cpuset: convert cpuset->cpus_allowed to cpumask_var_t
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
1da177e4
LT
40#include <linux/module.h>
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
58#include <asm/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
202f72d5
PJ
63/*
64 * Tracks how many cpusets are currently defined in system.
65 * When there is only one cpuset (the root cpuset) we can
66 * short circuit some hooks.
67 */
7edc5962 68int number_of_cpusets __read_mostly;
202f72d5 69
2df167a3 70/* Forward declare cgroup structures */
8793d854
PM
71struct cgroup_subsys cpuset_subsys;
72struct cpuset;
73
3e0d98b9
PJ
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
1da177e4 83struct cpuset {
8793d854
PM
84 struct cgroup_subsys_state css;
85
1da177e4 86 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
1da177e4 90 struct cpuset *parent; /* my parent */
1da177e4
LT
91
92 /*
93 * Copy of global cpuset_mems_generation as of the most
94 * recent time this cpuset changed its mems_allowed.
95 */
3e0d98b9
PJ
96 int mems_generation;
97
98 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
99
100 /* partition number for rebuild_sched_domains() */
101 int pn;
956db3ca 102
1d3504fc
HS
103 /* for custom sched domain */
104 int relax_domain_level;
105
956db3ca
CW
106 /* used for walking a cpuset heirarchy */
107 struct list_head stack_list;
1da177e4
LT
108};
109
8793d854
PM
110/* Retrieve the cpuset for a cgroup */
111static inline struct cpuset *cgroup_cs(struct cgroup *cont)
112{
113 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
114 struct cpuset, css);
115}
116
117/* Retrieve the cpuset for a task */
118static inline struct cpuset *task_cs(struct task_struct *task)
119{
120 return container_of(task_subsys_state(task, cpuset_subsys_id),
121 struct cpuset, css);
122}
956db3ca
CW
123struct cpuset_hotplug_scanner {
124 struct cgroup_scanner scan;
125 struct cgroup *to;
126};
8793d854 127
1da177e4
LT
128/* bits in struct cpuset flags field */
129typedef enum {
130 CS_CPU_EXCLUSIVE,
131 CS_MEM_EXCLUSIVE,
78608366 132 CS_MEM_HARDWALL,
45b07ef3 133 CS_MEMORY_MIGRATE,
029190c5 134 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
135 CS_SPREAD_PAGE,
136 CS_SPREAD_SLAB,
1da177e4
LT
137} cpuset_flagbits_t;
138
139/* convenient tests for these bits */
140static inline int is_cpu_exclusive(const struct cpuset *cs)
141{
7b5b9ef0 142 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
143}
144
145static inline int is_mem_exclusive(const struct cpuset *cs)
146{
7b5b9ef0 147 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
148}
149
78608366
PM
150static inline int is_mem_hardwall(const struct cpuset *cs)
151{
152 return test_bit(CS_MEM_HARDWALL, &cs->flags);
153}
154
029190c5
PJ
155static inline int is_sched_load_balance(const struct cpuset *cs)
156{
157 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
158}
159
45b07ef3
PJ
160static inline int is_memory_migrate(const struct cpuset *cs)
161{
7b5b9ef0 162 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
163}
164
825a46af
PJ
165static inline int is_spread_page(const struct cpuset *cs)
166{
167 return test_bit(CS_SPREAD_PAGE, &cs->flags);
168}
169
170static inline int is_spread_slab(const struct cpuset *cs)
171{
172 return test_bit(CS_SPREAD_SLAB, &cs->flags);
173}
174
1da177e4 175/*
151a4420 176 * Increment this integer everytime any cpuset changes its
1da177e4
LT
177 * mems_allowed value. Users of cpusets can track this generation
178 * number, and avoid having to lock and reload mems_allowed unless
179 * the cpuset they're using changes generation.
180 *
2df167a3 181 * A single, global generation is needed because cpuset_attach_task() could
1da177e4
LT
182 * reattach a task to a different cpuset, which must not have its
183 * generation numbers aliased with those of that tasks previous cpuset.
184 *
185 * Generations are needed for mems_allowed because one task cannot
2df167a3 186 * modify another's memory placement. So we must enable every task,
1da177e4
LT
187 * on every visit to __alloc_pages(), to efficiently check whether
188 * its current->cpuset->mems_allowed has changed, requiring an update
189 * of its current->mems_allowed.
151a4420 190 *
2df167a3 191 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
151a4420 192 * there is no need to mark it atomic.
1da177e4 193 */
151a4420 194static int cpuset_mems_generation;
1da177e4
LT
195
196static struct cpuset top_cpuset = {
197 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
198};
199
1da177e4 200/*
2df167a3
PM
201 * There are two global mutexes guarding cpuset structures. The first
202 * is the main control groups cgroup_mutex, accessed via
203 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
204 * callback_mutex, below. They can nest. It is ok to first take
205 * cgroup_mutex, then nest callback_mutex. We also require taking
206 * task_lock() when dereferencing a task's cpuset pointer. See "The
207 * task_lock() exception", at the end of this comment.
053199ed 208 *
3d3f26a7 209 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 210 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 211 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
212 * and be able to modify cpusets. It can perform various checks on
213 * the cpuset structure first, knowing nothing will change. It can
2df167a3 214 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 215 * performing these checks, various callback routines can briefly
3d3f26a7
IM
216 * acquire callback_mutex to query cpusets. Once it is ready to make
217 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
218 *
219 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 220 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
221 * from one of the callbacks into the cpuset code from within
222 * __alloc_pages().
223 *
3d3f26a7 224 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
225 * access to cpusets.
226 *
227 * The task_struct fields mems_allowed and mems_generation may only
228 * be accessed in the context of that task, so require no locks.
229 *
3d3f26a7 230 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
231 * small pieces of code, such as when reading out possibly multi-word
232 * cpumasks and nodemasks.
233 *
2df167a3
PM
234 * Accessing a task's cpuset should be done in accordance with the
235 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
236 */
237
3d3f26a7 238static DEFINE_MUTEX(callback_mutex);
4247bdc6 239
75aa1994
DR
240/*
241 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
242 * buffers. They are statically allocated to prevent using excess stack
243 * when calling cpuset_print_task_mems_allowed().
244 */
245#define CPUSET_NAME_LEN (128)
246#define CPUSET_NODELIST_LEN (256)
247static char cpuset_name[CPUSET_NAME_LEN];
248static char cpuset_nodelist[CPUSET_NODELIST_LEN];
249static DEFINE_SPINLOCK(cpuset_buffer_lock);
250
cf417141
MK
251/*
252 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 253 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
254 * silently switch it to mount "cgroup" instead
255 */
454e2398
DH
256static int cpuset_get_sb(struct file_system_type *fs_type,
257 int flags, const char *unused_dev_name,
258 void *data, struct vfsmount *mnt)
1da177e4 259{
8793d854
PM
260 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
261 int ret = -ENODEV;
262 if (cgroup_fs) {
263 char mountopts[] =
264 "cpuset,noprefix,"
265 "release_agent=/sbin/cpuset_release_agent";
266 ret = cgroup_fs->get_sb(cgroup_fs, flags,
267 unused_dev_name, mountopts, mnt);
268 put_filesystem(cgroup_fs);
269 }
270 return ret;
1da177e4
LT
271}
272
273static struct file_system_type cpuset_fs_type = {
274 .name = "cpuset",
275 .get_sb = cpuset_get_sb,
1da177e4
LT
276};
277
1da177e4 278/*
300ed6cb 279 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4
LT
280 * are online. If none are online, walk up the cpuset hierarchy
281 * until we find one that does have some online cpus. If we get
282 * all the way to the top and still haven't found any online cpus,
283 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
284 * task, return cpu_online_map.
285 *
286 * One way or another, we guarantee to return some non-empty subset
287 * of cpu_online_map.
288 *
3d3f26a7 289 * Call with callback_mutex held.
1da177e4
LT
290 */
291
292static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
293{
300ed6cb 294 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
1da177e4
LT
295 cs = cs->parent;
296 if (cs)
300ed6cb 297 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4 298 else
300ed6cb
LZ
299 cpumask_copy(pmask, cpu_online_mask);
300 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
1da177e4
LT
301}
302
303/*
304 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
305 * are online, with memory. If none are online with memory, walk
306 * up the cpuset hierarchy until we find one that does have some
307 * online mems. If we get all the way to the top and still haven't
308 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
309 *
310 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 311 * of node_states[N_HIGH_MEMORY].
1da177e4 312 *
3d3f26a7 313 * Call with callback_mutex held.
1da177e4
LT
314 */
315
316static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
317{
0e1e7c7a
CL
318 while (cs && !nodes_intersects(cs->mems_allowed,
319 node_states[N_HIGH_MEMORY]))
1da177e4
LT
320 cs = cs->parent;
321 if (cs)
0e1e7c7a
CL
322 nodes_and(*pmask, cs->mems_allowed,
323 node_states[N_HIGH_MEMORY]);
1da177e4 324 else
0e1e7c7a
CL
325 *pmask = node_states[N_HIGH_MEMORY];
326 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
327}
328
cf2a473c
PJ
329/**
330 * cpuset_update_task_memory_state - update task memory placement
331 *
332 * If the current tasks cpusets mems_allowed changed behind our
333 * backs, update current->mems_allowed, mems_generation and task NUMA
334 * mempolicy to the new value.
053199ed 335 *
cf2a473c
PJ
336 * Task mempolicy is updated by rebinding it relative to the
337 * current->cpuset if a task has its memory placement changed.
338 * Do not call this routine if in_interrupt().
339 *
4a01c8d5 340 * Call without callback_mutex or task_lock() held. May be
2df167a3
PM
341 * called with or without cgroup_mutex held. Thanks in part to
342 * 'the_top_cpuset_hack', the task's cpuset pointer will never
41f7f60d
DR
343 * be NULL. This routine also might acquire callback_mutex during
344 * call.
053199ed 345 *
6b9c2603
PJ
346 * Reading current->cpuset->mems_generation doesn't need task_lock
347 * to guard the current->cpuset derefence, because it is guarded
2df167a3 348 * from concurrent freeing of current->cpuset using RCU.
6b9c2603
PJ
349 *
350 * The rcu_dereference() is technically probably not needed,
351 * as I don't actually mind if I see a new cpuset pointer but
352 * an old value of mems_generation. However this really only
353 * matters on alpha systems using cpusets heavily. If I dropped
354 * that rcu_dereference(), it would save them a memory barrier.
355 * For all other arch's, rcu_dereference is a no-op anyway, and for
356 * alpha systems not using cpusets, another planned optimization,
357 * avoiding the rcu critical section for tasks in the root cpuset
358 * which is statically allocated, so can't vanish, will make this
359 * irrelevant. Better to use RCU as intended, than to engage in
360 * some cute trick to save a memory barrier that is impossible to
361 * test, for alpha systems using cpusets heavily, which might not
362 * even exist.
