine partition_sched_domains() in a
569 * convenient format, that can be easily compared to the prior
570 * value to determine what partition elements (sched domains)
571 * were changed (added or removed.)
572 *
573 * Finding the best partition (set of domains):
574 * The triple nested loops below over i, j, k scan over the
575 * load balanced cpusets (using the array of cpuset pointers in
576 * csa[]) looking for pairs of cpusets that have overlapping
577 * cpus_allowed, but which don't have the same 'pn' partition
578 * number and gives them in the same partition number. It keeps
579 * looping on the 'restart' label until it can no longer find
580 * any such pairs.
581 *
582 * The union of the cpus_allowed masks from the set of
583 * all cpusets having the same 'pn' value then form the one
584 * element of the partition (one sched domain) to be passed to
585 * partition_sched_domains().
586 */
587
588static void rebuild_sched_domains(void)
589{
590 struct kfifo *q; /* queue of cpusets to be scanned */
591 struct cpuset *cp; /* scans q */
592 struct cpuset **csa; /* array of all cpuset ptrs */
593 int csn; /* how many cpuset ptrs in csa so far */
594 int i, j, k; /* indices for partition finding loops */
595 cpumask_t *doms; /* resulting partition; i.e. sched domains */
596 int ndoms; /* number of sched domains in result */
597 int nslot; /* next empty doms[] cpumask_t slot */
598
599 q = NULL;
600 csa = NULL;
601 doms = NULL;
602
603 /* Special case for the 99% of systems with one, full, sched domain */
604 if (is_sched_load_balance(&top_cpuset)) {
605 ndoms = 1;
606 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
607 if (!doms)
608 goto rebuild;
609 *doms = top_cpuset.cpus_allowed;
610 goto rebuild;
611 }
612
613 q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
614 if (IS_ERR(q))
615 goto done;
616 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
617 if (!csa)
618 goto done;
619 csn = 0;
620
621 cp = &top_cpuset;
622 __kfifo_put(q, (void *)&cp, sizeof(cp));
623 while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
624 struct cgroup *cont;
625 struct cpuset *child; /* scans child cpusets of cp */
626 if (is_sched_load_balance(cp))
627 csa[csn++] = cp;
628 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
629 child = cgroup_cs(cont);
630 __kfifo_put(q, (void *)&child, sizeof(cp));
631 }
632 }
633
634 for (i = 0; i < csn; i++)
635 csa[i]->pn = i;
636 ndoms = csn;
637
638restart:
639 /* Find the best partition (set of sched domains) */
640 for (i = 0; i < csn; i++) {
641 struct cpuset *a = csa[i];
642 int apn = a->pn;
643
644 for (j = 0; j < csn; j++) {
645 struct cpuset *b = csa[j];
646 int bpn = b->pn;
647
648 if (apn != bpn && cpusets_overlap(a, b)) {
649 for (k = 0; k < csn; k++) {
650 struct cpuset *c = csa[k];
651
652 if (c->pn == bpn)
653 c->pn = apn;
654 }
655 ndoms--; /* one less element */
656 goto restart;
657 }
658 }
659 }
660
661 /* Convert <csn, csa> to <ndoms, doms> */
662 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
663 if (!doms)
664 goto rebuild;
665
666 for (nslot = 0, i = 0; i < csn; i++) {
667 struct cpuset *a = csa[i];
668 int apn = a->pn;
669
670 if (apn >= 0) {
671 cpumask_t *dp = doms + nslot;
672
673 if (nslot == ndoms) {
674 static int warnings = 10;
675 if (warnings) {
676 printk(KERN_WARNING
677 "rebuild_sched_domains confused:"
678 " nslot %d, ndoms %d, csn %d, i %d,"
679 " apn %d\n",
680 nslot, ndoms, csn, i, apn);
681 warnings--;
682 }
683 continue;
684 }
685
686 cpus_clear(*dp);
687 for (j = i; j < csn; j++) {
688 struct cpuset *b = csa[j];
689
690 if (apn == b->pn) {
691 cpus_or(*dp, *dp, b->cpus_allowed);
692 b->pn = -1;
693 }
694 }
695 nslot++;
696 }
697 }
698 BUG_ON(nslot != ndoms);
699
700rebuild:
701 /* Have scheduler rebuild sched domains */
86ef5c9a 702 get_online_cpus();
029190c5 703 partition_sched_domains(ndoms, doms);
86ef5c9a 704 put_online_cpus();
029190c5
PJ
705
706done:
707 if (q && !IS_ERR(q))
708 kfifo_free(q);
709 kfree(csa);
710 /* Don't kfree(doms) -- partition_sched_domains() does that. */
711}
712
8707d8b8
PM
713static inline int started_after_time(struct task_struct *t1,
714 struct timespec *time,
715 struct task_struct *t2)
716{
717 int start_diff = timespec_compare(&t1->start_time, time);
718 if (start_diff > 0) {
719 return 1;
720 } else if (start_diff < 0) {
721 return 0;
722 } else {
723 /*
724 * Arbitrarily, if two processes started at the same
725 * time, we'll say that the lower pointer value
726 * started first. Note that t2 may have exited by now
727 * so this may not be a valid pointer any longer, but
728 * that's fine - it still serves to distinguish
729 * between two tasks started (effectively)
730 * simultaneously.
731 */
732 return t1 > t2;
733 }
734}
735
736static inline int started_after(void *p1, void *p2)
737{
738 struct task_struct *t1 = p1;
739 struct task_struct *t2 = p2;
740 return started_after_time(t1, &t2->start_time, t2);
741}
742
053199ed 743/*
3d3f26a7 744 * Call with manage_mutex held. May take callback_mutex during call.
053199ed
PJ
745 */
746
1da177e4
LT
747static int update_cpumask(struct cpuset *cs, char *buf)
748{
749 struct cpuset trialcs;
8707d8b8
PM
750 int retval, i;
751 int is_load_balanced;
752 struct cgroup_iter it;
753 struct cgroup *cgrp = cs->css.cgroup;
754 struct task_struct *p, *dropped;
755 /* Never dereference latest_task, since it's not refcounted */
756 struct task_struct *latest_task = NULL;
757 struct ptr_heap heap;
758 struct timespec latest_time = { 0, 0 };
1da177e4 759
4c4d50f7
PJ
760 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
761 if (cs == &top_cpuset)
762 return -EACCES;
763
1da177e4 764 trialcs = *cs;
6f7f02e7
DR
765
766 /*
020958b6
PJ
767 * An empty cpus_allowed is ok iff there are no tasks in the cpuset.
768 * Since cpulist_parse() fails on an empty mask, we special case
769 * that parsing. The validate_change() call ensures that cpusets
770 * with tasks have cpus.
