mm/mm_init.c: mark mminit_loglevel __meminitdata
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
664eedde 64struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
202f72d5 65
3e0d98b9
PJ
66/* See "Frequency meter" comments, below. */
67
68struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73};
74
1da177e4 75struct cpuset {
8793d854
PM
76 struct cgroup_subsys_state css;
77
1da177e4 78 unsigned long flags; /* "unsigned long" so bitops work */
e2b9a3d7 79
7e88291b
LZ
80 /*
81 * On default hierarchy:
82 *
83 * The user-configured masks can only be changed by writing to
84 * cpuset.cpus and cpuset.mems, and won't be limited by the
85 * parent masks.
86 *
87 * The effective masks is the real masks that apply to the tasks
88 * in the cpuset. They may be changed if the configured masks are
89 * changed or hotplug happens.
90 *
91 * effective_mask == configured_mask & parent's effective_mask,
92 * and if it ends up empty, it will inherit the parent's mask.
93 *
94 *
95 * On legacy hierachy:
96 *
97 * The user-configured masks are always the same with effective masks.
98 */
99
e2b9a3d7
LZ
100 /* user-configured CPUs and Memory Nodes allow to tasks */
101 cpumask_var_t cpus_allowed;
102 nodemask_t mems_allowed;
103
104 /* effective CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t effective_cpus;
106 nodemask_t effective_mems;
1da177e4 107
33ad801d
LZ
108 /*
109 * This is old Memory Nodes tasks took on.
110 *
111 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
112 * - A new cpuset's old_mems_allowed is initialized when some
113 * task is moved into it.
114 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
115 * cpuset.mems_allowed and have tasks' nodemask updated, and
116 * then old_mems_allowed is updated to mems_allowed.
117 */
118 nodemask_t old_mems_allowed;
119
3e0d98b9 120 struct fmeter fmeter; /* memory_pressure filter */
029190c5 121
452477fa
TH
122 /*
123 * Tasks are being attached to this cpuset. Used to prevent
124 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
125 */
126 int attach_in_progress;
127
029190c5
PJ
128 /* partition number for rebuild_sched_domains() */
129 int pn;
956db3ca 130
1d3504fc
HS
131 /* for custom sched domain */
132 int relax_domain_level;
1da177e4
LT
133};
134
a7c6d554 135static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
8793d854 136{
a7c6d554 137 return css ? container_of(css, struct cpuset, css) : NULL;
8793d854
PM
138}
139
140/* Retrieve the cpuset for a task */
141static inline struct cpuset *task_cs(struct task_struct *task)
142{
073219e9 143 return css_cs(task_css(task, cpuset_cgrp_id));
8793d854 144}
8793d854 145
c9710d80 146static inline struct cpuset *parent_cs(struct cpuset *cs)
c431069f 147{
5c9d535b 148 return css_cs(cs->css.parent);
c431069f
TH
149}
150
b246272e
DR
151#ifdef CONFIG_NUMA
152static inline bool task_has_mempolicy(struct task_struct *task)
153{
154 return task->mempolicy;
155}
156#else
157static inline bool task_has_mempolicy(struct task_struct *task)
158{
159 return false;
160}
161#endif
162
163
1da177e4
LT
164/* bits in struct cpuset flags field */
165typedef enum {
efeb77b2 166 CS_ONLINE,
1da177e4
LT
167 CS_CPU_EXCLUSIVE,
168 CS_MEM_EXCLUSIVE,
78608366 169 CS_MEM_HARDWALL,
45b07ef3 170 CS_MEMORY_MIGRATE,
029190c5 171 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
172 CS_SPREAD_PAGE,
173 CS_SPREAD_SLAB,
1da177e4
LT
174} cpuset_flagbits_t;
175
176/* convenient tests for these bits */
efeb77b2
TH
177static inline bool is_cpuset_online(const struct cpuset *cs)
178{
179 return test_bit(CS_ONLINE, &cs->flags);
180}
181
1da177e4
LT
182static inline int is_cpu_exclusive(const struct cpuset *cs)
183{
7b5b9ef0 184 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
185}
186
187static inline int is_mem_exclusive(const struct cpuset *cs)
188{
7b5b9ef0 189 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
190}
191
78608366
PM
192static inline int is_mem_hardwall(const struct cpuset *cs)
193{
194 return test_bit(CS_MEM_HARDWALL, &cs->flags);
195}
196
029190c5
PJ
197static inline int is_sched_load_balance(const struct cpuset *cs)
198{
199 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
200}
201
45b07ef3
PJ
202static inline int is_memory_migrate(const struct cpuset *cs)
203{
7b5b9ef0 204 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
205}
206
825a46af
PJ
207static inline int is_spread_page(const struct cpuset *cs)
208{
209 return test_bit(CS_SPREAD_PAGE, &cs->flags);
210}
211
212static inline int is_spread_slab(const struct cpuset *cs)
213{
214 return test_bit(CS_SPREAD_SLAB, &cs->flags);
215}
216
1da177e4 217static struct cpuset top_cpuset = {
efeb77b2
TH
218 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
219 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
220};
221
ae8086ce
TH
222/**
223 * cpuset_for_each_child - traverse online children of a cpuset
224 * @child_cs: loop cursor pointing to the current child
492eb21b 225 * @pos_css: used for iteration
ae8086ce
TH
226 * @parent_cs: target cpuset to walk children of
227 *
228 * Walk @child_cs through the online children of @parent_cs. Must be used
229 * with RCU read locked.
230 */
492eb21b
TH
231#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
232 css_for_each_child((pos_css), &(parent_cs)->css) \
233 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
ae8086ce 234
fc560a26
TH
235/**
236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
237 * @des_cs: loop cursor pointing to the current descendant
492eb21b 238 * @pos_css: used for iteration
fc560a26
TH
239 * @root_cs: target cpuset to walk ancestor of
240 *
241 * Walk @des_cs through the online descendants of @root_cs. Must be used
492eb21b 242 * with RCU read locked. The caller may modify @pos_css by calling
bd8815a6
TH
243 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
244 * iteration and the first node to be visited.
fc560a26 245 */
492eb21b
TH
246#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
247 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
248 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
fc560a26 249
1da177e4 250/*
8447a0fe
VD
251 * There are two global locks guarding cpuset structures - cpuset_mutex and
252 * callback_lock. We also require taking task_lock() when dereferencing a
253 * task's cpuset pointer. See "The task_lock() exception", at the end of this
254 * comment.
5d21cc2d 255 *
8447a0fe 256 * A task must hold both locks to modify cpusets. If a task holds
5d21cc2d 257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
8447a0fe 258 * is the only task able to also acquire callback_lock and be able to
5d21cc2d
TH
259 * modify cpusets. It can perform various checks on the cpuset structure
260 * first, knowing nothing will change. It can also allocate memory while
261 * just holding cpuset_mutex. While it is performing these checks, various
8447a0fe
VD
262 * callback routines can briefly acquire callback_lock to query cpusets.
263 * Once it is ready to make the changes, it takes callback_lock, blocking
5d21cc2d 264 * everyone else.
053199ed
PJ
265 *
266 * Calls to the kernel memory allocator can not be made while holding
8447a0fe 267 * callback_lock, as that would risk double tripping on callback_lock
053199ed
PJ
268 * from one of the callbacks into the cpuset code from within
269 * __alloc_pages().
270 *
8447a0fe 271 * If a task is only holding callback_lock, then it has read-only
053199ed
PJ
272 * access to cpusets.
273 *
58568d2a
MX
274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
275 * by other task, we use alloc_lock in the task_struct fields to protect
276 * them.
053199ed 277 *
8447a0fe 278 * The cpuset_common_file_read() handlers only hold callback_lock across
053199ed
PJ
279 * small pieces of code, such as when reading out possibly multi-word
280 * cpumasks and nodemasks.
281 *
2df167a3
PM
282 * Accessing a task's cpuset should be done in accordance with the
283 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
284 */
285
5d21cc2d 286static DEFINE_MUTEX(cpuset_mutex);
8447a0fe 287static DEFINE_SPINLOCK(callback_lock);
4247bdc6 288
3a5a6d0c
TH
289/*
290 * CPU / memory hotplug is handled asynchronously.
291 */
292static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
293static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
294
e44193d3
LZ
295static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
296
cf417141
MK
297/*
298 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 299 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
300 * silently switch it to mount "cgroup" instead
301 */
f7e83571
AV
302static struct dentry *cpuset_mount(struct file_system_type *fs_type,
303 int flags, const char *unused_dev_name, void *data)
1da177e4 304{
8793d854 305 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 306 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
307 if (cgroup_fs) {
308 char mountopts[] =
309 "cpuset,noprefix,"
310 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
311 ret = cgroup_fs->mount(cgroup_fs, flags,
312 unused_dev_name, mountopts);
8793d854
PM
313 put_filesystem(cgroup_fs);
314 }
315 return ret;
1da177e4
LT
316}
317
318static struct file_system_type cpuset_fs_type = {
319 .name = "cpuset",
f7e83571 320 .mount = cpuset_mount,
1da177e4
LT
321};
322
1da177e4 323/*
300ed6cb 324 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 325 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
326 * until we find one that does have some online cpus. The top
327 * cpuset always has some cpus online.
1da177e4
LT
328 *
329 * One way or another, we guarantee to return some non-empty subset
5f054e31 330 * of cpu_online_mask.
1da177e4 331 *
8447a0fe 332 * Call with callback_lock or cpuset_mutex held.
1da177e4 333 */
c9710d80 334static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
1da177e4 335{
ae1c8023 336 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
c431069f 337 cs = parent_cs(cs);
ae1c8023 338 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
1da177e4
LT
339}
340
341/*
342 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
343 * are online, with memory. If none are online with memory, walk
344 * up the cpuset hierarchy until we find one that does have some
40df2deb 345 * online mems. The top cpuset always has some mems online.
1da177e4
LT
346 *
347 * One way or another, we guarantee to return some non-empty subset
38d7bee9 348 * of node_states[N_MEMORY].
1da177e4 349 *
8447a0fe 350 * Call with callback_lock or cpuset_mutex held.
1da177e4 351 */
c9710d80 352static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
1da177e4 353{
ae1c8023 354 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
c431069f 355 cs = parent_cs(cs);
ae1c8023 356 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
1da177e4
LT
357}
358
f3b39d47
MX
359/*
360 * update task's spread flag if cpuset's page/slab spread flag is set
361 *
8447a0fe 362 * Call with callback_lock or cpuset_mutex held.
f3b39d47
MX
363 */
364static void cpuset_update_task_spread_flag(struct cpuset *cs,
365 struct task_struct *tsk)
366{
367 if (is_spread_page(cs))
2ad654bc 368 task_set_spread_page(tsk);
f3b39d47 369 else
2ad654bc
ZL
370 task_clear_spread_page(tsk);
371
f3b39d47 372 if (is_spread_slab(cs))
2ad654bc 373 task_set_spread_slab(tsk);
f3b39d47 374 else
2ad654bc 375 task_clear_spread_slab(tsk);
f3b39d47
MX
376}
377
1da177e4
LT
378/*
379 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
380 *
381 * One cpuset is a subset of another if all its allowed CPUs and
382 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 383 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
384 */
385
386static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
387{
300ed6cb 388 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
389 nodes_subset(p->mems_allowed, q->mems_allowed) &&
390 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
391 is_mem_exclusive(p) <= is_mem_exclusive(q);
392}
393
645fcc9d
LZ
394/**
395 * alloc_trial_cpuset - allocate a trial cpuset
396 * @cs: the cpuset that the trial cpuset duplicates
397 */
c9710d80 398static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
645fcc9d 399{
300ed6cb
LZ
400 struct cpuset *trial;
401
402 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
403 if (!trial)
404 return NULL;
405
e2b9a3d7
LZ
406 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
407 goto free_cs;
408 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
409 goto free_cpus;
300ed6cb 410
e2b9a3d7
LZ
411 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
412 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
300ed6cb 413 return trial;
e2b9a3d7
LZ
414
415free_cpus:
416 free_cpumask_var(trial->cpus_allowed);
417free_cs:
418 kfree(trial);
419 return NULL;
645fcc9d
LZ
420}
421
422/**
423 * free_trial_cpuset - free the trial cpuset
424 * @trial: the trial cpuset to be freed
425 */
426static void free_trial_cpuset(struct cpuset *trial)
427{
e2b9a3d7 428 free_cpumask_var(trial->effective_cpus);
300ed6cb 429 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
430 kfree(trial);
431}
432
1da177e4
LT
433/*
434 * validate_change() - Used to validate that any proposed cpuset change
435 * follows the structural rules for cpusets.
