cpuset sched_load_balance flag
[linux-2.6-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
1da177e4
LT
17 *
18 * This file is subject to the terms and conditions of the GNU General Public
19 * License. See the file COPYING in the main directory of the Linux
20 * distribution for more details.
21 */
22
1da177e4
LT
23#include <linux/cpu.h>
24#include <linux/cpumask.h>
25#include <linux/cpuset.h>
26#include <linux/err.h>
27#include <linux/errno.h>
28#include <linux/file.h>
29#include <linux/fs.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/kernel.h>
33#include <linux/kmod.h>
34#include <linux/list.h>
68860ec1 35#include <linux/mempolicy.h>
1da177e4
LT
36#include <linux/mm.h>
37#include <linux/module.h>
38#include <linux/mount.h>
39#include <linux/namei.h>
40#include <linux/pagemap.h>
41#include <linux/proc_fs.h>
6b9c2603 42#include <linux/rcupdate.h>
1da177e4
LT
43#include <linux/sched.h>
44#include <linux/seq_file.h>
22fb52dd 45#include <linux/security.h>
1da177e4 46#include <linux/slab.h>
1da177e4
LT
47#include <linux/spinlock.h>
48#include <linux/stat.h>
49#include <linux/string.h>
50#include <linux/time.h>
51#include <linux/backing-dev.h>
52#include <linux/sort.h>
53
54#include <asm/uaccess.h>
55#include <asm/atomic.h>
3d3f26a7 56#include <linux/mutex.h>
029190c5 57#include <linux/kfifo.h>
1da177e4 58
202f72d5
PJ
59/*
60 * Tracks how many cpusets are currently defined in system.
61 * When there is only one cpuset (the root cpuset) we can
62 * short circuit some hooks.
63 */
7edc5962 64int number_of_cpusets __read_mostly;
202f72d5 65
8793d854
PM
66/* Retrieve the cpuset from a cgroup */
67struct cgroup_subsys cpuset_subsys;
68struct cpuset;
69
3e0d98b9
PJ
70/* See "Frequency meter" comments, below. */
71
72struct fmeter {
73 int cnt; /* unprocessed events count */
74 int val; /* most recent output value */
75 time_t time; /* clock (secs) when val computed */
76 spinlock_t lock; /* guards read or write of above */
77};
78
1da177e4 79struct cpuset {
8793d854
PM
80 struct cgroup_subsys_state css;
81
1da177e4
LT
82 unsigned long flags; /* "unsigned long" so bitops work */
83 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
84 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
85
1da177e4 86 struct cpuset *parent; /* my parent */
1da177e4
LT
87
88 /*
89 * Copy of global cpuset_mems_generation as of the most
90 * recent time this cpuset changed its mems_allowed.
91 */
3e0d98b9
PJ
92 int mems_generation;
93
94 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
95
96 /* partition number for rebuild_sched_domains() */
97 int pn;
1da177e4
LT
98};
99
8793d854
PM
100/* Retrieve the cpuset for a cgroup */
101static inline struct cpuset *cgroup_cs(struct cgroup *cont)
102{
103 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
104 struct cpuset, css);
105}
106
107/* Retrieve the cpuset for a task */
108static inline struct cpuset *task_cs(struct task_struct *task)
109{
110 return container_of(task_subsys_state(task, cpuset_subsys_id),
111 struct cpuset, css);
112}
113
114
1da177e4
LT
115/* bits in struct cpuset flags field */
116typedef enum {
117 CS_CPU_EXCLUSIVE,
118 CS_MEM_EXCLUSIVE,
45b07ef3 119 CS_MEMORY_MIGRATE,
029190c5 120 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
121 CS_SPREAD_PAGE,
122 CS_SPREAD_SLAB,
1da177e4
LT
123} cpuset_flagbits_t;
124
125/* convenient tests for these bits */
126static inline int is_cpu_exclusive(const struct cpuset *cs)
127{
7b5b9ef0 128 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
129}
130
131static inline int is_mem_exclusive(const struct cpuset *cs)
132{
7b5b9ef0 133 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
134}
135
029190c5
PJ
136static inline int is_sched_load_balance(const struct cpuset *cs)
137{
138 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
139}
140
45b07ef3
PJ
141static inline int is_memory_migrate(const struct cpuset *cs)
142{
7b5b9ef0 143 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
144}
145
825a46af
PJ
146static inline int is_spread_page(const struct cpuset *cs)
147{
148 return test_bit(CS_SPREAD_PAGE, &cs->flags);
149}
150
151static inline int is_spread_slab(const struct cpuset *cs)
152{
153 return test_bit(CS_SPREAD_SLAB, &cs->flags);
154}
155
1da177e4 156/*
151a4420 157 * Increment this integer everytime any cpuset changes its
1da177e4
LT
158 * mems_allowed value. Users of cpusets can track this generation
159 * number, and avoid having to lock and reload mems_allowed unless
160 * the cpuset they're using changes generation.
161 *
162 * A single, global generation is needed because attach_task() could
163 * reattach a task to a different cpuset, which must not have its
164 * generation numbers aliased with those of that tasks previous cpuset.
165 *
166 * Generations are needed for mems_allowed because one task cannot
167 * modify anothers memory placement. So we must enable every task,
168 * on every visit to __alloc_pages(), to efficiently check whether
169 * its current->cpuset->mems_allowed has changed, requiring an update
170 * of its current->mems_allowed.
151a4420
PJ
171 *
172 * Since cpuset_mems_generation is guarded by manage_mutex,
173 * there is no need to mark it atomic.
1da177e4 174 */
151a4420 175static int cpuset_mems_generation;
1da177e4
LT
176
177static struct cpuset top_cpuset = {
178 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
179 .cpus_allowed = CPU_MASK_ALL,
180 .mems_allowed = NODE_MASK_ALL,
1da177e4
LT
181};
182
1da177e4 183/*
3d3f26a7
IM
184 * We have two global cpuset mutexes below. They can nest.
185 * It is ok to first take manage_mutex, then nest callback_mutex. We also
053199ed
PJ
186 * require taking task_lock() when dereferencing a tasks cpuset pointer.
187 * See "The task_lock() exception", at the end of this comment.
188 *
3d3f26a7
IM
189 * A task must hold both mutexes to modify cpusets. If a task
190 * holds manage_mutex, then it blocks others wanting that mutex,
191 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
192 * and be able to modify cpusets. It can perform various checks on
193 * the cpuset structure first, knowing nothing will change. It can
3d3f26a7 194 * also allocate memory while just holding manage_mutex. While it is
053199ed 195 * performing these checks, various callback routines can briefly
3d3f26a7
IM
196 * acquire callback_mutex to query cpusets. Once it is ready to make
197 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
198 *
199 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 200 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
201 * from one of the callbacks into the cpuset code from within
202 * __alloc_pages().
203 *
3d3f26a7 204 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
205 * access to cpusets.
206 *
207 * The task_struct fields mems_allowed and mems_generation may only
208 * be accessed in the context of that task, so require no locks.
209 *
210 * Any task can increment and decrement the count field without lock.
3d3f26a7 211 * So in general, code holding manage_mutex or callback_mutex can't rely
053199ed 212 * on the count field not changing. However, if the count goes to
3d3f26a7 213 * zero, then only attach_task(), which holds both mutexes, can
053199ed
PJ
214 * increment it again. Because a count of zero means that no tasks
215 * are currently attached, therefore there is no way a task attached
216 * to that cpuset can fork (the other way to increment the count).
3d3f26a7 217 * So code holding manage_mutex or callback_mutex can safely assume that
053199ed 218 * if the count is zero, it will stay zero. Similarly, if a task
3d3f26a7 219 * holds manage_mutex or callback_mutex on a cpuset with zero count, it
053199ed 220 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
3d3f26a7 221 * both of those mutexes.
053199ed
PJ
222 *
223 * The cpuset_common_file_write handler for operations that modify
3d3f26a7 224 * the cpuset hierarchy holds manage_mutex across the entire operation,
053199ed
PJ
225 * single threading all such cpuset modifications across the system.
226 *
3d3f26a7 227 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
228 * small pieces of code, such as when reading out possibly multi-word
229 * cpumasks and nodemasks.
230 *
231 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
3d3f26a7 232 * (usually) take either mutex. These are the two most performance
053199ed 233 * critical pieces of code here. The exception occurs on cpuset_exit(),
3d3f26a7 234 * when a task in a notify_on_release cpuset exits. Then manage_mutex
2efe86b8 235 * is taken, and if the cpuset count is zero, a usermode call made
1da177e4
LT
236 * to /sbin/cpuset_release_agent with the name of the cpuset (path
237 * relative to the root of cpuset file system) as the argument.
238 *
053199ed
PJ
239 * A cpuset can only be deleted if both its 'count' of using tasks
240 * is zero, and its list of 'children' cpusets is empty. Since all
241 * tasks in the system use _some_ cpuset, and since there is always at
f400e198 242 * least one task in the system (init), therefore, top_cpuset
053199ed
PJ
243 * always has either children cpusets and/or using tasks. So we don't
244 * need a special hack to ensure that top_cpuset cannot be deleted.
245 *
246 * The above "Tale of Two Semaphores" would be complete, but for:
247 *
248 * The task_lock() exception
249 *
250 * The need for this exception arises from the action of attach_task(),
251 * which overwrites one tasks cpuset pointer with another. It does
3d3f26a7 252 * so using both mutexes, however there are several performance
053199ed 253 * critical places that need to reference task->cpuset without the
3d3f26a7 254 * expense of grabbing a system global mutex. Therefore except as
053199ed
PJ
255 * noted below, when dereferencing or, as in attach_task(), modifying
256 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
257 * (task->alloc_lock) already in the task_struct routinely used for
258 * such matters.
6b9c2603
PJ
259 *
260 * P.S. One more locking exception. RCU is used to guard the
261 * update of a tasks cpuset pointer by attach_task() and the
262 * access of task->cpuset->mems_generation via that pointer in
263 * the routine cpuset_update_task_memory_state().
