[PATCH] cpusets: remove depth counted locking hack
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004 Silicon Graphics, Inc.
8 *
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
11 * Portions Copyright (c) 2004 Silicon Graphics, Inc.
12 *
13 * 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson <pj@sgi.com>
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file COPYING in the main directory of the Linux
19 * distribution for more details.
20 */
21
22#include <linux/config.h>
23#include <linux/cpu.h>
24#include <linux/cpumask.h>
25#include <linux/cpuset.h>
26#include <linux/err.h>
27#include <linux/errno.h>
28#include <linux/file.h>
29#include <linux/fs.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/kernel.h>
33#include <linux/kmod.h>
34#include <linux/list.h>
35#include <linux/mm.h>
36#include <linux/module.h>
37#include <linux/mount.h>
38#include <linux/namei.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/sched.h>
42#include <linux/seq_file.h>
43#include <linux/slab.h>
44#include <linux/smp_lock.h>
45#include <linux/spinlock.h>
46#include <linux/stat.h>
47#include <linux/string.h>
48#include <linux/time.h>
49#include <linux/backing-dev.h>
50#include <linux/sort.h>
51
52#include <asm/uaccess.h>
53#include <asm/atomic.h>
54#include <asm/semaphore.h>
55
56#define CPUSET_SUPER_MAGIC 0x27e0eb
57
58struct cpuset {
59 unsigned long flags; /* "unsigned long" so bitops work */
60 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
61 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
62
63 atomic_t count; /* count tasks using this cpuset */
64
65 /*
66 * We link our 'sibling' struct into our parents 'children'.
67 * Our children link their 'sibling' into our 'children'.
68 */
69 struct list_head sibling; /* my parents children */
70 struct list_head children; /* my children */
71
72 struct cpuset *parent; /* my parent */
73 struct dentry *dentry; /* cpuset fs entry */
74
75 /*
76 * Copy of global cpuset_mems_generation as of the most
77 * recent time this cpuset changed its mems_allowed.
78 */
79 int mems_generation;
80};
81
82/* bits in struct cpuset flags field */
83typedef enum {
84 CS_CPU_EXCLUSIVE,
85 CS_MEM_EXCLUSIVE,
86 CS_REMOVED,
87 CS_NOTIFY_ON_RELEASE
88} cpuset_flagbits_t;
89
90/* convenient tests for these bits */
91static inline int is_cpu_exclusive(const struct cpuset *cs)
92{
93 return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
94}
95
96static inline int is_mem_exclusive(const struct cpuset *cs)
97{
98 return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
99}
100
101static inline int is_removed(const struct cpuset *cs)
102{
103 return !!test_bit(CS_REMOVED, &cs->flags);
104}
105
106static inline int notify_on_release(const struct cpuset *cs)
107{
108 return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
109}
110
111/*
112 * Increment this atomic integer everytime any cpuset changes its
113 * mems_allowed value. Users of cpusets can track this generation
114 * number, and avoid having to lock and reload mems_allowed unless
115 * the cpuset they're using changes generation.
116 *
117 * A single, global generation is needed because attach_task() could
118 * reattach a task to a different cpuset, which must not have its
119 * generation numbers aliased with those of that tasks previous cpuset.
120 *
121 * Generations are needed for mems_allowed because one task cannot
122 * modify anothers memory placement. So we must enable every task,
123 * on every visit to __alloc_pages(), to efficiently check whether
124 * its current->cpuset->mems_allowed has changed, requiring an update
125 * of its current->mems_allowed.
126 */
127static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);
128
129static struct cpuset top_cpuset = {
130 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
131 .cpus_allowed = CPU_MASK_ALL,
132 .mems_allowed = NODE_MASK_ALL,
133 .count = ATOMIC_INIT(0),
134 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
135 .children = LIST_HEAD_INIT(top_cpuset.children),
136 .parent = NULL,
137 .dentry = NULL,
138 .mems_generation = 0,
139};
140
141static struct vfsmount *cpuset_mount;
142static struct super_block *cpuset_sb = NULL;
143
144/*
145 * cpuset_sem should be held by anyone who is depending on the children
146 * or sibling lists of any cpuset, or performing non-atomic operations
147 * on the flags or *_allowed values of a cpuset, such as raising the
148 * CS_REMOVED flag bit iff it is not already raised, or reading and
149 * conditionally modifying the *_allowed values. One kernel global
150 * cpuset semaphore should be sufficient - these things don't change
151 * that much.
152 *
153 * The code that modifies cpusets holds cpuset_sem across the entire
154 * operation, from cpuset_common_file_write() down, single threading
155 * all cpuset modifications (except for counter manipulations from
156 * fork and exit) across the system. This presumes that cpuset
157 * modifications are rare - better kept simple and safe, even if slow.
158 *
159 * The code that reads cpusets, such as in cpuset_common_file_read()
160 * and below, only holds cpuset_sem across small pieces of code, such
161 * as when reading out possibly multi-word cpumasks and nodemasks, as
162 * the risks are less, and the desire for performance a little greater.
163 * The proc_cpuset_show() routine needs to hold cpuset_sem to insure
164 * that no cs->dentry is NULL, as it walks up the cpuset tree to root.
165 *
166 * The hooks from fork and exit, cpuset_fork() and cpuset_exit(), don't
167 * (usually) grab cpuset_sem. These are the two most performance
168 * critical pieces of code here. The exception occurs on exit(),
2efe86b8
PJ
169 * when a task in a notify_on_release cpuset exits. Then cpuset_sem
170 * is taken, and if the cpuset count is zero, a usermode call made
1da177e4
LT
171 * to /sbin/cpuset_release_agent with the name of the cpuset (path
172 * relative to the root of cpuset file system) as the argument.
173 *
174 * A cpuset can only be deleted if both its 'count' of using tasks is
175 * zero, and its list of 'children' cpusets is empty. Since all tasks
176 * in the system use _some_ cpuset, and since there is always at least
177 * one task in the system (init, pid == 1), therefore, top_cpuset
178 * always has either children cpusets and/or using tasks. So no need
179 * for any special hack to ensure that top_cpuset cannot be deleted.