436 *
437 * If we replaced the flag and mask values of the current cpuset
438 * (cur) with those values in the trial cpuset (trial), would
439 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 440 * cpuset_mutex held.
1da177e4
LT
441 *
442 * 'cur' is the address of an actual, in-use cpuset. Operations
443 * such as list traversal that depend on the actual address of the
444 * cpuset in the list must use cur below, not trial.
445 *
446 * 'trial' is the address of bulk structure copy of cur, with
447 * perhaps one or more of the fields cpus_allowed, mems_allowed,
448 * or flags changed to new, trial values.
449 *
450 * Return 0 if valid, -errno if not.
451 */
452
c9710d80 453static int validate_change(struct cpuset *cur, struct cpuset *trial)
1da177e4 454{
492eb21b 455 struct cgroup_subsys_state *css;
1da177e4 456 struct cpuset *c, *par;
ae8086ce
TH
457 int ret;
458
459 rcu_read_lock();
1da177e4
LT
460
461 /* Each of our child cpusets must be a subset of us */
ae8086ce 462 ret = -EBUSY;
492eb21b 463 cpuset_for_each_child(c, css, cur)
ae8086ce
TH
464 if (!is_cpuset_subset(c, trial))
465 goto out;
1da177e4
LT
466
467 /* Remaining checks don't apply to root cpuset */
ae8086ce 468 ret = 0;
69604067 469 if (cur == &top_cpuset)
ae8086ce 470 goto out;
1da177e4 471
c431069f 472 par = parent_cs(cur);
69604067 473
7e88291b 474 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
ae8086ce 475 ret = -EACCES;
7e88291b 476 if (!cgroup_on_dfl(cur->css.cgroup) && !is_cpuset_subset(trial, par))
ae8086ce 477 goto out;
1da177e4 478
2df167a3
PM
479 /*
480 * If either I or some sibling (!= me) is exclusive, we can't
481 * overlap
482 */
ae8086ce 483 ret = -EINVAL;
492eb21b 484 cpuset_for_each_child(c, css, par) {
1da177e4
LT
485 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
486 c != cur &&
300ed6cb 487 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 488 goto out;
1da177e4
LT
489 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
490 c != cur &&
491 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 492 goto out;
1da177e4
LT
493 }
494
452477fa
TH
495 /*
496 * Cpusets with tasks - existing or newly being attached - can't
1c09b195 497 * be changed to have empty cpus_allowed or mems_allowed.
452477fa 498 */
ae8086ce 499 ret = -ENOSPC;
07bc356e 500 if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
1c09b195
LZ
501 if (!cpumask_empty(cur->cpus_allowed) &&
502 cpumask_empty(trial->cpus_allowed))
503 goto out;
504 if (!nodes_empty(cur->mems_allowed) &&
505 nodes_empty(trial->mems_allowed))
506 goto out;
507 }
020958b6 508
f82f8042
JL
509 /*
510 * We can't shrink if we won't have enough room for SCHED_DEADLINE
511 * tasks.
512 */
513 ret = -EBUSY;
514 if (is_cpu_exclusive(cur) &&
515 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
516 trial->cpus_allowed))
517 goto out;
518
ae8086ce
TH
519 ret = 0;
520out:
521 rcu_read_unlock();
522 return ret;
1da177e4
LT
523}
524
db7f47cf 525#ifdef CONFIG_SMP
029190c5 526/*
cf417141 527 * Helper routine for generate_sched_domains().
8b5f1c52 528 * Do cpusets a, b have overlapping effective cpus_allowed masks?
029190c5 529 */
029190c5
PJ
530static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
531{
8b5f1c52 532 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
029190c5
PJ
533}
534
1d3504fc
HS
535static void
536update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
537{
1d3504fc
HS
538 if (dattr->relax_domain_level < c->relax_domain_level)
539 dattr->relax_domain_level = c->relax_domain_level;
540 return;
541}
542
fc560a26
TH
543static void update_domain_attr_tree(struct sched_domain_attr *dattr,
544 struct cpuset *root_cs)
f5393693 545{
fc560a26 546 struct cpuset *cp;
492eb21b 547 struct cgroup_subsys_state *pos_css;
f5393693 548
fc560a26 549 rcu_read_lock();
492eb21b 550 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
bd8815a6
TH
551 if (cp == root_cs)
552 continue;
553
fc560a26
TH
554 /* skip the whole subtree if @cp doesn't have any CPU */
555 if (cpumask_empty(cp->cpus_allowed)) {
492eb21b 556 pos_css = css_rightmost_descendant(pos_css);
f5393693 557 continue;
fc560a26 558 }
f5393693
LJ
559
560 if (is_sched_load_balance(cp))
561 update_domain_attr(dattr, cp);
f5393693 562 }
fc560a26 563 rcu_read_unlock();
f5393693
LJ
564}
565
029190c5 566/*
cf417141
MK
567 * generate_sched_domains()
568 *
569 * This function builds a partial partition of the systems CPUs
570 * A 'partial partition' is a set of non-overlapping subsets whose
571 * union is a subset of that set.
0a0fca9d 572 * The output of this function needs to be passed to kernel/sched/core.c
cf417141
MK
573 * partition_sched_domains() routine, which will rebuild the scheduler's
574 * load balancing domains (sched domains) as specified by that partial
575 * partition.
029190c5 576 *
45ce80fb 577 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
578 * for a background explanation of this.
579 *
580 * Does not return errors, on the theory that the callers of this
581 * routine would rather not worry about failures to rebuild sched
582 * domains when operating in the severe memory shortage situations
583 * that could cause allocation failures below.
584 *
5d21cc2d 585 * Must be called with cpuset_mutex held.
029190c5
PJ
586 *
587 * The three key local variables below are:
aeed6824 588 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
589 * top-down scan of all cpusets. This scan loads a pointer
590 * to each cpuset marked is_sched_load_balance into the
591 * array 'csa'. For our purposes, rebuilding the schedulers
592 * sched domains, we can ignore !is_sched_load_balance cpusets.
593 * csa - (for CpuSet Array) Array of pointers to all the cpusets
594 * that need to be load balanced, for convenient iterative
595 * access by the subsequent code that finds the best partition,
596 * i.e the set of domains (subsets) of CPUs such that the
597 * cpus_allowed of every cpuset marked is_sched_load_balance
598 * is a subset of one of these domains, while there are as
599 * many such domains as possible, each as small as possible.
600 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
0a0fca9d 601 * the kernel/sched/core.c routine partition_sched_domains() in a
029190c5
PJ
602 * convenient format, that can be easily compared to the prior
603 * value to determine what partition elements (sched domains)
604 * were changed (added or removed.)
605 *
606 * Finding the best partition (set of domains):
607 * The triple nested loops below over i, j, k scan over the
608 * load balanced cpusets (using the array of cpuset pointers in
609 * csa[]) looking for pairs of cpusets that have overlapping
610 * cpus_allowed, but which don't have the same 'pn' partition
611 * number and gives them in the same partition number. It keeps
612 * looping on the 'restart' label until it can no longer find
613 * any such pairs.
614 *
615 * The union of the cpus_allowed masks from the set of
616 * all cpusets having the same 'pn' value then form the one
617 * element of the partition (one sched domain) to be passed to
618 * partition_sched_domains().
619 */
acc3f5d7 620static int generate_sched_domains(cpumask_var_t **domains,
cf417141 621 struct sched_domain_attr **attributes)
029190c5 622{
029190c5
PJ
623 struct cpuset *cp; /* scans q */
624 struct cpuset **csa; /* array of all cpuset ptrs */
625 int csn; /* how many cpuset ptrs in csa so far */
626 int i, j, k; /* indices for partition finding loops */
acc3f5d7 627 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 628 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 629 int ndoms = 0; /* number of sched domains in result */
6af866af 630 int nslot; /* next empty doms[] struct cpumask slot */
492eb21b 631 struct cgroup_subsys_state *pos_css;
029190c5 632
029190c5 633 doms = NULL;
1d3504fc 634 dattr = NULL;
cf417141 635 csa = NULL;
029190c5
PJ
636
637 /* Special case for the 99% of systems with one, full, sched domain */
638 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
639 ndoms = 1;
640 doms = alloc_sched_domains(ndoms);
029190c5 641 if (!doms)
cf417141
MK
642 goto done;
643
1d3504fc
HS
644 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
645 if (dattr) {
646 *dattr = SD_ATTR_INIT;
93a65575 647 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 648 }
8b5f1c52 649 cpumask_copy(doms[0], top_cpuset.effective_cpus);
cf417141 650
cf417141 651 goto done;
029190c5
PJ
652 }
653
664eedde 654 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
029190c5
PJ
655 if (!csa)
656 goto done;
657 csn = 0;
658
fc560a26 659 rcu_read_lock();
492eb21b 660 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
bd8815a6
TH
661 if (cp == &top_cpuset)
662 continue;
f5393693 663 /*
fc560a26
TH
664 * Continue traversing beyond @cp iff @cp has some CPUs and
665 * isn't load balancing. The former is obvious. The
666 * latter: All child cpusets contain a subset of the
667 * parent's cpus, so just skip them, and then we call
668 * update_domain_attr_tree() to calc relax_domain_level of
669 * the corresponding sched domain.
f5393693 670 */
fc560a26
TH
671 if (!cpumask_empty(cp->cpus_allowed) &&
672 !is_sched_load_balance(cp))
f5393693 673 continue;
489a5393 674
fc560a26
TH
675 if (is_sched_load_balance(cp))
676 csa[csn++] = cp;
677
678 /* skip @cp's subtree */
492eb21b 679 pos_css = css_rightmost_descendant(pos_css);
fc560a26
TH
680 }
681 rcu_read_unlock();
029190c5
PJ
682
683 for (i = 0; i < csn; i++)
684 csa[i]->pn = i;
685 ndoms = csn;
686
687restart:
688 /* Find the best partition (set of sched domains) */
689 for (i = 0; i < csn; i++) {
690 struct cpuset *a = csa[i];
691 int apn = a->pn;
692
693 for (j = 0; j < csn; j++) {
694 struct cpuset *b = csa[j];
695 int bpn = b->pn;
696
697 if (apn != bpn && cpusets_overlap(a, b)) {
698 for (k = 0; k < csn; k++) {
699 struct cpuset *c = csa[k];
700
701 if (c->pn == bpn)
702 c->pn = apn;
703 }
704 ndoms--; /* one less element */
705 goto restart;
706 }
707 }
708 }
709
cf417141
MK
710 /*
711 * Now we know how many domains to create.
712 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
713 */
acc3f5d7 714 doms = alloc_sched_domains(ndoms);
700018e0 715 if (!doms)
cf417141 716 goto done;
cf417141
MK
717
718 /*
719 * The rest of the code, including the scheduler, can deal with
720 * dattr==NULL case. No need to abort if alloc fails.
721 */
1d3504fc 722 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
723
724 for (nslot = 0, i = 0; i < csn; i++) {
725 struct cpuset *a = csa[i];
6af866af 726 struct cpumask *dp;
029190c5
PJ
727 int apn = a->pn;
728
cf417141
MK
729 if (apn < 0) {
730 /* Skip completed partitions */
731 continue;
732 }
733
acc3f5d7 734 dp = doms[nslot];
cf417141
MK
735
736 if (nslot == ndoms) {
737 static int warnings = 10;
738 if (warnings) {
12d3089c
FF
739 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
740 nslot, ndoms, csn, i, apn);
cf417141 741 warnings--;
029190c5 742 }
cf417141
MK
743 continue;
744 }
029190c5 745
6af866af 746 cpumask_clear(dp);
cf417141
MK
747 if (dattr)
748 *(dattr + nslot) = SD_ATTR_INIT;
749 for (j = i; j < csn; j++) {
750 struct cpuset *b = csa[j];
751
752 if (apn == b->pn) {
8b5f1c52 753 cpumask_or(dp, dp, b->effective_cpus);
cf417141
MK
754 if (dattr)
755 update_domain_attr_tree(dattr + nslot, b);
756
757 /* Done with this partition */
758 b->pn = -1;
029190c5 759 }
029190c5 760 }
cf417141 761 nslot++;
029190c5
PJ
762 }
763 BUG_ON(nslot != ndoms);
764
cf417141
MK
765done:
766 kfree(csa);
767
700018e0
LZ
768 /*
769 * Fallback to the default domain if kmalloc() failed.