053199ed
PJ
363 *
364 * This routine is needed to update the per-task mems_allowed data,
365 * within the tasks context, when it is trying to allocate memory
366 * (in various mm/mempolicy.c routines) and notices that some other
367 * task has been modifying its cpuset.
1da177e4
LT
368 */
369
fe85a998 370void cpuset_update_task_memory_state(void)
1da177e4 371{
053199ed 372 int my_cpusets_mem_gen;
cf2a473c 373 struct task_struct *tsk = current;
6b9c2603 374 struct cpuset *cs;
053199ed 375
13337714
LJ
376 rcu_read_lock();
377 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
378 rcu_read_unlock();
1da177e4 379
cf2a473c 380 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 381 mutex_lock(&callback_mutex);
cf2a473c 382 task_lock(tsk);
8793d854 383 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
384 guarantee_online_mems(cs, &tsk->mems_allowed);
385 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
386 if (is_spread_page(cs))
387 tsk->flags |= PF_SPREAD_PAGE;
388 else
389 tsk->flags &= ~PF_SPREAD_PAGE;
390 if (is_spread_slab(cs))
391 tsk->flags |= PF_SPREAD_SLAB;
392 else
393 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 394 task_unlock(tsk);
3d3f26a7 395 mutex_unlock(&callback_mutex);
74cb2155 396 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
397 }
398}
399
400/*
401 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
402 *
403 * One cpuset is a subset of another if all its allowed CPUs and
404 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 405 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
406 */
407
408static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
409{
300ed6cb 410 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
411 nodes_subset(p->mems_allowed, q->mems_allowed) &&
412 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
413 is_mem_exclusive(p) <= is_mem_exclusive(q);
414}
415
645fcc9d
LZ
416/**
417 * alloc_trial_cpuset - allocate a trial cpuset
418 * @cs: the cpuset that the trial cpuset duplicates
419 */
420static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
421{
300ed6cb
LZ
422 struct cpuset *trial;
423
424 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
425 if (!trial)
426 return NULL;
427
428 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
429 kfree(trial);
430 return NULL;
431 }
432 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
433
434 return trial;
645fcc9d
LZ
435}
436
437/**
438 * free_trial_cpuset - free the trial cpuset
439 * @trial: the trial cpuset to be freed
440 */
441static void free_trial_cpuset(struct cpuset *trial)
442{
300ed6cb 443 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
444 kfree(trial);
445}
446
1da177e4
LT
447/*
448 * validate_change() - Used to validate that any proposed cpuset change
449 * follows the structural rules for cpusets.
450 *
451 * If we replaced the flag and mask values of the current cpuset
452 * (cur) with those values in the trial cpuset (trial), would
453 * our various subset and exclusive rules still be valid? Presumes
2df167a3 454 * cgroup_mutex held.
1da177e4
LT
455 *
456 * 'cur' is the address of an actual, in-use cpuset. Operations
457 * such as list traversal that depend on the actual address of the
458 * cpuset in the list must use cur below, not trial.
459 *
460 * 'trial' is the address of bulk structure copy of cur, with
461 * perhaps one or more of the fields cpus_allowed, mems_allowed,
462 * or flags changed to new, trial values.
463 *
464 * Return 0 if valid, -errno if not.
465 */
466
467static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
468{
8793d854 469 struct cgroup *cont;
1da177e4
LT
470 struct cpuset *c, *par;
471
472 /* Each of our child cpusets must be a subset of us */
8793d854
PM
473 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
474 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
475 return -EBUSY;
476 }
477
478 /* Remaining checks don't apply to root cpuset */
69604067 479 if (cur == &top_cpuset)
1da177e4
LT
480 return 0;
481
69604067
PJ
482 par = cur->parent;
483
1da177e4
LT
484 /* We must be a subset of our parent cpuset */
485 if (!is_cpuset_subset(trial, par))
486 return -EACCES;
487
2df167a3
PM
488 /*
489 * If either I or some sibling (!= me) is exclusive, we can't
490 * overlap
491 */
8793d854
PM
492 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
493 c = cgroup_cs(cont);
1da177e4
LT
494 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
495 c != cur &&
300ed6cb 496 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
1da177e4
LT
497 return -EINVAL;
498 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
499 c != cur &&
500 nodes_intersects(trial->mems_allowed, c->mems_allowed))
501 return -EINVAL;
502 }
503
020958b6
PJ
504 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
505 if (cgroup_task_count(cur->css.cgroup)) {
300ed6cb 506 if (cpumask_empty(trial->cpus_allowed) ||
020958b6
PJ
507 nodes_empty(trial->mems_allowed)) {
508 return -ENOSPC;
509 }
510 }
511
1da177e4
LT
512 return 0;
513}
514
029190c5 515/*
cf417141 516 * Helper routine for generate_sched_domains().
029190c5
PJ
517 * Do cpusets a, b have overlapping cpus_allowed masks?
518 */
029190c5
PJ
519static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
520{
300ed6cb 521 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
522}
523
1d3504fc
HS
524static void
525update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
526{
1d3504fc
HS
527 if (dattr->relax_domain_level < c->relax_domain_level)
528 dattr->relax_domain_level = c->relax_domain_level;
529 return;
530}
531
f5393693
LJ
532static void
533update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
534{
535 LIST_HEAD(q);
536
537 list_add(&c->stack_list, &q);
538 while (!list_empty(&q)) {
539 struct cpuset *cp;
540 struct cgroup *cont;
541 struct cpuset *child;
542
543 cp = list_first_entry(&q, struct cpuset, stack_list);
544 list_del(q.next);
545
300ed6cb 546 if (cpumask_empty(cp->cpus_allowed))
f5393693
LJ
547 continue;
548
549 if (is_sched_load_balance(cp))
550 update_domain_attr(dattr, cp);
551
552 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
553 child = cgroup_cs(cont);
554 list_add_tail(&child->stack_list, &q);
555 }
556 }
557}
558
029190c5 559/*
cf417141
MK
560 * generate_sched_domains()
561 *
562 * This function builds a partial partition of the systems CPUs
563 * A 'partial partition' is a set of non-overlapping subsets whose
564 * union is a subset of that set.
565 * The output of this function needs to be passed to kernel/sched.c
566 * partition_sched_domains() routine, which will rebuild the scheduler's
567 * load balancing domains (sched domains) as specified by that partial
568 * partition.
029190c5
PJ
569 *
570 * See "What is sched_load_balance" in Documentation/cpusets.txt
571 * for a background explanation of this.
572 *
573 * Does not return errors, on the theory that the callers of this
574 * routine would rather not worry about failures to rebuild sched
575 * domains when operating in the severe memory shortage situations
576 * that could cause allocation failures below.
577 *
cf417141 578 * Must be called with cgroup_lock held.
029190c5
PJ
579 *
580 * The three key local variables below are:
aeed6824 581 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
582 * top-down scan of all cpusets. This scan loads a pointer
583 * to each cpuset marked is_sched_load_balance into the
584 * array 'csa'. For our purposes, rebuilding the schedulers
585 * sched domains, we can ignore !is_sched_load_balance cpusets.
586 * csa - (for CpuSet Array) Array of pointers to all the cpusets
587 * that need to be load balanced, for convenient iterative
588 * access by the subsequent code that finds the best partition,
589 * i.e the set of domains (subsets) of CPUs such that the
590 * cpus_allowed of every cpuset marked is_sched_load_balance
591 * is a subset of one of these domains, while there are as
592 * many such domains as possible, each as small as possible.
593 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
594 * the kernel/sched.c routine partition_sched_domains() in a
595 * convenient format, that can be easily compared to the prior
596 * value to determine what partition elements (sched domains)
597 * were changed (added or removed.)
598 *
599 * Finding the best partition (set of domains):
600 * The triple nested loops below over i, j, k scan over the
601 * load balanced cpusets (using the array of cpuset pointers in
602 * csa[]) looking for pairs of cpusets that have overlapping
603 * cpus_allowed, but which don't have the same 'pn' partition
604 * number and gives them in the same partition number. It keeps
605 * looping on the 'restart' label until it can no longer find
606 * any such pairs.
607 *
608 * The union of the cpus_allowed masks from the set of
609 * all cpusets having the same 'pn' value then form the one
610 * element of the partition (one sched domain) to be passed to
611 * partition_sched_domains().
612 */
cf417141
MK
613static int generate_sched_domains(cpumask_t **domains,
614 struct sched_domain_attr **attributes)
029190c5 615{
cf417141 616 LIST_HEAD(q); /* queue of cpusets to be scanned */
029190c5
PJ
617 struct cpuset *cp; /* scans q */
618 struct cpuset **csa; /* array of all cpuset ptrs */
619 int csn; /* how many cpuset ptrs in csa so far */
620 int i, j, k; /* indices for partition finding loops */
621 cpumask_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 622 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 623 int ndoms = 0; /* number of sched domains in result */
029190c5
PJ
624 int nslot; /* next empty doms[] cpumask_t slot */
625
029190c5 626 doms = NULL;
1d3504fc 627 dattr = NULL;
cf417141 628 csa = NULL;
029190c5
PJ
629
630 /* Special case for the 99% of systems with one, full, sched domain */
631 if (is_sched_load_balance(&top_cpuset)) {
029190c5
PJ
632 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
633 if (!doms)
cf417141
MK
634 goto done;
635
1d3504fc
HS
636 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
637 if (dattr) {
638 *dattr = SD_ATTR_INIT;
93a65575 639 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 640 }
300ed6cb 641 cpumask_copy(doms, top_cpuset.cpus_allowed);
cf417141
MK
642
643 ndoms = 1;
644 goto done;
029190c5
PJ
645 }
646
029190c5
PJ
647 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
648 if (!csa)
649 goto done;
650 csn = 0;
651
aeed6824
LZ
652 list_add(&top_cpuset.stack_list, &q);
653 while (!list_empty(&q)) {
029190c5
PJ
654 struct cgroup *cont;
655 struct cpuset *child; /* scans child cpusets of cp */
489a5393 656
aeed6824
LZ
657 cp = list_first_entry(&q, struct cpuset, stack_list);
658 list_del(q.next);
659
300ed6cb 660 if (cpumask_empty(cp->cpus_allowed))
489a5393
LJ
661 continue;
662
f5393693
LJ
663 /*
664 * All child cpusets contain a subset of the parent's cpus, so
665 * just skip them, and then we call update_domain_attr_tree()
666 * to calc relax_domain_level of the corresponding sched
667 * domain.