180 */
181
182static DECLARE_MUTEX(cpuset_sem);
4247bdc6 183
1da177e4
LT
184/*
185 * A couple of forward declarations required, due to cyclic reference loop:
186 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
187 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
188 */
189
190static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
191static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
192
193static struct backing_dev_info cpuset_backing_dev_info = {
194 .ra_pages = 0, /* No readahead */
195 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
196};
197
198static struct inode *cpuset_new_inode(mode_t mode)
199{
200 struct inode *inode = new_inode(cpuset_sb);
201
202 if (inode) {
203 inode->i_mode = mode;
204 inode->i_uid = current->fsuid;
205 inode->i_gid = current->fsgid;
206 inode->i_blksize = PAGE_CACHE_SIZE;
207 inode->i_blocks = 0;
208 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
209 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
210 }
211 return inode;
212}
213
214static void cpuset_diput(struct dentry *dentry, struct inode *inode)
215{
216 /* is dentry a directory ? if so, kfree() associated cpuset */
217 if (S_ISDIR(inode->i_mode)) {
218 struct cpuset *cs = dentry->d_fsdata;
219 BUG_ON(!(is_removed(cs)));
220 kfree(cs);
221 }
222 iput(inode);
223}
224
225static struct dentry_operations cpuset_dops = {
226 .d_iput = cpuset_diput,
227};
228
229static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
230{
5f45f1a7 231 struct dentry *d = lookup_one_len(name, parent, strlen(name));
1da177e4
LT
232 if (!IS_ERR(d))
233 d->d_op = &cpuset_dops;
234 return d;
235}
236
237static void remove_dir(struct dentry *d)
238{
239 struct dentry *parent = dget(d->d_parent);
240
241 d_delete(d);
242 simple_rmdir(parent->d_inode, d);
243 dput(parent);
244}
245
246/*
247 * NOTE : the dentry must have been dget()'ed
248 */
249static void cpuset_d_remove_dir(struct dentry *dentry)
250{
251 struct list_head *node;
252
253 spin_lock(&dcache_lock);
254 node = dentry->d_subdirs.next;
255 while (node != &dentry->d_subdirs) {
256 struct dentry *d = list_entry(node, struct dentry, d_child);
257 list_del_init(node);
258 if (d->d_inode) {
259 d = dget_locked(d);
260 spin_unlock(&dcache_lock);
261 d_delete(d);
262 simple_unlink(dentry->d_inode, d);
263 dput(d);
264 spin_lock(&dcache_lock);
265 }
266 node = dentry->d_subdirs.next;
267 }
268 list_del_init(&dentry->d_child);
269 spin_unlock(&dcache_lock);
270 remove_dir(dentry);
271}
272
273static struct super_operations cpuset_ops = {
274 .statfs = simple_statfs,
275 .drop_inode = generic_delete_inode,
276};
277
278static int cpuset_fill_super(struct super_block *sb, void *unused_data,
279 int unused_silent)
280{
281 struct inode *inode;
282 struct dentry *root;
283
284 sb->s_blocksize = PAGE_CACHE_SIZE;
285 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
286 sb->s_magic = CPUSET_SUPER_MAGIC;
287 sb->s_op = &cpuset_ops;
288 cpuset_sb = sb;
289
290 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
291 if (inode) {
292 inode->i_op = &simple_dir_inode_operations;
293 inode->i_fop = &simple_dir_operations;
294 /* directories start off with i_nlink == 2 (for "." entry) */
295 inode->i_nlink++;
296 } else {
297 return -ENOMEM;
298 }
299
300 root = d_alloc_root(inode);
301 if (!root) {
302 iput(inode);
303 return -ENOMEM;
304 }
305 sb->s_root = root;
306 return 0;
307}
308
309static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
310 int flags, const char *unused_dev_name,
311 void *data)
312{
313 return get_sb_single(fs_type, flags, data, cpuset_fill_super);
314}
315
316static struct file_system_type cpuset_fs_type = {
317 .name = "cpuset",
318 .get_sb = cpuset_get_sb,
319 .kill_sb = kill_litter_super,
320};
321
322/* struct cftype:
323 *
324 * The files in the cpuset filesystem mostly have a very simple read/write
325 * handling, some common function will take care of it. Nevertheless some cases
326 * (read tasks) are special and therefore I define this structure for every
327 * kind of file.
328 *
329 *
330 * When reading/writing to a file:
331 * - the cpuset to use in file->f_dentry->d_parent->d_fsdata
332 * - the 'cftype' of the file is file->f_dentry->d_fsdata
333 */
334
335struct cftype {
336 char *name;
337 int private;
338 int (*open) (struct inode *inode, struct file *file);
339 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
340 loff_t *ppos);
341 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
342 loff_t *ppos);
343 int (*release) (struct inode *inode, struct file *file);
344};
345
346static inline struct cpuset *__d_cs(struct dentry *dentry)
347{
348 return dentry->d_fsdata;
349}
350
351static inline struct cftype *__d_cft(struct dentry *dentry)
352{
353 return dentry->d_fsdata;
354}
355
356/*
357 * Call with cpuset_sem held. Writes path of cpuset into buf.
358 * Returns 0 on success, -errno on error.
359 */
360
361static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
362{
363 char *start;
364
365 start = buf + buflen;
366
367 *--start = '\0';
368 for (;;) {
369 int len = cs->dentry->d_name.len;
370 if ((start -= len) < buf)
371 return -ENAMETOOLONG;
372 memcpy(start, cs->dentry->d_name.name, len);
373 cs = cs->parent;
374 if (!cs)
375 break;
376 if (!cs->parent)
377 continue;
378 if (--start < buf)
379 return -ENAMETOOLONG;
380 *start = '/';
381 }
382 memmove(buf, start, buf + buflen - start);
383 return 0;
384}
385
386/*
387 * Notify userspace when a cpuset is released, by running
388 * /sbin/cpuset_release_agent with the name of the cpuset (path
389 * relative to the root of cpuset file system) as the argument.
390 *
391 * Most likely, this user command will try to rmdir this cpuset.
392 *
393 * This races with the possibility that some other task will be
394 * attached to this cpuset before it is removed, or that some other
395 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
396 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
397 * unused, and this cpuset will be reprieved from its death sentence,
398 * to continue to serve a useful existence. Next time it's released,
399 * we will get notified again, if it still has 'notify_on_release' set.
400 *
3077a260
PJ
401 * The final arg to call_usermodehelper() is 0, which means don't
402 * wait. The separate /sbin/cpuset_release_agent task is forked by
403 * call_usermodehelper(), then control in this thread returns here,
404 * without waiting for the release agent task. We don't bother to
405 * wait because the caller of this routine has no use for the exit
406 * status of the /sbin/cpuset_release_agent task, so no sense holding
407 * our caller up for that.
408 *
409 * The simple act of forking that task might require more memory,
410 * which might need cpuset_sem. So this routine must be called while
411 * cpuset_sem is not held, to avoid a possible deadlock. See also
412 * comments for check_for_release(), below.
1da177e4
LT
413 */
414
3077a260 415static void cpuset_release_agent(const char *pathbuf)
1da177e4
LT
416{
417 char *argv[3], *envp[3];
418 int i;
419
3077a260
PJ
420 if (!pathbuf)
421 return;
422
1da177e4
LT
423 i = 0;
424 argv[i++] = "/sbin/cpuset_release_agent";
3077a260 425 argv[i++] = (char *)pathbuf;
1da177e4
LT
426 argv[i] = NULL;
427
428 i = 0;
429 /* minimal command environment */
430 envp[i++] = "HOME=/";
431 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
432 envp[i] = NULL;
433
3077a260
PJ
434 call_usermodehelper(argv[0], argv, envp, 0);
435 kfree(pathbuf);
1da177e4
LT
436}
437
438/*
439 * Either cs->count of using tasks transitioned to zero, or the
440 * cs->children list of child cpusets just became empty. If this
441 * cs is notify_on_release() and now both the user count is zero and
3077a260
PJ
442 * the list of children is empty, prepare cpuset path in a kmalloc'd
443 * buffer, to be returned via ppathbuf, so that the caller can invoke
444 * cpuset_release_agent() with it later on, once cpuset_sem is dropped.
