cpuset: fix the problem that cpuset_mem_spread_node() returns an offline node
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
1da177e4
LT
40#include <linux/module.h>
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
58#include <asm/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
f90d4118
MX
63/*
64 * Workqueue for cpuset related tasks.
65 *
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
68 */
69static struct workqueue_struct *cpuset_wq;
70
202f72d5
PJ
71/*
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
75 */
7edc5962 76int number_of_cpusets __read_mostly;
202f72d5 77
2df167a3 78/* Forward declare cgroup structures */
8793d854
PM
79struct cgroup_subsys cpuset_subsys;
80struct cpuset;
81
3e0d98b9
PJ
82/* See "Frequency meter" comments, below. */
83
84struct fmeter {
85 int cnt; /* unprocessed events count */
86 int val; /* most recent output value */
87 time_t time; /* clock (secs) when val computed */
88 spinlock_t lock; /* guards read or write of above */
89};
90
1da177e4 91struct cpuset {
8793d854
PM
92 struct cgroup_subsys_state css;
93
1da177e4 94 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
97
1da177e4 98 struct cpuset *parent; /* my parent */
1da177e4 99
3e0d98b9 100 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
101
102 /* partition number for rebuild_sched_domains() */
103 int pn;
956db3ca 104
1d3504fc
HS
105 /* for custom sched domain */
106 int relax_domain_level;
107
956db3ca
CW
108 /* used for walking a cpuset heirarchy */
109 struct list_head stack_list;
1da177e4
LT
110};
111
8793d854
PM
112/* Retrieve the cpuset for a cgroup */
113static inline struct cpuset *cgroup_cs(struct cgroup *cont)
114{
115 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
116 struct cpuset, css);
117}
118
119/* Retrieve the cpuset for a task */
120static inline struct cpuset *task_cs(struct task_struct *task)
121{
122 return container_of(task_subsys_state(task, cpuset_subsys_id),
123 struct cpuset, css);
124}
8793d854 125
1da177e4
LT
126/* bits in struct cpuset flags field */
127typedef enum {
128 CS_CPU_EXCLUSIVE,
129 CS_MEM_EXCLUSIVE,
78608366 130 CS_MEM_HARDWALL,
45b07ef3 131 CS_MEMORY_MIGRATE,
029190c5 132 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
133 CS_SPREAD_PAGE,
134 CS_SPREAD_SLAB,
1da177e4
LT
135} cpuset_flagbits_t;
136
137/* convenient tests for these bits */
138static inline int is_cpu_exclusive(const struct cpuset *cs)
139{
7b5b9ef0 140 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
141}
142
143static inline int is_mem_exclusive(const struct cpuset *cs)
144{
7b5b9ef0 145 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
146}
147
78608366
PM
148static inline int is_mem_hardwall(const struct cpuset *cs)
149{
150 return test_bit(CS_MEM_HARDWALL, &cs->flags);
151}
152
029190c5
PJ
153static inline int is_sched_load_balance(const struct cpuset *cs)
154{
155 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
156}
157
45b07ef3
PJ
158static inline int is_memory_migrate(const struct cpuset *cs)
159{
7b5b9ef0 160 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
161}
162
825a46af
PJ
163static inline int is_spread_page(const struct cpuset *cs)
164{
165 return test_bit(CS_SPREAD_PAGE, &cs->flags);
166}
167
168static inline int is_spread_slab(const struct cpuset *cs)
169{
170 return test_bit(CS_SPREAD_SLAB, &cs->flags);
171}
172
1da177e4
LT
173static struct cpuset top_cpuset = {
174 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
175};
176
1da177e4 177/*
2df167a3
PM
178 * There are two global mutexes guarding cpuset structures. The first
179 * is the main control groups cgroup_mutex, accessed via
180 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
181 * callback_mutex, below. They can nest. It is ok to first take
182 * cgroup_mutex, then nest callback_mutex. We also require taking
183 * task_lock() when dereferencing a task's cpuset pointer. See "The
184 * task_lock() exception", at the end of this comment.
053199ed 185 *
3d3f26a7 186 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 187 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 188 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
189 * and be able to modify cpusets. It can perform various checks on
190 * the cpuset structure first, knowing nothing will change. It can
2df167a3 191 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 192 * performing these checks, various callback routines can briefly
3d3f26a7
IM
193 * acquire callback_mutex to query cpusets. Once it is ready to make
194 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
195 *
196 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 197 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
198 * from one of the callbacks into the cpuset code from within
199 * __alloc_pages().
200 *
3d3f26a7 201 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
202 * access to cpusets.
203 *
58568d2a
MX
204 * Now, the task_struct fields mems_allowed and mempolicy may be changed
205 * by other task, we use alloc_lock in the task_struct fields to protect
206 * them.
053199ed 207 *
3d3f26a7 208 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
209 * small pieces of code, such as when reading out possibly multi-word
210 * cpumasks and nodemasks.
211 *
2df167a3
PM
212 * Accessing a task's cpuset should be done in accordance with the
213 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
214 */
215
3d3f26a7 216static DEFINE_MUTEX(callback_mutex);
4247bdc6 217
75aa1994
DR
218/*
219 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
220 * buffers. They are statically allocated to prevent using excess stack
221 * when calling cpuset_print_task_mems_allowed().
222 */
223#define CPUSET_NAME_LEN (128)
224#define CPUSET_NODELIST_LEN (256)
225static char cpuset_name[CPUSET_NAME_LEN];
226static char cpuset_nodelist[CPUSET_NODELIST_LEN];
227static DEFINE_SPINLOCK(cpuset_buffer_lock);
228
cf417141
MK
229/*
230 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 231 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
232 * silently switch it to mount "cgroup" instead
233 */
454e2398
DH
234static int cpuset_get_sb(struct file_system_type *fs_type,
235 int flags, const char *unused_dev_name,
236 void *data, struct vfsmount *mnt)
1da177e4 237{
8793d854
PM
238 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
239 int ret = -ENODEV;
240 if (cgroup_fs) {
241 char mountopts[] =
242 "cpuset,noprefix,"
243 "release_agent=/sbin/cpuset_release_agent";
244 ret = cgroup_fs->get_sb(cgroup_fs, flags,
245 unused_dev_name, mountopts, mnt);
246 put_filesystem(cgroup_fs);
247 }
248 return ret;
1da177e4
LT
249}
250
251static struct file_system_type cpuset_fs_type = {
252 .name = "cpuset",
253 .get_sb = cpuset_get_sb,
1da177e4
LT
254};
255
1da177e4 256/*
300ed6cb 257 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4
LT
258 * are online. If none are online, walk up the cpuset hierarchy
259 * until we find one that does have some online cpus. If we get
260 * all the way to the top and still haven't found any online cpus,
261 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
262 * task, return cpu_online_map.
263 *
264 * One way or another, we guarantee to return some non-empty subset
265 * of cpu_online_map.
266 *
3d3f26a7 267 * Call with callback_mutex held.
1da177e4
LT
268 */
269
6af866af
LZ
270static void guarantee_online_cpus(const struct cpuset *cs,
271 struct cpumask *pmask)
1da177e4 272{
300ed6cb 273 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
1da177e4
LT
274 cs = cs->parent;
275 if (cs)
300ed6cb 276 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4 277 else
300ed6cb
LZ
278 cpumask_copy(pmask, cpu_online_mask);
279 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
1da177e4
LT
280}
281
282/*
283 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
284 * are online, with memory. If none are online with memory, walk
285 * up the cpuset hierarchy until we find one that does have some
286 * online mems. If we get all the way to the top and still haven't
287 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
288 *
289 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 290 * of node_states[N_HIGH_MEMORY].
1da177e4 291 *
3d3f26a7 292 * Call with callback_mutex held.
1da177e4
LT
293 */
294
295static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
296{
0e1e7c7a
CL
297 while (cs && !nodes_intersects(cs->mems_allowed,
298 node_states[N_HIGH_MEMORY]))
1da177e4
LT
299 cs = cs->parent;
300 if (cs)
0e1e7c7a
CL
301 nodes_and(*pmask, cs->mems_allowed,
302 node_states[N_HIGH_MEMORY]);
1da177e4 303 else
0e1e7c7a
CL
304 *pmask = node_states[N_HIGH_MEMORY];
305 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
306}
307
f3b39d47
MX
308/*
309 * update task's spread flag if cpuset's page/slab spread flag is set
310 *
311 * Called with callback_mutex/cgroup_mutex held
312 */
313static void cpuset_update_task_spread_flag(struct cpuset *cs,
314 struct task_struct *tsk)
315{
316 if (is_spread_page(cs))
317 tsk->flags |= PF_SPREAD_PAGE;
318 else
319 tsk->flags &= ~PF_SPREAD_PAGE;
320 if (is_spread_slab(cs))
321 tsk->flags |= PF_SPREAD_SLAB;
322 else
323 tsk->flags &= ~PF_SPREAD_SLAB;
324}
325
1da177e4
LT
326/*
327 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
328 *
329 * One cpuset is a subset of another if all its allowed CPUs and
330 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 331 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
332 */
333
334static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
335{
300ed6cb 336 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
337 nodes_subset(p->mems_allowed, q->mems_allowed) &&
338 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
339 is_mem_exclusive(p) <= is_mem_exclusive(q);
340}
341
645fcc9d
LZ
342/**
343 * alloc_trial_cpuset - allocate a trial cpuset
344 * @cs: the cpuset that the trial cpuset duplicates
345 */
346static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
347{
300ed6cb
LZ
348 struct cpuset *trial;
349
350 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
351 if (!trial)
352 return NULL;
353
354 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
355 kfree(trial);
356 return NULL;
357 }
358 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
359
360 return trial;
645fcc9d
LZ
361}
362
363/**
364 * free_trial_cpuset - free the trial cpuset
365 * @trial: the trial cpuset to be freed
366 */
367static void free_trial_cpuset(struct cpuset *trial)
368{
300ed6cb 369 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
370 kfree(trial);
371}
372
1da177e4
LT
373/*
374 * validate_change() - Used to validate that any proposed cpuset change
375 * follows the structural rules for cpusets.
376 *
377 * If we replaced the flag and mask values of the current cpuset
378 * (cur) with those values in the trial cpuset (trial), would
379 * our various subset and exclusive rules still be valid? Presumes
2df167a3 380 * cgroup_mutex held.
1da177e4
LT
381 *
382 * 'cur' is the address of an actual, in-use cpuset. Operations
383 * such as list traversal that depend on the actual address of the
384 * cpuset in the list must use cur below, not trial.
385 *
386 * 'trial' is the address of bulk structure copy of cur, with
387 * perhaps one or more of the fields cpus_allowed, mems_allowed,
388 * or flags changed to new, trial values.
