cpuset: introduce effective_{cpumask|nodemask}_cpuset()
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
e44193d3 62#include <linux/wait.h>
1da177e4 63
202f72d5
PJ
64/*
65 * Tracks how many cpusets are currently defined in system.
66 * When there is only one cpuset (the root cpuset) we can
67 * short circuit some hooks.
68 */
7edc5962 69int number_of_cpusets __read_mostly;
202f72d5 70
2df167a3 71/* Forward declare cgroup structures */
8793d854
PM
72struct cgroup_subsys cpuset_subsys;
73struct cpuset;
74
3e0d98b9
PJ
75/* See "Frequency meter" comments, below. */
76
77struct fmeter {
78 int cnt; /* unprocessed events count */
79 int val; /* most recent output value */
80 time_t time; /* clock (secs) when val computed */
81 spinlock_t lock; /* guards read or write of above */
82};
83
1da177e4 84struct cpuset {
8793d854
PM
85 struct cgroup_subsys_state css;
86
1da177e4 87 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 88 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
89 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
90
33ad801d
LZ
91 /*
92 * This is old Memory Nodes tasks took on.
93 *
94 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
95 * - A new cpuset's old_mems_allowed is initialized when some
96 * task is moved into it.
97 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
98 * cpuset.mems_allowed and have tasks' nodemask updated, and
99 * then old_mems_allowed is updated to mems_allowed.
100 */
101 nodemask_t old_mems_allowed;
102
3e0d98b9 103 struct fmeter fmeter; /* memory_pressure filter */
029190c5 104
452477fa
TH
105 /*
106 * Tasks are being attached to this cpuset. Used to prevent
107 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
108 */
109 int attach_in_progress;
110
029190c5
PJ
111 /* partition number for rebuild_sched_domains() */
112 int pn;
956db3ca 113
1d3504fc
HS
114 /* for custom sched domain */
115 int relax_domain_level;
1da177e4
LT
116};
117
8793d854
PM
118/* Retrieve the cpuset for a cgroup */
119static inline struct cpuset *cgroup_cs(struct cgroup *cont)
120{
121 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
122 struct cpuset, css);
123}
124
125/* Retrieve the cpuset for a task */
126static inline struct cpuset *task_cs(struct task_struct *task)
127{
128 return container_of(task_subsys_state(task, cpuset_subsys_id),
129 struct cpuset, css);
130}
8793d854 131
c431069f
TH
132static inline struct cpuset *parent_cs(const struct cpuset *cs)
133{
134 struct cgroup *pcgrp = cs->css.cgroup->parent;
135
136 if (pcgrp)
137 return cgroup_cs(pcgrp);
138 return NULL;
139}
140
b246272e
DR
141#ifdef CONFIG_NUMA
142static inline bool task_has_mempolicy(struct task_struct *task)
143{
144 return task->mempolicy;
145}
146#else
147static inline bool task_has_mempolicy(struct task_struct *task)
148{
149 return false;
150}
151#endif
152
153
1da177e4
LT
154/* bits in struct cpuset flags field */
155typedef enum {
efeb77b2 156 CS_ONLINE,
1da177e4
LT
157 CS_CPU_EXCLUSIVE,
158 CS_MEM_EXCLUSIVE,
78608366 159 CS_MEM_HARDWALL,
45b07ef3 160 CS_MEMORY_MIGRATE,
029190c5 161 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
162 CS_SPREAD_PAGE,
163 CS_SPREAD_SLAB,
1da177e4
LT
164} cpuset_flagbits_t;
165
166/* convenient tests for these bits */
efeb77b2
TH
167static inline bool is_cpuset_online(const struct cpuset *cs)
168{
169 return test_bit(CS_ONLINE, &cs->flags);
170}
171
1da177e4
LT
172static inline int is_cpu_exclusive(const struct cpuset *cs)
173{
7b5b9ef0 174 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
175}
176
177static inline int is_mem_exclusive(const struct cpuset *cs)
178{
7b5b9ef0 179 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
180}
181
78608366
PM
182static inline int is_mem_hardwall(const struct cpuset *cs)
183{
184 return test_bit(CS_MEM_HARDWALL, &cs->flags);
185}
186
029190c5
PJ
187static inline int is_sched_load_balance(const struct cpuset *cs)
188{
189 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
190}
191
45b07ef3
PJ
192static inline int is_memory_migrate(const struct cpuset *cs)
193{
7b5b9ef0 194 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
195}
196
825a46af
PJ
197static inline int is_spread_page(const struct cpuset *cs)
198{
199 return test_bit(CS_SPREAD_PAGE, &cs->flags);
200}
201
202static inline int is_spread_slab(const struct cpuset *cs)
203{
204 return test_bit(CS_SPREAD_SLAB, &cs->flags);
205}
206
1da177e4 207static struct cpuset top_cpuset = {
efeb77b2
TH
208 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
209 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
210};
211
ae8086ce
TH
212/**
213 * cpuset_for_each_child - traverse online children of a cpuset
214 * @child_cs: loop cursor pointing to the current child
215 * @pos_cgrp: used for iteration
216 * @parent_cs: target cpuset to walk children of
217 *
218 * Walk @child_cs through the online children of @parent_cs. Must be used
219 * with RCU read locked.
220 */
221#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
222 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
223 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
224
fc560a26
TH
225/**
226 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
227 * @des_cs: loop cursor pointing to the current descendant
228 * @pos_cgrp: used for iteration
229 * @root_cs: target cpuset to walk ancestor of
230 *
231 * Walk @des_cs through the online descendants of @root_cs. Must be used
232 * with RCU read locked. The caller may modify @pos_cgrp by calling
233 * cgroup_rightmost_descendant() to skip subtree.
234 */
235#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
236 cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
237 if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
238
1da177e4 239/*
5d21cc2d
TH
240 * There are two global mutexes guarding cpuset structures - cpuset_mutex
241 * and callback_mutex. The latter may nest inside the former. We also
242 * require taking task_lock() when dereferencing a task's cpuset pointer.
243 * See "The task_lock() exception", at the end of this comment.
244 *
245 * A task must hold both mutexes to modify cpusets. If a task holds
246 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
247 * is the only task able to also acquire callback_mutex and be able to
248 * modify cpusets. It can perform various checks on the cpuset structure
249 * first, knowing nothing will change. It can also allocate memory while
250 * just holding cpuset_mutex. While it is performing these checks, various
251 * callback routines can briefly acquire callback_mutex to query cpusets.
252 * Once it is ready to make the changes, it takes callback_mutex, blocking
253 * everyone else.
053199ed
PJ
254 *
255 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 256 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
257 * from one of the callbacks into the cpuset code from within
258 * __alloc_pages().
259 *
3d3f26a7 260 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
261 * access to cpusets.
262 *
58568d2a
MX
263 * Now, the task_struct fields mems_allowed and mempolicy may be changed
264 * by other task, we use alloc_lock in the task_struct fields to protect
265 * them.
053199ed 266 *
3d3f26a7 267 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
268 * small pieces of code, such as when reading out possibly multi-word
269 * cpumasks and nodemasks.
270 *
2df167a3
PM
271 * Accessing a task's cpuset should be done in accordance with the
272 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
273 */
274
5d21cc2d 275static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 276static DEFINE_MUTEX(callback_mutex);
4247bdc6 277
3a5a6d0c
TH
278/*
279 * CPU / memory hotplug is handled asynchronously.
280 */
281static void cpuset_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
282static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
283
e44193d3
LZ
284static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
285
cf417141
MK
286/*
287 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 288 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
289 * silently switch it to mount "cgroup" instead
290 */
f7e83571
AV
291static struct dentry *cpuset_mount(struct file_system_type *fs_type,
292 int flags, const char *unused_dev_name, void *data)
1da177e4 293{
8793d854 294 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 295 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
296 if (cgroup_fs) {
297 char mountopts[] =
298 "cpuset,noprefix,"
299 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
300 ret = cgroup_fs->mount(cgroup_fs, flags,
301 unused_dev_name, mountopts);
8793d854
PM
302 put_filesystem(cgroup_fs);
303 }
304 return ret;
1da177e4
LT
305}
306
307static struct file_system_type cpuset_fs_type = {
308 .name = "cpuset",
f7e83571 309 .mount = cpuset_mount,
1da177e4
LT
310};
311
1da177e4 312/*
300ed6cb 313 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4 314 * are online. If none are online, walk up the cpuset hierarchy
40df2deb
LZ
315 * until we find one that does have some online cpus. The top
316 * cpuset always has some cpus online.
1da177e4
LT
317 *
318 * One way or another, we guarantee to return some non-empty subset
5f054e31 319 * of cpu_online_mask.
1da177e4 320 *
3d3f26a7 321 * Call with callback_mutex held.
1da177e4 322 */
6af866af
LZ
323static void guarantee_online_cpus(const struct cpuset *cs,
324 struct cpumask *pmask)
1da177e4 325{
40df2deb 326 while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 327 cs = parent_cs(cs);
40df2deb 328 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4
LT
329}
330
331/*
332 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
333 * are online, with memory. If none are online with memory, walk
334 * up the cpuset hierarchy until we find one that does have some
40df2deb 335 * online mems. The top cpuset always has some mems online.
1da177e4
LT
336 *
337 * One way or another, we guarantee to return some non-empty subset
38d7bee9 338 * of node_states[N_MEMORY].
1da177e4 339 *
3d3f26a7 340 * Call with callback_mutex held.
1da177e4 341 */
1da177e4
LT
342static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
343{
40df2deb 344 while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
c431069f 345 cs = parent_cs(cs);
40df2deb 346 nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
1da177e4
LT
347}
348
f3b39d47
MX
349/*
350 * update task's spread flag if cpuset's page/slab spread flag is set
351 *
5d21cc2d 352 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
353 */
354static void cpuset_update_task_spread_flag(struct cpuset *cs,
355 struct task_struct *tsk)
356{
357 if (is_spread_page(cs))
358 tsk->flags |= PF_SPREAD_PAGE;
359 else
360 tsk->flags &= ~PF_SPREAD_PAGE;
361 if (is_spread_slab(cs))
362 tsk->flags |= PF_SPREAD_SLAB;
363 else
364 tsk->flags &= ~PF_SPREAD_SLAB;
365}
366
1da177e4
LT
367/*
368 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
369 *
370 * One cpuset is a subset of another if all its allowed CPUs and
371 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 372 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
373 */
374
375static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
376{
300ed6cb 377 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
378 nodes_subset(p->mems_allowed, q->mems_allowed) &&
379 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
380 is_mem_exclusive(p) <= is_mem_exclusive(q);
381}
382
645fcc9d
LZ
383/**
384 * alloc_trial_cpuset - allocate a trial cpuset
385 * @cs: the cpuset that the trial cpuset duplicates
386 */
387static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
388{
300ed6cb
LZ
389 struct cpuset *trial;
390
391 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
392 if (!trial)
393 return NULL;
394
395 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
396 kfree(trial);
397 return NULL;
398 }
399 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
400
401 return trial;
645fcc9d
LZ
402}
403
404/**
405 * free_trial_cpuset - free the trial cpuset
406 * @trial: the trial cpuset to be freed
407 */
408static void free_trial_cpuset(struct cpuset *trial)
409{
300ed6cb 410 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
411 kfree(trial);
412}
413
1da177e4
LT
414/*
415 * validate_change() - Used to validate that any proposed cpuset change
416 * follows the structural rules for cpusets.
