cgroup: add cgroup->dummy_css
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
202f72d5
PJ
64/*
65 * Tracks how many cpusets are currently defined in system.
66 * When there is only one cpuset (the root cpuset) we can
67 * short circuit some hooks.
68 */
7edc5962 69int number_of_cpusets __read_mostly;
202f72d5 70
2df167a3 71/* Forward declare cgroup structures */
8793d854 72struct cgroup_subsys cpuset_subsys;
8793d854 73
3e0d98b9
PJ
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
1da177e4 83struct cpuset {
8793d854
PM
84 struct cgroup_subsys_state css;
85
1da177e4 86 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
33ad801d
LZ
90 /*
91 * This is old Memory Nodes tasks took on.
92 *
93 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
94 * - A new cpuset's old_mems_allowed is initialized when some
95 * task is moved into it.
96 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
97 * cpuset.mems_allowed and have tasks' nodemask updated, and
98 * then old_mems_allowed is updated to mems_allowed.
99 */
100 nodemask_t old_mems_allowed;
101
3e0d98b9 102 struct fmeter fmeter; /* memory_pressure filter */
029190c5 103
452477fa
TH
104 /*
105 * Tasks are being attached to this cpuset. Used to prevent
106 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
107 */
108 int attach_in_progress;
109
029190c5
PJ
110 /* partition number for rebuild_sched_domains() */
111 int pn;
956db3ca 112
1d3504fc
HS
113 /* for custom sched domain */
114 int relax_domain_level;
1da177e4
LT
115};
116
a7c6d554
TH
117static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
118{
119 return css ? container_of(css, struct cpuset, css) : NULL;
120}
121
8793d854 122/* Retrieve the cpuset for a cgroup */
c9e5fe66 123static inline struct cpuset *cgroup_cs(struct cgroup *cgrp)
8793d854 124{
a7c6d554 125 return css_cs(cgroup_css(cgrp, cpuset_subsys_id));
8793d854
PM
126}
127
128/* Retrieve the cpuset for a task */
129static inline struct cpuset *task_cs(struct task_struct *task)
130{
a7c6d554 131 return css_cs(task_css(task, cpuset_subsys_id));
8793d854 132}
8793d854 133
c9710d80 134static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 135{
63876986 136 return css_cs(css_parent(&cs->css));
c431069f
TH
137}
138
b246272e
DR
139#ifdef CONFIG_NUMA
140static inline bool task_has_mempolicy(struct task_struct *task)
141{
142 return task->mempolicy;
143}
144#else
145static inline bool task_has_mempolicy(struct task_struct *task)
146{
147 return false;
148}
149#endif
150
151
1da177e4
LT
152/* bits in struct cpuset flags field */
153typedef enum {
efeb77b2 154 CS_ONLINE,
1da177e4
LT
155 CS_CPU_EXCLUSIVE,
156 CS_MEM_EXCLUSIVE,
78608366 157 CS_MEM_HARDWALL,
45b07ef3 158 CS_MEMORY_MIGRATE,
029190c5 159 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
160 CS_SPREAD_PAGE,
161 CS_SPREAD_SLAB,
1da177e4
LT
162} cpuset_flagbits_t;
163
164/* convenient tests for these bits */
efeb77b2
TH
165static inline bool is_cpuset_online(const struct cpuset *cs)
166{
167 return test_bit(CS_ONLINE, &cs->flags);
168}
169
1da177e4
LT
170static inline int is_cpu_exclusive(const struct cpuset *cs)
171{
7b5b9ef0 172 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
173}
174
175static inline int is_mem_exclusive(const struct cpuset *cs)
176{
7b5b9ef0 177 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
178}
179
78608366
PM
180static inline int is_mem_hardwall(const struct cpuset *cs)
181{
182 return test_bit(CS_MEM_HARDWALL, &cs->flags);
183}
184
029190c5
PJ
185static inline int is_sched_load_balance(const struct cpuset *cs)
186{
187 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
188}
189
45b07ef3
PJ
190static inline int is_memory_migrate(const struct cpuset *cs)
191{
7b5b9ef0 192 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
193}
194
825a46af
PJ
195static inline int is_spread_page(const struct cpuset *cs)
196{
197 return test_bit(CS_SPREAD_PAGE, &cs->flags);
198}
199
200static inline int is_spread_slab(const struct cpuset *cs)
201{
202 return test_bit(CS_SPREAD_SLAB, &cs->flags);
203}
204
1da177e4 205static struct cpuset top_cpuset = {
efeb77b2
TH
206 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
207 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
208};
209
ae8086ce
TH
210/**
211 * cpuset_for_each_child - traverse online children of a cpuset
212 * @child_cs: loop cursor pointing to the current child
213 * @pos_cgrp: used for iteration
214 * @parent_cs: target cpuset to walk children of
215 *
216 * Walk @child_cs through the online children of @parent_cs. Must be used
217 * with RCU read locked.
218 */
219#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
220 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
221 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
222
fc560a26
TH
223/**
224 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
225 * @des_cs: loop cursor pointing to the current descendant
226 * @pos_cgrp: used for iteration
227 * @root_cs: target cpuset to walk ancestor of
228 *
229 * Walk @des_cs through the online descendants of @root_cs. Must be used
230 * with RCU read locked. The caller may modify @pos_cgrp by calling
231 * cgroup_rightmost_descendant() to skip subtree.
232 */
233#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
234 cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
235 if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
236
1da177e4 237/*
5d21cc2d
TH
238 * There are two global mutexes guarding cpuset structures - cpuset_mutex
239 * and callback_mutex. The latter may nest inside the former. We also
240 * require taking task_lock() when dereferencing a task's cpuset pointer.
241 * See "The task_lock() exception", at the end of this comment.
242 *
243 * A task must hold both mutexes to modify cpusets. If a task holds
244 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
245 * is the only task able to also acquire callback_mutex and be able to
246 * modify cpusets. It can perform various checks on the cpuset structure
247 * first, knowing nothing will change. It can also allocate memory while
248 * just holding cpuset_mutex. While it is performing these checks, various
249 * callback routines can briefly acquire callback_mutex to query cpusets.
250 * Once it is ready to make the changes, it takes callback_mutex, blocking
251 * everyone else.
053199ed
PJ
252 *
253 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 254 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
255 * from one of the callbacks into the cpuset code from within
256 * __alloc_pages().
257 *
3d3f26a7 258 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
259 * access to cpusets.
260 *
58568d2a
MX
261 * Now, the task_struct fields mems_allowed and mempolicy may be changed
262 * by other task, we use alloc_lock in the task_struct fields to protect
263 * them.
053199ed 264 *
3d3f26a7 265 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
266 * small pieces of code, such as when reading out possibly multi-word
267 * cpumasks and nodemasks.
268 *
2df167a3
PM
269 * Accessing a task's cpuset should be done in accordance with the
270 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
271 */
272
5d21cc2d 273static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 274static DEFINE_MUTEX(callback_mutex);
4247bdc6 275
3a5a6d0c
TH
276/*
277 * CPU / memory hotplug is handled asynchronously.
278 */
279static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
280static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
281
e44193d3
LZ
282static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
283
cf417141
MK
284/*
285 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 286 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
287 * silently switch it to mount "cgroup" instead
288 */
f7e83571
AV
289static struct dentry *cpuset_mount(struct file_system_type *fs_type,
290 int flags, const char *unused_dev_name, void *data)
1da177e4 291{
8793d854 292 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 293 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
294 if (cgroup_fs) {
295 char mountopts[] =
296 "cpuset,noprefix,"
297 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
298 ret = cgroup_fs->mount(cgroup_fs, flags,
299 unused_dev_name, mountopts);
8793d854
PM
300 put_filesystem(cgroup_fs);
301 }
302 return ret;
1da177e4
LT
303}
304
305static struct file_system_type cpuset_fs_type = {
306 .name = "cpuset",
f7e83571 307 .mount = cpuset_mount,
1da177e4
LT
308};
309
1da177e4 310/*
300ed6cb 311 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 312 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
313 * until we find one that does have some online cpus. The top
314 * cpuset always has some cpus online.
1da177e4
LT
315 *
316 * One way or another, we guarantee to return some non-empty subset
5f054e31 317 * of cpu_online_mask.
1da177e4 318 *
3d3f26a7 319 * Call with callback_mutex held.
1da177e4 320 */
c9710d80 321static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 322{
40df2deb 323 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 324 cs = parent_cs(cs);
40df2deb 325 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4
LT
326}
327
328/*
329 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
330 * are online, with memory. If none are online with memory, walk
331 * up the cpuset hierarchy until we find one that does have some
40df2deb 332 * online mems. The top cpuset always has some mems online.
1da177e4
LT
333 *
334 * One way or another, we guarantee to return some non-empty subset
38d7bee9 335 * of node_states[N_MEMORY].
1da177e4 336 *
3d3f26a7 337 * Call with callback_mutex held.
1da177e4 338 */
c9710d80 339static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 340{
40df2deb 341 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
c431069f 342 cs = parent_cs(cs);
40df2deb 343 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
1da177e4
LT
344}
345
f3b39d47
MX
346/*
347 * update task's spread flag if cpuset's page/slab spread flag is set
348 *
5d21cc2d 349 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
350 */
351static void cpuset_update_task_spread_flag(struct cpuset *cs,
352 struct task_struct *tsk)
353{
354 if (is_spread_page(cs))
355 tsk->flags |= PF_SPREAD_PAGE;
356 else
357 tsk->flags &= ~PF_SPREAD_PAGE;
358 if (is_spread_slab(cs))
359 tsk->flags |= PF_SPREAD_SLAB;
360 else
361 tsk->flags &= ~PF_SPREAD_SLAB;
362}
363
1da177e4
LT
364/*
365 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
366 *
367 * One cpuset is a subset of another if all its allowed CPUs and
368 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 369 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
370 */
371
372static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
373{
300ed6cb 374 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
375 nodes_subset(p->mems_allowed, q->mems_allowed) &&
376 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
377 is_mem_exclusive(p) <= is_mem_exclusive(q);
378}
379
645fcc9d
LZ
380/**
381 * alloc_trial_cpuset - allocate a trial cpuset
382 * @cs: the cpuset that the trial cpuset duplicates
383 */
c9710d80 384static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 385{
300ed6cb
LZ
386 struct cpuset *trial;
387
388 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
389 if (!trial)
390 return NULL;
391
392 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
393 kfree(trial);
394 return NULL;
395 }
396 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
397
398 return trial;
645fcc9d
LZ
399}
400
401/**
402 * free_trial_cpuset - free the trial cpuset
403 * @trial: the trial cpuset to be freed
404 */
405static void free_trial_cpuset(struct cpuset *trial)
406{
300ed6cb 407 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
408 kfree(trial);
409}
410
1da177e4
LT
411/*
412 * validate_change() - Used to validate that any proposed cpuset change
413 * follows the structural rules for cpusets.
414 *
415 * If we replaced the flag and mask values of the current cpuset
416 * (cur) with those values in the trial cpuset (trial), would
417 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 418 * cpuset_mutex held.
1da177e4
LT
419 *
420 * 'cur' is the address of an actual, in-use cpuset. Operations
421 * such as list traversal that depend on the actual address of the
422 * cpuset in the list must use cur below, not trial.
423 *
424 * 'trial' is the address of bulk structure copy of cur, with
425 * perhaps one or more of the fields cpus_allowed, mems_allowed,
426 * or flags changed to new, trial values.
427 *
428 * Return 0 if valid, -errno if not.
