cgroup: fix a race between cgroup_mount() and cgroup_kill_sb()
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
664eedde 64struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
202f72d5 65
3e0d98b9
PJ
66/* See "Frequency meter" comments, below. */
67
68struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73};
74
1da177e4 75struct cpuset {
8793d854
PM
76 struct cgroup_subsys_state css;
77
1da177e4 78 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 79 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
80 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
81
33ad801d
LZ
82 /*
83 * This is old Memory Nodes tasks took on.
84 *
85 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
86 * - A new cpuset's old_mems_allowed is initialized when some
87 * task is moved into it.
88 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
89 * cpuset.mems_allowed and have tasks' nodemask updated, and
90 * then old_mems_allowed is updated to mems_allowed.
91 */
92 nodemask_t old_mems_allowed;
93
3e0d98b9 94 struct fmeter fmeter; /* memory_pressure filter */
029190c5 95
452477fa
TH
96 /*
97 * Tasks are being attached to this cpuset. Used to prevent
98 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
99 */
100 int attach_in_progress;
101
029190c5
PJ
102 /* partition number for rebuild_sched_domains() */
103 int pn;
956db3ca 104
1d3504fc
HS
105 /* for custom sched domain */
106 int relax_domain_level;
1da177e4
LT
107};
108
a7c6d554 109static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
8793d854 110{
a7c6d554 111 return css ? container_of(css, struct cpuset, css) : NULL;
8793d854
PM
112}
113
114/* Retrieve the cpuset for a task */
115static inline struct cpuset *task_cs(struct task_struct *task)
116{
073219e9 117 return css_cs(task_css(task, cpuset_cgrp_id));
8793d854 118}
8793d854 119
c9710d80 120static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 121{
5c9d535b 122 return css_cs(cs->css.parent);
c431069f
TH
123}
124
b246272e
DR
125#ifdef CONFIG_NUMA
126static inline bool task_has_mempolicy(struct task_struct *task)
127{
128 return task->mempolicy;
129}
130#else
131static inline bool task_has_mempolicy(struct task_struct *task)
132{
133 return false;
134}
135#endif
136
137
1da177e4
LT
138/* bits in struct cpuset flags field */
139typedef enum {
efeb77b2 140 CS_ONLINE,
1da177e4
LT
141 CS_CPU_EXCLUSIVE,
142 CS_MEM_EXCLUSIVE,
78608366 143 CS_MEM_HARDWALL,
45b07ef3 144 CS_MEMORY_MIGRATE,
029190c5 145 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
146 CS_SPREAD_PAGE,
147 CS_SPREAD_SLAB,
1da177e4
LT
148} cpuset_flagbits_t;
149
150/* convenient tests for these bits */
efeb77b2
TH
151static inline bool is_cpuset_online(const struct cpuset *cs)
152{
153 return test_bit(CS_ONLINE, &cs->flags);
154}
155
1da177e4
LT
156static inline int is_cpu_exclusive(const struct cpuset *cs)
157{
7b5b9ef0 158 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
159}
160
161static inline int is_mem_exclusive(const struct cpuset *cs)
162{
7b5b9ef0 163 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
164}
165
78608366
PM
166static inline int is_mem_hardwall(const struct cpuset *cs)
167{
168 return test_bit(CS_MEM_HARDWALL, &cs->flags);
169}
170
029190c5
PJ
171static inline int is_sched_load_balance(const struct cpuset *cs)
172{
173 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
174}
175
45b07ef3
PJ
176static inline int is_memory_migrate(const struct cpuset *cs)
177{
7b5b9ef0 178 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
179}
180
825a46af
PJ
181static inline int is_spread_page(const struct cpuset *cs)
182{
183 return test_bit(CS_SPREAD_PAGE, &cs->flags);
184}
185
186static inline int is_spread_slab(const struct cpuset *cs)
187{
188 return test_bit(CS_SPREAD_SLAB, &cs->flags);
189}
190
1da177e4 191static struct cpuset top_cpuset = {
efeb77b2
TH
192 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
193 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
194};
195
ae8086ce
TH
196/**
197 * cpuset_for_each_child - traverse online children of a cpuset
198 * @child_cs: loop cursor pointing to the current child
492eb21b 199 * @pos_css: used for iteration
ae8086ce
TH
200 * @parent_cs: target cpuset to walk children of
201 *
202 * Walk @child_cs through the online children of @parent_cs. Must be used
203 * with RCU read locked.
204 */
492eb21b
TH
205#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
206 css_for_each_child((pos_css), &(parent_cs)->css) \
207 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 208
fc560a26
TH
209/**
210 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
211 * @des_cs: loop cursor pointing to the current descendant
492eb21b 212 * @pos_css: used for iteration
fc560a26
TH
213 * @root_cs: target cpuset to walk ancestor of
214 *
215 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b 216 * with RCU read locked. The caller may modify @pos_css by calling
bd8815a6
TH
217 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
218 * iteration and the first node to be visited.
fc560a26 219 */
492eb21b
TH
220#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
221 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
222 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 223
1da177e4 224/*
5d21cc2d
TH
225 * There are two global mutexes guarding cpuset structures - cpuset_mutex
226 * and callback_mutex. The latter may nest inside the former. We also
227 * require taking task_lock() when dereferencing a task's cpuset pointer.
228 * See "The task_lock() exception", at the end of this comment.
229 *
230 * A task must hold both mutexes to modify cpusets. If a task holds
231 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
232 * is the only task able to also acquire callback_mutex and be able to
233 * modify cpusets. It can perform various checks on the cpuset structure
234 * first, knowing nothing will change. It can also allocate memory while
235 * just holding cpuset_mutex. While it is performing these checks, various
236 * callback routines can briefly acquire callback_mutex to query cpusets.
237 * Once it is ready to make the changes, it takes callback_mutex, blocking
238 * everyone else.
053199ed
PJ
239 *
240 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 241 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
242 * from one of the callbacks into the cpuset code from within
243 * __alloc_pages().
244 *
3d3f26a7 245 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
246 * access to cpusets.
247 *
58568d2a
MX
248 * Now, the task_struct fields mems_allowed and mempolicy may be changed
249 * by other task, we use alloc_lock in the task_struct fields to protect
250 * them.
053199ed 251 *
3d3f26a7 252 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
253 * small pieces of code, such as when reading out possibly multi-word
254 * cpumasks and nodemasks.
255 *
2df167a3
PM
256 * Accessing a task's cpuset should be done in accordance with the
257 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
258 */
259
5d21cc2d 260static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 261static DEFINE_MUTEX(callback_mutex);
4247bdc6 262
3a5a6d0c
TH
263/*
264 * CPU / memory hotplug is handled asynchronously.
265 */
266static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
267static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
268
e44193d3
LZ
269static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
270
cf417141
MK
271/*
272 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 273 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
274 * silently switch it to mount "cgroup" instead
275 */
f7e83571
AV
276static struct dentry *cpuset_mount(struct file_system_type *fs_type,
277 int flags, const char *unused_dev_name, void *data)
1da177e4 278{
8793d854 279 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 280 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
281 if (cgroup_fs) {
282 char mountopts[] =
283 "cpuset,noprefix,"
284 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
285 ret = cgroup_fs->mount(cgroup_fs, flags,
286 unused_dev_name, mountopts);
8793d854
PM
287 put_filesystem(cgroup_fs);
288 }
289 return ret;
1da177e4
LT
290}
291
292static struct file_system_type cpuset_fs_type = {
293 .name = "cpuset",
f7e83571 294 .mount = cpuset_mount,
1da177e4
LT
295};
296
1da177e4 297/*
300ed6cb 298 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 299 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
300 * until we find one that does have some online cpus. The top
301 * cpuset always has some cpus online.
1da177e4
LT
302 *
303 * One way or another, we guarantee to return some non-empty subset
5f054e31 304 * of cpu_online_mask.
1da177e4 305 *
3d3f26a7 306 * Call with callback_mutex held.
1da177e4 307 */
c9710d80 308static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 309{
40df2deb 310 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 311 cs = parent_cs(cs);
40df2deb 312 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4
LT
313}
314
315/*
316 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
317 * are online, with memory. If none are online with memory, walk
318 * up the cpuset hierarchy until we find one that does have some
40df2deb 319 * online mems. The top cpuset always has some mems online.
1da177e4
LT
320 *
321 * One way or another, we guarantee to return some non-empty subset
38d7bee9 322 * of node_states[N_MEMORY].
1da177e4 323 *
3d3f26a7 324 * Call with callback_mutex held.
1da177e4 325 */
c9710d80 326static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 327{
40df2deb 328 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
c431069f 329 cs = parent_cs(cs);
40df2deb 330 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
1da177e4
LT
331}
332
f3b39d47
MX
333/*
334 * update task's spread flag if cpuset's page/slab spread flag is set
335 *
5d21cc2d 336 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
337 */
338static void cpuset_update_task_spread_flag(struct cpuset *cs,
339 struct task_struct *tsk)
340{
341 if (is_spread_page(cs))
342 tsk->flags |= PF_SPREAD_PAGE;
343 else
344 tsk->flags &= ~PF_SPREAD_PAGE;
345 if (is_spread_slab(cs))
346 tsk->flags |= PF_SPREAD_SLAB;
347 else
348 tsk->flags &= ~PF_SPREAD_SLAB;
349}
350
1da177e4
LT
351/*
352 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
353 *
354 * One cpuset is a subset of another if all its allowed CPUs and
355 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 356 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
357 */
358
359static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
360{
300ed6cb 361 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
362 nodes_subset(p->mems_allowed, q->mems_allowed) &&
363 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
364 is_mem_exclusive(p) <= is_mem_exclusive(q);
365}
366
645fcc9d
LZ
367/**
368 * alloc_trial_cpuset - allocate a trial cpuset
369 * @cs: the cpuset that the trial cpuset duplicates
370 */
c9710d80 371static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 372{
300ed6cb
LZ
373 struct cpuset *trial;
374
375 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
376 if (!trial)
377 return NULL;
378
379 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
380 kfree(trial);
381 return NULL;
382 }
383 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
384
385 return trial;
645fcc9d
LZ
386}
387
388/**
389 * free_trial_cpuset - free the trial cpuset
390 * @trial: the trial cpuset to be freed
391 */
392static void free_trial_cpuset(struct cpuset *trial)
393{
300ed6cb 394 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
395 kfree(trial);
396}
397
1da177e4
LT
398/*
399 * validate_change() - Used to validate that any proposed cpuset change
400 * follows the structural rules for cpusets.
401 *
402 * If we replaced the flag and mask values of the current cpuset
403 * (cur) with those values in the trial cpuset (trial), would
404 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 405 * cpuset_mutex held.
1da177e4
LT
406 *
407 * 'cur' is the address of an actual, in-use cpuset. Operations
408 * such as list traversal that depend on the actual address of the
409 * cpuset in the list must use cur below, not trial.
410 *
411 * 'trial' is the address of bulk structure copy of cur, with
412 * perhaps one or more of the fields cpus_allowed, mems_allowed,
413 * or flags changed to new, trial values.
414 *
415 * Return 0 if valid, -errno if not.