417 *
418 * If we replaced the flag and mask values of the current cpuset
419 * (cur) with those values in the trial cpuset (trial), would
420 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 421 * cpuset_mutex held.
1da177e4
LT
422 *
423 * 'cur' is the address of an actual, in-use cpuset. Operations
424 * such as list traversal that depend on the actual address of the
425 * cpuset in the list must use cur below, not trial.
426 *
427 * 'trial' is the address of bulk structure copy of cur, with
428 * perhaps one or more of the fields cpus_allowed, mems_allowed,
429 * or flags changed to new, trial values.
430 *
431 * Return 0 if valid, -errno if not.
432 */
433
434static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
435{
8793d854 436 struct cgroup *cont;
1da177e4 437 struct cpuset *c, *par;
ae8086ce
TH
438 int ret;
439
440 rcu_read_lock();
1da177e4
LT
441
442 /* Each of our child cpusets must be a subset of us */
ae8086ce
TH
443 ret = -EBUSY;
444 cpuset_for_each_child(c, cont, cur)
445 if (!is_cpuset_subset(c, trial))
446 goto out;
1da177e4
LT
447
448 /* Remaining checks don't apply to root cpuset */
ae8086ce 449 ret = 0;
69604067 450 if (cur == &top_cpuset)
ae8086ce 451 goto out;
1da177e4 452
c431069f 453 par = parent_cs(cur);
69604067 454
1da177e4 455 /* We must be a subset of our parent cpuset */
ae8086ce 456 ret = -EACCES;
1da177e4 457 if (!is_cpuset_subset(trial, par))
ae8086ce 458 goto out;
1da177e4 459
2df167a3
PM
460 /*
461 * If either I or some sibling (!= me) is exclusive, we can't
462 * overlap
463 */
ae8086ce
TH
464 ret = -EINVAL;
465 cpuset_for_each_child(c, cont, par) {
1da177e4
LT
466 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
467 c != cur &&
300ed6cb 468 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 469 goto out;
1da177e4
LT
470 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
471 c != cur &&
472 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 473 goto out;
1da177e4
LT
474 }
475
452477fa
TH
476 /*
477 * Cpusets with tasks - existing or newly being attached - can't
478 * have empty cpus_allowed or mems_allowed.
479 */
ae8086ce 480 ret = -ENOSPC;
452477fa 481 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
ae8086ce
TH
482 (cpumask_empty(trial->cpus_allowed) ||
483 nodes_empty(trial->mems_allowed)))
484 goto out;
020958b6 485
ae8086ce
TH
486 ret = 0;
487out:
488 rcu_read_unlock();
489 return ret;
1da177e4
LT
490}
491
db7f47cf 492#ifdef CONFIG_SMP
029190c5 493/*
cf417141 494 * Helper routine for generate_sched_domains().
029190c5
PJ
495 * Do cpusets a, b have overlapping cpus_allowed masks?
496 */
029190c5
PJ
497static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
498{
300ed6cb 499 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
500}
501
1d3504fc
HS
502static void
503update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
504{
1d3504fc
HS
505 if (dattr->relax_domain_level < c->relax_domain_level)
506 dattr->relax_domain_level = c->relax_domain_level;
507 return;
508}
509
fc560a26
TH
510static void update_domain_attr_tree(struct sched_domain_attr *dattr,
511 struct cpuset *root_cs)
f5393693 512{
fc560a26
TH
513 struct cpuset *cp;
514 struct cgroup *pos_cgrp;
f5393693 515
fc560a26
TH
516 rcu_read_lock();
517 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
518 /* skip the whole subtree if @cp doesn't have any CPU */
519 if (cpumask_empty(cp->cpus_allowed)) {
520 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
f5393693 521 continue;
fc560a26 522 }
f5393693
LJ
523
524 if (is_sched_load_balance(cp))
525 update_domain_attr(dattr, cp);
f5393693 526 }
fc560a26 527 rcu_read_unlock();
f5393693
LJ
528}
529
029190c5 530/*
cf417141
MK
531 * generate_sched_domains()
532 *
533 * This function builds a partial partition of the systems CPUs
534 * A 'partial partition' is a set of non-overlapping subsets whose
535 * union is a subset of that set.
536 * The output of this function needs to be passed to kernel/sched.c
537 * partition_sched_domains() routine, which will rebuild the scheduler's
538 * load balancing domains (sched domains) as specified by that partial
539 * partition.
029190c5 540 *
45ce80fb 541 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
542 * for a background explanation of this.
543 *
544 * Does not return errors, on the theory that the callers of this
545 * routine would rather not worry about failures to rebuild sched
546 * domains when operating in the severe memory shortage situations
547 * that could cause allocation failures below.
548 *
5d21cc2d 549 * Must be called with cpuset_mutex held.
029190c5
PJ
550 *
551 * The three key local variables below are:
aeed6824 552 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
553 * top-down scan of all cpusets. This scan loads a pointer
554 * to each cpuset marked is_sched_load_balance into the
555 * array 'csa'. For our purposes, rebuilding the schedulers
556 * sched domains, we can ignore !is_sched_load_balance cpusets.
557 * csa - (for CpuSet Array) Array of pointers to all the cpusets
558 * that need to be load balanced, for convenient iterative
559 * access by the subsequent code that finds the best partition,
560 * i.e the set of domains (subsets) of CPUs such that the
561 * cpus_allowed of every cpuset marked is_sched_load_balance
562 * is a subset of one of these domains, while there are as
563 * many such domains as possible, each as small as possible.
564 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
565 * the kernel/sched.c routine partition_sched_domains() in a
566 * convenient format, that can be easily compared to the prior
567 * value to determine what partition elements (sched domains)
568 * were changed (added or removed.)
569 *
570 * Finding the best partition (set of domains):
571 * The triple nested loops below over i, j, k scan over the
572 * load balanced cpusets (using the array of cpuset pointers in
573 * csa[]) looking for pairs of cpusets that have overlapping
574 * cpus_allowed, but which don't have the same 'pn' partition
575 * number and gives them in the same partition number. It keeps
576 * looping on the 'restart' label until it can no longer find
577 * any such pairs.
578 *
579 * The union of the cpus_allowed masks from the set of
580 * all cpusets having the same 'pn' value then form the one
581 * element of the partition (one sched domain) to be passed to
582 * partition_sched_domains().
583 */
acc3f5d7 584static int generate_sched_domains(cpumask_var_t **domains,
cf417141 585 struct sched_domain_attr **attributes)
029190c5 586{
029190c5
PJ
587 struct cpuset *cp; /* scans q */
588 struct cpuset **csa; /* array of all cpuset ptrs */
589 int csn; /* how many cpuset ptrs in csa so far */
590 int i, j, k; /* indices for partition finding loops */
acc3f5d7 591 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 592 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 593 int ndoms = 0; /* number of sched domains in result */
6af866af 594 int nslot; /* next empty doms[] struct cpumask slot */
fc560a26 595 struct cgroup *pos_cgrp;
029190c5 596
029190c5 597 doms = NULL;
1d3504fc 598 dattr = NULL;
cf417141 599 csa = NULL;
029190c5
PJ
600
601 /* Special case for the 99% of systems with one, full, sched domain */
602 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
603 ndoms = 1;
604 doms = alloc_sched_domains(ndoms);
029190c5 605 if (!doms)
cf417141
MK
606 goto done;
607
1d3504fc
HS
608 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
609 if (dattr) {
610 *dattr = SD_ATTR_INIT;
93a65575 611 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 612 }
acc3f5d7 613 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 614
cf417141 615 goto done;
029190c5
PJ
616 }
617
029190c5
PJ
618 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
619 if (!csa)
620 goto done;
621 csn = 0;
622
fc560a26
TH
623 rcu_read_lock();
624 cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
f5393693 625 /*
fc560a26
TH
626 * Continue traversing beyond @cp iff @cp has some CPUs and
627 * isn't load balancing. The former is obvious. The
628 * latter: All child cpusets contain a subset of the
629 * parent's cpus, so just skip them, and then we call
630 * update_domain_attr_tree() to calc relax_domain_level of
631 * the corresponding sched domain.
f5393693 632 */
fc560a26
TH
633 if (!cpumask_empty(cp->cpus_allowed) &&
634 !is_sched_load_balance(cp))
f5393693 635 continue;
489a5393 636
fc560a26
TH
637 if (is_sched_load_balance(cp))
638 csa[csn++] = cp;
639
640 /* skip @cp's subtree */
641 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
642 }
643 rcu_read_unlock();
029190c5
PJ
644
645 for (i = 0; i < csn; i++)
646 csa[i]->pn = i;
647 ndoms = csn;
648
649restart:
650 /* Find the best partition (set of sched domains) */
651 for (i = 0; i < csn; i++) {
652 struct cpuset *a = csa[i];
653 int apn = a->pn;
654
655 for (j = 0; j < csn; j++) {
656 struct cpuset *b = csa[j];
657 int bpn = b->pn;
658
659 if (apn != bpn && cpusets_overlap(a, b)) {
660 for (k = 0; k < csn; k++) {
661 struct cpuset *c = csa[k];
662
663 if (c->pn == bpn)
664 c->pn = apn;
665 }
666 ndoms--; /* one less element */
667 goto restart;
668 }
669 }
670 }
671
cf417141
MK
672 /*
673 * Now we know how many domains to create.
674 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
675 */
acc3f5d7 676 doms = alloc_sched_domains(ndoms);
700018e0 677 if (!doms)
cf417141 678 goto done;
cf417141
MK
679
680 /*
681 * The rest of the code, including the scheduler, can deal with
682 * dattr==NULL case. No need to abort if alloc fails.
683 */
1d3504fc 684 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
685
686 for (nslot = 0, i = 0; i < csn; i++) {
687 struct cpuset *a = csa[i];
6af866af 688 struct cpumask *dp;
029190c5
PJ
689 int apn = a->pn;
690
cf417141
MK
691 if (apn < 0) {
692 /* Skip completed partitions */
693 continue;
694 }
695
acc3f5d7 696 dp = doms[nslot];
cf417141
MK
697
698 if (nslot == ndoms) {
699 static int warnings = 10;
700 if (warnings) {
701 printk(KERN_WARNING
702 "rebuild_sched_domains confused:"
703 " nslot %d, ndoms %d, csn %d, i %d,"
704 " apn %d\n",
705 nslot, ndoms, csn, i, apn);
706 warnings--;
029190c5 707 }
cf417141
MK
708 continue;
709 }
029190c5 710
6af866af 711 cpumask_clear(dp);
cf417141
MK
712 if (dattr)
713 *(dattr + nslot) = SD_ATTR_INIT;
714 for (j = i; j < csn; j++) {
715 struct cpuset *b = csa[j];
716
717 if (apn == b->pn) {
300ed6cb 718 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
719 if (dattr)
720 update_domain_attr_tree(dattr + nslot, b);
721
722 /* Done with this partition */
723 b->pn = -1;
029190c5 724 }
029190c5 725 }
cf417141 726 nslot++;
029190c5
PJ
727 }
728 BUG_ON(nslot != ndoms);
729
cf417141
MK
730done:
731 kfree(csa);
732
700018e0
LZ
733 /*
734 * Fallback to the default domain if kmalloc() failed.
