memcg: limit change shrink usage
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
1da177e4
LT
17 *
18 * This file is subject to the terms and conditions of the GNU General Public
19 * License. See the file COPYING in the main directory of the Linux
20 * distribution for more details.
21 */
22
1da177e4
LT
23#include <linux/cpu.h>
24#include <linux/cpumask.h>
25#include <linux/cpuset.h>
26#include <linux/err.h>
27#include <linux/errno.h>
28#include <linux/file.h>
29#include <linux/fs.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/kernel.h>
33#include <linux/kmod.h>
34#include <linux/list.h>
68860ec1 35#include <linux/mempolicy.h>
1da177e4
LT
36#include <linux/mm.h>
37#include <linux/module.h>
38#include <linux/mount.h>
39#include <linux/namei.h>
40#include <linux/pagemap.h>
41#include <linux/proc_fs.h>
6b9c2603 42#include <linux/rcupdate.h>
1da177e4
LT
43#include <linux/sched.h>
44#include <linux/seq_file.h>
22fb52dd 45#include <linux/security.h>
1da177e4 46#include <linux/slab.h>
1da177e4
LT
47#include <linux/spinlock.h>
48#include <linux/stat.h>
49#include <linux/string.h>
50#include <linux/time.h>
51#include <linux/backing-dev.h>
52#include <linux/sort.h>
53
54#include <asm/uaccess.h>
55#include <asm/atomic.h>
3d3f26a7 56#include <linux/mutex.h>
029190c5 57#include <linux/kfifo.h>
956db3ca
CW
58#include <linux/workqueue.h>
59#include <linux/cgroup.h>
1da177e4 60
202f72d5
PJ
61/*
62 * Tracks how many cpusets are currently defined in system.
63 * When there is only one cpuset (the root cpuset) we can
64 * short circuit some hooks.
65 */
7edc5962 66int number_of_cpusets __read_mostly;
202f72d5 67
2df167a3 68/* Forward declare cgroup structures */
8793d854
PM
69struct cgroup_subsys cpuset_subsys;
70struct cpuset;
71
3e0d98b9
PJ
72/* See "Frequency meter" comments, below. */
73
74struct fmeter {
75 int cnt; /* unprocessed events count */
76 int val; /* most recent output value */
77 time_t time; /* clock (secs) when val computed */
78 spinlock_t lock; /* guards read or write of above */
79};
80
1da177e4 81struct cpuset {
8793d854
PM
82 struct cgroup_subsys_state css;
83
1da177e4
LT
84 unsigned long flags; /* "unsigned long" so bitops work */
85 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
86 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
87
1da177e4 88 struct cpuset *parent; /* my parent */
1da177e4
LT
89
90 /*
91 * Copy of global cpuset_mems_generation as of the most
92 * recent time this cpuset changed its mems_allowed.
93 */
3e0d98b9
PJ
94 int mems_generation;
95
96 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
97
98 /* partition number for rebuild_sched_domains() */
99 int pn;
956db3ca 100
1d3504fc
HS
101 /* for custom sched domain */
102 int relax_domain_level;
103
956db3ca
CW
104 /* used for walking a cpuset heirarchy */
105 struct list_head stack_list;
1da177e4
LT
106};
107
8793d854
PM
108/* Retrieve the cpuset for a cgroup */
109static inline struct cpuset *cgroup_cs(struct cgroup *cont)
110{
111 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
112 struct cpuset, css);
113}
114
115/* Retrieve the cpuset for a task */
116static inline struct cpuset *task_cs(struct task_struct *task)
117{
118 return container_of(task_subsys_state(task, cpuset_subsys_id),
119 struct cpuset, css);
120}
956db3ca
CW
121struct cpuset_hotplug_scanner {
122 struct cgroup_scanner scan;
123 struct cgroup *to;
124};
8793d854 125
1da177e4
LT
126/* bits in struct cpuset flags field */
127typedef enum {
128 CS_CPU_EXCLUSIVE,
129 CS_MEM_EXCLUSIVE,
78608366 130 CS_MEM_HARDWALL,
45b07ef3 131 CS_MEMORY_MIGRATE,
029190c5 132 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
133 CS_SPREAD_PAGE,
134 CS_SPREAD_SLAB,
1da177e4
LT
135} cpuset_flagbits_t;
136
137/* convenient tests for these bits */
138static inline int is_cpu_exclusive(const struct cpuset *cs)
139{
7b5b9ef0 140 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
141}
142
143static inline int is_mem_exclusive(const struct cpuset *cs)
144{
7b5b9ef0 145 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
146}
147
78608366
PM
148static inline int is_mem_hardwall(const struct cpuset *cs)
149{
150 return test_bit(CS_MEM_HARDWALL, &cs->flags);
151}
152
029190c5
PJ
153static inline int is_sched_load_balance(const struct cpuset *cs)
154{
155 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
156}
157
45b07ef3
PJ
158static inline int is_memory_migrate(const struct cpuset *cs)
159{
7b5b9ef0 160 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
161}
162
825a46af
PJ
163static inline int is_spread_page(const struct cpuset *cs)
164{
165 return test_bit(CS_SPREAD_PAGE, &cs->flags);
166}
167
168static inline int is_spread_slab(const struct cpuset *cs)
169{
170 return test_bit(CS_SPREAD_SLAB, &cs->flags);
171}
172
1da177e4 173/*
151a4420 174 * Increment this integer everytime any cpuset changes its
1da177e4
LT
175 * mems_allowed value. Users of cpusets can track this generation
176 * number, and avoid having to lock and reload mems_allowed unless
177 * the cpuset they're using changes generation.
178 *
2df167a3 179 * A single, global generation is needed because cpuset_attach_task() could
1da177e4
LT
180 * reattach a task to a different cpuset, which must not have its
181 * generation numbers aliased with those of that tasks previous cpuset.
182 *
183 * Generations are needed for mems_allowed because one task cannot
2df167a3 184 * modify another's memory placement. So we must enable every task,
1da177e4
LT
185 * on every visit to __alloc_pages(), to efficiently check whether
186 * its current->cpuset->mems_allowed has changed, requiring an update
187 * of its current->mems_allowed.
151a4420 188 *
2df167a3 189 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
151a4420 190 * there is no need to mark it atomic.
1da177e4 191 */
151a4420 192static int cpuset_mems_generation;
1da177e4
LT
193
194static struct cpuset top_cpuset = {
195 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
196 .cpus_allowed = CPU_MASK_ALL,
197 .mems_allowed = NODE_MASK_ALL,
1da177e4
LT
198};
199
1da177e4 200/*
2df167a3
PM
201 * There are two global mutexes guarding cpuset structures. The first
202 * is the main control groups cgroup_mutex, accessed via
203 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
204 * callback_mutex, below. They can nest. It is ok to first take
205 * cgroup_mutex, then nest callback_mutex. We also require taking
206 * task_lock() when dereferencing a task's cpuset pointer. See "The
207 * task_lock() exception", at the end of this comment.
053199ed 208 *
3d3f26a7 209 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 210 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 211 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
212 * and be able to modify cpusets. It can perform various checks on
213 * the cpuset structure first, knowing nothing will change. It can
2df167a3 214 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 215 * performing these checks, various callback routines can briefly
3d3f26a7
IM
216 * acquire callback_mutex to query cpusets. Once it is ready to make
217 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
218 *
219 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 220 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
221 * from one of the callbacks into the cpuset code from within
222 * __alloc_pages().
223 *
3d3f26a7 224 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
225 * access to cpusets.
226 *
227 * The task_struct fields mems_allowed and mems_generation may only
228 * be accessed in the context of that task, so require no locks.
229 *
3d3f26a7 230 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
231 * small pieces of code, such as when reading out possibly multi-word
232 * cpumasks and nodemasks.
233 *
2df167a3
PM
234 * Accessing a task's cpuset should be done in accordance with the
235 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
236 */
237
3d3f26a7 238static DEFINE_MUTEX(callback_mutex);
4247bdc6 239
8793d854
PM
240/* This is ugly, but preserves the userspace API for existing cpuset
241 * users. If someone tries to mount the "cpuset" filesystem, we
242 * silently switch it to mount "cgroup" instead */
454e2398
DH
243static int cpuset_get_sb(struct file_system_type *fs_type,
244 int flags, const char *unused_dev_name,
245 void *data, struct vfsmount *mnt)
1da177e4 246{
8793d854
PM
247 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
248 int ret = -ENODEV;
249 if (cgroup_fs) {
250 char mountopts[] =
251 "cpuset,noprefix,"
252 "release_agent=/sbin/cpuset_release_agent";
253 ret = cgroup_fs->get_sb(cgroup_fs, flags,
254 unused_dev_name, mountopts, mnt);
255 put_filesystem(cgroup_fs);
256 }
257 return ret;
1da177e4
LT
258}
259
260static struct file_system_type cpuset_fs_type = {
261 .name = "cpuset",
262 .get_sb = cpuset_get_sb,
1da177e4
LT
263};
264
1da177e4
LT
265/*
266 * Return in *pmask the portion of a cpusets's cpus_allowed that
267 * are online. If none are online, walk up the cpuset hierarchy
268 * until we find one that does have some online cpus. If we get
269 * all the way to the top and still haven't found any online cpus,
270 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
271 * task, return cpu_online_map.
272 *
273 * One way or another, we guarantee to return some non-empty subset
274 * of cpu_online_map.
275 *
3d3f26a7 276 * Call with callback_mutex held.
1da177e4
LT
277 */
278
279static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
280{
281 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
282 cs = cs->parent;
283 if (cs)
284 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
285 else
286 *pmask = cpu_online_map;
287 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
288}
289
290/*
291 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
292 * are online, with memory. If none are online with memory, walk
293 * up the cpuset hierarchy until we find one that does have some
294 * online mems. If we get all the way to the top and still haven't
295 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
296 *
297 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 298 * of node_states[N_HIGH_MEMORY].
1da177e4 299 *
3d3f26a7 300 * Call with callback_mutex held.
