cgroup: unexport cgroup_css()
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
202f72d5
PJ
64/*
65 * Tracks how many cpusets are currently defined in system.
66 * When there is only one cpuset (the root cpuset) we can
67 * short circuit some hooks.
68 */
7edc5962 69int number_of_cpusets __read_mostly;
202f72d5 70
2df167a3 71/* Forward declare cgroup structures */
8793d854 72struct cgroup_subsys cpuset_subsys;
8793d854 73
3e0d98b9
PJ
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
1da177e4 83struct cpuset {
8793d854
PM
84 struct cgroup_subsys_state css;
85
1da177e4 86 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
33ad801d
LZ
90 /*
91 * This is old Memory Nodes tasks took on.
92 *
93 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
94 * - A new cpuset's old_mems_allowed is initialized when some
95 * task is moved into it.
96 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
97 * cpuset.mems_allowed and have tasks' nodemask updated, and
98 * then old_mems_allowed is updated to mems_allowed.
99 */
100 nodemask_t old_mems_allowed;
101
3e0d98b9 102 struct fmeter fmeter; /* memory_pressure filter */
029190c5 103
452477fa
TH
104 /*
105 * Tasks are being attached to this cpuset. Used to prevent
106 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
107 */
108 int attach_in_progress;
109
029190c5
PJ
110 /* partition number for rebuild_sched_domains() */
111 int pn;
956db3ca 112
1d3504fc
HS
113 /* for custom sched domain */
114 int relax_domain_level;
1da177e4
LT
115};
116
a7c6d554
TH
117static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
118{
119 return css ? container_of(css, struct cpuset, css) : NULL;
120}
121
8793d854
PM
122/* Retrieve the cpuset for a task */
123static inline struct cpuset *task_cs(struct task_struct *task)
124{
a7c6d554 125 return css_cs(task_css(task, cpuset_subsys_id));
8793d854 126}
8793d854 127
c9710d80 128static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 129{
63876986 130 return css_cs(css_parent(&cs->css));
c431069f
TH
131}
132
b246272e
DR
133#ifdef CONFIG_NUMA
134static inline bool task_has_mempolicy(struct task_struct *task)
135{
136 return task->mempolicy;
137}
138#else
139static inline bool task_has_mempolicy(struct task_struct *task)
140{
141 return false;
142}
143#endif
144
145
1da177e4
LT
146/* bits in struct cpuset flags field */
147typedef enum {
efeb77b2 148 CS_ONLINE,
1da177e4
LT
149 CS_CPU_EXCLUSIVE,
150 CS_MEM_EXCLUSIVE,
78608366 151 CS_MEM_HARDWALL,
45b07ef3 152 CS_MEMORY_MIGRATE,
029190c5 153 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
154 CS_SPREAD_PAGE,
155 CS_SPREAD_SLAB,
1da177e4
LT
156} cpuset_flagbits_t;
157
158/* convenient tests for these bits */
efeb77b2
TH
159static inline bool is_cpuset_online(const struct cpuset *cs)
160{
161 return test_bit(CS_ONLINE, &cs->flags);
162}
163
1da177e4
LT
164static inline int is_cpu_exclusive(const struct cpuset *cs)
165{
7b5b9ef0 166 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
167}
168
169static inline int is_mem_exclusive(const struct cpuset *cs)
170{
7b5b9ef0 171 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
172}
173
78608366
PM
174static inline int is_mem_hardwall(const struct cpuset *cs)
175{
176 return test_bit(CS_MEM_HARDWALL, &cs->flags);
177}
178
029190c5
PJ
179static inline int is_sched_load_balance(const struct cpuset *cs)
180{
181 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
182}
183
45b07ef3
PJ
184static inline int is_memory_migrate(const struct cpuset *cs)
185{
7b5b9ef0 186 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
187}
188
825a46af
PJ
189static inline int is_spread_page(const struct cpuset *cs)
190{
191 return test_bit(CS_SPREAD_PAGE, &cs->flags);
192}
193
194static inline int is_spread_slab(const struct cpuset *cs)
195{
196 return test_bit(CS_SPREAD_SLAB, &cs->flags);
197}
198
1da177e4 199static struct cpuset top_cpuset = {
efeb77b2
TH
200 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
201 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
202};
203
ae8086ce
TH
204/**
205 * cpuset_for_each_child - traverse online children of a cpuset
206 * @child_cs: loop cursor pointing to the current child
492eb21b 207 * @pos_css: used for iteration
ae8086ce
TH
208 * @parent_cs: target cpuset to walk children of
209 *
210 * Walk @child_cs through the online children of @parent_cs. Must be used
211 * with RCU read locked.
212 */
492eb21b
TH
213#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
214 css_for_each_child((pos_css), &(parent_cs)->css) \
215 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 216
fc560a26
TH
217/**
218 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
219 * @des_cs: loop cursor pointing to the current descendant
492eb21b 220 * @pos_css: used for iteration
fc560a26
TH
221 * @root_cs: target cpuset to walk ancestor of
222 *
223 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b
TH
224 * with RCU read locked. The caller may modify @pos_css by calling
225 * css_rightmost_descendant() to skip subtree.
fc560a26 226 */
492eb21b
TH
227#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
228 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
229 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 230
1da177e4 231/*
5d21cc2d
TH
232 * There are two global mutexes guarding cpuset structures - cpuset_mutex
233 * and callback_mutex. The latter may nest inside the former. We also
234 * require taking task_lock() when dereferencing a task's cpuset pointer.
235 * See "The task_lock() exception", at the end of this comment.
236 *
237 * A task must hold both mutexes to modify cpusets. If a task holds
238 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
239 * is the only task able to also acquire callback_mutex and be able to
240 * modify cpusets. It can perform various checks on the cpuset structure
241 * first, knowing nothing will change. It can also allocate memory while
242 * just holding cpuset_mutex. While it is performing these checks, various
243 * callback routines can briefly acquire callback_mutex to query cpusets.
244 * Once it is ready to make the changes, it takes callback_mutex, blocking
245 * everyone else.
053199ed
PJ
246 *
247 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 248 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
249 * from one of the callbacks into the cpuset code from within
250 * __alloc_pages().
251 *
3d3f26a7 252 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
253 * access to cpusets.
254 *
58568d2a
MX
255 * Now, the task_struct fields mems_allowed and mempolicy may be changed
256 * by other task, we use alloc_lock in the task_struct fields to protect
257 * them.
053199ed 258 *
3d3f26a7 259 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
260 * small pieces of code, such as when reading out possibly multi-word
261 * cpumasks and nodemasks.
262 *
2df167a3
PM
263 * Accessing a task's cpuset should be done in accordance with the
264 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
265 */
266
5d21cc2d 267static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 268static DEFINE_MUTEX(callback_mutex);
4247bdc6 269
3a5a6d0c
TH
270/*
271 * CPU / memory hotplug is handled asynchronously.
272 */
273static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
274static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
275
e44193d3
LZ
276static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
277
cf417141
MK
278/*
279 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 280 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
281 * silently switch it to mount "cgroup" instead
282 */
f7e83571
AV
283static struct dentry *cpuset_mount(struct file_system_type *fs_type,
284 int flags, const char *unused_dev_name, void *data)
1da177e4 285{
8793d854 286 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 287 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
288 if (cgroup_fs) {
289 char mountopts[] =
290 "cpuset,noprefix,"
291 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
292 ret = cgroup_fs->mount(cgroup_fs, flags,
293 unused_dev_name, mountopts);
8793d854
PM
294 put_filesystem(cgroup_fs);
295 }
296 return ret;
1da177e4
LT
297}
298
299static struct file_system_type cpuset_fs_type = {
300 .name = "cpuset",
f7e83571 301 .mount = cpuset_mount,
1da177e4
LT
302};
303
1da177e4 304/*
300ed6cb 305 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 306 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
307 * until we find one that does have some online cpus. The top
308 * cpuset always has some cpus online.
1da177e4
LT
309 *
310 * One way or another, we guarantee to return some non-empty subset
5f054e31 311 * of cpu_online_mask.
1da177e4 312 *
3d3f26a7 313 * Call with callback_mutex held.
1da177e4 314 */
c9710d80 315static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 316{
40df2deb 317 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 318 cs = parent_cs(cs);
40df2deb 319 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4
LT
320}
321
322/*
323 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
324 * are online, with memory. If none are online with memory, walk
325 * up the cpuset hierarchy until we find one that does have some
40df2deb 326 * online mems. The top cpuset always has some mems online.
1da177e4
LT
327 *
328 * One way or another, we guarantee to return some non-empty subset
38d7bee9 329 * of node_states[N_MEMORY].
1da177e4 330 *
3d3f26a7 331 * Call with callback_mutex held.
1da177e4 332 */
c9710d80 333static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 334{
40df2deb 335 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
c431069f 336 cs = parent_cs(cs);
40df2deb 337 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
1da177e4
LT
338}
339
f3b39d47
MX
340/*
341 * update task's spread flag if cpuset's page/slab spread flag is set
342 *
5d21cc2d 343 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
344 */
345static void cpuset_update_task_spread_flag(struct cpuset *cs,
346 struct task_struct *tsk)
347{
348 if (is_spread_page(cs))
349 tsk->flags |= PF_SPREAD_PAGE;
350 else
351 tsk->flags &= ~PF_SPREAD_PAGE;
352 if (is_spread_slab(cs))
353 tsk->flags |= PF_SPREAD_SLAB;
354 else
355 tsk->flags &= ~PF_SPREAD_SLAB;
356}
357
1da177e4
LT
358/*
359 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
360 *
361 * One cpuset is a subset of another if all its allowed CPUs and
362 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 363 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
364 */
365
366static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
367{
300ed6cb 368 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
369 nodes_subset(p->mems_allowed, q->mems_allowed) &&
370 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
371 is_mem_exclusive(p) <= is_mem_exclusive(q);
372}
373
645fcc9d
LZ
374/**
375 * alloc_trial_cpuset - allocate a trial cpuset
376 * @cs: the cpuset that the trial cpuset duplicates
377 */
c9710d80 378static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 379{
300ed6cb
LZ
380 struct cpuset *trial;
381
382 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
383 if (!trial)
384 return NULL;
385
386 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
387 kfree(trial);
388 return NULL;
389 }
390 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
391
392 return trial;
645fcc9d
LZ
393}
394
395/**
396 * free_trial_cpuset - free the trial cpuset
397 * @trial: the trial cpuset to be freed
398 */
399static void free_trial_cpuset(struct cpuset *trial)
400{
300ed6cb 401 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
402 kfree(trial);
403}
404
1da177e4
LT
405/*
406 * validate_change() - Used to validate that any proposed cpuset change
407 * follows the structural rules for cpusets.
408 *
409 * If we replaced the flag and mask values of the current cpuset
410 * (cur) with those values in the trial cpuset (trial), would
411 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 412 * cpuset_mutex held.
1da177e4
LT
413 *
414 * 'cur' is the address of an actual, in-use cpuset. Operations
415 * such as list traversal that depend on the actual address of the
416 * cpuset in the list must use cur below, not trial.
417 *
418 * 'trial' is the address of bulk structure copy of cur, with
419 * perhaps one or more of the fields cpus_allowed, mems_allowed,
420 * or flags changed to new, trial values.
421 *
422 * Return 0 if valid, -errno if not.