735 * See comments in partition_sched_domains().
736 */
737 if (doms == NULL)
738 ndoms = 1;
739
cf417141
MK
740 *domains = doms;
741 *attributes = dattr;
742 return ndoms;
743}
744
745/*
746 * Rebuild scheduler domains.
747 *
699140ba
TH
748 * If the flag 'sched_load_balance' of any cpuset with non-empty
749 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
750 * which has that flag enabled, or if any cpuset with a non-empty
751 * 'cpus' is removed, then call this routine to rebuild the
752 * scheduler's dynamic sched domains.
cf417141 753 *
5d21cc2d 754 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 755 */
699140ba 756static void rebuild_sched_domains_locked(void)
cf417141
MK
757{
758 struct sched_domain_attr *attr;
acc3f5d7 759 cpumask_var_t *doms;
cf417141
MK
760 int ndoms;
761
5d21cc2d 762 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 763 get_online_cpus();
cf417141 764
5b16c2a4
LZ
765 /*
766 * We have raced with CPU hotplug. Don't do anything to avoid
767 * passing doms with offlined cpu to partition_sched_domains().
768 * Anyways, hotplug work item will rebuild sched domains.
769 */
770 if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
771 goto out;
772
cf417141 773 /* Generate domain masks and attrs */
cf417141 774 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
775
776 /* Have scheduler rebuild the domains */
777 partition_sched_domains(ndoms, doms, attr);
5b16c2a4 778out:
86ef5c9a 779 put_online_cpus();
cf417141 780}
db7f47cf 781#else /* !CONFIG_SMP */
699140ba 782static void rebuild_sched_domains_locked(void)
db7f47cf
PM
783{
784}
db7f47cf 785#endif /* CONFIG_SMP */
029190c5 786
cf417141
MK
787void rebuild_sched_domains(void)
788{
5d21cc2d 789 mutex_lock(&cpuset_mutex);
699140ba 790 rebuild_sched_domains_locked();
5d21cc2d 791 mutex_unlock(&cpuset_mutex);
029190c5
PJ
792}
793
070b57fc
LZ
794/*
795 * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
796 * @cs: the cpuset in interest
797 *
798 * A cpuset's effective cpumask is the cpumask of the nearest ancestor
799 * with non-empty cpus. We use effective cpumask whenever:
800 * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
801 * if the cpuset they reside in has no cpus)
802 * - we want to retrieve task_cs(tsk)'s cpus_allowed.
803 *
804 * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
805 * exception. See comments there.
806 */
807static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
808{
809 while (cpumask_empty(cs->cpus_allowed))
810 cs = parent_cs(cs);
811 return cs;
812}
813
814/*
815 * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
816 * @cs: the cpuset in interest
817 *
818 * A cpuset's effective nodemask is the nodemask of the nearest ancestor
819 * with non-empty memss. We use effective nodemask whenever:
820 * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
821 * if the cpuset they reside in has no mems)
822 * - we want to retrieve task_cs(tsk)'s mems_allowed.
823 *
824 * Called with cpuset_mutex held.
825 */
826static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
827{
828 while (nodes_empty(cs->mems_allowed))
829 cs = parent_cs(cs);
830 return cs;
831}
832
58f4790b
CW
833/**
834 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
835 * @tsk: task to test
836 * @scan: struct cgroup_scanner containing the cgroup of the task
837 *
838 * Called by cgroup_scan_tasks() for each task in a cgroup whose
839 * cpus_allowed mask needs to be changed.
840 *
841 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 842 * holding cpuset_mutex at this point.
58f4790b 843 */
9e0c914c
AB
844static void cpuset_change_cpumask(struct task_struct *tsk,
845 struct cgroup_scanner *scan)
58f4790b 846{
070b57fc
LZ
847 struct cpuset *cpus_cs;
848
849 cpus_cs = effective_cpumask_cpuset(cgroup_cs(scan->cg));
850 set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
58f4790b
CW
851}
852
0b2f630a
MX
853/**
854 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
855 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 856 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 857 *
5d21cc2d 858 * Called with cpuset_mutex held
0b2f630a
MX
859 *
860 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
861 * calling callback functions for each.
862 *
4e74339a
LZ
863 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
864 * if @heap != NULL.
0b2f630a 865 */
4e74339a 866static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
867{
868 struct cgroup_scanner scan;
0b2f630a
MX
869
870 scan.cg = cs->css.cgroup;
249cc86d 871 scan.test_task = NULL;
0b2f630a 872 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
873 scan.heap = heap;
874 cgroup_scan_tasks(&scan);
0b2f630a
MX
875}
876
58f4790b
CW
877/**
878 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
879 * @cs: the cpuset to consider
880 * @buf: buffer of cpu numbers written to this cpuset
881 */
645fcc9d
LZ
882static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
883 const char *buf)
1da177e4 884{
4e74339a 885 struct ptr_heap heap;
58f4790b
CW
886 int retval;
887 int is_load_balanced;
1da177e4 888
5f054e31 889 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
890 if (cs == &top_cpuset)
891 return -EACCES;
892
6f7f02e7 893 /*
c8d9c90c 894 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
895 * Since cpulist_parse() fails on an empty mask, we special case
896 * that parsing. The validate_change() call ensures that cpusets
897 * with tasks have cpus.
6f7f02e7 898 */
020958b6 899 if (!*buf) {
300ed6cb 900 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 901 } else {
300ed6cb 902 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
903 if (retval < 0)
904 return retval;
37340746 905
6ad4c188 906 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 907 return -EINVAL;
6f7f02e7 908 }
029190c5 909
8707d8b8 910 /* Nothing to do if the cpus didn't change */
300ed6cb 911 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 912 return 0;
58f4790b 913
a73456f3
LZ
914 retval = validate_change(cs, trialcs);
915 if (retval < 0)
916 return retval;
917
4e74339a
LZ
918 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
919 if (retval)
920 return retval;
921
645fcc9d 922 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 923
3d3f26a7 924 mutex_lock(&callback_mutex);
300ed6cb 925 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 926 mutex_unlock(&callback_mutex);
029190c5 927
8707d8b8
PM
928 /*
929 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 930 * that need an update.
8707d8b8 931 */
4e74339a
LZ
932 update_tasks_cpumask(cs, &heap);
933
934 heap_free(&heap);
58f4790b 935
8707d8b8 936 if (is_load_balanced)
699140ba 937 rebuild_sched_domains_locked();
85d7b949 938 return 0;
1da177e4
LT
939}
940
e4e364e8
PJ
941/*
942 * cpuset_migrate_mm
943 *
944 * Migrate memory region from one set of nodes to another.
945 *
946 * Temporarilly set tasks mems_allowed to target nodes of migration,
947 * so that the migration code can allocate pages on these nodes.
948 *
5d21cc2d 949 * Call holding cpuset_mutex, so current's cpuset won't change
c8d9c90c 950 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
951 * calls. Therefore we don't need to take task_lock around the
952 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 953 * our task's cpuset.
e4e364e8 954 *
e4e364e8
PJ
955 * While the mm_struct we are migrating is typically from some
956 * other task, the task_struct mems_allowed that we are hacking
957 * is for our current task, which must allocate new pages for that
958 * migrating memory region.
e4e364e8
PJ
959 */
960
961static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
962 const nodemask_t *to)
963{
964 struct task_struct *tsk = current;
070b57fc 965 struct cpuset *mems_cs;
e4e364e8 966
e4e364e8 967 tsk->mems_allowed = *to;
e4e364e8
PJ
968
969 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
970
070b57fc
LZ
971 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
972 guarantee_online_mems(mems_cs, &tsk->mems_allowed);
e4e364e8
PJ
973}
974
3b6766fe 975/*
58568d2a
MX
976 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
977 * @tsk: the task to change
978 * @newmems: new nodes that the task will be set
979 *
980 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
981 * we structure updates as setting all new allowed nodes, then clearing newly
982 * disallowed ones.
58568d2a
MX
983 */
984static void cpuset_change_task_nodemask(struct task_struct *tsk,
985 nodemask_t *newmems)
986{
b246272e 987 bool need_loop;
89e8a244 988
c0ff7453
MX
989 /*
990 * Allow tasks that have access to memory reserves because they have
991 * been OOM killed to get memory anywhere.
992 */
993 if (unlikely(test_thread_flag(TIF_MEMDIE)))
994 return;
995 if (current->flags & PF_EXITING) /* Let dying task have memory */
996 return;
997
998 task_lock(tsk);
b246272e
DR
999 /*
1000 * Determine if a loop is necessary if another thread is doing
1001 * get_mems_allowed(). If at least one node remains unchanged and
1002 * tsk does not have a mempolicy, then an empty nodemask will not be
1003 * possible when mems_allowed is larger than a word.
1004 */
1005 need_loop = task_has_mempolicy(tsk) ||
1006 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 1007
cc9a6c87
MG
1008 if (need_loop)
1009 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 1010
cc9a6c87
MG
1011 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1012 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1013
1014 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1015 tsk->mems_allowed = *newmems;
cc9a6c87
MG
1016
1017 if (need_loop)
1018 write_seqcount_end(&tsk->mems_allowed_seq);
1019
c0ff7453 1020 task_unlock(tsk);
58568d2a
MX
1021}
1022
1023/*
1024 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1025 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
5d21cc2d 1026 * memory_migrate flag is set. Called with cpuset_mutex held.
3b6766fe
LZ
1027 */
1028static void cpuset_change_nodemask(struct task_struct *p,
1029 struct cgroup_scanner *scan)
1030{
33ad801d 1031 struct cpuset *cs = cgroup_cs(scan->cg);
3b6766fe 1032 struct mm_struct *mm;
3b6766fe 1033 int migrate;
33ad801d 1034 nodemask_t *newmems = scan->data;
58568d2a 1035
33ad801d 1036 cpuset_change_task_nodemask(p, newmems);
53feb297 1037
3b6766fe
LZ
1038 mm = get_task_mm(p);
1039 if (!mm)
1040 return;
1041
3b6766fe
LZ
1042 migrate = is_memory_migrate(cs);
1043
1044 mpol_rebind_mm(mm, &cs->mems_allowed);
1045 if (migrate)
33ad801d 1046 cpuset_migrate_mm(mm, &cs->old_mems_allowed, newmems);
3b6766fe
LZ
1047 mmput(mm);
1048}
1049
8793d854
PM
1050static void *cpuset_being_rebound;
1051
0b2f630a
MX
1052/**
1053 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1054 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
010cfac4 1055 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 1056 *
5d21cc2d 1057 * Called with cpuset_mutex held
010cfac4
LZ
1058 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1059 * if @heap != NULL.
