cpuset: cleanup cpuset[_can]_attach()
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
f90d4118
MX
63/*
64 * Workqueue for cpuset related tasks.
65 *
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
68 */
69static struct workqueue_struct *cpuset_wq;
70
202f72d5
PJ
71/*
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
75 */
7edc5962 76int number_of_cpusets __read_mostly;
202f72d5 77
2df167a3 78/* Forward declare cgroup structures */
8793d854
PM
79struct cgroup_subsys cpuset_subsys;
80struct cpuset;
81
3e0d98b9
PJ
82/* See "Frequency meter" comments, below. */
83
84struct fmeter {
85 int cnt; /* unprocessed events count */
86 int val; /* most recent output value */
87 time_t time; /* clock (secs) when val computed */
88 spinlock_t lock; /* guards read or write of above */
89};
90
1da177e4 91struct cpuset {
8793d854
PM
92 struct cgroup_subsys_state css;
93
1da177e4 94 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
97
1da177e4 98 struct cpuset *parent; /* my parent */
1da177e4 99
3e0d98b9 100 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
101
102 /* partition number for rebuild_sched_domains() */
103 int pn;
956db3ca 104
1d3504fc
HS
105 /* for custom sched domain */
106 int relax_domain_level;
107
732bee7a 108 /* used for walking a cpuset hierarchy */
956db3ca 109 struct list_head stack_list;
1da177e4
LT
110};
111
8793d854
PM
112/* Retrieve the cpuset for a cgroup */
113static inline struct cpuset *cgroup_cs(struct cgroup *cont)
114{
115 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
116 struct cpuset, css);
117}
118
119/* Retrieve the cpuset for a task */
120static inline struct cpuset *task_cs(struct task_struct *task)
121{
122 return container_of(task_subsys_state(task, cpuset_subsys_id),
123 struct cpuset, css);
124}
8793d854 125
b246272e
DR
126#ifdef CONFIG_NUMA
127static inline bool task_has_mempolicy(struct task_struct *task)
128{
129 return task->mempolicy;
130}
131#else
132static inline bool task_has_mempolicy(struct task_struct *task)
133{
134 return false;
135}
136#endif
137
138
1da177e4
LT
139/* bits in struct cpuset flags field */
140typedef enum {
efeb77b2 141 CS_ONLINE,
1da177e4
LT
142 CS_CPU_EXCLUSIVE,
143 CS_MEM_EXCLUSIVE,
78608366 144 CS_MEM_HARDWALL,
45b07ef3 145 CS_MEMORY_MIGRATE,
029190c5 146 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
147 CS_SPREAD_PAGE,
148 CS_SPREAD_SLAB,
1da177e4
LT
149} cpuset_flagbits_t;
150
7ddf96b0
SB
151/* the type of hotplug event */
152enum hotplug_event {
153 CPUSET_CPU_OFFLINE,
154 CPUSET_MEM_OFFLINE,
155};
156
1da177e4 157/* convenient tests for these bits */
efeb77b2
TH
158static inline bool is_cpuset_online(const struct cpuset *cs)
159{
160 return test_bit(CS_ONLINE, &cs->flags);
161}
162
1da177e4
LT
163static inline int is_cpu_exclusive(const struct cpuset *cs)
164{
7b5b9ef0 165 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
166}
167
168static inline int is_mem_exclusive(const struct cpuset *cs)
169{
7b5b9ef0 170 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
171}
172
78608366
PM
173static inline int is_mem_hardwall(const struct cpuset *cs)
174{
175 return test_bit(CS_MEM_HARDWALL, &cs->flags);
176}
177
029190c5
PJ
178static inline int is_sched_load_balance(const struct cpuset *cs)
179{
180 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
181}
182
45b07ef3
PJ
183static inline int is_memory_migrate(const struct cpuset *cs)
184{
7b5b9ef0 185 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
186}
187
825a46af
PJ
188static inline int is_spread_page(const struct cpuset *cs)
189{
190 return test_bit(CS_SPREAD_PAGE, &cs->flags);
191}
192
193static inline int is_spread_slab(const struct cpuset *cs)
194{
195 return test_bit(CS_SPREAD_SLAB, &cs->flags);
196}
197
1da177e4 198static struct cpuset top_cpuset = {
efeb77b2
TH
199 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
200 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
201};
202
ae8086ce
TH
203/**
204 * cpuset_for_each_child - traverse online children of a cpuset
205 * @child_cs: loop cursor pointing to the current child
206 * @pos_cgrp: used for iteration
207 * @parent_cs: target cpuset to walk children of
208 *
209 * Walk @child_cs through the online children of @parent_cs. Must be used
210 * with RCU read locked.
211 */
212#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
213 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
214 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
215
1da177e4 216/*
2df167a3
PM
217 * There are two global mutexes guarding cpuset structures. The first
218 * is the main control groups cgroup_mutex, accessed via
219 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
220 * callback_mutex, below. They can nest. It is ok to first take
221 * cgroup_mutex, then nest callback_mutex. We also require taking
222 * task_lock() when dereferencing a task's cpuset pointer. See "The
223 * task_lock() exception", at the end of this comment.
053199ed 224 *
3d3f26a7 225 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 226 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 227 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
228 * and be able to modify cpusets. It can perform various checks on
229 * the cpuset structure first, knowing nothing will change. It can
2df167a3 230 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 231 * performing these checks, various callback routines can briefly
3d3f26a7
IM
232 * acquire callback_mutex to query cpusets. Once it is ready to make
233 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
234 *
235 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 236 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
237 * from one of the callbacks into the cpuset code from within
238 * __alloc_pages().
239 *
3d3f26a7 240 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
241 * access to cpusets.
242 *
58568d2a
MX
243 * Now, the task_struct fields mems_allowed and mempolicy may be changed
244 * by other task, we use alloc_lock in the task_struct fields to protect
245 * them.
053199ed 246 *
3d3f26a7 247 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
248 * small pieces of code, such as when reading out possibly multi-word
249 * cpumasks and nodemasks.
250 *
2df167a3
PM
251 * Accessing a task's cpuset should be done in accordance with the
252 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
253 */
254
3d3f26a7 255static DEFINE_MUTEX(callback_mutex);
4247bdc6 256
75aa1994
DR
257/*
258 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
259 * buffers. They are statically allocated to prevent using excess stack
260 * when calling cpuset_print_task_mems_allowed().
261 */
262#define CPUSET_NAME_LEN (128)
263#define CPUSET_NODELIST_LEN (256)
264static char cpuset_name[CPUSET_NAME_LEN];
265static char cpuset_nodelist[CPUSET_NODELIST_LEN];
266static DEFINE_SPINLOCK(cpuset_buffer_lock);
267
cf417141
MK
268/*
269 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 270 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
271 * silently switch it to mount "cgroup" instead
272 */
f7e83571
AV
273static struct dentry *cpuset_mount(struct file_system_type *fs_type,
274 int flags, const char *unused_dev_name, void *data)
1da177e4 275{
8793d854 276 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 277 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
278 if (cgroup_fs) {
279 char mountopts[] =
280 "cpuset,noprefix,"
281 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
282 ret = cgroup_fs->mount(cgroup_fs, flags,
283 unused_dev_name, mountopts);
8793d854
PM
284 put_filesystem(cgroup_fs);
285 }
286 return ret;
1da177e4
LT
287}
288
289static struct file_system_type cpuset_fs_type = {
290 .name = "cpuset",
f7e83571 291 .mount = cpuset_mount,
1da177e4
LT
292};
293
1da177e4 294/*
300ed6cb 295 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4
LT
296 * are online. If none are online, walk up the cpuset hierarchy
297 * until we find one that does have some online cpus. If we get
298 * all the way to the top and still haven't found any online cpus,
5f054e31
RR
299 * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
300 * task, return cpu_online_mask.
1da177e4
LT
301 *
302 * One way or another, we guarantee to return some non-empty subset
5f054e31 303 * of cpu_online_mask.
1da177e4 304 *
3d3f26a7 305 * Call with callback_mutex held.
1da177e4
LT
306 */
307
6af866af
LZ
308static void guarantee_online_cpus(const struct cpuset *cs,
309 struct cpumask *pmask)
1da177e4 310{
300ed6cb 311 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
1da177e4
LT
312 cs = cs->parent;
313 if (cs)
300ed6cb 314 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4 315 else
300ed6cb
LZ
316 cpumask_copy(pmask, cpu_online_mask);
317 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
1da177e4
LT
318}
319
320/*
321 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
322 * are online, with memory. If none are online with memory, walk
323 * up the cpuset hierarchy until we find one that does have some
324 * online mems. If we get all the way to the top and still haven't
38d7bee9 325 * found any online mems, return node_states[N_MEMORY].
1da177e4
LT
326 *
327 * One way or another, we guarantee to return some non-empty subset
38d7bee9 328 * of node_states[N_MEMORY].
1da177e4 329 *
3d3f26a7 330 * Call with callback_mutex held.
1da177e4
LT
331 */
332
333static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
334{
0e1e7c7a 335 while (cs && !nodes_intersects(cs->mems_allowed,
38d7bee9 336 node_states[N_MEMORY]))
1da177e4
LT
337 cs = cs->parent;
338 if (cs)
0e1e7c7a 339 nodes_and(*pmask, cs->mems_allowed,
38d7bee9 340 node_states[N_MEMORY]);
1da177e4 341 else
38d7bee9
LJ
342 *pmask = node_states[N_MEMORY];
343 BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
1da177e4
LT
344}
345
f3b39d47
MX
346/*
347 * update task's spread flag if cpuset's page/slab spread flag is set
348 *
349 * Called with callback_mutex/cgroup_mutex held
350 */
351static void cpuset_update_task_spread_flag(struct cpuset *cs,
352 struct task_struct *tsk)
353{
354 if (is_spread_page(cs))
355 tsk->flags |= PF_SPREAD_PAGE;
356 else
357 tsk->flags &= ~PF_SPREAD_PAGE;
358 if (is_spread_slab(cs))
359 tsk->flags |= PF_SPREAD_SLAB;
360 else
361 tsk->flags &= ~PF_SPREAD_SLAB;
362}
363
1da177e4
LT
364/*
365 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
366 *
367 * One cpuset is a subset of another if all its allowed CPUs and
368 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 369 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
370 */
371
372static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
373{
300ed6cb 374 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
375 nodes_subset(p->mems_allowed, q->mems_allowed) &&
376 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
377 is_mem_exclusive(p) <= is_mem_exclusive(q);
378}
379
645fcc9d
LZ
380/**
381 * alloc_trial_cpuset - allocate a trial cpuset
382 * @cs: the cpuset that the trial cpuset duplicates
383 */
384static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
385{
300ed6cb
LZ
386 struct cpuset *trial;
387
388 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
389 if (!trial)
390 return NULL;
391
392 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
393 kfree(trial);
394 return NULL;
395 }
396 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
397
398 return trial;
645fcc9d
LZ
399}
400
401/**
402 * free_trial_cpuset - free the trial cpuset
403 * @trial: the trial cpuset to be freed
404 */
405static void free_trial_cpuset(struct cpuset *trial)
406{
300ed6cb 407 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
408 kfree(trial);
409}
410
1da177e4
LT
411/*
412 * validate_change() - Used to validate that any proposed cpuset change
413 * follows the structural rules for cpusets.