1da177e4
LT
301 */
302
303static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
304{
0e1e7c7a
CL
305 while (cs && !nodes_intersects(cs->mems_allowed,
306 node_states[N_HIGH_MEMORY]))
1da177e4
LT
307 cs = cs->parent;
308 if (cs)
0e1e7c7a
CL
309 nodes_and(*pmask, cs->mems_allowed,
310 node_states[N_HIGH_MEMORY]);
1da177e4 311 else
0e1e7c7a
CL
312 *pmask = node_states[N_HIGH_MEMORY];
313 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
314}
315
cf2a473c
PJ
316/**
317 * cpuset_update_task_memory_state - update task memory placement
318 *
319 * If the current tasks cpusets mems_allowed changed behind our
320 * backs, update current->mems_allowed, mems_generation and task NUMA
321 * mempolicy to the new value.
053199ed 322 *
cf2a473c
PJ
323 * Task mempolicy is updated by rebinding it relative to the
324 * current->cpuset if a task has its memory placement changed.
325 * Do not call this routine if in_interrupt().
326 *
4a01c8d5 327 * Call without callback_mutex or task_lock() held. May be
2df167a3
PM
328 * called with or without cgroup_mutex held. Thanks in part to
329 * 'the_top_cpuset_hack', the task's cpuset pointer will never
41f7f60d
DR
330 * be NULL. This routine also might acquire callback_mutex during
331 * call.
053199ed 332 *
6b9c2603
PJ
333 * Reading current->cpuset->mems_generation doesn't need task_lock
334 * to guard the current->cpuset derefence, because it is guarded
2df167a3 335 * from concurrent freeing of current->cpuset using RCU.
6b9c2603
PJ
336 *
337 * The rcu_dereference() is technically probably not needed,
338 * as I don't actually mind if I see a new cpuset pointer but
339 * an old value of mems_generation. However this really only
340 * matters on alpha systems using cpusets heavily. If I dropped
341 * that rcu_dereference(), it would save them a memory barrier.
342 * For all other arch's, rcu_dereference is a no-op anyway, and for
343 * alpha systems not using cpusets, another planned optimization,
344 * avoiding the rcu critical section for tasks in the root cpuset
345 * which is statically allocated, so can't vanish, will make this
346 * irrelevant. Better to use RCU as intended, than to engage in
347 * some cute trick to save a memory barrier that is impossible to
348 * test, for alpha systems using cpusets heavily, which might not
349 * even exist.
053199ed
PJ
350 *
351 * This routine is needed to update the per-task mems_allowed data,
352 * within the tasks context, when it is trying to allocate memory
353 * (in various mm/mempolicy.c routines) and notices that some other
354 * task has been modifying its cpuset.
1da177e4
LT
355 */
356
fe85a998 357void cpuset_update_task_memory_state(void)
1da177e4 358{
053199ed 359 int my_cpusets_mem_gen;
cf2a473c 360 struct task_struct *tsk = current;
6b9c2603 361 struct cpuset *cs;
053199ed 362
8793d854 363 if (task_cs(tsk) == &top_cpuset) {
03a285f5
PJ
364 /* Don't need rcu for top_cpuset. It's never freed. */
365 my_cpusets_mem_gen = top_cpuset.mems_generation;
366 } else {
367 rcu_read_lock();
8793d854 368 my_cpusets_mem_gen = task_cs(current)->mems_generation;
03a285f5
PJ
369 rcu_read_unlock();
370 }
1da177e4 371
cf2a473c 372 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 373 mutex_lock(&callback_mutex);
cf2a473c 374 task_lock(tsk);
8793d854 375 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
376 guarantee_online_mems(cs, &tsk->mems_allowed);
377 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
378 if (is_spread_page(cs))
379 tsk->flags |= PF_SPREAD_PAGE;
380 else
381 tsk->flags &= ~PF_SPREAD_PAGE;
382 if (is_spread_slab(cs))
383 tsk->flags |= PF_SPREAD_SLAB;
384 else
385 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 386 task_unlock(tsk);
3d3f26a7 387 mutex_unlock(&callback_mutex);
74cb2155 388 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
389 }
390}
391
392/*
393 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
394 *
395 * One cpuset is a subset of another if all its allowed CPUs and
396 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 397 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
398 */
399
400static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
401{
402 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
403 nodes_subset(p->mems_allowed, q->mems_allowed) &&
404 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
405 is_mem_exclusive(p) <= is_mem_exclusive(q);
406}
407
408/*
409 * validate_change() - Used to validate that any proposed cpuset change
410 * follows the structural rules for cpusets.
411 *
412 * If we replaced the flag and mask values of the current cpuset
413 * (cur) with those values in the trial cpuset (trial), would
414 * our various subset and exclusive rules still be valid? Presumes
2df167a3 415 * cgroup_mutex held.
1da177e4
LT
416 *
417 * 'cur' is the address of an actual, in-use cpuset. Operations
418 * such as list traversal that depend on the actual address of the
419 * cpuset in the list must use cur below, not trial.
420 *
421 * 'trial' is the address of bulk structure copy of cur, with
422 * perhaps one or more of the fields cpus_allowed, mems_allowed,
423 * or flags changed to new, trial values.
424 *
425 * Return 0 if valid, -errno if not.
426 */
427
428static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
429{
8793d854 430 struct cgroup *cont;
1da177e4
LT
431 struct cpuset *c, *par;
432
433 /* Each of our child cpusets must be a subset of us */
8793d854
PM
434 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
435 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
436 return -EBUSY;
437 }
438
439 /* Remaining checks don't apply to root cpuset */
69604067 440 if (cur == &top_cpuset)
1da177e4
LT
441 return 0;
442
69604067
PJ
443 par = cur->parent;
444
1da177e4
LT
445 /* We must be a subset of our parent cpuset */
446 if (!is_cpuset_subset(trial, par))
447 return -EACCES;
448
2df167a3
PM
449 /*
450 * If either I or some sibling (!= me) is exclusive, we can't
451 * overlap
452 */
8793d854
PM
453 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
454 c = cgroup_cs(cont);
1da177e4
LT
455 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
456 c != cur &&
457 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
458 return -EINVAL;
459 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
460 c != cur &&
461 nodes_intersects(trial->mems_allowed, c->mems_allowed))
462 return -EINVAL;
463 }
464
020958b6
PJ
465 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
466 if (cgroup_task_count(cur->css.cgroup)) {
467 if (cpus_empty(trial->cpus_allowed) ||
468 nodes_empty(trial->mems_allowed)) {
469 return -ENOSPC;
470 }
471 }
472
1da177e4
LT
473 return 0;
474}
475
029190c5
PJ
476/*
477 * Helper routine for rebuild_sched_domains().
478 * Do cpusets a, b have overlapping cpus_allowed masks?
479 */
480
481static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
482{
483 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
484}
485
1d3504fc
HS
486static void
487update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
488{
489 if (!dattr)
490 return;
491 if (dattr->relax_domain_level < c->relax_domain_level)
492 dattr->relax_domain_level = c->relax_domain_level;
493 return;
494}
495
029190c5
PJ
496/*
497 * rebuild_sched_domains()
498 *
499 * If the flag 'sched_load_balance' of any cpuset with non-empty
500 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
501 * which has that flag enabled, or if any cpuset with a non-empty
502 * 'cpus' is removed, then call this routine to rebuild the
503 * scheduler's dynamic sched domains.
504 *
505 * This routine builds a partial partition of the systems CPUs
506 * (the set of non-overlappping cpumask_t's in the array 'part'
507 * below), and passes that partial partition to the kernel/sched.c
508 * partition_sched_domains() routine, which will rebuild the
509 * schedulers load balancing domains (sched domains) as specified
510 * by that partial partition. A 'partial partition' is a set of
511 * non-overlapping subsets whose union is a subset of that set.
512 *
513 * See "What is sched_load_balance" in Documentation/cpusets.txt
514 * for a background explanation of this.
515 *
516 * Does not return errors, on the theory that the callers of this
517 * routine would rather not worry about failures to rebuild sched
518 * domains when operating in the severe memory shortage situations
519 * that could cause allocation failures below.
520 *
521 * Call with cgroup_mutex held. May take callback_mutex during
522 * call due to the kfifo_alloc() and kmalloc() calls. May nest
86ef5c9a 523 * a call to the get_online_cpus()/put_online_cpus() pair.
029190c5 524 * Must not be called holding callback_mutex, because we must not
86ef5c9a
GS
525 * call get_online_cpus() while holding callback_mutex. Elsewhere
526 * the kernel nests callback_mutex inside get_online_cpus() calls.
029190c5
PJ
527 * So the reverse nesting would risk an ABBA deadlock.
528 *
529 * The three key local variables below are:
530 * q - a kfifo queue of cpuset pointers, used to implement a
531 * top-down scan of all cpusets. This scan loads a pointer
532 * to each cpuset marked is_sched_load_balance into the
533 * array 'csa'. For our purposes, rebuilding the schedulers
534 * sched domains, we can ignore !is_sched_load_balance cpusets.
535 * csa - (for CpuSet Array) Array of pointers to all the cpusets
536 * that need to be load balanced, for convenient iterative
537 * access by the subsequent code that finds the best partition,
538 * i.e the set of domains (subsets) of CPUs such that the
539 * cpus_allowed of every cpuset marked is_sched_load_balance
540 * is a subset of one of these domains, while there are as
541 * many such domains as possible, each as small as possible.
542 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
543 * the kernel/sched.c routine partition_sched_domains() in a
544 * convenient format, that can be easily compared to the prior
545 * value to determine what partition elements (sched domains)
546 * were changed (added or removed.)
547 *
548 * Finding the best partition (set of domains):
549 * The triple nested loops below over i, j, k scan over the
550 * load balanced cpusets (using the array of cpuset pointers in
551 * csa[]) looking for pairs of cpusets that have overlapping
552 * cpus_allowed, but which don't have the same 'pn' partition
553 * number and gives them in the same partition number. It keeps
554 * looping on the 'restart' label until it can no longer find
555 * any such pairs.
556 *
557 * The union of the cpus_allowed masks from the set of
558 * all cpusets having the same 'pn' value then form the one
559 * element of the partition (one sched domain) to be passed to
560 * partition_sched_domains().
