cgroup: attach cgroup_open_file to all cgroup files
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
202f72d5
PJ
64/*
65 * Tracks how many cpusets are currently defined in system.
66 * When there is only one cpuset (the root cpuset) we can
67 * short circuit some hooks.
68 */
7edc5962 69int number_of_cpusets __read_mostly;
202f72d5 70
3e0d98b9
PJ
71/* See "Frequency meter" comments, below. */
72
73struct fmeter {
74 int cnt; /* unprocessed events count */
75 int val; /* most recent output value */
76 time_t time; /* clock (secs) when val computed */
77 spinlock_t lock; /* guards read or write of above */
78};
79
1da177e4 80struct cpuset {
8793d854
PM
81 struct cgroup_subsys_state css;
82
1da177e4 83 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 84 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
85 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
86
33ad801d
LZ
87 /*
88 * This is old Memory Nodes tasks took on.
89 *
90 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
91 * - A new cpuset's old_mems_allowed is initialized when some
92 * task is moved into it.
93 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
94 * cpuset.mems_allowed and have tasks' nodemask updated, and
95 * then old_mems_allowed is updated to mems_allowed.
96 */
97 nodemask_t old_mems_allowed;
98
3e0d98b9 99 struct fmeter fmeter; /* memory_pressure filter */
029190c5 100
452477fa
TH
101 /*
102 * Tasks are being attached to this cpuset. Used to prevent
103 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
104 */
105 int attach_in_progress;
106
029190c5
PJ
107 /* partition number for rebuild_sched_domains() */
108 int pn;
956db3ca 109
1d3504fc
HS
110 /* for custom sched domain */
111 int relax_domain_level;
1da177e4
LT
112};
113
a7c6d554 114static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
8793d854 115{
a7c6d554 116 return css ? container_of(css, struct cpuset, css) : NULL;
8793d854
PM
117}
118
119/* Retrieve the cpuset for a task */
120static inline struct cpuset *task_cs(struct task_struct *task)
121{
a7c6d554 122 return css_cs(task_css(task, cpuset_subsys_id));
8793d854 123}
8793d854 124
c9710d80 125static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 126{
63876986 127 return css_cs(css_parent(&cs->css));
c431069f
TH
128}
129
b246272e
DR
130#ifdef CONFIG_NUMA
131static inline bool task_has_mempolicy(struct task_struct *task)
132{
133 return task->mempolicy;
134}
135#else
136static inline bool task_has_mempolicy(struct task_struct *task)
137{
138 return false;
139}
140#endif
141
142
1da177e4
LT
143/* bits in struct cpuset flags field */
144typedef enum {
efeb77b2 145 CS_ONLINE,
1da177e4
LT
146 CS_CPU_EXCLUSIVE,
147 CS_MEM_EXCLUSIVE,
78608366 148 CS_MEM_HARDWALL,
45b07ef3 149 CS_MEMORY_MIGRATE,
029190c5 150 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
151 CS_SPREAD_PAGE,
152 CS_SPREAD_SLAB,
1da177e4
LT
153} cpuset_flagbits_t;
154
155/* convenient tests for these bits */
efeb77b2
TH
156static inline bool is_cpuset_online(const struct cpuset *cs)
157{
158 return test_bit(CS_ONLINE, &cs->flags);
159}
160
1da177e4
LT
161static inline int is_cpu_exclusive(const struct cpuset *cs)
162{
7b5b9ef0 163 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
164}
165
166static inline int is_mem_exclusive(const struct cpuset *cs)
167{
7b5b9ef0 168 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
169}
170
78608366
PM
171static inline int is_mem_hardwall(const struct cpuset *cs)
172{
173 return test_bit(CS_MEM_HARDWALL, &cs->flags);
174}
175
029190c5
PJ
176static inline int is_sched_load_balance(const struct cpuset *cs)
177{
178 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
179}
180
45b07ef3
PJ
181static inline int is_memory_migrate(const struct cpuset *cs)
182{
7b5b9ef0 183 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
184}
185
825a46af
PJ
186static inline int is_spread_page(const struct cpuset *cs)
187{
188 return test_bit(CS_SPREAD_PAGE, &cs->flags);
189}
190
191static inline int is_spread_slab(const struct cpuset *cs)
192{
193 return test_bit(CS_SPREAD_SLAB, &cs->flags);
194}
195
1da177e4 196static struct cpuset top_cpuset = {
efeb77b2
TH
197 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
198 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
199};
200
ae8086ce
TH
201/**
202 * cpuset_for_each_child - traverse online children of a cpuset
203 * @child_cs: loop cursor pointing to the current child
492eb21b 204 * @pos_css: used for iteration
ae8086ce
TH
205 * @parent_cs: target cpuset to walk children of
206 *
207 * Walk @child_cs through the online children of @parent_cs. Must be used
208 * with RCU read locked.
209 */
492eb21b
TH
210#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
211 css_for_each_child((pos_css), &(parent_cs)->css) \
212 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 213
fc560a26
TH
214/**
215 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
216 * @des_cs: loop cursor pointing to the current descendant
492eb21b 217 * @pos_css: used for iteration
fc560a26
TH
218 * @root_cs: target cpuset to walk ancestor of
219 *
220 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b 221 * with RCU read locked. The caller may modify @pos_css by calling
bd8815a6
TH
222 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
223 * iteration and the first node to be visited.
fc560a26 224 */
492eb21b
TH
225#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
226 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
227 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 228
1da177e4 229/*
5d21cc2d
TH
230 * There are two global mutexes guarding cpuset structures - cpuset_mutex
231 * and callback_mutex. The latter may nest inside the former. We also
232 * require taking task_lock() when dereferencing a task's cpuset pointer.
233 * See "The task_lock() exception", at the end of this comment.
234 *
235 * A task must hold both mutexes to modify cpusets. If a task holds
236 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
237 * is the only task able to also acquire callback_mutex and be able to
238 * modify cpusets. It can perform various checks on the cpuset structure
239 * first, knowing nothing will change. It can also allocate memory while
240 * just holding cpuset_mutex. While it is performing these checks, various
241 * callback routines can briefly acquire callback_mutex to query cpusets.
242 * Once it is ready to make the changes, it takes callback_mutex, blocking
243 * everyone else.
053199ed
PJ
244 *
245 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 246 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
247 * from one of the callbacks into the cpuset code from within
248 * __alloc_pages().
249 *
3d3f26a7 250 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
251 * access to cpusets.
252 *
58568d2a
MX
253 * Now, the task_struct fields mems_allowed and mempolicy may be changed
254 * by other task, we use alloc_lock in the task_struct fields to protect
255 * them.
053199ed 256 *
3d3f26a7 257 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
258 * small pieces of code, such as when reading out possibly multi-word
259 * cpumasks and nodemasks.
260 *
2df167a3
PM
261 * Accessing a task's cpuset should be done in accordance with the
262 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
263 */
264
5d21cc2d 265static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 266static DEFINE_MUTEX(callback_mutex);
4247bdc6 267
3a5a6d0c
TH
268/*
269 * CPU / memory hotplug is handled asynchronously.
270 */
271static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
272static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
273
e44193d3
LZ
274static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
275
cf417141
MK
276/*
277 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 278 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
279 * silently switch it to mount "cgroup" instead
280 */
f7e83571
AV
281static struct dentry *cpuset_mount(struct file_system_type *fs_type,
282 int flags, const char *unused_dev_name, void *data)
1da177e4 283{
8793d854 284 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 285 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
286 if (cgroup_fs) {
287 char mountopts[] =
288 "cpuset,noprefix,"
289 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
290 ret = cgroup_fs->mount(cgroup_fs, flags,
291 unused_dev_name, mountopts);
8793d854
PM
292 put_filesystem(cgroup_fs);
293 }
294 return ret;
1da177e4
LT
295}
296
297static struct file_system_type cpuset_fs_type = {
298 .name = "cpuset",
f7e83571 299 .mount = cpuset_mount,
1da177e4
LT
300};
301
1da177e4 302/*
300ed6cb 303 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 304 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
305 * until we find one that does have some online cpus. The top
306 * cpuset always has some cpus online.
1da177e4
LT
307 *
308 * One way or another, we guarantee to return some non-empty subset
5f054e31 309 * of cpu_online_mask.
1da177e4 310 *
3d3f26a7 311 * Call with callback_mutex held.
1da177e4 312 */
c9710d80 313static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 314{
40df2deb 315 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 316 cs = parent_cs(cs);
40df2deb 317 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4
LT
318}
319
320/*
321 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
322 * are online, with memory. If none are online with memory, walk
323 * up the cpuset hierarchy until we find one that does have some
40df2deb 324 * online mems. The top cpuset always has some mems online.
1da177e4
LT
325 *
326 * One way or another, we guarantee to return some non-empty subset
38d7bee9 327 * of node_states[N_MEMORY].
1da177e4 328 *
3d3f26a7 329 * Call with callback_mutex held.
1da177e4 330 */
c9710d80 331static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 332{
40df2deb 333 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
c431069f 334 cs = parent_cs(cs);
40df2deb 335 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
1da177e4
LT
336}
337
f3b39d47
MX
338/*
339 * update task's spread flag if cpuset's page/slab spread flag is set
340 *
5d21cc2d 341 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
342 */
343static void cpuset_update_task_spread_flag(struct cpuset *cs,
344 struct task_struct *tsk)
345{
346 if (is_spread_page(cs))
347 tsk->flags |= PF_SPREAD_PAGE;
348 else
349 tsk->flags &= ~PF_SPREAD_PAGE;
350 if (is_spread_slab(cs))
351 tsk->flags |= PF_SPREAD_SLAB;
352 else
353 tsk->flags &= ~PF_SPREAD_SLAB;
354}
355
1da177e4
LT
356/*
357 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
358 *
359 * One cpuset is a subset of another if all its allowed CPUs and
360 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 361 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
362 */
363
364static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
365{
300ed6cb 366 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
367 nodes_subset(p->mems_allowed, q->mems_allowed) &&
368 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
369 is_mem_exclusive(p) <= is_mem_exclusive(q);
370}
371
645fcc9d
LZ
372/**
373 * alloc_trial_cpuset - allocate a trial cpuset
374 * @cs: the cpuset that the trial cpuset duplicates
375 */
c9710d80 376static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 377{
300ed6cb
LZ
378 struct cpuset *trial;
379
380 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
381 if (!trial)
382 return NULL;
383
384 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
385 kfree(trial);
386 return NULL;
387 }
388 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
389
390 return trial;
645fcc9d
LZ
391}
392
393/**
394 * free_trial_cpuset - free the trial cpuset
395 * @trial: the trial cpuset to be freed
396 */
397static void free_trial_cpuset(struct cpuset *trial)
398{
300ed6cb 399 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
400 kfree(trial);
401}
402
1da177e4
LT
403/*
404 * validate_change() - Used to validate that any proposed cpuset change
405 * follows the structural rules for cpusets.
406 *
407 * If we replaced the flag and mask values of the current cpuset
408 * (cur) with those values in the trial cpuset (trial), would
409 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 410 * cpuset_mutex held.
1da177e4
LT
411 *
412 * 'cur' is the address of an actual, in-use cpuset. Operations
413 * such as list traversal that depend on the actual address of the
414 * cpuset in the list must use cur below, not trial.
415 *
416 * 'trial' is the address of bulk structure copy of cur, with
417 * perhaps one or more of the fields cpus_allowed, mems_allowed,
418 * or flags changed to new, trial values.
419 *
420 * Return 0 if valid, -errno if not.