414 *
415 * If we replaced the flag and mask values of the current cpuset
416 * (cur) with those values in the trial cpuset (trial), would
417 * our various subset and exclusive rules still be valid? Presumes
2df167a3 418 * cgroup_mutex held.
1da177e4
LT
419 *
420 * 'cur' is the address of an actual, in-use cpuset. Operations
421 * such as list traversal that depend on the actual address of the
422 * cpuset in the list must use cur below, not trial.
423 *
424 * 'trial' is the address of bulk structure copy of cur, with
425 * perhaps one or more of the fields cpus_allowed, mems_allowed,
426 * or flags changed to new, trial values.
427 *
428 * Return 0 if valid, -errno if not.
429 */
430
431static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
432{
8793d854 433 struct cgroup *cont;
1da177e4 434 struct cpuset *c, *par;
ae8086ce
TH
435 int ret;
436
437 rcu_read_lock();
1da177e4
LT
438
439 /* Each of our child cpusets must be a subset of us */
ae8086ce
TH
440 ret = -EBUSY;
441 cpuset_for_each_child(c, cont, cur)
442 if (!is_cpuset_subset(c, trial))
443 goto out;
1da177e4
LT
444
445 /* Remaining checks don't apply to root cpuset */
ae8086ce 446 ret = 0;
69604067 447 if (cur == &top_cpuset)
ae8086ce 448 goto out;
1da177e4 449
69604067
PJ
450 par = cur->parent;
451
1da177e4 452 /* We must be a subset of our parent cpuset */
ae8086ce 453 ret = -EACCES;
1da177e4 454 if (!is_cpuset_subset(trial, par))
ae8086ce 455 goto out;
1da177e4 456
2df167a3
PM
457 /*
458 * If either I or some sibling (!= me) is exclusive, we can't
459 * overlap
460 */
ae8086ce
TH
461 ret = -EINVAL;
462 cpuset_for_each_child(c, cont, par) {
1da177e4
LT
463 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
464 c != cur &&
300ed6cb 465 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 466 goto out;
1da177e4
LT
467 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
468 c != cur &&
469 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 470 goto out;
1da177e4
LT
471 }
472
020958b6 473 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
ae8086ce
TH
474 ret = -ENOSPC;
475 if (cgroup_task_count(cur->css.cgroup) &&
476 (cpumask_empty(trial->cpus_allowed) ||
477 nodes_empty(trial->mems_allowed)))
478 goto out;
020958b6 479
ae8086ce
TH
480 ret = 0;
481out:
482 rcu_read_unlock();
483 return ret;
1da177e4
LT
484}
485
db7f47cf 486#ifdef CONFIG_SMP
029190c5 487/*
cf417141 488 * Helper routine for generate_sched_domains().
029190c5
PJ
489 * Do cpusets a, b have overlapping cpus_allowed masks?
490 */
029190c5
PJ
491static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
492{
300ed6cb 493 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
494}
495
1d3504fc
HS
496static void
497update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
498{
1d3504fc
HS
499 if (dattr->relax_domain_level < c->relax_domain_level)
500 dattr->relax_domain_level = c->relax_domain_level;
501 return;
502}
503
f5393693
LJ
504static void
505update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
506{
507 LIST_HEAD(q);
508
509 list_add(&c->stack_list, &q);
510 while (!list_empty(&q)) {
511 struct cpuset *cp;
512 struct cgroup *cont;
513 struct cpuset *child;
514
515 cp = list_first_entry(&q, struct cpuset, stack_list);
516 list_del(q.next);
517
300ed6cb 518 if (cpumask_empty(cp->cpus_allowed))
f5393693
LJ
519 continue;
520
521 if (is_sched_load_balance(cp))
522 update_domain_attr(dattr, cp);
523
ae8086ce
TH
524 rcu_read_lock();
525 cpuset_for_each_child(child, cont, cp)
f5393693 526 list_add_tail(&child->stack_list, &q);
ae8086ce 527 rcu_read_unlock();
f5393693
LJ
528 }
529}
530
029190c5 531/*
cf417141
MK
532 * generate_sched_domains()
533 *
534 * This function builds a partial partition of the systems CPUs
535 * A 'partial partition' is a set of non-overlapping subsets whose
536 * union is a subset of that set.
537 * The output of this function needs to be passed to kernel/sched.c
538 * partition_sched_domains() routine, which will rebuild the scheduler's
539 * load balancing domains (sched domains) as specified by that partial
540 * partition.
029190c5 541 *
45ce80fb 542 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
543 * for a background explanation of this.
544 *
545 * Does not return errors, on the theory that the callers of this
546 * routine would rather not worry about failures to rebuild sched
547 * domains when operating in the severe memory shortage situations
548 * that could cause allocation failures below.
549 *
cf417141 550 * Must be called with cgroup_lock held.
029190c5
PJ
551 *
552 * The three key local variables below are:
aeed6824 553 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
554 * top-down scan of all cpusets. This scan loads a pointer
555 * to each cpuset marked is_sched_load_balance into the
556 * array 'csa'. For our purposes, rebuilding the schedulers
557 * sched domains, we can ignore !is_sched_load_balance cpusets.
558 * csa - (for CpuSet Array) Array of pointers to all the cpusets
559 * that need to be load balanced, for convenient iterative
560 * access by the subsequent code that finds the best partition,
561 * i.e the set of domains (subsets) of CPUs such that the
562 * cpus_allowed of every cpuset marked is_sched_load_balance
563 * is a subset of one of these domains, while there are as
564 * many such domains as possible, each as small as possible.
565 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
566 * the kernel/sched.c routine partition_sched_domains() in a
567 * convenient format, that can be easily compared to the prior
568 * value to determine what partition elements (sched domains)
569 * were changed (added or removed.)
570 *
571 * Finding the best partition (set of domains):
572 * The triple nested loops below over i, j, k scan over the
573 * load balanced cpusets (using the array of cpuset pointers in
574 * csa[]) looking for pairs of cpusets that have overlapping
575 * cpus_allowed, but which don't have the same 'pn' partition
576 * number and gives them in the same partition number. It keeps
577 * looping on the 'restart' label until it can no longer find
578 * any such pairs.
579 *
580 * The union of the cpus_allowed masks from the set of
581 * all cpusets having the same 'pn' value then form the one
582 * element of the partition (one sched domain) to be passed to
583 * partition_sched_domains().
584 */
acc3f5d7 585static int generate_sched_domains(cpumask_var_t **domains,
cf417141 586 struct sched_domain_attr **attributes)
029190c5 587{
cf417141 588 LIST_HEAD(q); /* queue of cpusets to be scanned */
029190c5
PJ
589 struct cpuset *cp; /* scans q */
590 struct cpuset **csa; /* array of all cpuset ptrs */
591 int csn; /* how many cpuset ptrs in csa so far */
592 int i, j, k; /* indices for partition finding loops */
acc3f5d7 593 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 594 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 595 int ndoms = 0; /* number of sched domains in result */
6af866af 596 int nslot; /* next empty doms[] struct cpumask slot */
029190c5 597
029190c5 598 doms = NULL;
1d3504fc 599 dattr = NULL;
cf417141 600 csa = NULL;
029190c5
PJ
601
602 /* Special case for the 99% of systems with one, full, sched domain */
603 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
604 ndoms = 1;
605 doms = alloc_sched_domains(ndoms);
029190c5 606 if (!doms)
cf417141
MK
607 goto done;
608
1d3504fc
HS
609 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
610 if (dattr) {
611 *dattr = SD_ATTR_INIT;
93a65575 612 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 613 }
acc3f5d7 614 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 615
cf417141 616 goto done;
029190c5
PJ
617 }
618
029190c5
PJ
619 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
620 if (!csa)
621 goto done;
622 csn = 0;
623
aeed6824
LZ
624 list_add(&top_cpuset.stack_list, &q);
625 while (!list_empty(&q)) {
029190c5
PJ
626 struct cgroup *cont;
627 struct cpuset *child; /* scans child cpusets of cp */
489a5393 628
aeed6824
LZ
629 cp = list_first_entry(&q, struct cpuset, stack_list);
630 list_del(q.next);
631
300ed6cb 632 if (cpumask_empty(cp->cpus_allowed))
489a5393
LJ
633 continue;
634
f5393693
LJ
635 /*
636 * All child cpusets contain a subset of the parent's cpus, so
637 * just skip them, and then we call update_domain_attr_tree()
638 * to calc relax_domain_level of the corresponding sched
639 * domain.
640 */
641 if (is_sched_load_balance(cp)) {
029190c5 642 csa[csn++] = cp;
f5393693
LJ
643 continue;
644 }
489a5393 645
ae8086ce
TH
646 rcu_read_lock();
647 cpuset_for_each_child(child, cont, cp)
aeed6824 648 list_add_tail(&child->stack_list, &q);
ae8086ce 649 rcu_read_unlock();
029190c5
PJ
650 }
651
652 for (i = 0; i < csn; i++)
653 csa[i]->pn = i;
654 ndoms = csn;
655
656restart:
657 /* Find the best partition (set of sched domains) */
658 for (i = 0; i < csn; i++) {
659 struct cpuset *a = csa[i];
660 int apn = a->pn;
661
662 for (j = 0; j < csn; j++) {
663 struct cpuset *b = csa[j];
664 int bpn = b->pn;
665
666 if (apn != bpn && cpusets_overlap(a, b)) {
667 for (k = 0; k < csn; k++) {
668 struct cpuset *c = csa[k];
669
670 if (c->pn == bpn)
671 c->pn = apn;
672 }
673 ndoms--; /* one less element */
674 goto restart;
675 }
676 }
677 }
678
cf417141
MK
679 /*
680 * Now we know how many domains to create.
681 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
682 */
acc3f5d7 683 doms = alloc_sched_domains(ndoms);
700018e0 684 if (!doms)
cf417141 685 goto done;
cf417141
MK
686
687 /*
688 * The rest of the code, including the scheduler, can deal with
689 * dattr==NULL case. No need to abort if alloc fails.
690 */
1d3504fc 691 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
692
693 for (nslot = 0, i = 0; i < csn; i++) {
694 struct cpuset *a = csa[i];
6af866af 695 struct cpumask *dp;
029190c5
PJ
696 int apn = a->pn;
697
cf417141
MK
698 if (apn < 0) {
699 /* Skip completed partitions */
700 continue;
701 }
702
acc3f5d7 703 dp = doms[nslot];
cf417141
MK
704
705 if (nslot == ndoms) {
706 static int warnings = 10;
707 if (warnings) {
708 printk(KERN_WARNING
709 "rebuild_sched_domains confused:"
710 " nslot %d, ndoms %d, csn %d, i %d,"
711 " apn %d\n",
712 nslot, ndoms, csn, i, apn);
713 warnings--;
029190c5 714 }
cf417141
MK
715 continue;
716 }
029190c5 717
6af866af 718 cpumask_clear(dp);
cf417141
MK
719 if (dattr)
720 *(dattr + nslot) = SD_ATTR_INIT;
721 for (j = i; j < csn; j++) {
722 struct cpuset *b = csa[j];
723
724 if (apn == b->pn) {
300ed6cb 725 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
726 if (dattr)
727 update_domain_attr_tree(dattr + nslot, b);
728
729 /* Done with this partition */
730 b->pn = -1;
029190c5 731 }
029190c5 732 }
cf417141 733 nslot++;
029190c5
PJ
734 }
735 BUG_ON(nslot != ndoms);
736
cf417141
MK
737done:
738 kfree(csa);
739
700018e0
LZ
740 /*
741 * Fallback to the default domain if kmalloc() failed.