6f7f02e7 771 */
020958b6
PJ
772 buf = strstrip(buf);
773 if (!*buf) {
6f7f02e7
DR
774 cpus_clear(trialcs.cpus_allowed);
775 } else {
776 retval = cpulist_parse(buf, trialcs.cpus_allowed);
777 if (retval < 0)
778 return retval;
779 }
1da177e4 780 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
1da177e4 781 retval = validate_change(cs, &trialcs);
85d7b949
DG
782 if (retval < 0)
783 return retval;
029190c5 784
8707d8b8
PM
785 /* Nothing to do if the cpus didn't change */
786 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
787 return 0;
788 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
789 if (retval)
790 return retval;
791
029190c5
PJ
792 is_load_balanced = is_sched_load_balance(&trialcs);
793
3d3f26a7 794 mutex_lock(&callback_mutex);
85d7b949 795 cs->cpus_allowed = trialcs.cpus_allowed;
3d3f26a7 796 mutex_unlock(&callback_mutex);
029190c5 797
8707d8b8
PM
798 again:
799 /*
800 * Scan tasks in the cpuset, and update the cpumasks of any
801 * that need an update. Since we can't call set_cpus_allowed()
802 * while holding tasklist_lock, gather tasks to be processed
803 * in a heap structure. If the statically-sized heap fills up,
804 * overflow tasks that started later, and in future iterations
805 * only consider tasks that started after the latest task in
806 * the previous pass. This guarantees forward progress and
807 * that we don't miss any tasks
808 */
809 heap.size = 0;
810 cgroup_iter_start(cgrp, &it);
811 while ((p = cgroup_iter_next(cgrp, &it))) {
812 /* Only affect tasks that don't have the right cpus_allowed */
813 if (cpus_equal(p->cpus_allowed, cs->cpus_allowed))
814 continue;
815 /*
816 * Only process tasks that started after the last task
817 * we processed
818 */
819 if (!started_after_time(p, &latest_time, latest_task))
820 continue;
821 dropped = heap_insert(&heap, p);
822 if (dropped == NULL) {
823 get_task_struct(p);
824 } else if (dropped != p) {
825 get_task_struct(p);
826 put_task_struct(dropped);
827 }
828 }
829 cgroup_iter_end(cgrp, &it);
830 if (heap.size) {
831 for (i = 0; i < heap.size; i++) {
832 struct task_struct *p = heap.ptrs[i];
833 if (i == 0) {
834 latest_time = p->start_time;
835 latest_task = p;
836 }
837 set_cpus_allowed(p, cs->cpus_allowed);
838 put_task_struct(p);
839 }
840 /*
841 * If we had to process any tasks at all, scan again
842 * in case some of them were in the middle of forking
843 * children that didn't notice the new cpumask
844 * restriction. Not the most efficient way to do it,
845 * but it avoids having to take callback_mutex in the
846 * fork path
847 */
848 goto again;
849 }
850 heap_free(&heap);
851 if (is_load_balanced)
029190c5
PJ
852 rebuild_sched_domains();
853
85d7b949 854 return 0;
1da177e4
LT
855}
856
e4e364e8
PJ
857/*
858 * cpuset_migrate_mm
859 *
860 * Migrate memory region from one set of nodes to another.
861 *
862 * Temporarilly set tasks mems_allowed to target nodes of migration,
863 * so that the migration code can allocate pages on these nodes.
864 *
865 * Call holding manage_mutex, so our current->cpuset won't change
866 * during this call, as manage_mutex holds off any attach_task()
867 * calls. Therefore we don't need to take task_lock around the
868 * call to guarantee_online_mems(), as we know no one is changing
869 * our tasks cpuset.
870 *
871 * Hold callback_mutex around the two modifications of our tasks
872 * mems_allowed to synchronize with cpuset_mems_allowed().
873 *
874 * While the mm_struct we are migrating is typically from some
875 * other task, the task_struct mems_allowed that we are hacking
876 * is for our current task, which must allocate new pages for that
877 * migrating memory region.
878 *
879 * We call cpuset_update_task_memory_state() before hacking
880 * our tasks mems_allowed, so that we are assured of being in
881 * sync with our tasks cpuset, and in particular, callbacks to
882 * cpuset_update_task_memory_state() from nested page allocations
883 * won't see any mismatch of our cpuset and task mems_generation
884 * values, so won't overwrite our hacked tasks mems_allowed
885 * nodemask.
886 */
887
888static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
889 const nodemask_t *to)
890{
891 struct task_struct *tsk = current;
892
893 cpuset_update_task_memory_state();
894
895 mutex_lock(&callback_mutex);
896 tsk->mems_allowed = *to;
897 mutex_unlock(&callback_mutex);
898
899 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
900
901 mutex_lock(&callback_mutex);
8793d854 902 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
903 mutex_unlock(&callback_mutex);
904}
905
053199ed 906/*
4225399a
PJ
907 * Handle user request to change the 'mems' memory placement
908 * of a cpuset. Needs to validate the request, update the
909 * cpusets mems_allowed and mems_generation, and for each
04c19fa6
PJ
910 * task in the cpuset, rebind any vma mempolicies and if
911 * the cpuset is marked 'memory_migrate', migrate the tasks
912 * pages to the new memory.
4225399a 913 *
3d3f26a7 914 * Call with manage_mutex held. May take callback_mutex during call.
4225399a
PJ
915 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
916 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
917 * their mempolicies to the cpusets new mems_allowed.
053199ed
PJ
918 */
919
8793d854
PM
920static void *cpuset_being_rebound;
921
1da177e4
LT
922static int update_nodemask(struct cpuset *cs, char *buf)
923{
924 struct cpuset trialcs;
04c19fa6 925 nodemask_t oldmem;
8793d854 926 struct task_struct *p;
4225399a
PJ
927 struct mm_struct **mmarray;
928 int i, n, ntasks;
04c19fa6 929 int migrate;
4225399a 930 int fudge;
1da177e4 931 int retval;
8793d854 932 struct cgroup_iter it;
1da177e4 933
0e1e7c7a
CL
934 /*
935 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
936 * it's read-only
937 */
38837fc7
PJ
938 if (cs == &top_cpuset)
939 return -EACCES;
940
1da177e4 941 trialcs = *cs;
6f7f02e7
DR
942
943 /*
020958b6
PJ
944 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
945 * Since nodelist_parse() fails on an empty mask, we special case
946 * that parsing. The validate_change() call ensures that cpusets
947 * with tasks have memory.
6f7f02e7 948 */
020958b6
PJ
949 buf = strstrip(buf);
950 if (!*buf) {
6f7f02e7
DR
951 nodes_clear(trialcs.mems_allowed);
952 } else {
953 retval = nodelist_parse(buf, trialcs.mems_allowed);
954 if (retval < 0)
955 goto done;
956 }
0e1e7c7a
CL
957 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed,
958 node_states[N_HIGH_MEMORY]);
04c19fa6
PJ
959 oldmem = cs->mems_allowed;
960 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
961 retval = 0; /* Too easy - nothing to do */
962 goto done;
963 }
59dac16f
PJ
964 retval = validate_change(cs, &trialcs);
965 if (retval < 0)
966 goto done;
967
3d3f26a7 968 mutex_lock(&callback_mutex);
59dac16f 969 cs->mems_allowed = trialcs.mems_allowed;
151a4420 970 cs->mems_generation = cpuset_mems_generation++;
3d3f26a7 971 mutex_unlock(&callback_mutex);
59dac16f 972
8793d854 973 cpuset_being_rebound = cs; /* causes mpol_copy() rebind */
4225399a
PJ
974
975 fudge = 10; /* spare mmarray[] slots */
976 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
977 retval = -ENOMEM;
978
979 /*
980 * Allocate mmarray[] to hold mm reference for each task
981 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
982 * tasklist_lock. We could use GFP_ATOMIC, but with a
983 * few more lines of code, we can retry until we get a big
984 * enough mmarray[] w/o using GFP_ATOMIC.
985 */
986 while (1) {
8793d854 987 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
4225399a
PJ
988 ntasks += fudge;
989 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
990 if (!mmarray)
991 goto done;
c2aef333 992 read_lock(&tasklist_lock); /* block fork */
8793d854 993 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
4225399a 994 break; /* got enough */
c2aef333 995 read_unlock(&tasklist_lock); /* try again */
4225399a
PJ
996 kfree(mmarray);
997 }
998
999 n = 0;
1000
1001 /* Load up mmarray[] with mm reference for each task in cpuset. */
8793d854
PM
1002 cgroup_iter_start(cs->css.cgroup, &it);
1003 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
4225399a
PJ
1004 struct mm_struct *mm;
1005
1006 if (n >= ntasks) {
1007 printk(KERN_WARNING
1008 "Cpuset mempolicy rebind incomplete.\n");
8793d854 1009 break;
4225399a 1010 }
4225399a
PJ
1011 mm = get_task_mm(p);
1012 if (!mm)
1013 continue;
1014 mmarray[n++] = mm;
8793d854
PM
1015 }
1016 cgroup_iter_end(cs->css.cgroup, &it);
c2aef333 1017 read_unlock(&tasklist_lock);
4225399a
PJ
1018
1019 /*
1020 * Now that we've dropped the tasklist spinlock, we can
1021 * rebind the vma mempolicies of each mm in mmarray[] to their
1022 * new cpuset, and release that mm. The mpol_rebind_mm()
1023 * call takes mmap_sem, which we couldn't take while holding
1024 * tasklist_lock. Forks can happen again now - the mpol_copy()
1025 * cpuset_being_rebound check will catch such forks, and rebind
1026 * their vma mempolicies too. Because we still hold the global
3d3f26a7 1027 * cpuset manage_mutex, we know that no other rebind effort will
4225399a
PJ
1028 * be contending for the global variable cpuset_being_rebound.