416 */
417
c9710d80 418static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 419{
492eb21b 420 struct cgroup_subsys_state *css;
1da177e4 421 struct cpuset *c, *par;
ae8086ce
TH
422 int ret;
423
424 rcu_read_lock();
1da177e4
LT
425
426 /* Each of our child cpusets must be a subset of us */
ae8086ce 427 ret = -EBUSY;
492eb21b 428 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
429 if (!is_cpuset_subset(c, trial))
430 goto out;
1da177e4
LT
431
432 /* Remaining checks don't apply to root cpuset */
ae8086ce 433 ret = 0;
69604067 434 if (cur == &top_cpuset)
ae8086ce 435 goto out;
1da177e4 436
c431069f 437 par = parent_cs(cur);
69604067 438
1da177e4 439 /* We must be a subset of our parent cpuset */
ae8086ce 440 ret = -EACCES;
1da177e4 441 if (!is_cpuset_subset(trial, par))
ae8086ce 442 goto out;
1da177e4 443
2df167a3
PM
444 /*
445 * If either I or some sibling (!= me) is exclusive, we can't
446 * overlap
447 */
ae8086ce 448 ret = -EINVAL;
492eb21b 449 cpuset_for_each_child(c, css, par) {
1da177e4
LT
450 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
451 c != cur &&
300ed6cb 452 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 453 goto out;
1da177e4
LT
454 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
455 c != cur &&
456 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 457 goto out;
1da177e4
LT
458 }
459
452477fa
TH
460 /*
461 * Cpusets with tasks - existing or newly being attached - can't
1c09b195 462 * be changed to have empty cpus_allowed or mems_allowed.
452477fa 463 */
ae8086ce 464 ret = -ENOSPC;
07bc356e 465 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
1c09b195
LZ
466 if (!cpumask_empty(cur->cpus_allowed) &&
467 cpumask_empty(trial->cpus_allowed))
468 goto out;
469 if (!nodes_empty(cur->mems_allowed) &&
470 nodes_empty(trial->mems_allowed))
471 goto out;
472 }
020958b6 473
ae8086ce
TH
474 ret = 0;
475out:
476 rcu_read_unlock();
477 return ret;
1da177e4
LT
478}
479
db7f47cf 480#ifdef CONFIG_SMP
029190c5 481/*
cf417141 482 * Helper routine for generate_sched_domains().
029190c5
PJ
483 * Do cpusets a, b have overlapping cpus_allowed masks?
484 */
029190c5
PJ
485static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
486{
300ed6cb 487 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
488}
489
1d3504fc
HS
490static void
491update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
492{
1d3504fc
HS
493 if (dattr->relax_domain_level < c->relax_domain_level)
494 dattr->relax_domain_level = c->relax_domain_level;
495 return;
496}
497
fc560a26
TH
498static void update_domain_attr_tree(struct sched_domain_attr *dattr,
499 struct cpuset *root_cs)
f5393693 500{
fc560a26 501 struct cpuset *cp;
492eb21b 502 struct cgroup_subsys_state *pos_css;
f5393693 503
fc560a26 504 rcu_read_lock();
492eb21b 505 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
bd8815a6
TH
506 if (cp == root_cs)
507 continue;
508
fc560a26
TH
509 /* skip the whole subtree if @cp doesn't have any CPU */
510 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 511 pos_css = css_rightmost_descendant(pos_css);
f5393693 512 continue;
fc560a26 513 }
f5393693
LJ
514
515 if (is_sched_load_balance(cp))
516 update_domain_attr(dattr, cp);
f5393693 517 }
fc560a26 518 rcu_read_unlock();
f5393693
LJ
519}
520
029190c5 521/*
cf417141
MK
522 * generate_sched_domains()
523 *
524 * This function builds a partial partition of the systems CPUs
525 * A 'partial partition' is a set of non-overlapping subsets whose
526 * union is a subset of that set.
0a0fca9d 527 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
528 * partition_sched_domains() routine, which will rebuild the scheduler's
529 * load balancing domains (sched domains) as specified by that partial
530 * partition.
029190c5 531 *
45ce80fb 532 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
533 * for a background explanation of this.
534 *
535 * Does not return errors, on the theory that the callers of this
536 * routine would rather not worry about failures to rebuild sched
537 * domains when operating in the severe memory shortage situations
538 * that could cause allocation failures below.
539 *
5d21cc2d 540 * Must be called with cpuset_mutex held.
029190c5
PJ
541 *
542 * The three key local variables below are:
aeed6824 543 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
544 * top-down scan of all cpusets. This scan loads a pointer
545 * to each cpuset marked is_sched_load_balance into the
546 * array 'csa'. For our purposes, rebuilding the schedulers
547 * sched domains, we can ignore !is_sched_load_balance cpusets.
548 * csa - (for CpuSet Array) Array of pointers to all the cpusets
549 * that need to be load balanced, for convenient iterative
550 * access by the subsequent code that finds the best partition,
551 * i.e the set of domains (subsets) of CPUs such that the
552 * cpus_allowed of every cpuset marked is_sched_load_balance
553 * is a subset of one of these domains, while there are as
554 * many such domains as possible, each as small as possible.
555 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 556 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
557 * convenient format, that can be easily compared to the prior
558 * value to determine what partition elements (sched domains)
559 * were changed (added or removed.)
560 *
561 * Finding the best partition (set of domains):
562 * The triple nested loops below over i, j, k scan over the
563 * load balanced cpusets (using the array of cpuset pointers in
564 * csa[]) looking for pairs of cpusets that have overlapping
565 * cpus_allowed, but which don't have the same 'pn' partition
566 * number and gives them in the same partition number. It keeps
567 * looping on the 'restart' label until it can no longer find
568 * any such pairs.
569 *
570 * The union of the cpus_allowed masks from the set of
571 * all cpusets having the same 'pn' value then form the one
572 * element of the partition (one sched domain) to be passed to
573 * partition_sched_domains().
574 */
acc3f5d7 575static int generate_sched_domains(cpumask_var_t **domains,
cf417141 576 struct sched_domain_attr **attributes)
029190c5 577{
029190c5
PJ
578 struct cpuset *cp; /* scans q */
579 struct cpuset **csa; /* array of all cpuset ptrs */
580 int csn; /* how many cpuset ptrs in csa so far */
581 int i, j, k; /* indices for partition finding loops */
acc3f5d7 582 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 583 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 584 int ndoms = 0; /* number of sched domains in result */
6af866af 585 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 586 struct cgroup_subsys_state *pos_css;
029190c5 587
029190c5 588 doms = NULL;
1d3504fc 589 dattr = NULL;
cf417141 590 csa = NULL;
029190c5
PJ
591
592 /* Special case for the 99% of systems with one, full, sched domain */
593 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
594 ndoms = 1;
595 doms = alloc_sched_domains(ndoms);
029190c5 596 if (!doms)
cf417141
MK
597 goto done;
598
1d3504fc
HS
599 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
600 if (dattr) {
601 *dattr = SD_ATTR_INIT;
93a65575 602 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 603 }
acc3f5d7 604 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 605
cf417141 606 goto done;
029190c5
PJ
607 }
608
664eedde 609 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
029190c5
PJ
610 if (!csa)
611 goto done;
612 csn = 0;
613
fc560a26 614 rcu_read_lock();
492eb21b 615 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
bd8815a6
TH
616 if (cp == &top_cpuset)
617 continue;
f5393693 618 /*
fc560a26
TH
619 * Continue traversing beyond @cp iff @cp has some CPUs and
620 * isn't load balancing. The former is obvious. The
621 * latter: All child cpusets contain a subset of the
622 * parent's cpus, so just skip them, and then we call
623 * update_domain_attr_tree() to calc relax_domain_level of
624 * the corresponding sched domain.
f5393693 625 */
fc560a26
TH
626 if (!cpumask_empty(cp->cpus_allowed) &&
627 !is_sched_load_balance(cp))
f5393693 628 continue;
489a5393 629
fc560a26
TH
630 if (is_sched_load_balance(cp))
631 csa[csn++] = cp;
632
633 /* skip @cp's subtree */
492eb21b 634 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
635 }
636 rcu_read_unlock();
029190c5
PJ
637
638 for (i = 0; i < csn; i++)
639 csa[i]->pn = i;
640 ndoms = csn;
641
642restart:
643 /* Find the best partition (set of sched domains) */
644 for (i = 0; i < csn; i++) {
645 struct cpuset *a = csa[i];
646 int apn = a->pn;
647
648 for (j = 0; j < csn; j++) {
649 struct cpuset *b = csa[j];
650 int bpn = b->pn;
651
652 if (apn != bpn && cpusets_overlap(a, b)) {
653 for (k = 0; k < csn; k++) {
654 struct cpuset *c = csa[k];
655
656 if (c->pn == bpn)
657 c->pn = apn;
658 }
659 ndoms--; /* one less element */
660 goto restart;
661 }
662 }
663 }
664
cf417141
MK
665 /*
666 * Now we know how many domains to create.
667 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
668 */
acc3f5d7 669 doms = alloc_sched_domains(ndoms);
700018e0 670 if (!doms)
cf417141 671 goto done;
cf417141
MK
672
673 /*
674 * The rest of the code, including the scheduler, can deal with
675 * dattr==NULL case. No need to abort if alloc fails.
676 */
1d3504fc 677 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
678
679 for (nslot = 0, i = 0; i < csn; i++) {
680 struct cpuset *a = csa[i];
6af866af 681 struct cpumask *dp;
029190c5
PJ
682 int apn = a->pn;
683
cf417141
MK
684 if (apn < 0) {
685 /* Skip completed partitions */
686 continue;
687 }
688
acc3f5d7 689 dp = doms[nslot];
cf417141
MK
690
691 if (nslot == ndoms) {
692 static int warnings = 10;
693 if (warnings) {
12d3089c
FF
694 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
695 nslot, ndoms, csn, i, apn);
cf417141 696 warnings--;
029190c5 697 }
cf417141
MK
698 continue;
699 }
029190c5 700
6af866af 701 cpumask_clear(dp);
cf417141
MK
702 if (dattr)
703 *(dattr + nslot) = SD_ATTR_INIT;
704 for (j = i; j < csn; j++) {
705 struct cpuset *b = csa[j];
706
707 if (apn == b->pn) {
300ed6cb 708 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
709 if (dattr)
710 update_domain_attr_tree(dattr + nslot, b);
711
712 /* Done with this partition */
713 b->pn = -1;
029190c5 714 }
029190c5 715 }
cf417141 716 nslot++;
029190c5
PJ
717 }
718 BUG_ON(nslot != ndoms);
719
cf417141
MK
720done:
721 kfree(csa);
722
700018e0
LZ
723 /*
724 * Fallback to the default domain if kmalloc() failed.
725 * See comments in partition_sched_domains().
726 */
727 if (doms == NULL)
728 ndoms = 1;
729
cf417141
MK
730 *domains = doms;
731 *attributes = dattr;
732 return ndoms;
733}
734
735/*
736 * Rebuild scheduler domains.