389 *
390 * Return 0 if valid, -errno if not.
391 */
392
393static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
394{
8793d854 395 struct cgroup *cont;
1da177e4
LT
396 struct cpuset *c, *par;
397
398 /* Each of our child cpusets must be a subset of us */
8793d854
PM
399 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
400 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
401 return -EBUSY;
402 }
403
404 /* Remaining checks don't apply to root cpuset */
69604067 405 if (cur == &top_cpuset)
1da177e4
LT
406 return 0;
407
69604067
PJ
408 par = cur->parent;
409
1da177e4
LT
410 /* We must be a subset of our parent cpuset */
411 if (!is_cpuset_subset(trial, par))
412 return -EACCES;
413
2df167a3
PM
414 /*
415 * If either I or some sibling (!= me) is exclusive, we can't
416 * overlap
417 */
8793d854
PM
418 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
419 c = cgroup_cs(cont);
1da177e4
LT
420 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
421 c != cur &&
300ed6cb 422 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
1da177e4
LT
423 return -EINVAL;
424 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
425 c != cur &&
426 nodes_intersects(trial->mems_allowed, c->mems_allowed))
427 return -EINVAL;
428 }
429
020958b6
PJ
430 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
431 if (cgroup_task_count(cur->css.cgroup)) {
300ed6cb 432 if (cpumask_empty(trial->cpus_allowed) ||
020958b6
PJ
433 nodes_empty(trial->mems_allowed)) {
434 return -ENOSPC;
435 }
436 }
437
1da177e4
LT
438 return 0;
439}
440
db7f47cf 441#ifdef CONFIG_SMP
029190c5 442/*
cf417141 443 * Helper routine for generate_sched_domains().
029190c5
PJ
444 * Do cpusets a, b have overlapping cpus_allowed masks?
445 */
029190c5
PJ
446static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
447{
300ed6cb 448 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
449}
450
1d3504fc
HS
451static void
452update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
453{
1d3504fc
HS
454 if (dattr->relax_domain_level < c->relax_domain_level)
455 dattr->relax_domain_level = c->relax_domain_level;
456 return;
457}
458
f5393693
LJ
459static void
460update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
461{
462 LIST_HEAD(q);
463
464 list_add(&c->stack_list, &q);
465 while (!list_empty(&q)) {
466 struct cpuset *cp;
467 struct cgroup *cont;
468 struct cpuset *child;
469
470 cp = list_first_entry(&q, struct cpuset, stack_list);
471 list_del(q.next);
472
300ed6cb 473 if (cpumask_empty(cp->cpus_allowed))
f5393693
LJ
474 continue;
475
476 if (is_sched_load_balance(cp))
477 update_domain_attr(dattr, cp);
478
479 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
480 child = cgroup_cs(cont);
481 list_add_tail(&child->stack_list, &q);
482 }
483 }
484}
485
029190c5 486/*
cf417141
MK
487 * generate_sched_domains()
488 *
489 * This function builds a partial partition of the systems CPUs
490 * A 'partial partition' is a set of non-overlapping subsets whose
491 * union is a subset of that set.
492 * The output of this function needs to be passed to kernel/sched.c
493 * partition_sched_domains() routine, which will rebuild the scheduler's
494 * load balancing domains (sched domains) as specified by that partial
495 * partition.
029190c5 496 *
45ce80fb 497 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
498 * for a background explanation of this.
499 *
500 * Does not return errors, on the theory that the callers of this
501 * routine would rather not worry about failures to rebuild sched
502 * domains when operating in the severe memory shortage situations
503 * that could cause allocation failures below.
504 *
cf417141 505 * Must be called with cgroup_lock held.
029190c5
PJ
506 *
507 * The three key local variables below are:
aeed6824 508 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
509 * top-down scan of all cpusets. This scan loads a pointer
510 * to each cpuset marked is_sched_load_balance into the
511 * array 'csa'. For our purposes, rebuilding the schedulers
512 * sched domains, we can ignore !is_sched_load_balance cpusets.
513 * csa - (for CpuSet Array) Array of pointers to all the cpusets
514 * that need to be load balanced, for convenient iterative
515 * access by the subsequent code that finds the best partition,
516 * i.e the set of domains (subsets) of CPUs such that the
517 * cpus_allowed of every cpuset marked is_sched_load_balance
518 * is a subset of one of these domains, while there are as
519 * many such domains as possible, each as small as possible.
520 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
521 * the kernel/sched.c routine partition_sched_domains() in a
522 * convenient format, that can be easily compared to the prior
523 * value to determine what partition elements (sched domains)
524 * were changed (added or removed.)
525 *
526 * Finding the best partition (set of domains):
527 * The triple nested loops below over i, j, k scan over the
528 * load balanced cpusets (using the array of cpuset pointers in
529 * csa[]) looking for pairs of cpusets that have overlapping
530 * cpus_allowed, but which don't have the same 'pn' partition
531 * number and gives them in the same partition number. It keeps
532 * looping on the 'restart' label until it can no longer find
533 * any such pairs.
534 *
535 * The union of the cpus_allowed masks from the set of
536 * all cpusets having the same 'pn' value then form the one
537 * element of the partition (one sched domain) to be passed to
538 * partition_sched_domains().
539 */
acc3f5d7 540static int generate_sched_domains(cpumask_var_t **domains,
cf417141 541 struct sched_domain_attr **attributes)
029190c5 542{
cf417141 543 LIST_HEAD(q); /* queue of cpusets to be scanned */
029190c5
PJ
544 struct cpuset *cp; /* scans q */
545 struct cpuset **csa; /* array of all cpuset ptrs */
546 int csn; /* how many cpuset ptrs in csa so far */
547 int i, j, k; /* indices for partition finding loops */
acc3f5d7 548 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 549 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 550 int ndoms = 0; /* number of sched domains in result */
6af866af 551 int nslot; /* next empty doms[] struct cpumask slot */
029190c5 552
029190c5 553 doms = NULL;
1d3504fc 554 dattr = NULL;
cf417141 555 csa = NULL;
029190c5
PJ
556
557 /* Special case for the 99% of systems with one, full, sched domain */
558 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
559 ndoms = 1;
560 doms = alloc_sched_domains(ndoms);
029190c5 561 if (!doms)
cf417141
MK
562 goto done;
563
1d3504fc
HS
564 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
565 if (dattr) {
566 *dattr = SD_ATTR_INIT;
93a65575 567 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 568 }
acc3f5d7 569 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 570
cf417141 571 goto done;
029190c5
PJ
572 }
573
029190c5
PJ
574 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
575 if (!csa)
576 goto done;
577 csn = 0;
578
aeed6824
LZ
579 list_add(&top_cpuset.stack_list, &q);
580 while (!list_empty(&q)) {
029190c5
PJ
581 struct cgroup *cont;
582 struct cpuset *child; /* scans child cpusets of cp */
489a5393 583
aeed6824
LZ
584 cp = list_first_entry(&q, struct cpuset, stack_list);
585 list_del(q.next);
586
300ed6cb 587 if (cpumask_empty(cp->cpus_allowed))
489a5393
LJ
588 continue;
589
f5393693
LJ
590 /*
591 * All child cpusets contain a subset of the parent's cpus, so
592 * just skip them, and then we call update_domain_attr_tree()
593 * to calc relax_domain_level of the corresponding sched
594 * domain.
595 */
596 if (is_sched_load_balance(cp)) {
029190c5 597 csa[csn++] = cp;
f5393693
LJ
598 continue;
599 }
489a5393 600
029190c5
PJ
601 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
602 child = cgroup_cs(cont);
aeed6824 603 list_add_tail(&child->stack_list, &q);
029190c5
PJ
604 }
605 }
606
607 for (i = 0; i < csn; i++)
608 csa[i]->pn = i;
609 ndoms = csn;
610
611restart:
612 /* Find the best partition (set of sched domains) */
613 for (i = 0; i < csn; i++) {
614 struct cpuset *a = csa[i];
615 int apn = a->pn;
616
617 for (j = 0; j < csn; j++) {
618 struct cpuset *b = csa[j];
619 int bpn = b->pn;
620
621 if (apn != bpn && cpusets_overlap(a, b)) {
622 for (k = 0; k < csn; k++) {
623 struct cpuset *c = csa[k];
624
625 if (c->pn == bpn)
626 c->pn = apn;
627 }
628 ndoms--; /* one less element */
629 goto restart;
630 }
631 }
632 }
633
cf417141
MK
634 /*
635 * Now we know how many domains to create.
636 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
637 */
acc3f5d7 638 doms = alloc_sched_domains(ndoms);
700018e0 639 if (!doms)
cf417141 640 goto done;
cf417141
MK
641
642 /*
643 * The rest of the code, including the scheduler, can deal with
644 * dattr==NULL case. No need to abort if alloc fails.
645 */
1d3504fc 646 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
647
648 for (nslot = 0, i = 0; i < csn; i++) {
649 struct cpuset *a = csa[i];
6af866af 650 struct cpumask *dp;
029190c5
PJ
651 int apn = a->pn;
652
cf417141
MK
653 if (apn < 0) {
654 /* Skip completed partitions */
655 continue;
656 }
657
acc3f5d7 658 dp = doms[nslot];
cf417141
MK
659
660 if (nslot == ndoms) {
661 static int warnings = 10;
662 if (warnings) {
663 printk(KERN_WARNING
664 "rebuild_sched_domains confused:"
665 " nslot %d, ndoms %d, csn %d, i %d,"
666 " apn %d\n",
667 nslot, ndoms, csn, i, apn);
668 warnings--;
029190c5 669 }
cf417141
MK
670 continue;
671 }
029190c5 672
6af866af 673 cpumask_clear(dp);
cf417141
MK
674 if (dattr)
675 *(dattr + nslot) = SD_ATTR_INIT;
676 for (j = i; j < csn; j++) {
677 struct cpuset *b = csa[j];
678
679 if (apn == b->pn) {
300ed6cb 680 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
681 if (dattr)
682 update_domain_attr_tree(dattr + nslot, b);
683
684 /* Done with this partition */
685 b->pn = -1;
029190c5 686 }
029190c5 687 }
cf417141 688 nslot++;
029190c5
PJ
689 }
690 BUG_ON(nslot != ndoms);
691
cf417141
MK
692done:
693 kfree(csa);
694
700018e0
LZ
695 /*
696 * Fallback to the default domain if kmalloc() failed.
697 * See comments in partition_sched_domains().
698 */
699 if (doms == NULL)
700 ndoms = 1;
701
cf417141
MK
702 *domains = doms;
703 *attributes = dattr;
704 return ndoms;
705}
706
707/*
708 * Rebuild scheduler domains.