1029 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1030 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1031 */
04c19fa6 1032 migrate = is_memory_migrate(cs);
4225399a
PJ
1033 for (i = 0; i < n; i++) {
1034 struct mm_struct *mm = mmarray[i];
1035
1036 mpol_rebind_mm(mm, &cs->mems_allowed);
e4e364e8
PJ
1037 if (migrate)
1038 cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
4225399a
PJ
1039 mmput(mm);
1040 }
1041
1042 /* We're done rebinding vma's to this cpusets new mems_allowed. */
1043 kfree(mmarray);
8793d854 1044 cpuset_being_rebound = NULL;
4225399a 1045 retval = 0;
59dac16f 1046done:
1da177e4
LT
1047 return retval;
1048}
1049
8793d854
PM
1050int current_cpuset_is_being_rebound(void)
1051{
1052 return task_cs(current) == cpuset_being_rebound;
1053}
1054
3e0d98b9 1055/*
3d3f26a7 1056 * Call with manage_mutex held.
3e0d98b9
PJ
1057 */
1058
1059static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
1060{
1061 if (simple_strtoul(buf, NULL, 10) != 0)
1062 cpuset_memory_pressure_enabled = 1;
1063 else
1064 cpuset_memory_pressure_enabled = 0;
1065 return 0;
1066}
1067
1da177e4
LT
1068/*
1069 * update_flag - read a 0 or a 1 in a file and update associated flag
1070 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
029190c5 1071 * CS_SCHED_LOAD_BALANCE,
825a46af
PJ
1072 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
1073 * CS_SPREAD_PAGE, CS_SPREAD_SLAB)
1da177e4
LT
1074 * cs: the cpuset to update
1075 * buf: the buffer where we read the 0 or 1
053199ed 1076 *
3d3f26a7 1077 * Call with manage_mutex held.
1da177e4
LT
1078 */
1079
1080static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
1081{
1082 int turning_on;
1083 struct cpuset trialcs;
607717a6 1084 int err;
029190c5 1085 int cpus_nonempty, balance_flag_changed;
1da177e4
LT
1086
1087 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
1088
1089 trialcs = *cs;
1090 if (turning_on)
1091 set_bit(bit, &trialcs.flags);
1092 else
1093 clear_bit(bit, &trialcs.flags);
1094
1095 err = validate_change(cs, &trialcs);
85d7b949
DG
1096 if (err < 0)
1097 return err;
029190c5
PJ
1098
1099 cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
1100 balance_flag_changed = (is_sched_load_balance(cs) !=
1101 is_sched_load_balance(&trialcs));
1102
3d3f26a7 1103 mutex_lock(&callback_mutex);
69604067 1104 cs->flags = trialcs.flags;
3d3f26a7 1105 mutex_unlock(&callback_mutex);
85d7b949 1106
029190c5
PJ
1107 if (cpus_nonempty && balance_flag_changed)
1108 rebuild_sched_domains();
1109
85d7b949 1110 return 0;
1da177e4
LT
1111}
1112
3e0d98b9 1113/*
80f7228b 1114 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1115 *
1116 * These routines manage a digitally filtered, constant time based,
1117 * event frequency meter. There are four routines:
1118 * fmeter_init() - initialize a frequency meter.
1119 * fmeter_markevent() - called each time the event happens.
1120 * fmeter_getrate() - returns the recent rate of such events.
1121 * fmeter_update() - internal routine used to update fmeter.
1122 *
1123 * A common data structure is passed to each of these routines,
1124 * which is used to keep track of the state required to manage the
1125 * frequency meter and its digital filter.
1126 *
1127 * The filter works on the number of events marked per unit time.
1128 * The filter is single-pole low-pass recursive (IIR). The time unit
1129 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1130 * simulate 3 decimal digits of precision (multiplied by 1000).
1131 *
1132 * With an FM_COEF of 933, and a time base of 1 second, the filter
1133 * has a half-life of 10 seconds, meaning that if the events quit
1134 * happening, then the rate returned from the fmeter_getrate()
1135 * will be cut in half each 10 seconds, until it converges to zero.
1136 *
1137 * It is not worth doing a real infinitely recursive filter. If more
1138 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1139 * just compute FM_MAXTICKS ticks worth, by which point the level
1140 * will be stable.
1141 *
1142 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1143 * arithmetic overflow in the fmeter_update() routine.
1144 *
1145 * Given the simple 32 bit integer arithmetic used, this meter works
1146 * best for reporting rates between one per millisecond (msec) and
1147 * one per 32 (approx) seconds. At constant rates faster than one
1148 * per msec it maxes out at values just under 1,000,000. At constant
1149 * rates between one per msec, and one per second it will stabilize
1150 * to a value N*1000, where N is the rate of events per second.
1151 * At constant rates between one per second and one per 32 seconds,
1152 * it will be choppy, moving up on the seconds that have an event,
1153 * and then decaying until the next event. At rates slower than
1154 * about one in 32 seconds, it decays all the way back to zero between
1155 * each event.
1156 */
1157
1158#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1159#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1160#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1161#define FM_SCALE 1000 /* faux fixed point scale */
1162
1163/* Initialize a frequency meter */
1164static void fmeter_init(struct fmeter *fmp)
1165{
1166 fmp->cnt = 0;
1167 fmp->val = 0;
1168 fmp->time = 0;
1169 spin_lock_init(&fmp->lock);
1170}
1171
1172/* Internal meter update - process cnt events and update value */
1173static void fmeter_update(struct fmeter *fmp)
1174{
1175 time_t now = get_seconds();
1176 time_t ticks = now - fmp->time;
1177
1178 if (ticks == 0)
1179 return;
1180
1181 ticks = min(FM_MAXTICKS, ticks);
1182 while (ticks-- > 0)
1183 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1184 fmp->time = now;
1185
1186 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1187 fmp->cnt = 0;
1188}
1189
1190/* Process any previous ticks, then bump cnt by one (times scale). */
1191static void fmeter_markevent(struct fmeter *fmp)
1192{
1193 spin_lock(&fmp->lock);
1194 fmeter_update(fmp);
1195 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1196 spin_unlock(&fmp->lock);
1197}
1198
1199/* Process any previous ticks, then return current value. */
1200static int fmeter_getrate(struct fmeter *fmp)
1201{
1202 int val;
1203
1204 spin_lock(&fmp->lock);
1205 fmeter_update(fmp);
1206 val = fmp->val;
1207 spin_unlock(&fmp->lock);
1208 return val;
1209}
1210
8793d854
PM
1211static int cpuset_can_attach(struct cgroup_subsys *ss,
1212 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1213{
8793d854 1214 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1215
1da177e4
LT
1216 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1217 return -ENOSPC;
1218
8793d854
PM
1219 return security_task_setscheduler(tsk, 0, NULL);
1220}
1da177e4 1221
8793d854
PM
1222static void cpuset_attach(struct cgroup_subsys *ss,
