cpuset: remove async hotplug propagation work
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
202f72d5
PJ
64/*
65 * Tracks how many cpusets are currently defined in system.
66 * When there is only one cpuset (the root cpuset) we can
67 * short circuit some hooks.
68 */
7edc5962 69int number_of_cpusets __read_mostly;
202f72d5 70
2df167a3 71/* Forward declare cgroup structures */
8793d854
PM
72struct cgroup_subsys cpuset_subsys;
73struct cpuset;
74
3e0d98b9
PJ
75/* See "Frequency meter" comments, below. */
76
77struct fmeter {
78 int cnt; /* unprocessed events count */
79 int val; /* most recent output value */
80 time_t time; /* clock (secs) when val computed */
81 spinlock_t lock; /* guards read or write of above */
82};
83
1da177e4 84struct cpuset {
8793d854
PM
85 struct cgroup_subsys_state css;
86
1da177e4 87 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 88 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
89 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
90
3e0d98b9 91 struct fmeter fmeter; /* memory_pressure filter */
029190c5 92
452477fa
TH
93 /*
94 * Tasks are being attached to this cpuset. Used to prevent
95 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
96 */
97 int attach_in_progress;
98
029190c5
PJ
99 /* partition number for rebuild_sched_domains() */
100 int pn;
956db3ca 101
1d3504fc
HS
102 /* for custom sched domain */
103 int relax_domain_level;
1da177e4
LT
104};
105
8793d854
PM
106/* Retrieve the cpuset for a cgroup */
107static inline struct cpuset *cgroup_cs(struct cgroup *cont)
108{
109 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
110 struct cpuset, css);
111}
112
113/* Retrieve the cpuset for a task */
114static inline struct cpuset *task_cs(struct task_struct *task)
115{
116 return container_of(task_subsys_state(task, cpuset_subsys_id),
117 struct cpuset, css);
118}
8793d854 119
c431069f
TH
120static inline struct cpuset *parent_cs(const struct cpuset *cs)
121{
122 struct cgroup *pcgrp = cs->css.cgroup->parent;
123
124 if (pcgrp)
125 return cgroup_cs(pcgrp);
126 return NULL;
127}
128
b246272e
DR
129#ifdef CONFIG_NUMA
130static inline bool task_has_mempolicy(struct task_struct *task)
131{
132 return task->mempolicy;
133}
134#else
135static inline bool task_has_mempolicy(struct task_struct *task)
136{
137 return false;
138}
139#endif
140
141
1da177e4
LT
142/* bits in struct cpuset flags field */
143typedef enum {
efeb77b2 144 CS_ONLINE,
1da177e4
LT
145 CS_CPU_EXCLUSIVE,
146 CS_MEM_EXCLUSIVE,
78608366 147 CS_MEM_HARDWALL,
45b07ef3 148 CS_MEMORY_MIGRATE,
029190c5 149 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
150 CS_SPREAD_PAGE,
151 CS_SPREAD_SLAB,
1da177e4
LT
152} cpuset_flagbits_t;
153
154/* convenient tests for these bits */
efeb77b2
TH
155static inline bool is_cpuset_online(const struct cpuset *cs)
156{
157 return test_bit(CS_ONLINE, &cs->flags);
158}
159
1da177e4
LT
160static inline int is_cpu_exclusive(const struct cpuset *cs)
161{
7b5b9ef0 162 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
163}
164
165static inline int is_mem_exclusive(const struct cpuset *cs)
166{
7b5b9ef0 167 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
168}
169
78608366
PM
170static inline int is_mem_hardwall(const struct cpuset *cs)
171{
172 return test_bit(CS_MEM_HARDWALL, &cs->flags);
173}
174
029190c5
PJ
175static inline int is_sched_load_balance(const struct cpuset *cs)
176{
177 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
178}
179
45b07ef3
PJ
180static inline int is_memory_migrate(const struct cpuset *cs)
181{
7b5b9ef0 182 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
183}
184
825a46af
PJ
185static inline int is_spread_page(const struct cpuset *cs)
186{
187 return test_bit(CS_SPREAD_PAGE, &cs->flags);
188}
189
190static inline int is_spread_slab(const struct cpuset *cs)
191{
192 return test_bit(CS_SPREAD_SLAB, &cs->flags);
193}
194
1da177e4 195static struct cpuset top_cpuset = {
efeb77b2
TH
196 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
197 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
198};
199
ae8086ce
TH
200/**
201 * cpuset_for_each_child - traverse online children of a cpuset
202 * @child_cs: loop cursor pointing to the current child
203 * @pos_cgrp: used for iteration
204 * @parent_cs: target cpuset to walk children of
205 *
206 * Walk @child_cs through the online children of @parent_cs. Must be used
207 * with RCU read locked.
208 */
209#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
210 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
211 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
212
fc560a26
TH
213/**
214 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
215 * @des_cs: loop cursor pointing to the current descendant
216 * @pos_cgrp: used for iteration
217 * @root_cs: target cpuset to walk ancestor of
218 *
219 * Walk @des_cs through the online descendants of @root_cs. Must be used
220 * with RCU read locked. The caller may modify @pos_cgrp by calling
221 * cgroup_rightmost_descendant() to skip subtree.
222 */
223#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
224 cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
225 if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
226
1da177e4 227/*
5d21cc2d
TH
228 * There are two global mutexes guarding cpuset structures - cpuset_mutex
229 * and callback_mutex. The latter may nest inside the former. We also
230 * require taking task_lock() when dereferencing a task's cpuset pointer.
231 * See "The task_lock() exception", at the end of this comment.
232 *
233 * A task must hold both mutexes to modify cpusets. If a task holds
234 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
235 * is the only task able to also acquire callback_mutex and be able to
236 * modify cpusets. It can perform various checks on the cpuset structure
237 * first, knowing nothing will change. It can also allocate memory while
238 * just holding cpuset_mutex. While it is performing these checks, various
239 * callback routines can briefly acquire callback_mutex to query cpusets.
240 * Once it is ready to make the changes, it takes callback_mutex, blocking
241 * everyone else.
053199ed
PJ
242 *
243 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 244 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
245 * from one of the callbacks into the cpuset code from within
246 * __alloc_pages().
247 *
3d3f26a7 248 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
249 * access to cpusets.
250 *
58568d2a
MX
251 * Now, the task_struct fields mems_allowed and mempolicy may be changed
252 * by other task, we use alloc_lock in the task_struct fields to protect
253 * them.
053199ed 254 *
3d3f26a7 255 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
256 * small pieces of code, such as when reading out possibly multi-word
257 * cpumasks and nodemasks.
258 *
2df167a3
PM
259 * Accessing a task's cpuset should be done in accordance with the
260 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
261 */
262
5d21cc2d 263static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 264static DEFINE_MUTEX(callback_mutex);
4247bdc6 265
3a5a6d0c
TH
266/*
267 * CPU / memory hotplug is handled asynchronously.
268 */
269static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
270static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
271
e44193d3
LZ
272static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
273
cf417141
MK
274/*
275 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 276 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
277 * silently switch it to mount "cgroup" instead
278 */
f7e83571
AV
279static struct dentry *cpuset_mount(struct file_system_type *fs_type,
280 int flags, const char *unused_dev_name, void *data)
1da177e4 281{
8793d854 282 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 283 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
284 if (cgroup_fs) {
285 char mountopts[] =
286 "cpuset,noprefix,"
287 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
288 ret = cgroup_fs->mount(cgroup_fs, flags,
289 unused_dev_name, mountopts);
8793d854
PM
290 put_filesystem(cgroup_fs);
291 }
292 return ret;
1da177e4
LT
293}
294
295static struct file_system_type cpuset_fs_type = {
296 .name = "cpuset",
f7e83571 297 .mount = cpuset_mount,
1da177e4
LT
298};
299
1da177e4 300/*
300ed6cb 301 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 302 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
303 * until we find one that does have some online cpus. The top
304 * cpuset always has some cpus online.
1da177e4
LT
305 *
306 * One way or another, we guarantee to return some non-empty subset
5f054e31 307 * of cpu_online_mask.
1da177e4 308 *
3d3f26a7 309 * Call with callback_mutex held.
1da177e4 310 */
6af866af
LZ
311static void guarantee_online_cpus(const struct cpuset *cs,
312 struct cpumask *pmask)
1da177e4 313{
40df2deb 314 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 315 cs = parent_cs(cs);
40df2deb 316 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4
LT
317}
318
319/*
320 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
321 * are online, with memory. If none are online with memory, walk
322 * up the cpuset hierarchy until we find one that does have some
40df2deb 323 * online mems. The top cpuset always has some mems online.
1da177e4
LT
324 *
325 * One way or another, we guarantee to return some non-empty subset
38d7bee9 326 * of node_states[N_MEMORY].
1da177e4 327 *
3d3f26a7 328 * Call with callback_mutex held.
1da177e4 329 */
1da177e4
LT
330static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
331{
40df2deb 332 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
c431069f 333 cs = parent_cs(cs);
40df2deb 334 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
1da177e4
LT
335}
336
f3b39d47
MX
337/*
338 * update task's spread flag if cpuset's page/slab spread flag is set
339 *
5d21cc2d 340 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
341 */
342static void cpuset_update_task_spread_flag(struct cpuset *cs,
343 struct task_struct *tsk)
344{
345 if (is_spread_page(cs))
346 tsk->flags |= PF_SPREAD_PAGE;
347 else
348 tsk->flags &= ~PF_SPREAD_PAGE;
349 if (is_spread_slab(cs))
350 tsk->flags |= PF_SPREAD_SLAB;
351 else
352 tsk->flags &= ~PF_SPREAD_SLAB;
353}
354
1da177e4
LT
355/*
356 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
357 *
358 * One cpuset is a subset of another if all its allowed CPUs and
359 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 360 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
361 */
362
363static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
364{
300ed6cb 365 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
366 nodes_subset(p->mems_allowed, q->mems_allowed) &&
367 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
368 is_mem_exclusive(p) <= is_mem_exclusive(q);
369}
370
645fcc9d
LZ
371/**
372 * alloc_trial_cpuset - allocate a trial cpuset
373 * @cs: the cpuset that the trial cpuset duplicates
374 */
375static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
376{
300ed6cb
LZ
377 struct cpuset *trial;
378
379 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
380 if (!trial)
381 return NULL;
382
383 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
384 kfree(trial);
385 return NULL;
386 }
387 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
388
389 return trial;
645fcc9d
LZ
390}
391
392/**
393 * free_trial_cpuset - free the trial cpuset
394 * @trial: the trial cpuset to be freed
395 */
396static void free_trial_cpuset(struct cpuset *trial)
397{
300ed6cb 398 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
399 kfree(trial);
400}
401
1da177e4
LT
402/*
403 * validate_change() - Used to validate that any proposed cpuset change
404 * follows the structural rules for cpusets.