1da177e4
LT
264 */
265
3d3f26a7 266static DEFINE_MUTEX(callback_mutex);
4247bdc6 267
8793d854
PM
268/* This is ugly, but preserves the userspace API for existing cpuset
269 * users. If someone tries to mount the "cpuset" filesystem, we
270 * silently switch it to mount "cgroup" instead */
454e2398
DH
271static int cpuset_get_sb(struct file_system_type *fs_type,
272 int flags, const char *unused_dev_name,
273 void *data, struct vfsmount *mnt)
1da177e4 274{
8793d854
PM
275 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
276 int ret = -ENODEV;
277 if (cgroup_fs) {
278 char mountopts[] =
279 "cpuset,noprefix,"
280 "release_agent=/sbin/cpuset_release_agent";
281 ret = cgroup_fs->get_sb(cgroup_fs, flags,
282 unused_dev_name, mountopts, mnt);
283 put_filesystem(cgroup_fs);
284 }
285 return ret;
1da177e4
LT
286}
287
288static struct file_system_type cpuset_fs_type = {
289 .name = "cpuset",
290 .get_sb = cpuset_get_sb,
1da177e4
LT
291};
292
1da177e4
LT
293/*
294 * Return in *pmask the portion of a cpusets's cpus_allowed that
295 * are online. If none are online, walk up the cpuset hierarchy
296 * until we find one that does have some online cpus. If we get
297 * all the way to the top and still haven't found any online cpus,
298 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
299 * task, return cpu_online_map.
300 *
301 * One way or another, we guarantee to return some non-empty subset
302 * of cpu_online_map.
303 *
3d3f26a7 304 * Call with callback_mutex held.
1da177e4
LT
305 */
306
307static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
308{
309 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
310 cs = cs->parent;
311 if (cs)
312 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
313 else
314 *pmask = cpu_online_map;
315 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
316}
317
318/*
319 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
320 * are online, with memory. If none are online with memory, walk
321 * up the cpuset hierarchy until we find one that does have some
322 * online mems. If we get all the way to the top and still haven't
323 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
324 *
325 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 326 * of node_states[N_HIGH_MEMORY].
1da177e4 327 *
3d3f26a7 328 * Call with callback_mutex held.
1da177e4
LT
329 */
330
331static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
332{
0e1e7c7a
CL
333 while (cs && !nodes_intersects(cs->mems_allowed,
334 node_states[N_HIGH_MEMORY]))
1da177e4
LT
335 cs = cs->parent;
336 if (cs)
0e1e7c7a
CL
337 nodes_and(*pmask, cs->mems_allowed,
338 node_states[N_HIGH_MEMORY]);
1da177e4 339 else
0e1e7c7a
CL
340 *pmask = node_states[N_HIGH_MEMORY];
341 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
342}
343
cf2a473c
PJ
344/**
345 * cpuset_update_task_memory_state - update task memory placement
346 *
347 * If the current tasks cpusets mems_allowed changed behind our
348 * backs, update current->mems_allowed, mems_generation and task NUMA
349 * mempolicy to the new value.
053199ed 350 *
cf2a473c
PJ
351 * Task mempolicy is updated by rebinding it relative to the
352 * current->cpuset if a task has its memory placement changed.
353 * Do not call this routine if in_interrupt().
354 *
4a01c8d5
PJ
355 * Call without callback_mutex or task_lock() held. May be
356 * called with or without manage_mutex held. Thanks in part to
357 * 'the_top_cpuset_hack', the tasks cpuset pointer will never
358 * be NULL. This routine also might acquire callback_mutex and
cf2a473c 359 * current->mm->mmap_sem during call.
053199ed 360 *
6b9c2603
PJ
361 * Reading current->cpuset->mems_generation doesn't need task_lock
362 * to guard the current->cpuset derefence, because it is guarded
363 * from concurrent freeing of current->cpuset by attach_task(),
364 * using RCU.
365 *
366 * The rcu_dereference() is technically probably not needed,
367 * as I don't actually mind if I see a new cpuset pointer but
368 * an old value of mems_generation. However this really only
369 * matters on alpha systems using cpusets heavily. If I dropped
370 * that rcu_dereference(), it would save them a memory barrier.
371 * For all other arch's, rcu_dereference is a no-op anyway, and for
372 * alpha systems not using cpusets, another planned optimization,
373 * avoiding the rcu critical section for tasks in the root cpuset
374 * which is statically allocated, so can't vanish, will make this
375 * irrelevant. Better to use RCU as intended, than to engage in
376 * some cute trick to save a memory barrier that is impossible to
377 * test, for alpha systems using cpusets heavily, which might not
378 * even exist.
053199ed
PJ
379 *
380 * This routine is needed to update the per-task mems_allowed data,
381 * within the tasks context, when it is trying to allocate memory
382 * (in various mm/mempolicy.c routines) and notices that some other
383 * task has been modifying its cpuset.
1da177e4
LT
384 */
385
fe85a998 386void cpuset_update_task_memory_state(void)
1da177e4 387{
053199ed 388 int my_cpusets_mem_gen;
cf2a473c 389 struct task_struct *tsk = current;
6b9c2603 390 struct cpuset *cs;
053199ed 391
8793d854 392 if (task_cs(tsk) == &top_cpuset) {
03a285f5
PJ
393 /* Don't need rcu for top_cpuset. It's never freed. */
394 my_cpusets_mem_gen = top_cpuset.mems_generation;
395 } else {
396 rcu_read_lock();
8793d854 397 my_cpusets_mem_gen = task_cs(current)->mems_generation;
03a285f5
PJ
398 rcu_read_unlock();
399 }
1da177e4 400
cf2a473c 401 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 402 mutex_lock(&callback_mutex);
cf2a473c 403 task_lock(tsk);
8793d854 404 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
405 guarantee_online_mems(cs, &tsk->mems_allowed);
406 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
407 if (is_spread_page(cs))
408 tsk->flags |= PF_SPREAD_PAGE;
409 else
410 tsk->flags &= ~PF_SPREAD_PAGE;
411 if (is_spread_slab(cs))
412 tsk->flags |= PF_SPREAD_SLAB;
413 else
414 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 415 task_unlock(tsk);
3d3f26a7 416 mutex_unlock(&callback_mutex);
74cb2155 417 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
418 }
419}
420
421/*
422 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
423 *
424 * One cpuset is a subset of another if all its allowed CPUs and
425 * Memory Nodes are a subset of the other, and its exclusive flags
3d3f26a7 426 * are only set if the other's are set. Call holding manage_mutex.
1da177e4
LT
427 */
428
429static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
430{
431 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
432 nodes_subset(p->mems_allowed, q->mems_allowed) &&
433 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
434 is_mem_exclusive(p) <= is_mem_exclusive(q);
435}
436
437/*
438 * validate_change() - Used to validate that any proposed cpuset change
439 * follows the structural rules for cpusets.
440 *
441 * If we replaced the flag and mask values of the current cpuset
442 * (cur) with those values in the trial cpuset (trial), would
443 * our various subset and exclusive rules still be valid? Presumes
3d3f26a7 444 * manage_mutex held.
1da177e4
LT
445 *
446 * 'cur' is the address of an actual, in-use cpuset. Operations
447 * such as list traversal that depend on the actual address of the
448 * cpuset in the list must use cur below, not trial.
449 *
450 * 'trial' is the address of bulk structure copy of cur, with
451 * perhaps one or more of the fields cpus_allowed, mems_allowed,
452 * or flags changed to new, trial values.
453 *
454 * Return 0 if valid, -errno if not.
455 */
456
457static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
458{
8793d854 459 struct cgroup *cont;
1da177e4
LT
460 struct cpuset *c, *par;
461
462 /* Each of our child cpusets must be a subset of us */
8793d854
PM
463 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
464 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
465 return -EBUSY;
466 }
467
468 /* Remaining checks don't apply to root cpuset */
69604067 469 if (cur == &top_cpuset)
1da177e4
LT
470 return 0;
471
69604067
PJ
472 par = cur->parent;
473
1da177e4
LT
474 /* We must be a subset of our parent cpuset */
475 if (!is_cpuset_subset(trial, par))
476 return -EACCES;
477
478 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
8793d854
PM
479 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
480 c = cgroup_cs(cont);
1da177e4
LT
481 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
482 c != cur &&
483 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
484 return -EINVAL;
485 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
486 c != cur &&
487 nodes_intersects(trial->mems_allowed, c->mems_allowed))
488 return -EINVAL;
489 }
490
491 return 0;
492}
493
029190c5
PJ
494/*
495 * Helper routine for rebuild_sched_domains().
496 * Do cpusets a, b have overlapping cpus_allowed masks?
497 */
498
499static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
500{
501 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
502}
503
504/*
505 * rebuild_sched_domains()
506 *
507 * If the flag 'sched_load_balance' of any cpuset with non-empty
508 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
509 * which has that flag enabled, or if any cpuset with a non-empty
510 * 'cpus' is removed, then call this routine to rebuild the
511 * scheduler's dynamic sched domains.
512 *
513 * This routine builds a partial partition of the systems CPUs
514 * (the set of non-overlappping cpumask_t's in the array 'part'
515 * below), and passes that partial partition to the kernel/sched.c
516 * partition_sched_domains() routine, which will rebuild the
517 * schedulers load balancing domains (sched domains) as specified
518 * by that partial partition. A 'partial partition' is a set of
519 * non-overlapping subsets whose union is a subset of that set.
520 *
521 * See "What is sched_load_balance" in Documentation/cpusets.txt
522 * for a background explanation of this.
523 *
524 * Does not return errors, on the theory that the callers of this
525 * routine would rather not worry about failures to rebuild sched
526 * domains when operating in the severe memory shortage situations
527 * that could cause allocation failures below.
