cpusets: restructure the function update_cpumask() and update_nodemask()
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
1da177e4
LT
17 *
18 * This file is subject to the terms and conditions of the GNU General Public
19 * License. See the file COPYING in the main directory of the Linux
20 * distribution for more details.
21 */
22
1da177e4
LT
23#include <linux/cpu.h>
24#include <linux/cpumask.h>
25#include <linux/cpuset.h>
26#include <linux/err.h>
27#include <linux/errno.h>
28#include <linux/file.h>
29#include <linux/fs.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/kernel.h>
33#include <linux/kmod.h>
34#include <linux/list.h>
68860ec1 35#include <linux/mempolicy.h>
1da177e4
LT
36#include <linux/mm.h>
37#include <linux/module.h>
38#include <linux/mount.h>
39#include <linux/namei.h>
40#include <linux/pagemap.h>
41#include <linux/proc_fs.h>
6b9c2603 42#include <linux/rcupdate.h>
1da177e4
LT
43#include <linux/sched.h>
44#include <linux/seq_file.h>
22fb52dd 45#include <linux/security.h>
1da177e4 46#include <linux/slab.h>
1da177e4
LT
47#include <linux/spinlock.h>
48#include <linux/stat.h>
49#include <linux/string.h>
50#include <linux/time.h>
51#include <linux/backing-dev.h>
52#include <linux/sort.h>
53
54#include <asm/uaccess.h>
55#include <asm/atomic.h>
3d3f26a7 56#include <linux/mutex.h>
029190c5 57#include <linux/kfifo.h>
956db3ca
CW
58#include <linux/workqueue.h>
59#include <linux/cgroup.h>
1da177e4 60
202f72d5
PJ
61/*
62 * Tracks how many cpusets are currently defined in system.
63 * When there is only one cpuset (the root cpuset) we can
64 * short circuit some hooks.
65 */
7edc5962 66int number_of_cpusets __read_mostly;
202f72d5 67
2df167a3 68/* Forward declare cgroup structures */
8793d854
PM
69struct cgroup_subsys cpuset_subsys;
70struct cpuset;
71
3e0d98b9
PJ
72/* See "Frequency meter" comments, below. */
73
74struct fmeter {
75 int cnt; /* unprocessed events count */
76 int val; /* most recent output value */
77 time_t time; /* clock (secs) when val computed */
78 spinlock_t lock; /* guards read or write of above */
79};
80
1da177e4 81struct cpuset {
8793d854
PM
82 struct cgroup_subsys_state css;
83
1da177e4
LT
84 unsigned long flags; /* "unsigned long" so bitops work */
85 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
86 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
87
1da177e4 88 struct cpuset *parent; /* my parent */
1da177e4
LT
89
90 /*
91 * Copy of global cpuset_mems_generation as of the most
92 * recent time this cpuset changed its mems_allowed.
93 */
3e0d98b9
PJ
94 int mems_generation;
95
96 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
97
98 /* partition number for rebuild_sched_domains() */
99 int pn;
956db3ca 100
1d3504fc
HS
101 /* for custom sched domain */
102 int relax_domain_level;
103
956db3ca
CW
104 /* used for walking a cpuset heirarchy */
105 struct list_head stack_list;
1da177e4
LT
106};
107
8793d854
PM
108/* Retrieve the cpuset for a cgroup */
109static inline struct cpuset *cgroup_cs(struct cgroup *cont)
110{
111 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
112 struct cpuset, css);
113}
114
115/* Retrieve the cpuset for a task */
116static inline struct cpuset *task_cs(struct task_struct *task)
117{
118 return container_of(task_subsys_state(task, cpuset_subsys_id),
119 struct cpuset, css);
120}
956db3ca
CW
121struct cpuset_hotplug_scanner {
122 struct cgroup_scanner scan;
123 struct cgroup *to;
124};
8793d854 125
1da177e4
LT
126/* bits in struct cpuset flags field */
127typedef enum {
128 CS_CPU_EXCLUSIVE,
129 CS_MEM_EXCLUSIVE,
78608366 130 CS_MEM_HARDWALL,
45b07ef3 131 CS_MEMORY_MIGRATE,
029190c5 132 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
133 CS_SPREAD_PAGE,
134 CS_SPREAD_SLAB,
1da177e4
LT
135} cpuset_flagbits_t;
136
137/* convenient tests for these bits */
138static inline int is_cpu_exclusive(const struct cpuset *cs)
139{
7b5b9ef0 140 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
141}
142
143static inline int is_mem_exclusive(const struct cpuset *cs)
144{
7b5b9ef0 145 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
146}
147
78608366
PM
148static inline int is_mem_hardwall(const struct cpuset *cs)
149{
150 return test_bit(CS_MEM_HARDWALL, &cs->flags);
151}
152
029190c5
PJ
153static inline int is_sched_load_balance(const struct cpuset *cs)
154{
155 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
156}
157
45b07ef3
PJ
158static inline int is_memory_migrate(const struct cpuset *cs)
159{
7b5b9ef0 160 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
161}
162
825a46af
PJ
163static inline int is_spread_page(const struct cpuset *cs)
164{
165 return test_bit(CS_SPREAD_PAGE, &cs->flags);
166}
167
168static inline int is_spread_slab(const struct cpuset *cs)
169{
170 return test_bit(CS_SPREAD_SLAB, &cs->flags);
171}
172
1da177e4 173/*
151a4420 174 * Increment this integer everytime any cpuset changes its
1da177e4
LT
175 * mems_allowed value. Users of cpusets can track this generation
176 * number, and avoid having to lock and reload mems_allowed unless
177 * the cpuset they're using changes generation.
178 *
2df167a3 179 * A single, global generation is needed because cpuset_attach_task() could
1da177e4
LT
180 * reattach a task to a different cpuset, which must not have its
181 * generation numbers aliased with those of that tasks previous cpuset.
182 *
183 * Generations are needed for mems_allowed because one task cannot
2df167a3 184 * modify another's memory placement. So we must enable every task,
1da177e4
LT
185 * on every visit to __alloc_pages(), to efficiently check whether
186 * its current->cpuset->mems_allowed has changed, requiring an update
187 * of its current->mems_allowed.
151a4420 188 *
2df167a3 189 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
151a4420 190 * there is no need to mark it atomic.
1da177e4 191 */
151a4420 192static int cpuset_mems_generation;
1da177e4
LT
193
194static struct cpuset top_cpuset = {
195 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
196 .cpus_allowed = CPU_MASK_ALL,
197 .mems_allowed = NODE_MASK_ALL,
1da177e4
LT
198};
199
1da177e4 200/*
2df167a3
PM
201 * There are two global mutexes guarding cpuset structures. The first
202 * is the main control groups cgroup_mutex, accessed via
203 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
204 * callback_mutex, below. They can nest. It is ok to first take
205 * cgroup_mutex, then nest callback_mutex. We also require taking
206 * task_lock() when dereferencing a task's cpuset pointer. See "The
207 * task_lock() exception", at the end of this comment.
053199ed 208 *
3d3f26a7 209 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 210 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 211 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
212 * and be able to modify cpusets. It can perform various checks on
213 * the cpuset structure first, knowing nothing will change. It can
2df167a3 214 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 215 * performing these checks, various callback routines can briefly
3d3f26a7
IM
216 * acquire callback_mutex to query cpusets. Once it is ready to make
217 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
218 *
219 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 220 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
221 * from one of the callbacks into the cpuset code from within
222 * __alloc_pages().
223 *
3d3f26a7 224 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
225 * access to cpusets.
226 *
227 * The task_struct fields mems_allowed and mems_generation may only
228 * be accessed in the context of that task, so require no locks.
229 *
3d3f26a7 230 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
231 * small pieces of code, such as when reading out possibly multi-word
232 * cpumasks and nodemasks.
233 *
2df167a3
PM
234 * Accessing a task's cpuset should be done in accordance with the
235 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
236 */
237
3d3f26a7 238static DEFINE_MUTEX(callback_mutex);
4247bdc6 239
8793d854
PM
240/* This is ugly, but preserves the userspace API for existing cpuset
241 * users. If someone tries to mount the "cpuset" filesystem, we
242 * silently switch it to mount "cgroup" instead */
454e2398
DH
243static int cpuset_get_sb(struct file_system_type *fs_type,
244 int flags, const char *unused_dev_name,
245 void *data, struct vfsmount *mnt)
1da177e4 246{
8793d854
PM
247 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
248 int ret = -ENODEV;
249 if (cgroup_fs) {
250 char mountopts[] =
251 "cpuset,noprefix,"
252 "release_agent=/sbin/cpuset_release_agent";
253 ret = cgroup_fs->get_sb(cgroup_fs, flags,
254 unused_dev_name, mountopts, mnt);
255 put_filesystem(cgroup_fs);
256 }
257 return ret;
1da177e4
LT
258}
259
260static struct file_system_type cpuset_fs_type = {
261 .name = "cpuset",
262 .get_sb = cpuset_get_sb,
1da177e4
LT
263};
264
1da177e4
LT
265/*
266 * Return in *pmask the portion of a cpusets's cpus_allowed that
267 * are online. If none are online, walk up the cpuset hierarchy
268 * until we find one that does have some online cpus. If we get
269 * all the way to the top and still haven't found any online cpus,
270 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
271 * task, return cpu_online_map.
272 *
273 * One way or another, we guarantee to return some non-empty subset
274 * of cpu_online_map.
275 *
3d3f26a7 276 * Call with callback_mutex held.
1da177e4
LT
277 */
278
279static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
280{
281 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
282 cs = cs->parent;
283 if (cs)
284 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
285 else
286 *pmask = cpu_online_map;
287 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
288}
289
290/*
291 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
292 * are online, with memory. If none are online with memory, walk
293 * up the cpuset hierarchy until we find one that does have some
294 * online mems. If we get all the way to the top and still haven't
295 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
296 *
297 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 298 * of node_states[N_HIGH_MEMORY].
1da177e4 299 *
3d3f26a7 300 * Call with callback_mutex held.
1da177e4
LT
301 */
302
303static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
304{
0e1e7c7a
CL
305 while (cs && !nodes_intersects(cs->mems_allowed,
306 node_states[N_HIGH_MEMORY]))
1da177e4
LT
307 cs = cs->parent;
308 if (cs)
0e1e7c7a
CL
309 nodes_and(*pmask, cs->mems_allowed,
310 node_states[N_HIGH_MEMORY]);
1da177e4 311 else
0e1e7c7a
CL
312 *pmask = node_states[N_HIGH_MEMORY];
313 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
314}
315
cf2a473c
PJ
316/**
317 * cpuset_update_task_memory_state - update task memory placement
318 *
319 * If the current tasks cpusets mems_allowed changed behind our
320 * backs, update current->mems_allowed, mems_generation and task NUMA
321 * mempolicy to the new value.