0b2f630a 1060 */
33ad801d 1061static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
1da177e4 1062{
33ad801d 1063 static nodemask_t newmems; /* protected by cpuset_mutex */
3b6766fe 1064 struct cgroup_scanner scan;
070b57fc 1065 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
59dac16f 1066
846a16bf 1067 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1068
070b57fc 1069 guarantee_online_mems(mems_cs, &newmems);
33ad801d 1070
3b6766fe
LZ
1071 scan.cg = cs->css.cgroup;
1072 scan.test_task = NULL;
1073 scan.process_task = cpuset_change_nodemask;
010cfac4 1074 scan.heap = heap;
33ad801d 1075 scan.data = &newmems;
4225399a
PJ
1076
1077 /*
3b6766fe
LZ
1078 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1079 * take while holding tasklist_lock. Forks can happen - the
1080 * mpol_dup() cpuset_being_rebound check will catch such forks,
1081 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1082 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1083 * will be contending for the global variable cpuset_being_rebound.
4225399a 1084 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1085 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1086 */
010cfac4 1087 cgroup_scan_tasks(&scan);
4225399a 1088
33ad801d
LZ
1089 /*
1090 * All the tasks' nodemasks have been updated, update
1091 * cs->old_mems_allowed.
1092 */
1093 cs->old_mems_allowed = newmems;
1094
2df167a3 1095 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1096 cpuset_being_rebound = NULL;
1da177e4
LT
1097}
1098
0b2f630a
MX
1099/*
1100 * Handle user request to change the 'mems' memory placement
1101 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1102 * cpusets mems_allowed, and for each task in the cpuset,
1103 * update mems_allowed and rebind task's mempolicy and any vma
1104 * mempolicies and if the cpuset is marked 'memory_migrate',
1105 * migrate the tasks pages to the new memory.
0b2f630a 1106 *
5d21cc2d 1107 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1108 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1109 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1110 * their mempolicies to the cpusets new mems_allowed.
1111 */
645fcc9d
LZ
1112static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1113 const char *buf)
0b2f630a 1114{
0b2f630a 1115 int retval;
010cfac4 1116 struct ptr_heap heap;
0b2f630a
MX
1117
1118 /*
38d7bee9 1119 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1120 * it's read-only
1121 */
53feb297
MX
1122 if (cs == &top_cpuset) {
1123 retval = -EACCES;
1124 goto done;
1125 }
0b2f630a 1126
0b2f630a
MX
1127 /*
1128 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1129 * Since nodelist_parse() fails on an empty mask, we special case
1130 * that parsing. The validate_change() call ensures that cpusets
1131 * with tasks have memory.
1132 */
1133 if (!*buf) {
645fcc9d 1134 nodes_clear(trialcs->mems_allowed);
0b2f630a 1135 } else {
645fcc9d 1136 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1137 if (retval < 0)
1138 goto done;
1139
645fcc9d 1140 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1141 node_states[N_MEMORY])) {
53feb297
MX
1142 retval = -EINVAL;
1143 goto done;
1144 }
0b2f630a 1145 }
33ad801d
LZ
1146
1147 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
0b2f630a
MX
1148 retval = 0; /* Too easy - nothing to do */
1149 goto done;
1150 }
645fcc9d 1151 retval = validate_change(cs, trialcs);
0b2f630a
MX
1152 if (retval < 0)
1153 goto done;
1154
010cfac4
LZ
1155 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1156 if (retval < 0)
1157 goto done;
1158
0b2f630a 1159 mutex_lock(&callback_mutex);
645fcc9d 1160 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1161 mutex_unlock(&callback_mutex);
1162
33ad801d 1163 update_tasks_nodemask(cs, &heap);
010cfac4
LZ
1164
1165 heap_free(&heap);
0b2f630a
MX
1166done:
1167 return retval;
1168}
1169
8793d854
PM
1170int current_cpuset_is_being_rebound(void)
1171{
1172 return task_cs(current) == cpuset_being_rebound;
1173}
1174
5be7a479 1175static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1176{
db7f47cf 1177#ifdef CONFIG_SMP
60495e77 1178 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1179 return -EINVAL;
db7f47cf 1180#endif
1d3504fc
HS
1181
1182 if (val != cs->relax_domain_level) {
1183 cs->relax_domain_level = val;
300ed6cb
LZ
1184 if (!cpumask_empty(cs->cpus_allowed) &&
1185 is_sched_load_balance(cs))
699140ba 1186 rebuild_sched_domains_locked();
1d3504fc
HS
1187 }
1188
1189 return 0;
1190}
1191
950592f7
MX
1192/*
1193 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1194 * @tsk: task to be updated
1195 * @scan: struct cgroup_scanner containing the cgroup of the task
1196 *
1197 * Called by cgroup_scan_tasks() for each task in a cgroup.
1198 *
1199 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 1200 * holding cpuset_mutex at this point.
950592f7
MX
1201 */
1202static void cpuset_change_flag(struct task_struct *tsk,
1203 struct cgroup_scanner *scan)
1204{
1205 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1206}
1207
1208/*
1209 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1210 * @cs: the cpuset in which each task's spread flags needs to be changed
1211 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1212 *
5d21cc2d 1213 * Called with cpuset_mutex held
950592f7
MX
1214 *
1215 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1216 * calling callback functions for each.
1217 *
1218 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1219 * if @heap != NULL.
1220 */
1221static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1222{
1223 struct cgroup_scanner scan;
1224
1225 scan.cg = cs->css.cgroup;
1226 scan.test_task = NULL;
1227 scan.process_task = cpuset_change_flag;
1228 scan.heap = heap;
1229 cgroup_scan_tasks(&scan);
1230}
1231
1da177e4
LT
1232/*
1233 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1234 * bit: the bit to update (see cpuset_flagbits_t)
1235 * cs: the cpuset to update
1236 * turning_on: whether the flag is being set or cleared
053199ed 1237 *
5d21cc2d 1238 * Call with cpuset_mutex held.
1da177e4
LT
1239 */
1240
700fe1ab
PM
1241static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1242 int turning_on)
1da177e4 1243{
645fcc9d 1244 struct cpuset *trialcs;
40b6a762 1245 int balance_flag_changed;
950592f7
MX
1246 int spread_flag_changed;
1247 struct ptr_heap heap;
1248 int err;
1da177e4 1249
645fcc9d
LZ
1250 trialcs = alloc_trial_cpuset(cs);
1251 if (!trialcs)
1252 return -ENOMEM;
1253
1da177e4 1254 if (turning_on)
645fcc9d 1255 set_bit(bit, &trialcs->flags);
1da177e4 1256 else
645fcc9d 1257 clear_bit(bit, &trialcs->flags);
1da177e4 1258
645fcc9d 1259 err = validate_change(cs, trialcs);
85d7b949 1260 if (err < 0)
645fcc9d 1261 goto out;
029190c5 1262
950592f7
MX
1263 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1264 if (err < 0)
1265 goto out;
1266
029190c5 1267 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1268 is_sched_load_balance(trialcs));
029190c5 1269
950592f7
MX
1270 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1271 || (is_spread_page(cs) != is_spread_page(trialcs)));
1272
3d3f26a7 1273 mutex_lock(&callback_mutex);
645fcc9d 1274 cs->flags = trialcs->flags;
3d3f26a7 1275 mutex_unlock(&callback_mutex);
85d7b949 1276
300ed6cb 1277 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1278 rebuild_sched_domains_locked();
029190c5 1279
950592f7
MX
1280 if (spread_flag_changed)
1281 update_tasks_flags(cs, &heap);
1282 heap_free(&heap);
645fcc9d
LZ
1283out:
1284 free_trial_cpuset(trialcs);
1285 return err;
1da177e4
LT
1286}
1287
3e0d98b9 1288/*
80f7228b 1289 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1290 *
1291 * These routines manage a digitally filtered, constant time based,
1292 * event frequency meter. There are four routines:
1293 * fmeter_init() - initialize a frequency meter.
1294 * fmeter_markevent() - called each time the event happens.
1295 * fmeter_getrate() - returns the recent rate of such events.
1296 * fmeter_update() - internal routine used to update fmeter.
1297 *
1298 * A common data structure is passed to each of these routines,
1299 * which is used to keep track of the state required to manage the
1300 * frequency meter and its digital filter.
1301 *
1302 * The filter works on the number of events marked per unit time.
1303 * The filter is single-pole low-pass recursive (IIR). The time unit
1304 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1305 * simulate 3 decimal digits of precision (multiplied by 1000).
1306 *
1307 * With an FM_COEF of 933, and a time base of 1 second, the filter
1308 * has a half-life of 10 seconds, meaning that if the events quit
1309 * happening, then the rate returned from the fmeter_getrate()
1310 * will be cut in half each 10 seconds, until it converges to zero.
1311 *
1312 * It is not worth doing a real infinitely recursive filter. If more
1313 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1314 * just compute FM_MAXTICKS ticks worth, by which point the level
1315 * will be stable.
1316 *
1317 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1318 * arithmetic overflow in the fmeter_update() routine.
1319 *
1320 * Given the simple 32 bit integer arithmetic used, this meter works
1321 * best for reporting rates between one per millisecond (msec) and
1322 * one per 32 (approx) seconds. At constant rates faster than one
1323 * per msec it maxes out at values just under 1,000,000. At constant
1324 * rates between one per msec, and one per second it will stabilize
1325 * to a value N*1000, where N is the rate of events per second.
1326 * At constant rates between one per second and one per 32 seconds,
1327 * it will be choppy, moving up on the seconds that have an event,
1328 * and then decaying until the next event. At rates slower than
1329 * about one in 32 seconds, it decays all the way back to zero between
1330 * each event.
1331 */
1332
1333#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1334#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1335#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1336#define FM_SCALE 1000 /* faux fixed point scale */
1337
1338/* Initialize a frequency meter */
1339static void fmeter_init(struct fmeter *fmp)
1340{
1341 fmp->cnt = 0;
1342 fmp->val = 0;
1343 fmp->time = 0;
1344 spin_lock_init(&fmp->lock);
1345}
1346
1347/* Internal meter update - process cnt events and update value */
1348static void fmeter_update(struct fmeter *fmp)
1349{
1350 time_t now = get_seconds();
1351 time_t ticks = now - fmp->time;
1352
1353 if (ticks == 0)
1354 return;
1355
1356 ticks = min(FM_MAXTICKS, ticks);
1357 while (ticks-- > 0)
1358 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1359 fmp->time = now;
1360
1361 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1362 fmp->cnt = 0;
1363}
1364
1365/* Process any previous ticks, then bump cnt by one (times scale). */
1366static void fmeter_markevent(struct fmeter *fmp)
1367{
1368 spin_lock(&fmp->lock);
1369 fmeter_update(fmp);
1370 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1371 spin_unlock(&fmp->lock);
1372}
1373
1374/* Process any previous ticks, then return current value. */
1375static int fmeter_getrate(struct fmeter *fmp)
1376{
1377 int val;
1378
1379 spin_lock(&fmp->lock);
1380 fmeter_update(fmp);
1381 val = fmp->val;
1382 spin_unlock(&fmp->lock);
1383 return val;
1384}
1385
5d21cc2d 1386/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
761b3ef5 1387static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
f780bdb7 1388{
2f7ee569 1389 struct cpuset *cs = cgroup_cs(cgrp);
bb9d97b6
TH
1390 struct task_struct *task;
1391 int ret;
1da177e4 1392
5d21cc2d
TH
1393 mutex_lock(&cpuset_mutex);
1394
1395 ret = -ENOSPC;
300ed6cb 1396 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
5d21cc2d 1397 goto out_unlock;
9985b0ba 1398
bb9d97b6
TH
1399 cgroup_taskset_for_each(task, cgrp, tset) {
1400 /*
14a40ffc
TH
1401 * Kthreads which disallow setaffinity shouldn't be moved
1402 * to a new cpuset; we don't want to change their cpu
1403 * affinity and isolating such threads by their set of
1404 * allowed nodes is unnecessary. Thus, cpusets are not
1405 * applicable for such threads. This prevents checking for
1406 * success of set_cpus_allowed_ptr() on all attached tasks
1407 * before cpus_allowed may be changed.
bb9d97b6 1408 */
5d21cc2d 1409 ret = -EINVAL;
14a40ffc 1410 if (task->flags & PF_NO_SETAFFINITY)
5d21cc2d
TH
1411 goto out_unlock;
1412 ret = security_task_setscheduler(task);
1413 if (ret)
1414 goto out_unlock;
bb9d97b6 1415 }
f780bdb7 1416
452477fa
TH
1417 /*
1418 * Mark attach is in progress. This makes validate_change() fail
1419 * changes which zero cpus/mems_allowed.