668 */
669 if (is_sched_load_balance(cp)) {
029190c5 670 csa[csn++] = cp;
f5393693
LJ
671 continue;
672 }
489a5393 673
029190c5
PJ
674 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
675 child = cgroup_cs(cont);
aeed6824 676 list_add_tail(&child->stack_list, &q);
029190c5
PJ
677 }
678 }
679
680 for (i = 0; i < csn; i++)
681 csa[i]->pn = i;
682 ndoms = csn;
683
684restart:
685 /* Find the best partition (set of sched domains) */
686 for (i = 0; i < csn; i++) {
687 struct cpuset *a = csa[i];
688 int apn = a->pn;
689
690 for (j = 0; j < csn; j++) {
691 struct cpuset *b = csa[j];
692 int bpn = b->pn;
693
694 if (apn != bpn && cpusets_overlap(a, b)) {
695 for (k = 0; k < csn; k++) {
696 struct cpuset *c = csa[k];
697
698 if (c->pn == bpn)
699 c->pn = apn;
700 }
701 ndoms--; /* one less element */
702 goto restart;
703 }
704 }
705 }
706
cf417141
MK
707 /*
708 * Now we know how many domains to create.
709 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
710 */
029190c5 711 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
700018e0 712 if (!doms)
cf417141 713 goto done;
cf417141
MK
714
715 /*
716 * The rest of the code, including the scheduler, can deal with
717 * dattr==NULL case. No need to abort if alloc fails.
718 */
1d3504fc 719 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
720
721 for (nslot = 0, i = 0; i < csn; i++) {
722 struct cpuset *a = csa[i];
cf417141 723 cpumask_t *dp;
029190c5
PJ
724 int apn = a->pn;
725
cf417141
MK
726 if (apn < 0) {
727 /* Skip completed partitions */
728 continue;
729 }
730
731 dp = doms + nslot;
732
733 if (nslot == ndoms) {
734 static int warnings = 10;
735 if (warnings) {
736 printk(KERN_WARNING
737 "rebuild_sched_domains confused:"
738 " nslot %d, ndoms %d, csn %d, i %d,"
739 " apn %d\n",
740 nslot, ndoms, csn, i, apn);
741 warnings--;
029190c5 742 }
cf417141
MK
743 continue;
744 }
029190c5 745
cf417141
MK
746 cpus_clear(*dp);
747 if (dattr)
748 *(dattr + nslot) = SD_ATTR_INIT;
749 for (j = i; j < csn; j++) {
750 struct cpuset *b = csa[j];
751
752 if (apn == b->pn) {
300ed6cb 753 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
754 if (dattr)
755 update_domain_attr_tree(dattr + nslot, b);
756
757 /* Done with this partition */
758 b->pn = -1;
029190c5 759 }
029190c5 760 }
cf417141 761 nslot++;
029190c5
PJ
762 }
763 BUG_ON(nslot != ndoms);
764
cf417141
MK
765done:
766 kfree(csa);
767
700018e0
LZ
768 /*
769 * Fallback to the default domain if kmalloc() failed.
770 * See comments in partition_sched_domains().
771 */
772 if (doms == NULL)
773 ndoms = 1;
774
cf417141
MK
775 *domains = doms;
776 *attributes = dattr;
777 return ndoms;
778}
779
780/*
781 * Rebuild scheduler domains.
782 *
783 * Call with neither cgroup_mutex held nor within get_online_cpus().
784 * Takes both cgroup_mutex and get_online_cpus().
785 *
786 * Cannot be directly called from cpuset code handling changes
787 * to the cpuset pseudo-filesystem, because it cannot be called
788 * from code that already holds cgroup_mutex.
789 */
790static void do_rebuild_sched_domains(struct work_struct *unused)
791{
792 struct sched_domain_attr *attr;
793 cpumask_t *doms;
794 int ndoms;
795
86ef5c9a 796 get_online_cpus();
cf417141
MK
797
798 /* Generate domain masks and attrs */
799 cgroup_lock();
800 ndoms = generate_sched_domains(&doms, &attr);
801 cgroup_unlock();
802
803 /* Have scheduler rebuild the domains */
804 partition_sched_domains(ndoms, doms, attr);
805
86ef5c9a 806 put_online_cpus();
cf417141 807}
029190c5 808
cf417141
MK
809static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
810
811/*
812 * Rebuild scheduler domains, asynchronously via workqueue.
813 *
814 * If the flag 'sched_load_balance' of any cpuset with non-empty
815 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
816 * which has that flag enabled, or if any cpuset with a non-empty
817 * 'cpus' is removed, then call this routine to rebuild the
818 * scheduler's dynamic sched domains.
819 *
820 * The rebuild_sched_domains() and partition_sched_domains()
821 * routines must nest cgroup_lock() inside get_online_cpus(),
822 * but such cpuset changes as these must nest that locking the
823 * other way, holding cgroup_lock() for much of the code.
824 *
825 * So in order to avoid an ABBA deadlock, the cpuset code handling
826 * these user changes delegates the actual sched domain rebuilding
827 * to a separate workqueue thread, which ends up processing the
828 * above do_rebuild_sched_domains() function.
829 */
830static void async_rebuild_sched_domains(void)
831{
832 schedule_work(&rebuild_sched_domains_work);
833}
834
835/*
836 * Accomplishes the same scheduler domain rebuild as the above
837 * async_rebuild_sched_domains(), however it directly calls the
838 * rebuild routine synchronously rather than calling it via an
839 * asynchronous work thread.
840 *
841 * This can only be called from code that is not holding
842 * cgroup_mutex (not nested in a cgroup_lock() call.)
843 */
844void rebuild_sched_domains(void)
845{
846 do_rebuild_sched_domains(NULL);
029190c5
PJ
847}
848
58f4790b
CW
849/**
850 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
851 * @tsk: task to test
852 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
853 *
2df167a3 854 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
855 * Called for each task in a cgroup by cgroup_scan_tasks().
856 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
857 * words, if its mask is not equal to its cpuset's mask).
053199ed 858 */
9e0c914c
AB
859static int cpuset_test_cpumask(struct task_struct *tsk,
860 struct cgroup_scanner *scan)
58f4790b 861{
300ed6cb 862 return !cpumask_equal(&tsk->cpus_allowed,
58f4790b
CW
863 (cgroup_cs(scan->cg))->cpus_allowed);
864}
053199ed 865
58f4790b
CW
866/**
867 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
868 * @tsk: task to test
869 * @scan: struct cgroup_scanner containing the cgroup of the task
870 *
871 * Called by cgroup_scan_tasks() for each task in a cgroup whose
872 * cpus_allowed mask needs to be changed.
873 *
874 * We don't need to re-check for the cgroup/cpuset membership, since we're
875 * holding cgroup_lock() at this point.
876 */
9e0c914c
AB
877static void cpuset_change_cpumask(struct task_struct *tsk,
878 struct cgroup_scanner *scan)
58f4790b 879{
300ed6cb 880 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
881}
882
0b2f630a
MX
883/**
884 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
885 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 886 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
887 *
888 * Called with cgroup_mutex held
889 *
890 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
891 * calling callback functions for each.
892 *
4e74339a
LZ
893 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
894 * if @heap != NULL.
0b2f630a 895 */
4e74339a 896static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
897{
898 struct cgroup_scanner scan;
0b2f630a
MX
899
900 scan.cg = cs->css.cgroup;
901 scan.test_task = cpuset_test_cpumask;
902 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
903 scan.heap = heap;
904 cgroup_scan_tasks(&scan);
0b2f630a
MX
905}
906
58f4790b
CW
907/**
908 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
909 * @cs: the cpuset to consider
910 * @buf: buffer of cpu numbers written to this cpuset
911 */
645fcc9d
LZ
912static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
913 const char *buf)
1da177e4 914{
4e74339a 915 struct ptr_heap heap;
58f4790b
CW
916 int retval;
917 int is_load_balanced;
1da177e4 918
4c4d50f7
PJ
919 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
920 if (cs == &top_cpuset)
921 return -EACCES;
922
6f7f02e7 923 /*
c8d9c90c 924 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
925 * Since cpulist_parse() fails on an empty mask, we special case
926 * that parsing. The validate_change() call ensures that cpusets
927 * with tasks have cpus.
6f7f02e7 928 */
020958b6 929 if (!*buf) {
300ed6cb 930 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 931 } else {
300ed6cb 932 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
933 if (retval < 0)
934 return retval;
37340746 935
300ed6cb 936 if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
37340746 937 return -EINVAL;
6f7f02e7 938 }
645fcc9d 939 retval = validate_change(cs, trialcs);
85d7b949
DG
940 if (retval < 0)
941 return retval;
029190c5 942
8707d8b8 943 /* Nothing to do if the cpus didn't change */
300ed6cb 944 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 945 return 0;
58f4790b 946
4e74339a
LZ
947 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
948 if (retval)
949 return retval;
950
645fcc9d 951 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 952
3d3f26a7 953 mutex_lock(&callback_mutex);
300ed6cb 954 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 955 mutex_unlock(&callback_mutex);
029190c5 956
8707d8b8
PM
957 /*
958 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 959 * that need an update.
8707d8b8 960 */
4e74339a
LZ
961 update_tasks_cpumask(cs, &heap);
962
963 heap_free(&heap);
58f4790b 964
8707d8b8 965 if (is_load_balanced)
cf417141 966 async_rebuild_sched_domains();
85d7b949 967 return 0;
1da177e4
LT
968}
969
e4e364e8
PJ
970/*
971 * cpuset_migrate_mm
972 *
973 * Migrate memory region from one set of nodes to another.
974 *
975 * Temporarilly set tasks mems_allowed to target nodes of migration,
976 * so that the migration code can allocate pages on these nodes.
977 *
2df167a3 978 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 979 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
980 * calls. Therefore we don't need to take task_lock around the
981 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 982 * our task's cpuset.
e4e364e8
PJ
983 *
984 * Hold callback_mutex around the two modifications of our tasks
985 * mems_allowed to synchronize with cpuset_mems_allowed().
986 *
987 * While the mm_struct we are migrating is typically from some
988 * other task, the task_struct mems_allowed that we are hacking
989 * is for our current task, which must allocate new pages for that
990 * migrating memory region.
991 *
992 * We call cpuset_update_task_memory_state() before hacking
993 * our tasks mems_allowed, so that we are assured of being in
994 * sync with our tasks cpuset, and in particular, callbacks to
995 * cpuset_update_task_memory_state() from nested page allocations
996 * won't see any mismatch of our cpuset and task mems_generation
997 * values, so won't overwrite our hacked tasks mems_allowed
998 * nodemask.
999 */
1000
1001static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1002 const nodemask_t *to)
1003{
1004 struct task_struct *tsk = current;
1005
1006 cpuset_update_task_memory_state();
1007
1008 mutex_lock(&callback_mutex);
1009 tsk->mems_allowed = *to;
1010 mutex_unlock(&callback_mutex);
1011
1012 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
1013
1014 mutex_lock(&callback_mutex);
8793d854 1015 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
1016 mutex_unlock(&callback_mutex);
1017}
1018
8793d854
PM
1019static void *cpuset_being_rebound;
1020
0b2f630a
MX
1021/**
1022 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1023 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1024 * @oldmem: old mems_allowed of cpuset cs
1025 *
1026 * Called with cgroup_mutex held
1027 * Return 0 if successful, -errno if not.