405 *
406 * If we replaced the flag and mask values of the current cpuset
407 * (cur) with those values in the trial cpuset (trial), would
408 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 409 * cpuset_mutex held.
1da177e4
LT
410 *
411 * 'cur' is the address of an actual, in-use cpuset. Operations
412 * such as list traversal that depend on the actual address of the
413 * cpuset in the list must use cur below, not trial.
414 *
415 * 'trial' is the address of bulk structure copy of cur, with
416 * perhaps one or more of the fields cpus_allowed, mems_allowed,
417 * or flags changed to new, trial values.
418 *
419 * Return 0 if valid, -errno if not.
420 */
421
422static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
423{
8793d854 424 struct cgroup *cont;
1da177e4 425 struct cpuset *c, *par;
ae8086ce
TH
426 int ret;
427
428 rcu_read_lock();
1da177e4
LT
429
430 /* Each of our child cpusets must be a subset of us */
ae8086ce
TH
431 ret = -EBUSY;
432 cpuset_for_each_child(c, cont, cur)
433 if (!is_cpuset_subset(c, trial))
434 goto out;
1da177e4
LT
435
436 /* Remaining checks don't apply to root cpuset */
ae8086ce 437 ret = 0;
69604067 438 if (cur == &top_cpuset)
ae8086ce 439 goto out;
1da177e4 440
c431069f 441 par = parent_cs(cur);
69604067 442
1da177e4 443 /* We must be a subset of our parent cpuset */
ae8086ce 444 ret = -EACCES;
1da177e4 445 if (!is_cpuset_subset(trial, par))
ae8086ce 446 goto out;
1da177e4 447
2df167a3
PM
448 /*
449 * If either I or some sibling (!= me) is exclusive, we can't
450 * overlap
451 */
ae8086ce
TH
452 ret = -EINVAL;
453 cpuset_for_each_child(c, cont, par) {
1da177e4
LT
454 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
455 c != cur &&
300ed6cb 456 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 457 goto out;
1da177e4
LT
458 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
459 c != cur &&
460 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 461 goto out;
1da177e4
LT
462 }
463
452477fa
TH
464 /*
465 * Cpusets with tasks - existing or newly being attached - can't
466 * have empty cpus_allowed or mems_allowed.
467 */
ae8086ce 468 ret = -ENOSPC;
452477fa 469 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
ae8086ce
TH
470 (cpumask_empty(trial->cpus_allowed) ||
471 nodes_empty(trial->mems_allowed)))
472 goto out;
020958b6 473
ae8086ce
TH
474 ret = 0;
475out:
476 rcu_read_unlock();
477 return ret;
1da177e4
LT
478}
479
db7f47cf 480#ifdef CONFIG_SMP
029190c5 481/*
cf417141 482 * Helper routine for generate_sched_domains().
029190c5
PJ
483 * Do cpusets a, b have overlapping cpus_allowed masks?
484 */
029190c5
PJ
485static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
486{
300ed6cb 487 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
488}
489
1d3504fc
HS
490static void
491update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
492{
1d3504fc
HS
493 if (dattr->relax_domain_level < c->relax_domain_level)
494 dattr->relax_domain_level = c->relax_domain_level;
495 return;
496}
497
fc560a26
TH
498static void update_domain_attr_tree(struct sched_domain_attr *dattr,
499 struct cpuset *root_cs)
f5393693 500{
fc560a26
TH
501 struct cpuset *cp;
502 struct cgroup *pos_cgrp;
f5393693 503
fc560a26
TH
504 rcu_read_lock();
505 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
506 /* skip the whole subtree if @cp doesn't have any CPU */
507 if (cpumask_empty(cp->cpus_allowed)) {
508 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
f5393693 509 continue;
fc560a26 510 }
f5393693
LJ
511
512 if (is_sched_load_balance(cp))
513 update_domain_attr(dattr, cp);
f5393693 514 }
fc560a26 515 rcu_read_unlock();
f5393693
LJ
516}
517
029190c5 518/*
cf417141
MK
519 * generate_sched_domains()
520 *
521 * This function builds a partial partition of the systems CPUs
522 * A 'partial partition' is a set of non-overlapping subsets whose
523 * union is a subset of that set.
524 * The output of this function needs to be passed to kernel/sched.c
525 * partition_sched_domains() routine, which will rebuild the scheduler's
526 * load balancing domains (sched domains) as specified by that partial
527 * partition.
029190c5 528 *
45ce80fb 529 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
530 * for a background explanation of this.
531 *
532 * Does not return errors, on the theory that the callers of this
533 * routine would rather not worry about failures to rebuild sched
534 * domains when operating in the severe memory shortage situations
535 * that could cause allocation failures below.
536 *
5d21cc2d 537 * Must be called with cpuset_mutex held.
029190c5
PJ
538 *
539 * The three key local variables below are:
aeed6824 540 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
541 * top-down scan of all cpusets. This scan loads a pointer
542 * to each cpuset marked is_sched_load_balance into the
543 * array 'csa'. For our purposes, rebuilding the schedulers
544 * sched domains, we can ignore !is_sched_load_balance cpusets.
545 * csa - (for CpuSet Array) Array of pointers to all the cpusets
546 * that need to be load balanced, for convenient iterative
547 * access by the subsequent code that finds the best partition,
548 * i.e the set of domains (subsets) of CPUs such that the
549 * cpus_allowed of every cpuset marked is_sched_load_balance
550 * is a subset of one of these domains, while there are as
551 * many such domains as possible, each as small as possible.
552 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
553 * the kernel/sched.c routine partition_sched_domains() in a
554 * convenient format, that can be easily compared to the prior
555 * value to determine what partition elements (sched domains)
556 * were changed (added or removed.)
557 *
558 * Finding the best partition (set of domains):
559 * The triple nested loops below over i, j, k scan over the
560 * load balanced cpusets (using the array of cpuset pointers in
561 * csa[]) looking for pairs of cpusets that have overlapping
562 * cpus_allowed, but which don't have the same 'pn' partition
563 * number and gives them in the same partition number. It keeps
564 * looping on the 'restart' label until it can no longer find
565 * any such pairs.
566 *
567 * The union of the cpus_allowed masks from the set of
568 * all cpusets having the same 'pn' value then form the one
569 * element of the partition (one sched domain) to be passed to
570 * partition_sched_domains().
571 */
acc3f5d7 572static int generate_sched_domains(cpumask_var_t **domains,
cf417141 573 struct sched_domain_attr **attributes)
029190c5 574{
029190c5
PJ
575 struct cpuset *cp; /* scans q */
576 struct cpuset **csa; /* array of all cpuset ptrs */
577 int csn; /* how many cpuset ptrs in csa so far */
578 int i, j, k; /* indices for partition finding loops */
acc3f5d7 579 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 580 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 581 int ndoms = 0; /* number of sched domains in result */
6af866af 582 int nslot; /* next empty doms[] struct cpumask slot */
fc560a26 583 struct cgroup *pos_cgrp;
029190c5 584
029190c5 585 doms = NULL;
1d3504fc 586 dattr = NULL;
cf417141 587 csa = NULL;
029190c5
PJ
588
589 /* Special case for the 99% of systems with one, full, sched domain */
590 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
591 ndoms = 1;
592 doms = alloc_sched_domains(ndoms);
029190c5 593 if (!doms)
cf417141
MK
594 goto done;
595
1d3504fc
HS
596 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
597 if (dattr) {
598 *dattr = SD_ATTR_INIT;
93a65575 599 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 600 }
acc3f5d7 601 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 602
cf417141 603 goto done;
029190c5
PJ
604 }
605
029190c5
PJ
606 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
607 if (!csa)
608 goto done;
609 csn = 0;
610
fc560a26
TH
611 rcu_read_lock();
612 cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
f5393693 613 /*
fc560a26
TH
614 * Continue traversing beyond @cp iff @cp has some CPUs and
615 * isn't load balancing. The former is obvious. The
616 * latter: All child cpusets contain a subset of the
617 * parent's cpus, so just skip them, and then we call
618 * update_domain_attr_tree() to calc relax_domain_level of
619 * the corresponding sched domain.
f5393693 620 */
fc560a26
TH
621 if (!cpumask_empty(cp->cpus_allowed) &&
622 !is_sched_load_balance(cp))
f5393693 623 continue;
489a5393 624
fc560a26
TH
625 if (is_sched_load_balance(cp))
626 csa[csn++] = cp;
627
628 /* skip @cp's subtree */
629 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
630 }
631 rcu_read_unlock();
029190c5
PJ
632
633 for (i = 0; i < csn; i++)
634 csa[i]->pn = i;
635 ndoms = csn;
636
637restart:
638 /* Find the best partition (set of sched domains) */
639 for (i = 0; i < csn; i++) {
640 struct cpuset *a = csa[i];
641 int apn = a->pn;
642
643 for (j = 0; j < csn; j++) {
644 struct cpuset *b = csa[j];
645 int bpn = b->pn;
646
647 if (apn != bpn && cpusets_overlap(a, b)) {
648 for (k = 0; k < csn; k++) {
649 struct cpuset *c = csa[k];
650
651 if (c->pn == bpn)
652 c->pn = apn;
653 }
654 ndoms--; /* one less element */
655 goto restart;
656 }
657 }
658 }
659
cf417141
MK
660 /*
661 * Now we know how many domains to create.
662 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
663 */
acc3f5d7 664 doms = alloc_sched_domains(ndoms);
700018e0 665 if (!doms)
cf417141 666 goto done;
cf417141
MK
667
668 /*
669 * The rest of the code, including the scheduler, can deal with
670 * dattr==NULL case. No need to abort if alloc fails.
671 */
1d3504fc 672 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
673
674 for (nslot = 0, i = 0; i < csn; i++) {
675 struct cpuset *a = csa[i];
6af866af 676 struct cpumask *dp;
029190c5
PJ
677 int apn = a->pn;
678
cf417141
MK
679 if (apn < 0) {
680 /* Skip completed partitions */
681 continue;
682 }
683
acc3f5d7 684 dp = doms[nslot];
cf417141
MK
685
686 if (nslot == ndoms) {
687 static int warnings = 10;
688 if (warnings) {
689 printk(KERN_WARNING
690 "rebuild_sched_domains confused:"
691 " nslot %d, ndoms %d, csn %d, i %d,"
692 " apn %d\n",
693 nslot, ndoms, csn, i, apn);
694 warnings--;
029190c5 695 }
cf417141
MK
696 continue;
697 }
029190c5 698
6af866af 699 cpumask_clear(dp);
cf417141
MK
700 if (dattr)
701 *(dattr + nslot) = SD_ATTR_INIT;
702 for (j = i; j < csn; j++) {
703 struct cpuset *b = csa[j];
704
705 if (apn == b->pn) {
300ed6cb 706 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
707 if (dattr)
708 update_domain_attr_tree(dattr + nslot, b);
709
710 /* Done with this partition */
711 b->pn = -1;
029190c5 712 }
029190c5 713 }
cf417141 714 nslot++;
029190c5
PJ
715 }
716 BUG_ON(nslot != ndoms);
717
cf417141
MK
718done:
719 kfree(csa);
720
700018e0
LZ
721 /*
722 * Fallback to the default domain if kmalloc() failed.