1223 struct cgroup *cont, struct cgroup *oldcont,
1224 struct task_struct *tsk)
1225{
1226 cpumask_t cpus;
1227 nodemask_t from, to;
1228 struct mm_struct *mm;
1229 struct cpuset *cs = cgroup_cs(cont);
1230 struct cpuset *oldcs = cgroup_cs(oldcont);
22fb52dd 1231
3d3f26a7 1232 mutex_lock(&callback_mutex);
1da177e4
LT
1233 guarantee_online_cpus(cs, &cpus);
1234 set_cpus_allowed(tsk, cpus);
8793d854 1235 mutex_unlock(&callback_mutex);
1da177e4 1236
45b07ef3
PJ
1237 from = oldcs->mems_allowed;
1238 to = cs->mems_allowed;
4225399a
PJ
1239 mm = get_task_mm(tsk);
1240 if (mm) {
1241 mpol_rebind_mm(mm, &to);
2741a559 1242 if (is_memory_migrate(cs))
e4e364e8 1243 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1244 mmput(mm);
1245 }
1246
1da177e4
LT
1247}
1248
1249/* The various types of files and directories in a cpuset file system */
1250
1251typedef enum {
45b07ef3 1252 FILE_MEMORY_MIGRATE,
1da177e4
LT
1253 FILE_CPULIST,
1254 FILE_MEMLIST,
1255 FILE_CPU_EXCLUSIVE,
1256 FILE_MEM_EXCLUSIVE,
029190c5 1257 FILE_SCHED_LOAD_BALANCE,
3e0d98b9
PJ
1258 FILE_MEMORY_PRESSURE_ENABLED,
1259 FILE_MEMORY_PRESSURE,
825a46af
PJ
1260 FILE_SPREAD_PAGE,
1261 FILE_SPREAD_SLAB,
1da177e4
LT
1262} cpuset_filetype_t;
1263
8793d854
PM
1264static ssize_t cpuset_common_file_write(struct cgroup *cont,
1265 struct cftype *cft,
1266 struct file *file,
d3ed11c3 1267 const char __user *userbuf,
1da177e4
LT
1268 size_t nbytes, loff_t *unused_ppos)
1269{
8793d854 1270 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1271 cpuset_filetype_t type = cft->private;
1272 char *buffer;
1273 int retval = 0;
1274
1275 /* Crude upper limit on largest legitimate cpulist user might write. */
029190c5 1276 if (nbytes > 100U + 6 * max(NR_CPUS, MAX_NUMNODES))
1da177e4
LT
1277 return -E2BIG;
1278
1279 /* +1 for nul-terminator */
1280 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
1281 return -ENOMEM;
1282
1283 if (copy_from_user(buffer, userbuf, nbytes)) {
1284 retval = -EFAULT;
1285 goto out1;
1286 }
1287 buffer[nbytes] = 0; /* nul-terminate */
1288
8793d854 1289 cgroup_lock();
1da177e4 1290
8793d854 1291 if (cgroup_is_removed(cont)) {
1da177e4
LT
1292 retval = -ENODEV;
1293 goto out2;
1294 }
1295
1296 switch (type) {
1297 case FILE_CPULIST:
1298 retval = update_cpumask(cs, buffer);
1299 break;
1300 case FILE_MEMLIST:
1301 retval = update_nodemask(cs, buffer);
1302 break;
1303 case FILE_CPU_EXCLUSIVE:
1304 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
1305 break;
1306 case FILE_MEM_EXCLUSIVE:
1307 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
1308 break;
029190c5
PJ
1309 case FILE_SCHED_LOAD_BALANCE:
1310 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, buffer);
1311 break;
45b07ef3
PJ
1312 case FILE_MEMORY_MIGRATE:
1313 retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
1314 break;
3e0d98b9
PJ
1315 case FILE_MEMORY_PRESSURE_ENABLED:
1316 retval = update_memory_pressure_enabled(cs, buffer);
1317 break;
1318 case FILE_MEMORY_PRESSURE:
1319 retval = -EACCES;
1320 break;
825a46af
PJ
1321 case FILE_SPREAD_PAGE:
1322 retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
151a4420 1323 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1324 break;
1325 case FILE_SPREAD_SLAB:
1326 retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
151a4420 1327 cs->mems_generation = cpuset_mems_generation++;
825a46af 1328 break;
1da177e4
LT
1329 default:
1330 retval = -EINVAL;
1331 goto out2;
1332 }
1333
1334 if (retval == 0)
1335 retval = nbytes;
1336out2:
8793d854 1337 cgroup_unlock();
1da177e4
LT
1338out1:
1339 kfree(buffer);
1340 return retval;
1341}
1342
1da177e4
LT
1343/*
1344 * These ascii lists should be read in a single call, by using a user
1345 * buffer large enough to hold the entire map. If read in smaller
1346 * chunks, there is no guarantee of atomicity. Since the display format
1347 * used, list of ranges of sequential numbers, is variable length,
1348 * and since these maps can change value dynamically, one could read
1349 * gibberish by doing partial reads while a list was changing.
1350 * A single large read to a buffer that crosses a page boundary is
1351 * ok, because the result being copied to user land is not recomputed
1352 * across a page fault.
1353 */
1354
1355static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1356{
1357 cpumask_t mask;
1358
3d3f26a7 1359 mutex_lock(&callback_mutex);
1da177e4 1360 mask = cs->cpus_allowed;
3d3f26a7 1361 mutex_unlock(&callback_mutex);
1da177e4
LT
1362
1363 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1364}
1365
1366static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1367{
1368 nodemask_t mask;
1369
3d3f26a7 1370 mutex_lock(&callback_mutex);
1da177e4 1371 mask = cs->mems_allowed;
3d3f26a7 1372 mutex_unlock(&callback_mutex);
1da177e4
LT
1373
1374 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1375}
1376
8793d854
PM
1377static ssize_t cpuset_common_file_read(struct cgroup *cont,
1378 struct cftype *cft,
1379 struct file *file,
1380 char __user *buf,
1381 size_t nbytes, loff_t *ppos)
1da177e4 1382{
8793d854 1383 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1384 cpuset_filetype_t type = cft->private;
1385 char *page;
1386 ssize_t retval = 0;
1387 char *s;
1da177e4 1388
e12ba74d 1389 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1390 return -ENOMEM;
1391
1392 s = page;
1393
1394 switch (type) {
1395 case FILE_CPULIST:
1396 s += cpuset_sprintf_cpulist(s, cs);
1397 break;
1398 case FILE_MEMLIST:
1399 s += cpuset_sprintf_memlist(s, cs);
1400 break;
1401 case FILE_CPU_EXCLUSIVE:
1402 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
1403 break;
1404 case FILE_MEM_EXCLUSIVE:
1405 *s++ = is_mem_exclusive(cs) ? '1' : '0';
1406 break;
029190c5
PJ
1407 case FILE_SCHED_LOAD_BALANCE:
1408 *s++ = is_sched_load_balance(cs) ? '1' : '0';
1409 break;
45b07ef3
PJ
1410 case FILE_MEMORY_MIGRATE:
1411 *s++ = is_memory_migrate(cs) ? '1' : '0';
1412 break;
3e0d98b9
PJ
1413 case FILE_MEMORY_PRESSURE_ENABLED:
1414 *s++ = cpuset_memory_pressure_enabled ? '1' : '0';
1415 break;
1416 case FILE_MEMORY_PRESSURE:
1417 s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
1418 break;
825a46af
PJ
1419 case FILE_SPREAD_PAGE:
1420 *s++ = is_spread_page(cs) ? '1' : '0';
1421 break;
1422 case FILE_SPREAD_SLAB:
1423 *s++ = is_spread_slab(cs) ? '1' : '0';
1424 break;
1da177e4
LT
1425 default:
1426 retval = -EINVAL;
1427 goto out;
1428 }
1429 *s++ = '\n';
1da177e4 1430
eacaa1f5 1431 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1432out:
1433 free_page((unsigned long)page);
1434 return retval;
1435}
1436
1da177e4 1437
1da177e4 1438
1da177e4 1439
1da177e4
LT
1440
1441/*
1442 * for the common functions, 'private' gives the type of file
1443 */
1444
1da177e4
LT
1445static struct cftype cft_cpus = {
1446 .name = "cpus",
8793d854
PM