429 */
430
c9710d80 431static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 432{
c9e5fe66 433 struct cgroup *cgrp;
1da177e4 434 struct cpuset *c, *par;
ae8086ce
TH
435 int ret;
436
437 rcu_read_lock();
1da177e4
LT
438
439 /* Each of our child cpusets must be a subset of us */
ae8086ce 440 ret = -EBUSY;
c9e5fe66 441 cpuset_for_each_child(c, cgrp, cur)
ae8086ce
TH
442 if (!is_cpuset_subset(c, trial))
443 goto out;
1da177e4
LT
444
445 /* Remaining checks don't apply to root cpuset */
ae8086ce 446 ret = 0;
69604067 447 if (cur == &top_cpuset)
ae8086ce 448 goto out;
1da177e4 449
c431069f 450 par = parent_cs(cur);
69604067 451
1da177e4 452 /* We must be a subset of our parent cpuset */
ae8086ce 453 ret = -EACCES;
1da177e4 454 if (!is_cpuset_subset(trial, par))
ae8086ce 455 goto out;
1da177e4 456
2df167a3
PM
457 /*
458 * If either I or some sibling (!= me) is exclusive, we can't
459 * overlap
460 */
ae8086ce 461 ret = -EINVAL;
c9e5fe66 462 cpuset_for_each_child(c, cgrp, par) {
1da177e4
LT
463 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
464 c != cur &&
300ed6cb 465 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 466 goto out;
1da177e4
LT
467 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
468 c != cur &&
469 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 470 goto out;
1da177e4
LT
471 }
472
452477fa
TH
473 /*
474 * Cpusets with tasks - existing or newly being attached - can't
475 * have empty cpus_allowed or mems_allowed.
476 */
ae8086ce 477 ret = -ENOSPC;
452477fa 478 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
88fa523b 479 (cpumask_empty(trial->cpus_allowed) &&
ae8086ce
TH
480 nodes_empty(trial->mems_allowed)))
481 goto out;
020958b6 482
ae8086ce
TH
483 ret = 0;
484out:
485 rcu_read_unlock();
486 return ret;
1da177e4
LT
487}
488
db7f47cf 489#ifdef CONFIG_SMP
029190c5 490/*
cf417141 491 * Helper routine for generate_sched_domains().
029190c5
PJ
492 * Do cpusets a, b have overlapping cpus_allowed masks?
493 */
029190c5
PJ
494static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
495{
300ed6cb 496 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
497}
498
1d3504fc
HS
499static void
500update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
501{
1d3504fc
HS
502 if (dattr->relax_domain_level < c->relax_domain_level)
503 dattr->relax_domain_level = c->relax_domain_level;
504 return;
505}
506
fc560a26
TH
507static void update_domain_attr_tree(struct sched_domain_attr *dattr,
508 struct cpuset *root_cs)
f5393693 509{
fc560a26
TH
510 struct cpuset *cp;
511 struct cgroup *pos_cgrp;
f5393693 512
fc560a26
TH
513 rcu_read_lock();
514 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
515 /* skip the whole subtree if @cp doesn't have any CPU */
516 if (cpumask_empty(cp->cpus_allowed)) {
517 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
f5393693 518 continue;
fc560a26 519 }
f5393693
LJ
520
521 if (is_sched_load_balance(cp))
522 update_domain_attr(dattr, cp);
f5393693 523 }
fc560a26 524 rcu_read_unlock();
f5393693
LJ
525}
526
029190c5 527/*
cf417141
MK
528 * generate_sched_domains()
529 *
530 * This function builds a partial partition of the systems CPUs
531 * A 'partial partition' is a set of non-overlapping subsets whose
532 * union is a subset of that set.
0a0fca9d 533 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
534 * partition_sched_domains() routine, which will rebuild the scheduler's
535 * load balancing domains (sched domains) as specified by that partial
536 * partition.
029190c5 537 *
45ce80fb 538 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
539 * for a background explanation of this.
540 *
541 * Does not return errors, on the theory that the callers of this
542 * routine would rather not worry about failures to rebuild sched
543 * domains when operating in the severe memory shortage situations
544 * that could cause allocation failures below.
545 *
5d21cc2d 546 * Must be called with cpuset_mutex held.
029190c5
PJ
547 *
548 * The three key local variables below are:
aeed6824 549 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
550 * top-down scan of all cpusets. This scan loads a pointer
551 * to each cpuset marked is_sched_load_balance into the
552 * array 'csa'. For our purposes, rebuilding the schedulers
553 * sched domains, we can ignore !is_sched_load_balance cpusets.
554 * csa - (for CpuSet Array) Array of pointers to all the cpusets
555 * that need to be load balanced, for convenient iterative
556 * access by the subsequent code that finds the best partition,
557 * i.e the set of domains (subsets) of CPUs such that the
558 * cpus_allowed of every cpuset marked is_sched_load_balance
559 * is a subset of one of these domains, while there are as
560 * many such domains as possible, each as small as possible.
561 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 562 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
563 * convenient format, that can be easily compared to the prior
564 * value to determine what partition elements (sched domains)
565 * were changed (added or removed.)
566 *
567 * Finding the best partition (set of domains):
568 * The triple nested loops below over i, j, k scan over the
569 * load balanced cpusets (using the array of cpuset pointers in
570 * csa[]) looking for pairs of cpusets that have overlapping
571 * cpus_allowed, but which don't have the same 'pn' partition
572 * number and gives them in the same partition number. It keeps
573 * looping on the 'restart' label until it can no longer find
574 * any such pairs.
575 *
576 * The union of the cpus_allowed masks from the set of
577 * all cpusets having the same 'pn' value then form the one
578 * element of the partition (one sched domain) to be passed to
579 * partition_sched_domains().
580 */
acc3f5d7 581static int generate_sched_domains(cpumask_var_t **domains,
cf417141 582 struct sched_domain_attr **attributes)
029190c5 583{
029190c5
PJ
584 struct cpuset *cp; /* scans q */
585 struct cpuset **csa; /* array of all cpuset ptrs */
586 int csn; /* how many cpuset ptrs in csa so far */
587 int i, j, k; /* indices for partition finding loops */
acc3f5d7 588 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 589 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 590 int ndoms = 0; /* number of sched domains in result */
6af866af 591 int nslot; /* next empty doms[] struct cpumask slot */
fc560a26 592 struct cgroup *pos_cgrp;
029190c5 593
029190c5 594 doms = NULL;
1d3504fc 595 dattr = NULL;
cf417141 596 csa = NULL;
029190c5
PJ
597
598 /* Special case for the 99% of systems with one, full, sched domain */
599 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
600 ndoms = 1;
601 doms = alloc_sched_domains(ndoms);
029190c5 602 if (!doms)
cf417141
MK
603 goto done;
604
1d3504fc
HS
605 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
606 if (dattr) {
607 *dattr = SD_ATTR_INIT;
93a65575 608 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 609 }
acc3f5d7 610 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 611
cf417141 612 goto done;
029190c5
PJ
613 }
614
029190c5
PJ
615 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
616 if (!csa)
617 goto done;
618 csn = 0;
619
fc560a26
TH
620 rcu_read_lock();
621 cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
f5393693 622 /*
fc560a26
TH
623 * Continue traversing beyond @cp iff @cp has some CPUs and
624 * isn't load balancing. The former is obvious. The
625 * latter: All child cpusets contain a subset of the
626 * parent's cpus, so just skip them, and then we call
627 * update_domain_attr_tree() to calc relax_domain_level of
628 * the corresponding sched domain.
f5393693 629 */
fc560a26
TH
630 if (!cpumask_empty(cp->cpus_allowed) &&
631 !is_sched_load_balance(cp))
f5393693 632 continue;
489a5393 633
fc560a26
TH
634 if (is_sched_load_balance(cp))
635 csa[csn++] = cp;
636
637 /* skip @cp's subtree */
638 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
639 }
640 rcu_read_unlock();
029190c5
PJ
641
642 for (i = 0; i < csn; i++)
643 csa[i]->pn = i;
644 ndoms = csn;
645
646restart:
647 /* Find the best partition (set of sched domains) */
648 for (i = 0; i < csn; i++) {
649 struct cpuset *a = csa[i];
650 int apn = a->pn;
651
652 for (j = 0; j < csn; j++) {
653 struct cpuset *b = csa[j];
654 int bpn = b->pn;
655
656 if (apn != bpn && cpusets_overlap(a, b)) {
657 for (k = 0; k < csn; k++) {
658 struct cpuset *c = csa[k];
659
660 if (c->pn == bpn)
661 c->pn = apn;
662 }
663 ndoms--; /* one less element */
664 goto restart;
665 }
666 }
667 }
668
cf417141
MK
669 /*
670 * Now we know how many domains to create.
671 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
672 */
acc3f5d7 673 doms = alloc_sched_domains(ndoms);
700018e0 674 if (!doms)
cf417141 675 goto done;
cf417141
MK
676
677 /*
678 * The rest of the code, including the scheduler, can deal with
679 * dattr==NULL case. No need to abort if alloc fails.
680 */
1d3504fc 681 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
682
683 for (nslot = 0, i = 0; i < csn; i++) {
684 struct cpuset *a = csa[i];
6af866af 685 struct cpumask *dp;
029190c5
PJ
686 int apn = a->pn;
687
cf417141
MK
688 if (apn < 0) {
689 /* Skip completed partitions */
690 continue;
691 }
692
acc3f5d7 693 dp = doms[nslot];
cf417141
MK
694
695 if (nslot == ndoms) {
696 static int warnings = 10;
697 if (warnings) {
698 printk(KERN_WARNING
699 "rebuild_sched_domains confused:"
700 " nslot %d, ndoms %d, csn %d, i %d,"
701 " apn %d\n",
702 nslot, ndoms, csn, i, apn);
703 warnings--;
029190c5 704 }
cf417141
MK
705 continue;
706 }
029190c5 707
6af866af 708 cpumask_clear(dp);
cf417141
MK
709 if (dattr)
710 *(dattr + nslot) = SD_ATTR_INIT;
711 for (j = i; j < csn; j++) {
712 struct cpuset *b = csa[j];
713
714 if (apn == b->pn) {
300ed6cb 715 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
716 if (dattr)
717 update_domain_attr_tree(dattr + nslot, b);
718
719 /* Done with this partition */
720 b->pn = -1;
029190c5 721 }
029190c5 722 }
cf417141 723 nslot++;
029190c5
PJ
724 }
725 BUG_ON(nslot != ndoms);
726
cf417141
MK
727done:
728 kfree(csa);
729
700018e0
LZ
730 /*
731 * Fallback to the default domain if kmalloc() failed.
732 * See comments in partition_sched_domains().
733 */
734 if (doms == NULL)
735 ndoms = 1;
736
cf417141
MK
737 *domains = doms;
738 *attributes = dattr;
739 return ndoms;
740}
741
742/*
743 * Rebuild scheduler domains.
744 *
699140ba
TH
745 * If the flag 'sched_load_balance' of any cpuset with non-empty
746 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
747 * which has that flag enabled, or if any cpuset with a non-empty
748 * 'cpus' is removed, then call this routine to rebuild the
749 * scheduler's dynamic sched domains.
cf417141 750 *
5d21cc2d 751 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 752 */
699140ba 753static void rebuild_sched_domains_locked(void)
cf417141
MK
754{
755 struct sched_domain_attr *attr;
acc3f5d7 756 cpumask_var_t *doms;
cf417141
MK
757 int ndoms;
758
5d21cc2d 759 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 760 get_online_cpus();
cf417141 761
5b16c2a4
LZ
762 /*
763 * We have raced with CPU hotplug. Don't do anything to avoid
764 * passing doms with offlined cpu to partition_sched_domains().
