memcg: cleanup cache_charge
[linux-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
1da177e4
LT
40#include <linux/module.h>
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
58#include <asm/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
f90d4118
MX
63/*
64 * Workqueue for cpuset related tasks.
65 *
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
68 */
69static struct workqueue_struct *cpuset_wq;
70
202f72d5
PJ
71/*
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
75 */
7edc5962 76int number_of_cpusets __read_mostly;
202f72d5 77
2df167a3 78/* Forward declare cgroup structures */
8793d854
PM
79struct cgroup_subsys cpuset_subsys;
80struct cpuset;
81
3e0d98b9
PJ
82/* See "Frequency meter" comments, below. */
83
84struct fmeter {
85 int cnt; /* unprocessed events count */
86 int val; /* most recent output value */
87 time_t time; /* clock (secs) when val computed */
88 spinlock_t lock; /* guards read or write of above */
89};
90
1da177e4 91struct cpuset {
8793d854
PM
92 struct cgroup_subsys_state css;
93
1da177e4 94 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
97
1da177e4 98 struct cpuset *parent; /* my parent */
1da177e4
LT
99
100 /*
101 * Copy of global cpuset_mems_generation as of the most
102 * recent time this cpuset changed its mems_allowed.
103 */
3e0d98b9
PJ
104 int mems_generation;
105
106 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
107
108 /* partition number for rebuild_sched_domains() */
109 int pn;
956db3ca 110
1d3504fc
HS
111 /* for custom sched domain */
112 int relax_domain_level;
113
956db3ca
CW
114 /* used for walking a cpuset heirarchy */
115 struct list_head stack_list;
1da177e4
LT
116};
117
8793d854
PM
118/* Retrieve the cpuset for a cgroup */
119static inline struct cpuset *cgroup_cs(struct cgroup *cont)
120{
121 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
122 struct cpuset, css);
123}
124
125/* Retrieve the cpuset for a task */
126static inline struct cpuset *task_cs(struct task_struct *task)
127{
128 return container_of(task_subsys_state(task, cpuset_subsys_id),
129 struct cpuset, css);
130}
956db3ca
CW
131struct cpuset_hotplug_scanner {
132 struct cgroup_scanner scan;
133 struct cgroup *to;
134};
8793d854 135
1da177e4
LT
136/* bits in struct cpuset flags field */
137typedef enum {
138 CS_CPU_EXCLUSIVE,
139 CS_MEM_EXCLUSIVE,
78608366 140 CS_MEM_HARDWALL,
45b07ef3 141 CS_MEMORY_MIGRATE,
029190c5 142 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
143 CS_SPREAD_PAGE,
144 CS_SPREAD_SLAB,
1da177e4
LT
145} cpuset_flagbits_t;
146
147/* convenient tests for these bits */
148static inline int is_cpu_exclusive(const struct cpuset *cs)
149{
7b5b9ef0 150 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
151}
152
153static inline int is_mem_exclusive(const struct cpuset *cs)
154{
7b5b9ef0 155 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
156}
157
78608366
PM
158static inline int is_mem_hardwall(const struct cpuset *cs)
159{
160 return test_bit(CS_MEM_HARDWALL, &cs->flags);
161}
162
029190c5
PJ
163static inline int is_sched_load_balance(const struct cpuset *cs)
164{
165 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
166}
167
45b07ef3
PJ
168static inline int is_memory_migrate(const struct cpuset *cs)
169{
7b5b9ef0 170 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
171}
172
825a46af
PJ
173static inline int is_spread_page(const struct cpuset *cs)
174{
175 return test_bit(CS_SPREAD_PAGE, &cs->flags);
176}
177
178static inline int is_spread_slab(const struct cpuset *cs)
179{
180 return test_bit(CS_SPREAD_SLAB, &cs->flags);
181}
182
1da177e4 183/*
151a4420 184 * Increment this integer everytime any cpuset changes its
1da177e4
LT
185 * mems_allowed value. Users of cpusets can track this generation
186 * number, and avoid having to lock and reload mems_allowed unless
187 * the cpuset they're using changes generation.
188 *
2df167a3 189 * A single, global generation is needed because cpuset_attach_task() could
1da177e4
LT
190 * reattach a task to a different cpuset, which must not have its
191 * generation numbers aliased with those of that tasks previous cpuset.
192 *
193 * Generations are needed for mems_allowed because one task cannot
2df167a3 194 * modify another's memory placement. So we must enable every task,
1da177e4
LT
195 * on every visit to __alloc_pages(), to efficiently check whether
196 * its current->cpuset->mems_allowed has changed, requiring an update
197 * of its current->mems_allowed.
151a4420 198 *
2df167a3 199 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
151a4420 200 * there is no need to mark it atomic.
1da177e4 201 */
151a4420 202static int cpuset_mems_generation;
1da177e4
LT
203
204static struct cpuset top_cpuset = {
205 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
206};
207
1da177e4 208/*
2df167a3
PM
209 * There are two global mutexes guarding cpuset structures. The first
210 * is the main control groups cgroup_mutex, accessed via
211 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
212 * callback_mutex, below. They can nest. It is ok to first take
213 * cgroup_mutex, then nest callback_mutex. We also require taking
214 * task_lock() when dereferencing a task's cpuset pointer. See "The
215 * task_lock() exception", at the end of this comment.
053199ed 216 *
3d3f26a7 217 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 218 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 219 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
220 * and be able to modify cpusets. It can perform various checks on
221 * the cpuset structure first, knowing nothing will change. It can
2df167a3 222 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 223 * performing these checks, various callback routines can briefly
3d3f26a7
IM
224 * acquire callback_mutex to query cpusets. Once it is ready to make
225 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
226 *
227 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 228 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
229 * from one of the callbacks into the cpuset code from within
230 * __alloc_pages().
231 *
3d3f26a7 232 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
233 * access to cpusets.
234 *
235 * The task_struct fields mems_allowed and mems_generation may only
236 * be accessed in the context of that task, so require no locks.
237 *
3d3f26a7 238 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
239 * small pieces of code, such as when reading out possibly multi-word
240 * cpumasks and nodemasks.
241 *
2df167a3
PM
242 * Accessing a task's cpuset should be done in accordance with the
243 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
244 */
245
3d3f26a7 246static DEFINE_MUTEX(callback_mutex);
4247bdc6 247
75aa1994
DR
248/*
249 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
250 * buffers. They are statically allocated to prevent using excess stack
251 * when calling cpuset_print_task_mems_allowed().
252 */
253#define CPUSET_NAME_LEN (128)
254#define CPUSET_NODELIST_LEN (256)
255static char cpuset_name[CPUSET_NAME_LEN];
256static char cpuset_nodelist[CPUSET_NODELIST_LEN];
257static DEFINE_SPINLOCK(cpuset_buffer_lock);
258
cf417141
MK
259/*
260 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 261 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
262 * silently switch it to mount "cgroup" instead
263 */
454e2398
DH
264static int cpuset_get_sb(struct file_system_type *fs_type,
265 int flags, const char *unused_dev_name,
266 void *data, struct vfsmount *mnt)
1da177e4 267{
8793d854
PM
268 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
269 int ret = -ENODEV;
270 if (cgroup_fs) {
271 char mountopts[] =
272 "cpuset,noprefix,"
273 "release_agent=/sbin/cpuset_release_agent";
274 ret = cgroup_fs->get_sb(cgroup_fs, flags,
275 unused_dev_name, mountopts, mnt);
276 put_filesystem(cgroup_fs);
277 }
278 return ret;
1da177e4
LT
279}
280
281static struct file_system_type cpuset_fs_type = {
282 .name = "cpuset",
283 .get_sb = cpuset_get_sb,
1da177e4
LT
284};
285
1da177e4 286/*
300ed6cb 287 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4
LT
288 * are online. If none are online, walk up the cpuset hierarchy
289 * until we find one that does have some online cpus. If we get
290 * all the way to the top and still haven't found any online cpus,
291 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
292 * task, return cpu_online_map.
293 *
294 * One way or another, we guarantee to return some non-empty subset
295 * of cpu_online_map.
296 *
3d3f26a7 297 * Call with callback_mutex held.
1da177e4
LT
298 */
299
6af866af
LZ
300static void guarantee_online_cpus(const struct cpuset *cs,
301 struct cpumask *pmask)
1da177e4 302{
300ed6cb 303 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
1da177e4
LT
304 cs = cs->parent;
305 if (cs)
300ed6cb 306 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4 307 else
300ed6cb
LZ
308 cpumask_copy(pmask, cpu_online_mask);
309 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
1da177e4
LT
310}
311
312/*
313 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
314 * are online, with memory. If none are online with memory, walk
315 * up the cpuset hierarchy until we find one that does have some
316 * online mems. If we get all the way to the top and still haven't
317 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
318 *
319 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 320 * of node_states[N_HIGH_MEMORY].
1da177e4 321 *
3d3f26a7 322 * Call with callback_mutex held.
1da177e4
LT
323 */
324
325static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
326{
0e1e7c7a
CL
327 while (cs && !nodes_intersects(cs->mems_allowed,
328 node_states[N_HIGH_MEMORY]))
1da177e4
LT
329 cs = cs->parent;
330 if (cs)
0e1e7c7a
CL
331 nodes_and(*pmask, cs->mems_allowed,
332 node_states[N_HIGH_MEMORY]);
1da177e4 333 else
0e1e7c7a
CL
334 *pmask = node_states[N_HIGH_MEMORY];
335 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
336}
337
cf2a473c
PJ
338/**
339 * cpuset_update_task_memory_state - update task memory placement
340 *
341 * If the current tasks cpusets mems_allowed changed behind our
342 * backs, update current->mems_allowed, mems_generation and task NUMA
343 * mempolicy to the new value.
053199ed 344 *
cf2a473c
PJ
345 * Task mempolicy is updated by rebinding it relative to the
346 * current->cpuset if a task has its memory placement changed.
347 * Do not call this routine if in_interrupt().
348 *
4a01c8d5 349 * Call without callback_mutex or task_lock() held. May be
2df167a3
PM
350 * called with or without cgroup_mutex held. Thanks in part to
351 * 'the_top_cpuset_hack', the task's cpuset pointer will never
41f7f60d
DR
352 * be NULL. This routine also might acquire callback_mutex during
353 * call.
053199ed 354 *
6b9c2603
PJ
355 * Reading current->cpuset->mems_generation doesn't need task_lock
356 * to guard the current->cpuset derefence, because it is guarded
2df167a3 357 * from concurrent freeing of current->cpuset using RCU.
6b9c2603
PJ
358 *
359 * The rcu_dereference() is technically probably not needed,
360 * as I don't actually mind if I see a new cpuset pointer but
361 * an old value of mems_generation. However this really only
362 * matters on alpha systems using cpusets heavily. If I dropped
363 * that rcu_dereference(), it would save them a memory barrier.