1447 .read = cpuset_common_file_read,
1448 .write = cpuset_common_file_write,
1da177e4
LT
1449 .private = FILE_CPULIST,
1450};
1451
1452static struct cftype cft_mems = {
1453 .name = "mems",
8793d854
PM
1454 .read = cpuset_common_file_read,
1455 .write = cpuset_common_file_write,
1da177e4
LT
1456 .private = FILE_MEMLIST,
1457};
1458
1459static struct cftype cft_cpu_exclusive = {
1460 .name = "cpu_exclusive",
8793d854
PM
1461 .read = cpuset_common_file_read,
1462 .write = cpuset_common_file_write,
1da177e4
LT
1463 .private = FILE_CPU_EXCLUSIVE,
1464};
1465
1466static struct cftype cft_mem_exclusive = {
1467 .name = "mem_exclusive",
8793d854
PM
1468 .read = cpuset_common_file_read,
1469 .write = cpuset_common_file_write,
1da177e4
LT
1470 .private = FILE_MEM_EXCLUSIVE,
1471};
1472
029190c5
PJ
1473static struct cftype cft_sched_load_balance = {
1474 .name = "sched_load_balance",
1475 .read = cpuset_common_file_read,
1476 .write = cpuset_common_file_write,
1477 .private = FILE_SCHED_LOAD_BALANCE,
1478};
1479
45b07ef3
PJ
1480static struct cftype cft_memory_migrate = {
1481 .name = "memory_migrate",
8793d854
PM
1482 .read = cpuset_common_file_read,
1483 .write = cpuset_common_file_write,
45b07ef3
PJ
1484 .private = FILE_MEMORY_MIGRATE,
1485};
1486
3e0d98b9
PJ
1487static struct cftype cft_memory_pressure_enabled = {
1488 .name = "memory_pressure_enabled",
8793d854
PM
1489 .read = cpuset_common_file_read,
1490 .write = cpuset_common_file_write,
3e0d98b9
PJ
1491 .private = FILE_MEMORY_PRESSURE_ENABLED,
1492};
1493
1494static struct cftype cft_memory_pressure = {
1495 .name = "memory_pressure",
8793d854
PM
1496 .read = cpuset_common_file_read,
1497 .write = cpuset_common_file_write,
3e0d98b9
PJ
1498 .private = FILE_MEMORY_PRESSURE,
1499};
1500
825a46af
PJ
1501static struct cftype cft_spread_page = {
1502 .name = "memory_spread_page",
8793d854
PM
1503 .read = cpuset_common_file_read,
1504 .write = cpuset_common_file_write,
825a46af
PJ
1505 .private = FILE_SPREAD_PAGE,
1506};
1507
1508static struct cftype cft_spread_slab = {
1509 .name = "memory_spread_slab",
8793d854
PM
1510 .read = cpuset_common_file_read,
1511 .write = cpuset_common_file_write,
825a46af
PJ
1512 .private = FILE_SPREAD_SLAB,
1513};
1514
8793d854 1515static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1516{
1517 int err;
1518
8793d854 1519 if ((err = cgroup_add_file(cont, ss, &cft_cpus)) < 0)
1da177e4 1520 return err;
8793d854 1521 if ((err = cgroup_add_file(cont, ss, &cft_mems)) < 0)
1da177e4 1522 return err;
8793d854 1523 if ((err = cgroup_add_file(cont, ss, &cft_cpu_exclusive)) < 0)
1da177e4 1524 return err;
8793d854 1525 if ((err = cgroup_add_file(cont, ss, &cft_mem_exclusive)) < 0)
1da177e4 1526 return err;
8793d854 1527 if ((err = cgroup_add_file(cont, ss, &cft_memory_migrate)) < 0)
1da177e4 1528 return err;
029190c5
PJ
1529 if ((err = cgroup_add_file(cont, ss, &cft_sched_load_balance)) < 0)
1530 return err;
8793d854 1531 if ((err = cgroup_add_file(cont, ss, &cft_memory_pressure)) < 0)
45b07ef3 1532 return err;
8793d854 1533 if ((err = cgroup_add_file(cont, ss, &cft_spread_page)) < 0)
3e0d98b9 1534 return err;
8793d854 1535 if ((err = cgroup_add_file(cont, ss, &cft_spread_slab)) < 0)
1da177e4 1536 return err;
8793d854
PM
1537 /* memory_pressure_enabled is in root cpuset only */
1538 if (err == 0 && !cont->parent)
1539 err = cgroup_add_file(cont, ss,
1540 &cft_memory_pressure_enabled);
1da177e4
LT
1541 return 0;
1542}
1543
8793d854
PM
1544/*
1545 * post_clone() is called at the end of cgroup_clone().
1546 * 'cgroup' was just created automatically as a result of
1547 * a cgroup_clone(), and the current task is about to
1548 * be moved into 'cgroup'.
1549 *
1550 * Currently we refuse to set up the cgroup - thereby
1551 * refusing the task to be entered, and as a result refusing
1552 * the sys_unshare() or clone() which initiated it - if any
1553 * sibling cpusets have exclusive cpus or mem.
1554 *
1555 * If this becomes a problem for some users who wish to
1556 * allow that scenario, then cpuset_post_clone() could be
1557 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1558 * (and likewise for mems) to the new cgroup.
1559 */
1560static void cpuset_post_clone(struct cgroup_subsys *ss,
1561 struct cgroup *cgroup)
1562{
1563 struct cgroup *parent, *child;
1564 struct cpuset *cs, *parent_cs;
1565
1566 parent = cgroup->parent;
1567 list_for_each_entry(child, &parent->children, sibling) {
1568 cs = cgroup_cs(child);
1569 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1570 return;
1571 }
1572 cs = cgroup_cs(cgroup);
1573 parent_cs = cgroup_cs(parent);
1574
1575 cs->mems_allowed = parent_cs->mems_allowed;
1576 cs->cpus_allowed = parent_cs->cpus_allowed;
1577 return;
1578}
1579
1da177e4
LT
1580/*
1581 * cpuset_create - create a cpuset
1582 * parent: cpuset that will be parent of the new cpuset.
1583 * name: name of the new cpuset. Will be strcpy'ed.
1584 * mode: mode to set on new inode
1585 *
3d3f26a7 1586 * Must be called with the mutex on the parent inode held
1da177e4
LT
1587 */
1588
8793d854
PM
1589static struct cgroup_subsys_state *cpuset_create(
1590 struct cgroup_subsys *ss,
1591 struct cgroup *cont)
1da177e4
LT
1592{
1593 struct cpuset *cs;
8793d854 1594 struct cpuset *parent;
1da177e4 1595
8793d854
PM
1596 if (!cont->parent) {
1597 /* This is early initialization for the top cgroup */
1598 top_cpuset.mems_generation = cpuset_mems_generation++;
1599 return &top_cpuset.css;
1600 }
1601 parent = cgroup_cs(cont->parent);
1da177e4
LT
1602 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1603 if (!cs)
8793d854 1604 return ERR_PTR(-ENOMEM);
1da177e4 1605
cf2a473c 1606 cpuset_update_task_memory_state();
1da177e4 1607 cs->flags = 0;
825a46af
PJ
1608 if (is_spread_page(parent))
1609 set_bit(CS_SPREAD_PAGE, &cs->flags);
1610 if (is_spread_slab(parent))
1611 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1612 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1da177e4
LT
1613 cs->cpus_allowed = CPU_MASK_NONE;
1614 cs->mems_allowed = NODE_MASK_NONE;
151a4420 1615 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1616 fmeter_init(&cs->fmeter);
1da177e4
LT
1617
1618 cs->parent = parent;
202f72d5 1619 number_of_cpusets++;
8793d854 1620 return &cs->css ;
1da177e4
LT
1621}
1622
029190c5
PJ
1623/*
1624 * Locking note on the strange update_flag() call below:
1625 *
1626 * If the cpuset being removed has its flag 'sched_load_balance'
1627 * enabled, then simulate turning sched_load_balance off, which
86ef5c9a 1628 * will call rebuild_sched_domains(). The get_online_cpus()
029190c5
PJ
1629 * call in rebuild_sched_domains() must not be made while holding
1630 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
86ef5c9a 1631 * get_online_cpus() calls. So the reverse nesting would risk an
029190c5
PJ
1632 * ABBA deadlock.