742 * See comments in partition_sched_domains().
743 */
744 if (doms == NULL)
745 ndoms = 1;
746
cf417141
MK
747 *domains = doms;
748 *attributes = dattr;
749 return ndoms;
750}
751
752/*
753 * Rebuild scheduler domains.
754 *
755 * Call with neither cgroup_mutex held nor within get_online_cpus().
756 * Takes both cgroup_mutex and get_online_cpus().
757 *
758 * Cannot be directly called from cpuset code handling changes
759 * to the cpuset pseudo-filesystem, because it cannot be called
760 * from code that already holds cgroup_mutex.
761 */
762static void do_rebuild_sched_domains(struct work_struct *unused)
763{
764 struct sched_domain_attr *attr;
acc3f5d7 765 cpumask_var_t *doms;
cf417141
MK
766 int ndoms;
767
86ef5c9a 768 get_online_cpus();
cf417141
MK
769
770 /* Generate domain masks and attrs */
771 cgroup_lock();
772 ndoms = generate_sched_domains(&doms, &attr);
773 cgroup_unlock();
774
775 /* Have scheduler rebuild the domains */
776 partition_sched_domains(ndoms, doms, attr);
777
86ef5c9a 778 put_online_cpus();
cf417141 779}
db7f47cf
PM
780#else /* !CONFIG_SMP */
781static void do_rebuild_sched_domains(struct work_struct *unused)
782{
783}
784
e1b8090b 785static int generate_sched_domains(cpumask_var_t **domains,
db7f47cf
PM
786 struct sched_domain_attr **attributes)
787{
788 *domains = NULL;
789 return 1;
790}
791#endif /* CONFIG_SMP */
029190c5 792
cf417141
MK
793static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
794
795/*
796 * Rebuild scheduler domains, asynchronously via workqueue.
797 *
798 * If the flag 'sched_load_balance' of any cpuset with non-empty
799 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
800 * which has that flag enabled, or if any cpuset with a non-empty
801 * 'cpus' is removed, then call this routine to rebuild the
802 * scheduler's dynamic sched domains.
803 *
804 * The rebuild_sched_domains() and partition_sched_domains()
805 * routines must nest cgroup_lock() inside get_online_cpus(),
806 * but such cpuset changes as these must nest that locking the
807 * other way, holding cgroup_lock() for much of the code.
808 *
809 * So in order to avoid an ABBA deadlock, the cpuset code handling
810 * these user changes delegates the actual sched domain rebuilding
811 * to a separate workqueue thread, which ends up processing the
812 * above do_rebuild_sched_domains() function.
813 */
814static void async_rebuild_sched_domains(void)
815{
f90d4118 816 queue_work(cpuset_wq, &rebuild_sched_domains_work);
cf417141
MK
817}
818
819/*
820 * Accomplishes the same scheduler domain rebuild as the above
821 * async_rebuild_sched_domains(), however it directly calls the
822 * rebuild routine synchronously rather than calling it via an
823 * asynchronous work thread.
824 *
825 * This can only be called from code that is not holding
826 * cgroup_mutex (not nested in a cgroup_lock() call.)
827 */
828void rebuild_sched_domains(void)
829{
830 do_rebuild_sched_domains(NULL);
029190c5
PJ
831}
832
58f4790b
CW
833/**
834 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
835 * @tsk: task to test
836 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
837 *
2df167a3 838 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
839 * Called for each task in a cgroup by cgroup_scan_tasks().
840 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
841 * words, if its mask is not equal to its cpuset's mask).
053199ed 842 */
9e0c914c
AB
843static int cpuset_test_cpumask(struct task_struct *tsk,
844 struct cgroup_scanner *scan)
58f4790b 845{
300ed6cb 846 return !cpumask_equal(&tsk->cpus_allowed,
58f4790b
CW
847 (cgroup_cs(scan->cg))->cpus_allowed);
848}
053199ed 849
58f4790b
CW
850/**
851 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
852 * @tsk: task to test
853 * @scan: struct cgroup_scanner containing the cgroup of the task
854 *
855 * Called by cgroup_scan_tasks() for each task in a cgroup whose
856 * cpus_allowed mask needs to be changed.
857 *
858 * We don't need to re-check for the cgroup/cpuset membership, since we're
859 * holding cgroup_lock() at this point.
860 */
9e0c914c
AB
861static void cpuset_change_cpumask(struct task_struct *tsk,
862 struct cgroup_scanner *scan)
58f4790b 863{
300ed6cb 864 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
865}
866
0b2f630a
MX
867/**
868 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
869 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 870 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
871 *
872 * Called with cgroup_mutex held
873 *
874 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
875 * calling callback functions for each.
876 *
4e74339a
LZ
877 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
878 * if @heap != NULL.
0b2f630a 879 */
4e74339a 880static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
881{
882 struct cgroup_scanner scan;
0b2f630a
MX
883
884 scan.cg = cs->css.cgroup;
885 scan.test_task = cpuset_test_cpumask;
886 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
887 scan.heap = heap;
888 cgroup_scan_tasks(&scan);
0b2f630a
MX
889}
890
58f4790b
CW
891/**
892 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
893 * @cs: the cpuset to consider
894 * @buf: buffer of cpu numbers written to this cpuset
895 */
645fcc9d
LZ
896static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
897 const char *buf)
1da177e4 898{
4e74339a 899 struct ptr_heap heap;
58f4790b
CW
900 int retval;
901 int is_load_balanced;
1da177e4 902
5f054e31 903 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
904 if (cs == &top_cpuset)
905 return -EACCES;
906
6f7f02e7 907 /*
c8d9c90c 908 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
909 * Since cpulist_parse() fails on an empty mask, we special case
910 * that parsing. The validate_change() call ensures that cpusets
911 * with tasks have cpus.
6f7f02e7 912 */
020958b6 913 if (!*buf) {
300ed6cb 914 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 915 } else {
300ed6cb 916 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
917 if (retval < 0)
918 return retval;
37340746 919
6ad4c188 920 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 921 return -EINVAL;
6f7f02e7 922 }
645fcc9d 923 retval = validate_change(cs, trialcs);
85d7b949
DG
924 if (retval < 0)
925 return retval;
029190c5 926
8707d8b8 927 /* Nothing to do if the cpus didn't change */
300ed6cb 928 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 929 return 0;
58f4790b 930
4e74339a
LZ
931 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
932 if (retval)
933 return retval;
934
645fcc9d 935 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 936
3d3f26a7 937 mutex_lock(&callback_mutex);
300ed6cb 938 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 939 mutex_unlock(&callback_mutex);
029190c5 940
8707d8b8
PM
941 /*
942 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 943 * that need an update.
8707d8b8 944 */
4e74339a
LZ
945 update_tasks_cpumask(cs, &heap);
946
947 heap_free(&heap);
58f4790b 948
8707d8b8 949 if (is_load_balanced)
cf417141 950 async_rebuild_sched_domains();
85d7b949 951 return 0;
1da177e4
LT
952}
953
e4e364e8
PJ
954/*
955 * cpuset_migrate_mm
956 *
957 * Migrate memory region from one set of nodes to another.
958 *
959 * Temporarilly set tasks mems_allowed to target nodes of migration,
960 * so that the migration code can allocate pages on these nodes.
961 *
2df167a3 962 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 963 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
964 * calls. Therefore we don't need to take task_lock around the
965 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 966 * our task's cpuset.
e4e364e8 967 *
e4e364e8
PJ
968 * While the mm_struct we are migrating is typically from some
969 * other task, the task_struct mems_allowed that we are hacking
970 * is for our current task, which must allocate new pages for that
971 * migrating memory region.
e4e364e8
PJ
972 */
973
974static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
975 const nodemask_t *to)
976{
977 struct task_struct *tsk = current;
978
e4e364e8 979 tsk->mems_allowed = *to;
e4e364e8
PJ
980
981 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
982
8793d854 983 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
984}
985
3b6766fe 986/*
58568d2a
MX
987 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
988 * @tsk: the task to change
989 * @newmems: new nodes that the task will be set
990 *
991 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
992 * we structure updates as setting all new allowed nodes, then clearing newly
993 * disallowed ones.
58568d2a
MX
994 */
995static void cpuset_change_task_nodemask(struct task_struct *tsk,
996 nodemask_t *newmems)
997{
b246272e 998 bool need_loop;
89e8a244 999
c0ff7453
MX
1000 /*
1001 * Allow tasks that have access to memory reserves because they have
1002 * been OOM killed to get memory anywhere.
1003 */
1004 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1005 return;
1006 if (current->flags & PF_EXITING) /* Let dying task have memory */
1007 return;
1008
1009 task_lock(tsk);
b246272e
DR
1010 /*
1011 * Determine if a loop is necessary if another thread is doing
1012 * get_mems_allowed(). If at least one node remains unchanged and
1013 * tsk does not have a mempolicy, then an empty nodemask will not be
1014 * possible when mems_allowed is larger than a word.
1015 */
1016 need_loop = task_has_mempolicy(tsk) ||
1017 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1018
cc9a6c87
MG
1019 if (need_loop)
1020 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 1021
cc9a6c87
MG
1022 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1023 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1024
1025 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1026 tsk->mems_allowed = *newmems;
cc9a6c87
MG
1027
1028 if (need_loop)
1029 write_seqcount_end(&tsk->mems_allowed_seq);
1030
c0ff7453 1031 task_unlock(tsk);
58568d2a
MX
1032}
1033
1034/*
1035 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1036 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1037 * memory_migrate flag is set. Called with cgroup_mutex held.
3b6766fe
LZ
1038 */
1039static void cpuset_change_nodemask(struct task_struct *p,
1040 struct cgroup_scanner *scan)
1041{
1042 struct mm_struct *mm;
1043 struct cpuset *cs;
1044 int migrate;
1045 const nodemask_t *oldmem = scan->data;
ee24d379 1046 static nodemask_t newmems; /* protected by cgroup_mutex */
58568d2a
MX
1047
1048 cs = cgroup_cs(scan->cg);
ee24d379 1049 guarantee_online_mems(cs, &newmems);
58568d2a 1050
ee24d379 1051 cpuset_change_task_nodemask(p, &newmems);
53feb297 1052
3b6766fe
LZ
1053 mm = get_task_mm(p);
1054 if (!mm)
1055 return;
1056
3b6766fe
LZ
1057 migrate = is_memory_migrate(cs);
1058
1059 mpol_rebind_mm(mm, &cs->mems_allowed);
1060 if (migrate)
1061 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1062 mmput(mm);
1063}
1064
8793d854
PM
1065static void *cpuset_being_rebound;
1066
0b2f630a
MX
1067/**
1068 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1069 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1070 * @oldmem: old mems_allowed of cpuset cs
010cfac4 1071 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
1072 *
1073 * Called with cgroup_mutex held
010cfac4
LZ
1074 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1075 * if @heap != NULL.