1420 */
1421 cs->attach_in_progress++;
5d21cc2d
TH
1422 ret = 0;
1423out_unlock:
1424 mutex_unlock(&cpuset_mutex);
1425 return ret;
8793d854 1426}
f780bdb7 1427
452477fa
TH
1428static void cpuset_cancel_attach(struct cgroup *cgrp,
1429 struct cgroup_taskset *tset)
1430{
5d21cc2d 1431 mutex_lock(&cpuset_mutex);
452477fa 1432 cgroup_cs(cgrp)->attach_in_progress--;
5d21cc2d 1433 mutex_unlock(&cpuset_mutex);
8793d854 1434}
1da177e4 1435
4e4c9a14 1436/*
5d21cc2d 1437 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1438 * but we can't allocate it dynamically there. Define it global and
1439 * allocate from cpuset_init().
1440 */
1441static cpumask_var_t cpus_attach;
1442
761b3ef5 1443static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
8793d854 1444{
67bd2c59 1445 /* static buf protected by cpuset_mutex */
4e4c9a14 1446 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1447 struct mm_struct *mm;
bb9d97b6
TH
1448 struct task_struct *task;
1449 struct task_struct *leader = cgroup_taskset_first(tset);
2f7ee569
TH
1450 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1451 struct cpuset *cs = cgroup_cs(cgrp);
1452 struct cpuset *oldcs = cgroup_cs(oldcgrp);
070b57fc
LZ
1453 struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
1454 struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
22fb52dd 1455
5d21cc2d
TH
1456 mutex_lock(&cpuset_mutex);
1457
4e4c9a14
TH
1458 /* prepare for attach */
1459 if (cs == &top_cpuset)
1460 cpumask_copy(cpus_attach, cpu_possible_mask);
1461 else
070b57fc 1462 guarantee_online_cpus(cpus_cs, cpus_attach);
4e4c9a14 1463
070b57fc 1464 guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
4e4c9a14 1465
bb9d97b6
TH
1466 cgroup_taskset_for_each(task, cgrp, tset) {
1467 /*
1468 * can_attach beforehand should guarantee that this doesn't
1469 * fail. TODO: have a better way to handle failure here
1470 */
1471 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1472
1473 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1474 cpuset_update_task_spread_flag(cs, task);
1475 }
22fb52dd 1476
f780bdb7
BB
1477 /*
1478 * Change mm, possibly for multiple threads in a threadgroup. This is
1479 * expensive and may sleep.
1480 */
f780bdb7 1481 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1482 mm = get_task_mm(leader);
4225399a 1483 if (mm) {
070b57fc
LZ
1484 struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
1485
f780bdb7 1486 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2741a559 1487 if (is_memory_migrate(cs))
070b57fc 1488 cpuset_migrate_mm(mm, &mems_oldcs->mems_allowed,
f780bdb7 1489 &cpuset_attach_nodemask_to);
4225399a
PJ
1490 mmput(mm);
1491 }
452477fa 1492
33ad801d
LZ
1493 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1494
452477fa 1495 cs->attach_in_progress--;
e44193d3
LZ
1496 if (!cs->attach_in_progress)
1497 wake_up(&cpuset_attach_wq);
5d21cc2d
TH
1498
1499 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1500}
1501
1502/* The various types of files and directories in a cpuset file system */
1503
1504typedef enum {
45b07ef3 1505 FILE_MEMORY_MIGRATE,
1da177e4
LT
1506 FILE_CPULIST,
1507 FILE_MEMLIST,
1508 FILE_CPU_EXCLUSIVE,
1509 FILE_MEM_EXCLUSIVE,
78608366 1510 FILE_MEM_HARDWALL,
029190c5 1511 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1512 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1513 FILE_MEMORY_PRESSURE_ENABLED,
1514 FILE_MEMORY_PRESSURE,
825a46af
PJ
1515 FILE_SPREAD_PAGE,
1516 FILE_SPREAD_SLAB,
1da177e4
LT
1517} cpuset_filetype_t;
1518
700fe1ab
PM
1519static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1520{
700fe1ab
PM
1521 struct cpuset *cs = cgroup_cs(cgrp);
1522 cpuset_filetype_t type = cft->private;
5d21cc2d 1523 int retval = -ENODEV;
700fe1ab 1524
5d21cc2d
TH
1525 mutex_lock(&cpuset_mutex);
1526 if (!is_cpuset_online(cs))
1527 goto out_unlock;
700fe1ab
PM
1528
1529 switch (type) {
1da177e4 1530 case FILE_CPU_EXCLUSIVE:
700fe1ab 1531 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1532 break;
1533 case FILE_MEM_EXCLUSIVE:
700fe1ab 1534 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1535 break;
78608366
PM
1536 case FILE_MEM_HARDWALL:
1537 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1538 break;
029190c5 1539 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1540 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1541 break;
45b07ef3 1542 case FILE_MEMORY_MIGRATE:
700fe1ab 1543 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1544 break;
3e0d98b9 1545 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1546 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1547 break;
1548 case FILE_MEMORY_PRESSURE:
1549 retval = -EACCES;
1550 break;
825a46af 1551 case FILE_SPREAD_PAGE:
700fe1ab 1552 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1553 break;
1554 case FILE_SPREAD_SLAB:
700fe1ab 1555 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1556 break;
1da177e4
LT
1557 default:
1558 retval = -EINVAL;
700fe1ab 1559 break;
1da177e4 1560 }
5d21cc2d
TH
1561out_unlock:
1562 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1563 return retval;
1564}
1565
5be7a479
PM
1566static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1567{
5be7a479
PM
1568 struct cpuset *cs = cgroup_cs(cgrp);
1569 cpuset_filetype_t type = cft->private;
5d21cc2d 1570 int retval = -ENODEV;
5be7a479 1571
5d21cc2d
TH
1572 mutex_lock(&cpuset_mutex);
1573 if (!is_cpuset_online(cs))
1574 goto out_unlock;
e3712395 1575
5be7a479
PM
1576 switch (type) {
1577 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1578 retval = update_relax_domain_level(cs, val);
1579 break;
1580 default:
1581 retval = -EINVAL;
1582 break;
1583 }
5d21cc2d
TH
1584out_unlock:
1585 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1586 return retval;
1587}
1588
e3712395
PM
1589/*
1590 * Common handling for a write to a "cpus" or "mems" file.
1591 */
1592static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1593 const char *buf)
1594{
645fcc9d
LZ
1595 struct cpuset *cs = cgroup_cs(cgrp);
1596 struct cpuset *trialcs;
5d21cc2d 1597 int retval = -ENODEV;
e3712395 1598
3a5a6d0c
TH
1599 /*
1600 * CPU or memory hotunplug may leave @cs w/o any execution
1601 * resources, in which case the hotplug code asynchronously updates
1602 * configuration and transfers all tasks to the nearest ancestor
1603 * which can execute.
1604 *
1605 * As writes to "cpus" or "mems" may restore @cs's execution
1606 * resources, wait for the previously scheduled operations before
1607 * proceeding, so that we don't end up keep removing tasks added
1608 * after execution capability is restored.
1609 */
1610 flush_work(&cpuset_hotplug_work);
1611
5d21cc2d
TH
1612 mutex_lock(&cpuset_mutex);
1613 if (!is_cpuset_online(cs))
1614 goto out_unlock;
e3712395 1615
645fcc9d 1616 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1617 if (!trialcs) {
1618 retval = -ENOMEM;
5d21cc2d 1619 goto out_unlock;
b75f38d6 1620 }
645fcc9d 1621
e3712395
PM
1622 switch (cft->private) {
1623 case FILE_CPULIST:
645fcc9d 1624 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1625 break;
1626 case FILE_MEMLIST:
645fcc9d 1627 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1628 break;
1629 default:
1630 retval = -EINVAL;
1631 break;
1632 }
645fcc9d
LZ
1633
1634 free_trial_cpuset(trialcs);
5d21cc2d
TH
1635out_unlock:
1636 mutex_unlock(&cpuset_mutex);
e3712395
PM
1637 return retval;
1638}
1639
1da177e4
LT
1640/*
1641 * These ascii lists should be read in a single call, by using a user
1642 * buffer large enough to hold the entire map. If read in smaller
1643 * chunks, there is no guarantee of atomicity. Since the display format
1644 * used, list of ranges of sequential numbers, is variable length,
1645 * and since these maps can change value dynamically, one could read
1646 * gibberish by doing partial reads while a list was changing.
1647 * A single large read to a buffer that crosses a page boundary is
1648 * ok, because the result being copied to user land is not recomputed
1649 * across a page fault.