709 *
710 * Call with neither cgroup_mutex held nor within get_online_cpus().
711 * Takes both cgroup_mutex and get_online_cpus().
712 *
713 * Cannot be directly called from cpuset code handling changes
714 * to the cpuset pseudo-filesystem, because it cannot be called
715 * from code that already holds cgroup_mutex.
716 */
717static void do_rebuild_sched_domains(struct work_struct *unused)
718{
719 struct sched_domain_attr *attr;
acc3f5d7 720 cpumask_var_t *doms;
cf417141
MK
721 int ndoms;
722
86ef5c9a 723 get_online_cpus();
cf417141
MK
724
725 /* Generate domain masks and attrs */
726 cgroup_lock();
727 ndoms = generate_sched_domains(&doms, &attr);
728 cgroup_unlock();
729
730 /* Have scheduler rebuild the domains */
731 partition_sched_domains(ndoms, doms, attr);
732
86ef5c9a 733 put_online_cpus();
cf417141 734}
db7f47cf
PM
735#else /* !CONFIG_SMP */
736static void do_rebuild_sched_domains(struct work_struct *unused)
737{
738}
739
e1b8090b 740static int generate_sched_domains(cpumask_var_t **domains,
db7f47cf
PM
741 struct sched_domain_attr **attributes)
742{
743 *domains = NULL;
744 return 1;
745}
746#endif /* CONFIG_SMP */
029190c5 747
cf417141
MK
748static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
749
750/*
751 * Rebuild scheduler domains, asynchronously via workqueue.
752 *
753 * If the flag 'sched_load_balance' of any cpuset with non-empty
754 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
755 * which has that flag enabled, or if any cpuset with a non-empty
756 * 'cpus' is removed, then call this routine to rebuild the
757 * scheduler's dynamic sched domains.
758 *
759 * The rebuild_sched_domains() and partition_sched_domains()
760 * routines must nest cgroup_lock() inside get_online_cpus(),
761 * but such cpuset changes as these must nest that locking the
762 * other way, holding cgroup_lock() for much of the code.
763 *
764 * So in order to avoid an ABBA deadlock, the cpuset code handling
765 * these user changes delegates the actual sched domain rebuilding
766 * to a separate workqueue thread, which ends up processing the
767 * above do_rebuild_sched_domains() function.
768 */
769static void async_rebuild_sched_domains(void)
770{
f90d4118 771 queue_work(cpuset_wq, &rebuild_sched_domains_work);
cf417141
MK
772}
773
774/*
775 * Accomplishes the same scheduler domain rebuild as the above
776 * async_rebuild_sched_domains(), however it directly calls the
777 * rebuild routine synchronously rather than calling it via an
778 * asynchronous work thread.
779 *
780 * This can only be called from code that is not holding
781 * cgroup_mutex (not nested in a cgroup_lock() call.)
782 */
783void rebuild_sched_domains(void)
784{
785 do_rebuild_sched_domains(NULL);
029190c5
PJ
786}
787
58f4790b
CW
788/**
789 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
790 * @tsk: task to test
791 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
792 *
2df167a3 793 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
794 * Called for each task in a cgroup by cgroup_scan_tasks().
795 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
796 * words, if its mask is not equal to its cpuset's mask).
053199ed 797 */
9e0c914c
AB
798static int cpuset_test_cpumask(struct task_struct *tsk,
799 struct cgroup_scanner *scan)
58f4790b 800{
300ed6cb 801 return !cpumask_equal(&tsk->cpus_allowed,
58f4790b
CW
802 (cgroup_cs(scan->cg))->cpus_allowed);
803}
053199ed 804
58f4790b
CW
805/**
806 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
807 * @tsk: task to test
808 * @scan: struct cgroup_scanner containing the cgroup of the task
809 *
810 * Called by cgroup_scan_tasks() for each task in a cgroup whose
811 * cpus_allowed mask needs to be changed.
812 *
813 * We don't need to re-check for the cgroup/cpuset membership, since we're
814 * holding cgroup_lock() at this point.
815 */
9e0c914c
AB
816static void cpuset_change_cpumask(struct task_struct *tsk,
817 struct cgroup_scanner *scan)
58f4790b 818{
300ed6cb 819 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
820}
821
0b2f630a
MX
822/**
823 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
824 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 825 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
826 *
827 * Called with cgroup_mutex held
828 *
829 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
830 * calling callback functions for each.
831 *
4e74339a
LZ
832 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
833 * if @heap != NULL.
0b2f630a 834 */
4e74339a 835static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
836{
837 struct cgroup_scanner scan;
0b2f630a
MX
838
839 scan.cg = cs->css.cgroup;
840 scan.test_task = cpuset_test_cpumask;
841 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
842 scan.heap = heap;
843 cgroup_scan_tasks(&scan);
0b2f630a
MX
844}
845
58f4790b
CW
846/**
847 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
848 * @cs: the cpuset to consider
849 * @buf: buffer of cpu numbers written to this cpuset
850 */
645fcc9d
LZ
851static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
852 const char *buf)
1da177e4 853{
4e74339a 854 struct ptr_heap heap;
58f4790b
CW
855 int retval;
856 int is_load_balanced;
1da177e4 857
4c4d50f7
PJ
858 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
859 if (cs == &top_cpuset)
860 return -EACCES;
861
6f7f02e7 862 /*
c8d9c90c 863 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
864 * Since cpulist_parse() fails on an empty mask, we special case
865 * that parsing. The validate_change() call ensures that cpusets
866 * with tasks have cpus.
6f7f02e7 867 */
020958b6 868 if (!*buf) {
300ed6cb 869 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 870 } else {
300ed6cb 871 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
872 if (retval < 0)
873 return retval;
37340746 874
6ad4c188 875 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 876 return -EINVAL;
6f7f02e7 877 }
645fcc9d 878 retval = validate_change(cs, trialcs);
85d7b949
DG
879 if (retval < 0)
880 return retval;
029190c5 881
8707d8b8 882 /* Nothing to do if the cpus didn't change */
300ed6cb 883 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 884 return 0;
58f4790b 885
4e74339a
LZ
886 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
887 if (retval)
888 return retval;
889
645fcc9d 890 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 891
3d3f26a7 892 mutex_lock(&callback_mutex);
300ed6cb 893 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 894 mutex_unlock(&callback_mutex);
029190c5 895
8707d8b8
PM
896 /*
897 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 898 * that need an update.
8707d8b8 899 */
4e74339a
LZ
900 update_tasks_cpumask(cs, &heap);
901
902 heap_free(&heap);
58f4790b 903
8707d8b8 904 if (is_load_balanced)
cf417141 905 async_rebuild_sched_domains();
85d7b949 906 return 0;
1da177e4
LT
907}
908
e4e364e8
PJ
909/*
910 * cpuset_migrate_mm
911 *
912 * Migrate memory region from one set of nodes to another.
913 *
914 * Temporarilly set tasks mems_allowed to target nodes of migration,
915 * so that the migration code can allocate pages on these nodes.
916 *
2df167a3 917 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 918 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
919 * calls. Therefore we don't need to take task_lock around the
920 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 921 * our task's cpuset.
e4e364e8 922 *
e4e364e8
PJ
923 * While the mm_struct we are migrating is typically from some
924 * other task, the task_struct mems_allowed that we are hacking
925 * is for our current task, which must allocate new pages for that
926 * migrating memory region.
e4e364e8
PJ
927 */
928
929static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
930 const nodemask_t *to)
931{
932 struct task_struct *tsk = current;
933
e4e364e8 934 tsk->mems_allowed = *to;
e4e364e8
PJ
935
936 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
937
8793d854 938 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
939}
940
3b6766fe 941/*
58568d2a
MX
942 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
943 * @tsk: the task to change
944 * @newmems: new nodes that the task will be set
945 *
946 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
947 * we structure updates as setting all new allowed nodes, then clearing newly
948 * disallowed ones.
949 *
950 * Called with task's alloc_lock held
951 */
952static void cpuset_change_task_nodemask(struct task_struct *tsk,
953 nodemask_t *newmems)
954{
955 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
956 mpol_rebind_task(tsk, &tsk->mems_allowed);
957 mpol_rebind_task(tsk, newmems);
958 tsk->mems_allowed = *newmems;
959}
960
961/*
962 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
963 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
964 * memory_migrate flag is set. Called with cgroup_mutex held.
3b6766fe
LZ
965 */
966static void cpuset_change_nodemask(struct task_struct *p,
967 struct cgroup_scanner *scan)
968{
969 struct mm_struct *mm;
970 struct cpuset *cs;
971 int migrate;
972 const nodemask_t *oldmem = scan->data;
58568d2a
MX
973 nodemask_t newmems;
974
975 cs = cgroup_cs(scan->cg);
976 guarantee_online_mems(cs, &newmems);
977
978 task_lock(p);
979 cpuset_change_task_nodemask(p, &newmems);
980 task_unlock(p);
3b6766fe
LZ
981
982 mm = get_task_mm(p);
983 if (!mm)
984 return;
985
3b6766fe
LZ
986 migrate = is_memory_migrate(cs);
987
988 mpol_rebind_mm(mm, &cs->mems_allowed);
989 if (migrate)
990 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
991 mmput(mm);
992}
993
8793d854
PM
994static void *cpuset_being_rebound;
995
0b2f630a
MX
996/**
997 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
998 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
999 * @oldmem: old mems_allowed of cpuset cs
010cfac4 1000 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
1001 *
1002 * Called with cgroup_mutex held
010cfac4
LZ
1003 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1004 * if @heap != NULL.
0b2f630a 1005 */
010cfac4
LZ
1006static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1007 struct ptr_heap *heap)
1da177e4 1008{
3b6766fe 1009 struct cgroup_scanner scan;
59dac16f 1010
846a16bf 1011 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1012
3b6766fe
LZ
1013 scan.cg = cs->css.cgroup;
1014 scan.test_task = NULL;
1015 scan.process_task = cpuset_change_nodemask;
010cfac4 1016 scan.heap = heap;
3b6766fe 1017 scan.data = (nodemask_t *)oldmem;
4225399a
PJ
1018
1019 /*
3b6766fe
LZ
1020 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1021 * take while holding tasklist_lock. Forks can happen - the
1022 * mpol_dup() cpuset_being_rebound check will catch such forks,
1023 * and rebind their vma mempolicies too. Because we still hold
1024 * the global cgroup_mutex, we know that no other rebind effort
1025 * will be contending for the global variable cpuset_being_rebound.