737 *
699140ba
TH
738 * If the flag 'sched_load_balance' of any cpuset with non-empty
739 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
740 * which has that flag enabled, or if any cpuset with a non-empty
741 * 'cpus' is removed, then call this routine to rebuild the
742 * scheduler's dynamic sched domains.
cf417141 743 *
5d21cc2d 744 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 745 */
699140ba 746static void rebuild_sched_domains_locked(void)
cf417141
MK
747{
748 struct sched_domain_attr *attr;
acc3f5d7 749 cpumask_var_t *doms;
cf417141
MK
750 int ndoms;
751
5d21cc2d 752 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 753 get_online_cpus();
cf417141 754
5b16c2a4
LZ
755 /*
756 * We have raced with CPU hotplug. Don't do anything to avoid
757 * passing doms with offlined cpu to partition_sched_domains().
758 * Anyways, hotplug work item will rebuild sched domains.
759 */
760 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
761 goto out;
762
cf417141 763 /* Generate domain masks and attrs */
cf417141 764 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
765
766 /* Have scheduler rebuild the domains */
767 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 768out:
86ef5c9a 769 put_online_cpus();
cf417141 770}
db7f47cf 771#else /* !CONFIG_SMP */
699140ba 772static void rebuild_sched_domains_locked(void)
db7f47cf
PM
773{
774}
db7f47cf 775#endif /* CONFIG_SMP */
029190c5 776
cf417141
MK
777void rebuild_sched_domains(void)
778{
5d21cc2d 779 mutex_lock(&cpuset_mutex);
699140ba 780 rebuild_sched_domains_locked();
5d21cc2d 781 mutex_unlock(&cpuset_mutex);
029190c5
PJ
782}
783
070b57fc
LZ
784/*
785 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
786 * @cs: the cpuset in interest
58f4790b 787 *
070b57fc
LZ
788 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
789 * with non-empty cpus. We use effective cpumask whenever:
790 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
791 * if the cpuset they reside in has no cpus)
792 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
793 *
794 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
795 * exception. See comments there.
796 */
797static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
798{
799 while (cpumask_empty(cs->cpus_allowed))
800 cs = parent_cs(cs);
801 return cs;
802}
803
804/*
805 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
806 * @cs: the cpuset in interest
807 *
808 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
809 * with non-empty memss. We use effective nodemask whenever:
810 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
811 * if the cpuset they reside in has no mems)
812 * - we want to retrieve task_cs(tsk)'s mems_allowed.
813 *
814 * Called with cpuset_mutex held.
053199ed 815 */
070b57fc 816static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
58f4790b 817{
070b57fc
LZ
818 while (nodes_empty(cs->mems_allowed))
819 cs = parent_cs(cs);
820 return cs;
58f4790b 821}
053199ed 822
0b2f630a
MX
823/**
824 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
825 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
0b2f630a 826 *
d66393e5
TH
827 * Iterate through each task of @cs updating its cpus_allowed to the
828 * effective cpuset's. As this function is called with cpuset_mutex held,
829 * cpuset membership stays stable.
0b2f630a 830 */
d66393e5 831static void update_tasks_cpumask(struct cpuset *cs)
0b2f630a 832{
d66393e5
TH
833 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
834 struct css_task_iter it;
835 struct task_struct *task;
836
837 css_task_iter_start(&cs->css, &it);
838 while ((task = css_task_iter_next(&it)))
839 set_cpus_allowed_ptr(task, cpus_cs->cpus_allowed);
840 css_task_iter_end(&it);
0b2f630a
MX
841}
842
5c5cc623
LZ
843/*
844 * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
845 * @root_cs: the root cpuset of the hierarchy
846 * @update_root: update root cpuset or not?
5c5cc623
LZ
847 *
848 * This will update cpumasks of tasks in @root_cs and all other empty cpusets
849 * which take on cpumask of @root_cs.
850 *
851 * Called with cpuset_mutex held
852 */
d66393e5 853static void update_tasks_cpumask_hier(struct cpuset *root_cs, bool update_root)
5c5cc623
LZ
854{
855 struct cpuset *cp;
492eb21b 856 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
857
858 rcu_read_lock();
492eb21b 859 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
bd8815a6
TH
860 if (cp == root_cs) {
861 if (!update_root)
862 continue;
863 } else {
864 /* skip the whole subtree if @cp have some CPU */
865 if (!cpumask_empty(cp->cpus_allowed)) {
866 pos_css = css_rightmost_descendant(pos_css);
867 continue;
868 }
5c5cc623 869 }
ec903c0c 870 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
871 continue;
872 rcu_read_unlock();
873
d66393e5 874 update_tasks_cpumask(cp);
5c5cc623
LZ
875
876 rcu_read_lock();
877 css_put(&cp->css);
878 }
879 rcu_read_unlock();
880}
881
58f4790b
CW
882/**
883 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
884 * @cs: the cpuset to consider
fc34ac1d 885 * @trialcs: trial cpuset
58f4790b
CW
886 * @buf: buffer of cpu numbers written to this cpuset
887 */
645fcc9d
LZ
888static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
889 const char *buf)
1da177e4 890{
58f4790b
CW
891 int retval;
892 int is_load_balanced;
1da177e4 893
5f054e31 894 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
895 if (cs == &top_cpuset)
896 return -EACCES;
897
6f7f02e7 898 /*
c8d9c90c 899 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
900 * Since cpulist_parse() fails on an empty mask, we special case
901 * that parsing. The validate_change() call ensures that cpusets
902 * with tasks have cpus.
6f7f02e7 903 */
020958b6 904 if (!*buf) {
300ed6cb 905 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 906 } else {
300ed6cb 907 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
908 if (retval < 0)
909 return retval;
37340746 910
6ad4c188 911 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 912 return -EINVAL;
6f7f02e7 913 }
029190c5 914
8707d8b8 915 /* Nothing to do if the cpus didn't change */
300ed6cb 916 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 917 return 0;
58f4790b 918
a73456f3
LZ
919 retval = validate_change(cs, trialcs);
920 if (retval < 0)
921 return retval;
922
645fcc9d 923 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 924
3d3f26a7 925 mutex_lock(&callback_mutex);
300ed6cb 926 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 927 mutex_unlock(&callback_mutex);
029190c5 928
d66393e5 929 update_tasks_cpumask_hier(cs, true);
58f4790b 930
8707d8b8 931 if (is_load_balanced)
699140ba 932 rebuild_sched_domains_locked();
85d7b949 933 return 0;
1da177e4
LT
934}
935
e4e364e8
PJ
936/*
937 * cpuset_migrate_mm
938 *
939 * Migrate memory region from one set of nodes to another.
940 *
941 * Temporarilly set tasks mems_allowed to target nodes of migration,
942 * so that the migration code can allocate pages on these nodes.
943 *
e4e364e8
PJ
944 * While the mm_struct we are migrating is typically from some
945 * other task, the task_struct mems_allowed that we are hacking
946 * is for our current task, which must allocate new pages for that
947 * migrating memory region.
e4e364e8
PJ
948 */
949
950static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
951 const nodemask_t *to)
952{
953 struct task_struct *tsk = current;
070b57fc 954 struct cpuset *mems_cs;
e4e364e8 955
e4e364e8 956 tsk->mems_allowed = *to;
e4e364e8
PJ
957
958 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
959
47295830 960 rcu_read_lock();
070b57fc
LZ
961 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
962 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
47295830 963 rcu_read_unlock();
e4e364e8
PJ
964}
965
3b6766fe 966/*
58568d2a
MX
967 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
968 * @tsk: the task to change
969 * @newmems: new nodes that the task will be set
970 *
971 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
972 * we structure updates as setting all new allowed nodes, then clearing newly
973 * disallowed ones.
58568d2a
MX
974 */
975static void cpuset_change_task_nodemask(struct task_struct *tsk,
976 nodemask_t *newmems)
977{
b246272e 978 bool need_loop;
89e8a244 979
c0ff7453
MX
980 /*
981 * Allow tasks that have access to memory reserves because they have
982 * been OOM killed to get memory anywhere.
983 */
984 if (unlikely(test_thread_flag(TIF_MEMDIE)))
985 return;
986 if (current->flags & PF_EXITING) /* Let dying task have memory */
987 return;
988
989 task_lock(tsk);
b246272e
DR
990 /*
991 * Determine if a loop is necessary if another thread is doing
d26914d1 992 * read_mems_allowed_begin(). If at least one node remains unchanged and
b246272e
DR
993 * tsk does not have a mempolicy, then an empty nodemask will not be
994 * possible when mems_allowed is larger than a word.
995 */
996 need_loop = task_has_mempolicy(tsk) ||
997 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 998
0fc0287c
PZ
999 if (need_loop) {
1000 local_irq_disable();
cc9a6c87 1001 write_seqcount_begin(&tsk->mems_allowed_seq);
0fc0287c 1002 }
c0ff7453 1003
cc9a6c87
MG
1004 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1005 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1006
1007 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1008 tsk->mems_allowed = *newmems;
cc9a6c87 1009
0fc0287c 1010 if (need_loop) {
cc9a6c87 1011 write_seqcount_end(&tsk->mems_allowed_seq);
0fc0287c
PZ
1012 local_irq_enable();
1013 }
cc9a6c87 1014
c0ff7453 1015 task_unlock(tsk);
58568d2a
MX
1016}
1017
8793d854
PM
1018static void *cpuset_being_rebound;
1019
0b2f630a
MX
1020/**
1021 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1022 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
0b2f630a 1023 *
d66393e5
TH
1024 * Iterate through each task of @cs updating its mems_allowed to the
1025 * effective cpuset's. As this function is called with cpuset_mutex held,
1026 * cpuset membership stays stable.
0b2f630a 1027 */
d66393e5 1028static void update_tasks_nodemask(struct cpuset *cs)
1da177e4 1029{
33ad801d 1030 static nodemask_t newmems; /* protected by cpuset_mutex */
070b57fc 1031 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
d66393e5
TH
1032 struct css_task_iter it;
1033 struct task_struct *task;
59dac16f 1034
846a16bf 1035 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1036
070b57fc 1037 guarantee_online_mems(mems_cs, &newmems);
33ad801d 1038
4225399a 1039 /*
3b6766fe
LZ
1040 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1041 * take while holding tasklist_lock. Forks can happen - the
1042 * mpol_dup() cpuset_being_rebound check will catch such forks,
1043 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1044 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1045 * will be contending for the global variable cpuset_being_rebound.
4225399a 1046 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1047 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1048 */
d66393e5
TH
1049 css_task_iter_start(&cs->css, &it);
1050 while ((task = css_task_iter_next(&it))) {
1051 struct mm_struct *mm;
1052 bool migrate;
1053
1054 cpuset_change_task_nodemask(task, &newmems);
1055
1056 mm = get_task_mm(task);
1057 if (!mm)
1058 continue;
1059
1060 migrate = is_memory_migrate(cs);
1061
1062 mpol_rebind_mm(mm, &cs->mems_allowed);
1063 if (migrate)
1064 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1065 mmput(mm);
1066 }
1067 css_task_iter_end(&it);
4225399a 1068
33ad801d
LZ
1069 /*
1070 * All the tasks' nodemasks have been updated, update
1071 * cs->old_mems_allowed.
1072 */
1073 cs->old_mems_allowed = newmems;
1074
2df167a3 1075 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1076 cpuset_being_rebound = NULL;
1da177e4
LT
1077}
1078
5c5cc623
LZ
1079/*
1080 * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
1081 * @cs: the root cpuset of the hierarchy
1082 * @update_root: update the root cpuset or not?