723 * See comments in partition_sched_domains().
724 */
725 if (doms == NULL)
726 ndoms = 1;
727
cf417141
MK
728 *domains = doms;
729 *attributes = dattr;
730 return ndoms;
731}
732
733/*
734 * Rebuild scheduler domains.
735 *
699140ba
TH
736 * If the flag 'sched_load_balance' of any cpuset with non-empty
737 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
738 * which has that flag enabled, or if any cpuset with a non-empty
739 * 'cpus' is removed, then call this routine to rebuild the
740 * scheduler's dynamic sched domains.
cf417141 741 *
5d21cc2d 742 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 743 */
699140ba 744static void rebuild_sched_domains_locked(void)
cf417141
MK
745{
746 struct sched_domain_attr *attr;
acc3f5d7 747 cpumask_var_t *doms;
cf417141
MK
748 int ndoms;
749
5d21cc2d 750 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 751 get_online_cpus();
cf417141 752
5b16c2a4
LZ
753 /*
754 * We have raced with CPU hotplug. Don't do anything to avoid
755 * passing doms with offlined cpu to partition_sched_domains().
756 * Anyways, hotplug work item will rebuild sched domains.
757 */
758 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
759 goto out;
760
cf417141 761 /* Generate domain masks and attrs */
cf417141 762 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
763
764 /* Have scheduler rebuild the domains */
765 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 766out:
86ef5c9a 767 put_online_cpus();
cf417141 768}
db7f47cf 769#else /* !CONFIG_SMP */
699140ba 770static void rebuild_sched_domains_locked(void)
db7f47cf
PM
771{
772}
db7f47cf 773#endif /* CONFIG_SMP */
029190c5 774
cf417141
MK
775void rebuild_sched_domains(void)
776{
5d21cc2d 777 mutex_lock(&cpuset_mutex);
699140ba 778 rebuild_sched_domains_locked();
5d21cc2d 779 mutex_unlock(&cpuset_mutex);
029190c5
PJ
780}
781
58f4790b
CW
782/**
783 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
784 * @tsk: task to test
785 * @scan: struct cgroup_scanner containing the cgroup of the task
786 *
787 * Called by cgroup_scan_tasks() for each task in a cgroup whose
788 * cpus_allowed mask needs to be changed.
789 *
790 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 791 * holding cpuset_mutex at this point.
58f4790b 792 */
9e0c914c
AB
793static void cpuset_change_cpumask(struct task_struct *tsk,
794 struct cgroup_scanner *scan)
58f4790b 795{
300ed6cb 796 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
797}
798
0b2f630a
MX
799/**
800 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
801 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 802 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 803 *
5d21cc2d 804 * Called with cpuset_mutex held
0b2f630a
MX
805 *
806 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
807 * calling callback functions for each.
808 *
4e74339a
LZ
809 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
810 * if @heap != NULL.
0b2f630a 811 */
4e74339a 812static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
813{
814 struct cgroup_scanner scan;
0b2f630a
MX
815
816 scan.cg = cs->css.cgroup;
249cc86d 817 scan.test_task = NULL;
0b2f630a 818 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
819 scan.heap = heap;
820 cgroup_scan_tasks(&scan);
0b2f630a
MX
821}
822
58f4790b
CW
823/**
824 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
825 * @cs: the cpuset to consider
826 * @buf: buffer of cpu numbers written to this cpuset
827 */
645fcc9d
LZ
828static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
829 const char *buf)
1da177e4 830{
4e74339a 831 struct ptr_heap heap;
58f4790b
CW
832 int retval;
833 int is_load_balanced;
1da177e4 834
5f054e31 835 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
836 if (cs == &top_cpuset)
837 return -EACCES;
838
6f7f02e7 839 /*
c8d9c90c 840 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
841 * Since cpulist_parse() fails on an empty mask, we special case
842 * that parsing. The validate_change() call ensures that cpusets
843 * with tasks have cpus.
6f7f02e7 844 */
020958b6 845 if (!*buf) {
300ed6cb 846 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 847 } else {
300ed6cb 848 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
849 if (retval < 0)
850 return retval;
37340746 851
6ad4c188 852 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 853 return -EINVAL;
6f7f02e7 854 }
029190c5 855
8707d8b8 856 /* Nothing to do if the cpus didn't change */
300ed6cb 857 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 858 return 0;
58f4790b 859
a73456f3
LZ
860 retval = validate_change(cs, trialcs);
861 if (retval < 0)
862 return retval;
863
4e74339a
LZ
864 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
865 if (retval)
866 return retval;
867
645fcc9d 868 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 869
3d3f26a7 870 mutex_lock(&callback_mutex);
300ed6cb 871 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 872 mutex_unlock(&callback_mutex);
029190c5 873
8707d8b8
PM
874 /*
875 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 876 * that need an update.
8707d8b8 877 */
4e74339a
LZ
878 update_tasks_cpumask(cs, &heap);
879
880 heap_free(&heap);
58f4790b 881
8707d8b8 882 if (is_load_balanced)
699140ba 883 rebuild_sched_domains_locked();
85d7b949 884 return 0;
1da177e4
LT
885}
886
e4e364e8
PJ
887/*
888 * cpuset_migrate_mm
889 *
890 * Migrate memory region from one set of nodes to another.
891 *
892 * Temporarilly set tasks mems_allowed to target nodes of migration,
893 * so that the migration code can allocate pages on these nodes.
894 *
5d21cc2d 895 * Call holding cpuset_mutex, so current's cpuset won't change
c8d9c90c 896 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
897 * calls. Therefore we don't need to take task_lock around the
898 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 899 * our task's cpuset.
e4e364e8 900 *
e4e364e8
PJ
901 * While the mm_struct we are migrating is typically from some
902 * other task, the task_struct mems_allowed that we are hacking
903 * is for our current task, which must allocate new pages for that
904 * migrating memory region.
e4e364e8
PJ
905 */
906
907static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
908 const nodemask_t *to)
909{
910 struct task_struct *tsk = current;
911
e4e364e8 912 tsk->mems_allowed = *to;
e4e364e8
PJ
913
914 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
915
8793d854 916 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
917}
918
3b6766fe 919/*
58568d2a
MX
920 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
921 * @tsk: the task to change
922 * @newmems: new nodes that the task will be set
923 *
924 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
925 * we structure updates as setting all new allowed nodes, then clearing newly
926 * disallowed ones.
58568d2a
MX
927 */
928static void cpuset_change_task_nodemask(struct task_struct *tsk,
929 nodemask_t *newmems)
930{
b246272e 931 bool need_loop;
89e8a244 932
c0ff7453
MX
933 /*
934 * Allow tasks that have access to memory reserves because they have
935 * been OOM killed to get memory anywhere.
936 */
937 if (unlikely(test_thread_flag(TIF_MEMDIE)))
938 return;
939 if (current->flags & PF_EXITING) /* Let dying task have memory */
940 return;
941
942 task_lock(tsk);
b246272e
DR
943 /*
944 * Determine if a loop is necessary if another thread is doing
945 * get_mems_allowed(). If at least one node remains unchanged and
946 * tsk does not have a mempolicy, then an empty nodemask will not be
947 * possible when mems_allowed is larger than a word.
948 */
949 need_loop = task_has_mempolicy(tsk) ||
950 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 951
cc9a6c87
MG
952 if (need_loop)
953 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 954
cc9a6c87
MG
955 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
956 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
957
958 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 959 tsk->mems_allowed = *newmems;
cc9a6c87
MG
960
961 if (need_loop)
962 write_seqcount_end(&tsk->mems_allowed_seq);
963
c0ff7453 964 task_unlock(tsk);
58568d2a
MX
965}
966
967/*
968 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
969 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
5d21cc2d 970 * memory_migrate flag is set. Called with cpuset_mutex held.
3b6766fe
LZ
971 */
972static void cpuset_change_nodemask(struct task_struct *p,
973 struct cgroup_scanner *scan)
974{
975 struct mm_struct *mm;
976 struct cpuset *cs;
977 int migrate;
978 const nodemask_t *oldmem = scan->data;
5d21cc2d 979 static nodemask_t newmems; /* protected by cpuset_mutex */
58568d2a
MX
980
981 cs = cgroup_cs(scan->cg);
ee24d379 982 guarantee_online_mems(cs, &newmems);
58568d2a 983
ee24d379 984 cpuset_change_task_nodemask(p, &newmems);
53feb297 985
3b6766fe
LZ
986 mm = get_task_mm(p);
987 if (!mm)
988 return;
989
3b6766fe
LZ
990 migrate = is_memory_migrate(cs);
991
992 mpol_rebind_mm(mm, &cs->mems_allowed);
993 if (migrate)
994 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
995 mmput(mm);
996}
997
8793d854
PM
998static void *cpuset_being_rebound;
999
0b2f630a
MX
1000/**
1001 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1002 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1003 * @oldmem: old mems_allowed of cpuset cs
010cfac4 1004 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 1005 *
5d21cc2d 1006 * Called with cpuset_mutex held
010cfac4
LZ
1007 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1008 * if @heap != NULL.
0b2f630a 1009 */
010cfac4
LZ
1010static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1011 struct ptr_heap *heap)
1da177e4 1012{
3b6766fe 1013 struct cgroup_scanner scan;
59dac16f 1014
846a16bf 1015 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1016
3b6766fe
LZ
1017 scan.cg = cs->css.cgroup;
1018 scan.test_task = NULL;
1019 scan.process_task = cpuset_change_nodemask;
010cfac4 1020 scan.heap = heap;
3b6766fe 1021 scan.data = (nodemask_t *)oldmem;
4225399a
PJ
1022
1023 /*
3b6766fe
LZ
1024 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1025 * take while holding tasklist_lock. Forks can happen - the
1026 * mpol_dup() cpuset_being_rebound check will catch such forks,
1027 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1028 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1029 * will be contending for the global variable cpuset_being_rebound.
4225399a 1030 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1031 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1032 */
010cfac4 1033 cgroup_scan_tasks(&scan);
4225399a 1034
2df167a3 1035 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1036 cpuset_being_rebound = NULL;
1da177e4
LT
1037}
1038
0b2f630a
MX
1039/*
1040 * Handle user request to change the 'mems' memory placement
1041 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1042 * cpusets mems_allowed, and for each task in the cpuset,
1043 * update mems_allowed and rebind task's mempolicy and any vma
1044 * mempolicies and if the cpuset is marked 'memory_migrate',
1045 * migrate the tasks pages to the new memory.