0b2f630a 1076 */
010cfac4
LZ
1077static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1078 struct ptr_heap *heap)
1da177e4 1079{
3b6766fe 1080 struct cgroup_scanner scan;
59dac16f 1081
846a16bf 1082 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1083
3b6766fe
LZ
1084 scan.cg = cs->css.cgroup;
1085 scan.test_task = NULL;
1086 scan.process_task = cpuset_change_nodemask;
010cfac4 1087 scan.heap = heap;
3b6766fe 1088 scan.data = (nodemask_t *)oldmem;
4225399a
PJ
1089
1090 /*
3b6766fe
LZ
1091 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1092 * take while holding tasklist_lock. Forks can happen - the
1093 * mpol_dup() cpuset_being_rebound check will catch such forks,
1094 * and rebind their vma mempolicies too. Because we still hold
1095 * the global cgroup_mutex, we know that no other rebind effort
1096 * will be contending for the global variable cpuset_being_rebound.
4225399a 1097 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1098 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1099 */
010cfac4 1100 cgroup_scan_tasks(&scan);
4225399a 1101
2df167a3 1102 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1103 cpuset_being_rebound = NULL;
1da177e4
LT
1104}
1105
0b2f630a
MX
1106/*
1107 * Handle user request to change the 'mems' memory placement
1108 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1109 * cpusets mems_allowed, and for each task in the cpuset,
1110 * update mems_allowed and rebind task's mempolicy and any vma
1111 * mempolicies and if the cpuset is marked 'memory_migrate',
1112 * migrate the tasks pages to the new memory.
0b2f630a
MX
1113 *
1114 * Call with cgroup_mutex held. May take callback_mutex during call.
1115 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1116 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1117 * their mempolicies to the cpusets new mems_allowed.
1118 */
645fcc9d
LZ
1119static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1120 const char *buf)
0b2f630a 1121{
53feb297 1122 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
0b2f630a 1123 int retval;
010cfac4 1124 struct ptr_heap heap;
0b2f630a 1125
53feb297
MX
1126 if (!oldmem)
1127 return -ENOMEM;
1128
0b2f630a 1129 /*
38d7bee9 1130 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1131 * it's read-only
1132 */
53feb297
MX
1133 if (cs == &top_cpuset) {
1134 retval = -EACCES;
1135 goto done;
1136 }
0b2f630a 1137
0b2f630a
MX
1138 /*
1139 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1140 * Since nodelist_parse() fails on an empty mask, we special case
1141 * that parsing. The validate_change() call ensures that cpusets
1142 * with tasks have memory.
1143 */
1144 if (!*buf) {
645fcc9d 1145 nodes_clear(trialcs->mems_allowed);
0b2f630a 1146 } else {
645fcc9d 1147 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1148 if (retval < 0)
1149 goto done;
1150
645fcc9d 1151 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1152 node_states[N_MEMORY])) {
53feb297
MX
1153 retval = -EINVAL;
1154 goto done;
1155 }
0b2f630a 1156 }
53feb297
MX
1157 *oldmem = cs->mems_allowed;
1158 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1159 retval = 0; /* Too easy - nothing to do */
1160 goto done;
1161 }
645fcc9d 1162 retval = validate_change(cs, trialcs);
0b2f630a
MX
1163 if (retval < 0)
1164 goto done;
1165
010cfac4
LZ
1166 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1167 if (retval < 0)
1168 goto done;
1169
0b2f630a 1170 mutex_lock(&callback_mutex);
645fcc9d 1171 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1172 mutex_unlock(&callback_mutex);
1173
53feb297 1174 update_tasks_nodemask(cs, oldmem, &heap);
010cfac4
LZ
1175
1176 heap_free(&heap);
0b2f630a 1177done:
53feb297 1178 NODEMASK_FREE(oldmem);
0b2f630a
MX
1179 return retval;
1180}
1181
8793d854
PM
1182int current_cpuset_is_being_rebound(void)
1183{
1184 return task_cs(current) == cpuset_being_rebound;
1185}
1186
5be7a479 1187static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1188{
db7f47cf 1189#ifdef CONFIG_SMP
60495e77 1190 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1191 return -EINVAL;
db7f47cf 1192#endif
1d3504fc
HS
1193
1194 if (val != cs->relax_domain_level) {
1195 cs->relax_domain_level = val;
300ed6cb
LZ
1196 if (!cpumask_empty(cs->cpus_allowed) &&
1197 is_sched_load_balance(cs))
cf417141 1198 async_rebuild_sched_domains();
1d3504fc
HS
1199 }
1200
1201 return 0;
1202}
1203
950592f7
MX
1204/*
1205 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1206 * @tsk: task to be updated
1207 * @scan: struct cgroup_scanner containing the cgroup of the task
1208 *
1209 * Called by cgroup_scan_tasks() for each task in a cgroup.
1210 *
1211 * We don't need to re-check for the cgroup/cpuset membership, since we're
1212 * holding cgroup_lock() at this point.
1213 */
1214static void cpuset_change_flag(struct task_struct *tsk,
1215 struct cgroup_scanner *scan)
1216{
1217 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1218}
1219
1220/*
1221 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1222 * @cs: the cpuset in which each task's spread flags needs to be changed
1223 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1224 *
1225 * Called with cgroup_mutex held
1226 *
1227 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1228 * calling callback functions for each.
1229 *
1230 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1231 * if @heap != NULL.
1232 */
1233static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1234{
1235 struct cgroup_scanner scan;
1236
1237 scan.cg = cs->css.cgroup;
1238 scan.test_task = NULL;
1239 scan.process_task = cpuset_change_flag;
1240 scan.heap = heap;
1241 cgroup_scan_tasks(&scan);
1242}
1243
1da177e4
LT
1244/*
1245 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1246 * bit: the bit to update (see cpuset_flagbits_t)
1247 * cs: the cpuset to update
1248 * turning_on: whether the flag is being set or cleared
053199ed 1249 *
2df167a3 1250 * Call with cgroup_mutex held.
1da177e4
LT
1251 */
1252
700fe1ab
PM
1253static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1254 int turning_on)
1da177e4 1255{
645fcc9d 1256 struct cpuset *trialcs;
40b6a762 1257 int balance_flag_changed;
950592f7
MX
1258 int spread_flag_changed;
1259 struct ptr_heap heap;
1260 int err;
1da177e4 1261
645fcc9d
LZ
1262 trialcs = alloc_trial_cpuset(cs);
1263 if (!trialcs)
1264 return -ENOMEM;
1265
1da177e4 1266 if (turning_on)
645fcc9d 1267 set_bit(bit, &trialcs->flags);
1da177e4 1268 else
645fcc9d 1269 clear_bit(bit, &trialcs->flags);
1da177e4 1270
645fcc9d 1271 err = validate_change(cs, trialcs);
85d7b949 1272 if (err < 0)
645fcc9d 1273 goto out;
029190c5 1274
950592f7
MX
1275 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1276 if (err < 0)
1277 goto out;
1278
029190c5 1279 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1280 is_sched_load_balance(trialcs));
029190c5 1281
950592f7
MX
1282 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1283 || (is_spread_page(cs) != is_spread_page(trialcs)));
1284
3d3f26a7 1285 mutex_lock(&callback_mutex);
645fcc9d 1286 cs->flags = trialcs->flags;
3d3f26a7 1287 mutex_unlock(&callback_mutex);
85d7b949 1288
300ed6cb 1289 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
cf417141 1290 async_rebuild_sched_domains();
029190c5 1291
950592f7
MX
1292 if (spread_flag_changed)
1293 update_tasks_flags(cs, &heap);
1294 heap_free(&heap);
645fcc9d
LZ
1295out:
1296 free_trial_cpuset(trialcs);
1297 return err;
1da177e4
LT
1298}
1299
3e0d98b9 1300/*
80f7228b 1301 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1302 *
1303 * These routines manage a digitally filtered, constant time based,
1304 * event frequency meter. There are four routines:
1305 * fmeter_init() - initialize a frequency meter.
1306 * fmeter_markevent() - called each time the event happens.
1307 * fmeter_getrate() - returns the recent rate of such events.
1308 * fmeter_update() - internal routine used to update fmeter.
1309 *
1310 * A common data structure is passed to each of these routines,
1311 * which is used to keep track of the state required to manage the
1312 * frequency meter and its digital filter.
1313 *
1314 * The filter works on the number of events marked per unit time.
1315 * The filter is single-pole low-pass recursive (IIR). The time unit
1316 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1317 * simulate 3 decimal digits of precision (multiplied by 1000).
1318 *
1319 * With an FM_COEF of 933, and a time base of 1 second, the filter
1320 * has a half-life of 10 seconds, meaning that if the events quit
1321 * happening, then the rate returned from the fmeter_getrate()
1322 * will be cut in half each 10 seconds, until it converges to zero.
1323 *
1324 * It is not worth doing a real infinitely recursive filter. If more
1325 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1326 * just compute FM_MAXTICKS ticks worth, by which point the level
1327 * will be stable.
1328 *
1329 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1330 * arithmetic overflow in the fmeter_update() routine.
1331 *
1332 * Given the simple 32 bit integer arithmetic used, this meter works
1333 * best for reporting rates between one per millisecond (msec) and
1334 * one per 32 (approx) seconds. At constant rates faster than one
1335 * per msec it maxes out at values just under 1,000,000. At constant
1336 * rates between one per msec, and one per second it will stabilize
1337 * to a value N*1000, where N is the rate of events per second.
1338 * At constant rates between one per second and one per 32 seconds,
1339 * it will be choppy, moving up on the seconds that have an event,
1340 * and then decaying until the next event. At rates slower than
1341 * about one in 32 seconds, it decays all the way back to zero between
1342 * each event.