5c5cc623
LZ
1083 *
1084 * This will update nodemasks of tasks in @root_cs and all other empty cpusets
1085 * which take on nodemask of @root_cs.
1086 *
1087 * Called with cpuset_mutex held
1088 */
d66393e5 1089static void update_tasks_nodemask_hier(struct cpuset *root_cs, bool update_root)
5c5cc623
LZ
1090{
1091 struct cpuset *cp;
492eb21b 1092 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1093
1094 rcu_read_lock();
492eb21b 1095 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
bd8815a6
TH
1096 if (cp == root_cs) {
1097 if (!update_root)
1098 continue;
1099 } else {
1100 /* skip the whole subtree if @cp have some CPU */
1101 if (!nodes_empty(cp->mems_allowed)) {
1102 pos_css = css_rightmost_descendant(pos_css);
1103 continue;
1104 }
5c5cc623 1105 }
ec903c0c 1106 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
1107 continue;
1108 rcu_read_unlock();
1109
d66393e5 1110 update_tasks_nodemask(cp);
5c5cc623
LZ
1111
1112 rcu_read_lock();
1113 css_put(&cp->css);
1114 }
1115 rcu_read_unlock();
1116}
1117
0b2f630a
MX
1118/*
1119 * Handle user request to change the 'mems' memory placement
1120 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1121 * cpusets mems_allowed, and for each task in the cpuset,
1122 * update mems_allowed and rebind task's mempolicy and any vma
1123 * mempolicies and if the cpuset is marked 'memory_migrate',
1124 * migrate the tasks pages to the new memory.
0b2f630a 1125 *
5d21cc2d 1126 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1127 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1128 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1129 * their mempolicies to the cpusets new mems_allowed.
1130 */
645fcc9d
LZ
1131static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1132 const char *buf)
0b2f630a 1133{
0b2f630a
MX
1134 int retval;
1135
1136 /*
38d7bee9 1137 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1138 * it's read-only
1139 */
53feb297
MX
1140 if (cs == &top_cpuset) {
1141 retval = -EACCES;
1142 goto done;
1143 }
0b2f630a 1144
0b2f630a
MX
1145 /*
1146 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1147 * Since nodelist_parse() fails on an empty mask, we special case
1148 * that parsing. The validate_change() call ensures that cpusets
1149 * with tasks have memory.
1150 */
1151 if (!*buf) {
645fcc9d 1152 nodes_clear(trialcs->mems_allowed);
0b2f630a 1153 } else {
645fcc9d 1154 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1155 if (retval < 0)
1156 goto done;
1157
645fcc9d 1158 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1159 node_states[N_MEMORY])) {
53feb297
MX
1160 retval = -EINVAL;
1161 goto done;
1162 }
0b2f630a 1163 }
33ad801d
LZ
1164
1165 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1166 retval = 0; /* Too easy - nothing to do */
1167 goto done;
1168 }
645fcc9d 1169 retval = validate_change(cs, trialcs);
0b2f630a
MX
1170 if (retval < 0)
1171 goto done;
1172
1173 mutex_lock(&callback_mutex);
645fcc9d 1174 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1175 mutex_unlock(&callback_mutex);
1176
d66393e5 1177 update_tasks_nodemask_hier(cs, true);
0b2f630a
MX
1178done:
1179 return retval;
1180}
1181
8793d854
PM
1182int current_cpuset_is_being_rebound(void)
1183{
391acf97
GZ
1184 int ret;
1185
1186 rcu_read_lock();
1187 ret = task_cs(current) == cpuset_being_rebound;
1188 rcu_read_unlock();
1189
1190 return ret;
8793d854
PM
1191}
1192
5be7a479 1193static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1194{
db7f47cf 1195#ifdef CONFIG_SMP
60495e77 1196 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1197 return -EINVAL;
db7f47cf 1198#endif
1d3504fc
HS
1199
1200 if (val != cs->relax_domain_level) {
1201 cs->relax_domain_level = val;
300ed6cb
LZ
1202 if (!cpumask_empty(cs->cpus_allowed) &&
1203 is_sched_load_balance(cs))
699140ba 1204 rebuild_sched_domains_locked();
1d3504fc
HS
1205 }
1206
1207 return 0;
1208}
1209
72ec7029 1210/**
950592f7
MX
1211 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1212 * @cs: the cpuset in which each task's spread flags needs to be changed
950592f7 1213 *
d66393e5
TH
1214 * Iterate through each task of @cs updating its spread flags. As this
1215 * function is called with cpuset_mutex held, cpuset membership stays
1216 * stable.
950592f7 1217 */
d66393e5 1218static void update_tasks_flags(struct cpuset *cs)
950592f7 1219{
d66393e5
TH
1220 struct css_task_iter it;
1221 struct task_struct *task;
1222
1223 css_task_iter_start(&cs->css, &it);
1224 while ((task = css_task_iter_next(&it)))
1225 cpuset_update_task_spread_flag(cs, task);
1226 css_task_iter_end(&it);
950592f7
MX
1227}
1228
1da177e4
LT
1229/*
1230 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1231 * bit: the bit to update (see cpuset_flagbits_t)
1232 * cs: the cpuset to update
1233 * turning_on: whether the flag is being set or cleared
053199ed 1234 *
5d21cc2d 1235 * Call with cpuset_mutex held.
1da177e4
LT
1236 */
1237
700fe1ab
PM
1238static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1239 int turning_on)
1da177e4 1240{
645fcc9d 1241 struct cpuset *trialcs;
40b6a762 1242 int balance_flag_changed;
950592f7 1243 int spread_flag_changed;
950592f7 1244 int err;
1da177e4 1245
645fcc9d
LZ
1246 trialcs = alloc_trial_cpuset(cs);
1247 if (!trialcs)
1248 return -ENOMEM;
1249
1da177e4 1250 if (turning_on)
645fcc9d 1251 set_bit(bit, &trialcs->flags);
1da177e4 1252 else
645fcc9d 1253 clear_bit(bit, &trialcs->flags);
1da177e4 1254
645fcc9d 1255 err = validate_change(cs, trialcs);
85d7b949 1256 if (err < 0)
645fcc9d 1257 goto out;
029190c5 1258
029190c5 1259 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1260 is_sched_load_balance(trialcs));
029190c5 1261
950592f7
MX
1262 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1263 || (is_spread_page(cs) != is_spread_page(trialcs)));
1264
3d3f26a7 1265 mutex_lock(&callback_mutex);
645fcc9d 1266 cs->flags = trialcs->flags;
3d3f26a7 1267 mutex_unlock(&callback_mutex);
85d7b949 1268
300ed6cb 1269 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1270 rebuild_sched_domains_locked();
029190c5 1271
950592f7 1272 if (spread_flag_changed)
d66393e5 1273 update_tasks_flags(cs);
645fcc9d
LZ
1274out:
1275 free_trial_cpuset(trialcs);
1276 return err;
1da177e4
LT
1277}
1278
3e0d98b9 1279/*
80f7228b 1280 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1281 *
1282 * These routines manage a digitally filtered, constant time based,
1283 * event frequency meter. There are four routines:
1284 * fmeter_init() - initialize a frequency meter.
1285 * fmeter_markevent() - called each time the event happens.
1286 * fmeter_getrate() - returns the recent rate of such events.
1287 * fmeter_update() - internal routine used to update fmeter.
1288 *
1289 * A common data structure is passed to each of these routines,
1290 * which is used to keep track of the state required to manage the
1291 * frequency meter and its digital filter.
1292 *
1293 * The filter works on the number of events marked per unit time.
1294 * The filter is single-pole low-pass recursive (IIR). The time unit
1295 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1296 * simulate 3 decimal digits of precision (multiplied by 1000).
1297 *
1298 * With an FM_COEF of 933, and a time base of 1 second, the filter
1299 * has a half-life of 10 seconds, meaning that if the events quit
1300 * happening, then the rate returned from the fmeter_getrate()
1301 * will be cut in half each 10 seconds, until it converges to zero.
1302 *
1303 * It is not worth doing a real infinitely recursive filter. If more
1304 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1305 * just compute FM_MAXTICKS ticks worth, by which point the level
1306 * will be stable.
1307 *
1308 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1309 * arithmetic overflow in the fmeter_update() routine.
1310 *
1311 * Given the simple 32 bit integer arithmetic used, this meter works
1312 * best for reporting rates between one per millisecond (msec) and
1313 * one per 32 (approx) seconds. At constant rates faster than one
1314 * per msec it maxes out at values just under 1,000,000. At constant
1315 * rates between one per msec, and one per second it will stabilize
1316 * to a value N*1000, where N is the rate of events per second.
1317 * At constant rates between one per second and one per 32 seconds,
1318 * it will be choppy, moving up on the seconds that have an event,
1319 * and then decaying until the next event. At rates slower than
1320 * about one in 32 seconds, it decays all the way back to zero between
1321 * each event.
1322 */
1323
1324#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1325#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1326#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1327#define FM_SCALE 1000 /* faux fixed point scale */
1328
1329/* Initialize a frequency meter */
1330static void fmeter_init(struct fmeter *fmp)
1331{
1332 fmp->cnt = 0;
1333 fmp->val = 0;
1334 fmp->time = 0;
1335 spin_lock_init(&fmp->lock);
1336}
1337
1338/* Internal meter update - process cnt events and update value */
1339static void fmeter_update(struct fmeter *fmp)
1340{
1341 time_t now = get_seconds();
1342 time_t ticks = now - fmp->time;
1343
1344 if (ticks == 0)
1345 return;
1346
1347 ticks = min(FM_MAXTICKS, ticks);
1348 while (ticks-- > 0)
1349 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1350 fmp->time = now;
1351
1352 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1353 fmp->cnt = 0;
1354}
1355
1356/* Process any previous ticks, then bump cnt by one (times scale). */
1357static void fmeter_markevent(struct fmeter *fmp)
1358{
1359 spin_lock(&fmp->lock);
1360 fmeter_update(fmp);
1361 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1362 spin_unlock(&fmp->lock);
1363}
1364
1365/* Process any previous ticks, then return current value. */
1366static int fmeter_getrate(struct fmeter *fmp)
1367{
1368 int val;
1369
1370 spin_lock(&fmp->lock);
1371 fmeter_update(fmp);
1372 val = fmp->val;
1373 spin_unlock(&fmp->lock);
1374 return val;
1375}
1376
57fce0a6
TH
1377static struct cpuset *cpuset_attach_old_cs;
1378
5d21cc2d 1379/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
eb95419b
TH
1380static int cpuset_can_attach(struct cgroup_subsys_state *css,
1381 struct cgroup_taskset *tset)
f780bdb7 1382{
eb95419b 1383 struct cpuset *cs = css_cs(css);
bb9d97b6
TH
1384 struct task_struct *task;
1385 int ret;
1da177e4 1386
57fce0a6
TH
1387 /* used later by cpuset_attach() */
1388 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1389
5d21cc2d
TH
1390 mutex_lock(&cpuset_mutex);
1391
88fa523b
LZ
1392 /*
1393 * We allow to move tasks into an empty cpuset if sane_behavior
1394 * flag is set.