770 * See comments in partition_sched_domains().
771 */
772 if (doms == NULL)
773 ndoms = 1;
774
cf417141
MK
775 *domains = doms;
776 *attributes = dattr;
777 return ndoms;
778}
779
780/*
781 * Rebuild scheduler domains.
782 *
699140ba
TH
783 * If the flag 'sched_load_balance' of any cpuset with non-empty
784 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
785 * which has that flag enabled, or if any cpuset with a non-empty
786 * 'cpus' is removed, then call this routine to rebuild the
787 * scheduler's dynamic sched domains.
cf417141 788 *
5d21cc2d 789 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 790 */
699140ba 791static void rebuild_sched_domains_locked(void)
cf417141
MK
792{
793 struct sched_domain_attr *attr;
acc3f5d7 794 cpumask_var_t *doms;
cf417141
MK
795 int ndoms;
796
5d21cc2d 797 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 798 get_online_cpus();
cf417141 799
5b16c2a4
LZ
800 /*
801 * We have raced with CPU hotplug. Don't do anything to avoid
802 * passing doms with offlined cpu to partition_sched_domains().
803 * Anyways, hotplug work item will rebuild sched domains.
804 */
8b5f1c52 805 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
5b16c2a4
LZ
806 goto out;
807
cf417141 808 /* Generate domain masks and attrs */
cf417141 809 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
810
811 /* Have scheduler rebuild the domains */
812 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 813out:
86ef5c9a 814 put_online_cpus();
cf417141 815}
db7f47cf 816#else /* !CONFIG_SMP */
699140ba 817static void rebuild_sched_domains_locked(void)
db7f47cf
PM
818{
819}
db7f47cf 820#endif /* CONFIG_SMP */
029190c5 821
cf417141
MK
822void rebuild_sched_domains(void)
823{
5d21cc2d 824 mutex_lock(&cpuset_mutex);
699140ba 825 rebuild_sched_domains_locked();
5d21cc2d 826 mutex_unlock(&cpuset_mutex);
029190c5
PJ
827}
828
0b2f630a
MX
829/**
830 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
831 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
0b2f630a 832 *
d66393e5
TH
833 * Iterate through each task of @cs updating its cpus_allowed to the
834 * effective cpuset's. As this function is called with cpuset_mutex held,
835 * cpuset membership stays stable.
0b2f630a 836 */
d66393e5 837static void update_tasks_cpumask(struct cpuset *cs)
0b2f630a 838{
d66393e5
TH
839 struct css_task_iter it;
840 struct task_struct *task;
841
842 css_task_iter_start(&cs->css, &it);
843 while ((task = css_task_iter_next(&it)))
ae1c8023 844 set_cpus_allowed_ptr(task, cs->effective_cpus);
d66393e5 845 css_task_iter_end(&it);
0b2f630a
MX
846}
847
5c5cc623 848/*
734d4513
LZ
849 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
850 * @cs: the cpuset to consider
851 * @new_cpus: temp variable for calculating new effective_cpus
852 *
853 * When congifured cpumask is changed, the effective cpumasks of this cpuset
854 * and all its descendants need to be updated.
5c5cc623 855 *
734d4513 856 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
5c5cc623
LZ
857 *
858 * Called with cpuset_mutex held
859 */
734d4513 860static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
5c5cc623
LZ
861{
862 struct cpuset *cp;
492eb21b 863 struct cgroup_subsys_state *pos_css;
8b5f1c52 864 bool need_rebuild_sched_domains = false;
5c5cc623
LZ
865
866 rcu_read_lock();
734d4513
LZ
867 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
868 struct cpuset *parent = parent_cs(cp);
869
870 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
871
554b0d1c
LZ
872 /*
873 * If it becomes empty, inherit the effective mask of the
874 * parent, which is guaranteed to have some CPUs.
875 */
876 if (cpumask_empty(new_cpus))
877 cpumask_copy(new_cpus, parent->effective_cpus);
878
734d4513
LZ
879 /* Skip the whole subtree if the cpumask remains the same. */
880 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
881 pos_css = css_rightmost_descendant(pos_css);
882 continue;
5c5cc623 883 }
734d4513 884
ec903c0c 885 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
886 continue;
887 rcu_read_unlock();
888
8447a0fe 889 spin_lock_irq(&callback_lock);
734d4513 890 cpumask_copy(cp->effective_cpus, new_cpus);
8447a0fe 891 spin_unlock_irq(&callback_lock);
734d4513
LZ
892
893 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
894 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
895
d66393e5 896 update_tasks_cpumask(cp);
5c5cc623 897
8b5f1c52
LZ
898 /*
899 * If the effective cpumask of any non-empty cpuset is changed,
900 * we need to rebuild sched domains.
901 */
902 if (!cpumask_empty(cp->cpus_allowed) &&
903 is_sched_load_balance(cp))
904 need_rebuild_sched_domains = true;
905
5c5cc623
LZ
906 rcu_read_lock();
907 css_put(&cp->css);
908 }
909 rcu_read_unlock();
8b5f1c52
LZ
910
911 if (need_rebuild_sched_domains)
912 rebuild_sched_domains_locked();
5c5cc623
LZ
913}
914
58f4790b
CW
915/**
916 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
917 * @cs: the cpuset to consider
fc34ac1d 918 * @trialcs: trial cpuset
58f4790b
CW
919 * @buf: buffer of cpu numbers written to this cpuset
920 */
645fcc9d
LZ
921static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
922 const char *buf)
1da177e4 923{
58f4790b 924 int retval;
1da177e4 925
5f054e31 926 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
927 if (cs == &top_cpuset)
928 return -EACCES;
929
6f7f02e7 930 /*
c8d9c90c 931 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
932 * Since cpulist_parse() fails on an empty mask, we special case
933 * that parsing. The validate_change() call ensures that cpusets
934 * with tasks have cpus.
6f7f02e7 935 */
020958b6 936 if (!*buf) {
300ed6cb 937 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 938 } else {
300ed6cb 939 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
940 if (retval < 0)
941 return retval;
37340746 942
5d8ba82c
LZ
943 if (!cpumask_subset(trialcs->cpus_allowed,
944 top_cpuset.cpus_allowed))
37340746 945 return -EINVAL;
6f7f02e7 946 }
029190c5 947
8707d8b8 948 /* Nothing to do if the cpus didn't change */
300ed6cb 949 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 950 return 0;
58f4790b 951
a73456f3
LZ
952 retval = validate_change(cs, trialcs);
953 if (retval < 0)
954 return retval;
955
8447a0fe 956 spin_lock_irq(&callback_lock);
300ed6cb 957 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
8447a0fe 958 spin_unlock_irq(&callback_lock);
029190c5 959
734d4513
LZ
960 /* use trialcs->cpus_allowed as a temp variable */
961 update_cpumasks_hier(cs, trialcs->cpus_allowed);
85d7b949 962 return 0;
1da177e4
LT
963}
964
e4e364e8
PJ
965/*
966 * cpuset_migrate_mm
967 *
968 * Migrate memory region from one set of nodes to another.
969 *
970 * Temporarilly set tasks mems_allowed to target nodes of migration,
971 * so that the migration code can allocate pages on these nodes.
972 *
e4e364e8
PJ
973 * While the mm_struct we are migrating is typically from some
974 * other task, the task_struct mems_allowed that we are hacking
975 * is for our current task, which must allocate new pages for that
976 * migrating memory region.
e4e364e8
PJ
977 */
978
979static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
980 const nodemask_t *to)
981{
982 struct task_struct *tsk = current;
983
e4e364e8 984 tsk->mems_allowed = *to;
e4e364e8
PJ
985
986 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
987
47295830 988 rcu_read_lock();
ae1c8023 989 guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
47295830 990 rcu_read_unlock();
e4e364e8
PJ
991}
992
3b6766fe 993/*
58568d2a
MX
994 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
995 * @tsk: the task to change
996 * @newmems: new nodes that the task will be set
997 *
998 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
999 * we structure updates as setting all new allowed nodes, then clearing newly
1000 * disallowed ones.
58568d2a
MX
1001 */
1002static void cpuset_change_task_nodemask(struct task_struct *tsk,
1003 nodemask_t *newmems)
1004{
b246272e 1005 bool need_loop;
89e8a244 1006
c0ff7453
MX
1007 /*
1008 * Allow tasks that have access to memory reserves because they have
1009 * been OOM killed to get memory anywhere.
1010 */
1011 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1012 return;
1013 if (current->flags & PF_EXITING) /* Let dying task have memory */
1014 return;
1015
1016 task_lock(tsk);
b246272e
DR
1017 /*
1018 * Determine if a loop is necessary if another thread is doing
d26914d1 1019 * read_mems_allowed_begin(). If at least one node remains unchanged and
b246272e
DR
1020 * tsk does not have a mempolicy, then an empty nodemask will not be
1021 * possible when mems_allowed is larger than a word.
1022 */
1023 need_loop = task_has_mempolicy(tsk) ||
1024 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1025
0fc0287c
PZ
1026 if (need_loop) {
1027 local_irq_disable();
cc9a6c87 1028 write_seqcount_begin(&tsk->mems_allowed_seq);
0fc0287c 1029 }
c0ff7453 1030
cc9a6c87
MG
1031 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1032 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1033
1034 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1035 tsk->mems_allowed = *newmems;
cc9a6c87 1036
0fc0287c 1037 if (need_loop) {
cc9a6c87 1038 write_seqcount_end(&tsk->mems_allowed_seq);
0fc0287c
PZ
1039 local_irq_enable();
1040 }
cc9a6c87 1041
c0ff7453 1042 task_unlock(tsk);
58568d2a
MX
1043}
1044
8793d854
PM
1045static void *cpuset_being_rebound;
1046
0b2f630a
MX
1047/**
1048 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1049 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
0b2f630a 1050 *
d66393e5
TH
1051 * Iterate through each task of @cs updating its mems_allowed to the
1052 * effective cpuset's. As this function is called with cpuset_mutex held,
1053 * cpuset membership stays stable.
0b2f630a 1054 */
d66393e5 1055static void update_tasks_nodemask(struct cpuset *cs)
1da177e4 1056{
33ad801d 1057 static nodemask_t newmems; /* protected by cpuset_mutex */
d66393e5
TH
1058 struct css_task_iter it;
1059 struct task_struct *task;
59dac16f 1060
846a16bf 1061 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1062
ae1c8023 1063 guarantee_online_mems(cs, &newmems);
33ad801d 1064
4225399a 1065 /*
3b6766fe
LZ
1066 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1067 * take while holding tasklist_lock. Forks can happen - the
1068 * mpol_dup() cpuset_being_rebound check will catch such forks,
1069 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1070 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1071 * will be contending for the global variable cpuset_being_rebound.
4225399a 1072 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1073 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1074 */
d66393e5
TH
1075 css_task_iter_start(&cs->css, &it);
1076 while ((task = css_task_iter_next(&it))) {
1077 struct mm_struct *mm;
1078 bool migrate;
1079
1080 cpuset_change_task_nodemask(task, &newmems);
1081
1082 mm = get_task_mm(task);
1083 if (!mm)
1084 continue;
1085
1086 migrate = is_memory_migrate(cs);
1087
1088 mpol_rebind_mm(mm, &cs->mems_allowed);
1089 if (migrate)
1090 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1091 mmput(mm);
1092 }
1093 css_task_iter_end(&it);
4225399a 1094
33ad801d
LZ
1095 /*
1096 * All the tasks' nodemasks have been updated, update
1097 * cs->old_mems_allowed.
1098 */
1099 cs->old_mems_allowed = newmems;
1100
2df167a3 1101 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1102 cpuset_being_rebound = NULL;
1da177e4
LT
1103}
1104
5c5cc623 1105/*
734d4513
LZ
1106 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1107 * @cs: the cpuset to consider
1108 * @new_mems: a temp variable for calculating new effective_mems
5c5cc623 1109 *
734d4513
LZ
1110 * When configured nodemask is changed, the effective nodemasks of this cpuset
1111 * and all its descendants need to be updated.