364 * For all other arch's, rcu_dereference is a no-op anyway, and for
365 * alpha systems not using cpusets, another planned optimization,
366 * avoiding the rcu critical section for tasks in the root cpuset
367 * which is statically allocated, so can't vanish, will make this
368 * irrelevant. Better to use RCU as intended, than to engage in
369 * some cute trick to save a memory barrier that is impossible to
370 * test, for alpha systems using cpusets heavily, which might not
371 * even exist.
053199ed
PJ
372 *
373 * This routine is needed to update the per-task mems_allowed data,
374 * within the tasks context, when it is trying to allocate memory
375 * (in various mm/mempolicy.c routines) and notices that some other
376 * task has been modifying its cpuset.
1da177e4
LT
377 */
378
fe85a998 379void cpuset_update_task_memory_state(void)
1da177e4 380{
053199ed 381 int my_cpusets_mem_gen;
cf2a473c 382 struct task_struct *tsk = current;
6b9c2603 383 struct cpuset *cs;
053199ed 384
13337714
LJ
385 rcu_read_lock();
386 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
387 rcu_read_unlock();
1da177e4 388
cf2a473c 389 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 390 mutex_lock(&callback_mutex);
cf2a473c 391 task_lock(tsk);
8793d854 392 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
393 guarantee_online_mems(cs, &tsk->mems_allowed);
394 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
395 if (is_spread_page(cs))
396 tsk->flags |= PF_SPREAD_PAGE;
397 else
398 tsk->flags &= ~PF_SPREAD_PAGE;
399 if (is_spread_slab(cs))
400 tsk->flags |= PF_SPREAD_SLAB;
401 else
402 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 403 task_unlock(tsk);
3d3f26a7 404 mutex_unlock(&callback_mutex);
74cb2155 405 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
406 }
407}
408
409/*
410 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
411 *
412 * One cpuset is a subset of another if all its allowed CPUs and
413 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 414 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
415 */
416
417static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
418{
300ed6cb 419 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
420 nodes_subset(p->mems_allowed, q->mems_allowed) &&
421 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
422 is_mem_exclusive(p) <= is_mem_exclusive(q);
423}
424
645fcc9d
LZ
425/**
426 * alloc_trial_cpuset - allocate a trial cpuset
427 * @cs: the cpuset that the trial cpuset duplicates
428 */
429static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
430{
300ed6cb
LZ
431 struct cpuset *trial;
432
433 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
434 if (!trial)
435 return NULL;
436
437 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
438 kfree(trial);
439 return NULL;
440 }
441 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
442
443 return trial;
645fcc9d
LZ
444}
445
446/**
447 * free_trial_cpuset - free the trial cpuset
448 * @trial: the trial cpuset to be freed
449 */
450static void free_trial_cpuset(struct cpuset *trial)
451{
300ed6cb 452 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
453 kfree(trial);
454}
455
1da177e4
LT
456/*
457 * validate_change() - Used to validate that any proposed cpuset change
458 * follows the structural rules for cpusets.
459 *
460 * If we replaced the flag and mask values of the current cpuset
461 * (cur) with those values in the trial cpuset (trial), would
462 * our various subset and exclusive rules still be valid? Presumes
2df167a3 463 * cgroup_mutex held.
1da177e4
LT
464 *
465 * 'cur' is the address of an actual, in-use cpuset. Operations
466 * such as list traversal that depend on the actual address of the
467 * cpuset in the list must use cur below, not trial.
468 *
469 * 'trial' is the address of bulk structure copy of cur, with
470 * perhaps one or more of the fields cpus_allowed, mems_allowed,
471 * or flags changed to new, trial values.
472 *
473 * Return 0 if valid, -errno if not.
474 */
475
476static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
477{
8793d854 478 struct cgroup *cont;
1da177e4
LT
479 struct cpuset *c, *par;
480
481 /* Each of our child cpusets must be a subset of us */
8793d854
PM
482 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
483 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
484 return -EBUSY;
485 }
486
487 /* Remaining checks don't apply to root cpuset */
69604067 488 if (cur == &top_cpuset)
1da177e4
LT
489 return 0;
490
69604067
PJ
491 par = cur->parent;
492
1da177e4
LT
493 /* We must be a subset of our parent cpuset */
494 if (!is_cpuset_subset(trial, par))
495 return -EACCES;
496
2df167a3
PM
497 /*
498 * If either I or some sibling (!= me) is exclusive, we can't
499 * overlap
500 */
8793d854
PM
501 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
502 c = cgroup_cs(cont);
1da177e4
LT
503 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
504 c != cur &&
300ed6cb 505 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
1da177e4
LT
506 return -EINVAL;
507 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
508 c != cur &&
509 nodes_intersects(trial->mems_allowed, c->mems_allowed))
510 return -EINVAL;
511 }
512
020958b6
PJ
513 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
514 if (cgroup_task_count(cur->css.cgroup)) {
300ed6cb 515 if (cpumask_empty(trial->cpus_allowed) ||
020958b6
PJ
516 nodes_empty(trial->mems_allowed)) {
517 return -ENOSPC;
518 }
519 }
520
1da177e4
LT
521 return 0;
522}
523
029190c5 524/*
cf417141 525 * Helper routine for generate_sched_domains().
029190c5
PJ
526 * Do cpusets a, b have overlapping cpus_allowed masks?
527 */
029190c5
PJ
528static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
529{
300ed6cb 530 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
531}
532
1d3504fc
HS
533static void
534update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
535{
1d3504fc
HS
536 if (dattr->relax_domain_level < c->relax_domain_level)
537 dattr->relax_domain_level = c->relax_domain_level;
538 return;
539}
540
f5393693
LJ
541static void
542update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
543{
544 LIST_HEAD(q);
545
546 list_add(&c->stack_list, &q);
547 while (!list_empty(&q)) {
548 struct cpuset *cp;
549 struct cgroup *cont;
550 struct cpuset *child;
551
552 cp = list_first_entry(&q, struct cpuset, stack_list);
553 list_del(q.next);
554
300ed6cb 555 if (cpumask_empty(cp->cpus_allowed))
f5393693
LJ
556 continue;
557
558 if (is_sched_load_balance(cp))
559 update_domain_attr(dattr, cp);
560
561 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
562 child = cgroup_cs(cont);
563 list_add_tail(&child->stack_list, &q);
564 }
565 }
566}
567
029190c5 568/*
cf417141
MK
569 * generate_sched_domains()
570 *
571 * This function builds a partial partition of the systems CPUs
572 * A 'partial partition' is a set of non-overlapping subsets whose
573 * union is a subset of that set.
574 * The output of this function needs to be passed to kernel/sched.c
575 * partition_sched_domains() routine, which will rebuild the scheduler's
576 * load balancing domains (sched domains) as specified by that partial
577 * partition.
029190c5 578 *
45ce80fb 579 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
580 * for a background explanation of this.
581 *
582 * Does not return errors, on the theory that the callers of this
583 * routine would rather not worry about failures to rebuild sched
584 * domains when operating in the severe memory shortage situations
585 * that could cause allocation failures below.
586 *
cf417141 587 * Must be called with cgroup_lock held.
029190c5
PJ
588 *
589 * The three key local variables below are:
aeed6824 590 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
591 * top-down scan of all cpusets. This scan loads a pointer
592 * to each cpuset marked is_sched_load_balance into the
593 * array 'csa'. For our purposes, rebuilding the schedulers
594 * sched domains, we can ignore !is_sched_load_balance cpusets.
595 * csa - (for CpuSet Array) Array of pointers to all the cpusets
596 * that need to be load balanced, for convenient iterative
597 * access by the subsequent code that finds the best partition,
598 * i.e the set of domains (subsets) of CPUs such that the
599 * cpus_allowed of every cpuset marked is_sched_load_balance
600 * is a subset of one of these domains, while there are as
601 * many such domains as possible, each as small as possible.
602 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
603 * the kernel/sched.c routine partition_sched_domains() in a
604 * convenient format, that can be easily compared to the prior
605 * value to determine what partition elements (sched domains)
606 * were changed (added or removed.)
607 *
608 * Finding the best partition (set of domains):
609 * The triple nested loops below over i, j, k scan over the
610 * load balanced cpusets (using the array of cpuset pointers in
611 * csa[]) looking for pairs of cpusets that have overlapping
612 * cpus_allowed, but which don't have the same 'pn' partition
613 * number and gives them in the same partition number. It keeps
614 * looping on the 'restart' label until it can no longer find
615 * any such pairs.
616 *
617 * The union of the cpus_allowed masks from the set of
618 * all cpusets having the same 'pn' value then form the one
619 * element of the partition (one sched domain) to be passed to
620 * partition_sched_domains().
621 */
6af866af
LZ
622/* FIXME: see the FIXME in partition_sched_domains() */
623static int generate_sched_domains(struct cpumask **domains,
cf417141 624 struct sched_domain_attr **attributes)
029190c5 625{
cf417141 626 LIST_HEAD(q); /* queue of cpusets to be scanned */
029190c5
PJ
627 struct cpuset *cp; /* scans q */
628 struct cpuset **csa; /* array of all cpuset ptrs */
629 int csn; /* how many cpuset ptrs in csa so far */
630 int i, j, k; /* indices for partition finding loops */
6af866af 631 struct cpumask *doms; /* resulting partition; i.e. sched domains */
1d3504fc 632 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 633 int ndoms = 0; /* number of sched domains in result */
6af866af 634 int nslot; /* next empty doms[] struct cpumask slot */
029190c5 635
029190c5 636 doms = NULL;
1d3504fc 637 dattr = NULL;
cf417141 638 csa = NULL;
029190c5
PJ
639
640 /* Special case for the 99% of systems with one, full, sched domain */
641 if (is_sched_load_balance(&top_cpuset)) {
6af866af 642 doms = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 643 if (!doms)
cf417141
MK
644 goto done;
645
1d3504fc
HS
646 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
647 if (dattr) {
648 *dattr = SD_ATTR_INIT;
93a65575 649 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 650 }
300ed6cb 651 cpumask_copy(doms, top_cpuset.cpus_allowed);
cf417141
MK
652
653 ndoms = 1;
654 goto done;
029190c5
PJ
655 }
656
029190c5
PJ
657 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
658 if (!csa)
659 goto done;
660 csn = 0;
661
aeed6824
LZ
662 list_add(&top_cpuset.stack_list, &q);
663 while (!list_empty(&q)) {
029190c5
PJ
664 struct cgroup *cont;
665 struct cpuset *child; /* scans child cpusets of cp */
489a5393 666
aeed6824
LZ
667 cp = list_first_entry(&q, struct cpuset, stack_list);
668 list_del(q.next);
669
300ed6cb 670 if (cpumask_empty(cp->cpus_allowed))
489a5393
LJ
671 continue;
672
f5393693
LJ
673 /*
674 * All child cpusets contain a subset of the parent's cpus, so
675 * just skip them, and then we call update_domain_attr_tree()
676 * to calc relax_domain_level of the corresponding sched
677 * domain.