561 */
562
e761b772 563void rebuild_sched_domains(void)
029190c5
PJ
564{
565 struct kfifo *q; /* queue of cpusets to be scanned */
566 struct cpuset *cp; /* scans q */
567 struct cpuset **csa; /* array of all cpuset ptrs */
568 int csn; /* how many cpuset ptrs in csa so far */
569 int i, j, k; /* indices for partition finding loops */
570 cpumask_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 571 struct sched_domain_attr *dattr; /* attributes for custom domains */
029190c5
PJ
572 int ndoms; /* number of sched domains in result */
573 int nslot; /* next empty doms[] cpumask_t slot */
574
575 q = NULL;
576 csa = NULL;
577 doms = NULL;
1d3504fc 578 dattr = NULL;
029190c5
PJ
579
580 /* Special case for the 99% of systems with one, full, sched domain */
581 if (is_sched_load_balance(&top_cpuset)) {
582 ndoms = 1;
583 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
584 if (!doms)
585 goto rebuild;
1d3504fc
HS
586 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
587 if (dattr) {
588 *dattr = SD_ATTR_INIT;
589 update_domain_attr(dattr, &top_cpuset);
590 }
029190c5
PJ
591 *doms = top_cpuset.cpus_allowed;
592 goto rebuild;
593 }
594
595 q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
596 if (IS_ERR(q))
597 goto done;
598 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
599 if (!csa)
600 goto done;
601 csn = 0;
602
603 cp = &top_cpuset;
604 __kfifo_put(q, (void *)&cp, sizeof(cp));
605 while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
606 struct cgroup *cont;
607 struct cpuset *child; /* scans child cpusets of cp */
608 if (is_sched_load_balance(cp))
609 csa[csn++] = cp;
610 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
611 child = cgroup_cs(cont);
612 __kfifo_put(q, (void *)&child, sizeof(cp));
613 }
614 }
615
616 for (i = 0; i < csn; i++)
617 csa[i]->pn = i;
618 ndoms = csn;
619
620restart:
621 /* Find the best partition (set of sched domains) */
622 for (i = 0; i < csn; i++) {
623 struct cpuset *a = csa[i];
624 int apn = a->pn;
625
626 for (j = 0; j < csn; j++) {
627 struct cpuset *b = csa[j];
628 int bpn = b->pn;
629
630 if (apn != bpn && cpusets_overlap(a, b)) {
631 for (k = 0; k < csn; k++) {
632 struct cpuset *c = csa[k];
633
634 if (c->pn == bpn)
635 c->pn = apn;
636 }
637 ndoms--; /* one less element */
638 goto restart;
639 }
640 }
641 }
642
643 /* Convert <csn, csa> to <ndoms, doms> */
644 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
645 if (!doms)
646 goto rebuild;
1d3504fc 647 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
648
649 for (nslot = 0, i = 0; i < csn; i++) {
650 struct cpuset *a = csa[i];
651 int apn = a->pn;
652
653 if (apn >= 0) {
654 cpumask_t *dp = doms + nslot;
655
656 if (nslot == ndoms) {
657 static int warnings = 10;
658 if (warnings) {
659 printk(KERN_WARNING
660 "rebuild_sched_domains confused:"
661 " nslot %d, ndoms %d, csn %d, i %d,"
662 " apn %d\n",
663 nslot, ndoms, csn, i, apn);
664 warnings--;
665 }
666 continue;
667 }
668
669 cpus_clear(*dp);
1d3504fc
HS
670 if (dattr)
671 *(dattr + nslot) = SD_ATTR_INIT;
029190c5
PJ
672 for (j = i; j < csn; j++) {
673 struct cpuset *b = csa[j];
674
675 if (apn == b->pn) {
676 cpus_or(*dp, *dp, b->cpus_allowed);
677 b->pn = -1;
91cd4d6e
MX
678 if (dattr)
679 update_domain_attr(dattr
680 + nslot, b);
029190c5
PJ
681 }
682 }
683 nslot++;
684 }
685 }
686 BUG_ON(nslot != ndoms);
687
688rebuild:
689 /* Have scheduler rebuild sched domains */
86ef5c9a 690 get_online_cpus();
1d3504fc 691 partition_sched_domains(ndoms, doms, dattr);
86ef5c9a 692 put_online_cpus();
029190c5
PJ
693
694done:
695 if (q && !IS_ERR(q))
696 kfifo_free(q);
697 kfree(csa);
698 /* Don't kfree(doms) -- partition_sched_domains() does that. */
1d3504fc 699 /* Don't kfree(dattr) -- partition_sched_domains() does that. */
029190c5
PJ
700}
701
8707d8b8
PM
702static inline int started_after_time(struct task_struct *t1,
703 struct timespec *time,
704 struct task_struct *t2)
705{
706 int start_diff = timespec_compare(&t1->start_time, time);
707 if (start_diff > 0) {
708 return 1;
709 } else if (start_diff < 0) {
710 return 0;
711 } else {
712 /*
713 * Arbitrarily, if two processes started at the same
714 * time, we'll say that the lower pointer value
715 * started first. Note that t2 may have exited by now
716 * so this may not be a valid pointer any longer, but
717 * that's fine - it still serves to distinguish
718 * between two tasks started (effectively)
719 * simultaneously.
720 */
721 return t1 > t2;
722 }
723}
724
725static inline int started_after(void *p1, void *p2)
726{
727 struct task_struct *t1 = p1;
728 struct task_struct *t2 = p2;
729 return started_after_time(t1, &t2->start_time, t2);
730}
731
58f4790b
CW
732/**
733 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
734 * @tsk: task to test
735 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
736 *
2df167a3 737 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
738 * Called for each task in a cgroup by cgroup_scan_tasks().
739 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
740 * words, if its mask is not equal to its cpuset's mask).
053199ed 741 */
9e0c914c
AB
742static int cpuset_test_cpumask(struct task_struct *tsk,
743 struct cgroup_scanner *scan)
58f4790b
CW
744{
745 return !cpus_equal(tsk->cpus_allowed,
746 (cgroup_cs(scan->cg))->cpus_allowed);
747}
053199ed 748
58f4790b
CW
749/**
750 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
751 * @tsk: task to test
752 * @scan: struct cgroup_scanner containing the cgroup of the task
753 *
754 * Called by cgroup_scan_tasks() for each task in a cgroup whose
755 * cpus_allowed mask needs to be changed.
756 *
757 * We don't need to re-check for the cgroup/cpuset membership, since we're
758 * holding cgroup_lock() at this point.
759 */
9e0c914c
AB
760static void cpuset_change_cpumask(struct task_struct *tsk,
761 struct cgroup_scanner *scan)
58f4790b 762{
f9a86fcb 763 set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
764}
765
766/**
767 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
768 * @cs: the cpuset to consider
769 * @buf: buffer of cpu numbers written to this cpuset
770 */
e3712395 771static int update_cpumask(struct cpuset *cs, const char *buf)
1da177e4
LT
772{
773 struct cpuset trialcs;
58f4790b 774 struct cgroup_scanner scan;
8707d8b8 775 struct ptr_heap heap;
58f4790b
CW
776 int retval;
777 int is_load_balanced;
1da177e4 778
4c4d50f7
PJ
779 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
780 if (cs == &top_cpuset)
781 return -EACCES;
782
1da177e4 783 trialcs = *cs;
6f7f02e7
DR
784
785 /*
c8d9c90c 786 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
787 * Since cpulist_parse() fails on an empty mask, we special case
788 * that parsing. The validate_change() call ensures that cpusets
789 * with tasks have cpus.
6f7f02e7 790 */
020958b6 791 if (!*buf) {
6f7f02e7
DR
792 cpus_clear(trialcs.cpus_allowed);
793 } else {
794 retval = cpulist_parse(buf, trialcs.cpus_allowed);
795 if (retval < 0)
796 return retval;
37340746
LJ
797
798 if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
799 return -EINVAL;
6f7f02e7 800 }
1da177e4 801 retval = validate_change(cs, &trialcs);
85d7b949
DG
802 if (retval < 0)
803 return retval;
029190c5 804
8707d8b8
PM
805 /* Nothing to do if the cpus didn't change */
806 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
807 return 0;
58f4790b 808
8707d8b8
PM
809 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
810 if (retval)
811 return retval;
812
029190c5
PJ
813 is_load_balanced = is_sched_load_balance(&trialcs);
814
3d3f26a7 815 mutex_lock(&callback_mutex);
85d7b949 816 cs->cpus_allowed = trialcs.cpus_allowed;
3d3f26a7 817 mutex_unlock(&callback_mutex);
029190c5 818
8707d8b8
PM
819 /*
820 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 821 * that need an update.
8707d8b8 822 */
58f4790b
CW
823 scan.cg = cs->css.cgroup;
824 scan.test_task = cpuset_test_cpumask;
825 scan.process_task = cpuset_change_cpumask;
826 scan.heap = &heap;
827 cgroup_scan_tasks(&scan);
8707d8b8 828 heap_free(&heap);
58f4790b 829
8707d8b8 830 if (is_load_balanced)
029190c5 831 rebuild_sched_domains();
85d7b949 832 return 0;
1da177e4
LT
833}
834
e4e364e8
PJ
835/*
836 * cpuset_migrate_mm
837 *
838 * Migrate memory region from one set of nodes to another.
839 *
840 * Temporarilly set tasks mems_allowed to target nodes of migration,
841 * so that the migration code can allocate pages on these nodes.
842 *
2df167a3 843 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 844 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
845 * calls. Therefore we don't need to take task_lock around the
846 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 847 * our task's cpuset.
e4e364e8
PJ
848 *
849 * Hold callback_mutex around the two modifications of our tasks
850 * mems_allowed to synchronize with cpuset_mems_allowed().
851 *
852 * While the mm_struct we are migrating is typically from some
853 * other task, the task_struct mems_allowed that we are hacking
854 * is for our current task, which must allocate new pages for that
855 * migrating memory region.
856 *
857 * We call cpuset_update_task_memory_state() before hacking
858 * our tasks mems_allowed, so that we are assured of being in
859 * sync with our tasks cpuset, and in particular, callbacks to
860 * cpuset_update_task_memory_state() from nested page allocations
861 * won't see any mismatch of our cpuset and task mems_generation
862 * values, so won't overwrite our hacked tasks mems_allowed
863 * nodemask.
864 */
865
866static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
867 const nodemask_t *to)
868{
869 struct task_struct *tsk = current;
870
871 cpuset_update_task_memory_state();
872
873 mutex_lock(&callback_mutex);
874 tsk->mems_allowed = *to;
875 mutex_unlock(&callback_mutex);
876
877 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
878
879 mutex_lock(&callback_mutex);
8793d854 880 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
881 mutex_unlock(&callback_mutex);
882}
883
053199ed 884/*
4225399a
PJ
885 * Handle user request to change the 'mems' memory placement
886 * of a cpuset. Needs to validate the request, update the
887 * cpusets mems_allowed and mems_generation, and for each
04c19fa6
PJ
888 * task in the cpuset, rebind any vma mempolicies and if
889 * the cpuset is marked 'memory_migrate', migrate the tasks
890 * pages to the new memory.