0b2f630a 1046 *
5d21cc2d 1047 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1048 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1049 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1050 * their mempolicies to the cpusets new mems_allowed.
1051 */
645fcc9d
LZ
1052static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1053 const char *buf)
0b2f630a 1054{
53feb297 1055 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
0b2f630a 1056 int retval;
010cfac4 1057 struct ptr_heap heap;
0b2f630a 1058
53feb297
MX
1059 if (!oldmem)
1060 return -ENOMEM;
1061
0b2f630a 1062 /*
38d7bee9 1063 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1064 * it's read-only
1065 */
53feb297
MX
1066 if (cs == &top_cpuset) {
1067 retval = -EACCES;
1068 goto done;
1069 }
0b2f630a 1070
0b2f630a
MX
1071 /*
1072 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1073 * Since nodelist_parse() fails on an empty mask, we special case
1074 * that parsing. The validate_change() call ensures that cpusets
1075 * with tasks have memory.
1076 */
1077 if (!*buf) {
645fcc9d 1078 nodes_clear(trialcs->mems_allowed);
0b2f630a 1079 } else {
645fcc9d 1080 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1081 if (retval < 0)
1082 goto done;
1083
645fcc9d 1084 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1085 node_states[N_MEMORY])) {
53feb297
MX
1086 retval = -EINVAL;
1087 goto done;
1088 }
0b2f630a 1089 }
53feb297
MX
1090 *oldmem = cs->mems_allowed;
1091 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1092 retval = 0; /* Too easy - nothing to do */
1093 goto done;
1094 }
645fcc9d 1095 retval = validate_change(cs, trialcs);
0b2f630a
MX
1096 if (retval < 0)
1097 goto done;
1098
010cfac4
LZ
1099 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1100 if (retval < 0)
1101 goto done;
1102
0b2f630a 1103 mutex_lock(&callback_mutex);
645fcc9d 1104 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1105 mutex_unlock(&callback_mutex);
1106
53feb297 1107 update_tasks_nodemask(cs, oldmem, &heap);
010cfac4
LZ
1108
1109 heap_free(&heap);
0b2f630a 1110done:
53feb297 1111 NODEMASK_FREE(oldmem);
0b2f630a
MX
1112 return retval;
1113}
1114
8793d854
PM
1115int current_cpuset_is_being_rebound(void)
1116{
1117 return task_cs(current) == cpuset_being_rebound;
1118}
1119
5be7a479 1120static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1121{
db7f47cf 1122#ifdef CONFIG_SMP
60495e77 1123 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1124 return -EINVAL;
db7f47cf 1125#endif
1d3504fc
HS
1126
1127 if (val != cs->relax_domain_level) {
1128 cs->relax_domain_level = val;
300ed6cb
LZ
1129 if (!cpumask_empty(cs->cpus_allowed) &&
1130 is_sched_load_balance(cs))
699140ba 1131 rebuild_sched_domains_locked();
1d3504fc
HS
1132 }
1133
1134 return 0;
1135}
1136
950592f7
MX
1137/*
1138 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1139 * @tsk: task to be updated
1140 * @scan: struct cgroup_scanner containing the cgroup of the task
1141 *
1142 * Called by cgroup_scan_tasks() for each task in a cgroup.
1143 *
1144 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 1145 * holding cpuset_mutex at this point.
950592f7
MX
1146 */
1147static void cpuset_change_flag(struct task_struct *tsk,
1148 struct cgroup_scanner *scan)
1149{
1150 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1151}
1152
1153/*
1154 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1155 * @cs: the cpuset in which each task's spread flags needs to be changed
1156 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1157 *
5d21cc2d 1158 * Called with cpuset_mutex held
950592f7
MX
1159 *
1160 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1161 * calling callback functions for each.
1162 *
1163 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1164 * if @heap != NULL.
1165 */
1166static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1167{
1168 struct cgroup_scanner scan;
1169
1170 scan.cg = cs->css.cgroup;
1171 scan.test_task = NULL;
1172 scan.process_task = cpuset_change_flag;
1173 scan.heap = heap;
1174 cgroup_scan_tasks(&scan);
1175}
1176
1da177e4
LT
1177/*
1178 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1179 * bit: the bit to update (see cpuset_flagbits_t)
1180 * cs: the cpuset to update
1181 * turning_on: whether the flag is being set or cleared
053199ed 1182 *
5d21cc2d 1183 * Call with cpuset_mutex held.
1da177e4
LT
1184 */
1185
700fe1ab
PM
1186static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1187 int turning_on)
1da177e4 1188{
645fcc9d 1189 struct cpuset *trialcs;
40b6a762 1190 int balance_flag_changed;
950592f7
MX
1191 int spread_flag_changed;
1192 struct ptr_heap heap;
1193 int err;
1da177e4 1194
645fcc9d
LZ
1195 trialcs = alloc_trial_cpuset(cs);
1196 if (!trialcs)
1197 return -ENOMEM;
1198
1da177e4 1199 if (turning_on)
645fcc9d 1200 set_bit(bit, &trialcs->flags);
1da177e4 1201 else
645fcc9d 1202 clear_bit(bit, &trialcs->flags);
1da177e4 1203
645fcc9d 1204 err = validate_change(cs, trialcs);
85d7b949 1205 if (err < 0)
645fcc9d 1206 goto out;
029190c5 1207
950592f7
MX
1208 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1209 if (err < 0)
1210 goto out;
1211
029190c5 1212 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1213 is_sched_load_balance(trialcs));
029190c5 1214
950592f7
MX
1215 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1216 || (is_spread_page(cs) != is_spread_page(trialcs)));
1217
3d3f26a7 1218 mutex_lock(&callback_mutex);
645fcc9d 1219 cs->flags = trialcs->flags;
3d3f26a7 1220 mutex_unlock(&callback_mutex);
85d7b949 1221
300ed6cb 1222 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1223 rebuild_sched_domains_locked();
029190c5 1224
950592f7
MX
1225 if (spread_flag_changed)
1226 update_tasks_flags(cs, &heap);
1227 heap_free(&heap);
645fcc9d
LZ
1228out:
1229 free_trial_cpuset(trialcs);
1230 return err;
1da177e4
LT
1231}
1232
3e0d98b9 1233/*
80f7228b 1234 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1235 *
1236 * These routines manage a digitally filtered, constant time based,
1237 * event frequency meter. There are four routines:
1238 * fmeter_init() - initialize a frequency meter.
1239 * fmeter_markevent() - called each time the event happens.
1240 * fmeter_getrate() - returns the recent rate of such events.
1241 * fmeter_update() - internal routine used to update fmeter.
1242 *
1243 * A common data structure is passed to each of these routines,
1244 * which is used to keep track of the state required to manage the
1245 * frequency meter and its digital filter.
1246 *
1247 * The filter works on the number of events marked per unit time.
1248 * The filter is single-pole low-pass recursive (IIR). The time unit
1249 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1250 * simulate 3 decimal digits of precision (multiplied by 1000).
1251 *
1252 * With an FM_COEF of 933, and a time base of 1 second, the filter
1253 * has a half-life of 10 seconds, meaning that if the events quit
1254 * happening, then the rate returned from the fmeter_getrate()
1255 * will be cut in half each 10 seconds, until it converges to zero.
1256 *
1257 * It is not worth doing a real infinitely recursive filter. If more
1258 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1259 * just compute FM_MAXTICKS ticks worth, by which point the level
1260 * will be stable.
1261 *
1262 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1263 * arithmetic overflow in the fmeter_update() routine.
1264 *
1265 * Given the simple 32 bit integer arithmetic used, this meter works
1266 * best for reporting rates between one per millisecond (msec) and
1267 * one per 32 (approx) seconds. At constant rates faster than one
1268 * per msec it maxes out at values just under 1,000,000. At constant
1269 * rates between one per msec, and one per second it will stabilize
1270 * to a value N*1000, where N is the rate of events per second.
1271 * At constant rates between one per second and one per 32 seconds,
1272 * it will be choppy, moving up on the seconds that have an event,
1273 * and then decaying until the next event. At rates slower than
1274 * about one in 32 seconds, it decays all the way back to zero between
1275 * each event.
1276 */
1277
1278#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1279#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1280#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1281#define FM_SCALE 1000 /* faux fixed point scale */
1282
1283/* Initialize a frequency meter */
1284static void fmeter_init(struct fmeter *fmp)
1285{
1286 fmp->cnt = 0;
1287 fmp->val = 0;
1288 fmp->time = 0;
1289 spin_lock_init(&fmp->lock);
1290}
1291
1292/* Internal meter update - process cnt events and update value */
1293static void fmeter_update(struct fmeter *fmp)
1294{
1295 time_t now = get_seconds();
1296 time_t ticks = now - fmp->time;
1297
1298 if (ticks == 0)
1299 return;
1300
1301 ticks = min(FM_MAXTICKS, ticks);
1302 while (ticks-- > 0)
1303 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1304 fmp->time = now;
1305
1306 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1307 fmp->cnt = 0;
1308}
1309
1310/* Process any previous ticks, then bump cnt by one (times scale). */
1311static void fmeter_markevent(struct fmeter *fmp)
1312{
1313 spin_lock(&fmp->lock);
1314 fmeter_update(fmp);
1315 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1316 spin_unlock(&fmp->lock);
1317}
1318
1319/* Process any previous ticks, then return current value. */
1320static int fmeter_getrate(struct fmeter *fmp)
1321{
1322 int val;
1323
1324 spin_lock(&fmp->lock);
1325 fmeter_update(fmp);
1326 val = fmp->val;
1327 spin_unlock(&fmp->lock);
1328 return val;
1329}
1330
5d21cc2d 1331/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
761b3ef5 1332static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
f780bdb7 1333{
2f7ee569 1334 struct cpuset *cs = cgroup_cs(cgrp);
bb9d97b6
TH
1335 struct task_struct *task;
1336 int ret;
1da177e4 1337
5d21cc2d
TH
1338 mutex_lock(&cpuset_mutex);
1339
1340 ret = -ENOSPC;
300ed6cb 1341 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
5d21cc2d 1342 goto out_unlock;
9985b0ba 1343
bb9d97b6
TH
1344 cgroup_taskset_for_each(task, cgrp, tset) {
1345 /*
14a40ffc
TH
1346 * Kthreads which disallow setaffinity shouldn't be moved
1347 * to a new cpuset; we don't want to change their cpu
1348 * affinity and isolating such threads by their set of
1349 * allowed nodes is unnecessary. Thus, cpusets are not
1350 * applicable for such threads. This prevents checking for
1351 * success of set_cpus_allowed_ptr() on all attached tasks
1352 * before cpus_allowed may be changed.
bb9d97b6 1353 */
5d21cc2d 1354 ret = -EINVAL;
14a40ffc 1355 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1356 goto out_unlock;
1357 ret = security_task_setscheduler(task);
1358 if (ret)
1359 goto out_unlock;
bb9d97b6 1360 }
f780bdb7 1361
452477fa
TH
1362 /*
1363 * Mark attach is in progress. This makes validate_change() fail
1364 * changes which zero cpus/mems_allowed.