423 */
424
c9710d80 425static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 426{
492eb21b 427 struct cgroup_subsys_state *css;
1da177e4 428 struct cpuset *c, *par;
ae8086ce
TH
429 int ret;
430
431 rcu_read_lock();
1da177e4
LT
432
433 /* Each of our child cpusets must be a subset of us */
ae8086ce 434 ret = -EBUSY;
492eb21b 435 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
436 if (!is_cpuset_subset(c, trial))
437 goto out;
1da177e4
LT
438
439 /* Remaining checks don't apply to root cpuset */
ae8086ce 440 ret = 0;
69604067 441 if (cur == &top_cpuset)
ae8086ce 442 goto out;
1da177e4 443
c431069f 444 par = parent_cs(cur);
69604067 445
1da177e4 446 /* We must be a subset of our parent cpuset */
ae8086ce 447 ret = -EACCES;
1da177e4 448 if (!is_cpuset_subset(trial, par))
ae8086ce 449 goto out;
1da177e4 450
2df167a3
PM
451 /*
452 * If either I or some sibling (!= me) is exclusive, we can't
453 * overlap
454 */
ae8086ce 455 ret = -EINVAL;
492eb21b 456 cpuset_for_each_child(c, css, par) {
1da177e4
LT
457 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
458 c != cur &&
300ed6cb 459 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 460 goto out;
1da177e4
LT
461 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
462 c != cur &&
463 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 464 goto out;
1da177e4
LT
465 }
466
452477fa
TH
467 /*
468 * Cpusets with tasks - existing or newly being attached - can't
469 * have empty cpus_allowed or mems_allowed.
470 */
ae8086ce 471 ret = -ENOSPC;
452477fa 472 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
88fa523b 473 (cpumask_empty(trial->cpus_allowed) &&
ae8086ce
TH
474 nodes_empty(trial->mems_allowed)))
475 goto out;
020958b6 476
ae8086ce
TH
477 ret = 0;
478out:
479 rcu_read_unlock();
480 return ret;
1da177e4
LT
481}
482
db7f47cf 483#ifdef CONFIG_SMP
029190c5 484/*
cf417141 485 * Helper routine for generate_sched_domains().
029190c5
PJ
486 * Do cpusets a, b have overlapping cpus_allowed masks?
487 */
029190c5
PJ
488static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
489{
300ed6cb 490 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
491}
492
1d3504fc
HS
493static void
494update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
495{
1d3504fc
HS
496 if (dattr->relax_domain_level < c->relax_domain_level)
497 dattr->relax_domain_level = c->relax_domain_level;
498 return;
499}
500
fc560a26
TH
501static void update_domain_attr_tree(struct sched_domain_attr *dattr,
502 struct cpuset *root_cs)
f5393693 503{
fc560a26 504 struct cpuset *cp;
492eb21b 505 struct cgroup_subsys_state *pos_css;
f5393693 506
fc560a26 507 rcu_read_lock();
492eb21b 508 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
fc560a26
TH
509 /* skip the whole subtree if @cp doesn't have any CPU */
510 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 511 pos_css = css_rightmost_descendant(pos_css);
f5393693 512 continue;
fc560a26 513 }
f5393693
LJ
514
515 if (is_sched_load_balance(cp))
516 update_domain_attr(dattr, cp);
f5393693 517 }
fc560a26 518 rcu_read_unlock();
f5393693
LJ
519}
520
029190c5 521/*
cf417141
MK
522 * generate_sched_domains()
523 *
524 * This function builds a partial partition of the systems CPUs
525 * A 'partial partition' is a set of non-overlapping subsets whose
526 * union is a subset of that set.
0a0fca9d 527 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
528 * partition_sched_domains() routine, which will rebuild the scheduler's
529 * load balancing domains (sched domains) as specified by that partial
530 * partition.
029190c5 531 *
45ce80fb 532 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
533 * for a background explanation of this.
534 *
535 * Does not return errors, on the theory that the callers of this
536 * routine would rather not worry about failures to rebuild sched
537 * domains when operating in the severe memory shortage situations
538 * that could cause allocation failures below.
539 *
5d21cc2d 540 * Must be called with cpuset_mutex held.
029190c5
PJ
541 *
542 * The three key local variables below are:
aeed6824 543 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
544 * top-down scan of all cpusets. This scan loads a pointer
545 * to each cpuset marked is_sched_load_balance into the
546 * array 'csa'. For our purposes, rebuilding the schedulers
547 * sched domains, we can ignore !is_sched_load_balance cpusets.
548 * csa - (for CpuSet Array) Array of pointers to all the cpusets
549 * that need to be load balanced, for convenient iterative
550 * access by the subsequent code that finds the best partition,
551 * i.e the set of domains (subsets) of CPUs such that the
552 * cpus_allowed of every cpuset marked is_sched_load_balance
553 * is a subset of one of these domains, while there are as
554 * many such domains as possible, each as small as possible.
555 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 556 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
557 * convenient format, that can be easily compared to the prior
558 * value to determine what partition elements (sched domains)
559 * were changed (added or removed.)
560 *
561 * Finding the best partition (set of domains):
562 * The triple nested loops below over i, j, k scan over the
563 * load balanced cpusets (using the array of cpuset pointers in
564 * csa[]) looking for pairs of cpusets that have overlapping
565 * cpus_allowed, but which don't have the same 'pn' partition
566 * number and gives them in the same partition number. It keeps
567 * looping on the 'restart' label until it can no longer find
568 * any such pairs.
569 *
570 * The union of the cpus_allowed masks from the set of
571 * all cpusets having the same 'pn' value then form the one
572 * element of the partition (one sched domain) to be passed to
573 * partition_sched_domains().
574 */
acc3f5d7 575static int generate_sched_domains(cpumask_var_t **domains,
cf417141 576 struct sched_domain_attr **attributes)
029190c5 577{
029190c5
PJ
578 struct cpuset *cp; /* scans q */
579 struct cpuset **csa; /* array of all cpuset ptrs */
580 int csn; /* how many cpuset ptrs in csa so far */
581 int i, j, k; /* indices for partition finding loops */
acc3f5d7 582 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 583 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 584 int ndoms = 0; /* number of sched domains in result */
6af866af 585 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 586 struct cgroup_subsys_state *pos_css;
029190c5 587
029190c5 588 doms = NULL;
1d3504fc 589 dattr = NULL;
cf417141 590 csa = NULL;
029190c5
PJ
591
592 /* Special case for the 99% of systems with one, full, sched domain */
593 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
594 ndoms = 1;
595 doms = alloc_sched_domains(ndoms);
029190c5 596 if (!doms)
cf417141
MK
597 goto done;
598
1d3504fc
HS
599 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
600 if (dattr) {
601 *dattr = SD_ATTR_INIT;
93a65575 602 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 603 }
acc3f5d7 604 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 605
cf417141 606 goto done;
029190c5
PJ
607 }
608
029190c5
PJ
609 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
610 if (!csa)
611 goto done;
612 csn = 0;
613
fc560a26 614 rcu_read_lock();
492eb21b 615 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
f5393693 616 /*
fc560a26
TH
617 * Continue traversing beyond @cp iff @cp has some CPUs and
618 * isn't load balancing. The former is obvious. The
619 * latter: All child cpusets contain a subset of the
620 * parent's cpus, so just skip them, and then we call
621 * update_domain_attr_tree() to calc relax_domain_level of
622 * the corresponding sched domain.
f5393693 623 */
fc560a26
TH
624 if (!cpumask_empty(cp->cpus_allowed) &&
625 !is_sched_load_balance(cp))
f5393693 626 continue;
489a5393 627
fc560a26
TH
628 if (is_sched_load_balance(cp))
629 csa[csn++] = cp;
630
631 /* skip @cp's subtree */
492eb21b 632 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
633 }
634 rcu_read_unlock();
029190c5
PJ
635
636 for (i = 0; i < csn; i++)
637 csa[i]->pn = i;
638 ndoms = csn;
639
640restart:
641 /* Find the best partition (set of sched domains) */
642 for (i = 0; i < csn; i++) {
643 struct cpuset *a = csa[i];
644 int apn = a->pn;
645
646 for (j = 0; j < csn; j++) {
647 struct cpuset *b = csa[j];
648 int bpn = b->pn;
649
650 if (apn != bpn && cpusets_overlap(a, b)) {
651 for (k = 0; k < csn; k++) {
652 struct cpuset *c = csa[k];
653
654 if (c->pn == bpn)
655 c->pn = apn;
656 }
657 ndoms--; /* one less element */
658 goto restart;
659 }
660 }
661 }
662
cf417141
MK
663 /*
664 * Now we know how many domains to create.
665 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
666 */
acc3f5d7 667 doms = alloc_sched_domains(ndoms);
700018e0 668 if (!doms)
cf417141 669 goto done;
cf417141
MK
670
671 /*
672 * The rest of the code, including the scheduler, can deal with
673 * dattr==NULL case. No need to abort if alloc fails.
674 */
1d3504fc 675 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
676
677 for (nslot = 0, i = 0; i < csn; i++) {
678 struct cpuset *a = csa[i];
6af866af 679 struct cpumask *dp;
029190c5
PJ
680 int apn = a->pn;
681
cf417141
MK
682 if (apn < 0) {
683 /* Skip completed partitions */
684 continue;
685 }
686
acc3f5d7 687 dp = doms[nslot];
cf417141
MK
688
689 if (nslot == ndoms) {
690 static int warnings = 10;
691 if (warnings) {
692 printk(KERN_WARNING
693 "rebuild_sched_domains confused:"
694 " nslot %d, ndoms %d, csn %d, i %d,"
695 " apn %d\n",
696 nslot, ndoms, csn, i, apn);
697 warnings--;
029190c5 698 }
cf417141
MK
699 continue;
700 }
029190c5 701
6af866af 702 cpumask_clear(dp);
cf417141
MK
703 if (dattr)
704 *(dattr + nslot) = SD_ATTR_INIT;
705 for (j = i; j < csn; j++) {
706 struct cpuset *b = csa[j];
707
708 if (apn == b->pn) {
300ed6cb 709 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
710 if (dattr)
711 update_domain_attr_tree(dattr + nslot, b);
712
713 /* Done with this partition */
714 b->pn = -1;
029190c5 715 }
029190c5 716 }
cf417141 717 nslot++;
029190c5
PJ
718 }
719 BUG_ON(nslot != ndoms);
720
cf417141
MK
721done:
722 kfree(csa);
723
700018e0
LZ
724 /*
725 * Fallback to the default domain if kmalloc() failed.
726 * See comments in partition_sched_domains().
727 */
728 if (doms == NULL)
729 ndoms = 1;
730
cf417141
MK
731 *domains = doms;
732 *attributes = dattr;
733 return ndoms;
734}
735
736/*
737 * Rebuild scheduler domains.
738 *
699140ba
TH
739 * If the flag 'sched_load_balance' of any cpuset with non-empty
740 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
741 * which has that flag enabled, or if any cpuset with a non-empty
742 * 'cpus' is removed, then call this routine to rebuild the
743 * scheduler's dynamic sched domains.
cf417141 744 *
5d21cc2d 745 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 746 */
699140ba 747static void rebuild_sched_domains_locked(void)
cf417141
MK
748{
749 struct sched_domain_attr *attr;
acc3f5d7 750 cpumask_var_t *doms;
cf417141
MK
751 int ndoms;
752
5d21cc2d 753 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 754 get_online_cpus();
cf417141 755
5b16c2a4
LZ
756 /*
757 * We have raced with CPU hotplug. Don't do anything to avoid
758 * passing doms with offlined cpu to partition_sched_domains().