5c5cc623 1112 *
734d4513 1113 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
5c5cc623
LZ
1114 *
1115 * Called with cpuset_mutex held
1116 */
734d4513 1117static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
5c5cc623
LZ
1118{
1119 struct cpuset *cp;
492eb21b 1120 struct cgroup_subsys_state *pos_css;
5c5cc623
LZ
1121
1122 rcu_read_lock();
734d4513
LZ
1123 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1124 struct cpuset *parent = parent_cs(cp);
1125
1126 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1127
554b0d1c
LZ
1128 /*
1129 * If it becomes empty, inherit the effective mask of the
1130 * parent, which is guaranteed to have some MEMs.
1131 */
1132 if (nodes_empty(*new_mems))
1133 *new_mems = parent->effective_mems;
1134
734d4513
LZ
1135 /* Skip the whole subtree if the nodemask remains the same. */
1136 if (nodes_equal(*new_mems, cp->effective_mems)) {
1137 pos_css = css_rightmost_descendant(pos_css);
1138 continue;
5c5cc623 1139 }
734d4513 1140
ec903c0c 1141 if (!css_tryget_online(&cp->css))
5c5cc623
LZ
1142 continue;
1143 rcu_read_unlock();
1144
8447a0fe 1145 spin_lock_irq(&callback_lock);
734d4513 1146 cp->effective_mems = *new_mems;
8447a0fe 1147 spin_unlock_irq(&callback_lock);
734d4513
LZ
1148
1149 WARN_ON(!cgroup_on_dfl(cp->css.cgroup) &&
a1381268 1150 !nodes_equal(cp->mems_allowed, cp->effective_mems));
734d4513 1151
d66393e5 1152 update_tasks_nodemask(cp);
5c5cc623
LZ
1153
1154 rcu_read_lock();
1155 css_put(&cp->css);
1156 }
1157 rcu_read_unlock();
1158}
1159
0b2f630a
MX
1160/*
1161 * Handle user request to change the 'mems' memory placement
1162 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1163 * cpusets mems_allowed, and for each task in the cpuset,
1164 * update mems_allowed and rebind task's mempolicy and any vma
1165 * mempolicies and if the cpuset is marked 'memory_migrate',
1166 * migrate the tasks pages to the new memory.
0b2f630a 1167 *
8447a0fe 1168 * Call with cpuset_mutex held. May take callback_lock during call.
0b2f630a
MX
1169 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1170 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1171 * their mempolicies to the cpusets new mems_allowed.
1172 */
645fcc9d
LZ
1173static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1174 const char *buf)
0b2f630a 1175{
0b2f630a
MX
1176 int retval;
1177
1178 /*
38d7bee9 1179 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1180 * it's read-only
1181 */
53feb297
MX
1182 if (cs == &top_cpuset) {
1183 retval = -EACCES;
1184 goto done;
1185 }
0b2f630a 1186
0b2f630a
MX
1187 /*
1188 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1189 * Since nodelist_parse() fails on an empty mask, we special case
1190 * that parsing. The validate_change() call ensures that cpusets
1191 * with tasks have memory.
1192 */
1193 if (!*buf) {
645fcc9d 1194 nodes_clear(trialcs->mems_allowed);
0b2f630a 1195 } else {
645fcc9d 1196 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1197 if (retval < 0)
1198 goto done;
1199
645fcc9d 1200 if (!nodes_subset(trialcs->mems_allowed,
5d8ba82c
LZ
1201 top_cpuset.mems_allowed)) {
1202 retval = -EINVAL;
53feb297
MX
1203 goto done;
1204 }
0b2f630a 1205 }
33ad801d
LZ
1206
1207 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1208 retval = 0; /* Too easy - nothing to do */
1209 goto done;
1210 }
645fcc9d 1211 retval = validate_change(cs, trialcs);
0b2f630a
MX
1212 if (retval < 0)
1213 goto done;
1214
8447a0fe 1215 spin_lock_irq(&callback_lock);
645fcc9d 1216 cs->mems_allowed = trialcs->mems_allowed;
8447a0fe 1217 spin_unlock_irq(&callback_lock);
0b2f630a 1218
734d4513
LZ
1219 /* use trialcs->mems_allowed as a temp variable */
1220 update_nodemasks_hier(cs, &cs->mems_allowed);
0b2f630a
MX
1221done:
1222 return retval;
1223}
1224
8793d854
PM
1225int current_cpuset_is_being_rebound(void)
1226{
391acf97
GZ
1227 int ret;
1228
1229 rcu_read_lock();
1230 ret = task_cs(current) == cpuset_being_rebound;
1231 rcu_read_unlock();
1232
1233 return ret;
8793d854
PM
1234}
1235
5be7a479 1236static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1237{
db7f47cf 1238#ifdef CONFIG_SMP
60495e77 1239 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1240 return -EINVAL;
db7f47cf 1241#endif
1d3504fc
HS
1242
1243 if (val != cs->relax_domain_level) {
1244 cs->relax_domain_level = val;
300ed6cb
LZ
1245 if (!cpumask_empty(cs->cpus_allowed) &&
1246 is_sched_load_balance(cs))
699140ba 1247 rebuild_sched_domains_locked();
1d3504fc
HS
1248 }
1249
1250 return 0;
1251}
1252
72ec7029 1253/**
950592f7
MX
1254 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1255 * @cs: the cpuset in which each task's spread flags needs to be changed
950592f7 1256 *
d66393e5
TH
1257 * Iterate through each task of @cs updating its spread flags. As this
1258 * function is called with cpuset_mutex held, cpuset membership stays
1259 * stable.
950592f7 1260 */
d66393e5 1261static void update_tasks_flags(struct cpuset *cs)
950592f7 1262{
d66393e5
TH
1263 struct css_task_iter it;
1264 struct task_struct *task;
1265
1266 css_task_iter_start(&cs->css, &it);
1267 while ((task = css_task_iter_next(&it)))
1268 cpuset_update_task_spread_flag(cs, task);
1269 css_task_iter_end(&it);
950592f7
MX
1270}
1271
1da177e4
LT
1272/*
1273 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1274 * bit: the bit to update (see cpuset_flagbits_t)
1275 * cs: the cpuset to update
1276 * turning_on: whether the flag is being set or cleared
053199ed 1277 *
5d21cc2d 1278 * Call with cpuset_mutex held.
1da177e4
LT
1279 */
1280
700fe1ab
PM
1281static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1282 int turning_on)
1da177e4 1283{
645fcc9d 1284 struct cpuset *trialcs;
40b6a762 1285 int balance_flag_changed;
950592f7 1286 int spread_flag_changed;
950592f7 1287 int err;
1da177e4 1288
645fcc9d
LZ
1289 trialcs = alloc_trial_cpuset(cs);
1290 if (!trialcs)
1291 return -ENOMEM;
1292
1da177e4 1293 if (turning_on)
645fcc9d 1294 set_bit(bit, &trialcs->flags);
1da177e4 1295 else
645fcc9d 1296 clear_bit(bit, &trialcs->flags);
1da177e4 1297
645fcc9d 1298 err = validate_change(cs, trialcs);
85d7b949 1299 if (err < 0)
645fcc9d 1300 goto out;
029190c5 1301
029190c5 1302 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1303 is_sched_load_balance(trialcs));
029190c5 1304
950592f7
MX
1305 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1306 || (is_spread_page(cs) != is_spread_page(trialcs)));
1307
8447a0fe 1308 spin_lock_irq(&callback_lock);
645fcc9d 1309 cs->flags = trialcs->flags;
8447a0fe 1310 spin_unlock_irq(&callback_lock);
85d7b949 1311
300ed6cb 1312 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1313 rebuild_sched_domains_locked();
029190c5 1314
950592f7 1315 if (spread_flag_changed)
d66393e5 1316 update_tasks_flags(cs);
645fcc9d
LZ
1317out:
1318 free_trial_cpuset(trialcs);
1319 return err;
1da177e4
LT
1320}
1321
3e0d98b9 1322/*
80f7228b 1323 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1324 *
1325 * These routines manage a digitally filtered, constant time based,
1326 * event frequency meter. There are four routines:
1327 * fmeter_init() - initialize a frequency meter.
1328 * fmeter_markevent() - called each time the event happens.
1329 * fmeter_getrate() - returns the recent rate of such events.
1330 * fmeter_update() - internal routine used to update fmeter.
1331 *
1332 * A common data structure is passed to each of these routines,
1333 * which is used to keep track of the state required to manage the
1334 * frequency meter and its digital filter.
1335 *
1336 * The filter works on the number of events marked per unit time.
1337 * The filter is single-pole low-pass recursive (IIR). The time unit
1338 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1339 * simulate 3 decimal digits of precision (multiplied by 1000).
1340 *
1341 * With an FM_COEF of 933, and a time base of 1 second, the filter
1342 * has a half-life of 10 seconds, meaning that if the events quit
1343 * happening, then the rate returned from the fmeter_getrate()
1344 * will be cut in half each 10 seconds, until it converges to zero.
1345 *
1346 * It is not worth doing a real infinitely recursive filter. If more
1347 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1348 * just compute FM_MAXTICKS ticks worth, by which point the level
1349 * will be stable.
1350 *
1351 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1352 * arithmetic overflow in the fmeter_update() routine.
1353 *
1354 * Given the simple 32 bit integer arithmetic used, this meter works
1355 * best for reporting rates between one per millisecond (msec) and
1356 * one per 32 (approx) seconds. At constant rates faster than one
1357 * per msec it maxes out at values just under 1,000,000. At constant
1358 * rates between one per msec, and one per second it will stabilize
1359 * to a value N*1000, where N is the rate of events per second.
1360 * At constant rates between one per second and one per 32 seconds,
1361 * it will be choppy, moving up on the seconds that have an event,
1362 * and then decaying until the next event. At rates slower than
1363 * about one in 32 seconds, it decays all the way back to zero between
1364 * each event.
1365 */
1366
1367#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1368#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1369#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1370#define FM_SCALE 1000 /* faux fixed point scale */
1371
1372/* Initialize a frequency meter */
1373static void fmeter_init(struct fmeter *fmp)
1374{
1375 fmp->cnt = 0;
1376 fmp->val = 0;
1377 fmp->time = 0;
1378 spin_lock_init(&fmp->lock);
1379}
1380
1381/* Internal meter update - process cnt events and update value */
1382static void fmeter_update(struct fmeter *fmp)
1383{
1384 time_t now = get_seconds();
1385 time_t ticks = now - fmp->time;
1386
1387 if (ticks == 0)
1388 return;
1389
1390 ticks = min(FM_MAXTICKS, ticks);
1391 while (ticks-- > 0)
1392 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1393 fmp->time = now;
1394
1395 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1396 fmp->cnt = 0;
1397}
1398
1399/* Process any previous ticks, then bump cnt by one (times scale). */
1400static void fmeter_markevent(struct fmeter *fmp)
1401{
1402 spin_lock(&fmp->lock);
1403 fmeter_update(fmp);
1404 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1405 spin_unlock(&fmp->lock);
1406}
1407
1408/* Process any previous ticks, then return current value. */
1409static int fmeter_getrate(struct fmeter *fmp)
1410{
1411 int val;
1412
1413 spin_lock(&fmp->lock);
1414 fmeter_update(fmp);
1415 val = fmp->val;
1416 spin_unlock(&fmp->lock);
1417 return val;
1418}
1419
57fce0a6
TH
1420static struct cpuset *cpuset_attach_old_cs;
1421
5d21cc2d 1422/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
eb95419b
TH
1423static int cpuset_can_attach(struct cgroup_subsys_state *css,
1424 struct cgroup_taskset *tset)
f780bdb7 1425{
eb95419b 1426 struct cpuset *cs = css_cs(css);
bb9d97b6
TH
1427 struct task_struct *task;
1428 int ret;
1da177e4 1429
57fce0a6
TH
1430 /* used later by cpuset_attach() */
1431 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
1432
5d21cc2d
TH
1433 mutex_lock(&cpuset_mutex);
1434
aa6ec29b 1435 /* allow moving tasks into an empty cpuset if on default hierarchy */
5d21cc2d 1436 ret = -ENOSPC;
aa6ec29b 1437 if (!cgroup_on_dfl(css->cgroup) &&
88fa523b 1438 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
5d21cc2d 1439 goto out_unlock;
9985b0ba 1440
924f0d9a 1441 cgroup_taskset_for_each(task, tset) {
7f51412a
JL
1442 ret = task_can_attach(task, cs->cpus_allowed);
1443 if (ret)
5d21cc2d
TH
1444 goto out_unlock;
1445 ret = security_task_setscheduler(task);
1446 if (ret)
1447 goto out_unlock;
bb9d97b6 1448 }
f780bdb7 1449
452477fa
TH
1450 /*
1451 * Mark attach is in progress. This makes validate_change() fail
1452 * changes which zero cpus/mems_allowed.