1365 */
1366 cs->attach_in_progress++;
5d21cc2d
TH
1367 ret = 0;
1368out_unlock:
1369 mutex_unlock(&cpuset_mutex);
1370 return ret;
8793d854 1371}
f780bdb7 1372
452477fa
TH
1373static void cpuset_cancel_attach(struct cgroup *cgrp,
1374 struct cgroup_taskset *tset)
1375{
5d21cc2d 1376 mutex_lock(&cpuset_mutex);
452477fa 1377 cgroup_cs(cgrp)->attach_in_progress--;
5d21cc2d 1378 mutex_unlock(&cpuset_mutex);
8793d854 1379}
1da177e4 1380
4e4c9a14 1381/*
5d21cc2d 1382 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1383 * but we can't allocate it dynamically there. Define it global and
1384 * allocate from cpuset_init().
1385 */
1386static cpumask_var_t cpus_attach;
1387
761b3ef5 1388static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
8793d854 1389{
67bd2c59 1390 /* static buf protected by cpuset_mutex */
4e4c9a14 1391 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1392 struct mm_struct *mm;
bb9d97b6
TH
1393 struct task_struct *task;
1394 struct task_struct *leader = cgroup_taskset_first(tset);
2f7ee569
TH
1395 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1396 struct cpuset *cs = cgroup_cs(cgrp);
1397 struct cpuset *oldcs = cgroup_cs(oldcgrp);
22fb52dd 1398
5d21cc2d
TH
1399 mutex_lock(&cpuset_mutex);
1400
4e4c9a14
TH
1401 /* prepare for attach */
1402 if (cs == &top_cpuset)
1403 cpumask_copy(cpus_attach, cpu_possible_mask);
1404 else
1405 guarantee_online_cpus(cs, cpus_attach);
1406
1407 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1408
bb9d97b6
TH
1409 cgroup_taskset_for_each(task, cgrp, tset) {
1410 /*
1411 * can_attach beforehand should guarantee that this doesn't
1412 * fail. TODO: have a better way to handle failure here
1413 */
1414 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1415
1416 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1417 cpuset_update_task_spread_flag(cs, task);
1418 }
22fb52dd 1419
f780bdb7
BB
1420 /*
1421 * Change mm, possibly for multiple threads in a threadgroup. This is
1422 * expensive and may sleep.
1423 */
f780bdb7 1424 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1425 mm = get_task_mm(leader);
4225399a 1426 if (mm) {
f780bdb7 1427 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2741a559 1428 if (is_memory_migrate(cs))
67bd2c59 1429 cpuset_migrate_mm(mm, &oldcs->mems_allowed,
f780bdb7 1430 &cpuset_attach_nodemask_to);
4225399a
PJ
1431 mmput(mm);
1432 }
452477fa
TH
1433
1434 cs->attach_in_progress--;
e44193d3
LZ
1435 if (!cs->attach_in_progress)
1436 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1437
1438 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1439}
1440
1441/* The various types of files and directories in a cpuset file system */
1442
1443typedef enum {
45b07ef3 1444 FILE_MEMORY_MIGRATE,
1da177e4
LT
1445 FILE_CPULIST,
1446 FILE_MEMLIST,
1447 FILE_CPU_EXCLUSIVE,
1448 FILE_MEM_EXCLUSIVE,
78608366 1449 FILE_MEM_HARDWALL,
029190c5 1450 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1451 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1452 FILE_MEMORY_PRESSURE_ENABLED,
1453 FILE_MEMORY_PRESSURE,
825a46af
PJ
1454 FILE_SPREAD_PAGE,
1455 FILE_SPREAD_SLAB,
1da177e4
LT
1456} cpuset_filetype_t;
1457
700fe1ab
PM
1458static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1459{
700fe1ab
PM
1460 struct cpuset *cs = cgroup_cs(cgrp);
1461 cpuset_filetype_t type = cft->private;
5d21cc2d 1462 int retval = -ENODEV;
700fe1ab 1463
5d21cc2d
TH
1464 mutex_lock(&cpuset_mutex);
1465 if (!is_cpuset_online(cs))
1466 goto out_unlock;
700fe1ab
PM
1467
1468 switch (type) {
1da177e4 1469 case FILE_CPU_EXCLUSIVE:
700fe1ab 1470 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1471 break;
1472 case FILE_MEM_EXCLUSIVE:
700fe1ab 1473 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1474 break;
78608366
PM
1475 case FILE_MEM_HARDWALL:
1476 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1477 break;
029190c5 1478 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1479 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1480 break;
45b07ef3 1481 case FILE_MEMORY_MIGRATE:
700fe1ab 1482 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1483 break;
3e0d98b9 1484 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1485 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1486 break;
1487 case FILE_MEMORY_PRESSURE:
1488 retval = -EACCES;
1489 break;
825a46af 1490 case FILE_SPREAD_PAGE:
700fe1ab 1491 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1492 break;
1493 case FILE_SPREAD_SLAB:
700fe1ab 1494 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1495 break;
1da177e4
LT
1496 default:
1497 retval = -EINVAL;
700fe1ab 1498 break;
1da177e4 1499 }
5d21cc2d
TH
1500out_unlock:
1501 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1502 return retval;
1503}
1504
5be7a479
PM
1505static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1506{
5be7a479
PM
1507 struct cpuset *cs = cgroup_cs(cgrp);
1508 cpuset_filetype_t type = cft->private;
5d21cc2d 1509 int retval = -ENODEV;
5be7a479 1510
5d21cc2d
TH
1511 mutex_lock(&cpuset_mutex);
1512 if (!is_cpuset_online(cs))
1513 goto out_unlock;
e3712395 1514
5be7a479
PM
1515 switch (type) {
1516 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1517 retval = update_relax_domain_level(cs, val);
1518 break;
1519 default:
1520 retval = -EINVAL;
1521 break;
1522 }
5d21cc2d
TH
1523out_unlock:
1524 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1525 return retval;
1526}
1527
e3712395
PM
1528/*
1529 * Common handling for a write to a "cpus" or "mems" file.
1530 */
1531static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1532 const char *buf)
1533{
645fcc9d
LZ
1534 struct cpuset *cs = cgroup_cs(cgrp);
1535 struct cpuset *trialcs;
5d21cc2d 1536 int retval = -ENODEV;
e3712395 1537
3a5a6d0c
TH
1538 /*
1539 * CPU or memory hotunplug may leave @cs w/o any execution
1540 * resources, in which case the hotplug code asynchronously updates
1541 * configuration and transfers all tasks to the nearest ancestor
1542 * which can execute.
1543 *
1544 * As writes to "cpus" or "mems" may restore @cs's execution
1545 * resources, wait for the previously scheduled operations before
1546 * proceeding, so that we don't end up keep removing tasks added
1547 * after execution capability is restored.
1548 */
1549 flush_work(&cpuset_hotplug_work);
1550
5d21cc2d
TH
1551 mutex_lock(&cpuset_mutex);
1552 if (!is_cpuset_online(cs))
1553 goto out_unlock;
e3712395 1554
645fcc9d 1555 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1556 if (!trialcs) {
1557 retval = -ENOMEM;
5d21cc2d 1558 goto out_unlock;
b75f38d6 1559 }
645fcc9d 1560
e3712395
PM
1561 switch (cft->private) {
1562 case FILE_CPULIST:
645fcc9d 1563 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1564 break;
1565 case FILE_MEMLIST:
645fcc9d 1566 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1567 break;
1568 default:
1569 retval = -EINVAL;
1570 break;
1571 }
645fcc9d
LZ
1572
1573 free_trial_cpuset(trialcs);
5d21cc2d
TH
1574out_unlock:
1575 mutex_unlock(&cpuset_mutex);
e3712395
PM
1576 return retval;
1577}
1578
1da177e4
LT
1579/*
1580 * These ascii lists should be read in a single call, by using a user
1581 * buffer large enough to hold the entire map. If read in smaller
1582 * chunks, there is no guarantee of atomicity. Since the display format
1583 * used, list of ranges of sequential numbers, is variable length,
1584 * and since these maps can change value dynamically, one could read
1585 * gibberish by doing partial reads while a list was changing.
1586 * A single large read to a buffer that crosses a page boundary is
1587 * ok, because the result being copied to user land is not recomputed
1588 * across a page fault.