759 * Anyways, hotplug work item will rebuild sched domains.
760 */
761 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
762 goto out;
763
cf417141 764 /* Generate domain masks and attrs */
cf417141 765 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
766
767 /* Have scheduler rebuild the domains */
768 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 769out:
86ef5c9a 770 put_online_cpus();
cf417141 771}
db7f47cf 772#else /* !CONFIG_SMP */
699140ba 773static void rebuild_sched_domains_locked(void)
db7f47cf
PM
774{
775}
db7f47cf 776#endif /* CONFIG_SMP */
029190c5 777
cf417141
MK
778void rebuild_sched_domains(void)
779{
5d21cc2d 780 mutex_lock(&cpuset_mutex);
699140ba 781 rebuild_sched_domains_locked();
5d21cc2d 782 mutex_unlock(&cpuset_mutex);
029190c5
PJ
783}
784
070b57fc
LZ
785/*
786 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
787 * @cs: the cpuset in interest
58f4790b 788 *
070b57fc
LZ
789 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
790 * with non-empty cpus. We use effective cpumask whenever:
791 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
792 * if the cpuset they reside in has no cpus)
793 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
794 *
795 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
796 * exception. See comments there.
797 */
798static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
799{
800 while (cpumask_empty(cs->cpus_allowed))
801 cs = parent_cs(cs);
802 return cs;
803}
804
805/*
806 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
807 * @cs: the cpuset in interest
808 *
809 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
810 * with non-empty memss. We use effective nodemask whenever:
811 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
812 * if the cpuset they reside in has no mems)
813 * - we want to retrieve task_cs(tsk)'s mems_allowed.
814 *
815 * Called with cpuset_mutex held.
053199ed 816 */
070b57fc 817static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
58f4790b 818{
070b57fc
LZ
819 while (nodes_empty(cs->mems_allowed))
820 cs = parent_cs(cs);
821 return cs;
58f4790b 822}
053199ed 823
58f4790b
CW
824/**
825 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
826 * @tsk: task to test
e535837b 827 * @data: cpuset to @tsk belongs to
58f4790b 828 *
72ec7029
TH
829 * Called by css_scan_tasks() for each task in a cgroup whose cpus_allowed
830 * mask needs to be changed.
58f4790b
CW
831 *
832 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 833 * holding cpuset_mutex at this point.
58f4790b 834 */
e535837b 835static void cpuset_change_cpumask(struct task_struct *tsk, void *data)
58f4790b 836{
e535837b
TH
837 struct cpuset *cs = data;
838 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
070b57fc 839
070b57fc 840 set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
58f4790b
CW
841}
842
0b2f630a
MX
843/**
844 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
845 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
72ec7029 846 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
0b2f630a 847 *
5d21cc2d 848 * Called with cpuset_mutex held
0b2f630a 849 *
72ec7029 850 * The css_scan_tasks() function will scan all the tasks in a cgroup,
0b2f630a
MX
851 * calling callback functions for each.
852 *
72ec7029 853 * No return value. It's guaranteed that css_scan_tasks() always returns 0
4e74339a 854 * if @heap != NULL.
0b2f630a 855 */
4e74339a 856static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a 857{
72ec7029 858 css_scan_tasks(&cs->css, NULL, cpuset_change_cpumask, cs, heap);
0b2f630a
MX
859}
860
5c5cc623
LZ
861/*
862 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
863 * @root_cs: the root cpuset of the hierarchy
864 * @update_root: update root cpuset or not?
72ec7029 865 * @heap: the heap used by css_scan_tasks()
5c5cc623
LZ
866 *
867 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
868 * which take on cpumask of @root_cs.
869 *
870 * Called with cpuset_mutex held
871 */
872static void update_tasks_cpumask_hier(struct cpuset *root_cs,
873 bool update_root, struct ptr_heap *heap)
874{
875 struct cpuset *cp;
492eb21b 876 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
877
878 if (update_root)
879 update_tasks_cpumask(root_cs, heap);
880
881 rcu_read_lock();
492eb21b 882 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
5c5cc623
LZ
883 /* skip the whole subtree if @cp have some CPU */
884 if (!cpumask_empty(cp->cpus_allowed)) {
492eb21b 885 pos_css = css_rightmost_descendant(pos_css);
5c5cc623
LZ
886 continue;
887 }
888 if (!css_tryget(&cp->css))
889 continue;
890 rcu_read_unlock();
891
892 update_tasks_cpumask(cp, heap);
893
894 rcu_read_lock();
895 css_put(&cp->css);
896 }
897 rcu_read_unlock();
898}
899
58f4790b
CW
900/**
901 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
902 * @cs: the cpuset to consider
903 * @buf: buffer of cpu numbers written to this cpuset
904 */
645fcc9d
LZ
905static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
906 const char *buf)
1da177e4 907{
4e74339a 908 struct ptr_heap heap;
58f4790b
CW
909 int retval;
910 int is_load_balanced;
1da177e4 911
5f054e31 912 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
913 if (cs == &top_cpuset)
914 return -EACCES;
915
6f7f02e7 916 /*
c8d9c90c 917 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
918 * Since cpulist_parse() fails on an empty mask, we special case
919 * that parsing. The validate_change() call ensures that cpusets
920 * with tasks have cpus.
6f7f02e7 921 */
020958b6 922 if (!*buf) {
300ed6cb 923 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 924 } else {
300ed6cb 925 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
926 if (retval < 0)
927 return retval;
37340746 928
6ad4c188 929 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 930 return -EINVAL;
6f7f02e7 931 }
029190c5 932
8707d8b8 933 /* Nothing to do if the cpus didn't change */
300ed6cb 934 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 935 return 0;
58f4790b 936
a73456f3
LZ
937 retval = validate_change(cs, trialcs);
938 if (retval < 0)
939 return retval;
940
4e74339a
LZ
941 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
942 if (retval)
943 return retval;
944
645fcc9d 945 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 946
3d3f26a7 947 mutex_lock(&callback_mutex);
300ed6cb 948 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 949 mutex_unlock(&callback_mutex);
029190c5 950
5c5cc623 951 update_tasks_cpumask_hier(cs, true, &heap);
4e74339a
LZ
952
953 heap_free(&heap);
58f4790b 954
8707d8b8 955 if (is_load_balanced)
699140ba 956 rebuild_sched_domains_locked();
85d7b949 957 return 0;
1da177e4
LT
958}
959
e4e364e8
PJ
960/*
961 * cpuset_migrate_mm
962 *
963 * Migrate memory region from one set of nodes to another.
964 *
965 * Temporarilly set tasks mems_allowed to target nodes of migration,
966 * so that the migration code can allocate pages on these nodes.
967 *
5d21cc2d 968 * Call holding cpuset_mutex, so current's cpuset won't change
c8d9c90c 969 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
970 * calls. Therefore we don't need to take task_lock around the
971 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 972 * our task's cpuset.
e4e364e8 973 *
e4e364e8
PJ
974 * While the mm_struct we are migrating is typically from some
975 * other task, the task_struct mems_allowed that we are hacking
976 * is for our current task, which must allocate new pages for that
977 * migrating memory region.
e4e364e8
PJ
978 */
979
980static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
981 const nodemask_t *to)
982{
983 struct task_struct *tsk = current;
070b57fc 984 struct cpuset *mems_cs;
e4e364e8 985
e4e364e8 986 tsk->mems_allowed = *to;
e4e364e8
PJ
987
988 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
989
070b57fc
LZ
990 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
991 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
e4e364e8
PJ
992}
993
3b6766fe 994/*
58568d2a
MX
995 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
996 * @tsk: the task to change
997 * @newmems: new nodes that the task will be set
998 *
999 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1000 * we structure updates as setting all new allowed nodes, then clearing newly
1001 * disallowed ones.
58568d2a
MX
1002 */
1003static void cpuset_change_task_nodemask(struct task_struct *tsk,
1004 nodemask_t *newmems)
1005{
b246272e 1006 bool need_loop;
89e8a244 1007
c0ff7453
MX
1008 /*
1009 * Allow tasks that have access to memory reserves because they have
1010 * been OOM killed to get memory anywhere.
1011 */
1012 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1013 return;
1014 if (current->flags & PF_EXITING) /* Let dying task have memory */
1015 return;
1016
1017 task_lock(tsk);
b246272e
DR
1018 /*
1019 * Determine if a loop is necessary if another thread is doing
1020 * get_mems_allowed(). If at least one node remains unchanged and
1021 * tsk does not have a mempolicy, then an empty nodemask will not be
1022 * possible when mems_allowed is larger than a word.
1023 */
1024 need_loop = task_has_mempolicy(tsk) ||
1025 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1026
cc9a6c87
MG
1027 if (need_loop)
1028 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 1029
cc9a6c87
MG
1030 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1031 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1032
1033 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1034 tsk->mems_allowed = *newmems;
cc9a6c87
MG
1035
1036 if (need_loop)
1037 write_seqcount_end(&tsk->mems_allowed_seq);
1038
c0ff7453 1039 task_unlock(tsk);
58568d2a
MX
1040}
1041
e535837b
TH
1042struct cpuset_change_nodemask_arg {
1043 struct cpuset *cs;
1044 nodemask_t *newmems;
1045};
1046
58568d2a
MX
1047/*
1048 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1049 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
5d21cc2d 1050 * memory_migrate flag is set. Called with cpuset_mutex held.
3b6766fe 1051 */
e535837b 1052static void cpuset_change_nodemask(struct task_struct *p, void *data)
3b6766fe 1053{
e535837b
TH
1054 struct cpuset_change_nodemask_arg *arg = data;
1055 struct cpuset *cs = arg->cs;
3b6766fe 1056 struct mm_struct *mm;
3b6766fe 1057 int migrate;
58568d2a 1058
e535837b 1059 cpuset_change_task_nodemask(p, arg->newmems);
53feb297 1060
3b6766fe
LZ
1061 mm = get_task_mm(p);
1062 if (!mm)
1063 return;
1064
3b6766fe
LZ
1065 migrate = is_memory_migrate(cs);
1066
1067 mpol_rebind_mm(mm, &cs->mems_allowed);
1068 if (migrate)
e535837b 1069 cpuset_migrate_mm(mm, &cs->old_mems_allowed, arg->newmems);
3b6766fe
LZ
1070 mmput(mm);
1071}
1072
8793d854
PM
1073static void *cpuset_being_rebound;
1074
0b2f630a
MX
1075/**
1076 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1077 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
72ec7029 1078 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
0b2f630a 1079 *
72ec7029
TH
1080 * Called with cpuset_mutex held. No return value. It's guaranteed that
1081 * css_scan_tasks() always returns 0 if @heap != NULL.
0b2f630a 1082 */
33ad801d 1083static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
1da177e4 1084{
33ad801d 1085 static nodemask_t newmems; /* protected by cpuset_mutex */
070b57fc 1086 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
e535837b
TH
1087 struct cpuset_change_nodemask_arg arg = { .cs = cs,
1088 .newmems = &newmems };
59dac16f 1089
846a16bf 1090 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1091
070b57fc 1092 guarantee_online_mems(mems_cs, &newmems);
33ad801d 1093
4225399a 1094 /*
3b6766fe
LZ
1095 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1096 * take while holding tasklist_lock. Forks can happen - the
1097 * mpol_dup() cpuset_being_rebound check will catch such forks,
1098 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1099 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1100 * will be contending for the global variable cpuset_being_rebound.