053199ed 322 *
cf2a473c
PJ
323 * Task mempolicy is updated by rebinding it relative to the
324 * current->cpuset if a task has its memory placement changed.
325 * Do not call this routine if in_interrupt().
326 *
4a01c8d5 327 * Call without callback_mutex or task_lock() held. May be
2df167a3
PM
328 * called with or without cgroup_mutex held. Thanks in part to
329 * 'the_top_cpuset_hack', the task's cpuset pointer will never
41f7f60d
DR
330 * be NULL. This routine also might acquire callback_mutex during
331 * call.
053199ed 332 *
6b9c2603
PJ
333 * Reading current->cpuset->mems_generation doesn't need task_lock
334 * to guard the current->cpuset derefence, because it is guarded
2df167a3 335 * from concurrent freeing of current->cpuset using RCU.
6b9c2603
PJ
336 *
337 * The rcu_dereference() is technically probably not needed,
338 * as I don't actually mind if I see a new cpuset pointer but
339 * an old value of mems_generation. However this really only
340 * matters on alpha systems using cpusets heavily. If I dropped
341 * that rcu_dereference(), it would save them a memory barrier.
342 * For all other arch's, rcu_dereference is a no-op anyway, and for
343 * alpha systems not using cpusets, another planned optimization,
344 * avoiding the rcu critical section for tasks in the root cpuset
345 * which is statically allocated, so can't vanish, will make this
346 * irrelevant. Better to use RCU as intended, than to engage in
347 * some cute trick to save a memory barrier that is impossible to
348 * test, for alpha systems using cpusets heavily, which might not
349 * even exist.
053199ed
PJ
350 *
351 * This routine is needed to update the per-task mems_allowed data,
352 * within the tasks context, when it is trying to allocate memory
353 * (in various mm/mempolicy.c routines) and notices that some other
354 * task has been modifying its cpuset.
1da177e4
LT
355 */
356
fe85a998 357void cpuset_update_task_memory_state(void)
1da177e4 358{
053199ed 359 int my_cpusets_mem_gen;
cf2a473c 360 struct task_struct *tsk = current;
6b9c2603 361 struct cpuset *cs;
053199ed 362
8793d854 363 if (task_cs(tsk) == &top_cpuset) {
03a285f5
PJ
364 /* Don't need rcu for top_cpuset. It's never freed. */
365 my_cpusets_mem_gen = top_cpuset.mems_generation;
366 } else {
367 rcu_read_lock();
8793d854 368 my_cpusets_mem_gen = task_cs(current)->mems_generation;
03a285f5
PJ
369 rcu_read_unlock();
370 }
1da177e4 371
cf2a473c 372 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 373 mutex_lock(&callback_mutex);
cf2a473c 374 task_lock(tsk);
8793d854 375 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
376 guarantee_online_mems(cs, &tsk->mems_allowed);
377 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
378 if (is_spread_page(cs))
379 tsk->flags |= PF_SPREAD_PAGE;
380 else
381 tsk->flags &= ~PF_SPREAD_PAGE;
382 if (is_spread_slab(cs))
383 tsk->flags |= PF_SPREAD_SLAB;
384 else
385 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 386 task_unlock(tsk);
3d3f26a7 387 mutex_unlock(&callback_mutex);
74cb2155 388 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
389 }
390}
391
392/*
393 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
394 *
395 * One cpuset is a subset of another if all its allowed CPUs and
396 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 397 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
398 */
399
400static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
401{
402 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
403 nodes_subset(p->mems_allowed, q->mems_allowed) &&
404 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
405 is_mem_exclusive(p) <= is_mem_exclusive(q);
406}
407
408/*
409 * validate_change() - Used to validate that any proposed cpuset change
410 * follows the structural rules for cpusets.
411 *
412 * If we replaced the flag and mask values of the current cpuset
413 * (cur) with those values in the trial cpuset (trial), would
414 * our various subset and exclusive rules still be valid? Presumes
2df167a3 415 * cgroup_mutex held.
1da177e4
LT
416 *
417 * 'cur' is the address of an actual, in-use cpuset. Operations
418 * such as list traversal that depend on the actual address of the
419 * cpuset in the list must use cur below, not trial.
420 *
421 * 'trial' is the address of bulk structure copy of cur, with
422 * perhaps one or more of the fields cpus_allowed, mems_allowed,
423 * or flags changed to new, trial values.
424 *
425 * Return 0 if valid, -errno if not.
426 */
427
428static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
429{
8793d854 430 struct cgroup *cont;
1da177e4
LT
431 struct cpuset *c, *par;
432
433 /* Each of our child cpusets must be a subset of us */
8793d854
PM
434 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
435 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
436 return -EBUSY;
437 }
438
439 /* Remaining checks don't apply to root cpuset */
69604067 440 if (cur == &top_cpuset)
1da177e4
LT
441 return 0;
442
69604067
PJ
443 par = cur->parent;
444
1da177e4
LT
445 /* We must be a subset of our parent cpuset */
446 if (!is_cpuset_subset(trial, par))
447 return -EACCES;
448
2df167a3
PM
449 /*
450 * If either I or some sibling (!= me) is exclusive, we can't
451 * overlap
452 */
8793d854
PM
453 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
454 c = cgroup_cs(cont);
1da177e4
LT
455 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
456 c != cur &&
457 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
458 return -EINVAL;
459 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
460 c != cur &&
461 nodes_intersects(trial->mems_allowed, c->mems_allowed))
462 return -EINVAL;
463 }
464
020958b6
PJ
465 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
466 if (cgroup_task_count(cur->css.cgroup)) {
467 if (cpus_empty(trial->cpus_allowed) ||
468 nodes_empty(trial->mems_allowed)) {
469 return -ENOSPC;
470 }
471 }
472
1da177e4
LT
473 return 0;
474}
475
029190c5
PJ
476/*
477 * Helper routine for rebuild_sched_domains().
478 * Do cpusets a, b have overlapping cpus_allowed masks?
479 */
480
481static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
482{
483 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
484}
485
1d3504fc
HS
486static void
487update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
488{
489 if (!dattr)
490 return;
491 if (dattr->relax_domain_level < c->relax_domain_level)
492 dattr->relax_domain_level = c->relax_domain_level;
493 return;
494}
495
029190c5
PJ
496/*
497 * rebuild_sched_domains()
498 *
499 * If the flag 'sched_load_balance' of any cpuset with non-empty
500 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
501 * which has that flag enabled, or if any cpuset with a non-empty
502 * 'cpus' is removed, then call this routine to rebuild the
503 * scheduler's dynamic sched domains.
504 *
505 * This routine builds a partial partition of the systems CPUs
506 * (the set of non-overlappping cpumask_t's in the array 'part'
507 * below), and passes that partial partition to the kernel/sched.c
508 * partition_sched_domains() routine, which will rebuild the
509 * schedulers load balancing domains (sched domains) as specified
510 * by that partial partition. A 'partial partition' is a set of
511 * non-overlapping subsets whose union is a subset of that set.
512 *
513 * See "What is sched_load_balance" in Documentation/cpusets.txt
514 * for a background explanation of this.
515 *
516 * Does not return errors, on the theory that the callers of this
517 * routine would rather not worry about failures to rebuild sched
518 * domains when operating in the severe memory shortage situations
519 * that could cause allocation failures below.
520 *
521 * Call with cgroup_mutex held. May take callback_mutex during
522 * call due to the kfifo_alloc() and kmalloc() calls. May nest
86ef5c9a 523 * a call to the get_online_cpus()/put_online_cpus() pair.
029190c5 524 * Must not be called holding callback_mutex, because we must not
86ef5c9a
GS
525 * call get_online_cpus() while holding callback_mutex. Elsewhere
526 * the kernel nests callback_mutex inside get_online_cpus() calls.
029190c5
PJ
527 * So the reverse nesting would risk an ABBA deadlock.
528 *
529 * The three key local variables below are:
530 * q - a kfifo queue of cpuset pointers, used to implement a
531 * top-down scan of all cpusets. This scan loads a pointer
532 * to each cpuset marked is_sched_load_balance into the
533 * array 'csa'. For our purposes, rebuilding the schedulers
534 * sched domains, we can ignore !is_sched_load_balance cpusets.
535 * csa - (for CpuSet Array) Array of pointers to all the cpusets
536 * that need to be load balanced, for convenient iterative
537 * access by the subsequent code that finds the best partition,
538 * i.e the set of domains (subsets) of CPUs such that the
539 * cpus_allowed of every cpuset marked is_sched_load_balance
540 * is a subset of one of these domains, while there are as
541 * many such domains as possible, each as small as possible.
542 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
543 * the kernel/sched.c routine partition_sched_domains() in a
544 * convenient format, that can be easily compared to the prior
545 * value to determine what partition elements (sched domains)
546 * were changed (added or removed.)
547 *
548 * Finding the best partition (set of domains):
549 * The triple nested loops below over i, j, k scan over the
550 * load balanced cpusets (using the array of cpuset pointers in
551 * csa[]) looking for pairs of cpusets that have overlapping
552 * cpus_allowed, but which don't have the same 'pn' partition
553 * number and gives them in the same partition number. It keeps
554 * looping on the 'restart' label until it can no longer find
555 * any such pairs.
556 *
557 * The union of the cpus_allowed masks from the set of
558 * all cpusets having the same 'pn' value then form the one
559 * element of the partition (one sched domain) to be passed to
560 * partition_sched_domains().