1343 */
1344
1345#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1346#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1347#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1348#define FM_SCALE 1000 /* faux fixed point scale */
1349
1350/* Initialize a frequency meter */
1351static void fmeter_init(struct fmeter *fmp)
1352{
1353 fmp->cnt = 0;
1354 fmp->val = 0;
1355 fmp->time = 0;
1356 spin_lock_init(&fmp->lock);
1357}
1358
1359/* Internal meter update - process cnt events and update value */
1360static void fmeter_update(struct fmeter *fmp)
1361{
1362 time_t now = get_seconds();
1363 time_t ticks = now - fmp->time;
1364
1365 if (ticks == 0)
1366 return;
1367
1368 ticks = min(FM_MAXTICKS, ticks);
1369 while (ticks-- > 0)
1370 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1371 fmp->time = now;
1372
1373 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1374 fmp->cnt = 0;
1375}
1376
1377/* Process any previous ticks, then bump cnt by one (times scale). */
1378static void fmeter_markevent(struct fmeter *fmp)
1379{
1380 spin_lock(&fmp->lock);
1381 fmeter_update(fmp);
1382 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1383 spin_unlock(&fmp->lock);
1384}
1385
1386/* Process any previous ticks, then return current value. */
1387static int fmeter_getrate(struct fmeter *fmp)
1388{
1389 int val;
1390
1391 spin_lock(&fmp->lock);
1392 fmeter_update(fmp);
1393 val = fmp->val;
1394 spin_unlock(&fmp->lock);
1395 return val;
1396}
1397
2df167a3 1398/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
761b3ef5 1399static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
f780bdb7 1400{
2f7ee569 1401 struct cpuset *cs = cgroup_cs(cgrp);
bb9d97b6
TH
1402 struct task_struct *task;
1403 int ret;
1da177e4 1404
300ed6cb 1405 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1da177e4 1406 return -ENOSPC;
9985b0ba 1407
bb9d97b6
TH
1408 cgroup_taskset_for_each(task, cgrp, tset) {
1409 /*
1410 * Kthreads bound to specific cpus cannot be moved to a new
1411 * cpuset; we cannot change their cpu affinity and
1412 * isolating such threads by their set of allowed nodes is
1413 * unnecessary. Thus, cpusets are not applicable for such
1414 * threads. This prevents checking for success of
1415 * set_cpus_allowed_ptr() on all attached tasks before
1416 * cpus_allowed may be changed.
1417 */
1418 if (task->flags & PF_THREAD_BOUND)
1419 return -EINVAL;
1420 if ((ret = security_task_setscheduler(task)))
1421 return ret;
1422 }
f780bdb7 1423
94196f51 1424 return 0;
8793d854 1425}
1da177e4 1426
4e4c9a14
TH
1427/*
1428 * Protected by cgroup_mutex. cpus_attach is used only by cpuset_attach()
1429 * but we can't allocate it dynamically there. Define it global and
1430 * allocate from cpuset_init().
1431 */
1432static cpumask_var_t cpus_attach;
1433
761b3ef5 1434static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
8793d854 1435{
4e4c9a14
TH
1436 /* static bufs protected by cgroup_mutex */
1437 static nodemask_t cpuset_attach_nodemask_from;
1438 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1439 struct mm_struct *mm;
bb9d97b6
TH
1440 struct task_struct *task;
1441 struct task_struct *leader = cgroup_taskset_first(tset);
2f7ee569
TH
1442 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1443 struct cpuset *cs = cgroup_cs(cgrp);
1444 struct cpuset *oldcs = cgroup_cs(oldcgrp);
22fb52dd 1445
4e4c9a14
TH
1446 /* prepare for attach */
1447 if (cs == &top_cpuset)
1448 cpumask_copy(cpus_attach, cpu_possible_mask);
1449 else
1450 guarantee_online_cpus(cs, cpus_attach);
1451
1452 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1453
bb9d97b6
TH
1454 cgroup_taskset_for_each(task, cgrp, tset) {
1455 /*
1456 * can_attach beforehand should guarantee that this doesn't
1457 * fail. TODO: have a better way to handle failure here
1458 */
1459 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1460
1461 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1462 cpuset_update_task_spread_flag(cs, task);
1463 }
22fb52dd 1464
f780bdb7
BB
1465 /*
1466 * Change mm, possibly for multiple threads in a threadgroup. This is
1467 * expensive and may sleep.
1468 */
1469 cpuset_attach_nodemask_from = oldcs->mems_allowed;
1470 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1471 mm = get_task_mm(leader);
4225399a 1472 if (mm) {
f780bdb7 1473 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2741a559 1474 if (is_memory_migrate(cs))
f780bdb7
BB
1475 cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1476 &cpuset_attach_nodemask_to);
4225399a
PJ
1477 mmput(mm);
1478 }
1da177e4
LT
1479}
1480
1481/* The various types of files and directories in a cpuset file system */
1482
1483typedef enum {
45b07ef3 1484 FILE_MEMORY_MIGRATE,
1da177e4
LT
1485 FILE_CPULIST,
1486 FILE_MEMLIST,
1487 FILE_CPU_EXCLUSIVE,
1488 FILE_MEM_EXCLUSIVE,
78608366 1489 FILE_MEM_HARDWALL,
029190c5 1490 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1491 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1492 FILE_MEMORY_PRESSURE_ENABLED,
1493 FILE_MEMORY_PRESSURE,
825a46af
PJ
1494 FILE_SPREAD_PAGE,
1495 FILE_SPREAD_SLAB,
1da177e4
LT
1496} cpuset_filetype_t;
1497
700fe1ab
PM
1498static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1499{
1500 int retval = 0;
1501 struct cpuset *cs = cgroup_cs(cgrp);
1502 cpuset_filetype_t type = cft->private;
1503
e3712395 1504 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1505 return -ENODEV;
700fe1ab
PM
1506
1507 switch (type) {
1da177e4 1508 case FILE_CPU_EXCLUSIVE:
700fe1ab 1509 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1510 break;
1511 case FILE_MEM_EXCLUSIVE:
700fe1ab 1512 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1513 break;
78608366
PM
1514 case FILE_MEM_HARDWALL:
1515 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1516 break;
029190c5 1517 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1518 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1519 break;
45b07ef3 1520 case FILE_MEMORY_MIGRATE:
700fe1ab 1521 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1522 break;
3e0d98b9 1523 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1524 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1525 break;
1526 case FILE_MEMORY_PRESSURE:
1527 retval = -EACCES;
1528 break;
825a46af 1529 case FILE_SPREAD_PAGE:
700fe1ab 1530 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1531 break;
1532 case FILE_SPREAD_SLAB:
700fe1ab 1533 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1534 break;
1da177e4
LT
1535 default:
1536 retval = -EINVAL;
700fe1ab 1537 break;
1da177e4 1538 }
8793d854 1539 cgroup_unlock();
1da177e4
LT
1540 return retval;
1541}
1542
5be7a479
PM
1543static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1544{
1545 int retval = 0;
1546 struct cpuset *cs = cgroup_cs(cgrp);
1547 cpuset_filetype_t type = cft->private;
1548
e3712395 1549 if (!cgroup_lock_live_group(cgrp))
5be7a479 1550 return -ENODEV;
e3712395 1551
5be7a479
PM
1552 switch (type) {
1553 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1554 retval = update_relax_domain_level(cs, val);
1555 break;
1556 default:
1557 retval = -EINVAL;
1558 break;
1559 }
1560 cgroup_unlock();
1561 return retval;
1562}
1563
e3712395
PM
1564/*
1565 * Common handling for a write to a "cpus" or "mems" file.
1566 */
1567static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1568 const char *buf)
1569{
1570 int retval = 0;
645fcc9d
LZ
1571 struct cpuset *cs = cgroup_cs(cgrp);
1572 struct cpuset *trialcs;
e3712395
PM
1573
1574 if (!cgroup_lock_live_group(cgrp))
1575 return -ENODEV;
1576
645fcc9d 1577 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1578 if (!trialcs) {
1579 retval = -ENOMEM;
1580 goto out;
1581 }
645fcc9d 1582
e3712395
PM
1583 switch (cft->private) {
1584 case FILE_CPULIST:
645fcc9d 1585 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1586 break;
1587 case FILE_MEMLIST:
645fcc9d 1588 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1589 break;
1590 default:
1591 retval = -EINVAL;
1592 break;
1593 }
645fcc9d
LZ
1594
1595 free_trial_cpuset(trialcs);
b75f38d6 1596out:
e3712395
PM
1597 cgroup_unlock();
1598 return retval;
1599}
1600
1da177e4
LT
1601/*
1602 * These ascii lists should be read in a single call, by using a user
1603 * buffer large enough to hold the entire map. If read in smaller
1604 * chunks, there is no guarantee of atomicity. Since the display format
1605 * used, list of ranges of sequential numbers, is variable length,
1606 * and since these maps can change value dynamically, one could read
1607 * gibberish by doing partial reads while a list was changing.
1608 * A single large read to a buffer that crosses a page boundary is
1609 * ok, because the result being copied to user land is not recomputed
1610 * across a page fault.