1028 */
1029static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
1da177e4 1030{
8793d854 1031 struct task_struct *p;
4225399a
PJ
1032 struct mm_struct **mmarray;
1033 int i, n, ntasks;
04c19fa6 1034 int migrate;
4225399a 1035 int fudge;
8793d854 1036 struct cgroup_iter it;
0b2f630a 1037 int retval;
59dac16f 1038
846a16bf 1039 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a
PJ
1040
1041 fudge = 10; /* spare mmarray[] slots */
300ed6cb 1042 fudge += cpumask_weight(cs->cpus_allowed);/* imagine 1 fork-bomb/cpu */
4225399a
PJ
1043 retval = -ENOMEM;
1044
1045 /*
1046 * Allocate mmarray[] to hold mm reference for each task
1047 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
1048 * tasklist_lock. We could use GFP_ATOMIC, but with a
1049 * few more lines of code, we can retry until we get a big
1050 * enough mmarray[] w/o using GFP_ATOMIC.
1051 */
1052 while (1) {
8793d854 1053 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
4225399a
PJ
1054 ntasks += fudge;
1055 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
1056 if (!mmarray)
1057 goto done;
c2aef333 1058 read_lock(&tasklist_lock); /* block fork */
8793d854 1059 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
4225399a 1060 break; /* got enough */
c2aef333 1061 read_unlock(&tasklist_lock); /* try again */
4225399a
PJ
1062 kfree(mmarray);
1063 }
1064
1065 n = 0;
1066
1067 /* Load up mmarray[] with mm reference for each task in cpuset. */
8793d854
PM
1068 cgroup_iter_start(cs->css.cgroup, &it);
1069 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
4225399a
PJ
1070 struct mm_struct *mm;
1071
1072 if (n >= ntasks) {
1073 printk(KERN_WARNING
1074 "Cpuset mempolicy rebind incomplete.\n");
8793d854 1075 break;
4225399a 1076 }
4225399a
PJ
1077 mm = get_task_mm(p);
1078 if (!mm)
1079 continue;
1080 mmarray[n++] = mm;
8793d854
PM
1081 }
1082 cgroup_iter_end(cs->css.cgroup, &it);
c2aef333 1083 read_unlock(&tasklist_lock);
4225399a
PJ
1084
1085 /*
1086 * Now that we've dropped the tasklist spinlock, we can
1087 * rebind the vma mempolicies of each mm in mmarray[] to their
1088 * new cpuset, and release that mm. The mpol_rebind_mm()
1089 * call takes mmap_sem, which we couldn't take while holding
846a16bf 1090 * tasklist_lock. Forks can happen again now - the mpol_dup()
4225399a
PJ
1091 * cpuset_being_rebound check will catch such forks, and rebind
1092 * their vma mempolicies too. Because we still hold the global
2df167a3 1093 * cgroup_mutex, we know that no other rebind effort will
4225399a
PJ
1094 * be contending for the global variable cpuset_being_rebound.
1095 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1096 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1097 */
04c19fa6 1098 migrate = is_memory_migrate(cs);
4225399a
PJ
1099 for (i = 0; i < n; i++) {
1100 struct mm_struct *mm = mmarray[i];
1101
1102 mpol_rebind_mm(mm, &cs->mems_allowed);
e4e364e8 1103 if (migrate)
0b2f630a 1104 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
4225399a
PJ
1105 mmput(mm);
1106 }
1107
2df167a3 1108 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
4225399a 1109 kfree(mmarray);
8793d854 1110 cpuset_being_rebound = NULL;
4225399a 1111 retval = 0;
59dac16f 1112done:
1da177e4
LT
1113 return retval;
1114}
1115
0b2f630a
MX
1116/*
1117 * Handle user request to change the 'mems' memory placement
1118 * of a cpuset. Needs to validate the request, update the
1119 * cpusets mems_allowed and mems_generation, and for each
1120 * task in the cpuset, rebind any vma mempolicies and if
1121 * the cpuset is marked 'memory_migrate', migrate the tasks
1122 * pages to the new memory.
1123 *
1124 * Call with cgroup_mutex held. May take callback_mutex during call.
1125 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1126 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1127 * their mempolicies to the cpusets new mems_allowed.
1128 */
645fcc9d
LZ
1129static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1130 const char *buf)
0b2f630a 1131{
0b2f630a
MX
1132 nodemask_t oldmem;
1133 int retval;
1134
1135 /*
1136 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1137 * it's read-only
1138 */
1139 if (cs == &top_cpuset)
1140 return -EACCES;
1141
0b2f630a
MX
1142 /*
1143 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1144 * Since nodelist_parse() fails on an empty mask, we special case
1145 * that parsing. The validate_change() call ensures that cpusets
1146 * with tasks have memory.
1147 */
1148 if (!*buf) {
645fcc9d 1149 nodes_clear(trialcs->mems_allowed);
0b2f630a 1150 } else {
645fcc9d 1151 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1152 if (retval < 0)
1153 goto done;
1154
645fcc9d 1155 if (!nodes_subset(trialcs->mems_allowed,
0b2f630a
MX
1156 node_states[N_HIGH_MEMORY]))
1157 return -EINVAL;
1158 }
1159 oldmem = cs->mems_allowed;
645fcc9d 1160 if (nodes_equal(oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1161 retval = 0; /* Too easy - nothing to do */
1162 goto done;
1163 }
645fcc9d 1164 retval = validate_change(cs, trialcs);
0b2f630a
MX
1165 if (retval < 0)
1166 goto done;
1167
1168 mutex_lock(&callback_mutex);
645fcc9d 1169 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1170 cs->mems_generation = cpuset_mems_generation++;
1171 mutex_unlock(&callback_mutex);
1172
1173 retval = update_tasks_nodemask(cs, &oldmem);
1174done:
1175 return retval;
1176}
1177
8793d854
PM
1178int current_cpuset_is_being_rebound(void)
1179{
1180 return task_cs(current) == cpuset_being_rebound;
1181}
1182
5be7a479 1183static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1184{
30e0e178
LZ
1185 if (val < -1 || val >= SD_LV_MAX)
1186 return -EINVAL;
1d3504fc
HS
1187
1188 if (val != cs->relax_domain_level) {
1189 cs->relax_domain_level = val;
300ed6cb
LZ
1190 if (!cpumask_empty(cs->cpus_allowed) &&
1191 is_sched_load_balance(cs))
cf417141 1192 async_rebuild_sched_domains();
1d3504fc
HS
1193 }
1194
1195 return 0;
1196}
1197
1da177e4
LT
1198/*
1199 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1200 * bit: the bit to update (see cpuset_flagbits_t)
1201 * cs: the cpuset to update
1202 * turning_on: whether the flag is being set or cleared
053199ed 1203 *
2df167a3 1204 * Call with cgroup_mutex held.
1da177e4
LT
1205 */
1206
700fe1ab
PM
1207static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1208 int turning_on)
1da177e4 1209{
645fcc9d 1210 struct cpuset *trialcs;
607717a6 1211 int err;
40b6a762 1212 int balance_flag_changed;
1da177e4 1213
645fcc9d
LZ
1214 trialcs = alloc_trial_cpuset(cs);
1215 if (!trialcs)
1216 return -ENOMEM;
1217
1da177e4 1218 if (turning_on)
645fcc9d 1219 set_bit(bit, &trialcs->flags);
1da177e4 1220 else
645fcc9d 1221 clear_bit(bit, &trialcs->flags);
1da177e4 1222
645fcc9d 1223 err = validate_change(cs, trialcs);
85d7b949 1224 if (err < 0)
645fcc9d 1225 goto out;
029190c5 1226
029190c5 1227 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1228 is_sched_load_balance(trialcs));
029190c5 1229
3d3f26a7 1230 mutex_lock(&callback_mutex);
645fcc9d 1231 cs->flags = trialcs->flags;
3d3f26a7 1232 mutex_unlock(&callback_mutex);
85d7b949 1233
300ed6cb 1234 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
cf417141 1235 async_rebuild_sched_domains();
029190c5 1236
645fcc9d
LZ
1237out:
1238 free_trial_cpuset(trialcs);
1239 return err;
1da177e4
LT
1240}
1241
3e0d98b9 1242/*
80f7228b 1243 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1244 *
1245 * These routines manage a digitally filtered, constant time based,
1246 * event frequency meter. There are four routines:
1247 * fmeter_init() - initialize a frequency meter.
1248 * fmeter_markevent() - called each time the event happens.
1249 * fmeter_getrate() - returns the recent rate of such events.
1250 * fmeter_update() - internal routine used to update fmeter.
1251 *
1252 * A common data structure is passed to each of these routines,
1253 * which is used to keep track of the state required to manage the
1254 * frequency meter and its digital filter.
1255 *
1256 * The filter works on the number of events marked per unit time.
1257 * The filter is single-pole low-pass recursive (IIR). The time unit
1258 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1259 * simulate 3 decimal digits of precision (multiplied by 1000).
1260 *
1261 * With an FM_COEF of 933, and a time base of 1 second, the filter
1262 * has a half-life of 10 seconds, meaning that if the events quit
1263 * happening, then the rate returned from the fmeter_getrate()
1264 * will be cut in half each 10 seconds, until it converges to zero.
1265 *
1266 * It is not worth doing a real infinitely recursive filter. If more
1267 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1268 * just compute FM_MAXTICKS ticks worth, by which point the level
1269 * will be stable.
1270 *
1271 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1272 * arithmetic overflow in the fmeter_update() routine.
1273 *
1274 * Given the simple 32 bit integer arithmetic used, this meter works
1275 * best for reporting rates between one per millisecond (msec) and
1276 * one per 32 (approx) seconds. At constant rates faster than one
1277 * per msec it maxes out at values just under 1,000,000. At constant
1278 * rates between one per msec, and one per second it will stabilize
1279 * to a value N*1000, where N is the rate of events per second.
1280 * At constant rates between one per second and one per 32 seconds,
1281 * it will be choppy, moving up on the seconds that have an event,
1282 * and then decaying until the next event. At rates slower than
1283 * about one in 32 seconds, it decays all the way back to zero between
1284 * each event.