1453 */
1454 cs->attach_in_progress++;
5d21cc2d
TH
1455 ret = 0;
1456out_unlock:
1457 mutex_unlock(&cpuset_mutex);
1458 return ret;
8793d854 1459}
f780bdb7 1460
eb95419b 1461static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
452477fa
TH
1462 struct cgroup_taskset *tset)
1463{
5d21cc2d 1464 mutex_lock(&cpuset_mutex);
eb95419b 1465 css_cs(css)->attach_in_progress--;
5d21cc2d 1466 mutex_unlock(&cpuset_mutex);
8793d854 1467}
1da177e4 1468
4e4c9a14 1469/*
5d21cc2d 1470 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1471 * but we can't allocate it dynamically there. Define it global and
1472 * allocate from cpuset_init().
1473 */
1474static cpumask_var_t cpus_attach;
1475
eb95419b
TH
1476static void cpuset_attach(struct cgroup_subsys_state *css,
1477 struct cgroup_taskset *tset)
8793d854 1478{
67bd2c59 1479 /* static buf protected by cpuset_mutex */
4e4c9a14 1480 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1481 struct mm_struct *mm;
bb9d97b6
TH
1482 struct task_struct *task;
1483 struct task_struct *leader = cgroup_taskset_first(tset);
eb95419b 1484 struct cpuset *cs = css_cs(css);
57fce0a6 1485 struct cpuset *oldcs = cpuset_attach_old_cs;
22fb52dd 1486
5d21cc2d
TH
1487 mutex_lock(&cpuset_mutex);
1488
4e4c9a14
TH
1489 /* prepare for attach */
1490 if (cs == &top_cpuset)
1491 cpumask_copy(cpus_attach, cpu_possible_mask);
1492 else
ae1c8023 1493 guarantee_online_cpus(cs, cpus_attach);
4e4c9a14 1494
ae1c8023 1495 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
4e4c9a14 1496
924f0d9a 1497 cgroup_taskset_for_each(task, tset) {
bb9d97b6
TH
1498 /*
1499 * can_attach beforehand should guarantee that this doesn't
1500 * fail. TODO: have a better way to handle failure here
1501 */
1502 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1503
1504 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1505 cpuset_update_task_spread_flag(cs, task);
1506 }
22fb52dd 1507
f780bdb7
BB
1508 /*
1509 * Change mm, possibly for multiple threads in a threadgroup. This is
1510 * expensive and may sleep.
1511 */
ae1c8023 1512 cpuset_attach_nodemask_to = cs->effective_mems;
bb9d97b6 1513 mm = get_task_mm(leader);
4225399a 1514 if (mm) {
f780bdb7 1515 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
f047cecf
LZ
1516
1517 /*
1518 * old_mems_allowed is the same with mems_allowed here, except
1519 * if this task is being moved automatically due to hotplug.
1520 * In that case @mems_allowed has been updated and is empty,
1521 * so @old_mems_allowed is the right nodesets that we migrate
1522 * mm from.
1523 */
1524 if (is_memory_migrate(cs)) {
ae1c8023 1525 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
f780bdb7 1526 &cpuset_attach_nodemask_to);
f047cecf 1527 }
4225399a
PJ
1528 mmput(mm);
1529 }
452477fa 1530
33ad801d 1531 cs->old_mems_allowed = cpuset_attach_nodemask_to;
02bb5863 1532
452477fa 1533 cs->attach_in_progress--;
e44193d3
LZ
1534 if (!cs->attach_in_progress)
1535 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1536
1537 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1538}
1539
1540/* The various types of files and directories in a cpuset file system */
1541
1542typedef enum {
45b07ef3 1543 FILE_MEMORY_MIGRATE,
1da177e4
LT
1544 FILE_CPULIST,
1545 FILE_MEMLIST,
afd1a8b3
LZ
1546 FILE_EFFECTIVE_CPULIST,
1547 FILE_EFFECTIVE_MEMLIST,
1da177e4
LT
1548 FILE_CPU_EXCLUSIVE,
1549 FILE_MEM_EXCLUSIVE,
78608366 1550 FILE_MEM_HARDWALL,
029190c5 1551 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1552 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1553 FILE_MEMORY_PRESSURE_ENABLED,
1554 FILE_MEMORY_PRESSURE,
825a46af
PJ
1555 FILE_SPREAD_PAGE,
1556 FILE_SPREAD_SLAB,
1da177e4
LT
1557} cpuset_filetype_t;
1558
182446d0
TH
1559static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1560 u64 val)
700fe1ab 1561{
182446d0 1562 struct cpuset *cs = css_cs(css);
700fe1ab 1563 cpuset_filetype_t type = cft->private;
a903f086 1564 int retval = 0;
700fe1ab 1565
5d21cc2d 1566 mutex_lock(&cpuset_mutex);
a903f086
LZ
1567 if (!is_cpuset_online(cs)) {
1568 retval = -ENODEV;
5d21cc2d 1569 goto out_unlock;
a903f086 1570 }
700fe1ab
PM
1571
1572 switch (type) {
1da177e4 1573 case FILE_CPU_EXCLUSIVE:
700fe1ab 1574 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1575 break;
1576 case FILE_MEM_EXCLUSIVE:
700fe1ab 1577 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1578 break;
78608366
PM
1579 case FILE_MEM_HARDWALL:
1580 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1581 break;
029190c5 1582 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1583 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1584 break;
45b07ef3 1585 case FILE_MEMORY_MIGRATE:
700fe1ab 1586 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1587 break;
3e0d98b9 1588 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1589 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1590 break;
1591 case FILE_MEMORY_PRESSURE:
1592 retval = -EACCES;
1593 break;
825a46af 1594 case FILE_SPREAD_PAGE:
700fe1ab 1595 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1596 break;
1597 case FILE_SPREAD_SLAB:
700fe1ab 1598 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1599 break;
1da177e4
LT
1600 default:
1601 retval = -EINVAL;
700fe1ab 1602 break;
1da177e4 1603 }
5d21cc2d
TH
1604out_unlock:
1605 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1606 return retval;
1607}
1608
182446d0
TH
1609static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1610 s64 val)
5be7a479 1611{
182446d0 1612 struct cpuset *cs = css_cs(css);
5be7a479 1613 cpuset_filetype_t type = cft->private;
5d21cc2d 1614 int retval = -ENODEV;
5be7a479 1615
5d21cc2d
TH
1616 mutex_lock(&cpuset_mutex);
1617 if (!is_cpuset_online(cs))
1618 goto out_unlock;
e3712395 1619
5be7a479
PM
1620 switch (type) {
1621 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1622 retval = update_relax_domain_level(cs, val);
1623 break;
1624 default:
1625 retval = -EINVAL;
1626 break;
1627 }
5d21cc2d
TH
1628out_unlock:
1629 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1630 return retval;
1631}
1632
e3712395
PM
1633/*
1634 * Common handling for a write to a "cpus" or "mems" file.
1635 */
451af504
TH
1636static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1637 char *buf, size_t nbytes, loff_t off)
e3712395 1638{
451af504 1639 struct cpuset *cs = css_cs(of_css(of));
645fcc9d 1640 struct cpuset *trialcs;
5d21cc2d 1641 int retval = -ENODEV;
e3712395 1642
451af504
TH
1643 buf = strstrip(buf);
1644
3a5a6d0c
TH
1645 /*
1646 * CPU or memory hotunplug may leave @cs w/o any execution
1647 * resources, in which case the hotplug code asynchronously updates
1648 * configuration and transfers all tasks to the nearest ancestor
1649 * which can execute.
1650 *
1651 * As writes to "cpus" or "mems" may restore @cs's execution
1652 * resources, wait for the previously scheduled operations before
1653 * proceeding, so that we don't end up keep removing tasks added
1654 * after execution capability is restored.
76bb5ab8
TH
1655 *
1656 * cpuset_hotplug_work calls back into cgroup core via
1657 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1658 * operation like this one can lead to a deadlock through kernfs
1659 * active_ref protection. Let's break the protection. Losing the
1660 * protection is okay as we check whether @cs is online after
1661 * grabbing cpuset_mutex anyway. This only happens on the legacy
1662 * hierarchies.
3a5a6d0c 1663 */
76bb5ab8
TH
1664 css_get(&cs->css);
1665 kernfs_break_active_protection(of->kn);
3a5a6d0c
TH
1666 flush_work(&cpuset_hotplug_work);
1667
5d21cc2d
TH
1668 mutex_lock(&cpuset_mutex);
1669 if (!is_cpuset_online(cs))
1670 goto out_unlock;
e3712395 1671
645fcc9d 1672 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1673 if (!trialcs) {
1674 retval = -ENOMEM;
5d21cc2d 1675 goto out_unlock;
b75f38d6 1676 }
645fcc9d 1677
451af504 1678 switch (of_cft(of)->private) {
e3712395 1679 case FILE_CPULIST:
645fcc9d 1680 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1681 break;
1682 case FILE_MEMLIST:
645fcc9d 1683 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1684 break;
1685 default:
1686 retval = -EINVAL;
1687 break;
1688 }
645fcc9d
LZ
1689
1690 free_trial_cpuset(trialcs);
5d21cc2d
TH
1691out_unlock:
1692 mutex_unlock(&cpuset_mutex);
76bb5ab8
TH
1693 kernfs_unbreak_active_protection(of->kn);
1694 css_put(&cs->css);
451af504 1695 return retval ?: nbytes;
e3712395
PM
1696}
1697
1da177e4
LT
1698/*
1699 * These ascii lists should be read in a single call, by using a user
1700 * buffer large enough to hold the entire map. If read in smaller
1701 * chunks, there is no guarantee of atomicity. Since the display format
1702 * used, list of ranges of sequential numbers, is variable length,
1703 * and since these maps can change value dynamically, one could read
1704 * gibberish by doing partial reads while a list was changing.