1633 */
1634
8793d854 1635static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1636{
8793d854 1637 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1638
cf2a473c 1639 cpuset_update_task_memory_state();
029190c5
PJ
1640
1641 if (is_sched_load_balance(cs))
1642 update_flag(CS_SCHED_LOAD_BALANCE, cs, "0");
1643
202f72d5 1644 number_of_cpusets--;
8793d854 1645 kfree(cs);
1da177e4
LT
1646}
1647
8793d854
PM
1648struct cgroup_subsys cpuset_subsys = {
1649 .name = "cpuset",
1650 .create = cpuset_create,
1651 .destroy = cpuset_destroy,
1652 .can_attach = cpuset_can_attach,
1653 .attach = cpuset_attach,
1654 .populate = cpuset_populate,
1655 .post_clone = cpuset_post_clone,
1656 .subsys_id = cpuset_subsys_id,
1657 .early_init = 1,
1658};
1659
c417f024
PJ
1660/*
1661 * cpuset_init_early - just enough so that the calls to
1662 * cpuset_update_task_memory_state() in early init code
1663 * are harmless.
1664 */
1665
1666int __init cpuset_init_early(void)
1667{
8793d854 1668 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1669 return 0;
1670}
1671
8793d854 1672
1da177e4
LT
1673/**
1674 * cpuset_init - initialize cpusets at system boot
1675 *
1676 * Description: Initialize top_cpuset and the cpuset internal file system,
1677 **/
1678
1679int __init cpuset_init(void)
1680{
8793d854 1681 int err = 0;
1da177e4
LT
1682
1683 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1684 top_cpuset.mems_allowed = NODE_MASK_ALL;
1685
3e0d98b9 1686 fmeter_init(&top_cpuset.fmeter);
151a4420 1687 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1688 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1da177e4 1689
1da177e4
LT
1690 err = register_filesystem(&cpuset_fs_type);
1691 if (err < 0)
8793d854
PM
1692 return err;
1693
202f72d5 1694 number_of_cpusets = 1;
8793d854 1695 return 0;
1da177e4
LT
1696}
1697
956db3ca
CW
1698/**
1699 * cpuset_do_move_task - move a given task to another cpuset
1700 * @tsk: pointer to task_struct the task to move
1701 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1702 *
1703 * Called by cgroup_scan_tasks() for each task in a cgroup.
1704 * Return nonzero to stop the walk through the tasks.
1705 */
1706void cpuset_do_move_task(struct task_struct *tsk, struct cgroup_scanner *scan)
1707{
1708 struct cpuset_hotplug_scanner *chsp;
1709
1710 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1711 cgroup_attach_task(chsp->to, tsk);
1712}
1713
1714/**
1715 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1716 * @from: cpuset in which the tasks currently reside
1717 * @to: cpuset to which the tasks will be moved
1718 *
1719 * Called with manage_sem held
1720 * callback_mutex must not be held, as attach_task() will take it.
1721 *
1722 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1723 * calling callback functions for each.
1724 */
1725static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1726{
1727 struct cpuset_hotplug_scanner scan;
1728
1729 scan.scan.cg = from->css.cgroup;
1730 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1731 scan.scan.process_task = cpuset_do_move_task;
1732 scan.scan.heap = NULL;
1733 scan.to = to->css.cgroup;
1734
1735 if (cgroup_scan_tasks((struct cgroup_scanner *)&scan))
1736 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1737 "cgroup_scan_tasks failed\n");
1738}
1739
b1aac8bb
PJ
1740/*
1741 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
1742 * or memory nodes, we need to walk over the cpuset hierarchy,
1743 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1744 * last CPU or node from a cpuset, then move the tasks in the empty
1745 * cpuset to its next-highest non-empty parent.
b1aac8bb 1746 *
956db3ca
CW
1747 * The parent cpuset has some superset of the 'mems' nodes that the
1748 * newly empty cpuset held, so no migration of memory is necessary.
b1aac8bb 1749 *
956db3ca 1750 * Called with both manage_sem and callback_sem held
b1aac8bb 1751 */
956db3ca
CW
1752static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1753{
1754 struct cpuset *parent;
1755
1756 /* the cgroup's css_sets list is in use if there are tasks
1757 in the cpuset; the list is empty if there are none;
1758 the cs->css.refcnt seems always 0 */
1759 if (list_empty(&cs->css.cgroup->css_sets))
1760 return;
b1aac8bb 1761
956db3ca
CW
1762 /*
1763 * Find its next-highest non-empty parent, (top cpuset
1764 * has online cpus, so can't be empty).
1765 */
1766 parent = cs->parent;
1767 while (cpus_empty(parent->cpus_allowed)) {
1768 /*
1769 * this empty cpuset should now be considered to
1770 * have been used, and therefore eligible for
1771 * release when empty (if it is notify_on_release)
1772 */
1773 parent = parent->parent;
1774 }
1775
1776 move_member_tasks_to_cpuset(cs, parent);
1777}
1778
1779/*
1780 * Walk the specified cpuset subtree and look for empty cpusets.
1781 * The tasks of such cpuset must be moved to a parent cpuset.
1782 *
1783 * Note that such a notify_on_release cpuset must have had, at some time,
1784 * member tasks or cpuset descendants and cpus and memory, before it can
1785 * be a candidate for release.
1786 *
1787 * Called with manage_mutex held. We take callback_mutex to modify
1788 * cpus_allowed and mems_allowed.
1789 *
1790 * This walk processes the tree from top to bottom, completing one layer
1791 * before dropping down to the next. It always processes a node before
1792 * any of its children.
1793 *
1794 * For now, since we lack memory hot unplug, we'll never see a cpuset
1795 * that has tasks along with an empty 'mems'. But if we did see such
1796 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1797 */
1798static void scan_for_empty_cpusets(const struct cpuset *root)
b1aac8bb 1799{
956db3ca
CW
1800 struct cpuset *cp; /* scans cpusets being updated */
1801 struct cpuset *child; /* scans child cpusets of cp */
1802 struct list_head queue;
8793d854 1803 struct cgroup *cont;
b1aac8bb 1804
956db3ca
CW
1805 INIT_LIST_HEAD(&queue);
1806
1807 list_add_tail((struct list_head *)&root->stack_list, &queue);
1808
1809 mutex_lock(&callback_mutex);
1810 while (!list_empty(&queue)) {
1811 cp = container_of(queue.next, struct cpuset, stack_list);
1812 list_del(queue.next);
1813 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1814 child = cgroup_cs(cont);
1815 list_add_tail(&child->stack_list, &queue);
1816 }
1817 cont = cp->css.cgroup;
1818 /* Remove offline cpus and mems from this cpuset. */
1819 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1820 nodes_and(cp->mems_allowed, cp->mems_allowed,
1821 node_states[N_HIGH_MEMORY]);
1822 if ((cpus_empty(cp->cpus_allowed) ||
1823 nodes_empty(cp->mems_allowed))) {
1824 /* Move tasks from the empty cpuset to a parent */
1825 mutex_unlock(&callback_mutex);
1826 remove_tasks_in_empty_cpuset(cp);
1827 mutex_lock(&callback_mutex);
1828 }
b1aac8bb 1829 }
956db3ca
CW
1830 mutex_unlock(&callback_mutex);
1831 return;
b1aac8bb
PJ
1832}
1833
1834/*
1835 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
0e1e7c7a 1836 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
956db3ca 1837 * track what's online after any CPU or memory node hotplug or unplug event.
b1aac8bb
PJ
1838 *
1839 * Since there are two callers of this routine, one for CPU hotplug
1840 * events and one for memory node hotplug events, we could have coded
1841 * two separate routines here. We code it as a single common routine
1842 * in order to minimize text size.
1843 */
1844
1845static void common_cpu_mem_hotplug_unplug(void)
1846{
8793d854 1847 cgroup_lock();
b1aac8bb 1848
b1aac8bb 1849 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 1850 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
956db3ca 1851 scan_for_empty_cpusets(&top_cpuset);
b1aac8bb 1852
8793d854 1853 cgroup_unlock();
b1aac8bb 1854}
b1aac8bb 1855
4c4d50f7
PJ
1856/*
1857 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1858 * period. This is necessary in order to make cpusets transparent
1859 * (of no affect) on systems that are actively using CPU hotplug
1860 * but making no active use of cpusets.