528 *
529 * Call with cgroup_mutex held. May take callback_mutex during
530 * call due to the kfifo_alloc() and kmalloc() calls. May nest
531 * a call to the lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
532 * Must not be called holding callback_mutex, because we must not
533 * call lock_cpu_hotplug() while holding callback_mutex. Elsewhere
534 * the kernel nests callback_mutex inside lock_cpu_hotplug() calls.
535 * So the reverse nesting would risk an ABBA deadlock.
536 *
537 * The three key local variables below are:
538 * q - a kfifo queue of cpuset pointers, used to implement a
539 * top-down scan of all cpusets. This scan loads a pointer
540 * to each cpuset marked is_sched_load_balance into the
541 * array 'csa'. For our purposes, rebuilding the schedulers
542 * sched domains, we can ignore !is_sched_load_balance cpusets.
543 * csa - (for CpuSet Array) Array of pointers to all the cpusets
544 * that need to be load balanced, for convenient iterative
545 * access by the subsequent code that finds the best partition,
546 * i.e the set of domains (subsets) of CPUs such that the
547 * cpus_allowed of every cpuset marked is_sched_load_balance
548 * is a subset of one of these domains, while there are as
549 * many such domains as possible, each as small as possible.
550 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
551 * the kernel/sched.c routine partition_sched_domains() in a
552 * convenient format, that can be easily compared to the prior
553 * value to determine what partition elements (sched domains)
554 * were changed (added or removed.)
555 *
556 * Finding the best partition (set of domains):
557 * The triple nested loops below over i, j, k scan over the
558 * load balanced cpusets (using the array of cpuset pointers in
559 * csa[]) looking for pairs of cpusets that have overlapping
560 * cpus_allowed, but which don't have the same 'pn' partition
561 * number and gives them in the same partition number. It keeps
562 * looping on the 'restart' label until it can no longer find
563 * any such pairs.
564 *
565 * The union of the cpus_allowed masks from the set of
566 * all cpusets having the same 'pn' value then form the one
567 * element of the partition (one sched domain) to be passed to
568 * partition_sched_domains().
569 */
570
571static void rebuild_sched_domains(void)
572{
573 struct kfifo *q; /* queue of cpusets to be scanned */
574 struct cpuset *cp; /* scans q */
575 struct cpuset **csa; /* array of all cpuset ptrs */
576 int csn; /* how many cpuset ptrs in csa so far */
577 int i, j, k; /* indices for partition finding loops */
578 cpumask_t *doms; /* resulting partition; i.e. sched domains */
579 int ndoms; /* number of sched domains in result */
580 int nslot; /* next empty doms[] cpumask_t slot */
581
582 q = NULL;
583 csa = NULL;
584 doms = NULL;
585
586 /* Special case for the 99% of systems with one, full, sched domain */
587 if (is_sched_load_balance(&top_cpuset)) {
588 ndoms = 1;
589 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
590 if (!doms)
591 goto rebuild;
592 *doms = top_cpuset.cpus_allowed;
593 goto rebuild;
594 }
595
596 q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
597 if (IS_ERR(q))
598 goto done;
599 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
600 if (!csa)
601 goto done;
602 csn = 0;
603
604 cp = &top_cpuset;
605 __kfifo_put(q, (void *)&cp, sizeof(cp));
606 while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
607 struct cgroup *cont;
608 struct cpuset *child; /* scans child cpusets of cp */
609 if (is_sched_load_balance(cp))
610 csa[csn++] = cp;
611 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
612 child = cgroup_cs(cont);
613 __kfifo_put(q, (void *)&child, sizeof(cp));
614 }
615 }
616
617 for (i = 0; i < csn; i++)
618 csa[i]->pn = i;
619 ndoms = csn;
620
621restart:
622 /* Find the best partition (set of sched domains) */
623 for (i = 0; i < csn; i++) {
624 struct cpuset *a = csa[i];
625 int apn = a->pn;
626
627 for (j = 0; j < csn; j++) {
628 struct cpuset *b = csa[j];
629 int bpn = b->pn;
630
631 if (apn != bpn && cpusets_overlap(a, b)) {
632 for (k = 0; k < csn; k++) {
633 struct cpuset *c = csa[k];
634
635 if (c->pn == bpn)
636 c->pn = apn;
637 }
638 ndoms--; /* one less element */
639 goto restart;
640 }
641 }
642 }
643
644 /* Convert <csn, csa> to <ndoms, doms> */
645 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
646 if (!doms)
647 goto rebuild;
648
649 for (nslot = 0, i = 0; i < csn; i++) {
650 struct cpuset *a = csa[i];
651 int apn = a->pn;
652
653 if (apn >= 0) {
654 cpumask_t *dp = doms + nslot;
655
656 if (nslot == ndoms) {
657 static int warnings = 10;
658 if (warnings) {
659 printk(KERN_WARNING
660 "rebuild_sched_domains confused:"
661 " nslot %d, ndoms %d, csn %d, i %d,"
662 " apn %d\n",
663 nslot, ndoms, csn, i, apn);
664 warnings--;
665 }
666 continue;
667 }
668
669 cpus_clear(*dp);
670 for (j = i; j < csn; j++) {
671 struct cpuset *b = csa[j];
672
673 if (apn == b->pn) {
674 cpus_or(*dp, *dp, b->cpus_allowed);
675 b->pn = -1;
676 }
677 }
678 nslot++;
679 }
680 }
681 BUG_ON(nslot != ndoms);
682
683rebuild:
684 /* Have scheduler rebuild sched domains */
685 lock_cpu_hotplug();
686 partition_sched_domains(ndoms, doms);
687 unlock_cpu_hotplug();
688
689done:
690 if (q && !IS_ERR(q))
691 kfifo_free(q);
692 kfree(csa);
693 /* Don't kfree(doms) -- partition_sched_domains() does that. */
694}
695
053199ed 696/*
3d3f26a7 697 * Call with manage_mutex held. May take callback_mutex during call.
053199ed
PJ
698 */
699
1da177e4
LT
700static int update_cpumask(struct cpuset *cs, char *buf)
701{
702 struct cpuset trialcs;
607717a6 703 int retval;
029190c5 704 int cpus_changed, is_load_balanced;
1da177e4 705
4c4d50f7
PJ
706 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
707 if (cs == &top_cpuset)
708 return -EACCES;
709
1da177e4 710 trialcs = *cs;
6f7f02e7
DR
711
712 /*
713 * We allow a cpuset's cpus_allowed to be empty; if it has attached
714 * tasks, we'll catch it later when we validate the change and return
715 * -ENOSPC.
716 */
717 if (!buf[0] || (buf[0] == '\n' && !buf[1])) {
718 cpus_clear(trialcs.cpus_allowed);
719 } else {
720 retval = cpulist_parse(buf, trialcs.cpus_allowed);
721 if (retval < 0)
722 return retval;
723 }
1da177e4 724 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
6f7f02e7 725 /* cpus_allowed cannot be empty for a cpuset with attached tasks. */
8793d854
PM
726 if (cgroup_task_count(cs->css.cgroup) &&
727 cpus_empty(trialcs.cpus_allowed))
1da177e4
LT
728 return -ENOSPC;
729 retval = validate_change(cs, &trialcs);
85d7b949
DG
730 if (retval < 0)
731 return retval;
029190c5
PJ
732
733 cpus_changed = !cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
734 is_load_balanced = is_sched_load_balance(&trialcs);
735
3d3f26a7 736 mutex_lock(&callback_mutex);
85d7b949 737 cs->cpus_allowed = trialcs.cpus_allowed;
3d3f26a7 738 mutex_unlock(&callback_mutex);
029190c5
PJ
739
740 if (cpus_changed && is_load_balanced)
741 rebuild_sched_domains();
742
85d7b949 743 return 0;
1da177e4
LT
744}
745
e4e364e8
PJ
746/*
747 * cpuset_migrate_mm
748 *
749 * Migrate memory region from one set of nodes to another.
750 *
751 * Temporarilly set tasks mems_allowed to target nodes of migration,
752 * so that the migration code can allocate pages on these nodes.
753 *
754 * Call holding manage_mutex, so our current->cpuset won't change
755 * during this call, as manage_mutex holds off any attach_task()
756 * calls. Therefore we don't need to take task_lock around the
757 * call to guarantee_online_mems(), as we know no one is changing
758 * our tasks cpuset.
759 *
760 * Hold callback_mutex around the two modifications of our tasks
761 * mems_allowed to synchronize with cpuset_mems_allowed().
762 *
763 * While the mm_struct we are migrating is typically from some
764 * other task, the task_struct mems_allowed that we are hacking
765 * is for our current task, which must allocate new pages for that
766 * migrating memory region.
767 *
768 * We call cpuset_update_task_memory_state() before hacking
769 * our tasks mems_allowed, so that we are assured of being in
770 * sync with our tasks cpuset, and in particular, callbacks to
771 * cpuset_update_task_memory_state() from nested page allocations
772 * won't see any mismatch of our cpuset and task mems_generation
773 * values, so won't overwrite our hacked tasks mems_allowed
774 * nodemask.
775 */
776
777static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
778 const nodemask_t *to)
779{
780 struct task_struct *tsk = current;
781
782 cpuset_update_task_memory_state();
783
784 mutex_lock(&callback_mutex);
785 tsk->mems_allowed = *to;
786 mutex_unlock(&callback_mutex);
787
788 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
789
790 mutex_lock(&callback_mutex);
8793d854 791 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
792 mutex_unlock(&callback_mutex);
793}
794
053199ed 795/*
4225399a
PJ
796 * Handle user request to change the 'mems' memory placement
797 * of a cpuset. Needs to validate the request, update the
798 * cpusets mems_allowed and mems_generation, and for each
04c19fa6
PJ
799 * task in the cpuset, rebind any vma mempolicies and if
800 * the cpuset is marked 'memory_migrate', migrate the tasks
801 * pages to the new memory.
4225399a 802 *
3d3f26a7 803 * Call with manage_mutex held. May take callback_mutex during call.