1611 */
1612
9303e0c4 1613static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1614{
9303e0c4 1615 size_t count;
1da177e4 1616
3d3f26a7 1617 mutex_lock(&callback_mutex);
9303e0c4 1618 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1619 mutex_unlock(&callback_mutex);
1da177e4 1620
9303e0c4 1621 return count;
1da177e4
LT
1622}
1623
9303e0c4 1624static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1625{
9303e0c4 1626 size_t count;
1da177e4 1627
3d3f26a7 1628 mutex_lock(&callback_mutex);
9303e0c4 1629 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1630 mutex_unlock(&callback_mutex);
1da177e4 1631
9303e0c4 1632 return count;
1da177e4
LT
1633}
1634
8793d854
PM
1635static ssize_t cpuset_common_file_read(struct cgroup *cont,
1636 struct cftype *cft,
1637 struct file *file,
1638 char __user *buf,
1639 size_t nbytes, loff_t *ppos)
1da177e4 1640{
8793d854 1641 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1642 cpuset_filetype_t type = cft->private;
1643 char *page;
1644 ssize_t retval = 0;
1645 char *s;
1da177e4 1646
e12ba74d 1647 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1648 return -ENOMEM;
1649
1650 s = page;
1651
1652 switch (type) {
1653 case FILE_CPULIST:
1654 s += cpuset_sprintf_cpulist(s, cs);
1655 break;
1656 case FILE_MEMLIST:
1657 s += cpuset_sprintf_memlist(s, cs);
1658 break;
1da177e4
LT
1659 default:
1660 retval = -EINVAL;
1661 goto out;
1662 }
1663 *s++ = '\n';
1da177e4 1664
eacaa1f5 1665 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1666out:
1667 free_page((unsigned long)page);
1668 return retval;
1669}
1670
700fe1ab
PM
1671static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1672{
1673 struct cpuset *cs = cgroup_cs(cont);
1674 cpuset_filetype_t type = cft->private;
1675 switch (type) {
1676 case FILE_CPU_EXCLUSIVE:
1677 return is_cpu_exclusive(cs);
1678 case FILE_MEM_EXCLUSIVE:
1679 return is_mem_exclusive(cs);
78608366
PM
1680 case FILE_MEM_HARDWALL:
1681 return is_mem_hardwall(cs);
700fe1ab
PM
1682 case FILE_SCHED_LOAD_BALANCE:
1683 return is_sched_load_balance(cs);
1684 case FILE_MEMORY_MIGRATE:
1685 return is_memory_migrate(cs);
1686 case FILE_MEMORY_PRESSURE_ENABLED:
1687 return cpuset_memory_pressure_enabled;
1688 case FILE_MEMORY_PRESSURE:
1689 return fmeter_getrate(&cs->fmeter);
1690 case FILE_SPREAD_PAGE:
1691 return is_spread_page(cs);
1692 case FILE_SPREAD_SLAB:
1693 return is_spread_slab(cs);
1694 default:
1695 BUG();
1696 }
cf417141
MK
1697
1698 /* Unreachable but makes gcc happy */
1699 return 0;
700fe1ab 1700}
1da177e4 1701
5be7a479
PM
1702static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1703{
1704 struct cpuset *cs = cgroup_cs(cont);
1705 cpuset_filetype_t type = cft->private;
1706 switch (type) {
1707 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1708 return cs->relax_domain_level;
1709 default:
1710 BUG();
1711 }
cf417141
MK
1712
1713 /* Unrechable but makes gcc happy */
1714 return 0;
5be7a479
PM
1715}
1716
1da177e4
LT
1717
1718/*
1719 * for the common functions, 'private' gives the type of file
1720 */
1721
addf2c73
PM
1722static struct cftype files[] = {
1723 {
1724 .name = "cpus",
1725 .read = cpuset_common_file_read,
e3712395
PM
1726 .write_string = cpuset_write_resmask,
1727 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1728 .private = FILE_CPULIST,
1729 },
1730
1731 {
1732 .name = "mems",
1733 .read = cpuset_common_file_read,
e3712395
PM
1734 .write_string = cpuset_write_resmask,
1735 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1736 .private = FILE_MEMLIST,
1737 },
1738
1739 {
1740 .name = "cpu_exclusive",
1741 .read_u64 = cpuset_read_u64,
1742 .write_u64 = cpuset_write_u64,
1743 .private = FILE_CPU_EXCLUSIVE,
1744 },
1745
1746 {
1747 .name = "mem_exclusive",
1748 .read_u64 = cpuset_read_u64,
1749 .write_u64 = cpuset_write_u64,
1750 .private = FILE_MEM_EXCLUSIVE,
1751 },
1752
78608366
PM
1753 {
1754 .name = "mem_hardwall",
1755 .read_u64 = cpuset_read_u64,
1756 .write_u64 = cpuset_write_u64,
1757 .private = FILE_MEM_HARDWALL,
1758 },
1759
addf2c73
PM
1760 {
1761 .name = "sched_load_balance",
1762 .read_u64 = cpuset_read_u64,
1763 .write_u64 = cpuset_write_u64,
1764 .private = FILE_SCHED_LOAD_BALANCE,
1765 },
1766
1767 {
1768 .name = "sched_relax_domain_level",
5be7a479
PM
1769 .read_s64 = cpuset_read_s64,
1770 .write_s64 = cpuset_write_s64,
addf2c73
PM
1771 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1772 },
1773
1774 {
1775 .name = "memory_migrate",
1776 .read_u64 = cpuset_read_u64,
1777 .write_u64 = cpuset_write_u64,
1778 .private = FILE_MEMORY_MIGRATE,
1779 },
1780
1781 {
1782 .name = "memory_pressure",
1783 .read_u64 = cpuset_read_u64,
1784 .write_u64 = cpuset_write_u64,
1785 .private = FILE_MEMORY_PRESSURE,
099fca32 1786 .mode = S_IRUGO,
addf2c73
PM
1787 },
1788
1789 {
1790 .name = "memory_spread_page",
1791 .read_u64 = cpuset_read_u64,
1792 .write_u64 = cpuset_write_u64,
1793 .private = FILE_SPREAD_PAGE,
1794 },
1795
1796 {
1797 .name = "memory_spread_slab",
1798 .read_u64 = cpuset_read_u64,
1799 .write_u64 = cpuset_write_u64,
1800 .private = FILE_SPREAD_SLAB,
1801 },
3e0d98b9 1802
4baf6e33
TH
1803 {
1804 .name = "memory_pressure_enabled",
1805 .flags = CFTYPE_ONLY_ON_ROOT,
1806 .read_u64 = cpuset_read_u64,
1807 .write_u64 = cpuset_write_u64,
1808 .private = FILE_MEMORY_PRESSURE_ENABLED,
1809 },
1da177e4 1810
4baf6e33
TH
1811 { } /* terminate */
1812};
1da177e4
LT
1813
1814/*
92fb9748 1815 * cpuset_css_alloc - allocate a cpuset css
2df167a3 1816 * cont: control group that the new cpuset will be part of
1da177e4
LT
1817 */
1818
92fb9748 1819static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1da177e4 1820{
c8f699bb 1821 struct cpuset *cs;
1da177e4 1822
c8f699bb 1823 if (!cont->parent)
8793d854 1824 return &top_cpuset.css;
033fa1c5 1825
c8f699bb 1826 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1827 if (!cs)
8793d854 1828 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1829 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1830 kfree(cs);
1831 return ERR_PTR(-ENOMEM);
1832 }
1da177e4 1833
029190c5 1834 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1835 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1836 nodes_clear(cs->mems_allowed);
3e0d98b9 1837 fmeter_init(&cs->fmeter);
1d3504fc 1838 cs->relax_domain_level = -1;
c8f699bb
TH
1839 cs->parent = cgroup_cs(cont->parent);
1840
1841 return &cs->css;
1842}
1843
1844static int cpuset_css_online(struct cgroup *cgrp)
1845{
1846 struct cpuset *cs = cgroup_cs(cgrp);
1847 struct cpuset *parent = cs->parent;
ae8086ce
TH
1848 struct cpuset *tmp_cs;
1849 struct cgroup *pos_cg;
c8f699bb
TH
1850
1851 if (!parent)
1852 return 0;
1853
efeb77b2 1854 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1855 if (is_spread_page(parent))
1856 set_bit(CS_SPREAD_PAGE, &cs->flags);
1857 if (is_spread_slab(parent))
1858 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1859
202f72d5 1860 number_of_cpusets++;
033fa1c5 1861
c8f699bb
TH
1862 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
1863 return 0;
033fa1c5
TH
1864
1865 /*
1866 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1867 * set. This flag handling is implemented in cgroup core for
1868 * histrical reasons - the flag may be specified during mount.
1869 *
1870 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1871 * refuse to clone the configuration - thereby refusing the task to
1872 * be entered, and as a result refusing the sys_unshare() or
1873 * clone() which initiated it. If this becomes a problem for some
1874 * users who wish to allow that scenario, then this could be
1875 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1876 * (and likewise for mems) to the new cgroup.
1877 */
ae8086ce
TH
1878 rcu_read_lock();
1879 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
1880 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1881 rcu_read_unlock();
c8f699bb 1882 return 0;
ae8086ce 1883 }
033fa1c5 1884 }
ae8086ce 1885 rcu_read_unlock();
033fa1c5
TH
1886
1887 mutex_lock(&callback_mutex);
1888 cs->mems_allowed = parent->mems_allowed;
1889 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1890 mutex_unlock(&callback_mutex);
c8f699bb
TH
1891
1892 return 0;
1893}
1894
1895static void cpuset_css_offline(struct cgroup *cgrp)
1896{
1897 struct cpuset *cs = cgroup_cs(cgrp);
1898
1899 /* css_offline is called w/o cgroup_mutex, grab it */
1900 cgroup_lock();
1901
1902 if (is_sched_load_balance(cs))
1903 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1904
1905 number_of_cpusets--;
efeb77b2 1906 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1907
1908 cgroup_unlock();
1da177e4
LT
1909}
1910
029190c5 1911/*
029190c5
PJ
1912 * If the cpuset being removed has its flag 'sched_load_balance'
1913 * enabled, then simulate turning sched_load_balance off, which
cf417141 1914 * will call async_rebuild_sched_domains().
029190c5
PJ
1915 */
1916
92fb9748 1917static void cpuset_css_free(struct cgroup *cont)
1da177e4 1918{
8793d854 1919 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1920
300ed6cb 1921 free_cpumask_var(cs->cpus_allowed);
8793d854 1922 kfree(cs);
1da177e4
LT
1923}
1924
8793d854
PM
1925struct cgroup_subsys cpuset_subsys = {
1926 .name = "cpuset",
92fb9748 1927 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
1928 .css_online = cpuset_css_online,
1929 .css_offline = cpuset_css_offline,
92fb9748 1930 .css_free = cpuset_css_free,
8793d854
PM
1931 .can_attach = cpuset_can_attach,
1932 .attach = cpuset_attach,
8793d854 1933 .subsys_id = cpuset_subsys_id,
4baf6e33 1934 .base_cftypes = files,
8793d854
PM
1935 .early_init = 1,
1936};
1937
1da177e4
LT
1938/**
1939 * cpuset_init - initialize cpusets at system boot
1940 *
1941 * Description: Initialize top_cpuset and the cpuset internal file system,
1942 **/
1943
1944int __init cpuset_init(void)
1945{
8793d854 1946 int err = 0;
1da177e4 1947
58568d2a
MX
1948 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1949 BUG();
1950
300ed6cb 1951 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1952 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1953
3e0d98b9 1954 fmeter_init(&top_cpuset.fmeter);
029190c5 1955 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1956 top_cpuset.relax_domain_level = -1;
1da177e4 1957
1da177e4
LT
1958 err = register_filesystem(&cpuset_fs_type);
1959 if (err < 0)
8793d854
PM
1960 return err;
1961
2341d1b6
LZ
1962 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1963 BUG();
1964
202f72d5 1965 number_of_cpusets = 1;
8793d854 1966 return 0;
1da177e4
LT
1967}
1968
956db3ca
CW
1969/**
1970 * cpuset_do_move_task - move a given task to another cpuset
1971 * @tsk: pointer to task_struct the task to move
1972 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1973 *
1974 * Called by cgroup_scan_tasks() for each task in a cgroup.
1975 * Return nonzero to stop the walk through the tasks.
1976 */
9e0c914c
AB
1977static void cpuset_do_move_task(struct task_struct *tsk,
1978 struct cgroup_scanner *scan)
956db3ca 1979{
7f81b1ae 1980 struct cgroup *new_cgroup = scan->data;
956db3ca 1981
7f81b1ae 1982 cgroup_attach_task(new_cgroup, tsk);
956db3ca
CW
1983}
1984
1985/**
1986 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1987 * @from: cpuset in which the tasks currently reside
1988 * @to: cpuset to which the tasks will be moved
1989 *
c8d9c90c
PJ
1990 * Called with cgroup_mutex held
1991 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1992 *
1993 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1994 * calling callback functions for each.
1995 */
1996static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1997{
7f81b1ae 1998 struct cgroup_scanner scan;
956db3ca 1999
7f81b1ae
LZ
2000 scan.cg = from->css.cgroup;
2001 scan.test_task = NULL; /* select all tasks in cgroup */
2002 scan.process_task = cpuset_do_move_task;
2003 scan.heap = NULL;
2004 scan.data = to->css.cgroup;
956db3ca 2005
7f81b1ae 2006 if (cgroup_scan_tasks(&scan))
956db3ca
CW
2007 printk(KERN_ERR "move_member_tasks_to_cpuset: "
2008 "cgroup_scan_tasks failed\n");
2009}
2010
b1aac8bb 2011/*
cf417141 2012 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2013 * or memory nodes, we need to walk over the cpuset hierarchy,
2014 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2015 * last CPU or node from a cpuset, then move the tasks in the empty
2016 * cpuset to its next-highest non-empty parent.
b1aac8bb 2017 *
c8d9c90c
PJ
2018 * Called with cgroup_mutex held
2019 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 2020 */
956db3ca
CW
2021static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2022{
2023 struct cpuset *parent;
2024
956db3ca
CW
2025 /*
2026 * Find its next-highest non-empty parent, (top cpuset
2027 * has online cpus, so can't be empty).