4225399a 1101 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1102 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1103 */
72ec7029 1104 css_scan_tasks(&cs->css, NULL, cpuset_change_nodemask, &arg, heap);
4225399a 1105
33ad801d
LZ
1106 /*
1107 * All the tasks' nodemasks have been updated, update
1108 * cs->old_mems_allowed.
1109 */
1110 cs->old_mems_allowed = newmems;
1111
2df167a3 1112 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1113 cpuset_being_rebound = NULL;
1da177e4
LT
1114}
1115
5c5cc623
LZ
1116/*
1117 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1118 * @cs: the root cpuset of the hierarchy
1119 * @update_root: update the root cpuset or not?
72ec7029 1120 * @heap: the heap used by css_scan_tasks()
5c5cc623
LZ
1121 *
1122 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1123 * which take on nodemask of @root_cs.
1124 *
1125 * Called with cpuset_mutex held
1126 */
1127static void update_tasks_nodemask_hier(struct cpuset *root_cs,
1128 bool update_root, struct ptr_heap *heap)
1129{
1130 struct cpuset *cp;
492eb21b 1131 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1132
1133 if (update_root)
1134 update_tasks_nodemask(root_cs, heap);
1135
1136 rcu_read_lock();
492eb21b 1137 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
5c5cc623
LZ
1138 /* skip the whole subtree if @cp have some CPU */
1139 if (!nodes_empty(cp->mems_allowed)) {
492eb21b 1140 pos_css = css_rightmost_descendant(pos_css);
5c5cc623
LZ
1141 continue;
1142 }
1143 if (!css_tryget(&cp->css))
1144 continue;
1145 rcu_read_unlock();
1146
1147 update_tasks_nodemask(cp, heap);
1148
1149 rcu_read_lock();
1150 css_put(&cp->css);
1151 }
1152 rcu_read_unlock();
1153}
1154
0b2f630a
MX
1155/*
1156 * Handle user request to change the 'mems' memory placement
1157 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1158 * cpusets mems_allowed, and for each task in the cpuset,
1159 * update mems_allowed and rebind task's mempolicy and any vma
1160 * mempolicies and if the cpuset is marked 'memory_migrate',
1161 * migrate the tasks pages to the new memory.
0b2f630a 1162 *
5d21cc2d 1163 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1164 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1165 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1166 * their mempolicies to the cpusets new mems_allowed.
1167 */
645fcc9d
LZ
1168static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1169 const char *buf)
0b2f630a 1170{
0b2f630a 1171 int retval;
010cfac4 1172 struct ptr_heap heap;
0b2f630a
MX
1173
1174 /*
38d7bee9 1175 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1176 * it's read-only
1177 */
53feb297
MX
1178 if (cs == &top_cpuset) {
1179 retval = -EACCES;
1180 goto done;
1181 }
0b2f630a 1182
0b2f630a
MX
1183 /*
1184 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1185 * Since nodelist_parse() fails on an empty mask, we special case
1186 * that parsing. The validate_change() call ensures that cpusets
1187 * with tasks have memory.
1188 */
1189 if (!*buf) {
645fcc9d 1190 nodes_clear(trialcs->mems_allowed);
0b2f630a 1191 } else {
645fcc9d 1192 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1193 if (retval < 0)
1194 goto done;
1195
645fcc9d 1196 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1197 node_states[N_MEMORY])) {
53feb297
MX
1198 retval = -EINVAL;
1199 goto done;
1200 }
0b2f630a 1201 }
33ad801d
LZ
1202
1203 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1204 retval = 0; /* Too easy - nothing to do */
1205 goto done;
1206 }
645fcc9d 1207 retval = validate_change(cs, trialcs);
0b2f630a
MX
1208 if (retval < 0)
1209 goto done;
1210
010cfac4
LZ
1211 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1212 if (retval < 0)
1213 goto done;
1214
0b2f630a 1215 mutex_lock(&callback_mutex);
645fcc9d 1216 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1217 mutex_unlock(&callback_mutex);
1218
5c5cc623 1219 update_tasks_nodemask_hier(cs, true, &heap);
010cfac4
LZ
1220
1221 heap_free(&heap);
0b2f630a
MX
1222done:
1223 return retval;
1224}
1225
8793d854
PM
1226int current_cpuset_is_being_rebound(void)
1227{
1228 return task_cs(current) == cpuset_being_rebound;
1229}
1230
5be7a479 1231static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1232{
db7f47cf 1233#ifdef CONFIG_SMP
60495e77 1234 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1235 return -EINVAL;
db7f47cf 1236#endif
1d3504fc
HS
1237
1238 if (val != cs->relax_domain_level) {
1239 cs->relax_domain_level = val;
300ed6cb
LZ
1240 if (!cpumask_empty(cs->cpus_allowed) &&
1241 is_sched_load_balance(cs))
699140ba 1242 rebuild_sched_domains_locked();
1d3504fc
HS
1243 }
1244
1245 return 0;
1246}
1247
72ec7029 1248/**
950592f7
MX
1249 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1250 * @tsk: task to be updated
e535837b 1251 * @data: cpuset to @tsk belongs to
950592f7 1252 *
72ec7029 1253 * Called by css_scan_tasks() for each task in a cgroup.
950592f7
MX
1254 *
1255 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 1256 * holding cpuset_mutex at this point.
950592f7 1257 */
e535837b 1258static void cpuset_change_flag(struct task_struct *tsk, void *data)
950592f7 1259{
e535837b
TH
1260 struct cpuset *cs = data;
1261
1262 cpuset_update_task_spread_flag(cs, tsk);
950592f7
MX
1263}
1264
72ec7029 1265/**
950592f7
MX
1266 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1267 * @cs: the cpuset in which each task's spread flags needs to be changed
72ec7029 1268 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
950592f7 1269 *
5d21cc2d 1270 * Called with cpuset_mutex held
950592f7 1271 *
72ec7029 1272 * The css_scan_tasks() function will scan all the tasks in a cgroup,
950592f7
MX
1273 * calling callback functions for each.
1274 *
72ec7029 1275 * No return value. It's guaranteed that css_scan_tasks() always returns 0
950592f7
MX
1276 * if @heap != NULL.
1277 */
1278static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1279{
72ec7029 1280 css_scan_tasks(&cs->css, NULL, cpuset_change_flag, cs, heap);
950592f7
MX
1281}
1282
1da177e4
LT
1283/*
1284 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1285 * bit: the bit to update (see cpuset_flagbits_t)
1286 * cs: the cpuset to update
1287 * turning_on: whether the flag is being set or cleared
053199ed 1288 *
5d21cc2d 1289 * Call with cpuset_mutex held.
1da177e4
LT
1290 */
1291
700fe1ab
PM
1292static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1293 int turning_on)
1da177e4 1294{
645fcc9d 1295 struct cpuset *trialcs;
40b6a762 1296 int balance_flag_changed;
950592f7
MX
1297 int spread_flag_changed;
1298 struct ptr_heap heap;
1299 int err;
1da177e4 1300
645fcc9d
LZ
1301 trialcs = alloc_trial_cpuset(cs);
1302 if (!trialcs)
1303 return -ENOMEM;
1304
1da177e4 1305 if (turning_on)
645fcc9d 1306 set_bit(bit, &trialcs->flags);
1da177e4 1307 else
645fcc9d 1308 clear_bit(bit, &trialcs->flags);
1da177e4 1309
645fcc9d 1310 err = validate_change(cs, trialcs);
85d7b949 1311 if (err < 0)
645fcc9d 1312 goto out;
029190c5 1313
950592f7
MX
1314 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1315 if (err < 0)
1316 goto out;
1317
029190c5 1318 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1319 is_sched_load_balance(trialcs));
029190c5 1320
950592f7
MX
1321 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1322 || (is_spread_page(cs) != is_spread_page(trialcs)));
1323
3d3f26a7 1324 mutex_lock(&callback_mutex);
645fcc9d 1325 cs->flags = trialcs->flags;
3d3f26a7 1326 mutex_unlock(&callback_mutex);
85d7b949 1327
300ed6cb 1328 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1329 rebuild_sched_domains_locked();
029190c5 1330
950592f7
MX
1331 if (spread_flag_changed)
1332 update_tasks_flags(cs, &heap);
1333 heap_free(&heap);
645fcc9d
LZ
1334out:
1335 free_trial_cpuset(trialcs);
1336 return err;
1da177e4
LT
1337}
1338
3e0d98b9 1339/*
80f7228b 1340 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1341 *
1342 * These routines manage a digitally filtered, constant time based,
1343 * event frequency meter. There are four routines:
1344 * fmeter_init() - initialize a frequency meter.
1345 * fmeter_markevent() - called each time the event happens.
1346 * fmeter_getrate() - returns the recent rate of such events.
1347 * fmeter_update() - internal routine used to update fmeter.
1348 *
1349 * A common data structure is passed to each of these routines,
1350 * which is used to keep track of the state required to manage the
1351 * frequency meter and its digital filter.
1352 *
1353 * The filter works on the number of events marked per unit time.
1354 * The filter is single-pole low-pass recursive (IIR). The time unit
1355 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1356 * simulate 3 decimal digits of precision (multiplied by 1000).
1357 *
1358 * With an FM_COEF of 933, and a time base of 1 second, the filter
1359 * has a half-life of 10 seconds, meaning that if the events quit
1360 * happening, then the rate returned from the fmeter_getrate()
1361 * will be cut in half each 10 seconds, until it converges to zero.
1362 *
1363 * It is not worth doing a real infinitely recursive filter. If more
1364 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1365 * just compute FM_MAXTICKS ticks worth, by which point the level
1366 * will be stable.
1367 *
1368 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1369 * arithmetic overflow in the fmeter_update() routine.
1370 *
1371 * Given the simple 32 bit integer arithmetic used, this meter works
1372 * best for reporting rates between one per millisecond (msec) and
1373 * one per 32 (approx) seconds. At constant rates faster than one
1374 * per msec it maxes out at values just under 1,000,000. At constant
1375 * rates between one per msec, and one per second it will stabilize
1376 * to a value N*1000, where N is the rate of events per second.
1377 * At constant rates between one per second and one per 32 seconds,
1378 * it will be choppy, moving up on the seconds that have an event,
1379 * and then decaying until the next event. At rates slower than
1380 * about one in 32 seconds, it decays all the way back to zero between
1381 * each event.
1382 */
1383
1384#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1385#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1386#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1387#define FM_SCALE 1000 /* faux fixed point scale */
1388
1389/* Initialize a frequency meter */
1390static void fmeter_init(struct fmeter *fmp)
1391{
1392 fmp->cnt = 0;
1393 fmp->val = 0;
1394 fmp->time = 0;
1395 spin_lock_init(&fmp->lock);
1396}
1397
1398/* Internal meter update - process cnt events and update value */
1399static void fmeter_update(struct fmeter *fmp)
1400{
1401 time_t now = get_seconds();
1402 time_t ticks = now - fmp->time;
1403
1404 if (ticks == 0)
1405 return;
1406
1407 ticks = min(FM_MAXTICKS, ticks);
1408 while (ticks-- > 0)
1409 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1410 fmp->time = now;
1411
1412 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1413 fmp->cnt = 0;
1414}
1415
1416/* Process any previous ticks, then bump cnt by one (times scale). */
1417static void fmeter_markevent(struct fmeter *fmp)
1418{
1419 spin_lock(&fmp->lock);
1420 fmeter_update(fmp);
1421 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1422 spin_unlock(&fmp->lock);
1423}
1424
1425/* Process any previous ticks, then return current value. */
1426static int fmeter_getrate(struct fmeter *fmp)
1427{
1428 int val;
1429
1430 spin_lock(&fmp->lock);
1431 fmeter_update(fmp);
1432 val = fmp->val;
1433 spin_unlock(&fmp->lock);
1434 return val;
1435}
1436
5d21cc2d 1437/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
eb95419b
TH
1438static int cpuset_can_attach(struct cgroup_subsys_state *css,
1439 struct cgroup_taskset *tset)
f780bdb7 1440{
eb95419b 1441 struct cpuset *cs = css_cs(css);
bb9d97b6
TH
1442 struct task_struct *task;
1443 int ret;
1da177e4 1444
5d21cc2d
TH
1445 mutex_lock(&cpuset_mutex);
1446
88fa523b
LZ
1447 /*
1448 * We allow to move tasks into an empty cpuset if sane_behavior
1449 * flag is set.