421 */
422
c9710d80 423static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 424{
492eb21b 425 struct cgroup_subsys_state *css;
1da177e4 426 struct cpuset *c, *par;
ae8086ce
TH
427 int ret;
428
429 rcu_read_lock();
1da177e4
LT
430
431 /* Each of our child cpusets must be a subset of us */
ae8086ce 432 ret = -EBUSY;
492eb21b 433 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
434 if (!is_cpuset_subset(c, trial))
435 goto out;
1da177e4
LT
436
437 /* Remaining checks don't apply to root cpuset */
ae8086ce 438 ret = 0;
69604067 439 if (cur == &top_cpuset)
ae8086ce 440 goto out;
1da177e4 441
c431069f 442 par = parent_cs(cur);
69604067 443
1da177e4 444 /* We must be a subset of our parent cpuset */
ae8086ce 445 ret = -EACCES;
1da177e4 446 if (!is_cpuset_subset(trial, par))
ae8086ce 447 goto out;
1da177e4 448
2df167a3
PM
449 /*
450 * If either I or some sibling (!= me) is exclusive, we can't
451 * overlap
452 */
ae8086ce 453 ret = -EINVAL;
492eb21b 454 cpuset_for_each_child(c, css, par) {
1da177e4
LT
455 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
456 c != cur &&
300ed6cb 457 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 458 goto out;
1da177e4
LT
459 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
460 c != cur &&
461 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 462 goto out;
1da177e4
LT
463 }
464
452477fa
TH
465 /*
466 * Cpusets with tasks - existing or newly being attached - can't
1c09b195 467 * be changed to have empty cpus_allowed or mems_allowed.
452477fa 468 */
ae8086ce 469 ret = -ENOSPC;
1c09b195
LZ
470 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress)) {
471 if (!cpumask_empty(cur->cpus_allowed) &&
472 cpumask_empty(trial->cpus_allowed))
473 goto out;
474 if (!nodes_empty(cur->mems_allowed) &&
475 nodes_empty(trial->mems_allowed))
476 goto out;
477 }
020958b6 478
ae8086ce
TH
479 ret = 0;
480out:
481 rcu_read_unlock();
482 return ret;
1da177e4
LT
483}
484
db7f47cf 485#ifdef CONFIG_SMP
029190c5 486/*
cf417141 487 * Helper routine for generate_sched_domains().
029190c5
PJ
488 * Do cpusets a, b have overlapping cpus_allowed masks?
489 */
029190c5
PJ
490static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
491{
300ed6cb 492 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
493}
494
1d3504fc
HS
495static void
496update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
497{
1d3504fc
HS
498 if (dattr->relax_domain_level < c->relax_domain_level)
499 dattr->relax_domain_level = c->relax_domain_level;
500 return;
501}
502
fc560a26
TH
503static void update_domain_attr_tree(struct sched_domain_attr *dattr,
504 struct cpuset *root_cs)
f5393693 505{
fc560a26 506 struct cpuset *cp;
492eb21b 507 struct cgroup_subsys_state *pos_css;
f5393693 508
fc560a26 509 rcu_read_lock();
492eb21b 510 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
bd8815a6
TH
511 if (cp == root_cs)
512 continue;
513
fc560a26
TH
514 /* skip the whole subtree if @cp doesn't have any CPU */
515 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 516 pos_css = css_rightmost_descendant(pos_css);
f5393693 517 continue;
fc560a26 518 }
f5393693
LJ
519
520 if (is_sched_load_balance(cp))
521 update_domain_attr(dattr, cp);
f5393693 522 }
fc560a26 523 rcu_read_unlock();
f5393693
LJ
524}
525
029190c5 526/*
cf417141
MK
527 * generate_sched_domains()
528 *
529 * This function builds a partial partition of the systems CPUs
530 * A 'partial partition' is a set of non-overlapping subsets whose
531 * union is a subset of that set.
0a0fca9d 532 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
533 * partition_sched_domains() routine, which will rebuild the scheduler's
534 * load balancing domains (sched domains) as specified by that partial
535 * partition.
029190c5 536 *
45ce80fb 537 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
538 * for a background explanation of this.
539 *
540 * Does not return errors, on the theory that the callers of this
541 * routine would rather not worry about failures to rebuild sched
542 * domains when operating in the severe memory shortage situations
543 * that could cause allocation failures below.
544 *
5d21cc2d 545 * Must be called with cpuset_mutex held.
029190c5
PJ
546 *
547 * The three key local variables below are:
aeed6824 548 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
549 * top-down scan of all cpusets. This scan loads a pointer
550 * to each cpuset marked is_sched_load_balance into the
551 * array 'csa'. For our purposes, rebuilding the schedulers
552 * sched domains, we can ignore !is_sched_load_balance cpusets.
553 * csa - (for CpuSet Array) Array of pointers to all the cpusets
554 * that need to be load balanced, for convenient iterative
555 * access by the subsequent code that finds the best partition,
556 * i.e the set of domains (subsets) of CPUs such that the
557 * cpus_allowed of every cpuset marked is_sched_load_balance
558 * is a subset of one of these domains, while there are as
559 * many such domains as possible, each as small as possible.
560 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 561 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
562 * convenient format, that can be easily compared to the prior
563 * value to determine what partition elements (sched domains)
564 * were changed (added or removed.)
565 *
566 * Finding the best partition (set of domains):
567 * The triple nested loops below over i, j, k scan over the
568 * load balanced cpusets (using the array of cpuset pointers in
569 * csa[]) looking for pairs of cpusets that have overlapping
570 * cpus_allowed, but which don't have the same 'pn' partition
571 * number and gives them in the same partition number. It keeps
572 * looping on the 'restart' label until it can no longer find
573 * any such pairs.
574 *
575 * The union of the cpus_allowed masks from the set of
576 * all cpusets having the same 'pn' value then form the one
577 * element of the partition (one sched domain) to be passed to
578 * partition_sched_domains().
579 */
acc3f5d7 580static int generate_sched_domains(cpumask_var_t **domains,
cf417141 581 struct sched_domain_attr **attributes)
029190c5 582{
029190c5
PJ
583 struct cpuset *cp; /* scans q */
584 struct cpuset **csa; /* array of all cpuset ptrs */
585 int csn; /* how many cpuset ptrs in csa so far */
586 int i, j, k; /* indices for partition finding loops */
acc3f5d7 587 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 588 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 589 int ndoms = 0; /* number of sched domains in result */
6af866af 590 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 591 struct cgroup_subsys_state *pos_css;
029190c5 592
029190c5 593 doms = NULL;
1d3504fc 594 dattr = NULL;
cf417141 595 csa = NULL;
029190c5
PJ
596
597 /* Special case for the 99% of systems with one, full, sched domain */
598 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
599 ndoms = 1;
600 doms = alloc_sched_domains(ndoms);
029190c5 601 if (!doms)
cf417141
MK
602 goto done;
603
1d3504fc
HS
604 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
605 if (dattr) {
606 *dattr = SD_ATTR_INIT;
93a65575 607 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 608 }
acc3f5d7 609 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 610
cf417141 611 goto done;
029190c5
PJ
612 }
613
029190c5
PJ
614 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
615 if (!csa)
616 goto done;
617 csn = 0;
618
fc560a26 619 rcu_read_lock();
492eb21b 620 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
bd8815a6
TH
621 if (cp == &top_cpuset)
622 continue;
f5393693 623 /*
fc560a26
TH
624 * Continue traversing beyond @cp iff @cp has some CPUs and
625 * isn't load balancing. The former is obvious. The
626 * latter: All child cpusets contain a subset of the
627 * parent's cpus, so just skip them, and then we call
628 * update_domain_attr_tree() to calc relax_domain_level of
629 * the corresponding sched domain.
f5393693 630 */
fc560a26
TH
631 if (!cpumask_empty(cp->cpus_allowed) &&
632 !is_sched_load_balance(cp))
f5393693 633 continue;
489a5393 634
fc560a26
TH
635 if (is_sched_load_balance(cp))
636 csa[csn++] = cp;
637
638 /* skip @cp's subtree */
492eb21b 639 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
640 }
641 rcu_read_unlock();
029190c5
PJ
642
643 for (i = 0; i < csn; i++)
644 csa[i]->pn = i;
645 ndoms = csn;
646
647restart:
648 /* Find the best partition (set of sched domains) */
649 for (i = 0; i < csn; i++) {
650 struct cpuset *a = csa[i];
651 int apn = a->pn;
652
653 for (j = 0; j < csn; j++) {
654 struct cpuset *b = csa[j];
655 int bpn = b->pn;
656
657 if (apn != bpn && cpusets_overlap(a, b)) {
658 for (k = 0; k < csn; k++) {
659 struct cpuset *c = csa[k];
660
661 if (c->pn == bpn)
662 c->pn = apn;
663 }
664 ndoms--; /* one less element */
665 goto restart;
666 }
667 }
668 }
669
cf417141
MK
670 /*
671 * Now we know how many domains to create.
672 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
673 */
acc3f5d7 674 doms = alloc_sched_domains(ndoms);
700018e0 675 if (!doms)
cf417141 676 goto done;
cf417141
MK
677
678 /*
679 * The rest of the code, including the scheduler, can deal with
680 * dattr==NULL case. No need to abort if alloc fails.
681 */
1d3504fc 682 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
683
684 for (nslot = 0, i = 0; i < csn; i++) {
685 struct cpuset *a = csa[i];
6af866af 686 struct cpumask *dp;
029190c5
PJ
687 int apn = a->pn;
688
cf417141
MK
689 if (apn < 0) {
690 /* Skip completed partitions */
691 continue;
692 }
693
acc3f5d7 694 dp = doms[nslot];
cf417141
MK
695
696 if (nslot == ndoms) {
697 static int warnings = 10;
698 if (warnings) {
699 printk(KERN_WARNING
700 "rebuild_sched_domains confused:"
701 " nslot %d, ndoms %d, csn %d, i %d,"
702 " apn %d\n",
703 nslot, ndoms, csn, i, apn);
704 warnings--;
029190c5 705 }
cf417141
MK
706 continue;
707 }
029190c5 708
6af866af 709 cpumask_clear(dp);
cf417141
MK
710 if (dattr)
711 *(dattr + nslot) = SD_ATTR_INIT;
712 for (j = i; j < csn; j++) {
713 struct cpuset *b = csa[j];
714
715 if (apn == b->pn) {
300ed6cb 716 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
717 if (dattr)
718 update_domain_attr_tree(dattr + nslot, b);
719
720 /* Done with this partition */
721 b->pn = -1;
029190c5 722 }
029190c5 723 }
cf417141 724 nslot++;
029190c5
PJ
725 }
726 BUG_ON(nslot != ndoms);
727
cf417141
MK
728done:
729 kfree(csa);
730
700018e0
LZ
731 /*
732 * Fallback to the default domain if kmalloc() failed.
733 * See comments in partition_sched_domains().
734 */
735 if (doms == NULL)
736 ndoms = 1;
737
cf417141
MK
738 *domains = doms;
739 *attributes = dattr;
740 return ndoms;
741}
742
743/*
744 * Rebuild scheduler domains.
745 *
699140ba
TH
746 * If the flag 'sched_load_balance' of any cpuset with non-empty
747 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
748 * which has that flag enabled, or if any cpuset with a non-empty
749 * 'cpus' is removed, then call this routine to rebuild the
750 * scheduler's dynamic sched domains.
cf417141 751 *
5d21cc2d 752 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 753 */
699140ba 754static void rebuild_sched_domains_locked(void)
cf417141
MK
755{
756 struct sched_domain_attr *attr;
acc3f5d7 757 cpumask_var_t *doms;
cf417141
MK
758 int ndoms;
759
5d21cc2d 760 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 761 get_online_cpus();
cf417141 762
5b16c2a4
LZ
763 /*
764 * We have raced with CPU hotplug. Don't do anything to avoid
765 * passing doms with offlined cpu to partition_sched_domains().