1861 *
38837fc7
PJ
1862 * This routine ensures that top_cpuset.cpus_allowed tracks
1863 * cpu_online_map on each CPU hotplug (cpuhp) event.
4c4d50f7
PJ
1864 */
1865
029190c5
PJ
1866static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
1867 unsigned long phase, void *unused_cpu)
4c4d50f7 1868{
ac076758
AK
1869 if (phase == CPU_DYING || phase == CPU_DYING_FROZEN)
1870 return NOTIFY_DONE;
1871
b1aac8bb 1872 common_cpu_mem_hotplug_unplug();
4c4d50f7
PJ
1873 return 0;
1874}
4c4d50f7 1875
b1aac8bb 1876#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 1877/*
0e1e7c7a
CL
1878 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
1879 * Call this routine anytime after you change
1880 * node_states[N_HIGH_MEMORY].
38837fc7
PJ
1881 * See also the previous routine cpuset_handle_cpuhp().
1882 */
1883
1af98928 1884void cpuset_track_online_nodes(void)
38837fc7 1885{
b1aac8bb 1886 common_cpu_mem_hotplug_unplug();
38837fc7
PJ
1887}
1888#endif
1889
1da177e4
LT
1890/**
1891 * cpuset_init_smp - initialize cpus_allowed
1892 *
1893 * Description: Finish top cpuset after cpu, node maps are initialized
1894 **/
1895
1896void __init cpuset_init_smp(void)
1897{
1898 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 1899 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7
PJ
1900
1901 hotcpu_notifier(cpuset_handle_cpuhp, 0);
1da177e4
LT
1902}
1903
1904/**
3077a260 1905
1da177e4
LT
1906 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1907 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1908 *
1909 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1910 * attached to the specified @tsk. Guaranteed to return some non-empty
1911 * subset of cpu_online_map, even if this means going outside the
1912 * tasks cpuset.
1913 **/
1914
909d75a3 1915cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
1da177e4
LT
1916{
1917 cpumask_t mask;
1918
3d3f26a7 1919 mutex_lock(&callback_mutex);
470fd646
CW
1920 mask = cpuset_cpus_allowed_locked(tsk);
1921 mutex_unlock(&callback_mutex);
1922
1923 return mask;
1924}
1925
1926/**
1927 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
1928 * Must be called with callback_mutex held.
1929 **/
1930cpumask_t cpuset_cpus_allowed_locked(struct task_struct *tsk)
1931{
1932 cpumask_t mask;
1933
909d75a3 1934 task_lock(tsk);
8793d854 1935 guarantee_online_cpus(task_cs(tsk), &mask);
909d75a3 1936 task_unlock(tsk);
1da177e4
LT
1937
1938 return mask;
1939}
1940
1941void cpuset_init_current_mems_allowed(void)
1942{
1943 current->mems_allowed = NODE_MASK_ALL;
1944}
1945
909d75a3
PJ
1946/**
1947 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
1948 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
1949 *
1950 * Description: Returns the nodemask_t mems_allowed of the cpuset
1951 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 1952 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
1953 * tasks cpuset.
1954 **/
1955
1956nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
1957{
1958 nodemask_t mask;
1959
3d3f26a7 1960 mutex_lock(&callback_mutex);
909d75a3 1961 task_lock(tsk);
8793d854 1962 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 1963 task_unlock(tsk);
3d3f26a7 1964 mutex_unlock(&callback_mutex);
909d75a3
PJ
1965
1966 return mask;
1967}
1968
d9fd8a6d
RD
1969/**
1970 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
1971 * @zl: the zonelist to be checked
1972 *
1da177e4
LT
1973 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1974 */
1975int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
1976{
1977 int i;
1978
1979 for (i = 0; zl->zones[i]; i++) {
89fa3024 1980 int nid = zone_to_nid(zl->zones[i]);
1da177e4
LT
1981
1982 if (node_isset(nid, current->mems_allowed))
1983 return 1;
1984 }
1985 return 0;
1986}
1987
9bf2229f
PJ
1988/*
1989 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
3d3f26a7 1990 * ancestor to the specified cpuset. Call holding callback_mutex.
9bf2229f
PJ
1991 * If no ancestor is mem_exclusive (an unusual configuration), then
1992 * returns the root cpuset.
1993 */
1994static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
1995{
1996 while (!is_mem_exclusive(cs) && cs->parent)
1997 cs = cs->parent;
1998 return cs;
1999}
2000
d9fd8a6d 2001/**
02a0e53d 2002 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
9bf2229f 2003 * @z: is this zone on an allowed node?
02a0e53d 2004 * @gfp_mask: memory allocation flags
d9fd8a6d 2005 *
02a0e53d
PJ
2006 * If we're in interrupt, yes, we can always allocate. If
2007 * __GFP_THISNODE is set, yes, we can always allocate. If zone
9bf2229f
PJ
2008 * z's node is in our tasks mems_allowed, yes. If it's not a
2009 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2010 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
c596d9f3
DR
2011 * If the task has been OOM killed and has access to memory reserves
2012 * as specified by the TIF_MEMDIE flag, yes.
9bf2229f
PJ
2013 * Otherwise, no.
2014 *
02a0e53d
PJ
2015 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2016 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2017 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2018 * from an enclosing cpuset.
2019 *
2020 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2021 * hardwall cpusets, and never sleeps.
2022 *
2023 * The __GFP_THISNODE placement logic is really handled elsewhere,
2024 * by forcibly using a zonelist starting at a specified node, and by
2025 * (in get_page_from_freelist()) refusing to consider the zones for
2026 * any node on the zonelist except the first. By the time any such
2027 * calls get to this routine, we should just shut up and say 'yes'.
2028 *
9bf2229f 2029 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2030 * and do not allow allocations outside the current tasks cpuset
2031 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2032 * GFP_KERNEL allocations are not so marked, so can escape to the
02a0e53d 2033 * nearest enclosing mem_exclusive ancestor cpuset.
9bf2229f 2034 *
02a0e53d
PJ
2035 * Scanning up parent cpusets requires callback_mutex. The
2036 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2037 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2038 * current tasks mems_allowed came up empty on the first pass over
2039 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2040 * cpuset are short of memory, might require taking the callback_mutex
2041 * mutex.
9bf2229f 2042 *
36be57ff 2043 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2044 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2045 * so no allocation on a node outside the cpuset is allowed (unless
2046 * in interrupt, of course).
36be57ff
PJ
2047 *
2048 * The second pass through get_page_from_freelist() doesn't even call
2049 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2050 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2051 * in alloc_flags. That logic and the checks below have the combined
2052 * affect that:
9bf2229f
PJ
2053 * in_interrupt - any node ok (current task context irrelevant)
2054 * GFP_ATOMIC - any node ok
c596d9f3 2055 * TIF_MEMDIE - any node ok
9bf2229f
PJ
2056 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
2057 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2058 *
2059 * Rule:
02a0e53d 2060 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2061 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2062 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2063 */
9bf2229f 2064
02a0e53d 2065int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
1da177e4 2066{
9bf2229f
PJ
2067 int node; /* node that zone z is on */
2068 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2069 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2070
9b819d20 2071 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2072 return 1;
89fa3024 2073 node = zone_to_nid(z);
92d1dbd2 2074 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2075 if (node_isset(node, current->mems_allowed))
2076 return 1;
c596d9f3
DR
2077 /*
2078 * Allow tasks that have access to memory reserves because they have
2079 * been OOM killed to get memory anywhere.
2080 */
2081 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2082 return 1;
9bf2229f
PJ
2083 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2084 return 0;
2085
5563e770
BP
2086 if (current->flags & PF_EXITING) /* Let dying task have memory */
2087 return 1;
2088
9bf2229f 2089 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2090 mutex_lock(&callback_mutex);
053199ed 2091
053199ed 2092 task_lock(current);
8793d854 2093 cs = nearest_exclusive_ancestor(task_cs(current));
053199ed
PJ
2094 task_unlock(current);
2095
9bf2229f 2096 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2097 mutex_unlock(&callback_mutex);
9bf2229f 2098 return allowed;
1da177e4
LT
2099}
2100
02a0e53d
PJ
2101/*
2102 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2103 * @z: is this zone on an allowed node?