765 * Anyways, hotplug work item will rebuild sched domains.
766 */
767 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
768 goto out;
769
cf417141 770 /* Generate domain masks and attrs */
cf417141 771 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
772
773 /* Have scheduler rebuild the domains */
774 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 775out:
86ef5c9a 776 put_online_cpus();
cf417141 777}
db7f47cf 778#else /* !CONFIG_SMP */
699140ba 779static void rebuild_sched_domains_locked(void)
db7f47cf
PM
780{
781}
db7f47cf 782#endif /* CONFIG_SMP */
029190c5 783
cf417141
MK
784void rebuild_sched_domains(void)
785{
5d21cc2d 786 mutex_lock(&cpuset_mutex);
699140ba 787 rebuild_sched_domains_locked();
5d21cc2d 788 mutex_unlock(&cpuset_mutex);
029190c5
PJ
789}
790
070b57fc
LZ
791/*
792 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
793 * @cs: the cpuset in interest
58f4790b 794 *
070b57fc
LZ
795 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
796 * with non-empty cpus. We use effective cpumask whenever:
797 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
798 * if the cpuset they reside in has no cpus)
799 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
800 *
801 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
802 * exception. See comments there.
803 */
804static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
805{
806 while (cpumask_empty(cs->cpus_allowed))
807 cs = parent_cs(cs);
808 return cs;
809}
810
811/*
812 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
813 * @cs: the cpuset in interest
814 *
815 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
816 * with non-empty memss. We use effective nodemask whenever:
817 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
818 * if the cpuset they reside in has no mems)
819 * - we want to retrieve task_cs(tsk)'s mems_allowed.
820 *
821 * Called with cpuset_mutex held.
053199ed 822 */
070b57fc 823static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
58f4790b 824{
070b57fc
LZ
825 while (nodes_empty(cs->mems_allowed))
826 cs = parent_cs(cs);
827 return cs;
58f4790b 828}
053199ed 829
58f4790b
CW
830/**
831 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
832 * @tsk: task to test
833 * @scan: struct cgroup_scanner containing the cgroup of the task
834 *
835 * Called by cgroup_scan_tasks() for each task in a cgroup whose
836 * cpus_allowed mask needs to be changed.
837 *
838 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 839 * holding cpuset_mutex at this point.
58f4790b 840 */
9e0c914c
AB
841static void cpuset_change_cpumask(struct task_struct *tsk,
842 struct cgroup_scanner *scan)
58f4790b 843{
070b57fc
LZ
844 struct cpuset *cpus_cs;
845
6f4b7e63 846 cpus_cs = effective_cpumask_cpuset(cgroup_cs(scan->cgrp));
070b57fc 847 set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
58f4790b
CW
848}
849
0b2f630a
MX
850/**
851 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
852 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 853 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 854 *
5d21cc2d 855 * Called with cpuset_mutex held
0b2f630a
MX
856 *
857 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
858 * calling callback functions for each.
859 *
4e74339a
LZ
860 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
861 * if @heap != NULL.
0b2f630a 862 */
4e74339a 863static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
864{
865 struct cgroup_scanner scan;
0b2f630a 866
6f4b7e63 867 scan.cgrp = cs->css.cgroup;
249cc86d 868 scan.test_task = NULL;
0b2f630a 869 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
870 scan.heap = heap;
871 cgroup_scan_tasks(&scan);
0b2f630a
MX
872}
873
5c5cc623
LZ
874/*
875 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
876 * @root_cs: the root cpuset of the hierarchy
877 * @update_root: update root cpuset or not?
878 * @heap: the heap used by cgroup_scan_tasks()
879 *
880 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
881 * which take on cpumask of @root_cs.
882 *
883 * Called with cpuset_mutex held
884 */
885static void update_tasks_cpumask_hier(struct cpuset *root_cs,
886 bool update_root, struct ptr_heap *heap)
887{
888 struct cpuset *cp;
889 struct cgroup *pos_cgrp;
890
891 if (update_root)
892 update_tasks_cpumask(root_cs, heap);
893
894 rcu_read_lock();
895 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
896 /* skip the whole subtree if @cp have some CPU */
897 if (!cpumask_empty(cp->cpus_allowed)) {
898 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
899 continue;
900 }
901 if (!css_tryget(&cp->css))
902 continue;
903 rcu_read_unlock();
904
905 update_tasks_cpumask(cp, heap);
906
907 rcu_read_lock();
908 css_put(&cp->css);
909 }
910 rcu_read_unlock();
911}
912
58f4790b
CW
913/**
914 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
915 * @cs: the cpuset to consider
916 * @buf: buffer of cpu numbers written to this cpuset
917 */
645fcc9d
LZ
918static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
919 const char *buf)
1da177e4 920{
4e74339a 921 struct ptr_heap heap;
58f4790b
CW
922 int retval;
923 int is_load_balanced;
1da177e4 924
5f054e31 925 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
926 if (cs == &top_cpuset)
927 return -EACCES;
928
6f7f02e7 929 /*
c8d9c90c 930 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
931 * Since cpulist_parse() fails on an empty mask, we special case
932 * that parsing. The validate_change() call ensures that cpusets
933 * with tasks have cpus.
6f7f02e7 934 */
020958b6 935 if (!*buf) {
300ed6cb 936 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 937 } else {
300ed6cb 938 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
939 if (retval < 0)
940 return retval;
37340746 941
6ad4c188 942 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 943 return -EINVAL;
6f7f02e7 944 }
029190c5 945
8707d8b8 946 /* Nothing to do if the cpus didn't change */
300ed6cb 947 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 948 return 0;
58f4790b 949
a73456f3
LZ
950 retval = validate_change(cs, trialcs);
951 if (retval < 0)
952 return retval;
953
4e74339a
LZ
954 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
955 if (retval)
956 return retval;
957
645fcc9d 958 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 959
3d3f26a7 960 mutex_lock(&callback_mutex);
300ed6cb 961 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 962 mutex_unlock(&callback_mutex);
029190c5 963
5c5cc623 964 update_tasks_cpumask_hier(cs, true, &heap);
4e74339a
LZ
965
966 heap_free(&heap);
58f4790b 967
8707d8b8 968 if (is_load_balanced)
699140ba 969 rebuild_sched_domains_locked();
85d7b949 970 return 0;
1da177e4
LT
971}
972
e4e364e8
PJ
973/*
974 * cpuset_migrate_mm
975 *
976 * Migrate memory region from one set of nodes to another.
977 *
978 * Temporarilly set tasks mems_allowed to target nodes of migration,
979 * so that the migration code can allocate pages on these nodes.
980 *
5d21cc2d 981 * Call holding cpuset_mutex, so current's cpuset won't change
c8d9c90c 982 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
983 * calls. Therefore we don't need to take task_lock around the
984 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 985 * our task's cpuset.
e4e364e8 986 *
e4e364e8
PJ
987 * While the mm_struct we are migrating is typically from some
988 * other task, the task_struct mems_allowed that we are hacking
989 * is for our current task, which must allocate new pages for that
990 * migrating memory region.
e4e364e8
PJ
991 */
992
993static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
994 const nodemask_t *to)
995{
996 struct task_struct *tsk = current;
070b57fc 997 struct cpuset *mems_cs;
e4e364e8 998
e4e364e8 999 tsk->mems_allowed = *to;
e4e364e8
PJ
1000
1001 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
1002
070b57fc
LZ
1003 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
1004 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
e4e364e8
PJ
1005}
1006
3b6766fe 1007/*
58568d2a
MX
1008 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1009 * @tsk: the task to change
1010 * @newmems: new nodes that the task will be set
1011 *
1012 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1013 * we structure updates as setting all new allowed nodes, then clearing newly
1014 * disallowed ones.
58568d2a
MX
1015 */
1016static void cpuset_change_task_nodemask(struct task_struct *tsk,
1017 nodemask_t *newmems)
1018{
b246272e 1019 bool need_loop;
89e8a244 1020
c0ff7453
MX
1021 /*
1022 * Allow tasks that have access to memory reserves because they have
1023 * been OOM killed to get memory anywhere.
1024 */
1025 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1026 return;
1027 if (current->flags & PF_EXITING) /* Let dying task have memory */
1028 return;
1029
1030 task_lock(tsk);
b246272e
DR
1031 /*
1032 * Determine if a loop is necessary if another thread is doing
1033 * get_mems_allowed(). If at least one node remains unchanged and
1034 * tsk does not have a mempolicy, then an empty nodemask will not be
1035 * possible when mems_allowed is larger than a word.
1036 */
1037 need_loop = task_has_mempolicy(tsk) ||
1038 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1039
cc9a6c87
MG
1040 if (need_loop)
1041 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 1042
cc9a6c87
MG
1043 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1044 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1045
1046 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1047 tsk->mems_allowed = *newmems;
cc9a6c87
MG
1048
1049 if (need_loop)
1050 write_seqcount_end(&tsk->mems_allowed_seq);
1051
c0ff7453 1052 task_unlock(tsk);
58568d2a
MX
1053}
1054
1055/*
1056 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1057 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
5d21cc2d 1058 * memory_migrate flag is set. Called with cpuset_mutex held.
3b6766fe
LZ
1059 */
1060static void cpuset_change_nodemask(struct task_struct *p,
1061 struct cgroup_scanner *scan)
1062{
6f4b7e63 1063 struct cpuset *cs = cgroup_cs(scan->cgrp);
3b6766fe 1064 struct mm_struct *mm;
3b6766fe 1065 int migrate;
33ad801d 1066 nodemask_t *newmems = scan->data;
58568d2a 1067
33ad801d 1068 cpuset_change_task_nodemask(p, newmems);
53feb297 1069
3b6766fe
LZ
1070 mm = get_task_mm(p);
1071 if (!mm)
1072 return;
1073
3b6766fe
LZ
1074 migrate = is_memory_migrate(cs);
1075
1076 mpol_rebind_mm(mm, &cs->mems_allowed);
1077 if (migrate)
33ad801d 1078 cpuset_migrate_mm(mm, &cs->old_mems_allowed, newmems);
3b6766fe
LZ
1079 mmput(mm);
1080}
1081
8793d854
PM
1082static void *cpuset_being_rebound;
1083
0b2f630a
MX
1084/**
1085 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1086 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
010cfac4 1087 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 1088 *
5d21cc2d 1089 * Called with cpuset_mutex held
010cfac4
LZ
1090 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1091 * if @heap != NULL.
0b2f630a 1092 */
33ad801d 1093static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
1da177e4 1094{
33ad801d 1095 static nodemask_t newmems; /* protected by cpuset_mutex */
3b6766fe 1096 struct cgroup_scanner scan;
070b57fc 1097 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
59dac16f 1098
846a16bf 1099 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1100
070b57fc 1101 guarantee_online_mems(mems_cs, &newmems);
33ad801d 1102
6f4b7e63 1103 scan.cgrp = cs->css.cgroup;
3b6766fe
LZ
1104 scan.test_task = NULL;
1105 scan.process_task = cpuset_change_nodemask;
010cfac4 1106 scan.heap = heap;
33ad801d 1107 scan.data = &newmems;
4225399a
PJ
1108
1109 /*
3b6766fe
LZ
1110 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1111 * take while holding tasklist_lock. Forks can happen - the
1112 * mpol_dup() cpuset_being_rebound check will catch such forks,
1113 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1114 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1115 * will be contending for the global variable cpuset_being_rebound.