1450 */
5d21cc2d 1451 ret = -ENOSPC;
eb95419b 1452 if (!cgroup_sane_behavior(css->cgroup) &&
88fa523b 1453 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1454 goto out_unlock;
9985b0ba 1455
d99c8727 1456 cgroup_taskset_for_each(task, css, tset) {
bb9d97b6 1457 /*
14a40ffc
TH
1458 * Kthreads which disallow setaffinity shouldn't be moved
1459 * to a new cpuset; we don't want to change their cpu
1460 * affinity and isolating such threads by their set of
1461 * allowed nodes is unnecessary. Thus, cpusets are not
1462 * applicable for such threads. This prevents checking for
1463 * success of set_cpus_allowed_ptr() on all attached tasks
1464 * before cpus_allowed may be changed.
bb9d97b6 1465 */
5d21cc2d 1466 ret = -EINVAL;
14a40ffc 1467 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1468 goto out_unlock;
1469 ret = security_task_setscheduler(task);
1470 if (ret)
1471 goto out_unlock;
bb9d97b6 1472 }
f780bdb7 1473
452477fa
TH
1474 /*
1475 * Mark attach is in progress. This makes validate_change() fail
1476 * changes which zero cpus/mems_allowed.
1477 */
1478 cs->attach_in_progress++;
5d21cc2d
TH
1479 ret = 0;
1480out_unlock:
1481 mutex_unlock(&cpuset_mutex);
1482 return ret;
8793d854 1483}
f780bdb7 1484
eb95419b 1485static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
452477fa
TH
1486 struct cgroup_taskset *tset)
1487{
5d21cc2d 1488 mutex_lock(&cpuset_mutex);
eb95419b 1489 css_cs(css)->attach_in_progress--;
5d21cc2d 1490 mutex_unlock(&cpuset_mutex);
8793d854 1491}
1da177e4 1492
4e4c9a14 1493/*
5d21cc2d 1494 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1495 * but we can't allocate it dynamically there. Define it global and
1496 * allocate from cpuset_init().
1497 */
1498static cpumask_var_t cpus_attach;
1499
eb95419b
TH
1500static void cpuset_attach(struct cgroup_subsys_state *css,
1501 struct cgroup_taskset *tset)
8793d854 1502{
67bd2c59 1503 /* static buf protected by cpuset_mutex */
4e4c9a14 1504 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1505 struct mm_struct *mm;
bb9d97b6
TH
1506 struct task_struct *task;
1507 struct task_struct *leader = cgroup_taskset_first(tset);
d99c8727
TH
1508 struct cgroup_subsys_state *oldcss = cgroup_taskset_cur_css(tset,
1509 cpuset_subsys_id);
eb95419b 1510 struct cpuset *cs = css_cs(css);
d99c8727 1511 struct cpuset *oldcs = css_cs(oldcss);
070b57fc
LZ
1512 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1513 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
22fb52dd 1514
5d21cc2d
TH
1515 mutex_lock(&cpuset_mutex);
1516
4e4c9a14
TH
1517 /* prepare for attach */
1518 if (cs == &top_cpuset)
1519 cpumask_copy(cpus_attach, cpu_possible_mask);
1520 else
070b57fc 1521 guarantee_online_cpus(cpus_cs, cpus_attach);
4e4c9a14 1522
070b57fc 1523 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
4e4c9a14 1524
d99c8727 1525 cgroup_taskset_for_each(task, css, tset) {
bb9d97b6
TH
1526 /*
1527 * can_attach beforehand should guarantee that this doesn't
1528 * fail. TODO: have a better way to handle failure here
1529 */
1530 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1531
1532 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1533 cpuset_update_task_spread_flag(cs, task);
1534 }
22fb52dd 1535
f780bdb7
BB
1536 /*
1537 * Change mm, possibly for multiple threads in a threadgroup. This is
1538 * expensive and may sleep.
1539 */
f780bdb7 1540 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1541 mm = get_task_mm(leader);
4225399a 1542 if (mm) {
070b57fc
LZ
1543 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1544
f780bdb7 1545 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
f047cecf
LZ
1546
1547 /*
1548 * old_mems_allowed is the same with mems_allowed here, except
1549 * if this task is being moved automatically due to hotplug.
1550 * In that case @mems_allowed has been updated and is empty,
1551 * so @old_mems_allowed is the right nodesets that we migrate
1552 * mm from.
1553 */
1554 if (is_memory_migrate(cs)) {
1555 cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
f780bdb7 1556 &cpuset_attach_nodemask_to);
f047cecf 1557 }
4225399a
PJ
1558 mmput(mm);
1559 }
452477fa 1560
33ad801d 1561 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1562
452477fa 1563 cs->attach_in_progress--;
e44193d3
LZ
1564 if (!cs->attach_in_progress)
1565 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1566
1567 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1568}
1569
1570/* The various types of files and directories in a cpuset file system */
1571
1572typedef enum {
45b07ef3 1573 FILE_MEMORY_MIGRATE,
1da177e4
LT
1574 FILE_CPULIST,
1575 FILE_MEMLIST,
1576 FILE_CPU_EXCLUSIVE,
1577 FILE_MEM_EXCLUSIVE,
78608366 1578 FILE_MEM_HARDWALL,
029190c5 1579 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1580 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1581 FILE_MEMORY_PRESSURE_ENABLED,
1582 FILE_MEMORY_PRESSURE,
825a46af
PJ
1583 FILE_SPREAD_PAGE,
1584 FILE_SPREAD_SLAB,
1da177e4
LT
1585} cpuset_filetype_t;
1586
182446d0
TH
1587static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1588 u64 val)
700fe1ab 1589{
182446d0 1590 struct cpuset *cs = css_cs(css);
700fe1ab 1591 cpuset_filetype_t type = cft->private;
5d21cc2d 1592 int retval = -ENODEV;
700fe1ab 1593
5d21cc2d
TH
1594 mutex_lock(&cpuset_mutex);
1595 if (!is_cpuset_online(cs))
1596 goto out_unlock;
700fe1ab
PM
1597
1598 switch (type) {
1da177e4 1599 case FILE_CPU_EXCLUSIVE:
700fe1ab 1600 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1601 break;
1602 case FILE_MEM_EXCLUSIVE:
700fe1ab 1603 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1604 break;
78608366
PM
1605 case FILE_MEM_HARDWALL:
1606 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1607 break;
029190c5 1608 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1609 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1610 break;
45b07ef3 1611 case FILE_MEMORY_MIGRATE:
700fe1ab 1612 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1613 break;
3e0d98b9 1614 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1615 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1616 break;
1617 case FILE_MEMORY_PRESSURE:
1618 retval = -EACCES;
1619 break;
825a46af 1620 case FILE_SPREAD_PAGE:
700fe1ab 1621 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1622 break;
1623 case FILE_SPREAD_SLAB:
700fe1ab 1624 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1625 break;
1da177e4
LT
1626 default:
1627 retval = -EINVAL;
700fe1ab 1628 break;
1da177e4 1629 }
5d21cc2d
TH
1630out_unlock:
1631 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1632 return retval;
1633}
1634
182446d0
TH
1635static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1636 s64 val)
5be7a479 1637{
182446d0 1638 struct cpuset *cs = css_cs(css);
5be7a479 1639 cpuset_filetype_t type = cft->private;
5d21cc2d 1640 int retval = -ENODEV;
5be7a479 1641
5d21cc2d
TH
1642 mutex_lock(&cpuset_mutex);
1643 if (!is_cpuset_online(cs))
1644 goto out_unlock;
e3712395 1645
5be7a479
PM
1646 switch (type) {
1647 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1648 retval = update_relax_domain_level(cs, val);
1649 break;
1650 default:
1651 retval = -EINVAL;
1652 break;
1653 }
5d21cc2d
TH
1654out_unlock:
1655 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1656 return retval;
1657}
1658
e3712395
PM
1659/*
1660 * Common handling for a write to a "cpus" or "mems" file.
1661 */
182446d0
TH
1662static int cpuset_write_resmask(struct cgroup_subsys_state *css,
1663 struct cftype *cft, const char *buf)
e3712395 1664{
182446d0 1665 struct cpuset *cs = css_cs(css);
645fcc9d 1666 struct cpuset *trialcs;
5d21cc2d 1667 int retval = -ENODEV;
e3712395 1668
3a5a6d0c
TH
1669 /*
1670 * CPU or memory hotunplug may leave @cs w/o any execution
1671 * resources, in which case the hotplug code asynchronously updates
1672 * configuration and transfers all tasks to the nearest ancestor
1673 * which can execute.
1674 *
1675 * As writes to "cpus" or "mems" may restore @cs's execution
1676 * resources, wait for the previously scheduled operations before
1677 * proceeding, so that we don't end up keep removing tasks added
1678 * after execution capability is restored.
1679 */
1680 flush_work(&cpuset_hotplug_work);
1681
5d21cc2d
TH
1682 mutex_lock(&cpuset_mutex);
1683 if (!is_cpuset_online(cs))
1684 goto out_unlock;
e3712395 1685
645fcc9d 1686 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1687 if (!trialcs) {
1688 retval = -ENOMEM;
5d21cc2d 1689 goto out_unlock;
b75f38d6 1690 }
645fcc9d 1691
e3712395
PM
1692 switch (cft->private) {
1693 case FILE_CPULIST:
645fcc9d 1694 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1695 break;
1696 case FILE_MEMLIST:
645fcc9d 1697 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1698 break;
1699 default:
1700 retval = -EINVAL;
1701 break;
1702 }
645fcc9d
LZ
1703
1704 free_trial_cpuset(trialcs);
5d21cc2d
TH
1705out_unlock:
1706 mutex_unlock(&cpuset_mutex);
e3712395
PM
1707 return retval;
1708}
1709
1da177e4
LT
1710/*
1711 * These ascii lists should be read in a single call, by using a user
1712 * buffer large enough to hold the entire map. If read in smaller
1713 * chunks, there is no guarantee of atomicity. Since the display format
1714 * used, list of ranges of sequential numbers, is variable length,
1715 * and since these maps can change value dynamically, one could read
1716 * gibberish by doing partial reads while a list was changing.
1717 * A single large read to a buffer that crosses a page boundary is
1718 * ok, because the result being copied to user land is not recomputed
1719 * across a page fault.