445 * Call here with cpuset_sem held.
446 *
447 * This check_for_release() routine is responsible for kmalloc'ing
448 * pathbuf. The above cpuset_release_agent() is responsible for
449 * kfree'ing pathbuf. The caller of these routines is responsible
450 * for providing a pathbuf pointer, initialized to NULL, then
451 * calling check_for_release() with cpuset_sem held and the address
452 * of the pathbuf pointer, then dropping cpuset_sem, then calling
453 * cpuset_release_agent() with pathbuf, as set by check_for_release().
1da177e4
LT
454 */
455
3077a260 456static void check_for_release(struct cpuset *cs, char **ppathbuf)
1da177e4
LT
457{
458 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
459 list_empty(&cs->children)) {
460 char *buf;
461
462 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
463 if (!buf)
464 return;
465 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
3077a260
PJ
466 kfree(buf);
467 else
468 *ppathbuf = buf;
1da177e4
LT
469 }
470}
471
472/*
473 * Return in *pmask the portion of a cpusets's cpus_allowed that
474 * are online. If none are online, walk up the cpuset hierarchy
475 * until we find one that does have some online cpus. If we get
476 * all the way to the top and still haven't found any online cpus,
477 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
478 * task, return cpu_online_map.
479 *
480 * One way or another, we guarantee to return some non-empty subset
481 * of cpu_online_map.
482 *
483 * Call with cpuset_sem held.
484 */
485
486static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
487{
488 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
489 cs = cs->parent;
490 if (cs)
491 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
492 else
493 *pmask = cpu_online_map;
494 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
495}
496
497/*
498 * Return in *pmask the portion of a cpusets's mems_allowed that
499 * are online. If none are online, walk up the cpuset hierarchy
500 * until we find one that does have some online mems. If we get
501 * all the way to the top and still haven't found any online mems,
502 * return node_online_map.
503 *
504 * One way or another, we guarantee to return some non-empty subset
505 * of node_online_map.
506 *
507 * Call with cpuset_sem held.
508 */
509
510static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
511{
512 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
513 cs = cs->parent;
514 if (cs)
515 nodes_and(*pmask, cs->mems_allowed, node_online_map);
516 else
517 *pmask = node_online_map;
518 BUG_ON(!nodes_intersects(*pmask, node_online_map));
519}
520
521/*
522 * Refresh current tasks mems_allowed and mems_generation from
523 * current tasks cpuset. Call with cpuset_sem held.
524 *
5aa15b5f
PJ
525 * Be sure to call refresh_mems() on any cpuset operation which
526 * (1) holds cpuset_sem, and (2) might possibly alloc memory.
527 * Call after obtaining cpuset_sem lock, before any possible
528 * allocation. Otherwise one risks trying to allocate memory
529 * while the task cpuset_mems_generation is not the same as
530 * the mems_generation in its cpuset, which would deadlock on
531 * cpuset_sem in cpuset_update_current_mems_allowed().
532 *
533 * Since we hold cpuset_sem, once refresh_mems() is called, the
534 * test (current->cpuset_mems_generation != cs->mems_generation)
535 * in cpuset_update_current_mems_allowed() will remain false,
536 * until we drop cpuset_sem. Anyone else who would change our
537 * cpusets mems_generation needs to lock cpuset_sem first.
1da177e4
LT
538 */
539
540static void refresh_mems(void)
541{
542 struct cpuset *cs = current->cpuset;
543
544 if (current->cpuset_mems_generation != cs->mems_generation) {
545 guarantee_online_mems(cs, &current->mems_allowed);
546 current->cpuset_mems_generation = cs->mems_generation;
547 }
548}
549
550/*
551 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
552 *
553 * One cpuset is a subset of another if all its allowed CPUs and
554 * Memory Nodes are a subset of the other, and its exclusive flags
555 * are only set if the other's are set.
556 */
557
558static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
559{
560 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
561 nodes_subset(p->mems_allowed, q->mems_allowed) &&
562 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
563 is_mem_exclusive(p) <= is_mem_exclusive(q);
564}
565
566/*
567 * validate_change() - Used to validate that any proposed cpuset change
568 * follows the structural rules for cpusets.
569 *
570 * If we replaced the flag and mask values of the current cpuset
571 * (cur) with those values in the trial cpuset (trial), would
572 * our various subset and exclusive rules still be valid? Presumes
573 * cpuset_sem held.
574 *
575 * 'cur' is the address of an actual, in-use cpuset. Operations
576 * such as list traversal that depend on the actual address of the
577 * cpuset in the list must use cur below, not trial.
578 *
579 * 'trial' is the address of bulk structure copy of cur, with
580 * perhaps one or more of the fields cpus_allowed, mems_allowed,
581 * or flags changed to new, trial values.
582 *
583 * Return 0 if valid, -errno if not.
584 */
585
586static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
587{
588 struct cpuset *c, *par;
589
590 /* Each of our child cpusets must be a subset of us */
591 list_for_each_entry(c, &cur->children, sibling) {
592 if (!is_cpuset_subset(c, trial))
593 return -EBUSY;
594 }
595
596 /* Remaining checks don't apply to root cpuset */
597 if ((par = cur->parent) == NULL)
598 return 0;
599
600 /* We must be a subset of our parent cpuset */
601 if (!is_cpuset_subset(trial, par))
602 return -EACCES;
603
604 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
605 list_for_each_entry(c, &par->children, sibling) {
606 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
607 c != cur &&
608 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
609 return -EINVAL;
610 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
611 c != cur &&
612 nodes_intersects(trial->mems_allowed, c->mems_allowed))
613 return -EINVAL;
614 }
615
616 return 0;
617}
618
85d7b949
DG
619/*
620 * For a given cpuset cur, partition the system as follows
621 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
622 * exclusive child cpusets
623 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
624 * exclusive child cpusets
625 * Build these two partitions by calling partition_sched_domains
626 *
627 * Call with cpuset_sem held. May nest a call to the
628 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
629 */
212d6d22 630
85d7b949
DG
631static void update_cpu_domains(struct cpuset *cur)
632{
633 struct cpuset *c, *par = cur->parent;
634 cpumask_t pspan, cspan;
635
636 if (par == NULL || cpus_empty(cur->cpus_allowed))
637 return;
638
639 /*
640 * Get all cpus from parent's cpus_allowed not part of exclusive
641 * children
642 */
643 pspan = par->cpus_allowed;
644 list_for_each_entry(c, &par->children, sibling) {