1285 */
1286
1287#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1288#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1289#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1290#define FM_SCALE 1000 /* faux fixed point scale */
1291
1292/* Initialize a frequency meter */
1293static void fmeter_init(struct fmeter *fmp)
1294{
1295 fmp->cnt = 0;
1296 fmp->val = 0;
1297 fmp->time = 0;
1298 spin_lock_init(&fmp->lock);
1299}
1300
1301/* Internal meter update - process cnt events and update value */
1302static void fmeter_update(struct fmeter *fmp)
1303{
1304 time_t now = get_seconds();
1305 time_t ticks = now - fmp->time;
1306
1307 if (ticks == 0)
1308 return;
1309
1310 ticks = min(FM_MAXTICKS, ticks);
1311 while (ticks-- > 0)
1312 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1313 fmp->time = now;
1314
1315 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1316 fmp->cnt = 0;
1317}
1318
1319/* Process any previous ticks, then bump cnt by one (times scale). */
1320static void fmeter_markevent(struct fmeter *fmp)
1321{
1322 spin_lock(&fmp->lock);
1323 fmeter_update(fmp);
1324 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1325 spin_unlock(&fmp->lock);
1326}
1327
1328/* Process any previous ticks, then return current value. */
1329static int fmeter_getrate(struct fmeter *fmp)
1330{
1331 int val;
1332
1333 spin_lock(&fmp->lock);
1334 fmeter_update(fmp);
1335 val = fmp->val;
1336 spin_unlock(&fmp->lock);
1337 return val;
1338}
1339
2341d1b6
LZ
1340/* Protected by cgroup_lock */
1341static cpumask_var_t cpus_attach;
1342
2df167a3 1343/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
8793d854
PM
1344static int cpuset_can_attach(struct cgroup_subsys *ss,
1345 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1346{
8793d854 1347 struct cpuset *cs = cgroup_cs(cont);
5771f0a2 1348 int ret = 0;
1da177e4 1349
300ed6cb 1350 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1da177e4 1351 return -ENOSPC;
9985b0ba 1352
5771f0a2 1353 if (tsk->flags & PF_THREAD_BOUND) {
9985b0ba 1354 mutex_lock(&callback_mutex);
300ed6cb 1355 if (!cpumask_equal(&tsk->cpus_allowed, cs->cpus_allowed))
5771f0a2 1356 ret = -EINVAL;
9985b0ba 1357 mutex_unlock(&callback_mutex);
9985b0ba 1358 }
1da177e4 1359
5771f0a2 1360 return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL);
8793d854 1361}
1da177e4 1362
8793d854
PM
1363static void cpuset_attach(struct cgroup_subsys *ss,
1364 struct cgroup *cont, struct cgroup *oldcont,
1365 struct task_struct *tsk)
1366{
8793d854
PM
1367 nodemask_t from, to;
1368 struct mm_struct *mm;
1369 struct cpuset *cs = cgroup_cs(cont);
1370 struct cpuset *oldcs = cgroup_cs(oldcont);
9985b0ba 1371 int err;
22fb52dd 1372
f5813d94 1373 if (cs == &top_cpuset) {
2341d1b6 1374 cpumask_copy(cpus_attach, cpu_possible_mask);
f5813d94
MX
1375 } else {
1376 mutex_lock(&callback_mutex);
2341d1b6 1377 guarantee_online_cpus(cs, cpus_attach);
f5813d94
MX
1378 mutex_unlock(&callback_mutex);
1379 }
2341d1b6 1380 err = set_cpus_allowed_ptr(tsk, cpus_attach);
9985b0ba
DR
1381 if (err)
1382 return;
1da177e4 1383
45b07ef3
PJ
1384 from = oldcs->mems_allowed;
1385 to = cs->mems_allowed;
4225399a
PJ
1386 mm = get_task_mm(tsk);
1387 if (mm) {
1388 mpol_rebind_mm(mm, &to);
2741a559 1389 if (is_memory_migrate(cs))
e4e364e8 1390 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1391 mmput(mm);
1392 }
1da177e4
LT
1393}
1394
1395/* The various types of files and directories in a cpuset file system */
1396
1397typedef enum {
45b07ef3 1398 FILE_MEMORY_MIGRATE,
1da177e4
LT
1399 FILE_CPULIST,
1400 FILE_MEMLIST,
1401 FILE_CPU_EXCLUSIVE,
1402 FILE_MEM_EXCLUSIVE,
78608366 1403 FILE_MEM_HARDWALL,
029190c5 1404 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1405 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1406 FILE_MEMORY_PRESSURE_ENABLED,
1407 FILE_MEMORY_PRESSURE,
825a46af
PJ
1408 FILE_SPREAD_PAGE,
1409 FILE_SPREAD_SLAB,
1da177e4
LT
1410} cpuset_filetype_t;
1411
700fe1ab
PM
1412static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1413{
1414 int retval = 0;
1415 struct cpuset *cs = cgroup_cs(cgrp);
1416 cpuset_filetype_t type = cft->private;
1417
e3712395 1418 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1419 return -ENODEV;
700fe1ab
PM
1420
1421 switch (type) {
1da177e4 1422 case FILE_CPU_EXCLUSIVE:
700fe1ab 1423 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1424 break;
1425 case FILE_MEM_EXCLUSIVE:
700fe1ab 1426 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1427 break;
78608366
PM
1428 case FILE_MEM_HARDWALL:
1429 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1430 break;
029190c5 1431 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1432 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1433 break;
45b07ef3 1434 case FILE_MEMORY_MIGRATE:
700fe1ab 1435 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1436 break;
3e0d98b9 1437 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1438 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1439 break;
1440 case FILE_MEMORY_PRESSURE:
1441 retval = -EACCES;
1442 break;
825a46af 1443 case FILE_SPREAD_PAGE:
700fe1ab 1444 retval = update_flag(CS_SPREAD_PAGE, cs, val);
151a4420 1445 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1446 break;
1447 case FILE_SPREAD_SLAB:
700fe1ab 1448 retval = update_flag(CS_SPREAD_SLAB, cs, val);
151a4420 1449 cs->mems_generation = cpuset_mems_generation++;
825a46af 1450 break;
1da177e4
LT
1451 default:
1452 retval = -EINVAL;
700fe1ab 1453 break;
1da177e4 1454 }
8793d854 1455 cgroup_unlock();
1da177e4
LT
1456 return retval;
1457}
1458
5be7a479
PM
1459static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1460{
1461 int retval = 0;
1462 struct cpuset *cs = cgroup_cs(cgrp);
1463 cpuset_filetype_t type = cft->private;
1464
e3712395 1465 if (!cgroup_lock_live_group(cgrp))
5be7a479 1466 return -ENODEV;
e3712395 1467
5be7a479
PM
1468 switch (type) {
1469 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1470 retval = update_relax_domain_level(cs, val);
1471 break;
1472 default:
1473 retval = -EINVAL;
1474 break;
1475 }
1476 cgroup_unlock();
1477 return retval;
1478}
1479
e3712395
PM
1480/*
1481 * Common handling for a write to a "cpus" or "mems" file.
1482 */
1483static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1484 const char *buf)
1485{
1486 int retval = 0;
645fcc9d
LZ
1487 struct cpuset *cs = cgroup_cs(cgrp);
1488 struct cpuset *trialcs;
e3712395
PM
1489
1490 if (!cgroup_lock_live_group(cgrp))
1491 return -ENODEV;
1492
645fcc9d
LZ
1493 trialcs = alloc_trial_cpuset(cs);
1494 if (!trialcs)
1495 return -ENOMEM;
1496
e3712395
PM
1497 switch (cft->private) {
1498 case FILE_CPULIST:
645fcc9d 1499 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1500 break;
1501 case FILE_MEMLIST:
645fcc9d 1502 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1503 break;
1504 default:
1505 retval = -EINVAL;
1506 break;
1507 }
645fcc9d
LZ
1508
1509 free_trial_cpuset(trialcs);
e3712395
PM
1510 cgroup_unlock();
1511 return retval;
1512}
1513
1da177e4
LT
1514/*
1515 * These ascii lists should be read in a single call, by using a user
1516 * buffer large enough to hold the entire map. If read in smaller
1517 * chunks, there is no guarantee of atomicity. Since the display format
1518 * used, list of ranges of sequential numbers, is variable length,
1519 * and since these maps can change value dynamically, one could read
1520 * gibberish by doing partial reads while a list was changing.
1521 * A single large read to a buffer that crosses a page boundary is
1522 * ok, because the result being copied to user land is not recomputed
1523 * across a page fault.