561 */
562
e761b772 563void rebuild_sched_domains(void)
029190c5
PJ
564{
565 struct kfifo *q; /* queue of cpusets to be scanned */
566 struct cpuset *cp; /* scans q */
567 struct cpuset **csa; /* array of all cpuset ptrs */
568 int csn; /* how many cpuset ptrs in csa so far */
569 int i, j, k; /* indices for partition finding loops */
570 cpumask_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 571 struct sched_domain_attr *dattr; /* attributes for custom domains */
029190c5
PJ
572 int ndoms; /* number of sched domains in result */
573 int nslot; /* next empty doms[] cpumask_t slot */
574
575 q = NULL;
576 csa = NULL;
577 doms = NULL;
1d3504fc 578 dattr = NULL;
029190c5
PJ
579
580 /* Special case for the 99% of systems with one, full, sched domain */
581 if (is_sched_load_balance(&top_cpuset)) {
582 ndoms = 1;
583 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
584 if (!doms)
585 goto rebuild;
1d3504fc
HS
586 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
587 if (dattr) {
588 *dattr = SD_ATTR_INIT;
589 update_domain_attr(dattr, &top_cpuset);
590 }
029190c5
PJ
591 *doms = top_cpuset.cpus_allowed;
592 goto rebuild;
593 }
594
595 q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
596 if (IS_ERR(q))
597 goto done;
598 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
599 if (!csa)
600 goto done;
601 csn = 0;
602
603 cp = &top_cpuset;
604 __kfifo_put(q, (void *)&cp, sizeof(cp));
605 while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
606 struct cgroup *cont;
607 struct cpuset *child; /* scans child cpusets of cp */
608 if (is_sched_load_balance(cp))
609 csa[csn++] = cp;
610 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
611 child = cgroup_cs(cont);
612 __kfifo_put(q, (void *)&child, sizeof(cp));
613 }
614 }
615
616 for (i = 0; i < csn; i++)
617 csa[i]->pn = i;
618 ndoms = csn;
619
620restart:
621 /* Find the best partition (set of sched domains) */
622 for (i = 0; i < csn; i++) {
623 struct cpuset *a = csa[i];
624 int apn = a->pn;
625
626 for (j = 0; j < csn; j++) {
627 struct cpuset *b = csa[j];
628 int bpn = b->pn;
629
630 if (apn != bpn && cpusets_overlap(a, b)) {
631 for (k = 0; k < csn; k++) {
632 struct cpuset *c = csa[k];
633
634 if (c->pn == bpn)
635 c->pn = apn;
636 }
637 ndoms--; /* one less element */
638 goto restart;
639 }
640 }
641 }
642
643 /* Convert <csn, csa> to <ndoms, doms> */
644 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
645 if (!doms)
646 goto rebuild;
1d3504fc 647 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
648
649 for (nslot = 0, i = 0; i < csn; i++) {
650 struct cpuset *a = csa[i];
651 int apn = a->pn;
652
653 if (apn >= 0) {
654 cpumask_t *dp = doms + nslot;
655
656 if (nslot == ndoms) {
657 static int warnings = 10;
658 if (warnings) {
659 printk(KERN_WARNING
660 "rebuild_sched_domains confused:"
661 " nslot %d, ndoms %d, csn %d, i %d,"
662 " apn %d\n",
663 nslot, ndoms, csn, i, apn);
664 warnings--;
665 }
666 continue;
667 }
668
669 cpus_clear(*dp);
1d3504fc
HS
670 if (dattr)
671 *(dattr + nslot) = SD_ATTR_INIT;
029190c5
PJ
672 for (j = i; j < csn; j++) {
673 struct cpuset *b = csa[j];
674
675 if (apn == b->pn) {
676 cpus_or(*dp, *dp, b->cpus_allowed);
677 b->pn = -1;
91cd4d6e
MX
678 if (dattr)
679 update_domain_attr(dattr
680 + nslot, b);
029190c5
PJ
681 }
682 }
683 nslot++;
684 }
685 }
686 BUG_ON(nslot != ndoms);
687
688rebuild:
689 /* Have scheduler rebuild sched domains */
86ef5c9a 690 get_online_cpus();
1d3504fc 691 partition_sched_domains(ndoms, doms, dattr);
86ef5c9a 692 put_online_cpus();
029190c5
PJ
693
694done:
695 if (q && !IS_ERR(q))
696 kfifo_free(q);
697 kfree(csa);
698 /* Don't kfree(doms) -- partition_sched_domains() does that. */
1d3504fc 699 /* Don't kfree(dattr) -- partition_sched_domains() does that. */
029190c5
PJ
700}
701
8707d8b8
PM
702static inline int started_after_time(struct task_struct *t1,
703 struct timespec *time,
704 struct task_struct *t2)
705{
706 int start_diff = timespec_compare(&t1->start_time, time);
707 if (start_diff > 0) {
708 return 1;
709 } else if (start_diff < 0) {
710 return 0;
711 } else {
712 /*
713 * Arbitrarily, if two processes started at the same
714 * time, we'll say that the lower pointer value
715 * started first. Note that t2 may have exited by now
716 * so this may not be a valid pointer any longer, but
717 * that's fine - it still serves to distinguish
718 * between two tasks started (effectively)
719 * simultaneously.
720 */
721 return t1 > t2;
722 }
723}
724
725static inline int started_after(void *p1, void *p2)
726{
727 struct task_struct *t1 = p1;
728 struct task_struct *t2 = p2;
729 return started_after_time(t1, &t2->start_time, t2);
730}
731
58f4790b
CW
732/**
733 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
734 * @tsk: task to test
735 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
736 *
2df167a3 737 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
738 * Called for each task in a cgroup by cgroup_scan_tasks().
739 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
740 * words, if its mask is not equal to its cpuset's mask).
053199ed 741 */
9e0c914c
AB
742static int cpuset_test_cpumask(struct task_struct *tsk,
743 struct cgroup_scanner *scan)
58f4790b
CW
744{
745 return !cpus_equal(tsk->cpus_allowed,
746 (cgroup_cs(scan->cg))->cpus_allowed);
747}
053199ed 748
58f4790b
CW
749/**
750 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
751 * @tsk: task to test
752 * @scan: struct cgroup_scanner containing the cgroup of the task
753 *
754 * Called by cgroup_scan_tasks() for each task in a cgroup whose
755 * cpus_allowed mask needs to be changed.
756 *
757 * We don't need to re-check for the cgroup/cpuset membership, since we're
758 * holding cgroup_lock() at this point.
759 */
9e0c914c
AB
760static void cpuset_change_cpumask(struct task_struct *tsk,
761 struct cgroup_scanner *scan)
58f4790b 762{
f9a86fcb 763 set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
764}
765
0b2f630a
MX
766/**
767 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
768 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
769 *
770 * Called with cgroup_mutex held
771 *
772 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
773 * calling callback functions for each.
774 *
775 * Return 0 if successful, -errno if not.
776 */
777static int update_tasks_cpumask(struct cpuset *cs)
778{
779 struct cgroup_scanner scan;
780 struct ptr_heap heap;
781 int retval;
782
783 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
784 if (retval)
785 return retval;
786
787 scan.cg = cs->css.cgroup;
788 scan.test_task = cpuset_test_cpumask;
789 scan.process_task = cpuset_change_cpumask;
790 scan.heap = &heap;
791 retval = cgroup_scan_tasks(&scan);
792
793 heap_free(&heap);
794 return retval;
795}
796
58f4790b
CW
797/**
798 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
799 * @cs: the cpuset to consider
800 * @buf: buffer of cpu numbers written to this cpuset
801 */
e3712395 802static int update_cpumask(struct cpuset *cs, const char *buf)
1da177e4
LT
803{
804 struct cpuset trialcs;
58f4790b
CW
805 int retval;
806 int is_load_balanced;
1da177e4 807
4c4d50f7
PJ
808 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
809 if (cs == &top_cpuset)
810 return -EACCES;
811
1da177e4 812 trialcs = *cs;
6f7f02e7
DR
813
814 /*
c8d9c90c 815 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
816 * Since cpulist_parse() fails on an empty mask, we special case
817 * that parsing. The validate_change() call ensures that cpusets
818 * with tasks have cpus.
6f7f02e7 819 */
020958b6 820 if (!*buf) {
6f7f02e7
DR
821 cpus_clear(trialcs.cpus_allowed);
822 } else {
823 retval = cpulist_parse(buf, trialcs.cpus_allowed);
824 if (retval < 0)
825 return retval;
37340746
LJ
826
827 if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
828 return -EINVAL;
6f7f02e7 829 }
1da177e4 830 retval = validate_change(cs, &trialcs);
85d7b949
DG
831 if (retval < 0)
832 return retval;
029190c5 833
8707d8b8
PM
834 /* Nothing to do if the cpus didn't change */
835 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
836 return 0;
58f4790b 837
029190c5
PJ
838 is_load_balanced = is_sched_load_balance(&trialcs);
839
3d3f26a7 840 mutex_lock(&callback_mutex);
85d7b949 841 cs->cpus_allowed = trialcs.cpus_allowed;
3d3f26a7 842 mutex_unlock(&callback_mutex);
029190c5 843
8707d8b8
PM
844 /*
845 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 846 * that need an update.
8707d8b8 847 */
0b2f630a
MX
848 retval = update_tasks_cpumask(cs);
849 if (retval < 0)
850 return retval;
58f4790b 851
8707d8b8 852 if (is_load_balanced)
029190c5 853 rebuild_sched_domains();
85d7b949 854 return 0;
1da177e4
LT
855}
856
e4e364e8
PJ
857/*
858 * cpuset_migrate_mm
859 *
860 * Migrate memory region from one set of nodes to another.
861 *
862 * Temporarilly set tasks mems_allowed to target nodes of migration,
863 * so that the migration code can allocate pages on these nodes.
864 *
2df167a3 865 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 866 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
867 * calls. Therefore we don't need to take task_lock around the
868 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 869 * our task's cpuset.
e4e364e8
PJ
870 *
871 * Hold callback_mutex around the two modifications of our tasks
872 * mems_allowed to synchronize with cpuset_mems_allowed().
873 *
874 * While the mm_struct we are migrating is typically from some
875 * other task, the task_struct mems_allowed that we are hacking
876 * is for our current task, which must allocate new pages for that
877 * migrating memory region.
878 *
879 * We call cpuset_update_task_memory_state() before hacking
880 * our tasks mems_allowed, so that we are assured of being in
881 * sync with our tasks cpuset, and in particular, callbacks to
882 * cpuset_update_task_memory_state() from nested page allocations
883 * won't see any mismatch of our cpuset and task mems_generation
884 * values, so won't overwrite our hacked tasks mems_allowed
885 * nodemask.