1da177e4 1705 */
2da8ca82 1706static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1da177e4 1707{
2da8ca82
TH
1708 struct cpuset *cs = css_cs(seq_css(sf));
1709 cpuset_filetype_t type = seq_cft(sf)->private;
51ffe411
TH
1710 ssize_t count;
1711 char *buf, *s;
1712 int ret = 0;
1da177e4 1713
51ffe411
TH
1714 count = seq_get_buf(sf, &buf);
1715 s = buf;
1da177e4 1716
8447a0fe 1717 spin_lock_irq(&callback_lock);
1da177e4
LT
1718
1719 switch (type) {
1720 case FILE_CPULIST:
51ffe411 1721 s += cpulist_scnprintf(s, count, cs->cpus_allowed);
1da177e4
LT
1722 break;
1723 case FILE_MEMLIST:
51ffe411 1724 s += nodelist_scnprintf(s, count, cs->mems_allowed);
1da177e4 1725 break;
afd1a8b3
LZ
1726 case FILE_EFFECTIVE_CPULIST:
1727 s += cpulist_scnprintf(s, count, cs->effective_cpus);
1728 break;
1729 case FILE_EFFECTIVE_MEMLIST:
1730 s += nodelist_scnprintf(s, count, cs->effective_mems);
1731 break;
1da177e4 1732 default:
51ffe411
TH
1733 ret = -EINVAL;
1734 goto out_unlock;
1da177e4 1735 }
1da177e4 1736
51ffe411
TH
1737 if (s < buf + count - 1) {
1738 *s++ = '\n';
1739 seq_commit(sf, s - buf);
1740 } else {
1741 seq_commit(sf, -1);
1742 }
1743out_unlock:
8447a0fe 1744 spin_unlock_irq(&callback_lock);
51ffe411 1745 return ret;
1da177e4
LT
1746}
1747
182446d0 1748static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
700fe1ab 1749{
182446d0 1750 struct cpuset *cs = css_cs(css);
700fe1ab
PM
1751 cpuset_filetype_t type = cft->private;
1752 switch (type) {
1753 case FILE_CPU_EXCLUSIVE:
1754 return is_cpu_exclusive(cs);
1755 case FILE_MEM_EXCLUSIVE:
1756 return is_mem_exclusive(cs);
78608366
PM
1757 case FILE_MEM_HARDWALL:
1758 return is_mem_hardwall(cs);
700fe1ab
PM
1759 case FILE_SCHED_LOAD_BALANCE:
1760 return is_sched_load_balance(cs);
1761 case FILE_MEMORY_MIGRATE:
1762 return is_memory_migrate(cs);
1763 case FILE_MEMORY_PRESSURE_ENABLED:
1764 return cpuset_memory_pressure_enabled;
1765 case FILE_MEMORY_PRESSURE:
1766 return fmeter_getrate(&cs->fmeter);
1767 case FILE_SPREAD_PAGE:
1768 return is_spread_page(cs);
1769 case FILE_SPREAD_SLAB:
1770 return is_spread_slab(cs);
1771 default:
1772 BUG();
1773 }
cf417141
MK
1774
1775 /* Unreachable but makes gcc happy */
1776 return 0;
700fe1ab 1777}
1da177e4 1778
182446d0 1779static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
5be7a479 1780{
182446d0 1781 struct cpuset *cs = css_cs(css);
5be7a479
PM
1782 cpuset_filetype_t type = cft->private;
1783 switch (type) {
1784 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1785 return cs->relax_domain_level;
1786 default:
1787 BUG();
1788 }
cf417141
MK
1789
1790 /* Unrechable but makes gcc happy */
1791 return 0;
5be7a479
PM
1792}
1793
1da177e4
LT
1794
1795/*
1796 * for the common functions, 'private' gives the type of file
1797 */
1798
addf2c73
PM
1799static struct cftype files[] = {
1800 {
1801 .name = "cpus",
2da8ca82 1802 .seq_show = cpuset_common_seq_show,
451af504 1803 .write = cpuset_write_resmask,
e3712395 1804 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1805 .private = FILE_CPULIST,
1806 },
1807
1808 {
1809 .name = "mems",
2da8ca82 1810 .seq_show = cpuset_common_seq_show,
451af504 1811 .write = cpuset_write_resmask,
e3712395 1812 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1813 .private = FILE_MEMLIST,
1814 },
1815
afd1a8b3
LZ
1816 {
1817 .name = "effective_cpus",
1818 .seq_show = cpuset_common_seq_show,
1819 .private = FILE_EFFECTIVE_CPULIST,
1820 },
1821
1822 {
1823 .name = "effective_mems",
1824 .seq_show = cpuset_common_seq_show,
1825 .private = FILE_EFFECTIVE_MEMLIST,
1826 },
1827
addf2c73
PM
1828 {
1829 .name = "cpu_exclusive",
1830 .read_u64 = cpuset_read_u64,
1831 .write_u64 = cpuset_write_u64,
1832 .private = FILE_CPU_EXCLUSIVE,
1833 },
1834
1835 {
1836 .name = "mem_exclusive",
1837 .read_u64 = cpuset_read_u64,
1838 .write_u64 = cpuset_write_u64,
1839 .private = FILE_MEM_EXCLUSIVE,
1840 },
1841
78608366
PM
1842 {
1843 .name = "mem_hardwall",
1844 .read_u64 = cpuset_read_u64,
1845 .write_u64 = cpuset_write_u64,
1846 .private = FILE_MEM_HARDWALL,
1847 },
1848
addf2c73
PM
1849 {
1850 .name = "sched_load_balance",
1851 .read_u64 = cpuset_read_u64,
1852 .write_u64 = cpuset_write_u64,
1853 .private = FILE_SCHED_LOAD_BALANCE,
1854 },
1855
1856 {
1857 .name = "sched_relax_domain_level",
5be7a479
PM
1858 .read_s64 = cpuset_read_s64,
1859 .write_s64 = cpuset_write_s64,
addf2c73
PM
1860 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1861 },
1862
1863 {
1864 .name = "memory_migrate",
1865 .read_u64 = cpuset_read_u64,
1866 .write_u64 = cpuset_write_u64,
1867 .private = FILE_MEMORY_MIGRATE,
1868 },
1869
1870 {
1871 .name = "memory_pressure",
1872 .read_u64 = cpuset_read_u64,
1873 .write_u64 = cpuset_write_u64,
1874 .private = FILE_MEMORY_PRESSURE,
099fca32 1875 .mode = S_IRUGO,
addf2c73
PM
1876 },
1877
1878 {
1879 .name = "memory_spread_page",
1880 .read_u64 = cpuset_read_u64,
1881 .write_u64 = cpuset_write_u64,
1882 .private = FILE_SPREAD_PAGE,
1883 },
1884
1885 {
1886 .name = "memory_spread_slab",
1887 .read_u64 = cpuset_read_u64,
1888 .write_u64 = cpuset_write_u64,
1889 .private = FILE_SPREAD_SLAB,
1890 },
3e0d98b9 1891
4baf6e33
TH
1892 {
1893 .name = "memory_pressure_enabled",
1894 .flags = CFTYPE_ONLY_ON_ROOT,
1895 .read_u64 = cpuset_read_u64,
1896 .write_u64 = cpuset_write_u64,
1897 .private = FILE_MEMORY_PRESSURE_ENABLED,
1898 },
1da177e4 1899
4baf6e33
TH
1900 { } /* terminate */
1901};
1da177e4
LT
1902
1903/*
92fb9748 1904 * cpuset_css_alloc - allocate a cpuset css
c9e5fe66 1905 * cgrp: control group that the new cpuset will be part of
1da177e4
LT
1906 */
1907
eb95419b
TH
1908static struct cgroup_subsys_state *
1909cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1da177e4 1910{
c8f699bb 1911 struct cpuset *cs;
1da177e4 1912
eb95419b 1913 if (!parent_css)
8793d854 1914 return &top_cpuset.css;
033fa1c5 1915
c8f699bb 1916 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1917 if (!cs)
8793d854 1918 return ERR_PTR(-ENOMEM);
e2b9a3d7
LZ
1919 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1920 goto free_cs;
1921 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1922 goto free_cpus;
1da177e4 1923
029190c5 1924 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1925 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1926 nodes_clear(cs->mems_allowed);
e2b9a3d7
LZ
1927 cpumask_clear(cs->effective_cpus);
1928 nodes_clear(cs->effective_mems);
3e0d98b9 1929 fmeter_init(&cs->fmeter);
1d3504fc 1930 cs->relax_domain_level = -1;
1da177e4 1931
c8f699bb 1932 return &cs->css;
e2b9a3d7
LZ
1933
1934free_cpus:
1935 free_cpumask_var(cs->cpus_allowed);
1936free_cs:
1937 kfree(cs);
1938 return ERR_PTR(-ENOMEM);
c8f699bb
TH
1939}
1940
eb95419b 1941static int cpuset_css_online(struct cgroup_subsys_state *css)
c8f699bb 1942{
eb95419b 1943 struct cpuset *cs = css_cs(css);
c431069f 1944 struct cpuset *parent = parent_cs(cs);
ae8086ce 1945 struct cpuset *tmp_cs;
492eb21b 1946 struct cgroup_subsys_state *pos_css;
c8f699bb
TH
1947
1948 if (!parent)
1949 return 0;
1950
5d21cc2d
TH
1951 mutex_lock(&cpuset_mutex);
1952
efeb77b2 1953 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1954 if (is_spread_page(parent))
1955 set_bit(CS_SPREAD_PAGE, &cs->flags);
1956 if (is_spread_slab(parent))
1957 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1958
664eedde 1959 cpuset_inc();
033fa1c5 1960
8447a0fe 1961 spin_lock_irq(&callback_lock);
e2b9a3d7
LZ
1962 if (cgroup_on_dfl(cs->css.cgroup)) {
1963 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1964 cs->effective_mems = parent->effective_mems;
1965 }
8447a0fe 1966 spin_unlock_irq(&callback_lock);
e2b9a3d7 1967
eb95419b 1968 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
5d21cc2d 1969 goto out_unlock;
033fa1c5
TH
1970
1971 /*
1972 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1973 * set. This flag handling is implemented in cgroup core for
1974 * histrical reasons - the flag may be specified during mount.
1975 *
1976 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1977 * refuse to clone the configuration - thereby refusing the task to
1978 * be entered, and as a result refusing the sys_unshare() or
1979 * clone() which initiated it. If this becomes a problem for some
1980 * users who wish to allow that scenario, then this could be
1981 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1982 * (and likewise for mems) to the new cgroup.
1983 */
ae8086ce 1984 rcu_read_lock();
492eb21b 1985 cpuset_for_each_child(tmp_cs, pos_css, parent) {
ae8086ce
TH
1986 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1987 rcu_read_unlock();
5d21cc2d 1988 goto out_unlock;
ae8086ce 1989 }
033fa1c5 1990 }
ae8086ce 1991 rcu_read_unlock();
033fa1c5 1992
8447a0fe 1993 spin_lock_irq(&callback_lock);
033fa1c5
TH
1994 cs->mems_allowed = parent->mems_allowed;
1995 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
cea74465 1996 spin_unlock_irq(&callback_lock);
5d21cc2d
TH
1997out_unlock:
1998 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
1999 return 0;
2000}
2001
0b9e6965
ZH
2002/*
2003 * If the cpuset being removed has its flag 'sched_load_balance'
2004 * enabled, then simulate turning sched_load_balance off, which
2005 * will call rebuild_sched_domains_locked().
2006 */
2007
eb95419b 2008static void cpuset_css_offline(struct cgroup_subsys_state *css)
c8f699bb 2009{
eb95419b 2010 struct cpuset *cs = css_cs(css);
c8f699bb 2011
5d21cc2d 2012 mutex_lock(&cpuset_mutex);
c8f699bb
TH
2013
2014 if (is_sched_load_balance(cs))
2015 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2016
664eedde 2017 cpuset_dec();
efeb77b2 2018 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 2019
5d21cc2d 2020 mutex_unlock(&cpuset_mutex);
1da177e4
LT
2021}
2022
eb95419b 2023static void cpuset_css_free(struct cgroup_subsys_state *css)
1da177e4 2024{
eb95419b 2025 struct cpuset *cs = css_cs(css);
1da177e4 2026
e2b9a3d7 2027 free_cpumask_var(cs->effective_cpus);
300ed6cb 2028 free_cpumask_var(cs->cpus_allowed);
8793d854 2029 kfree(cs);
1da177e4
LT
2030}
2031
39bd0d15
LZ
2032static void cpuset_bind(struct cgroup_subsys_state *root_css)
2033{
2034 mutex_lock(&cpuset_mutex);
8447a0fe 2035 spin_lock_irq(&callback_lock);
39bd0d15
LZ
2036
2037 if (cgroup_on_dfl(root_css->cgroup)) {
2038 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2039 top_cpuset.mems_allowed = node_possible_map;
2040 } else {
2041 cpumask_copy(top_cpuset.cpus_allowed,
2042 top_cpuset.effective_cpus);
2043 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2044 }
2045
8447a0fe 2046 spin_unlock_irq(&callback_lock);
39bd0d15
LZ
2047 mutex_unlock(&cpuset_mutex);
2048}
2049
073219e9 2050struct cgroup_subsys cpuset_cgrp_subsys = {
39bd0d15
LZ
2051 .css_alloc = cpuset_css_alloc,
2052 .css_online = cpuset_css_online,
2053 .css_offline = cpuset_css_offline,
2054 .css_free = cpuset_css_free,
2055 .can_attach = cpuset_can_attach,
2056 .cancel_attach = cpuset_cancel_attach,
2057 .attach = cpuset_attach,
2058 .bind = cpuset_bind,
5577964e 2059 .legacy_cftypes = files,
39bd0d15 2060 .early_init = 1,
8793d854
PM
2061};
2062
1da177e4
LT
2063/**
2064 * cpuset_init - initialize cpusets at system boot
2065 *
2066 * Description: Initialize top_cpuset and the cpuset internal file system,
2067 **/
2068
2069int __init cpuset_init(void)
2070{
8793d854 2071 int err = 0;
1da177e4 2072
58568d2a
MX
2073 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2074 BUG();
e2b9a3d7
LZ
2075 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2076 BUG();
58568d2a 2077
300ed6cb 2078 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 2079 nodes_setall(top_cpuset.mems_allowed);
e2b9a3d7
LZ
2080 cpumask_setall(top_cpuset.effective_cpus);
2081 nodes_setall(top_cpuset.effective_mems);
1da177e4 2082
3e0d98b9 2083 fmeter_init(&top_cpuset.fmeter);
029190c5 2084 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 2085 top_cpuset.relax_domain_level = -1;
1da177e4 2086
1da177e4
LT
2087 err = register_filesystem(&cpuset_fs_type);
2088 if (err < 0)
8793d854
PM
2089 return err;
2090
2341d1b6
LZ
2091 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2092 BUG();
2093
8793d854 2094 return 0;
1da177e4
LT
2095}
2096
b1aac8bb 2097/*
cf417141 2098 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2099 * or memory nodes, we need to walk over the cpuset hierarchy,
2100 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2101 * last CPU or node from a cpuset, then move the tasks in the empty
2102 * cpuset to its next-highest non-empty parent.
b1aac8bb 2103 */
956db3ca
CW
2104static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2105{
2106 struct cpuset *parent;
2107
956db3ca
CW
2108 /*
2109 * Find its next-highest non-empty parent, (top cpuset
2110 * has online cpus, so can't be empty).