766 * Anyways, hotplug work item will rebuild sched domains.
767 */
768 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
769 goto out;
770
cf417141 771 /* Generate domain masks and attrs */
cf417141 772 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
773
774 /* Have scheduler rebuild the domains */
775 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 776out:
86ef5c9a 777 put_online_cpus();
cf417141 778}
db7f47cf 779#else /* !CONFIG_SMP */
699140ba 780static void rebuild_sched_domains_locked(void)
db7f47cf
PM
781{
782}
db7f47cf 783#endif /* CONFIG_SMP */
029190c5 784
cf417141
MK
785void rebuild_sched_domains(void)
786{
5d21cc2d 787 mutex_lock(&cpuset_mutex);
699140ba 788 rebuild_sched_domains_locked();
5d21cc2d 789 mutex_unlock(&cpuset_mutex);
029190c5
PJ
790}
791
070b57fc
LZ
792/*
793 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
794 * @cs: the cpuset in interest
58f4790b 795 *
070b57fc
LZ
796 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
797 * with non-empty cpus. We use effective cpumask whenever:
798 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
799 * if the cpuset they reside in has no cpus)
800 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
801 *
802 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
803 * exception. See comments there.
804 */
805static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
806{
807 while (cpumask_empty(cs->cpus_allowed))
808 cs = parent_cs(cs);
809 return cs;
810}
811
812/*
813 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
814 * @cs: the cpuset in interest
815 *
816 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
817 * with non-empty memss. We use effective nodemask whenever:
818 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
819 * if the cpuset they reside in has no mems)
820 * - we want to retrieve task_cs(tsk)'s mems_allowed.
821 *
822 * Called with cpuset_mutex held.
053199ed 823 */
070b57fc 824static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
58f4790b 825{
070b57fc
LZ
826 while (nodes_empty(cs->mems_allowed))
827 cs = parent_cs(cs);
828 return cs;
58f4790b 829}
053199ed 830
58f4790b
CW
831/**
832 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
833 * @tsk: task to test
e535837b 834 * @data: cpuset to @tsk belongs to
58f4790b 835 *
72ec7029
TH
836 * Called by css_scan_tasks() for each task in a cgroup whose cpus_allowed
837 * mask needs to be changed.
58f4790b
CW
838 *
839 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 840 * holding cpuset_mutex at this point.
58f4790b 841 */
e535837b 842static void cpuset_change_cpumask(struct task_struct *tsk, void *data)
58f4790b 843{
e535837b
TH
844 struct cpuset *cs = data;
845 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
070b57fc 846
070b57fc 847 set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
58f4790b
CW
848}
849
0b2f630a
MX
850/**
851 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
852 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
72ec7029 853 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
0b2f630a 854 *
5d21cc2d 855 * Called with cpuset_mutex held
0b2f630a 856 *
72ec7029 857 * The css_scan_tasks() function will scan all the tasks in a cgroup,
0b2f630a
MX
858 * calling callback functions for each.
859 *
72ec7029 860 * No return value. It's guaranteed that css_scan_tasks() always returns 0
4e74339a 861 * if @heap != NULL.
0b2f630a 862 */
4e74339a 863static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a 864{
72ec7029 865 css_scan_tasks(&cs->css, NULL, cpuset_change_cpumask, cs, heap);
0b2f630a
MX
866}
867
5c5cc623
LZ
868/*
869 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
870 * @root_cs: the root cpuset of the hierarchy
871 * @update_root: update root cpuset or not?
72ec7029 872 * @heap: the heap used by css_scan_tasks()
5c5cc623
LZ
873 *
874 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
875 * which take on cpumask of @root_cs.
876 *
877 * Called with cpuset_mutex held
878 */
879static void update_tasks_cpumask_hier(struct cpuset *root_cs,
880 bool update_root, struct ptr_heap *heap)
881{
882 struct cpuset *cp;
492eb21b 883 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
884
885 rcu_read_lock();
492eb21b 886 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
bd8815a6
TH
887 if (cp == root_cs) {
888 if (!update_root)
889 continue;
890 } else {
891 /* skip the whole subtree if @cp have some CPU */
892 if (!cpumask_empty(cp->cpus_allowed)) {
893 pos_css = css_rightmost_descendant(pos_css);
894 continue;
895 }
5c5cc623
LZ
896 }
897 if (!css_tryget(&cp->css))
898 continue;
899 rcu_read_unlock();
900
901 update_tasks_cpumask(cp, heap);
902
903 rcu_read_lock();
904 css_put(&cp->css);
905 }
906 rcu_read_unlock();
907}
908
58f4790b
CW
909/**
910 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
911 * @cs: the cpuset to consider
912 * @buf: buffer of cpu numbers written to this cpuset
913 */
645fcc9d
LZ
914static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
915 const char *buf)
1da177e4 916{
4e74339a 917 struct ptr_heap heap;
58f4790b
CW
918 int retval;
919 int is_load_balanced;
1da177e4 920
5f054e31 921 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
922 if (cs == &top_cpuset)
923 return -EACCES;
924
6f7f02e7 925 /*
c8d9c90c 926 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
927 * Since cpulist_parse() fails on an empty mask, we special case
928 * that parsing. The validate_change() call ensures that cpusets
929 * with tasks have cpus.
6f7f02e7 930 */
020958b6 931 if (!*buf) {
300ed6cb 932 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 933 } else {
300ed6cb 934 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
935 if (retval < 0)
936 return retval;
37340746 937
6ad4c188 938 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 939 return -EINVAL;
6f7f02e7 940 }
029190c5 941
8707d8b8 942 /* Nothing to do if the cpus didn't change */
300ed6cb 943 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 944 return 0;
58f4790b 945
a73456f3
LZ
946 retval = validate_change(cs, trialcs);
947 if (retval < 0)
948 return retval;
949
4e74339a
LZ
950 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
951 if (retval)
952 return retval;
953
645fcc9d 954 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 955
3d3f26a7 956 mutex_lock(&callback_mutex);
300ed6cb 957 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 958 mutex_unlock(&callback_mutex);
029190c5 959
5c5cc623 960 update_tasks_cpumask_hier(cs, true, &heap);
4e74339a
LZ
961
962 heap_free(&heap);
58f4790b 963
8707d8b8 964 if (is_load_balanced)
699140ba 965 rebuild_sched_domains_locked();
85d7b949 966 return 0;
1da177e4
LT
967}
968
e4e364e8
PJ
969/*
970 * cpuset_migrate_mm
971 *
972 * Migrate memory region from one set of nodes to another.
973 *
974 * Temporarilly set tasks mems_allowed to target nodes of migration,
975 * so that the migration code can allocate pages on these nodes.
976 *
5d21cc2d 977 * Call holding cpuset_mutex, so current's cpuset won't change
c8d9c90c 978 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
979 * calls. Therefore we don't need to take task_lock around the
980 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 981 * our task's cpuset.
e4e364e8 982 *
e4e364e8
PJ
983 * While the mm_struct we are migrating is typically from some
984 * other task, the task_struct mems_allowed that we are hacking
985 * is for our current task, which must allocate new pages for that
986 * migrating memory region.
e4e364e8
PJ
987 */
988
989static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
990 const nodemask_t *to)
991{
992 struct task_struct *tsk = current;
070b57fc 993 struct cpuset *mems_cs;
e4e364e8 994
e4e364e8 995 tsk->mems_allowed = *to;
e4e364e8
PJ
996
997 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
998
070b57fc
LZ
999 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
1000 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
e4e364e8
PJ
1001}
1002
3b6766fe 1003/*
58568d2a
MX
1004 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1005 * @tsk: the task to change
1006 * @newmems: new nodes that the task will be set
1007 *
1008 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1009 * we structure updates as setting all new allowed nodes, then clearing newly
1010 * disallowed ones.
58568d2a
MX
1011 */
1012static void cpuset_change_task_nodemask(struct task_struct *tsk,
1013 nodemask_t *newmems)
1014{
b246272e 1015 bool need_loop;
89e8a244 1016
c0ff7453
MX
1017 /*
1018 * Allow tasks that have access to memory reserves because they have
1019 * been OOM killed to get memory anywhere.
1020 */
1021 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1022 return;
1023 if (current->flags & PF_EXITING) /* Let dying task have memory */
1024 return;
1025
1026 task_lock(tsk);
b246272e
DR
1027 /*
1028 * Determine if a loop is necessary if another thread is doing
1029 * get_mems_allowed(). If at least one node remains unchanged and
1030 * tsk does not have a mempolicy, then an empty nodemask will not be
1031 * possible when mems_allowed is larger than a word.
1032 */
1033 need_loop = task_has_mempolicy(tsk) ||
1034 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1035
0fc0287c
PZ
1036 if (need_loop) {
1037 local_irq_disable();
cc9a6c87 1038 write_seqcount_begin(&tsk->mems_allowed_seq);
0fc0287c 1039 }
c0ff7453 1040
cc9a6c87
MG
1041 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1042 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1043
1044 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1045 tsk->mems_allowed = *newmems;
cc9a6c87 1046
0fc0287c 1047 if (need_loop) {
cc9a6c87 1048 write_seqcount_end(&tsk->mems_allowed_seq);
0fc0287c
PZ
1049 local_irq_enable();
1050 }
cc9a6c87 1051
c0ff7453 1052 task_unlock(tsk);
58568d2a
MX
1053}
1054
e535837b
TH
1055struct cpuset_change_nodemask_arg {
1056 struct cpuset *cs;
1057 nodemask_t *newmems;
1058};
1059
58568d2a
MX
1060/*
1061 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1062 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
5d21cc2d 1063 * memory_migrate flag is set. Called with cpuset_mutex held.
3b6766fe 1064 */
e535837b 1065static void cpuset_change_nodemask(struct task_struct *p, void *data)
3b6766fe 1066{
e535837b
TH
1067 struct cpuset_change_nodemask_arg *arg = data;
1068 struct cpuset *cs = arg->cs;
3b6766fe 1069 struct mm_struct *mm;
3b6766fe 1070 int migrate;
58568d2a 1071
e535837b 1072 cpuset_change_task_nodemask(p, arg->newmems);
53feb297 1073
3b6766fe
LZ
1074 mm = get_task_mm(p);
1075 if (!mm)
1076 return;
1077
3b6766fe
LZ
1078 migrate = is_memory_migrate(cs);
1079
1080 mpol_rebind_mm(mm, &cs->mems_allowed);
1081 if (migrate)
e535837b 1082 cpuset_migrate_mm(mm, &cs->old_mems_allowed, arg->newmems);
3b6766fe
LZ
1083 mmput(mm);
1084}
1085
8793d854
PM
1086static void *cpuset_being_rebound;
1087
0b2f630a
MX
1088/**
1089 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1090 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
72ec7029 1091 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
0b2f630a 1092 *
72ec7029
TH
1093 * Called with cpuset_mutex held. No return value. It's guaranteed that
1094 * css_scan_tasks() always returns 0 if @heap != NULL.