645 if (is_cpu_exclusive(c))
646 cpus_andnot(pspan, pspan, c->cpus_allowed);
647 }
648 if (is_removed(cur) || !is_cpu_exclusive(cur)) {
649 cpus_or(pspan, pspan, cur->cpus_allowed);
650 if (cpus_equal(pspan, cur->cpus_allowed))
651 return;
652 cspan = CPU_MASK_NONE;
653 } else {
654 if (cpus_empty(pspan))
655 return;
656 cspan = cur->cpus_allowed;
657 /*
658 * Get all cpus from current cpuset's cpus_allowed not part
659 * of exclusive children
660 */
661 list_for_each_entry(c, &cur->children, sibling) {
662 if (is_cpu_exclusive(c))
663 cpus_andnot(cspan, cspan, c->cpus_allowed);
664 }
665 }
666
667 lock_cpu_hotplug();
668 partition_sched_domains(&pspan, &cspan);
669 unlock_cpu_hotplug();
670}
671
1da177e4
LT
672static int update_cpumask(struct cpuset *cs, char *buf)
673{
674 struct cpuset trialcs;
85d7b949 675 int retval, cpus_unchanged;
1da177e4
LT
676
677 trialcs = *cs;
678 retval = cpulist_parse(buf, trialcs.cpus_allowed);
679 if (retval < 0)
680 return retval;
681 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
682 if (cpus_empty(trialcs.cpus_allowed))
683 return -ENOSPC;
684 retval = validate_change(cs, &trialcs);
85d7b949
DG
685 if (retval < 0)
686 return retval;
687 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
688 cs->cpus_allowed = trialcs.cpus_allowed;
689 if (is_cpu_exclusive(cs) && !cpus_unchanged)
690 update_cpu_domains(cs);
691 return 0;
1da177e4
LT
692}
693
694static int update_nodemask(struct cpuset *cs, char *buf)
695{
696 struct cpuset trialcs;
697 int retval;
698
699 trialcs = *cs;
700 retval = nodelist_parse(buf, trialcs.mems_allowed);
701 if (retval < 0)
702 return retval;
703 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
704 if (nodes_empty(trialcs.mems_allowed))
705 return -ENOSPC;
706 retval = validate_change(cs, &trialcs);
707 if (retval == 0) {
708 cs->mems_allowed = trialcs.mems_allowed;
709 atomic_inc(&cpuset_mems_generation);
710 cs->mems_generation = atomic_read(&cpuset_mems_generation);
711 }
712 return retval;
713}
714
715/*
716 * update_flag - read a 0 or a 1 in a file and update associated flag
717 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
718 * CS_NOTIFY_ON_RELEASE)
719 * cs: the cpuset to update
720 * buf: the buffer where we read the 0 or 1
721 */
722
723static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
724{
725 int turning_on;
726 struct cpuset trialcs;
85d7b949 727 int err, cpu_exclusive_changed;
1da177e4
LT
728
729 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
730
731 trialcs = *cs;
732 if (turning_on)
733 set_bit(bit, &trialcs.flags);
734 else
735 clear_bit(bit, &trialcs.flags);
736
737 err = validate_change(cs, &trialcs);
85d7b949
DG
738 if (err < 0)
739 return err;
740 cpu_exclusive_changed =
741 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
742 if (turning_on)
743 set_bit(bit, &cs->flags);
744 else
745 clear_bit(bit, &cs->flags);
746
747 if (cpu_exclusive_changed)
748 update_cpu_domains(cs);
749 return 0;
1da177e4
LT
750}
751
3077a260 752static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
1da177e4
LT
753{
754 pid_t pid;
755 struct task_struct *tsk;
756 struct cpuset *oldcs;
757 cpumask_t cpus;
758
3077a260 759 if (sscanf(pidbuf, "%d", &pid) != 1)
1da177e4
LT
760 return -EIO;
761 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
762 return -ENOSPC;
763
764 if (pid) {
765 read_lock(&tasklist_lock);
766
767 tsk = find_task_by_pid(pid);
768 if (!tsk) {
769 read_unlock(&tasklist_lock);
770 return -ESRCH;
771 }
772
773 get_task_struct(tsk);
774 read_unlock(&tasklist_lock);
775
776 if ((current->euid) && (current->euid != tsk->uid)
777 && (current->euid != tsk->suid)) {
778 put_task_struct(tsk);
779 return -EACCES;
780 }
781 } else {
782 tsk = current;
783 get_task_struct(tsk);
784 }
785
786 task_lock(tsk);
787 oldcs = tsk->cpuset;
788 if (!oldcs) {
789 task_unlock(tsk);
790 put_task_struct(tsk);
791 return -ESRCH;
792 }
793 atomic_inc(&cs->count);
794 tsk->cpuset = cs;
795 task_unlock(tsk);
796
797 guarantee_online_cpus(cs, &cpus);
798 set_cpus_allowed(tsk, cpus);
799
800 put_task_struct(tsk);
801 if (atomic_dec_and_test(&oldcs->count))
3077a260 802 check_for_release(oldcs, ppathbuf);
1da177e4
LT
803 return 0;
804}
805
806/* The various types of files and directories in a cpuset file system */
807
808typedef enum {
809 FILE_ROOT,
810 FILE_DIR,
811 FILE_CPULIST,
812 FILE_MEMLIST,
813 FILE_CPU_EXCLUSIVE,
814 FILE_MEM_EXCLUSIVE,
815 FILE_NOTIFY_ON_RELEASE,
816 FILE_TASKLIST,
817} cpuset_filetype_t;
818
819static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
820 size_t nbytes, loff_t *unused_ppos)
821{
822 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
823 struct cftype *cft = __d_cft(file->f_dentry);
824 cpuset_filetype_t type = cft->private;
825 char *buffer;
3077a260 826 char *pathbuf = NULL;
1da177e4
LT
827 int retval = 0;
828
829 /* Crude upper limit on largest legitimate cpulist user might write. */
830 if (nbytes > 100 + 6 * NR_CPUS)
831 return -E2BIG;
832
833 /* +1 for nul-terminator */
834 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
835 return -ENOMEM;
836
837 if (copy_from_user(buffer, userbuf, nbytes)) {
838 retval = -EFAULT;
839 goto out1;
840 }
841 buffer[nbytes] = 0; /* nul-terminate */
842
5aa15b5f 843 down(&cpuset_sem);
1da177e4
LT
844
845 if (is_removed(cs)) {
846 retval = -ENODEV;
847 goto out2;
848 }
849
850 switch (type) {
851 case FILE_CPULIST:
852 retval = update_cpumask(cs, buffer);
853 break;
854 case FILE_MEMLIST:
855 retval = update_nodemask(cs, buffer);
856 break;
857 case FILE_CPU_EXCLUSIVE:
858 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
859 break;
860 case FILE_MEM_EXCLUSIVE:
861 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
862 break;
863 case FILE_NOTIFY_ON_RELEASE:
864 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
865 break;
866 case FILE_TASKLIST:
3077a260 867 retval = attach_task(cs, buffer, &pathbuf);
1da177e4
LT
868 break;
869 default:
870 retval = -EINVAL;
871 goto out2;
872 }
873
874 if (retval == 0)
875 retval = nbytes;
876out2:
5aa15b5f 877 up(&cpuset_sem);
3077a260 878 cpuset_release_agent(pathbuf);
1da177e4
LT
879out1:
880 kfree(buffer);
881 return retval;
882}
883
884static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
885 size_t nbytes, loff_t *ppos)
886{
887 ssize_t retval = 0;
888 struct cftype *cft = __d_cft(file->f_dentry);
889 if (!cft)
890 return -ENODEV;
891
892 /* special function ? */
893 if (cft->write)
894 retval = cft->write(file, buf, nbytes, ppos);
895 else
896 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
897
898 return retval;
899}
900
901/*
902 * These ascii lists should be read in a single call, by using a user
903 * buffer large enough to hold the entire map. If read in smaller
904 * chunks, there is no guarantee of atomicity. Since the display format
905 * used, list of ranges of sequential numbers, is variable length,
906 * and since these maps can change value dynamically, one could read
907 * gibberish by doing partial reads while a list was changing.