1650 */
1651
9303e0c4 1652static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1653{
9303e0c4 1654 size_t count;
1da177e4 1655
3d3f26a7 1656 mutex_lock(&callback_mutex);
9303e0c4 1657 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1658 mutex_unlock(&callback_mutex);
1da177e4 1659
9303e0c4 1660 return count;
1da177e4
LT
1661}
1662
9303e0c4 1663static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1664{
9303e0c4 1665 size_t count;
1da177e4 1666
3d3f26a7 1667 mutex_lock(&callback_mutex);
9303e0c4 1668 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1669 mutex_unlock(&callback_mutex);
1da177e4 1670
9303e0c4 1671 return count;
1da177e4
LT
1672}
1673
8793d854
PM
1674static ssize_t cpuset_common_file_read(struct cgroup *cont,
1675 struct cftype *cft,
1676 struct file *file,
1677 char __user *buf,
1678 size_t nbytes, loff_t *ppos)
1da177e4 1679{
8793d854 1680 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1681 cpuset_filetype_t type = cft->private;
1682 char *page;
1683 ssize_t retval = 0;
1684 char *s;
1da177e4 1685
e12ba74d 1686 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1687 return -ENOMEM;
1688
1689 s = page;
1690
1691 switch (type) {
1692 case FILE_CPULIST:
1693 s += cpuset_sprintf_cpulist(s, cs);
1694 break;
1695 case FILE_MEMLIST:
1696 s += cpuset_sprintf_memlist(s, cs);
1697 break;
1da177e4
LT
1698 default:
1699 retval = -EINVAL;
1700 goto out;
1701 }
1702 *s++ = '\n';
1da177e4 1703
eacaa1f5 1704 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1705out:
1706 free_page((unsigned long)page);
1707 return retval;
1708}
1709
700fe1ab
PM
1710static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1711{
1712 struct cpuset *cs = cgroup_cs(cont);
1713 cpuset_filetype_t type = cft->private;
1714 switch (type) {
1715 case FILE_CPU_EXCLUSIVE:
1716 return is_cpu_exclusive(cs);
1717 case FILE_MEM_EXCLUSIVE:
1718 return is_mem_exclusive(cs);
78608366
PM
1719 case FILE_MEM_HARDWALL:
1720 return is_mem_hardwall(cs);
700fe1ab
PM
1721 case FILE_SCHED_LOAD_BALANCE:
1722 return is_sched_load_balance(cs);
1723 case FILE_MEMORY_MIGRATE:
1724 return is_memory_migrate(cs);
1725 case FILE_MEMORY_PRESSURE_ENABLED:
1726 return cpuset_memory_pressure_enabled;
1727 case FILE_MEMORY_PRESSURE:
1728 return fmeter_getrate(&cs->fmeter);
1729 case FILE_SPREAD_PAGE:
1730 return is_spread_page(cs);
1731 case FILE_SPREAD_SLAB:
1732 return is_spread_slab(cs);
1733 default:
1734 BUG();
1735 }
cf417141
MK
1736
1737 /* Unreachable but makes gcc happy */
1738 return 0;
700fe1ab 1739}
1da177e4 1740
5be7a479
PM
1741static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1742{
1743 struct cpuset *cs = cgroup_cs(cont);
1744 cpuset_filetype_t type = cft->private;
1745 switch (type) {
1746 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1747 return cs->relax_domain_level;
1748 default:
1749 BUG();
1750 }
cf417141
MK
1751
1752 /* Unrechable but makes gcc happy */
1753 return 0;
5be7a479
PM
1754}
1755
1da177e4
LT
1756
1757/*
1758 * for the common functions, 'private' gives the type of file
1759 */
1760
addf2c73
PM
1761static struct cftype files[] = {
1762 {
1763 .name = "cpus",
1764 .read = cpuset_common_file_read,
e3712395
PM
1765 .write_string = cpuset_write_resmask,
1766 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1767 .private = FILE_CPULIST,
1768 },
1769
1770 {
1771 .name = "mems",
1772 .read = cpuset_common_file_read,
e3712395
PM
1773 .write_string = cpuset_write_resmask,
1774 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1775 .private = FILE_MEMLIST,
1776 },
1777
1778 {
1779 .name = "cpu_exclusive",
1780 .read_u64 = cpuset_read_u64,
1781 .write_u64 = cpuset_write_u64,
1782 .private = FILE_CPU_EXCLUSIVE,
1783 },
1784
1785 {
1786 .name = "mem_exclusive",
1787 .read_u64 = cpuset_read_u64,
1788 .write_u64 = cpuset_write_u64,
1789 .private = FILE_MEM_EXCLUSIVE,
1790 },
1791
78608366
PM
1792 {
1793 .name = "mem_hardwall",
1794 .read_u64 = cpuset_read_u64,
1795 .write_u64 = cpuset_write_u64,
1796 .private = FILE_MEM_HARDWALL,
1797 },
1798
addf2c73
PM
1799 {
1800 .name = "sched_load_balance",
1801 .read_u64 = cpuset_read_u64,
1802 .write_u64 = cpuset_write_u64,
1803 .private = FILE_SCHED_LOAD_BALANCE,
1804 },
1805
1806 {
1807 .name = "sched_relax_domain_level",
5be7a479
PM
1808 .read_s64 = cpuset_read_s64,
1809 .write_s64 = cpuset_write_s64,
addf2c73
PM
1810 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1811 },
1812
1813 {
1814 .name = "memory_migrate",
1815 .read_u64 = cpuset_read_u64,
1816 .write_u64 = cpuset_write_u64,
1817 .private = FILE_MEMORY_MIGRATE,
1818 },
1819
1820 {
1821 .name = "memory_pressure",
1822 .read_u64 = cpuset_read_u64,
1823 .write_u64 = cpuset_write_u64,
1824 .private = FILE_MEMORY_PRESSURE,
099fca32 1825 .mode = S_IRUGO,
addf2c73
PM
1826 },
1827
1828 {
1829 .name = "memory_spread_page",
1830 .read_u64 = cpuset_read_u64,
1831 .write_u64 = cpuset_write_u64,
1832 .private = FILE_SPREAD_PAGE,
1833 },
1834
1835 {
1836 .name = "memory_spread_slab",
1837 .read_u64 = cpuset_read_u64,
1838 .write_u64 = cpuset_write_u64,
1839 .private = FILE_SPREAD_SLAB,
1840 },
3e0d98b9 1841
4baf6e33
TH
1842 {
1843 .name = "memory_pressure_enabled",
1844 .flags = CFTYPE_ONLY_ON_ROOT,
1845 .read_u64 = cpuset_read_u64,
1846 .write_u64 = cpuset_write_u64,
1847 .private = FILE_MEMORY_PRESSURE_ENABLED,
1848 },
1da177e4 1849
4baf6e33
TH
1850 { } /* terminate */
1851};
1da177e4
LT
1852
1853/*
92fb9748 1854 * cpuset_css_alloc - allocate a cpuset css
2df167a3 1855 * cont: control group that the new cpuset will be part of
1da177e4
LT
1856 */
1857
92fb9748 1858static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1da177e4 1859{
c8f699bb 1860 struct cpuset *cs;
1da177e4 1861
c8f699bb 1862 if (!cont->parent)
8793d854 1863 return &top_cpuset.css;
033fa1c5 1864
c8f699bb 1865 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1866 if (!cs)
8793d854 1867 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1868 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1869 kfree(cs);
1870 return ERR_PTR(-ENOMEM);
1871 }
1da177e4 1872
029190c5 1873 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1874 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1875 nodes_clear(cs->mems_allowed);
3e0d98b9 1876 fmeter_init(&cs->fmeter);
1d3504fc 1877 cs->relax_domain_level = -1;
1da177e4 1878
c8f699bb
TH
1879 return &cs->css;
1880}
1881
1882static int cpuset_css_online(struct cgroup *cgrp)
1883{
1884 struct cpuset *cs = cgroup_cs(cgrp);
c431069f 1885 struct cpuset *parent = parent_cs(cs);
ae8086ce
TH
1886 struct cpuset *tmp_cs;
1887 struct cgroup *pos_cg;
c8f699bb
TH
1888
1889 if (!parent)
1890 return 0;
1891
5d21cc2d
TH
1892 mutex_lock(&cpuset_mutex);
1893
efeb77b2 1894 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1895 if (is_spread_page(parent))
1896 set_bit(CS_SPREAD_PAGE, &cs->flags);
1897 if (is_spread_slab(parent))
1898 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1899
202f72d5 1900 number_of_cpusets++;
033fa1c5 1901
c8f699bb 1902 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
5d21cc2d 1903 goto out_unlock;
033fa1c5
TH
1904
1905 /*
1906 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1907 * set. This flag handling is implemented in cgroup core for
1908 * histrical reasons - the flag may be specified during mount.
1909 *
1910 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1911 * refuse to clone the configuration - thereby refusing the task to
1912 * be entered, and as a result refusing the sys_unshare() or
1913 * clone() which initiated it. If this becomes a problem for some
1914 * users who wish to allow that scenario, then this could be
1915 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1916 * (and likewise for mems) to the new cgroup.
1917 */
ae8086ce
TH
1918 rcu_read_lock();
1919 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
1920 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1921 rcu_read_unlock();
5d21cc2d 1922 goto out_unlock;
ae8086ce 1923 }
033fa1c5 1924 }
ae8086ce 1925 rcu_read_unlock();
033fa1c5
TH
1926
1927 mutex_lock(&callback_mutex);
1928 cs->mems_allowed = parent->mems_allowed;
1929 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1930 mutex_unlock(&callback_mutex);
5d21cc2d
TH
1931out_unlock:
1932 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
1933 return 0;
1934}
1935
1936static void cpuset_css_offline(struct cgroup *cgrp)
1937{
1938 struct cpuset *cs = cgroup_cs(cgrp);
1939
5d21cc2d 1940 mutex_lock(&cpuset_mutex);
c8f699bb
TH
1941
1942 if (is_sched_load_balance(cs))
1943 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1944
1945 number_of_cpusets--;
efeb77b2 1946 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 1947
5d21cc2d 1948 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1949}
1950
029190c5 1951/*
029190c5
PJ
1952 * If the cpuset being removed has its flag 'sched_load_balance'
1953 * enabled, then simulate turning sched_load_balance off, which
699140ba 1954 * will call rebuild_sched_domains_locked().
029190c5
PJ
1955 */
1956
92fb9748 1957static void cpuset_css_free(struct cgroup *cont)
1da177e4 1958{
8793d854 1959 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1960
300ed6cb 1961 free_cpumask_var(cs->cpus_allowed);
8793d854 1962 kfree(cs);
1da177e4
LT
1963}
1964
8793d854
PM
1965struct cgroup_subsys cpuset_subsys = {
1966 .name = "cpuset",
92fb9748 1967 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
1968 .css_online = cpuset_css_online,
1969 .css_offline = cpuset_css_offline,
92fb9748 1970 .css_free = cpuset_css_free,
8793d854 1971 .can_attach = cpuset_can_attach,
452477fa 1972 .cancel_attach = cpuset_cancel_attach,
8793d854 1973 .attach = cpuset_attach,
8793d854 1974 .subsys_id = cpuset_subsys_id,
4baf6e33 1975 .base_cftypes = files,
8793d854
PM
1976 .early_init = 1,
1977};
1978
1da177e4
LT
1979/**
1980 * cpuset_init - initialize cpusets at system boot
1981 *
1982 * Description: Initialize top_cpuset and the cpuset internal file system,
1983 **/
1984
1985int __init cpuset_init(void)
1986{
8793d854 1987 int err = 0;
1da177e4 1988
58568d2a
MX
1989 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1990 BUG();
1991
300ed6cb 1992 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1993 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1994
3e0d98b9 1995 fmeter_init(&top_cpuset.fmeter);
029190c5 1996 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1997 top_cpuset.relax_domain_level = -1;
1da177e4 1998
1da177e4
LT
1999 err = register_filesystem(&cpuset_fs_type);
2000 if (err < 0)
8793d854
PM
2001 return err;
2002
2341d1b6
LZ
2003 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2004 BUG();
2005
202f72d5 2006 number_of_cpusets = 1;
8793d854 2007 return 0;
1da177e4
LT
2008}
2009
b1aac8bb 2010/*
cf417141 2011 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2012 * or memory nodes, we need to walk over the cpuset hierarchy,
2013 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2014 * last CPU or node from a cpuset, then move the tasks in the empty
2015 * cpuset to its next-highest non-empty parent.
b1aac8bb 2016 */
956db3ca
CW
2017static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2018{
2019 struct cpuset *parent;
2020
956db3ca
CW
2021 /*
2022 * Find its next-highest non-empty parent, (top cpuset
2023 * has online cpus, so can't be empty).