4225399a
PJ
804 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
805 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
806 * their mempolicies to the cpusets new mems_allowed.
053199ed
PJ
807 */
808
8793d854
PM
809static void *cpuset_being_rebound;
810
1da177e4
LT
811static int update_nodemask(struct cpuset *cs, char *buf)
812{
813 struct cpuset trialcs;
04c19fa6 814 nodemask_t oldmem;
8793d854 815 struct task_struct *p;
4225399a
PJ
816 struct mm_struct **mmarray;
817 int i, n, ntasks;
04c19fa6 818 int migrate;
4225399a 819 int fudge;
1da177e4 820 int retval;
8793d854 821 struct cgroup_iter it;
1da177e4 822
0e1e7c7a
CL
823 /*
824 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
825 * it's read-only
826 */
38837fc7
PJ
827 if (cs == &top_cpuset)
828 return -EACCES;
829
1da177e4 830 trialcs = *cs;
6f7f02e7
DR
831
832 /*
833 * We allow a cpuset's mems_allowed to be empty; if it has attached
834 * tasks, we'll catch it later when we validate the change and return
835 * -ENOSPC.
836 */
837 if (!buf[0] || (buf[0] == '\n' && !buf[1])) {
838 nodes_clear(trialcs.mems_allowed);
839 } else {
840 retval = nodelist_parse(buf, trialcs.mems_allowed);
841 if (retval < 0)
842 goto done;
0e1e7c7a
CL
843 if (!nodes_intersects(trialcs.mems_allowed,
844 node_states[N_HIGH_MEMORY])) {
845 /*
846 * error if only memoryless nodes specified.
847 */
848 retval = -ENOSPC;
849 goto done;
850 }
6f7f02e7 851 }
0e1e7c7a
CL
852 /*
853 * Exclude memoryless nodes. We know that trialcs.mems_allowed
854 * contains at least one node with memory.
855 */
856 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed,
857 node_states[N_HIGH_MEMORY]);
04c19fa6
PJ
858 oldmem = cs->mems_allowed;
859 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
860 retval = 0; /* Too easy - nothing to do */
861 goto done;
862 }
6f7f02e7 863 /* mems_allowed cannot be empty for a cpuset with attached tasks. */
8793d854
PM
864 if (cgroup_task_count(cs->css.cgroup) &&
865 nodes_empty(trialcs.mems_allowed)) {
59dac16f
PJ
866 retval = -ENOSPC;
867 goto done;
1da177e4 868 }
59dac16f
PJ
869 retval = validate_change(cs, &trialcs);
870 if (retval < 0)
871 goto done;
872
3d3f26a7 873 mutex_lock(&callback_mutex);
59dac16f 874 cs->mems_allowed = trialcs.mems_allowed;
151a4420 875 cs->mems_generation = cpuset_mems_generation++;
3d3f26a7 876 mutex_unlock(&callback_mutex);
59dac16f 877
8793d854 878 cpuset_being_rebound = cs; /* causes mpol_copy() rebind */
4225399a
PJ
879
880 fudge = 10; /* spare mmarray[] slots */
881 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
882 retval = -ENOMEM;
883
884 /*
885 * Allocate mmarray[] to hold mm reference for each task
886 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
887 * tasklist_lock. We could use GFP_ATOMIC, but with a
888 * few more lines of code, we can retry until we get a big
889 * enough mmarray[] w/o using GFP_ATOMIC.
890 */
891 while (1) {
8793d854 892 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
4225399a
PJ
893 ntasks += fudge;
894 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
895 if (!mmarray)
896 goto done;
c2aef333 897 read_lock(&tasklist_lock); /* block fork */
8793d854 898 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
4225399a 899 break; /* got enough */
c2aef333 900 read_unlock(&tasklist_lock); /* try again */
4225399a
PJ
901 kfree(mmarray);
902 }
903
904 n = 0;
905
906 /* Load up mmarray[] with mm reference for each task in cpuset. */
8793d854
PM
907 cgroup_iter_start(cs->css.cgroup, &it);
908 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
4225399a
PJ
909 struct mm_struct *mm;
910
911 if (n >= ntasks) {
912 printk(KERN_WARNING
913 "Cpuset mempolicy rebind incomplete.\n");
8793d854 914 break;
4225399a 915 }
4225399a
PJ
916 mm = get_task_mm(p);
917 if (!mm)
918 continue;
919 mmarray[n++] = mm;
8793d854
PM
920 }
921 cgroup_iter_end(cs->css.cgroup, &it);
c2aef333 922 read_unlock(&tasklist_lock);
4225399a
PJ
923
924 /*
925 * Now that we've dropped the tasklist spinlock, we can
926 * rebind the vma mempolicies of each mm in mmarray[] to their
927 * new cpuset, and release that mm. The mpol_rebind_mm()
928 * call takes mmap_sem, which we couldn't take while holding
929 * tasklist_lock. Forks can happen again now - the mpol_copy()
930 * cpuset_being_rebound check will catch such forks, and rebind
931 * their vma mempolicies too. Because we still hold the global
3d3f26a7 932 * cpuset manage_mutex, we know that no other rebind effort will
4225399a
PJ
933 * be contending for the global variable cpuset_being_rebound.
934 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 935 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 936 */
04c19fa6 937 migrate = is_memory_migrate(cs);
4225399a
PJ
938 for (i = 0; i < n; i++) {
939 struct mm_struct *mm = mmarray[i];
940
941 mpol_rebind_mm(mm, &cs->mems_allowed);
e4e364e8
PJ
942 if (migrate)
943 cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
4225399a
PJ
944 mmput(mm);
945 }
946
947 /* We're done rebinding vma's to this cpusets new mems_allowed. */
948 kfree(mmarray);
8793d854 949 cpuset_being_rebound = NULL;
4225399a 950 retval = 0;
59dac16f 951done:
1da177e4
LT
952 return retval;
953}
954
8793d854
PM
955int current_cpuset_is_being_rebound(void)
956{
957 return task_cs(current) == cpuset_being_rebound;
958}
959
3e0d98b9 960/*
3d3f26a7 961 * Call with manage_mutex held.
3e0d98b9
PJ
962 */
963
964static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
965{
966 if (simple_strtoul(buf, NULL, 10) != 0)
967 cpuset_memory_pressure_enabled = 1;
968 else
969 cpuset_memory_pressure_enabled = 0;
970 return 0;
971}
972
1da177e4
LT
973/*
974 * update_flag - read a 0 or a 1 in a file and update associated flag
975 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
029190c5 976 * CS_SCHED_LOAD_BALANCE,
825a46af
PJ
977 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
978 * CS_SPREAD_PAGE, CS_SPREAD_SLAB)
1da177e4
LT
979 * cs: the cpuset to update
980 * buf: the buffer where we read the 0 or 1
053199ed 981 *
3d3f26a7 982 * Call with manage_mutex held.
1da177e4
LT
983 */
984
985static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
986{
987 int turning_on;
988 struct cpuset trialcs;
607717a6 989 int err;
029190c5 990 int cpus_nonempty, balance_flag_changed;
1da177e4
LT
991
992 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
993
994 trialcs = *cs;
995 if (turning_on)
996 set_bit(bit, &trialcs.flags);
997 else
998 clear_bit(bit, &trialcs.flags);
999
1000 err = validate_change(cs, &trialcs);
85d7b949
DG
1001 if (err < 0)
1002 return err;
029190c5
PJ
1003
1004 cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
1005 balance_flag_changed = (is_sched_load_balance(cs) !=
1006 is_sched_load_balance(&trialcs));
1007
3d3f26a7 1008 mutex_lock(&callback_mutex);
69604067 1009 cs->flags = trialcs.flags;
3d3f26a7 1010 mutex_unlock(&callback_mutex);
85d7b949 1011
029190c5
PJ
1012 if (cpus_nonempty && balance_flag_changed)
1013 rebuild_sched_domains();
1014
85d7b949 1015 return 0;
1da177e4
LT
1016}
1017
3e0d98b9 1018/*
80f7228b 1019 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1020 *
1021 * These routines manage a digitally filtered, constant time based,
1022 * event frequency meter. There are four routines:
1023 * fmeter_init() - initialize a frequency meter.
1024 * fmeter_markevent() - called each time the event happens.
1025 * fmeter_getrate() - returns the recent rate of such events.
1026 * fmeter_update() - internal routine used to update fmeter.
1027 *
1028 * A common data structure is passed to each of these routines,
1029 * which is used to keep track of the state required to manage the
1030 * frequency meter and its digital filter.
1031 *
1032 * The filter works on the number of events marked per unit time.
1033 * The filter is single-pole low-pass recursive (IIR). The time unit
1034 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1035 * simulate 3 decimal digits of precision (multiplied by 1000).
1036 *
1037 * With an FM_COEF of 933, and a time base of 1 second, the filter
1038 * has a half-life of 10 seconds, meaning that if the events quit
1039 * happening, then the rate returned from the fmeter_getrate()
1040 * will be cut in half each 10 seconds, until it converges to zero.
1041 *
1042 * It is not worth doing a real infinitely recursive filter. If more
1043 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1044 * just compute FM_MAXTICKS ticks worth, by which point the level
1045 * will be stable.
1046 *
1047 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1048 * arithmetic overflow in the fmeter_update() routine.
1049 *
1050 * Given the simple 32 bit integer arithmetic used, this meter works
1051 * best for reporting rates between one per millisecond (msec) and
1052 * one per 32 (approx) seconds. At constant rates faster than one
1053 * per msec it maxes out at values just under 1,000,000. At constant
1054 * rates between one per msec, and one per second it will stabilize
1055 * to a value N*1000, where N is the rate of events per second.
1056 * At constant rates between one per second and one per 32 seconds,
1057 * it will be choppy, moving up on the seconds that have an event,
1058 * and then decaying until the next event. At rates slower than
1059 * about one in 32 seconds, it decays all the way back to zero between
1060 * each event.