4225399a 1116 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1117 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1118 */
010cfac4 1119 cgroup_scan_tasks(&scan);
4225399a 1120
33ad801d
LZ
1121 /*
1122 * All the tasks' nodemasks have been updated, update
1123 * cs->old_mems_allowed.
1124 */
1125 cs->old_mems_allowed = newmems;
1126
2df167a3 1127 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1128 cpuset_being_rebound = NULL;
1da177e4
LT
1129}
1130
5c5cc623
LZ
1131/*
1132 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1133 * @cs: the root cpuset of the hierarchy
1134 * @update_root: update the root cpuset or not?
1135 * @heap: the heap used by cgroup_scan_tasks()
1136 *
1137 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1138 * which take on nodemask of @root_cs.
1139 *
1140 * Called with cpuset_mutex held
1141 */
1142static void update_tasks_nodemask_hier(struct cpuset *root_cs,
1143 bool update_root, struct ptr_heap *heap)
1144{
1145 struct cpuset *cp;
1146 struct cgroup *pos_cgrp;
1147
1148 if (update_root)
1149 update_tasks_nodemask(root_cs, heap);
1150
1151 rcu_read_lock();
1152 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
1153 /* skip the whole subtree if @cp have some CPU */
1154 if (!nodes_empty(cp->mems_allowed)) {
1155 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
1156 continue;
1157 }
1158 if (!css_tryget(&cp->css))
1159 continue;
1160 rcu_read_unlock();
1161
1162 update_tasks_nodemask(cp, heap);
1163
1164 rcu_read_lock();
1165 css_put(&cp->css);
1166 }
1167 rcu_read_unlock();
1168}
1169
0b2f630a
MX
1170/*
1171 * Handle user request to change the 'mems' memory placement
1172 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1173 * cpusets mems_allowed, and for each task in the cpuset,
1174 * update mems_allowed and rebind task's mempolicy and any vma
1175 * mempolicies and if the cpuset is marked 'memory_migrate',
1176 * migrate the tasks pages to the new memory.
0b2f630a 1177 *
5d21cc2d 1178 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1179 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1180 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1181 * their mempolicies to the cpusets new mems_allowed.
1182 */
645fcc9d
LZ
1183static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1184 const char *buf)
0b2f630a 1185{
0b2f630a 1186 int retval;
010cfac4 1187 struct ptr_heap heap;
0b2f630a
MX
1188
1189 /*
38d7bee9 1190 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1191 * it's read-only
1192 */
53feb297
MX
1193 if (cs == &top_cpuset) {
1194 retval = -EACCES;
1195 goto done;
1196 }
0b2f630a 1197
0b2f630a
MX
1198 /*
1199 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1200 * Since nodelist_parse() fails on an empty mask, we special case
1201 * that parsing. The validate_change() call ensures that cpusets
1202 * with tasks have memory.
1203 */
1204 if (!*buf) {
645fcc9d 1205 nodes_clear(trialcs->mems_allowed);
0b2f630a 1206 } else {
645fcc9d 1207 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1208 if (retval < 0)
1209 goto done;
1210
645fcc9d 1211 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1212 node_states[N_MEMORY])) {
53feb297
MX
1213 retval = -EINVAL;
1214 goto done;
1215 }
0b2f630a 1216 }
33ad801d
LZ
1217
1218 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1219 retval = 0; /* Too easy - nothing to do */
1220 goto done;
1221 }
645fcc9d 1222 retval = validate_change(cs, trialcs);
0b2f630a
MX
1223 if (retval < 0)
1224 goto done;
1225
010cfac4
LZ
1226 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1227 if (retval < 0)
1228 goto done;
1229
0b2f630a 1230 mutex_lock(&callback_mutex);
645fcc9d 1231 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1232 mutex_unlock(&callback_mutex);
1233
5c5cc623 1234 update_tasks_nodemask_hier(cs, true, &heap);
010cfac4
LZ
1235
1236 heap_free(&heap);
0b2f630a
MX
1237done:
1238 return retval;
1239}
1240
8793d854
PM
1241int current_cpuset_is_being_rebound(void)
1242{
1243 return task_cs(current) == cpuset_being_rebound;
1244}
1245
5be7a479 1246static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1247{
db7f47cf 1248#ifdef CONFIG_SMP
60495e77 1249 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1250 return -EINVAL;
db7f47cf 1251#endif
1d3504fc
HS
1252
1253 if (val != cs->relax_domain_level) {
1254 cs->relax_domain_level = val;
300ed6cb
LZ
1255 if (!cpumask_empty(cs->cpus_allowed) &&
1256 is_sched_load_balance(cs))
699140ba 1257 rebuild_sched_domains_locked();
1d3504fc
HS
1258 }
1259
1260 return 0;
1261}
1262
950592f7
MX
1263/*
1264 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1265 * @tsk: task to be updated
1266 * @scan: struct cgroup_scanner containing the cgroup of the task
1267 *
1268 * Called by cgroup_scan_tasks() for each task in a cgroup.
1269 *
1270 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 1271 * holding cpuset_mutex at this point.
950592f7
MX
1272 */
1273static void cpuset_change_flag(struct task_struct *tsk,
1274 struct cgroup_scanner *scan)
1275{
6f4b7e63 1276 cpuset_update_task_spread_flag(cgroup_cs(scan->cgrp), tsk);
950592f7
MX
1277}
1278
1279/*
1280 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1281 * @cs: the cpuset in which each task's spread flags needs to be changed
1282 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1283 *
5d21cc2d 1284 * Called with cpuset_mutex held
950592f7
MX
1285 *
1286 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1287 * calling callback functions for each.
1288 *
1289 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1290 * if @heap != NULL.
1291 */
1292static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1293{
1294 struct cgroup_scanner scan;
1295
6f4b7e63 1296 scan.cgrp = cs->css.cgroup;
950592f7
MX
1297 scan.test_task = NULL;
1298 scan.process_task = cpuset_change_flag;
1299 scan.heap = heap;
1300 cgroup_scan_tasks(&scan);
1301}
1302
1da177e4
LT
1303/*
1304 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1305 * bit: the bit to update (see cpuset_flagbits_t)
1306 * cs: the cpuset to update
1307 * turning_on: whether the flag is being set or cleared
053199ed 1308 *
5d21cc2d 1309 * Call with cpuset_mutex held.
1da177e4
LT
1310 */
1311
700fe1ab
PM
1312static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1313 int turning_on)
1da177e4 1314{
645fcc9d 1315 struct cpuset *trialcs;
40b6a762 1316 int balance_flag_changed;
950592f7
MX
1317 int spread_flag_changed;
1318 struct ptr_heap heap;
1319 int err;
1da177e4 1320
645fcc9d
LZ
1321 trialcs = alloc_trial_cpuset(cs);
1322 if (!trialcs)
1323 return -ENOMEM;
1324
1da177e4 1325 if (turning_on)
645fcc9d 1326 set_bit(bit, &trialcs->flags);
1da177e4 1327 else
645fcc9d 1328 clear_bit(bit, &trialcs->flags);
1da177e4 1329
645fcc9d 1330 err = validate_change(cs, trialcs);
85d7b949 1331 if (err < 0)
645fcc9d 1332 goto out;
029190c5 1333
950592f7
MX
1334 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1335 if (err < 0)
1336 goto out;
1337
029190c5 1338 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1339 is_sched_load_balance(trialcs));
029190c5 1340
950592f7
MX
1341 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1342 || (is_spread_page(cs) != is_spread_page(trialcs)));
1343
3d3f26a7 1344 mutex_lock(&callback_mutex);
645fcc9d 1345 cs->flags = trialcs->flags;
3d3f26a7 1346 mutex_unlock(&callback_mutex);
85d7b949 1347
300ed6cb 1348 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1349 rebuild_sched_domains_locked();
029190c5 1350
950592f7
MX
1351 if (spread_flag_changed)
1352 update_tasks_flags(cs, &heap);
1353 heap_free(&heap);
645fcc9d
LZ
1354out:
1355 free_trial_cpuset(trialcs);
1356 return err;
1da177e4
LT
1357}
1358
3e0d98b9 1359/*
80f7228b 1360 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1361 *
1362 * These routines manage a digitally filtered, constant time based,
1363 * event frequency meter. There are four routines:
1364 * fmeter_init() - initialize a frequency meter.
1365 * fmeter_markevent() - called each time the event happens.
1366 * fmeter_getrate() - returns the recent rate of such events.
1367 * fmeter_update() - internal routine used to update fmeter.
1368 *
1369 * A common data structure is passed to each of these routines,
1370 * which is used to keep track of the state required to manage the
1371 * frequency meter and its digital filter.
1372 *
1373 * The filter works on the number of events marked per unit time.
1374 * The filter is single-pole low-pass recursive (IIR). The time unit
1375 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1376 * simulate 3 decimal digits of precision (multiplied by 1000).
1377 *
1378 * With an FM_COEF of 933, and a time base of 1 second, the filter
1379 * has a half-life of 10 seconds, meaning that if the events quit
1380 * happening, then the rate returned from the fmeter_getrate()
1381 * will be cut in half each 10 seconds, until it converges to zero.
1382 *
1383 * It is not worth doing a real infinitely recursive filter. If more
1384 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1385 * just compute FM_MAXTICKS ticks worth, by which point the level
1386 * will be stable.
1387 *
1388 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1389 * arithmetic overflow in the fmeter_update() routine.
1390 *
1391 * Given the simple 32 bit integer arithmetic used, this meter works
1392 * best for reporting rates between one per millisecond (msec) and
1393 * one per 32 (approx) seconds. At constant rates faster than one
1394 * per msec it maxes out at values just under 1,000,000. At constant
1395 * rates between one per msec, and one per second it will stabilize
1396 * to a value N*1000, where N is the rate of events per second.
1397 * At constant rates between one per second and one per 32 seconds,
1398 * it will be choppy, moving up on the seconds that have an event,
1399 * and then decaying until the next event. At rates slower than
1400 * about one in 32 seconds, it decays all the way back to zero between
1401 * each event.
1402 */
1403
1404#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1405#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1406#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1407#define FM_SCALE 1000 /* faux fixed point scale */
1408
1409/* Initialize a frequency meter */
1410static void fmeter_init(struct fmeter *fmp)
1411{
1412 fmp->cnt = 0;
1413 fmp->val = 0;
1414 fmp->time = 0;
1415 spin_lock_init(&fmp->lock);
1416}
1417
1418/* Internal meter update - process cnt events and update value */
1419static void fmeter_update(struct fmeter *fmp)
1420{
1421 time_t now = get_seconds();
1422 time_t ticks = now - fmp->time;
1423
1424 if (ticks == 0)
1425 return;
1426
1427 ticks = min(FM_MAXTICKS, ticks);
1428 while (ticks-- > 0)
1429 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1430 fmp->time = now;
1431
1432 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1433 fmp->cnt = 0;
1434}
1435
1436/* Process any previous ticks, then bump cnt by one (times scale). */
1437static void fmeter_markevent(struct fmeter *fmp)
1438{
1439 spin_lock(&fmp->lock);
1440 fmeter_update(fmp);
1441 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1442 spin_unlock(&fmp->lock);
1443}
1444
1445/* Process any previous ticks, then return current value. */
1446static int fmeter_getrate(struct fmeter *fmp)
1447{
1448 int val;
1449
1450 spin_lock(&fmp->lock);
1451 fmeter_update(fmp);
1452 val = fmp->val;
1453 spin_unlock(&fmp->lock);
1454 return val;
1455}
1456
5d21cc2d 1457/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
eb95419b
TH
1458static int cpuset_can_attach(struct cgroup_subsys_state *css,
1459 struct cgroup_taskset *tset)
f780bdb7 1460{
eb95419b 1461 struct cpuset *cs = css_cs(css);
bb9d97b6
TH
1462 struct task_struct *task;
1463 int ret;
1da177e4 1464
5d21cc2d
TH
1465 mutex_lock(&cpuset_mutex);
1466
88fa523b
LZ
1467 /*
1468 * We allow to move tasks into an empty cpuset if sane_behavior
1469 * flag is set.