678 */
679 if (is_sched_load_balance(cp)) {
029190c5 680 csa[csn++] = cp;
f5393693
LJ
681 continue;
682 }
489a5393 683
029190c5
PJ
684 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
685 child = cgroup_cs(cont);
aeed6824 686 list_add_tail(&child->stack_list, &q);
029190c5
PJ
687 }
688 }
689
690 for (i = 0; i < csn; i++)
691 csa[i]->pn = i;
692 ndoms = csn;
693
694restart:
695 /* Find the best partition (set of sched domains) */
696 for (i = 0; i < csn; i++) {
697 struct cpuset *a = csa[i];
698 int apn = a->pn;
699
700 for (j = 0; j < csn; j++) {
701 struct cpuset *b = csa[j];
702 int bpn = b->pn;
703
704 if (apn != bpn && cpusets_overlap(a, b)) {
705 for (k = 0; k < csn; k++) {
706 struct cpuset *c = csa[k];
707
708 if (c->pn == bpn)
709 c->pn = apn;
710 }
711 ndoms--; /* one less element */
712 goto restart;
713 }
714 }
715 }
716
cf417141
MK
717 /*
718 * Now we know how many domains to create.
719 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
720 */
6af866af 721 doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
700018e0 722 if (!doms)
cf417141 723 goto done;
cf417141
MK
724
725 /*
726 * The rest of the code, including the scheduler, can deal with
727 * dattr==NULL case. No need to abort if alloc fails.
728 */
1d3504fc 729 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
730
731 for (nslot = 0, i = 0; i < csn; i++) {
732 struct cpuset *a = csa[i];
6af866af 733 struct cpumask *dp;
029190c5
PJ
734 int apn = a->pn;
735
cf417141
MK
736 if (apn < 0) {
737 /* Skip completed partitions */
738 continue;
739 }
740
741 dp = doms + nslot;
742
743 if (nslot == ndoms) {
744 static int warnings = 10;
745 if (warnings) {
746 printk(KERN_WARNING
747 "rebuild_sched_domains confused:"
748 " nslot %d, ndoms %d, csn %d, i %d,"
749 " apn %d\n",
750 nslot, ndoms, csn, i, apn);
751 warnings--;
029190c5 752 }
cf417141
MK
753 continue;
754 }
029190c5 755
6af866af 756 cpumask_clear(dp);
cf417141
MK
757 if (dattr)
758 *(dattr + nslot) = SD_ATTR_INIT;
759 for (j = i; j < csn; j++) {
760 struct cpuset *b = csa[j];
761
762 if (apn == b->pn) {
300ed6cb 763 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
764 if (dattr)
765 update_domain_attr_tree(dattr + nslot, b);
766
767 /* Done with this partition */
768 b->pn = -1;
029190c5 769 }
029190c5 770 }
cf417141 771 nslot++;
029190c5
PJ
772 }
773 BUG_ON(nslot != ndoms);
774
cf417141
MK
775done:
776 kfree(csa);
777
700018e0
LZ
778 /*
779 * Fallback to the default domain if kmalloc() failed.
780 * See comments in partition_sched_domains().
781 */
782 if (doms == NULL)
783 ndoms = 1;
784
cf417141
MK
785 *domains = doms;
786 *attributes = dattr;
787 return ndoms;
788}
789
790/*
791 * Rebuild scheduler domains.
792 *
793 * Call with neither cgroup_mutex held nor within get_online_cpus().
794 * Takes both cgroup_mutex and get_online_cpus().
795 *
796 * Cannot be directly called from cpuset code handling changes
797 * to the cpuset pseudo-filesystem, because it cannot be called
798 * from code that already holds cgroup_mutex.
799 */
800static void do_rebuild_sched_domains(struct work_struct *unused)
801{
802 struct sched_domain_attr *attr;
6af866af 803 struct cpumask *doms;
cf417141
MK
804 int ndoms;
805
86ef5c9a 806 get_online_cpus();
cf417141
MK
807
808 /* Generate domain masks and attrs */
809 cgroup_lock();
810 ndoms = generate_sched_domains(&doms, &attr);
811 cgroup_unlock();
812
813 /* Have scheduler rebuild the domains */
814 partition_sched_domains(ndoms, doms, attr);
815
86ef5c9a 816 put_online_cpus();
cf417141 817}
029190c5 818
cf417141
MK
819static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
820
821/*
822 * Rebuild scheduler domains, asynchronously via workqueue.
823 *
824 * If the flag 'sched_load_balance' of any cpuset with non-empty
825 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
826 * which has that flag enabled, or if any cpuset with a non-empty
827 * 'cpus' is removed, then call this routine to rebuild the
828 * scheduler's dynamic sched domains.
829 *
830 * The rebuild_sched_domains() and partition_sched_domains()
831 * routines must nest cgroup_lock() inside get_online_cpus(),
832 * but such cpuset changes as these must nest that locking the
833 * other way, holding cgroup_lock() for much of the code.
834 *
835 * So in order to avoid an ABBA deadlock, the cpuset code handling
836 * these user changes delegates the actual sched domain rebuilding
837 * to a separate workqueue thread, which ends up processing the
838 * above do_rebuild_sched_domains() function.
839 */
840static void async_rebuild_sched_domains(void)
841{
f90d4118 842 queue_work(cpuset_wq, &rebuild_sched_domains_work);
cf417141
MK
843}
844
845/*
846 * Accomplishes the same scheduler domain rebuild as the above
847 * async_rebuild_sched_domains(), however it directly calls the
848 * rebuild routine synchronously rather than calling it via an
849 * asynchronous work thread.
850 *
851 * This can only be called from code that is not holding
852 * cgroup_mutex (not nested in a cgroup_lock() call.)
853 */
854void rebuild_sched_domains(void)
855{
856 do_rebuild_sched_domains(NULL);
029190c5
PJ
857}
858
58f4790b
CW
859/**
860 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
861 * @tsk: task to test
862 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
863 *
2df167a3 864 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
865 * Called for each task in a cgroup by cgroup_scan_tasks().
866 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
867 * words, if its mask is not equal to its cpuset's mask).
053199ed 868 */
9e0c914c
AB
869static int cpuset_test_cpumask(struct task_struct *tsk,
870 struct cgroup_scanner *scan)
58f4790b 871{
300ed6cb 872 return !cpumask_equal(&tsk->cpus_allowed,
58f4790b
CW
873 (cgroup_cs(scan->cg))->cpus_allowed);
874}
053199ed 875
58f4790b
CW
876/**
877 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
878 * @tsk: task to test
879 * @scan: struct cgroup_scanner containing the cgroup of the task
880 *
881 * Called by cgroup_scan_tasks() for each task in a cgroup whose
882 * cpus_allowed mask needs to be changed.
883 *
884 * We don't need to re-check for the cgroup/cpuset membership, since we're
885 * holding cgroup_lock() at this point.
886 */
9e0c914c
AB
887static void cpuset_change_cpumask(struct task_struct *tsk,
888 struct cgroup_scanner *scan)
58f4790b 889{
300ed6cb 890 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
891}
892
0b2f630a
MX
893/**
894 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
895 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 896 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
897 *
898 * Called with cgroup_mutex held
899 *
900 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
901 * calling callback functions for each.
902 *
4e74339a
LZ
903 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
904 * if @heap != NULL.
0b2f630a 905 */
4e74339a 906static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
907{
908 struct cgroup_scanner scan;
0b2f630a
MX
909
910 scan.cg = cs->css.cgroup;
911 scan.test_task = cpuset_test_cpumask;
912 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
913 scan.heap = heap;
914 cgroup_scan_tasks(&scan);
0b2f630a
MX
915}
916
58f4790b
CW
917/**
918 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
919 * @cs: the cpuset to consider
920 * @buf: buffer of cpu numbers written to this cpuset
921 */
645fcc9d
LZ
922static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
923 const char *buf)
1da177e4 924{
4e74339a 925 struct ptr_heap heap;
58f4790b
CW
926 int retval;
927 int is_load_balanced;
1da177e4 928
4c4d50f7
PJ
929 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
930 if (cs == &top_cpuset)
931 return -EACCES;
932
6f7f02e7 933 /*
c8d9c90c 934 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
935 * Since cpulist_parse() fails on an empty mask, we special case
936 * that parsing. The validate_change() call ensures that cpusets
937 * with tasks have cpus.
6f7f02e7 938 */
020958b6 939 if (!*buf) {
300ed6cb 940 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 941 } else {
300ed6cb 942 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
943 if (retval < 0)
944 return retval;
37340746 945
300ed6cb 946 if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
37340746 947 return -EINVAL;
6f7f02e7 948 }
645fcc9d 949 retval = validate_change(cs, trialcs);
85d7b949
DG
950 if (retval < 0)
951 return retval;
029190c5 952
8707d8b8 953 /* Nothing to do if the cpus didn't change */
300ed6cb 954 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 955 return 0;
58f4790b 956
4e74339a
LZ
957 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
958 if (retval)
959 return retval;
960
645fcc9d 961 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 962
3d3f26a7 963 mutex_lock(&callback_mutex);
300ed6cb 964 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 965 mutex_unlock(&callback_mutex);
029190c5 966
8707d8b8
PM
967 /*
968 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 969 * that need an update.
8707d8b8 970 */
4e74339a
LZ
971 update_tasks_cpumask(cs, &heap);
972
973 heap_free(&heap);
58f4790b 974
8707d8b8 975 if (is_load_balanced)
cf417141 976 async_rebuild_sched_domains();
85d7b949 977 return 0;
1da177e4
LT
978}
979
e4e364e8
PJ
980/*
981 * cpuset_migrate_mm
982 *
983 * Migrate memory region from one set of nodes to another.
984 *
985 * Temporarilly set tasks mems_allowed to target nodes of migration,
986 * so that the migration code can allocate pages on these nodes.
987 *
2df167a3 988 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 989 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
990 * calls. Therefore we don't need to take task_lock around the
991 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 992 * our task's cpuset.
e4e364e8
PJ
993 *
994 * Hold callback_mutex around the two modifications of our tasks
995 * mems_allowed to synchronize with cpuset_mems_allowed().
996 *
997 * While the mm_struct we are migrating is typically from some
998 * other task, the task_struct mems_allowed that we are hacking
999 * is for our current task, which must allocate new pages for that
1000 * migrating memory region.
1001 *
1002 * We call cpuset_update_task_memory_state() before hacking
1003 * our tasks mems_allowed, so that we are assured of being in
1004 * sync with our tasks cpuset, and in particular, callbacks to
1005 * cpuset_update_task_memory_state() from nested page allocations
1006 * won't see any mismatch of our cpuset and task mems_generation
1007 * values, so won't overwrite our hacked tasks mems_allowed
1008 * nodemask.