908 * A single large read to a buffer that crosses a page boundary is
909 * ok, because the result being copied to user land is not recomputed
910 * across a page fault.
911 */
912
913static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
914{
915 cpumask_t mask;
916
5aa15b5f 917 down(&cpuset_sem);
1da177e4 918 mask = cs->cpus_allowed;
5aa15b5f 919 up(&cpuset_sem);
1da177e4
LT
920
921 return cpulist_scnprintf(page, PAGE_SIZE, mask);
922}
923
924static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
925{
926 nodemask_t mask;
927
5aa15b5f 928 down(&cpuset_sem);
1da177e4 929 mask = cs->mems_allowed;
5aa15b5f 930 up(&cpuset_sem);
1da177e4
LT
931
932 return nodelist_scnprintf(page, PAGE_SIZE, mask);
933}
934
935static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
936 size_t nbytes, loff_t *ppos)
937{
938 struct cftype *cft = __d_cft(file->f_dentry);
939 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
940 cpuset_filetype_t type = cft->private;
941 char *page;
942 ssize_t retval = 0;
943 char *s;
1da177e4
LT
944
945 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
946 return -ENOMEM;
947
948 s = page;
949
950 switch (type) {
951 case FILE_CPULIST:
952 s += cpuset_sprintf_cpulist(s, cs);
953 break;
954 case FILE_MEMLIST:
955 s += cpuset_sprintf_memlist(s, cs);
956 break;
957 case FILE_CPU_EXCLUSIVE:
958 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
959 break;
960 case FILE_MEM_EXCLUSIVE:
961 *s++ = is_mem_exclusive(cs) ? '1' : '0';
962 break;
963 case FILE_NOTIFY_ON_RELEASE:
964 *s++ = notify_on_release(cs) ? '1' : '0';
965 break;
966 default:
967 retval = -EINVAL;
968 goto out;
969 }
970 *s++ = '\n';
1da177e4 971
eacaa1f5 972 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
973out:
974 free_page((unsigned long)page);
975 return retval;
976}
977
978static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
979 loff_t *ppos)
980{
981 ssize_t retval = 0;
982 struct cftype *cft = __d_cft(file->f_dentry);
983 if (!cft)
984 return -ENODEV;
985
986 /* special function ? */
987 if (cft->read)
988 retval = cft->read(file, buf, nbytes, ppos);
989 else
990 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
991
992 return retval;
993}
994
995static int cpuset_file_open(struct inode *inode, struct file *file)
996{
997 int err;
998 struct cftype *cft;
999
1000 err = generic_file_open(inode, file);
1001 if (err)
1002 return err;
1003
1004 cft = __d_cft(file->f_dentry);
1005 if (!cft)
1006 return -ENODEV;
1007 if (cft->open)
1008 err = cft->open(inode, file);
1009 else
1010 err = 0;
1011
1012 return err;
1013}
1014
1015static int cpuset_file_release(struct inode *inode, struct file *file)
1016{
1017 struct cftype *cft = __d_cft(file->f_dentry);
1018 if (cft->release)
1019 return cft->release(inode, file);
1020 return 0;
1021}
1022
1023static struct file_operations cpuset_file_operations = {
1024 .read = cpuset_file_read,
1025 .write = cpuset_file_write,
1026 .llseek = generic_file_llseek,
1027 .open = cpuset_file_open,
1028 .release = cpuset_file_release,
1029};
1030
1031static struct inode_operations cpuset_dir_inode_operations = {
1032 .lookup = simple_lookup,
1033 .mkdir = cpuset_mkdir,
1034 .rmdir = cpuset_rmdir,
1035};
1036
1037static int cpuset_create_file(struct dentry *dentry, int mode)
1038{
1039 struct inode *inode;
1040
1041 if (!dentry)
1042 return -ENOENT;
1043 if (dentry->d_inode)
1044 return -EEXIST;
1045
1046 inode = cpuset_new_inode(mode);
1047 if (!inode)
1048 return -ENOMEM;
1049
1050 if (S_ISDIR(mode)) {
1051 inode->i_op = &cpuset_dir_inode_operations;
1052 inode->i_fop = &simple_dir_operations;
1053
1054 /* start off with i_nlink == 2 (for "." entry) */
1055 inode->i_nlink++;
1056 } else if (S_ISREG(mode)) {
1057 inode->i_size = 0;
1058 inode->i_fop = &cpuset_file_operations;
1059 }
1060
1061 d_instantiate(dentry, inode);
1062 dget(dentry); /* Extra count - pin the dentry in core */
1063 return 0;
1064}
1065
1066/*
1067 * cpuset_create_dir - create a directory for an object.
1068 * cs: the cpuset we create the directory for.
1069 * It must have a valid ->parent field
1070 * And we are going to fill its ->dentry field.
1071 * name: The name to give to the cpuset directory. Will be copied.
1072 * mode: mode to set on new directory.
1073 */
1074
1075static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1076{
1077 struct dentry *dentry = NULL;
1078 struct dentry *parent;
1079 int error = 0;
1080
1081 parent = cs->parent->dentry;
1082 dentry = cpuset_get_dentry(parent, name);
1083 if (IS_ERR(dentry))
1084 return PTR_ERR(dentry);
1085 error = cpuset_create_file(dentry, S_IFDIR | mode);
1086 if (!error) {
1087 dentry->d_fsdata = cs;
1088 parent->d_inode->i_nlink++;
1089 cs->dentry = dentry;
1090 }
1091 dput(dentry);
1092
1093 return error;
1094}
1095
1096static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1097{
1098 struct dentry *dentry;
1099 int error;
1100
1101 down(&dir->d_inode->i_sem);
1102 dentry = cpuset_get_dentry(dir, cft->name);
1103 if (!IS_ERR(dentry)) {
1104 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1105 if (!error)
1106 dentry->d_fsdata = (void *)cft;
1107 dput(dentry);
1108 } else
1109 error = PTR_ERR(dentry);
1110 up(&dir->d_inode->i_sem);
1111 return error;
1112}
1113
1114/*
1115 * Stuff for reading the 'tasks' file.
1116 *
1117 * Reading this file can return large amounts of data if a cpuset has
1118 * *lots* of attached tasks. So it may need several calls to read(),
1119 * but we cannot guarantee that the information we produce is correct
1120 * unless we produce it entirely atomically.
1121 *
1122 * Upon tasks file open(), a struct ctr_struct is allocated, that
1123 * will have a pointer to an array (also allocated here). The struct
1124 * ctr_struct * is stored in file->private_data. Its resources will
1125 * be freed by release() when the file is closed. The array is used
1126 * to sprintf the PIDs and then used by read().