1395 */
5d21cc2d 1396 ret = -ENOSPC;
eb95419b 1397 if (!cgroup_sane_behavior(css->cgroup) &&
88fa523b 1398 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1399 goto out_unlock;
9985b0ba 1400
924f0d9a 1401 cgroup_taskset_for_each(task, tset) {
bb9d97b6 1402 /*
14a40ffc
TH
1403 * Kthreads which disallow setaffinity shouldn't be moved
1404 * to a new cpuset; we don't want to change their cpu
1405 * affinity and isolating such threads by their set of
1406 * allowed nodes is unnecessary. Thus, cpusets are not
1407 * applicable for such threads. This prevents checking for
1408 * success of set_cpus_allowed_ptr() on all attached tasks
1409 * before cpus_allowed may be changed.
bb9d97b6 1410 */
5d21cc2d 1411 ret = -EINVAL;
14a40ffc 1412 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1413 goto out_unlock;
1414 ret = security_task_setscheduler(task);
1415 if (ret)
1416 goto out_unlock;
bb9d97b6 1417 }
f780bdb7 1418
452477fa
TH
1419 /*
1420 * Mark attach is in progress. This makes validate_change() fail
1421 * changes which zero cpus/mems_allowed.
1422 */
1423 cs->attach_in_progress++;
5d21cc2d
TH
1424 ret = 0;
1425out_unlock:
1426 mutex_unlock(&cpuset_mutex);
1427 return ret;
8793d854 1428}
f780bdb7 1429
eb95419b 1430static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
452477fa
TH
1431 struct cgroup_taskset *tset)
1432{
5d21cc2d 1433 mutex_lock(&cpuset_mutex);
eb95419b 1434 css_cs(css)->attach_in_progress--;
5d21cc2d 1435 mutex_unlock(&cpuset_mutex);
8793d854 1436}
1da177e4 1437
4e4c9a14 1438/*
5d21cc2d 1439 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1440 * but we can't allocate it dynamically there. Define it global and
1441 * allocate from cpuset_init().
1442 */
1443static cpumask_var_t cpus_attach;
1444
eb95419b
TH
1445static void cpuset_attach(struct cgroup_subsys_state *css,
1446 struct cgroup_taskset *tset)
8793d854 1447{
67bd2c59 1448 /* static buf protected by cpuset_mutex */
4e4c9a14 1449 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1450 struct mm_struct *mm;
bb9d97b6
TH
1451 struct task_struct *task;
1452 struct task_struct *leader = cgroup_taskset_first(tset);
eb95419b 1453 struct cpuset *cs = css_cs(css);
57fce0a6 1454 struct cpuset *oldcs = cpuset_attach_old_cs;
070b57fc
LZ
1455 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1456 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
22fb52dd 1457
5d21cc2d
TH
1458 mutex_lock(&cpuset_mutex);
1459
4e4c9a14
TH
1460 /* prepare for attach */
1461 if (cs == &top_cpuset)
1462 cpumask_copy(cpus_attach, cpu_possible_mask);
1463 else
070b57fc 1464 guarantee_online_cpus(cpus_cs, cpus_attach);
4e4c9a14 1465
070b57fc 1466 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
4e4c9a14 1467
924f0d9a 1468 cgroup_taskset_for_each(task, tset) {
bb9d97b6
TH
1469 /*
1470 * can_attach beforehand should guarantee that this doesn't
1471 * fail. TODO: have a better way to handle failure here
1472 */
1473 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1474
1475 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1476 cpuset_update_task_spread_flag(cs, task);
1477 }
22fb52dd 1478
f780bdb7
BB
1479 /*
1480 * Change mm, possibly for multiple threads in a threadgroup. This is
1481 * expensive and may sleep.
1482 */
f780bdb7 1483 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1484 mm = get_task_mm(leader);
4225399a 1485 if (mm) {
070b57fc
LZ
1486 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1487
f780bdb7 1488 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
f047cecf
LZ
1489
1490 /*
1491 * old_mems_allowed is the same with mems_allowed here, except
1492 * if this task is being moved automatically due to hotplug.
1493 * In that case @mems_allowed has been updated and is empty,
1494 * so @old_mems_allowed is the right nodesets that we migrate
1495 * mm from.
1496 */
1497 if (is_memory_migrate(cs)) {
1498 cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
f780bdb7 1499 &cpuset_attach_nodemask_to);
f047cecf 1500 }
4225399a
PJ
1501 mmput(mm);
1502 }
452477fa 1503
33ad801d 1504 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1505
452477fa 1506 cs->attach_in_progress--;
e44193d3
LZ
1507 if (!cs->attach_in_progress)
1508 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1509
1510 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1511}
1512
1513/* The various types of files and directories in a cpuset file system */
1514
1515typedef enum {
45b07ef3 1516 FILE_MEMORY_MIGRATE,
1da177e4
LT
1517 FILE_CPULIST,
1518 FILE_MEMLIST,
1519 FILE_CPU_EXCLUSIVE,
1520 FILE_MEM_EXCLUSIVE,
78608366 1521 FILE_MEM_HARDWALL,
029190c5 1522 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1523 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1524 FILE_MEMORY_PRESSURE_ENABLED,
1525 FILE_MEMORY_PRESSURE,
825a46af
PJ
1526 FILE_SPREAD_PAGE,
1527 FILE_SPREAD_SLAB,
1da177e4
LT
1528} cpuset_filetype_t;
1529
182446d0
TH
1530static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1531 u64 val)
700fe1ab 1532{
182446d0 1533 struct cpuset *cs = css_cs(css);
700fe1ab 1534 cpuset_filetype_t type = cft->private;
a903f086 1535 int retval = 0;
700fe1ab 1536
5d21cc2d 1537 mutex_lock(&cpuset_mutex);
a903f086
LZ
1538 if (!is_cpuset_online(cs)) {
1539 retval = -ENODEV;
5d21cc2d 1540 goto out_unlock;
a903f086 1541 }
700fe1ab
PM
1542
1543 switch (type) {
1da177e4 1544 case FILE_CPU_EXCLUSIVE:
700fe1ab 1545 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1546 break;
1547 case FILE_MEM_EXCLUSIVE:
700fe1ab 1548 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1549 break;
78608366
PM
1550 case FILE_MEM_HARDWALL:
1551 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1552 break;
029190c5 1553 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1554 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1555 break;
45b07ef3 1556 case FILE_MEMORY_MIGRATE:
700fe1ab 1557 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1558 break;
3e0d98b9 1559 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1560 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1561 break;
1562 case FILE_MEMORY_PRESSURE:
1563 retval = -EACCES;
1564 break;
825a46af 1565 case FILE_SPREAD_PAGE:
700fe1ab 1566 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1567 break;
1568 case FILE_SPREAD_SLAB:
700fe1ab 1569 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1570 break;
1da177e4
LT
1571 default:
1572 retval = -EINVAL;
700fe1ab 1573 break;
1da177e4 1574 }
5d21cc2d
TH
1575out_unlock:
1576 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1577 return retval;
1578}
1579
182446d0
TH
1580static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1581 s64 val)
5be7a479 1582{
182446d0 1583 struct cpuset *cs = css_cs(css);
5be7a479 1584 cpuset_filetype_t type = cft->private;
5d21cc2d 1585 int retval = -ENODEV;
5be7a479 1586
5d21cc2d
TH
1587 mutex_lock(&cpuset_mutex);
1588 if (!is_cpuset_online(cs))
1589 goto out_unlock;
e3712395 1590
5be7a479
PM
1591 switch (type) {
1592 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1593 retval = update_relax_domain_level(cs, val);
1594 break;
1595 default:
1596 retval = -EINVAL;
1597 break;
1598 }
5d21cc2d
TH
1599out_unlock:
1600 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1601 return retval;
1602}
1603
e3712395
PM
1604/*
1605 * Common handling for a write to a "cpus" or "mems" file.
1606 */
451af504
TH
1607static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1608 char *buf, size_t nbytes, loff_t off)
e3712395 1609{
451af504 1610 struct cpuset *cs = css_cs(of_css(of));
645fcc9d 1611 struct cpuset *trialcs;
5d21cc2d 1612 int retval = -ENODEV;
e3712395 1613
451af504
TH
1614 buf = strstrip(buf);
1615
3a5a6d0c
TH
1616 /*
1617 * CPU or memory hotunplug may leave @cs w/o any execution
1618 * resources, in which case the hotplug code asynchronously updates
1619 * configuration and transfers all tasks to the nearest ancestor
1620 * which can execute.
1621 *
1622 * As writes to "cpus" or "mems" may restore @cs's execution
1623 * resources, wait for the previously scheduled operations before
1624 * proceeding, so that we don't end up keep removing tasks added
1625 * after execution capability is restored.
1626 */
1627 flush_work(&cpuset_hotplug_work);
1628
5d21cc2d
TH
1629 mutex_lock(&cpuset_mutex);
1630 if (!is_cpuset_online(cs))
1631 goto out_unlock;
e3712395 1632
645fcc9d 1633 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1634 if (!trialcs) {
1635 retval = -ENOMEM;
5d21cc2d 1636 goto out_unlock;
b75f38d6 1637 }
645fcc9d 1638
451af504 1639 switch (of_cft(of)->private) {
e3712395 1640 case FILE_CPULIST:
645fcc9d 1641 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1642 break;
1643 case FILE_MEMLIST:
645fcc9d 1644 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1645 break;
1646 default:
1647 retval = -EINVAL;
1648 break;
1649 }
645fcc9d
LZ
1650
1651 free_trial_cpuset(trialcs);
5d21cc2d
TH
1652out_unlock:
1653 mutex_unlock(&cpuset_mutex);
451af504 1654 return retval ?: nbytes;
e3712395
PM
1655}
1656
1da177e4
LT
1657/*
1658 * These ascii lists should be read in a single call, by using a user
1659 * buffer large enough to hold the entire map. If read in smaller
1660 * chunks, there is no guarantee of atomicity. Since the display format
1661 * used, list of ranges of sequential numbers, is variable length,
1662 * and since these maps can change value dynamically, one could read
1663 * gibberish by doing partial reads while a list was changing.