1009 */
1010
1011static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1012 const nodemask_t *to)
1013{
1014 struct task_struct *tsk = current;
1015
1016 cpuset_update_task_memory_state();
1017
1018 mutex_lock(&callback_mutex);
1019 tsk->mems_allowed = *to;
1020 mutex_unlock(&callback_mutex);
1021
1022 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
1023
1024 mutex_lock(&callback_mutex);
8793d854 1025 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
1026 mutex_unlock(&callback_mutex);
1027}
1028
8793d854
PM
1029static void *cpuset_being_rebound;
1030
0b2f630a
MX
1031/**
1032 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1033 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1034 * @oldmem: old mems_allowed of cpuset cs
1035 *
1036 * Called with cgroup_mutex held
1037 * Return 0 if successful, -errno if not.
1038 */
1039static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
1da177e4 1040{
8793d854 1041 struct task_struct *p;
4225399a
PJ
1042 struct mm_struct **mmarray;
1043 int i, n, ntasks;
04c19fa6 1044 int migrate;
4225399a 1045 int fudge;
8793d854 1046 struct cgroup_iter it;
0b2f630a 1047 int retval;
59dac16f 1048
846a16bf 1049 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a
PJ
1050
1051 fudge = 10; /* spare mmarray[] slots */
300ed6cb 1052 fudge += cpumask_weight(cs->cpus_allowed);/* imagine 1 fork-bomb/cpu */
4225399a
PJ
1053 retval = -ENOMEM;
1054
1055 /*
1056 * Allocate mmarray[] to hold mm reference for each task
1057 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
1058 * tasklist_lock. We could use GFP_ATOMIC, but with a
1059 * few more lines of code, we can retry until we get a big
1060 * enough mmarray[] w/o using GFP_ATOMIC.
1061 */
1062 while (1) {
8793d854 1063 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
4225399a
PJ
1064 ntasks += fudge;
1065 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
1066 if (!mmarray)
1067 goto done;
c2aef333 1068 read_lock(&tasklist_lock); /* block fork */
8793d854 1069 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
4225399a 1070 break; /* got enough */
c2aef333 1071 read_unlock(&tasklist_lock); /* try again */
4225399a
PJ
1072 kfree(mmarray);
1073 }
1074
1075 n = 0;
1076
1077 /* Load up mmarray[] with mm reference for each task in cpuset. */
8793d854
PM
1078 cgroup_iter_start(cs->css.cgroup, &it);
1079 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
4225399a
PJ
1080 struct mm_struct *mm;
1081
1082 if (n >= ntasks) {
1083 printk(KERN_WARNING
1084 "Cpuset mempolicy rebind incomplete.\n");
8793d854 1085 break;
4225399a 1086 }
4225399a
PJ
1087 mm = get_task_mm(p);
1088 if (!mm)
1089 continue;
1090 mmarray[n++] = mm;
8793d854
PM
1091 }
1092 cgroup_iter_end(cs->css.cgroup, &it);
c2aef333 1093 read_unlock(&tasklist_lock);
4225399a
PJ
1094
1095 /*
1096 * Now that we've dropped the tasklist spinlock, we can
1097 * rebind the vma mempolicies of each mm in mmarray[] to their
1098 * new cpuset, and release that mm. The mpol_rebind_mm()
1099 * call takes mmap_sem, which we couldn't take while holding
846a16bf 1100 * tasklist_lock. Forks can happen again now - the mpol_dup()
4225399a
PJ
1101 * cpuset_being_rebound check will catch such forks, and rebind
1102 * their vma mempolicies too. Because we still hold the global
2df167a3 1103 * cgroup_mutex, we know that no other rebind effort will
4225399a
PJ
1104 * be contending for the global variable cpuset_being_rebound.
1105 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1106 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1107 */
04c19fa6 1108 migrate = is_memory_migrate(cs);
4225399a
PJ
1109 for (i = 0; i < n; i++) {
1110 struct mm_struct *mm = mmarray[i];
1111
1112 mpol_rebind_mm(mm, &cs->mems_allowed);
e4e364e8 1113 if (migrate)
0b2f630a 1114 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
4225399a
PJ
1115 mmput(mm);
1116 }
1117
2df167a3 1118 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
4225399a 1119 kfree(mmarray);
8793d854 1120 cpuset_being_rebound = NULL;
4225399a 1121 retval = 0;
59dac16f 1122done:
1da177e4
LT
1123 return retval;
1124}
1125
0b2f630a
MX
1126/*
1127 * Handle user request to change the 'mems' memory placement
1128 * of a cpuset. Needs to validate the request, update the
1129 * cpusets mems_allowed and mems_generation, and for each
1130 * task in the cpuset, rebind any vma mempolicies and if
1131 * the cpuset is marked 'memory_migrate', migrate the tasks
1132 * pages to the new memory.
1133 *
1134 * Call with cgroup_mutex held. May take callback_mutex during call.
1135 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1136 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1137 * their mempolicies to the cpusets new mems_allowed.
1138 */
645fcc9d
LZ
1139static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1140 const char *buf)
0b2f630a 1141{
0b2f630a
MX
1142 nodemask_t oldmem;
1143 int retval;
1144
1145 /*
1146 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1147 * it's read-only
1148 */
1149 if (cs == &top_cpuset)
1150 return -EACCES;
1151
0b2f630a
MX
1152 /*
1153 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1154 * Since nodelist_parse() fails on an empty mask, we special case
1155 * that parsing. The validate_change() call ensures that cpusets
1156 * with tasks have memory.
1157 */
1158 if (!*buf) {
645fcc9d 1159 nodes_clear(trialcs->mems_allowed);
0b2f630a 1160 } else {
645fcc9d 1161 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1162 if (retval < 0)
1163 goto done;
1164
645fcc9d 1165 if (!nodes_subset(trialcs->mems_allowed,
0b2f630a
MX
1166 node_states[N_HIGH_MEMORY]))
1167 return -EINVAL;
1168 }
1169 oldmem = cs->mems_allowed;
645fcc9d 1170 if (nodes_equal(oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1171 retval = 0; /* Too easy - nothing to do */
1172 goto done;
1173 }
645fcc9d 1174 retval = validate_change(cs, trialcs);
0b2f630a
MX
1175 if (retval < 0)
1176 goto done;
1177
1178 mutex_lock(&callback_mutex);
645fcc9d 1179 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1180 cs->mems_generation = cpuset_mems_generation++;
1181 mutex_unlock(&callback_mutex);
1182
1183 retval = update_tasks_nodemask(cs, &oldmem);
1184done:
1185 return retval;
1186}
1187
8793d854
PM
1188int current_cpuset_is_being_rebound(void)
1189{
1190 return task_cs(current) == cpuset_being_rebound;
1191}
1192
5be7a479 1193static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1194{
30e0e178
LZ
1195 if (val < -1 || val >= SD_LV_MAX)
1196 return -EINVAL;
1d3504fc
HS
1197
1198 if (val != cs->relax_domain_level) {
1199 cs->relax_domain_level = val;
300ed6cb
LZ
1200 if (!cpumask_empty(cs->cpus_allowed) &&
1201 is_sched_load_balance(cs))
cf417141 1202 async_rebuild_sched_domains();
1d3504fc
HS
1203 }
1204
1205 return 0;
1206}
1207
1da177e4
LT
1208/*
1209 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1210 * bit: the bit to update (see cpuset_flagbits_t)
1211 * cs: the cpuset to update
1212 * turning_on: whether the flag is being set or cleared
053199ed 1213 *
2df167a3 1214 * Call with cgroup_mutex held.
1da177e4
LT
1215 */
1216
700fe1ab
PM
1217static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1218 int turning_on)
1da177e4 1219{
645fcc9d 1220 struct cpuset *trialcs;
607717a6 1221 int err;
40b6a762 1222 int balance_flag_changed;
1da177e4 1223
645fcc9d
LZ
1224 trialcs = alloc_trial_cpuset(cs);
1225 if (!trialcs)
1226 return -ENOMEM;
1227
1da177e4 1228 if (turning_on)
645fcc9d 1229 set_bit(bit, &trialcs->flags);
1da177e4 1230 else
645fcc9d 1231 clear_bit(bit, &trialcs->flags);
1da177e4 1232
645fcc9d 1233 err = validate_change(cs, trialcs);
85d7b949 1234 if (err < 0)
645fcc9d 1235 goto out;
029190c5 1236
029190c5 1237 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1238 is_sched_load_balance(trialcs));
029190c5 1239
3d3f26a7 1240 mutex_lock(&callback_mutex);
645fcc9d 1241 cs->flags = trialcs->flags;
3d3f26a7 1242 mutex_unlock(&callback_mutex);
85d7b949 1243
300ed6cb 1244 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
cf417141 1245 async_rebuild_sched_domains();
029190c5 1246
645fcc9d
LZ
1247out:
1248 free_trial_cpuset(trialcs);
1249 return err;
1da177e4
LT
1250}
1251
3e0d98b9 1252/*
80f7228b 1253 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1254 *
1255 * These routines manage a digitally filtered, constant time based,
1256 * event frequency meter. There are four routines:
1257 * fmeter_init() - initialize a frequency meter.
1258 * fmeter_markevent() - called each time the event happens.
1259 * fmeter_getrate() - returns the recent rate of such events.
1260 * fmeter_update() - internal routine used to update fmeter.
1261 *
1262 * A common data structure is passed to each of these routines,
1263 * which is used to keep track of the state required to manage the
1264 * frequency meter and its digital filter.
1265 *
1266 * The filter works on the number of events marked per unit time.
1267 * The filter is single-pole low-pass recursive (IIR). The time unit
1268 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1269 * simulate 3 decimal digits of precision (multiplied by 1000).
1270 *
1271 * With an FM_COEF of 933, and a time base of 1 second, the filter
1272 * has a half-life of 10 seconds, meaning that if the events quit
1273 * happening, then the rate returned from the fmeter_getrate()
1274 * will be cut in half each 10 seconds, until it converges to zero.
1275 *
1276 * It is not worth doing a real infinitely recursive filter. If more
1277 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1278 * just compute FM_MAXTICKS ticks worth, by which point the level
1279 * will be stable.
1280 *
1281 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1282 * arithmetic overflow in the fmeter_update() routine.
1283 *
1284 * Given the simple 32 bit integer arithmetic used, this meter works
1285 * best for reporting rates between one per millisecond (msec) and
1286 * one per 32 (approx) seconds. At constant rates faster than one
1287 * per msec it maxes out at values just under 1,000,000. At constant
1288 * rates between one per msec, and one per second it will stabilize
1289 * to a value N*1000, where N is the rate of events per second.
1290 * At constant rates between one per second and one per 32 seconds,
1291 * it will be choppy, moving up on the seconds that have an event,
1292 * and then decaying until the next event. At rates slower than
1293 * about one in 32 seconds, it decays all the way back to zero between
1294 * each event.