2028 */
2029 parent = cs->parent;
300ed6cb 2030 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2031 nodes_empty(parent->mems_allowed))
956db3ca 2032 parent = parent->parent;
956db3ca
CW
2033
2034 move_member_tasks_to_cpuset(cs, parent);
2035}
2036
80d1fa64
SB
2037/*
2038 * Helper function to traverse cpusets.
2039 * It can be used to walk the cpuset tree from top to bottom, completing
2040 * one layer before dropping down to the next (thus always processing a
2041 * node before any of its children).
2042 */
2043static struct cpuset *cpuset_next(struct list_head *queue)
2044{
2045 struct cpuset *cp;
2046 struct cpuset *child; /* scans child cpusets of cp */
2047 struct cgroup *cont;
2048
2049 if (list_empty(queue))
2050 return NULL;
2051
2052 cp = list_first_entry(queue, struct cpuset, stack_list);
2053 list_del(queue->next);
ae8086ce
TH
2054 rcu_read_lock();
2055 cpuset_for_each_child(child, cont, cp)
80d1fa64 2056 list_add_tail(&child->stack_list, queue);
ae8086ce 2057 rcu_read_unlock();
80d1fa64
SB
2058
2059 return cp;
2060}
2061
2062
956db3ca 2063/*
7ddf96b0
SB
2064 * Walk the specified cpuset subtree upon a hotplug operation (CPU/Memory
2065 * online/offline) and update the cpusets accordingly.
2066 * For regular CPU/Mem hotplug, look for empty cpusets; the tasks of such
2067 * cpuset must be moved to a parent cpuset.
956db3ca 2068 *
2df167a3 2069 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
2070 * cpus_allowed and mems_allowed.
2071 *
2072 * This walk processes the tree from top to bottom, completing one layer
2073 * before dropping down to the next. It always processes a node before
2074 * any of its children.
2075 *
38d7bee9 2076 * In the case of memory hot-unplug, it will remove nodes from N_MEMORY
a1cd2b13 2077 * if all present pages from a node are offlined.
956db3ca 2078 */
7ddf96b0
SB
2079static void
2080scan_cpusets_upon_hotplug(struct cpuset *root, enum hotplug_event event)
b1aac8bb 2081{
8d1e6266 2082 LIST_HEAD(queue);
7ddf96b0 2083 struct cpuset *cp; /* scans cpusets being updated */
ee24d379 2084 static nodemask_t oldmems; /* protected by cgroup_mutex */
b1aac8bb 2085
956db3ca
CW
2086 list_add_tail((struct list_head *)&root->stack_list, &queue);
2087
7ddf96b0
SB
2088 switch (event) {
2089 case CPUSET_CPU_OFFLINE:
2090 while ((cp = cpuset_next(&queue)) != NULL) {
2091
2092 /* Continue past cpusets with all cpus online */
2093 if (cpumask_subset(cp->cpus_allowed, cpu_active_mask))
2094 continue;
2095
2096 /* Remove offline cpus from this cpuset. */
2097 mutex_lock(&callback_mutex);
2098 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2099 cpu_active_mask);
2100 mutex_unlock(&callback_mutex);
2101
2102 /* Move tasks from the empty cpuset to a parent */
2103 if (cpumask_empty(cp->cpus_allowed))
2104 remove_tasks_in_empty_cpuset(cp);
2105 else
2106 update_tasks_cpumask(cp, NULL);
2107 }
2108 break;
b4501295 2109
7ddf96b0
SB
2110 case CPUSET_MEM_OFFLINE:
2111 while ((cp = cpuset_next(&queue)) != NULL) {
b4501295 2112
7ddf96b0
SB
2113 /* Continue past cpusets with all mems online */
2114 if (nodes_subset(cp->mems_allowed,
38d7bee9 2115 node_states[N_MEMORY]))
7ddf96b0 2116 continue;
f9b4fb8d 2117
7ddf96b0
SB
2118 oldmems = cp->mems_allowed;
2119
2120 /* Remove offline mems from this cpuset. */
2121 mutex_lock(&callback_mutex);
2122 nodes_and(cp->mems_allowed, cp->mems_allowed,
38d7bee9 2123 node_states[N_MEMORY]);
7ddf96b0 2124 mutex_unlock(&callback_mutex);
b4501295 2125
7ddf96b0
SB
2126 /* Move tasks from the empty cpuset to a parent */
2127 if (nodes_empty(cp->mems_allowed))
2128 remove_tasks_in_empty_cpuset(cp);
2129 else
2130 update_tasks_nodemask(cp, &oldmems, NULL);
f9b4fb8d 2131 }
b1aac8bb
PJ
2132 }
2133}
2134
4c4d50f7
PJ
2135/*
2136 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2137 * period. This is necessary in order to make cpusets transparent
2138 * (of no affect) on systems that are actively using CPU hotplug
2139 * but making no active use of cpusets.
2140 *
d35be8ba
SB
2141 * The only exception to this is suspend/resume, where we don't
2142 * modify cpusets at all.
2143 *
38837fc7 2144 * This routine ensures that top_cpuset.cpus_allowed tracks
3a101d05 2145 * cpu_active_mask on each CPU hotplug (cpuhp) event.
cf417141
MK
2146 *
2147 * Called within get_online_cpus(). Needs to call cgroup_lock()
2148 * before calling generate_sched_domains().
7ddf96b0
SB
2149 *
2150 * @cpu_online: Indicates whether this is a CPU online event (true) or
2151 * a CPU offline event (false).
4c4d50f7 2152 */
7ddf96b0 2153void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2154{
cf417141 2155 struct sched_domain_attr *attr;
acc3f5d7 2156 cpumask_var_t *doms;
cf417141
MK
2157 int ndoms;
2158
cf417141 2159 cgroup_lock();
0b4217b3 2160 mutex_lock(&callback_mutex);
6ad4c188 2161 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
0b4217b3 2162 mutex_unlock(&callback_mutex);
7ddf96b0
SB
2163
2164 if (!cpu_online)
2165 scan_cpusets_upon_hotplug(&top_cpuset, CPUSET_CPU_OFFLINE);
2166
cf417141
MK
2167 ndoms = generate_sched_domains(&doms, &attr);
2168 cgroup_unlock();
2169
2170 /* Have scheduler rebuild the domains */
2171 partition_sched_domains(ndoms, doms, attr);
4c4d50f7 2172}
4c4d50f7 2173
b1aac8bb 2174#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2175/*
38d7bee9
LJ
2176 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2177 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2178 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2179 */
f481891f
MX
2180static int cpuset_track_online_nodes(struct notifier_block *self,
2181 unsigned long action, void *arg)
38837fc7 2182{
ee24d379 2183 static nodemask_t oldmems; /* protected by cgroup_mutex */
5ab116c9 2184
cf417141 2185 cgroup_lock();
f481891f
MX
2186 switch (action) {
2187 case MEM_ONLINE:
ee24d379 2188 oldmems = top_cpuset.mems_allowed;
0b4217b3 2189 mutex_lock(&callback_mutex);
38d7bee9 2190 top_cpuset.mems_allowed = node_states[N_MEMORY];
0b4217b3 2191 mutex_unlock(&callback_mutex);
ee24d379 2192 update_tasks_nodemask(&top_cpuset, &oldmems, NULL);
5ab116c9
MX
2193 break;
2194 case MEM_OFFLINE:
2195 /*
2196 * needn't update top_cpuset.mems_allowed explicitly because
7ddf96b0 2197 * scan_cpusets_upon_hotplug() will update it.
5ab116c9 2198 */
7ddf96b0 2199 scan_cpusets_upon_hotplug(&top_cpuset, CPUSET_MEM_OFFLINE);
f481891f
MX
2200 break;
2201 default:
2202 break;
2203 }
cf417141 2204 cgroup_unlock();
53feb297 2205
f481891f 2206 return NOTIFY_OK;
38837fc7
PJ
2207}
2208#endif
2209
1da177e4
LT
2210/**
2211 * cpuset_init_smp - initialize cpus_allowed
2212 *
2213 * Description: Finish top cpuset after cpu, node maps are initialized
2214 **/
2215
2216void __init cpuset_init_smp(void)
2217{
6ad4c188 2218 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2219 top_cpuset.mems_allowed = node_states[N_MEMORY];
4c4d50f7 2220
f481891f 2221 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
f90d4118
MX
2222
2223 cpuset_wq = create_singlethread_workqueue("cpuset");
2224 BUG_ON(!cpuset_wq);
1da177e4
LT
2225}
2226
2227/**
1da177e4
LT
2228 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2229 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2230 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2231 *
300ed6cb 2232 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2233 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2234 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2235 * tasks cpuset.
2236 **/
2237
6af866af 2238void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2239{
3d3f26a7 2240 mutex_lock(&callback_mutex);
909d75a3 2241 task_lock(tsk);
f9a86fcb 2242 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2243 task_unlock(tsk);
897f0b3c 2244 mutex_unlock(&callback_mutex);
1da177e4
LT
2245}
2246
2baab4e9 2247void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82
ON
2248{
2249 const struct cpuset *cs;
9084bb82
ON
2250
2251 rcu_read_lock();
2252 cs = task_cs(tsk);
2253 if (cs)
1e1b6c51 2254 do_set_cpus_allowed(tsk, cs->cpus_allowed);
9084bb82
ON
2255 rcu_read_unlock();
2256
2257 /*
2258 * We own tsk->cpus_allowed, nobody can change it under us.
2259 *
2260 * But we used cs && cs->cpus_allowed lockless and thus can
2261 * race with cgroup_attach_task() or update_cpumask() and get
2262 * the wrong tsk->cpus_allowed. However, both cases imply the
2263 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2264 * which takes task_rq_lock().
2265 *
2266 * If we are called after it dropped the lock we must see all
2267 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2268 * set any mask even if it is not right from task_cs() pov,
2269 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2270 *
2271 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2272 * if required.
9084bb82 2273 */
9084bb82
ON
2274}
2275
1da177e4
LT
2276void cpuset_init_current_mems_allowed(void)
2277{
f9a86fcb 2278 nodes_setall(current->mems_allowed);
1da177e4
LT
2279}
2280
909d75a3
PJ
2281/**
2282 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2283 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2284 *
2285 * Description: Returns the nodemask_t mems_allowed of the cpuset
2286 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2287 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2288 * tasks cpuset.
2289 **/
2290
2291nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2292{
2293 nodemask_t mask;
2294
3d3f26a7 2295 mutex_lock(&callback_mutex);
909d75a3 2296 task_lock(tsk);
8793d854 2297 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2298 task_unlock(tsk);
3d3f26a7 2299 mutex_unlock(&callback_mutex);
909d75a3
PJ
2300
2301 return mask;
2302}
2303
d9fd8a6d 2304/**
19770b32
MG
2305 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2306 * @nodemask: the nodemask to be checked
d9fd8a6d 2307 *
19770b32 2308 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2309 */
19770b32 2310int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2311{
19770b32 2312 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2313}
2314
9bf2229f 2315/*
78608366
PM
2316 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2317 * mem_hardwall ancestor to the specified cpuset. Call holding
2318 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2319 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2320 */
78608366 2321static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2322{
78608366 2323 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2324 cs = cs->parent;
2325 return cs;
2326}
2327
d9fd8a6d 2328/**
a1bc5a4e
DR
2329 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2330 * @node: is this an allowed node?