1061 */
1062
1063#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1064#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1065#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1066#define FM_SCALE 1000 /* faux fixed point scale */
1067
1068/* Initialize a frequency meter */
1069static void fmeter_init(struct fmeter *fmp)
1070{
1071 fmp->cnt = 0;
1072 fmp->val = 0;
1073 fmp->time = 0;
1074 spin_lock_init(&fmp->lock);
1075}
1076
1077/* Internal meter update - process cnt events and update value */
1078static void fmeter_update(struct fmeter *fmp)
1079{
1080 time_t now = get_seconds();
1081 time_t ticks = now - fmp->time;
1082
1083 if (ticks == 0)
1084 return;
1085
1086 ticks = min(FM_MAXTICKS, ticks);
1087 while (ticks-- > 0)
1088 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1089 fmp->time = now;
1090
1091 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1092 fmp->cnt = 0;
1093}
1094
1095/* Process any previous ticks, then bump cnt by one (times scale). */
1096static void fmeter_markevent(struct fmeter *fmp)
1097{
1098 spin_lock(&fmp->lock);
1099 fmeter_update(fmp);
1100 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1101 spin_unlock(&fmp->lock);
1102}
1103
1104/* Process any previous ticks, then return current value. */
1105static int fmeter_getrate(struct fmeter *fmp)
1106{
1107 int val;
1108
1109 spin_lock(&fmp->lock);
1110 fmeter_update(fmp);
1111 val = fmp->val;
1112 spin_unlock(&fmp->lock);
1113 return val;
1114}
1115
8793d854
PM
1116static int cpuset_can_attach(struct cgroup_subsys *ss,
1117 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1118{
8793d854 1119 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1120
1da177e4
LT
1121 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1122 return -ENOSPC;
1123
8793d854
PM
1124 return security_task_setscheduler(tsk, 0, NULL);
1125}
1da177e4 1126
8793d854
PM
1127static void cpuset_attach(struct cgroup_subsys *ss,
1128 struct cgroup *cont, struct cgroup *oldcont,
1129 struct task_struct *tsk)
1130{
1131 cpumask_t cpus;
1132 nodemask_t from, to;
1133 struct mm_struct *mm;
1134 struct cpuset *cs = cgroup_cs(cont);
1135 struct cpuset *oldcs = cgroup_cs(oldcont);
22fb52dd 1136
3d3f26a7 1137 mutex_lock(&callback_mutex);
1da177e4
LT
1138 guarantee_online_cpus(cs, &cpus);
1139 set_cpus_allowed(tsk, cpus);
8793d854 1140 mutex_unlock(&callback_mutex);
1da177e4 1141
45b07ef3
PJ
1142 from = oldcs->mems_allowed;
1143 to = cs->mems_allowed;
4225399a
PJ
1144 mm = get_task_mm(tsk);
1145 if (mm) {
1146 mpol_rebind_mm(mm, &to);
2741a559 1147 if (is_memory_migrate(cs))
e4e364e8 1148 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1149 mmput(mm);
1150 }
1151
1da177e4
LT
1152}
1153
1154/* The various types of files and directories in a cpuset file system */
1155
1156typedef enum {
45b07ef3 1157 FILE_MEMORY_MIGRATE,
1da177e4
LT
1158 FILE_CPULIST,
1159 FILE_MEMLIST,
1160 FILE_CPU_EXCLUSIVE,
1161 FILE_MEM_EXCLUSIVE,
029190c5 1162 FILE_SCHED_LOAD_BALANCE,
3e0d98b9
PJ
1163 FILE_MEMORY_PRESSURE_ENABLED,
1164 FILE_MEMORY_PRESSURE,
825a46af
PJ
1165 FILE_SPREAD_PAGE,
1166 FILE_SPREAD_SLAB,
1da177e4
LT
1167} cpuset_filetype_t;
1168
8793d854
PM
1169static ssize_t cpuset_common_file_write(struct cgroup *cont,
1170 struct cftype *cft,
1171 struct file *file,
d3ed11c3 1172 const char __user *userbuf,
1da177e4
LT
1173 size_t nbytes, loff_t *unused_ppos)
1174{
8793d854 1175 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1176 cpuset_filetype_t type = cft->private;
1177 char *buffer;
1178 int retval = 0;
1179
1180 /* Crude upper limit on largest legitimate cpulist user might write. */
029190c5 1181 if (nbytes > 100U + 6 * max(NR_CPUS, MAX_NUMNODES))
1da177e4
LT
1182 return -E2BIG;
1183
1184 /* +1 for nul-terminator */
1185 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
1186 return -ENOMEM;
1187
1188 if (copy_from_user(buffer, userbuf, nbytes)) {
1189 retval = -EFAULT;
1190 goto out1;
1191 }
1192 buffer[nbytes] = 0; /* nul-terminate */
1193
8793d854 1194 cgroup_lock();
1da177e4 1195
8793d854 1196 if (cgroup_is_removed(cont)) {
1da177e4
LT
1197 retval = -ENODEV;
1198 goto out2;
1199 }
1200
1201 switch (type) {
1202 case FILE_CPULIST:
1203 retval = update_cpumask(cs, buffer);
1204 break;
1205 case FILE_MEMLIST:
1206 retval = update_nodemask(cs, buffer);
1207 break;
1208 case FILE_CPU_EXCLUSIVE:
1209 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
1210 break;
1211 case FILE_MEM_EXCLUSIVE:
1212 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
1213 break;
029190c5
PJ
1214 case FILE_SCHED_LOAD_BALANCE:
1215 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, buffer);
1216 break;
45b07ef3
PJ
1217 case FILE_MEMORY_MIGRATE:
1218 retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
1219 break;
3e0d98b9
PJ
1220 case FILE_MEMORY_PRESSURE_ENABLED:
1221 retval = update_memory_pressure_enabled(cs, buffer);
1222 break;
1223 case FILE_MEMORY_PRESSURE:
1224 retval = -EACCES;
1225 break;
825a46af
PJ
1226 case FILE_SPREAD_PAGE:
1227 retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
151a4420 1228 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1229 break;
1230 case FILE_SPREAD_SLAB:
1231 retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
151a4420 1232 cs->mems_generation = cpuset_mems_generation++;
825a46af 1233 break;
1da177e4
LT
1234 default:
1235 retval = -EINVAL;
1236 goto out2;
1237 }
1238
1239 if (retval == 0)
1240 retval = nbytes;
1241out2:
8793d854 1242 cgroup_unlock();
1da177e4
LT
1243out1:
1244 kfree(buffer);
1245 return retval;
1246}
1247
1da177e4
LT
1248/*
1249 * These ascii lists should be read in a single call, by using a user
1250 * buffer large enough to hold the entire map. If read in smaller
1251 * chunks, there is no guarantee of atomicity. Since the display format
1252 * used, list of ranges of sequential numbers, is variable length,
1253 * and since these maps can change value dynamically, one could read
1254 * gibberish by doing partial reads while a list was changing.
1255 * A single large read to a buffer that crosses a page boundary is
1256 * ok, because the result being copied to user land is not recomputed
1257 * across a page fault.