1295 */
1296
1297#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1298#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1299#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1300#define FM_SCALE 1000 /* faux fixed point scale */
1301
1302/* Initialize a frequency meter */
1303static void fmeter_init(struct fmeter *fmp)
1304{
1305 fmp->cnt = 0;
1306 fmp->val = 0;
1307 fmp->time = 0;
1308 spin_lock_init(&fmp->lock);
1309}
1310
1311/* Internal meter update - process cnt events and update value */
1312static void fmeter_update(struct fmeter *fmp)
1313{
1314 time_t now = get_seconds();
1315 time_t ticks = now - fmp->time;
1316
1317 if (ticks == 0)
1318 return;
1319
1320 ticks = min(FM_MAXTICKS, ticks);
1321 while (ticks-- > 0)
1322 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1323 fmp->time = now;
1324
1325 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1326 fmp->cnt = 0;
1327}
1328
1329/* Process any previous ticks, then bump cnt by one (times scale). */
1330static void fmeter_markevent(struct fmeter *fmp)
1331{
1332 spin_lock(&fmp->lock);
1333 fmeter_update(fmp);
1334 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1335 spin_unlock(&fmp->lock);
1336}
1337
1338/* Process any previous ticks, then return current value. */
1339static int fmeter_getrate(struct fmeter *fmp)
1340{
1341 int val;
1342
1343 spin_lock(&fmp->lock);
1344 fmeter_update(fmp);
1345 val = fmp->val;
1346 spin_unlock(&fmp->lock);
1347 return val;
1348}
1349
2341d1b6
LZ
1350/* Protected by cgroup_lock */
1351static cpumask_var_t cpus_attach;
1352
2df167a3 1353/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
8793d854
PM
1354static int cpuset_can_attach(struct cgroup_subsys *ss,
1355 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1356{
8793d854 1357 struct cpuset *cs = cgroup_cs(cont);
5771f0a2 1358 int ret = 0;
1da177e4 1359
300ed6cb 1360 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1da177e4 1361 return -ENOSPC;
9985b0ba 1362
5771f0a2 1363 if (tsk->flags & PF_THREAD_BOUND) {
9985b0ba 1364 mutex_lock(&callback_mutex);
300ed6cb 1365 if (!cpumask_equal(&tsk->cpus_allowed, cs->cpus_allowed))
5771f0a2 1366 ret = -EINVAL;
9985b0ba 1367 mutex_unlock(&callback_mutex);
9985b0ba 1368 }
1da177e4 1369
5771f0a2 1370 return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL);
8793d854 1371}
1da177e4 1372
8793d854
PM
1373static void cpuset_attach(struct cgroup_subsys *ss,
1374 struct cgroup *cont, struct cgroup *oldcont,
1375 struct task_struct *tsk)
1376{
8793d854
PM
1377 nodemask_t from, to;
1378 struct mm_struct *mm;
1379 struct cpuset *cs = cgroup_cs(cont);
1380 struct cpuset *oldcs = cgroup_cs(oldcont);
9985b0ba 1381 int err;
22fb52dd 1382
f5813d94 1383 if (cs == &top_cpuset) {
2341d1b6 1384 cpumask_copy(cpus_attach, cpu_possible_mask);
f5813d94
MX
1385 } else {
1386 mutex_lock(&callback_mutex);
2341d1b6 1387 guarantee_online_cpus(cs, cpus_attach);
f5813d94
MX
1388 mutex_unlock(&callback_mutex);
1389 }
2341d1b6 1390 err = set_cpus_allowed_ptr(tsk, cpus_attach);
9985b0ba
DR
1391 if (err)
1392 return;
1da177e4 1393
45b07ef3
PJ
1394 from = oldcs->mems_allowed;
1395 to = cs->mems_allowed;
4225399a
PJ
1396 mm = get_task_mm(tsk);
1397 if (mm) {
1398 mpol_rebind_mm(mm, &to);
2741a559 1399 if (is_memory_migrate(cs))
e4e364e8 1400 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1401 mmput(mm);
1402 }
1da177e4
LT
1403}
1404
1405/* The various types of files and directories in a cpuset file system */
1406
1407typedef enum {
45b07ef3 1408 FILE_MEMORY_MIGRATE,
1da177e4
LT
1409 FILE_CPULIST,
1410 FILE_MEMLIST,
1411 FILE_CPU_EXCLUSIVE,
1412 FILE_MEM_EXCLUSIVE,
78608366 1413 FILE_MEM_HARDWALL,
029190c5 1414 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1415 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1416 FILE_MEMORY_PRESSURE_ENABLED,
1417 FILE_MEMORY_PRESSURE,
825a46af
PJ
1418 FILE_SPREAD_PAGE,
1419 FILE_SPREAD_SLAB,
1da177e4
LT
1420} cpuset_filetype_t;
1421
700fe1ab
PM
1422static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1423{
1424 int retval = 0;
1425 struct cpuset *cs = cgroup_cs(cgrp);
1426 cpuset_filetype_t type = cft->private;
1427
e3712395 1428 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1429 return -ENODEV;
700fe1ab
PM
1430
1431 switch (type) {
1da177e4 1432 case FILE_CPU_EXCLUSIVE:
700fe1ab 1433 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1434 break;
1435 case FILE_MEM_EXCLUSIVE:
700fe1ab 1436 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1437 break;
78608366
PM
1438 case FILE_MEM_HARDWALL:
1439 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1440 break;
029190c5 1441 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1442 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1443 break;
45b07ef3 1444 case FILE_MEMORY_MIGRATE:
700fe1ab 1445 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1446 break;
3e0d98b9 1447 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1448 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1449 break;
1450 case FILE_MEMORY_PRESSURE:
1451 retval = -EACCES;
1452 break;
825a46af 1453 case FILE_SPREAD_PAGE:
700fe1ab 1454 retval = update_flag(CS_SPREAD_PAGE, cs, val);
151a4420 1455 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1456 break;
1457 case FILE_SPREAD_SLAB:
700fe1ab 1458 retval = update_flag(CS_SPREAD_SLAB, cs, val);
151a4420 1459 cs->mems_generation = cpuset_mems_generation++;
825a46af 1460 break;
1da177e4
LT
1461 default:
1462 retval = -EINVAL;
700fe1ab 1463 break;
1da177e4 1464 }
8793d854 1465 cgroup_unlock();
1da177e4
LT
1466 return retval;
1467}
1468
5be7a479
PM
1469static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1470{
1471 int retval = 0;
1472 struct cpuset *cs = cgroup_cs(cgrp);
1473 cpuset_filetype_t type = cft->private;
1474
e3712395 1475 if (!cgroup_lock_live_group(cgrp))
5be7a479 1476 return -ENODEV;
e3712395 1477
5be7a479
PM
1478 switch (type) {
1479 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1480 retval = update_relax_domain_level(cs, val);
1481 break;
1482 default:
1483 retval = -EINVAL;
1484 break;
1485 }
1486 cgroup_unlock();
1487 return retval;
1488}
1489
e3712395
PM
1490/*
1491 * Common handling for a write to a "cpus" or "mems" file.
1492 */
1493static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1494 const char *buf)
1495{
1496 int retval = 0;
645fcc9d
LZ
1497 struct cpuset *cs = cgroup_cs(cgrp);
1498 struct cpuset *trialcs;
e3712395
PM
1499
1500 if (!cgroup_lock_live_group(cgrp))
1501 return -ENODEV;
1502
645fcc9d
LZ
1503 trialcs = alloc_trial_cpuset(cs);
1504 if (!trialcs)
1505 return -ENOMEM;
1506
e3712395
PM
1507 switch (cft->private) {
1508 case FILE_CPULIST:
645fcc9d 1509 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1510 break;
1511 case FILE_MEMLIST:
645fcc9d 1512 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1513 break;
1514 default:
1515 retval = -EINVAL;
1516 break;
1517 }
645fcc9d
LZ
1518
1519 free_trial_cpuset(trialcs);
e3712395
PM
1520 cgroup_unlock();
1521 return retval;
1522}
1523
1da177e4
LT
1524/*
1525 * These ascii lists should be read in a single call, by using a user
1526 * buffer large enough to hold the entire map. If read in smaller
1527 * chunks, there is no guarantee of atomicity. Since the display format
1528 * used, list of ranges of sequential numbers, is variable length,
1529 * and since these maps can change value dynamically, one could read
1530 * gibberish by doing partial reads while a list was changing.
1531 * A single large read to a buffer that crosses a page boundary is
1532 * ok, because the result being copied to user land is not recomputed
1533 * across a page fault.