02a0e53d 2331 * @gfp_mask: memory allocation flags
d9fd8a6d 2332 *
a1bc5a4e
DR
2333 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2334 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2335 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2336 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2337 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2338 * flag, yes.
9bf2229f
PJ
2339 * Otherwise, no.
2340 *
a1bc5a4e
DR
2341 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2342 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2343 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2344 *
a1bc5a4e
DR
2345 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2346 * cpusets, and never sleeps.
02a0e53d
PJ
2347 *
2348 * The __GFP_THISNODE placement logic is really handled elsewhere,
2349 * by forcibly using a zonelist starting at a specified node, and by
2350 * (in get_page_from_freelist()) refusing to consider the zones for
2351 * any node on the zonelist except the first. By the time any such
2352 * calls get to this routine, we should just shut up and say 'yes'.
2353 *
9bf2229f 2354 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2355 * and do not allow allocations outside the current tasks cpuset
2356 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2357 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2358 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2359 *
02a0e53d
PJ
2360 * Scanning up parent cpusets requires callback_mutex. The
2361 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2362 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2363 * current tasks mems_allowed came up empty on the first pass over
2364 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2365 * cpuset are short of memory, might require taking the callback_mutex
2366 * mutex.
9bf2229f 2367 *
36be57ff 2368 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2369 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2370 * so no allocation on a node outside the cpuset is allowed (unless
2371 * in interrupt, of course).
36be57ff
PJ
2372 *
2373 * The second pass through get_page_from_freelist() doesn't even call
2374 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2375 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2376 * in alloc_flags. That logic and the checks below have the combined
2377 * affect that:
9bf2229f
PJ
2378 * in_interrupt - any node ok (current task context irrelevant)
2379 * GFP_ATOMIC - any node ok
c596d9f3 2380 * TIF_MEMDIE - any node ok
78608366 2381 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2382 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2383 *
2384 * Rule:
a1bc5a4e 2385 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2386 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2387 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2388 */
a1bc5a4e 2389int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2390{
9bf2229f 2391 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2392 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2393
9b819d20 2394 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2395 return 1;
92d1dbd2 2396 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2397 if (node_isset(node, current->mems_allowed))
2398 return 1;
c596d9f3
DR
2399 /*
2400 * Allow tasks that have access to memory reserves because they have
2401 * been OOM killed to get memory anywhere.
2402 */
2403 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2404 return 1;
9bf2229f
PJ
2405 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2406 return 0;
2407
5563e770
BP
2408 if (current->flags & PF_EXITING) /* Let dying task have memory */
2409 return 1;
2410
9bf2229f 2411 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2412 mutex_lock(&callback_mutex);
053199ed 2413
053199ed 2414 task_lock(current);
78608366 2415 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2416 task_unlock(current);
2417
9bf2229f 2418 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2419 mutex_unlock(&callback_mutex);
9bf2229f 2420 return allowed;
1da177e4
LT
2421}
2422
02a0e53d 2423/*
a1bc5a4e
DR
2424 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2425 * @node: is this an allowed node?
02a0e53d
PJ
2426 * @gfp_mask: memory allocation flags
2427 *
a1bc5a4e
DR
2428 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2429 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2430 * yes. If the task has been OOM killed and has access to memory reserves as
2431 * specified by the TIF_MEMDIE flag, yes.
2432 * Otherwise, no.
02a0e53d
PJ
2433 *
2434 * The __GFP_THISNODE placement logic is really handled elsewhere,
2435 * by forcibly using a zonelist starting at a specified node, and by
2436 * (in get_page_from_freelist()) refusing to consider the zones for
2437 * any node on the zonelist except the first. By the time any such
2438 * calls get to this routine, we should just shut up and say 'yes'.
2439 *
a1bc5a4e
DR
2440 * Unlike the cpuset_node_allowed_softwall() variant, above,
2441 * this variant requires that the node be in the current task's
02a0e53d
PJ
2442 * mems_allowed or that we're in interrupt. It does not scan up the
2443 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2444 * It never sleeps.
2445 */
a1bc5a4e 2446int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2447{
02a0e53d
PJ
2448 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2449 return 1;
02a0e53d
PJ
2450 if (node_isset(node, current->mems_allowed))
2451 return 1;
dedf8b79
DW
2452 /*
2453 * Allow tasks that have access to memory reserves because they have
2454 * been OOM killed to get memory anywhere.
2455 */
2456 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2457 return 1;
02a0e53d
PJ
2458 return 0;
2459}
2460
825a46af 2461/**
6adef3eb
JS
2462 * cpuset_mem_spread_node() - On which node to begin search for a file page
2463 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2464 *
2465 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2466 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2467 * and if the memory allocation used cpuset_mem_spread_node()
2468 * to determine on which node to start looking, as it will for
2469 * certain page cache or slab cache pages such as used for file
2470 * system buffers and inode caches, then instead of starting on the
2471 * local node to look for a free page, rather spread the starting
2472 * node around the tasks mems_allowed nodes.
2473 *
2474 * We don't have to worry about the returned node being offline
2475 * because "it can't happen", and even if it did, it would be ok.
2476 *
2477 * The routines calling guarantee_online_mems() are careful to
2478 * only set nodes in task->mems_allowed that are online. So it
2479 * should not be possible for the following code to return an
2480 * offline node. But if it did, that would be ok, as this routine
2481 * is not returning the node where the allocation must be, only
2482 * the node where the search should start. The zonelist passed to
2483 * __alloc_pages() will include all nodes. If the slab allocator
2484 * is passed an offline node, it will fall back to the local node.
2485 * See kmem_cache_alloc_node().
2486 */
2487
6adef3eb 2488static int cpuset_spread_node(int *rotor)
825a46af
PJ
2489{
2490 int node;
2491
6adef3eb 2492 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2493 if (node == MAX_NUMNODES)
2494 node = first_node(current->mems_allowed);
6adef3eb 2495 *rotor = node;
825a46af
PJ
2496 return node;
2497}
6adef3eb
JS
2498
2499int cpuset_mem_spread_node(void)
2500{
778d3b0f
MH
2501 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2502 current->cpuset_mem_spread_rotor =
2503 node_random(&current->mems_allowed);
2504
6adef3eb
JS
2505 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2506}
2507
2508int cpuset_slab_spread_node(void)
2509{
778d3b0f
MH
2510 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2511 current->cpuset_slab_spread_rotor =
2512 node_random(&current->mems_allowed);
2513
6adef3eb
JS
2514 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2515}
2516
825a46af
PJ
2517EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2518
ef08e3b4 2519/**
bbe373f2
DR
2520 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2521 * @tsk1: pointer to task_struct of some task.
2522 * @tsk2: pointer to task_struct of some other task.
2523 *
2524 * Description: Return true if @tsk1's mems_allowed intersects the
2525 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2526 * one of the task's memory usage might impact the memory available
2527 * to the other.
ef08e3b4
PJ
2528 **/
2529
bbe373f2
DR
2530int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2531 const struct task_struct *tsk2)
ef08e3b4 2532{
bbe373f2 2533 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2534}
2535
75aa1994
DR
2536/**
2537 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2538 * @task: pointer to task_struct of some task.
2539 *
2540 * Description: Prints @task's name, cpuset name, and cached copy of its
2541 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2542 * dereferencing task_cs(task).
2543 */
2544void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2545{
2546 struct dentry *dentry;
2547
2548 dentry = task_cs(tsk)->css.cgroup->dentry;
2549 spin_lock(&cpuset_buffer_lock);
2550 snprintf(cpuset_name, CPUSET_NAME_LEN,
2551 dentry ? (const char *)dentry->d_name.name : "/");
2552 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2553 tsk->mems_allowed);
2554 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2555 tsk->comm, cpuset_name, cpuset_nodelist);
2556 spin_unlock(&cpuset_buffer_lock);
2557}
2558
3e0d98b9
PJ
2559/*
2560 * Collection of memory_pressure is suppressed unless
2561 * this flag is enabled by writing "1" to the special
2562 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2563 */
2564
c5b2aff8 2565int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2566
2567/**
2568 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2569 *
2570 * Keep a running average of the rate of synchronous (direct)
2571 * page reclaim efforts initiated by tasks in each cpuset.
2572 *
2573 * This represents the rate at which some task in the cpuset
2574 * ran low on memory on all nodes it was allowed to use, and
2575 * had to enter the kernels page reclaim code in an effort to
2576 * create more free memory by tossing clean pages or swapping
2577 * or writing dirty pages.
2578 *
2579 * Display to user space in the per-cpuset read-only file
2580 * "memory_pressure". Value displayed is an integer
2581 * representing the recent rate of entry into the synchronous
2582 * (direct) page reclaim by any task attached to the cpuset.
2583 **/
2584
2585void __cpuset_memory_pressure_bump(void)
2586{
3e0d98b9 2587 task_lock(current);
8793d854 2588 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2589 task_unlock(current);
2590}
2591
8793d854 2592#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2593/*
2594 * proc_cpuset_show()
2595 * - Print tasks cpuset path into seq_file.
2596 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2597 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2598 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2599 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2600 * anyway.
1da177e4 2601 */
029190c5 2602static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2603{
13b41b09 2604 struct pid *pid;
1da177e4
LT
2605 struct task_struct *tsk;
2606 char *buf;
8793d854 2607 struct cgroup_subsys_state *css;
99f89551 2608 int retval;
1da177e4 2609
99f89551 2610 retval = -ENOMEM;
1da177e4
LT
2611 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2612 if (!buf)
99f89551
EB
2613 goto out;
2614
2615 retval = -ESRCH;
13b41b09
EB
2616 pid = m->private;
2617 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2618 if (!tsk)
2619 goto out_free;
1da177e4 2620
99f89551 2621 retval = -EINVAL;
8793d854
PM
2622 cgroup_lock();
2623 css = task_subsys_state(tsk, cpuset_subsys_id);
2624 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2625 if (retval < 0)
99f89551 2626 goto out_unlock;
1da177e4
LT
2627 seq_puts(m, buf);
2628 seq_putc(m, '\n');
99f89551 2629out_unlock:
8793d854 2630 cgroup_unlock();
99f89551
EB
2631 put_task_struct(tsk);
2632out_free:
1da177e4 2633 kfree(buf);
99f89551 2634out:
1da177e4
LT
2635 return retval;
2636}
2637
2638static int cpuset_open(struct inode *inode, struct file *file)
2639{
13b41b09
EB
2640 struct pid *pid = PROC_I(inode)->pid;
2641 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2642}
2643
9a32144e 2644const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2645 .open = cpuset_open,
2646 .read = seq_read,
2647 .llseek = seq_lseek,
2648 .release = single_release,
2649};
8793d854 2650#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2651
d01d4827 2652/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2653void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2654{
df5f8314 2655 seq_printf(m, "Mems_allowed:\t");
30e8e136 2656 seq_nodemask(m, &task->mems_allowed);
df5f8314 2657 seq_printf(m, "\n");
39106dcf 2658 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2659 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2660 seq_printf(m, "\n");
1da177e4 2661}