1127 */
1128
1129/* cpusets_tasks_read array */
1130
1131struct ctr_struct {
1132 char *buf;
1133 int bufsz;
1134};
1135
1136/*
1137 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1138 * Return actual number of pids loaded.
1139 */
1140static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1141{
1142 int n = 0;
1143 struct task_struct *g, *p;
1144
1145 read_lock(&tasklist_lock);
1146
1147 do_each_thread(g, p) {
1148 if (p->cpuset == cs) {
1149 pidarray[n++] = p->pid;
1150 if (unlikely(n == npids))
1151 goto array_full;
1152 }
1153 } while_each_thread(g, p);
1154
1155array_full:
1156 read_unlock(&tasklist_lock);
1157 return n;
1158}
1159
1160static int cmppid(const void *a, const void *b)
1161{
1162 return *(pid_t *)a - *(pid_t *)b;
1163}
1164
1165/*
1166 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1167 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1168 * count 'cnt' of how many chars would be written if buf were large enough.
1169 */
1170static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1171{
1172 int cnt = 0;
1173 int i;
1174
1175 for (i = 0; i < npids; i++)
1176 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1177 return cnt;
1178}
1179
1180static int cpuset_tasks_open(struct inode *unused, struct file *file)
1181{
1182 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1183 struct ctr_struct *ctr;
1184 pid_t *pidarray;
1185 int npids;
1186 char c;
1187
1188 if (!(file->f_mode & FMODE_READ))
1189 return 0;
1190
1191 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1192 if (!ctr)
1193 goto err0;
1194
1195 /*
1196 * If cpuset gets more users after we read count, we won't have
1197 * enough space - tough. This race is indistinguishable to the
1198 * caller from the case that the additional cpuset users didn't
1199 * show up until sometime later on.
1200 */
1201 npids = atomic_read(&cs->count);
1202 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1203 if (!pidarray)
1204 goto err1;
1205
1206 npids = pid_array_load(pidarray, npids, cs);
1207 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1208
1209 /* Call pid_array_to_buf() twice, first just to get bufsz */
1210 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1211 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1212 if (!ctr->buf)
1213 goto err2;
1214 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1215
1216 kfree(pidarray);
1217 file->private_data = ctr;
1218 return 0;
1219
1220err2:
1221 kfree(pidarray);
1222err1:
1223 kfree(ctr);
1224err0:
1225 return -ENOMEM;
1226}
1227
1228static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1229 size_t nbytes, loff_t *ppos)
1230{
1231 struct ctr_struct *ctr = file->private_data;
1232
1233 if (*ppos + nbytes > ctr->bufsz)
1234 nbytes = ctr->bufsz - *ppos;
1235 if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
1236 return -EFAULT;
1237 *ppos += nbytes;
1238 return nbytes;
1239}
1240
1241static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1242{
1243 struct ctr_struct *ctr;
1244
1245 if (file->f_mode & FMODE_READ) {
1246 ctr = file->private_data;
1247 kfree(ctr->buf);
1248 kfree(ctr);
1249 }
1250 return 0;
1251}
1252
1253/*
1254 * for the common functions, 'private' gives the type of file
1255 */
1256
1257static struct cftype cft_tasks = {
1258 .name = "tasks",
1259 .open = cpuset_tasks_open,
1260 .read = cpuset_tasks_read,
1261 .release = cpuset_tasks_release,
1262 .private = FILE_TASKLIST,
1263};
1264
1265static struct cftype cft_cpus = {
1266 .name = "cpus",
1267 .private = FILE_CPULIST,
1268};
1269
1270static struct cftype cft_mems = {
1271 .name = "mems",
1272 .private = FILE_MEMLIST,
1273};
1274
1275static struct cftype cft_cpu_exclusive = {
1276 .name = "cpu_exclusive",
1277 .private = FILE_CPU_EXCLUSIVE,
1278};
1279
1280static struct cftype cft_mem_exclusive = {
1281 .name = "mem_exclusive",
1282 .private = FILE_MEM_EXCLUSIVE,
1283};
1284
1285static struct cftype cft_notify_on_release = {
1286 .name = "notify_on_release",
1287 .private = FILE_NOTIFY_ON_RELEASE,
1288};
1289
1290static int cpuset_populate_dir(struct dentry *cs_dentry)
1291{
1292 int err;
1293
1294 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1295 return err;
1296 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1297 return err;
1298 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1299 return err;
1300 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1301 return err;
1302 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1303 return err;
1304 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1305 return err;
1306 return 0;
1307}
1308
1309/*
1310 * cpuset_create - create a cpuset
1311 * parent: cpuset that will be parent of the new cpuset.
1312 * name: name of the new cpuset. Will be strcpy'ed.
1313 * mode: mode to set on new inode
1314 *
1315 * Must be called with the semaphore on the parent inode held
1316 */
1317
1318static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1319{
1320 struct cpuset *cs;
1321 int err;
1322
1323 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1324 if (!cs)
1325 return -ENOMEM;
1326
5aa15b5f
PJ
1327 down(&cpuset_sem);
1328 refresh_mems();
1da177e4
LT
1329 cs->flags = 0;
1330 if (notify_on_release(parent))
1331 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1332 cs->cpus_allowed = CPU_MASK_NONE;
1333 cs->mems_allowed = NODE_MASK_NONE;
1334 atomic_set(&cs->count, 0);
1335 INIT_LIST_HEAD(&cs->sibling);
1336 INIT_LIST_HEAD(&cs->children);
1337 atomic_inc(&cpuset_mems_generation);
1338 cs->mems_generation = atomic_read(&cpuset_mems_generation);
1339
1340 cs->parent = parent;
1341
1342 list_add(&cs->sibling, &cs->parent->children);
1343
1344 err = cpuset_create_dir(cs, name, mode);
1345 if (err < 0)
1346 goto err;
1347
1348 /*
1349 * Release cpuset_sem before cpuset_populate_dir() because it
1350 * will down() this new directory's i_sem and if we race with
1351 * another mkdir, we might deadlock.