2024 */
c431069f 2025 parent = parent_cs(cs);
300ed6cb 2026 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2027 nodes_empty(parent->mems_allowed))
c431069f 2028 parent = parent_cs(parent);
956db3ca 2029
8cc99345
TH
2030 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2031 rcu_read_lock();
2032 printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
2033 cgroup_name(cs->css.cgroup));
2034 rcu_read_unlock();
2035 }
956db3ca
CW
2036}
2037
deb7aa30 2038/**
388afd85 2039 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
deb7aa30 2040 * @cs: cpuset in interest
956db3ca 2041 *
deb7aa30
TH
2042 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2043 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2044 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2045 */
388afd85 2046static void cpuset_hotplug_update_tasks(struct cpuset *cs)
80d1fa64 2047{
deb7aa30 2048 static cpumask_t off_cpus;
33ad801d 2049 static nodemask_t off_mems;
5d21cc2d 2050 bool is_empty;
80d1fa64 2051
e44193d3
LZ
2052retry:
2053 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2054
5d21cc2d 2055 mutex_lock(&cpuset_mutex);
7ddf96b0 2056
e44193d3
LZ
2057 /*
2058 * We have raced with task attaching. We wait until attaching
2059 * is finished, so we won't attach a task to an empty cpuset.
2060 */
2061 if (cs->attach_in_progress) {
2062 mutex_unlock(&cpuset_mutex);
2063 goto retry;
2064 }
2065
deb7aa30
TH
2066 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2067 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2068
deb7aa30
TH
2069 /* remove offline cpus from @cs */
2070 if (!cpumask_empty(&off_cpus)) {
2071 mutex_lock(&callback_mutex);
2072 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2073 mutex_unlock(&callback_mutex);
2074 update_tasks_cpumask(cs, NULL);
80d1fa64
SB
2075 }
2076
deb7aa30
TH
2077 /* remove offline mems from @cs */
2078 if (!nodes_empty(off_mems)) {
deb7aa30
TH
2079 mutex_lock(&callback_mutex);
2080 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2081 mutex_unlock(&callback_mutex);
33ad801d 2082 update_tasks_nodemask(cs, NULL);
b1aac8bb 2083 }
deb7aa30 2084
5d21cc2d
TH
2085 is_empty = cpumask_empty(cs->cpus_allowed) ||
2086 nodes_empty(cs->mems_allowed);
8d033948 2087
5d21cc2d
TH
2088 mutex_unlock(&cpuset_mutex);
2089
2090 /*
2091 * If @cs became empty, move tasks to the nearest ancestor with
2092 * execution resources. This is full cgroup operation which will
2093 * also call back into cpuset. Should be done outside any lock.
2094 */
2095 if (is_empty)
2096 remove_tasks_in_empty_cpuset(cs);
b1aac8bb
PJ
2097}
2098
deb7aa30 2099/**
3a5a6d0c 2100 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2101 *
deb7aa30
TH
2102 * This function is called after either CPU or memory configuration has
2103 * changed and updates cpuset accordingly. The top_cpuset is always
2104 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2105 * order to make cpusets transparent (of no affect) on systems that are
2106 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2107 *
deb7aa30 2108 * Non-root cpusets are only affected by offlining. If any CPUs or memory
388afd85
LZ
2109 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2110 * all descendants.
956db3ca 2111 *
deb7aa30
TH
2112 * Note that CPU offlining during suspend is ignored. We don't modify
2113 * cpusets across suspend/resume cycles at all.
956db3ca 2114 */
3a5a6d0c 2115static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2116{
deb7aa30
TH
2117 static cpumask_t new_cpus, tmp_cpus;
2118 static nodemask_t new_mems, tmp_mems;
2119 bool cpus_updated, mems_updated;
2120 bool cpus_offlined, mems_offlined;
b1aac8bb 2121
5d21cc2d 2122 mutex_lock(&cpuset_mutex);
956db3ca 2123
deb7aa30
TH
2124 /* fetch the available cpus/mems and find out which changed how */
2125 cpumask_copy(&new_cpus, cpu_active_mask);
2126 new_mems = node_states[N_MEMORY];
7ddf96b0 2127
deb7aa30
TH
2128 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2129 cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
2130 &new_cpus);
7ddf96b0 2131
deb7aa30
TH
2132 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2133 nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
2134 mems_offlined = !nodes_empty(tmp_mems);
7ddf96b0 2135
deb7aa30
TH
2136 /* synchronize cpus_allowed to cpu_active_mask */
2137 if (cpus_updated) {
2138 mutex_lock(&callback_mutex);
2139 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2140 mutex_unlock(&callback_mutex);
2141 /* we don't mess with cpumasks of tasks in top_cpuset */
2142 }
b4501295 2143
deb7aa30
TH
2144 /* synchronize mems_allowed to N_MEMORY */
2145 if (mems_updated) {
deb7aa30
TH
2146 mutex_lock(&callback_mutex);
2147 top_cpuset.mems_allowed = new_mems;
2148 mutex_unlock(&callback_mutex);
33ad801d 2149 update_tasks_nodemask(&top_cpuset, NULL);
deb7aa30 2150 }
b4501295 2151
388afd85
LZ
2152 mutex_unlock(&cpuset_mutex);
2153
deb7aa30
TH
2154 /* if cpus or mems went down, we need to propagate to descendants */
2155 if (cpus_offlined || mems_offlined) {
2156 struct cpuset *cs;
fc560a26 2157 struct cgroup *pos_cgrp;
f9b4fb8d 2158
fc560a26 2159 rcu_read_lock();
388afd85
LZ
2160 cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset) {
2161 if (!css_tryget(&cs->css))
2162 continue;
2163 rcu_read_unlock();
7ddf96b0 2164
388afd85 2165 cpuset_hotplug_update_tasks(cs);
b4501295 2166
388afd85
LZ
2167 rcu_read_lock();
2168 css_put(&cs->css);
2169 }
2170 rcu_read_unlock();
2171 }
8d033948 2172
deb7aa30 2173 /* rebuild sched domains if cpus_allowed has changed */
e0e80a02
LZ
2174 if (cpus_updated)
2175 rebuild_sched_domains();
b1aac8bb
PJ
2176}
2177
7ddf96b0 2178void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2179{
3a5a6d0c
TH
2180 /*
2181 * We're inside cpu hotplug critical region which usually nests
2182 * inside cgroup synchronization. Bounce actual hotplug processing
2183 * to a work item to avoid reverse locking order.
2184 *
2185 * We still need to do partition_sched_domains() synchronously;
2186 * otherwise, the scheduler will get confused and put tasks to the
2187 * dead CPU. Fall back to the default single domain.
2188 * cpuset_hotplug_workfn() will rebuild it as necessary.
2189 */
2190 partition_sched_domains(1, NULL, NULL);
2191 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2192}
4c4d50f7 2193
38837fc7 2194/*
38d7bee9
LJ
2195 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2196 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2197 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2198 */
f481891f
MX
2199static int cpuset_track_online_nodes(struct notifier_block *self,
2200 unsigned long action, void *arg)
38837fc7 2201{
3a5a6d0c 2202 schedule_work(&cpuset_hotplug_work);
f481891f 2203 return NOTIFY_OK;
38837fc7 2204}
d8f10cb3
AM
2205
2206static struct notifier_block cpuset_track_online_nodes_nb = {
2207 .notifier_call = cpuset_track_online_nodes,
2208 .priority = 10, /* ??! */
2209};
38837fc7 2210
1da177e4
LT
2211/**
2212 * cpuset_init_smp - initialize cpus_allowed
2213 *
2214 * Description: Finish top cpuset after cpu, node maps are initialized
d8f10cb3 2215 */
1da177e4
LT
2216void __init cpuset_init_smp(void)
2217{
6ad4c188 2218 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2219 top_cpuset.mems_allowed = node_states[N_MEMORY];
33ad801d 2220 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4c4d50f7 2221
d8f10cb3 2222 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
1da177e4
LT
2223}
2224
2225/**
1da177e4
LT
2226 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2227 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2228 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2229 *
300ed6cb 2230 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2231 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2232 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2233 * tasks cpuset.
2234 **/
2235
6af866af 2236void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2237{
070b57fc
LZ
2238 struct cpuset *cpus_cs;
2239
3d3f26a7 2240 mutex_lock(&callback_mutex);
909d75a3 2241 task_lock(tsk);
070b57fc
LZ
2242 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2243 guarantee_online_cpus(cpus_cs, pmask);
909d75a3 2244 task_unlock(tsk);
897f0b3c 2245 mutex_unlock(&callback_mutex);
1da177e4
LT
2246}
2247
2baab4e9 2248void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82 2249{
070b57fc 2250 const struct cpuset *cpus_cs;
9084bb82
ON
2251
2252 rcu_read_lock();
070b57fc
LZ
2253 cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
2254 do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
9084bb82
ON
2255 rcu_read_unlock();
2256
2257 /*
2258 * We own tsk->cpus_allowed, nobody can change it under us.
2259 *
2260 * But we used cs && cs->cpus_allowed lockless and thus can
2261 * race with cgroup_attach_task() or update_cpumask() and get
2262 * the wrong tsk->cpus_allowed. However, both cases imply the
2263 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2264 * which takes task_rq_lock().
2265 *
2266 * If we are called after it dropped the lock we must see all
2267 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2268 * set any mask even if it is not right from task_cs() pov,
2269 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2270 *
2271 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2272 * if required.
9084bb82 2273 */
9084bb82
ON
2274}
2275
1da177e4
LT
2276void cpuset_init_current_mems_allowed(void)
2277{
f9a86fcb 2278 nodes_setall(current->mems_allowed);
1da177e4
LT
2279}
2280
909d75a3
PJ
2281/**
2282 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2283 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2284 *
2285 * Description: Returns the nodemask_t mems_allowed of the cpuset
2286 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2287 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2288 * tasks cpuset.
2289 **/
2290
2291nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2292{
070b57fc 2293 struct cpuset *mems_cs;
909d75a3
PJ
2294 nodemask_t mask;
2295
3d3f26a7 2296 mutex_lock(&callback_mutex);
909d75a3 2297 task_lock(tsk);
070b57fc
LZ
2298 mems_cs = effective_nodemask_cpuset(task_cs(tsk));
2299 guarantee_online_mems(mems_cs, &mask);
909d75a3 2300 task_unlock(tsk);
3d3f26a7 2301 mutex_unlock(&callback_mutex);
909d75a3
PJ
2302
2303 return mask;
2304}
2305
d9fd8a6d 2306/**
19770b32
MG
2307 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2308 * @nodemask: the nodemask to be checked
d9fd8a6d 2309 *
19770b32 2310 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2311 */
19770b32 2312int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2313{
19770b32 2314 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2315}
2316
9bf2229f 2317/*
78608366
PM
2318 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2319 * mem_hardwall ancestor to the specified cpuset. Call holding
2320 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2321 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2322 */
78608366 2323static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2324{
c431069f
TH
2325 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2326 cs = parent_cs(cs);
9bf2229f
PJ
2327 return cs;
2328}
2329
d9fd8a6d 2330/**
a1bc5a4e
DR
2331 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2332 * @node: is this an allowed node?