1720 */
1721
9303e0c4 1722static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1723{
9303e0c4 1724 size_t count;
1da177e4 1725
3d3f26a7 1726 mutex_lock(&callback_mutex);
9303e0c4 1727 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1728 mutex_unlock(&callback_mutex);
1da177e4 1729
9303e0c4 1730 return count;
1da177e4
LT
1731}
1732
9303e0c4 1733static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1734{
9303e0c4 1735 size_t count;
1da177e4 1736
3d3f26a7 1737 mutex_lock(&callback_mutex);
9303e0c4 1738 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1739 mutex_unlock(&callback_mutex);
1da177e4 1740
9303e0c4 1741 return count;
1da177e4
LT
1742}
1743
182446d0
TH
1744static ssize_t cpuset_common_file_read(struct cgroup_subsys_state *css,
1745 struct cftype *cft, struct file *file,
1746 char __user *buf, size_t nbytes,
1747 loff_t *ppos)
1da177e4 1748{
182446d0 1749 struct cpuset *cs = css_cs(css);
1da177e4
LT
1750 cpuset_filetype_t type = cft->private;
1751 char *page;
1752 ssize_t retval = 0;
1753 char *s;
1da177e4 1754
e12ba74d 1755 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1756 return -ENOMEM;
1757
1758 s = page;
1759
1760 switch (type) {
1761 case FILE_CPULIST:
1762 s += cpuset_sprintf_cpulist(s, cs);
1763 break;
1764 case FILE_MEMLIST:
1765 s += cpuset_sprintf_memlist(s, cs);
1766 break;
1da177e4
LT
1767 default:
1768 retval = -EINVAL;
1769 goto out;
1770 }
1771 *s++ = '\n';
1da177e4 1772
eacaa1f5 1773 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1774out:
1775 free_page((unsigned long)page);
1776 return retval;
1777}
1778
182446d0 1779static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 1780{
182446d0 1781 struct cpuset *cs = css_cs(css);
700fe1ab
PM
1782 cpuset_filetype_t type = cft->private;
1783 switch (type) {
1784 case FILE_CPU_EXCLUSIVE:
1785 return is_cpu_exclusive(cs);
1786 case FILE_MEM_EXCLUSIVE:
1787 return is_mem_exclusive(cs);
78608366
PM
1788 case FILE_MEM_HARDWALL:
1789 return is_mem_hardwall(cs);
700fe1ab
PM
1790 case FILE_SCHED_LOAD_BALANCE:
1791 return is_sched_load_balance(cs);
1792 case FILE_MEMORY_MIGRATE:
1793 return is_memory_migrate(cs);
1794 case FILE_MEMORY_PRESSURE_ENABLED:
1795 return cpuset_memory_pressure_enabled;
1796 case FILE_MEMORY_PRESSURE:
1797 return fmeter_getrate(&cs->fmeter);
1798 case FILE_SPREAD_PAGE:
1799 return is_spread_page(cs);
1800 case FILE_SPREAD_SLAB:
1801 return is_spread_slab(cs);
1802 default:
1803 BUG();
1804 }
cf417141
MK
1805
1806 /* Unreachable but makes gcc happy */
1807 return 0;
700fe1ab 1808}
1da177e4 1809
182446d0 1810static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 1811{
182446d0 1812 struct cpuset *cs = css_cs(css);
5be7a479
PM
1813 cpuset_filetype_t type = cft->private;
1814 switch (type) {
1815 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1816 return cs->relax_domain_level;
1817 default:
1818 BUG();
1819 }
cf417141
MK
1820
1821 /* Unrechable but makes gcc happy */
1822 return 0;
5be7a479
PM
1823}
1824
1da177e4
LT
1825
1826/*
1827 * for the common functions, 'private' gives the type of file
1828 */
1829
addf2c73
PM
1830static struct cftype files[] = {
1831 {
1832 .name = "cpus",
1833 .read = cpuset_common_file_read,
e3712395
PM
1834 .write_string = cpuset_write_resmask,
1835 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1836 .private = FILE_CPULIST,
1837 },
1838
1839 {
1840 .name = "mems",
1841 .read = cpuset_common_file_read,
e3712395
PM
1842 .write_string = cpuset_write_resmask,
1843 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1844 .private = FILE_MEMLIST,
1845 },
1846
1847 {
1848 .name = "cpu_exclusive",
1849 .read_u64 = cpuset_read_u64,
1850 .write_u64 = cpuset_write_u64,
1851 .private = FILE_CPU_EXCLUSIVE,
1852 },
1853
1854 {
1855 .name = "mem_exclusive",
1856 .read_u64 = cpuset_read_u64,
1857 .write_u64 = cpuset_write_u64,
1858 .private = FILE_MEM_EXCLUSIVE,
1859 },
1860
78608366
PM
1861 {
1862 .name = "mem_hardwall",
1863 .read_u64 = cpuset_read_u64,
1864 .write_u64 = cpuset_write_u64,
1865 .private = FILE_MEM_HARDWALL,
1866 },
1867
addf2c73
PM
1868 {
1869 .name = "sched_load_balance",
1870 .read_u64 = cpuset_read_u64,
1871 .write_u64 = cpuset_write_u64,
1872 .private = FILE_SCHED_LOAD_BALANCE,
1873 },
1874
1875 {
1876 .name = "sched_relax_domain_level",
5be7a479
PM
1877 .read_s64 = cpuset_read_s64,
1878 .write_s64 = cpuset_write_s64,
addf2c73
PM
1879 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1880 },
1881
1882 {
1883 .name = "memory_migrate",
1884 .read_u64 = cpuset_read_u64,
1885 .write_u64 = cpuset_write_u64,
1886 .private = FILE_MEMORY_MIGRATE,
1887 },
1888
1889 {
1890 .name = "memory_pressure",
1891 .read_u64 = cpuset_read_u64,
1892 .write_u64 = cpuset_write_u64,
1893 .private = FILE_MEMORY_PRESSURE,
099fca32 1894 .mode = S_IRUGO,
addf2c73
PM
1895 },
1896
1897 {
1898 .name = "memory_spread_page",
1899 .read_u64 = cpuset_read_u64,
1900 .write_u64 = cpuset_write_u64,
1901 .private = FILE_SPREAD_PAGE,
1902 },
1903
1904 {
1905 .name = "memory_spread_slab",
1906 .read_u64 = cpuset_read_u64,
1907 .write_u64 = cpuset_write_u64,
1908 .private = FILE_SPREAD_SLAB,
1909 },
3e0d98b9 1910
4baf6e33
TH
1911 {
1912 .name = "memory_pressure_enabled",
1913 .flags = CFTYPE_ONLY_ON_ROOT,
1914 .read_u64 = cpuset_read_u64,
1915 .write_u64 = cpuset_write_u64,
1916 .private = FILE_MEMORY_PRESSURE_ENABLED,
1917 },
1da177e4 1918
4baf6e33
TH
1919 { } /* terminate */
1920};
1da177e4
LT
1921
1922/*
92fb9748 1923 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1924 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1925 */
1926
eb95419b
TH
1927static struct cgroup_subsys_state *
1928cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1929{
c8f699bb 1930 struct cpuset *cs;
1da177e4 1931
eb95419b 1932 if (!parent_css)
8793d854 1933 return &top_cpuset.css;
033fa1c5 1934
c8f699bb 1935 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1936 if (!cs)
8793d854 1937 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1938 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1939 kfree(cs);
1940 return ERR_PTR(-ENOMEM);
1941 }
1da177e4 1942
029190c5 1943 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1944 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1945 nodes_clear(cs->mems_allowed);
3e0d98b9 1946 fmeter_init(&cs->fmeter);
1d3504fc 1947 cs->relax_domain_level = -1;
1da177e4 1948
c8f699bb
TH
1949 return &cs->css;
1950}
1951
eb95419b 1952static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 1953{
eb95419b 1954 struct cpuset *cs = css_cs(css);
c431069f 1955 struct cpuset *parent = parent_cs(cs);
ae8086ce 1956 struct cpuset *tmp_cs;
492eb21b 1957 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
1958
1959 if (!parent)
1960 return 0;
1961
5d21cc2d
TH
1962 mutex_lock(&cpuset_mutex);
1963
efeb77b2 1964 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1965 if (is_spread_page(parent))
1966 set_bit(CS_SPREAD_PAGE, &cs->flags);
1967 if (is_spread_slab(parent))
1968 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1969
202f72d5 1970 number_of_cpusets++;
033fa1c5 1971
eb95419b 1972 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 1973 goto out_unlock;
033fa1c5
TH
1974
1975 /*
1976 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1977 * set. This flag handling is implemented in cgroup core for
1978 * histrical reasons - the flag may be specified during mount.
1979 *
1980 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1981 * refuse to clone the configuration - thereby refusing the task to
1982 * be entered, and as a result refusing the sys_unshare() or
1983 * clone() which initiated it. If this becomes a problem for some
1984 * users who wish to allow that scenario, then this could be
1985 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1986 * (and likewise for mems) to the new cgroup.
1987 */
ae8086ce 1988 rcu_read_lock();
492eb21b 1989 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
1990 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1991 rcu_read_unlock();
5d21cc2d 1992 goto out_unlock;
ae8086ce 1993 }
033fa1c5 1994 }
ae8086ce 1995 rcu_read_unlock();
033fa1c5
TH
1996
1997 mutex_lock(&callback_mutex);
1998 cs->mems_allowed = parent->mems_allowed;
1999 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2000 mutex_unlock(&callback_mutex);
5d21cc2d
TH
2001out_unlock:
2002 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
2003 return 0;
2004}
2005
0b9e6965
ZH
2006/*
2007 * If the cpuset being removed has its flag 'sched_load_balance'
2008 * enabled, then simulate turning sched_load_balance off, which
2009 * will call rebuild_sched_domains_locked().
2010 */
2011
eb95419b 2012static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 2013{
eb95419b 2014 struct cpuset *cs = css_cs(css);
c8f699bb 2015
5d21cc2d 2016 mutex_lock(&cpuset_mutex);
c8f699bb
TH
2017
2018 if (is_sched_load_balance(cs))
2019 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2020
2021 number_of_cpusets--;
efeb77b2 2022 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 2023
5d21cc2d 2024 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2025}
2026
eb95419b 2027static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 2028{
eb95419b 2029 struct cpuset *cs = css_cs(css);
1da177e4 2030
300ed6cb 2031 free_cpumask_var(cs->cpus_allowed);
8793d854 2032 kfree(cs);
1da177e4
LT
2033}
2034
8793d854
PM
2035struct cgroup_subsys cpuset_subsys = {
2036 .name = "cpuset",
92fb9748 2037 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
2038 .css_online = cpuset_css_online,
2039 .css_offline = cpuset_css_offline,
92fb9748 2040 .css_free = cpuset_css_free,
8793d854 2041 .can_attach = cpuset_can_attach,
452477fa 2042 .cancel_attach = cpuset_cancel_attach,
8793d854 2043 .attach = cpuset_attach,
8793d854 2044 .subsys_id = cpuset_subsys_id,
4baf6e33 2045 .base_cftypes = files,
8793d854
PM
2046 .early_init = 1,
2047};
2048
1da177e4
LT
2049/**
2050 * cpuset_init - initialize cpusets at system boot
2051 *
2052 * Description: Initialize top_cpuset and the cpuset internal file system,
2053 **/
2054
2055int __init cpuset_init(void)
2056{
8793d854 2057 int err = 0;
1da177e4 2058
58568d2a
MX
2059 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2060 BUG();
2061
300ed6cb 2062 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2063 nodes_setall(top_cpuset.mems_allowed);
1da177e4 2064
3e0d98b9 2065 fmeter_init(&top_cpuset.fmeter);
029190c5 2066 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2067 top_cpuset.relax_domain_level = -1;
1da177e4 2068
1da177e4
LT
2069 err = register_filesystem(&cpuset_fs_type);
2070 if (err < 0)
8793d854
PM
2071 return err;
2072
2341d1b6
LZ
2073 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2074 BUG();
2075
202f72d5 2076 number_of_cpusets = 1;
8793d854 2077 return 0;
1da177e4
LT
2078}
2079
b1aac8bb 2080/*
cf417141 2081 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2082 * or memory nodes, we need to walk over the cpuset hierarchy,
2083 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2084 * last CPU or node from a cpuset, then move the tasks in the empty
2085 * cpuset to its next-highest non-empty parent.
b1aac8bb 2086 */
956db3ca
CW
2087static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2088{
2089 struct cpuset *parent;
2090
956db3ca
CW
2091 /*
2092 * Find its next-highest non-empty parent, (top cpuset
2093 * has online cpus, so can't be empty).