4225399a 891 *
2df167a3 892 * Call with cgroup_mutex held. May take callback_mutex during call.
4225399a
PJ
893 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
894 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
895 * their mempolicies to the cpusets new mems_allowed.
053199ed
PJ
896 */
897
8793d854
PM
898static void *cpuset_being_rebound;
899
e3712395 900static int update_nodemask(struct cpuset *cs, const char *buf)
1da177e4
LT
901{
902 struct cpuset trialcs;
04c19fa6 903 nodemask_t oldmem;
8793d854 904 struct task_struct *p;
4225399a
PJ
905 struct mm_struct **mmarray;
906 int i, n, ntasks;
04c19fa6 907 int migrate;
4225399a 908 int fudge;
1da177e4 909 int retval;
8793d854 910 struct cgroup_iter it;
1da177e4 911
0e1e7c7a
CL
912 /*
913 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
914 * it's read-only
915 */
38837fc7
PJ
916 if (cs == &top_cpuset)
917 return -EACCES;
918
1da177e4 919 trialcs = *cs;
6f7f02e7
DR
920
921 /*
020958b6
PJ
922 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
923 * Since nodelist_parse() fails on an empty mask, we special case
924 * that parsing. The validate_change() call ensures that cpusets
925 * with tasks have memory.
6f7f02e7 926 */
020958b6 927 if (!*buf) {
6f7f02e7
DR
928 nodes_clear(trialcs.mems_allowed);
929 } else {
930 retval = nodelist_parse(buf, trialcs.mems_allowed);
931 if (retval < 0)
932 goto done;
37340746
LJ
933
934 if (!nodes_subset(trialcs.mems_allowed,
935 node_states[N_HIGH_MEMORY]))
936 return -EINVAL;
6f7f02e7 937 }
04c19fa6
PJ
938 oldmem = cs->mems_allowed;
939 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
940 retval = 0; /* Too easy - nothing to do */
941 goto done;
942 }
59dac16f
PJ
943 retval = validate_change(cs, &trialcs);
944 if (retval < 0)
945 goto done;
946
3d3f26a7 947 mutex_lock(&callback_mutex);
59dac16f 948 cs->mems_allowed = trialcs.mems_allowed;
151a4420 949 cs->mems_generation = cpuset_mems_generation++;
3d3f26a7 950 mutex_unlock(&callback_mutex);
59dac16f 951
846a16bf 952 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a
PJ
953
954 fudge = 10; /* spare mmarray[] slots */
955 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
956 retval = -ENOMEM;
957
958 /*
959 * Allocate mmarray[] to hold mm reference for each task
960 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
961 * tasklist_lock. We could use GFP_ATOMIC, but with a
962 * few more lines of code, we can retry until we get a big
963 * enough mmarray[] w/o using GFP_ATOMIC.
964 */
965 while (1) {
8793d854 966 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
4225399a
PJ
967 ntasks += fudge;
968 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
969 if (!mmarray)
970 goto done;
c2aef333 971 read_lock(&tasklist_lock); /* block fork */
8793d854 972 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
4225399a 973 break; /* got enough */
c2aef333 974 read_unlock(&tasklist_lock); /* try again */
4225399a
PJ
975 kfree(mmarray);
976 }
977
978 n = 0;
979
980 /* Load up mmarray[] with mm reference for each task in cpuset. */
8793d854
PM
981 cgroup_iter_start(cs->css.cgroup, &it);
982 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
4225399a
PJ
983 struct mm_struct *mm;
984
985 if (n >= ntasks) {
986 printk(KERN_WARNING
987 "Cpuset mempolicy rebind incomplete.\n");
8793d854 988 break;
4225399a 989 }
4225399a
PJ
990 mm = get_task_mm(p);
991 if (!mm)
992 continue;
993 mmarray[n++] = mm;
8793d854
PM
994 }
995 cgroup_iter_end(cs->css.cgroup, &it);
c2aef333 996 read_unlock(&tasklist_lock);
4225399a
PJ
997
998 /*
999 * Now that we've dropped the tasklist spinlock, we can
1000 * rebind the vma mempolicies of each mm in mmarray[] to their
1001 * new cpuset, and release that mm. The mpol_rebind_mm()
1002 * call takes mmap_sem, which we couldn't take while holding
846a16bf 1003 * tasklist_lock. Forks can happen again now - the mpol_dup()
4225399a
PJ
1004 * cpuset_being_rebound check will catch such forks, and rebind
1005 * their vma mempolicies too. Because we still hold the global
2df167a3 1006 * cgroup_mutex, we know that no other rebind effort will
4225399a
PJ
1007 * be contending for the global variable cpuset_being_rebound.
1008 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1009 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1010 */
04c19fa6 1011 migrate = is_memory_migrate(cs);
4225399a
PJ
1012 for (i = 0; i < n; i++) {
1013 struct mm_struct *mm = mmarray[i];
1014
1015 mpol_rebind_mm(mm, &cs->mems_allowed);
e4e364e8
PJ
1016 if (migrate)
1017 cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
4225399a
PJ
1018 mmput(mm);
1019 }
1020
2df167a3 1021 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
4225399a 1022 kfree(mmarray);
8793d854 1023 cpuset_being_rebound = NULL;
4225399a 1024 retval = 0;
59dac16f 1025done:
1da177e4
LT
1026 return retval;
1027}
1028
8793d854
PM
1029int current_cpuset_is_being_rebound(void)
1030{
1031 return task_cs(current) == cpuset_being_rebound;
1032}
1033
5be7a479 1034static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1035{
30e0e178
LZ
1036 if (val < -1 || val >= SD_LV_MAX)
1037 return -EINVAL;
1d3504fc
HS
1038
1039 if (val != cs->relax_domain_level) {
1040 cs->relax_domain_level = val;
1041 rebuild_sched_domains();
1042 }
1043
1044 return 0;
1045}
1046
1da177e4
LT
1047/*
1048 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1049 * bit: the bit to update (see cpuset_flagbits_t)
1050 * cs: the cpuset to update
1051 * turning_on: whether the flag is being set or cleared
053199ed 1052 *
2df167a3 1053 * Call with cgroup_mutex held.
1da177e4
LT
1054 */
1055
700fe1ab
PM
1056static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1057 int turning_on)
1da177e4 1058{
1da177e4 1059 struct cpuset trialcs;
607717a6 1060 int err;
029190c5 1061 int cpus_nonempty, balance_flag_changed;
1da177e4 1062
1da177e4
LT
1063 trialcs = *cs;
1064 if (turning_on)
1065 set_bit(bit, &trialcs.flags);
1066 else
1067 clear_bit(bit, &trialcs.flags);
1068
1069 err = validate_change(cs, &trialcs);
85d7b949
DG
1070 if (err < 0)
1071 return err;
029190c5
PJ
1072
1073 cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
1074 balance_flag_changed = (is_sched_load_balance(cs) !=
1075 is_sched_load_balance(&trialcs));
1076
3d3f26a7 1077 mutex_lock(&callback_mutex);
69604067 1078 cs->flags = trialcs.flags;
3d3f26a7 1079 mutex_unlock(&callback_mutex);
85d7b949 1080
029190c5
PJ
1081 if (cpus_nonempty && balance_flag_changed)
1082 rebuild_sched_domains();
1083
85d7b949 1084 return 0;
1da177e4
LT
1085}
1086
3e0d98b9 1087/*
80f7228b 1088 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1089 *
1090 * These routines manage a digitally filtered, constant time based,
1091 * event frequency meter. There are four routines:
1092 * fmeter_init() - initialize a frequency meter.
1093 * fmeter_markevent() - called each time the event happens.
1094 * fmeter_getrate() - returns the recent rate of such events.
1095 * fmeter_update() - internal routine used to update fmeter.
1096 *
1097 * A common data structure is passed to each of these routines,
1098 * which is used to keep track of the state required to manage the
1099 * frequency meter and its digital filter.
1100 *
1101 * The filter works on the number of events marked per unit time.
1102 * The filter is single-pole low-pass recursive (IIR). The time unit
1103 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1104 * simulate 3 decimal digits of precision (multiplied by 1000).
1105 *
1106 * With an FM_COEF of 933, and a time base of 1 second, the filter
1107 * has a half-life of 10 seconds, meaning that if the events quit
1108 * happening, then the rate returned from the fmeter_getrate()
1109 * will be cut in half each 10 seconds, until it converges to zero.
1110 *
1111 * It is not worth doing a real infinitely recursive filter. If more
1112 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1113 * just compute FM_MAXTICKS ticks worth, by which point the level
1114 * will be stable.
1115 *
1116 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1117 * arithmetic overflow in the fmeter_update() routine.
1118 *
1119 * Given the simple 32 bit integer arithmetic used, this meter works
1120 * best for reporting rates between one per millisecond (msec) and
1121 * one per 32 (approx) seconds. At constant rates faster than one
1122 * per msec it maxes out at values just under 1,000,000. At constant
1123 * rates between one per msec, and one per second it will stabilize
1124 * to a value N*1000, where N is the rate of events per second.
1125 * At constant rates between one per second and one per 32 seconds,
1126 * it will be choppy, moving up on the seconds that have an event,
1127 * and then decaying until the next event. At rates slower than
1128 * about one in 32 seconds, it decays all the way back to zero between
1129 * each event.