2104 * @gfp_mask: memory allocation flags
2105 *
2106 * If we're in interrupt, yes, we can always allocate.
2107 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
c596d9f3
DR
2108 * z's node is in our tasks mems_allowed, yes. If the task has been
2109 * OOM killed and has access to memory reserves as specified by the
2110 * TIF_MEMDIE flag, yes. Otherwise, no.
02a0e53d
PJ
2111 *
2112 * The __GFP_THISNODE placement logic is really handled elsewhere,
2113 * by forcibly using a zonelist starting at a specified node, and by
2114 * (in get_page_from_freelist()) refusing to consider the zones for
2115 * any node on the zonelist except the first. By the time any such
2116 * calls get to this routine, we should just shut up and say 'yes'.
2117 *
2118 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2119 * this variant requires that the zone be in the current tasks
2120 * mems_allowed or that we're in interrupt. It does not scan up the
2121 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2122 * It never sleeps.
2123 */
2124
2125int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2126{
2127 int node; /* node that zone z is on */
2128
2129 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2130 return 1;
2131 node = zone_to_nid(z);
2132 if (node_isset(node, current->mems_allowed))
2133 return 1;
dedf8b79
DW
2134 /*
2135 * Allow tasks that have access to memory reserves because they have
2136 * been OOM killed to get memory anywhere.
2137 */
2138 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2139 return 1;
02a0e53d
PJ
2140 return 0;
2141}
2142
505970b9
PJ
2143/**
2144 * cpuset_lock - lock out any changes to cpuset structures
2145 *
3d3f26a7 2146 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2147 * from being changed while it scans the tasklist looking for a
3d3f26a7 2148 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2149 * cpuset_lock() routine, so the oom code can lock it, before
2150 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2151 * must be taken inside callback_mutex.
505970b9
PJ
2152 */
2153
2154void cpuset_lock(void)
2155{
3d3f26a7 2156 mutex_lock(&callback_mutex);
505970b9
PJ
2157}
2158
2159/**
2160 * cpuset_unlock - release lock on cpuset changes
2161 *
2162 * Undo the lock taken in a previous cpuset_lock() call.
2163 */
2164
2165void cpuset_unlock(void)
2166{
3d3f26a7 2167 mutex_unlock(&callback_mutex);
505970b9
PJ
2168}
2169
825a46af
PJ
2170/**
2171 * cpuset_mem_spread_node() - On which node to begin search for a page
2172 *
2173 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2174 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2175 * and if the memory allocation used cpuset_mem_spread_node()
2176 * to determine on which node to start looking, as it will for
2177 * certain page cache or slab cache pages such as used for file
2178 * system buffers and inode caches, then instead of starting on the
2179 * local node to look for a free page, rather spread the starting
2180 * node around the tasks mems_allowed nodes.
2181 *
2182 * We don't have to worry about the returned node being offline
2183 * because "it can't happen", and even if it did, it would be ok.
2184 *
2185 * The routines calling guarantee_online_mems() are careful to
2186 * only set nodes in task->mems_allowed that are online. So it
2187 * should not be possible for the following code to return an
2188 * offline node. But if it did, that would be ok, as this routine
2189 * is not returning the node where the allocation must be, only
2190 * the node where the search should start. The zonelist passed to
2191 * __alloc_pages() will include all nodes. If the slab allocator
2192 * is passed an offline node, it will fall back to the local node.
2193 * See kmem_cache_alloc_node().
2194 */
2195
2196int cpuset_mem_spread_node(void)
2197{
2198 int node;
2199
2200 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2201 if (node == MAX_NUMNODES)
2202 node = first_node(current->mems_allowed);
2203 current->cpuset_mem_spread_rotor = node;
2204 return node;
2205}
2206EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2207
ef08e3b4 2208/**
bbe373f2
DR
2209 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2210 * @tsk1: pointer to task_struct of some task.
2211 * @tsk2: pointer to task_struct of some other task.
2212 *
2213 * Description: Return true if @tsk1's mems_allowed intersects the
2214 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2215 * one of the task's memory usage might impact the memory available
2216 * to the other.
ef08e3b4
PJ
2217 **/
2218
bbe373f2
DR
2219int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2220 const struct task_struct *tsk2)
ef08e3b4 2221{
bbe373f2 2222 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2223}
2224
3e0d98b9
PJ
2225/*
2226 * Collection of memory_pressure is suppressed unless
2227 * this flag is enabled by writing "1" to the special
2228 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2229 */
2230
c5b2aff8 2231int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2232
2233/**
2234 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2235 *
2236 * Keep a running average of the rate of synchronous (direct)
2237 * page reclaim efforts initiated by tasks in each cpuset.
2238 *
2239 * This represents the rate at which some task in the cpuset
2240 * ran low on memory on all nodes it was allowed to use, and
2241 * had to enter the kernels page reclaim code in an effort to
2242 * create more free memory by tossing clean pages or swapping
2243 * or writing dirty pages.
2244 *
2245 * Display to user space in the per-cpuset read-only file
2246 * "memory_pressure". Value displayed is an integer
2247 * representing the recent rate of entry into the synchronous
2248 * (direct) page reclaim by any task attached to the cpuset.
2249 **/
2250
2251void __cpuset_memory_pressure_bump(void)
2252{
3e0d98b9 2253 task_lock(current);
8793d854 2254 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2255 task_unlock(current);
2256}
2257
8793d854 2258#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2259/*
2260 * proc_cpuset_show()
2261 * - Print tasks cpuset path into seq_file.
2262 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2263 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2264 * doesn't really matter if tsk->cpuset changes after we read it,
3d3f26a7 2265 * and we take manage_mutex, keeping attach_task() from changing it
8488bc35
PJ
2266 * anyway. No need to check that tsk->cpuset != NULL, thanks to
2267 * the_top_cpuset_hack in cpuset_exit(), which sets an exiting tasks
2268 * cpuset to top_cpuset.
1da177e4 2269 */
029190c5 2270static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2271{
13b41b09 2272 struct pid *pid;
1da177e4
LT
2273 struct task_struct *tsk;
2274 char *buf;
8793d854 2275 struct cgroup_subsys_state *css;
99f89551 2276 int retval;
1da177e4 2277
99f89551 2278 retval = -ENOMEM;
1da177e4
LT
2279 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2280 if (!buf)
99f89551
EB
2281 goto out;
2282
2283 retval = -ESRCH;
13b41b09
EB
2284 pid = m->private;
2285 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2286 if (!tsk)
2287 goto out_free;
1da177e4 2288
99f89551 2289 retval = -EINVAL;
8793d854
PM
2290 cgroup_lock();
2291 css = task_subsys_state(tsk, cpuset_subsys_id);
2292 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2293 if (retval < 0)
99f89551 2294 goto out_unlock;
1da177e4
LT
2295 seq_puts(m, buf);
2296 seq_putc(m, '\n');
99f89551 2297out_unlock:
8793d854 2298 cgroup_unlock();
99f89551
EB
2299 put_task_struct(tsk);
2300out_free:
1da177e4 2301 kfree(buf);
99f89551 2302out:
1da177e4
LT
2303 return retval;
2304}
2305
2306static int cpuset_open(struct inode *inode, struct file *file)
2307{
13b41b09
EB
2308 struct pid *pid = PROC_I(inode)->pid;
2309 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2310}
2311
9a32144e 2312const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2313 .open = cpuset_open,
2314 .read = seq_read,
2315 .llseek = seq_lseek,
2316 .release = single_release,
2317};
8793d854 2318#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2319
2320/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2321char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
2322{
2323 buffer += sprintf(buffer, "Cpus_allowed:\t");
2324 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
2325 buffer += sprintf(buffer, "\n");
2326 buffer += sprintf(buffer, "Mems_allowed:\t");
2327 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
2328 buffer += sprintf(buffer, "\n");
2329 return buffer;
2330}