2094 */
c431069f 2095 parent = parent_cs(cs);
300ed6cb 2096 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2097 nodes_empty(parent->mems_allowed))
c431069f 2098 parent = parent_cs(parent);
956db3ca 2099
8cc99345
TH
2100 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2101 rcu_read_lock();
2102 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
2103 cgroup_name(cs->css.cgroup));
2104 rcu_read_unlock();
2105 }
956db3ca
CW
2106}
2107
deb7aa30 2108/**
388afd85 2109 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2110 * @cs: cpuset in interest
956db3ca 2111 *
deb7aa30
TH
2112 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2113 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2114 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2115 */
388afd85 2116static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2117{
deb7aa30 2118 static cpumask_t off_cpus;
33ad801d 2119 static nodemask_t off_mems;
5d21cc2d 2120 bool is_empty;
5c5cc623 2121 bool sane = cgroup_sane_behavior(cs->css.cgroup);
80d1fa64 2122
e44193d3
LZ
2123retry:
2124 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2125
5d21cc2d 2126 mutex_lock(&cpuset_mutex);
7ddf96b0 2127
e44193d3
LZ
2128 /*
2129 * We have raced with task attaching. We wait until attaching
2130 * is finished, so we won't attach a task to an empty cpuset.
2131 */
2132 if (cs->attach_in_progress) {
2133 mutex_unlock(&cpuset_mutex);
2134 goto retry;
2135 }
2136
deb7aa30
TH
2137 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2138 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2139
5c5cc623
LZ
2140 mutex_lock(&callback_mutex);
2141 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2142 mutex_unlock(&callback_mutex);
2143
2144 /*
2145 * If sane_behavior flag is set, we need to update tasks' cpumask
f047cecf
LZ
2146 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
2147 * call update_tasks_cpumask() if the cpuset becomes empty, as
2148 * the tasks in it will be migrated to an ancestor.
5c5cc623
LZ
2149 */
2150 if ((sane && cpumask_empty(cs->cpus_allowed)) ||
f047cecf 2151 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
deb7aa30 2152 update_tasks_cpumask(cs, NULL);
80d1fa64 2153
5c5cc623
LZ
2154 mutex_lock(&callback_mutex);
2155 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2156 mutex_unlock(&callback_mutex);
2157
2158 /*
2159 * If sane_behavior flag is set, we need to update tasks' nodemask
f047cecf
LZ
2160 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
2161 * call update_tasks_nodemask() if the cpuset becomes empty, as
2162 * the tasks in it will be migratd to an ancestor.
5c5cc623
LZ
2163 */
2164 if ((sane && nodes_empty(cs->mems_allowed)) ||
f047cecf 2165 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
33ad801d 2166 update_tasks_nodemask(cs, NULL);
deb7aa30 2167
5d21cc2d
TH
2168 is_empty = cpumask_empty(cs->cpus_allowed) ||
2169 nodes_empty(cs->mems_allowed);
8d033948 2170
5d21cc2d
TH
2171 mutex_unlock(&cpuset_mutex);
2172
2173 /*
5c5cc623
LZ
2174 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
2175 *
2176 * Otherwise move tasks to the nearest ancestor with execution
2177 * resources. This is full cgroup operation which will
5d21cc2d
TH
2178 * also call back into cpuset. Should be done outside any lock.
2179 */
5c5cc623 2180 if (!sane && is_empty)
5d21cc2d 2181 remove_tasks_in_empty_cpuset(cs);
b1aac8bb
PJ
2182}
2183
deb7aa30 2184/**
3a5a6d0c 2185 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2186 *
deb7aa30
TH
2187 * This function is called after either CPU or memory configuration has
2188 * changed and updates cpuset accordingly. The top_cpuset is always
2189 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2190 * order to make cpusets transparent (of no affect) on systems that are
2191 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2192 *
deb7aa30 2193 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2194 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2195 * all descendants.
956db3ca 2196 *
deb7aa30
TH
2197 * Note that CPU offlining during suspend is ignored. We don't modify
2198 * cpusets across suspend/resume cycles at all.
956db3ca 2199 */
3a5a6d0c 2200static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2201{
5c5cc623
LZ
2202 static cpumask_t new_cpus;
2203 static nodemask_t new_mems;
deb7aa30 2204 bool cpus_updated, mems_updated;
b1aac8bb 2205
5d21cc2d 2206 mutex_lock(&cpuset_mutex);
956db3ca 2207
deb7aa30
TH
2208 /* fetch the available cpus/mems and find out which changed how */
2209 cpumask_copy(&new_cpus, cpu_active_mask);
2210 new_mems = node_states[N_MEMORY];
7ddf96b0 2211
deb7aa30 2212 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
deb7aa30 2213 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
7ddf96b0 2214
deb7aa30
TH
2215 /* synchronize cpus_allowed to cpu_active_mask */
2216 if (cpus_updated) {
2217 mutex_lock(&callback_mutex);
2218 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2219 mutex_unlock(&callback_mutex);
2220 /* we don't mess with cpumasks of tasks in top_cpuset */
2221 }
b4501295 2222
deb7aa30
TH
2223 /* synchronize mems_allowed to N_MEMORY */
2224 if (mems_updated) {
deb7aa30
TH
2225 mutex_lock(&callback_mutex);
2226 top_cpuset.mems_allowed = new_mems;
2227 mutex_unlock(&callback_mutex);
33ad801d 2228 update_tasks_nodemask(&top_cpuset, NULL);
deb7aa30 2229 }
b4501295 2230
388afd85
LZ
2231 mutex_unlock(&cpuset_mutex);
2232
5c5cc623
LZ
2233 /* if cpus or mems changed, we need to propagate to descendants */
2234 if (cpus_updated || mems_updated) {
deb7aa30 2235 struct cpuset *cs;
492eb21b 2236 struct cgroup_subsys_state *pos_css;
f9b4fb8d 2237
fc560a26 2238 rcu_read_lock();
492eb21b 2239 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
388afd85
LZ
2240 if (!css_tryget(&cs->css))
2241 continue;
2242 rcu_read_unlock();
7ddf96b0 2243
388afd85 2244 cpuset_hotplug_update_tasks(cs);
b4501295 2245
388afd85
LZ
2246 rcu_read_lock();
2247 css_put(&cs->css);
2248 }
2249 rcu_read_unlock();
2250 }
8d033948 2251
deb7aa30 2252 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2253 if (cpus_updated)
2254 rebuild_sched_domains();
b1aac8bb
PJ
2255}
2256
7ddf96b0 2257void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2258{
3a5a6d0c
TH
2259 /*
2260 * We're inside cpu hotplug critical region which usually nests
2261 * inside cgroup synchronization. Bounce actual hotplug processing
2262 * to a work item to avoid reverse locking order.
2263 *
2264 * We still need to do partition_sched_domains() synchronously;
2265 * otherwise, the scheduler will get confused and put tasks to the
2266 * dead CPU. Fall back to the default single domain.
2267 * cpuset_hotplug_workfn() will rebuild it as necessary.
2268 */
2269 partition_sched_domains(1, NULL, NULL);
2270 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2271}
4c4d50f7 2272
38837fc7 2273/*
38d7bee9
LJ
2274 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2275 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2276 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2277 */
f481891f
MX
2278static int cpuset_track_online_nodes(struct notifier_block *self,
2279 unsigned long action, void *arg)
38837fc7 2280{
3a5a6d0c 2281 schedule_work(&cpuset_hotplug_work);
f481891f 2282 return NOTIFY_OK;
38837fc7 2283}
d8f10cb3
AM
2284
2285static struct notifier_block cpuset_track_online_nodes_nb = {
2286 .notifier_call = cpuset_track_online_nodes,
2287 .priority = 10, /* ??! */
2288};
38837fc7 2289
1da177e4
LT
2290/**
2291 * cpuset_init_smp - initialize cpus_allowed
2292 *
2293 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2294 */
1da177e4
LT
2295void __init cpuset_init_smp(void)
2296{
6ad4c188 2297 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2298 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2299 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2300
d8f10cb3 2301 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2302}
2303
2304/**
1da177e4
LT
2305 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2306 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2307 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2308 *
300ed6cb 2309 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2310 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2311 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2312 * tasks cpuset.
2313 **/
2314
6af866af 2315void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2316{
070b57fc
LZ
2317 struct cpuset *cpus_cs;
2318
3d3f26a7 2319 mutex_lock(&callback_mutex);
909d75a3 2320 task_lock(tsk);
070b57fc
LZ
2321 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2322 guarantee_online_cpus(cpus_cs, pmask);
909d75a3 2323 task_unlock(tsk);
897f0b3c 2324 mutex_unlock(&callback_mutex);
1da177e4
LT
2325}
2326
2baab4e9 2327void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2328{
c9710d80 2329 struct cpuset *cpus_cs;
9084bb82
ON
2330
2331 rcu_read_lock();
070b57fc
LZ
2332 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2333 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
9084bb82
ON
2334 rcu_read_unlock();
2335
2336 /*
2337 * We own tsk->cpus_allowed, nobody can change it under us.
2338 *
2339 * But we used cs && cs->cpus_allowed lockless and thus can
2340 * race with cgroup_attach_task() or update_cpumask() and get
2341 * the wrong tsk->cpus_allowed. However, both cases imply the
2342 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2343 * which takes task_rq_lock().
2344 *
2345 * If we are called after it dropped the lock we must see all
2346 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2347 * set any mask even if it is not right from task_cs() pov,
2348 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2349 *
2350 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2351 * if required.
9084bb82 2352 */
9084bb82
ON
2353}
2354
1da177e4
LT
2355void cpuset_init_current_mems_allowed(void)
2356{
f9a86fcb 2357 nodes_setall(current->mems_allowed);
1da177e4
LT
2358}
2359
909d75a3
PJ
2360/**
2361 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2362 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2363 *
2364 * Description: Returns the nodemask_t mems_allowed of the cpuset
2365 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2366 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2367 * tasks cpuset.
2368 **/
2369
2370nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2371{
070b57fc 2372 struct cpuset *mems_cs;
909d75a3
PJ
2373 nodemask_t mask;
2374
3d3f26a7 2375 mutex_lock(&callback_mutex);
909d75a3 2376 task_lock(tsk);
070b57fc
LZ
2377 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2378 guarantee_online_mems(mems_cs, &mask);
909d75a3 2379 task_unlock(tsk);
3d3f26a7 2380 mutex_unlock(&callback_mutex);
909d75a3
PJ
2381
2382 return mask;
2383}
2384
d9fd8a6d 2385/**
19770b32
MG
2386 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2387 * @nodemask: the nodemask to be checked
d9fd8a6d 2388 *
19770b32 2389 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2390 */
19770b32 2391int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2392{
19770b32 2393 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2394}
2395
9bf2229f 2396/*
78608366
PM
2397 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2398 * mem_hardwall ancestor to the specified cpuset. Call holding
2399 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2400 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2401 */
c9710d80 2402static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2403{
c431069f
TH
2404 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2405 cs = parent_cs(cs);
9bf2229f
PJ
2406 return cs;
2407}
2408
d9fd8a6d 2409/**
a1bc5a4e
DR
2410 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2411 * @node: is this an allowed node?