1130 */
1131
1132#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1133#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1134#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1135#define FM_SCALE 1000 /* faux fixed point scale */
1136
1137/* Initialize a frequency meter */
1138static void fmeter_init(struct fmeter *fmp)
1139{
1140 fmp->cnt = 0;
1141 fmp->val = 0;
1142 fmp->time = 0;
1143 spin_lock_init(&fmp->lock);
1144}
1145
1146/* Internal meter update - process cnt events and update value */
1147static void fmeter_update(struct fmeter *fmp)
1148{
1149 time_t now = get_seconds();
1150 time_t ticks = now - fmp->time;
1151
1152 if (ticks == 0)
1153 return;
1154
1155 ticks = min(FM_MAXTICKS, ticks);
1156 while (ticks-- > 0)
1157 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1158 fmp->time = now;
1159
1160 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1161 fmp->cnt = 0;
1162}
1163
1164/* Process any previous ticks, then bump cnt by one (times scale). */
1165static void fmeter_markevent(struct fmeter *fmp)
1166{
1167 spin_lock(&fmp->lock);
1168 fmeter_update(fmp);
1169 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1170 spin_unlock(&fmp->lock);
1171}
1172
1173/* Process any previous ticks, then return current value. */
1174static int fmeter_getrate(struct fmeter *fmp)
1175{
1176 int val;
1177
1178 spin_lock(&fmp->lock);
1179 fmeter_update(fmp);
1180 val = fmp->val;
1181 spin_unlock(&fmp->lock);
1182 return val;
1183}
1184
2df167a3 1185/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
8793d854
PM
1186static int cpuset_can_attach(struct cgroup_subsys *ss,
1187 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1188{
8793d854 1189 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1190
1da177e4
LT
1191 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1192 return -ENOSPC;
9985b0ba
DR
1193 if (tsk->flags & PF_THREAD_BOUND) {
1194 cpumask_t mask;
1195
1196 mutex_lock(&callback_mutex);
1197 mask = cs->cpus_allowed;
1198 mutex_unlock(&callback_mutex);
1199 if (!cpus_equal(tsk->cpus_allowed, mask))
1200 return -EINVAL;
1201 }
1da177e4 1202
8793d854
PM
1203 return security_task_setscheduler(tsk, 0, NULL);
1204}
1da177e4 1205
8793d854
PM
1206static void cpuset_attach(struct cgroup_subsys *ss,
1207 struct cgroup *cont, struct cgroup *oldcont,
1208 struct task_struct *tsk)
1209{
1210 cpumask_t cpus;
1211 nodemask_t from, to;
1212 struct mm_struct *mm;
1213 struct cpuset *cs = cgroup_cs(cont);
1214 struct cpuset *oldcs = cgroup_cs(oldcont);
9985b0ba 1215 int err;
22fb52dd 1216
3d3f26a7 1217 mutex_lock(&callback_mutex);
1da177e4 1218 guarantee_online_cpus(cs, &cpus);
9985b0ba 1219 err = set_cpus_allowed_ptr(tsk, &cpus);
8793d854 1220 mutex_unlock(&callback_mutex);
9985b0ba
DR
1221 if (err)
1222 return;
1da177e4 1223
45b07ef3
PJ
1224 from = oldcs->mems_allowed;
1225 to = cs->mems_allowed;
4225399a
PJ
1226 mm = get_task_mm(tsk);
1227 if (mm) {
1228 mpol_rebind_mm(mm, &to);
2741a559 1229 if (is_memory_migrate(cs))
e4e364e8 1230 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1231 mmput(mm);
1232 }
1233
1da177e4
LT
1234}
1235
1236/* The various types of files and directories in a cpuset file system */
1237
1238typedef enum {
45b07ef3 1239 FILE_MEMORY_MIGRATE,
1da177e4
LT
1240 FILE_CPULIST,
1241 FILE_MEMLIST,
1242 FILE_CPU_EXCLUSIVE,
1243 FILE_MEM_EXCLUSIVE,
78608366 1244 FILE_MEM_HARDWALL,
029190c5 1245 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1246 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1247 FILE_MEMORY_PRESSURE_ENABLED,
1248 FILE_MEMORY_PRESSURE,
825a46af
PJ
1249 FILE_SPREAD_PAGE,
1250 FILE_SPREAD_SLAB,
1da177e4
LT
1251} cpuset_filetype_t;
1252
700fe1ab
PM
1253static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1254{
1255 int retval = 0;
1256 struct cpuset *cs = cgroup_cs(cgrp);
1257 cpuset_filetype_t type = cft->private;
1258
e3712395 1259 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1260 return -ENODEV;
700fe1ab
PM
1261
1262 switch (type) {
1da177e4 1263 case FILE_CPU_EXCLUSIVE:
700fe1ab 1264 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1265 break;
1266 case FILE_MEM_EXCLUSIVE:
700fe1ab 1267 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1268 break;
78608366
PM
1269 case FILE_MEM_HARDWALL:
1270 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1271 break;
029190c5 1272 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1273 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1274 break;
45b07ef3 1275 case FILE_MEMORY_MIGRATE:
700fe1ab 1276 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1277 break;
3e0d98b9 1278 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1279 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1280 break;
1281 case FILE_MEMORY_PRESSURE:
1282 retval = -EACCES;
1283 break;
825a46af 1284 case FILE_SPREAD_PAGE:
700fe1ab 1285 retval = update_flag(CS_SPREAD_PAGE, cs, val);
151a4420 1286 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1287 break;
1288 case FILE_SPREAD_SLAB:
700fe1ab 1289 retval = update_flag(CS_SPREAD_SLAB, cs, val);
151a4420 1290 cs->mems_generation = cpuset_mems_generation++;
825a46af 1291 break;
1da177e4
LT
1292 default:
1293 retval = -EINVAL;
700fe1ab 1294 break;
1da177e4 1295 }
8793d854 1296 cgroup_unlock();
1da177e4
LT
1297 return retval;
1298}
1299
5be7a479
PM
1300static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1301{
1302 int retval = 0;
1303 struct cpuset *cs = cgroup_cs(cgrp);
1304 cpuset_filetype_t type = cft->private;
1305
e3712395 1306 if (!cgroup_lock_live_group(cgrp))
5be7a479 1307 return -ENODEV;
e3712395 1308
5be7a479
PM
1309 switch (type) {
1310 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1311 retval = update_relax_domain_level(cs, val);
1312 break;
1313 default:
1314 retval = -EINVAL;
1315 break;
1316 }
1317 cgroup_unlock();
1318 return retval;
1319}
1320
e3712395
PM
1321/*
1322 * Common handling for a write to a "cpus" or "mems" file.
1323 */
1324static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1325 const char *buf)
1326{
1327 int retval = 0;
1328
1329 if (!cgroup_lock_live_group(cgrp))
1330 return -ENODEV;
1331
1332 switch (cft->private) {
1333 case FILE_CPULIST:
1334 retval = update_cpumask(cgroup_cs(cgrp), buf);
1335 break;
1336 case FILE_MEMLIST:
1337 retval = update_nodemask(cgroup_cs(cgrp), buf);
1338 break;
1339 default:
1340 retval = -EINVAL;
1341 break;
1342 }
1343 cgroup_unlock();
1344 return retval;
1345}
1346
1da177e4
LT
1347/*
1348 * These ascii lists should be read in a single call, by using a user
1349 * buffer large enough to hold the entire map. If read in smaller
1350 * chunks, there is no guarantee of atomicity. Since the display format
1351 * used, list of ranges of sequential numbers, is variable length,
1352 * and since these maps can change value dynamically, one could read
1353 * gibberish by doing partial reads while a list was changing.
1354 * A single large read to a buffer that crosses a page boundary is
1355 * ok, because the result being copied to user land is not recomputed
1356 * across a page fault.
1357 */
1358
1359static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1360{
1361 cpumask_t mask;
1362
3d3f26a7 1363 mutex_lock(&callback_mutex);
1da177e4 1364 mask = cs->cpus_allowed;
3d3f26a7 1365 mutex_unlock(&callback_mutex);
1da177e4
LT
1366
1367 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1368}
1369
1370static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1371{
1372 nodemask_t mask;
1373
3d3f26a7 1374 mutex_lock(&callback_mutex);
1da177e4 1375 mask = cs->mems_allowed;
3d3f26a7 1376 mutex_unlock(&callback_mutex);
1da177e4
LT
1377
1378 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1379}
1380
8793d854
PM
1381static ssize_t cpuset_common_file_read(struct cgroup *cont,
1382 struct cftype *cft,
1383 struct file *file,
1384 char __user *buf,
1385 size_t nbytes, loff_t *ppos)
1da177e4 1386{
8793d854 1387 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1388 cpuset_filetype_t type = cft->private;
1389 char *page;
1390 ssize_t retval = 0;
1391 char *s;
1da177e4 1392
e12ba74d 1393 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1394 return -ENOMEM;
1395
1396 s = page;
1397
1398 switch (type) {
1399 case FILE_CPULIST:
1400 s += cpuset_sprintf_cpulist(s, cs);
1401 break;
1402 case FILE_MEMLIST:
1403 s += cpuset_sprintf_memlist(s, cs);
1404 break;
1da177e4
LT
1405 default:
1406 retval = -EINVAL;
1407 goto out;
1408 }
1409 *s++ = '\n';
1da177e4 1410
eacaa1f5 1411 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1412out:
1413 free_page((unsigned long)page);
1414 return retval;
1415}
1416
700fe1ab
PM
1417static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1418{
1419 struct cpuset *cs = cgroup_cs(cont);
1420 cpuset_filetype_t type = cft->private;
1421 switch (type) {
1422 case FILE_CPU_EXCLUSIVE:
1423 return is_cpu_exclusive(cs);
1424 case FILE_MEM_EXCLUSIVE:
1425 return is_mem_exclusive(cs);
78608366
PM
1426 case FILE_MEM_HARDWALL:
1427 return is_mem_hardwall(cs);
700fe1ab
PM
1428 case FILE_SCHED_LOAD_BALANCE:
1429 return is_sched_load_balance(cs);
1430 case FILE_MEMORY_MIGRATE:
1431 return is_memory_migrate(cs);
1432 case FILE_MEMORY_PRESSURE_ENABLED:
1433 return cpuset_memory_pressure_enabled;
1434 case FILE_MEMORY_PRESSURE:
1435 return fmeter_getrate(&cs->fmeter);
1436 case FILE_SPREAD_PAGE:
1437 return is_spread_page(cs);
1438 case FILE_SPREAD_SLAB:
1439 return is_spread_slab(cs);
1440 default:
1441 BUG();
1442 }
1443}
1da177e4 1444
5be7a479
PM
1445static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1446{
1447 struct cpuset *cs = cgroup_cs(cont);
1448 cpuset_filetype_t type = cft->private;
1449 switch (type) {
1450 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1451 return cs->relax_domain_level;
1452 default:
1453 BUG();
1454 }
1455}
1456
1da177e4
LT
1457
1458/*
1459 * for the common functions, 'private' gives the type of file
1460 */
1461
addf2c73
PM
1462static struct cftype files[] = {
1463 {
1464 .name = "cpus",
1465 .read = cpuset_common_file_read,
e3712395
PM
1466 .write_string = cpuset_write_resmask,
1467 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1468 .private = FILE_CPULIST,
1469 },
1470
1471 {
1472 .name = "mems",
1473 .read = cpuset_common_file_read,
e3712395
PM
1474 .write_string = cpuset_write_resmask,
1475 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1476 .private = FILE_MEMLIST,
1477 },
1478
1479 {
1480 .name = "cpu_exclusive",
1481 .read_u64 = cpuset_read_u64,
1482 .write_u64 = cpuset_write_u64,
1483 .private = FILE_CPU_EXCLUSIVE,
1484 },
1485
1486 {
1487 .name = "mem_exclusive",
1488 .read_u64 = cpuset_read_u64,
1489 .write_u64 = cpuset_write_u64,
1490 .private = FILE_MEM_EXCLUSIVE,
1491 },
1492
78608366
PM
1493 {
1494 .name = "mem_hardwall",
1495 .read_u64 = cpuset_read_u64,
1496 .write_u64 = cpuset_write_u64,
1497 .private = FILE_MEM_HARDWALL,
1498 },
1499
addf2c73
PM
1500 {
1501 .name = "sched_load_balance",
1502 .read_u64 = cpuset_read_u64,
1503 .write_u64 = cpuset_write_u64,
1504 .private = FILE_SCHED_LOAD_BALANCE,
1505 },
1506
1507 {
1508 .name = "sched_relax_domain_level",
5be7a479
PM
1509 .read_s64 = cpuset_read_s64,
1510 .write_s64 = cpuset_write_s64,
addf2c73
PM
1511 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1512 },
1513
1514 {
1515 .name = "memory_migrate",
1516 .read_u64 = cpuset_read_u64,
1517 .write_u64 = cpuset_write_u64,
1518 .private = FILE_MEMORY_MIGRATE,
1519 },
1520
1521 {
1522 .name = "memory_pressure",
1523 .read_u64 = cpuset_read_u64,
1524 .write_u64 = cpuset_write_u64,
1525 .private = FILE_MEMORY_PRESSURE,
1526 },
1527
1528 {
1529 .name = "memory_spread_page",
1530 .read_u64 = cpuset_read_u64,
1531 .write_u64 = cpuset_write_u64,
1532 .private = FILE_SPREAD_PAGE,
1533 },
1534
1535 {
1536 .name = "memory_spread_slab",
1537 .read_u64 = cpuset_read_u64,
1538 .write_u64 = cpuset_write_u64,
1539 .private = FILE_SPREAD_SLAB,
1540 },
45b07ef3
PJ
1541};
1542
3e0d98b9
PJ
1543static struct cftype cft_memory_pressure_enabled = {
1544 .name = "memory_pressure_enabled",
700fe1ab
PM
1545 .read_u64 = cpuset_read_u64,
1546 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1547 .private = FILE_MEMORY_PRESSURE_ENABLED,
1548};
1549
8793d854 1550static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1551{
1552 int err;
1553
addf2c73
PM
1554 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1555 if (err)
1da177e4 1556 return err;
8793d854 1557 /* memory_pressure_enabled is in root cpuset only */
addf2c73 1558 if (!cont->parent)
8793d854 1559 err = cgroup_add_file(cont, ss,
addf2c73
PM
1560 &cft_memory_pressure_enabled);
1561 return err;
1da177e4
LT
1562}
1563
8793d854
PM
1564/*
1565 * post_clone() is called at the end of cgroup_clone().
1566 * 'cgroup' was just created automatically as a result of
1567 * a cgroup_clone(), and the current task is about to
1568 * be moved into 'cgroup'.
1569 *
1570 * Currently we refuse to set up the cgroup - thereby
1571 * refusing the task to be entered, and as a result refusing
1572 * the sys_unshare() or clone() which initiated it - if any
1573 * sibling cpusets have exclusive cpus or mem.
1574 *
1575 * If this becomes a problem for some users who wish to
1576 * allow that scenario, then cpuset_post_clone() could be
1577 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2df167a3
PM
1578 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1579 * held.
8793d854
PM
1580 */
1581static void cpuset_post_clone(struct cgroup_subsys *ss,
1582 struct cgroup *cgroup)
1583{
1584 struct cgroup *parent, *child;
1585 struct cpuset *cs, *parent_cs;
1586
1587 parent = cgroup->parent;
1588 list_for_each_entry(child, &parent->children, sibling) {
1589 cs = cgroup_cs(child);
1590 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1591 return;
1592 }
1593 cs = cgroup_cs(cgroup);
1594 parent_cs = cgroup_cs(parent);
1595
1596 cs->mems_allowed = parent_cs->mems_allowed;
1597 cs->cpus_allowed = parent_cs->cpus_allowed;
1598 return;
1599}
1600
1da177e4
LT
1601/*
1602 * cpuset_create - create a cpuset
2df167a3
PM
1603 * ss: cpuset cgroup subsystem
1604 * cont: control group that the new cpuset will be part of
1da177e4
LT
1605 */
1606
8793d854
PM
1607static struct cgroup_subsys_state *cpuset_create(
1608 struct cgroup_subsys *ss,
1609 struct cgroup *cont)
1da177e4
LT
1610{
1611 struct cpuset *cs;
8793d854 1612 struct cpuset *parent;
1da177e4 1613
8793d854
PM
1614 if (!cont->parent) {
1615 /* This is early initialization for the top cgroup */
1616 top_cpuset.mems_generation = cpuset_mems_generation++;
1617 return &top_cpuset.css;
1618 }
1619 parent = cgroup_cs(cont->parent);
1da177e4
LT
1620 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1621 if (!cs)
8793d854 1622 return ERR_PTR(-ENOMEM);
1da177e4 1623
cf2a473c 1624 cpuset_update_task_memory_state();
1da177e4 1625 cs->flags = 0;
825a46af
PJ
1626 if (is_spread_page(parent))
1627 set_bit(CS_SPREAD_PAGE, &cs->flags);
1628 if (is_spread_slab(parent))
1629 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1630 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
f9a86fcb
MT
1631 cpus_clear(cs->cpus_allowed);
1632 nodes_clear(cs->mems_allowed);
151a4420 1633 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1634 fmeter_init(&cs->fmeter);
1d3504fc 1635 cs->relax_domain_level = -1;
1da177e4
LT
1636
1637 cs->parent = parent;
202f72d5 1638 number_of_cpusets++;
8793d854 1639 return &cs->css ;
1da177e4
LT
1640}
1641
029190c5
PJ
1642/*
1643 * Locking note on the strange update_flag() call below:
1644 *
1645 * If the cpuset being removed has its flag 'sched_load_balance'
1646 * enabled, then simulate turning sched_load_balance off, which
86ef5c9a 1647 * will call rebuild_sched_domains(). The get_online_cpus()
029190c5
PJ
1648 * call in rebuild_sched_domains() must not be made while holding
1649 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
86ef5c9a 1650 * get_online_cpus() calls. So the reverse nesting would risk an
029190c5
PJ
1651 * ABBA deadlock.
1652 */
1653
8793d854 1654static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1655{
8793d854 1656 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1657
cf2a473c 1658 cpuset_update_task_memory_state();
029190c5
PJ
1659
1660 if (is_sched_load_balance(cs))
700fe1ab 1661 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
029190c5 1662
202f72d5 1663 number_of_cpusets--;
8793d854 1664 kfree(cs);
1da177e4
LT
1665}
1666
8793d854
PM
1667struct cgroup_subsys cpuset_subsys = {
1668 .name = "cpuset",
1669 .create = cpuset_create,
1670 .destroy = cpuset_destroy,
1671 .can_attach = cpuset_can_attach,
1672 .attach = cpuset_attach,
1673 .populate = cpuset_populate,
1674 .post_clone = cpuset_post_clone,
1675 .subsys_id = cpuset_subsys_id,
1676 .early_init = 1,
1677};
1678
c417f024
PJ
1679/*
1680 * cpuset_init_early - just enough so that the calls to
1681 * cpuset_update_task_memory_state() in early init code
1682 * are harmless.
1683 */
1684
1685int __init cpuset_init_early(void)
1686{
8793d854 1687 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1688 return 0;
1689}
1690
8793d854 1691
1da177e4
LT
1692/**
1693 * cpuset_init - initialize cpusets at system boot
1694 *
1695 * Description: Initialize top_cpuset and the cpuset internal file system,
1696 **/
1697
1698int __init cpuset_init(void)
1699{
8793d854 1700 int err = 0;
1da177e4 1701
f9a86fcb
MT
1702 cpus_setall(top_cpuset.cpus_allowed);
1703 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1704
3e0d98b9 1705 fmeter_init(&top_cpuset.fmeter);
151a4420 1706 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1707 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1708 top_cpuset.relax_domain_level = -1;
1da177e4 1709
1da177e4
LT
1710 err = register_filesystem(&cpuset_fs_type);
1711 if (err < 0)
8793d854
PM
1712 return err;
1713
202f72d5 1714 number_of_cpusets = 1;
8793d854 1715 return 0;
1da177e4
LT
1716}
1717
956db3ca
CW
1718/**
1719 * cpuset_do_move_task - move a given task to another cpuset
1720 * @tsk: pointer to task_struct the task to move
1721 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1722 *
1723 * Called by cgroup_scan_tasks() for each task in a cgroup.
1724 * Return nonzero to stop the walk through the tasks.
1725 */
9e0c914c
AB
1726static void cpuset_do_move_task(struct task_struct *tsk,
1727 struct cgroup_scanner *scan)
956db3ca
CW
1728{
1729 struct cpuset_hotplug_scanner *chsp;
1730
1731 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1732 cgroup_attach_task(chsp->to, tsk);
1733}
1734
1735/**
1736 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1737 * @from: cpuset in which the tasks currently reside
1738 * @to: cpuset to which the tasks will be moved
1739 *
c8d9c90c
PJ
1740 * Called with cgroup_mutex held
1741 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1742 *
1743 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1744 * calling callback functions for each.