1da177e4 1664 */
2da8ca82 1665static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1da177e4 1666{
2da8ca82
TH
1667 struct cpuset *cs = css_cs(seq_css(sf));
1668 cpuset_filetype_t type = seq_cft(sf)->private;
51ffe411
TH
1669 ssize_t count;
1670 char *buf, *s;
1671 int ret = 0;
1da177e4 1672
51ffe411
TH
1673 count = seq_get_buf(sf, &buf);
1674 s = buf;
1da177e4 1675
51ffe411 1676 mutex_lock(&callback_mutex);
1da177e4
LT
1677
1678 switch (type) {
1679 case FILE_CPULIST:
51ffe411 1680 s += cpulist_scnprintf(s, count, cs->cpus_allowed);
1da177e4
LT
1681 break;
1682 case FILE_MEMLIST:
51ffe411 1683 s += nodelist_scnprintf(s, count, cs->mems_allowed);
1da177e4 1684 break;
1da177e4 1685 default:
51ffe411
TH
1686 ret = -EINVAL;
1687 goto out_unlock;
1da177e4 1688 }
1da177e4 1689
51ffe411
TH
1690 if (s < buf + count - 1) {
1691 *s++ = '\n';
1692 seq_commit(sf, s - buf);
1693 } else {
1694 seq_commit(sf, -1);
1695 }
1696out_unlock:
1697 mutex_unlock(&callback_mutex);
1698 return ret;
1da177e4
LT
1699}
1700
182446d0 1701static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 1702{
182446d0 1703 struct cpuset *cs = css_cs(css);
700fe1ab
PM
1704 cpuset_filetype_t type = cft->private;
1705 switch (type) {
1706 case FILE_CPU_EXCLUSIVE:
1707 return is_cpu_exclusive(cs);
1708 case FILE_MEM_EXCLUSIVE:
1709 return is_mem_exclusive(cs);
78608366
PM
1710 case FILE_MEM_HARDWALL:
1711 return is_mem_hardwall(cs);
700fe1ab
PM
1712 case FILE_SCHED_LOAD_BALANCE:
1713 return is_sched_load_balance(cs);
1714 case FILE_MEMORY_MIGRATE:
1715 return is_memory_migrate(cs);
1716 case FILE_MEMORY_PRESSURE_ENABLED:
1717 return cpuset_memory_pressure_enabled;
1718 case FILE_MEMORY_PRESSURE:
1719 return fmeter_getrate(&cs->fmeter);
1720 case FILE_SPREAD_PAGE:
1721 return is_spread_page(cs);
1722 case FILE_SPREAD_SLAB:
1723 return is_spread_slab(cs);
1724 default:
1725 BUG();
1726 }
cf417141
MK
1727
1728 /* Unreachable but makes gcc happy */
1729 return 0;
700fe1ab 1730}
1da177e4 1731
182446d0 1732static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 1733{
182446d0 1734 struct cpuset *cs = css_cs(css);
5be7a479
PM
1735 cpuset_filetype_t type = cft->private;
1736 switch (type) {
1737 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1738 return cs->relax_domain_level;
1739 default:
1740 BUG();
1741 }
cf417141
MK
1742
1743 /* Unrechable but makes gcc happy */
1744 return 0;
5be7a479
PM
1745}
1746
1da177e4
LT
1747
1748/*
1749 * for the common functions, 'private' gives the type of file
1750 */
1751
addf2c73
PM
1752static struct cftype files[] = {
1753 {
1754 .name = "cpus",
2da8ca82 1755 .seq_show = cpuset_common_seq_show,
451af504 1756 .write = cpuset_write_resmask,
e3712395 1757 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1758 .private = FILE_CPULIST,
1759 },
1760
1761 {
1762 .name = "mems",
2da8ca82 1763 .seq_show = cpuset_common_seq_show,
451af504 1764 .write = cpuset_write_resmask,
e3712395 1765 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1766 .private = FILE_MEMLIST,
1767 },
1768
1769 {
1770 .name = "cpu_exclusive",
1771 .read_u64 = cpuset_read_u64,
1772 .write_u64 = cpuset_write_u64,
1773 .private = FILE_CPU_EXCLUSIVE,
1774 },
1775
1776 {
1777 .name = "mem_exclusive",
1778 .read_u64 = cpuset_read_u64,
1779 .write_u64 = cpuset_write_u64,
1780 .private = FILE_MEM_EXCLUSIVE,
1781 },
1782
78608366
PM
1783 {
1784 .name = "mem_hardwall",
1785 .read_u64 = cpuset_read_u64,
1786 .write_u64 = cpuset_write_u64,
1787 .private = FILE_MEM_HARDWALL,
1788 },
1789
addf2c73
PM
1790 {
1791 .name = "sched_load_balance",
1792 .read_u64 = cpuset_read_u64,
1793 .write_u64 = cpuset_write_u64,
1794 .private = FILE_SCHED_LOAD_BALANCE,
1795 },
1796
1797 {
1798 .name = "sched_relax_domain_level",
5be7a479
PM
1799 .read_s64 = cpuset_read_s64,
1800 .write_s64 = cpuset_write_s64,
addf2c73
PM
1801 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1802 },
1803
1804 {
1805 .name = "memory_migrate",
1806 .read_u64 = cpuset_read_u64,
1807 .write_u64 = cpuset_write_u64,
1808 .private = FILE_MEMORY_MIGRATE,
1809 },
1810
1811 {
1812 .name = "memory_pressure",
1813 .read_u64 = cpuset_read_u64,
1814 .write_u64 = cpuset_write_u64,
1815 .private = FILE_MEMORY_PRESSURE,
099fca32 1816 .mode = S_IRUGO,
addf2c73
PM
1817 },
1818
1819 {
1820 .name = "memory_spread_page",
1821 .read_u64 = cpuset_read_u64,
1822 .write_u64 = cpuset_write_u64,
1823 .private = FILE_SPREAD_PAGE,
1824 },
1825
1826 {
1827 .name = "memory_spread_slab",
1828 .read_u64 = cpuset_read_u64,
1829 .write_u64 = cpuset_write_u64,
1830 .private = FILE_SPREAD_SLAB,
1831 },
3e0d98b9 1832
4baf6e33
TH
1833 {
1834 .name = "memory_pressure_enabled",
1835 .flags = CFTYPE_ONLY_ON_ROOT,
1836 .read_u64 = cpuset_read_u64,
1837 .write_u64 = cpuset_write_u64,
1838 .private = FILE_MEMORY_PRESSURE_ENABLED,
1839 },
1da177e4 1840
4baf6e33
TH
1841 { } /* terminate */
1842};
1da177e4
LT
1843
1844/*
92fb9748 1845 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1846 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1847 */
1848
eb95419b
TH
1849static struct cgroup_subsys_state *
1850cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1851{
c8f699bb 1852 struct cpuset *cs;
1da177e4 1853
eb95419b 1854 if (!parent_css)
8793d854 1855 return &top_cpuset.css;
033fa1c5 1856
c8f699bb 1857 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1858 if (!cs)
8793d854 1859 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1860 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1861 kfree(cs);
1862 return ERR_PTR(-ENOMEM);
1863 }
1da177e4 1864
029190c5 1865 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1866 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1867 nodes_clear(cs->mems_allowed);
3e0d98b9 1868 fmeter_init(&cs->fmeter);
1d3504fc 1869 cs->relax_domain_level = -1;
1da177e4 1870
c8f699bb
TH
1871 return &cs->css;
1872}
1873
eb95419b 1874static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 1875{
eb95419b 1876 struct cpuset *cs = css_cs(css);
c431069f 1877 struct cpuset *parent = parent_cs(cs);
ae8086ce 1878 struct cpuset *tmp_cs;
492eb21b 1879 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
1880
1881 if (!parent)
1882 return 0;
1883
5d21cc2d
TH
1884 mutex_lock(&cpuset_mutex);
1885
efeb77b2 1886 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1887 if (is_spread_page(parent))
1888 set_bit(CS_SPREAD_PAGE, &cs->flags);
1889 if (is_spread_slab(parent))
1890 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1891
664eedde 1892 cpuset_inc();
033fa1c5 1893
eb95419b 1894 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 1895 goto out_unlock;
033fa1c5
TH
1896
1897 /*
1898 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1899 * set. This flag handling is implemented in cgroup core for
1900 * histrical reasons - the flag may be specified during mount.
1901 *
1902 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1903 * refuse to clone the configuration - thereby refusing the task to
1904 * be entered, and as a result refusing the sys_unshare() or
1905 * clone() which initiated it. If this becomes a problem for some
1906 * users who wish to allow that scenario, then this could be
1907 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1908 * (and likewise for mems) to the new cgroup.
1909 */
ae8086ce 1910 rcu_read_lock();
492eb21b 1911 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
1912 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1913 rcu_read_unlock();
5d21cc2d 1914 goto out_unlock;
ae8086ce 1915 }
033fa1c5 1916 }
ae8086ce 1917 rcu_read_unlock();
033fa1c5
TH
1918
1919 mutex_lock(&callback_mutex);
1920 cs->mems_allowed = parent->mems_allowed;
1921 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1922 mutex_unlock(&callback_mutex);
5d21cc2d
TH
1923out_unlock:
1924 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
1925 return 0;
1926}
1927
0b9e6965
ZH
1928/*
1929 * If the cpuset being removed has its flag 'sched_load_balance'
1930 * enabled, then simulate turning sched_load_balance off, which
1931 * will call rebuild_sched_domains_locked().
1932 */
1933
eb95419b 1934static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 1935{
eb95419b 1936 struct cpuset *cs = css_cs(css);
c8f699bb 1937
5d21cc2d 1938 mutex_lock(&cpuset_mutex);
c8f699bb
TH
1939
1940 if (is_sched_load_balance(cs))
1941 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1942
664eedde 1943 cpuset_dec();
efeb77b2 1944 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 1945
5d21cc2d 1946 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1947}
1948
eb95419b 1949static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 1950{
eb95419b 1951 struct cpuset *cs = css_cs(css);
1da177e4 1952
300ed6cb 1953 free_cpumask_var(cs->cpus_allowed);
8793d854 1954 kfree(cs);
1da177e4
LT
1955}
1956
073219e9 1957struct cgroup_subsys cpuset_cgrp_subsys = {
92fb9748 1958 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
1959 .css_online = cpuset_css_online,
1960 .css_offline = cpuset_css_offline,
92fb9748 1961 .css_free = cpuset_css_free,
8793d854 1962 .can_attach = cpuset_can_attach,
452477fa 1963 .cancel_attach = cpuset_cancel_attach,
8793d854 1964 .attach = cpuset_attach,
4baf6e33 1965 .base_cftypes = files,
8793d854
PM
1966 .early_init = 1,
1967};
1968
1da177e4
LT
1969/**
1970 * cpuset_init - initialize cpusets at system boot
1971 *
1972 * Description: Initialize top_cpuset and the cpuset internal file system,
1973 **/
1974
1975int __init cpuset_init(void)
1976{
8793d854 1977 int err = 0;
1da177e4 1978
58568d2a
MX
1979 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1980 BUG();
1981
300ed6cb 1982 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1983 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1984
3e0d98b9 1985 fmeter_init(&top_cpuset.fmeter);
029190c5 1986 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1987 top_cpuset.relax_domain_level = -1;
1da177e4 1988
1da177e4
LT
1989 err = register_filesystem(&cpuset_fs_type);
1990 if (err < 0)
8793d854
PM
1991 return err;
1992
2341d1b6
LZ
1993 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1994 BUG();
1995
8793d854 1996 return 0;
1da177e4
LT
1997}
1998
b1aac8bb 1999/*
cf417141 2000 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2001 * or memory nodes, we need to walk over the cpuset hierarchy,
2002 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2003 * last CPU or node from a cpuset, then move the tasks in the empty
2004 * cpuset to its next-highest non-empty parent.
b1aac8bb 2005 */
956db3ca
CW
2006static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2007{
2008 struct cpuset *parent;
2009
956db3ca
CW
2010 /*
2011 * Find its next-highest non-empty parent, (top cpuset
2012 * has online cpus, so can't be empty).