1524 */
1525
1526static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1527{
5a7625df 1528 int ret;
1da177e4 1529
3d3f26a7 1530 mutex_lock(&callback_mutex);
300ed6cb 1531 ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1532 mutex_unlock(&callback_mutex);
1da177e4 1533
5a7625df 1534 return ret;
1da177e4
LT
1535}
1536
1537static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1538{
1539 nodemask_t mask;
1540
3d3f26a7 1541 mutex_lock(&callback_mutex);
1da177e4 1542 mask = cs->mems_allowed;
3d3f26a7 1543 mutex_unlock(&callback_mutex);
1da177e4
LT
1544
1545 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1546}
1547
8793d854
PM
1548static ssize_t cpuset_common_file_read(struct cgroup *cont,
1549 struct cftype *cft,
1550 struct file *file,
1551 char __user *buf,
1552 size_t nbytes, loff_t *ppos)
1da177e4 1553{
8793d854 1554 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1555 cpuset_filetype_t type = cft->private;
1556 char *page;
1557 ssize_t retval = 0;
1558 char *s;
1da177e4 1559
e12ba74d 1560 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1561 return -ENOMEM;
1562
1563 s = page;
1564
1565 switch (type) {
1566 case FILE_CPULIST:
1567 s += cpuset_sprintf_cpulist(s, cs);
1568 break;
1569 case FILE_MEMLIST:
1570 s += cpuset_sprintf_memlist(s, cs);
1571 break;
1da177e4
LT
1572 default:
1573 retval = -EINVAL;
1574 goto out;
1575 }
1576 *s++ = '\n';
1da177e4 1577
eacaa1f5 1578 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1579out:
1580 free_page((unsigned long)page);
1581 return retval;
1582}
1583
700fe1ab
PM
1584static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1585{
1586 struct cpuset *cs = cgroup_cs(cont);
1587 cpuset_filetype_t type = cft->private;
1588 switch (type) {
1589 case FILE_CPU_EXCLUSIVE:
1590 return is_cpu_exclusive(cs);
1591 case FILE_MEM_EXCLUSIVE:
1592 return is_mem_exclusive(cs);
78608366
PM
1593 case FILE_MEM_HARDWALL:
1594 return is_mem_hardwall(cs);
700fe1ab
PM
1595 case FILE_SCHED_LOAD_BALANCE:
1596 return is_sched_load_balance(cs);
1597 case FILE_MEMORY_MIGRATE:
1598 return is_memory_migrate(cs);
1599 case FILE_MEMORY_PRESSURE_ENABLED:
1600 return cpuset_memory_pressure_enabled;
1601 case FILE_MEMORY_PRESSURE:
1602 return fmeter_getrate(&cs->fmeter);
1603 case FILE_SPREAD_PAGE:
1604 return is_spread_page(cs);
1605 case FILE_SPREAD_SLAB:
1606 return is_spread_slab(cs);
1607 default:
1608 BUG();
1609 }
cf417141
MK
1610
1611 /* Unreachable but makes gcc happy */
1612 return 0;
700fe1ab 1613}
1da177e4 1614
5be7a479
PM
1615static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1616{
1617 struct cpuset *cs = cgroup_cs(cont);
1618 cpuset_filetype_t type = cft->private;
1619 switch (type) {
1620 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1621 return cs->relax_domain_level;
1622 default:
1623 BUG();
1624 }
cf417141
MK
1625
1626 /* Unrechable but makes gcc happy */
1627 return 0;
5be7a479
PM
1628}
1629
1da177e4
LT
1630
1631/*
1632 * for the common functions, 'private' gives the type of file
1633 */
1634
addf2c73
PM
1635static struct cftype files[] = {
1636 {
1637 .name = "cpus",
1638 .read = cpuset_common_file_read,
e3712395
PM
1639 .write_string = cpuset_write_resmask,
1640 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1641 .private = FILE_CPULIST,
1642 },
1643
1644 {
1645 .name = "mems",
1646 .read = cpuset_common_file_read,
e3712395
PM
1647 .write_string = cpuset_write_resmask,
1648 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1649 .private = FILE_MEMLIST,
1650 },
1651
1652 {
1653 .name = "cpu_exclusive",
1654 .read_u64 = cpuset_read_u64,
1655 .write_u64 = cpuset_write_u64,
1656 .private = FILE_CPU_EXCLUSIVE,
1657 },
1658
1659 {
1660 .name = "mem_exclusive",
1661 .read_u64 = cpuset_read_u64,
1662 .write_u64 = cpuset_write_u64,
1663 .private = FILE_MEM_EXCLUSIVE,
1664 },
1665
78608366
PM
1666 {
1667 .name = "mem_hardwall",
1668 .read_u64 = cpuset_read_u64,
1669 .write_u64 = cpuset_write_u64,
1670 .private = FILE_MEM_HARDWALL,
1671 },
1672
addf2c73
PM
1673 {
1674 .name = "sched_load_balance",
1675 .read_u64 = cpuset_read_u64,
1676 .write_u64 = cpuset_write_u64,
1677 .private = FILE_SCHED_LOAD_BALANCE,
1678 },
1679
1680 {
1681 .name = "sched_relax_domain_level",
5be7a479
PM
1682 .read_s64 = cpuset_read_s64,
1683 .write_s64 = cpuset_write_s64,
addf2c73
PM
1684 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1685 },
1686
1687 {
1688 .name = "memory_migrate",
1689 .read_u64 = cpuset_read_u64,
1690 .write_u64 = cpuset_write_u64,
1691 .private = FILE_MEMORY_MIGRATE,
1692 },
1693
1694 {
1695 .name = "memory_pressure",
1696 .read_u64 = cpuset_read_u64,
1697 .write_u64 = cpuset_write_u64,
1698 .private = FILE_MEMORY_PRESSURE,
1699 },
1700
1701 {
1702 .name = "memory_spread_page",
1703 .read_u64 = cpuset_read_u64,
1704 .write_u64 = cpuset_write_u64,
1705 .private = FILE_SPREAD_PAGE,
1706 },
1707
1708 {
1709 .name = "memory_spread_slab",
1710 .read_u64 = cpuset_read_u64,
1711 .write_u64 = cpuset_write_u64,
1712 .private = FILE_SPREAD_SLAB,
1713 },
45b07ef3
PJ
1714};
1715
3e0d98b9
PJ
1716static struct cftype cft_memory_pressure_enabled = {
1717 .name = "memory_pressure_enabled",
700fe1ab
PM
1718 .read_u64 = cpuset_read_u64,
1719 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1720 .private = FILE_MEMORY_PRESSURE_ENABLED,
1721};
1722
8793d854 1723static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1724{
1725 int err;
1726
addf2c73
PM
1727 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1728 if (err)
1da177e4 1729 return err;
8793d854 1730 /* memory_pressure_enabled is in root cpuset only */
addf2c73 1731 if (!cont->parent)
8793d854 1732 err = cgroup_add_file(cont, ss,
addf2c73
PM
1733 &cft_memory_pressure_enabled);
1734 return err;
1da177e4
LT
1735}
1736
8793d854
PM
1737/*
1738 * post_clone() is called at the end of cgroup_clone().
1739 * 'cgroup' was just created automatically as a result of
1740 * a cgroup_clone(), and the current task is about to
1741 * be moved into 'cgroup'.
1742 *
1743 * Currently we refuse to set up the cgroup - thereby
1744 * refusing the task to be entered, and as a result refusing
1745 * the sys_unshare() or clone() which initiated it - if any
1746 * sibling cpusets have exclusive cpus or mem.
1747 *
1748 * If this becomes a problem for some users who wish to
1749 * allow that scenario, then cpuset_post_clone() could be
1750 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2df167a3
PM
1751 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1752 * held.
8793d854
PM
1753 */
1754static void cpuset_post_clone(struct cgroup_subsys *ss,
1755 struct cgroup *cgroup)
1756{
1757 struct cgroup *parent, *child;
1758 struct cpuset *cs, *parent_cs;
1759
1760 parent = cgroup->parent;
1761 list_for_each_entry(child, &parent->children, sibling) {
1762 cs = cgroup_cs(child);
1763 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1764 return;
1765 }
1766 cs = cgroup_cs(cgroup);
1767 parent_cs = cgroup_cs(parent);
1768
1769 cs->mems_allowed = parent_cs->mems_allowed;
300ed6cb 1770 cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
8793d854
PM
1771 return;
1772}
1773
1da177e4
LT
1774/*
1775 * cpuset_create - create a cpuset
2df167a3
PM
1776 * ss: cpuset cgroup subsystem
1777 * cont: control group that the new cpuset will be part of
1da177e4
LT
1778 */
1779
8793d854
PM
1780static struct cgroup_subsys_state *cpuset_create(
1781 struct cgroup_subsys *ss,
1782 struct cgroup *cont)
1da177e4
LT
1783{
1784 struct cpuset *cs;
8793d854 1785 struct cpuset *parent;
1da177e4 1786
8793d854
PM
1787 if (!cont->parent) {
1788 /* This is early initialization for the top cgroup */
1789 top_cpuset.mems_generation = cpuset_mems_generation++;
1790 return &top_cpuset.css;
1791 }
1792 parent = cgroup_cs(cont->parent);
1da177e4
LT
1793 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1794 if (!cs)
8793d854 1795 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1796 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1797 kfree(cs);
1798 return ERR_PTR(-ENOMEM);
1799 }
1da177e4 1800
cf2a473c 1801 cpuset_update_task_memory_state();
1da177e4 1802 cs->flags = 0;
825a46af
PJ
1803 if (is_spread_page(parent))
1804 set_bit(CS_SPREAD_PAGE, &cs->flags);
1805 if (is_spread_slab(parent))
1806 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1807 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1808 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1809 nodes_clear(cs->mems_allowed);
151a4420 1810 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1811 fmeter_init(&cs->fmeter);
1d3504fc 1812 cs->relax_domain_level = -1;
1da177e4
LT
1813
1814 cs->parent = parent;
202f72d5 1815 number_of_cpusets++;
8793d854 1816 return &cs->css ;
1da177e4
LT
1817}
1818
029190c5 1819/*
029190c5
PJ
1820 * If the cpuset being removed has its flag 'sched_load_balance'
1821 * enabled, then simulate turning sched_load_balance off, which
cf417141 1822 * will call async_rebuild_sched_domains().
029190c5
PJ
1823 */
1824
8793d854 1825static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1826{
8793d854 1827 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1828
cf2a473c 1829 cpuset_update_task_memory_state();
029190c5
PJ
1830
1831 if (is_sched_load_balance(cs))
700fe1ab 1832 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
029190c5 1833
202f72d5 1834 number_of_cpusets--;
300ed6cb 1835 free_cpumask_var(cs->cpus_allowed);
8793d854 1836 kfree(cs);
1da177e4
LT
1837}
1838
8793d854
PM
1839struct cgroup_subsys cpuset_subsys = {
1840 .name = "cpuset",
1841 .create = cpuset_create,
cf417141 1842 .destroy = cpuset_destroy,
8793d854
PM
1843 .can_attach = cpuset_can_attach,
1844 .attach = cpuset_attach,
1845 .populate = cpuset_populate,
1846 .post_clone = cpuset_post_clone,
1847 .subsys_id = cpuset_subsys_id,
1848 .early_init = 1,
1849};
1850
c417f024
PJ
1851/*
1852 * cpuset_init_early - just enough so that the calls to
1853 * cpuset_update_task_memory_state() in early init code
1854 * are harmless.
1855 */
1856
1857int __init cpuset_init_early(void)
1858{
300ed6cb
LZ
1859 alloc_bootmem_cpumask_var(&top_cpuset.cpus_allowed);
1860
8793d854 1861 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1862 return 0;
1863}
1864
8793d854 1865
1da177e4
LT
1866/**
1867 * cpuset_init - initialize cpusets at system boot
1868 *
1869 * Description: Initialize top_cpuset and the cpuset internal file system,
1870 **/
1871
1872int __init cpuset_init(void)
1873{
8793d854 1874 int err = 0;
1da177e4 1875
300ed6cb 1876 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1877 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1878
3e0d98b9 1879 fmeter_init(&top_cpuset.fmeter);
151a4420 1880 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1881 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1882 top_cpuset.relax_domain_level = -1;
1da177e4 1883
1da177e4
LT
1884 err = register_filesystem(&cpuset_fs_type);
1885 if (err < 0)
8793d854
PM
1886 return err;
1887
2341d1b6
LZ
1888 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1889 BUG();
1890
202f72d5 1891 number_of_cpusets = 1;
8793d854 1892 return 0;
1da177e4
LT
1893}
1894
956db3ca
CW
1895/**
1896 * cpuset_do_move_task - move a given task to another cpuset
1897 * @tsk: pointer to task_struct the task to move
1898 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1899 *
1900 * Called by cgroup_scan_tasks() for each task in a cgroup.
1901 * Return nonzero to stop the walk through the tasks.
1902 */
9e0c914c
AB
1903static void cpuset_do_move_task(struct task_struct *tsk,
1904 struct cgroup_scanner *scan)
956db3ca
CW
1905{
1906 struct cpuset_hotplug_scanner *chsp;
1907
1908 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1909 cgroup_attach_task(chsp->to, tsk);
1910}
1911
1912/**
1913 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1914 * @from: cpuset in which the tasks currently reside
1915 * @to: cpuset to which the tasks will be moved
1916 *
c8d9c90c
PJ
1917 * Called with cgroup_mutex held
1918 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1919 *
1920 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1921 * calling callback functions for each.