1470 */
5d21cc2d 1471 ret = -ENOSPC;
eb95419b 1472 if (!cgroup_sane_behavior(css->cgroup) &&
88fa523b 1473 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1474 goto out_unlock;
9985b0ba 1475
eb95419b 1476 cgroup_taskset_for_each(task, css->cgroup, tset) {
bb9d97b6 1477 /*
14a40ffc
TH
1478 * Kthreads which disallow setaffinity shouldn't be moved
1479 * to a new cpuset; we don't want to change their cpu
1480 * affinity and isolating such threads by their set of
1481 * allowed nodes is unnecessary. Thus, cpusets are not
1482 * applicable for such threads. This prevents checking for
1483 * success of set_cpus_allowed_ptr() on all attached tasks
1484 * before cpus_allowed may be changed.
bb9d97b6 1485 */
5d21cc2d 1486 ret = -EINVAL;
14a40ffc 1487 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1488 goto out_unlock;
1489 ret = security_task_setscheduler(task);
1490 if (ret)
1491 goto out_unlock;
bb9d97b6 1492 }
f780bdb7 1493
452477fa
TH
1494 /*
1495 * Mark attach is in progress. This makes validate_change() fail
1496 * changes which zero cpus/mems_allowed.
1497 */
1498 cs->attach_in_progress++;
5d21cc2d
TH
1499 ret = 0;
1500out_unlock:
1501 mutex_unlock(&cpuset_mutex);
1502 return ret;
8793d854 1503}
f780bdb7 1504
eb95419b 1505static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
452477fa
TH
1506 struct cgroup_taskset *tset)
1507{
5d21cc2d 1508 mutex_lock(&cpuset_mutex);
eb95419b 1509 css_cs(css)->attach_in_progress--;
5d21cc2d 1510 mutex_unlock(&cpuset_mutex);
8793d854 1511}
1da177e4 1512
4e4c9a14 1513/*
5d21cc2d 1514 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1515 * but we can't allocate it dynamically there. Define it global and
1516 * allocate from cpuset_init().
1517 */
1518static cpumask_var_t cpus_attach;
1519
eb95419b
TH
1520static void cpuset_attach(struct cgroup_subsys_state *css,
1521 struct cgroup_taskset *tset)
8793d854 1522{
67bd2c59 1523 /* static buf protected by cpuset_mutex */
4e4c9a14 1524 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1525 struct mm_struct *mm;
bb9d97b6
TH
1526 struct task_struct *task;
1527 struct task_struct *leader = cgroup_taskset_first(tset);
2f7ee569 1528 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
eb95419b 1529 struct cpuset *cs = css_cs(css);
2f7ee569 1530 struct cpuset *oldcs = cgroup_cs(oldcgrp);
070b57fc
LZ
1531 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1532 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
22fb52dd 1533
5d21cc2d
TH
1534 mutex_lock(&cpuset_mutex);
1535
4e4c9a14
TH
1536 /* prepare for attach */
1537 if (cs == &top_cpuset)
1538 cpumask_copy(cpus_attach, cpu_possible_mask);
1539 else
070b57fc 1540 guarantee_online_cpus(cpus_cs, cpus_attach);
4e4c9a14 1541
070b57fc 1542 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
4e4c9a14 1543
eb95419b 1544 cgroup_taskset_for_each(task, css->cgroup, tset) {
bb9d97b6
TH
1545 /*
1546 * can_attach beforehand should guarantee that this doesn't
1547 * fail. TODO: have a better way to handle failure here
1548 */
1549 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1550
1551 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1552 cpuset_update_task_spread_flag(cs, task);
1553 }
22fb52dd 1554
f780bdb7
BB
1555 /*
1556 * Change mm, possibly for multiple threads in a threadgroup. This is
1557 * expensive and may sleep.
1558 */
f780bdb7 1559 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1560 mm = get_task_mm(leader);
4225399a 1561 if (mm) {
070b57fc
LZ
1562 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1563
f780bdb7 1564 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
f047cecf
LZ
1565
1566 /*
1567 * old_mems_allowed is the same with mems_allowed here, except
1568 * if this task is being moved automatically due to hotplug.
1569 * In that case @mems_allowed has been updated and is empty,
1570 * so @old_mems_allowed is the right nodesets that we migrate
1571 * mm from.
1572 */
1573 if (is_memory_migrate(cs)) {
1574 cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
f780bdb7 1575 &cpuset_attach_nodemask_to);
f047cecf 1576 }
4225399a
PJ
1577 mmput(mm);
1578 }
452477fa 1579
33ad801d 1580 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1581
452477fa 1582 cs->attach_in_progress--;
e44193d3
LZ
1583 if (!cs->attach_in_progress)
1584 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1585
1586 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1587}
1588
1589/* The various types of files and directories in a cpuset file system */
1590
1591typedef enum {
45b07ef3 1592 FILE_MEMORY_MIGRATE,
1da177e4
LT
1593 FILE_CPULIST,
1594 FILE_MEMLIST,
1595 FILE_CPU_EXCLUSIVE,
1596 FILE_MEM_EXCLUSIVE,
78608366 1597 FILE_MEM_HARDWALL,
029190c5 1598 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1599 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1600 FILE_MEMORY_PRESSURE_ENABLED,
1601 FILE_MEMORY_PRESSURE,
825a46af
PJ
1602 FILE_SPREAD_PAGE,
1603 FILE_SPREAD_SLAB,
1da177e4
LT
1604} cpuset_filetype_t;
1605
700fe1ab
PM
1606static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1607{
700fe1ab
PM
1608 struct cpuset *cs = cgroup_cs(cgrp);
1609 cpuset_filetype_t type = cft->private;
5d21cc2d 1610 int retval = -ENODEV;
700fe1ab 1611
5d21cc2d
TH
1612 mutex_lock(&cpuset_mutex);
1613 if (!is_cpuset_online(cs))
1614 goto out_unlock;
700fe1ab
PM
1615
1616 switch (type) {
1da177e4 1617 case FILE_CPU_EXCLUSIVE:
700fe1ab 1618 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1619 break;
1620 case FILE_MEM_EXCLUSIVE:
700fe1ab 1621 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1622 break;
78608366
PM
1623 case FILE_MEM_HARDWALL:
1624 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1625 break;
029190c5 1626 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1627 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1628 break;
45b07ef3 1629 case FILE_MEMORY_MIGRATE:
700fe1ab 1630 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1631 break;
3e0d98b9 1632 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1633 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1634 break;
1635 case FILE_MEMORY_PRESSURE:
1636 retval = -EACCES;
1637 break;
825a46af 1638 case FILE_SPREAD_PAGE:
700fe1ab 1639 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1640 break;
1641 case FILE_SPREAD_SLAB:
700fe1ab 1642 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1643 break;
1da177e4
LT
1644 default:
1645 retval = -EINVAL;
700fe1ab 1646 break;
1da177e4 1647 }
5d21cc2d
TH
1648out_unlock:
1649 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1650 return retval;
1651}
1652
5be7a479
PM
1653static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1654{
5be7a479
PM
1655 struct cpuset *cs = cgroup_cs(cgrp);
1656 cpuset_filetype_t type = cft->private;
5d21cc2d 1657 int retval = -ENODEV;
5be7a479 1658
5d21cc2d
TH
1659 mutex_lock(&cpuset_mutex);
1660 if (!is_cpuset_online(cs))
1661 goto out_unlock;
e3712395 1662
5be7a479
PM
1663 switch (type) {
1664 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1665 retval = update_relax_domain_level(cs, val);
1666 break;
1667 default:
1668 retval = -EINVAL;
1669 break;
1670 }
5d21cc2d
TH
1671out_unlock:
1672 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1673 return retval;
1674}
1675
e3712395
PM
1676/*
1677 * Common handling for a write to a "cpus" or "mems" file.
1678 */
1679static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1680 const char *buf)
1681{
645fcc9d
LZ
1682 struct cpuset *cs = cgroup_cs(cgrp);
1683 struct cpuset *trialcs;
5d21cc2d 1684 int retval = -ENODEV;
e3712395 1685
3a5a6d0c
TH
1686 /*
1687 * CPU or memory hotunplug may leave @cs w/o any execution
1688 * resources, in which case the hotplug code asynchronously updates
1689 * configuration and transfers all tasks to the nearest ancestor
1690 * which can execute.
1691 *
1692 * As writes to "cpus" or "mems" may restore @cs's execution
1693 * resources, wait for the previously scheduled operations before
1694 * proceeding, so that we don't end up keep removing tasks added
1695 * after execution capability is restored.
1696 */
1697 flush_work(&cpuset_hotplug_work);
1698
5d21cc2d
TH
1699 mutex_lock(&cpuset_mutex);
1700 if (!is_cpuset_online(cs))
1701 goto out_unlock;
e3712395 1702
645fcc9d 1703 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1704 if (!trialcs) {
1705 retval = -ENOMEM;
5d21cc2d 1706 goto out_unlock;
b75f38d6 1707 }
645fcc9d 1708
e3712395
PM
1709 switch (cft->private) {
1710 case FILE_CPULIST:
645fcc9d 1711 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1712 break;
1713 case FILE_MEMLIST:
645fcc9d 1714 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1715 break;
1716 default:
1717 retval = -EINVAL;
1718 break;
1719 }
645fcc9d
LZ
1720
1721 free_trial_cpuset(trialcs);
5d21cc2d
TH
1722out_unlock:
1723 mutex_unlock(&cpuset_mutex);
e3712395
PM
1724 return retval;
1725}
1726
1da177e4
LT
1727/*
1728 * These ascii lists should be read in a single call, by using a user
1729 * buffer large enough to hold the entire map. If read in smaller
1730 * chunks, there is no guarantee of atomicity. Since the display format
1731 * used, list of ranges of sequential numbers, is variable length,
1732 * and since these maps can change value dynamically, one could read
1733 * gibberish by doing partial reads while a list was changing.
1734 * A single large read to a buffer that crosses a page boundary is
1735 * ok, because the result being copied to user land is not recomputed
1736 * across a page fault.