886 */
887
888static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
889 const nodemask_t *to)
890{
891 struct task_struct *tsk = current;
892
893 cpuset_update_task_memory_state();
894
895 mutex_lock(&callback_mutex);
896 tsk->mems_allowed = *to;
897 mutex_unlock(&callback_mutex);
898
899 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
900
901 mutex_lock(&callback_mutex);
8793d854 902 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
903 mutex_unlock(&callback_mutex);
904}
905
8793d854
PM
906static void *cpuset_being_rebound;
907
0b2f630a
MX
908/**
909 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
910 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
911 * @oldmem: old mems_allowed of cpuset cs
912 *
913 * Called with cgroup_mutex held
914 * Return 0 if successful, -errno if not.
915 */
916static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
1da177e4 917{
8793d854 918 struct task_struct *p;
4225399a
PJ
919 struct mm_struct **mmarray;
920 int i, n, ntasks;
04c19fa6 921 int migrate;
4225399a 922 int fudge;
8793d854 923 struct cgroup_iter it;
0b2f630a 924 int retval;
59dac16f 925
846a16bf 926 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a
PJ
927
928 fudge = 10; /* spare mmarray[] slots */
929 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
930 retval = -ENOMEM;
931
932 /*
933 * Allocate mmarray[] to hold mm reference for each task
934 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
935 * tasklist_lock. We could use GFP_ATOMIC, but with a
936 * few more lines of code, we can retry until we get a big
937 * enough mmarray[] w/o using GFP_ATOMIC.
938 */
939 while (1) {
8793d854 940 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
4225399a
PJ
941 ntasks += fudge;
942 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
943 if (!mmarray)
944 goto done;
c2aef333 945 read_lock(&tasklist_lock); /* block fork */
8793d854 946 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
4225399a 947 break; /* got enough */
c2aef333 948 read_unlock(&tasklist_lock); /* try again */
4225399a
PJ
949 kfree(mmarray);
950 }
951
952 n = 0;
953
954 /* Load up mmarray[] with mm reference for each task in cpuset. */
8793d854
PM
955 cgroup_iter_start(cs->css.cgroup, &it);
956 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
4225399a
PJ
957 struct mm_struct *mm;
958
959 if (n >= ntasks) {
960 printk(KERN_WARNING
961 "Cpuset mempolicy rebind incomplete.\n");
8793d854 962 break;
4225399a 963 }
4225399a
PJ
964 mm = get_task_mm(p);
965 if (!mm)
966 continue;
967 mmarray[n++] = mm;
8793d854
PM
968 }
969 cgroup_iter_end(cs->css.cgroup, &it);
c2aef333 970 read_unlock(&tasklist_lock);
4225399a
PJ
971
972 /*
973 * Now that we've dropped the tasklist spinlock, we can
974 * rebind the vma mempolicies of each mm in mmarray[] to their
975 * new cpuset, and release that mm. The mpol_rebind_mm()
976 * call takes mmap_sem, which we couldn't take while holding
846a16bf 977 * tasklist_lock. Forks can happen again now - the mpol_dup()
4225399a
PJ
978 * cpuset_being_rebound check will catch such forks, and rebind
979 * their vma mempolicies too. Because we still hold the global
2df167a3 980 * cgroup_mutex, we know that no other rebind effort will
4225399a
PJ
981 * be contending for the global variable cpuset_being_rebound.
982 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 983 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 984 */
04c19fa6 985 migrate = is_memory_migrate(cs);
4225399a
PJ
986 for (i = 0; i < n; i++) {
987 struct mm_struct *mm = mmarray[i];
988
989 mpol_rebind_mm(mm, &cs->mems_allowed);
e4e364e8 990 if (migrate)
0b2f630a 991 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
4225399a
PJ
992 mmput(mm);
993 }
994
2df167a3 995 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
4225399a 996 kfree(mmarray);
8793d854 997 cpuset_being_rebound = NULL;
4225399a 998 retval = 0;
59dac16f 999done:
1da177e4
LT
1000 return retval;
1001}
1002
0b2f630a
MX
1003/*
1004 * Handle user request to change the 'mems' memory placement
1005 * of a cpuset. Needs to validate the request, update the
1006 * cpusets mems_allowed and mems_generation, and for each
1007 * task in the cpuset, rebind any vma mempolicies and if
1008 * the cpuset is marked 'memory_migrate', migrate the tasks
1009 * pages to the new memory.
1010 *
1011 * Call with cgroup_mutex held. May take callback_mutex during call.
1012 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1013 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1014 * their mempolicies to the cpusets new mems_allowed.
1015 */
1016static int update_nodemask(struct cpuset *cs, const char *buf)
1017{
1018 struct cpuset trialcs;
1019 nodemask_t oldmem;
1020 int retval;
1021
1022 /*
1023 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1024 * it's read-only
1025 */
1026 if (cs == &top_cpuset)
1027 return -EACCES;
1028
1029 trialcs = *cs;
1030
1031 /*
1032 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1033 * Since nodelist_parse() fails on an empty mask, we special case
1034 * that parsing. The validate_change() call ensures that cpusets
1035 * with tasks have memory.
1036 */
1037 if (!*buf) {
1038 nodes_clear(trialcs.mems_allowed);
1039 } else {
1040 retval = nodelist_parse(buf, trialcs.mems_allowed);
1041 if (retval < 0)
1042 goto done;
1043
1044 if (!nodes_subset(trialcs.mems_allowed,
1045 node_states[N_HIGH_MEMORY]))
1046 return -EINVAL;
1047 }
1048 oldmem = cs->mems_allowed;
1049 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
1050 retval = 0; /* Too easy - nothing to do */
1051 goto done;
1052 }
1053 retval = validate_change(cs, &trialcs);
1054 if (retval < 0)
1055 goto done;
1056
1057 mutex_lock(&callback_mutex);
1058 cs->mems_allowed = trialcs.mems_allowed;
1059 cs->mems_generation = cpuset_mems_generation++;
1060 mutex_unlock(&callback_mutex);
1061
1062 retval = update_tasks_nodemask(cs, &oldmem);
1063done:
1064 return retval;
1065}
1066
8793d854
PM
1067int current_cpuset_is_being_rebound(void)
1068{
1069 return task_cs(current) == cpuset_being_rebound;
1070}
1071
5be7a479 1072static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1073{
30e0e178
LZ
1074 if (val < -1 || val >= SD_LV_MAX)
1075 return -EINVAL;
1d3504fc
HS
1076
1077 if (val != cs->relax_domain_level) {
1078 cs->relax_domain_level = val;
1079 rebuild_sched_domains();
1080 }
1081
1082 return 0;
1083}
1084
1da177e4
LT
1085/*
1086 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1087 * bit: the bit to update (see cpuset_flagbits_t)
1088 * cs: the cpuset to update
1089 * turning_on: whether the flag is being set or cleared
053199ed 1090 *
2df167a3 1091 * Call with cgroup_mutex held.
1da177e4
LT
1092 */
1093
700fe1ab
PM
1094static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1095 int turning_on)
1da177e4 1096{
1da177e4 1097 struct cpuset trialcs;
607717a6 1098 int err;
029190c5 1099 int cpus_nonempty, balance_flag_changed;
1da177e4 1100
1da177e4
LT
1101 trialcs = *cs;
1102 if (turning_on)
1103 set_bit(bit, &trialcs.flags);
1104 else
1105 clear_bit(bit, &trialcs.flags);
1106
1107 err = validate_change(cs, &trialcs);
85d7b949
DG
1108 if (err < 0)
1109 return err;
029190c5
PJ
1110
1111 cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
1112 balance_flag_changed = (is_sched_load_balance(cs) !=
1113 is_sched_load_balance(&trialcs));
1114
3d3f26a7 1115 mutex_lock(&callback_mutex);
69604067 1116 cs->flags = trialcs.flags;
3d3f26a7 1117 mutex_unlock(&callback_mutex);
85d7b949 1118
029190c5
PJ
1119 if (cpus_nonempty && balance_flag_changed)
1120 rebuild_sched_domains();
1121
85d7b949 1122 return 0;
1da177e4
LT
1123}
1124
3e0d98b9 1125/*
80f7228b 1126 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1127 *
1128 * These routines manage a digitally filtered, constant time based,
1129 * event frequency meter. There are four routines:
1130 * fmeter_init() - initialize a frequency meter.
1131 * fmeter_markevent() - called each time the event happens.
1132 * fmeter_getrate() - returns the recent rate of such events.
1133 * fmeter_update() - internal routine used to update fmeter.
1134 *
1135 * A common data structure is passed to each of these routines,
1136 * which is used to keep track of the state required to manage the
1137 * frequency meter and its digital filter.
1138 *
1139 * The filter works on the number of events marked per unit time.
1140 * The filter is single-pole low-pass recursive (IIR). The time unit
1141 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1142 * simulate 3 decimal digits of precision (multiplied by 1000).
1143 *
1144 * With an FM_COEF of 933, and a time base of 1 second, the filter
1145 * has a half-life of 10 seconds, meaning that if the events quit
1146 * happening, then the rate returned from the fmeter_getrate()
1147 * will be cut in half each 10 seconds, until it converges to zero.
1148 *
1149 * It is not worth doing a real infinitely recursive filter. If more
1150 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1151 * just compute FM_MAXTICKS ticks worth, by which point the level
1152 * will be stable.
1153 *
1154 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1155 * arithmetic overflow in the fmeter_update() routine.
1156 *
1157 * Given the simple 32 bit integer arithmetic used, this meter works
1158 * best for reporting rates between one per millisecond (msec) and
1159 * one per 32 (approx) seconds. At constant rates faster than one
1160 * per msec it maxes out at values just under 1,000,000. At constant
1161 * rates between one per msec, and one per second it will stabilize
1162 * to a value N*1000, where N is the rate of events per second.
1163 * At constant rates between one per second and one per 32 seconds,
1164 * it will be choppy, moving up on the seconds that have an event,
1165 * and then decaying until the next event. At rates slower than
1166 * about one in 32 seconds, it decays all the way back to zero between
1167 * each event.