1352 */
5aa15b5f 1353 up(&cpuset_sem);
1da177e4
LT
1354
1355 err = cpuset_populate_dir(cs->dentry);
1356 /* If err < 0, we have a half-filled directory - oh well ;) */
1357 return 0;
1358err:
1359 list_del(&cs->sibling);
5aa15b5f 1360 up(&cpuset_sem);
1da177e4
LT
1361 kfree(cs);
1362 return err;
1363}
1364
1365static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1366{
1367 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1368
1369 /* the vfs holds inode->i_sem already */
1370 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1371}
1372
1373static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1374{
1375 struct cpuset *cs = dentry->d_fsdata;
1376 struct dentry *d;
1377 struct cpuset *parent;
3077a260 1378 char *pathbuf = NULL;
1da177e4
LT
1379
1380 /* the vfs holds both inode->i_sem already */
1381
5aa15b5f
PJ
1382 down(&cpuset_sem);
1383 refresh_mems();
1da177e4 1384 if (atomic_read(&cs->count) > 0) {
5aa15b5f 1385 up(&cpuset_sem);
1da177e4
LT
1386 return -EBUSY;
1387 }
1388 if (!list_empty(&cs->children)) {
5aa15b5f 1389 up(&cpuset_sem);
1da177e4
LT
1390 return -EBUSY;
1391 }
1da177e4
LT
1392 parent = cs->parent;
1393 set_bit(CS_REMOVED, &cs->flags);
85d7b949
DG
1394 if (is_cpu_exclusive(cs))
1395 update_cpu_domains(cs);
1da177e4
LT
1396 list_del(&cs->sibling); /* delete my sibling from parent->children */
1397 if (list_empty(&parent->children))
3077a260 1398 check_for_release(parent, &pathbuf);
85d7b949 1399 spin_lock(&cs->dentry->d_lock);
1da177e4
LT
1400 d = dget(cs->dentry);
1401 cs->dentry = NULL;
1402 spin_unlock(&d->d_lock);
1403 cpuset_d_remove_dir(d);
1404 dput(d);
5aa15b5f 1405 up(&cpuset_sem);
3077a260 1406 cpuset_release_agent(pathbuf);
1da177e4
LT
1407 return 0;
1408}
1409
1410/**
1411 * cpuset_init - initialize cpusets at system boot
1412 *
1413 * Description: Initialize top_cpuset and the cpuset internal file system,
1414 **/
1415
1416int __init cpuset_init(void)
1417{
1418 struct dentry *root;
1419 int err;
1420
1421 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1422 top_cpuset.mems_allowed = NODE_MASK_ALL;
1423
1424 atomic_inc(&cpuset_mems_generation);
1425 top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);
1426
1427 init_task.cpuset = &top_cpuset;
1428
1429 err = register_filesystem(&cpuset_fs_type);
1430 if (err < 0)
1431 goto out;
1432 cpuset_mount = kern_mount(&cpuset_fs_type);
1433 if (IS_ERR(cpuset_mount)) {
1434 printk(KERN_ERR "cpuset: could not mount!\n");
1435 err = PTR_ERR(cpuset_mount);
1436 cpuset_mount = NULL;
1437 goto out;
1438 }
1439 root = cpuset_mount->mnt_sb->s_root;
1440 root->d_fsdata = &top_cpuset;
1441 root->d_inode->i_nlink++;
1442 top_cpuset.dentry = root;
1443 root->d_inode->i_op = &cpuset_dir_inode_operations;
1444 err = cpuset_populate_dir(root);
1445out:
1446 return err;
1447}
1448
1449/**
1450 * cpuset_init_smp - initialize cpus_allowed
1451 *
1452 * Description: Finish top cpuset after cpu, node maps are initialized
1453 **/
1454
1455void __init cpuset_init_smp(void)
1456{
1457 top_cpuset.cpus_allowed = cpu_online_map;
1458 top_cpuset.mems_allowed = node_online_map;
1459}
1460
1461/**
1462 * cpuset_fork - attach newly forked task to its parents cpuset.
d9fd8a6d 1463 * @tsk: pointer to task_struct of forking parent process.
1da177e4
LT
1464 *
1465 * Description: By default, on fork, a task inherits its
d9fd8a6d 1466 * parent's cpuset. The pointer to the shared cpuset is
1da177e4
LT
1467 * automatically copied in fork.c by dup_task_struct().
1468 * This cpuset_fork() routine need only increment the usage
1469 * counter in that cpuset.
1470 **/
1471
1472void cpuset_fork(struct task_struct *tsk)
1473{
1474 atomic_inc(&tsk->cpuset->count);
1475}
1476
1477/**
1478 * cpuset_exit - detach cpuset from exiting task
1479 * @tsk: pointer to task_struct of exiting process
1480 *
1481 * Description: Detach cpuset from @tsk and release it.
1482 *
2efe86b8
PJ
1483 * Note that cpusets marked notify_on_release force every task
1484 * in them to take the global cpuset_sem semaphore when exiting.
1485 * This could impact scaling on very large systems. Be reluctant
1486 * to use notify_on_release cpusets where very high task exit
1487 * scaling is required on large systems.
1488 *
1489 * Don't even think about derefencing 'cs' after the cpuset use
1490 * count goes to zero, except inside a critical section guarded
1491 * by the cpuset_sem semaphore. If you don't hold cpuset_sem,
1492 * then a zero cpuset use count is a license to any other task to
1493 * nuke the cpuset immediately.
1da177e4
LT
1494 **/
1495
1496void cpuset_exit(struct task_struct *tsk)
1497{
1498 struct cpuset *cs;
1499
1500 task_lock(tsk);
1501 cs = tsk->cpuset;
1502 tsk->cpuset = NULL;
1503 task_unlock(tsk);
1504
2efe86b8 1505 if (notify_on_release(cs)) {
3077a260
PJ
1506 char *pathbuf = NULL;
1507
5aa15b5f 1508 down(&cpuset_sem);
2efe86b8 1509 if (atomic_dec_and_test(&cs->count))
3077a260 1510 check_for_release(cs, &pathbuf);
5aa15b5f 1511 up(&cpuset_sem);
3077a260 1512 cpuset_release_agent(pathbuf);
2efe86b8
PJ
1513 } else {
1514 atomic_dec(&cs->count);
1da177e4
LT
1515 }
1516}
1517
1518/**
1519 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1520 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1521 *
1522 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1523 * attached to the specified @tsk. Guaranteed to return some non-empty
1524 * subset of cpu_online_map, even if this means going outside the
1525 * tasks cpuset.
1526 **/
1527
9a848896 1528cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk)
1da177e4
LT
1529{
1530 cpumask_t mask;
1531
5aa15b5f 1532 down(&cpuset_sem);
1da177e4
LT
1533 task_lock((struct task_struct *)tsk);
1534 guarantee_online_cpus(tsk->cpuset, &mask);
1535 task_unlock((struct task_struct *)tsk);
5aa15b5f 1536 up(&cpuset_sem);
1da177e4
LT
1537
1538 return mask;
1539}
1540
1541void cpuset_init_current_mems_allowed(void)
1542{
1543 current->mems_allowed = NODE_MASK_ALL;
1544}
1545
d9fd8a6d
RD
1546/**
1547 * cpuset_update_current_mems_allowed - update mems parameters to new values
1548 *
1da177e4
LT
1549 * If the current tasks cpusets mems_allowed changed behind our backs,
1550 * update current->mems_allowed and mems_generation to the new value.
1551 * Do not call this routine if in_interrupt().
1552 */
1553
1554void cpuset_update_current_mems_allowed(void)
1555{
1556 struct cpuset *cs = current->cpuset;
1557
1558 if (!cs)
1559 return; /* task is exiting */
1560 if (current->cpuset_mems_generation != cs->mems_generation) {
5aa15b5f 1561 down(&cpuset_sem);
1da177e4 1562 refresh_mems();
5aa15b5f 1563 up(&cpuset_sem);
1da177e4
LT
1564 }
1565}
1566
d9fd8a6d
RD
1567/**
1568 * cpuset_restrict_to_mems_allowed - limit nodes to current mems_allowed
1569 * @nodes: pointer to a node bitmap that is and-ed with mems_allowed
1570 */
1da177e4
LT
1571void cpuset_restrict_to_mems_allowed(unsigned long *nodes)
1572{
1573 bitmap_and(nodes, nodes, nodes_addr(current->mems_allowed),
1574 MAX_NUMNODES);
1575}
1576
d9fd8a6d
RD
1577/**
1578 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
1579 * @zl: the zonelist to be checked
1580 *
1da177e4
LT
1581 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1582 */
1583int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
1584{
1585 int i;
1586
1587 for (i = 0; zl->zones[i]; i++) {
1588 int nid = zl->zones[i]->zone_pgdat->node_id;
1589
1590 if (node_isset(nid, current->mems_allowed))
1591 return 1;
1592 }
1593 return 0;
1594}
1595
9bf2229f
PJ
1596/*
1597 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
1598 * ancestor to the specified cpuset. Call while holding cpuset_sem.