0b2f630a 1095 */
33ad801d 1096static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
1da177e4 1097{
33ad801d 1098 static nodemask_t newmems; /* protected by cpuset_mutex */
070b57fc 1099 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
e535837b
TH
1100 struct cpuset_change_nodemask_arg arg = { .cs = cs,
1101 .newmems = &newmems };
59dac16f 1102
846a16bf 1103 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1104
070b57fc 1105 guarantee_online_mems(mems_cs, &newmems);
33ad801d 1106
4225399a 1107 /*
3b6766fe
LZ
1108 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1109 * take while holding tasklist_lock. Forks can happen - the
1110 * mpol_dup() cpuset_being_rebound check will catch such forks,
1111 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1112 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1113 * will be contending for the global variable cpuset_being_rebound.
4225399a 1114 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1115 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1116 */
72ec7029 1117 css_scan_tasks(&cs->css, NULL, cpuset_change_nodemask, &arg, heap);
4225399a 1118
33ad801d
LZ
1119 /*
1120 * All the tasks' nodemasks have been updated, update
1121 * cs->old_mems_allowed.
1122 */
1123 cs->old_mems_allowed = newmems;
1124
2df167a3 1125 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1126 cpuset_being_rebound = NULL;
1da177e4
LT
1127}
1128
5c5cc623
LZ
1129/*
1130 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1131 * @cs: the root cpuset of the hierarchy
1132 * @update_root: update the root cpuset or not?
72ec7029 1133 * @heap: the heap used by css_scan_tasks()
5c5cc623
LZ
1134 *
1135 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1136 * which take on nodemask of @root_cs.
1137 *
1138 * Called with cpuset_mutex held
1139 */
1140static void update_tasks_nodemask_hier(struct cpuset *root_cs,
1141 bool update_root, struct ptr_heap *heap)
1142{
1143 struct cpuset *cp;
492eb21b 1144 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1145
1146 rcu_read_lock();
492eb21b 1147 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
bd8815a6
TH
1148 if (cp == root_cs) {
1149 if (!update_root)
1150 continue;
1151 } else {
1152 /* skip the whole subtree if @cp have some CPU */
1153 if (!nodes_empty(cp->mems_allowed)) {
1154 pos_css = css_rightmost_descendant(pos_css);
1155 continue;
1156 }
5c5cc623
LZ
1157 }
1158 if (!css_tryget(&cp->css))
1159 continue;
1160 rcu_read_unlock();
1161
1162 update_tasks_nodemask(cp, heap);
1163
1164 rcu_read_lock();
1165 css_put(&cp->css);
1166 }
1167 rcu_read_unlock();
1168}
1169
0b2f630a
MX
1170/*
1171 * Handle user request to change the 'mems' memory placement
1172 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1173 * cpusets mems_allowed, and for each task in the cpuset,
1174 * update mems_allowed and rebind task's mempolicy and any vma
1175 * mempolicies and if the cpuset is marked 'memory_migrate',
1176 * migrate the tasks pages to the new memory.
0b2f630a 1177 *
5d21cc2d 1178 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1179 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1180 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1181 * their mempolicies to the cpusets new mems_allowed.
1182 */
645fcc9d
LZ
1183static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1184 const char *buf)
0b2f630a 1185{
0b2f630a 1186 int retval;
010cfac4 1187 struct ptr_heap heap;
0b2f630a
MX
1188
1189 /*
38d7bee9 1190 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1191 * it's read-only
1192 */
53feb297
MX
1193 if (cs == &top_cpuset) {
1194 retval = -EACCES;
1195 goto done;
1196 }
0b2f630a 1197
0b2f630a
MX
1198 /*
1199 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1200 * Since nodelist_parse() fails on an empty mask, we special case
1201 * that parsing. The validate_change() call ensures that cpusets
1202 * with tasks have memory.
1203 */
1204 if (!*buf) {
645fcc9d 1205 nodes_clear(trialcs->mems_allowed);
0b2f630a 1206 } else {
645fcc9d 1207 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1208 if (retval < 0)
1209 goto done;
1210
645fcc9d 1211 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1212 node_states[N_MEMORY])) {
53feb297
MX
1213 retval = -EINVAL;
1214 goto done;
1215 }
0b2f630a 1216 }
33ad801d
LZ
1217
1218 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1219 retval = 0; /* Too easy - nothing to do */
1220 goto done;
1221 }
645fcc9d 1222 retval = validate_change(cs, trialcs);
0b2f630a
MX
1223 if (retval < 0)
1224 goto done;
1225
010cfac4
LZ
1226 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1227 if (retval < 0)
1228 goto done;
1229
0b2f630a 1230 mutex_lock(&callback_mutex);
645fcc9d 1231 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1232 mutex_unlock(&callback_mutex);
1233
5c5cc623 1234 update_tasks_nodemask_hier(cs, true, &heap);
010cfac4
LZ
1235
1236 heap_free(&heap);
0b2f630a
MX
1237done:
1238 return retval;
1239}
1240
8793d854
PM
1241int current_cpuset_is_being_rebound(void)
1242{
1243 return task_cs(current) == cpuset_being_rebound;
1244}
1245
5be7a479 1246static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1247{
db7f47cf 1248#ifdef CONFIG_SMP
60495e77 1249 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1250 return -EINVAL;
db7f47cf 1251#endif
1d3504fc
HS
1252
1253 if (val != cs->relax_domain_level) {
1254 cs->relax_domain_level = val;
300ed6cb
LZ
1255 if (!cpumask_empty(cs->cpus_allowed) &&
1256 is_sched_load_balance(cs))
699140ba 1257 rebuild_sched_domains_locked();
1d3504fc
HS
1258 }
1259
1260 return 0;
1261}
1262
72ec7029 1263/**
950592f7
MX
1264 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1265 * @tsk: task to be updated
e535837b 1266 * @data: cpuset to @tsk belongs to
950592f7 1267 *
72ec7029 1268 * Called by css_scan_tasks() for each task in a cgroup.
950592f7
MX
1269 *
1270 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 1271 * holding cpuset_mutex at this point.
950592f7 1272 */
e535837b 1273static void cpuset_change_flag(struct task_struct *tsk, void *data)
950592f7 1274{
e535837b
TH
1275 struct cpuset *cs = data;
1276
1277 cpuset_update_task_spread_flag(cs, tsk);
950592f7
MX
1278}
1279
72ec7029 1280/**
950592f7
MX
1281 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1282 * @cs: the cpuset in which each task's spread flags needs to be changed
72ec7029 1283 * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
950592f7 1284 *
5d21cc2d 1285 * Called with cpuset_mutex held
950592f7 1286 *
72ec7029 1287 * The css_scan_tasks() function will scan all the tasks in a cgroup,
950592f7
MX
1288 * calling callback functions for each.
1289 *
72ec7029 1290 * No return value. It's guaranteed that css_scan_tasks() always returns 0
950592f7
MX
1291 * if @heap != NULL.
1292 */
1293static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1294{
72ec7029 1295 css_scan_tasks(&cs->css, NULL, cpuset_change_flag, cs, heap);
950592f7
MX
1296}
1297
1da177e4
LT
1298/*
1299 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1300 * bit: the bit to update (see cpuset_flagbits_t)
1301 * cs: the cpuset to update
1302 * turning_on: whether the flag is being set or cleared
053199ed 1303 *
5d21cc2d 1304 * Call with cpuset_mutex held.
1da177e4
LT
1305 */
1306
700fe1ab
PM
1307static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1308 int turning_on)
1da177e4 1309{
645fcc9d 1310 struct cpuset *trialcs;
40b6a762 1311 int balance_flag_changed;
950592f7
MX
1312 int spread_flag_changed;
1313 struct ptr_heap heap;
1314 int err;
1da177e4 1315
645fcc9d
LZ
1316 trialcs = alloc_trial_cpuset(cs);
1317 if (!trialcs)
1318 return -ENOMEM;
1319
1da177e4 1320 if (turning_on)
645fcc9d 1321 set_bit(bit, &trialcs->flags);
1da177e4 1322 else
645fcc9d 1323 clear_bit(bit, &trialcs->flags);
1da177e4 1324
645fcc9d 1325 err = validate_change(cs, trialcs);
85d7b949 1326 if (err < 0)
645fcc9d 1327 goto out;
029190c5 1328
950592f7
MX
1329 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1330 if (err < 0)
1331 goto out;
1332
029190c5 1333 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1334 is_sched_load_balance(trialcs));
029190c5 1335
950592f7
MX
1336 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1337 || (is_spread_page(cs) != is_spread_page(trialcs)));
1338
3d3f26a7 1339 mutex_lock(&callback_mutex);
645fcc9d 1340 cs->flags = trialcs->flags;
3d3f26a7 1341 mutex_unlock(&callback_mutex);
85d7b949 1342
300ed6cb 1343 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1344 rebuild_sched_domains_locked();
029190c5 1345
950592f7
MX
1346 if (spread_flag_changed)
1347 update_tasks_flags(cs, &heap);
1348 heap_free(&heap);
645fcc9d
LZ
1349out:
1350 free_trial_cpuset(trialcs);
1351 return err;
1da177e4
LT
1352}
1353
3e0d98b9 1354/*
80f7228b 1355 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1356 *
1357 * These routines manage a digitally filtered, constant time based,
1358 * event frequency meter. There are four routines:
1359 * fmeter_init() - initialize a frequency meter.
1360 * fmeter_markevent() - called each time the event happens.
1361 * fmeter_getrate() - returns the recent rate of such events.
1362 * fmeter_update() - internal routine used to update fmeter.
1363 *
1364 * A common data structure is passed to each of these routines,
1365 * which is used to keep track of the state required to manage the
1366 * frequency meter and its digital filter.
1367 *
1368 * The filter works on the number of events marked per unit time.
1369 * The filter is single-pole low-pass recursive (IIR). The time unit
1370 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1371 * simulate 3 decimal digits of precision (multiplied by 1000).
1372 *
1373 * With an FM_COEF of 933, and a time base of 1 second, the filter
1374 * has a half-life of 10 seconds, meaning that if the events quit
1375 * happening, then the rate returned from the fmeter_getrate()
1376 * will be cut in half each 10 seconds, until it converges to zero.
1377 *
1378 * It is not worth doing a real infinitely recursive filter. If more
1379 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1380 * just compute FM_MAXTICKS ticks worth, by which point the level
1381 * will be stable.
1382 *
1383 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1384 * arithmetic overflow in the fmeter_update() routine.
1385 *
1386 * Given the simple 32 bit integer arithmetic used, this meter works
1387 * best for reporting rates between one per millisecond (msec) and
1388 * one per 32 (approx) seconds. At constant rates faster than one
1389 * per msec it maxes out at values just under 1,000,000. At constant
1390 * rates between one per msec, and one per second it will stabilize
1391 * to a value N*1000, where N is the rate of events per second.
1392 * At constant rates between one per second and one per 32 seconds,
1393 * it will be choppy, moving up on the seconds that have an event,
1394 * and then decaying until the next event. At rates slower than
1395 * about one in 32 seconds, it decays all the way back to zero between
1396 * each event.