1737 */
1738
9303e0c4 1739static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1740{
9303e0c4 1741 size_t count;
1da177e4 1742
3d3f26a7 1743 mutex_lock(&callback_mutex);
9303e0c4 1744 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1745 mutex_unlock(&callback_mutex);
1da177e4 1746
9303e0c4 1747 return count;
1da177e4
LT
1748}
1749
9303e0c4 1750static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1751{
9303e0c4 1752 size_t count;
1da177e4 1753
3d3f26a7 1754 mutex_lock(&callback_mutex);
9303e0c4 1755 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1756 mutex_unlock(&callback_mutex);
1da177e4 1757
9303e0c4 1758 return count;
1da177e4
LT
1759}
1760
c9e5fe66 1761static ssize_t cpuset_common_file_read(struct cgroup *cgrp,
8793d854
PM
1762 struct cftype *cft,
1763 struct file *file,
1764 char __user *buf,
1765 size_t nbytes, loff_t *ppos)
1da177e4 1766{
c9e5fe66 1767 struct cpuset *cs = cgroup_cs(cgrp);
1da177e4
LT
1768 cpuset_filetype_t type = cft->private;
1769 char *page;
1770 ssize_t retval = 0;
1771 char *s;
1da177e4 1772
e12ba74d 1773 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1774 return -ENOMEM;
1775
1776 s = page;
1777
1778 switch (type) {
1779 case FILE_CPULIST:
1780 s += cpuset_sprintf_cpulist(s, cs);
1781 break;
1782 case FILE_MEMLIST:
1783 s += cpuset_sprintf_memlist(s, cs);
1784 break;
1da177e4
LT
1785 default:
1786 retval = -EINVAL;
1787 goto out;
1788 }
1789 *s++ = '\n';
1da177e4 1790
eacaa1f5 1791 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1792out:
1793 free_page((unsigned long)page);
1794 return retval;
1795}
1796
c9e5fe66 1797static u64 cpuset_read_u64(struct cgroup *cgrp, struct cftype *cft)
700fe1ab 1798{
c9e5fe66 1799 struct cpuset *cs = cgroup_cs(cgrp);
700fe1ab
PM
1800 cpuset_filetype_t type = cft->private;
1801 switch (type) {
1802 case FILE_CPU_EXCLUSIVE:
1803 return is_cpu_exclusive(cs);
1804 case FILE_MEM_EXCLUSIVE:
1805 return is_mem_exclusive(cs);
78608366
PM
1806 case FILE_MEM_HARDWALL:
1807 return is_mem_hardwall(cs);
700fe1ab
PM
1808 case FILE_SCHED_LOAD_BALANCE:
1809 return is_sched_load_balance(cs);
1810 case FILE_MEMORY_MIGRATE:
1811 return is_memory_migrate(cs);
1812 case FILE_MEMORY_PRESSURE_ENABLED:
1813 return cpuset_memory_pressure_enabled;
1814 case FILE_MEMORY_PRESSURE:
1815 return fmeter_getrate(&cs->fmeter);
1816 case FILE_SPREAD_PAGE:
1817 return is_spread_page(cs);
1818 case FILE_SPREAD_SLAB:
1819 return is_spread_slab(cs);
1820 default:
1821 BUG();
1822 }
cf417141
MK
1823
1824 /* Unreachable but makes gcc happy */
1825 return 0;
700fe1ab 1826}
1da177e4 1827
c9e5fe66 1828static s64 cpuset_read_s64(struct cgroup *cgrp, struct cftype *cft)
5be7a479 1829{
c9e5fe66 1830 struct cpuset *cs = cgroup_cs(cgrp);
5be7a479
PM
1831 cpuset_filetype_t type = cft->private;
1832 switch (type) {
1833 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1834 return cs->relax_domain_level;
1835 default:
1836 BUG();
1837 }
cf417141
MK
1838
1839 /* Unrechable but makes gcc happy */
1840 return 0;
5be7a479
PM
1841}
1842
1da177e4
LT
1843
1844/*
1845 * for the common functions, 'private' gives the type of file
1846 */
1847
addf2c73
PM
1848static struct cftype files[] = {
1849 {
1850 .name = "cpus",
1851 .read = cpuset_common_file_read,
e3712395
PM
1852 .write_string = cpuset_write_resmask,
1853 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1854 .private = FILE_CPULIST,
1855 },
1856
1857 {
1858 .name = "mems",
1859 .read = cpuset_common_file_read,
e3712395
PM
1860 .write_string = cpuset_write_resmask,
1861 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1862 .private = FILE_MEMLIST,
1863 },
1864
1865 {
1866 .name = "cpu_exclusive",
1867 .read_u64 = cpuset_read_u64,
1868 .write_u64 = cpuset_write_u64,
1869 .private = FILE_CPU_EXCLUSIVE,
1870 },
1871
1872 {
1873 .name = "mem_exclusive",
1874 .read_u64 = cpuset_read_u64,
1875 .write_u64 = cpuset_write_u64,
1876 .private = FILE_MEM_EXCLUSIVE,
1877 },
1878
78608366
PM
1879 {
1880 .name = "mem_hardwall",
1881 .read_u64 = cpuset_read_u64,
1882 .write_u64 = cpuset_write_u64,
1883 .private = FILE_MEM_HARDWALL,
1884 },
1885
addf2c73
PM
1886 {
1887 .name = "sched_load_balance",
1888 .read_u64 = cpuset_read_u64,
1889 .write_u64 = cpuset_write_u64,
1890 .private = FILE_SCHED_LOAD_BALANCE,
1891 },
1892
1893 {
1894 .name = "sched_relax_domain_level",
5be7a479
PM
1895 .read_s64 = cpuset_read_s64,
1896 .write_s64 = cpuset_write_s64,
addf2c73
PM
1897 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1898 },
1899
1900 {
1901 .name = "memory_migrate",
1902 .read_u64 = cpuset_read_u64,
1903 .write_u64 = cpuset_write_u64,
1904 .private = FILE_MEMORY_MIGRATE,
1905 },
1906
1907 {
1908 .name = "memory_pressure",
1909 .read_u64 = cpuset_read_u64,
1910 .write_u64 = cpuset_write_u64,
1911 .private = FILE_MEMORY_PRESSURE,
099fca32 1912 .mode = S_IRUGO,
addf2c73
PM
1913 },
1914
1915 {
1916 .name = "memory_spread_page",
1917 .read_u64 = cpuset_read_u64,
1918 .write_u64 = cpuset_write_u64,
1919 .private = FILE_SPREAD_PAGE,
1920 },
1921
1922 {
1923 .name = "memory_spread_slab",
1924 .read_u64 = cpuset_read_u64,
1925 .write_u64 = cpuset_write_u64,
1926 .private = FILE_SPREAD_SLAB,
1927 },
3e0d98b9 1928
4baf6e33
TH
1929 {
1930 .name = "memory_pressure_enabled",
1931 .flags = CFTYPE_ONLY_ON_ROOT,
1932 .read_u64 = cpuset_read_u64,
1933 .write_u64 = cpuset_write_u64,
1934 .private = FILE_MEMORY_PRESSURE_ENABLED,
1935 },
1da177e4 1936
4baf6e33
TH
1937 { } /* terminate */
1938};
1da177e4
LT
1939
1940/*
92fb9748 1941 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1942 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1943 */
1944
eb95419b
TH
1945static struct cgroup_subsys_state *
1946cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1947{
c8f699bb 1948 struct cpuset *cs;
1da177e4 1949
eb95419b 1950 if (!parent_css)
8793d854 1951 return &top_cpuset.css;
033fa1c5 1952
c8f699bb 1953 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1954 if (!cs)
8793d854 1955 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1956 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1957 kfree(cs);
1958 return ERR_PTR(-ENOMEM);
1959 }
1da177e4 1960
029190c5 1961 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1962 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1963 nodes_clear(cs->mems_allowed);
3e0d98b9 1964 fmeter_init(&cs->fmeter);
1d3504fc 1965 cs->relax_domain_level = -1;
1da177e4 1966
c8f699bb
TH
1967 return &cs->css;
1968}
1969
eb95419b 1970static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 1971{
eb95419b 1972 struct cpuset *cs = css_cs(css);
c431069f 1973 struct cpuset *parent = parent_cs(cs);
ae8086ce 1974 struct cpuset *tmp_cs;
6f4b7e63 1975 struct cgroup *pos_cgrp;
c8f699bb
TH
1976
1977 if (!parent)
1978 return 0;
1979
5d21cc2d
TH
1980 mutex_lock(&cpuset_mutex);
1981
efeb77b2 1982 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1983 if (is_spread_page(parent))
1984 set_bit(CS_SPREAD_PAGE, &cs->flags);
1985 if (is_spread_slab(parent))
1986 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1987
202f72d5 1988 number_of_cpusets++;
033fa1c5 1989
eb95419b 1990 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 1991 goto out_unlock;
033fa1c5
TH
1992
1993 /*
1994 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1995 * set. This flag handling is implemented in cgroup core for
1996 * histrical reasons - the flag may be specified during mount.
1997 *
1998 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1999 * refuse to clone the configuration - thereby refusing the task to
2000 * be entered, and as a result refusing the sys_unshare() or
2001 * clone() which initiated it. If this becomes a problem for some
2002 * users who wish to allow that scenario, then this could be
2003 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2004 * (and likewise for mems) to the new cgroup.
2005 */
ae8086ce 2006 rcu_read_lock();
6f4b7e63 2007 cpuset_for_each_child(tmp_cs, pos_cgrp, parent) {
ae8086ce
TH
2008 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2009 rcu_read_unlock();
5d21cc2d 2010 goto out_unlock;
ae8086ce 2011 }
033fa1c5 2012 }
ae8086ce 2013 rcu_read_unlock();
033fa1c5
TH
2014
2015 mutex_lock(&callback_mutex);
2016 cs->mems_allowed = parent->mems_allowed;
2017 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2018 mutex_unlock(&callback_mutex);
5d21cc2d
TH
2019out_unlock:
2020 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
2021 return 0;
2022}
2023
0b9e6965
ZH
2024/*
2025 * If the cpuset being removed has its flag 'sched_load_balance'
2026 * enabled, then simulate turning sched_load_balance off, which
2027 * will call rebuild_sched_domains_locked().
2028 */
2029
eb95419b 2030static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 2031{
eb95419b 2032 struct cpuset *cs = css_cs(css);
c8f699bb 2033
5d21cc2d 2034 mutex_lock(&cpuset_mutex);
c8f699bb
TH
2035
2036 if (is_sched_load_balance(cs))
2037 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2038
2039 number_of_cpusets--;
efeb77b2 2040 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 2041
5d21cc2d 2042 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2043}
2044
eb95419b 2045static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 2046{
eb95419b 2047 struct cpuset *cs = css_cs(css);
1da177e4 2048
300ed6cb 2049 free_cpumask_var(cs->cpus_allowed);
8793d854 2050 kfree(cs);
1da177e4
LT
2051}
2052
8793d854
PM
2053struct cgroup_subsys cpuset_subsys = {
2054 .name = "cpuset",
92fb9748 2055 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
2056 .css_online = cpuset_css_online,
2057 .css_offline = cpuset_css_offline,
92fb9748 2058 .css_free = cpuset_css_free,
8793d854 2059 .can_attach = cpuset_can_attach,
452477fa 2060 .cancel_attach = cpuset_cancel_attach,
8793d854 2061 .attach = cpuset_attach,
8793d854 2062 .subsys_id = cpuset_subsys_id,
4baf6e33 2063 .base_cftypes = files,
8793d854
PM
2064 .early_init = 1,
2065};
2066
1da177e4
LT
2067/**
2068 * cpuset_init - initialize cpusets at system boot
2069 *
2070 * Description: Initialize top_cpuset and the cpuset internal file system,
2071 **/
2072
2073int __init cpuset_init(void)
2074{
8793d854 2075 int err = 0;
1da177e4 2076
58568d2a
MX
2077 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2078 BUG();
2079
300ed6cb 2080 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2081 nodes_setall(top_cpuset.mems_allowed);
1da177e4 2082
3e0d98b9 2083 fmeter_init(&top_cpuset.fmeter);
029190c5 2084 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2085 top_cpuset.relax_domain_level = -1;
1da177e4 2086
1da177e4
LT
2087 err = register_filesystem(&cpuset_fs_type);
2088 if (err < 0)
8793d854
PM
2089 return err;
2090
2341d1b6
LZ
2091 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2092 BUG();
2093
202f72d5 2094 number_of_cpusets = 1;
8793d854 2095 return 0;
1da177e4
LT
2096}
2097
b1aac8bb 2098/*
cf417141 2099 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2100 * or memory nodes, we need to walk over the cpuset hierarchy,
2101 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2102 * last CPU or node from a cpuset, then move the tasks in the empty
2103 * cpuset to its next-highest non-empty parent.
b1aac8bb 2104 */
956db3ca
CW
2105static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2106{
2107 struct cpuset *parent;
2108
956db3ca
CW
2109 /*
2110 * Find its next-highest non-empty parent, (top cpuset
2111 * has online cpus, so can't be empty).