2013 */
c431069f 2014 parent = parent_cs(cs);
300ed6cb 2015 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2016 nodes_empty(parent->mems_allowed))
c431069f 2017 parent = parent_cs(parent);
956db3ca 2018
8cc99345 2019 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
12d3089c 2020 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
e61734c5
TH
2021 pr_cont_cgroup_name(cs->css.cgroup);
2022 pr_cont("\n");
8cc99345 2023 }
956db3ca
CW
2024}
2025
deb7aa30 2026/**
388afd85 2027 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2028 * @cs: cpuset in interest
956db3ca 2029 *
deb7aa30
TH
2030 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2031 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2032 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2033 */
388afd85 2034static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2035{
deb7aa30 2036 static cpumask_t off_cpus;
33ad801d 2037 static nodemask_t off_mems;
5d21cc2d 2038 bool is_empty;
5c5cc623 2039 bool sane = cgroup_sane_behavior(cs->css.cgroup);
80d1fa64 2040
e44193d3
LZ
2041retry:
2042 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2043
5d21cc2d 2044 mutex_lock(&cpuset_mutex);
7ddf96b0 2045
e44193d3
LZ
2046 /*
2047 * We have raced with task attaching. We wait until attaching
2048 * is finished, so we won't attach a task to an empty cpuset.
2049 */
2050 if (cs->attach_in_progress) {
2051 mutex_unlock(&cpuset_mutex);
2052 goto retry;
2053 }
2054
deb7aa30
TH
2055 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2056 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2057
5c5cc623
LZ
2058 mutex_lock(&callback_mutex);
2059 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2060 mutex_unlock(&callback_mutex);
2061
2062 /*
2063 * If sane_behavior flag is set, we need to update tasks' cpumask
f047cecf
LZ
2064 * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
2065 * call update_tasks_cpumask() if the cpuset becomes empty, as
2066 * the tasks in it will be migrated to an ancestor.
5c5cc623
LZ
2067 */
2068 if ((sane && cpumask_empty(cs->cpus_allowed)) ||
f047cecf 2069 (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
d66393e5 2070 update_tasks_cpumask(cs);
80d1fa64 2071
5c5cc623
LZ
2072 mutex_lock(&callback_mutex);
2073 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2074 mutex_unlock(&callback_mutex);
2075
2076 /*
2077 * If sane_behavior flag is set, we need to update tasks' nodemask
f047cecf
LZ
2078 * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
2079 * call update_tasks_nodemask() if the cpuset becomes empty, as
2080 * the tasks in it will be migratd to an ancestor.
5c5cc623
LZ
2081 */
2082 if ((sane && nodes_empty(cs->mems_allowed)) ||
f047cecf 2083 (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
d66393e5 2084 update_tasks_nodemask(cs);
deb7aa30 2085
5d21cc2d
TH
2086 is_empty = cpumask_empty(cs->cpus_allowed) ||
2087 nodes_empty(cs->mems_allowed);
8d033948 2088
5d21cc2d
TH
2089 mutex_unlock(&cpuset_mutex);
2090
2091 /*
5c5cc623
LZ
2092 * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
2093 *
2094 * Otherwise move tasks to the nearest ancestor with execution
2095 * resources. This is full cgroup operation which will
5d21cc2d
TH
2096 * also call back into cpuset. Should be done outside any lock.
2097 */
5c5cc623 2098 if (!sane && is_empty)
5d21cc2d 2099 remove_tasks_in_empty_cpuset(cs);
b1aac8bb
PJ
2100}
2101
deb7aa30 2102/**
3a5a6d0c 2103 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2104 *
deb7aa30
TH
2105 * This function is called after either CPU or memory configuration has
2106 * changed and updates cpuset accordingly. The top_cpuset is always
2107 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2108 * order to make cpusets transparent (of no affect) on systems that are
2109 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2110 *
deb7aa30 2111 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2112 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2113 * all descendants.
956db3ca 2114 *
deb7aa30
TH
2115 * Note that CPU offlining during suspend is ignored. We don't modify
2116 * cpusets across suspend/resume cycles at all.
956db3ca 2117 */
3a5a6d0c 2118static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2119{
5c5cc623
LZ
2120 static cpumask_t new_cpus;
2121 static nodemask_t new_mems;
deb7aa30 2122 bool cpus_updated, mems_updated;
b1aac8bb 2123
5d21cc2d 2124 mutex_lock(&cpuset_mutex);
956db3ca 2125
deb7aa30
TH
2126 /* fetch the available cpus/mems and find out which changed how */
2127 cpumask_copy(&new_cpus, cpu_active_mask);
2128 new_mems = node_states[N_MEMORY];
7ddf96b0 2129
deb7aa30 2130 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
deb7aa30 2131 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
7ddf96b0 2132
deb7aa30
TH
2133 /* synchronize cpus_allowed to cpu_active_mask */
2134 if (cpus_updated) {
2135 mutex_lock(&callback_mutex);
2136 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2137 mutex_unlock(&callback_mutex);
2138 /* we don't mess with cpumasks of tasks in top_cpuset */
2139 }
b4501295 2140
deb7aa30
TH
2141 /* synchronize mems_allowed to N_MEMORY */
2142 if (mems_updated) {
deb7aa30
TH
2143 mutex_lock(&callback_mutex);
2144 top_cpuset.mems_allowed = new_mems;
2145 mutex_unlock(&callback_mutex);
d66393e5 2146 update_tasks_nodemask(&top_cpuset);
deb7aa30 2147 }
b4501295 2148
388afd85
LZ
2149 mutex_unlock(&cpuset_mutex);
2150
5c5cc623
LZ
2151 /* if cpus or mems changed, we need to propagate to descendants */
2152 if (cpus_updated || mems_updated) {
deb7aa30 2153 struct cpuset *cs;
492eb21b 2154 struct cgroup_subsys_state *pos_css;
f9b4fb8d 2155
fc560a26 2156 rcu_read_lock();
492eb21b 2157 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
ec903c0c 2158 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
388afd85
LZ
2159 continue;
2160 rcu_read_unlock();
7ddf96b0 2161
388afd85 2162 cpuset_hotplug_update_tasks(cs);
b4501295 2163
388afd85
LZ
2164 rcu_read_lock();
2165 css_put(&cs->css);
2166 }
2167 rcu_read_unlock();
2168 }
8d033948 2169
deb7aa30 2170 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2171 if (cpus_updated)
2172 rebuild_sched_domains();
b1aac8bb
PJ
2173}
2174
7ddf96b0 2175void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2176{
3a5a6d0c
TH
2177 /*
2178 * We're inside cpu hotplug critical region which usually nests
2179 * inside cgroup synchronization. Bounce actual hotplug processing
2180 * to a work item to avoid reverse locking order.
2181 *
2182 * We still need to do partition_sched_domains() synchronously;
2183 * otherwise, the scheduler will get confused and put tasks to the
2184 * dead CPU. Fall back to the default single domain.
2185 * cpuset_hotplug_workfn() will rebuild it as necessary.
2186 */
2187 partition_sched_domains(1, NULL, NULL);
2188 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2189}
4c4d50f7 2190
38837fc7 2191/*
38d7bee9
LJ
2192 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2193 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2194 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2195 */
f481891f
MX
2196static int cpuset_track_online_nodes(struct notifier_block *self,
2197 unsigned long action, void *arg)
38837fc7 2198{
3a5a6d0c 2199 schedule_work(&cpuset_hotplug_work);
f481891f 2200 return NOTIFY_OK;
38837fc7 2201}
d8f10cb3
AM
2202
2203static struct notifier_block cpuset_track_online_nodes_nb = {
2204 .notifier_call = cpuset_track_online_nodes,
2205 .priority = 10, /* ??! */
2206};
38837fc7 2207
1da177e4
LT
2208/**
2209 * cpuset_init_smp - initialize cpus_allowed
2210 *
2211 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2212 */
1da177e4
LT
2213void __init cpuset_init_smp(void)
2214{
6ad4c188 2215 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2216 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2217 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2218
d8f10cb3 2219 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2220}
2221
2222/**
1da177e4
LT
2223 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2224 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2225 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2226 *
300ed6cb 2227 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2228 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2229 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2230 * tasks cpuset.
2231 **/
2232
6af866af 2233void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2234{
070b57fc
LZ
2235 struct cpuset *cpus_cs;
2236
3d3f26a7 2237 mutex_lock(&callback_mutex);
b8dadcb5 2238 rcu_read_lock();
070b57fc
LZ
2239 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2240 guarantee_online_cpus(cpus_cs, pmask);
b8dadcb5 2241 rcu_read_unlock();
897f0b3c 2242 mutex_unlock(&callback_mutex);
1da177e4
LT
2243}
2244
2baab4e9 2245void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2246{
c9710d80 2247 struct cpuset *cpus_cs;
9084bb82
ON
2248
2249 rcu_read_lock();
070b57fc
LZ
2250 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2251 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
9084bb82
ON
2252 rcu_read_unlock();
2253
2254 /*
2255 * We own tsk->cpus_allowed, nobody can change it under us.
2256 *
2257 * But we used cs && cs->cpus_allowed lockless and thus can
2258 * race with cgroup_attach_task() or update_cpumask() and get
2259 * the wrong tsk->cpus_allowed. However, both cases imply the
2260 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2261 * which takes task_rq_lock().
2262 *
2263 * If we are called after it dropped the lock we must see all
2264 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2265 * set any mask even if it is not right from task_cs() pov,
2266 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2267 *
2268 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2269 * if required.
9084bb82 2270 */
9084bb82
ON
2271}
2272
1da177e4
LT
2273void cpuset_init_current_mems_allowed(void)
2274{
f9a86fcb 2275 nodes_setall(current->mems_allowed);
1da177e4
LT
2276}
2277
909d75a3
PJ
2278/**
2279 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2280 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2281 *
2282 * Description: Returns the nodemask_t mems_allowed of the cpuset
2283 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2284 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2285 * tasks cpuset.
2286 **/
2287
2288nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2289{
070b57fc 2290 struct cpuset *mems_cs;
909d75a3
PJ
2291 nodemask_t mask;
2292
3d3f26a7 2293 mutex_lock(&callback_mutex);
b8dadcb5 2294 rcu_read_lock();
070b57fc
LZ
2295 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2296 guarantee_online_mems(mems_cs, &mask);
b8dadcb5 2297 rcu_read_unlock();
3d3f26a7 2298 mutex_unlock(&callback_mutex);
909d75a3
PJ
2299
2300 return mask;
2301}
2302
d9fd8a6d 2303/**
19770b32
MG
2304 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2305 * @nodemask: the nodemask to be checked
d9fd8a6d 2306 *
19770b32 2307 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2308 */
19770b32 2309int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2310{
19770b32 2311 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2312}
2313
9bf2229f 2314/*
78608366
PM
2315 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2316 * mem_hardwall ancestor to the specified cpuset. Call holding
2317 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2318 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2319 */
c9710d80 2320static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2321{
c431069f
TH
2322 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2323 cs = parent_cs(cs);
9bf2229f
PJ
2324 return cs;
2325}
2326
d9fd8a6d 2327/**
a1bc5a4e
DR
2328 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2329 * @node: is this an allowed node?
02a0e53d 2330 * @gfp_mask: memory allocation flags
d9fd8a6d 2331 *
a1bc5a4e
DR
2332 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2333 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2334 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2335 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2336 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2337 * flag, yes.
9bf2229f
PJ
2338 * Otherwise, no.
2339 *
a1bc5a4e
DR
2340 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2341 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2342 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2343 *
a1bc5a4e
DR
2344 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2345 * cpusets, and never sleeps.