1397 */
1398
1399#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1400#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1401#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1402#define FM_SCALE 1000 /* faux fixed point scale */
1403
1404/* Initialize a frequency meter */
1405static void fmeter_init(struct fmeter *fmp)
1406{
1407 fmp->cnt = 0;
1408 fmp->val = 0;
1409 fmp->time = 0;
1410 spin_lock_init(&fmp->lock);
1411}
1412
1413/* Internal meter update - process cnt events and update value */
1414static void fmeter_update(struct fmeter *fmp)
1415{
1416 time_t now = get_seconds();
1417 time_t ticks = now - fmp->time;
1418
1419 if (ticks == 0)
1420 return;
1421
1422 ticks = min(FM_MAXTICKS, ticks);
1423 while (ticks-- > 0)
1424 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1425 fmp->time = now;
1426
1427 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1428 fmp->cnt = 0;
1429}
1430
1431/* Process any previous ticks, then bump cnt by one (times scale). */
1432static void fmeter_markevent(struct fmeter *fmp)
1433{
1434 spin_lock(&fmp->lock);
1435 fmeter_update(fmp);
1436 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1437 spin_unlock(&fmp->lock);
1438}
1439
1440/* Process any previous ticks, then return current value. */
1441static int fmeter_getrate(struct fmeter *fmp)
1442{
1443 int val;
1444
1445 spin_lock(&fmp->lock);
1446 fmeter_update(fmp);
1447 val = fmp->val;
1448 spin_unlock(&fmp->lock);
1449 return val;
1450}
1451
5d21cc2d 1452/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
eb95419b
TH
1453static int cpuset_can_attach(struct cgroup_subsys_state *css,
1454 struct cgroup_taskset *tset)
f780bdb7 1455{
eb95419b 1456 struct cpuset *cs = css_cs(css);
bb9d97b6
TH
1457 struct task_struct *task;
1458 int ret;
1da177e4 1459
5d21cc2d
TH
1460 mutex_lock(&cpuset_mutex);
1461
88fa523b
LZ
1462 /*
1463 * We allow to move tasks into an empty cpuset if sane_behavior
1464 * flag is set.
1465 */
5d21cc2d 1466 ret = -ENOSPC;
eb95419b 1467 if (!cgroup_sane_behavior(css->cgroup) &&
88fa523b 1468 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1469 goto out_unlock;
9985b0ba 1470
d99c8727 1471 cgroup_taskset_for_each(task, css, tset) {
bb9d97b6 1472 /*
14a40ffc
TH
1473 * Kthreads which disallow setaffinity shouldn't be moved
1474 * to a new cpuset; we don't want to change their cpu
1475 * affinity and isolating such threads by their set of
1476 * allowed nodes is unnecessary. Thus, cpusets are not
1477 * applicable for such threads. This prevents checking for
1478 * success of set_cpus_allowed_ptr() on all attached tasks
1479 * before cpus_allowed may be changed.
bb9d97b6 1480 */
5d21cc2d 1481 ret = -EINVAL;
14a40ffc 1482 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1483 goto out_unlock;
1484 ret = security_task_setscheduler(task);
1485 if (ret)
1486 goto out_unlock;
bb9d97b6 1487 }
f780bdb7 1488
452477fa
TH
1489 /*
1490 * Mark attach is in progress. This makes validate_change() fail
1491 * changes which zero cpus/mems_allowed.
1492 */
1493 cs->attach_in_progress++;
5d21cc2d
TH
1494 ret = 0;
1495out_unlock:
1496 mutex_unlock(&cpuset_mutex);
1497 return ret;
8793d854 1498}
f780bdb7 1499
eb95419b 1500static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
452477fa
TH
1501 struct cgroup_taskset *tset)
1502{
5d21cc2d 1503 mutex_lock(&cpuset_mutex);
eb95419b 1504 css_cs(css)->attach_in_progress--;
5d21cc2d 1505 mutex_unlock(&cpuset_mutex);
8793d854 1506}
1da177e4 1507
4e4c9a14 1508/*
5d21cc2d 1509 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1510 * but we can't allocate it dynamically there. Define it global and
1511 * allocate from cpuset_init().
1512 */
1513static cpumask_var_t cpus_attach;
1514
eb95419b
TH
1515static void cpuset_attach(struct cgroup_subsys_state *css,
1516 struct cgroup_taskset *tset)
8793d854 1517{
67bd2c59 1518 /* static buf protected by cpuset_mutex */
4e4c9a14 1519 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1520 struct mm_struct *mm;
bb9d97b6
TH
1521 struct task_struct *task;
1522 struct task_struct *leader = cgroup_taskset_first(tset);
d99c8727
TH
1523 struct cgroup_subsys_state *oldcss = cgroup_taskset_cur_css(tset,
1524 cpuset_subsys_id);
eb95419b 1525 struct cpuset *cs = css_cs(css);
d99c8727 1526 struct cpuset *oldcs = css_cs(oldcss);
070b57fc
LZ
1527 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1528 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
22fb52dd 1529
5d21cc2d
TH
1530 mutex_lock(&cpuset_mutex);
1531
4e4c9a14
TH
1532 /* prepare for attach */
1533 if (cs == &top_cpuset)
1534 cpumask_copy(cpus_attach, cpu_possible_mask);
1535 else
070b57fc 1536 guarantee_online_cpus(cpus_cs, cpus_attach);
4e4c9a14 1537
070b57fc 1538 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
4e4c9a14 1539
d99c8727 1540 cgroup_taskset_for_each(task, css, tset) {
bb9d97b6
TH
1541 /*
1542 * can_attach beforehand should guarantee that this doesn't
1543 * fail. TODO: have a better way to handle failure here
1544 */
1545 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1546
1547 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1548 cpuset_update_task_spread_flag(cs, task);
1549 }
22fb52dd 1550
f780bdb7
BB
1551 /*
1552 * Change mm, possibly for multiple threads in a threadgroup. This is
1553 * expensive and may sleep.
1554 */
f780bdb7 1555 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1556 mm = get_task_mm(leader);
4225399a 1557 if (mm) {
070b57fc
LZ
1558 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1559
f780bdb7 1560 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
f047cecf
LZ
1561
1562 /*
1563 * old_mems_allowed is the same with mems_allowed here, except
1564 * if this task is being moved automatically due to hotplug.
1565 * In that case @mems_allowed has been updated and is empty,
1566 * so @old_mems_allowed is the right nodesets that we migrate
1567 * mm from.
1568 */
1569 if (is_memory_migrate(cs)) {
1570 cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
f780bdb7 1571 &cpuset_attach_nodemask_to);
f047cecf 1572 }
4225399a
PJ
1573 mmput(mm);
1574 }
452477fa 1575
33ad801d 1576 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1577
452477fa 1578 cs->attach_in_progress--;
e44193d3
LZ
1579 if (!cs->attach_in_progress)
1580 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1581
1582 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1583}
1584
1585/* The various types of files and directories in a cpuset file system */
1586
1587typedef enum {
45b07ef3 1588 FILE_MEMORY_MIGRATE,
1da177e4
LT
1589 FILE_CPULIST,
1590 FILE_MEMLIST,
1591 FILE_CPU_EXCLUSIVE,
1592 FILE_MEM_EXCLUSIVE,
78608366 1593 FILE_MEM_HARDWALL,
029190c5 1594 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1595 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1596 FILE_MEMORY_PRESSURE_ENABLED,
1597 FILE_MEMORY_PRESSURE,
825a46af
PJ
1598 FILE_SPREAD_PAGE,
1599 FILE_SPREAD_SLAB,
1da177e4
LT
1600} cpuset_filetype_t;
1601
182446d0
TH
1602static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1603 u64 val)
700fe1ab 1604{
182446d0 1605 struct cpuset *cs = css_cs(css);
700fe1ab 1606 cpuset_filetype_t type = cft->private;
a903f086 1607 int retval = 0;
700fe1ab 1608
5d21cc2d 1609 mutex_lock(&cpuset_mutex);
a903f086
LZ
1610 if (!is_cpuset_online(cs)) {
1611 retval = -ENODEV;
5d21cc2d 1612 goto out_unlock;
a903f086 1613 }
700fe1ab
PM
1614
1615 switch (type) {
1da177e4 1616 case FILE_CPU_EXCLUSIVE:
700fe1ab 1617 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1618 break;
1619 case FILE_MEM_EXCLUSIVE:
700fe1ab 1620 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1621 break;
78608366
PM
1622 case FILE_MEM_HARDWALL:
1623 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1624 break;
029190c5 1625 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1626 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1627 break;
45b07ef3 1628 case FILE_MEMORY_MIGRATE:
700fe1ab 1629 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1630 break;
3e0d98b9 1631 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1632 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1633 break;
1634 case FILE_MEMORY_PRESSURE:
1635 retval = -EACCES;
1636 break;
825a46af 1637 case FILE_SPREAD_PAGE:
700fe1ab 1638 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1639 break;
1640 case FILE_SPREAD_SLAB:
700fe1ab 1641 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1642 break;
1da177e4
LT
1643 default:
1644 retval = -EINVAL;
700fe1ab 1645 break;
1da177e4 1646 }
5d21cc2d
TH
1647out_unlock:
1648 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1649 return retval;
1650}
1651
182446d0
TH
1652static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1653 s64 val)
5be7a479 1654{
182446d0 1655 struct cpuset *cs = css_cs(css);
5be7a479 1656 cpuset_filetype_t type = cft->private;
5d21cc2d 1657 int retval = -ENODEV;
5be7a479 1658
5d21cc2d
TH
1659 mutex_lock(&cpuset_mutex);
1660 if (!is_cpuset_online(cs))
1661 goto out_unlock;
e3712395 1662
5be7a479
PM
1663 switch (type) {
1664 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1665 retval = update_relax_domain_level(cs, val);
1666 break;
1667 default:
1668 retval = -EINVAL;
1669 break;
1670 }
5d21cc2d
TH
1671out_unlock:
1672 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1673 return retval;
1674}
1675
e3712395
PM
1676/*
1677 * Common handling for a write to a "cpus" or "mems" file.
1678 */
182446d0
TH
1679static int cpuset_write_resmask(struct cgroup_subsys_state *css,
1680 struct cftype *cft, const char *buf)
e3712395 1681{
182446d0 1682 struct cpuset *cs = css_cs(css);
645fcc9d 1683 struct cpuset *trialcs;
5d21cc2d 1684 int retval = -ENODEV;
e3712395 1685
3a5a6d0c
TH
1686 /*
1687 * CPU or memory hotunplug may leave @cs w/o any execution
1688 * resources, in which case the hotplug code asynchronously updates
1689 * configuration and transfers all tasks to the nearest ancestor
1690 * which can execute.
1691 *
1692 * As writes to "cpus" or "mems" may restore @cs's execution
1693 * resources, wait for the previously scheduled operations before
1694 * proceeding, so that we don't end up keep removing tasks added
1695 * after execution capability is restored.
1696 */
1697 flush_work(&cpuset_hotplug_work);
1698
5d21cc2d
TH
1699 mutex_lock(&cpuset_mutex);
1700 if (!is_cpuset_online(cs))
1701 goto out_unlock;
e3712395 1702
645fcc9d 1703 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1704 if (!trialcs) {
1705 retval = -ENOMEM;
5d21cc2d 1706 goto out_unlock;
b75f38d6 1707 }
645fcc9d 1708
e3712395
PM
1709 switch (cft->private) {
1710 case FILE_CPULIST:
645fcc9d 1711 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1712 break;
1713 case FILE_MEMLIST:
645fcc9d 1714 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1715 break;
1716 default:
1717 retval = -EINVAL;
1718 break;
1719 }
645fcc9d
LZ
1720
1721 free_trial_cpuset(trialcs);
5d21cc2d
TH
1722out_unlock:
1723 mutex_unlock(&cpuset_mutex);
e3712395
PM
1724 return retval;
1725}
1726
1da177e4
LT
1727/*
1728 * These ascii lists should be read in a single call, by using a user
1729 * buffer large enough to hold the entire map. If read in smaller
1730 * chunks, there is no guarantee of atomicity. Since the display format
1731 * used, list of ranges of sequential numbers, is variable length,
1732 * and since these maps can change value dynamically, one could read
1733 * gibberish by doing partial reads while a list was changing.