1745 */
1746static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1747{
1748 struct cpuset_hotplug_scanner scan;
1749
1750 scan.scan.cg = from->css.cgroup;
1751 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1752 scan.scan.process_task = cpuset_do_move_task;
1753 scan.scan.heap = NULL;
1754 scan.to = to->css.cgroup;
1755
1756 if (cgroup_scan_tasks((struct cgroup_scanner *)&scan))
1757 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1758 "cgroup_scan_tasks failed\n");
1759}
1760
b1aac8bb
PJ
1761/*
1762 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
1763 * or memory nodes, we need to walk over the cpuset hierarchy,
1764 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1765 * last CPU or node from a cpuset, then move the tasks in the empty
1766 * cpuset to its next-highest non-empty parent.
b1aac8bb 1767 *
c8d9c90c
PJ
1768 * Called with cgroup_mutex held
1769 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1770 */
956db3ca
CW
1771static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1772{
1773 struct cpuset *parent;
1774
c8d9c90c
PJ
1775 /*
1776 * The cgroup's css_sets list is in use if there are tasks
1777 * in the cpuset; the list is empty if there are none;
1778 * the cs->css.refcnt seems always 0.
1779 */
956db3ca
CW
1780 if (list_empty(&cs->css.cgroup->css_sets))
1781 return;
b1aac8bb 1782
956db3ca
CW
1783 /*
1784 * Find its next-highest non-empty parent, (top cpuset
1785 * has online cpus, so can't be empty).
1786 */
1787 parent = cs->parent;
b4501295
PJ
1788 while (cpus_empty(parent->cpus_allowed) ||
1789 nodes_empty(parent->mems_allowed))
956db3ca 1790 parent = parent->parent;
956db3ca
CW
1791
1792 move_member_tasks_to_cpuset(cs, parent);
1793}
1794
1795/*
1796 * Walk the specified cpuset subtree and look for empty cpusets.
1797 * The tasks of such cpuset must be moved to a parent cpuset.
1798 *
2df167a3 1799 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
1800 * cpus_allowed and mems_allowed.
1801 *
1802 * This walk processes the tree from top to bottom, completing one layer
1803 * before dropping down to the next. It always processes a node before
1804 * any of its children.
1805 *
1806 * For now, since we lack memory hot unplug, we'll never see a cpuset
1807 * that has tasks along with an empty 'mems'. But if we did see such
1808 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1809 */
1810static void scan_for_empty_cpusets(const struct cpuset *root)
b1aac8bb 1811{
956db3ca
CW
1812 struct cpuset *cp; /* scans cpusets being updated */
1813 struct cpuset *child; /* scans child cpusets of cp */
1814 struct list_head queue;
8793d854 1815 struct cgroup *cont;
b1aac8bb 1816
956db3ca
CW
1817 INIT_LIST_HEAD(&queue);
1818
1819 list_add_tail((struct list_head *)&root->stack_list, &queue);
1820
956db3ca
CW
1821 while (!list_empty(&queue)) {
1822 cp = container_of(queue.next, struct cpuset, stack_list);
1823 list_del(queue.next);
1824 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1825 child = cgroup_cs(cont);
1826 list_add_tail(&child->stack_list, &queue);
1827 }
1828 cont = cp->css.cgroup;
b4501295
PJ
1829
1830 /* Continue past cpusets with all cpus, mems online */
1831 if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
1832 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1833 continue;
1834
956db3ca 1835 /* Remove offline cpus and mems from this cpuset. */
b4501295 1836 mutex_lock(&callback_mutex);
956db3ca
CW
1837 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1838 nodes_and(cp->mems_allowed, cp->mems_allowed,
1839 node_states[N_HIGH_MEMORY]);
b4501295
PJ
1840 mutex_unlock(&callback_mutex);
1841
1842 /* Move tasks from the empty cpuset to a parent */
c8d9c90c 1843 if (cpus_empty(cp->cpus_allowed) ||
b4501295 1844 nodes_empty(cp->mems_allowed))
956db3ca 1845 remove_tasks_in_empty_cpuset(cp);
b1aac8bb
PJ
1846 }
1847}
1848
1849/*
1850 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
0e1e7c7a 1851 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
956db3ca 1852 * track what's online after any CPU or memory node hotplug or unplug event.
b1aac8bb
PJ
1853 *
1854 * Since there are two callers of this routine, one for CPU hotplug
1855 * events and one for memory node hotplug events, we could have coded
1856 * two separate routines here. We code it as a single common routine
1857 * in order to minimize text size.
1858 */
1859
3e84050c 1860static void common_cpu_mem_hotplug_unplug(int rebuild_sd)
b1aac8bb 1861{
8793d854 1862 cgroup_lock();
b1aac8bb 1863
b1aac8bb 1864 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 1865 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
956db3ca 1866 scan_for_empty_cpusets(&top_cpuset);
b1aac8bb 1867
5c8e1ed1
MK
1868 /*
1869 * Scheduler destroys domains on hotplug events.
1870 * Rebuild them based on the current settings.
1871 */
3e84050c
DA
1872 if (rebuild_sd)
1873 rebuild_sched_domains();
5c8e1ed1 1874
8793d854 1875 cgroup_unlock();
b1aac8bb 1876}
b1aac8bb 1877
4c4d50f7
PJ
1878/*
1879 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1880 * period. This is necessary in order to make cpusets transparent
1881 * (of no affect) on systems that are actively using CPU hotplug
1882 * but making no active use of cpusets.
1883 *
38837fc7
PJ
1884 * This routine ensures that top_cpuset.cpus_allowed tracks
1885 * cpu_online_map on each CPU hotplug (cpuhp) event.
4c4d50f7
PJ
1886 */
1887
029190c5
PJ
1888static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
1889 unsigned long phase, void *unused_cpu)
4c4d50f7 1890{
3e84050c
DA
1891 switch (phase) {
1892 case CPU_UP_CANCELED:
1893 case CPU_UP_CANCELED_FROZEN:
1894 case CPU_DOWN_FAILED:
1895 case CPU_DOWN_FAILED_FROZEN:
1896 case CPU_ONLINE:
1897 case CPU_ONLINE_FROZEN:
1898 case CPU_DEAD:
1899 case CPU_DEAD_FROZEN:
1900 common_cpu_mem_hotplug_unplug(1);
1901 break;
1902 default:
ac076758 1903 return NOTIFY_DONE;
3e84050c 1904 }
ac076758 1905
3e84050c 1906 return NOTIFY_OK;
4c4d50f7 1907}
4c4d50f7 1908
b1aac8bb 1909#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 1910/*
0e1e7c7a
CL
1911 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
1912 * Call this routine anytime after you change
1913 * node_states[N_HIGH_MEMORY].
38837fc7
PJ
1914 * See also the previous routine cpuset_handle_cpuhp().
1915 */
1916
1af98928 1917void cpuset_track_online_nodes(void)
38837fc7 1918{
3e84050c 1919 common_cpu_mem_hotplug_unplug(0);
38837fc7
PJ
1920}
1921#endif
1922
1da177e4
LT
1923/**
1924 * cpuset_init_smp - initialize cpus_allowed
1925 *
1926 * Description: Finish top cpuset after cpu, node maps are initialized
1927 **/
1928
1929void __init cpuset_init_smp(void)
1930{
1931 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 1932 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7
PJ
1933
1934 hotcpu_notifier(cpuset_handle_cpuhp, 0);
1da177e4
LT
1935}
1936
1937/**
3077a260 1938
1da177e4
LT
1939 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1940 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
f9a86fcb 1941 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
1da177e4
LT
1942 *
1943 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1944 * attached to the specified @tsk. Guaranteed to return some non-empty
1945 * subset of cpu_online_map, even if this means going outside the
1946 * tasks cpuset.
1947 **/
1948
f9a86fcb 1949void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
1da177e4 1950{
3d3f26a7 1951 mutex_lock(&callback_mutex);
f9a86fcb 1952 cpuset_cpus_allowed_locked(tsk, pmask);
470fd646 1953 mutex_unlock(&callback_mutex);
470fd646
CW
1954}
1955
1956/**
1957 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2df167a3 1958 * Must be called with callback_mutex held.
470fd646 1959 **/
f9a86fcb 1960void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
470fd646 1961{
909d75a3 1962 task_lock(tsk);
f9a86fcb 1963 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 1964 task_unlock(tsk);
1da177e4
LT
1965}
1966
1967void cpuset_init_current_mems_allowed(void)
1968{
f9a86fcb 1969 nodes_setall(current->mems_allowed);
1da177e4
LT
1970}
1971
909d75a3
PJ
1972/**
1973 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
1974 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
1975 *
1976 * Description: Returns the nodemask_t mems_allowed of the cpuset
1977 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 1978 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
1979 * tasks cpuset.
1980 **/
1981
1982nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
1983{
1984 nodemask_t mask;
1985
3d3f26a7 1986 mutex_lock(&callback_mutex);
909d75a3 1987 task_lock(tsk);
8793d854 1988 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 1989 task_unlock(tsk);
3d3f26a7 1990 mutex_unlock(&callback_mutex);
909d75a3
PJ
1991
1992 return mask;
1993}
1994
d9fd8a6d 1995/**
19770b32
MG
1996 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
1997 * @nodemask: the nodemask to be checked
d9fd8a6d 1998 *
19770b32 1999 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2000 */
19770b32 2001int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2002{
19770b32 2003 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2004}
2005
9bf2229f 2006/*
78608366
PM
2007 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2008 * mem_hardwall ancestor to the specified cpuset. Call holding
2009 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2010 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2011 */
78608366 2012static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2013{
78608366 2014 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2015 cs = cs->parent;
2016 return cs;
2017}
2018
d9fd8a6d 2019/**
02a0e53d 2020 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
9bf2229f 2021 * @z: is this zone on an allowed node?
02a0e53d 2022 * @gfp_mask: memory allocation flags
d9fd8a6d 2023 *
02a0e53d
PJ
2024 * If we're in interrupt, yes, we can always allocate. If
2025 * __GFP_THISNODE is set, yes, we can always allocate. If zone
9bf2229f
PJ
2026 * z's node is in our tasks mems_allowed, yes. If it's not a
2027 * __GFP_HARDWALL request and this zone's nodes is in the nearest
78608366 2028 * hardwalled cpuset ancestor to this tasks cpuset, yes.
c596d9f3
DR
2029 * If the task has been OOM killed and has access to memory reserves
2030 * as specified by the TIF_MEMDIE flag, yes.
9bf2229f
PJ
2031 * Otherwise, no.
2032 *
02a0e53d
PJ
2033 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2034 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2035 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2036 * from an enclosing cpuset.
2037 *
2038 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2039 * hardwall cpusets, and never sleeps.