1589 */
1590
9303e0c4 1591static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1592{
9303e0c4 1593 size_t count;
1da177e4 1594
3d3f26a7 1595 mutex_lock(&callback_mutex);
9303e0c4 1596 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1597 mutex_unlock(&callback_mutex);
1da177e4 1598
9303e0c4 1599 return count;
1da177e4
LT
1600}
1601
9303e0c4 1602static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1603{
9303e0c4 1604 size_t count;
1da177e4 1605
3d3f26a7 1606 mutex_lock(&callback_mutex);
9303e0c4 1607 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1608 mutex_unlock(&callback_mutex);
1da177e4 1609
9303e0c4 1610 return count;
1da177e4
LT
1611}
1612
8793d854
PM
1613static ssize_t cpuset_common_file_read(struct cgroup *cont,
1614 struct cftype *cft,
1615 struct file *file,
1616 char __user *buf,
1617 size_t nbytes, loff_t *ppos)
1da177e4 1618{
8793d854 1619 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1620 cpuset_filetype_t type = cft->private;
1621 char *page;
1622 ssize_t retval = 0;
1623 char *s;
1da177e4 1624
e12ba74d 1625 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1626 return -ENOMEM;
1627
1628 s = page;
1629
1630 switch (type) {
1631 case FILE_CPULIST:
1632 s += cpuset_sprintf_cpulist(s, cs);
1633 break;
1634 case FILE_MEMLIST:
1635 s += cpuset_sprintf_memlist(s, cs);
1636 break;
1da177e4
LT
1637 default:
1638 retval = -EINVAL;
1639 goto out;
1640 }
1641 *s++ = '\n';
1da177e4 1642
eacaa1f5 1643 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1644out:
1645 free_page((unsigned long)page);
1646 return retval;
1647}
1648
700fe1ab
PM
1649static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1650{
1651 struct cpuset *cs = cgroup_cs(cont);
1652 cpuset_filetype_t type = cft->private;
1653 switch (type) {
1654 case FILE_CPU_EXCLUSIVE:
1655 return is_cpu_exclusive(cs);
1656 case FILE_MEM_EXCLUSIVE:
1657 return is_mem_exclusive(cs);
78608366
PM
1658 case FILE_MEM_HARDWALL:
1659 return is_mem_hardwall(cs);
700fe1ab
PM
1660 case FILE_SCHED_LOAD_BALANCE:
1661 return is_sched_load_balance(cs);
1662 case FILE_MEMORY_MIGRATE:
1663 return is_memory_migrate(cs);
1664 case FILE_MEMORY_PRESSURE_ENABLED:
1665 return cpuset_memory_pressure_enabled;
1666 case FILE_MEMORY_PRESSURE:
1667 return fmeter_getrate(&cs->fmeter);
1668 case FILE_SPREAD_PAGE:
1669 return is_spread_page(cs);
1670 case FILE_SPREAD_SLAB:
1671 return is_spread_slab(cs);
1672 default:
1673 BUG();
1674 }
cf417141
MK
1675
1676 /* Unreachable but makes gcc happy */
1677 return 0;
700fe1ab 1678}
1da177e4 1679
5be7a479
PM
1680static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1681{
1682 struct cpuset *cs = cgroup_cs(cont);
1683 cpuset_filetype_t type = cft->private;
1684 switch (type) {
1685 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1686 return cs->relax_domain_level;
1687 default:
1688 BUG();
1689 }
cf417141
MK
1690
1691 /* Unrechable but makes gcc happy */
1692 return 0;
5be7a479
PM
1693}
1694
1da177e4
LT
1695
1696/*
1697 * for the common functions, 'private' gives the type of file
1698 */
1699
addf2c73
PM
1700static struct cftype files[] = {
1701 {
1702 .name = "cpus",
1703 .read = cpuset_common_file_read,
e3712395
PM
1704 .write_string = cpuset_write_resmask,
1705 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1706 .private = FILE_CPULIST,
1707 },
1708
1709 {
1710 .name = "mems",
1711 .read = cpuset_common_file_read,
e3712395
PM
1712 .write_string = cpuset_write_resmask,
1713 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1714 .private = FILE_MEMLIST,
1715 },
1716
1717 {
1718 .name = "cpu_exclusive",
1719 .read_u64 = cpuset_read_u64,
1720 .write_u64 = cpuset_write_u64,
1721 .private = FILE_CPU_EXCLUSIVE,
1722 },
1723
1724 {
1725 .name = "mem_exclusive",
1726 .read_u64 = cpuset_read_u64,
1727 .write_u64 = cpuset_write_u64,
1728 .private = FILE_MEM_EXCLUSIVE,
1729 },
1730
78608366
PM
1731 {
1732 .name = "mem_hardwall",
1733 .read_u64 = cpuset_read_u64,
1734 .write_u64 = cpuset_write_u64,
1735 .private = FILE_MEM_HARDWALL,
1736 },
1737
addf2c73
PM
1738 {
1739 .name = "sched_load_balance",
1740 .read_u64 = cpuset_read_u64,
1741 .write_u64 = cpuset_write_u64,
1742 .private = FILE_SCHED_LOAD_BALANCE,
1743 },
1744
1745 {
1746 .name = "sched_relax_domain_level",
5be7a479
PM
1747 .read_s64 = cpuset_read_s64,
1748 .write_s64 = cpuset_write_s64,
addf2c73
PM
1749 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1750 },
1751
1752 {
1753 .name = "memory_migrate",
1754 .read_u64 = cpuset_read_u64,
1755 .write_u64 = cpuset_write_u64,
1756 .private = FILE_MEMORY_MIGRATE,
1757 },
1758
1759 {
1760 .name = "memory_pressure",
1761 .read_u64 = cpuset_read_u64,
1762 .write_u64 = cpuset_write_u64,
1763 .private = FILE_MEMORY_PRESSURE,
099fca32 1764 .mode = S_IRUGO,
addf2c73
PM
1765 },
1766
1767 {
1768 .name = "memory_spread_page",
1769 .read_u64 = cpuset_read_u64,
1770 .write_u64 = cpuset_write_u64,
1771 .private = FILE_SPREAD_PAGE,
1772 },
1773
1774 {
1775 .name = "memory_spread_slab",
1776 .read_u64 = cpuset_read_u64,
1777 .write_u64 = cpuset_write_u64,
1778 .private = FILE_SPREAD_SLAB,
1779 },
3e0d98b9 1780
4baf6e33
TH
1781 {
1782 .name = "memory_pressure_enabled",
1783 .flags = CFTYPE_ONLY_ON_ROOT,
1784 .read_u64 = cpuset_read_u64,
1785 .write_u64 = cpuset_write_u64,
1786 .private = FILE_MEMORY_PRESSURE_ENABLED,
1787 },
1da177e4 1788
4baf6e33
TH
1789 { } /* terminate */
1790};
1da177e4
LT
1791
1792/*
92fb9748 1793 * cpuset_css_alloc - allocate a cpuset css
2df167a3 1794 * cont: control group that the new cpuset will be part of
1da177e4
LT
1795 */
1796
92fb9748 1797static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1da177e4 1798{
c8f699bb 1799 struct cpuset *cs;
1da177e4 1800
c8f699bb 1801 if (!cont->parent)
8793d854 1802 return &top_cpuset.css;
033fa1c5 1803
c8f699bb 1804 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1805 if (!cs)
8793d854 1806 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1807 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1808 kfree(cs);
1809 return ERR_PTR(-ENOMEM);
1810 }
1da177e4 1811
029190c5 1812 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1813 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1814 nodes_clear(cs->mems_allowed);
3e0d98b9 1815 fmeter_init(&cs->fmeter);
1d3504fc 1816 cs->relax_domain_level = -1;
1da177e4 1817
c8f699bb
TH
1818 return &cs->css;
1819}
1820
1821static int cpuset_css_online(struct cgroup *cgrp)
1822{
1823 struct cpuset *cs = cgroup_cs(cgrp);
c431069f 1824 struct cpuset *parent = parent_cs(cs);
ae8086ce
TH
1825 struct cpuset *tmp_cs;
1826 struct cgroup *pos_cg;
c8f699bb
TH
1827
1828 if (!parent)
1829 return 0;
1830
5d21cc2d
TH
1831 mutex_lock(&cpuset_mutex);
1832
efeb77b2 1833 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1834 if (is_spread_page(parent))
1835 set_bit(CS_SPREAD_PAGE, &cs->flags);
1836 if (is_spread_slab(parent))
1837 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1838
202f72d5 1839 number_of_cpusets++;
033fa1c5 1840
c8f699bb 1841 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
5d21cc2d 1842 goto out_unlock;
033fa1c5
TH
1843
1844 /*
1845 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1846 * set. This flag handling is implemented in cgroup core for
1847 * histrical reasons - the flag may be specified during mount.
1848 *
1849 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1850 * refuse to clone the configuration - thereby refusing the task to
1851 * be entered, and as a result refusing the sys_unshare() or
1852 * clone() which initiated it. If this becomes a problem for some
1853 * users who wish to allow that scenario, then this could be
1854 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1855 * (and likewise for mems) to the new cgroup.
1856 */
ae8086ce
TH
1857 rcu_read_lock();
1858 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
1859 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1860 rcu_read_unlock();
5d21cc2d 1861 goto out_unlock;
ae8086ce 1862 }
033fa1c5 1863 }
ae8086ce 1864 rcu_read_unlock();
033fa1c5
TH
1865
1866 mutex_lock(&callback_mutex);
1867 cs->mems_allowed = parent->mems_allowed;
1868 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1869 mutex_unlock(&callback_mutex);
5d21cc2d
TH
1870out_unlock:
1871 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
1872 return 0;
1873}
1874
1875static void cpuset_css_offline(struct cgroup *cgrp)
1876{
1877 struct cpuset *cs = cgroup_cs(cgrp);
1878
5d21cc2d 1879 mutex_lock(&cpuset_mutex);
c8f699bb
TH
1880
1881 if (is_sched_load_balance(cs))
1882 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1883
1884 number_of_cpusets--;
efeb77b2 1885 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 1886
5d21cc2d 1887 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1888}
1889
029190c5 1890/*
029190c5
PJ
1891 * If the cpuset being removed has its flag 'sched_load_balance'
1892 * enabled, then simulate turning sched_load_balance off, which
699140ba 1893 * will call rebuild_sched_domains_locked().
029190c5
PJ
1894 */
1895
92fb9748 1896static void cpuset_css_free(struct cgroup *cont)
1da177e4 1897{
8793d854 1898 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1899
300ed6cb 1900 free_cpumask_var(cs->cpus_allowed);
8793d854 1901 kfree(cs);
1da177e4
LT
1902}
1903
8793d854
PM
1904struct cgroup_subsys cpuset_subsys = {
1905 .name = "cpuset",
92fb9748 1906 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
1907 .css_online = cpuset_css_online,
1908 .css_offline = cpuset_css_offline,
92fb9748 1909 .css_free = cpuset_css_free,
8793d854 1910 .can_attach = cpuset_can_attach,
452477fa 1911 .cancel_attach = cpuset_cancel_attach,
8793d854 1912 .attach = cpuset_attach,
8793d854 1913 .subsys_id = cpuset_subsys_id,
4baf6e33 1914 .base_cftypes = files,
8793d854
PM
1915 .early_init = 1,
1916};
1917
1da177e4
LT
1918/**
1919 * cpuset_init - initialize cpusets at system boot
1920 *
1921 * Description: Initialize top_cpuset and the cpuset internal file system,
1922 **/
1923
1924int __init cpuset_init(void)
1925{
8793d854 1926 int err = 0;
1da177e4 1927
58568d2a
MX
1928 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1929 BUG();
1930
300ed6cb 1931 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1932 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1933
3e0d98b9 1934 fmeter_init(&top_cpuset.fmeter);
029190c5 1935 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1936 top_cpuset.relax_domain_level = -1;
1da177e4 1937
1da177e4
LT
1938 err = register_filesystem(&cpuset_fs_type);
1939 if (err < 0)
8793d854
PM
1940 return err;
1941
2341d1b6
LZ
1942 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1943 BUG();
1944
202f72d5 1945 number_of_cpusets = 1;
8793d854 1946 return 0;
1da177e4
LT
1947}
1948
b1aac8bb 1949/*
cf417141 1950 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1951 * or memory nodes, we need to walk over the cpuset hierarchy,
1952 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1953 * last CPU or node from a cpuset, then move the tasks in the empty
1954 * cpuset to its next-highest non-empty parent.
b1aac8bb 1955 */
956db3ca
CW
1956static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1957{
1958 struct cpuset *parent;
1959
956db3ca
CW
1960 /*
1961 * Find its next-highest non-empty parent, (top cpuset
1962 * has online cpus, so can't be empty).