1599 * If no ancestor is mem_exclusive (an unusual configuration), then
1600 * returns the root cpuset.
1601 */
1602static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
1603{
1604 while (!is_mem_exclusive(cs) && cs->parent)
1605 cs = cs->parent;
1606 return cs;
1607}
1608
d9fd8a6d 1609/**
9bf2229f
PJ
1610 * cpuset_zone_allowed - Can we allocate memory on zone z's memory node?
1611 * @z: is this zone on an allowed node?
1612 * @gfp_mask: memory allocation flags (we use __GFP_HARDWALL)
d9fd8a6d 1613 *
9bf2229f
PJ
1614 * If we're in interrupt, yes, we can always allocate. If zone
1615 * z's node is in our tasks mems_allowed, yes. If it's not a
1616 * __GFP_HARDWALL request and this zone's nodes is in the nearest
1617 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
1618 * Otherwise, no.
1619 *
1620 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
1621 * and do not allow allocations outside the current tasks cpuset.
1622 * GFP_KERNEL allocations are not so marked, so can escape to the
1623 * nearest mem_exclusive ancestor cpuset.
1624 *
1625 * Scanning up parent cpusets requires cpuset_sem. The __alloc_pages()
1626 * routine only calls here with __GFP_HARDWALL bit _not_ set if
1627 * it's a GFP_KERNEL allocation, and all nodes in the current tasks
1628 * mems_allowed came up empty on the first pass over the zonelist.
1629 * So only GFP_KERNEL allocations, if all nodes in the cpuset are
1630 * short of memory, might require taking the cpuset_sem semaphore.
1631 *
1632 * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages()
1633 * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing
1634 * hardwall cpusets - no allocation on a node outside the cpuset is
1635 * allowed (unless in interrupt, of course).
1636 *
1637 * The second loop doesn't even call here for GFP_ATOMIC requests
1638 * (if the __alloc_pages() local variable 'wait' is set). That check
1639 * and the checks below have the combined affect in the second loop of
1640 * the __alloc_pages() routine that:
1641 * in_interrupt - any node ok (current task context irrelevant)
1642 * GFP_ATOMIC - any node ok
1643 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
1644 * GFP_USER - only nodes in current tasks mems allowed ok.
1645 **/
1646
dd0fc66f 1647int cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
1da177e4 1648{
9bf2229f
PJ
1649 int node; /* node that zone z is on */
1650 const struct cpuset *cs; /* current cpuset ancestors */
1651 int allowed = 1; /* is allocation in zone z allowed? */
1652
1653 if (in_interrupt())
1654 return 1;
1655 node = z->zone_pgdat->node_id;
1656 if (node_isset(node, current->mems_allowed))
1657 return 1;
1658 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
1659 return 0;
1660
1661 /* Not hardwall and node outside mems_allowed: scan up cpusets */
5aa15b5f 1662 down(&cpuset_sem);
9bf2229f
PJ
1663 cs = current->cpuset;
1664 if (!cs)
1665 goto done; /* current task exiting */
1666 cs = nearest_exclusive_ancestor(cs);
1667 allowed = node_isset(node, cs->mems_allowed);
1668done:
5aa15b5f 1669 up(&cpuset_sem);
9bf2229f 1670 return allowed;
1da177e4
LT
1671}
1672
ef08e3b4
PJ
1673/**
1674 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
1675 * @p: pointer to task_struct of some other task.
1676 *
1677 * Description: Return true if the nearest mem_exclusive ancestor
1678 * cpusets of tasks @p and current overlap. Used by oom killer to
1679 * determine if task @p's memory usage might impact the memory
1680 * available to the current task.
1681 *
1682 * Acquires cpuset_sem - not suitable for calling from a fast path.
1683 **/
1684
1685int cpuset_excl_nodes_overlap(const struct task_struct *p)
1686{
1687 const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */
1688 int overlap = 0; /* do cpusets overlap? */
1689
5aa15b5f 1690 down(&cpuset_sem);
ef08e3b4
PJ
1691 cs1 = current->cpuset;
1692 if (!cs1)
1693 goto done; /* current task exiting */
1694 cs2 = p->cpuset;
1695 if (!cs2)
1696 goto done; /* task p is exiting */
1697 cs1 = nearest_exclusive_ancestor(cs1);
1698 cs2 = nearest_exclusive_ancestor(cs2);
1699 overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
1700done:
5aa15b5f 1701 up(&cpuset_sem);
ef08e3b4
PJ
1702
1703 return overlap;
1704}
1705
1da177e4
LT
1706/*
1707 * proc_cpuset_show()
1708 * - Print tasks cpuset path into seq_file.
1709 * - Used for /proc/<pid>/cpuset.
1710 */
1711
1712static int proc_cpuset_show(struct seq_file *m, void *v)
1713{
1714 struct cpuset *cs;
1715 struct task_struct *tsk;
1716 char *buf;
1717 int retval = 0;
1718
1719 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1720 if (!buf)
1721 return -ENOMEM;
1722
1723 tsk = m->private;
5aa15b5f 1724 down(&cpuset_sem);
1da177e4
LT
1725 task_lock(tsk);
1726 cs = tsk->cpuset;
1727 task_unlock(tsk);
1728 if (!cs) {
1729 retval = -EINVAL;
1730 goto out;
1731 }
1732
1733 retval = cpuset_path(cs, buf, PAGE_SIZE);
1734 if (retval < 0)
1735 goto out;
1736 seq_puts(m, buf);
1737 seq_putc(m, '\n');
1738out:
5aa15b5f 1739 up(&cpuset_sem);
1da177e4
LT
1740 kfree(buf);
1741 return retval;
1742}
1743
1744static int cpuset_open(struct inode *inode, struct file *file)
1745{
1746 struct task_struct *tsk = PROC_I(inode)->task;
1747 return single_open(file, proc_cpuset_show, tsk);
1748}
1749
1750struct file_operations proc_cpuset_operations = {
1751 .open = cpuset_open,
1752 .read = seq_read,
1753 .llseek = seq_lseek,
1754 .release = single_release,
1755};
1756
1757/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
1758char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
1759{
1760 buffer += sprintf(buffer, "Cpus_allowed:\t");
1761 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
1762 buffer += sprintf(buffer, "\n");
1763 buffer += sprintf(buffer, "Mems_allowed:\t");
1764 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
1765 buffer += sprintf(buffer, "\n");
1766 return buffer;
1767}