1da177e4 1734 */
51ffe411
TH
1735static int cpuset_common_read_seq_string(struct cgroup_subsys_state *css,
1736 struct cftype *cft,
1737 struct seq_file *sf)
1da177e4 1738{
182446d0 1739 struct cpuset *cs = css_cs(css);
1da177e4 1740 cpuset_filetype_t type = cft->private;
51ffe411
TH
1741 ssize_t count;
1742 char *buf, *s;
1743 int ret = 0;
1da177e4 1744
51ffe411
TH
1745 count = seq_get_buf(sf, &buf);
1746 s = buf;
1da177e4 1747
51ffe411 1748 mutex_lock(&callback_mutex);
1da177e4
LT
1749
1750 switch (type) {
1751 case FILE_CPULIST:
51ffe411 1752 s += cpulist_scnprintf(s, count, cs->cpus_allowed);
1da177e4
LT
1753 break;
1754 case FILE_MEMLIST:
51ffe411 1755 s += nodelist_scnprintf(s, count, cs->mems_allowed);
1da177e4 1756 break;
1da177e4 1757 default:
51ffe411
TH
1758 ret = -EINVAL;
1759 goto out_unlock;
1da177e4 1760 }
1da177e4 1761
51ffe411
TH
1762 if (s < buf + count - 1) {
1763 *s++ = '\n';
1764 seq_commit(sf, s - buf);
1765 } else {
1766 seq_commit(sf, -1);
1767 }
1768out_unlock:
1769 mutex_unlock(&callback_mutex);
1770 return ret;
1da177e4
LT
1771}
1772
182446d0 1773static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 1774{
182446d0 1775 struct cpuset *cs = css_cs(css);
700fe1ab
PM
1776 cpuset_filetype_t type = cft->private;
1777 switch (type) {
1778 case FILE_CPU_EXCLUSIVE:
1779 return is_cpu_exclusive(cs);
1780 case FILE_MEM_EXCLUSIVE:
1781 return is_mem_exclusive(cs);
78608366
PM
1782 case FILE_MEM_HARDWALL:
1783 return is_mem_hardwall(cs);
700fe1ab
PM
1784 case FILE_SCHED_LOAD_BALANCE:
1785 return is_sched_load_balance(cs);
1786 case FILE_MEMORY_MIGRATE:
1787 return is_memory_migrate(cs);
1788 case FILE_MEMORY_PRESSURE_ENABLED:
1789 return cpuset_memory_pressure_enabled;
1790 case FILE_MEMORY_PRESSURE:
1791 return fmeter_getrate(&cs->fmeter);
1792 case FILE_SPREAD_PAGE:
1793 return is_spread_page(cs);
1794 case FILE_SPREAD_SLAB:
1795 return is_spread_slab(cs);
1796 default:
1797 BUG();
1798 }
cf417141
MK
1799
1800 /* Unreachable but makes gcc happy */
1801 return 0;
700fe1ab 1802}
1da177e4 1803
182446d0 1804static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 1805{
182446d0 1806 struct cpuset *cs = css_cs(css);
5be7a479
PM
1807 cpuset_filetype_t type = cft->private;
1808 switch (type) {
1809 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1810 return cs->relax_domain_level;
1811 default:
1812 BUG();
1813 }
cf417141
MK
1814
1815 /* Unrechable but makes gcc happy */
1816 return 0;
5be7a479
PM
1817}
1818
1da177e4
LT
1819
1820/*
1821 * for the common functions, 'private' gives the type of file
1822 */
1823
addf2c73
PM
1824static struct cftype files[] = {
1825 {
1826 .name = "cpus",
51ffe411 1827 .read_seq_string = cpuset_common_read_seq_string,
e3712395
PM
1828 .write_string = cpuset_write_resmask,
1829 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1830 .private = FILE_CPULIST,
1831 },
1832
1833 {
1834 .name = "mems",
51ffe411 1835 .read_seq_string = cpuset_common_read_seq_string,
e3712395
PM
1836 .write_string = cpuset_write_resmask,
1837 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1838 .private = FILE_MEMLIST,
1839 },
1840
1841 {
1842 .name = "cpu_exclusive",
1843 .read_u64 = cpuset_read_u64,
1844 .write_u64 = cpuset_write_u64,
1845 .private = FILE_CPU_EXCLUSIVE,
1846 },
1847
1848 {
1849 .name = "mem_exclusive",
1850 .read_u64 = cpuset_read_u64,
1851 .write_u64 = cpuset_write_u64,
1852 .private = FILE_MEM_EXCLUSIVE,
1853 },
1854
78608366
PM
1855 {
1856 .name = "mem_hardwall",
1857 .read_u64 = cpuset_read_u64,
1858 .write_u64 = cpuset_write_u64,
1859 .private = FILE_MEM_HARDWALL,
1860 },
1861
addf2c73
PM
1862 {
1863 .name = "sched_load_balance",
1864 .read_u64 = cpuset_read_u64,
1865 .write_u64 = cpuset_write_u64,
1866 .private = FILE_SCHED_LOAD_BALANCE,
1867 },
1868
1869 {
1870 .name = "sched_relax_domain_level",
5be7a479
PM
1871 .read_s64 = cpuset_read_s64,
1872 .write_s64 = cpuset_write_s64,
addf2c73
PM
1873 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1874 },
1875
1876 {
1877 .name = "memory_migrate",
1878 .read_u64 = cpuset_read_u64,
1879 .write_u64 = cpuset_write_u64,
1880 .private = FILE_MEMORY_MIGRATE,
1881 },
1882
1883 {
1884 .name = "memory_pressure",
1885 .read_u64 = cpuset_read_u64,
1886 .write_u64 = cpuset_write_u64,
1887 .private = FILE_MEMORY_PRESSURE,
099fca32 1888 .mode = S_IRUGO,
addf2c73
PM
1889 },
1890
1891 {
1892 .name = "memory_spread_page",
1893 .read_u64 = cpuset_read_u64,
1894 .write_u64 = cpuset_write_u64,
1895 .private = FILE_SPREAD_PAGE,
1896 },
1897
1898 {
1899 .name = "memory_spread_slab",
1900 .read_u64 = cpuset_read_u64,
1901 .write_u64 = cpuset_write_u64,
1902 .private = FILE_SPREAD_SLAB,
1903 },
3e0d98b9 1904
4baf6e33
TH
1905 {
1906 .name = "memory_pressure_enabled",
1907 .flags = CFTYPE_ONLY_ON_ROOT,
1908 .read_u64 = cpuset_read_u64,
1909 .write_u64 = cpuset_write_u64,
1910 .private = FILE_MEMORY_PRESSURE_ENABLED,
1911 },
1da177e4 1912
4baf6e33
TH
1913 { } /* terminate */
1914};
1da177e4
LT
1915
1916/*
92fb9748 1917 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1918 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1919 */
1920
eb95419b
TH
1921static struct cgroup_subsys_state *
1922cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1923{
c8f699bb 1924 struct cpuset *cs;
1da177e4 1925
eb95419b 1926 if (!parent_css)
8793d854 1927 return &top_cpuset.css;
033fa1c5 1928
c8f699bb 1929 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1930 if (!cs)
8793d854 1931 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1932 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1933 kfree(cs);
1934 return ERR_PTR(-ENOMEM);
1935 }
1da177e4 1936
029190c5 1937 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1938 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1939 nodes_clear(cs->mems_allowed);
3e0d98b9 1940 fmeter_init(&cs->fmeter);
1d3504fc 1941 cs->relax_domain_level = -1;
1da177e4 1942
c8f699bb
TH
1943 return &cs->css;
1944}
1945
eb95419b 1946static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 1947{
eb95419b 1948 struct cpuset *cs = css_cs(css);
c431069f 1949 struct cpuset *parent = parent_cs(cs);
ae8086ce 1950 struct cpuset *tmp_cs;
492eb21b 1951 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
1952
1953 if (!parent)
1954 return 0;
1955
5d21cc2d
TH
1956 mutex_lock(&cpuset_mutex);
1957
efeb77b2 1958 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1959 if (is_spread_page(parent))
1960 set_bit(CS_SPREAD_PAGE, &cs->flags);
1961 if (is_spread_slab(parent))
1962 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1963
202f72d5 1964 number_of_cpusets++;
033fa1c5 1965
eb95419b 1966 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 1967 goto out_unlock;
033fa1c5
TH
1968
1969 /*
1970 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1971 * set. This flag handling is implemented in cgroup core for
1972 * histrical reasons - the flag may be specified during mount.
1973 *
1974 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1975 * refuse to clone the configuration - thereby refusing the task to
1976 * be entered, and as a result refusing the sys_unshare() or
1977 * clone() which initiated it. If this becomes a problem for some
1978 * users who wish to allow that scenario, then this could be
1979 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1980 * (and likewise for mems) to the new cgroup.
1981 */
ae8086ce 1982 rcu_read_lock();
492eb21b 1983 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
1984 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1985 rcu_read_unlock();
5d21cc2d 1986 goto out_unlock;
ae8086ce 1987 }
033fa1c5 1988 }
ae8086ce 1989 rcu_read_unlock();
033fa1c5
TH
1990
1991 mutex_lock(&callback_mutex);
1992 cs->mems_allowed = parent->mems_allowed;
1993 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1994 mutex_unlock(&callback_mutex);
5d21cc2d
TH
1995out_unlock:
1996 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
1997 return 0;
1998}
1999
0b9e6965
ZH
2000/*
2001 * If the cpuset being removed has its flag 'sched_load_balance'
2002 * enabled, then simulate turning sched_load_balance off, which
2003 * will call rebuild_sched_domains_locked().
2004 */
2005
eb95419b 2006static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 2007{
eb95419b 2008 struct cpuset *cs = css_cs(css);
c8f699bb 2009
5d21cc2d 2010 mutex_lock(&cpuset_mutex);
c8f699bb
TH
2011
2012 if (is_sched_load_balance(cs))
2013 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2014
2015 number_of_cpusets--;
efeb77b2 2016 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 2017
5d21cc2d 2018 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2019}
2020
eb95419b 2021static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 2022{
eb95419b 2023 struct cpuset *cs = css_cs(css);
1da177e4 2024
300ed6cb 2025 free_cpumask_var(cs->cpus_allowed);
8793d854 2026 kfree(cs);
1da177e4
LT
2027}
2028
8793d854
PM
2029struct cgroup_subsys cpuset_subsys = {
2030 .name = "cpuset",
92fb9748 2031 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
2032 .css_online = cpuset_css_online,
2033 .css_offline = cpuset_css_offline,
92fb9748 2034 .css_free = cpuset_css_free,
8793d854 2035 .can_attach = cpuset_can_attach,
452477fa 2036 .cancel_attach = cpuset_cancel_attach,
8793d854 2037 .attach = cpuset_attach,
8793d854 2038 .subsys_id = cpuset_subsys_id,
4baf6e33 2039 .base_cftypes = files,
8793d854
PM
2040 .early_init = 1,
2041};
2042
1da177e4
LT
2043/**
2044 * cpuset_init - initialize cpusets at system boot
2045 *
2046 * Description: Initialize top_cpuset and the cpuset internal file system,
2047 **/
2048
2049int __init cpuset_init(void)
2050{
8793d854 2051 int err = 0;
1da177e4 2052
58568d2a
MX
2053 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2054 BUG();
2055
300ed6cb 2056 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2057 nodes_setall(top_cpuset.mems_allowed);
1da177e4 2058
3e0d98b9 2059 fmeter_init(&top_cpuset.fmeter);
029190c5 2060 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2061 top_cpuset.relax_domain_level = -1;
1da177e4 2062
1da177e4
LT
2063 err = register_filesystem(&cpuset_fs_type);
2064 if (err < 0)
8793d854
PM
2065 return err;
2066
2341d1b6
LZ
2067 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2068 BUG();
2069
202f72d5 2070 number_of_cpusets = 1;
8793d854 2071 return 0;
1da177e4
LT
2072}
2073
b1aac8bb 2074/*
cf417141 2075 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2076 * or memory nodes, we need to walk over the cpuset hierarchy,
2077 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2078 * last CPU or node from a cpuset, then move the tasks in the empty
2079 * cpuset to its next-highest non-empty parent.
b1aac8bb 2080 */
956db3ca
CW
2081static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2082{
2083 struct cpuset *parent;
2084
956db3ca
CW
2085 /*
2086 * Find its next-highest non-empty parent, (top cpuset
2087 * has online cpus, so can't be empty).