4225399a 1026 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1027 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1028 */
010cfac4 1029 cgroup_scan_tasks(&scan);
4225399a 1030
2df167a3 1031 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1032 cpuset_being_rebound = NULL;
1da177e4
LT
1033}
1034
0b2f630a
MX
1035/*
1036 * Handle user request to change the 'mems' memory placement
1037 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1038 * cpusets mems_allowed, and for each task in the cpuset,
1039 * update mems_allowed and rebind task's mempolicy and any vma
1040 * mempolicies and if the cpuset is marked 'memory_migrate',
1041 * migrate the tasks pages to the new memory.
0b2f630a
MX
1042 *
1043 * Call with cgroup_mutex held. May take callback_mutex during call.
1044 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1045 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1046 * their mempolicies to the cpusets new mems_allowed.
1047 */
645fcc9d
LZ
1048static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1049 const char *buf)
0b2f630a 1050{
0b2f630a
MX
1051 nodemask_t oldmem;
1052 int retval;
010cfac4 1053 struct ptr_heap heap;
0b2f630a
MX
1054
1055 /*
1056 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1057 * it's read-only
1058 */
1059 if (cs == &top_cpuset)
1060 return -EACCES;
1061
0b2f630a
MX
1062 /*
1063 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1064 * Since nodelist_parse() fails on an empty mask, we special case
1065 * that parsing. The validate_change() call ensures that cpusets
1066 * with tasks have memory.
1067 */
1068 if (!*buf) {
645fcc9d 1069 nodes_clear(trialcs->mems_allowed);
0b2f630a 1070 } else {
645fcc9d 1071 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1072 if (retval < 0)
1073 goto done;
1074
645fcc9d 1075 if (!nodes_subset(trialcs->mems_allowed,
0b2f630a
MX
1076 node_states[N_HIGH_MEMORY]))
1077 return -EINVAL;
1078 }
1079 oldmem = cs->mems_allowed;
645fcc9d 1080 if (nodes_equal(oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1081 retval = 0; /* Too easy - nothing to do */
1082 goto done;
1083 }
645fcc9d 1084 retval = validate_change(cs, trialcs);
0b2f630a
MX
1085 if (retval < 0)
1086 goto done;
1087
010cfac4
LZ
1088 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1089 if (retval < 0)
1090 goto done;
1091
0b2f630a 1092 mutex_lock(&callback_mutex);
645fcc9d 1093 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1094 mutex_unlock(&callback_mutex);
1095
010cfac4
LZ
1096 update_tasks_nodemask(cs, &oldmem, &heap);
1097
1098 heap_free(&heap);
0b2f630a
MX
1099done:
1100 return retval;
1101}
1102
8793d854
PM
1103int current_cpuset_is_being_rebound(void)
1104{
1105 return task_cs(current) == cpuset_being_rebound;
1106}
1107
5be7a479 1108static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1109{
db7f47cf 1110#ifdef CONFIG_SMP
30e0e178
LZ
1111 if (val < -1 || val >= SD_LV_MAX)
1112 return -EINVAL;
db7f47cf 1113#endif
1d3504fc
HS
1114
1115 if (val != cs->relax_domain_level) {
1116 cs->relax_domain_level = val;
300ed6cb
LZ
1117 if (!cpumask_empty(cs->cpus_allowed) &&
1118 is_sched_load_balance(cs))
cf417141 1119 async_rebuild_sched_domains();
1d3504fc
HS
1120 }
1121
1122 return 0;
1123}
1124
950592f7
MX
1125/*
1126 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1127 * @tsk: task to be updated
1128 * @scan: struct cgroup_scanner containing the cgroup of the task
1129 *
1130 * Called by cgroup_scan_tasks() for each task in a cgroup.
1131 *
1132 * We don't need to re-check for the cgroup/cpuset membership, since we're
1133 * holding cgroup_lock() at this point.
1134 */
1135static void cpuset_change_flag(struct task_struct *tsk,
1136 struct cgroup_scanner *scan)
1137{
1138 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1139}
1140
1141/*
1142 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1143 * @cs: the cpuset in which each task's spread flags needs to be changed
1144 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1145 *
1146 * Called with cgroup_mutex held
1147 *
1148 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1149 * calling callback functions for each.
1150 *
1151 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1152 * if @heap != NULL.
1153 */
1154static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1155{
1156 struct cgroup_scanner scan;
1157
1158 scan.cg = cs->css.cgroup;
1159 scan.test_task = NULL;
1160 scan.process_task = cpuset_change_flag;
1161 scan.heap = heap;
1162 cgroup_scan_tasks(&scan);
1163}
1164
1da177e4
LT
1165/*
1166 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1167 * bit: the bit to update (see cpuset_flagbits_t)
1168 * cs: the cpuset to update
1169 * turning_on: whether the flag is being set or cleared
053199ed 1170 *
2df167a3 1171 * Call with cgroup_mutex held.
1da177e4
LT
1172 */
1173
700fe1ab
PM
1174static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1175 int turning_on)
1da177e4 1176{
645fcc9d 1177 struct cpuset *trialcs;
40b6a762 1178 int balance_flag_changed;
950592f7
MX
1179 int spread_flag_changed;
1180 struct ptr_heap heap;
1181 int err;
1da177e4 1182
645fcc9d
LZ
1183 trialcs = alloc_trial_cpuset(cs);
1184 if (!trialcs)
1185 return -ENOMEM;
1186
1da177e4 1187 if (turning_on)
645fcc9d 1188 set_bit(bit, &trialcs->flags);
1da177e4 1189 else
645fcc9d 1190 clear_bit(bit, &trialcs->flags);
1da177e4 1191
645fcc9d 1192 err = validate_change(cs, trialcs);
85d7b949 1193 if (err < 0)
645fcc9d 1194 goto out;
029190c5 1195
950592f7
MX
1196 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1197 if (err < 0)
1198 goto out;
1199
029190c5 1200 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1201 is_sched_load_balance(trialcs));
029190c5 1202
950592f7
MX
1203 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1204 || (is_spread_page(cs) != is_spread_page(trialcs)));
1205
3d3f26a7 1206 mutex_lock(&callback_mutex);
645fcc9d 1207 cs->flags = trialcs->flags;
3d3f26a7 1208 mutex_unlock(&callback_mutex);
85d7b949 1209
300ed6cb 1210 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
cf417141 1211 async_rebuild_sched_domains();
029190c5 1212
950592f7
MX
1213 if (spread_flag_changed)
1214 update_tasks_flags(cs, &heap);
1215 heap_free(&heap);
645fcc9d
LZ
1216out:
1217 free_trial_cpuset(trialcs);
1218 return err;
1da177e4
LT
1219}
1220
3e0d98b9 1221/*
80f7228b 1222 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1223 *
1224 * These routines manage a digitally filtered, constant time based,
1225 * event frequency meter. There are four routines:
1226 * fmeter_init() - initialize a frequency meter.
1227 * fmeter_markevent() - called each time the event happens.
1228 * fmeter_getrate() - returns the recent rate of such events.
1229 * fmeter_update() - internal routine used to update fmeter.
1230 *
1231 * A common data structure is passed to each of these routines,
1232 * which is used to keep track of the state required to manage the
1233 * frequency meter and its digital filter.
1234 *
1235 * The filter works on the number of events marked per unit time.
1236 * The filter is single-pole low-pass recursive (IIR). The time unit
1237 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1238 * simulate 3 decimal digits of precision (multiplied by 1000).
1239 *
1240 * With an FM_COEF of 933, and a time base of 1 second, the filter
1241 * has a half-life of 10 seconds, meaning that if the events quit
1242 * happening, then the rate returned from the fmeter_getrate()
1243 * will be cut in half each 10 seconds, until it converges to zero.
1244 *
1245 * It is not worth doing a real infinitely recursive filter. If more
1246 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1247 * just compute FM_MAXTICKS ticks worth, by which point the level
1248 * will be stable.
1249 *
1250 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1251 * arithmetic overflow in the fmeter_update() routine.
1252 *
1253 * Given the simple 32 bit integer arithmetic used, this meter works
1254 * best for reporting rates between one per millisecond (msec) and
1255 * one per 32 (approx) seconds. At constant rates faster than one
1256 * per msec it maxes out at values just under 1,000,000. At constant
1257 * rates between one per msec, and one per second it will stabilize
1258 * to a value N*1000, where N is the rate of events per second.
1259 * At constant rates between one per second and one per 32 seconds,
1260 * it will be choppy, moving up on the seconds that have an event,
1261 * and then decaying until the next event. At rates slower than
1262 * about one in 32 seconds, it decays all the way back to zero between
1263 * each event.
1264 */
1265
1266#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1267#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1268#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1269#define FM_SCALE 1000 /* faux fixed point scale */
1270
1271/* Initialize a frequency meter */
1272static void fmeter_init(struct fmeter *fmp)
1273{
1274 fmp->cnt = 0;
1275 fmp->val = 0;
1276 fmp->time = 0;
1277 spin_lock_init(&fmp->lock);
1278}
1279
1280/* Internal meter update - process cnt events and update value */
1281static void fmeter_update(struct fmeter *fmp)
1282{
1283 time_t now = get_seconds();
1284 time_t ticks = now - fmp->time;
1285
1286 if (ticks == 0)
1287 return;
1288
1289 ticks = min(FM_MAXTICKS, ticks);
1290 while (ticks-- > 0)
1291 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1292 fmp->time = now;
1293
1294 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1295 fmp->cnt = 0;
1296}
1297
1298/* Process any previous ticks, then bump cnt by one (times scale). */
1299static void fmeter_markevent(struct fmeter *fmp)
1300{
1301 spin_lock(&fmp->lock);
1302 fmeter_update(fmp);
1303 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1304 spin_unlock(&fmp->lock);
1305}
1306
1307/* Process any previous ticks, then return current value. */
1308static int fmeter_getrate(struct fmeter *fmp)
1309{
1310 int val;
1311
1312 spin_lock(&fmp->lock);
1313 fmeter_update(fmp);
1314 val = fmp->val;
1315 spin_unlock(&fmp->lock);
1316 return val;
1317}
1318
2341d1b6
LZ
1319/* Protected by cgroup_lock */
1320static cpumask_var_t cpus_attach;
1321
2df167a3 1322/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
be367d09
BB
1323static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1324 struct task_struct *tsk, bool threadgroup)
1da177e4 1325{
be367d09 1326 int ret;
8793d854 1327 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1328
300ed6cb 1329 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1da177e4 1330 return -ENOSPC;
9985b0ba 1331
6d7b2f5f
DR
1332 /*
1333 * Kthreads bound to specific cpus cannot be moved to a new cpuset; we
1334 * cannot change their cpu affinity and isolating such threads by their
1335 * set of allowed nodes is unnecessary. Thus, cpusets are not
1336 * applicable for such threads. This prevents checking for success of
1337 * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may
1338 * be changed.