02a0e53d 2412 * @gfp_mask: memory allocation flags
d9fd8a6d 2413 *
a1bc5a4e
DR
2414 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2415 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2416 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2417 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2418 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2419 * flag, yes.
9bf2229f
PJ
2420 * Otherwise, no.
2421 *
a1bc5a4e
DR
2422 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2423 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2424 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2425 *
a1bc5a4e
DR
2426 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2427 * cpusets, and never sleeps.
02a0e53d
PJ
2428 *
2429 * The __GFP_THISNODE placement logic is really handled elsewhere,
2430 * by forcibly using a zonelist starting at a specified node, and by
2431 * (in get_page_from_freelist()) refusing to consider the zones for
2432 * any node on the zonelist except the first. By the time any such
2433 * calls get to this routine, we should just shut up and say 'yes'.
2434 *
9bf2229f 2435 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2436 * and do not allow allocations outside the current tasks cpuset
2437 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2438 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2439 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2440 *
02a0e53d
PJ
2441 * Scanning up parent cpusets requires callback_mutex. The
2442 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2443 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2444 * current tasks mems_allowed came up empty on the first pass over
2445 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2446 * cpuset are short of memory, might require taking the callback_mutex
2447 * mutex.
9bf2229f 2448 *
36be57ff 2449 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2450 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2451 * so no allocation on a node outside the cpuset is allowed (unless
2452 * in interrupt, of course).
36be57ff
PJ
2453 *
2454 * The second pass through get_page_from_freelist() doesn't even call
2455 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2456 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2457 * in alloc_flags. That logic and the checks below have the combined
2458 * affect that:
9bf2229f
PJ
2459 * in_interrupt - any node ok (current task context irrelevant)
2460 * GFP_ATOMIC - any node ok
c596d9f3 2461 * TIF_MEMDIE - any node ok
78608366 2462 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2463 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2464 *
2465 * Rule:
a1bc5a4e 2466 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2467 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2468 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2469 */
a1bc5a4e 2470int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2471{
c9710d80 2472 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2473 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2474
9b819d20 2475 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2476 return 1;
92d1dbd2 2477 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2478 if (node_isset(node, current->mems_allowed))
2479 return 1;
c596d9f3
DR
2480 /*
2481 * Allow tasks that have access to memory reserves because they have
2482 * been OOM killed to get memory anywhere.
2483 */
2484 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2485 return 1;
9bf2229f
PJ
2486 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2487 return 0;
2488
5563e770
BP
2489 if (current->flags & PF_EXITING) /* Let dying task have memory */
2490 return 1;
2491
9bf2229f 2492 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2493 mutex_lock(&callback_mutex);
053199ed 2494
053199ed 2495 task_lock(current);
78608366 2496 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2497 task_unlock(current);
2498
9bf2229f 2499 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2500 mutex_unlock(&callback_mutex);
9bf2229f 2501 return allowed;
1da177e4
LT
2502}
2503
02a0e53d 2504/*
a1bc5a4e
DR
2505 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2506 * @node: is this an allowed node?
02a0e53d
PJ
2507 * @gfp_mask: memory allocation flags
2508 *
a1bc5a4e
DR
2509 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2510 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2511 * yes. If the task has been OOM killed and has access to memory reserves as
2512 * specified by the TIF_MEMDIE flag, yes.
2513 * Otherwise, no.
02a0e53d
PJ
2514 *
2515 * The __GFP_THISNODE placement logic is really handled elsewhere,
2516 * by forcibly using a zonelist starting at a specified node, and by
2517 * (in get_page_from_freelist()) refusing to consider the zones for
2518 * any node on the zonelist except the first. By the time any such
2519 * calls get to this routine, we should just shut up and say 'yes'.
2520 *
a1bc5a4e
DR
2521 * Unlike the cpuset_node_allowed_softwall() variant, above,
2522 * this variant requires that the node be in the current task's
02a0e53d
PJ
2523 * mems_allowed or that we're in interrupt. It does not scan up the
2524 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2525 * It never sleeps.
2526 */
a1bc5a4e 2527int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2528{
02a0e53d
PJ
2529 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2530 return 1;
02a0e53d
PJ
2531 if (node_isset(node, current->mems_allowed))
2532 return 1;
dedf8b79
DW
2533 /*
2534 * Allow tasks that have access to memory reserves because they have
2535 * been OOM killed to get memory anywhere.
2536 */
2537 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2538 return 1;
02a0e53d
PJ
2539 return 0;
2540}
2541
825a46af 2542/**
6adef3eb
JS
2543 * cpuset_mem_spread_node() - On which node to begin search for a file page
2544 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2545 *
2546 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2547 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2548 * and if the memory allocation used cpuset_mem_spread_node()
2549 * to determine on which node to start looking, as it will for
2550 * certain page cache or slab cache pages such as used for file
2551 * system buffers and inode caches, then instead of starting on the
2552 * local node to look for a free page, rather spread the starting
2553 * node around the tasks mems_allowed nodes.
2554 *
2555 * We don't have to worry about the returned node being offline
2556 * because "it can't happen", and even if it did, it would be ok.
2557 *
2558 * The routines calling guarantee_online_mems() are careful to
2559 * only set nodes in task->mems_allowed that are online. So it
2560 * should not be possible for the following code to return an
2561 * offline node. But if it did, that would be ok, as this routine
2562 * is not returning the node where the allocation must be, only
2563 * the node where the search should start. The zonelist passed to
2564 * __alloc_pages() will include all nodes. If the slab allocator
2565 * is passed an offline node, it will fall back to the local node.
2566 * See kmem_cache_alloc_node().
2567 */
2568
6adef3eb 2569static int cpuset_spread_node(int *rotor)
825a46af
PJ
2570{
2571 int node;
2572
6adef3eb 2573 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2574 if (node == MAX_NUMNODES)
2575 node = first_node(current->mems_allowed);
6adef3eb 2576 *rotor = node;
825a46af
PJ
2577 return node;
2578}
6adef3eb
JS
2579
2580int cpuset_mem_spread_node(void)
2581{
778d3b0f
MH
2582 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2583 current->cpuset_mem_spread_rotor =
2584 node_random(&current->mems_allowed);
2585
6adef3eb
JS
2586 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2587}
2588
2589int cpuset_slab_spread_node(void)
2590{
778d3b0f
MH
2591 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2592 current->cpuset_slab_spread_rotor =
2593 node_random(&current->mems_allowed);
2594
6adef3eb
JS
2595 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2596}
2597
825a46af
PJ
2598EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2599
ef08e3b4 2600/**
bbe373f2
DR
2601 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2602 * @tsk1: pointer to task_struct of some task.
2603 * @tsk2: pointer to task_struct of some other task.
2604 *
2605 * Description: Return true if @tsk1's mems_allowed intersects the
2606 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2607 * one of the task's memory usage might impact the memory available
2608 * to the other.
ef08e3b4
PJ
2609 **/
2610
bbe373f2
DR
2611int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2612 const struct task_struct *tsk2)
ef08e3b4 2613{
bbe373f2 2614 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2615}
2616
f440d98f
LZ
2617#define CPUSET_NODELIST_LEN (256)
2618
75aa1994
DR
2619/**
2620 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2621 * @task: pointer to task_struct of some task.
2622 *
2623 * Description: Prints @task's name, cpuset name, and cached copy of its
2624 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2625 * dereferencing task_cs(task).
2626 */
2627void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2628{
f440d98f
LZ
2629 /* Statically allocated to prevent using excess stack. */
2630 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2631 static DEFINE_SPINLOCK(cpuset_buffer_lock);
75aa1994 2632
f440d98f 2633 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
63f43f55 2634
cfb5966b 2635 rcu_read_lock();
f440d98f 2636 spin_lock(&cpuset_buffer_lock);
63f43f55 2637
75aa1994
DR
2638 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2639 tsk->mems_allowed);
2640 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
f440d98f
LZ
2641 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2642
75aa1994 2643 spin_unlock(&cpuset_buffer_lock);
cfb5966b 2644 rcu_read_unlock();
75aa1994
DR
2645}
2646
3e0d98b9
PJ
2647/*
2648 * Collection of memory_pressure is suppressed unless
2649 * this flag is enabled by writing "1" to the special
2650 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2651 */
2652
c5b2aff8 2653int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2654
2655/**
2656 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2657 *
2658 * Keep a running average of the rate of synchronous (direct)
2659 * page reclaim efforts initiated by tasks in each cpuset.
2660 *
2661 * This represents the rate at which some task in the cpuset
2662 * ran low on memory on all nodes it was allowed to use, and
2663 * had to enter the kernels page reclaim code in an effort to
2664 * create more free memory by tossing clean pages or swapping
2665 * or writing dirty pages.
2666 *
2667 * Display to user space in the per-cpuset read-only file
2668 * "memory_pressure". Value displayed is an integer
2669 * representing the recent rate of entry into the synchronous
2670 * (direct) page reclaim by any task attached to the cpuset.
2671 **/
2672
2673void __cpuset_memory_pressure_bump(void)
2674{
3e0d98b9 2675 task_lock(current);
8793d854 2676 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2677 task_unlock(current);
2678}
2679
8793d854 2680#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2681/*
2682 * proc_cpuset_show()
2683 * - Print tasks cpuset path into seq_file.
2684 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2685 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2686 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2687 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2688 * anyway.
1da177e4 2689 */
8d8b97ba 2690int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2691{
13b41b09 2692 struct pid *pid;
1da177e4
LT
2693 struct task_struct *tsk;
2694 char *buf;
8793d854 2695 struct cgroup_subsys_state *css;
99f89551 2696 int retval;
1da177e4 2697
99f89551 2698 retval = -ENOMEM;
1da177e4
LT
2699 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2700 if (!buf)
99f89551
EB
2701 goto out;
2702
2703 retval = -ESRCH;
13b41b09
EB
2704 pid = m->private;
2705 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2706 if (!tsk)
2707 goto out_free;
1da177e4 2708
27e89ae5 2709 rcu_read_lock();
8af01f56 2710 css = task_css(tsk, cpuset_subsys_id);
8793d854 2711 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
27e89ae5 2712 rcu_read_unlock();
1da177e4 2713 if (retval < 0)
27e89ae5 2714 goto out_put_task;
1da177e4
LT
2715 seq_puts(m, buf);
2716 seq_putc(m, '\n');
27e89ae5 2717out_put_task:
99f89551
EB
2718 put_task_struct(tsk);
2719out_free:
1da177e4 2720 kfree(buf);
99f89551 2721out:
1da177e4
LT
2722 return retval;
2723}
8793d854 2724#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2725
d01d4827 2726/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2727void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2728{
df5f8314 2729 seq_printf(m, "Mems_allowed:\t");
30e8e136 2730 seq_nodemask(m, &task->mems_allowed);
df5f8314 2731 seq_printf(m, "\n");
39106dcf 2732 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2733 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2734 seq_printf(m, "\n");
1da177e4 2735}