2111 */
c431069f 2112 parent = parent_cs(cs);
300ed6cb 2113 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2114 nodes_empty(parent->mems_allowed))
c431069f 2115 parent = parent_cs(parent);
956db3ca 2116
8cc99345 2117 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
12d3089c 2118 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
e61734c5
TH
2119 pr_cont_cgroup_name(cs->css.cgroup);
2120 pr_cont("\n");
8cc99345 2121 }
956db3ca
CW
2122}
2123
be4c9dd7
LZ
2124static void
2125hotplug_update_tasks_legacy(struct cpuset *cs,
2126 struct cpumask *new_cpus, nodemask_t *new_mems,
2127 bool cpus_updated, bool mems_updated)
390a36aa
LZ
2128{
2129 bool is_empty;
2130
8447a0fe 2131 spin_lock_irq(&callback_lock);
be4c9dd7
LZ
2132 cpumask_copy(cs->cpus_allowed, new_cpus);
2133 cpumask_copy(cs->effective_cpus, new_cpus);
2134 cs->mems_allowed = *new_mems;
2135 cs->effective_mems = *new_mems;
8447a0fe 2136 spin_unlock_irq(&callback_lock);
390a36aa
LZ
2137
2138 /*
2139 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2140 * as the tasks will be migratecd to an ancestor.
2141 */
be4c9dd7 2142 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
390a36aa 2143 update_tasks_cpumask(cs);
be4c9dd7 2144 if (mems_updated && !nodes_empty(cs->mems_allowed))
390a36aa
LZ
2145 update_tasks_nodemask(cs);
2146
2147 is_empty = cpumask_empty(cs->cpus_allowed) ||
2148 nodes_empty(cs->mems_allowed);
2149
2150 mutex_unlock(&cpuset_mutex);
2151
2152 /*
2153 * Move tasks to the nearest ancestor with execution resources,
2154 * This is full cgroup operation which will also call back into
2155 * cpuset. Should be done outside any lock.
2156 */
2157 if (is_empty)
2158 remove_tasks_in_empty_cpuset(cs);
2159
2160 mutex_lock(&cpuset_mutex);
2161}
2162
be4c9dd7
LZ
2163static void
2164hotplug_update_tasks(struct cpuset *cs,
2165 struct cpumask *new_cpus, nodemask_t *new_mems,
2166 bool cpus_updated, bool mems_updated)
390a36aa 2167{
be4c9dd7
LZ
2168 if (cpumask_empty(new_cpus))
2169 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2170 if (nodes_empty(*new_mems))
2171 *new_mems = parent_cs(cs)->effective_mems;
2172
8447a0fe 2173 spin_lock_irq(&callback_lock);
be4c9dd7
LZ
2174 cpumask_copy(cs->effective_cpus, new_cpus);
2175 cs->effective_mems = *new_mems;
8447a0fe 2176 spin_unlock_irq(&callback_lock);
390a36aa 2177
be4c9dd7 2178 if (cpus_updated)
390a36aa 2179 update_tasks_cpumask(cs);
be4c9dd7 2180 if (mems_updated)
390a36aa
LZ
2181 update_tasks_nodemask(cs);
2182}
2183
deb7aa30 2184/**
388afd85 2185 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2186 * @cs: cpuset in interest
956db3ca 2187 *
deb7aa30
TH
2188 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2189 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2190 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2191 */
388afd85 2192static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2193{
be4c9dd7
LZ
2194 static cpumask_t new_cpus;
2195 static nodemask_t new_mems;
2196 bool cpus_updated;
2197 bool mems_updated;
e44193d3
LZ
2198retry:
2199 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
80d1fa64 2200
5d21cc2d 2201 mutex_lock(&cpuset_mutex);
7ddf96b0 2202
e44193d3
LZ
2203 /*
2204 * We have raced with task attaching. We wait until attaching
2205 * is finished, so we won't attach a task to an empty cpuset.
2206 */
2207 if (cs->attach_in_progress) {
2208 mutex_unlock(&cpuset_mutex);
2209 goto retry;
2210 }
2211
be4c9dd7
LZ
2212 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2213 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
80d1fa64 2214
be4c9dd7
LZ
2215 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2216 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
deb7aa30 2217
390a36aa 2218 if (cgroup_on_dfl(cs->css.cgroup))
be4c9dd7
LZ
2219 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2220 cpus_updated, mems_updated);
390a36aa 2221 else
be4c9dd7
LZ
2222 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2223 cpus_updated, mems_updated);
8d033948 2224
5d21cc2d 2225 mutex_unlock(&cpuset_mutex);
b1aac8bb
PJ
2226}
2227
deb7aa30 2228/**
3a5a6d0c 2229 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2230 *
deb7aa30
TH
2231 * This function is called after either CPU or memory configuration has
2232 * changed and updates cpuset accordingly. The top_cpuset is always
2233 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2234 * order to make cpusets transparent (of no affect) on systems that are
2235 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2236 *
deb7aa30 2237 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2238 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2239 * all descendants.
956db3ca 2240 *
deb7aa30
TH
2241 * Note that CPU offlining during suspend is ignored. We don't modify
2242 * cpusets across suspend/resume cycles at all.
956db3ca 2243 */
3a5a6d0c 2244static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2245{
5c5cc623
LZ
2246 static cpumask_t new_cpus;
2247 static nodemask_t new_mems;
deb7aa30 2248 bool cpus_updated, mems_updated;
7e88291b 2249 bool on_dfl = cgroup_on_dfl(top_cpuset.css.cgroup);
b1aac8bb 2250
5d21cc2d 2251 mutex_lock(&cpuset_mutex);
956db3ca 2252
deb7aa30
TH
2253 /* fetch the available cpus/mems and find out which changed how */
2254 cpumask_copy(&new_cpus, cpu_active_mask);
2255 new_mems = node_states[N_MEMORY];
7ddf96b0 2256
7e88291b
LZ
2257 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2258 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
7ddf96b0 2259
deb7aa30
TH
2260 /* synchronize cpus_allowed to cpu_active_mask */
2261 if (cpus_updated) {
8447a0fe 2262 spin_lock_irq(&callback_lock);
7e88291b
LZ
2263 if (!on_dfl)
2264 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
1344ab9c 2265 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
8447a0fe 2266 spin_unlock_irq(&callback_lock);
deb7aa30
TH
2267 /* we don't mess with cpumasks of tasks in top_cpuset */
2268 }
b4501295 2269
deb7aa30
TH
2270 /* synchronize mems_allowed to N_MEMORY */
2271 if (mems_updated) {
8447a0fe 2272 spin_lock_irq(&callback_lock);
7e88291b
LZ
2273 if (!on_dfl)
2274 top_cpuset.mems_allowed = new_mems;
1344ab9c 2275 top_cpuset.effective_mems = new_mems;
8447a0fe 2276 spin_unlock_irq(&callback_lock);
d66393e5 2277 update_tasks_nodemask(&top_cpuset);
deb7aa30 2278 }
b4501295 2279
388afd85
LZ
2280 mutex_unlock(&cpuset_mutex);
2281
5c5cc623
LZ
2282 /* if cpus or mems changed, we need to propagate to descendants */
2283 if (cpus_updated || mems_updated) {
deb7aa30 2284 struct cpuset *cs;
492eb21b 2285 struct cgroup_subsys_state *pos_css;
f9b4fb8d 2286
fc560a26 2287 rcu_read_lock();
492eb21b 2288 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
ec903c0c 2289 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
388afd85
LZ
2290 continue;
2291 rcu_read_unlock();
7ddf96b0 2292
388afd85 2293 cpuset_hotplug_update_tasks(cs);
b4501295 2294
388afd85
LZ
2295 rcu_read_lock();
2296 css_put(&cs->css);
2297 }
2298 rcu_read_unlock();
2299 }
8d033948 2300
deb7aa30 2301 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2302 if (cpus_updated)
2303 rebuild_sched_domains();
b1aac8bb
PJ
2304}
2305
7ddf96b0 2306void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2307{
3a5a6d0c
TH
2308 /*
2309 * We're inside cpu hotplug critical region which usually nests
2310 * inside cgroup synchronization. Bounce actual hotplug processing
2311 * to a work item to avoid reverse locking order.
2312 *
2313 * We still need to do partition_sched_domains() synchronously;
2314 * otherwise, the scheduler will get confused and put tasks to the
2315 * dead CPU. Fall back to the default single domain.
2316 * cpuset_hotplug_workfn() will rebuild it as necessary.
2317 */
2318 partition_sched_domains(1, NULL, NULL);
2319 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2320}
4c4d50f7 2321
38837fc7 2322/*
38d7bee9
LJ
2323 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2324 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2325 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2326 */
f481891f
MX
2327static int cpuset_track_online_nodes(struct notifier_block *self,
2328 unsigned long action, void *arg)
38837fc7 2329{
3a5a6d0c 2330 schedule_work(&cpuset_hotplug_work);
f481891f 2331 return NOTIFY_OK;
38837fc7 2332}
d8f10cb3
AM
2333
2334static struct notifier_block cpuset_track_online_nodes_nb = {
2335 .notifier_call = cpuset_track_online_nodes,
2336 .priority = 10, /* ??! */
2337};
38837fc7 2338
1da177e4
LT
2339/**
2340 * cpuset_init_smp - initialize cpus_allowed
2341 *
2342 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2343 */
1da177e4
LT
2344void __init cpuset_init_smp(void)
2345{
6ad4c188 2346 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2347 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2348 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2349
e2b9a3d7
LZ
2350 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2351 top_cpuset.effective_mems = node_states[N_MEMORY];
2352
d8f10cb3 2353 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2354}
2355
2356/**
1da177e4
LT
2357 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2358 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2359 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2360 *
300ed6cb 2361 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2362 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2363 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2364 * tasks cpuset.
2365 **/
2366
6af866af 2367void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2368{
8447a0fe
VD
2369 unsigned long flags;
2370
2371 spin_lock_irqsave(&callback_lock, flags);
b8dadcb5 2372 rcu_read_lock();
ae1c8023 2373 guarantee_online_cpus(task_cs(tsk), pmask);
b8dadcb5 2374 rcu_read_unlock();
8447a0fe 2375 spin_unlock_irqrestore(&callback_lock, flags);
1da177e4
LT
2376}
2377
2baab4e9 2378void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2379{
9084bb82 2380 rcu_read_lock();
ae1c8023 2381 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
9084bb82
ON
2382 rcu_read_unlock();
2383
2384 /*
2385 * We own tsk->cpus_allowed, nobody can change it under us.
2386 *
2387 * But we used cs && cs->cpus_allowed lockless and thus can
2388 * race with cgroup_attach_task() or update_cpumask() and get
2389 * the wrong tsk->cpus_allowed. However, both cases imply the
2390 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2391 * which takes task_rq_lock().