1963 */
c431069f 1964 parent = parent_cs(cs);
300ed6cb 1965 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 1966 nodes_empty(parent->mems_allowed))
c431069f 1967 parent = parent_cs(parent);
956db3ca 1968
8cc99345
TH
1969 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
1970 rcu_read_lock();
1971 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
1972 cgroup_name(cs->css.cgroup));
1973 rcu_read_unlock();
1974 }
956db3ca
CW
1975}
1976
deb7aa30 1977/**
388afd85 1978 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 1979 * @cs: cpuset in interest
956db3ca 1980 *
deb7aa30
TH
1981 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
1982 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
1983 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 1984 */
388afd85 1985static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 1986{
deb7aa30
TH
1987 static cpumask_t off_cpus;
1988 static nodemask_t off_mems, tmp_mems;
5d21cc2d 1989 bool is_empty;
80d1fa64 1990
e44193d3
LZ
1991retry:
1992 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
1993
5d21cc2d 1994 mutex_lock(&cpuset_mutex);
7ddf96b0 1995
e44193d3
LZ
1996 /*
1997 * We have raced with task attaching. We wait until attaching
1998 * is finished, so we won't attach a task to an empty cpuset.
1999 */
2000 if (cs->attach_in_progress) {
2001 mutex_unlock(&cpuset_mutex);
2002 goto retry;
2003 }
2004
deb7aa30
TH
2005 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2006 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2007
deb7aa30
TH
2008 /* remove offline cpus from @cs */
2009 if (!cpumask_empty(&off_cpus)) {
2010 mutex_lock(&callback_mutex);
2011 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2012 mutex_unlock(&callback_mutex);
2013 update_tasks_cpumask(cs, NULL);
80d1fa64
SB
2014 }
2015
deb7aa30
TH
2016 /* remove offline mems from @cs */
2017 if (!nodes_empty(off_mems)) {
2018 tmp_mems = cs->mems_allowed;
2019 mutex_lock(&callback_mutex);
2020 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2021 mutex_unlock(&callback_mutex);
2022 update_tasks_nodemask(cs, &tmp_mems, NULL);
b1aac8bb 2023 }
deb7aa30 2024
5d21cc2d
TH
2025 is_empty = cpumask_empty(cs->cpus_allowed) ||
2026 nodes_empty(cs->mems_allowed);
8d033948 2027
5d21cc2d
TH
2028 mutex_unlock(&cpuset_mutex);
2029
2030 /*
2031 * If @cs became empty, move tasks to the nearest ancestor with
2032 * execution resources. This is full cgroup operation which will
2033 * also call back into cpuset. Should be done outside any lock.
2034 */
2035 if (is_empty)
2036 remove_tasks_in_empty_cpuset(cs);
b1aac8bb
PJ
2037}
2038
deb7aa30 2039/**
3a5a6d0c 2040 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2041 *
deb7aa30
TH
2042 * This function is called after either CPU or memory configuration has
2043 * changed and updates cpuset accordingly. The top_cpuset is always
2044 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2045 * order to make cpusets transparent (of no affect) on systems that are
2046 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2047 *
deb7aa30 2048 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2049 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2050 * all descendants.
956db3ca 2051 *
deb7aa30
TH
2052 * Note that CPU offlining during suspend is ignored. We don't modify
2053 * cpusets across suspend/resume cycles at all.
956db3ca 2054 */
3a5a6d0c 2055static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2056{
deb7aa30
TH
2057 static cpumask_t new_cpus, tmp_cpus;
2058 static nodemask_t new_mems, tmp_mems;
2059 bool cpus_updated, mems_updated;
2060 bool cpus_offlined, mems_offlined;
b1aac8bb 2061
5d21cc2d 2062 mutex_lock(&cpuset_mutex);
956db3ca 2063
deb7aa30
TH
2064 /* fetch the available cpus/mems and find out which changed how */
2065 cpumask_copy(&new_cpus, cpu_active_mask);
2066 new_mems = node_states[N_MEMORY];
7ddf96b0 2067
deb7aa30
TH
2068 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2069 cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
2070 &new_cpus);
7ddf96b0 2071
deb7aa30
TH
2072 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2073 nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
2074 mems_offlined = !nodes_empty(tmp_mems);
7ddf96b0 2075
deb7aa30
TH
2076 /* synchronize cpus_allowed to cpu_active_mask */
2077 if (cpus_updated) {
2078 mutex_lock(&callback_mutex);
2079 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2080 mutex_unlock(&callback_mutex);
2081 /* we don't mess with cpumasks of tasks in top_cpuset */
2082 }
b4501295 2083
deb7aa30
TH
2084 /* synchronize mems_allowed to N_MEMORY */
2085 if (mems_updated) {
2086 tmp_mems = top_cpuset.mems_allowed;
2087 mutex_lock(&callback_mutex);
2088 top_cpuset.mems_allowed = new_mems;
2089 mutex_unlock(&callback_mutex);
2090 update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
2091 }
b4501295 2092
388afd85
LZ
2093 mutex_unlock(&cpuset_mutex);
2094
deb7aa30
TH
2095 /* if cpus or mems went down, we need to propagate to descendants */
2096 if (cpus_offlined || mems_offlined) {
2097 struct cpuset *cs;
fc560a26 2098 struct cgroup *pos_cgrp;
f9b4fb8d 2099
fc560a26 2100 rcu_read_lock();
388afd85
LZ
2101 cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset) {
2102 if (!css_tryget(&cs->css))
2103 continue;
2104 rcu_read_unlock();
7ddf96b0 2105
388afd85 2106 cpuset_hotplug_update_tasks(cs);
b4501295 2107
388afd85
LZ
2108 rcu_read_lock();
2109 css_put(&cs->css);
2110 }
2111 rcu_read_unlock();
2112 }
8d033948 2113
deb7aa30 2114 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2115 if (cpus_updated)
2116 rebuild_sched_domains();
b1aac8bb
PJ
2117}
2118
7ddf96b0 2119void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2120{
3a5a6d0c
TH
2121 /*
2122 * We're inside cpu hotplug critical region which usually nests
2123 * inside cgroup synchronization. Bounce actual hotplug processing
2124 * to a work item to avoid reverse locking order.
2125 *
2126 * We still need to do partition_sched_domains() synchronously;
2127 * otherwise, the scheduler will get confused and put tasks to the
2128 * dead CPU. Fall back to the default single domain.
2129 * cpuset_hotplug_workfn() will rebuild it as necessary.
2130 */
2131 partition_sched_domains(1, NULL, NULL);
2132 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2133}
4c4d50f7 2134
38837fc7 2135/*
38d7bee9
LJ
2136 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2137 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2138 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2139 */
f481891f
MX
2140static int cpuset_track_online_nodes(struct notifier_block *self,
2141 unsigned long action, void *arg)
38837fc7 2142{
3a5a6d0c 2143 schedule_work(&cpuset_hotplug_work);
f481891f 2144 return NOTIFY_OK;
38837fc7 2145}
d8f10cb3
AM
2146
2147static struct notifier_block cpuset_track_online_nodes_nb = {
2148 .notifier_call = cpuset_track_online_nodes,
2149 .priority = 10, /* ??! */
2150};
38837fc7 2151
1da177e4
LT
2152/**
2153 * cpuset_init_smp - initialize cpus_allowed
2154 *
2155 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2156 */
1da177e4
LT
2157void __init cpuset_init_smp(void)
2158{
6ad4c188 2159 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2160 top_cpuset.mems_allowed = node_states[N_MEMORY];
4c4d50f7 2161
d8f10cb3 2162 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2163}
2164
2165/**
1da177e4
LT
2166 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2167 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2168 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2169 *
300ed6cb 2170 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2171 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2172 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2173 * tasks cpuset.
2174 **/
2175
6af866af 2176void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2177{
3d3f26a7 2178 mutex_lock(&callback_mutex);
909d75a3 2179 task_lock(tsk);
f9a86fcb 2180 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2181 task_unlock(tsk);
897f0b3c 2182 mutex_unlock(&callback_mutex);
1da177e4
LT
2183}
2184
2baab4e9 2185void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82
ON
2186{
2187 const struct cpuset *cs;
9084bb82
ON
2188
2189 rcu_read_lock();
2190 cs = task_cs(tsk);
06d6b3cb 2191 do_set_cpus_allowed(tsk, cs->cpus_allowed);
9084bb82
ON
2192 rcu_read_unlock();
2193
2194 /*
2195 * We own tsk->cpus_allowed, nobody can change it under us.
2196 *
2197 * But we used cs && cs->cpus_allowed lockless and thus can
2198 * race with cgroup_attach_task() or update_cpumask() and get
2199 * the wrong tsk->cpus_allowed. However, both cases imply the
2200 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2201 * which takes task_rq_lock().
2202 *
2203 * If we are called after it dropped the lock we must see all
2204 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2205 * set any mask even if it is not right from task_cs() pov,
2206 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2207 *
2208 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2209 * if required.
9084bb82 2210 */
9084bb82
ON
2211}
2212
1da177e4
LT
2213void cpuset_init_current_mems_allowed(void)
2214{
f9a86fcb 2215 nodes_setall(current->mems_allowed);
1da177e4
LT
2216}
2217
909d75a3
PJ
2218/**
2219 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2220 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2221 *
2222 * Description: Returns the nodemask_t mems_allowed of the cpuset
2223 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2224 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2225 * tasks cpuset.
2226 **/
2227
2228nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2229{
2230 nodemask_t mask;
2231
3d3f26a7 2232 mutex_lock(&callback_mutex);
909d75a3 2233 task_lock(tsk);
8793d854 2234 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2235 task_unlock(tsk);
3d3f26a7 2236 mutex_unlock(&callback_mutex);
909d75a3
PJ
2237
2238 return mask;
2239}
2240
d9fd8a6d 2241/**
19770b32
MG
2242 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2243 * @nodemask: the nodemask to be checked
d9fd8a6d 2244 *
19770b32 2245 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2246 */
19770b32 2247int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2248{
19770b32 2249 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2250}
2251
9bf2229f 2252/*
78608366
PM
2253 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2254 * mem_hardwall ancestor to the specified cpuset. Call holding
2255 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2256 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2257 */
78608366 2258static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2259{
c431069f
TH
2260 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2261 cs = parent_cs(cs);
9bf2229f
PJ
2262 return cs;
2263}
2264
d9fd8a6d 2265/**
a1bc5a4e
DR
2266 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2267 * @node: is this an allowed node?
02a0e53d 2268 * @gfp_mask: memory allocation flags
d9fd8a6d 2269 *
a1bc5a4e
DR
2270 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2271 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2272 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2273 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2274 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2275 * flag, yes.