02a0e53d 2333 * @gfp_mask: memory allocation flags
d9fd8a6d 2334 *
a1bc5a4e
DR
2335 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2336 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2337 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2338 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2339 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2340 * flag, yes.
9bf2229f
PJ
2341 * Otherwise, no.
2342 *
a1bc5a4e
DR
2343 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2344 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2345 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2346 *
a1bc5a4e
DR
2347 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2348 * cpusets, and never sleeps.
02a0e53d
PJ
2349 *
2350 * The __GFP_THISNODE placement logic is really handled elsewhere,
2351 * by forcibly using a zonelist starting at a specified node, and by
2352 * (in get_page_from_freelist()) refusing to consider the zones for
2353 * any node on the zonelist except the first. By the time any such
2354 * calls get to this routine, we should just shut up and say 'yes'.
2355 *
9bf2229f 2356 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2357 * and do not allow allocations outside the current tasks cpuset
2358 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2359 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2360 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2361 *
02a0e53d
PJ
2362 * Scanning up parent cpusets requires callback_mutex. The
2363 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2364 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2365 * current tasks mems_allowed came up empty on the first pass over
2366 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2367 * cpuset are short of memory, might require taking the callback_mutex
2368 * mutex.
9bf2229f 2369 *
36be57ff 2370 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2371 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2372 * so no allocation on a node outside the cpuset is allowed (unless
2373 * in interrupt, of course).
36be57ff
PJ
2374 *
2375 * The second pass through get_page_from_freelist() doesn't even call
2376 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2377 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2378 * in alloc_flags. That logic and the checks below have the combined
2379 * affect that:
9bf2229f
PJ
2380 * in_interrupt - any node ok (current task context irrelevant)
2381 * GFP_ATOMIC - any node ok
c596d9f3 2382 * TIF_MEMDIE - any node ok
78608366 2383 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2384 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2385 *
2386 * Rule:
a1bc5a4e 2387 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2388 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2389 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2390 */
a1bc5a4e 2391int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2392{
9bf2229f 2393 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2394 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2395
9b819d20 2396 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2397 return 1;
92d1dbd2 2398 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2399 if (node_isset(node, current->mems_allowed))
2400 return 1;
c596d9f3
DR
2401 /*
2402 * Allow tasks that have access to memory reserves because they have
2403 * been OOM killed to get memory anywhere.
2404 */
2405 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2406 return 1;
9bf2229f
PJ
2407 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2408 return 0;
2409
5563e770
BP
2410 if (current->flags & PF_EXITING) /* Let dying task have memory */
2411 return 1;
2412
9bf2229f 2413 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2414 mutex_lock(&callback_mutex);
053199ed 2415
053199ed 2416 task_lock(current);
78608366 2417 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2418 task_unlock(current);
2419
9bf2229f 2420 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2421 mutex_unlock(&callback_mutex);
9bf2229f 2422 return allowed;
1da177e4
LT
2423}
2424
02a0e53d 2425/*
a1bc5a4e
DR
2426 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2427 * @node: is this an allowed node?
02a0e53d
PJ
2428 * @gfp_mask: memory allocation flags
2429 *
a1bc5a4e
DR
2430 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2431 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2432 * yes. If the task has been OOM killed and has access to memory reserves as
2433 * specified by the TIF_MEMDIE flag, yes.
2434 * Otherwise, no.
02a0e53d
PJ
2435 *
2436 * The __GFP_THISNODE placement logic is really handled elsewhere,
2437 * by forcibly using a zonelist starting at a specified node, and by
2438 * (in get_page_from_freelist()) refusing to consider the zones for
2439 * any node on the zonelist except the first. By the time any such
2440 * calls get to this routine, we should just shut up and say 'yes'.
2441 *
a1bc5a4e
DR
2442 * Unlike the cpuset_node_allowed_softwall() variant, above,
2443 * this variant requires that the node be in the current task's
02a0e53d
PJ
2444 * mems_allowed or that we're in interrupt. It does not scan up the
2445 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2446 * It never sleeps.
2447 */
a1bc5a4e 2448int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2449{
02a0e53d
PJ
2450 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2451 return 1;
02a0e53d
PJ
2452 if (node_isset(node, current->mems_allowed))
2453 return 1;
dedf8b79
DW
2454 /*
2455 * Allow tasks that have access to memory reserves because they have
2456 * been OOM killed to get memory anywhere.
2457 */
2458 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2459 return 1;
02a0e53d
PJ
2460 return 0;
2461}
2462
825a46af 2463/**
6adef3eb
JS
2464 * cpuset_mem_spread_node() - On which node to begin search for a file page
2465 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2466 *
2467 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2468 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2469 * and if the memory allocation used cpuset_mem_spread_node()
2470 * to determine on which node to start looking, as it will for
2471 * certain page cache or slab cache pages such as used for file
2472 * system buffers and inode caches, then instead of starting on the
2473 * local node to look for a free page, rather spread the starting
2474 * node around the tasks mems_allowed nodes.
2475 *
2476 * We don't have to worry about the returned node being offline
2477 * because "it can't happen", and even if it did, it would be ok.
2478 *
2479 * The routines calling guarantee_online_mems() are careful to
2480 * only set nodes in task->mems_allowed that are online. So it
2481 * should not be possible for the following code to return an
2482 * offline node. But if it did, that would be ok, as this routine
2483 * is not returning the node where the allocation must be, only
2484 * the node where the search should start. The zonelist passed to
2485 * __alloc_pages() will include all nodes. If the slab allocator
2486 * is passed an offline node, it will fall back to the local node.
2487 * See kmem_cache_alloc_node().
2488 */
2489
6adef3eb 2490static int cpuset_spread_node(int *rotor)
825a46af
PJ
2491{
2492 int node;
2493
6adef3eb 2494 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2495 if (node == MAX_NUMNODES)
2496 node = first_node(current->mems_allowed);
6adef3eb 2497 *rotor = node;
825a46af
PJ
2498 return node;
2499}
6adef3eb
JS
2500
2501int cpuset_mem_spread_node(void)
2502{
778d3b0f
MH
2503 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2504 current->cpuset_mem_spread_rotor =
2505 node_random(&current->mems_allowed);
2506
6adef3eb
JS
2507 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2508}
2509
2510int cpuset_slab_spread_node(void)
2511{
778d3b0f
MH
2512 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2513 current->cpuset_slab_spread_rotor =
2514 node_random(&current->mems_allowed);
2515
6adef3eb
JS
2516 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2517}
2518
825a46af
PJ
2519EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2520
ef08e3b4 2521/**
bbe373f2
DR
2522 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2523 * @tsk1: pointer to task_struct of some task.
2524 * @tsk2: pointer to task_struct of some other task.
2525 *
2526 * Description: Return true if @tsk1's mems_allowed intersects the
2527 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2528 * one of the task's memory usage might impact the memory available
2529 * to the other.
ef08e3b4
PJ
2530 **/
2531
bbe373f2
DR
2532int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2533 const struct task_struct *tsk2)
ef08e3b4 2534{
bbe373f2 2535 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2536}
2537
f440d98f
LZ
2538#define CPUSET_NODELIST_LEN (256)
2539
75aa1994
DR
2540/**
2541 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2542 * @task: pointer to task_struct of some task.
2543 *
2544 * Description: Prints @task's name, cpuset name, and cached copy of its
2545 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2546 * dereferencing task_cs(task).
2547 */
2548void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2549{
f440d98f
LZ
2550 /* Statically allocated to prevent using excess stack. */
2551 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
2552 static DEFINE_SPINLOCK(cpuset_buffer_lock);
75aa1994 2553
f440d98f 2554 struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
63f43f55 2555
cfb5966b 2556 rcu_read_lock();
f440d98f 2557 spin_lock(&cpuset_buffer_lock);
63f43f55 2558
75aa1994
DR
2559 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2560 tsk->mems_allowed);
2561 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
f440d98f
LZ
2562 tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
2563
75aa1994 2564 spin_unlock(&cpuset_buffer_lock);
cfb5966b 2565 rcu_read_unlock();
75aa1994
DR
2566}
2567
3e0d98b9
PJ
2568/*
2569 * Collection of memory_pressure is suppressed unless
2570 * this flag is enabled by writing "1" to the special
2571 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2572 */
2573
c5b2aff8 2574int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2575
2576/**
2577 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2578 *
2579 * Keep a running average of the rate of synchronous (direct)
2580 * page reclaim efforts initiated by tasks in each cpuset.
2581 *
2582 * This represents the rate at which some task in the cpuset
2583 * ran low on memory on all nodes it was allowed to use, and
2584 * had to enter the kernels page reclaim code in an effort to
2585 * create more free memory by tossing clean pages or swapping
2586 * or writing dirty pages.
2587 *
2588 * Display to user space in the per-cpuset read-only file
2589 * "memory_pressure". Value displayed is an integer
2590 * representing the recent rate of entry into the synchronous
2591 * (direct) page reclaim by any task attached to the cpuset.
2592 **/
2593
2594void __cpuset_memory_pressure_bump(void)
2595{
3e0d98b9 2596 task_lock(current);
8793d854 2597 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2598 task_unlock(current);
2599}
2600
8793d854 2601#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2602/*
2603 * proc_cpuset_show()
2604 * - Print tasks cpuset path into seq_file.
2605 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2606 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2607 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2608 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2609 * anyway.
1da177e4 2610 */
8d8b97ba 2611int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2612{
13b41b09 2613 struct pid *pid;
1da177e4
LT
2614 struct task_struct *tsk;
2615 char *buf;
8793d854 2616 struct cgroup_subsys_state *css;
99f89551 2617 int retval;
1da177e4 2618
99f89551 2619 retval = -ENOMEM;
1da177e4
LT
2620 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2621 if (!buf)
99f89551
EB
2622 goto out;
2623
2624 retval = -ESRCH;
13b41b09
EB
2625 pid = m->private;
2626 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2627 if (!tsk)
2628 goto out_free;
1da177e4 2629
27e89ae5 2630 rcu_read_lock();
8793d854
PM
2631 css = task_subsys_state(tsk, cpuset_subsys_id);
2632 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
27e89ae5 2633 rcu_read_unlock();
1da177e4 2634 if (retval < 0)
27e89ae5 2635 goto out_put_task;
1da177e4
LT
2636 seq_puts(m, buf);
2637 seq_putc(m, '\n');
27e89ae5 2638out_put_task:
99f89551
EB
2639 put_task_struct(tsk);
2640out_free:
1da177e4 2641 kfree(buf);
99f89551 2642out:
1da177e4
LT
2643 return retval;
2644}
8793d854 2645#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2646
d01d4827 2647/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2648void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2649{
df5f8314 2650 seq_printf(m, "Mems_allowed:\t");
30e8e136 2651 seq_nodemask(m, &task->mems_allowed);
df5f8314 2652 seq_printf(m, "\n");
39106dcf 2653 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2654 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2655 seq_printf(m, "\n");
1da177e4 2656}