1339 */
1340 if (tsk->flags & PF_THREAD_BOUND)
1341 return -EINVAL;
1da177e4 1342
be367d09
BB
1343 ret = security_task_setscheduler(tsk, 0, NULL);
1344 if (ret)
1345 return ret;
1346 if (threadgroup) {
1347 struct task_struct *c;
1348
1349 rcu_read_lock();
1350 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1351 ret = security_task_setscheduler(c, 0, NULL);
1352 if (ret) {
1353 rcu_read_unlock();
1354 return ret;
1355 }
1356 }
1357 rcu_read_unlock();
1358 }
1359 return 0;
1360}
1361
1362static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to,
1363 struct cpuset *cs)
1364{
1365 int err;
1366 /*
1367 * can_attach beforehand should guarantee that this doesn't fail.
1368 * TODO: have a better way to handle failure here
1369 */
1370 err = set_cpus_allowed_ptr(tsk, cpus_attach);
1371 WARN_ON_ONCE(err);
1372
1373 task_lock(tsk);
1374 cpuset_change_task_nodemask(tsk, to);
1375 task_unlock(tsk);
1376 cpuset_update_task_spread_flag(cs, tsk);
1377
8793d854 1378}
1da177e4 1379
be367d09
BB
1380static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont,
1381 struct cgroup *oldcont, struct task_struct *tsk,
1382 bool threadgroup)
8793d854 1383{
8793d854
PM
1384 nodemask_t from, to;
1385 struct mm_struct *mm;
1386 struct cpuset *cs = cgroup_cs(cont);
1387 struct cpuset *oldcs = cgroup_cs(oldcont);
22fb52dd 1388
f5813d94 1389 if (cs == &top_cpuset) {
2341d1b6 1390 cpumask_copy(cpus_attach, cpu_possible_mask);
f5813d94 1391 } else {
2341d1b6 1392 guarantee_online_cpus(cs, cpus_attach);
f5813d94 1393 }
5ab116c9 1394 guarantee_online_mems(cs, &to);
1da177e4 1395
be367d09
BB
1396 /* do per-task migration stuff possibly for each in the threadgroup */
1397 cpuset_attach_task(tsk, &to, cs);
1398 if (threadgroup) {
1399 struct task_struct *c;
1400 rcu_read_lock();
1401 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
1402 cpuset_attach_task(c, &to, cs);
1403 }
1404 rcu_read_unlock();
1405 }
950592f7 1406
be367d09 1407 /* change mm; only needs to be done once even if threadgroup */
45b07ef3
PJ
1408 from = oldcs->mems_allowed;
1409 to = cs->mems_allowed;
4225399a
PJ
1410 mm = get_task_mm(tsk);
1411 if (mm) {
1412 mpol_rebind_mm(mm, &to);
2741a559 1413 if (is_memory_migrate(cs))
e4e364e8 1414 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1415 mmput(mm);
1416 }
1da177e4
LT
1417}
1418
1419/* The various types of files and directories in a cpuset file system */
1420
1421typedef enum {
45b07ef3 1422 FILE_MEMORY_MIGRATE,
1da177e4
LT
1423 FILE_CPULIST,
1424 FILE_MEMLIST,
1425 FILE_CPU_EXCLUSIVE,
1426 FILE_MEM_EXCLUSIVE,
78608366 1427 FILE_MEM_HARDWALL,
029190c5 1428 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1429 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1430 FILE_MEMORY_PRESSURE_ENABLED,
1431 FILE_MEMORY_PRESSURE,
825a46af
PJ
1432 FILE_SPREAD_PAGE,
1433 FILE_SPREAD_SLAB,
1da177e4
LT
1434} cpuset_filetype_t;
1435
700fe1ab
PM
1436static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1437{
1438 int retval = 0;
1439 struct cpuset *cs = cgroup_cs(cgrp);
1440 cpuset_filetype_t type = cft->private;
1441
e3712395 1442 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1443 return -ENODEV;
700fe1ab
PM
1444
1445 switch (type) {
1da177e4 1446 case FILE_CPU_EXCLUSIVE:
700fe1ab 1447 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1448 break;
1449 case FILE_MEM_EXCLUSIVE:
700fe1ab 1450 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1451 break;
78608366
PM
1452 case FILE_MEM_HARDWALL:
1453 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1454 break;
029190c5 1455 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1456 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1457 break;
45b07ef3 1458 case FILE_MEMORY_MIGRATE:
700fe1ab 1459 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1460 break;
3e0d98b9 1461 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1462 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1463 break;
1464 case FILE_MEMORY_PRESSURE:
1465 retval = -EACCES;
1466 break;
825a46af 1467 case FILE_SPREAD_PAGE:
700fe1ab 1468 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1469 break;
1470 case FILE_SPREAD_SLAB:
700fe1ab 1471 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1472 break;
1da177e4
LT
1473 default:
1474 retval = -EINVAL;
700fe1ab 1475 break;
1da177e4 1476 }
8793d854 1477 cgroup_unlock();
1da177e4
LT
1478 return retval;
1479}
1480
5be7a479
PM
1481static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1482{
1483 int retval = 0;
1484 struct cpuset *cs = cgroup_cs(cgrp);
1485 cpuset_filetype_t type = cft->private;
1486
e3712395 1487 if (!cgroup_lock_live_group(cgrp))
5be7a479 1488 return -ENODEV;
e3712395 1489
5be7a479
PM
1490 switch (type) {
1491 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1492 retval = update_relax_domain_level(cs, val);
1493 break;
1494 default:
1495 retval = -EINVAL;
1496 break;
1497 }
1498 cgroup_unlock();
1499 return retval;
1500}
1501
e3712395
PM
1502/*
1503 * Common handling for a write to a "cpus" or "mems" file.
1504 */
1505static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1506 const char *buf)
1507{
1508 int retval = 0;
645fcc9d
LZ
1509 struct cpuset *cs = cgroup_cs(cgrp);
1510 struct cpuset *trialcs;
e3712395
PM
1511
1512 if (!cgroup_lock_live_group(cgrp))
1513 return -ENODEV;
1514
645fcc9d
LZ
1515 trialcs = alloc_trial_cpuset(cs);
1516 if (!trialcs)
1517 return -ENOMEM;
1518
e3712395
PM
1519 switch (cft->private) {
1520 case FILE_CPULIST:
645fcc9d 1521 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1522 break;
1523 case FILE_MEMLIST:
645fcc9d 1524 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1525 break;
1526 default:
1527 retval = -EINVAL;
1528 break;
1529 }
645fcc9d
LZ
1530
1531 free_trial_cpuset(trialcs);
e3712395
PM
1532 cgroup_unlock();
1533 return retval;
1534}
1535
1da177e4
LT
1536/*
1537 * These ascii lists should be read in a single call, by using a user
1538 * buffer large enough to hold the entire map. If read in smaller
1539 * chunks, there is no guarantee of atomicity. Since the display format
1540 * used, list of ranges of sequential numbers, is variable length,
1541 * and since these maps can change value dynamically, one could read
1542 * gibberish by doing partial reads while a list was changing.
1543 * A single large read to a buffer that crosses a page boundary is
1544 * ok, because the result being copied to user land is not recomputed
1545 * across a page fault.
1546 */
1547
1548static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1549{
5a7625df 1550 int ret;
1da177e4 1551
3d3f26a7 1552 mutex_lock(&callback_mutex);
300ed6cb 1553 ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1554 mutex_unlock(&callback_mutex);
1da177e4 1555
5a7625df 1556 return ret;
1da177e4
LT
1557}
1558
1559static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1560{
1561 nodemask_t mask;
1562
3d3f26a7 1563 mutex_lock(&callback_mutex);
1da177e4 1564 mask = cs->mems_allowed;
3d3f26a7 1565 mutex_unlock(&callback_mutex);
1da177e4
LT
1566
1567 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1568}
1569
8793d854
PM
1570static ssize_t cpuset_common_file_read(struct cgroup *cont,
1571 struct cftype *cft,
1572 struct file *file,
1573 char __user *buf,
1574 size_t nbytes, loff_t *ppos)
1da177e4 1575{
8793d854 1576 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1577 cpuset_filetype_t type = cft->private;
1578 char *page;
1579 ssize_t retval = 0;
1580 char *s;
1da177e4 1581
e12ba74d 1582 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1583 return -ENOMEM;
1584
1585 s = page;
1586
1587 switch (type) {
1588 case FILE_CPULIST:
1589 s += cpuset_sprintf_cpulist(s, cs);
1590 break;
1591 case FILE_MEMLIST:
1592 s += cpuset_sprintf_memlist(s, cs);
1593 break;
1da177e4
LT
1594 default:
1595 retval = -EINVAL;
1596 goto out;
1597 }
1598 *s++ = '\n';
1da177e4 1599
eacaa1f5 1600 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1601out:
1602 free_page((unsigned long)page);
1603 return retval;
1604}
1605
700fe1ab
PM
1606static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1607{
1608 struct cpuset *cs = cgroup_cs(cont);
1609 cpuset_filetype_t type = cft->private;
1610 switch (type) {
1611 case FILE_CPU_EXCLUSIVE:
1612 return is_cpu_exclusive(cs);
1613 case FILE_MEM_EXCLUSIVE:
1614 return is_mem_exclusive(cs);
78608366
PM
1615 case FILE_MEM_HARDWALL:
1616 return is_mem_hardwall(cs);
700fe1ab
PM
1617 case FILE_SCHED_LOAD_BALANCE:
1618 return is_sched_load_balance(cs);
1619 case FILE_MEMORY_MIGRATE:
1620 return is_memory_migrate(cs);
1621 case FILE_MEMORY_PRESSURE_ENABLED:
1622 return cpuset_memory_pressure_enabled;
1623 case FILE_MEMORY_PRESSURE:
1624 return fmeter_getrate(&cs->fmeter);
1625 case FILE_SPREAD_PAGE:
1626 return is_spread_page(cs);
1627 case FILE_SPREAD_SLAB:
1628 return is_spread_slab(cs);
1629 default:
1630 BUG();
1631 }
cf417141
MK
1632
1633 /* Unreachable but makes gcc happy */
1634 return 0;
700fe1ab 1635}
1da177e4 1636
5be7a479
PM
1637static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1638{
1639 struct cpuset *cs = cgroup_cs(cont);
1640 cpuset_filetype_t type = cft->private;
1641 switch (type) {
1642 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1643 return cs->relax_domain_level;
1644 default:
1645 BUG();
1646 }
cf417141
MK
1647
1648 /* Unrechable but makes gcc happy */
1649 return 0;
5be7a479
PM
1650}
1651
1da177e4
LT
1652
1653/*
1654 * for the common functions, 'private' gives the type of file
1655 */
1656
addf2c73
PM
1657static struct cftype files[] = {
1658 {
1659 .name = "cpus",
1660 .read = cpuset_common_file_read,
e3712395
PM