2088 */
c431069f 2089 parent = parent_cs(cs);
300ed6cb 2090 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2091 nodes_empty(parent->mems_allowed))
c431069f 2092 parent = parent_cs(parent);
956db3ca 2093
8cc99345
TH
2094 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2095 rcu_read_lock();
2096 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
2097 cgroup_name(cs->css.cgroup));
2098 rcu_read_unlock();
2099 }
956db3ca
CW
2100}
2101
deb7aa30 2102/**
388afd85 2103 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2104 * @cs: cpuset in interest
956db3ca 2105 *
deb7aa30
TH
2106 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2107 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2108 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2109 */
388afd85 2110static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2111{
deb7aa30 2112 static cpumask_t off_cpus;
33ad801d 2113 static nodemask_t off_mems;
5d21cc2d 2114 bool is_empty;
5c5cc623 2115 bool sane = cgroup_sane_behavior(cs->css.cgroup);
80d1fa64 2116
e44193d3
LZ
2117retry:
2118 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2119
5d21cc2d 2120 mutex_lock(&cpuset_mutex);
7ddf96b0 2121
e44193d3
LZ
2122 /*
2123 * We have raced with task attaching. We wait until attaching
2124 * is finished, so we won't attach a task to an empty cpuset.
2125 */
2126 if (cs->attach_in_progress) {
2127 mutex_unlock(&cpuset_mutex);
2128 goto retry;
2129 }
2130
deb7aa30
TH
2131 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2132 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2133
5c5cc623
LZ
2134 mutex_lock(&callback_mutex);
2135 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2136 mutex_unlock(&callback_mutex);
2137
2138 /*
2139 * If sane_behavior flag is set, we need to update tasks' cpumask
f047cecf
LZ
2140 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
2141 * call update_tasks_cpumask() if the cpuset becomes empty, as
2142 * the tasks in it will be migrated to an ancestor.
5c5cc623
LZ
2143 */
2144 if ((sane && cpumask_empty(cs->cpus_allowed)) ||
f047cecf 2145 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
deb7aa30 2146 update_tasks_cpumask(cs, NULL);
80d1fa64 2147
5c5cc623
LZ
2148 mutex_lock(&callback_mutex);
2149 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2150 mutex_unlock(&callback_mutex);
2151
2152 /*
2153 * If sane_behavior flag is set, we need to update tasks' nodemask
f047cecf
LZ
2154 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
2155 * call update_tasks_nodemask() if the cpuset becomes empty, as
2156 * the tasks in it will be migratd to an ancestor.
5c5cc623
LZ
2157 */
2158 if ((sane && nodes_empty(cs->mems_allowed)) ||
f047cecf 2159 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
33ad801d 2160 update_tasks_nodemask(cs, NULL);
deb7aa30 2161
5d21cc2d
TH
2162 is_empty = cpumask_empty(cs->cpus_allowed) ||
2163 nodes_empty(cs->mems_allowed);
8d033948 2164
5d21cc2d
TH
2165 mutex_unlock(&cpuset_mutex);
2166
2167 /*
5c5cc623
LZ
2168 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
2169 *
2170 * Otherwise move tasks to the nearest ancestor with execution
2171 * resources. This is full cgroup operation which will
5d21cc2d
TH
2172 * also call back into cpuset. Should be done outside any lock.
2173 */
5c5cc623 2174 if (!sane && is_empty)
5d21cc2d 2175 remove_tasks_in_empty_cpuset(cs);
b1aac8bb
PJ
2176}
2177
deb7aa30 2178/**
3a5a6d0c 2179 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2180 *
deb7aa30
TH
2181 * This function is called after either CPU or memory configuration has
2182 * changed and updates cpuset accordingly. The top_cpuset is always
2183 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2184 * order to make cpusets transparent (of no affect) on systems that are
2185 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2186 *
deb7aa30 2187 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2188 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2189 * all descendants.
956db3ca 2190 *
deb7aa30
TH
2191 * Note that CPU offlining during suspend is ignored. We don't modify
2192 * cpusets across suspend/resume cycles at all.
956db3ca 2193 */
3a5a6d0c 2194static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2195{
5c5cc623
LZ
2196 static cpumask_t new_cpus;
2197 static nodemask_t new_mems;
deb7aa30 2198 bool cpus_updated, mems_updated;
b1aac8bb 2199
5d21cc2d 2200 mutex_lock(&cpuset_mutex);
956db3ca 2201
deb7aa30
TH
2202 /* fetch the available cpus/mems and find out which changed how */
2203 cpumask_copy(&new_cpus, cpu_active_mask);
2204 new_mems = node_states[N_MEMORY];
7ddf96b0 2205
deb7aa30 2206 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
deb7aa30 2207 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
7ddf96b0 2208
deb7aa30
TH
2209 /* synchronize cpus_allowed to cpu_active_mask */
2210 if (cpus_updated) {
2211 mutex_lock(&callback_mutex);
2212 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2213 mutex_unlock(&callback_mutex);
2214 /* we don't mess with cpumasks of tasks in top_cpuset */
2215 }
b4501295 2216
deb7aa30
TH
2217 /* synchronize mems_allowed to N_MEMORY */
2218 if (mems_updated) {
deb7aa30
TH
2219 mutex_lock(&callback_mutex);
2220 top_cpuset.mems_allowed = new_mems;
2221 mutex_unlock(&callback_mutex);
33ad801d 2222 update_tasks_nodemask(&top_cpuset, NULL);
deb7aa30 2223 }
b4501295 2224
388afd85
LZ
2225 mutex_unlock(&cpuset_mutex);
2226
5c5cc623
LZ
2227 /* if cpus or mems changed, we need to propagate to descendants */
2228 if (cpus_updated || mems_updated) {
deb7aa30 2229 struct cpuset *cs;
492eb21b 2230 struct cgroup_subsys_state *pos_css;
f9b4fb8d 2231
fc560a26 2232 rcu_read_lock();
492eb21b 2233 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
bd8815a6 2234 if (cs == &top_cpuset || !css_tryget(&cs->css))
388afd85
LZ
2235 continue;
2236 rcu_read_unlock();
7ddf96b0 2237
388afd85 2238 cpuset_hotplug_update_tasks(cs);
b4501295 2239
388afd85
LZ
2240 rcu_read_lock();
2241 css_put(&cs->css);
2242 }
2243 rcu_read_unlock();
2244 }
8d033948 2245
deb7aa30 2246 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2247 if (cpus_updated)
2248 rebuild_sched_domains();
b1aac8bb
PJ
2249}
2250
7ddf96b0 2251void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2252{
3a5a6d0c
TH
2253 /*
2254 * We're inside cpu hotplug critical region which usually nests
2255 * inside cgroup synchronization. Bounce actual hotplug processing
2256 * to a work item to avoid reverse locking order.
2257 *
2258 * We still need to do partition_sched_domains() synchronously;
2259 * otherwise, the scheduler will get confused and put tasks to the
2260 * dead CPU. Fall back to the default single domain.
2261 * cpuset_hotplug_workfn() will rebuild it as necessary.
2262 */
2263 partition_sched_domains(1, NULL, NULL);
2264 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2265}
4c4d50f7 2266
38837fc7 2267/*
38d7bee9
LJ
2268 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2269 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2270 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2271 */
f481891f
MX
2272static int cpuset_track_online_nodes(struct notifier_block *self,
2273 unsigned long action, void *arg)
38837fc7 2274{
3a5a6d0c 2275 schedule_work(&cpuset_hotplug_work);
f481891f 2276 return NOTIFY_OK;
38837fc7 2277}
d8f10cb3
AM
2278
2279static struct notifier_block cpuset_track_online_nodes_nb = {
2280 .notifier_call = cpuset_track_online_nodes,
2281 .priority = 10, /* ??! */
2282};
38837fc7 2283
1da177e4
LT
2284/**
2285 * cpuset_init_smp - initialize cpus_allowed
2286 *
2287 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2288 */
1da177e4
LT
2289void __init cpuset_init_smp(void)
2290{
6ad4c188 2291 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2292 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2293 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2294
d8f10cb3 2295 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2296}
2297
2298/**
1da177e4
LT
2299 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2300 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2301 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2302 *
300ed6cb 2303 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2304 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2305 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2306 * tasks cpuset.
2307 **/
2308
6af866af 2309void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2310{
070b57fc
LZ
2311 struct cpuset *cpus_cs;
2312
3d3f26a7 2313 mutex_lock(&callback_mutex);
909d75a3 2314 task_lock(tsk);
070b57fc
LZ
2315 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2316 guarantee_online_cpus(cpus_cs, pmask);
909d75a3 2317 task_unlock(tsk);
897f0b3c 2318 mutex_unlock(&callback_mutex);
1da177e4
LT
2319}
2320
2baab4e9 2321void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2322{
c9710d80 2323 struct cpuset *cpus_cs;
9084bb82
ON
2324
2325 rcu_read_lock();
070b57fc
LZ
2326 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2327 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
9084bb82
ON
2328 rcu_read_unlock();
2329
2330 /*
2331 * We own tsk->cpus_allowed, nobody can change it under us.
2332 *
2333 * But we used cs && cs->cpus_allowed lockless and thus can
2334 * race with cgroup_attach_task() or update_cpumask() and get
2335 * the wrong tsk->cpus_allowed. However, both cases imply the
2336 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2337 * which takes task_rq_lock().
2338 *
2339 * If we are called after it dropped the lock we must see all
2340 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2341 * set any mask even if it is not right from task_cs() pov,
2342 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2343 *
2344 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2345 * if required.
9084bb82 2346 */
9084bb82
ON
2347}
2348
1da177e4
LT
2349void cpuset_init_current_mems_allowed(void)
2350{
f9a86fcb 2351 nodes_setall(current->mems_allowed);
1da177e4
LT
2352}
2353
909d75a3
PJ
2354/**
2355 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2356 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2357 *
2358 * Description: Returns the nodemask_t mems_allowed of the cpuset
2359 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2360 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2361 * tasks cpuset.