2392 *
2393 * If we are called after it dropped the lock we must see all
2394 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2395 * set any mask even if it is not right from task_cs() pov,
2396 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2397 *
2398 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2399 * if required.
9084bb82 2400 */
9084bb82
ON
2401}
2402
1da177e4
LT
2403void cpuset_init_current_mems_allowed(void)
2404{
f9a86fcb 2405 nodes_setall(current->mems_allowed);
1da177e4
LT
2406}
2407
909d75a3
PJ
2408/**
2409 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2410 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2411 *
2412 * Description: Returns the nodemask_t mems_allowed of the cpuset
2413 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2414 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2415 * tasks cpuset.
2416 **/
2417
2418nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2419{
2420 nodemask_t mask;
8447a0fe 2421 unsigned long flags;
909d75a3 2422
8447a0fe 2423 spin_lock_irqsave(&callback_lock, flags);
b8dadcb5 2424 rcu_read_lock();
ae1c8023 2425 guarantee_online_mems(task_cs(tsk), &mask);
b8dadcb5 2426 rcu_read_unlock();
8447a0fe 2427 spin_unlock_irqrestore(&callback_lock, flags);
909d75a3
PJ
2428
2429 return mask;
2430}
2431
d9fd8a6d 2432/**
19770b32
MG
2433 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2434 * @nodemask: the nodemask to be checked
d9fd8a6d 2435 *
19770b32 2436 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2437 */
19770b32 2438int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2439{
19770b32 2440 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2441}
2442
9bf2229f 2443/*
78608366
PM
2444 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2445 * mem_hardwall ancestor to the specified cpuset. Call holding
8447a0fe 2446 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
78608366 2447 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2448 */
c9710d80 2449static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
9bf2229f 2450{
c431069f
TH
2451 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2452 cs = parent_cs(cs);
9bf2229f
PJ
2453 return cs;
2454}
2455
d9fd8a6d 2456/**
344736f2 2457 * cpuset_node_allowed - Can we allocate on a memory node?
a1bc5a4e 2458 * @node: is this an allowed node?
02a0e53d 2459 * @gfp_mask: memory allocation flags
d9fd8a6d 2460 *
a1bc5a4e
DR
2461 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2462 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2463 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2464 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2465 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2466 * flag, yes.
9bf2229f
PJ
2467 * Otherwise, no.
2468 *
02a0e53d
PJ
2469 * The __GFP_THISNODE placement logic is really handled elsewhere,
2470 * by forcibly using a zonelist starting at a specified node, and by
2471 * (in get_page_from_freelist()) refusing to consider the zones for
2472 * any node on the zonelist except the first. By the time any such
2473 * calls get to this routine, we should just shut up and say 'yes'.
2474 *
9bf2229f 2475 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2476 * and do not allow allocations outside the current tasks cpuset
2477 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2478 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2479 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2480 *
8447a0fe 2481 * Scanning up parent cpusets requires callback_lock. The
02a0e53d
PJ
2482 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2483 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2484 * current tasks mems_allowed came up empty on the first pass over
2485 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
8447a0fe 2486 * cpuset are short of memory, might require taking the callback_lock.
9bf2229f 2487 *
36be57ff 2488 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2489 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2490 * so no allocation on a node outside the cpuset is allowed (unless
2491 * in interrupt, of course).
36be57ff
PJ
2492 *
2493 * The second pass through get_page_from_freelist() doesn't even call
2494 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2495 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2496 * in alloc_flags. That logic and the checks below have the combined
2497 * affect that:
9bf2229f
PJ
2498 * in_interrupt - any node ok (current task context irrelevant)
2499 * GFP_ATOMIC - any node ok
c596d9f3 2500 * TIF_MEMDIE - any node ok
78608366 2501 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2502 * GFP_USER - only nodes in current tasks mems allowed ok.
02a0e53d 2503 */
344736f2 2504int __cpuset_node_allowed(int node, gfp_t gfp_mask)
1da177e4 2505{
c9710d80 2506 struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2507 int allowed; /* is allocation in zone z allowed? */
8447a0fe 2508 unsigned long flags;
9bf2229f 2509
9b819d20 2510 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2511 return 1;
9bf2229f
PJ
2512 if (node_isset(node, current->mems_allowed))
2513 return 1;
c596d9f3
DR
2514 /*
2515 * Allow tasks that have access to memory reserves because they have
2516 * been OOM killed to get memory anywhere.
2517 */
2518 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2519 return 1;
9bf2229f
PJ
2520 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2521 return 0;
2522
5563e770
BP
2523 if (current->flags & PF_EXITING) /* Let dying task have memory */
2524 return 1;
2525
9bf2229f 2526 /* Not hardwall and node outside mems_allowed: scan up cpusets */
8447a0fe 2527 spin_lock_irqsave(&callback_lock, flags);
053199ed 2528
b8dadcb5 2529 rcu_read_lock();
78608366 2530 cs = nearest_hardwall_ancestor(task_cs(current));
99afb0fd 2531 allowed = node_isset(node, cs->mems_allowed);
b8dadcb5 2532 rcu_read_unlock();
053199ed 2533
8447a0fe 2534 spin_unlock_irqrestore(&callback_lock, flags);
9bf2229f 2535 return allowed;
1da177e4
LT
2536}
2537
825a46af 2538/**
6adef3eb
JS
2539 * cpuset_mem_spread_node() - On which node to begin search for a file page
2540 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2541 *
2542 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2543 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2544 * and if the memory allocation used cpuset_mem_spread_node()
2545 * to determine on which node to start looking, as it will for
2546 * certain page cache or slab cache pages such as used for file
2547 * system buffers and inode caches, then instead of starting on the
2548 * local node to look for a free page, rather spread the starting
2549 * node around the tasks mems_allowed nodes.
2550 *
2551 * We don't have to worry about the returned node being offline
2552 * because "it can't happen", and even if it did, it would be ok.
2553 *
2554 * The routines calling guarantee_online_mems() are careful to
2555 * only set nodes in task->mems_allowed that are online. So it
2556 * should not be possible for the following code to return an
2557 * offline node. But if it did, that would be ok, as this routine
2558 * is not returning the node where the allocation must be, only
2559 * the node where the search should start. The zonelist passed to
2560 * __alloc_pages() will include all nodes. If the slab allocator
2561 * is passed an offline node, it will fall back to the local node.
2562 * See kmem_cache_alloc_node().
2563 */
2564
6adef3eb 2565static int cpuset_spread_node(int *rotor)
825a46af
PJ
2566{
2567 int node;
2568
6adef3eb 2569 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2570 if (node == MAX_NUMNODES)
2571 node = first_node(current->mems_allowed);
6adef3eb 2572 *rotor = node;
825a46af
PJ
2573 return node;
2574}
6adef3eb
JS
2575
2576int cpuset_mem_spread_node(void)
2577{
778d3b0f
MH
2578 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2579 current->cpuset_mem_spread_rotor =
2580 node_random(&current->mems_allowed);
2581
6adef3eb
JS
2582 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2583}
2584
2585int cpuset_slab_spread_node(void)
2586{
778d3b0f
MH
2587 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2588 current->cpuset_slab_spread_rotor =
2589 node_random(&current->mems_allowed);
2590
6adef3eb
JS
2591 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2592}
2593
825a46af
PJ
2594EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2595
ef08e3b4 2596/**
bbe373f2
DR
2597 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2598 * @tsk1: pointer to task_struct of some task.
2599 * @tsk2: pointer to task_struct of some other task.
2600 *
2601 * Description: Return true if @tsk1's mems_allowed intersects the
2602 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2603 * one of the task's memory usage might impact the memory available
2604 * to the other.
ef08e3b4
PJ
2605 **/
2606
bbe373f2
DR
2607int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2608 const struct task_struct *tsk2)
ef08e3b4 2609{
bbe373f2 2610 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2611}
2612
f440d98f
LZ
2613#define CPUSET_NODELIST_LEN (256)
2614
75aa1994
DR
2615/**
2616 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
fc34ac1d 2617 * @tsk: pointer to task_struct of some task.
75aa1994
DR
2618 *
2619 * Description: Prints @task's name, cpuset name, and cached copy of its
b8dadcb5 2620 * mems_allowed to the kernel log.
75aa1994
DR
2621 */
2622void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2623{
f440d98f
LZ
2624 /* Statically allocated to prevent using excess stack. */
2625 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2626 static DEFINE_SPINLOCK(cpuset_buffer_lock);
b8dadcb5 2627 struct cgroup *cgrp;
75aa1994 2628
f440d98f 2629 spin_lock(&cpuset_buffer_lock);
b8dadcb5 2630 rcu_read_lock();
63f43f55 2631
b8dadcb5 2632 cgrp = task_cs(tsk)->css.cgroup;
75aa1994
DR
2633 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2634 tsk->mems_allowed);
12d3089c 2635 pr_info("%s cpuset=", tsk->comm);
e61734c5
TH
2636 pr_cont_cgroup_name(cgrp);
2637 pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
f440d98f 2638
cfb5966b 2639 rcu_read_unlock();
75aa1994
DR
2640 spin_unlock(&cpuset_buffer_lock);
2641}
2642
3e0d98b9
PJ
2643/*
2644 * Collection of memory_pressure is suppressed unless
2645 * this flag is enabled by writing "1" to the special
2646 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2647 */
2648
c5b2aff8 2649int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2650
2651/**
2652 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2653 *
2654 * Keep a running average of the rate of synchronous (direct)
2655 * page reclaim efforts initiated by tasks in each cpuset.
2656 *
2657 * This represents the rate at which some task in the cpuset
2658 * ran low on memory on all nodes it was allowed to use, and
2659 * had to enter the kernels page reclaim code in an effort to
2660 * create more free memory by tossing clean pages or swapping
2661 * or writing dirty pages.
2662 *
2663 * Display to user space in the per-cpuset read-only file
2664 * "memory_pressure". Value displayed is an integer
2665 * representing the recent rate of entry into the synchronous
2666 * (direct) page reclaim by any task attached to the cpuset.
2667 **/
2668
2669void __cpuset_memory_pressure_bump(void)
2670{
b8dadcb5 2671 rcu_read_lock();
8793d854 2672 fmeter_markevent(&task_cs(current)->fmeter);
b8dadcb5 2673 rcu_read_unlock();
3e0d98b9
PJ
2674}
2675
8793d854 2676#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2677/*
2678 * proc_cpuset_show()
2679 * - Print tasks cpuset path into seq_file.
2680 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2681 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2682 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2683 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2684 * anyway.
1da177e4 2685 */
52de4779
ZL
2686int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2687 struct pid *pid, struct task_struct *tsk)
1da177e4 2688{
e61734c5 2689 char *buf, *p;
8793d854 2690 struct cgroup_subsys_state *css;
99f89551 2691 int retval;
1da177e4 2692
99f89551 2693 retval = -ENOMEM;
e61734c5 2694 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1da177e4 2695 if (!buf)
99f89551
EB
2696 goto out;
2697
e61734c5 2698 retval = -ENAMETOOLONG;
27e89ae5 2699 rcu_read_lock();
073219e9 2700 css = task_css(tsk, cpuset_cgrp_id);
e61734c5 2701 p = cgroup_path(css->cgroup, buf, PATH_MAX);
27e89ae5 2702 rcu_read_unlock();
e61734c5 2703 if (!p)
52de4779 2704 goto out_free;
e61734c5 2705 seq_puts(m, p);
1da177e4 2706 seq_putc(m, '\n');
e61734c5 2707 retval = 0;
99f89551 2708out_free:
1da177e4 2709 kfree(buf);
99f89551 2710out:
1da177e4
LT
2711 return retval;
2712}
8793d854 2713#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2714
d01d4827 2715/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2716void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2717{
fc34ac1d 2718 seq_puts(m, "Mems_allowed:\t");
30e8e136 2719 seq_nodemask(m, &task->mems_allowed);
fc34ac1d
FF
2720 seq_puts(m, "\n");
2721 seq_puts(m, "Mems_allowed_list:\t");
30e8e136 2722 seq_nodemask_list(m, &task->mems_allowed);
fc34ac1d 2723 seq_puts(m, "\n");
1da177e4 2724}