1661 .write_string = cpuset_write_resmask,
1662 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1663 .private = FILE_CPULIST,
1664 },
1665
1666 {
1667 .name = "mems",
1668 .read = cpuset_common_file_read,
e3712395
PM
1669 .write_string = cpuset_write_resmask,
1670 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1671 .private = FILE_MEMLIST,
1672 },
1673
1674 {
1675 .name = "cpu_exclusive",
1676 .read_u64 = cpuset_read_u64,
1677 .write_u64 = cpuset_write_u64,
1678 .private = FILE_CPU_EXCLUSIVE,
1679 },
1680
1681 {
1682 .name = "mem_exclusive",
1683 .read_u64 = cpuset_read_u64,
1684 .write_u64 = cpuset_write_u64,
1685 .private = FILE_MEM_EXCLUSIVE,
1686 },
1687
78608366
PM
1688 {
1689 .name = "mem_hardwall",
1690 .read_u64 = cpuset_read_u64,
1691 .write_u64 = cpuset_write_u64,
1692 .private = FILE_MEM_HARDWALL,
1693 },
1694
addf2c73
PM
1695 {
1696 .name = "sched_load_balance",
1697 .read_u64 = cpuset_read_u64,
1698 .write_u64 = cpuset_write_u64,
1699 .private = FILE_SCHED_LOAD_BALANCE,
1700 },
1701
1702 {
1703 .name = "sched_relax_domain_level",
5be7a479
PM
1704 .read_s64 = cpuset_read_s64,
1705 .write_s64 = cpuset_write_s64,
addf2c73
PM
1706 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1707 },
1708
1709 {
1710 .name = "memory_migrate",
1711 .read_u64 = cpuset_read_u64,
1712 .write_u64 = cpuset_write_u64,
1713 .private = FILE_MEMORY_MIGRATE,
1714 },
1715
1716 {
1717 .name = "memory_pressure",
1718 .read_u64 = cpuset_read_u64,
1719 .write_u64 = cpuset_write_u64,
1720 .private = FILE_MEMORY_PRESSURE,
099fca32 1721 .mode = S_IRUGO,
addf2c73
PM
1722 },
1723
1724 {
1725 .name = "memory_spread_page",
1726 .read_u64 = cpuset_read_u64,
1727 .write_u64 = cpuset_write_u64,
1728 .private = FILE_SPREAD_PAGE,
1729 },
1730
1731 {
1732 .name = "memory_spread_slab",
1733 .read_u64 = cpuset_read_u64,
1734 .write_u64 = cpuset_write_u64,
1735 .private = FILE_SPREAD_SLAB,
1736 },
45b07ef3
PJ
1737};
1738
3e0d98b9
PJ
1739static struct cftype cft_memory_pressure_enabled = {
1740 .name = "memory_pressure_enabled",
700fe1ab
PM
1741 .read_u64 = cpuset_read_u64,
1742 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1743 .private = FILE_MEMORY_PRESSURE_ENABLED,
1744};
1745
8793d854 1746static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1747{
1748 int err;
1749
addf2c73
PM
1750 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1751 if (err)
1da177e4 1752 return err;
8793d854 1753 /* memory_pressure_enabled is in root cpuset only */
addf2c73 1754 if (!cont->parent)
8793d854 1755 err = cgroup_add_file(cont, ss,
addf2c73
PM
1756 &cft_memory_pressure_enabled);
1757 return err;
1da177e4
LT
1758}
1759
8793d854
PM
1760/*
1761 * post_clone() is called at the end of cgroup_clone().
1762 * 'cgroup' was just created automatically as a result of
1763 * a cgroup_clone(), and the current task is about to
1764 * be moved into 'cgroup'.
1765 *
1766 * Currently we refuse to set up the cgroup - thereby
1767 * refusing the task to be entered, and as a result refusing
1768 * the sys_unshare() or clone() which initiated it - if any
1769 * sibling cpusets have exclusive cpus or mem.
1770 *
1771 * If this becomes a problem for some users who wish to
1772 * allow that scenario, then cpuset_post_clone() could be
1773 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2df167a3
PM
1774 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1775 * held.
8793d854
PM
1776 */
1777static void cpuset_post_clone(struct cgroup_subsys *ss,
1778 struct cgroup *cgroup)
1779{
1780 struct cgroup *parent, *child;
1781 struct cpuset *cs, *parent_cs;
1782
1783 parent = cgroup->parent;
1784 list_for_each_entry(child, &parent->children, sibling) {
1785 cs = cgroup_cs(child);
1786 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1787 return;
1788 }
1789 cs = cgroup_cs(cgroup);
1790 parent_cs = cgroup_cs(parent);
1791
1792 cs->mems_allowed = parent_cs->mems_allowed;
300ed6cb 1793 cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
8793d854
PM
1794 return;
1795}
1796
1da177e4
LT
1797/*
1798 * cpuset_create - create a cpuset
2df167a3
PM
1799 * ss: cpuset cgroup subsystem
1800 * cont: control group that the new cpuset will be part of
1da177e4
LT
1801 */
1802
8793d854
PM
1803static struct cgroup_subsys_state *cpuset_create(
1804 struct cgroup_subsys *ss,
1805 struct cgroup *cont)
1da177e4
LT
1806{
1807 struct cpuset *cs;
8793d854 1808 struct cpuset *parent;
1da177e4 1809
8793d854 1810 if (!cont->parent) {
8793d854
PM
1811 return &top_cpuset.css;
1812 }
1813 parent = cgroup_cs(cont->parent);
1da177e4
LT
1814 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1815 if (!cs)
8793d854 1816 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1817 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1818 kfree(cs);
1819 return ERR_PTR(-ENOMEM);
1820 }
1da177e4 1821
1da177e4 1822 cs->flags = 0;
825a46af
PJ
1823 if (is_spread_page(parent))
1824 set_bit(CS_SPREAD_PAGE, &cs->flags);
1825 if (is_spread_slab(parent))
1826 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1827 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1828 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1829 nodes_clear(cs->mems_allowed);
3e0d98b9 1830 fmeter_init(&cs->fmeter);
1d3504fc 1831 cs->relax_domain_level = -1;
1da177e4
LT
1832
1833 cs->parent = parent;
202f72d5 1834 number_of_cpusets++;
8793d854 1835 return &cs->css ;
1da177e4
LT
1836}
1837
029190c5 1838/*
029190c5
PJ
1839 * If the cpuset being removed has its flag 'sched_load_balance'
1840 * enabled, then simulate turning sched_load_balance off, which
cf417141 1841 * will call async_rebuild_sched_domains().
029190c5
PJ
1842 */
1843
8793d854 1844static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1845{
8793d854 1846 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1847
029190c5 1848 if (is_sched_load_balance(cs))
700fe1ab 1849 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
029190c5 1850
202f72d5 1851 number_of_cpusets--;
300ed6cb 1852 free_cpumask_var(cs->cpus_allowed);
8793d854 1853 kfree(cs);
1da177e4
LT
1854}
1855
8793d854
PM
1856struct cgroup_subsys cpuset_subsys = {
1857 .name = "cpuset",
1858 .create = cpuset_create,
cf417141 1859 .destroy = cpuset_destroy,
8793d854
PM
1860 .can_attach = cpuset_can_attach,
1861 .attach = cpuset_attach,
1862 .populate = cpuset_populate,
1863 .post_clone = cpuset_post_clone,
1864 .subsys_id = cpuset_subsys_id,
1865 .early_init = 1,
1866};
1867
1da177e4
LT
1868/**
1869 * cpuset_init - initialize cpusets at system boot
1870 *
1871 * Description: Initialize top_cpuset and the cpuset internal file system,
1872 **/
1873
1874int __init cpuset_init(void)
1875{
8793d854 1876 int err = 0;
1da177e4 1877
58568d2a
MX
1878 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1879 BUG();
1880
300ed6cb 1881 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1882 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1883
3e0d98b9 1884 fmeter_init(&top_cpuset.fmeter);
029190c5 1885 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1886 top_cpuset.relax_domain_level = -1;
1da177e4 1887
1da177e4
LT
1888 err = register_filesystem(&cpuset_fs_type);
1889 if (err < 0)
8793d854
PM
1890 return err;
1891
2341d1b6
LZ
1892 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1893 BUG();
1894
202f72d5 1895 number_of_cpusets = 1;
8793d854 1896 return 0;
1da177e4
LT
1897}
1898
956db3ca
CW
1899/**
1900 * cpuset_do_move_task - move a given task to another cpuset
1901 * @tsk: pointer to task_struct the task to move
1902 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1903 *
1904 * Called by cgroup_scan_tasks() for each task in a cgroup.
1905 * Return nonzero to stop the walk through the tasks.
1906 */
9e0c914c
AB
1907static void cpuset_do_move_task(struct task_struct *tsk,
1908 struct cgroup_scanner *scan)
956db3ca 1909{
7f81b1ae 1910 struct cgroup *new_cgroup = scan->data;
956db3ca 1911
7f81b1ae 1912 cgroup_attach_task(new_cgroup, tsk);
956db3ca
CW
1913}
1914
1915/**
1916 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1917 * @from: cpuset in which the tasks currently reside
1918 * @to: cpuset to which the tasks will be moved
1919 *
c8d9c90c
PJ
1920 * Called with cgroup_mutex held
1921 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1922 *
1923 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1924 * calling callback functions for each.
1925 */
1926static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1927{
7f81b1ae 1928 struct cgroup_scanner scan;
956db3ca 1929
7f81b1ae
LZ
1930 scan.cg = from->css.cgroup;
1931 scan.test_task = NULL; /* select all tasks in cgroup */
1932 scan.process_task = cpuset_do_move_task;
1933 scan.heap = NULL;
1934 scan.data = to->css.cgroup;
956db3ca 1935
7f81b1ae 1936 if (cgroup_scan_tasks(&scan))
956db3ca
CW
1937 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1938 "cgroup_scan_tasks failed\n");
1939}
1940
b1aac8bb 1941/*
cf417141 1942 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1943 * or memory nodes, we need to walk over the cpuset hierarchy,
1944 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1945 * last CPU or node from a cpuset, then move the tasks in the empty
1946 * cpuset to its next-highest non-empty parent.
b1aac8bb 1947 *
c8d9c90c
PJ
1948 * Called with cgroup_mutex held
1949 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1950 */
956db3ca
CW
1951static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1952{
1953 struct cpuset *parent;
1954
c8d9c90c
PJ
1955 /*
1956 * The cgroup's css_sets list is in use if there are tasks
1957 * in the cpuset; the list is empty if there are none;
1958 * the cs->css.refcnt seems always 0.