2112 */
c431069f 2113 parent = parent_cs(cs);
300ed6cb 2114 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2115 nodes_empty(parent->mems_allowed))
c431069f 2116 parent = parent_cs(parent);
956db3ca 2117
8cc99345
TH
2118 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2119 rcu_read_lock();
2120 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
2121 cgroup_name(cs->css.cgroup));
2122 rcu_read_unlock();
2123 }
956db3ca
CW
2124}
2125
deb7aa30 2126/**
388afd85 2127 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2128 * @cs: cpuset in interest
956db3ca 2129 *
deb7aa30
TH
2130 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2131 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2132 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2133 */
388afd85 2134static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2135{
deb7aa30 2136 static cpumask_t off_cpus;
33ad801d 2137 static nodemask_t off_mems;
5d21cc2d 2138 bool is_empty;
5c5cc623 2139 bool sane = cgroup_sane_behavior(cs->css.cgroup);
80d1fa64 2140
e44193d3
LZ
2141retry:
2142 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2143
5d21cc2d 2144 mutex_lock(&cpuset_mutex);
7ddf96b0 2145
e44193d3
LZ
2146 /*
2147 * We have raced with task attaching. We wait until attaching
2148 * is finished, so we won't attach a task to an empty cpuset.
2149 */
2150 if (cs->attach_in_progress) {
2151 mutex_unlock(&cpuset_mutex);
2152 goto retry;
2153 }
2154
deb7aa30
TH
2155 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2156 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2157
5c5cc623
LZ
2158 mutex_lock(&callback_mutex);
2159 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2160 mutex_unlock(&callback_mutex);
2161
2162 /*
2163 * If sane_behavior flag is set, we need to update tasks' cpumask
f047cecf
LZ
2164 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
2165 * call update_tasks_cpumask() if the cpuset becomes empty, as
2166 * the tasks in it will be migrated to an ancestor.
5c5cc623
LZ
2167 */
2168 if ((sane && cpumask_empty(cs->cpus_allowed)) ||
f047cecf 2169 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
deb7aa30 2170 update_tasks_cpumask(cs, NULL);
80d1fa64 2171
5c5cc623
LZ
2172 mutex_lock(&callback_mutex);
2173 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2174 mutex_unlock(&callback_mutex);
2175
2176 /*
2177 * If sane_behavior flag is set, we need to update tasks' nodemask
f047cecf
LZ
2178 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
2179 * call update_tasks_nodemask() if the cpuset becomes empty, as
2180 * the tasks in it will be migratd to an ancestor.
5c5cc623
LZ
2181 */
2182 if ((sane && nodes_empty(cs->mems_allowed)) ||
f047cecf 2183 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
33ad801d 2184 update_tasks_nodemask(cs, NULL);
deb7aa30 2185
5d21cc2d
TH
2186 is_empty = cpumask_empty(cs->cpus_allowed) ||
2187 nodes_empty(cs->mems_allowed);
8d033948 2188
5d21cc2d
TH
2189 mutex_unlock(&cpuset_mutex);
2190
2191 /*
5c5cc623
LZ
2192 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
2193 *
2194 * Otherwise move tasks to the nearest ancestor with execution
2195 * resources. This is full cgroup operation which will
5d21cc2d
TH
2196 * also call back into cpuset. Should be done outside any lock.
2197 */
5c5cc623 2198 if (!sane && is_empty)
5d21cc2d 2199 remove_tasks_in_empty_cpuset(cs);
b1aac8bb
PJ
2200}
2201
deb7aa30 2202/**
3a5a6d0c 2203 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2204 *
deb7aa30
TH
2205 * This function is called after either CPU or memory configuration has
2206 * changed and updates cpuset accordingly. The top_cpuset is always
2207 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2208 * order to make cpusets transparent (of no affect) on systems that are
2209 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2210 *
deb7aa30 2211 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2212 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2213 * all descendants.
956db3ca 2214 *
deb7aa30
TH
2215 * Note that CPU offlining during suspend is ignored. We don't modify
2216 * cpusets across suspend/resume cycles at all.
956db3ca 2217 */
3a5a6d0c 2218static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2219{
5c5cc623
LZ
2220 static cpumask_t new_cpus;
2221 static nodemask_t new_mems;
deb7aa30 2222 bool cpus_updated, mems_updated;
b1aac8bb 2223
5d21cc2d 2224 mutex_lock(&cpuset_mutex);
956db3ca 2225
deb7aa30
TH
2226 /* fetch the available cpus/mems and find out which changed how */
2227 cpumask_copy(&new_cpus, cpu_active_mask);
2228 new_mems = node_states[N_MEMORY];
7ddf96b0 2229
deb7aa30 2230 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
deb7aa30 2231 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
7ddf96b0 2232
deb7aa30
TH
2233 /* synchronize cpus_allowed to cpu_active_mask */
2234 if (cpus_updated) {
2235 mutex_lock(&callback_mutex);
2236 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2237 mutex_unlock(&callback_mutex);
2238 /* we don't mess with cpumasks of tasks in top_cpuset */
2239 }
b4501295 2240
deb7aa30
TH
2241 /* synchronize mems_allowed to N_MEMORY */
2242 if (mems_updated) {
deb7aa30
TH
2243 mutex_lock(&callback_mutex);
2244 top_cpuset.mems_allowed = new_mems;
2245 mutex_unlock(&callback_mutex);
33ad801d 2246 update_tasks_nodemask(&top_cpuset, NULL);
deb7aa30 2247 }
b4501295 2248
388afd85
LZ
2249 mutex_unlock(&cpuset_mutex);
2250
5c5cc623
LZ
2251 /* if cpus or mems changed, we need to propagate to descendants */
2252 if (cpus_updated || mems_updated) {
deb7aa30 2253 struct cpuset *cs;
fc560a26 2254 struct cgroup *pos_cgrp;
f9b4fb8d 2255
fc560a26 2256 rcu_read_lock();
388afd85
LZ
2257 cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset) {
2258 if (!css_tryget(&cs->css))
2259 continue;
2260 rcu_read_unlock();
7ddf96b0 2261
388afd85 2262 cpuset_hotplug_update_tasks(cs);
b4501295 2263
388afd85
LZ
2264 rcu_read_lock();
2265 css_put(&cs->css);
2266 }
2267 rcu_read_unlock();
2268 }
8d033948 2269
deb7aa30 2270 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2271 if (cpus_updated)
2272 rebuild_sched_domains();
b1aac8bb
PJ
2273}
2274
7ddf96b0 2275void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2276{
3a5a6d0c
TH
2277 /*
2278 * We're inside cpu hotplug critical region which usually nests
2279 * inside cgroup synchronization. Bounce actual hotplug processing
2280 * to a work item to avoid reverse locking order.
2281 *
2282 * We still need to do partition_sched_domains() synchronously;
2283 * otherwise, the scheduler will get confused and put tasks to the
2284 * dead CPU. Fall back to the default single domain.
2285 * cpuset_hotplug_workfn() will rebuild it as necessary.
2286 */
2287 partition_sched_domains(1, NULL, NULL);
2288 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2289}
4c4d50f7 2290
38837fc7 2291/*
38d7bee9
LJ
2292 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2293 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2294 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2295 */
f481891f
MX
2296static int cpuset_track_online_nodes(struct notifier_block *self,
2297 unsigned long action, void *arg)
38837fc7 2298{
3a5a6d0c 2299 schedule_work(&cpuset_hotplug_work);
f481891f 2300 return NOTIFY_OK;
38837fc7 2301}
d8f10cb3
AM
2302
2303static struct notifier_block cpuset_track_online_nodes_nb = {
2304 .notifier_call = cpuset_track_online_nodes,
2305 .priority = 10, /* ??! */
2306};
38837fc7 2307
1da177e4
LT
2308/**
2309 * cpuset_init_smp - initialize cpus_allowed
2310 *
2311 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2312 */
1da177e4
LT
2313void __init cpuset_init_smp(void)
2314{
6ad4c188 2315 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2316 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2317 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2318
d8f10cb3 2319 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2320}
2321
2322/**
1da177e4
LT
2323 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2324 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2325 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2326 *
300ed6cb 2327 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2328 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2329 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2330 * tasks cpuset.
2331 **/
2332
6af866af 2333void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2334{
070b57fc
LZ
2335 struct cpuset *cpus_cs;
2336
3d3f26a7 2337 mutex_lock(&callback_mutex);
909d75a3 2338 task_lock(tsk);
070b57fc
LZ
2339 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2340 guarantee_online_cpus(cpus_cs, pmask);
909d75a3 2341 task_unlock(tsk);
897f0b3c 2342 mutex_unlock(&callback_mutex);
1da177e4
LT
2343}
2344
2baab4e9 2345void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2346{
c9710d80 2347 struct cpuset *cpus_cs;
9084bb82
ON
2348
2349 rcu_read_lock();
070b57fc
LZ
2350 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2351 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
9084bb82
ON
2352 rcu_read_unlock();
2353
2354 /*
2355 * We own tsk->cpus_allowed, nobody can change it under us.
2356 *
2357 * But we used cs && cs->cpus_allowed lockless and thus can
2358 * race with cgroup_attach_task() or update_cpumask() and get
2359 * the wrong tsk->cpus_allowed. However, both cases imply the
2360 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2361 * which takes task_rq_lock().
2362 *
2363 * If we are called after it dropped the lock we must see all
2364 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2365 * set any mask even if it is not right from task_cs() pov,
2366 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2367 *
2368 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2369 * if required.
9084bb82 2370 */
9084bb82
ON
2371}
2372
1da177e4
LT
2373void cpuset_init_current_mems_allowed(void)
2374{
f9a86fcb 2375 nodes_setall(current->mems_allowed);
1da177e4
LT
2376}
2377
909d75a3
PJ
2378/**
2379 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2380 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2381 *
2382 * Description: Returns the nodemask_t mems_allowed of the cpuset
2383 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2384 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2385 * tasks cpuset.
2386 **/
2387
2388nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2389{
070b57fc 2390 struct cpuset *mems_cs;
909d75a3
PJ
2391 nodemask_t mask;
2392
3d3f26a7 2393 mutex_lock(&callback_mutex);
909d75a3 2394 task_lock(tsk);
070b57fc
LZ
2395 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2396 guarantee_online_mems(mems_cs, &mask);
909d75a3 2397 task_unlock(tsk);
3d3f26a7 2398 mutex_unlock(&callback_mutex);
909d75a3
PJ
2399
2400 return mask;
2401}
2402
d9fd8a6d 2403/**
19770b32
MG
2404 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2405 * @nodemask: the nodemask to be checked
d9fd8a6d 2406 *
19770b32 2407 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2408 */
19770b32 2409int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2410{
19770b32 2411 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2412}
2413
9bf2229f 2414/*
78608366
PM
2415 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2416 * mem_hardwall ancestor to the specified cpuset. Call holding
2417 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2418 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2419 */
c9710d80 2420static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2421{
c431069f
TH
2422 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2423 cs = parent_cs(cs);
9bf2229f
PJ
2424 return cs;
2425}
2426
d9fd8a6d 2427/**
a1bc5a4e
DR
2428 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2429 * @node: is this an allowed node?