1534 */
1535
1536static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1537{
5a7625df 1538 int ret;
1da177e4 1539
3d3f26a7 1540 mutex_lock(&callback_mutex);
300ed6cb 1541 ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1542 mutex_unlock(&callback_mutex);
1da177e4 1543
5a7625df 1544 return ret;
1da177e4
LT
1545}
1546
1547static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1548{
1549 nodemask_t mask;
1550
3d3f26a7 1551 mutex_lock(&callback_mutex);
1da177e4 1552 mask = cs->mems_allowed;
3d3f26a7 1553 mutex_unlock(&callback_mutex);
1da177e4
LT
1554
1555 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1556}
1557
8793d854
PM
1558static ssize_t cpuset_common_file_read(struct cgroup *cont,
1559 struct cftype *cft,
1560 struct file *file,
1561 char __user *buf,
1562 size_t nbytes, loff_t *ppos)
1da177e4 1563{
8793d854 1564 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1565 cpuset_filetype_t type = cft->private;
1566 char *page;
1567 ssize_t retval = 0;
1568 char *s;
1da177e4 1569
e12ba74d 1570 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1571 return -ENOMEM;
1572
1573 s = page;
1574
1575 switch (type) {
1576 case FILE_CPULIST:
1577 s += cpuset_sprintf_cpulist(s, cs);
1578 break;
1579 case FILE_MEMLIST:
1580 s += cpuset_sprintf_memlist(s, cs);
1581 break;
1da177e4
LT
1582 default:
1583 retval = -EINVAL;
1584 goto out;
1585 }
1586 *s++ = '\n';
1da177e4 1587
eacaa1f5 1588 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1589out:
1590 free_page((unsigned long)page);
1591 return retval;
1592}
1593
700fe1ab
PM
1594static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1595{
1596 struct cpuset *cs = cgroup_cs(cont);
1597 cpuset_filetype_t type = cft->private;
1598 switch (type) {
1599 case FILE_CPU_EXCLUSIVE:
1600 return is_cpu_exclusive(cs);
1601 case FILE_MEM_EXCLUSIVE:
1602 return is_mem_exclusive(cs);
78608366
PM
1603 case FILE_MEM_HARDWALL:
1604 return is_mem_hardwall(cs);
700fe1ab
PM
1605 case FILE_SCHED_LOAD_BALANCE:
1606 return is_sched_load_balance(cs);
1607 case FILE_MEMORY_MIGRATE:
1608 return is_memory_migrate(cs);
1609 case FILE_MEMORY_PRESSURE_ENABLED:
1610 return cpuset_memory_pressure_enabled;
1611 case FILE_MEMORY_PRESSURE:
1612 return fmeter_getrate(&cs->fmeter);
1613 case FILE_SPREAD_PAGE:
1614 return is_spread_page(cs);
1615 case FILE_SPREAD_SLAB:
1616 return is_spread_slab(cs);
1617 default:
1618 BUG();
1619 }
cf417141
MK
1620
1621 /* Unreachable but makes gcc happy */
1622 return 0;
700fe1ab 1623}
1da177e4 1624
5be7a479
PM
1625static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1626{
1627 struct cpuset *cs = cgroup_cs(cont);
1628 cpuset_filetype_t type = cft->private;
1629 switch (type) {
1630 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1631 return cs->relax_domain_level;
1632 default:
1633 BUG();
1634 }
cf417141
MK
1635
1636 /* Unrechable but makes gcc happy */
1637 return 0;
5be7a479
PM
1638}
1639
1da177e4
LT
1640
1641/*
1642 * for the common functions, 'private' gives the type of file
1643 */
1644
addf2c73
PM
1645static struct cftype files[] = {
1646 {
1647 .name = "cpus",
1648 .read = cpuset_common_file_read,
e3712395
PM
1649 .write_string = cpuset_write_resmask,
1650 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1651 .private = FILE_CPULIST,
1652 },
1653
1654 {
1655 .name = "mems",
1656 .read = cpuset_common_file_read,
e3712395
PM
1657 .write_string = cpuset_write_resmask,
1658 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1659 .private = FILE_MEMLIST,
1660 },
1661
1662 {
1663 .name = "cpu_exclusive",
1664 .read_u64 = cpuset_read_u64,
1665 .write_u64 = cpuset_write_u64,
1666 .private = FILE_CPU_EXCLUSIVE,
1667 },
1668
1669 {
1670 .name = "mem_exclusive",
1671 .read_u64 = cpuset_read_u64,
1672 .write_u64 = cpuset_write_u64,
1673 .private = FILE_MEM_EXCLUSIVE,
1674 },
1675
78608366
PM
1676 {
1677 .name = "mem_hardwall",
1678 .read_u64 = cpuset_read_u64,
1679 .write_u64 = cpuset_write_u64,
1680 .private = FILE_MEM_HARDWALL,
1681 },
1682
addf2c73
PM
1683 {
1684 .name = "sched_load_balance",
1685 .read_u64 = cpuset_read_u64,
1686 .write_u64 = cpuset_write_u64,
1687 .private = FILE_SCHED_LOAD_BALANCE,
1688 },
1689
1690 {
1691 .name = "sched_relax_domain_level",
5be7a479
PM
1692 .read_s64 = cpuset_read_s64,
1693 .write_s64 = cpuset_write_s64,
addf2c73
PM
1694 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1695 },
1696
1697 {
1698 .name = "memory_migrate",
1699 .read_u64 = cpuset_read_u64,
1700 .write_u64 = cpuset_write_u64,
1701 .private = FILE_MEMORY_MIGRATE,
1702 },
1703
1704 {
1705 .name = "memory_pressure",
1706 .read_u64 = cpuset_read_u64,
1707 .write_u64 = cpuset_write_u64,
1708 .private = FILE_MEMORY_PRESSURE,
099fca32 1709 .mode = S_IRUGO,
addf2c73
PM
1710 },
1711
1712 {
1713 .name = "memory_spread_page",
1714 .read_u64 = cpuset_read_u64,
1715 .write_u64 = cpuset_write_u64,
1716 .private = FILE_SPREAD_PAGE,
1717 },
1718
1719 {
1720 .name = "memory_spread_slab",
1721 .read_u64 = cpuset_read_u64,
1722 .write_u64 = cpuset_write_u64,
1723 .private = FILE_SPREAD_SLAB,
1724 },
45b07ef3
PJ
1725};
1726
3e0d98b9
PJ
1727static struct cftype cft_memory_pressure_enabled = {
1728 .name = "memory_pressure_enabled",
700fe1ab
PM
1729 .read_u64 = cpuset_read_u64,
1730 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1731 .private = FILE_MEMORY_PRESSURE_ENABLED,
1732};
1733
8793d854 1734static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1735{
1736 int err;
1737
addf2c73
PM
1738 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1739 if (err)
1da177e4 1740 return err;
8793d854 1741 /* memory_pressure_enabled is in root cpuset only */
addf2c73 1742 if (!cont->parent)
8793d854 1743 err = cgroup_add_file(cont, ss,
addf2c73
PM
1744 &cft_memory_pressure_enabled);
1745 return err;
1da177e4
LT
1746}
1747
8793d854
PM
1748/*
1749 * post_clone() is called at the end of cgroup_clone().
1750 * 'cgroup' was just created automatically as a result of
1751 * a cgroup_clone(), and the current task is about to
1752 * be moved into 'cgroup'.
1753 *
1754 * Currently we refuse to set up the cgroup - thereby
1755 * refusing the task to be entered, and as a result refusing
1756 * the sys_unshare() or clone() which initiated it - if any
1757 * sibling cpusets have exclusive cpus or mem.
1758 *
1759 * If this becomes a problem for some users who wish to
1760 * allow that scenario, then cpuset_post_clone() could be
1761 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2df167a3
PM
1762 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1763 * held.
8793d854
PM
1764 */
1765static void cpuset_post_clone(struct cgroup_subsys *ss,
1766 struct cgroup *cgroup)
1767{
1768 struct cgroup *parent, *child;
1769 struct cpuset *cs, *parent_cs;
1770
1771 parent = cgroup->parent;
1772 list_for_each_entry(child, &parent->children, sibling) {
1773 cs = cgroup_cs(child);
1774 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1775 return;
1776 }
1777 cs = cgroup_cs(cgroup);
1778 parent_cs = cgroup_cs(parent);
1779
1780 cs->mems_allowed = parent_cs->mems_allowed;
300ed6cb 1781 cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
8793d854
PM
1782 return;
1783}
1784
1da177e4
LT
1785/*
1786 * cpuset_create - create a cpuset
2df167a3
PM
1787 * ss: cpuset cgroup subsystem
1788 * cont: control group that the new cpuset will be part of
1da177e4
LT
1789 */
1790
8793d854
PM
1791static struct cgroup_subsys_state *cpuset_create(
1792 struct cgroup_subsys *ss,
1793 struct cgroup *cont)
1da177e4
LT
1794{
1795 struct cpuset *cs;
8793d854 1796 struct cpuset *parent;
1da177e4 1797
8793d854
PM
1798 if (!cont->parent) {
1799 /* This is early initialization for the top cgroup */
1800 top_cpuset.mems_generation = cpuset_mems_generation++;
1801 return &top_cpuset.css;
1802 }
1803 parent = cgroup_cs(cont->parent);
1da177e4
LT
1804 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1805 if (!cs)
8793d854 1806 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1807 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1808 kfree(cs);
1809 return ERR_PTR(-ENOMEM);
1810 }
1da177e4 1811
cf2a473c 1812 cpuset_update_task_memory_state();
1da177e4 1813 cs->flags = 0;
825a46af
PJ
1814 if (is_spread_page(parent))
1815 set_bit(CS_SPREAD_PAGE, &cs->flags);
1816 if (is_spread_slab(parent))
1817 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1818 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1819 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1820 nodes_clear(cs->mems_allowed);
151a4420 1821 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1822 fmeter_init(&cs->fmeter);
1d3504fc 1823 cs->relax_domain_level = -1;
1da177e4
LT
1824
1825 cs->parent = parent;
202f72d5 1826 number_of_cpusets++;
8793d854 1827 return &cs->css ;
1da177e4
LT
1828}
1829
029190c5 1830/*
029190c5
PJ
1831 * If the cpuset being removed has its flag 'sched_load_balance'
1832 * enabled, then simulate turning sched_load_balance off, which
cf417141 1833 * will call async_rebuild_sched_domains().
029190c5
PJ
1834 */
1835
8793d854 1836static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1837{
8793d854 1838 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1839
cf2a473c 1840 cpuset_update_task_memory_state();
029190c5
PJ
1841
1842 if (is_sched_load_balance(cs))
700fe1ab 1843 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
029190c5 1844
202f72d5 1845 number_of_cpusets--;
300ed6cb 1846 free_cpumask_var(cs->cpus_allowed);
8793d854 1847 kfree(cs);
1da177e4
LT
1848}
1849
8793d854
PM
1850struct cgroup_subsys cpuset_subsys = {
1851 .name = "cpuset",
1852 .create = cpuset_create,
cf417141 1853 .destroy = cpuset_destroy,
8793d854
PM
1854 .can_attach = cpuset_can_attach,
1855 .attach = cpuset_attach,
1856 .populate = cpuset_populate,
1857 .post_clone = cpuset_post_clone,
1858 .subsys_id = cpuset_subsys_id,
1859 .early_init = 1,
1860};
1861
c417f024
PJ
1862/*
1863 * cpuset_init_early - just enough so that the calls to
1864 * cpuset_update_task_memory_state() in early init code
1865 * are harmless.
1866 */
1867
1868int __init cpuset_init_early(void)
1869{
300ed6cb
LZ
1870 alloc_bootmem_cpumask_var(&top_cpuset.cpus_allowed);
1871
8793d854 1872 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1873 return 0;
1874}
1875
8793d854 1876
1da177e4
LT
1877/**
1878 * cpuset_init - initialize cpusets at system boot
1879 *
1880 * Description: Initialize top_cpuset and the cpuset internal file system,
1881 **/
1882
1883int __init cpuset_init(void)
1884{
8793d854 1885 int err = 0;
1da177e4 1886
300ed6cb 1887 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1888 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1889
3e0d98b9 1890 fmeter_init(&top_cpuset.fmeter);
151a4420 1891 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1892 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1893 top_cpuset.relax_domain_level = -1;
1da177e4 1894
1da177e4
LT
1895 err = register_filesystem(&cpuset_fs_type);
1896 if (err < 0)
8793d854
PM
1897 return err;
1898
2341d1b6
LZ
1899 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1900 BUG();
1901
202f72d5 1902 number_of_cpusets = 1;
8793d854 1903 return 0;
1da177e4
LT
1904}
1905
956db3ca
CW
1906/**
1907 * cpuset_do_move_task - move a given task to another cpuset
1908 * @tsk: pointer to task_struct the task to move
1909 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1910 *
1911 * Called by cgroup_scan_tasks() for each task in a cgroup.
1912 * Return nonzero to stop the walk through the tasks.
1913 */
9e0c914c
AB
1914static void cpuset_do_move_task(struct task_struct *tsk,
1915 struct cgroup_scanner *scan)
956db3ca
CW
1916{
1917 struct cpuset_hotplug_scanner *chsp;
1918
1919 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1920 cgroup_attach_task(chsp->to, tsk);
1921}
1922
1923/**
1924 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1925 * @from: cpuset in which the tasks currently reside
1926 * @to: cpuset to which the tasks will be moved
1927 *
c8d9c90c
PJ
1928 * Called with cgroup_mutex held
1929 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1930 *
1931 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1932 * calling callback functions for each.