2040 *
2041 * The __GFP_THISNODE placement logic is really handled elsewhere,
2042 * by forcibly using a zonelist starting at a specified node, and by
2043 * (in get_page_from_freelist()) refusing to consider the zones for
2044 * any node on the zonelist except the first. By the time any such
2045 * calls get to this routine, we should just shut up and say 'yes'.
2046 *
9bf2229f 2047 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2048 * and do not allow allocations outside the current tasks cpuset
2049 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2050 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2051 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2052 *
02a0e53d
PJ
2053 * Scanning up parent cpusets requires callback_mutex. The
2054 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2055 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2056 * current tasks mems_allowed came up empty on the first pass over
2057 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2058 * cpuset are short of memory, might require taking the callback_mutex
2059 * mutex.
9bf2229f 2060 *
36be57ff 2061 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2062 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2063 * so no allocation on a node outside the cpuset is allowed (unless
2064 * in interrupt, of course).
36be57ff
PJ
2065 *
2066 * The second pass through get_page_from_freelist() doesn't even call
2067 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2068 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2069 * in alloc_flags. That logic and the checks below have the combined
2070 * affect that:
9bf2229f
PJ
2071 * in_interrupt - any node ok (current task context irrelevant)
2072 * GFP_ATOMIC - any node ok
c596d9f3 2073 * TIF_MEMDIE - any node ok
78608366 2074 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2075 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2076 *
2077 * Rule:
02a0e53d 2078 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2079 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2080 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2081 */
9bf2229f 2082
02a0e53d 2083int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
1da177e4 2084{
9bf2229f
PJ
2085 int node; /* node that zone z is on */
2086 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2087 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2088
9b819d20 2089 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2090 return 1;
89fa3024 2091 node = zone_to_nid(z);
92d1dbd2 2092 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2093 if (node_isset(node, current->mems_allowed))
2094 return 1;
c596d9f3
DR
2095 /*
2096 * Allow tasks that have access to memory reserves because they have
2097 * been OOM killed to get memory anywhere.
2098 */
2099 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2100 return 1;
9bf2229f
PJ
2101 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2102 return 0;
2103
5563e770
BP
2104 if (current->flags & PF_EXITING) /* Let dying task have memory */
2105 return 1;
2106
9bf2229f 2107 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2108 mutex_lock(&callback_mutex);
053199ed 2109
053199ed 2110 task_lock(current);
78608366 2111 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2112 task_unlock(current);
2113
9bf2229f 2114 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2115 mutex_unlock(&callback_mutex);
9bf2229f 2116 return allowed;
1da177e4
LT
2117}
2118
02a0e53d
PJ
2119/*
2120 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2121 * @z: is this zone on an allowed node?
2122 * @gfp_mask: memory allocation flags
2123 *
2124 * If we're in interrupt, yes, we can always allocate.
2125 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
c596d9f3
DR
2126 * z's node is in our tasks mems_allowed, yes. If the task has been
2127 * OOM killed and has access to memory reserves as specified by the
2128 * TIF_MEMDIE flag, yes. Otherwise, no.
02a0e53d
PJ
2129 *
2130 * The __GFP_THISNODE placement logic is really handled elsewhere,
2131 * by forcibly using a zonelist starting at a specified node, and by
2132 * (in get_page_from_freelist()) refusing to consider the zones for
2133 * any node on the zonelist except the first. By the time any such
2134 * calls get to this routine, we should just shut up and say 'yes'.
2135 *
2136 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2137 * this variant requires that the zone be in the current tasks
2138 * mems_allowed or that we're in interrupt. It does not scan up the
2139 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2140 * It never sleeps.
2141 */
2142
2143int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2144{
2145 int node; /* node that zone z is on */
2146
2147 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2148 return 1;
2149 node = zone_to_nid(z);
2150 if (node_isset(node, current->mems_allowed))
2151 return 1;
dedf8b79
DW
2152 /*
2153 * Allow tasks that have access to memory reserves because they have
2154 * been OOM killed to get memory anywhere.
2155 */
2156 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2157 return 1;
02a0e53d
PJ
2158 return 0;
2159}
2160
505970b9
PJ
2161/**
2162 * cpuset_lock - lock out any changes to cpuset structures
2163 *
3d3f26a7 2164 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2165 * from being changed while it scans the tasklist looking for a
3d3f26a7 2166 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2167 * cpuset_lock() routine, so the oom code can lock it, before
2168 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2169 * must be taken inside callback_mutex.
505970b9
PJ
2170 */
2171
2172void cpuset_lock(void)
2173{
3d3f26a7 2174 mutex_lock(&callback_mutex);
505970b9
PJ
2175}
2176
2177/**
2178 * cpuset_unlock - release lock on cpuset changes
2179 *
2180 * Undo the lock taken in a previous cpuset_lock() call.
2181 */
2182
2183void cpuset_unlock(void)
2184{
3d3f26a7 2185 mutex_unlock(&callback_mutex);
505970b9
PJ
2186}
2187
825a46af
PJ
2188/**
2189 * cpuset_mem_spread_node() - On which node to begin search for a page
2190 *
2191 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2192 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2193 * and if the memory allocation used cpuset_mem_spread_node()
2194 * to determine on which node to start looking, as it will for
2195 * certain page cache or slab cache pages such as used for file
2196 * system buffers and inode caches, then instead of starting on the
2197 * local node to look for a free page, rather spread the starting
2198 * node around the tasks mems_allowed nodes.
2199 *
2200 * We don't have to worry about the returned node being offline
2201 * because "it can't happen", and even if it did, it would be ok.
2202 *
2203 * The routines calling guarantee_online_mems() are careful to
2204 * only set nodes in task->mems_allowed that are online. So it
2205 * should not be possible for the following code to return an
2206 * offline node. But if it did, that would be ok, as this routine
2207 * is not returning the node where the allocation must be, only
2208 * the node where the search should start. The zonelist passed to
2209 * __alloc_pages() will include all nodes. If the slab allocator
2210 * is passed an offline node, it will fall back to the local node.
2211 * See kmem_cache_alloc_node().
2212 */
2213
2214int cpuset_mem_spread_node(void)
2215{
2216 int node;
2217
2218 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2219 if (node == MAX_NUMNODES)
2220 node = first_node(current->mems_allowed);
2221 current->cpuset_mem_spread_rotor = node;
2222 return node;
2223}
2224EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2225
ef08e3b4 2226/**
bbe373f2
DR
2227 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2228 * @tsk1: pointer to task_struct of some task.
2229 * @tsk2: pointer to task_struct of some other task.
2230 *
2231 * Description: Return true if @tsk1's mems_allowed intersects the
2232 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2233 * one of the task's memory usage might impact the memory available
2234 * to the other.
ef08e3b4
PJ
2235 **/
2236
bbe373f2
DR
2237int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2238 const struct task_struct *tsk2)
ef08e3b4 2239{
bbe373f2 2240 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2241}
2242
3e0d98b9
PJ
2243/*
2244 * Collection of memory_pressure is suppressed unless
2245 * this flag is enabled by writing "1" to the special
2246 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2247 */
2248
c5b2aff8 2249int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2250
2251/**
2252 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2253 *
2254 * Keep a running average of the rate of synchronous (direct)
2255 * page reclaim efforts initiated by tasks in each cpuset.
2256 *
2257 * This represents the rate at which some task in the cpuset
2258 * ran low on memory on all nodes it was allowed to use, and
2259 * had to enter the kernels page reclaim code in an effort to
2260 * create more free memory by tossing clean pages or swapping
2261 * or writing dirty pages.
2262 *
2263 * Display to user space in the per-cpuset read-only file
2264 * "memory_pressure". Value displayed is an integer
2265 * representing the recent rate of entry into the synchronous
2266 * (direct) page reclaim by any task attached to the cpuset.
2267 **/
2268
2269void __cpuset_memory_pressure_bump(void)
2270{
3e0d98b9 2271 task_lock(current);
8793d854 2272 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2273 task_unlock(current);
2274}
2275
8793d854 2276#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2277/*
2278 * proc_cpuset_show()
2279 * - Print tasks cpuset path into seq_file.
2280 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2281 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2282 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2283 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2284 * anyway.
1da177e4 2285 */
029190c5 2286static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2287{
13b41b09 2288 struct pid *pid;
1da177e4
LT
2289 struct task_struct *tsk;
2290 char *buf;
8793d854 2291 struct cgroup_subsys_state *css;
99f89551 2292 int retval;
1da177e4 2293
99f89551 2294 retval = -ENOMEM;
1da177e4
LT
2295 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2296 if (!buf)
99f89551
EB
2297 goto out;
2298
2299 retval = -ESRCH;
13b41b09
EB
2300 pid = m->private;
2301 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2302 if (!tsk)
2303 goto out_free;
1da177e4 2304
99f89551 2305 retval = -EINVAL;
8793d854
PM
2306 cgroup_lock();
2307 css = task_subsys_state(tsk, cpuset_subsys_id);
2308 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2309 if (retval < 0)
99f89551 2310 goto out_unlock;
1da177e4
LT
2311 seq_puts(m, buf);
2312 seq_putc(m, '\n');
99f89551 2313out_unlock:
8793d854 2314 cgroup_unlock();
99f89551
EB
2315 put_task_struct(tsk);
2316out_free:
1da177e4 2317 kfree(buf);
99f89551 2318out:
1da177e4
LT
2319 return retval;
2320}
2321
2322static int cpuset_open(struct inode *inode, struct file *file)
2323{
13b41b09
EB
2324 struct pid *pid = PROC_I(inode)->pid;
2325 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2326}
2327
9a32144e 2328const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2329 .open = cpuset_open,
2330 .read = seq_read,
2331 .llseek = seq_lseek,
2332 .release = single_release,
2333};
8793d854 2334#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2335
2336/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2337void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2338{
2339 seq_printf(m, "Cpus_allowed:\t");
2340 m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count,
2341 task->cpus_allowed);
2342 seq_printf(m, "\n");
39106dcf
MT
2343 seq_printf(m, "Cpus_allowed_list:\t");
2344 m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count,
2345 task->cpus_allowed);
2346 seq_printf(m, "\n");
df5f8314
EB
2347 seq_printf(m, "Mems_allowed:\t");
2348 m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count,
2349 task->mems_allowed);
2350 seq_printf(m, "\n");
39106dcf
MT
2351 seq_printf(m, "Mems_allowed_list:\t");
2352 m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count,
2353 task->mems_allowed);
2354 seq_printf(m, "\n");
1da177e4 2355}