9bf2229f
PJ
2276 * Otherwise, no.
2277 *
a1bc5a4e
DR
2278 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2279 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2280 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2281 *
a1bc5a4e
DR
2282 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2283 * cpusets, and never sleeps.
02a0e53d
PJ
2284 *
2285 * The __GFP_THISNODE placement logic is really handled elsewhere,
2286 * by forcibly using a zonelist starting at a specified node, and by
2287 * (in get_page_from_freelist()) refusing to consider the zones for
2288 * any node on the zonelist except the first. By the time any such
2289 * calls get to this routine, we should just shut up and say 'yes'.
2290 *
9bf2229f 2291 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2292 * and do not allow allocations outside the current tasks cpuset
2293 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2294 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2295 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2296 *
02a0e53d
PJ
2297 * Scanning up parent cpusets requires callback_mutex. The
2298 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2299 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2300 * current tasks mems_allowed came up empty on the first pass over
2301 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2302 * cpuset are short of memory, might require taking the callback_mutex
2303 * mutex.
9bf2229f 2304 *
36be57ff 2305 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2306 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2307 * so no allocation on a node outside the cpuset is allowed (unless
2308 * in interrupt, of course).
36be57ff
PJ
2309 *
2310 * The second pass through get_page_from_freelist() doesn't even call
2311 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2312 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2313 * in alloc_flags. That logic and the checks below have the combined
2314 * affect that:
9bf2229f
PJ
2315 * in_interrupt - any node ok (current task context irrelevant)
2316 * GFP_ATOMIC - any node ok
c596d9f3 2317 * TIF_MEMDIE - any node ok
78608366 2318 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2319 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2320 *
2321 * Rule:
a1bc5a4e 2322 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2323 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2324 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2325 */
a1bc5a4e 2326int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2327{
9bf2229f 2328 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2329 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2330
9b819d20 2331 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2332 return 1;
92d1dbd2 2333 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2334 if (node_isset(node, current->mems_allowed))
2335 return 1;
c596d9f3
DR
2336 /*
2337 * Allow tasks that have access to memory reserves because they have
2338 * been OOM killed to get memory anywhere.
2339 */
2340 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2341 return 1;
9bf2229f
PJ
2342 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2343 return 0;
2344
5563e770
BP
2345 if (current->flags & PF_EXITING) /* Let dying task have memory */
2346 return 1;
2347
9bf2229f 2348 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2349 mutex_lock(&callback_mutex);
053199ed 2350
053199ed 2351 task_lock(current);
78608366 2352 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2353 task_unlock(current);
2354
9bf2229f 2355 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2356 mutex_unlock(&callback_mutex);
9bf2229f 2357 return allowed;
1da177e4
LT
2358}
2359
02a0e53d 2360/*
a1bc5a4e
DR
2361 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2362 * @node: is this an allowed node?
02a0e53d
PJ
2363 * @gfp_mask: memory allocation flags
2364 *
a1bc5a4e
DR
2365 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2366 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2367 * yes. If the task has been OOM killed and has access to memory reserves as
2368 * specified by the TIF_MEMDIE flag, yes.
2369 * Otherwise, no.
02a0e53d
PJ
2370 *
2371 * The __GFP_THISNODE placement logic is really handled elsewhere,
2372 * by forcibly using a zonelist starting at a specified node, and by
2373 * (in get_page_from_freelist()) refusing to consider the zones for
2374 * any node on the zonelist except the first. By the time any such
2375 * calls get to this routine, we should just shut up and say 'yes'.
2376 *
a1bc5a4e
DR
2377 * Unlike the cpuset_node_allowed_softwall() variant, above,
2378 * this variant requires that the node be in the current task's
02a0e53d
PJ
2379 * mems_allowed or that we're in interrupt. It does not scan up the
2380 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2381 * It never sleeps.
2382 */
a1bc5a4e 2383int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2384{
02a0e53d
PJ
2385 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2386 return 1;
02a0e53d
PJ
2387 if (node_isset(node, current->mems_allowed))
2388 return 1;
dedf8b79
DW
2389 /*
2390 * Allow tasks that have access to memory reserves because they have
2391 * been OOM killed to get memory anywhere.
2392 */
2393 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2394 return 1;
02a0e53d
PJ
2395 return 0;
2396}
2397
825a46af 2398/**
6adef3eb
JS
2399 * cpuset_mem_spread_node() - On which node to begin search for a file page
2400 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2401 *
2402 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2403 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2404 * and if the memory allocation used cpuset_mem_spread_node()
2405 * to determine on which node to start looking, as it will for
2406 * certain page cache or slab cache pages such as used for file
2407 * system buffers and inode caches, then instead of starting on the
2408 * local node to look for a free page, rather spread the starting
2409 * node around the tasks mems_allowed nodes.
2410 *
2411 * We don't have to worry about the returned node being offline
2412 * because "it can't happen", and even if it did, it would be ok.
2413 *
2414 * The routines calling guarantee_online_mems() are careful to
2415 * only set nodes in task->mems_allowed that are online. So it
2416 * should not be possible for the following code to return an
2417 * offline node. But if it did, that would be ok, as this routine
2418 * is not returning the node where the allocation must be, only
2419 * the node where the search should start. The zonelist passed to
2420 * __alloc_pages() will include all nodes. If the slab allocator
2421 * is passed an offline node, it will fall back to the local node.
2422 * See kmem_cache_alloc_node().
2423 */
2424
6adef3eb 2425static int cpuset_spread_node(int *rotor)
825a46af
PJ
2426{
2427 int node;
2428
6adef3eb 2429 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2430 if (node == MAX_NUMNODES)
2431 node = first_node(current->mems_allowed);
6adef3eb 2432 *rotor = node;
825a46af
PJ
2433 return node;
2434}
6adef3eb
JS
2435
2436int cpuset_mem_spread_node(void)
2437{
778d3b0f
MH
2438 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2439 current->cpuset_mem_spread_rotor =
2440 node_random(&current->mems_allowed);
2441
6adef3eb
JS
2442 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2443}
2444
2445int cpuset_slab_spread_node(void)
2446{
778d3b0f
MH
2447 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2448 current->cpuset_slab_spread_rotor =
2449 node_random(&current->mems_allowed);
2450
6adef3eb
JS
2451 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2452}
2453
825a46af
PJ
2454EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2455
ef08e3b4 2456/**
bbe373f2
DR
2457 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2458 * @tsk1: pointer to task_struct of some task.
2459 * @tsk2: pointer to task_struct of some other task.
2460 *
2461 * Description: Return true if @tsk1's mems_allowed intersects the
2462 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2463 * one of the task's memory usage might impact the memory available
2464 * to the other.
ef08e3b4
PJ
2465 **/
2466
bbe373f2
DR
2467int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2468 const struct task_struct *tsk2)
ef08e3b4 2469{
bbe373f2 2470 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2471}
2472
f440d98f
LZ
2473#define CPUSET_NODELIST_LEN (256)
2474
75aa1994
DR
2475/**
2476 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2477 * @task: pointer to task_struct of some task.
2478 *
2479 * Description: Prints @task's name, cpuset name, and cached copy of its
2480 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2481 * dereferencing task_cs(task).
2482 */
2483void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2484{
f440d98f
LZ
2485 /* Statically allocated to prevent using excess stack. */
2486 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2487 static DEFINE_SPINLOCK(cpuset_buffer_lock);
75aa1994 2488
f440d98f 2489 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
63f43f55 2490
cfb5966b 2491 rcu_read_lock();
f440d98f 2492 spin_lock(&cpuset_buffer_lock);
63f43f55 2493
75aa1994
DR
2494 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2495 tsk->mems_allowed);
2496 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
f440d98f
LZ
2497 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2498
75aa1994 2499 spin_unlock(&cpuset_buffer_lock);
cfb5966b 2500 rcu_read_unlock();
75aa1994
DR
2501}
2502
3e0d98b9
PJ
2503/*
2504 * Collection of memory_pressure is suppressed unless
2505 * this flag is enabled by writing "1" to the special
2506 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2507 */
2508
c5b2aff8 2509int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2510
2511/**
2512 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2513 *
2514 * Keep a running average of the rate of synchronous (direct)
2515 * page reclaim efforts initiated by tasks in each cpuset.
2516 *
2517 * This represents the rate at which some task in the cpuset
2518 * ran low on memory on all nodes it was allowed to use, and
2519 * had to enter the kernels page reclaim code in an effort to
2520 * create more free memory by tossing clean pages or swapping
2521 * or writing dirty pages.
2522 *
2523 * Display to user space in the per-cpuset read-only file
2524 * "memory_pressure". Value displayed is an integer
2525 * representing the recent rate of entry into the synchronous
2526 * (direct) page reclaim by any task attached to the cpuset.
2527 **/
2528
2529void __cpuset_memory_pressure_bump(void)
2530{
3e0d98b9 2531 task_lock(current);
8793d854 2532 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2533 task_unlock(current);
2534}
2535
8793d854 2536#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2537/*
2538 * proc_cpuset_show()
2539 * - Print tasks cpuset path into seq_file.
2540 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2541 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2542 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2543 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2544 * anyway.
1da177e4 2545 */
8d8b97ba 2546int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2547{
13b41b09 2548 struct pid *pid;
1da177e4
LT
2549 struct task_struct *tsk;
2550 char *buf;
8793d854 2551 struct cgroup_subsys_state *css;
99f89551 2552 int retval;
1da177e4 2553
99f89551 2554 retval = -ENOMEM;
1da177e4
LT
2555 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2556 if (!buf)
99f89551
EB
2557 goto out;
2558
2559 retval = -ESRCH;
13b41b09
EB
2560 pid = m->private;
2561 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2562 if (!tsk)
2563 goto out_free;
1da177e4 2564
27e89ae5 2565 rcu_read_lock();
8793d854
PM
2566 css = task_subsys_state(tsk, cpuset_subsys_id);
2567 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
27e89ae5 2568 rcu_read_unlock();
1da177e4 2569 if (retval < 0)
27e89ae5 2570 goto out_put_task;
1da177e4
LT
2571 seq_puts(m, buf);
2572 seq_putc(m, '\n');
27e89ae5 2573out_put_task:
99f89551
EB
2574 put_task_struct(tsk);
2575out_free:
1da177e4 2576 kfree(buf);
99f89551 2577out:
1da177e4
LT
2578 return retval;
2579}
8793d854 2580#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2581
d01d4827 2582/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2583void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2584{
df5f8314 2585 seq_printf(m, "Mems_allowed:\t");
30e8e136 2586 seq_nodemask(m, &task->mems_allowed);
df5f8314 2587 seq_printf(m, "\n");
39106dcf 2588 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2589 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2590 seq_printf(m, "\n");
1da177e4 2591}