1933 */
1934static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1935{
1936 struct cpuset_hotplug_scanner scan;
1937
1938 scan.scan.cg = from->css.cgroup;
1939 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1940 scan.scan.process_task = cpuset_do_move_task;
1941 scan.scan.heap = NULL;
1942 scan.to = to->css.cgroup;
1943
da5ef6bb 1944 if (cgroup_scan_tasks(&scan.scan))
956db3ca
CW
1945 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1946 "cgroup_scan_tasks failed\n");
1947}
1948
b1aac8bb 1949/*
cf417141 1950 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1951 * or memory nodes, we need to walk over the cpuset hierarchy,
1952 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1953 * last CPU or node from a cpuset, then move the tasks in the empty
1954 * cpuset to its next-highest non-empty parent.
b1aac8bb 1955 *
c8d9c90c
PJ
1956 * Called with cgroup_mutex held
1957 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1958 */
956db3ca
CW
1959static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1960{
1961 struct cpuset *parent;
1962
c8d9c90c
PJ
1963 /*
1964 * The cgroup's css_sets list is in use if there are tasks
1965 * in the cpuset; the list is empty if there are none;
1966 * the cs->css.refcnt seems always 0.
1967 */
956db3ca
CW
1968 if (list_empty(&cs->css.cgroup->css_sets))
1969 return;
b1aac8bb 1970
956db3ca
CW
1971 /*
1972 * Find its next-highest non-empty parent, (top cpuset
1973 * has online cpus, so can't be empty).
1974 */
1975 parent = cs->parent;
300ed6cb 1976 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 1977 nodes_empty(parent->mems_allowed))
956db3ca 1978 parent = parent->parent;
956db3ca
CW
1979
1980 move_member_tasks_to_cpuset(cs, parent);
1981}
1982
1983/*
1984 * Walk the specified cpuset subtree and look for empty cpusets.
1985 * The tasks of such cpuset must be moved to a parent cpuset.
1986 *
2df167a3 1987 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
1988 * cpus_allowed and mems_allowed.
1989 *
1990 * This walk processes the tree from top to bottom, completing one layer
1991 * before dropping down to the next. It always processes a node before
1992 * any of its children.
1993 *
1994 * For now, since we lack memory hot unplug, we'll never see a cpuset
1995 * that has tasks along with an empty 'mems'. But if we did see such
1996 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1997 */
d294eb83 1998static void scan_for_empty_cpusets(struct cpuset *root)
b1aac8bb 1999{
8d1e6266 2000 LIST_HEAD(queue);
956db3ca
CW
2001 struct cpuset *cp; /* scans cpusets being updated */
2002 struct cpuset *child; /* scans child cpusets of cp */
8793d854 2003 struct cgroup *cont;
f9b4fb8d 2004 nodemask_t oldmems;
b1aac8bb 2005
956db3ca
CW
2006 list_add_tail((struct list_head *)&root->stack_list, &queue);
2007
956db3ca 2008 while (!list_empty(&queue)) {
8d1e6266 2009 cp = list_first_entry(&queue, struct cpuset, stack_list);
956db3ca
CW
2010 list_del(queue.next);
2011 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2012 child = cgroup_cs(cont);
2013 list_add_tail(&child->stack_list, &queue);
2014 }
b4501295
PJ
2015
2016 /* Continue past cpusets with all cpus, mems online */
300ed6cb 2017 if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
b4501295
PJ
2018 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2019 continue;
2020
f9b4fb8d
MX
2021 oldmems = cp->mems_allowed;
2022
956db3ca 2023 /* Remove offline cpus and mems from this cpuset. */
b4501295 2024 mutex_lock(&callback_mutex);
300ed6cb
LZ
2025 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2026 cpu_online_mask);
956db3ca
CW
2027 nodes_and(cp->mems_allowed, cp->mems_allowed,
2028 node_states[N_HIGH_MEMORY]);
b4501295
PJ
2029 mutex_unlock(&callback_mutex);
2030
2031 /* Move tasks from the empty cpuset to a parent */
300ed6cb 2032 if (cpumask_empty(cp->cpus_allowed) ||
b4501295 2033 nodes_empty(cp->mems_allowed))
956db3ca 2034 remove_tasks_in_empty_cpuset(cp);
f9b4fb8d 2035 else {
4e74339a 2036 update_tasks_cpumask(cp, NULL);
f9b4fb8d
MX
2037 update_tasks_nodemask(cp, &oldmems);
2038 }
b1aac8bb
PJ
2039 }
2040}
2041
4c4d50f7
PJ
2042/*
2043 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2044 * period. This is necessary in order to make cpusets transparent
2045 * (of no affect) on systems that are actively using CPU hotplug
2046 * but making no active use of cpusets.
2047 *
38837fc7
PJ
2048 * This routine ensures that top_cpuset.cpus_allowed tracks
2049 * cpu_online_map on each CPU hotplug (cpuhp) event.
cf417141
MK
2050 *
2051 * Called within get_online_cpus(). Needs to call cgroup_lock()
2052 * before calling generate_sched_domains().
4c4d50f7 2053 */
cf417141 2054static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
029190c5 2055 unsigned long phase, void *unused_cpu)
4c4d50f7 2056{
cf417141 2057 struct sched_domain_attr *attr;
6af866af 2058 struct cpumask *doms;
cf417141
MK
2059 int ndoms;
2060
3e84050c 2061 switch (phase) {
3e84050c
DA
2062 case CPU_ONLINE:
2063 case CPU_ONLINE_FROZEN:
2064 case CPU_DEAD:
2065 case CPU_DEAD_FROZEN:
3e84050c 2066 break;
cf417141 2067
3e84050c 2068 default:
ac076758 2069 return NOTIFY_DONE;
3e84050c 2070 }
ac076758 2071
cf417141 2072 cgroup_lock();
300ed6cb 2073 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
cf417141
MK
2074 scan_for_empty_cpusets(&top_cpuset);
2075 ndoms = generate_sched_domains(&doms, &attr);
2076 cgroup_unlock();
2077
2078 /* Have scheduler rebuild the domains */
2079 partition_sched_domains(ndoms, doms, attr);
2080
3e84050c 2081 return NOTIFY_OK;
4c4d50f7 2082}
4c4d50f7 2083
b1aac8bb 2084#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2085/*
0e1e7c7a 2086 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
cf417141
MK
2087 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2088 * See also the previous routine cpuset_track_online_cpus().
38837fc7 2089 */
f481891f
MX
2090static int cpuset_track_online_nodes(struct notifier_block *self,
2091 unsigned long action, void *arg)
38837fc7 2092{
cf417141 2093 cgroup_lock();
f481891f
MX
2094 switch (action) {
2095 case MEM_ONLINE:
2096 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2097 break;
2098 case MEM_OFFLINE:
2099 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2100 scan_for_empty_cpusets(&top_cpuset);
2101 break;
2102 default:
2103 break;
2104 }
cf417141 2105 cgroup_unlock();
f481891f 2106 return NOTIFY_OK;
38837fc7
PJ
2107}
2108#endif
2109
1da177e4
LT
2110/**
2111 * cpuset_init_smp - initialize cpus_allowed
2112 *
2113 * Description: Finish top cpuset after cpu, node maps are initialized
2114 **/
2115
2116void __init cpuset_init_smp(void)
2117{
300ed6cb 2118 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
0e1e7c7a 2119 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7 2120
cf417141 2121 hotcpu_notifier(cpuset_track_online_cpus, 0);
f481891f 2122 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
f90d4118
MX
2123
2124 cpuset_wq = create_singlethread_workqueue("cpuset");
2125 BUG_ON(!cpuset_wq);
1da177e4
LT
2126}
2127
2128/**
1da177e4
LT
2129 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2130 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2131 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2132 *
300ed6cb 2133 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4
LT
2134 * attached to the specified @tsk. Guaranteed to return some non-empty
2135 * subset of cpu_online_map, even if this means going outside the
2136 * tasks cpuset.
2137 **/
2138
6af866af 2139void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2140{
3d3f26a7 2141 mutex_lock(&callback_mutex);
f9a86fcb 2142 cpuset_cpus_allowed_locked(tsk, pmask);
470fd646 2143 mutex_unlock(&callback_mutex);
470fd646
CW
2144}
2145
2146/**
2147 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2df167a3 2148 * Must be called with callback_mutex held.
470fd646 2149 **/
6af866af 2150void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
470fd646 2151{
909d75a3 2152 task_lock(tsk);
f9a86fcb 2153 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2154 task_unlock(tsk);
1da177e4
LT
2155}
2156
2157void cpuset_init_current_mems_allowed(void)
2158{
f9a86fcb 2159 nodes_setall(current->mems_allowed);
1da177e4
LT
2160}
2161
909d75a3
PJ
2162/**
2163 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2164 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2165 *
2166 * Description: Returns the nodemask_t mems_allowed of the cpuset
2167 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 2168 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
2169 * tasks cpuset.
2170 **/
2171
2172nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2173{
2174 nodemask_t mask;
2175
3d3f26a7 2176 mutex_lock(&callback_mutex);
909d75a3 2177 task_lock(tsk);
8793d854 2178 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2179 task_unlock(tsk);
3d3f26a7 2180 mutex_unlock(&callback_mutex);
909d75a3
PJ
2181
2182 return mask;
2183}
2184
d9fd8a6d 2185/**
19770b32
MG
2186 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2187 * @nodemask: the nodemask to be checked
d9fd8a6d 2188 *
19770b32 2189 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2190 */
19770b32 2191int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2192{
19770b32 2193 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2194}
2195
9bf2229f 2196/*
78608366
PM
2197 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2198 * mem_hardwall ancestor to the specified cpuset. Call holding
2199 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2200 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2201 */
78608366 2202static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2203{
78608366 2204 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2205 cs = cs->parent;
2206 return cs;
2207}
2208
d9fd8a6d 2209/**
02a0e53d 2210 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
9bf2229f 2211 * @z: is this zone on an allowed node?
02a0e53d 2212 * @gfp_mask: memory allocation flags
d9fd8a6d 2213 *
02a0e53d
PJ
2214 * If we're in interrupt, yes, we can always allocate. If
2215 * __GFP_THISNODE is set, yes, we can always allocate. If zone
9bf2229f
PJ
2216 * z's node is in our tasks mems_allowed, yes. If it's not a
2217 * __GFP_HARDWALL request and this zone's nodes is in the nearest
78608366 2218 * hardwalled cpuset ancestor to this tasks cpuset, yes.
c596d9f3
DR
2219 * If the task has been OOM killed and has access to memory reserves
2220 * as specified by the TIF_MEMDIE flag, yes.
9bf2229f
PJ
2221 * Otherwise, no.
2222 *
02a0e53d
PJ
2223 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2224 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2225 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2226 * from an enclosing cpuset.
2227 *
2228 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2229 * hardwall cpusets, and never sleeps.
2230 *
2231 * The __GFP_THISNODE placement logic is really handled elsewhere,
2232 * by forcibly using a zonelist starting at a specified node, and by
2233 * (in get_page_from_freelist()) refusing to consider the zones for
2234 * any node on the zonelist except the first. By the time any such
2235 * calls get to this routine, we should just shut up and say 'yes'.