1922 */
1923static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1924{
1925 struct cpuset_hotplug_scanner scan;
1926
1927 scan.scan.cg = from->css.cgroup;
1928 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1929 scan.scan.process_task = cpuset_do_move_task;
1930 scan.scan.heap = NULL;
1931 scan.to = to->css.cgroup;
1932
da5ef6bb 1933 if (cgroup_scan_tasks(&scan.scan))
956db3ca
CW
1934 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1935 "cgroup_scan_tasks failed\n");
1936}
1937
b1aac8bb 1938/*
cf417141 1939 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1940 * or memory nodes, we need to walk over the cpuset hierarchy,
1941 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1942 * last CPU or node from a cpuset, then move the tasks in the empty
1943 * cpuset to its next-highest non-empty parent.
b1aac8bb 1944 *
c8d9c90c
PJ
1945 * Called with cgroup_mutex held
1946 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1947 */
956db3ca
CW
1948static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1949{
1950 struct cpuset *parent;
1951
c8d9c90c
PJ
1952 /*
1953 * The cgroup's css_sets list is in use if there are tasks
1954 * in the cpuset; the list is empty if there are none;
1955 * the cs->css.refcnt seems always 0.
1956 */
956db3ca
CW
1957 if (list_empty(&cs->css.cgroup->css_sets))
1958 return;
b1aac8bb 1959
956db3ca
CW
1960 /*
1961 * Find its next-highest non-empty parent, (top cpuset
1962 * has online cpus, so can't be empty).
1963 */
1964 parent = cs->parent;
300ed6cb 1965 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 1966 nodes_empty(parent->mems_allowed))
956db3ca 1967 parent = parent->parent;
956db3ca
CW
1968
1969 move_member_tasks_to_cpuset(cs, parent);
1970}
1971
1972/*
1973 * Walk the specified cpuset subtree and look for empty cpusets.
1974 * The tasks of such cpuset must be moved to a parent cpuset.
1975 *
2df167a3 1976 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
1977 * cpus_allowed and mems_allowed.
1978 *
1979 * This walk processes the tree from top to bottom, completing one layer
1980 * before dropping down to the next. It always processes a node before
1981 * any of its children.
1982 *
1983 * For now, since we lack memory hot unplug, we'll never see a cpuset
1984 * that has tasks along with an empty 'mems'. But if we did see such
1985 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1986 */
d294eb83 1987static void scan_for_empty_cpusets(struct cpuset *root)
b1aac8bb 1988{
8d1e6266 1989 LIST_HEAD(queue);
956db3ca
CW
1990 struct cpuset *cp; /* scans cpusets being updated */
1991 struct cpuset *child; /* scans child cpusets of cp */
8793d854 1992 struct cgroup *cont;
f9b4fb8d 1993 nodemask_t oldmems;
b1aac8bb 1994
956db3ca
CW
1995 list_add_tail((struct list_head *)&root->stack_list, &queue);
1996
956db3ca 1997 while (!list_empty(&queue)) {
8d1e6266 1998 cp = list_first_entry(&queue, struct cpuset, stack_list);
956db3ca
CW
1999 list_del(queue.next);
2000 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2001 child = cgroup_cs(cont);
2002 list_add_tail(&child->stack_list, &queue);
2003 }
b4501295
PJ
2004
2005 /* Continue past cpusets with all cpus, mems online */
300ed6cb 2006 if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
b4501295
PJ
2007 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2008 continue;
2009
f9b4fb8d
MX
2010 oldmems = cp->mems_allowed;
2011
956db3ca 2012 /* Remove offline cpus and mems from this cpuset. */
b4501295 2013 mutex_lock(&callback_mutex);
300ed6cb
LZ
2014 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2015 cpu_online_mask);
956db3ca
CW
2016 nodes_and(cp->mems_allowed, cp->mems_allowed,
2017 node_states[N_HIGH_MEMORY]);
b4501295
PJ
2018 mutex_unlock(&callback_mutex);
2019
2020 /* Move tasks from the empty cpuset to a parent */
300ed6cb 2021 if (cpumask_empty(cp->cpus_allowed) ||
b4501295 2022 nodes_empty(cp->mems_allowed))
956db3ca 2023 remove_tasks_in_empty_cpuset(cp);
f9b4fb8d 2024 else {
4e74339a 2025 update_tasks_cpumask(cp, NULL);
f9b4fb8d
MX
2026 update_tasks_nodemask(cp, &oldmems);
2027 }
b1aac8bb
PJ
2028 }
2029}
2030
4c4d50f7
PJ
2031/*
2032 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2033 * period. This is necessary in order to make cpusets transparent
2034 * (of no affect) on systems that are actively using CPU hotplug
2035 * but making no active use of cpusets.
2036 *
38837fc7
PJ
2037 * This routine ensures that top_cpuset.cpus_allowed tracks
2038 * cpu_online_map on each CPU hotplug (cpuhp) event.
cf417141
MK
2039 *
2040 * Called within get_online_cpus(). Needs to call cgroup_lock()
2041 * before calling generate_sched_domains().
4c4d50f7 2042 */
cf417141 2043static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
029190c5 2044 unsigned long phase, void *unused_cpu)
4c4d50f7 2045{
cf417141
MK
2046 struct sched_domain_attr *attr;
2047 cpumask_t *doms;
2048 int ndoms;
2049
3e84050c 2050 switch (phase) {
3e84050c
DA
2051 case CPU_ONLINE:
2052 case CPU_ONLINE_FROZEN:
2053 case CPU_DEAD:
2054 case CPU_DEAD_FROZEN:
3e84050c 2055 break;
cf417141 2056
3e84050c 2057 default:
ac076758 2058 return NOTIFY_DONE;
3e84050c 2059 }
ac076758 2060
cf417141 2061 cgroup_lock();
300ed6cb 2062 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
cf417141
MK
2063 scan_for_empty_cpusets(&top_cpuset);
2064 ndoms = generate_sched_domains(&doms, &attr);
2065 cgroup_unlock();
2066
2067 /* Have scheduler rebuild the domains */
2068 partition_sched_domains(ndoms, doms, attr);
2069
3e84050c 2070 return NOTIFY_OK;
4c4d50f7 2071}
4c4d50f7 2072
b1aac8bb 2073#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2074/*
0e1e7c7a 2075 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
cf417141
MK
2076 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2077 * See also the previous routine cpuset_track_online_cpus().
38837fc7 2078 */
f481891f
MX
2079static int cpuset_track_online_nodes(struct notifier_block *self,
2080 unsigned long action, void *arg)
38837fc7 2081{
cf417141 2082 cgroup_lock();
f481891f
MX
2083 switch (action) {
2084 case MEM_ONLINE:
2085 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2086 break;
2087 case MEM_OFFLINE:
2088 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2089 scan_for_empty_cpusets(&top_cpuset);
2090 break;
2091 default:
2092 break;
2093 }
cf417141 2094 cgroup_unlock();
f481891f 2095 return NOTIFY_OK;
38837fc7
PJ
2096}
2097#endif
2098
1da177e4
LT
2099/**
2100 * cpuset_init_smp - initialize cpus_allowed
2101 *
2102 * Description: Finish top cpuset after cpu, node maps are initialized
2103 **/
2104
2105void __init cpuset_init_smp(void)
2106{
300ed6cb 2107 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
0e1e7c7a 2108 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7 2109
cf417141 2110 hotcpu_notifier(cpuset_track_online_cpus, 0);
f481891f 2111 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
1da177e4
LT
2112}
2113
2114/**
1da177e4
LT
2115 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2116 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
f9a86fcb 2117 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
1da177e4 2118 *
300ed6cb 2119 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4
LT
2120 * attached to the specified @tsk. Guaranteed to return some non-empty
2121 * subset of cpu_online_map, even if this means going outside the
2122 * tasks cpuset.
2123 **/
2124
f9a86fcb 2125void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
1da177e4 2126{
3d3f26a7 2127 mutex_lock(&callback_mutex);
f9a86fcb 2128 cpuset_cpus_allowed_locked(tsk, pmask);
470fd646 2129 mutex_unlock(&callback_mutex);
470fd646
CW
2130}
2131
2132/**
2133 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2df167a3 2134 * Must be called with callback_mutex held.
470fd646 2135 **/
f9a86fcb 2136void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
470fd646 2137{
909d75a3 2138 task_lock(tsk);
f9a86fcb 2139 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2140 task_unlock(tsk);
1da177e4
LT
2141}
2142
2143void cpuset_init_current_mems_allowed(void)
2144{
f9a86fcb 2145 nodes_setall(current->mems_allowed);
1da177e4
LT
2146}
2147
909d75a3
PJ
2148/**
2149 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2150 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2151 *
2152 * Description: Returns the nodemask_t mems_allowed of the cpuset
2153 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 2154 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
2155 * tasks cpuset.
2156 **/
2157
2158nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2159{
2160 nodemask_t mask;
2161
3d3f26a7 2162 mutex_lock(&callback_mutex);
909d75a3 2163 task_lock(tsk);
8793d854 2164 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2165 task_unlock(tsk);
3d3f26a7 2166 mutex_unlock(&callback_mutex);
909d75a3
PJ
2167
2168 return mask;
2169}
2170
d9fd8a6d 2171/**
19770b32
MG
2172 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2173 * @nodemask: the nodemask to be checked
d9fd8a6d 2174 *
19770b32 2175 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2176 */
19770b32 2177int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2178{
19770b32 2179 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2180}
2181
9bf2229f 2182/*
78608366
PM
2183 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2184 * mem_hardwall ancestor to the specified cpuset. Call holding
2185 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2186 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2187 */
78608366 2188static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2189{
78608366 2190 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2191 cs = cs->parent;
2192 return cs;
2193}
2194
d9fd8a6d 2195/**
02a0e53d 2196 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
9bf2229f 2197 * @z: is this zone on an allowed node?
02a0e53d 2198 * @gfp_mask: memory allocation flags
d9fd8a6d 2199 *
02a0e53d
PJ
2200 * If we're in interrupt, yes, we can always allocate. If
2201 * __GFP_THISNODE is set, yes, we can always allocate. If zone
9bf2229f
PJ
2202 * z's node is in our tasks mems_allowed, yes. If it's not a
2203 * __GFP_HARDWALL request and this zone's nodes is in the nearest
78608366 2204 * hardwalled cpuset ancestor to this tasks cpuset, yes.
c596d9f3
DR
2205 * If the task has been OOM killed and has access to memory reserves
2206 * as specified by the TIF_MEMDIE flag, yes.
9bf2229f
PJ
2207 * Otherwise, no.
2208 *
02a0e53d
PJ
2209 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2210 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2211 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2212 * from an enclosing cpuset.
2213 *
2214 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2215 * hardwall cpusets, and never sleeps.
2216 *
2217 * The __GFP_THISNODE placement logic is really handled elsewhere,
2218 * by forcibly using a zonelist starting at a specified node, and by
2219 * (in get_page_from_freelist()) refusing to consider the zones for
2220 * any node on the zonelist except the first. By the time any such
2221 * calls get to this routine, we should just shut up and say 'yes'.