1258 */
1259
1260static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1261{
1262 cpumask_t mask;
1263
3d3f26a7 1264 mutex_lock(&callback_mutex);
1da177e4 1265 mask = cs->cpus_allowed;
3d3f26a7 1266 mutex_unlock(&callback_mutex);
1da177e4
LT
1267
1268 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1269}
1270
1271static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1272{
1273 nodemask_t mask;
1274
3d3f26a7 1275 mutex_lock(&callback_mutex);
1da177e4 1276 mask = cs->mems_allowed;
3d3f26a7 1277 mutex_unlock(&callback_mutex);
1da177e4
LT
1278
1279 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1280}
1281
8793d854
PM
1282static ssize_t cpuset_common_file_read(struct cgroup *cont,
1283 struct cftype *cft,
1284 struct file *file,
1285 char __user *buf,
1286 size_t nbytes, loff_t *ppos)
1da177e4 1287{
8793d854 1288 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1289 cpuset_filetype_t type = cft->private;
1290 char *page;
1291 ssize_t retval = 0;
1292 char *s;
1da177e4 1293
e12ba74d 1294 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1295 return -ENOMEM;
1296
1297 s = page;
1298
1299 switch (type) {
1300 case FILE_CPULIST:
1301 s += cpuset_sprintf_cpulist(s, cs);
1302 break;
1303 case FILE_MEMLIST:
1304 s += cpuset_sprintf_memlist(s, cs);
1305 break;
1306 case FILE_CPU_EXCLUSIVE:
1307 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
1308 break;
1309 case FILE_MEM_EXCLUSIVE:
1310 *s++ = is_mem_exclusive(cs) ? '1' : '0';
1311 break;
029190c5
PJ
1312 case FILE_SCHED_LOAD_BALANCE:
1313 *s++ = is_sched_load_balance(cs) ? '1' : '0';
1314 break;
45b07ef3
PJ
1315 case FILE_MEMORY_MIGRATE:
1316 *s++ = is_memory_migrate(cs) ? '1' : '0';
1317 break;
3e0d98b9
PJ
1318 case FILE_MEMORY_PRESSURE_ENABLED:
1319 *s++ = cpuset_memory_pressure_enabled ? '1' : '0';
1320 break;
1321 case FILE_MEMORY_PRESSURE:
1322 s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
1323 break;
825a46af
PJ
1324 case FILE_SPREAD_PAGE:
1325 *s++ = is_spread_page(cs) ? '1' : '0';
1326 break;
1327 case FILE_SPREAD_SLAB:
1328 *s++ = is_spread_slab(cs) ? '1' : '0';
1329 break;
1da177e4
LT
1330 default:
1331 retval = -EINVAL;
1332 goto out;
1333 }
1334 *s++ = '\n';
1da177e4 1335
eacaa1f5 1336 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1337out:
1338 free_page((unsigned long)page);
1339 return retval;
1340}
1341
1da177e4 1342
1da177e4 1343
1da177e4 1344
1da177e4
LT
1345
1346/*
1347 * for the common functions, 'private' gives the type of file
1348 */
1349
1da177e4
LT
1350static struct cftype cft_cpus = {
1351 .name = "cpus",
8793d854
PM
1352 .read = cpuset_common_file_read,
1353 .write = cpuset_common_file_write,
1da177e4
LT
1354 .private = FILE_CPULIST,
1355};
1356
1357static struct cftype cft_mems = {
1358 .name = "mems",
8793d854
PM
1359 .read = cpuset_common_file_read,
1360 .write = cpuset_common_file_write,
1da177e4
LT
1361 .private = FILE_MEMLIST,
1362};
1363
1364static struct cftype cft_cpu_exclusive = {
1365 .name = "cpu_exclusive",
8793d854
PM
1366 .read = cpuset_common_file_read,
1367 .write = cpuset_common_file_write,
1da177e4
LT
1368 .private = FILE_CPU_EXCLUSIVE,
1369};
1370
1371static struct cftype cft_mem_exclusive = {
1372 .name = "mem_exclusive",
8793d854
PM
1373 .read = cpuset_common_file_read,
1374 .write = cpuset_common_file_write,
1da177e4
LT
1375 .private = FILE_MEM_EXCLUSIVE,
1376};
1377
029190c5
PJ
1378static struct cftype cft_sched_load_balance = {
1379 .name = "sched_load_balance",
1380 .read = cpuset_common_file_read,
1381 .write = cpuset_common_file_write,
1382 .private = FILE_SCHED_LOAD_BALANCE,
1383};
1384
45b07ef3
PJ
1385static struct cftype cft_memory_migrate = {
1386 .name = "memory_migrate",
8793d854
PM
1387 .read = cpuset_common_file_read,
1388 .write = cpuset_common_file_write,
45b07ef3
PJ
1389 .private = FILE_MEMORY_MIGRATE,
1390};
1391
3e0d98b9
PJ
1392static struct cftype cft_memory_pressure_enabled = {
1393 .name = "memory_pressure_enabled",
8793d854
PM
1394 .read = cpuset_common_file_read,
1395 .write = cpuset_common_file_write,
3e0d98b9
PJ
1396 .private = FILE_MEMORY_PRESSURE_ENABLED,
1397};
1398
1399static struct cftype cft_memory_pressure = {
1400 .name = "memory_pressure",
8793d854
PM
1401 .read = cpuset_common_file_read,
1402 .write = cpuset_common_file_write,
3e0d98b9
PJ
1403 .private = FILE_MEMORY_PRESSURE,
1404};
1405
825a46af
PJ
1406static struct cftype cft_spread_page = {
1407 .name = "memory_spread_page",
8793d854
PM
1408 .read = cpuset_common_file_read,
1409 .write = cpuset_common_file_write,
825a46af
PJ
1410 .private = FILE_SPREAD_PAGE,
1411};
1412
1413static struct cftype cft_spread_slab = {
1414 .name = "memory_spread_slab",
8793d854
PM
1415 .read = cpuset_common_file_read,
1416 .write = cpuset_common_file_write,
825a46af
PJ
1417 .private = FILE_SPREAD_SLAB,
1418};
1419
8793d854 1420static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1421{
1422 int err;
1423
8793d854 1424 if ((err = cgroup_add_file(cont, ss, &cft_cpus)) < 0)
1da177e4 1425 return err;
8793d854 1426 if ((err = cgroup_add_file(cont, ss, &cft_mems)) < 0)
1da177e4 1427 return err;
8793d854 1428 if ((err = cgroup_add_file(cont, ss, &cft_cpu_exclusive)) < 0)
1da177e4 1429 return err;
8793d854 1430 if ((err = cgroup_add_file(cont, ss, &cft_mem_exclusive)) < 0)
1da177e4 1431 return err;
8793d854 1432 if ((err = cgroup_add_file(cont, ss, &cft_memory_migrate)) < 0)
1da177e4 1433 return err;
029190c5
PJ
1434 if ((err = cgroup_add_file(cont, ss, &cft_sched_load_balance)) < 0)
1435 return err;
8793d854 1436 if ((err = cgroup_add_file(cont, ss, &cft_memory_pressure)) < 0)
45b07ef3 1437 return err;
8793d854 1438 if ((err = cgroup_add_file(cont, ss, &cft_spread_page)) < 0)
3e0d98b9 1439 return err;
8793d854 1440 if ((err = cgroup_add_file(cont, ss, &cft_spread_slab)) < 0)
1da177e4 1441 return err;
8793d854
PM
1442 /* memory_pressure_enabled is in root cpuset only */
1443 if (err == 0 && !cont->parent)
1444 err = cgroup_add_file(cont, ss,
1445 &cft_memory_pressure_enabled);
1da177e4
LT
1446 return 0;
1447}
1448
8793d854
PM
1449/*
1450 * post_clone() is called at the end of cgroup_clone().
1451 * 'cgroup' was just created automatically as a result of
1452 * a cgroup_clone(), and the current task is about to
1453 * be moved into 'cgroup'.
1454 *
1455 * Currently we refuse to set up the cgroup - thereby
1456 * refusing the task to be entered, and as a result refusing
1457 * the sys_unshare() or clone() which initiated it - if any
1458 * sibling cpusets have exclusive cpus or mem.
1459 *
1460 * If this becomes a problem for some users who wish to
1461 * allow that scenario, then cpuset_post_clone() could be
1462 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1463 * (and likewise for mems) to the new cgroup.
1464 */
1465static void cpuset_post_clone(struct cgroup_subsys *ss,
1466 struct cgroup *cgroup)
1467{
1468 struct cgroup *parent, *child;
1469 struct cpuset *cs, *parent_cs;
1470
1471 parent = cgroup->parent;
1472 list_for_each_entry(child, &parent->children, sibling) {
1473 cs = cgroup_cs(child);
1474 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1475 return;
1476 }
1477 cs = cgroup_cs(cgroup);
1478 parent_cs = cgroup_cs(parent);
1479
1480 cs->mems_allowed = parent_cs->mems_allowed;
1481 cs->cpus_allowed = parent_cs->cpus_allowed;
1482 return;
1483}
1484
1da177e4
LT
1485/*
1486 * cpuset_create - create a cpuset
1487 * parent: cpuset that will be parent of the new cpuset.
1488 * name: name of the new cpuset. Will be strcpy'ed.
1489 * mode: mode to set on new inode
1490 *
3d3f26a7 1491 * Must be called with the mutex on the parent inode held
1da177e4
LT
1492 */
1493
8793d854
PM
1494static struct cgroup_subsys_state *cpuset_create(
1495 struct cgroup_subsys *ss,
1496 struct cgroup *cont)
1da177e4
LT
1497{
1498 struct cpuset *cs;
8793d854 1499 struct cpuset *parent;
1da177e4 1500
8793d854
PM
1501 if (!cont->parent) {
1502 /* This is early initialization for the top cgroup */
1503 top_cpuset.mems_generation = cpuset_mems_generation++;
1504 return &top_cpuset.css;
1505 }
1506 parent = cgroup_cs(cont->parent);
1da177e4
LT
1507 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1508 if (!cs)
8793d854 1509 return ERR_PTR(-ENOMEM);
1da177e4 1510
cf2a473c 1511 cpuset_update_task_memory_state();
1da177e4 1512 cs->flags = 0;
825a46af
PJ
1513 if (is_spread_page(parent))
1514 set_bit(CS_SPREAD_PAGE, &cs->flags);
1515 if (is_spread_slab(parent))
1516 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1517 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1da177e4
LT
1518 cs->cpus_allowed = CPU_MASK_NONE;
1519 cs->mems_allowed = NODE_MASK_NONE;
151a4420 1520 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1521 fmeter_init(&cs->fmeter);
1da177e4
LT
1522
1523 cs->parent = parent;
202f72d5 1524 number_of_cpusets++;
8793d854 1525 return &cs->css ;
1da177e4
LT
1526}
1527
029190c5
PJ
1528/*
1529 * Locking note on the strange update_flag() call below:
1530 *
1531 * If the cpuset being removed has its flag 'sched_load_balance'
1532 * enabled, then simulate turning sched_load_balance off, which
1533 * will call rebuild_sched_domains(). The lock_cpu_hotplug()
1534 * call in rebuild_sched_domains() must not be made while holding
1535 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
1536 * lock_cpu_hotplug() calls. So the reverse nesting would risk an
1537 * ABBA deadlock.
1538 */
1539
8793d854 1540static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1541{
8793d854 1542 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1543
cf2a473c 1544 cpuset_update_task_memory_state();
029190c5
PJ
1545
1546 if (is_sched_load_balance(cs))
1547 update_flag(CS_SCHED_LOAD_BALANCE, cs, "0");
1548
202f72d5 1549 number_of_cpusets--;
8793d854 1550 kfree(cs);
1da177e4
LT
1551}
1552
8793d854
PM
1553struct cgroup_subsys cpuset_subsys = {
1554 .name = "cpuset",
1555 .create = cpuset_create,
1556 .destroy = cpuset_destroy,
1557 .can_attach = cpuset_can_attach,
1558 .attach = cpuset_attach,
1559 .populate = cpuset_populate,
1560 .post_clone = cpuset_post_clone,
1561 .subsys_id = cpuset_subsys_id,
1562 .early_init = 1,
1563};
1564
c417f024
PJ
1565/*
1566 * cpuset_init_early - just enough so that the calls to
1567 * cpuset_update_task_memory_state() in early init code
1568 * are harmless.