1168 */
1169
1170#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1171#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1172#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1173#define FM_SCALE 1000 /* faux fixed point scale */
1174
1175/* Initialize a frequency meter */
1176static void fmeter_init(struct fmeter *fmp)
1177{
1178 fmp->cnt = 0;
1179 fmp->val = 0;
1180 fmp->time = 0;
1181 spin_lock_init(&fmp->lock);
1182}
1183
1184/* Internal meter update - process cnt events and update value */
1185static void fmeter_update(struct fmeter *fmp)
1186{
1187 time_t now = get_seconds();
1188 time_t ticks = now - fmp->time;
1189
1190 if (ticks == 0)
1191 return;
1192
1193 ticks = min(FM_MAXTICKS, ticks);
1194 while (ticks-- > 0)
1195 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1196 fmp->time = now;
1197
1198 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1199 fmp->cnt = 0;
1200}
1201
1202/* Process any previous ticks, then bump cnt by one (times scale). */
1203static void fmeter_markevent(struct fmeter *fmp)
1204{
1205 spin_lock(&fmp->lock);
1206 fmeter_update(fmp);
1207 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1208 spin_unlock(&fmp->lock);
1209}
1210
1211/* Process any previous ticks, then return current value. */
1212static int fmeter_getrate(struct fmeter *fmp)
1213{
1214 int val;
1215
1216 spin_lock(&fmp->lock);
1217 fmeter_update(fmp);
1218 val = fmp->val;
1219 spin_unlock(&fmp->lock);
1220 return val;
1221}
1222
2df167a3 1223/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
8793d854
PM
1224static int cpuset_can_attach(struct cgroup_subsys *ss,
1225 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1226{
8793d854 1227 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1228
1da177e4
LT
1229 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1230 return -ENOSPC;
9985b0ba
DR
1231 if (tsk->flags & PF_THREAD_BOUND) {
1232 cpumask_t mask;
1233
1234 mutex_lock(&callback_mutex);
1235 mask = cs->cpus_allowed;
1236 mutex_unlock(&callback_mutex);
1237 if (!cpus_equal(tsk->cpus_allowed, mask))
1238 return -EINVAL;
1239 }
1da177e4 1240
8793d854
PM
1241 return security_task_setscheduler(tsk, 0, NULL);
1242}
1da177e4 1243
8793d854
PM
1244static void cpuset_attach(struct cgroup_subsys *ss,
1245 struct cgroup *cont, struct cgroup *oldcont,
1246 struct task_struct *tsk)
1247{
1248 cpumask_t cpus;
1249 nodemask_t from, to;
1250 struct mm_struct *mm;
1251 struct cpuset *cs = cgroup_cs(cont);
1252 struct cpuset *oldcs = cgroup_cs(oldcont);
9985b0ba 1253 int err;
22fb52dd 1254
3d3f26a7 1255 mutex_lock(&callback_mutex);
1da177e4 1256 guarantee_online_cpus(cs, &cpus);
9985b0ba 1257 err = set_cpus_allowed_ptr(tsk, &cpus);
8793d854 1258 mutex_unlock(&callback_mutex);
9985b0ba
DR
1259 if (err)
1260 return;
1da177e4 1261
45b07ef3
PJ
1262 from = oldcs->mems_allowed;
1263 to = cs->mems_allowed;
4225399a
PJ
1264 mm = get_task_mm(tsk);
1265 if (mm) {
1266 mpol_rebind_mm(mm, &to);
2741a559 1267 if (is_memory_migrate(cs))
e4e364e8 1268 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1269 mmput(mm);
1270 }
1271
1da177e4
LT
1272}
1273
1274/* The various types of files and directories in a cpuset file system */
1275
1276typedef enum {
45b07ef3 1277 FILE_MEMORY_MIGRATE,
1da177e4
LT
1278 FILE_CPULIST,
1279 FILE_MEMLIST,
1280 FILE_CPU_EXCLUSIVE,
1281 FILE_MEM_EXCLUSIVE,
78608366 1282 FILE_MEM_HARDWALL,
029190c5 1283 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1284 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1285 FILE_MEMORY_PRESSURE_ENABLED,
1286 FILE_MEMORY_PRESSURE,
825a46af
PJ
1287 FILE_SPREAD_PAGE,
1288 FILE_SPREAD_SLAB,
1da177e4
LT
1289} cpuset_filetype_t;
1290
700fe1ab
PM
1291static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1292{
1293 int retval = 0;
1294 struct cpuset *cs = cgroup_cs(cgrp);
1295 cpuset_filetype_t type = cft->private;
1296
e3712395 1297 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1298 return -ENODEV;
700fe1ab
PM
1299
1300 switch (type) {
1da177e4 1301 case FILE_CPU_EXCLUSIVE:
700fe1ab 1302 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1303 break;
1304 case FILE_MEM_EXCLUSIVE:
700fe1ab 1305 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1306 break;
78608366
PM
1307 case FILE_MEM_HARDWALL:
1308 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1309 break;
029190c5 1310 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1311 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1312 break;
45b07ef3 1313 case FILE_MEMORY_MIGRATE:
700fe1ab 1314 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1315 break;
3e0d98b9 1316 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1317 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1318 break;
1319 case FILE_MEMORY_PRESSURE:
1320 retval = -EACCES;
1321 break;
825a46af 1322 case FILE_SPREAD_PAGE:
700fe1ab 1323 retval = update_flag(CS_SPREAD_PAGE, cs, val);
151a4420 1324 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1325 break;
1326 case FILE_SPREAD_SLAB:
700fe1ab 1327 retval = update_flag(CS_SPREAD_SLAB, cs, val);
151a4420 1328 cs->mems_generation = cpuset_mems_generation++;
825a46af 1329 break;
1da177e4
LT
1330 default:
1331 retval = -EINVAL;
700fe1ab 1332 break;
1da177e4 1333 }
8793d854 1334 cgroup_unlock();
1da177e4
LT
1335 return retval;
1336}
1337
5be7a479
PM
1338static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1339{
1340 int retval = 0;
1341 struct cpuset *cs = cgroup_cs(cgrp);
1342 cpuset_filetype_t type = cft->private;
1343
e3712395 1344 if (!cgroup_lock_live_group(cgrp))
5be7a479 1345 return -ENODEV;
e3712395 1346
5be7a479
PM
1347 switch (type) {
1348 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1349 retval = update_relax_domain_level(cs, val);
1350 break;
1351 default:
1352 retval = -EINVAL;
1353 break;
1354 }
1355 cgroup_unlock();
1356 return retval;
1357}
1358
e3712395
PM
1359/*
1360 * Common handling for a write to a "cpus" or "mems" file.
1361 */
1362static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1363 const char *buf)
1364{
1365 int retval = 0;
1366
1367 if (!cgroup_lock_live_group(cgrp))
1368 return -ENODEV;
1369
1370 switch (cft->private) {
1371 case FILE_CPULIST:
1372 retval = update_cpumask(cgroup_cs(cgrp), buf);
1373 break;
1374 case FILE_MEMLIST:
1375 retval = update_nodemask(cgroup_cs(cgrp), buf);
1376 break;
1377 default:
1378 retval = -EINVAL;
1379 break;
1380 }
1381 cgroup_unlock();
1382 return retval;
1383}
1384
1da177e4
LT
1385/*
1386 * These ascii lists should be read in a single call, by using a user
1387 * buffer large enough to hold the entire map. If read in smaller
1388 * chunks, there is no guarantee of atomicity. Since the display format
1389 * used, list of ranges of sequential numbers, is variable length,
1390 * and since these maps can change value dynamically, one could read
1391 * gibberish by doing partial reads while a list was changing.
1392 * A single large read to a buffer that crosses a page boundary is
1393 * ok, because the result being copied to user land is not recomputed
1394 * across a page fault.
1395 */
1396
1397static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1398{
1399 cpumask_t mask;
1400
3d3f26a7 1401 mutex_lock(&callback_mutex);
1da177e4 1402 mask = cs->cpus_allowed;
3d3f26a7 1403 mutex_unlock(&callback_mutex);
1da177e4
LT
1404
1405 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1406}
1407
1408static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1409{
1410 nodemask_t mask;
1411
3d3f26a7 1412 mutex_lock(&callback_mutex);
1da177e4 1413 mask = cs->mems_allowed;
3d3f26a7 1414 mutex_unlock(&callback_mutex);
1da177e4
LT
1415
1416 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1417}
1418
8793d854
PM
1419static ssize_t cpuset_common_file_read(struct cgroup *cont,
1420 struct cftype *cft,
1421 struct file *file,
1422 char __user *buf,
1423 size_t nbytes, loff_t *ppos)
1da177e4 1424{
8793d854 1425 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1426 cpuset_filetype_t type = cft->private;
1427 char *page;
1428 ssize_t retval = 0;
1429 char *s;
1da177e4 1430
e12ba74d 1431 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1432 return -ENOMEM;
1433
1434 s = page;
1435
1436 switch (type) {
1437 case FILE_CPULIST:
1438 s += cpuset_sprintf_cpulist(s, cs);
1439 break;
1440 case FILE_MEMLIST:
1441 s += cpuset_sprintf_memlist(s, cs);
1442 break;
1da177e4
LT
1443 default:
1444 retval = -EINVAL;
1445 goto out;
1446 }
1447 *s++ = '\n';
1da177e4 1448
eacaa1f5 1449 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1450out:
1451 free_page((unsigned long)page);
1452 return retval;
1453}
1454
700fe1ab
PM
1455static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1456{
1457 struct cpuset *cs = cgroup_cs(cont);
1458 cpuset_filetype_t type = cft->private;
1459 switch (type) {
1460 case FILE_CPU_EXCLUSIVE:
1461 return is_cpu_exclusive(cs);
1462 case FILE_MEM_EXCLUSIVE:
1463 return is_mem_exclusive(cs);
78608366
PM
1464 case FILE_MEM_HARDWALL:
1465 return is_mem_hardwall(cs);
700fe1ab
PM
1466 case FILE_SCHED_LOAD_BALANCE:
1467 return is_sched_load_balance(cs);
1468 case FILE_MEMORY_MIGRATE:
1469 return is_memory_migrate(cs);
1470 case FILE_MEMORY_PRESSURE_ENABLED:
1471 return cpuset_memory_pressure_enabled;
1472 case FILE_MEMORY_PRESSURE:
1473 return fmeter_getrate(&cs->fmeter);
1474 case FILE_SPREAD_PAGE:
1475 return is_spread_page(cs);
1476 case FILE_SPREAD_SLAB:
1477 return is_spread_slab(cs);
1478 default:
1479 BUG();
1480 }
1481}
1da177e4 1482
5be7a479
PM
1483static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1484{
1485 struct cpuset *cs = cgroup_cs(cont);
1486 cpuset_filetype_t type = cft->private;
1487 switch (type) {
1488 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1489 return cs->relax_domain_level;
1490 default:
1491 BUG();
1492 }
1493}
1494
1da177e4
LT
1495
1496/*
1497 * for the common functions, 'private' gives the type of file
1498 */
1499
addf2c73
PM
1500static struct cftype files[] = {
1501 {
1502 .name = "cpus",
1503 .read = cpuset_common_file_read,
e3712395
PM
1504 .write_string = cpuset_write_resmask,
1505 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1506 .private = FILE_CPULIST,
1507 },
1508
1509 {
1510 .name = "mems",
1511 .read = cpuset_common_file_read,
e3712395
PM
1512 .write_string = cpuset_write_resmask,
1513 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1514 .private = FILE_MEMLIST,
1515 },
1516
1517 {
1518 .name = "cpu_exclusive",
1519 .read_u64 = cpuset_read_u64,
1520 .write_u64 = cpuset_write_u64,
1521 .private = FILE_CPU_EXCLUSIVE,
1522 },
1523
1524 {
1525 .name = "mem_exclusive",
1526 .read_u64 = cpuset_read_u64,
1527 .write_u64 = cpuset_write_u64,
1528 .private = FILE_MEM_EXCLUSIVE,
1529 },
1530
78608366
PM
1531 {
1532 .name = "mem_hardwall",
1533 .read_u64 = cpuset_read_u64,
1534 .write_u64 = cpuset_write_u64,
1535 .private = FILE_MEM_HARDWALL,
1536 },
1537
addf2c73
PM
1538 {
1539 .name = "sched_load_balance",
1540 .read_u64 = cpuset_read_u64,
1541 .write_u64 = cpuset_write_u64,
1542 .private = FILE_SCHED_LOAD_BALANCE,
1543 },
1544
1545 {
1546 .name = "sched_relax_domain_level",
5be7a479
PM
1547 .read_s64 = cpuset_read_s64,
1548 .write_s64 = cpuset_write_s64,
addf2c73
PM
1549 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1550 },
1551
1552 {
1553 .name = "memory_migrate",
1554 .read_u64 = cpuset_read_u64,
1555 .write_u64 = cpuset_write_u64,
1556 .private = FILE_MEMORY_MIGRATE,
1557 },
1558
1559 {
1560 .name = "memory_pressure",
1561 .read_u64 = cpuset_read_u64,
1562 .write_u64 = cpuset_write_u64,
1563 .private = FILE_MEMORY_PRESSURE,
1564 },
1565
1566 {
1567 .name = "memory_spread_page",
1568 .read_u64 = cpuset_read_u64,
1569 .write_u64 = cpuset_write_u64,
1570 .private = FILE_SPREAD_PAGE,
1571 },
1572
1573 {
1574 .name = "memory_spread_slab",
1575 .read_u64 = cpuset_read_u64,
1576 .write_u64 = cpuset_write_u64,
1577 .private = FILE_SPREAD_SLAB,
1578 },
45b07ef3
PJ
1579};
1580
3e0d98b9
PJ
1581static struct cftype cft_memory_pressure_enabled = {
1582 .name = "memory_pressure_enabled",
700fe1ab
PM
1583 .read_u64 = cpuset_read_u64,
1584 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1585 .private = FILE_MEMORY_PRESSURE_ENABLED,
1586};
1587
8793d854 1588static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1589{
1590 int err;
1591
addf2c73
PM
1592 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1593 if (err)
1da177e4 1594 return err;
8793d854 1595 /* memory_pressure_enabled is in root cpuset only */
addf2c73 1596 if (!cont->parent)
8793d854 1597 err = cgroup_add_file(cont, ss,
addf2c73
PM
1598 &cft_memory_pressure_enabled);
1599 return err;
1da177e4
LT
1600}
1601
8793d854
PM
1602/*
1603 * post_clone() is called at the end of cgroup_clone().
1604 * 'cgroup' was just created automatically as a result of
1605 * a cgroup_clone(), and the current task is about to
1606 * be moved into 'cgroup'.
1607 *
1608 * Currently we refuse to set up the cgroup - thereby
1609 * refusing the task to be entered, and as a result refusing
1610 * the sys_unshare() or clone() which initiated it - if any
1611 * sibling cpusets have exclusive cpus or mem.
1612 *
1613 * If this becomes a problem for some users who wish to
1614 * allow that scenario, then cpuset_post_clone() could be
1615 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2df167a3
PM
1616 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1617 * held.
8793d854
PM
1618 */
1619static void cpuset_post_clone(struct cgroup_subsys *ss,
1620 struct cgroup *cgroup)
1621{
1622 struct cgroup *parent, *child;
1623 struct cpuset *cs, *parent_cs;
1624
1625 parent = cgroup->parent;
1626 list_for_each_entry(child, &parent->children, sibling) {
1627 cs = cgroup_cs(child);
1628 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1629 return;
1630 }
1631 cs = cgroup_cs(cgroup);
1632 parent_cs = cgroup_cs(parent);
1633
1634 cs->mems_allowed = parent_cs->mems_allowed;
1635 cs->cpus_allowed = parent_cs->cpus_allowed;
1636 return;
1637}
1638
1da177e4
LT
1639/*
1640 * cpuset_create - create a cpuset
2df167a3
PM
1641 * ss: cpuset cgroup subsystem
1642 * cont: control group that the new cpuset will be part of
1da177e4
LT
1643 */
1644
8793d854
PM
1645static struct cgroup_subsys_state *cpuset_create(
1646 struct cgroup_subsys *ss,
1647 struct cgroup *cont)
1da177e4
LT
1648{
1649 struct cpuset *cs;
8793d854 1650 struct cpuset *parent;
1da177e4 1651
8793d854
PM
1652 if (!cont->parent) {
1653 /* This is early initialization for the top cgroup */
1654 top_cpuset.mems_generation = cpuset_mems_generation++;
1655 return &top_cpuset.css;
1656 }
1657 parent = cgroup_cs(cont->parent);
1da177e4
LT
1658 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1659 if (!cs)
8793d854 1660 return ERR_PTR(-ENOMEM);
1da177e4 1661
cf2a473c 1662 cpuset_update_task_memory_state();
1da177e4 1663 cs->flags = 0;
825a46af
PJ
1664 if (is_spread_page(parent))
1665 set_bit(CS_SPREAD_PAGE, &cs->flags);
1666 if (is_spread_slab(parent))
1667 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1668 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
f9a86fcb
MT
1669 cpus_clear(cs->cpus_allowed);
1670 nodes_clear(cs->mems_allowed);
151a4420 1671 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1672 fmeter_init(&cs->fmeter);
1d3504fc 1673 cs->relax_domain_level = -1;
1da177e4
LT
1674
1675 cs->parent = parent;
202f72d5 1676 number_of_cpusets++;
8793d854 1677 return &cs->css ;
1da177e4
LT
1678}
1679
029190c5
PJ
1680/*
1681 * Locking note on the strange update_flag() call below:
1682 *
1683 * If the cpuset being removed has its flag 'sched_load_balance'
1684 * enabled, then simulate turning sched_load_balance off, which
86ef5c9a 1685 * will call rebuild_sched_domains(). The get_online_cpus()
029190c5
PJ
1686 * call in rebuild_sched_domains() must not be made while holding
1687 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
86ef5c9a 1688 * get_online_cpus() calls. So the reverse nesting would risk an
029190c5
PJ
1689 * ABBA deadlock.
1690 */
1691
8793d854 1692static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1693{
8793d854 1694 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1695
cf2a473c 1696 cpuset_update_task_memory_state();
029190c5
PJ
1697
1698 if (is_sched_load_balance(cs))
700fe1ab 1699 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
029190c5 1700
202f72d5 1701 number_of_cpusets--;
8793d854 1702 kfree(cs);
1da177e4
LT
1703}
1704
8793d854
PM
1705struct cgroup_subsys cpuset_subsys = {
1706 .name = "cpuset",
1707 .create = cpuset_create,
1708 .destroy = cpuset_destroy,
1709 .can_attach = cpuset_can_attach,
1710 .attach = cpuset_attach,
1711 .populate = cpuset_populate,
1712 .post_clone = cpuset_post_clone,
1713 .subsys_id = cpuset_subsys_id,
1714 .early_init = 1,
1715};
1716
c417f024
PJ
1717/*
1718 * cpuset_init_early - just enough so that the calls to
1719 * cpuset_update_task_memory_state() in early init code
1720 * are harmless.
1721 */
1722
1723int __init cpuset_init_early(void)
1724{
8793d854 1725 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1726 return 0;
1727}
1728
8793d854 1729
1da177e4
LT
1730/**
1731 * cpuset_init - initialize cpusets at system boot
1732 *
1733 * Description: Initialize top_cpuset and the cpuset internal file system,
1734 **/
1735
1736int __init cpuset_init(void)
1737{
8793d854 1738 int err = 0;
1da177e4 1739
f9a86fcb
MT
1740 cpus_setall(top_cpuset.cpus_allowed);
1741 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1742
3e0d98b9 1743 fmeter_init(&top_cpuset.fmeter);
151a4420 1744 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1745 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1746 top_cpuset.relax_domain_level = -1;
1da177e4 1747
1da177e4
LT
1748 err = register_filesystem(&cpuset_fs_type);
1749 if (err < 0)
8793d854
PM
1750 return err;
1751
202f72d5 1752 number_of_cpusets = 1;
8793d854 1753 return 0;
1da177e4
LT
1754}
1755
956db3ca
CW
1756/**
1757 * cpuset_do_move_task - move a given task to another cpuset
1758 * @tsk: pointer to task_struct the task to move
1759 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1760 *
1761 * Called by cgroup_scan_tasks() for each task in a cgroup.
1762 * Return nonzero to stop the walk through the tasks.
1763 */
9e0c914c
AB
1764static void cpuset_do_move_task(struct task_struct *tsk,
1765 struct cgroup_scanner *scan)
956db3ca
CW
1766{
1767 struct cpuset_hotplug_scanner *chsp;
1768
1769 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1770 cgroup_attach_task(chsp->to, tsk);
1771}
1772
1773/**
1774 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1775 * @from: cpuset in which the tasks currently reside
1776 * @to: cpuset to which the tasks will be moved
1777 *
c8d9c90c
PJ
1778 * Called with cgroup_mutex held
1779 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1780 *
1781 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1782 * calling callback functions for each.