2222 *
9bf2229f 2223 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2224 * and do not allow allocations outside the current tasks cpuset
2225 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2226 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2227 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2228 *
02a0e53d
PJ
2229 * Scanning up parent cpusets requires callback_mutex. The
2230 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2231 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2232 * current tasks mems_allowed came up empty on the first pass over
2233 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2234 * cpuset are short of memory, might require taking the callback_mutex
2235 * mutex.
9bf2229f 2236 *
36be57ff 2237 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2238 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2239 * so no allocation on a node outside the cpuset is allowed (unless
2240 * in interrupt, of course).
36be57ff
PJ
2241 *
2242 * The second pass through get_page_from_freelist() doesn't even call
2243 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2244 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2245 * in alloc_flags. That logic and the checks below have the combined
2246 * affect that:
9bf2229f
PJ
2247 * in_interrupt - any node ok (current task context irrelevant)
2248 * GFP_ATOMIC - any node ok
c596d9f3 2249 * TIF_MEMDIE - any node ok
78608366 2250 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2251 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2252 *
2253 * Rule:
02a0e53d 2254 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2255 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2256 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2257 */
9bf2229f 2258
02a0e53d 2259int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
1da177e4 2260{
9bf2229f
PJ
2261 int node; /* node that zone z is on */
2262 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2263 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2264
9b819d20 2265 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2266 return 1;
89fa3024 2267 node = zone_to_nid(z);
92d1dbd2 2268 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2269 if (node_isset(node, current->mems_allowed))
2270 return 1;
c596d9f3
DR
2271 /*
2272 * Allow tasks that have access to memory reserves because they have
2273 * been OOM killed to get memory anywhere.
2274 */
2275 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2276 return 1;
9bf2229f
PJ
2277 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2278 return 0;
2279
5563e770
BP
2280 if (current->flags & PF_EXITING) /* Let dying task have memory */
2281 return 1;
2282
9bf2229f 2283 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2284 mutex_lock(&callback_mutex);
053199ed 2285
053199ed 2286 task_lock(current);
78608366 2287 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2288 task_unlock(current);
2289
9bf2229f 2290 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2291 mutex_unlock(&callback_mutex);
9bf2229f 2292 return allowed;
1da177e4
LT
2293}
2294
02a0e53d
PJ
2295/*
2296 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2297 * @z: is this zone on an allowed node?
2298 * @gfp_mask: memory allocation flags
2299 *
2300 * If we're in interrupt, yes, we can always allocate.
2301 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
c596d9f3
DR
2302 * z's node is in our tasks mems_allowed, yes. If the task has been
2303 * OOM killed and has access to memory reserves as specified by the
2304 * TIF_MEMDIE flag, yes. Otherwise, no.
02a0e53d
PJ
2305 *
2306 * The __GFP_THISNODE placement logic is really handled elsewhere,
2307 * by forcibly using a zonelist starting at a specified node, and by
2308 * (in get_page_from_freelist()) refusing to consider the zones for
2309 * any node on the zonelist except the first. By the time any such
2310 * calls get to this routine, we should just shut up and say 'yes'.
2311 *
2312 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2313 * this variant requires that the zone be in the current tasks
2314 * mems_allowed or that we're in interrupt. It does not scan up the
2315 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2316 * It never sleeps.
2317 */
2318
2319int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2320{
2321 int node; /* node that zone z is on */
2322
2323 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2324 return 1;
2325 node = zone_to_nid(z);
2326 if (node_isset(node, current->mems_allowed))
2327 return 1;
dedf8b79
DW
2328 /*
2329 * Allow tasks that have access to memory reserves because they have
2330 * been OOM killed to get memory anywhere.
2331 */
2332 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2333 return 1;
02a0e53d
PJ
2334 return 0;
2335}
2336
505970b9
PJ
2337/**
2338 * cpuset_lock - lock out any changes to cpuset structures
2339 *
3d3f26a7 2340 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2341 * from being changed while it scans the tasklist looking for a
3d3f26a7 2342 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2343 * cpuset_lock() routine, so the oom code can lock it, before
2344 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2345 * must be taken inside callback_mutex.
505970b9
PJ
2346 */
2347
2348void cpuset_lock(void)
2349{
3d3f26a7 2350 mutex_lock(&callback_mutex);
505970b9
PJ
2351}
2352
2353/**
2354 * cpuset_unlock - release lock on cpuset changes
2355 *
2356 * Undo the lock taken in a previous cpuset_lock() call.
2357 */
2358
2359void cpuset_unlock(void)
2360{
3d3f26a7 2361 mutex_unlock(&callback_mutex);
505970b9
PJ
2362}
2363
825a46af
PJ
2364/**
2365 * cpuset_mem_spread_node() - On which node to begin search for a page
2366 *
2367 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2368 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2369 * and if the memory allocation used cpuset_mem_spread_node()
2370 * to determine on which node to start looking, as it will for
2371 * certain page cache or slab cache pages such as used for file
2372 * system buffers and inode caches, then instead of starting on the
2373 * local node to look for a free page, rather spread the starting
2374 * node around the tasks mems_allowed nodes.
2375 *
2376 * We don't have to worry about the returned node being offline
2377 * because "it can't happen", and even if it did, it would be ok.
2378 *
2379 * The routines calling guarantee_online_mems() are careful to
2380 * only set nodes in task->mems_allowed that are online. So it
2381 * should not be possible for the following code to return an
2382 * offline node. But if it did, that would be ok, as this routine
2383 * is not returning the node where the allocation must be, only
2384 * the node where the search should start. The zonelist passed to
2385 * __alloc_pages() will include all nodes. If the slab allocator
2386 * is passed an offline node, it will fall back to the local node.
2387 * See kmem_cache_alloc_node().
2388 */
2389
2390int cpuset_mem_spread_node(void)
2391{
2392 int node;
2393
2394 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2395 if (node == MAX_NUMNODES)
2396 node = first_node(current->mems_allowed);
2397 current->cpuset_mem_spread_rotor = node;
2398 return node;
2399}
2400EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2401
ef08e3b4 2402/**
bbe373f2
DR
2403 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2404 * @tsk1: pointer to task_struct of some task.
2405 * @tsk2: pointer to task_struct of some other task.
2406 *
2407 * Description: Return true if @tsk1's mems_allowed intersects the
2408 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2409 * one of the task's memory usage might impact the memory available
2410 * to the other.
ef08e3b4
PJ
2411 **/
2412
bbe373f2
DR
2413int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2414 const struct task_struct *tsk2)
ef08e3b4 2415{
bbe373f2 2416 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2417}
2418
75aa1994
DR
2419/**
2420 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2421 * @task: pointer to task_struct of some task.
2422 *
2423 * Description: Prints @task's name, cpuset name, and cached copy of its
2424 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2425 * dereferencing task_cs(task).
2426 */
2427void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2428{
2429 struct dentry *dentry;
2430
2431 dentry = task_cs(tsk)->css.cgroup->dentry;
2432 spin_lock(&cpuset_buffer_lock);
2433 snprintf(cpuset_name, CPUSET_NAME_LEN,
2434 dentry ? (const char *)dentry->d_name.name : "/");
2435 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2436 tsk->mems_allowed);
2437 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2438 tsk->comm, cpuset_name, cpuset_nodelist);
2439 spin_unlock(&cpuset_buffer_lock);
2440}
2441
3e0d98b9
PJ
2442/*
2443 * Collection of memory_pressure is suppressed unless
2444 * this flag is enabled by writing "1" to the special
2445 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2446 */
2447
c5b2aff8 2448int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2449
2450/**
2451 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2452 *
2453 * Keep a running average of the rate of synchronous (direct)
2454 * page reclaim efforts initiated by tasks in each cpuset.
2455 *
2456 * This represents the rate at which some task in the cpuset
2457 * ran low on memory on all nodes it was allowed to use, and
2458 * had to enter the kernels page reclaim code in an effort to
2459 * create more free memory by tossing clean pages or swapping
2460 * or writing dirty pages.
2461 *
2462 * Display to user space in the per-cpuset read-only file
2463 * "memory_pressure". Value displayed is an integer
2464 * representing the recent rate of entry into the synchronous
2465 * (direct) page reclaim by any task attached to the cpuset.
2466 **/
2467
2468void __cpuset_memory_pressure_bump(void)
2469{
3e0d98b9 2470 task_lock(current);
8793d854 2471 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2472 task_unlock(current);
2473}
2474
8793d854 2475#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2476/*
2477 * proc_cpuset_show()
2478 * - Print tasks cpuset path into seq_file.
2479 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2480 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2481 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2482 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2483 * anyway.
1da177e4 2484 */
029190c5 2485static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2486{
13b41b09 2487 struct pid *pid;
1da177e4
LT
2488 struct task_struct *tsk;
2489 char *buf;
8793d854 2490 struct cgroup_subsys_state *css;
99f89551 2491 int retval;
1da177e4 2492
99f89551 2493 retval = -ENOMEM;
1da177e4
LT
2494 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2495 if (!buf)
99f89551
EB
2496 goto out;
2497
2498 retval = -ESRCH;
13b41b09
EB
2499 pid = m->private;
2500 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2501 if (!tsk)
2502 goto out_free;
1da177e4 2503
99f89551 2504 retval = -EINVAL;
8793d854
PM
2505 cgroup_lock();
2506 css = task_subsys_state(tsk, cpuset_subsys_id);
2507 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2508 if (retval < 0)
99f89551 2509 goto out_unlock;
1da177e4
LT
2510 seq_puts(m, buf);
2511 seq_putc(m, '\n');
99f89551 2512out_unlock:
8793d854 2513 cgroup_unlock();
99f89551
EB
2514 put_task_struct(tsk);
2515out_free:
1da177e4 2516 kfree(buf);
99f89551 2517out:
1da177e4
LT
2518 return retval;
2519}
2520
2521static int cpuset_open(struct inode *inode, struct file *file)
2522{
13b41b09
EB
2523 struct pid *pid = PROC_I(inode)->pid;
2524 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2525}
2526
9a32144e 2527const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2528 .open = cpuset_open,
2529 .read = seq_read,
2530 .llseek = seq_lseek,
2531 .release = single_release,
2532};
8793d854 2533#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2534
2535/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2536void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2537{
2538 seq_printf(m, "Cpus_allowed:\t");
30e8e136 2539 seq_cpumask(m, &task->cpus_allowed);
df5f8314 2540 seq_printf(m, "\n");
39106dcf 2541 seq_printf(m, "Cpus_allowed_list:\t");
30e8e136 2542 seq_cpumask_list(m, &task->cpus_allowed);
39106dcf 2543 seq_printf(m, "\n");
df5f8314 2544 seq_printf(m, "Mems_allowed:\t");
30e8e136 2545 seq_nodemask(m, &task->mems_allowed);
df5f8314 2546 seq_printf(m, "\n");
39106dcf 2547 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2548 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2549 seq_printf(m, "\n");
1da177e4 2550}