02a0e53d
PJ
2346 *
2347 * The __GFP_THISNODE placement logic is really handled elsewhere,
2348 * by forcibly using a zonelist starting at a specified node, and by
2349 * (in get_page_from_freelist()) refusing to consider the zones for
2350 * any node on the zonelist except the first. By the time any such
2351 * calls get to this routine, we should just shut up and say 'yes'.
2352 *
9bf2229f 2353 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2354 * and do not allow allocations outside the current tasks cpuset
2355 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2356 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2357 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2358 *
02a0e53d
PJ
2359 * Scanning up parent cpusets requires callback_mutex. The
2360 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2361 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2362 * current tasks mems_allowed came up empty on the first pass over
2363 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2364 * cpuset are short of memory, might require taking the callback_mutex
2365 * mutex.
9bf2229f 2366 *
36be57ff 2367 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2368 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2369 * so no allocation on a node outside the cpuset is allowed (unless
2370 * in interrupt, of course).
36be57ff
PJ
2371 *
2372 * The second pass through get_page_from_freelist() doesn't even call
2373 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2374 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2375 * in alloc_flags. That logic and the checks below have the combined
2376 * affect that:
9bf2229f
PJ
2377 * in_interrupt - any node ok (current task context irrelevant)
2378 * GFP_ATOMIC - any node ok
c596d9f3 2379 * TIF_MEMDIE - any node ok
78608366 2380 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2381 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2382 *
2383 * Rule:
a1bc5a4e 2384 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2385 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2386 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2387 */
a1bc5a4e 2388int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2389{
c9710d80 2390 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2391 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2392
9b819d20 2393 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2394 return 1;
92d1dbd2 2395 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2396 if (node_isset(node, current->mems_allowed))
2397 return 1;
c596d9f3
DR
2398 /*
2399 * Allow tasks that have access to memory reserves because they have
2400 * been OOM killed to get memory anywhere.
2401 */
2402 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2403 return 1;
9bf2229f
PJ
2404 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2405 return 0;
2406
5563e770
BP
2407 if (current->flags & PF_EXITING) /* Let dying task have memory */
2408 return 1;
2409
9bf2229f 2410 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2411 mutex_lock(&callback_mutex);
053199ed 2412
b8dadcb5 2413 rcu_read_lock();
78608366 2414 cs = nearest_hardwall_ancestor(task_cs(current));
99afb0fd 2415 allowed = node_isset(node, cs->mems_allowed);
b8dadcb5 2416 rcu_read_unlock();
053199ed 2417
3d3f26a7 2418 mutex_unlock(&callback_mutex);
9bf2229f 2419 return allowed;
1da177e4
LT
2420}
2421
02a0e53d 2422/*
a1bc5a4e
DR
2423 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2424 * @node: is this an allowed node?
02a0e53d
PJ
2425 * @gfp_mask: memory allocation flags
2426 *
a1bc5a4e
DR
2427 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2428 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2429 * yes. If the task has been OOM killed and has access to memory reserves as
2430 * specified by the TIF_MEMDIE flag, yes.
2431 * Otherwise, no.
02a0e53d
PJ
2432 *
2433 * The __GFP_THISNODE placement logic is really handled elsewhere,
2434 * by forcibly using a zonelist starting at a specified node, and by
2435 * (in get_page_from_freelist()) refusing to consider the zones for
2436 * any node on the zonelist except the first. By the time any such
2437 * calls get to this routine, we should just shut up and say 'yes'.
2438 *
a1bc5a4e
DR
2439 * Unlike the cpuset_node_allowed_softwall() variant, above,
2440 * this variant requires that the node be in the current task's
02a0e53d
PJ
2441 * mems_allowed or that we're in interrupt. It does not scan up the
2442 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2443 * It never sleeps.
2444 */
a1bc5a4e 2445int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2446{
02a0e53d
PJ
2447 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2448 return 1;
02a0e53d
PJ
2449 if (node_isset(node, current->mems_allowed))
2450 return 1;
dedf8b79
DW
2451 /*
2452 * Allow tasks that have access to memory reserves because they have
2453 * been OOM killed to get memory anywhere.
2454 */
2455 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2456 return 1;
02a0e53d
PJ
2457 return 0;
2458}
2459
825a46af 2460/**
6adef3eb
JS
2461 * cpuset_mem_spread_node() - On which node to begin search for a file page
2462 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2463 *
2464 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2465 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2466 * and if the memory allocation used cpuset_mem_spread_node()
2467 * to determine on which node to start looking, as it will for
2468 * certain page cache or slab cache pages such as used for file
2469 * system buffers and inode caches, then instead of starting on the
2470 * local node to look for a free page, rather spread the starting
2471 * node around the tasks mems_allowed nodes.
2472 *
2473 * We don't have to worry about the returned node being offline
2474 * because "it can't happen", and even if it did, it would be ok.
2475 *
2476 * The routines calling guarantee_online_mems() are careful to
2477 * only set nodes in task->mems_allowed that are online. So it
2478 * should not be possible for the following code to return an
2479 * offline node. But if it did, that would be ok, as this routine
2480 * is not returning the node where the allocation must be, only
2481 * the node where the search should start. The zonelist passed to
2482 * __alloc_pages() will include all nodes. If the slab allocator
2483 * is passed an offline node, it will fall back to the local node.
2484 * See kmem_cache_alloc_node().
2485 */
2486
6adef3eb 2487static int cpuset_spread_node(int *rotor)
825a46af
PJ
2488{
2489 int node;
2490
6adef3eb 2491 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2492 if (node == MAX_NUMNODES)
2493 node = first_node(current->mems_allowed);
6adef3eb 2494 *rotor = node;
825a46af
PJ
2495 return node;
2496}
6adef3eb
JS
2497
2498int cpuset_mem_spread_node(void)
2499{
778d3b0f
MH
2500 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2501 current->cpuset_mem_spread_rotor =
2502 node_random(&current->mems_allowed);
2503
6adef3eb
JS
2504 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2505}
2506
2507int cpuset_slab_spread_node(void)
2508{
778d3b0f
MH
2509 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2510 current->cpuset_slab_spread_rotor =
2511 node_random(&current->mems_allowed);
2512
6adef3eb
JS
2513 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2514}
2515
825a46af
PJ
2516EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2517
ef08e3b4 2518/**
bbe373f2
DR
2519 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2520 * @tsk1: pointer to task_struct of some task.
2521 * @tsk2: pointer to task_struct of some other task.
2522 *
2523 * Description: Return true if @tsk1's mems_allowed intersects the
2524 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2525 * one of the task's memory usage might impact the memory available
2526 * to the other.
ef08e3b4
PJ
2527 **/
2528
bbe373f2
DR
2529int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2530 const struct task_struct *tsk2)
ef08e3b4 2531{
bbe373f2 2532 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2533}
2534
f440d98f
LZ
2535#define CPUSET_NODELIST_LEN (256)
2536
75aa1994
DR
2537/**
2538 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
fc34ac1d 2539 * @tsk: pointer to task_struct of some task.
75aa1994
DR
2540 *
2541 * Description: Prints @task's name, cpuset name, and cached copy of its
b8dadcb5 2542 * mems_allowed to the kernel log.
75aa1994
DR
2543 */
2544void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2545{
f440d98f
LZ
2546 /* Statically allocated to prevent using excess stack. */
2547 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2548 static DEFINE_SPINLOCK(cpuset_buffer_lock);
b8dadcb5 2549 struct cgroup *cgrp;
75aa1994 2550
f440d98f 2551 spin_lock(&cpuset_buffer_lock);
b8dadcb5 2552 rcu_read_lock();
63f43f55 2553
b8dadcb5 2554 cgrp = task_cs(tsk)->css.cgroup;
75aa1994
DR
2555 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2556 tsk->mems_allowed);
12d3089c 2557 pr_info("%s cpuset=", tsk->comm);
e61734c5
TH
2558 pr_cont_cgroup_name(cgrp);
2559 pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
f440d98f 2560
cfb5966b 2561 rcu_read_unlock();
75aa1994
DR
2562 spin_unlock(&cpuset_buffer_lock);
2563}
2564
3e0d98b9
PJ
2565/*
2566 * Collection of memory_pressure is suppressed unless
2567 * this flag is enabled by writing "1" to the special
2568 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2569 */
2570
c5b2aff8 2571int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2572
2573/**
2574 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2575 *
2576 * Keep a running average of the rate of synchronous (direct)
2577 * page reclaim efforts initiated by tasks in each cpuset.
2578 *
2579 * This represents the rate at which some task in the cpuset
2580 * ran low on memory on all nodes it was allowed to use, and
2581 * had to enter the kernels page reclaim code in an effort to
2582 * create more free memory by tossing clean pages or swapping
2583 * or writing dirty pages.
2584 *
2585 * Display to user space in the per-cpuset read-only file
2586 * "memory_pressure". Value displayed is an integer
2587 * representing the recent rate of entry into the synchronous
2588 * (direct) page reclaim by any task attached to the cpuset.
2589 **/
2590
2591void __cpuset_memory_pressure_bump(void)
2592{
b8dadcb5 2593 rcu_read_lock();
8793d854 2594 fmeter_markevent(&task_cs(current)->fmeter);
b8dadcb5 2595 rcu_read_unlock();
3e0d98b9
PJ
2596}
2597
8793d854 2598#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2599/*
2600 * proc_cpuset_show()
2601 * - Print tasks cpuset path into seq_file.
2602 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2603 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2604 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2605 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2606 * anyway.
1da177e4 2607 */
8d8b97ba 2608int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2609{
13b41b09 2610 struct pid *pid;
1da177e4 2611 struct task_struct *tsk;
e61734c5 2612 char *buf, *p;
8793d854 2613 struct cgroup_subsys_state *css;
99f89551 2614 int retval;
1da177e4 2615
99f89551 2616 retval = -ENOMEM;
e61734c5 2617 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1da177e4 2618 if (!buf)
99f89551
EB
2619 goto out;
2620
2621 retval = -ESRCH;
13b41b09
EB
2622 pid = m->private;
2623 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2624 if (!tsk)
2625 goto out_free;
1da177e4 2626
e61734c5 2627 retval = -ENAMETOOLONG;
27e89ae5 2628 rcu_read_lock();
073219e9 2629 css = task_css(tsk, cpuset_cgrp_id);
e61734c5 2630 p = cgroup_path(css->cgroup, buf, PATH_MAX);
27e89ae5 2631 rcu_read_unlock();
e61734c5 2632 if (!p)
27e89ae5 2633 goto out_put_task;
e61734c5 2634 seq_puts(m, p);
1da177e4 2635 seq_putc(m, '\n');
e61734c5 2636 retval = 0;
27e89ae5 2637out_put_task:
99f89551
EB
2638 put_task_struct(tsk);
2639out_free:
1da177e4 2640 kfree(buf);
99f89551 2641out:
1da177e4
LT
2642 return retval;
2643}
8793d854 2644#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2645
d01d4827 2646/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2647void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2648{
fc34ac1d 2649 seq_puts(m, "Mems_allowed:\t");
30e8e136 2650 seq_nodemask(m, &task->mems_allowed);
fc34ac1d
FF
2651 seq_puts(m, "\n");
2652 seq_puts(m, "Mems_allowed_list:\t");
30e8e136 2653 seq_nodemask_list(m, &task->mems_allowed);
fc34ac1d 2654 seq_puts(m, "\n");
1da177e4 2655}