1959 */
956db3ca
CW
1960 if (list_empty(&cs->css.cgroup->css_sets))
1961 return;
b1aac8bb 1962
956db3ca
CW
1963 /*
1964 * Find its next-highest non-empty parent, (top cpuset
1965 * has online cpus, so can't be empty).
1966 */
1967 parent = cs->parent;
300ed6cb 1968 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 1969 nodes_empty(parent->mems_allowed))
956db3ca 1970 parent = parent->parent;
956db3ca
CW
1971
1972 move_member_tasks_to_cpuset(cs, parent);
1973}
1974
1975/*
1976 * Walk the specified cpuset subtree and look for empty cpusets.
1977 * The tasks of such cpuset must be moved to a parent cpuset.
1978 *
2df167a3 1979 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
1980 * cpus_allowed and mems_allowed.
1981 *
1982 * This walk processes the tree from top to bottom, completing one layer
1983 * before dropping down to the next. It always processes a node before
1984 * any of its children.
1985 *
1986 * For now, since we lack memory hot unplug, we'll never see a cpuset
1987 * that has tasks along with an empty 'mems'. But if we did see such
1988 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1989 */
d294eb83 1990static void scan_for_empty_cpusets(struct cpuset *root)
b1aac8bb 1991{
8d1e6266 1992 LIST_HEAD(queue);
956db3ca
CW
1993 struct cpuset *cp; /* scans cpusets being updated */
1994 struct cpuset *child; /* scans child cpusets of cp */
8793d854 1995 struct cgroup *cont;
f9b4fb8d 1996 nodemask_t oldmems;
b1aac8bb 1997
956db3ca
CW
1998 list_add_tail((struct list_head *)&root->stack_list, &queue);
1999
956db3ca 2000 while (!list_empty(&queue)) {
8d1e6266 2001 cp = list_first_entry(&queue, struct cpuset, stack_list);
956db3ca
CW
2002 list_del(queue.next);
2003 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2004 child = cgroup_cs(cont);
2005 list_add_tail(&child->stack_list, &queue);
2006 }
b4501295
PJ
2007
2008 /* Continue past cpusets with all cpus, mems online */
6ad4c188 2009 if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
b4501295
PJ
2010 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2011 continue;
2012
f9b4fb8d
MX
2013 oldmems = cp->mems_allowed;
2014
956db3ca 2015 /* Remove offline cpus and mems from this cpuset. */
b4501295 2016 mutex_lock(&callback_mutex);
300ed6cb 2017 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
6ad4c188 2018 cpu_active_mask);
956db3ca
CW
2019 nodes_and(cp->mems_allowed, cp->mems_allowed,
2020 node_states[N_HIGH_MEMORY]);
b4501295
PJ
2021 mutex_unlock(&callback_mutex);
2022
2023 /* Move tasks from the empty cpuset to a parent */
300ed6cb 2024 if (cpumask_empty(cp->cpus_allowed) ||
b4501295 2025 nodes_empty(cp->mems_allowed))
956db3ca 2026 remove_tasks_in_empty_cpuset(cp);
f9b4fb8d 2027 else {
4e74339a 2028 update_tasks_cpumask(cp, NULL);
010cfac4 2029 update_tasks_nodemask(cp, &oldmems, NULL);
f9b4fb8d 2030 }
b1aac8bb
PJ
2031 }
2032}
2033
4c4d50f7
PJ
2034/*
2035 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2036 * period. This is necessary in order to make cpusets transparent
2037 * (of no affect) on systems that are actively using CPU hotplug
2038 * but making no active use of cpusets.
2039 *
38837fc7
PJ
2040 * This routine ensures that top_cpuset.cpus_allowed tracks
2041 * cpu_online_map on each CPU hotplug (cpuhp) event.
cf417141
MK
2042 *
2043 * Called within get_online_cpus(). Needs to call cgroup_lock()
2044 * before calling generate_sched_domains().
4c4d50f7 2045 */
cf417141 2046static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
029190c5 2047 unsigned long phase, void *unused_cpu)
4c4d50f7 2048{
cf417141 2049 struct sched_domain_attr *attr;
acc3f5d7 2050 cpumask_var_t *doms;
cf417141
MK
2051 int ndoms;
2052
3e84050c 2053 switch (phase) {
3e84050c
DA
2054 case CPU_ONLINE:
2055 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
2056 case CPU_DOWN_PREPARE:
2057 case CPU_DOWN_PREPARE_FROZEN:
2058 case CPU_DOWN_FAILED:
2059 case CPU_DOWN_FAILED_FROZEN:
3e84050c 2060 break;
cf417141 2061
3e84050c 2062 default:
ac076758 2063 return NOTIFY_DONE;
3e84050c 2064 }
ac076758 2065
cf417141 2066 cgroup_lock();
0b4217b3 2067 mutex_lock(&callback_mutex);
6ad4c188 2068 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
0b4217b3 2069 mutex_unlock(&callback_mutex);
cf417141
MK
2070 scan_for_empty_cpusets(&top_cpuset);
2071 ndoms = generate_sched_domains(&doms, &attr);
2072 cgroup_unlock();
2073
2074 /* Have scheduler rebuild the domains */
2075 partition_sched_domains(ndoms, doms, attr);
2076
3e84050c 2077 return NOTIFY_OK;
4c4d50f7 2078}
4c4d50f7 2079
b1aac8bb 2080#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2081/*
0e1e7c7a 2082 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
cf417141
MK
2083 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2084 * See also the previous routine cpuset_track_online_cpus().
38837fc7 2085 */
f481891f
MX
2086static int cpuset_track_online_nodes(struct notifier_block *self,
2087 unsigned long action, void *arg)
38837fc7 2088{
5ab116c9
MX
2089 nodemask_t oldmems;
2090
cf417141 2091 cgroup_lock();
f481891f
MX
2092 switch (action) {
2093 case MEM_ONLINE:
5ab116c9 2094 oldmems = top_cpuset.mems_allowed;
0b4217b3 2095 mutex_lock(&callback_mutex);
f481891f 2096 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
0b4217b3 2097 mutex_unlock(&callback_mutex);
5ab116c9
MX
2098 update_tasks_nodemask(&top_cpuset, &oldmems, NULL);
2099 break;
2100 case MEM_OFFLINE:
2101 /*
2102 * needn't update top_cpuset.mems_allowed explicitly because
2103 * scan_for_empty_cpusets() will update it.
2104 */
2105 scan_for_empty_cpusets(&top_cpuset);
f481891f
MX
2106 break;
2107 default:
2108 break;
2109 }
cf417141 2110 cgroup_unlock();
f481891f 2111 return NOTIFY_OK;
38837fc7
PJ
2112}
2113#endif
2114
1da177e4
LT
2115/**
2116 * cpuset_init_smp - initialize cpus_allowed
2117 *
2118 * Description: Finish top cpuset after cpu, node maps are initialized
2119 **/
2120
2121void __init cpuset_init_smp(void)
2122{
6ad4c188 2123 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
0e1e7c7a 2124 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7 2125
cf417141 2126 hotcpu_notifier(cpuset_track_online_cpus, 0);
f481891f 2127 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
f90d4118
MX
2128
2129 cpuset_wq = create_singlethread_workqueue("cpuset");
2130 BUG_ON(!cpuset_wq);
1da177e4
LT
2131}
2132
2133/**
1da177e4
LT
2134 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2135 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2136 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2137 *
300ed6cb 2138 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4
LT
2139 * attached to the specified @tsk. Guaranteed to return some non-empty
2140 * subset of cpu_online_map, even if this means going outside the
2141 * tasks cpuset.
2142 **/
2143
6af866af 2144void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2145{
3d3f26a7 2146 mutex_lock(&callback_mutex);
f9a86fcb 2147 cpuset_cpus_allowed_locked(tsk, pmask);
470fd646 2148 mutex_unlock(&callback_mutex);
470fd646
CW
2149}
2150
2151/**
2152 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2df167a3 2153 * Must be called with callback_mutex held.
470fd646 2154 **/
6af866af 2155void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
470fd646 2156{
909d75a3 2157 task_lock(tsk);
f9a86fcb 2158 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2159 task_unlock(tsk);
1da177e4
LT
2160}
2161
2162void cpuset_init_current_mems_allowed(void)
2163{
f9a86fcb 2164 nodes_setall(current->mems_allowed);
1da177e4
LT
2165}
2166
909d75a3
PJ
2167/**
2168 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2169 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2170 *
2171 * Description: Returns the nodemask_t mems_allowed of the cpuset
2172 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 2173 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
2174 * tasks cpuset.
2175 **/
2176
2177nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2178{
2179 nodemask_t mask;
2180
3d3f26a7 2181 mutex_lock(&callback_mutex);
909d75a3 2182 task_lock(tsk);
8793d854 2183 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2184 task_unlock(tsk);
3d3f26a7 2185 mutex_unlock(&callback_mutex);
909d75a3
PJ
2186
2187 return mask;
2188}
2189
d9fd8a6d 2190/**
19770b32
MG
2191 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2192 * @nodemask: the nodemask to be checked
d9fd8a6d 2193 *
19770b32 2194 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2195 */
19770b32 2196int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2197{
19770b32 2198 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2199}
2200
9bf2229f 2201/*
78608366
PM
2202 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2203 * mem_hardwall ancestor to the specified cpuset. Call holding
2204 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2205 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2206 */
78608366 2207static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2208{
78608366 2209 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2210 cs = cs->parent;
2211 return cs;
2212}
2213
d9fd8a6d 2214/**
a1bc5a4e
DR
2215 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2216 * @node: is this an allowed node?
02a0e53d 2217 * @gfp_mask: memory allocation flags
d9fd8a6d 2218 *
a1bc5a4e
DR
2219 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2220 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2221 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2222 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2223 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2224 * flag, yes.
9bf2229f
PJ
2225 * Otherwise, no.
2226 *
a1bc5a4e
DR
2227 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2228 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2229 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2230 *
a1bc5a4e
DR
2231 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2232 * cpusets, and never sleeps.
02a0e53d
PJ
2233 *
2234 * The __GFP_THISNODE placement logic is really handled elsewhere,
2235 * by forcibly using a zonelist starting at a specified node, and by
2236 * (in get_page_from_freelist()) refusing to consider the zones for
2237 * any node on the zonelist except the first. By the time any such
2238 * calls get to this routine, we should just shut up and say 'yes'.