1569 */
1570
1571int __init cpuset_init_early(void)
1572{
8793d854 1573 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1574 return 0;
1575}
1576
8793d854 1577
1da177e4
LT
1578/**
1579 * cpuset_init - initialize cpusets at system boot
1580 *
1581 * Description: Initialize top_cpuset and the cpuset internal file system,
1582 **/
1583
1584int __init cpuset_init(void)
1585{
8793d854 1586 int err = 0;
1da177e4
LT
1587
1588 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1589 top_cpuset.mems_allowed = NODE_MASK_ALL;
1590
3e0d98b9 1591 fmeter_init(&top_cpuset.fmeter);
151a4420 1592 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1593 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1da177e4 1594
1da177e4
LT
1595 err = register_filesystem(&cpuset_fs_type);
1596 if (err < 0)
8793d854
PM
1597 return err;
1598
202f72d5 1599 number_of_cpusets = 1;
8793d854 1600 return 0;
1da177e4
LT
1601}
1602
b1aac8bb
PJ
1603/*
1604 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
1605 * or memory nodes, we need to walk over the cpuset hierarchy,
1606 * removing that CPU or node from all cpusets. If this removes the
1607 * last CPU or node from a cpuset, then the guarantee_online_cpus()
1608 * or guarantee_online_mems() code will use that emptied cpusets
1609 * parent online CPUs or nodes. Cpusets that were already empty of
1610 * CPUs or nodes are left empty.
1611 *
1612 * This routine is intentionally inefficient in a couple of regards.
1613 * It will check all cpusets in a subtree even if the top cpuset of
1614 * the subtree has no offline CPUs or nodes. It checks both CPUs and
1615 * nodes, even though the caller could have been coded to know that
1616 * only one of CPUs or nodes needed to be checked on a given call.
1617 * This was done to minimize text size rather than cpu cycles.
1618 *
1619 * Call with both manage_mutex and callback_mutex held.
1620 *
1621 * Recursive, on depth of cpuset subtree.
1622 */
1623
1624static void guarantee_online_cpus_mems_in_subtree(const struct cpuset *cur)
1625{
8793d854 1626 struct cgroup *cont;
b1aac8bb
PJ
1627 struct cpuset *c;
1628
1629 /* Each of our child cpusets mems must be online */
8793d854
PM
1630 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
1631 c = cgroup_cs(cont);
b1aac8bb
PJ
1632 guarantee_online_cpus_mems_in_subtree(c);
1633 if (!cpus_empty(c->cpus_allowed))
1634 guarantee_online_cpus(c, &c->cpus_allowed);
1635 if (!nodes_empty(c->mems_allowed))
1636 guarantee_online_mems(c, &c->mems_allowed);
1637 }
1638}
1639
1640/*
1641 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
0e1e7c7a
CL
1642 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
1643 * track what's online after any CPU or memory node hotplug or unplug
1644 * event.
b1aac8bb
PJ
1645 *
1646 * To ensure that we don't remove a CPU or node from the top cpuset
1647 * that is currently in use by a child cpuset (which would violate
1648 * the rule that cpusets must be subsets of their parent), we first
1649 * call the recursive routine guarantee_online_cpus_mems_in_subtree().
1650 *
1651 * Since there are two callers of this routine, one for CPU hotplug
1652 * events and one for memory node hotplug events, we could have coded
1653 * two separate routines here. We code it as a single common routine
1654 * in order to minimize text size.
1655 */
1656
1657static void common_cpu_mem_hotplug_unplug(void)
1658{
8793d854 1659 cgroup_lock();
b1aac8bb
PJ
1660 mutex_lock(&callback_mutex);
1661
1662 guarantee_online_cpus_mems_in_subtree(&top_cpuset);
1663 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 1664 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
b1aac8bb
PJ
1665
1666 mutex_unlock(&callback_mutex);
8793d854 1667 cgroup_unlock();
b1aac8bb 1668}
b1aac8bb 1669
4c4d50f7
PJ
1670/*
1671 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1672 * period. This is necessary in order to make cpusets transparent
1673 * (of no affect) on systems that are actively using CPU hotplug
1674 * but making no active use of cpusets.
1675 *
38837fc7
PJ
1676 * This routine ensures that top_cpuset.cpus_allowed tracks
1677 * cpu_online_map on each CPU hotplug (cpuhp) event.
4c4d50f7
PJ
1678 */
1679
029190c5
PJ
1680static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
1681 unsigned long phase, void *unused_cpu)
4c4d50f7 1682{
ac076758
AK
1683 if (phase == CPU_DYING || phase == CPU_DYING_FROZEN)
1684 return NOTIFY_DONE;
1685
b1aac8bb 1686 common_cpu_mem_hotplug_unplug();
4c4d50f7
PJ
1687 return 0;
1688}
4c4d50f7 1689
b1aac8bb 1690#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 1691/*
0e1e7c7a
CL
1692 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
1693 * Call this routine anytime after you change
1694 * node_states[N_HIGH_MEMORY].
38837fc7
PJ
1695 * See also the previous routine cpuset_handle_cpuhp().
1696 */
1697
1af98928 1698void cpuset_track_online_nodes(void)
38837fc7 1699{
b1aac8bb 1700 common_cpu_mem_hotplug_unplug();
38837fc7
PJ
1701}
1702#endif
1703
1da177e4
LT
1704/**
1705 * cpuset_init_smp - initialize cpus_allowed
1706 *
1707 * Description: Finish top cpuset after cpu, node maps are initialized
1708 **/
1709
1710void __init cpuset_init_smp(void)
1711{
1712 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 1713 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7
PJ
1714
1715 hotcpu_notifier(cpuset_handle_cpuhp, 0);
1da177e4
LT
1716}
1717
1718/**
3077a260 1719
1da177e4
LT
1720 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1721 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1722 *
1723 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1724 * attached to the specified @tsk. Guaranteed to return some non-empty
1725 * subset of cpu_online_map, even if this means going outside the
1726 * tasks cpuset.
1727 **/
1728
909d75a3 1729cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
1da177e4
LT
1730{
1731 cpumask_t mask;
1732
3d3f26a7 1733 mutex_lock(&callback_mutex);
909d75a3 1734 task_lock(tsk);
8793d854 1735 guarantee_online_cpus(task_cs(tsk), &mask);
909d75a3 1736 task_unlock(tsk);
3d3f26a7 1737 mutex_unlock(&callback_mutex);
1da177e4
LT
1738
1739 return mask;
1740}
1741
1742void cpuset_init_current_mems_allowed(void)
1743{
1744 current->mems_allowed = NODE_MASK_ALL;
1745}
1746
909d75a3
PJ
1747/**
1748 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
1749 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
1750 *
1751 * Description: Returns the nodemask_t mems_allowed of the cpuset
1752 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 1753 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
1754 * tasks cpuset.
1755 **/
1756
1757nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
1758{
1759 nodemask_t mask;
1760
3d3f26a7 1761 mutex_lock(&callback_mutex);
909d75a3 1762 task_lock(tsk);
8793d854 1763 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 1764 task_unlock(tsk);
3d3f26a7 1765 mutex_unlock(&callback_mutex);
909d75a3
PJ
1766
1767 return mask;
1768}
1769
d9fd8a6d
RD
1770/**
1771 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
1772 * @zl: the zonelist to be checked
1773 *
1da177e4
LT
1774 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1775 */
1776int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
1777{
1778 int i;
1779
1780 for (i = 0; zl->zones[i]; i++) {
89fa3024 1781 int nid = zone_to_nid(zl->zones[i]);
1da177e4
LT
1782
1783 if (node_isset(nid, current->mems_allowed))
1784 return 1;
1785 }
1786 return 0;
1787}
1788
9bf2229f
PJ
1789/*
1790 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
3d3f26a7 1791 * ancestor to the specified cpuset. Call holding callback_mutex.
9bf2229f
PJ
1792 * If no ancestor is mem_exclusive (an unusual configuration), then
1793 * returns the root cpuset.
1794 */
1795static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
1796{
1797 while (!is_mem_exclusive(cs) && cs->parent)
1798 cs = cs->parent;
1799 return cs;
1800}
1801
d9fd8a6d 1802/**
02a0e53d 1803 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
9bf2229f 1804 * @z: is this zone on an allowed node?
02a0e53d 1805 * @gfp_mask: memory allocation flags
d9fd8a6d 1806 *
02a0e53d
PJ
1807 * If we're in interrupt, yes, we can always allocate. If
1808 * __GFP_THISNODE is set, yes, we can always allocate. If zone
9bf2229f
PJ
1809 * z's node is in our tasks mems_allowed, yes. If it's not a
1810 * __GFP_HARDWALL request and this zone's nodes is in the nearest
1811 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
c596d9f3
DR
1812 * If the task has been OOM killed and has access to memory reserves
1813 * as specified by the TIF_MEMDIE flag, yes.
9bf2229f
PJ
1814 * Otherwise, no.
1815 *
02a0e53d
PJ
1816 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
1817 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
1818 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
1819 * from an enclosing cpuset.
1820 *
1821 * cpuset_zone_allowed_hardwall() only handles the simpler case of
1822 * hardwall cpusets, and never sleeps.
1823 *
1824 * The __GFP_THISNODE placement logic is really handled elsewhere,
1825 * by forcibly using a zonelist starting at a specified node, and by
1826 * (in get_page_from_freelist()) refusing to consider the zones for
1827 * any node on the zonelist except the first. By the time any such
1828 * calls get to this routine, we should just shut up and say 'yes'.
1829 *
9bf2229f 1830 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
1831 * and do not allow allocations outside the current tasks cpuset
1832 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 1833 * GFP_KERNEL allocations are not so marked, so can escape to the
02a0e53d 1834 * nearest enclosing mem_exclusive ancestor cpuset.
9bf2229f 1835 *
02a0e53d
PJ
1836 * Scanning up parent cpusets requires callback_mutex. The
1837 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
1838 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
1839 * current tasks mems_allowed came up empty on the first pass over
1840 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
1841 * cpuset are short of memory, might require taking the callback_mutex
1842 * mutex.
9bf2229f 1843 *
36be57ff 1844 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
1845 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
1846 * so no allocation on a node outside the cpuset is allowed (unless
1847 * in interrupt, of course).