1783 */
1784static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1785{
1786 struct cpuset_hotplug_scanner scan;
1787
1788 scan.scan.cg = from->css.cgroup;
1789 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1790 scan.scan.process_task = cpuset_do_move_task;
1791 scan.scan.heap = NULL;
1792 scan.to = to->css.cgroup;
1793
1794 if (cgroup_scan_tasks((struct cgroup_scanner *)&scan))
1795 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1796 "cgroup_scan_tasks failed\n");
1797}
1798
b1aac8bb
PJ
1799/*
1800 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
1801 * or memory nodes, we need to walk over the cpuset hierarchy,
1802 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1803 * last CPU or node from a cpuset, then move the tasks in the empty
1804 * cpuset to its next-highest non-empty parent.
b1aac8bb 1805 *
c8d9c90c
PJ
1806 * Called with cgroup_mutex held
1807 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1808 */
956db3ca
CW
1809static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1810{
1811 struct cpuset *parent;
1812
c8d9c90c
PJ
1813 /*
1814 * The cgroup's css_sets list is in use if there are tasks
1815 * in the cpuset; the list is empty if there are none;
1816 * the cs->css.refcnt seems always 0.
1817 */
956db3ca
CW
1818 if (list_empty(&cs->css.cgroup->css_sets))
1819 return;
b1aac8bb 1820
956db3ca
CW
1821 /*
1822 * Find its next-highest non-empty parent, (top cpuset
1823 * has online cpus, so can't be empty).
1824 */
1825 parent = cs->parent;
b4501295
PJ
1826 while (cpus_empty(parent->cpus_allowed) ||
1827 nodes_empty(parent->mems_allowed))
956db3ca 1828 parent = parent->parent;
956db3ca
CW
1829
1830 move_member_tasks_to_cpuset(cs, parent);
1831}
1832
1833/*
1834 * Walk the specified cpuset subtree and look for empty cpusets.
1835 * The tasks of such cpuset must be moved to a parent cpuset.
1836 *
2df167a3 1837 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
1838 * cpus_allowed and mems_allowed.
1839 *
1840 * This walk processes the tree from top to bottom, completing one layer
1841 * before dropping down to the next. It always processes a node before
1842 * any of its children.
1843 *
1844 * For now, since we lack memory hot unplug, we'll never see a cpuset
1845 * that has tasks along with an empty 'mems'. But if we did see such
1846 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1847 */
1848static void scan_for_empty_cpusets(const struct cpuset *root)
b1aac8bb 1849{
956db3ca
CW
1850 struct cpuset *cp; /* scans cpusets being updated */
1851 struct cpuset *child; /* scans child cpusets of cp */
1852 struct list_head queue;
8793d854 1853 struct cgroup *cont;
b1aac8bb 1854
956db3ca
CW
1855 INIT_LIST_HEAD(&queue);
1856
1857 list_add_tail((struct list_head *)&root->stack_list, &queue);
1858
956db3ca
CW
1859 while (!list_empty(&queue)) {
1860 cp = container_of(queue.next, struct cpuset, stack_list);
1861 list_del(queue.next);
1862 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1863 child = cgroup_cs(cont);
1864 list_add_tail(&child->stack_list, &queue);
1865 }
1866 cont = cp->css.cgroup;
b4501295
PJ
1867
1868 /* Continue past cpusets with all cpus, mems online */
1869 if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
1870 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1871 continue;
1872
956db3ca 1873 /* Remove offline cpus and mems from this cpuset. */
b4501295 1874 mutex_lock(&callback_mutex);
956db3ca
CW
1875 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1876 nodes_and(cp->mems_allowed, cp->mems_allowed,
1877 node_states[N_HIGH_MEMORY]);
b4501295
PJ
1878 mutex_unlock(&callback_mutex);
1879
1880 /* Move tasks from the empty cpuset to a parent */
c8d9c90c 1881 if (cpus_empty(cp->cpus_allowed) ||
b4501295 1882 nodes_empty(cp->mems_allowed))
956db3ca 1883 remove_tasks_in_empty_cpuset(cp);
b1aac8bb
PJ
1884 }
1885}
1886
1887/*
1888 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
0e1e7c7a 1889 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
956db3ca 1890 * track what's online after any CPU or memory node hotplug or unplug event.
b1aac8bb
PJ
1891 *
1892 * Since there are two callers of this routine, one for CPU hotplug
1893 * events and one for memory node hotplug events, we could have coded
1894 * two separate routines here. We code it as a single common routine
1895 * in order to minimize text size.
1896 */
1897
3e84050c 1898static void common_cpu_mem_hotplug_unplug(int rebuild_sd)
b1aac8bb 1899{
8793d854 1900 cgroup_lock();
b1aac8bb 1901
b1aac8bb 1902 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 1903 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
956db3ca 1904 scan_for_empty_cpusets(&top_cpuset);
b1aac8bb 1905
5c8e1ed1
MK
1906 /*
1907 * Scheduler destroys domains on hotplug events.
1908 * Rebuild them based on the current settings.
1909 */
3e84050c
DA
1910 if (rebuild_sd)
1911 rebuild_sched_domains();
5c8e1ed1 1912
8793d854 1913 cgroup_unlock();
b1aac8bb 1914}
b1aac8bb 1915
4c4d50f7
PJ
1916/*
1917 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1918 * period. This is necessary in order to make cpusets transparent
1919 * (of no affect) on systems that are actively using CPU hotplug
1920 * but making no active use of cpusets.
1921 *
38837fc7
PJ
1922 * This routine ensures that top_cpuset.cpus_allowed tracks
1923 * cpu_online_map on each CPU hotplug (cpuhp) event.
4c4d50f7
PJ
1924 */
1925
029190c5
PJ
1926static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
1927 unsigned long phase, void *unused_cpu)
4c4d50f7 1928{
3e84050c
DA
1929 switch (phase) {
1930 case CPU_UP_CANCELED:
1931 case CPU_UP_CANCELED_FROZEN:
1932 case CPU_DOWN_FAILED:
1933 case CPU_DOWN_FAILED_FROZEN:
1934 case CPU_ONLINE:
1935 case CPU_ONLINE_FROZEN:
1936 case CPU_DEAD:
1937 case CPU_DEAD_FROZEN:
1938 common_cpu_mem_hotplug_unplug(1);
1939 break;
1940 default:
ac076758 1941 return NOTIFY_DONE;
3e84050c 1942 }
ac076758 1943
3e84050c 1944 return NOTIFY_OK;
4c4d50f7 1945}
4c4d50f7 1946
b1aac8bb 1947#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 1948/*
0e1e7c7a
CL
1949 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
1950 * Call this routine anytime after you change
1951 * node_states[N_HIGH_MEMORY].
38837fc7
PJ
1952 * See also the previous routine cpuset_handle_cpuhp().
1953 */
1954
1af98928 1955void cpuset_track_online_nodes(void)
38837fc7 1956{
3e84050c 1957 common_cpu_mem_hotplug_unplug(0);
38837fc7
PJ
1958}
1959#endif
1960
1da177e4
LT
1961/**
1962 * cpuset_init_smp - initialize cpus_allowed
1963 *
1964 * Description: Finish top cpuset after cpu, node maps are initialized
1965 **/
1966
1967void __init cpuset_init_smp(void)
1968{
1969 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 1970 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7
PJ
1971
1972 hotcpu_notifier(cpuset_handle_cpuhp, 0);
1da177e4
LT
1973}
1974
1975/**
1da177e4
LT
1976 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1977 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
f9a86fcb 1978 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
1da177e4
LT
1979 *
1980 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1981 * attached to the specified @tsk. Guaranteed to return some non-empty
1982 * subset of cpu_online_map, even if this means going outside the
1983 * tasks cpuset.
1984 **/
1985
f9a86fcb 1986void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
1da177e4 1987{
3d3f26a7 1988 mutex_lock(&callback_mutex);
f9a86fcb 1989 cpuset_cpus_allowed_locked(tsk, pmask);
470fd646 1990 mutex_unlock(&callback_mutex);
470fd646
CW
1991}
1992
1993/**
1994 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2df167a3 1995 * Must be called with callback_mutex held.
470fd646 1996 **/
f9a86fcb 1997void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
470fd646 1998{
909d75a3 1999 task_lock(tsk);
f9a86fcb 2000 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2001 task_unlock(tsk);
1da177e4
LT
2002}
2003
2004void cpuset_init_current_mems_allowed(void)
2005{
f9a86fcb 2006 nodes_setall(current->mems_allowed);
1da177e4
LT
2007}
2008
909d75a3
PJ
2009/**
2010 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2011 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2012 *
2013 * Description: Returns the nodemask_t mems_allowed of the cpuset
2014 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 2015 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
2016 * tasks cpuset.
2017 **/
2018
2019nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2020{
2021 nodemask_t mask;
2022
3d3f26a7 2023 mutex_lock(&callback_mutex);
909d75a3 2024 task_lock(tsk);
8793d854 2025 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2026 task_unlock(tsk);
3d3f26a7 2027 mutex_unlock(&callback_mutex);
909d75a3
PJ
2028
2029 return mask;
2030}
2031
d9fd8a6d 2032/**
19770b32
MG
2033 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2034 * @nodemask: the nodemask to be checked
d9fd8a6d 2035 *
19770b32 2036 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2037 */
19770b32 2038int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2039{
19770b32 2040 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2041}
2042
9bf2229f 2043/*
78608366
PM
2044 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2045 * mem_hardwall ancestor to the specified cpuset. Call holding
2046 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2047 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2048 */
78608366 2049static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2050{
78608366 2051 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2052 cs = cs->parent;
2053 return cs;
2054}
2055
d9fd8a6d 2056/**
02a0e53d 2057 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
9bf2229f 2058 * @z: is this zone on an allowed node?
02a0e53d 2059 * @gfp_mask: memory allocation flags
d9fd8a6d 2060 *
02a0e53d
PJ
2061 * If we're in interrupt, yes, we can always allocate. If
2062 * __GFP_THISNODE is set, yes, we can always allocate. If zone
9bf2229f
PJ
2063 * z's node is in our tasks mems_allowed, yes. If it's not a
2064 * __GFP_HARDWALL request and this zone's nodes is in the nearest
78608366 2065 * hardwalled cpuset ancestor to this tasks cpuset, yes.
c596d9f3
DR
2066 * If the task has been OOM killed and has access to memory reserves
2067 * as specified by the TIF_MEMDIE flag, yes.
9bf2229f
PJ
2068 * Otherwise, no.
2069 *
02a0e53d
PJ
2070 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2071 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2072 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2073 * from an enclosing cpuset.
2074 *
2075 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2076 * hardwall cpusets, and never sleeps.