02a0e53d 2430 * @gfp_mask: memory allocation flags
d9fd8a6d 2431 *
a1bc5a4e
DR
2432 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2433 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2434 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2435 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2436 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2437 * flag, yes.
9bf2229f
PJ
2438 * Otherwise, no.
2439 *
a1bc5a4e
DR
2440 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2441 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2442 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2443 *
a1bc5a4e
DR
2444 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2445 * cpusets, and never sleeps.
02a0e53d
PJ
2446 *
2447 * The __GFP_THISNODE placement logic is really handled elsewhere,
2448 * by forcibly using a zonelist starting at a specified node, and by
2449 * (in get_page_from_freelist()) refusing to consider the zones for
2450 * any node on the zonelist except the first. By the time any such
2451 * calls get to this routine, we should just shut up and say 'yes'.
2452 *
9bf2229f 2453 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2454 * and do not allow allocations outside the current tasks cpuset
2455 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2456 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2457 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2458 *
02a0e53d
PJ
2459 * Scanning up parent cpusets requires callback_mutex. The
2460 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2461 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2462 * current tasks mems_allowed came up empty on the first pass over
2463 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2464 * cpuset are short of memory, might require taking the callback_mutex
2465 * mutex.
9bf2229f 2466 *
36be57ff 2467 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2468 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2469 * so no allocation on a node outside the cpuset is allowed (unless
2470 * in interrupt, of course).
36be57ff
PJ
2471 *
2472 * The second pass through get_page_from_freelist() doesn't even call
2473 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2474 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2475 * in alloc_flags. That logic and the checks below have the combined
2476 * affect that:
9bf2229f
PJ
2477 * in_interrupt - any node ok (current task context irrelevant)
2478 * GFP_ATOMIC - any node ok
c596d9f3 2479 * TIF_MEMDIE - any node ok
78608366 2480 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2481 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2482 *
2483 * Rule:
a1bc5a4e 2484 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2485 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2486 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2487 */
a1bc5a4e 2488int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2489{
c9710d80 2490 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2491 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2492
9b819d20 2493 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2494 return 1;
92d1dbd2 2495 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2496 if (node_isset(node, current->mems_allowed))
2497 return 1;
c596d9f3
DR
2498 /*
2499 * Allow tasks that have access to memory reserves because they have
2500 * been OOM killed to get memory anywhere.
2501 */
2502 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2503 return 1;
9bf2229f
PJ
2504 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2505 return 0;
2506
5563e770
BP
2507 if (current->flags & PF_EXITING) /* Let dying task have memory */
2508 return 1;
2509
9bf2229f 2510 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2511 mutex_lock(&callback_mutex);
053199ed 2512
053199ed 2513 task_lock(current);
78608366 2514 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2515 task_unlock(current);
2516
9bf2229f 2517 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2518 mutex_unlock(&callback_mutex);
9bf2229f 2519 return allowed;
1da177e4
LT
2520}
2521
02a0e53d 2522/*
a1bc5a4e
DR
2523 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2524 * @node: is this an allowed node?
02a0e53d
PJ
2525 * @gfp_mask: memory allocation flags
2526 *
a1bc5a4e
DR
2527 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2528 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2529 * yes. If the task has been OOM killed and has access to memory reserves as
2530 * specified by the TIF_MEMDIE flag, yes.
2531 * Otherwise, no.
02a0e53d
PJ
2532 *
2533 * The __GFP_THISNODE placement logic is really handled elsewhere,
2534 * by forcibly using a zonelist starting at a specified node, and by
2535 * (in get_page_from_freelist()) refusing to consider the zones for
2536 * any node on the zonelist except the first. By the time any such
2537 * calls get to this routine, we should just shut up and say 'yes'.
2538 *
a1bc5a4e
DR
2539 * Unlike the cpuset_node_allowed_softwall() variant, above,
2540 * this variant requires that the node be in the current task's
02a0e53d
PJ
2541 * mems_allowed or that we're in interrupt. It does not scan up the
2542 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2543 * It never sleeps.
2544 */
a1bc5a4e 2545int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2546{
02a0e53d
PJ
2547 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2548 return 1;
02a0e53d
PJ
2549 if (node_isset(node, current->mems_allowed))
2550 return 1;
dedf8b79
DW
2551 /*
2552 * Allow tasks that have access to memory reserves because they have
2553 * been OOM killed to get memory anywhere.
2554 */
2555 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2556 return 1;
02a0e53d
PJ
2557 return 0;
2558}
2559
825a46af 2560/**
6adef3eb
JS
2561 * cpuset_mem_spread_node() - On which node to begin search for a file page
2562 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2563 *
2564 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2565 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2566 * and if the memory allocation used cpuset_mem_spread_node()
2567 * to determine on which node to start looking, as it will for
2568 * certain page cache or slab cache pages such as used for file
2569 * system buffers and inode caches, then instead of starting on the
2570 * local node to look for a free page, rather spread the starting
2571 * node around the tasks mems_allowed nodes.
2572 *
2573 * We don't have to worry about the returned node being offline
2574 * because "it can't happen", and even if it did, it would be ok.
2575 *
2576 * The routines calling guarantee_online_mems() are careful to
2577 * only set nodes in task->mems_allowed that are online. So it
2578 * should not be possible for the following code to return an
2579 * offline node. But if it did, that would be ok, as this routine
2580 * is not returning the node where the allocation must be, only
2581 * the node where the search should start. The zonelist passed to
2582 * __alloc_pages() will include all nodes. If the slab allocator
2583 * is passed an offline node, it will fall back to the local node.
2584 * See kmem_cache_alloc_node().
2585 */
2586
6adef3eb 2587static int cpuset_spread_node(int *rotor)
825a46af
PJ
2588{
2589 int node;
2590
6adef3eb 2591 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2592 if (node == MAX_NUMNODES)
2593 node = first_node(current->mems_allowed);
6adef3eb 2594 *rotor = node;
825a46af
PJ
2595 return node;
2596}
6adef3eb
JS
2597
2598int cpuset_mem_spread_node(void)
2599{
778d3b0f
MH
2600 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2601 current->cpuset_mem_spread_rotor =
2602 node_random(&current->mems_allowed);
2603
6adef3eb
JS
2604 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2605}
2606
2607int cpuset_slab_spread_node(void)
2608{
778d3b0f
MH
2609 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2610 current->cpuset_slab_spread_rotor =
2611 node_random(&current->mems_allowed);
2612
6adef3eb
JS
2613 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2614}
2615
825a46af
PJ
2616EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2617
ef08e3b4 2618/**
bbe373f2
DR
2619 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2620 * @tsk1: pointer to task_struct of some task.
2621 * @tsk2: pointer to task_struct of some other task.
2622 *
2623 * Description: Return true if @tsk1's mems_allowed intersects the
2624 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2625 * one of the task's memory usage might impact the memory available
2626 * to the other.
ef08e3b4
PJ
2627 **/
2628
bbe373f2
DR
2629int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2630 const struct task_struct *tsk2)
ef08e3b4 2631{
bbe373f2 2632 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2633}
2634
f440d98f
LZ
2635#define CPUSET_NODELIST_LEN (256)
2636
75aa1994
DR
2637/**
2638 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2639 * @task: pointer to task_struct of some task.
2640 *
2641 * Description: Prints @task's name, cpuset name, and cached copy of its
2642 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2643 * dereferencing task_cs(task).
2644 */
2645void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2646{
f440d98f
LZ
2647 /* Statically allocated to prevent using excess stack. */
2648 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2649 static DEFINE_SPINLOCK(cpuset_buffer_lock);
75aa1994 2650
f440d98f 2651 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
63f43f55 2652
cfb5966b 2653 rcu_read_lock();
f440d98f 2654 spin_lock(&cpuset_buffer_lock);
63f43f55 2655
75aa1994
DR
2656 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2657 tsk->mems_allowed);
2658 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
f440d98f
LZ
2659 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2660
75aa1994 2661 spin_unlock(&cpuset_buffer_lock);
cfb5966b 2662 rcu_read_unlock();
75aa1994
DR
2663}
2664
3e0d98b9
PJ
2665/*
2666 * Collection of memory_pressure is suppressed unless
2667 * this flag is enabled by writing "1" to the special
2668 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2669 */
2670
c5b2aff8 2671int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2672
2673/**
2674 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2675 *
2676 * Keep a running average of the rate of synchronous (direct)
2677 * page reclaim efforts initiated by tasks in each cpuset.
2678 *
2679 * This represents the rate at which some task in the cpuset
2680 * ran low on memory on all nodes it was allowed to use, and
2681 * had to enter the kernels page reclaim code in an effort to
2682 * create more free memory by tossing clean pages or swapping
2683 * or writing dirty pages.
2684 *
2685 * Display to user space in the per-cpuset read-only file
2686 * "memory_pressure". Value displayed is an integer
2687 * representing the recent rate of entry into the synchronous
2688 * (direct) page reclaim by any task attached to the cpuset.
2689 **/
2690
2691void __cpuset_memory_pressure_bump(void)
2692{
3e0d98b9 2693 task_lock(current);
8793d854 2694 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2695 task_unlock(current);
2696}
2697
8793d854 2698#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2699/*
2700 * proc_cpuset_show()
2701 * - Print tasks cpuset path into seq_file.
2702 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2703 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2704 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2705 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2706 * anyway.
1da177e4 2707 */
8d8b97ba 2708int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2709{
13b41b09 2710 struct pid *pid;
1da177e4
LT
2711 struct task_struct *tsk;
2712 char *buf;
8793d854 2713 struct cgroup_subsys_state *css;
99f89551 2714 int retval;
1da177e4 2715
99f89551 2716 retval = -ENOMEM;
1da177e4
LT
2717 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2718 if (!buf)
99f89551
EB
2719 goto out;
2720
2721 retval = -ESRCH;
13b41b09
EB
2722 pid = m->private;
2723 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2724 if (!tsk)
2725 goto out_free;
1da177e4 2726
27e89ae5 2727 rcu_read_lock();
8af01f56 2728 css = task_css(tsk, cpuset_subsys_id);
8793d854 2729 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
27e89ae5 2730 rcu_read_unlock();
1da177e4 2731 if (retval < 0)
27e89ae5 2732 goto out_put_task;
1da177e4
LT
2733 seq_puts(m, buf);
2734 seq_putc(m, '\n');
27e89ae5 2735out_put_task:
99f89551
EB
2736 put_task_struct(tsk);
2737out_free:
1da177e4 2738 kfree(buf);
99f89551 2739out:
1da177e4
LT
2740 return retval;
2741}
8793d854 2742#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2743
d01d4827 2744/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2745void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2746{
df5f8314 2747 seq_printf(m, "Mems_allowed:\t");
30e8e136 2748 seq_nodemask(m, &task->mems_allowed);
df5f8314 2749 seq_printf(m, "\n");
39106dcf 2750 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2751 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2752 seq_printf(m, "\n");
1da177e4 2753}