2236 *
9bf2229f 2237 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2238 * and do not allow allocations outside the current tasks cpuset
2239 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2240 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2241 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2242 *
02a0e53d
PJ
2243 * Scanning up parent cpusets requires callback_mutex. The
2244 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2245 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2246 * current tasks mems_allowed came up empty on the first pass over
2247 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2248 * cpuset are short of memory, might require taking the callback_mutex
2249 * mutex.
9bf2229f 2250 *
36be57ff 2251 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2252 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2253 * so no allocation on a node outside the cpuset is allowed (unless
2254 * in interrupt, of course).
36be57ff
PJ
2255 *
2256 * The second pass through get_page_from_freelist() doesn't even call
2257 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2258 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2259 * in alloc_flags. That logic and the checks below have the combined
2260 * affect that:
9bf2229f
PJ
2261 * in_interrupt - any node ok (current task context irrelevant)
2262 * GFP_ATOMIC - any node ok
c596d9f3 2263 * TIF_MEMDIE - any node ok
78608366 2264 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2265 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2266 *
2267 * Rule:
02a0e53d 2268 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2269 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2270 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2271 */
9bf2229f 2272
02a0e53d 2273int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
1da177e4 2274{
9bf2229f
PJ
2275 int node; /* node that zone z is on */
2276 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2277 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2278
9b819d20 2279 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2280 return 1;
89fa3024 2281 node = zone_to_nid(z);
92d1dbd2 2282 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2283 if (node_isset(node, current->mems_allowed))
2284 return 1;
c596d9f3
DR
2285 /*
2286 * Allow tasks that have access to memory reserves because they have
2287 * been OOM killed to get memory anywhere.
2288 */
2289 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2290 return 1;
9bf2229f
PJ
2291 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2292 return 0;
2293
5563e770
BP
2294 if (current->flags & PF_EXITING) /* Let dying task have memory */
2295 return 1;
2296
9bf2229f 2297 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2298 mutex_lock(&callback_mutex);
053199ed 2299
053199ed 2300 task_lock(current);
78608366 2301 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2302 task_unlock(current);
2303
9bf2229f 2304 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2305 mutex_unlock(&callback_mutex);
9bf2229f 2306 return allowed;
1da177e4
LT
2307}
2308
02a0e53d
PJ
2309/*
2310 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2311 * @z: is this zone on an allowed node?
2312 * @gfp_mask: memory allocation flags
2313 *
2314 * If we're in interrupt, yes, we can always allocate.
2315 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
c596d9f3
DR
2316 * z's node is in our tasks mems_allowed, yes. If the task has been
2317 * OOM killed and has access to memory reserves as specified by the
2318 * TIF_MEMDIE flag, yes. Otherwise, no.
02a0e53d
PJ
2319 *
2320 * The __GFP_THISNODE placement logic is really handled elsewhere,
2321 * by forcibly using a zonelist starting at a specified node, and by
2322 * (in get_page_from_freelist()) refusing to consider the zones for
2323 * any node on the zonelist except the first. By the time any such
2324 * calls get to this routine, we should just shut up and say 'yes'.
2325 *
2326 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2327 * this variant requires that the zone be in the current tasks
2328 * mems_allowed or that we're in interrupt. It does not scan up the
2329 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2330 * It never sleeps.
2331 */
2332
2333int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2334{
2335 int node; /* node that zone z is on */
2336
2337 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2338 return 1;
2339 node = zone_to_nid(z);
2340 if (node_isset(node, current->mems_allowed))
2341 return 1;
dedf8b79
DW
2342 /*
2343 * Allow tasks that have access to memory reserves because they have
2344 * been OOM killed to get memory anywhere.
2345 */
2346 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2347 return 1;
02a0e53d
PJ
2348 return 0;
2349}
2350
505970b9
PJ
2351/**
2352 * cpuset_lock - lock out any changes to cpuset structures
2353 *
3d3f26a7 2354 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2355 * from being changed while it scans the tasklist looking for a
3d3f26a7 2356 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2357 * cpuset_lock() routine, so the oom code can lock it, before
2358 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2359 * must be taken inside callback_mutex.
505970b9
PJ
2360 */
2361
2362void cpuset_lock(void)
2363{
3d3f26a7 2364 mutex_lock(&callback_mutex);
505970b9
PJ
2365}
2366
2367/**
2368 * cpuset_unlock - release lock on cpuset changes
2369 *
2370 * Undo the lock taken in a previous cpuset_lock() call.
2371 */
2372
2373void cpuset_unlock(void)
2374{
3d3f26a7 2375 mutex_unlock(&callback_mutex);
505970b9
PJ
2376}
2377
825a46af
PJ
2378/**
2379 * cpuset_mem_spread_node() - On which node to begin search for a page
2380 *
2381 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2382 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2383 * and if the memory allocation used cpuset_mem_spread_node()
2384 * to determine on which node to start looking, as it will for
2385 * certain page cache or slab cache pages such as used for file
2386 * system buffers and inode caches, then instead of starting on the
2387 * local node to look for a free page, rather spread the starting
2388 * node around the tasks mems_allowed nodes.
2389 *
2390 * We don't have to worry about the returned node being offline
2391 * because "it can't happen", and even if it did, it would be ok.
2392 *
2393 * The routines calling guarantee_online_mems() are careful to
2394 * only set nodes in task->mems_allowed that are online. So it
2395 * should not be possible for the following code to return an
2396 * offline node. But if it did, that would be ok, as this routine
2397 * is not returning the node where the allocation must be, only
2398 * the node where the search should start. The zonelist passed to
2399 * __alloc_pages() will include all nodes. If the slab allocator
2400 * is passed an offline node, it will fall back to the local node.
2401 * See kmem_cache_alloc_node().
2402 */
2403
2404int cpuset_mem_spread_node(void)
2405{
2406 int node;
2407
2408 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2409 if (node == MAX_NUMNODES)
2410 node = first_node(current->mems_allowed);
2411 current->cpuset_mem_spread_rotor = node;
2412 return node;
2413}
2414EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2415
ef08e3b4 2416/**
bbe373f2
DR
2417 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2418 * @tsk1: pointer to task_struct of some task.
2419 * @tsk2: pointer to task_struct of some other task.
2420 *
2421 * Description: Return true if @tsk1's mems_allowed intersects the
2422 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2423 * one of the task's memory usage might impact the memory available
2424 * to the other.
ef08e3b4
PJ
2425 **/
2426
bbe373f2
DR
2427int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2428 const struct task_struct *tsk2)
ef08e3b4 2429{
bbe373f2 2430 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2431}
2432
75aa1994
DR
2433/**
2434 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2435 * @task: pointer to task_struct of some task.
2436 *
2437 * Description: Prints @task's name, cpuset name, and cached copy of its
2438 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2439 * dereferencing task_cs(task).
2440 */
2441void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2442{
2443 struct dentry *dentry;
2444
2445 dentry = task_cs(tsk)->css.cgroup->dentry;
2446 spin_lock(&cpuset_buffer_lock);
2447 snprintf(cpuset_name, CPUSET_NAME_LEN,
2448 dentry ? (const char *)dentry->d_name.name : "/");
2449 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2450 tsk->mems_allowed);
2451 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2452 tsk->comm, cpuset_name, cpuset_nodelist);
2453 spin_unlock(&cpuset_buffer_lock);
2454}
2455
3e0d98b9
PJ
2456/*
2457 * Collection of memory_pressure is suppressed unless
2458 * this flag is enabled by writing "1" to the special
2459 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2460 */
2461
c5b2aff8 2462int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2463
2464/**
2465 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2466 *
2467 * Keep a running average of the rate of synchronous (direct)
2468 * page reclaim efforts initiated by tasks in each cpuset.
2469 *
2470 * This represents the rate at which some task in the cpuset
2471 * ran low on memory on all nodes it was allowed to use, and
2472 * had to enter the kernels page reclaim code in an effort to
2473 * create more free memory by tossing clean pages or swapping
2474 * or writing dirty pages.
2475 *
2476 * Display to user space in the per-cpuset read-only file
2477 * "memory_pressure". Value displayed is an integer
2478 * representing the recent rate of entry into the synchronous
2479 * (direct) page reclaim by any task attached to the cpuset.
2480 **/
2481
2482void __cpuset_memory_pressure_bump(void)
2483{
3e0d98b9 2484 task_lock(current);
8793d854 2485 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2486 task_unlock(current);
2487}
2488
8793d854 2489#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2490/*
2491 * proc_cpuset_show()
2492 * - Print tasks cpuset path into seq_file.
2493 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2494 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2495 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2496 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2497 * anyway.
1da177e4 2498 */
029190c5 2499static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2500{
13b41b09 2501 struct pid *pid;
1da177e4
LT
2502 struct task_struct *tsk;
2503 char *buf;
8793d854 2504 struct cgroup_subsys_state *css;
99f89551 2505 int retval;
1da177e4 2506
99f89551 2507 retval = -ENOMEM;
1da177e4
LT
2508 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2509 if (!buf)
99f89551
EB
2510 goto out;
2511
2512 retval = -ESRCH;
13b41b09
EB
2513 pid = m->private;
2514 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2515 if (!tsk)
2516 goto out_free;
1da177e4 2517
99f89551 2518 retval = -EINVAL;
8793d854
PM
2519 cgroup_lock();
2520 css = task_subsys_state(tsk, cpuset_subsys_id);
2521 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2522 if (retval < 0)
99f89551 2523 goto out_unlock;
1da177e4
LT
2524 seq_puts(m, buf);
2525 seq_putc(m, '\n');
99f89551 2526out_unlock:
8793d854 2527 cgroup_unlock();
99f89551
EB
2528 put_task_struct(tsk);
2529out_free:
1da177e4 2530 kfree(buf);
99f89551 2531out:
1da177e4
LT
2532 return retval;
2533}
2534
2535static int cpuset_open(struct inode *inode, struct file *file)
2536{
13b41b09
EB
2537 struct pid *pid = PROC_I(inode)->pid;
2538 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2539}
2540
9a32144e 2541const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2542 .open = cpuset_open,
2543 .read = seq_read,
2544 .llseek = seq_lseek,
2545 .release = single_release,
2546};
8793d854 2547#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2548
2549/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2550void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2551{
2552 seq_printf(m, "Cpus_allowed:\t");
30e8e136 2553 seq_cpumask(m, &task->cpus_allowed);
df5f8314 2554 seq_printf(m, "\n");
39106dcf 2555 seq_printf(m, "Cpus_allowed_list:\t");
30e8e136 2556 seq_cpumask_list(m, &task->cpus_allowed);
39106dcf 2557 seq_printf(m, "\n");
df5f8314 2558 seq_printf(m, "Mems_allowed:\t");
30e8e136 2559 seq_nodemask(m, &task->mems_allowed);
df5f8314 2560 seq_printf(m, "\n");
39106dcf 2561 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2562 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2563 seq_printf(m, "\n");
1da177e4 2564}