36be57ff
PJ
1848 *
1849 * The second pass through get_page_from_freelist() doesn't even call
1850 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
1851 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
1852 * in alloc_flags. That logic and the checks below have the combined
1853 * affect that:
9bf2229f
PJ
1854 * in_interrupt - any node ok (current task context irrelevant)
1855 * GFP_ATOMIC - any node ok
c596d9f3 1856 * TIF_MEMDIE - any node ok
9bf2229f
PJ
1857 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
1858 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
1859 *
1860 * Rule:
02a0e53d 1861 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
1862 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
1863 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 1864 */
9bf2229f 1865
02a0e53d 1866int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
1da177e4 1867{
9bf2229f
PJ
1868 int node; /* node that zone z is on */
1869 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 1870 int allowed; /* is allocation in zone z allowed? */
9bf2229f 1871
9b819d20 1872 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 1873 return 1;
89fa3024 1874 node = zone_to_nid(z);
92d1dbd2 1875 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
1876 if (node_isset(node, current->mems_allowed))
1877 return 1;
c596d9f3
DR
1878 /*
1879 * Allow tasks that have access to memory reserves because they have
1880 * been OOM killed to get memory anywhere.
1881 */
1882 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1883 return 1;
9bf2229f
PJ
1884 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
1885 return 0;
1886
5563e770
BP
1887 if (current->flags & PF_EXITING) /* Let dying task have memory */
1888 return 1;
1889
9bf2229f 1890 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 1891 mutex_lock(&callback_mutex);
053199ed 1892
053199ed 1893 task_lock(current);
8793d854 1894 cs = nearest_exclusive_ancestor(task_cs(current));
053199ed
PJ
1895 task_unlock(current);
1896
9bf2229f 1897 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 1898 mutex_unlock(&callback_mutex);
9bf2229f 1899 return allowed;
1da177e4
LT
1900}
1901
02a0e53d
PJ
1902/*
1903 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
1904 * @z: is this zone on an allowed node?
1905 * @gfp_mask: memory allocation flags
1906 *
1907 * If we're in interrupt, yes, we can always allocate.
1908 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
c596d9f3
DR
1909 * z's node is in our tasks mems_allowed, yes. If the task has been
1910 * OOM killed and has access to memory reserves as specified by the
1911 * TIF_MEMDIE flag, yes. Otherwise, no.
02a0e53d
PJ
1912 *
1913 * The __GFP_THISNODE placement logic is really handled elsewhere,
1914 * by forcibly using a zonelist starting at a specified node, and by
1915 * (in get_page_from_freelist()) refusing to consider the zones for
1916 * any node on the zonelist except the first. By the time any such
1917 * calls get to this routine, we should just shut up and say 'yes'.
1918 *
1919 * Unlike the cpuset_zone_allowed_softwall() variant, above,
1920 * this variant requires that the zone be in the current tasks
1921 * mems_allowed or that we're in interrupt. It does not scan up the
1922 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
1923 * It never sleeps.
1924 */
1925
1926int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
1927{
1928 int node; /* node that zone z is on */
1929
1930 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
1931 return 1;
1932 node = zone_to_nid(z);
1933 if (node_isset(node, current->mems_allowed))
1934 return 1;
dedf8b79
DW
1935 /*
1936 * Allow tasks that have access to memory reserves because they have
1937 * been OOM killed to get memory anywhere.
1938 */
1939 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1940 return 1;
02a0e53d
PJ
1941 return 0;
1942}
1943
505970b9
PJ
1944/**
1945 * cpuset_lock - lock out any changes to cpuset structures
1946 *
3d3f26a7 1947 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 1948 * from being changed while it scans the tasklist looking for a
3d3f26a7 1949 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
1950 * cpuset_lock() routine, so the oom code can lock it, before
1951 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 1952 * must be taken inside callback_mutex.
505970b9
PJ
1953 */
1954
1955void cpuset_lock(void)
1956{
3d3f26a7 1957 mutex_lock(&callback_mutex);
505970b9
PJ
1958}
1959
1960/**
1961 * cpuset_unlock - release lock on cpuset changes
1962 *
1963 * Undo the lock taken in a previous cpuset_lock() call.
1964 */
1965
1966void cpuset_unlock(void)
1967{
3d3f26a7 1968 mutex_unlock(&callback_mutex);
505970b9
PJ
1969}
1970
825a46af
PJ
1971/**
1972 * cpuset_mem_spread_node() - On which node to begin search for a page
1973 *
1974 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
1975 * tasks in a cpuset with is_spread_page or is_spread_slab set),
1976 * and if the memory allocation used cpuset_mem_spread_node()
1977 * to determine on which node to start looking, as it will for
1978 * certain page cache or slab cache pages such as used for file
1979 * system buffers and inode caches, then instead of starting on the
1980 * local node to look for a free page, rather spread the starting
1981 * node around the tasks mems_allowed nodes.
1982 *
1983 * We don't have to worry about the returned node being offline
1984 * because "it can't happen", and even if it did, it would be ok.
1985 *
1986 * The routines calling guarantee_online_mems() are careful to
1987 * only set nodes in task->mems_allowed that are online. So it
1988 * should not be possible for the following code to return an
1989 * offline node. But if it did, that would be ok, as this routine
1990 * is not returning the node where the allocation must be, only
1991 * the node where the search should start. The zonelist passed to
1992 * __alloc_pages() will include all nodes. If the slab allocator
1993 * is passed an offline node, it will fall back to the local node.
1994 * See kmem_cache_alloc_node().
1995 */
1996
1997int cpuset_mem_spread_node(void)
1998{
1999 int node;
2000
2001 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2002 if (node == MAX_NUMNODES)
2003 node = first_node(current->mems_allowed);
2004 current->cpuset_mem_spread_rotor = node;
2005 return node;
2006}
2007EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2008
ef08e3b4 2009/**
bbe373f2
DR
2010 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2011 * @tsk1: pointer to task_struct of some task.
2012 * @tsk2: pointer to task_struct of some other task.
2013 *
2014 * Description: Return true if @tsk1's mems_allowed intersects the
2015 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2016 * one of the task's memory usage might impact the memory available
2017 * to the other.
ef08e3b4
PJ
2018 **/
2019
bbe373f2
DR
2020int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2021 const struct task_struct *tsk2)
ef08e3b4 2022{
bbe373f2 2023 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2024}
2025
3e0d98b9
PJ
2026/*
2027 * Collection of memory_pressure is suppressed unless
2028 * this flag is enabled by writing "1" to the special
2029 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2030 */
2031
c5b2aff8 2032int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2033
2034/**
2035 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2036 *
2037 * Keep a running average of the rate of synchronous (direct)
2038 * page reclaim efforts initiated by tasks in each cpuset.
2039 *
2040 * This represents the rate at which some task in the cpuset
2041 * ran low on memory on all nodes it was allowed to use, and
2042 * had to enter the kernels page reclaim code in an effort to
2043 * create more free memory by tossing clean pages or swapping
2044 * or writing dirty pages.
2045 *
2046 * Display to user space in the per-cpuset read-only file
2047 * "memory_pressure". Value displayed is an integer
2048 * representing the recent rate of entry into the synchronous
2049 * (direct) page reclaim by any task attached to the cpuset.
2050 **/
2051
2052void __cpuset_memory_pressure_bump(void)
2053{
3e0d98b9 2054 task_lock(current);
8793d854 2055 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2056 task_unlock(current);
2057}
2058
8793d854 2059#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2060/*
2061 * proc_cpuset_show()
2062 * - Print tasks cpuset path into seq_file.
2063 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2064 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2065 * doesn't really matter if tsk->cpuset changes after we read it,
3d3f26a7 2066 * and we take manage_mutex, keeping attach_task() from changing it
8488bc35
PJ
2067 * anyway. No need to check that tsk->cpuset != NULL, thanks to
2068 * the_top_cpuset_hack in cpuset_exit(), which sets an exiting tasks
2069 * cpuset to top_cpuset.
1da177e4 2070 */
029190c5 2071static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2072{
13b41b09 2073 struct pid *pid;
1da177e4
LT
2074 struct task_struct *tsk;
2075 char *buf;
8793d854 2076 struct cgroup_subsys_state *css;
99f89551 2077 int retval;
1da177e4 2078
99f89551 2079 retval = -ENOMEM;
1da177e4
LT
2080 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2081 if (!buf)
99f89551
EB
2082 goto out;
2083
2084 retval = -ESRCH;
13b41b09
EB
2085 pid = m->private;
2086 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2087 if (!tsk)
2088 goto out_free;
1da177e4 2089
99f89551 2090 retval = -EINVAL;
8793d854
PM
2091 cgroup_lock();
2092 css = task_subsys_state(tsk, cpuset_subsys_id);
2093 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2094 if (retval < 0)
99f89551 2095 goto out_unlock;
1da177e4
LT
2096 seq_puts(m, buf);
2097 seq_putc(m, '\n');
99f89551 2098out_unlock:
8793d854 2099 cgroup_unlock();
99f89551
EB
2100 put_task_struct(tsk);
2101out_free:
1da177e4 2102 kfree(buf);
99f89551 2103out:
1da177e4
LT
2104 return retval;
2105}
2106
2107static int cpuset_open(struct inode *inode, struct file *file)
2108{
13b41b09
EB
2109 struct pid *pid = PROC_I(inode)->pid;
2110 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2111}
2112
9a32144e 2113const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2114 .open = cpuset_open,
2115 .read = seq_read,
2116 .llseek = seq_lseek,
2117 .release = single_release,
2118};
8793d854 2119#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2120
2121/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2122char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
2123{
2124 buffer += sprintf(buffer, "Cpus_allowed:\t");
2125 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
2126 buffer += sprintf(buffer, "\n");
2127 buffer += sprintf(buffer, "Mems_allowed:\t");
2128 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
2129 buffer += sprintf(buffer, "\n");
2130 return buffer;
2131}