2077 *
2078 * The __GFP_THISNODE placement logic is really handled elsewhere,
2079 * by forcibly using a zonelist starting at a specified node, and by
2080 * (in get_page_from_freelist()) refusing to consider the zones for
2081 * any node on the zonelist except the first. By the time any such
2082 * calls get to this routine, we should just shut up and say 'yes'.
2083 *
9bf2229f 2084 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2085 * and do not allow allocations outside the current tasks cpuset
2086 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2087 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2088 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2089 *
02a0e53d
PJ
2090 * Scanning up parent cpusets requires callback_mutex. The
2091 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2092 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2093 * current tasks mems_allowed came up empty on the first pass over
2094 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2095 * cpuset are short of memory, might require taking the callback_mutex
2096 * mutex.
9bf2229f 2097 *
36be57ff 2098 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2099 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2100 * so no allocation on a node outside the cpuset is allowed (unless
2101 * in interrupt, of course).
36be57ff
PJ
2102 *
2103 * The second pass through get_page_from_freelist() doesn't even call
2104 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2105 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2106 * in alloc_flags. That logic and the checks below have the combined
2107 * affect that:
9bf2229f
PJ
2108 * in_interrupt - any node ok (current task context irrelevant)
2109 * GFP_ATOMIC - any node ok
c596d9f3 2110 * TIF_MEMDIE - any node ok
78608366 2111 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2112 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2113 *
2114 * Rule:
02a0e53d 2115 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2116 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2117 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2118 */
9bf2229f 2119
02a0e53d 2120int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
1da177e4 2121{
9bf2229f
PJ
2122 int node; /* node that zone z is on */
2123 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2124 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2125
9b819d20 2126 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2127 return 1;
89fa3024 2128 node = zone_to_nid(z);
92d1dbd2 2129 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2130 if (node_isset(node, current->mems_allowed))
2131 return 1;
c596d9f3
DR
2132 /*
2133 * Allow tasks that have access to memory reserves because they have
2134 * been OOM killed to get memory anywhere.
2135 */
2136 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2137 return 1;
9bf2229f
PJ
2138 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2139 return 0;
2140
5563e770
BP
2141 if (current->flags & PF_EXITING) /* Let dying task have memory */
2142 return 1;
2143
9bf2229f 2144 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2145 mutex_lock(&callback_mutex);
053199ed 2146
053199ed 2147 task_lock(current);
78608366 2148 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2149 task_unlock(current);
2150
9bf2229f 2151 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2152 mutex_unlock(&callback_mutex);
9bf2229f 2153 return allowed;
1da177e4
LT
2154}
2155
02a0e53d
PJ
2156/*
2157 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2158 * @z: is this zone on an allowed node?
2159 * @gfp_mask: memory allocation flags
2160 *
2161 * If we're in interrupt, yes, we can always allocate.
2162 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
c596d9f3
DR
2163 * z's node is in our tasks mems_allowed, yes. If the task has been
2164 * OOM killed and has access to memory reserves as specified by the
2165 * TIF_MEMDIE flag, yes. Otherwise, no.
02a0e53d
PJ
2166 *
2167 * The __GFP_THISNODE placement logic is really handled elsewhere,
2168 * by forcibly using a zonelist starting at a specified node, and by
2169 * (in get_page_from_freelist()) refusing to consider the zones for
2170 * any node on the zonelist except the first. By the time any such
2171 * calls get to this routine, we should just shut up and say 'yes'.
2172 *
2173 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2174 * this variant requires that the zone be in the current tasks
2175 * mems_allowed or that we're in interrupt. It does not scan up the
2176 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2177 * It never sleeps.
2178 */
2179
2180int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2181{
2182 int node; /* node that zone z is on */
2183
2184 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2185 return 1;
2186 node = zone_to_nid(z);
2187 if (node_isset(node, current->mems_allowed))
2188 return 1;
dedf8b79
DW
2189 /*
2190 * Allow tasks that have access to memory reserves because they have
2191 * been OOM killed to get memory anywhere.
2192 */
2193 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2194 return 1;
02a0e53d
PJ
2195 return 0;
2196}
2197
505970b9
PJ
2198/**
2199 * cpuset_lock - lock out any changes to cpuset structures
2200 *
3d3f26a7 2201 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2202 * from being changed while it scans the tasklist looking for a
3d3f26a7 2203 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2204 * cpuset_lock() routine, so the oom code can lock it, before
2205 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2206 * must be taken inside callback_mutex.
505970b9
PJ
2207 */
2208
2209void cpuset_lock(void)
2210{
3d3f26a7 2211 mutex_lock(&callback_mutex);
505970b9
PJ
2212}
2213
2214/**
2215 * cpuset_unlock - release lock on cpuset changes
2216 *
2217 * Undo the lock taken in a previous cpuset_lock() call.
2218 */
2219
2220void cpuset_unlock(void)
2221{
3d3f26a7 2222 mutex_unlock(&callback_mutex);
505970b9
PJ
2223}
2224
825a46af
PJ
2225/**
2226 * cpuset_mem_spread_node() - On which node to begin search for a page
2227 *
2228 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2229 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2230 * and if the memory allocation used cpuset_mem_spread_node()
2231 * to determine on which node to start looking, as it will for
2232 * certain page cache or slab cache pages such as used for file
2233 * system buffers and inode caches, then instead of starting on the
2234 * local node to look for a free page, rather spread the starting
2235 * node around the tasks mems_allowed nodes.
2236 *
2237 * We don't have to worry about the returned node being offline
2238 * because "it can't happen", and even if it did, it would be ok.
2239 *
2240 * The routines calling guarantee_online_mems() are careful to
2241 * only set nodes in task->mems_allowed that are online. So it
2242 * should not be possible for the following code to return an
2243 * offline node. But if it did, that would be ok, as this routine
2244 * is not returning the node where the allocation must be, only
2245 * the node where the search should start. The zonelist passed to
2246 * __alloc_pages() will include all nodes. If the slab allocator
2247 * is passed an offline node, it will fall back to the local node.
2248 * See kmem_cache_alloc_node().
2249 */
2250
2251int cpuset_mem_spread_node(void)
2252{
2253 int node;
2254
2255 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2256 if (node == MAX_NUMNODES)
2257 node = first_node(current->mems_allowed);
2258 current->cpuset_mem_spread_rotor = node;
2259 return node;
2260}
2261EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2262
ef08e3b4 2263/**
bbe373f2
DR
2264 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2265 * @tsk1: pointer to task_struct of some task.
2266 * @tsk2: pointer to task_struct of some other task.
2267 *
2268 * Description: Return true if @tsk1's mems_allowed intersects the
2269 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2270 * one of the task's memory usage might impact the memory available
2271 * to the other.
ef08e3b4
PJ
2272 **/
2273
bbe373f2
DR
2274int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2275 const struct task_struct *tsk2)
ef08e3b4 2276{
bbe373f2 2277 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2278}
2279
3e0d98b9
PJ
2280/*
2281 * Collection of memory_pressure is suppressed unless
2282 * this flag is enabled by writing "1" to the special
2283 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2284 */
2285
c5b2aff8 2286int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2287
2288/**
2289 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2290 *
2291 * Keep a running average of the rate of synchronous (direct)
2292 * page reclaim efforts initiated by tasks in each cpuset.
2293 *
2294 * This represents the rate at which some task in the cpuset
2295 * ran low on memory on all nodes it was allowed to use, and
2296 * had to enter the kernels page reclaim code in an effort to
2297 * create more free memory by tossing clean pages or swapping
2298 * or writing dirty pages.
2299 *
2300 * Display to user space in the per-cpuset read-only file
2301 * "memory_pressure". Value displayed is an integer
2302 * representing the recent rate of entry into the synchronous
2303 * (direct) page reclaim by any task attached to the cpuset.
2304 **/
2305
2306void __cpuset_memory_pressure_bump(void)
2307{
3e0d98b9 2308 task_lock(current);
8793d854 2309 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2310 task_unlock(current);
2311}
2312
8793d854 2313#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2314/*
2315 * proc_cpuset_show()
2316 * - Print tasks cpuset path into seq_file.
2317 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2318 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2319 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2320 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2321 * anyway.
1da177e4 2322 */
029190c5 2323static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2324{
13b41b09 2325 struct pid *pid;
1da177e4
LT
2326 struct task_struct *tsk;
2327 char *buf;
8793d854 2328 struct cgroup_subsys_state *css;
99f89551 2329 int retval;
1da177e4 2330
99f89551 2331 retval = -ENOMEM;
1da177e4
LT
2332 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2333 if (!buf)
99f89551
EB
2334 goto out;
2335
2336 retval = -ESRCH;
13b41b09
EB
2337 pid = m->private;
2338 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2339 if (!tsk)
2340 goto out_free;
1da177e4 2341
99f89551 2342 retval = -EINVAL;
8793d854
PM
2343 cgroup_lock();
2344 css = task_subsys_state(tsk, cpuset_subsys_id);
2345 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2346 if (retval < 0)
99f89551 2347 goto out_unlock;
1da177e4
LT
2348 seq_puts(m, buf);
2349 seq_putc(m, '\n');
99f89551 2350out_unlock:
8793d854 2351 cgroup_unlock();
99f89551
EB
2352 put_task_struct(tsk);
2353out_free:
1da177e4 2354 kfree(buf);
99f89551 2355out:
1da177e4
LT
2356 return retval;
2357}
2358
2359static int cpuset_open(struct inode *inode, struct file *file)
2360{
13b41b09
EB
2361 struct pid *pid = PROC_I(inode)->pid;
2362 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2363}
2364
9a32144e 2365const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2366 .open = cpuset_open,
2367 .read = seq_read,
2368 .llseek = seq_lseek,
2369 .release = single_release,
2370};
8793d854 2371#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2372
2373/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2374void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2375{
2376 seq_printf(m, "Cpus_allowed:\t");
2377 m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count,
2378 task->cpus_allowed);
2379 seq_printf(m, "\n");
39106dcf
MT
2380 seq_printf(m, "Cpus_allowed_list:\t");
2381 m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count,
2382 task->cpus_allowed);
2383 seq_printf(m, "\n");
df5f8314
EB
2384 seq_printf(m, "Mems_allowed:\t");
2385 m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count,
2386 task->mems_allowed);
2387 seq_printf(m, "\n");
39106dcf
MT
2388 seq_printf(m, "Mems_allowed_list:\t");
2389 m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count,
2390 task->mems_allowed);
2391 seq_printf(m, "\n");
1da177e4 2392}