2239 *
9bf2229f 2240 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2241 * and do not allow allocations outside the current tasks cpuset
2242 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2243 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2244 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2245 *
02a0e53d
PJ
2246 * Scanning up parent cpusets requires callback_mutex. The
2247 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2248 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2249 * current tasks mems_allowed came up empty on the first pass over
2250 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2251 * cpuset are short of memory, might require taking the callback_mutex
2252 * mutex.
9bf2229f 2253 *
36be57ff 2254 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2255 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2256 * so no allocation on a node outside the cpuset is allowed (unless
2257 * in interrupt, of course).
36be57ff
PJ
2258 *
2259 * The second pass through get_page_from_freelist() doesn't even call
2260 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2261 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2262 * in alloc_flags. That logic and the checks below have the combined
2263 * affect that:
9bf2229f
PJ
2264 * in_interrupt - any node ok (current task context irrelevant)
2265 * GFP_ATOMIC - any node ok
c596d9f3 2266 * TIF_MEMDIE - any node ok
78608366 2267 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2268 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2269 *
2270 * Rule:
a1bc5a4e 2271 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2272 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2273 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2274 */
a1bc5a4e 2275int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2276{
9bf2229f 2277 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2278 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2279
9b819d20 2280 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2281 return 1;
92d1dbd2 2282 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2283 if (node_isset(node, current->mems_allowed))
2284 return 1;
c596d9f3
DR
2285 /*
2286 * Allow tasks that have access to memory reserves because they have
2287 * been OOM killed to get memory anywhere.
2288 */
2289 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2290 return 1;
9bf2229f
PJ
2291 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2292 return 0;
2293
5563e770
BP
2294 if (current->flags & PF_EXITING) /* Let dying task have memory */
2295 return 1;
2296
9bf2229f 2297 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2298 mutex_lock(&callback_mutex);
053199ed 2299
053199ed 2300 task_lock(current);
78608366 2301 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2302 task_unlock(current);
2303
9bf2229f 2304 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2305 mutex_unlock(&callback_mutex);
9bf2229f 2306 return allowed;
1da177e4
LT
2307}
2308
02a0e53d 2309/*
a1bc5a4e
DR
2310 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2311 * @node: is this an allowed node?
02a0e53d
PJ
2312 * @gfp_mask: memory allocation flags
2313 *
a1bc5a4e
DR
2314 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2315 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2316 * yes. If the task has been OOM killed and has access to memory reserves as
2317 * specified by the TIF_MEMDIE flag, yes.
2318 * Otherwise, no.
02a0e53d
PJ
2319 *
2320 * The __GFP_THISNODE placement logic is really handled elsewhere,
2321 * by forcibly using a zonelist starting at a specified node, and by
2322 * (in get_page_from_freelist()) refusing to consider the zones for
2323 * any node on the zonelist except the first. By the time any such
2324 * calls get to this routine, we should just shut up and say 'yes'.
2325 *
a1bc5a4e
DR
2326 * Unlike the cpuset_node_allowed_softwall() variant, above,
2327 * this variant requires that the node be in the current task's
02a0e53d
PJ
2328 * mems_allowed or that we're in interrupt. It does not scan up the
2329 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2330 * It never sleeps.
2331 */
a1bc5a4e 2332int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2333{
02a0e53d
PJ
2334 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2335 return 1;
02a0e53d
PJ
2336 if (node_isset(node, current->mems_allowed))
2337 return 1;
dedf8b79
DW
2338 /*
2339 * Allow tasks that have access to memory reserves because they have
2340 * been OOM killed to get memory anywhere.
2341 */
2342 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2343 return 1;
02a0e53d
PJ
2344 return 0;
2345}
2346
505970b9
PJ
2347/**
2348 * cpuset_lock - lock out any changes to cpuset structures
2349 *
3d3f26a7 2350 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2351 * from being changed while it scans the tasklist looking for a
3d3f26a7 2352 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2353 * cpuset_lock() routine, so the oom code can lock it, before
2354 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2355 * must be taken inside callback_mutex.
505970b9
PJ
2356 */
2357
2358void cpuset_lock(void)
2359{
3d3f26a7 2360 mutex_lock(&callback_mutex);
505970b9
PJ
2361}
2362
2363/**
2364 * cpuset_unlock - release lock on cpuset changes
2365 *
2366 * Undo the lock taken in a previous cpuset_lock() call.
2367 */
2368
2369void cpuset_unlock(void)
2370{
3d3f26a7 2371 mutex_unlock(&callback_mutex);
505970b9
PJ
2372}
2373
825a46af
PJ
2374/**
2375 * cpuset_mem_spread_node() - On which node to begin search for a page
2376 *
2377 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2378 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2379 * and if the memory allocation used cpuset_mem_spread_node()
2380 * to determine on which node to start looking, as it will for
2381 * certain page cache or slab cache pages such as used for file
2382 * system buffers and inode caches, then instead of starting on the
2383 * local node to look for a free page, rather spread the starting
2384 * node around the tasks mems_allowed nodes.
2385 *
2386 * We don't have to worry about the returned node being offline
2387 * because "it can't happen", and even if it did, it would be ok.
2388 *
2389 * The routines calling guarantee_online_mems() are careful to
2390 * only set nodes in task->mems_allowed that are online. So it
2391 * should not be possible for the following code to return an
2392 * offline node. But if it did, that would be ok, as this routine
2393 * is not returning the node where the allocation must be, only
2394 * the node where the search should start. The zonelist passed to
2395 * __alloc_pages() will include all nodes. If the slab allocator
2396 * is passed an offline node, it will fall back to the local node.
2397 * See kmem_cache_alloc_node().
2398 */
2399
2400int cpuset_mem_spread_node(void)
2401{
2402 int node;
2403
2404 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2405 if (node == MAX_NUMNODES)
2406 node = first_node(current->mems_allowed);
2407 current->cpuset_mem_spread_rotor = node;
2408 return node;
2409}
2410EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2411
ef08e3b4 2412/**
bbe373f2
DR
2413 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2414 * @tsk1: pointer to task_struct of some task.
2415 * @tsk2: pointer to task_struct of some other task.
2416 *
2417 * Description: Return true if @tsk1's mems_allowed intersects the
2418 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2419 * one of the task's memory usage might impact the memory available
2420 * to the other.
ef08e3b4
PJ
2421 **/
2422
bbe373f2
DR
2423int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2424 const struct task_struct *tsk2)
ef08e3b4 2425{
bbe373f2 2426 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2427}
2428
75aa1994
DR
2429/**
2430 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2431 * @task: pointer to task_struct of some task.
2432 *
2433 * Description: Prints @task's name, cpuset name, and cached copy of its
2434 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2435 * dereferencing task_cs(task).
2436 */
2437void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2438{
2439 struct dentry *dentry;
2440
2441 dentry = task_cs(tsk)->css.cgroup->dentry;
2442 spin_lock(&cpuset_buffer_lock);
2443 snprintf(cpuset_name, CPUSET_NAME_LEN,
2444 dentry ? (const char *)dentry->d_name.name : "/");
2445 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2446 tsk->mems_allowed);
2447 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2448 tsk->comm, cpuset_name, cpuset_nodelist);
2449 spin_unlock(&cpuset_buffer_lock);
2450}
2451
3e0d98b9
PJ
2452/*
2453 * Collection of memory_pressure is suppressed unless
2454 * this flag is enabled by writing "1" to the special
2455 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2456 */
2457
c5b2aff8 2458int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2459
2460/**
2461 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2462 *
2463 * Keep a running average of the rate of synchronous (direct)
2464 * page reclaim efforts initiated by tasks in each cpuset.
2465 *
2466 * This represents the rate at which some task in the cpuset
2467 * ran low on memory on all nodes it was allowed to use, and
2468 * had to enter the kernels page reclaim code in an effort to
2469 * create more free memory by tossing clean pages or swapping
2470 * or writing dirty pages.
2471 *
2472 * Display to user space in the per-cpuset read-only file
2473 * "memory_pressure". Value displayed is an integer
2474 * representing the recent rate of entry into the synchronous
2475 * (direct) page reclaim by any task attached to the cpuset.
2476 **/
2477
2478void __cpuset_memory_pressure_bump(void)
2479{
3e0d98b9 2480 task_lock(current);
8793d854 2481 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2482 task_unlock(current);
2483}
2484
8793d854 2485#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2486/*
2487 * proc_cpuset_show()
2488 * - Print tasks cpuset path into seq_file.
2489 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2490 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2491 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2492 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2493 * anyway.
1da177e4 2494 */
029190c5 2495static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2496{
13b41b09 2497 struct pid *pid;
1da177e4
LT
2498 struct task_struct *tsk;
2499 char *buf;
8793d854 2500 struct cgroup_subsys_state *css;
99f89551 2501 int retval;
1da177e4 2502
99f89551 2503 retval = -ENOMEM;
1da177e4
LT
2504 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2505 if (!buf)
99f89551
EB
2506 goto out;
2507
2508 retval = -ESRCH;
13b41b09
EB
2509 pid = m->private;
2510 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2511 if (!tsk)
2512 goto out_free;
1da177e4 2513
99f89551 2514 retval = -EINVAL;
8793d854
PM
2515 cgroup_lock();
2516 css = task_subsys_state(tsk, cpuset_subsys_id);
2517 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2518 if (retval < 0)
99f89551 2519 goto out_unlock;
1da177e4
LT
2520 seq_puts(m, buf);
2521 seq_putc(m, '\n');
99f89551 2522out_unlock:
8793d854 2523 cgroup_unlock();
99f89551
EB
2524 put_task_struct(tsk);
2525out_free:
1da177e4 2526 kfree(buf);
99f89551 2527out:
1da177e4
LT
2528 return retval;
2529}
2530
2531static int cpuset_open(struct inode *inode, struct file *file)
2532{
13b41b09
EB
2533 struct pid *pid = PROC_I(inode)->pid;
2534 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2535}
2536
9a32144e 2537const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2538 .open = cpuset_open,
2539 .read = seq_read,
2540 .llseek = seq_lseek,
2541 .release = single_release,
2542};
8793d854 2543#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2544
d01d4827 2545/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2546void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2547{
df5f8314 2548 seq_printf(m, "Mems_allowed:\t");
30e8e136 2549 seq_nodemask(m, &task->mems_allowed);
df5f8314 2550 seq_printf(m, "\n");
39106dcf 2551 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2552 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2553 seq_printf(m, "\n");
1da177e4 2554}