2362 **/
2363
2364nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2365{
070b57fc 2366 struct cpuset *mems_cs;
909d75a3
PJ
2367 nodemask_t mask;
2368
3d3f26a7 2369 mutex_lock(&callback_mutex);
909d75a3 2370 task_lock(tsk);
070b57fc
LZ
2371 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2372 guarantee_online_mems(mems_cs, &mask);
909d75a3 2373 task_unlock(tsk);
3d3f26a7 2374 mutex_unlock(&callback_mutex);
909d75a3
PJ
2375
2376 return mask;
2377}
2378
d9fd8a6d 2379/**
19770b32
MG
2380 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2381 * @nodemask: the nodemask to be checked
d9fd8a6d 2382 *
19770b32 2383 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2384 */
19770b32 2385int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2386{
19770b32 2387 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2388}
2389
9bf2229f 2390/*
78608366
PM
2391 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2392 * mem_hardwall ancestor to the specified cpuset. Call holding
2393 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2394 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2395 */
c9710d80 2396static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2397{
c431069f
TH
2398 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2399 cs = parent_cs(cs);
9bf2229f
PJ
2400 return cs;
2401}
2402
d9fd8a6d 2403/**
a1bc5a4e
DR
2404 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2405 * @node: is this an allowed node?
02a0e53d 2406 * @gfp_mask: memory allocation flags
d9fd8a6d 2407 *
a1bc5a4e
DR
2408 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2409 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2410 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2411 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2412 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2413 * flag, yes.
9bf2229f
PJ
2414 * Otherwise, no.
2415 *
a1bc5a4e
DR
2416 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2417 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2418 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2419 *
a1bc5a4e
DR
2420 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2421 * cpusets, and never sleeps.
02a0e53d
PJ
2422 *
2423 * The __GFP_THISNODE placement logic is really handled elsewhere,
2424 * by forcibly using a zonelist starting at a specified node, and by
2425 * (in get_page_from_freelist()) refusing to consider the zones for
2426 * any node on the zonelist except the first. By the time any such
2427 * calls get to this routine, we should just shut up and say 'yes'.
2428 *
9bf2229f 2429 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2430 * and do not allow allocations outside the current tasks cpuset
2431 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2432 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2433 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2434 *
02a0e53d
PJ
2435 * Scanning up parent cpusets requires callback_mutex. The
2436 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2437 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2438 * current tasks mems_allowed came up empty on the first pass over
2439 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2440 * cpuset are short of memory, might require taking the callback_mutex
2441 * mutex.
9bf2229f 2442 *
36be57ff 2443 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2444 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2445 * so no allocation on a node outside the cpuset is allowed (unless
2446 * in interrupt, of course).
36be57ff
PJ
2447 *
2448 * The second pass through get_page_from_freelist() doesn't even call
2449 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2450 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2451 * in alloc_flags. That logic and the checks below have the combined
2452 * affect that:
9bf2229f
PJ
2453 * in_interrupt - any node ok (current task context irrelevant)
2454 * GFP_ATOMIC - any node ok
c596d9f3 2455 * TIF_MEMDIE - any node ok
78608366 2456 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2457 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2458 *
2459 * Rule:
a1bc5a4e 2460 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2461 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2462 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2463 */
a1bc5a4e 2464int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2465{
c9710d80 2466 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2467 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2468
9b819d20 2469 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2470 return 1;
92d1dbd2 2471 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2472 if (node_isset(node, current->mems_allowed))
2473 return 1;
c596d9f3
DR
2474 /*
2475 * Allow tasks that have access to memory reserves because they have
2476 * been OOM killed to get memory anywhere.
2477 */
2478 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2479 return 1;
9bf2229f
PJ
2480 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2481 return 0;
2482
5563e770
BP
2483 if (current->flags & PF_EXITING) /* Let dying task have memory */
2484 return 1;
2485
9bf2229f 2486 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2487 mutex_lock(&callback_mutex);
053199ed 2488
053199ed 2489 task_lock(current);
78608366 2490 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2491 task_unlock(current);
2492
9bf2229f 2493 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2494 mutex_unlock(&callback_mutex);
9bf2229f 2495 return allowed;
1da177e4
LT
2496}
2497
02a0e53d 2498/*
a1bc5a4e
DR
2499 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2500 * @node: is this an allowed node?
02a0e53d
PJ
2501 * @gfp_mask: memory allocation flags
2502 *
a1bc5a4e
DR
2503 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2504 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2505 * yes. If the task has been OOM killed and has access to memory reserves as
2506 * specified by the TIF_MEMDIE flag, yes.
2507 * Otherwise, no.
02a0e53d
PJ
2508 *
2509 * The __GFP_THISNODE placement logic is really handled elsewhere,
2510 * by forcibly using a zonelist starting at a specified node, and by
2511 * (in get_page_from_freelist()) refusing to consider the zones for
2512 * any node on the zonelist except the first. By the time any such
2513 * calls get to this routine, we should just shut up and say 'yes'.
2514 *
a1bc5a4e
DR
2515 * Unlike the cpuset_node_allowed_softwall() variant, above,
2516 * this variant requires that the node be in the current task's
02a0e53d
PJ
2517 * mems_allowed or that we're in interrupt. It does not scan up the
2518 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2519 * It never sleeps.
2520 */
a1bc5a4e 2521int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2522{
02a0e53d
PJ
2523 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2524 return 1;
02a0e53d
PJ
2525 if (node_isset(node, current->mems_allowed))
2526 return 1;
dedf8b79
DW
2527 /*
2528 * Allow tasks that have access to memory reserves because they have
2529 * been OOM killed to get memory anywhere.
2530 */
2531 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2532 return 1;
02a0e53d
PJ
2533 return 0;
2534}
2535
825a46af 2536/**
6adef3eb
JS
2537 * cpuset_mem_spread_node() - On which node to begin search for a file page
2538 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2539 *
2540 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2541 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2542 * and if the memory allocation used cpuset_mem_spread_node()
2543 * to determine on which node to start looking, as it will for
2544 * certain page cache or slab cache pages such as used for file
2545 * system buffers and inode caches, then instead of starting on the
2546 * local node to look for a free page, rather spread the starting
2547 * node around the tasks mems_allowed nodes.
2548 *
2549 * We don't have to worry about the returned node being offline
2550 * because "it can't happen", and even if it did, it would be ok.
2551 *
2552 * The routines calling guarantee_online_mems() are careful to
2553 * only set nodes in task->mems_allowed that are online. So it
2554 * should not be possible for the following code to return an
2555 * offline node. But if it did, that would be ok, as this routine
2556 * is not returning the node where the allocation must be, only
2557 * the node where the search should start. The zonelist passed to
2558 * __alloc_pages() will include all nodes. If the slab allocator
2559 * is passed an offline node, it will fall back to the local node.
2560 * See kmem_cache_alloc_node().
2561 */
2562
6adef3eb 2563static int cpuset_spread_node(int *rotor)
825a46af
PJ
2564{
2565 int node;
2566
6adef3eb 2567 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2568 if (node == MAX_NUMNODES)
2569 node = first_node(current->mems_allowed);
6adef3eb 2570 *rotor = node;
825a46af
PJ
2571 return node;
2572}
6adef3eb
JS
2573
2574int cpuset_mem_spread_node(void)
2575{
778d3b0f
MH
2576 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2577 current->cpuset_mem_spread_rotor =
2578 node_random(&current->mems_allowed);
2579
6adef3eb
JS
2580 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2581}
2582
2583int cpuset_slab_spread_node(void)
2584{
778d3b0f
MH
2585 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2586 current->cpuset_slab_spread_rotor =
2587 node_random(&current->mems_allowed);
2588
6adef3eb
JS
2589 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2590}
2591
825a46af
PJ
2592EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2593
ef08e3b4 2594/**
bbe373f2
DR
2595 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2596 * @tsk1: pointer to task_struct of some task.
2597 * @tsk2: pointer to task_struct of some other task.
2598 *
2599 * Description: Return true if @tsk1's mems_allowed intersects the
2600 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2601 * one of the task's memory usage might impact the memory available
2602 * to the other.
ef08e3b4
PJ
2603 **/
2604
bbe373f2
DR
2605int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2606 const struct task_struct *tsk2)
ef08e3b4 2607{
bbe373f2 2608 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2609}
2610
f440d98f
LZ
2611#define CPUSET_NODELIST_LEN (256)
2612
75aa1994
DR
2613/**
2614 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2615 * @task: pointer to task_struct of some task.
2616 *
2617 * Description: Prints @task's name, cpuset name, and cached copy of its
2618 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2619 * dereferencing task_cs(task).
2620 */
2621void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2622{
f440d98f
LZ
2623 /* Statically allocated to prevent using excess stack. */
2624 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2625 static DEFINE_SPINLOCK(cpuset_buffer_lock);
75aa1994 2626
f440d98f 2627 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
63f43f55 2628
cfb5966b 2629 rcu_read_lock();
f440d98f 2630 spin_lock(&cpuset_buffer_lock);
63f43f55 2631
75aa1994
DR
2632 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2633 tsk->mems_allowed);
2634 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
f440d98f
LZ
2635 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2636
75aa1994 2637 spin_unlock(&cpuset_buffer_lock);
cfb5966b 2638 rcu_read_unlock();
75aa1994
DR
2639}
2640
3e0d98b9
PJ
2641/*
2642 * Collection of memory_pressure is suppressed unless
2643 * this flag is enabled by writing "1" to the special
2644 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2645 */
2646
c5b2aff8 2647int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2648
2649/**
2650 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2651 *
2652 * Keep a running average of the rate of synchronous (direct)
2653 * page reclaim efforts initiated by tasks in each cpuset.
2654 *
2655 * This represents the rate at which some task in the cpuset
2656 * ran low on memory on all nodes it was allowed to use, and
2657 * had to enter the kernels page reclaim code in an effort to
2658 * create more free memory by tossing clean pages or swapping
2659 * or writing dirty pages.
2660 *
2661 * Display to user space in the per-cpuset read-only file
2662 * "memory_pressure". Value displayed is an integer
2663 * representing the recent rate of entry into the synchronous
2664 * (direct) page reclaim by any task attached to the cpuset.
2665 **/
2666
2667void __cpuset_memory_pressure_bump(void)
2668{
3e0d98b9 2669 task_lock(current);
8793d854 2670 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2671 task_unlock(current);
2672}
2673
8793d854 2674#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2675/*
2676 * proc_cpuset_show()
2677 * - Print tasks cpuset path into seq_file.
2678 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2679 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2680 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2681 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2682 * anyway.
1da177e4 2683 */
8d8b97ba 2684int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2685{
13b41b09 2686 struct pid *pid;
1da177e4
LT
2687 struct task_struct *tsk;
2688 char *buf;
8793d854 2689 struct cgroup_subsys_state *css;
99f89551 2690 int retval;
1da177e4 2691
99f89551 2692 retval = -ENOMEM;
1da177e4
LT
2693 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2694 if (!buf)
99f89551
EB
2695 goto out;
2696
2697 retval = -ESRCH;
13b41b09
EB
2698 pid = m->private;
2699 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2700 if (!tsk)
2701 goto out_free;
1da177e4 2702
27e89ae5 2703 rcu_read_lock();
8af01f56 2704 css = task_css(tsk, cpuset_subsys_id);
8793d854 2705 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
27e89ae5 2706 rcu_read_unlock();
1da177e4 2707 if (retval < 0)
27e89ae5 2708 goto out_put_task;
1da177e4
LT
2709 seq_puts(m, buf);
2710 seq_putc(m, '\n');
27e89ae5 2711out_put_task:
99f89551
EB
2712 put_task_struct(tsk);
2713out_free:
1da177e4 2714 kfree(buf);
99f89551 2715out:
1da177e4
LT
2716 return retval;
2717}
8793d854 2718#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2719
d01d4827 2720/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2721void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2722{
df5f8314 2723 seq_printf(m, "Mems_allowed:\t");
30e8e136 2724 seq_nodemask(m, &task->mems_allowed);
df5f8314 2725 seq_printf(m, "\n");
39106dcf 2726 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2727 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2728 seq_printf(m, "\n");
1da177e4 2729}